Sample records for abc transporter genes

  1. ABC-B transporter genes in Dirofilaria immitis.

    PubMed

    Bourguinat, Catherine; Che, Hua; Mani, Thangadurai; Keller, Kathy; Prichard, Roger K

    2016-08-01

    Dirofilaria immitis is a filarial nematode causing infection and heartworm disease in dogs and other canids, cats, and occasionally in humans. Prevention with macrocyclic lactones (ML) is recommended during the mosquito transmission season. Recently, ML resistance has been reported. ABC-B transporter genes are thought to be involved in the mechanism of ML resistance in other nematodes. This study aimed to identify all the ABC-B transporter genes in D. immitis using as a reference the nDi.2.2 D. immitis whole genome, which is not completely annotated. Using bioinformatic tools and PCR amplification on pooled D. immitis genomic DNA and on pooled cDNA, nine ABC transporter genes including one pseudogene were characterized. Bioinformatic and phylogenetic analyses allowed identification of three P-glycoproteins (Pgps) (Dim-pgp-3 Dim-pgp-10, Dim-pgp-11), of two ABC-B half transporter genes (one ortholog of Cel-haf-4 and Cel-haf-9; and one ortholog of Cel-haf-1 and Cel-haf-3), of one ABC half transporter gene (ortholog of Cel-haf-5) that contained an ABC-C motif, and of one additional half transporter that would require functional study for characterization. The number of ABC-B transporter genes identified was lower than in Caenorhabditis elegans and Haemonchus contortus. Further studies are needed to understand their possible role in ML resistance in D. immitis. These ABC transporters constitute a base for ML resistance investigation in D. immitis and advance our understanding of the molecular biology of this parasite. Copyright © 2016. Published by Elsevier Ltd.

  2. Diversity of ABC transporter genes across the plant kingdom and their potential utility in biotechnology.

    PubMed

    Lane, Thomas S; Rempe, Caroline S; Davitt, Jack; Staton, Margaret E; Peng, Yanhui; Soltis, Douglas Edward; Melkonian, Michael; Deyholos, Michael; Leebens-Mack, James H; Chase, Mark; Rothfels, Carl J; Stevenson, Dennis; Graham, Sean W; Yu, Jun; Liu, Tao; Pires, J Chris; Edger, Patrick P; Zhang, Yong; Xie, Yinlong; Zhu, Ying; Carpenter, Eric; Wong, Gane Ka-Shu; Stewart, C Neal

    2016-05-31

    The ATP-binding cassette (ABC) transporter gene superfamily is ubiquitous among extant organisms and prominently represented in plants. ABC transporters act to transport compounds across cellular membranes and are involved in a diverse range of biological processes. Thus, the applicability to biotechnology is vast, including cancer resistance in humans, drug resistance among vertebrates, and herbicide and other xenobiotic resistance in plants. In addition, plants appear to harbor the highest diversity of ABC transporter genes compared with any other group of organisms. This study applied transcriptome analysis to survey the kingdom-wide ABC transporter diversity in plants and suggest biotechnology applications of this diversity. We utilized sequence similarity-based informatics techniques to infer the identity of ABC transporter gene candidates from 1295 phylogenetically-diverse plant transcriptomes. A total of 97,149 putative (approximately 25 % were full-length) ABC transporter gene members were identified; each RNA-Seq library (plant sample) had 88 ± 30 gene members. As expected, simpler organisms, such as algae, had fewer unique members than vascular land plants. Differences were also noted in the richness of certain ABC transporter subfamilies. Land plants had more unique ABCB, ABCC, and ABCG transporter gene members on average (p < 0.005), and green algae, red algae, and bryophytes had significantly more ABCF transporter gene members (p < 0.005). Ferns had significantly fewer ABCA transporter gene members than all other plant groups (p < 0.005). We present a transcriptomic overview of ABC transporter gene members across all major plant groups. An increase in the number of gene family members present in the ABCB, ABCC, and ABCD transporter subfamilies may indicate an expansion of the ABC transporter superfamily among green land plants, which include all crop species. The striking difference between the number of ABCA subfamily transporter

  3. Identification of ABC Transporter Genes of Fusarium graminearum with Roles in Azole Tolerance and/or Virulence

    PubMed Central

    Döll, Katharina; Karlovsky, Petr; Deising, Holger B.; Wirsel, Stefan G. R.

    2013-01-01

    Fusarium graminearum is a plant pathogen infecting several important cereals, resulting in substantial yield losses and mycotoxin contamination of the grain. Triazole fungicides are used to control diseases caused by this fungus on a worldwide scale. Our previous microarray study indicated that 15 ABC transporter genes were transcriptionally upregulated in response to tebuconazole treatment. Here, we deleted four ABC transporter genes in two genetic backgrounds of F. graminearum representing the DON (deoxynivalenol) and the NIV (nivalenol) trichothecene chemotypes. Deletion of FgABC3 and FgABC4 belonging to group I of ABC-G and to group V of ABC-C subfamilies of ABC transporters, respectively, considerably increased the sensitivity to the class I sterol biosynthesis inhibitors triazoles and fenarimol. Such effects were specific since they did not occur with any other fungicide class tested. Assessing the contribution of the four ABC transporters to virulence of F. graminearum revealed that, irrespective of their chemotypes, deletion mutants of FgABC1 (ABC-C subfamily group V) and FgABC3 were impeded in virulence on wheat, barley and maize. Phylogenetic context and analyses of mycotoxin production suggests that FgABC3 may encode a transporter protecting the fungus from host-derived antifungal molecules. In contrast, FgABC1 may encode a transporter responsible for the secretion of fungal secondary metabolites alleviating defence of the host. Our results show that ABC transporters play important and diverse roles in both fungicide resistance and pathogenesis of F. graminearum. PMID:24244413

  4. [The ABC transporters of Saccharomyces cerevisiae].

    PubMed

    Wawrzycka, Donata

    2011-01-01

    The ABC transporters (ATP Binding Cassette) compose one of the bigest protein family with the great medical, industrial and economical impact. They are found in all organism from bacteria to man. ABC proteins are responsible for resistance of microorganism to antibiotics and fungicides and multidrug resistance of cancer cells. Mutations in ABC transporters genes cause seriuos deseases like cystic fibrosis, adrenoleucodystrophy or ataxia. Transport catalized by ABC proteins is charged with energy from the ATP hydrolysis. The ABC superfamily contains transporters, canals, receptors. Analysis of the Saccharomyces cerevisiae genome allowed to distinguish 30 potential ABC proteins which are classified into 6 subfamilies. The structural and functional similarity of the yeast and human ABC proteins allowes to use the S. cerevisiae as a model organism for ABC transporters characterisation. In this work the present state of knowleadge on yeast S. cerevisiae ABC proteins was summarised.

  5. Genome-Wide Identification, Characterization and Phylogenetic Analysis of ATP-Binding Cassette (ABC) Transporter Genes in Common Carp (Cyprinus carpio).

    PubMed

    Liu, Xiang; Li, Shangqi; Peng, Wenzhu; Feng, Shuaisheng; Feng, Jianxin; Mahboob, Shahid; Al-Ghanim, Khalid A; Xu, Peng

    2016-01-01

    The ATP-binding cassette (ABC) gene family is considered to be one of the largest gene families in all forms of prokaryotic and eukaryotic life. Although the ABC transporter genes have been annotated in some species, detailed information about the ABC superfamily and the evolutionary characterization of ABC genes in common carp (Cyprinus carpio) are still unclear. In this research, we identified 61 ABC transporter genes in the common carp genome. Phylogenetic analysis revealed that they could be classified into seven subfamilies, namely 11 ABCAs, six ABCBs, 19 ABCCs, eight ABCDs, two ABCEs, four ABCFs, and 11 ABCGs. Comparative analysis of the ABC genes in seven vertebrate species including common carp, showed that at least 10 common carp genes were retained from the third round of whole genome duplication, while 12 duplicated ABC genes may have come from the fourth round of whole genome duplication. Gene losses were also observed for 14 ABC genes. Expression profiles of the 61 ABC genes in six common carp tissues (brain, heart, spleen, kidney, intestine, and gill) revealed extensive functional divergence among the ABC genes. Different copies of some genes had tissue-specific expression patterns, which may indicate some gene function specialization. This study provides essential genomic resources for future studies in common carp.

  6. Genome-Wide Identification, Characterization and Phylogenetic Analysis of ATP-Binding Cassette (ABC) Transporter Genes in Common Carp (Cyprinus carpio)

    PubMed Central

    Peng, Wenzhu; Feng, Shuaisheng; Feng, Jianxin; Mahboob, Shahid; Al-Ghanim, Khalid A.

    2016-01-01

    The ATP-binding cassette (ABC) gene family is considered to be one of the largest gene families in all forms of prokaryotic and eukaryotic life. Although the ABC transporter genes have been annotated in some species, detailed information about the ABC superfamily and the evolutionary characterization of ABC genes in common carp (Cyprinus carpio) are still unclear. In this research, we identified 61 ABC transporter genes in the common carp genome. Phylogenetic analysis revealed that they could be classified into seven subfamilies, namely 11 ABCAs, six ABCBs, 19 ABCCs, eight ABCDs, two ABCEs, four ABCFs, and 11 ABCGs. Comparative analysis of the ABC genes in seven vertebrate species including common carp, showed that at least 10 common carp genes were retained from the third round of whole genome duplication, while 12 duplicated ABC genes may have come from the fourth round of whole genome duplication. Gene losses were also observed for 14 ABC genes. Expression profiles of the 61 ABC genes in six common carp tissues (brain, heart, spleen, kidney, intestine, and gill) revealed extensive functional divergence among the ABC genes. Different copies of some genes had tissue-specific expression patterns, which may indicate some gene function specialization. This study provides essential genomic resources for future studies in common carp. PMID:27058731

  7. Sulfadiazine resistance in Toxoplasma gondii: no involvement of overexpression or polymorphisms in genes of therapeutic targets and ABC transporters

    PubMed Central

    Doliwa, Christelle; Escotte-Binet, Sandie; Aubert, Dominique; Sauvage, Virginie; Velard, Frédéric; Schmid, Aline; Villena, Isabelle

    2013-01-01

    Several treatment failures have been reported for the treatment of toxoplasmic encephalitis, chorioretinitis, and congenital toxoplasmosis. Recently we found three Toxoplasma gondii strains naturally resistant to sulfadiazine and we developed in vitro two sulfadiazine resistant strains, RH-RSDZ and ME-49-RSDZ, by gradual pressure. In Plasmodium, common mechanisms of drug resistance involve, among others, mutations and/or amplification within genes encoding the therapeutic targets dhps and dhfr and/or the ABC transporter genes family. To identify genotypic and/or phenotypic markers of resistance in T. gondii, we sequenced and analyzed the expression levels of therapeutic targets dhps and dhfr, three ABC genes, two Pgp, TgABC.B1 and TgABC.B2, and one MRP, TgABC.C1, on sensitive strains compared to sulfadiazine resistant strains. Neither polymorphism nor overexpression was identified. Contrary to Plasmodium, in which mutations and/or overexpression within gene targets and ABC transporters are involved in antimalarial resistance, T. gondii sulfadiazine resistance is not related to these toxoplasmic genes studied. PMID:23707894

  8. GxySBA ABC Transporter of Agrobacterium tumefaciens and Its Role in Sugar Utilization and vir Gene Expression

    PubMed Central

    Zhao, Jinlei

    2014-01-01

    Monosaccharides available in the extracellular milieu of Agrobacterium tumefaciens can be transported into the cytoplasm, or via the periplasmic sugar binding protein, ChvE, play a critical role in controlling virulence gene expression. The ChvE-MmsAB ABC transporter is involved in the utilization of a wide range of monosaccharide substrates but redundant transporters are likely given the ability of a chvE-mmsAB deletion strain to grow, albeit more slowly, in the presence of particular monosaccharides. In this study, a putative ABC transporter encoded by the gxySBA operon is identified and shown to be involved in the utilization of glucose, xylose, fucose, and arabinose, which are also substrates for the ChvE-MmsAB ABC transporter. Significantly, GxySBA is also shown to be the first characterized glucosamine ABC transporter. The divergently transcribed gene gxyR encodes a repressor of the gxySBA operon, the function of which can be relieved by a subset of the transported sugars, including glucose, xylose, and glucosamine, and this substrate-induced expression can be repressed by glycerol. Furthermore, deletion of the transporter can increase the sensitivity of the virulence gene expression system to certain sugars that regulate it. Collectively, the results reveal a remarkably diverse set of substrates for the GxySBA transporter and its contribution to the repression of sugar sensitivity by the virulence-controlling system, thereby facilitating the capacity of the bacterium to distinguish between the soil and plant environments. PMID:24957625

  9. ABC transporters are involved in defense against permethrin insecticide in the malaria vector Anopheles stephensi.

    PubMed

    Epis, Sara; Porretta, Daniele; Mastrantonio, Valentina; Comandatore, Francesco; Sassera, Davide; Rossi, Paolo; Cafarchia, Claudia; Otranto, Domenico; Favia, Guido; Genchi, Claudio; Bandi, Claudio; Urbanelli, Sandra

    2014-07-29

    Proteins from the ABC family (ATP-binding cassette) represent the largest known group of efflux pumps, responsible for transporting specific molecules across lipid membranes in both prokaryotic and eukaryotic organisms. In arthropods they have been shown to play a role in insecticide defense/resistance. The presence of ABC transporters and their possible association with insecticide transport have not yet been investigated in the mosquito Anopheles stephensi, the major vector of human malaria in the Middle East and South Asian regions. Here we investigated the presence and role of ABCs in transport of permethrin insecticide in a susceptible strain of this mosquito species. To identify ABC transporter genes we obtained a transcriptome from untreated larvae of An. stephensi and then compared it with the annotated transcriptome of Anopheles gambiae. To analyse the association between ABC transporters and permethrin we conducted bioassays with permethrin alone and in combination with an ABC inhibitor, and then we investigated expression profiles of the identified genes in larvae exposed to permethrin. Bioassays showed an increased mortality of mosquitoes when permethrin was used in combination with the ABC-transporter inhibitor. Genes for ABC transporters were detected in the transcriptome, and five were selected (AnstABCB2, AnstABCB3, AnstABCB4, AnstABCmember6 and AnstABCG4). An increased expression in one of them (AnstABCG4) was observed in larvae exposed to the LD50 dose of permethrin. Contrary to what was found in other insect species, no up-regulation was observed in the AnstABCB genes. Our results show for the first time the involvement of ABC transporters in larval defense against permethrin in An. stephensi and, more in general, confirm the role of ABC transporters in insecticide defense. The differences observed with previous studies highlight the need of further research as, despite the growing number of studies on ABC transporters in insects, the

  10. Catalytic and transport cycles of ABC exporters.

    PubMed

    Al-Shawi, Marwan K

    2011-09-07

    ABC (ATP-binding cassette) transporters are arguably the most important family of ATP-driven transporters in biology. Despite considerable effort and advances in determining the structures and physiology of these transporters, their fundamental molecular mechanisms remain elusive and highly controversial. How does ATP hydrolysis by ABC transporters drive their transport function? Part of the problem in answering this question appears to be a perceived need to formulate a universal mechanism. Although it has been generally hoped and assumed that the whole superfamily of ABC transporters would exhibit similar conserved mechanisms, this is proving not to be the case. Structural considerations alone suggest that there are three overall types of coupling mechanisms related to ABC exporters, small ABC importers and large ABC importers. Biochemical and biophysical characterization leads us to the conclusion that, even within these three classes, the catalytic and transport mechanisms are not fully conserved, but continue to evolve. ABC transporters also exhibit unusual characteristics not observed in other primary transporters, such as uncoupled basal ATPase activity, that severely complicate mechanistic studies by established methods. In this chapter, I review these issues as related to ABC exporters in particular. A consensus view has emerged that ABC exporters follow alternating-access switch transport mechanisms. However, some biochemical data suggest that alternating catalytic site transport mechanisms are more appropriate for fully symmetrical ABC exporters. Heterodimeric and asymmetrical ABC exporters appear to conform to simple alternating-access-type mechanisms.

  11. Convergent Loss of ABC Transporter Genes From Clostridioides difficile Genomes Is Associated With Impaired Tyrosine Uptake and p-Cresol Production.

    PubMed

    Steglich, Matthias; Hofmann, Julia D; Helmecke, Julia; Sikorski, Johannes; Spröer, Cathrin; Riedel, Thomas; Bunk, Boyke; Overmann, Jörg; Neumann-Schaal, Meina; Nübel, Ulrich

    2018-01-01

    We report the frequent, convergent loss of two genes encoding the substrate-binding protein and the ATP-binding protein of an ATP-binding cassette (ABC) transporter from the genomes of unrelated Clostridioides difficile strains. This specific genomic deletion was strongly associated with the reduced uptake of tyrosine and phenylalanine and production of derived Stickland fermentation products, including p -cresol, suggesting that the affected ABC transporter had been responsible for the import of aromatic amino acids. In contrast, the transporter gene loss did not measurably affect bacterial growth or production of enterotoxins. Phylogenomic analysis of publically available genome sequences indicated that this transporter gene deletion had occurred multiple times in diverse clonal lineages of C. difficile , with a particularly high prevalence in ribotype 027 isolates, where 48 of 195 genomes (25%) were affected. The transporter gene deletion likely was facilitated by the repetitive structure of its genomic location. While at least some of the observed transporter gene deletions are likely to have occurred during the natural life cycle of C. difficile , we also provide evidence for the emergence of this mutation during long-term laboratory cultivation of reference strain R20291.

  12. Convergent Loss of ABC Transporter Genes From Clostridioides difficile Genomes Is Associated With Impaired Tyrosine Uptake and p-Cresol Production

    PubMed Central

    Steglich, Matthias; Hofmann, Julia D.; Helmecke, Julia; Sikorski, Johannes; Spröer, Cathrin; Riedel, Thomas; Bunk, Boyke; Overmann, Jörg; Neumann-Schaal, Meina; Nübel, Ulrich

    2018-01-01

    We report the frequent, convergent loss of two genes encoding the substrate-binding protein and the ATP-binding protein of an ATP-binding cassette (ABC) transporter from the genomes of unrelated Clostridioides difficile strains. This specific genomic deletion was strongly associated with the reduced uptake of tyrosine and phenylalanine and production of derived Stickland fermentation products, including p-cresol, suggesting that the affected ABC transporter had been responsible for the import of aromatic amino acids. In contrast, the transporter gene loss did not measurably affect bacterial growth or production of enterotoxins. Phylogenomic analysis of publically available genome sequences indicated that this transporter gene deletion had occurred multiple times in diverse clonal lineages of C. difficile, with a particularly high prevalence in ribotype 027 isolates, where 48 of 195 genomes (25%) were affected. The transporter gene deletion likely was facilitated by the repetitive structure of its genomic location. While at least some of the observed transporter gene deletions are likely to have occurred during the natural life cycle of C. difficile, we also provide evidence for the emergence of this mutation during long-term laboratory cultivation of reference strain R20291. PMID:29867812

  13. Temporal dynamics of the ABC transporter response to insecticide treatment: insights from the malaria vector Anopheles stephensi

    NASA Astrophysics Data System (ADS)

    Epis, Sara; Porretta, Daniele; Mastrantonio, Valentina; Urbanelli, Sandra; Sassera, Davide; De Marco, Leone; Mereghetti, Valeria; Montagna, Matteo; Ricci, Irene; Favia, Guido; Bandi, Claudio

    2014-12-01

    In insects, ABC transporters have been shown to contribute to defence/resistance to insecticides by reducing toxic concentrations in cells/tissues. Despite the extensive studies about this detoxifying mechanism, the temporal patterns of ABC transporter activation have been poorly investigated. Using the malaria vector Anopheles stephensi as a study system, we investigated the expression profile of ABC genes belonging to different subfamilies in permethrin-treated larvae at different time points (30 min to 48 h). Our results showed that the expression of ABCB and ABCG subfamily genes was upregulated at 1 h after treatment, with the highest expression observed at 6 h. Therefore, future investigations on the temporal dynamics of ABC gene expression will allow a better implementation of insecticide treatment regimens, including the use of specific inhibitors of ABC efflux pumps.

  14. Transcriptomic insights on the ABC transporter gene family in the salmon louse Caligus rogercresseyi.

    PubMed

    Valenzuela-Muñoz, Valentina; Sturm, Armin; Gallardo-Escárate, Cristian

    2015-04-09

    ATP-binding cassette (ABC) protein family encode for membrane proteins involved in the transport of various biomolecules through the cellular membrane. These proteins have been identified in all taxa and present important physiological functions, including the process of insecticide detoxification in arthropods. For that reason the ectoparasite Caligus rogercresseyi represents a model species for understanding the molecular underpinnings involved in insecticide drug resistance. llumina sequencing was performed using sea lice exposed to 2 and 3 ppb of deltamethrin and azamethiphos. Contigs obtained from de novo assembly were annotated by Blastx. RNA-Seq analysis was performed and validated by qPCR analysis. From the transcriptome database of C. rogercresseyi, 57 putative members of ABC protein sequences were identified and phylogenetically classified into the eight subfamilies described for ABC transporters in arthropods. Transcriptomic profiles for ABC proteins subfamilies were evaluated throughout C. rogercresseyi development. Moreover, RNA-Seq analysis was performed for adult male and female salmon lice exposed to the delousing drugs azamethiphos and deltamethrin. High transcript levels of the ABCB and ABCC subfamilies were evidenced. Furthermore, SNPs mining was carried out for the ABC proteins sequences, revealing pivotal genomic information. The present study gives a comprehensive transcriptome analysis of ABC proteins from C. rogercresseyi, providing relevant information about transporter roles during ontogeny and in relation to delousing drug responses in salmon lice. This genomic information represents a valuable tool for pest management in the Chilean salmon aquaculture industry.

  15. Environmental Conditions Influence Induction of Key ABC-Transporter Genes Affecting Glyphosate Resistance Mechanism in Conyza canadensis.

    PubMed

    Tani, Eleni; Chachalis, Demosthenis; Travlos, Ilias S; Bilalis, Dimitrios

    2016-04-20

    Conyza canadensis has been reported to be the most frequent weed species that evolved resistance to glyphosate in various parts of the world. The objective of the present study was to investigate the effect of environmental conditions (temperature and light) on the expression levels of the EPSPS gene and two major ABC-transporter genes (M10 and M11) on glyphosate susceptible (GS) and glyphosate resistant (GR) horseweed populations, collected from several regions across Greece. Real-time PCR was conducted to determine the expression level of the aforementioned genes when glyphosate was applied at normal (1×; 533 g·a.e.·ha(-1)) and high rates (4×, 8×), measured at an early one day after treatment (DAT) and a later stage (four DAT) of expression. Plants were exposed to light or dark conditions, at three temperature regimes (8, 25, 35 °C). GR plants were made sensitive when exposed to 8 °C with light; those sensitized plants behaved biochemically (shikimate accumulation) and molecularly (expression of EPSPS and ABC-genes) like the GS plants. Results from the current study show the direct link between the environmental conditions and the induction level of the above key genes that likely affect the efficiency of the proposed mechanism of glyphosate resistance.

  16. Environmental Conditions Influence Induction of Key ABC-Transporter Genes Affecting Glyphosate Resistance Mechanism in Conyza canadensis

    PubMed Central

    Tani, Eleni; Chachalis, Demosthenis; Travlos, Ilias S.; Bilalis, Dimitrios

    2016-01-01

    Conyza canadensis has been reported to be the most frequent weed species that evolved resistance to glyphosate in various parts of the world. The objective of the present study was to investigate the effect of environmental conditions (temperature and light) on the expression levels of the EPSPS gene and two major ABC-transporter genes (M10 and M11) on glyphosate susceptible (GS) and glyphosate resistant (GR) horseweed populations, collected from several regions across Greece. Real-time PCR was conducted to determine the expression level of the aforementioned genes when glyphosate was applied at normal (1×; 533 g·a.e.·ha−1) and high rates (4×, 8×), measured at an early one day after treatment (DAT) and a later stage (four DAT) of expression. Plants were exposed to light or dark conditions, at three temperature regimes (8, 25, 35 °C). GR plants were made sensitive when exposed to 8 °C with light; those sensitized plants behaved biochemically (shikimate accumulation) and molecularly (expression of EPSPS and ABC-genes) like the GS plants. Results from the current study show the direct link between the environmental conditions and the induction level of the above key genes that likely affect the efficiency of the proposed mechanism of glyphosate resistance. PMID:27104532

  17. The ABC transporter Tba of Amycolatopsis balhimycina is required for efficient export of the glycopeptide antibiotic balhimycin.

    PubMed

    Menges, R; Muth, G; Wohlleben, W; Stegmann, E

    2007-11-01

    All known gene clusters for glycopeptide antibiotic biosynthesis contain a conserved gene supposed to encode an ABC-transporter. In the balhimycin-producer Amycolatopsis balhimycina this gene (tba) is localised between the prephenate dehydrogenase gene pdh and the peptide synthetase gene bpsA. Inactivation of tba in A. balhimycina by gene replacement did not interfere with growth and did not affect balhimycin resistance. However, in the supernatant of the tba mutant RM43 less balhimycin was accumulated compared to the wild type; and the intra-cellular balhimycin concentration was ten times higher in the tba mutant RM43 than in the wild type. These data suggest that the ABC transporter encoded in the balhimycin biosynthesis gene cluster is not involved in resistance but is required for the efficient export of the antibiotic. To elucidate the activity of Tba it was heterologously expressed in Escherichia coli with an N-terminal His-tag and purified by nickel chromatography. A photometric assay revealed that His(6)-Tba solubilised in dodecylmaltoside possesses ATPase activity, characteristic for ABC-transporters.

  18. Placental ABC Transporters: Biological Impact and Pharmaceutical Significance.

    PubMed

    Joshi, Anand A; Vaidya, Soniya S; St-Pierre, Marie V; Mikheev, Andrei M; Desino, Kelly E; Nyandege, Abner N; Audus, Kenneth L; Unadkat, Jashvant D; Gerk, Phillip M

    2016-12-01

    The human placenta fulfills a variety of essential functions during prenatal life. Several ABC transporters are expressed in the human placenta, where they play a role in the transport of endogenous compounds and may protect the fetus from exogenous compounds such as therapeutic agents, drugs of abuse, and other xenobiotics. To date, considerable progress has been made toward understanding ABC transporters in the placenta. Recent studies on the expression and functional activities are discussed. This review discusses the placental expression and functional roles of several members of ABC transporter subfamilies B, C, and G including MDR1/P-glycoprotein, the MRPs, and BCRP, respectively. Since placental ABC transporters modulate fetal exposure to various compounds, an understanding of their functional and regulatory mechanisms will lead to more optimal medication use when necessary in pregnancy.

  19. Placental ABC Transporters: Biological Impact and Pharmaceutical Significance

    PubMed Central

    Joshi, Anand A.; Vaidya, Soniya S.; St-Pierre, Marie V.; Mikheev, Andrei M.; Desino, Kelly E.; Nyandege, Abner N.; Audus, Kenneth L.; Unadkat, Jashvant D.; Gerk, Phillip M.

    2017-01-01

    The human placenta fulfills a variety of essential functions during prenatal life. Several ABC transporters are expressed in the human placenta, where they play a role in the transport of endogenous compounds and may protect the fetus from exogenous compounds such as therapeutic agents, drugs of abuse, and other xenobiotics. To date, considerable progress has been made toward understanding ABC transporters in the placenta. Recent studies on the expression and functional activities are discussed. This review discusses the placental expression and functional roles of several members of ABC transporter subfamilies B, C, and G including MDR1/P-glycoprotein, the MRPs, and BCRP, respectively. Since placental ABC transporters modulate fetal exposure to various compounds, an understanding of their functional and regulatory mechanisms will lead to more optimal medication use when necessary in pregnancy. PMID:27644937

  20. A bacterial-type ABC transporter is involved in aluminum tolerance in rice.

    PubMed

    Huang, Chao Feng; Yamaji, Naoki; Mitani, Namiki; Yano, Masahiro; Nagamura, Yoshiaki; Ma, Jian Feng

    2009-02-01

    Aluminum (Al) toxicity is a major factor limiting crop production in acidic soil, but the molecular mechanisms of Al tolerance are poorly understood. Here, we report that two genes, STAR1 (for sensitive to Al rhizotoxicity1) and STAR2, are responsible for Al tolerance in rice. STAR1 encodes a nucleotide binding domain, while STAR2 encodes a transmembrane domain, of a bacterial-type ATP binding cassette (ABC) transporter. Disruption of either gene resulted in hypersensitivity to aluminum toxicity. Both STAR1 and STAR2 are expressed mainly in the roots and are specifically induced by Al exposure. Expression in onion epidermal cells, rice protoplasts, and yeast showed that STAR1 interacts with STAR2 to form a complex that localizes to the vesicle membranes of all root cells, except for those in the epidermal layer of the mature zone. When expressed together in Xenopus laevis oocytes, STAR1/2 shows efflux transport activity specific for UDP-glucose. Furthermore, addition of exogenous UDP-glucose rescued root growth in the star1 mutant exposed to Al. These results indicate that STAR1 and STAR2 form a complex that functions as an ABC transporter, which is required for detoxification of Al in rice. The ABC transporter transports UDP-glucose, which may be used to modify the cell wall.

  1. ABC transporter activity linked to radiation resistance and molecular subtype in pediatric medulloblastoma

    PubMed Central

    2013-01-01

    Background Resistance to radiation treatment remains a major clinical problem for patients with brain cancer. Medulloblastoma is the most common malignant brain tumor of childhood, and occurs in the cerebellum. Though radiation treatment has been critical in increasing survival rates in recent decades, the presence of resistant cells in a substantial number of medulloblastoma patients leads to relapse and death. Methods Using the established medulloblastoma cell lines UW228 and Daoy, we developed a novel model system to enrich for and study radiation tolerant cells early after radiation exposure. Using fluorescence-activated cell sorting, dead cells and cells that had initiated apoptosis were removed, allowing surviving cells to be investigated before extensive proliferation took place. Results Isolated surviving cells were tumorigenic in vivo and displayed elevated levels of ABCG2, an ABC transporter linked to stem cell behavior and drug resistance. Further investigation showed another family member, ABCA1, was also elevated in surviving cells in these lines, as well as in early passage cultures from pediatric medulloblastoma patients. We discovered that the multi-ABC transporter inhibitors verapamil and reserpine sensitized cells from particular patients to radiation, suggesting that ABC transporters have a functional role in cellular radiation protection. Additionally, verapamil had an intrinsic anti-proliferative effect, with transient exposure in vitro slowing subsequent in vivo tumor formation. When expression of key ABC transporter genes was assessed in medulloblastoma tissue from 34 patients, levels were frequently elevated compared with normal cerebellum. Analysis of microarray data from independent cohorts (n = 428 patients) showed expression of a number of ABC transporters to be strongly correlated with certain medulloblastoma subtypes, which in turn are associated with clinical outcome. Conclusions ABC transporter inhibitors are already being

  2. Evolutionary Trajectories of Entomopathogenic Fungi ABC Transporters.

    PubMed

    Baral, Bikash

    2017-01-01

    The ABC protein superfamily-also called traffic ATPases-are energy-dependent ubiquitous proteins, representing one of the crucial and the largest family in the fungal genomes. The ATP-binding cassette endows a characteristic 200-250 amino acids and is omnipresent in all organisms ranging from prokaryotes to eukaryotes. Unlike in bacteria with nutrient import functions, ABC transporters in fungal entomopathogens serve as effective efflux pumps that are largely involved in the shuttle of metabolites across the biological membranes. Thus, the search for ABC proteins may prove of immense importance in elucidating the functional and molecular mechanism at the host-pathogen (insect-fungus) interface. Their sequence homology, domain topology, and functional traits led to the actual identification of nine different families in fungal entomopathogens. Evolutionary relationships within the ABC superfamily are discussed, concentrating on computational approaches for comparative identification of ABC transporters in insect-pathogenic fungi (entomopathogens) with those of animals, plants, and their bacterial orthologs. Ancestors of some fungal candidates have duplicated extensively in some phyla, while others were lost in one lineage or the other, and predictions for the cause of their duplications and/or loss in some phyla are made. ABC transporters of fungal insect-pathogens serve both defensive and offensive functions effective against land-dwelling and ground foraging voracious insects. This study may help to unravel the molecular cascades of ABC proteins to illuminate the means through which insects cope with fungal infection and fungal-related diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A Silent ABC Transporter Isolated from Streptomyces rochei F20 Induces Multidrug Resistance

    PubMed Central

    Fernández-Moreno, Miguel A.; Carbó, Lázaro; Cuesta, Trinidad; Vallín, Carlos; Malpartida, Francisco

    1998-01-01

    In the search for heterologous activators for actinorhodin production in Streptomyces lividans, 3.4 kb of DNA from Streptomyces rochei F20 (a streptothricin producer) were characterized. Subcloning experiments showed that the minimal DNA fragment required for activation was 0.4 kb in size. The activation is mediated by increasing the levels of transcription of the actII-ORF4 gene. Sequencing of the minimal activating fragment did not reveal any clues about its mechanism; nevertheless, it was shown to overlap the 3′ end of two convergent genes, one of whose translated products (ORF2) strongly resembles that of other genes belonging to the ABC transporter superfamily. Computer-assisted analysis of the 3.4-kb DNA sequence showed the 3′ terminus of an open reading frame (ORF), i.e., ORFA, and three complete ORFs (ORF1, ORF2, and ORFB). Searches in the databases with their respective gene products revealed similarities for ORF1 and ORF2 with ATP-binding proteins and transmembrane proteins, respectively, which are found in members of the ABC transporter superfamily. No similarities for ORFA and ORFB were found in the databases. Insertional inactivation of ORF1 and ORF2, their transcription analysis, and their cloning in heterologous hosts suggested that these genes were not expressed under our experimental conditions; however, cloning of ORF1 and ORF2 together (but not separately) under the control of an expressing promoter induced resistance to several chemically different drugs: oleandomycin, erythromycin, spiramycin, doxorubicin, and tetracycline. Thus, this genetic system, named msr, is a new bacterial multidrug ABC transporter. PMID:9696745

  4. ABC transporters affect the elimination and toxicity of CdTe quantum dots in liver and kidney cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mingli; Yin, Huancai; Bai, Pengli

    This paper aimed to investigate the role of adenosine triphosphate-binding cassette (ABC) transporters on the efflux and the toxicity of nanoparticles in liver and kidney cells. In this study, we synthesized CdTe quantum dots (QDs) that were monodispersed and emitted green fluorescence (maximum peak at 530 nm). Such QDs tended to accumulate in human hepatocellular carcinoma cells (HepG2), human kidney cells 2 (HK-2), and Madin-Darby canine kidney (MDCK) cells, and cause significant toxicity in all the three cell lines. Using specific inhibitors and inducers of P-glycoprotein (Pgp) and multidrug resistance associated proteins (Mrps), the cellular accumulation and subsequent toxicity ofmore » QDs in HepG2 and HK-2 cells were significantly affected, while only slight changes appeared in MDCK cells, corresponding well with the functional expressions of ABC transporters in cells. Moreover, treatment of QDs caused concentration- and time- dependent induction of ABC transporters in HepG2 and HK-2 cells, but such phenomenon was barely found in MDCK cells. Furthermore, the effects of CdTe QDs on ABC transporters were found to be greater than those of CdCl{sub 2} at equivalent concentrations of cadmium, indicating that the effects of QDs should be a combination of free Cd{sup 2+} and specific properties of QDs. Overall, these results indicated a strong dependence between the functional expressions of ABC transporters and the efflux of QDs, which could be an important reason for the modulation of QDs toxicity by ABC transporters. - Highlights: • ABC transporters contributed actively to the cellular efflux of CdTe quantum dots. • ABC transporters affected the cellular toxicity of CdTe quantum dots. • Treatment of CdTe quantum dots induced the gene expression of ABC transporters. • Free Cd{sup 2+} should be partially involved in the effects of QDs on ABC transporters. • Cellular efflux of quantum dots could be an important modulator for its toxicity.« less

  5. Comparison of mechanistic transport cycle models of ABC exporters.

    PubMed

    Szöllősi, Dániel; Rose-Sperling, Dania; Hellmich, Ute A; Stockner, Thomas

    2018-04-01

    ABC (ATP binding cassette) transporters, ubiquitous in all kingdoms of life, carry out essential substrate transport reactions across cell membranes. Their transmembrane domains bind and translocate substrates and are connected to a pair of nucleotide binding domains, which bind and hydrolyze ATP to energize import or export of substrates. Over four decades of investigations into ABC transporters have revealed numerous details from atomic-level structural insights to their functional and physiological roles. Despite all these advances, a comprehensive understanding of the mechanistic principles of ABC transporter function remains elusive. The human multidrug resistance transporter ABCB1, also referred to as P-glycoprotein (P-gp), is one of the most intensively studied ABC exporters. Using ABCB1 as the reference point, we aim to compare the dominating mechanistic models of substrate transport and ATP hydrolysis for ABC exporters and to highlight the experimental and computational evidence in their support. In particular, we point out in silico studies that enhance and complement available biochemical data. "This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain." Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. ABC transporters and immunity: mechanism of self-defense.

    PubMed

    Hinz, Andreas; Tampé, Robert

    2012-06-26

    The transporter associated with antigen processing (TAP) is a prototype of an asymmetric ATP-binding cassette (ABC) transporter, which uses ATP binding and hydrolysis to translocate peptides from the cytosol to the lumen of the endoplasmic reticulum (ER). Here, we review molecular details of peptide binding and ATP binding and hydrolysis as well as the resulting allosteric cross-talk between the nucleotide-binding domains and the transmembrane domains that drive translocation of the solute across the ER membrane. We also discuss the general molecular architecture of ABC transporters and demonstrate the importance of structural and functional studies for a better understanding of the role of the noncanonical site of asymmetric ABC transporters. Several aspects of peptide binding and specificity illustrate details of peptide translocation by TAP. Furthermore, this ABC transporter forms the central part of the major histocompatibility complex class I (MHC I) peptide-loading machinery. Hence, TAP is confronted with a number of viral factors, which prevent antigen translocation and MHC I loading in virally infected cells. We review how these viral factors have been used as molecular tools to decipher mechanistic aspects of solute translocation and discuss how they can help in the structural analysis of TAP.

  7. Diversity in ABC transporters: Type I, II and III importers

    PubMed Central

    Rice, Austin J.; Park, Aekyung

    2014-01-01

    ATP-binding cassette transporters are multi-subunit membrane pumps that transport substrates across membranes. While significant in the transport process, transporter architecture exhibits a range of diversity that we are only beginning to recognize. This divergence may provide insight into the mechanisms of substrate transport and homeostasis. Until recently, ABC importers have been classified into two types, but with the emergence of energy-coupling factor (ECF) transporters there are potentially three types of ABC importers. In this review, we summarize an expansive body of research on the three types of importers with an emphasis on the basics that underlie ABC importers, such as structure, subunit composition and mechanism. PMID:25155087

  8. Polymorphisms in ABC Transporter Genes and Concentrations of Mercury in Newborns – Evidence from Two Mediterranean Birth Cohorts

    PubMed Central

    Llop, Sabrina; Engström, Karin; Ballester, Ferran; Franforte, Elisa; Alhamdow, Ayman; Pisa, Federica; Tratnik, Janja Snoj; Mazej, Datja; Murcia, Mario; Rebagliato, Marisa; Bustamante, Mariona; Sunyer, Jordi; Sofianou-Katsoulis, Αikaterini; Prasouli, Alexia; Antonopoulou, Eleni; Antoniadou, Ioanna; Nakou, Sheena; Barbone, Fabio; Horvat, Milena; Broberg, Karin

    2014-01-01

    Background The genetic background may influence methylmercury (MeHg) metabolism and neurotoxicity. ATP binding cassette (ABC) transporters actively transport various xenobiotics across biological membranes. Objective To investigate the role of ABC polymorphisms as modifiers of prenatal exposure to MeHg. Methods The study population consisted of participants (n = 1651) in two birth cohorts, one in Italy and Greece (PHIME) and the other in Spain (INMA). Women were recruited during pregnancy in Italy and Spain, and during the perinatal period in Greece. Total mercury concentrations were measured in cord blood samples by atomic absorption spectrometry. Maternal fish intake during pregnancy was determined from questionnaires. Polymorphisms (n = 5) in the ABC genes ABCA1, ABCB1, ABCC1 and ABCC2 were analysed in both cohorts. Results ABCB1 rs2032582, ABCC1 rs11075290, and ABCC2 rs2273697 modified the associations between maternal fish intake and cord blood mercury concentrations. The overall interaction coefficient between rs2032582 and log2-transformed fish intake was negative for carriers of GT (β = −0.29, 95%CI −0.47, −0.12) and TT (β = −0.49, 95%CI −0.71, −0.26) versus GG, meaning that for a doubling in fish intake of the mothers, children with the rs2032582 GG genotype accumulated 35% more mercury than children with TT. For rs11075290, the interaction coefficient was negative for carriers of TC (β = −0.12, 95%CI −0.33, 0.09), and TT (β = −0.28, 95%CI −0.51, −0.06) versus CC. For rs2273697, the interaction coefficient was positive when combining GA+AA (β = 0.16, 95%CI 0.01, 0.32) versus GG. Conclusion The ABC transporters appear to play a role in accumulation of MeHg during early development. PMID:24831289

  9. An operon from Lactobacillus helveticus composed of a proline iminopeptidase gene (pepI) and two genes coding for putative members of the ABC transporter family of proteins.

    PubMed

    Varmanen, P; Rantanen, T; Palva, A

    1996-12-01

    A proline iminopeptidase gene (pepI) of an industrial Lactobacillus helveticus strain was cloned and found to be organized in an operon-like structure of three open reading frames (ORF1, ORF2 and ORF3). ORF1 was preceded by a typical prokaryotic promoter region, and a putative transcription terminator was found downstream of ORF3, identified as the pepI gene. Using primer-extension analyses, only one transcription start site, upstream of ORF1, was identifiable in the predicted operon. Although the size of mRNA could not be judged by Northern analysis either with ORF1-, ORF2- or pepI-specific probes, reverse transcription-PCR analyses further supported the operon structure of the three genes. ORF1, ORF2 and ORF3 had coding capacities for 50.7, 24.5 and 33.8 kDa proteins, respectively. The ORF3-encoded PepI protein showed 65% identity with the PepI proteins from Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus delbrueckii subsp. lactis. The ORF1-encoded protein had significant homology with several members of the ABC transporter family but, with two distinct putative ATP-binding sites, it would represent an unusual type among the bacterial ABC transporters. ORF2 encoded a putative integral membrane protein also characteristic of the ABC transporter family. The pepI gene was overexpressed in Escherichia coli. Purified PepI hydrolysed only di and tripeptides with proline in the first position. Optimum PepI activity was observed at pH 7.5 and 40 degrees C. A gel filtration analysis indicated that PepI is a dimer of M(r) 53,000. PepI was shown to be a metal-independent serine peptidase having thiol groups at or near the active site. Kinetic studies with proline-p-nitroanilide as substrate revealed Km and Vmax values of 0.8 mM and 350 mmol min-1 mg-1, respectively, and a very high turnover number of 135,000 s-1.

  10. ATP binding cassette (ABC) transporters: expression and clinical value in glioblastoma.

    PubMed

    Dréan, Antonin; Rosenberg, Shai; Lejeune, François-Xavier; Goli, Larissa; Nadaradjane, Aravindan Arun; Guehennec, Jérémy; Schmitt, Charlotte; Verreault, Maïté; Bielle, Franck; Mokhtari, Karima; Sanson, Marc; Carpentier, Alexandre; Delattre, Jean-Yves; Idbaih, Ahmed

    2018-03-08

    ATP-binding cassette transporters (ABC transporters) regulate traffic of multiple compounds, including chemotherapeutic agents, through biological membranes. They are expressed by multiple cell types and have been implicated in the drug resistance of some cancer cells. Despite significant research in ABC transporters in the context of many diseases, little is known about their expression and clinical value in glioblastoma (GBM). We analyzed expression of 49 ABC transporters in both commercial and patient-derived GBM cell lines as well as from 51 human GBM tumor biopsies. Using The Cancer Genome Atlas (TCGA) cohort as a training dataset and our cohort as a validation dataset, we also investigated the prognostic value of these ABC transporters in newly diagnosed GBM patients, treated with the standard of care. In contrast to commercial GBM cell lines, GBM-patient derived cell lines (PDCL), grown as neurospheres in a serum-free medium, express ABC transporters similarly to parental tumors. Serum appeared to slightly increase resistance to temozolomide correlating with a tendency for an increased expression of ABCB1. Some differences were observed mainly due to expression of ABC transporters by microenvironmental cells. Together, our data suggest that the efficacy of chemotherapeutic agents may be misestimated in vitro if they are the targets of efflux pumps whose expression can be modulated by serum. Interestingly, several ABC transporters have prognostic value in the TCGA dataset. In our cohort of 51 GBM patients treated with radiation therapy with concurrent and adjuvant temozolomide, ABCA13 overexpression is associated with a decreased progression free survival in univariate (p < 0.01) and multivariate analyses including MGMT promoter methylation (p = 0.05) suggesting reduced sensitivity to temozolomide in ABCA13 overexpressing GBM. Expression of ABC transporters is: (i) detected in GBM and microenvironmental cells and (ii) better reproduced in GBM

  11. Molecular cloning and expression profile of an ATP-binding cassette (ABC) transporter gene from the hemipteran insect Nilaparvata lugens.

    PubMed

    Zha, W J; Li, S H; Zhou, L; Chen, Z J; Liu, K; Yang, G C; Hu, G; He, G C; You, A Q

    2015-03-30

    The ATP-binding cassette (ABC) transporters belong to a large superfamily of proteins that have important physiological functions in all living organisms. In insects, ABC transporters have important functions in the transport of molecules, and are also involved in insecticide resistance, metabolism, and development. In this study, the Nilaparvata lugens Stal (Hemiptera: Delphacidae) ABCG (NlABCG) gene was identified and characterized. The complete mRNA sequence of NlABCG was 2608-bp long, with an open reading frame of 2064 bp encoding a protein comprised of 687 amino acids. The conserved regions include three N-glycosylation and 34 phosphorylation sites, as well as seven transmembrane domains. The amino acid identity with the closely related species Acyrthosiphon pisum was 42.8%. Developmental expression analysis using quantitative real-time reverse transcriptase PCR suggested that the NlABCG transcript was expressed at all developmental stages of N. lugens. The lowest expression of NlABCG was in the 1st instar, and levels increased with larval growth. The transcript profiles of NlABCG were analyzed in various tissues from a 5th instar nymph, and the highest expression was observed in the midgut. These results suggest that the sequence, characteristics, and expression of NlABCG are highly conserved, and basic information is provided for its functional analysis.

  12. Describing the role of Drosophila melanogaster ABC transporters in insecticide biology using CRISPR-Cas9 knockouts.

    PubMed

    Denecke, Shane; Fusetto, Roberto; Batterham, Philip

    2017-12-01

    ABC transporters have a well-established role in drug resistance, effluxing xenobiotics from cells and tissues within the organism. More recently, research has been dedicated to understanding the role insect ABC transporters play in insecticide toxicity, but progress in understanding the contribution of specific transporters has been hampered by the lack of functional genetic tools. Here, we report knockouts of three Drosophila melanogaster ABC transporter genes, Mdr49, Mdr50, and Mdr65, that are homologous to the well-studied mammalian ABCB1 (P-glycoprotein). Each knockout mutant was created in the same wild type background and tested against a panel of insecticides representing different chemical classes. Mdr65 knockouts were more susceptible to all neuroactive insecticides tested, but Mdr49 and Mdr50 knockouts showed increased susceptibility or resistance depending on the insecticide used. Mdr65 was chosen for further analysis. Calculation of LC 50 values for the Mdr65 knockout allowed the substrate specificity of this transporter to be examined. No obvious distinguishing structural features were shared among MDR65 substrates. A role for Mdr65 in insecticide transport was confirmed by testing the capacity of the knockout to synergize with the ABC inhibitor verapamil and by measuring the levels of insecticide retained in the body of knockout flies. These data unambiguously establish the influence of ABC transporters on the capacity of wild type D. melanogaster to tolerate insecticide exposure and suggest that both tissue and substrate specificity underpin this capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The ABC of Biofilm Drug Tolerance: the MerR-Like Regulator BrlR Is an Activator of ABC Transport Systems, with PA1874-77 Contributing to the Tolerance of Pseudomonas aeruginosa Biofilms to Tobramycin.

    PubMed

    Poudyal, Bandita; Sauer, Karin

    2018-02-01

    A hallmark of biofilms is their tolerance to killing by antimicrobial agents. In Pseudomonas aeruginosa , biofilm drug tolerance requires the c-di-GMP-responsive MerR transcriptional regulator BrlR. However, the mechanism by which BrlR mediates biofilm drug tolerance has not been elucidated. Here, we demonstrate that BrlR activates the expression of at least 7 ABC transport systems, including the PA1874-PA1875-PA1876-PA1877 (PA1874-77) operon, with chromatin immunoprecipitation and DNA binding assays confirming BrlR binding to the promoter region of PA1874-77. Insertional inactivation of the 7 ABC transport systems rendered P. aeruginosa PAO1 biofilms susceptible to tobramycin or norfloxacin. Susceptibility was linked to drug accumulation, with BrlR contributing to norfloxacin accumulation in a manner dependent on multidrug efflux pumps and the PA1874-77 ABC transport system. Inactivation of the respective ABC transport system, furthermore, eliminated the recalcitrance of biofilms to killing by tobramycin but not norfloxacin, indicating that drug accumulation is not linked to biofilm drug tolerance. Our findings indicate for the first time that BrlR, a MerR-type transcriptional activator, activates genes encoding several ABC transport systems, in addition to multiple multidrug efflux pump genes. Moreover, our data confirm a BrlR target contributing to drug tolerance, likely countering the prevailing dogma that biofilm tolerance arises from a multiplicity of factors. Copyright © 2018 American Society for Microbiology.

  14. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling

    PubMed Central

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems. PMID:25961028

  15. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling.

    PubMed

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.

  16. Trichothecene resistance in wheat: Development of molecular markers for PDR-type ABC transporter genes.

    PubMed

    Mitterbauer, R; Heinrich, M; Rauscher, R; Lemmens, M; Bürstmayr, H; Adam, G

    2003-03-01

    Infection withFusarium graminearum andF. culmorum not only causes severe yield and quality losses, the most relevant concern is the contamination of cereal foods and feeds with trichothecenes (e.g. deoxynivalenol, DON). The ability to synthesize trichothecenes has been shown to be a virulence factor ofF. graminearum on wheat and, on the other hand, toxin resistance is most likely an important component of field resistance. Our hypothesis is that pleiotropic drug resistance mediated by PDR-type ABC transporter proteins (acting as membrane located drug efflux pumps) is a relevant mechanism of DON resistance not only in yeast but also in wheat. Goal of this project is the development of molecular markers for this gene family for use in marker-assisted plant breeding programs. The technical difficulties caused by the large size of the PDR-family are discussed.

  17. Detergent-free purification of ABC (ATP-binding-cassette) transporters.

    PubMed

    Gulati, Sonali; Jamshad, Mohammed; Knowles, Timothy J; Morrison, Kerrie A; Downing, Rebecca; Cant, Natasha; Collins, Richard; Koenderink, Jan B; Ford, Robert C; Overduin, Michael; Kerr, Ian D; Dafforn, Timothy R; Rothnie, Alice J

    2014-07-15

    ABC (ATP-binding-cassette) transporters carry out many vital functions and are involved in numerous diseases, but study of the structure and function of these proteins is often hampered by their large size and membrane location. Membrane protein purification usually utilizes detergents to solubilize the protein from the membrane, effectively removing it from its native lipid environment. Subsequently, lipids have to be added back and detergent removed to reconstitute the protein into a lipid bilayer. In the present study, we present the application of a new methodology for the extraction and purification of ABC transporters without the use of detergent, instead, using a copolymer, SMA (polystyrene-co-maleic acid). SMA inserts into a bilayer and assembles into discrete particles, essentially solubilizing the membrane into small discs of bilayer encircled by a polymer, termed SMALPs (SMA lipid particles). We show that this polymer can extract several eukaryotic ABC transporters, P-glycoprotein (ABCB1), MRP1 (multidrug-resistance protein 1; ABCC1), MRP4 (ABCC4), ABCG2 and CFTR (cystic fibrosis transmembrane conductance regulator; ABCC7), from a range of different expression systems. The SMALP-encapsulated ABC transporters can be purified by affinity chromatography, and are able to bind ligands comparably with those in native membranes or detergent micelles. A greater degree of purity and enhanced stability is seen compared with detergent solubilization. The present study demonstrates that eukaryotic ABC transporters can be extracted and purified without ever being removed from their lipid bilayer environment, opening up a wide range of possibilities for the future study of their structure and function.

  18. Multidrug resistance in parasites: ABC transporters, P-glycoproteins and molecular modelling.

    PubMed

    Jones, P M; George, A M

    2005-04-30

    Parasitic diseases, caused by protozoa, helminths and arthropods, rank among the most important problems in human and veterinary medicine, and in agriculture, leading to debilitating sicknesses and loss of life. In the absence of vaccines and with the general failure of vector eradication programs, drugs are the main line of defence, but the newest drugs are being tracked by the emergence of resistance in parasites, sharing ominous parallels with multidrug resistance in bacterial pathogens. Any of a number of mechanisms will elicit a drug resistance phenotype in parasites, including: active efflux, reduced uptake, target modification, drug modification, drug sequestration, by-pass shunting, or substrate competition. The role of ABC transporters in parasitic multidrug resistance mechanisms is being subjected to more scrutiny, due in part to the established roles of certain ABC transporters in human diseases, and also to an increasing portfolio of ABC transporters from parasite genome sequencing projects. For example, over 100 ABC transporters have been identified in the Escherichia coli genome, but to date only about 65 in all parasitic genomes. Long established laboratory investigations are now being assisted by molecular biology, bioinformatics, and computational modelling, and it is in these areas that the role of ABC transporters in parasitic multidrug resistance mechanisms may be defined and put in perspective with that of other proteins. We discuss ABC transporters in parasites, and conclude with an example of molecular modelling that identifies a new interaction between the structural domains of a parasite P-glycoprotein.

  19. A PhoPQ-Regulated ABC Transporter System Exports Tetracycline in Pseudomonas aeruginosa.

    PubMed

    Chen, Lin; Duan, Kangmin

    2016-05-01

    Pseudomonas aeruginosa is an important human pathogen whose infections are difficult to treat due to its high intrinsic resistance to many antibiotics. Here, we show that the disruption of PA4456, encoding the ATP binding component of a putative ATP-binding cassette (ABC) transporter, increased the bacterium's susceptible to tetracycline and other antibiotics or toxic chemicals. Fluorescence spectroscopy and antibiotic accumulation tests showed that the interruption of the ABC transporter caused increased intracellular accumulation of tetracycline, demonstrating a role of the ABC transporter in tetracycline expulsion. Site-directed mutagenesis proved that the conserved residues of E170 in the Walker B motif and H203 in the H-loop, which are important for ATP hydrolysis, were essential for the function of PA4456. Through a genome-wide search, the PhoPQ two-component system was identified as a regulator of the computationally predicted PA4456-4452 operon that encodes the ABC transporter system. A >5-fold increase of the expression of this operon was observed in the phoQ mutant. The results obtained also show that the expression of the phzA1B1C1D1E1 operon and the production of pyocyanin were significantly higher in the ABC transporter mutant, signifying a connection between the ABC transporter and pyocyanin production. These results indicated that the PhoPQ-regulated ABC transporter is associated with intrinsic resistance to antibiotics and other adverse compounds in P. aeruginosa, probably by extruding them out of the cell. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. ABC Transporters Involved in Export of Cell Surface Glycoconjugates

    PubMed Central

    Cuthbertson, Leslie; Kos, Veronica; Whitfield, Chris

    2010-01-01

    Summary: Complex glycoconjugates play critical roles in the biology of microorganisms. Despite the remarkable diversity in glycan structures and the bacteria that produce them, conserved themes are evident in the biosynthesis-export pathways. One of the primary pathways involves representatives of the ATP-binding cassette (ABC) transporter superfamily. These proteins are responsible for the export of a wide variety of cell surface oligo- and polysaccharides in both Gram-positive and Gram-negative bacteria. Recent investigations of the structure and function of ABC transporters involved in the export of lipopolysaccharide O antigens have revealed two fundamentally different strategies for coupling glycan polymerization to export. These mechanisms are distinguished by the presence (or absence) of characteristic nonreducing terminal modifications on the export substrates, which serve as chain termination and/or export signals, and by the presence (or absence) of a discrete substrate-binding domain in the nucleotide-binding domain polypeptide of the ABC transporter. A bioinformatic survey examining ABC exporters from known oligo- and polysaccharide biosynthesis loci identifies conserved nucleotide-binding domain protein families that correlate well with themes in the structures and assembly of glycans. The familial relationships among the ABC exporters generate hypotheses concerning the biosynthesis of structurally diverse oligo- and polysaccharides, which play important roles in the biology of bacteria with different lifestyles. PMID:20805402

  1. Harnessing Drug Resistance: Using ABC Transporter Proteins To Target Cancer Cells

    PubMed Central

    Leitner, Heather M.; Kachadourian, Remy; Day, Brian J.

    2007-01-01

    The ATP-binding cassette (ABC) class of proteins is one of the most functionally diverse transporter families found in biological systems. Although the abundance of ABC proteins varies between species, they are highly conserved in sequence and often demonstrate similar functions across prokaryotic and eukaryotic organisms. Beginning with a brief summary of the events leading to our present day knowledge of ABC transporters, the purpose of this review is to discuss the potential for utilizing ABC transporters as a means for cellular glutathione (GSH) modulation. GSH is one of the most abundant thiol antioxidants in cells. It is involved in cellular division, protein and DNA synthesis, maintenance of cellular redox status and xenobiotic metabolism. Cellular GSH levels are often altered in many disease states including cancer. Over the past two decades there has been considerable emphasis on methods to sensitize cancer cells to chemotherapeutics and ionization radiation therapy by GSH depletion. We contend that ABC transporters, particularly multi-drug resistant proteins (MRPs), may be used as therapeutic targets for applications aimed at modulation of GSH levels. This review will emphasize MRP-mediated modulation of intracellular GSH levels as a potential alternative and adjunctive approach for cancer therapy. PMID:17585883

  2. NtPDR3, an iron-deficiency inducible ABC transporter in Nicotiana tabacum.

    PubMed

    Ducos, Eric; Fraysse, Staffan; Boutry, Marc

    2005-12-19

    In plants, the ABC transporter PDR (pleiotropic drug resistance) subfamily is composed of approximately 15 genes, few of which have been analyzed. We have identified NtPDR3, a Nicotiana tabacum PDR gene belonging to a cluster for which no functional data was previously available. NtPDR3 was found to be induced in suspension cells treated with methyl jasmonate, salicylic acid, 1-naphthalene acetic acid, or cembrene, a macrocyclic diterpene. In agreement with the identification of a putative iron deficiency element in the NtPDR3 transcription promoter region, we found that iron deficiency in the culture medium induced NtPDR3 expression, thus suggesting a new function of the PDR transporter family.

  3. Effect of β-elemene on the kinetics of intracellular transport of d-luciferin potassium salt (ABC substrate) in doxorubicin-resistant breast cancer cells and the associated molecular mechanism.

    PubMed

    Tang, Chao-Yuan; Zhu, Li-Xin; Yu, Jian-Dong; Chen, Zhi; Gu, Man-Cang; Mu, Chao-Feng; Liu, Qi; Xiong, Yang

    2018-07-30

    In order to explore the mechanism of the reversing multidrug resistance (MDR) phenotypes by β-elemene (β-ELE) in doxorubicin (DOX)-resistant breast cancer cells (MCF-7/DOX), both the functionality and quantity of the ABC transporters in MCF-7/DOX were studied. Bioluminescence imaging (BLI) was used to study the efflux of d-luciferin potassium salt, the substrate of ATP-binding cassette transporters (ABC transporters), in MCF-7/DOX cells treated by β-ELE. At the same time three major ABC transport proteins and genes-related MDR, P-glycoprotein (P-gp, ABCB1) and multidrug resistance-associated protein 1 (MRP, ABCC1) as well as breast cancer resistance protein (BCRP, ABCG2) were analyzed by q-PCR and Western blot. To investigate the efflux functionality of ABC transporters, MCF-7/DOX Fluc cell line with stably-overexpressed luciferase was established. BLI was then used to real-time monitor the efflux kinetics of d-luciferin potassium salt before and after MCF-7/DOX Fluc cells being treated with β-ELE or not. The results showed that the efflux of d-luciferin potassium salt from MCF-7/DOX Fluc was lessened when pretreated with β-ELE, which means that β-ELE may dampen the functionality of ABC transporters, thus decrease the efflux of d-fluorescein potassium or other chemotherapies which also serve as the substrates of ABC transporters. As the effect of β-ELE on the expression of ABC transporters, the results of q-PCR and Western blot showed that gene and protein expression of ABC transporters such as P-gp, MRP, and BCRP were down-regulated after the treatment of β-ELE. To verify the efficacy of β-ELE on reversing MDR, MCF-7/DOX cells were treated with the combination of DOX and β-ELE. MTT assay showed that β-ELE increased the inhibitory effect of DOX on the proliferation of MCF-7/DOX, and the IC 50 of the combination group was much lower than that of the single DOX or β-ELE treatment. In all, β-ELE may reverse MDR through the substrates of ABC transporters

  4. The interaction of gut microbes with host ABC transporters

    PubMed Central

    Mercado-Lubo, Regino

    2010-01-01

    ATP binding cassette (ABC) transporters are increasingly recognized for their ability to modulate the absorption, distribution, metabolism, secretion and toxicity of xenobiotics. In addition to their essential function in drug resistance, there is also emerging evidence documenting the important role ABC transporters play in tissue defense. In this respect, the gastrointestinal tract represents a critical vanguard of defense against oral exposure of drugs while at the same time functions as a physical barrier between the lumenal contents (including bacteria) and the intestinal epithelium. Given emerging evidence suggesting that multidrug resistance protein (MDR) plays an important role in host-bacterial interactions in the gastrointestinal tract, this review will discuss the interplay between MDR of the intestinal epithelial cell barrier and gut microbes in health and disease. In particular, we will explore host-microbe interactions involving three apically restricted ABC transporters of the intestinal epithelium; P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2) and cystic fibrosis transmembrane regulator (CFTR). PMID:21327038

  5. Characterization and expression profiling of ATP-binding cassette transporter genes in the diamondback moth, Plutella xylostella (L.).

    PubMed

    Qi, Weiping; Ma, Xiaoli; He, Weiyi; Chen, Wei; Zou, Mingmin; Gurr, Geoff M; Vasseur, Liette; You, Minsheng

    2016-09-27

    ATP-binding cassette (ABC) transporters are one of the major transmembrane protein families found in all organisms and play important roles in transporting a variety of compounds across intra and extra cellular membranes. In some species, ABC transporters may be involved in the detoxification of substances such as insecticides. The diamondback moth, Plutella xylostella (L.), a destructive pest of cruciferous crops worldwide, is an important species to study as it is resistant to many types of insecticides as well as biological control Bacillus thuringiensis toxins. A total of 82 ABC genes were identified from our published P. xylostella genome, and grouped into eight subfamilies (ABCA-H) based on phylogenetic analysis. Genes of subfamilies ABCA, ABCC and ABCH were found to be expanded in P. xylostella compared with those in Bombyx mori, Manduca sexta, Heliconius melpomene, Danaus plexippus, Drosophila melanogaster, Tetranychus urticae and Homo sapiens. Phylogenetic analysis indicated that many of the ABC transporters in P. xylostella are orthologous to the well-studied ABC transporter genes in the seven other species. Transcriptome- and qRT-PCR-based analysis elucidated physiological effects of ABC gene expressions of P. xylostella which were developmental stage- and tissue-specific as well as being affected by whether or not the insects were from an insecticide-resistant strain. Two ABCC and one ABCA genes were preferentially expressed in midgut of the 4th-instar larvae of a susceptible strain (Fuzhou-S) suggesting their potential roles in metabolizing plant defensive chemicals. Most of the highly expressed genes in insecticide-resistant strains were also predominantly expressed in the tissues of Malpighian tubules and midgut. This is the most comprehensive study on identification, characterization and expression profiling of ABC transporter genes in P. xylostella to date. The diversified features and expression patterns of this gene family may be associated with

  6. Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes.

    PubMed

    Lewis, Daniel R; Miller, Nathan D; Splitt, Bessie L; Wu, Guosheng; Spalding, Edgar P

    2007-06-01

    Two Arabidopsis thaliana ABC transporter genes linked to auxin transport by various previous results were studied in a reverse-genetic fashion. Mutations in Multidrug Resistance-Like1 (MDR1) reduced acropetal auxin transport in roots by 80% without affecting basipetal transport. Conversely, mutations in MDR4 blocked 50% of basipetal transport without affecting acropetal transport. Developmental and auxin distribution phenotypes associated with these altered auxin flows were studied with a high-resolution morphometric system and confocal microscopy, respectively. Vertically grown mdr1 roots produced positive and negative curvatures threefold greater than the wild type, possibly due to abnormal auxin distribution observed in the elongation zone. However, upon 90 degrees reorientation, mdr1 gravitropism was inseparable from the wild type. Thus, acropetal auxin transport maintains straight growth but contributes surprisingly little to gravitropism. Conversely, vertically maintained mdr4 roots grew as straight as the wild type, but their gravitropism was enhanced. Upon reorientation, curvature in this mutant developed faster, was distributed more basally, and produced a greater total angle than the wild type. An amplified auxin asymmetry may explain the mdr4 hypertropism. Double mutant analysis indicated that the two auxin transport streams are more independent than interdependent. The hypothesis that flavanols regulate MDR-dependent auxin transport was supported by the epistatic relationship of mdr4 to the tt4 phenylpropanoid pathway mutation.

  7. Transcriptome-Based Identification of ABC Transporters in the Western Tarnished Plant Bug Lygus hesperus

    PubMed Central

    Hull, J. Joe; Chaney, Kendrick; Geib, Scott M.; Fabrick, Jeffrey A.; Brent, Colin S.; Walsh, Douglas; Lavine, Laura Corley

    2014-01-01

    ATP-binding cassette (ABC) transporters are a large superfamily of proteins that mediate diverse physiological functions by coupling ATP hydrolysis with substrate transport across lipid membranes. In insects, these proteins play roles in metabolism, development, eye pigmentation, and xenobiotic clearance. While ABC transporters have been extensively studied in vertebrates, less is known concerning this superfamily in insects, particularly hemipteran pests. We used RNA-Seq transcriptome sequencing to identify 65 putative ABC transporter sequences (including 36 full-length sequences) from the eight ABC subfamilies in the western tarnished plant bug (Lygus hesperus), a polyphagous agricultural pest. Phylogenetic analyses revealed clear orthologous relationships with ABC transporters linked to insecticide/xenobiotic clearance and indicated lineage specific expansion of the L. hesperus ABCG and ABCH subfamilies. The transcriptional profile of 13 LhABCs representative of the ABCA, ABCB, ABCC, ABCG, and ABCH subfamilies was examined across L. hesperus development and within sex-specific adult tissues. All of the transcripts were amplified from both reproductively immature and mature adults and all but LhABCA8 were expressed to some degree in eggs. Expression of LhABCA8 was spatially localized to the testis and temporally timed with male reproductive development, suggesting a potential role in sexual maturation and/or spermatozoa protection. Elevated expression of LhABCC5 in Malpighian tubules suggests a possible role in xenobiotic clearance. Our results provide the first transcriptome-wide analysis of ABC transporters in an agriculturally important hemipteran pest and, because ABC transporters are known to be important mediators of insecticidal resistance, will provide the basis for future biochemical and toxicological studies on the role of this protein family in insecticide resistance in Lygus species. PMID:25401762

  8. ABC Transporter Genes and Risk of Type 2 Diabetes

    PubMed Central

    Schou, Jesper; Tybjærg-Hansen, Anne; Møller, Holger J.; Nordestgaard, Børge G.; Frikke-Schmidt, Ruth

    2012-01-01

    OBJECTIVE Alterations of pancreatic β-cell cholesterol content may contribute to β-cell dysfunction. Two important determinants of intracellular cholesterol content are the ATP-binding cassette (ABC) transporters A1 (ABCA1) and -G1 (ABCG1). Whether genetic variation in ABCA1 and ABCG1 predicts risk of type 2 diabetes in the general population is unknown. RESEARCH DESIGN AND METHODS We tested whether genetic variation in the promoter and coding regions of ABCA1 and ABCG1 predicted risk of type 2 diabetes in the general population. Twenty-seven variants, identified by previous resequencing of both genes, were genotyped in the Copenhagen City Heart Study (CCHS) (n = 10,185). Two loss-of-function mutations (ABCA1 N1800H and ABCG1 g.-376C>T) (n = 322) and a common variant (ABCG1 g.-530A>G) were further genotyped in the Copenhagen General Population Study (CGPS) (n = 30,415). RESULTS Only one of the variants examined, ABCG1 g.-530A>G, predicted a decreased risk of type 2 diabetes in the CCHS (P for trend = 0.05). Furthermore, when validated in the CGPS or in the CCHS and CGPS combined (n = 40,600), neither the two loss-of-function mutations (ABCA1 N1800H, ABCG1 g.-376C>T) nor ABCG1 g.-530A>G were associated with type 2 diabetes (P values >0.57 and >0.30, respectively). CONCLUSIONS Genetic variations in ABCA1 and ABCG1 were not associated with increased risk of type 2 diabetes in the general population. These data were obtained in general population samples harboring the largest number of heterozygotes for loss-of-function mutations in ABCA1 and ABCG1. PMID:23139370

  9. Interaction of ABC multidrug transporters with anticancer protein kinase inhibitors: substrates and/or inhibitors?

    PubMed

    Hegedus, Csilla; Ozvegy-Laczka, Csilla; Szakács, Gergely; Sarkadi, Balázs

    2009-05-01

    Protein kinase inhibitors (PKI) are becoming key agents in modern cancer chemotherapy, and combination of PKIs with classical chemotherapeutic drugs may help to overcome currently untreatable metastatic cancers. Since chemotherapy resistance is a recurrent problem, mechanisms of resistance should be clarified in order to help further drug development. Here we suggest that in addition to PKI resistance based on altered target structures, the active removal of these therapeutic agents by the MDR-ABC transporters should also be considered as a major cause of clinical resistance. We discuss the occurring systemic and cellular mechanisms, which may hamper PKI efficiency, and document the role of selected MDR-ABC transporters in these phenomena through their interactions with these anticancer agents. Moreover, we suggest that PKI interactions with ABC transporters may modulate overall drug metabolism, including the fate of diverse, chemically or target-wise unrelated drugs. These effects are based on multiple forms of MDR-ABC transporter interaction with PKIs, as these compounds may be both substrates and/or inhibitors of an ABC transporter. We propose that these interactions should be carefully considered in clinical application, and a combined MDR-ABC transporter and PKI effect may bring a major advantage in future drug development.

  10. ATP-binding cassette (ABC) proteins in aquatic invertebrates: Evolutionary significance and application in marine ecotoxicology.

    PubMed

    Jeong, Chang-Bum; Kim, Hui-Su; Kang, Hye-Min; Lee, Jae-Seong

    2017-04-01

    The ATP-binding cassette (ABC) protein superfamily is known to play a fundamental role in biological processes and is highly conserved across animal taxa. The ABC proteins function as active transporters for multiple substrates across the cellular membrane by ATP hydrolysis. As this superfamily is derived from a common ancestor, ABC genes have evolved via lineage-specific duplications through the process of adaptation. In this review, we summarized information about the ABC gene families in aquatic invertebrates, considering their evolution and putative functions in defense mechanisms. Phylogenetic analysis was conducted to examine the evolutionary significance of ABC gene families in aquatic invertebrates. Particularly, a massive expansion of multixenobiotic resistance (MXR)-mediated efflux transporters was identified in the absence of the ABCG2 (BCRP) gene in Ecdysozoa and Platyzoa, suggesting that a loss of Abcg2 gene occurred sporadically in these species during divergence of Protostome to Lophotrochozoa. Furthermore, in aquatic invertebrates, the ecotoxicological significance of MXR is discussed while considering the role of MXR-mediated efflux transporters in response to various environmental pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Genome-wide identification of ATP-binding cassette (ABC) transporters and their roles in response to polycyclic aromatic hydrocarbons (PAHs) in the copepod Paracyclopina nana.

    PubMed

    Jeong, Chang-Bum; Kim, Duck-Hyun; Kang, Hye-Min; Lee, Young Hwan; Kim, Hui-Su; Kim, Il-Chan; Lee, Jae-Seong

    2017-02-01

    The ATP-binding cassette (ABC) protein superfamily is one of the largest gene families and is highly conserved in all domains. The ABC proteins play roles in several biological processes, including multi-xenobiotic resistance (MXR), by functioning as transporters in the cellular membrane. They also mediate the cellular efflux of a wide range of substrates against concentration gradients. In this study, 37 ABC genes belonging to eight distinct subfamilies were identified in the marine copepod Paracyclopina nana and annotated based on a phylogenetic analysis. Also, the functions of P-glycoproteins (P-gp) and multidrug resistance-associated proteins (MRPs), conferring MXR, were verified using fluorescent substrates and specific inhibitors. The activities of MXR-mediated ABC proteins and their transcriptional level were examined in response to polyaromatic hydrocarbons (PAHs), main components of the water-accommodated fraction. This study increases the understanding of the protective role of MXR in response to PAHs over the comparative evolution of ABC gene families. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Down-regulation of a novel ABC transporter gene (Pxwhite) is associated with Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.).

    PubMed

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Xia, Jixing; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-04-01

    Biopesticides or transgenic crops based on Cry toxins from the soil bacterium Bacillus thuringiensis (Bt) effectively control agricultural insect pests. The sustainable use of Bt biopesticides and Bt crops is threatened, however, by the development of Cry resistance in the target pests. The diamondback moth, Plutella xylostella (L.), is the first pest that developed resistance to a Bt biopesticide in the field, and a recent study has shown that the resistance of P. xylostella to Cry1Ac is caused by a mutation in an ATP-binding cassette (ABC) transporter gene (ABCC2). In this study, we report that down-regulation of a novel ABC transporter gene from ABCG subfamily (Pxwhite) is associated with Cry1Ac resistance in P. xylostella. The full-length cDNA sequence of Pxwhite was cloned and analyzed. Spatial-temporal expression detection revealed that Pxwhite was expressed in all tissues and developmental stages, and highest expressed in Malpighian tubule tissue and in egg stage. Sequence variation analysis of Pxwhite indicated the absence of constant non-synonymous mutations between susceptible and resistant strains, whereas midgut transcript analysis showed that Pxwhite was remarkably reduced in all resistant strains and further reduced when larvae of the moderately resistant SZ-R strain were subjected to selection with Cry1Ac toxin. Furthermore, RNA interference (RNAi)-mediated suppression of Pxwhite gene expression significantly reduced larval susceptibility to Cry1Ac toxin, and genetic linkage analysis confirmed that down-regulation of Pxwhite gene is tightly linked to Cry1Ac resistance in P. xylostella. To our knowledge, this is the first report indicating that Pxwhite gene is involved in Cry1Ac resistance in P. xylostella. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The ABC transporter ABCG29 is involved in H2O2 tolerance and biocontrol traits in the fungus Clonostachys rosea.

    PubMed

    Dubey, Mukesh; Jensen, Dan Funck; Karlsson, Magnus

    2016-04-01

    For successful biocontrol interactions, biological control organisms must tolerate toxic metabolites produced by themselves or plant pathogens during mycoparasitic/antagonistic interactions, by host plant during colonization of the plant, and xenobiotics present in the environment. ATP-binding cassette (ABC) transporters can play a significant role in tolerance of toxic compounds by mediating active transport across the cellular membrane. This paper reports on functional characterization of an ABC transporter ABCG29 in the biocontrol fungus Clonostachys rosea strain IK726. Gene expression analysis showed induced expression of abcG29 during exposure to the Fusarium spp. mycotoxin zearalenone (ZEA) and the fungicides Cantus, Chipco Green and Apron. Expression of abcG29 in C. rosea was significantly higher during C. rosea-C. rosea (Cr-Cr) interaction or in exposure to C. rosea culture filtrate for 2 h, compared to interaction with Fusarium graminearum or 2 h exposure to F. graminearum culture filtrate. In contrast with gene expression data, ΔabcG29 strains did not display reduced tolerance towards ZEA, fungicides or chemical agents known for inducing oxidative, cell wall or osmotic stress, compared to C. rosea WT. The exception was a significant reduction in tolerance to H2O2 (10 mM) in ΔabcG29 strains when conidia were used as an inoculum. The antagonistic ability of ΔabcG29 strains towards F. graminearum, Fusarium oxysporum or Botrytis cinerea in dual plate assays were not different compared with WT. However, in biocontrol assays ΔabcG29 strains displayed reduced ability to protect Arabidopsis thaliana leaves from B. cinerea, and barley seedling from F. graminearum as measured by an A. thaliana detached leaf assay and a barley foot rot disease assay, respectively. These data show that the ABCG29 is dispensable for ZEA and fungicides tolerance, and antagonism but not H2O2 tolerance and biocontrol effects in C. rosea.

  14. Characterization of a lactose-responsive promoter of ATP-binding cassette (ABC) transporter gene from Lactobacillus acidophilus 05-172.

    PubMed

    Zeng, Zhu; Zuo, Fanglei; Yu, Rui; Zhang, Bo; Ma, Huiqin; Chen, Shangwu

    2017-09-01

    A novel lactose-responsive promoter of the ATP-binding cassette (ABC) transporter gene Lba1680 of Lactobacillus acidophilus strain 05-172 isolated from a traditionally fermented dairy product koumiss was characterized. In L. acidophilus 05-172, expression of Lba1680 was induced by lactose, with lactose-induced transcription of Lba1680 being 6.1-fold higher than that induced by glucose. This is in contrast to L. acidophilus NCFM, a strain isolated from human feces, in which expression of Lba1680 and Lba1679 is induced by glucose. Both gene expression and enzyme activity assays in L. paracasei transformed with a vector containing the inducible Lba1680 promoter (PLba1680) of strain 05-172 and a heme-dependent catalase gene as reporter confirmed that PLba1680 is specifically induced by lactose. Its regulatory expression could not be repressed by glucose, and was independent of cAMP receptor protein. This lactose-responsive promoter might be used in the expression of functional genes in L. paracasei incorporated into a lactose-rich environment, such as dairy products. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Whole-Genome Survey of the Putative ATP-Binding Cassette Transporter Family Genes in Vitis vinifera

    PubMed Central

    Çakır, Birsen; Kılıçkaya, Ozan

    2013-01-01

    The ATP-binding cassette (ABC) protein superfamily constitutes one of the largest protein families known in plants. In this report, we performed a complete inventory of ABC protein genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with ABC protein members of Arabidopsis thaliana, we identified 135 putative ABC proteins with 1 or 2 NBDs in V. vinifera. Of these, 120 encode intrinsic membrane proteins, and 15 encode proteins missing TMDs. V. vinifera ABC proteins can be divided into 13 subfamilies with 79 “full-size,” 41 “half-size,” and 15 “soluble” putative ABC proteins. The main feature of the Vitis ABC superfamily is the presence of 2 large subfamilies, ABCG (pleiotropic drug resistance and white-brown complex homolog) and ABCC (multidrug resistance-associated protein). We identified orthologs of V. vinifera putative ABC transporters in different species. This work represents the first complete inventory of ABC transporters in V. vinifera. The identification of Vitis ABC transporters and their comparative analysis with the Arabidopsis counterparts revealed a strong conservation between the 2 species. This inventory could help elucidate the biological and physiological functions of these transporters in V. vinifera. PMID:24244377

  16. ABC Transporters and Isothiocyanates: Potential for Pharmacokinetic Diet–Drug Interactions

    PubMed Central

    Telang, Urvi; Ji, Yan; Morris, Marilyn E.

    2013-01-01

    Isothiocyanates, a class of anti-cancer agents, are derived from cruciferous vegetables such as broccoli, cabbage and watercress, and have demonstrated chemopreventive activity in a number of cancer models and epidemiologic studies. Due to public interest in cancer prevention and alternative therapies in cancer, the consumption of herbal supplements and vegetables containing these compounds is widespread and increasing. Isothiocyanates interact with ATP-binding cassette (ABC) efflux transporters such as P-glycoprotein, MRP1, MRP2 and BCRP, and may influence the pharmacokinetics of substrates of these transporters. This review discusses the pharmacokinetic properties of isothiocyanates, their interactions with ABC transporters, and presents some data describing the potential for isothiocyanate-mediated diet–drug interactions. PMID:19623673

  17. Sensitive and Specific Fluorescent Probes for Functional Analysis of the Three Major Types of Mammalian ABC Transporters

    PubMed Central

    Lebedeva, Irina V.; Pande, Praveen; Patton, Wayne F.

    2011-01-01

    An underlying mechanism for multi drug resistance (MDR) is up-regulation of the transmembrane ATP-binding cassette (ABC) transporter proteins. ABC transporters also determine the general fate and effect of pharmaceutical agents in the body. The three major types of ABC transporters are MDR1 (P-gp, P-glycoprotein, ABCB1), MRP1/2 (ABCC1/2) and BCRP/MXR (ABCG2) proteins. Flow cytometry (FCM) allows determination of the functional expression levels of ABC transporters in live cells, but most dyes used as indicators (rhodamine 123, DiOC2(3), calcein-AM) have limited applicability as they do not detect all three major types of ABC transporters. Dyes with broad coverage (such as doxorubicin, daunorubicin and mitoxantrone) lack sensitivity due to overall dimness and thus may yield a significant percentage of false negative results. We describe two novel fluorescent probes that are substrates for all three common types of ABC transporters and can serve as indicators of MDR in flow cytometry assays using live cells. The probes exhibit fast internalization, favorable uptake/efflux kinetics and high sensitivity of MDR detection, as established by multidrug resistance activity factor (MAF) values and Kolmogorov-Smirnov statistical analysis. Used in combination with general or specific inhibitors of ABC transporters, both dyes readily identify functional efflux and are capable of detecting small levels of efflux as well as defining the type of multidrug resistance. The assay can be applied to the screening of putative modulators of ABC transporters, facilitating rapid, reproducible, specific and relatively simple functional detection of ABC transporter activity, and ready implementation on widely available instruments. PMID:21799851

  18. ABCdb: an online resource for ABC transporter repertories from sequenced archaeal and bacterial genomes.

    PubMed

    Fichant, Gwennaele; Basse, Marie-Jeanne; Quentin, Yves

    2006-03-01

    The ATP-binding cassette (ABC) transporters are one of the major classes of active transporters. They are widespread in archaea, bacteria, and eukaryota, indicating that they have arisen early in evolution. They are involved in many essential physiological processes, but the majority import or export a wide variety of compounds across cellular membranes. These systems share a common architecture composed of four (exporters) or five (importers) domains. To identify and reconstruct functional ABC transporters encoded by archaeal and bacterial genomes, we have developed a bioinformatic strategy. Cross-reference to the transport classification system is used to predict the type of compound transported. A high quality of annotation is achieved by manual verification of the predictions. However, in order to face the rapid increase in the number of published genomes, we also include analyses of genomes issuing directly from the automated strategy. Querying the database (http://www-abcdb.biotoul.fr) allows to easily retrieve ABC transporter repertories and related data. Additional query tools have been developed for the analysis of the ABC family from both functional and evolutionary perspectives.

  19. Structure of a Type-1 Secretion System ABC Transporter.

    PubMed

    Morgan, Jacob L W; Acheson, Justin F; Zimmer, Jochen

    2017-03-07

    Type-1 secretion systems (T1SSs) represent a widespread mode of protein secretion across the cell envelope in Gram-negative bacteria. The T1SS is composed of an inner-membrane ABC transporter, a periplasmic membrane-fusion protein, and an outer-membrane porin. These three components assemble into a complex spanning both membranes and providing a conduit for the translocation of unfolded polypeptides. We show that ATP hydrolysis and assembly of the entire T1SS complex is necessary for protein secretion. Furthermore, we present a 3.15-Å crystal structure of AaPrtD, the ABC transporter found in the Aquifex aeolicus T1SS. The structure suggests a substrate entry window just above the transporter's nucleotide binding domains. In addition, highly kinked transmembrane helices, which frame a narrow channel not observed in canonical peptide transporters, are likely involved in substrate translocation. Overall, the AaPrtD structure supports a polypeptide transport mechanism distinct from alternating access. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Overexpression of Both ERG11 and ABC2 Genes Might Be Responsible for Itraconazole Resistance in Clinical Isolates of Candida krusei

    PubMed Central

    He, Xiaoyuan; Zhao, Mingfeng; Chen, Jinyan; Wu, Rimao; Zhang, Jianlei; Cui, Rui; Jiang, Yanyu; Chen, Jie; Cao, Xiaoli; Xing, Yi; Zhang, Yuchen; Meng, Juanxia; Deng, Qi; Sui, Tao

    2015-01-01

    Objective To study the main molecular mechanisms responsible for itraconazole resistance in clinical isolates of Candida krusei. Methods The 14α-demethylases encoded by ERG11 gene in the 16 C.krusei clinical isolates were amplified by polymerase chain reaction (PCR), and their nucleotide sequences were determined to detect point mutations. Meanwhile, ERG11 and efflux transporters (ABC1 and ABC2) genes were determined by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) for their expression in itraconazole-resistant (R), itraconazole-susceptible dose dependent (SDD) and itraconazole-susceptible (S) C.krusei at the mRNA level. Results We found 7-point mutations in ERG11 gene of all the C.krusei clinical isolates, including 6 synonymous mutations and 1 missense mutation (C44T). However, the missense mutation was found in the three groups. The mRNA levels of ERG11 gene in itraconazole-resistant isolates showed higher expression compared with itraconazole-susceptible dose dependent and itraconazole-susceptible ones (P = 0.015 and P = 0.002 respectively). ABC2 gene mRNA levels in itraconazole-resistant group was significantly higher than the other two groups, and the levels of their expression in the isolates appeared to increase with the decrease of susceptibility to itraconazole (P = 0.007 in SDD compared with S, P = 0.016 in SDD with R, and P<0.001 in S with R respectively). While ABC1 gene presented lower expression in itraconazole resistant strains. However, the mRNA levels of ERG11, ABC1 and ABC2 in a C.krusei (CK10) resistant to both itraconazole and voriconazole were expressed highest in all the itraconazole-resistant isolates. Conclusions There are ERG11 gene polymorphisms in clinical isolates of C.krusei. ERG11 gene mutations may not be involved in the development of itraconazole resistance in C.krusei. ERG11 and ABC2 overexpression might be responsible for the acquired itraconazole resistance of these clinical isolates. PMID

  1. The ABC protein turned chloride channel whose failure causes cystic fibrosis

    NASA Astrophysics Data System (ADS)

    Gadsby, David C.; Vergani, Paola; Csanády, László

    2006-03-01

    CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes.

  2. Predictive Structure and Topology of Peroxisomal ATP-Binding Cassette (ABC) Transporters

    PubMed Central

    Andreoletti, Pierre; Raas, Quentin; Gondcaille, Catherine; Cherkaoui-Malki, Mustapha; Trompier, Doriane; Savary, Stéphane

    2017-01-01

    The peroxisomal ATP-binding Cassette (ABC) transporters, which are called ABCD1, ABCD2 and ABCD3, are transmembrane proteins involved in the transport of various lipids that allow their degradation inside the organelle. Defective ABCD1 leads to the accumulation of very long-chain fatty acids and is associated with a complex and severe neurodegenerative disorder called X-linked adrenoleukodystrophy (X-ALD). Although the nucleotide-binding domain is highly conserved and characterized within the ABC transporters family, solid data are missing for the transmembrane domain (TMD) of ABCD proteins. The lack of a clear consensus on the secondary and tertiary structure of the TMDs weakens any structure-function hypothesis based on the very diverse ABCD1 mutations found in X-ALD patients. Therefore, we first reinvestigated thoroughly the structure-function data available and performed refined alignments of ABCD protein sequences. Based on the 2.85  Å resolution crystal structure of the mitochondrial ABC transporter ABCB10, here we propose a structural model of peroxisomal ABCD proteins that specifies the position of the transmembrane and coupling helices, and highlight functional motifs and putative important amino acid residues. PMID:28737695

  3. Genome-wide identification, phylogenetic analysis, and expression profiles of ATP-binding cassette transporter genes in the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae).

    PubMed

    Xiao, Lin-Fan; Zhang, Wei; Jing, Tian-Xing; Zhang, Meng-Yi; Miao, Ze-Qing; Wei, Dan-Dan; Yuan, Guo-Rui; Wang, Jin-Jun

    2018-03-01

    The ATP-binding cassette (ABC) is the largest transporter gene family and the genes play key roles in xenobiotic resistance, metabolism, and development of all phyla. However, the specific functions of ABC gene families in insects is unclear. We report a genome-wide identification, phylogenetic, and transcriptional analysis of the ABC genes in the oriental fruit fly, Bactrocera dorsalis (Hendel). We identified a total of 47 ABC genes (BdABCs) from the transcriptomic and genomic databases of B. dorsalis and classified these genes into eight subfamilies (A-H), including 7 ABCAs, 7 ABCBs, 9 ABCCs, 2 ABCDs, 1 ABCE, 3 ABCFs, 15 ABCGs, and 3 ABCHs. Comparative phylogenetic analysis of the ABCs suggests an orthologous relationship between B. dorsalis and other insect species in which these genes have been related to pesticide resistance and essential biological processes. Comparison of transcriptome and relative expression patterns of BdABCs indicated diverse multifunctions within different B. dorsalis tissues. The expression of 4, 10, and 14 BdABCs from 18 BdABCs was significantly upregulated after exposure to LD 50 s of malathion, avermectin, and beta-cypermethrin, respectively. The maximum expression level of most BdABCs (including BdABCFs, BdABCGs, and BdABCHs) occurred at 48h post exposures, whereas BdABCEs peaked at 24h after treatment. Furthermore, RNA interference-mediated suppression of BdABCB7 resulted in increased toxicity of malathion against B. dorsalis. These data suggest that ABC transporter genes might play key roles in xenobiotic metabolism and biosynthesis in B. dorsalis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Multiple ABC glucoside transporters mediate sugar-stimulated growth in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    Nieves-Morión, Mercedes; Flores, Enrique

    2018-02-01

    Cyanobacteria are generally capable of photoautotrophic growth and are widely distributed on Earth. The model filamentous, heterocyst-forming strain Anabaena sp. PCC 7120 has long been considered as a strict photoautotroph but is now known to be able to assimilate fructose. We have previously described two components of ABC glucoside uptake transporters from Anabaena that are involved in uptake of the sucrose analog esculin: GlsC [a nucleotide-binding domain subunit (NBD)] and GlsP [a transmembrane component (TMD)]. Here, we created Anabaena mutants of genes encoding three further ABC transporter components needed for esculin uptake: GlsD (NBD), GlsQ (TMD) and GlsR (periplasmic substrate-binding protein). Phototrophic growth of Anabaena was significantly stimulated by sucrose, fructose and glucose. Whereas the glsC and glsD mutants were drastically hampered in sucrose-stimulated growth, the different gls mutants were generally impaired in sugar-dependent growth. Our results suggest the participation of Gls and other ABC transporters encoded in the Anabaena genome in sugar-stimulated growth. Additionally, Gls transporter components influence the function of septal junctions in the Anabaena filament. We suggest that mixotrophic growth is important in cyanobacterial physiology and may be relevant for the wide success of these organisms in diverse environments. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Barley has two peroxisomal ABC transporters with multiple functions in β-oxidation

    PubMed Central

    Mendiondo, Guillermina M.; Medhurst, Anne; van Roermund, Carlo W.; Zhang, Xuebin; Devonshire, Jean; Scholefield, Duncan; Fernández, José; Axcell, Barry; Ramsay, Luke; Waterham, Hans R.; Waugh, Robbie; Theodoulou, Frederica L.; Holdsworth, Michael J.

    2014-01-01

    In oilseed plants, peroxisomal β-oxidation functions not only in lipid catabolism but also in jasmonate biosynthesis and metabolism of pro-auxins. Subfamily D ATP-binding cassette (ABC) transporters mediate import of β-oxidation substrates into the peroxisome, and the Arabidopsis ABCD protein, COMATOSE (CTS), is essential for this function. Here, the roles of peroxisomal ABCD transporters were investigated in barley, where the main storage compound is starch. Barley has two CTS homologues, designated HvABCD1 and HvABCD2, which are widely expressed and present in embryo and aleurone tissues during germination. Suppression of both genes in barley RNA interference (RNAi) lines indicated roles in metabolism of 2,4-dichlorophenoxybutyrate (2,4-DB) and indole butyric acid (IBA), jasmonate biosynthesis, and determination of grain size. Transformation of the Arabidopsis cts-1 null mutant with HvABCD1 and HvABCD2 confirmed these findings. HvABCD2 partially or completely complemented all tested phenotypes of cts-1. In contrast, HvABCD1 failed to complement the germination and establishment phenotypes of cts-1 but increased the sensitivity of hypocotyls to 100 μM IBA and partially complemented the seed size phenotype. HvABCD1 also partially complemented the yeast pxa1/pxa2Δ mutant for fatty acid β-oxidation. It is concluded that the core biochemical functions of peroxisomal ABC transporters are largely conserved between oilseeds and cereals but that their physiological roles and importance may differ. PMID:24913629

  6. Identification and characterization of the gltK gene encoding a membrane-associated glucose transport protein of pseudomonas aeruginosa.

    PubMed

    Adewoye, L O; Worobec, E A

    2000-08-08

    The Pseudomonas aeruginosa oprB gene encodes the carbohydrate-selective OprB porin, which translocates substrate molecules across the outer membrane to the periplasmic glucose-binding protein. We identified and cloned two open reading frames (ORFs) flanking the oprB gene but are not in operonic arrangement with the oprB gene. The downstream ORF encodes a putative polypeptide homologous to members of a family of transcriptional repressors, whereas the oprB gene is preceded by an ORF encoding a putative product, which exhibits strong homology to several carbohydrate transport ATP-binding cassette (ABC) proteins. The genomic copy of the upstream ORF was mutagenized by homologous recombination. Analysis of the deletion mutant in comparison with the wild type revealed a significant reduction in [14C] glucose transport activity in the mutant strain, suggesting that this ORF likely encodes the inner membrane component of the glucose ABC transporter. It is thus designated gltK gene to reflect its homology to the Pseudomona fluorescens mtlK and its involvement in the high-affinity glucose transport system. Multiple alignment analysis revealed that the P. aeruginosa gltK gene product is a member of the MalK subfamily of ABC proteins.

  7. ABCA Transporter Gene Expression and Poor Outcome in Epithelial Ovarian Cancer

    PubMed Central

    Hedditch, Ellen L.; Gao, Bo; Russell, Amanda J.; Lu, Yi; Emmanuel, Catherine; Beesley, Jonathan; Johnatty, Sharon E.; Chen, Xiaoqing; Harnett, Paul; George, Joshy; Williams, Rebekka T.; Flemming, Claudia; Lambrechts, Diether; Despierre, Evelyn; Lambrechts, Sandrina; Vergote, Ignace; Karlan, Beth; Lester, Jenny; Orsulic, Sandra; Walsh, Christine; Fasching, Peter; Beckmann, Matthias W.; Ekici, Arif B.; Hein, Alexander; Matsuo, Keitaro; Hosono, Satoyo; Nakanishi, Toru; Yatabe, Yasushi; Pejovic, Tanja; Bean, Yukie; Heitz, Florian; Harter, Philipp; du Bois, Andreas; Schwaab, Ira; Hogdall, Estrid; Kjaer, Susan K.; Jensen, Allan; Hogdall, Claus; Lundvall, Lene; Engelholm, Svend Aage; Brown, Bob; Flanagan, James; Metcalf, Michelle D; Siddiqui, Nadeem; Sellers, Thomas; Fridley, Brooke; Cunningham, Julie; Schildkraut, Joellen; Iversen, Ed; Weber, Rachel P.; Berchuck, Andrew; Goode, Ellen; Bowtell, David D.; Chenevix-Trench, Georgia; deFazio, Anna; Norris, Murray D.; MacGregor, Stuart; Haber, Michelle; Henderson, Michelle J.

    2014-01-01

    Background ATP-binding cassette (ABC) transporters play various roles in cancer biology and drug resistance, but their association with outcomes in serous epithelial ovarian cancer (EOC) is unknown. Methods The relationship between clinical outcomes and ABC transporter gene expression in two independent cohorts of high-grade serous EOC tumors was assessed with real-time quantitative polymerase chain reaction, analysis of expression microarray data, and immunohistochemistry. Associations between clinical outcomes and ABCA transporter gene single nucleotide polymorphisms were tested in a genome-wide association study. Impact of short interfering RNA–mediated gene suppression was determined by colony forming and migration assays. Association with survival was assessed with Kaplan–Meier analysis and log-rank tests. All statistical tests were two-sided. Results Associations with outcome were observed with ABC transporters of the “A” subfamily, but not with multidrug transporters. High-level expression of ABCA1, ABCA6, ABCA8, and ABCA9 in primary tumors was statistically significantly associated with reduced survival in serous ovarian cancer patients. Low levels of ABCA5 and the C-allele of rs536009 were associated with shorter overall survival (hazard ratio for death = 1.50; 95% confidence interval [CI] =1.26 to 1.79; P = 6.5e−6). The combined expression pattern of ABCA1, ABCA5, and either ABCA8 or ABCA9 was associated with particularly poor outcome (mean overall survival in group with adverse ABCA1, ABCA5 and ABCA9 gene expression = 33.2 months, 95% CI = 26.4 to 40.1; vs 55.3 months in the group with favorable ABCA gene expression, 95% CI = 49.8 to 60.8; P = .001), independently of tumor stage or surgical debulking status. Suppression of cholesterol transporter ABCA1 inhibited ovarian cancer cell growth and migration in vitro, and statin treatment reduced ovarian cancer cell migration. Conclusions Expression of ABCA transporters was associated with poor

  8. ABCA transporter gene expression and poor outcome in epithelial ovarian cancer.

    PubMed

    Hedditch, Ellen L; Gao, Bo; Russell, Amanda J; Lu, Yi; Emmanuel, Catherine; Beesley, Jonathan; Johnatty, Sharon E; Chen, Xiaoqing; Harnett, Paul; George, Joshy; Williams, Rebekka T; Flemming, Claudia; Lambrechts, Diether; Despierre, Evelyn; Lambrechts, Sandrina; Vergote, Ignace; Karlan, Beth; Lester, Jenny; Orsulic, Sandra; Walsh, Christine; Fasching, Peter; Beckmann, Matthias W; Ekici, Arif B; Hein, Alexander; Matsuo, Keitaro; Hosono, Satoyo; Nakanishi, Toru; Yatabe, Yasushi; Pejovic, Tanja; Bean, Yukie; Heitz, Florian; Harter, Philipp; du Bois, Andreas; Schwaab, Ira; Hogdall, Estrid; Kjaer, Susan K; Jensen, Allan; Hogdall, Claus; Lundvall, Lene; Engelholm, Svend Aage; Brown, Bob; Flanagan, James; Metcalf, Michelle D; Siddiqui, Nadeem; Sellers, Thomas; Fridley, Brooke; Cunningham, Julie; Schildkraut, Joellen; Iversen, Ed; Weber, Rachel P; Berchuck, Andrew; Goode, Ellen; Bowtell, David D; Chenevix-Trench, Georgia; deFazio, Anna; Norris, Murray D; MacGregor, Stuart; Haber, Michelle; Henderson, Michelle J

    2014-07-01

    ATP-binding cassette (ABC) transporters play various roles in cancer biology and drug resistance, but their association with outcomes in serous epithelial ovarian cancer (EOC) is unknown. The relationship between clinical outcomes and ABC transporter gene expression in two independent cohorts of high-grade serous EOC tumors was assessed with real-time quantitative polymerase chain reaction, analysis of expression microarray data, and immunohistochemistry. Associations between clinical outcomes and ABCA transporter gene single nucleotide polymorphisms were tested in a genome-wide association study. Impact of short interfering RNA-mediated gene suppression was determined by colony forming and migration assays. Association with survival was assessed with Kaplan-Meier analysis and log-rank tests. All statistical tests were two-sided. Associations with outcome were observed with ABC transporters of the "A" subfamily, but not with multidrug transporters. High-level expression of ABCA1, ABCA6, ABCA8, and ABCA9 in primary tumors was statistically significantly associated with reduced survival in serous ovarian cancer patients. Low levels of ABCA5 and the C-allele of rs536009 were associated with shorter overall survival (hazard ratio for death = 1.50; 95% confidence interval [CI] =1.26 to 1.79; P = 6.5e-6). The combined expression pattern of ABCA1, ABCA5, and either ABCA8 or ABCA9 was associated with particularly poor outcome (mean overall survival in group with adverse ABCA1, ABCA5 and ABCA9 gene expression = 33.2 months, 95% CI = 26.4 to 40.1; vs 55.3 months in the group with favorable ABCA gene expression, 95% CI = 49.8 to 60.8; P = .001), independently of tumor stage or surgical debulking status. Suppression of cholesterol transporter ABCA1 inhibited ovarian cancer cell growth and migration in vitro, and statin treatment reduced ovarian cancer cell migration. Expression of ABCA transporters was associated with poor outcome in serous ovarian cancer, implicating lipid

  9. Antibiotic Resistance Mediated by the MacB ABC Transporter Family: A Structural and Functional Perspective

    PubMed Central

    Greene, Nicholas P.; Kaplan, Elise; Crow, Allister; Koronakis, Vassilis

    2018-01-01

    The MacB ABC transporter forms a tripartite efflux pump with the MacA adaptor protein and TolC outer membrane exit duct to expel antibiotics and export virulence factors from Gram-negative bacteria. Here, we review recent structural and functional data on MacB and its homologs. MacB has a fold that is distinct from other structurally characterized ABC transporters and uses a unique molecular mechanism termed mechanotransmission. Unlike other bacterial ABC transporters, MacB does not transport substrates across the inner membrane in which it is based, but instead couples cytoplasmic ATP hydrolysis with transmembrane conformational changes that are used to perform work in the extra-cytoplasmic space. In the MacAB-TolC tripartite pump, mechanotransmission drives efflux of antibiotics and export of a protein toxin from the periplasmic space via the TolC exit duct. Homologous tripartite systems from pathogenic bacteria similarly export protein-like signaling molecules, virulence factors and siderophores. In addition, many MacB-like ABC transporters do not form tripartite pumps, but instead operate in diverse cellular processes including antibiotic sensing, cell division and lipoprotein trafficking. PMID:29892271

  10. Antibiotic Resistance Mediated by the MacB ABC Transporter Family: A Structural and Functional Perspective.

    PubMed

    Greene, Nicholas P; Kaplan, Elise; Crow, Allister; Koronakis, Vassilis

    2018-01-01

    The MacB ABC transporter forms a tripartite efflux pump with the MacA adaptor protein and TolC outer membrane exit duct to expel antibiotics and export virulence factors from Gram-negative bacteria. Here, we review recent structural and functional data on MacB and its homologs. MacB has a fold that is distinct from other structurally characterized ABC transporters and uses a unique molecular mechanism termed mechanotransmission. Unlike other bacterial ABC transporters, MacB does not transport substrates across the inner membrane in which it is based, but instead couples cytoplasmic ATP hydrolysis with transmembrane conformational changes that are used to perform work in the extra-cytoplasmic space. In the MacAB-TolC tripartite pump, mechanotransmission drives efflux of antibiotics and export of a protein toxin from the periplasmic space via the TolC exit duct. Homologous tripartite systems from pathogenic bacteria similarly export protein-like signaling molecules, virulence factors and siderophores. In addition, many MacB-like ABC transporters do not form tripartite pumps, but instead operate in diverse cellular processes including antibiotic sensing, cell division and lipoprotein trafficking.

  11. The ABC transporter Rv1272c of Mycobacterium tuberculosis enhances the import of long-chain fatty acids in Escherichia coli.

    PubMed

    Martin, Audrey; Daniel, Jaiyanth

    2018-02-05

    Mycobacterium tuberculosis (Mtb), which causes tuberculosis, is capable of accumulating triacylglycerol (TAG) by utilizing fatty acids from host cells. ATP-binding cassette (ABC) transporters are involved in transport processes in all organisms. Among the classical ABC transporters in Mtb none have been implicated in fatty acid import. Since the transport of fatty acids from the host cell is important for dormancy-associated TAG synthesis in the pathogen, mycobacterial ABC transporter(s) could potentially be involved in this process. Based on sequence identities with a bacterial ABC transporter that mediates fatty acid import for TAG synthesis, we identified Rv1272c, a hitherto uncharacterized ABC-transporter in Mtb that also shows sequence identities with a plant ABC transporter involved in fatty acid transport. We expressed Rv1272c in E. coli and show that it enhances the import of radiolabeled fatty acids. We also show that Rv1272c causes a significant increase in the metabolic incorporation of radiolabeled long-chain fatty acids into cardiolipin, a tetra-acylated phospholipid, and phosphatidylglycerol in E. coli. This is the first report on the function of Rv1272c showing that it displays a long-chain fatty acid transport function. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Genome-Wide Identification and Expression Profiling of ATP-Binding Cassette (ABC) Transporter Gene Family in Pineapple (Ananas comosus (L.) Merr.) Reveal the Role of AcABCG38 in Pollen Development

    PubMed Central

    Chen, Piaojuan; Li, Yi; Zhao, Lihua; Hou, Zhimin; Yan, Maokai; Hu, Bingyan; Liu, Yanhui; Azam, Syed Muhammad; Zhang, Ziyan; Rahman, Zia ur; Liu, Liping; Qin, Yuan

    2017-01-01

    Pineapple (Ananas comosus L.) cultivation commonly relies on asexual reproduction which is easily impeded by many factors in agriculture production. Sexual reproduction might be a novel approach to improve the pineapple planting. However, genes controlling pineapple sexual reproduction are still remain elusive. In different organisms a conserved superfamily proteins known as ATP binding cassette (ABC) participate in various biological processes. Whereas, till today the ABC gene family has not been identified in pineapple. Here 100 ABC genes were identified in the pineapple genome and grouped into eight subfamilies (5 ABCAs, 20 ABCBs, 16 ABCCs, 2 ABCDs, one ABCEs, 5 ABCFs, 42 ABCGs and 9 ABCIs). Gene expression profiling revealed the dynamic expression pattern of ABC gene family in various tissues and different developmental stages. AcABCA5, AcABCB6, AcABCC4, AcABCC7, AcABCC9, AcABCG26, AcABCG38 and AcABCG42 exhibited preferential expression in ovule and stamen. Over-expression of AcABCG38 in the Arabidopsis double mutant abcg1-2abcg16-2 partially restored its pollen abortion defects, indicating that AcABCG38 plays important roles in pollen development. Our study on ABC gene family in pineapple provides useful information for developing sexual pineapple plantation which could be utilized to improve pineapple agricultural production. PMID:29312399

  13. Genome-Wide Identification and Expression Profiling of ATP-Binding Cassette (ABC) Transporter Gene Family in Pineapple (Ananas comosus (L.) Merr.) Reveal the Role of AcABCG38 in Pollen Development.

    PubMed

    Chen, Piaojuan; Li, Yi; Zhao, Lihua; Hou, Zhimin; Yan, Maokai; Hu, Bingyan; Liu, Yanhui; Azam, Syed Muhammad; Zhang, Ziyan; Rahman, Zia Ur; Liu, Liping; Qin, Yuan

    2017-01-01

    Pineapple ( Ananas comosus L .) cultivation commonly relies on asexual reproduction which is easily impeded by many factors in agriculture production. Sexual reproduction might be a novel approach to improve the pineapple planting. However, genes controlling pineapple sexual reproduction are still remain elusive. In different organisms a conserved superfamily proteins known as ATP binding cassette (ABC) participate in various biological processes. Whereas, till today the ABC gene family has not been identified in pineapple. Here 100 ABC genes were identified in the pineapple genome and grouped into eight subfamilies (5 ABCAs , 20 ABCB s, 16 ABCCs , 2 ABCDs , one ABCEs , 5 ABCFs , 42 ABCGs and 9 ABCIs ). Gene expression profiling revealed the dynamic expression pattern of ABC gene family in various tissues and different developmental stages. AcABCA5, AcABCB6, AcABCC4 , AcABCC7 , AcABCC9 , AcABCG26 , AcABCG38 and AcABCG42 exhibited preferential expression in ovule and stamen. Over-expression of AcABCG38 in the Arabidopsis double mutant abcg1-2abcg16-2 partially restored its pollen abortion defects, indicating that AcABCG38 plays important roles in pollen development. Our study on ABC gene family in pineapple provides useful information for developing sexual pineapple plantation which could be utilized to improve pineapple agricultural production.

  14. The Yeast Plasma Membrane ATP Binding Cassette (ABC) Transporter Aus1

    PubMed Central

    Marek, Magdalena; Milles, Sigrid; Schreiber, Gabriele; Daleke, David L.; Dittmar, Gunnar; Herrmann, Andreas; Müller, Peter; Pomorski, Thomas Günther

    2011-01-01

    The ATP binding cassette (ABC) transporter Aus1 is expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and is required for sterol uptake. These observations suggest that Aus1 promotes the translocation of sterols across membranes, but the precise transport mechanism has yet to be identified. In this study, an extraction and purification procedure was developed to characterize the Aus1 transporter. The detergent-solubilized protein was able to bind and hydrolyze ATP. Mutagenesis of the conserved lysine to methionine in the Walker A motif abolished ATP hydrolysis. Likewise, ATP hydrolysis was inhibited by classical inhibitors of ABC transporters. Upon reconstitution into proteoliposomes, the ATPase activity of Aus1 was specifically stimulated by phosphatidylserine (PS) in a stereoselective manner. We also found that Aus1-dependent sterol uptake, but not Aus1 expression and trafficking to the plasma membrane, was affected by changes in cellular PS levels. These results suggest a direct interaction between Aus1 and PS that is critical for the activity of the transporter. PMID:21521689

  15. Cloning and expression analysis of the ATP-binding cassette transporter gene MFABC1 and the alternative oxidase gene MfAOX1 from Monilinia fructicola.

    PubMed

    Schnabel, Guido; Dait, Qun; Paradkar, Manjiri R

    2003-10-01

    Brown rot, caused by Moniliniafructicola (G Wint) Honey, is a serious disease of peach in all commercial peach production areas in the USA, including South Carolina where it has been primarily controlled by pre-harvest application of 14-alpha demethylation (DMI) fungicides for more than 15 years. Recently, the Qo fungicide azoxystrobin was registered for brown rot control and is currently being investigated for its potential as a DMI fungicide rotation partner because of its different mode of action. In an effort to investigate molecular mechanisms of DMI and Qo fungicide resistance in M fructicola, the ABC transporter gene MfABC1 and the alternative oxidase gene MfAOX1 were cloned to study their potential role in conferring fungicide resistance. The MfABC1 gene was 4380 bp in length and contained one intron of 71 bp. The gene revealed high amino acid homologies with atrB from Aspergillus nidulans (Eidam) Winter, an ABC transporter conferring resistance to many fungicides, including DMI fungicides. MfABC1 gene expression was induced after myclobutanil and propiconazole treatment in isolates with low sensitivity to the same fungicides, and in an isolate with high sensitivity to propiconazole. The results suggest that the MfABC1 gene may be a DMI fungicide resistance determinant in M fructicola. The alternative oxidase gene MfAOX1 from M fructicola was cloned and gene expression was analyzed. The MfAOX1 gene was 1077 bp in length and contained two introns of 54 and 67 bp. The amino acid sequence was 63.8, 63.8 and 57.7% identical to alternative oxidases from Venturia inaequalis (Cooke) Winter, Aspergillus niger van Teighem and A nidulans, respectively. MfAOX1 expression in some but not all M fructicola isolates was induced in mycelia treated with azoxystrobin. Azoxystrobin at 2 microg ml(-1) significantly induced MfAOX1 expression in isolates with low MfAOX1 constitutive expression levels.

  16. Inhibition of the Human ABC Efflux Transporters P-gp and ...

    EPA Pesticide Factsheets

    High body burdens of polybrominated diphenyl ethers (PBDEs) in infants and young children have led to increased concern over their potential impact on human development. PBDE exposure can alter the expression of genes involved in thyroid homeostasis, including those of ATP-binding cassette (ABC) transporters, which mediate cellular xenobiotic efflux. However, little information exists on how PBDEs interact with ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). The purpose of this study was to evaluate the interactions of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) and its hydroxylated metabolite 6-OH-BDE-47 with P-gp and BCRP, using human MDR1- and BCRP-expressing membrane vesicles and stably transfected NIH-3T3-MDR1 and MDCK-BCRP cells. In P-gp membranes, BDE-47 did not affect P-gp activity; however, 6-OH-BDE-47 inhibited P-gp activity at low µM concentrations (IC50 = 11.7 µM). In BCRP membranes, BDE-47 inhibited BCRP activity; however, 6-OH-BDE-47 was a stronger inhibitor [IC50 = 45.9 µM (BDE-47) vs. IC50 = 9.4 µM (6-OH-BDE-47)]. Intracellular concentrations of known P-gp and BCRP substrates [(3H)-paclitaxel and (3H)-prazosin, respectively] were significantly higher (indicating less efflux) in NIH-3T3-MDR1 and MDCK-BCRP cells in the presence of 6-OH-BDE-47, but not BDE-47. Collectively, our results indicate that the BDE-47 metabolite 6-OH-BDE-47 is an inhibitor of both P-gp and BCRP efflux activity.

  17. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sourav; van Opstal, Edward J.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.

    2013-06-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size 45 nm) and polystyrene nanoparticles (PSNPs/size 50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  18. Transcription of putative tonoplast transporters in response to glyphosate and paraquat stress in Conyza bonariensis and Conyza canadensis and selection of reference genes for qRT-PCR.

    PubMed

    Moretti, Marcelo L; Alárcon-Reverte, Rocio; Pearce, Stephen; Morran, Sarah; Hanson, Bradley D

    2017-01-01

    Herbicide resistance is a challenge for modern agriculture further complicated by cases of resistance to multiple herbicides. Conyza bonariensis and Conyza canadensis are invasive weeds of field crops, orchards, and non-cropped areas in many parts of the world. In California, USA, Conyza populations resistant to the herbicides glyphosate and paraquat have recently been described. Although the mechanism conferring resistance to glyphosate and paraquat in these species was not elucidated, reduced translocation of these herbicides was observed under experimental conditions in both species. Glyphosate and paraquat resistance associated with reduced translocation are hypothesized to be a result of sequestration of herbicides into the vacuole, with the possible involvement of over-expression of genes encoding tonoplast transporters of ABC-transporter families in cases of glyphosate resistance or cationic amino acid transporters (CAT) in cases of paraquat resistance. However, gene expression in response to herbicide treatment has not been studied in glyphosate and paraquat resistant populations. In the current study, we evaluated the transcript levels of genes possibly involved in resistance using real-time PCR. First, we evaluated eight candidate reference genes following herbicide treatment and selected three genes that exhibited stable expression profiles; ACTIN, HEAT-SHOCK-PROTEIN-70, and CYCLOPHILIN. The reference genes identified here can be used for further studies related to plant-herbicide interactions. We used these reference genes to assay the transcript levels of EPSPS, ABC transporters, and CAT in response to herbicide treatment in susceptible and resistant Conyza spp. lines. No transcription changes were observed in EPSPS or CAT genes after glyphosate or paraquat treatment, suggesting that these genes are not involved in the resistance mechanism. Transcription of the two ABC transporter genes increased following glyphosate treatment in all Conyza spp. lines

  19. Transcription of putative tonoplast transporters in response to glyphosate and paraquat stress in Conyza bonariensis and Conyza canadensis and selection of reference genes for qRT-PCR

    PubMed Central

    Alárcon-Reverte, Rocio; Pearce, Stephen; Morran, Sarah; Hanson, Bradley D.

    2017-01-01

    Herbicide resistance is a challenge for modern agriculture further complicated by cases of resistance to multiple herbicides. Conyza bonariensis and Conyza canadensis are invasive weeds of field crops, orchards, and non-cropped areas in many parts of the world. In California, USA, Conyza populations resistant to the herbicides glyphosate and paraquat have recently been described. Although the mechanism conferring resistance to glyphosate and paraquat in these species was not elucidated, reduced translocation of these herbicides was observed under experimental conditions in both species. Glyphosate and paraquat resistance associated with reduced translocation are hypothesized to be a result of sequestration of herbicides into the vacuole, with the possible involvement of over-expression of genes encoding tonoplast transporters of ABC-transporter families in cases of glyphosate resistance or cationic amino acid transporters (CAT) in cases of paraquat resistance. However, gene expression in response to herbicide treatment has not been studied in glyphosate and paraquat resistant populations. In the current study, we evaluated the transcript levels of genes possibly involved in resistance using real-time PCR. First, we evaluated eight candidate reference genes following herbicide treatment and selected three genes that exhibited stable expression profiles; ACTIN, HEAT-SHOCK-PROTEIN-70, and CYCLOPHILIN. The reference genes identified here can be used for further studies related to plant-herbicide interactions. We used these reference genes to assay the transcript levels of EPSPS, ABC transporters, and CAT in response to herbicide treatment in susceptible and resistant Conyza spp. lines. No transcription changes were observed in EPSPS or CAT genes after glyphosate or paraquat treatment, suggesting that these genes are not involved in the resistance mechanism. Transcription of the two ABC transporter genes increased following glyphosate treatment in all Conyza spp. lines

  20. Functional Dependence between Septal Protein SepJ from Anabaena sp. Strain PCC 7120 and an Amino Acid ABC-Type Uptake Transporter.

    PubMed

    Escudero, Leticia; Mariscal, Vicente; Flores, Enrique

    2015-08-01

    In the diazotrophic filaments of heterocyst-forming cyanobacteria, two different cell types, the CO2-fixing vegetative cells and the N2-fixing heterocysts, exchange nutrients, including some amino acids. In the model organism Anabaena sp. strain PCC 7120, the SepJ protein, composed of periplasmic and integral membrane (permease) sections, is located at the intercellular septa joining adjacent cells in the filament. The unicellular cyanobacterium Synechococcus elongatus strain PCC 7942 bears a gene, Synpcc7942_1024 (here designated dmeA), encoding a permease homologous to the SepJ permease domain. Synechococcus strains lacking dmeA or lacking dmeA and expressing Anabaena sepJ were constructed. The Synechococcus dmeA mutant showed a significant 22 to 32% decrease in the uptake of aspartate, glutamate, and glutamine, a phenotype that could be partially complemented by Anabaena sepJ. Synechococcus mutants of an ATP-binding-cassette (ABC)-type transporter for polar amino acids showed >98% decreased uptake of glutamate irrespective of the presence of dmeA or Anabaena sepJ in the same strain. Thus, Synechococcus DmeA or Anabaena SepJ is needed to observe full (or close to full) activity of the ABC transporter. An Anabaena sepJ deletion mutant was significantly impaired in glutamate and aspartate uptake, which also in this cyanobacterium requires the activity of an ABC-type transporter for polar amino acids. SepJ appears therefore to generally stimulate the activity of cyanobacterial ABC-type transporters for polar amino acids. Conversely, an Anabaena mutant of three ABC-type transporters for amino acids was impaired in the intercellular transfer of 5-carboxyfluorescein, a SepJ-related property. Our results unravel possible functional interactions in transport elements important for diazotrophic growth. Membrane transporters are essential for many aspects of cellular life, from uptake and export of substances in unicellular organisms to intercellular molecular exchange in

  1. Alzheimer's and ABC transporters--new opportunities for diagnostics and treatment.

    PubMed

    Pahnke, Jens; Langer, Oliver; Krohn, Markus

    2014-12-01

    Much has been said about the increasing number of demented patients and the main risk factor 'age'. Frustratingly, we do not know the precise pattern and all modulating factors that provoke the pathologic changes in the brains of affected elderly. We have to diagnose early to be able to stop the progression of diseases that irreversibly destroy brain substance. Familiar AD cases have mislead some researchers for almost 20 years, which has unfortunately narrowed the scientific understanding and has, thus, lead to insufficient funding of independent approaches. Therefore, basic researchers hardly have been able to develop causative treatments and clinicians still do not have access to prognostic and early diagnostic tools. During the recent years it became clear that insufficient Aβ export, physiologically facilitated by the ABC transporter superfamily at the brain's barriers, plays a fundamental role in disease initiation and progression. Furthermore, export mechanisms that are deficient in affected elderly are new targets for activation and, thus, treatment, but ideally also for prevention. In sporadic AD disturbed clearance of β-amyloid from the brain is so far the most important factor for its accumulation in the parenchyma and vessel walls. Here, we review findings about the contribution of ABC transporters and of the perivascular drainage/glymphatic system on β-amyloid clearance. We highlight their potential value for innovative early diagnostics using PET and describe recently described, effective ABC transporter-targeting agents as potential causative treatment for neurodegenerative proteopathies/dementias. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Regulation of Expression of abcA and Its Response to Environmental Conditions

    PubMed Central

    Villet, Regis A.; Truong-Bolduc, Que Chi; Wang, Yin; Estabrooks, Zoe; Medeiros, Heidi

    2014-01-01

    The ATP-dependent transporter gene abcA in Staphylococcus aureus confers resistance to hydrophobic β-lactams. In strain ISP794, abcA is regulated by the transcriptional regulators MgrA and NorG and shares a 420-nucleotide intercistronic region with the divergently transcribed pbp4 gene, which encodes the transpeptidase Pbp4. Exposure of exponentially growing cells to iron-limited media, oxidative stress, and acidic pH (5.5) for 0.5 to 2 h had no effect on abcA expression. In contrast, nutrient limitation produced a significant increase in abcA transcripts. We identified three additional regulators (SarA, SarZ, and Rot) that bind to the overlapping promoter region of abcA and pbp4 in strain MW2 and investigated their role in the regulation of abcA expression. Expression of abcA is decreased by 10.0-fold in vivo in a subcutaneous abscess model. In vitro, abcA expression depends on rot and sarZ regulators. Moenomycin A exposure of strain MW2 produced an increase in abcA transcripts. Relative to MW2, the MIC of moenomycin was decreased 8-fold for MW2ΔabcA and increased 10-fold for the MW2 abcA overexpresser, suggesting that moenomycin is a substrate of AbcA. PMID:24509312

  3. NFκBP65 transcription factor modulates resistance to doxorubicin through ABC transporters in breast cancer.

    PubMed

    Velaei, Kobra; Samadi, Nasser; Soltani, Sina; Barazvan, Balal; Soleimani Rad, Jafar

    2017-07-01

    Shedding light on chemoresistance biology of breast cancer could contribute to enhance the clinical outcome. Intrinsic or acquired resistance to chemotherapy is a major problem in breast cancer treatment. The NFκB pathway by siRNAP65 and JSH-23 as a translocational inhibitor of NFκBP65 in the doxorubicin-resistant MCF-7 (MCF-7/Dox) and MCF-7 cells was blocked. Then, the ABC transporter expression and function were assessed by real-time qRT-PCR and flow cytometry, respectively. Induction of apoptosis was evaluated after inhibition of the NFΚB pathway as well. Our study underlined the upregulation of NFκBP65 and anti-apoptotic Bcl-2 and downregulation of pro-apoptotic Bax in the MCF-7/Dox cells compared with control MCF-7 cells. Here, we showed that interplay between nuclear factor kappa B P65 (NFkBP65) as a transcriptional regulator and ABC transporters in the MCF-7/Dox cancer cells. We found that inhibition of the elevated expression of NFκBP65 in the resistant breast cancer, whether translocational inhibition or silencing by siRNA, decreased the expression and function of MDR1 and MRP1 efflux pumps. Furthermore, the blockade of NFκBP65 promoted apoptosis via modulating Bcl-2 and BAX expression. After inhibition of the NFκBP65 signaling pathway, elevated baseline expression of survival Bcl-2 gene in the resistant breast cells significantly decreased. Suppression of the NFκB pathway has a profound dual impact on promoting the intrinsic apoptotic pathway and reducing ABC transporter function and expression, which are some of the chemoresistance features. It was speculated that the NFκB pathway directly acts on doxorubicin-induced MDR1 and MRP1 expression in MCF-7/Dox cells.

  4. Investigation of the quaternary structure of an ABC transporter in living cells using spectrally resolved resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Singh, Deo Raj

    Forster resonance energy transfer (FRET) has become an important tool to study proteins inside living cells. It has been used to explore membrane protein folding and dynamics, determine stoichiometry and geometry of protein complexes, and measure the distance between two molecules. In this dissertation, we use a method based on FRET and optical micro-spectroscopy (OptiMiS) technology, developed in our lab, to probe the structure of dynamic (as opposed to static) protein complexes in living cells. We use this method to determine the association stoichiometry and quaternary structure of an ABC transporter in living cells. Specifically, the transporter we investigate originates from the pathogen Pseudomonas aeruginosa, which is a Gram-negative bacterium with several virulence factors, lipopolysaccharides being one of them. This pathogen coexpresses two unique forms of lipopolysaccharides on its surface, the A- and B-bands. The A-band polysaccharides, synthesized in the cytoplasm, are translocated into the periplasm through an ATP-binding-cassette (ABC) transporter consisting of a transmembranar protein, Wzm, and a nucleotide-binding protein, Wzt. In P. aeruginosa, all of the biochemical studies of A-band LPS are concentrated on the stages of the synthesis and ligation of polysaccharides (PSs), leaving the export stage involving ABC transporter unexplored. The mode of PS export through ABC transporters is still unknown. This difficulty is due to the lack of information about sub-unit composition and structure of this bi-component ABC transporter. Using the FRET-OptiMiS combination method developed by our lab, we found that Wzt forms a rhombus-shaped homo-tetramer which becomes a square upon co-expression with Wzm, and that Wzm forms a square-shaped homo-tetramer both in the presence and absence of Wzt. Based on these results, we propose a structural model for the double-tetramer complex formed by the bi-component ABC transporter in living cells. An understanding of the

  5. Characterization of SiaA, a streptococcal heme-binding protein associated with a heme ABC transport system.

    PubMed

    Sook, Brian R; Block, Darci R; Sumithran, Suganya; Montañez, Griselle E; Rodgers, Kenton R; Dawson, John H; Eichenbaum, Zehava; Dixon, Dabney W

    2008-02-26

    Many pathogenic bacteria require heme and obtain it from their environment. Heme transverses the cytoplasmic membrane via an ATP binding cassette (ABC) pathway. Although a number of heme ABC transport systems have been described in pathogenic bacteria, there is as yet little biophysical characterization of the proteins in these systems. The sia (hts) gene cluster encodes a heme ABC transporter in the Gram positive Streptococcus pyogenes. The lipoprotein-anchored heme binding protein (HBP) of this transporter is SiaA (HtsA). In the current study, resonance Raman (rR), magnetic circular dichroism (MCD), and nuclear magnetic resonance (NMR) spectroscopies were used to determine the coordination state and spin state of both the ferric and ferrous forms of this protein. Identifiers from these techniques suggest that the heme is six-coordinate and low-spin in both oxidation states of the protein, with methionine and histidine as axial ligands. SiaA has a pKa of 9.7 +/- 0.1, attributed to deprotonation of the axial histidine. Guanidinium titration studies show that the ferric state is less stable than the ferrous state, with DeltaG(H2O) values for the oxidized and reduced proteins of 7.3 +/- 0.8 and 16.0 +/- 3.6 kcal mol-1, respectively. The reductive and oxidative midpoint potentials determined via spectroelectrochemistry are 83 +/- 3 and 64 +/- 3 mV, respectively; the irreversibility of heme reduction suggests that redox cycling of the heme is coupled to a kinetically sluggish change in structure or conformation. The biophysical characterization described herein will significantly advance our understanding of structure-function relationships in HBP.

  6. IMG-ABC: A Knowledge Base To Fuel Discovery of Biosynthetic Gene Clusters and Novel Secondary Metabolites.

    PubMed

    Hadjithomas, Michalis; Chen, I-Min Amy; Chu, Ken; Ratner, Anna; Palaniappan, Krishna; Szeto, Ernest; Huang, Jinghua; Reddy, T B K; Cimermančič, Peter; Fischbach, Michael A; Ivanova, Natalia N; Markowitz, Victor M; Kyrpides, Nikos C; Pati, Amrita

    2015-07-14

    In the discovery of secondary metabolites, analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of computational platforms that enable such a systematic approach on a large scale. In this work, we present IMG-ABC (https://img.jgi.doe.gov/abc), an atlas of biosynthetic gene clusters within the Integrated Microbial Genomes (IMG) system, which is aimed at harnessing the power of "big" genomic data for discovering small molecules. IMG-ABC relies on IMG's comprehensive integrated structural and functional genomic data for the analysis of biosynthetic gene clusters (BCs) and associated secondary metabolites (SMs). SMs and BCs serve as the two main classes of objects in IMG-ABC, each with a rich collection of attributes. A unique feature of IMG-ABC is the incorporation of both experimentally validated and computationally predicted BCs in genomes as well as metagenomes, thus identifying BCs in uncultured populations and rare taxa. We demonstrate the strength of IMG-ABC's focused integrated analysis tools in enabling the exploration of microbial secondary metabolism on a global scale, through the discovery of phenazine-producing clusters for the first time in Alphaproteobacteria. IMG-ABC strives to fill the long-existent void of resources for computational exploration of the secondary metabolism universe; its underlying scalable framework enables traversal of uncovered phylogenetic and chemical structure space, serving as a doorway to a new era in the discovery of novel molecules. IMG-ABC is the largest publicly available database of predicted and experimental biosynthetic gene clusters and the secondary metabolites they produce. The system also includes powerful search and analysis tools that are integrated with IMG's extensive genomic/metagenomic data and analysis tool kits. As new research on biosynthetic gene clusters and secondary metabolites is published and more genomes are sequenced, IMG-ABC will continue to

  7. ATP-binding cassette (ABC) transporters in caprine preantral follicles: gene and protein expression.

    PubMed

    Guerreiro, Denise Damasceno; de Lima, Laritza Ferreira; Mbemya, Gildas Tetaping; Maside, Carolina Mielgo; Miranda, André Marrocos; Tavares, Kaio César Simiano; Alves, Benner Geraldo; Faustino, Luciana Rocha; Smitz, Johan; de Figueiredo, José Ricardo; Rodrigues, Ana Paula Ribeiro

    2018-06-01

    The multidrug resistance proteins ABCB1, ABCC2 and ABCG2 are an energy-dependent efflux pump that functions in systemic detoxification processes. Physiologically expressed in a variety of tissues, most abundantly in the liver and intestinal epithelia, placenta, blood-brain barrier and various stem cells, until now, these pumps were not identified in goat ovarian tissue. Therefore, the aim of this study is to analyze ABCB1, ABCC2, and ABCG2 mRNA and protein expression in goat preantral follicles. Fragments (3 × 3 × 1 mm) from five pairs of ovary (n = 10) obtained from five goat were collected and immediately submitted to qPCR, Western blot, and immunofluorescence assay for mRNA detection and identification and localization of the ABC transporters, respectively. mRNA for ABCB1, ABCC2, and ABCG2 and the presence of their proteins were observed on ovarian tissue samples. Positive marks were observed for the three transport proteins in all follicular categories studied. However, the marks were primarily localized in the oocyte of primordial, transition and primary follicle categories. In conclusion, goat ovarian tissue expresses mRNA for the ABCB1, ABCC2 and ABCG2 transporters and the expression of these proteins in the preantral follicles is a follicle-dependent stage.

  8. Structural basis for lipopolysaccharide extraction by ABC transporter LptB2FG.

    PubMed

    Luo, Qingshan; Yang, Xu; Yu, Shan; Shi, Huigang; Wang, Kun; Xiao, Le; Zhu, Guangyu; Sun, Chuanqi; Li, Tingting; Li, Dianfan; Zhang, Xinzheng; Zhou, Min; Huang, Yihua

    2017-05-01

    After biosynthesis, bacterial lipopolysaccharides (LPS) are transiently anchored to the outer leaflet of the inner membrane (IM). The ATP-binding cassette (ABC) transporter LptB 2 FG extracts LPS molecules from the IM and transports them to the outer membrane. Here we report the crystal structure of nucleotide-free LptB 2 FG from Pseudomonas aeruginosa. The structure reveals that lipopolysaccharide transport proteins LptF and LptG each contain a transmembrane domain (TMD), a periplasmic β-jellyroll-like domain and a coupling helix that interacts with LptB on the cytoplasmic side. The LptF and LptG TMDs form a large outward-facing V-shaped cavity in the IM. Mutational analyses suggest that LPS may enter the central cavity laterally, via the interface of the TMD domains of LptF and LptG, and is expelled into the β-jellyroll-like domains upon ATP binding and hydrolysis by LptB. These studies suggest a mechanism for LPS extraction by LptB 2 FG that is distinct from those of classical ABC transporters that transport substrates across the IM.

  9. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice

    PubMed Central

    Brzozowska, Natalia; Li, Kong M.; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S.

    2016-01-01

    Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b−∕−), Bcrp knockout (Abcg2−∕−), combined P-gp/Bcrp knockout (Abcb1a/b−∕−Abcg2−∕−) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders. PMID:27257556

  10. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice.

    PubMed

    Brzozowska, Natalia; Li, Kong M; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S; Arnold, Jonathon C

    2016-01-01

    Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b (-∕-)), Bcrp knockout (Abcg2 (-∕-)), combined P-gp/Bcrp knockout (Abcb1a/b (-∕-) Abcg2 (-∕-)) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders.

  11. Alzheimer’s and ABC transporters - new opportunities for diagnostics and treatment

    PubMed Central

    Pahnke, Jens; Langer, Oliver; Krohn, Markus

    2014-01-01

    Much has been said about the increasing number of demented patients and the main risk factor ‘age’. Frustratingly, we do not know the precise pattern and all modulating factors that provoke the pathologic changes in the brains of affected elderly. We have to diagnose early to be able to stop the progression of diseases that irreversibly destroy brain substance. Familiar AD cases have mislead some researchers for almost 20 years, which has unfortunately narrowed the scientific understanding and has, thus, lead to insufficient funding of independent approaches. Therefore, basic researchers hardly have been able to develop causative treatments and clinicians still do not have access to prognostic and early diagnostic tools. During the recent years it became clear that insufficient Aβ export, physiologically facilitated by the ABC transporter superfamily at the brain’s barriers, plays a fundamental role in disease initiation and progression. Furthermore, export mechanisms that are deficient in affected elderly are new targets for activation and, thus, treatment, but ideally also for prevention. In sporadic AD disturbed clearance of β-amyloid from the brain is so far the most important factor for its accumulation in the parenchyma and vessel walls. Here, we review findings about the contribution of ABC transporters and of the perivascular drainage/glymphatic system on β-amyloid clearance. We highlight their potential value for innovative early diagnostics using PET and describe recently described, effective ABC transporter-targeting agents as potential causative treatment for neurodegenerative proteopathies/dementias. PMID:24746857

  12. Toward Determining ATPase Mechanism in ABC Transporters: Development of the Reaction Path–Force Matching QM/MM Method

    PubMed Central

    Zhou, Y.; Ojeda-May, P.; Nagaraju, M.; Pu, J.

    2016-01-01

    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are ubiquitous ATP-dependent membrane proteins involved in translocations of a wide variety of substrates across cellular membranes. To understand the chemomechanical coupling mechanism as well as functional asymmetry in these systems, a quantitative description of how ABC transporters hydrolyze ATP is needed. Complementary to experimental approaches, computer simulations based on combined quantum mechanical and molecular mechanical (QM/MM) potentials have provided new insights into the catalytic mechanism in ABC transporters. Quantitatively reliable determination of the free energy requirement for enzymatic ATP hydrolysis, however, requires substantial statistical sampling on QM/MM potential. A case study shows that brute force sampling of ab initio QM/MM (AI/MM) potential energy surfaces is computationally impractical for enzyme simulations of ABC transporters. On the other hand, existing semiempirical QM/MM (SE/MM) methods, although affordable for free energy sampling, are unreliable for studying ATP hydrolysis. To close this gap, a multiscale QM/MM approach named reaction path–force matching (RP–FM) has been developed. In RP–FM, specific reaction parameters for a selected SE method are optimized against AI reference data along reaction paths by employing the force matching technique. The feasibility of the method is demonstrated for a proton transfer reaction in the gas phase and in solution. The RP–FM method may offer a general tool for simulating complex enzyme systems such as ABC transporters. PMID:27498639

  13. ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis.

    PubMed

    Larsen, Paul B; Geisler, Matt J B; Jones, Carol A; Williams, Kelly M; Cancel, Jesse D

    2005-02-01

    Aluminum (Al) toxicity in acid soils is a worldwide agricultural problem that severely limits crop productivity through inhibition of root growth. Previously, Arabidopsis mutants with increased Al sensitivity were isolated in order to identify genes important for Al tolerance in plants. One mutant, als3, exhibited extreme root growth inhibition in the presence of Al, suggesting that this mutation negatively impacts a gene required for Al tolerance. Map-based cloning of the als3-1 mutation resulted in the isolation of a novel gene that encodes a previously undescribed ABC transporter-like protein, which is highly homologous to a putative bacterial metal resistance protein, ybbM. Northern analysis for ALS3 expression revealed that it is found in all organs examined, which is consistent with the global nature of Al sensitivity displayed by als3, and that expression increases in roots following Al treatment. Based on GUS fusion and in situ hybridization analyses, ALS3 is primarily expressed in leaf hydathodes and the phloem throughout the plant, along with the root cortex following Al treatment. Immunolocalization indicates that ALS3 predominantly accumulates in the plasma membrane of cells that express ALS3. From our results, it appears that ALS3 encodes an ABC transporter-like protein that is required for Al resistance/tolerance and may function to redistribute accumulated Al away from sensitive tissues in order to protect the growing root from the toxic effects of Al.

  14. IMG-ABC. A knowledge base to fuel discovery of biosynthetic gene clusters and novel secondary metabolites

    DOE PAGES

    Hadjithomas, Michalis; Chen, I-Min Amy; Chu, Ken; ...

    2015-07-14

    In the discovery of secondary metabolites, analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of computational platforms that enable such a systematic approach on a large scale. In this work, we present IMG-ABC (https://img.jgi.doe.gov/abc), an atlas of biosynthetic gene clusters within the Integrated Microbial Genomes (IMG) system, which is aimed at harnessing the power of “big” genomic data for discovering small molecules. IMG-ABC relies on IMG’s comprehensive integrated structural and functional genomic data for the analysis of biosynthetic gene clusters (BCs) and associated secondary metabolites (SMs). SMs and BCs serve asmore » the two main classes of objects in IMG-ABC, each with a rich collection of attributes. A unique feature of IMG-ABC is the incorporation of both experimentally validated and computationally predicted BCs in genomes as well as metagenomes, thus identifying BCs in uncultured populations and rare taxa. We demonstrate the strength of IMG-ABC’s focused integrated analysis tools in enabling the exploration of microbial secondary metabolism on a global scale, through the discovery of phenazine-producing clusters for the first time in lphaproteobacteria. IMG-ABC strives to fill the long-existent void of resources for computational exploration of the secondary metabolism universe; its underlying scalable framework enables traversal of uncovered phylogenetic and chemical structure space, serving as a doorway to a new era in the discovery of novel molecules. IMG-ABC is the largest publicly available database of predicted and experimental biosynthetic gene clusters and the secondary metabolites they produce. The system also includes powerful search and analysis tools that are integrated with IMG’s extensive genomic/metagenomic data and analysis tool kits. As new research on biosynthetic gene clusters and secondary metabolites is published and more genomes are sequenced, IMG-ABC

  15. Caenorhabditis elegans ABCRNAi transporters interact genetically with rde-2 and mut-7.

    PubMed

    Sundaram, Prema; Han, Wang; Cohen, Nancy; Echalier, Benjamin; Albin, John; Timmons, Lisa

    2008-02-01

    RNA interference (RNAi) mechanisms are conserved and consist of an interrelated network of activities that not only respond to exogenous dsRNA, but also perform endogenous functions required in the fine tuning of gene expression and in maintaining genome integrity. Not surprisingly, RNAi functions have widespread influences on cellular function and organismal development. Previously, we observed a reduced capacity to mount an RNAi response in nine Caenorhabditis elegans mutants that are defective in ABC transporter genes (ABC(RNAi) mutants). Here, we report an exhaustive study of mutants, collectively defective in 49 different ABC transporter genes, that allowed for the categorization of one additional transporter into the ABC(RNAi) gene class. Genetic complementation tests reveal functions for ABC(RNAi) transporters in the mut-7/rde-2 branch of the RNAi pathway. These second-site noncomplementation interactions suggest that ABC(RNAi) proteins and MUT-7/RDE-2 function together in parallel pathways and/or as multiprotein complexes. Like mut-7 and rde-2, some ABC(RNAi) mutants display transposon silencing defects. Finally, our analyses reveal a genetic interaction network of ABC(RNAi) gene function with respect to this part of the RNAi pathway. From our results, we speculate that the coordinated activities of ABC(RNAi) transporters, through their effects on endogenous RNAi-related mechanisms, ultimately affect chromosome function and integrity.

  16. The multidrug ABC transporter BmrC/BmrD of Bacillus subtilis is regulated via a ribosome-mediated transcriptional attenuation mechanism

    PubMed Central

    Reilman, Ewoud; Mars, Ruben A. T.; van Dijl, Jan Maarten; Denham, Emma L.

    2014-01-01

    Expression of particular drug transporters in response to antibiotic pressure is a critical element in the development of bacterial multidrug resistance, and represents a serious concern for human health. To obtain a better understanding of underlying regulatory mechanisms, we have dissected the transcriptional activation of the ATP-binding cassette (ABC) transporter BmrC/BmrD of the Gram-positive model bacterium Bacillus subtilis. By using promoter-GFP fusions and live cell array technology, we demonstrate a temporally controlled transcriptional activation of the bmrCD genes in response to antibiotics that target protein synthesis. Intriguingly, bmrCD expression only occurs during the late-exponential and stationary growth stages, irrespective of the timing of the antibiotic challenge. We show that this is due to tight transcriptional control by the transition state regulator AbrB. Moreover, our results show that the bmrCD genes are co-transcribed with bmrB (yheJ), a small open reading frame immediately upstream of bmrC that harbors three alternative stem-loop structures. These stem-loops are apparently crucial for antibiotic-induced bmrCD transcription. Importantly, the antibiotic-induced bmrCD expression requires translation of bmrB, which implies that BmrB serves as a regulatory leader peptide. Altogether, we demonstrate for the first time that a ribosome-mediated transcriptional attenuation mechanism can control the expression of a multidrug ABC transporter. PMID:25217586

  17. [Biological characteristics of an enteroinvasive Escherichia coli strain with tatABC deletion].

    PubMed

    Gong, Zhaolong; Ye, Changyun; Liu, Xiaobing; Zhang, Min; Zhuo, Qin

    2013-05-04

    To study the relationship between twin-arginine translocation system (Tat) system with the biological characteristics of enteroinvasive Escherichia coli (EIEC). Through homologous recombination, we constructed EIEC's tatABC gene deletion strain and complementary strain, and explored their impact on bacterial form, substrate transport function as well as on HeLa cells and guinea pig's corneal invasion force. The tatABC gene deletion strain had apparent changes in bacterial form, loss of substrate transporter function, and significant weakened bacterial invasion force (the number of the deletion strain invading into HeLa cells was decreased significantly, and the ability of its corneal lesion capacity of the guinea pig was significantly weakened), while the complementary strain was similar to the wild strain in the above respects. EIEC's Tat protein transport system is closely related with the biological characteristics of EIEC.

  18. The Role of the Photoreceptor ABC Transporter ABCA4 in Lipid Transport and Stargardt Macular Degeneration

    PubMed Central

    Molday, Robert S.; Zhong, Ming; Quazi, Faraz

    2009-01-01

    ABCA4 is a member of the ABCA subfamily of ATP binding cassette (ABC) transporters that is expressed in rod and cone photoreceptors of the vertebrate retina. ABCA4, also known as the Rim protein and ABCR, is a large 2273 amino acid glycoprotein organized as two tandem halves, each containing a single membrane spanning segment followed sequentially by a large exocytoplasmic domain, a multispanning membrane domain and a nucleotide binding domain. Over 500 mutations in the gene encoding ABCA4 are associated with a spectrum of related autosomal recessive retinal degenerative diseases including Stargardt macular degeneration, cone-rod dystrophy and a subset of retinitis pigmentosa. Biochemical studies on the purified ABCA4 together with analysis of abca4 knockout mice and patients with Stargardt disease have implicated ABCA4 as a retinylidene-phosphatidylethanolamine transporter that facilitates the removal of potentially reactive retinal derivatives from photoreceptors following photoexcitation. Knowledge of the genetic and molecular basis for ABCA4 related retinal degenerative diseases is being used to develop rationale therapeutic treatments for this set of disorders. PMID:19230850

  19. Transcriptome-based identification of ABC transporters in the western tarnished plant bug lygus hesperus

    USDA-ARS?s Scientific Manuscript database

    ATP-binding cassette (ABC) transporters are a large superfamily of proteins that mediate diverse physiological functions by coupling ATP hydrolysis with substrate transport across lipid membranes. In insects, these proteins play roles in metabolism, development, eye pigmentation, and xenobiotic cle...

  20. Nucleotide-induced conformational dynamics in ABC transporters from structure-based coarse grained modelling.

    NASA Astrophysics Data System (ADS)

    Flechsig, Holger

    2016-02-01

    ATP-binding cassette (ABC) transporters are integral membrane proteins which mediate the exchange of diverse substrates across membranes powered by ATP molecules. Our understanding of their activity is still hampered since the conformational dynamics underlying the operation of such proteins cannot yet be resolved in detailed molecular dynamics studies. Here a coarse grained model which allows to mimic binding of nucleotides and follow subsequent conformational motions of full-length transporter structures in computer simulations is proposed and implemented. To justify its explanatory quality, the model is first applied to the maltose transporter system for which multiple conformations are known and we find that the model predictions agree remarkably well with the experimental data. For the MalK subunit the switching from open to the closed dimer configuration upon ATP binding is reproduced and, moreover, for the full-length maltose transporter, progression from inward-facing to the outward-facing state is correctly obtained. For the heme transporter HmuUV, for which only the free structure could yet be determined, the model was then applied to predict nucleotide-induced conformational motions. Upon binding of ATP-mimicking ligands the structure changed from a conformation in which the nucleotide-binding domains formed an open shape, to a conformation in which they were found in tight contact, while, at the same time, a pronounced rotation of the transmembrane domains was observed. This finding is supported by normal mode analysis, and, comparison with structural data of the homologous vitamin B12 transporter BtuCD suggests that the observed rotation mechanism may contribute a common functional aspect for this class of ABC transporters. Although in HmuuV noticeable rearrangement of essential transmembrane helices was detected, there are no indications from our simulations that ATP binding alone may facilitate propagation of substrate molecules in this transporter

  1. High-Affinity Vanadate Transport System in the Cyanobacterium Anabaena variabilis ATCC 29413

    PubMed Central

    Pratte, Brenda S.; Thiel, Teresa

    2006-01-01

    High-affinity vanadate transport systems have not heretofore been identified in any organism. Anabaena variabilis, which can fix nitrogen by using an alternative V-dependent nitrogenase, transported vanadate well. The concentration of vanadate giving half-maximum V-nitrogenase activity when added to V-starved cells was about 3 × 10−9 M. The genes for an ABC-type vanadate transport system, vupABC, were found in A. variabilis about 5 kb from the major cluster of genes encoding the V-nitrogenase, and like those genes, the vupABC genes were repressed by molybdate; however, unlike the V-nitrogenase genes the vanadate transport genes were expressed in vegetative cells. A vupB mutant failed to grow by using V-nitrogenase unless high levels of vanadate were provided, suggesting that there was also a low-affinity vanadate transport system that functioned in the vupB mutant. The vupABC genes belong to a family of putative metal transport genes that include only one other characterized transport system, the tungstate transport genes of Eubacterium acidaminophilum. Similar genes are not present in the complete genomes of other bacterial strains that have a V-nitrogenase, including Azotobacter vinelandii, Rhodopseudomonas palustris, and Methanosarcina barkeri. PMID:16385036

  2. The multidrug ABC transporter BmrC/BmrD of Bacillus subtilis is regulated via a ribosome-mediated transcriptional attenuation mechanism.

    PubMed

    Reilman, Ewoud; Mars, Ruben A T; van Dijl, Jan Maarten; Denham, Emma L

    2014-10-01

    Expression of particular drug transporters in response to antibiotic pressure is a critical element in the development of bacterial multidrug resistance, and represents a serious concern for human health. To obtain a better understanding of underlying regulatory mechanisms, we have dissected the transcriptional activation of the ATP-binding cassette (ABC) transporter BmrC/BmrD of the Gram-positive model bacterium Bacillus subtilis. By using promoter-GFP fusions and live cell array technology, we demonstrate a temporally controlled transcriptional activation of the bmrCD genes in response to antibiotics that target protein synthesis. Intriguingly, bmrCD expression only occurs during the late-exponential and stationary growth stages, irrespective of the timing of the antibiotic challenge. We show that this is due to tight transcriptional control by the transition state regulator AbrB. Moreover, our results show that the bmrCD genes are co-transcribed with bmrB (yheJ), a small open reading frame immediately upstream of bmrC that harbors three alternative stem-loop structures. These stem-loops are apparently crucial for antibiotic-induced bmrCD transcription. Importantly, the antibiotic-induced bmrCD expression requires translation of bmrB, which implies that BmrB serves as a regulatory leader peptide. Altogether, we demonstrate for the first time that a ribosome-mediated transcriptional attenuation mechanism can control the expression of a multidrug ABC transporter. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Overexpression of the ABC transporter AvtAB increases avermectin production in Streptomyces avermitilis.

    PubMed

    Qiu, Jingfan; Zhuo, Ying; Zhu, Dongqing; Zhou, Xiufen; Zhang, Lixin; Bai, Linquan; Deng, Zixin

    2011-10-01

    Avermectins are 16-membered macrocyclic polyketides with potent antiparasitic activities, produced by Streptomyces avermitilis. Upstream of the avermectin biosynthetic gene cluster, there is the avtAB operon encoding the ABC transporter AvtAB, which is highly homologous to the mammalian multidrug efflux pump P-glycoprotein (Pgp). Inactivation of avtAB had no effect, but increasing the concentration of avtAB mRNA 30-500-fold, using a multi-copy plasmid in S. avermitilis, enhanced avermectin production about two-fold both in the wild-type and in a high-yield producer strain on agar plates. In liquid industrial fermentation medium, the overall productivity of avermectin B1a in the engineered high-yield producer was improved for about 50%, from 3.3 to 4.8 g/l. In liquid YMG medium, moreover, the ratio of intracellular to extracellular accumulation of avermectin B1a was dropped from 6:1 to 4.5:1 in response to multiple copies of avtAB. Additionally, the overexpression of avtAB did not cause any increased expression of the avermectin biosynthetic genes through RT-PCR analysis. We propose that the AvtAB transporter exports avermectin, and thus reduces the feedback inhibition on avermectin production inside the cell. This strategy may be useful for enhancing the production of other antibiotics.

  4. Identification of ABC transporter genes conferring combined pleuromutilin-lincosamide-streptogramin A resistance in bovine methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci.

    PubMed

    Wendlandt, Sarah; Kadlec, Kristina; Feßler, Andrea T; Schwarz, Stefan

    2015-06-12

    The aim of this study was to investigate the genetic basis of combined pleuromutilin-lincosamide-streptogramin A resistance in 26 unrelated methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci (CoNS) from dairy cows suffering from mastitis. The 26 pleuromutilin-resistant staphylococcal isolates were screened for the presence of the genes vga(A), vga(B), vga(C), vga(E), vga(E) variant, sal(A), vmlR, cfr, lsa(A), lsa(B), lsa(C), and lsa(E) by PCR. None of the 26 isolates carried the genes vga(B), vga(C), vga(E), vga(E) variant, vmlR, cfr, lsa(A), lsa(B), or lsa(C). Two Staphylococcus haemolyticus and single Staphylococcus xylosus, Staphylococcus lentus, and Staphylococcus hominis were vga(A)-positive. Twelve S. aureus, two Staphylococcus warneri, as well as single S. lentus and S. xylosus carried the lsa(E) gene. Moreover, single S. aureus, S. haemolyticus, S. xylosus, and Staphylococcus epidermidis were positive for both genes, vga(A) and lsa(E). The sal(A) gene was found in a single Staphylococcus sciuri. All ABC transporter genes were located in the chromosomal DNA, except for a plasmid-borne vga(A) gene in the S. epidermidis isolate. The genetic environment of the lsa(E)-positive isolates was analyzed using previously described PCR assays. Except for the S. warneri and S. xylosus, all lsa(E)-positive isolates harbored a part of the previously described enterococcal multiresistance gene cluster. This is the first report of the novel lsa(E) gene in the aforementioned bovine CoNS species. This is also the first identification of the sal(A) gene in a S. sciuri from a case of bovine mastitis. Moreover, the sal(A) gene was shown to also confer pleuromutilin resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. ABC multidrug transporters: target for modulation of drug pharmacokinetics and drug-drug interactions.

    PubMed

    Marquez, Béatrice; Van Bambeke, Françoise

    2011-05-01

    Nine proteins of the ABC superfamily (P-glycoprotein, 7 MRPs and BCRP) are involved in multidrug transport. Being localised at the surface of endothelial or epithelial cells, they expel drugs back to the external medium (if located at the apical side [P-glycoprotein, BCRP, MRP2, MRP4 in the kidney]) or to the blood (if located at the basolateral side [MRP1, MRP3, MRP4, MRP5]), modulating thereby their absorption, distribution, and elimination. In the CNS, most transporters are oriented to expel drugs to the blood. Transporters also cooperate with Phase I/Phase II metabolism enzymes by eliminating drug metabolites. Their major features are (i) their capacity to recognize drugs belonging to unrelated pharmacological classes, and (ii) their redundancy, a single molecule being possibly substrate for different transporters. This ensures an efficient protection of the body against invasion by xenobiotics. Competition for transport is now characterized as a mechanism of interaction between co-administered drugs, one molecule limiting the transport of the other, potentially affecting bioavailability, distribution, and/or elimination. Again, this mechanism reinforces drug interactions mediated by cytochrome P450 inhibition, as many substrates of P-glycoprotein and CYP3A4 are common. Induction of the expression of genes coding for MDR transporters is another mechanism of drug interaction, which could affect all drug substrates of the up-regulated transporter. Overexpression of MDR transporters confers resistance to anticancer agents and other therapies. All together, these data justify why studying drug active transport should be part of the evaluation of new drugs, as recently recommended by the FDA.

  6. Functional assignment of solute-binding proteins of ABC transporters using a fluorescence-based thermal shift assay.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giulliani, S. E.; Frank, A. E.; Collart, F. R.

    2008-12-08

    We have used a fluorescence-based thermal shift (FTS) assay to identify amino acids that bind to solute-binding proteins in the bacterial ABC transporter family. The assay was validated with a set of six proteins with known binding specificity and was consistently able to map proteins with their known binding ligands. The assay also identified additional candidate binding ligands for several of the amino acid-binding proteins in the validation set. We extended this approach to additional targets and demonstrated the ability of the FTS assay to unambiguously identify preferential binding for several homologues of amino acid-binding proteins with known specificity andmore » to functionally annotate proteins of unknown binding specificity. The assay is implemented in a microwell plate format and provides a rapid approach to validate an anticipated function or to screen proteins of unknown function. The ABC-type transporter family is ubiquitous and transports a variety of biological compounds, but the current annotation of the ligand-binding proteins is limited to mostly generic descriptions of function. The results illustrate the feasibility of the FTS assay to improve the functional annotation of binding proteins associated with ABC-type transporters and suggest this approach that can also be extended to other protein families.« less

  7. Pharmacotherapy in pregnancy; effect of ABC and SLC transporters on drug transport across the placenta and fetal drug exposure.

    PubMed

    Staud, Frantisek; Cerveny, Lukas; Ceckova, Martina

    2012-11-01

    Pharmacotherapy during pregnancy is often inevitable for medical treatment of the mother, the fetus or both. The knowledge of drug transport across placenta is, therefore, an important topic to bear in mind when deciding treatment in pregnant women. Several drug transporters of the ABC and SLC families have been discovered in the placenta, such as P-glycoprotein, breast cancer resistance protein, or organic anion/cation transporters. It is thus evident that the passage of drugs across the placenta can no longer be predicted simply on the basis of their physical-chemical properties. Functional expression of placental drug transporters in the trophoblast and the possibility of drug-drug interactions must be considered to optimize pharmacotherapy during pregnancy. In this review we summarize current knowledge on the expression and function of ABC and SLC transporters in the trophoblast. Furthermore, we put this data into context with medical conditions that require maternal and/or fetal treatment during pregnancy, such as gestational diabetes, HIV infection, fetal arrhythmias and epilepsy. Proper understanding of the role of placental transporters should be of great interest not only to clinicians but also to pharmaceutical industry for future drug design and development to control the degree of fetal exposure.

  8. Disruption of the ABC transporter genes PDR5, YOR1, and SNQ2, and their participation in improved fermentative activity of a sake yeast mutant showing pleiotropic drug resistance.

    PubMed

    Watanabe, M; Mizoguchi, H; Nishimura, A

    2000-01-01

    Clotrimazole-resistant mutants from sake yeasts show improved fermentative activity in sake mash and pleiotropic drug resistance (PDR). The PDR mechanism is interpreted by overexpression of ATP-binding cassette (ABC) transporters, which extrude various kinds of drugs out of a cell. In a clotrimazole-resistant mutant, CTZ21, isolated from the haploid sake yeast HL69, the levels of mRNA for three major ABC transporter genes, PDR5, SNQ2, and YOR1, markedly increased. These three genes of CTZ21 were disrupted to investigate which participated in the improved fermentative activity of CTZ21. The fermentative activities of deltapdr5 and deltasnq2 strains of CTZ21 were reduced to that of HL69 in the initial and middle stages of fermentation. In the last stage, however, the sake meter [(1/gravity - 1) x 1443] of the deltapdr5 and deltasnq2 strains rose faster than that of HL69. On the other hand, a deltayor1 strain of CTZ21 fermented sake mash in a manner nearly identical to that of CTZ21 until the last stage of fermentation. But in the last stage, fermentation of the deltayor1 slowed down compared with that of CTZ21. A deltayor1 strain of HL69 also exhibited much reduced fermentative activity in the middle and last fermentation stages. The YOR1 gene seems necessary for sake fermentation to be completed efficiently. The ATP content in sake mash brewed with CTZ21 was drastically decreased throughout the whole fermentation period. This low ATP level was restored to a medium level in the cases of both the deltapdr5 and deltasnq2 strains of CTZ21. In contrast, the deltayor1 of CTZ21 exhibited a low ATP level in sake mash in the same manner as CTZ21. These results suggest that the low ATP level of CTZ21 contributes to a certain extent its improved fermentative activity in the initial and middle stages of sake fermentation.

  9. Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana).

    PubMed

    Kanno, Akira; Saeki, Hiroshi; Kameya, Toshiaki; Saedler, Heinz; Theissen, Günter

    2003-07-01

    In higher eudicotyledonous angiosperms the floral organs are typically arranged in four different whorls, containing sepals, petals, stamens and carpels. According to the ABC model, the identity of these organs is specified by floral homeotic genes of class A, A+B, B+C and C, respectively. In contrast to the sepal and petal whorls of eudicots, the perianths of many plants from the Liliaceae family have two outer whorls of almost identical petaloid organs, called tepals. To explain the Liliaceae flower morphology, van Tunen et al. (1993) proposed a modified ABC model, exemplified with tulip. According to this model, class B genes are not only expressed in whorls 2 and 3, but also in whorl 1. Thus the organs of both whorls 1 and 2 express class A plus class B genes and, therefore, get the same petaloid identity. To test this modified ABC model we have cloned and characterized putative class B genes from tulip. Two DEF- and one GLO-like gene were identified, named TGDEFA, TGDEFB and TGGLO. Northern hybridization analysis showed that all of these genes are expressed in whorls 1, 2 and 3 (outer and inner tepals and stamens), thus corroborating the modified ABC model. In addition, these experiments demonstrated that TGGLO is also weakly expressed in carpels, leaves, stems and bracts. Gel retardation assays revealed that TGGLO alone binds to DNA as a homodimer. In contrast, TGDEFA and TGDEFB cannot homodimerize, but make heterodimers with PI. Homodimerization of GLO-like protein has also been reported for lily, suggesting that this phenomenon is conserved within Liliaceae plants or even monocot species.

  10. The mitochondrial transporter ABC-me (ABCB10), a downstream target of GATA-1, is essential for erythropoiesis in vivo.

    PubMed

    Hyde, B B; Liesa, M; Elorza, A A; Qiu, W; Haigh, S E; Richey, L; Mikkola, H K; Schlaeger, T M; Shirihai, O S

    2012-07-01

    The mitochondrial transporter ATP binding cassette mitochondrial erythroid (ABC-me/ABCB10) is highly induced during erythroid differentiation by GATA-1 and its overexpression increases hemoglobin production rates in vitro. However, the role of ABC-me in erythropoiesis in vivo is unknown. Here we report for the first time that erythrocyte development in mice requires ABC-me. ABC-me-/- mice die at day 12.5 of gestation, showing nearly complete eradication of primitive erythropoiesis and lack of hemoglobinized cells at day 10.5. ABC-me-/- erythroid cells fail to differentiate because they exhibit a marked increase in apoptosis, both in vivo and ex vivo. Erythroid precursors are particularly sensitive to oxidative stress and ABC-me in the heart and its yeast ortholog multidrug resistance-like 1 have been shown to protect against oxidative stress. Thus, we hypothesized that increased apoptosis in ABC-me-/- erythroid precursors was caused by oxidative stress. Within this context, ABC-me deletion causes an increase in mitochondrial superoxide production and protein carbonylation in erythroid precursors. Furthermore, treatment of ABC-me-/- erythroid progenitors with the mitochondrial antioxidant MnTBAP (superoxide dismutase 2 mimetic) supports survival, ex vivo differentiation and increased hemoglobin production. Altogether, our findings demonstrate that ABC-me is essential for erythropoiesis in vivo.

  11. The mitochondrial transporter ABC-me (ABCB10), a downstream target of GATA-1, is essential for erythropoiesis in vivo

    PubMed Central

    Hyde, B B; Liesa, M; Elorza, A A; Qiu, W; Haigh, S E; Richey, L; Mikkola, H K; Schlaeger, T M; Shirihai, O S

    2012-01-01

    The mitochondrial transporter ATP binding cassette mitochondrial erythroid (ABC-me/ABCB10) is highly induced during erythroid differentiation by GATA-1 and its overexpression increases hemoglobin production rates in vitro. However, the role of ABC-me in erythropoiesis in vivo is unknown. Here we report for the first time that erythrocyte development in mice requires ABC-me. ABC-me−/− mice die at day 12.5 of gestation, showing nearly complete eradication of primitive erythropoiesis and lack of hemoglobinized cells at day 10.5. ABC-me−/− erythroid cells fail to differentiate because they exhibit a marked increase in apoptosis, both in vivo and ex vivo. Erythroid precursors are particularly sensitive to oxidative stress and ABC-me in the heart and its yeast ortholog multidrug resistance-like 1 have been shown to protect against oxidative stress. Thus, we hypothesized that increased apoptosis in ABC-me−/− erythroid precursors was caused by oxidative stress. Within this context, ABC-me deletion causes an increase in mitochondrial superoxide production and protein carbonylation in erythroid precursors. Furthermore, treatment of ABC-me−/− erythroid progenitors with the mitochondrial antioxidant MnTBAP (superoxide dismutase 2 mimetic) supports survival, ex vivo differentiation and increased hemoglobin production. Altogether, our findings demonstrate that ABC-me is essential for erythropoiesis in vivo. PMID:22240895

  12. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    PubMed Central

    Andersen, Vibeke; Svenningsen, Katrine; Knudsen, Lina Almind; Hansen, Axel Kornerup; Holmskov, Uffe; Stensballe, Allan; Vogel, Ulla

    2015-01-01

    AIM: To evaluate ATP-binding cassette (ABC) transporters in colonic pathophysiology as they had recently been related to colorectal cancer (CRC) development. METHODS: Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1/Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function. RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes in relation to colitis was suggested by the animal studies. The finding that colitis was preceded by altered gut bacterial composition suggests that deletion of Abcb1 leads to fundamental changes of host-microbiota interaction. Also, high fat diet increases the frequency and severity of colitis in specific pathogen-free Abcb1 KO mice. The Abcb1 KO mice might thus serve as a model in which diet/environmental factors and microbes may be controlled and investigated in relation to intestinal inflammation. Potential molecular mechanisms include defective transport of inflammatory mediators and/or phospholipid translocation from one side to the other of the cell membrane lipid bilayer by ABC transporters affecting inflammatory response and/or function of tight junctions, phagocytosis and vesicle trafficking. Also, diet and microbes give rise to molecules which are potential substrates for the ABC transporters and which may additionally affect ABC transporter function through nuclear receptors and transcriptional regulation. Another critical role of ABCB1 was suggested by the finding that

  13. Mechanistic determinants of the directionality and energetics of active export by a heterodimeric ABC transporter

    DOE PAGES

    Grossmann, Nina; Vakkasoglu, Ahmet S.; Hulpke, Sabine; ...

    2014-11-07

    The ATP-binding cassette (ABC) transporter associated with antigen processing (TAP) participates in immune surveillance by moving proteasomal products into the endoplasmic reticulum (ER) lumen for major histocompatibility complex class I loading and cell surface presentation to cytotoxic T cells. Here we delineate the mechanistic basis for antigen translocation. Notably, TAP works as a molecular diode, translocating peptide substrates against the gradient in a strict unidirectional way. We reveal the importance of the D-loop at the dimer interface of the two nucleotide-binding domains (NBDs) in coupling substrate translocation with ATP hydrolysis and defining transport vectoriality. Substitution of the converved aspartate, whichmore » coordinates the ATP-binding site, decreases NBD dimerization affinity and turns the unidirectional primary active pump into a passive bidirectional nucleotide-gated facilitator. Thus, ATP hydrolysis is not required for translocation per se, but is essential for both active and unidirectional transport. As a result, our data provide detailed mechanistic insight into how heterodimeric ABC exporters operate.« less

  14. Role of nuclear factor-erythroid 2-related factor 2 (Nrf2) in the transcriptional regulation of brain ABC transporters during acute acetaminophen (APAP) intoxication in mice.

    PubMed

    Ghanem, Carolina I; Rudraiah, Swetha; Bataille, Amy M; Vigo, María B; Goedken, Michael J; Manautou, José E

    2015-04-01

    Changes in expression of liver ABC transporters have been described during acute APAP intoxication. However, the effect of APAP on brain ABC transporters is poorly understood. The aim of this study was to evaluate the effect of APAP on brain ABC transporters expression and the role of the oxidative stress sensor Nrf2. Male C57BL/6J mice were administered APAP (400mg/kg) for analysis of brain mRNA and protein expression of Mrp1-6, Bcrp and P-gp. The results show induction of P-gp, Mrp2 and Mrp4 proteins, with no changes in Bcrp, Mrp1 or Mrp5-6. The protein values were accompanied by corresponding changes in mRNA levels. Additionally, brain Nrf2 nuclear translocation and expression of two Nrf2 target genes, quinone oxidoreductase 1 (Nqo1) and Hemoxygenase 1 (Ho-1), was evaluated at 6, 12 and 24h after APAP treatment. Nrf2 nuclear content increased by 58% at 12h after APAP along with significant increments in mRNA and protein expression of Nqo1 and Ho-1. Furthermore, APAP treated Nrf2 knockout mice did not increase mRNA or protein expression of Mrp2 and Mrp4 as observed in wildtypes. In contrast, P-gp induction by APAP was observed in both genotypes. In conclusion, acute APAP intoxication induces protein expression of brain P-gp, Mrp2 and Mrp4. This study also suggests that brain changes in Mrp2 and Mrp4 expression may be due to in situ Nrf2 activation by APAP, while P-gp induction is independent of Nrf2 function. The functional consequences of these changes in brain ABC transporters by APAP deserve further attention. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria.

    PubMed

    Sagova-Mareckova, Marketa; Ulanova, Dana; Sanderova, Petra; Omelka, Marek; Kamenik, Zdenek; Olsovska, Jana; Kopecky, Jan

    2015-04-01

    Distribution and evolutionary history of resistance genes in environmental actinobacteria provide information on intensity of antibiosis and evolution of specific secondary metabolic pathways at a given site. To this day, actinobacteria producing biologically active compounds were isolated mostly from soil but only a limited range of soil environments were commonly sampled. Consequently, soil remains an unexplored environment in search for novel producers and related evolutionary questions. Ninety actinobacteria strains isolated at contrasting soil sites were characterized phylogenetically by 16S rRNA gene, for presence of erm and ABC transporter resistance genes and antibiotic production. An analogous analysis was performed in silico with 246 and 31 strains from Integrated Microbial Genomes (JGI_IMG) database selected by the presence of ABC transporter genes and erm genes, respectively. In the isolates, distances of erm gene sequences were significantly correlated to phylogenetic distances based on 16S rRNA genes, while ABC transporter gene distances were not. The phylogenetic distance of isolates was significantly correlated to soil pH and organic matter content of isolation sites. In the analysis of JGI_IMG datasets the correlation between phylogeny of resistance genes and the strain phylogeny based on 16S rRNA genes or five housekeeping genes was observed for both the erm genes and ABC transporter genes in both actinobacteria and streptomycetes. However, in the analysis of sequences from genomes where both resistance genes occurred together the correlation was observed for both ABC transporter and erm genes in actinobacteria but in streptomycetes only in the erm gene. The type of erm resistance gene sequences was influenced by linkage to 16S rRNA gene sequences and site characteristics. The phylogeny of ABC transporter gene was correlated to 16S rRNA genes mainly above the genus level. The results support the concept of new specific secondary metabolite

  16. Iowa ABC connections : [tech transfer summary].

    DOT National Transportation Integrated Search

    2015-06-01

    The Iowa Department of Transportation (DOT) and other organizations have : been developing accelerated bridge construction (ABC) concepts, details, and : processes, and Iowa has come to be viewed as a national leader in the area of : ABC. However, th...

  17. Drug resistance-associated changes in sphingolipids and ABC transporters occur in different regions of membrane domains.

    PubMed

    Hinrichs, John W J; Klappe, Karin; van Riezen, Manon; Kok, Jan W

    2005-11-01

    We have recently shown that two ATP binding cassette (ABC) transporters are enriched in Lubrol-resistant noncaveolar membrane domains in multidrug-resistant human cancer cells [Hinrichs, J. W. J., K. Klappe, I. Hummel, and J. W. Kok. 2004. ATP-binding cassette transporters are enriched in non-caveolar detergent-insoluble glycosphingolipid-enriched membrane domains (DIGs) in human multidrug-resistant cancer cells. J. Biol. Chem. 279: 5734-5738]. Here, we show that aminophospholipids are relatively enriched in Lubrol-resistant membrane domains compared with Triton X-100-resistant membrane domains, whereas sphingolipids are relatively enriched in the latter. Moreover, Lubrol-resistant membrane domains contain more protein and lipid mass. Based on these results, we postulate a model for detergent-insoluble glycosphingolipid-enriched membrane domains consisting of a Lubrol-insoluble/Triton X-100-insoluble region and a Lubrol-insoluble/Triton X-100-soluble region. The latter region contains most of the ABC transporters as well as lipids known to be necessary for their efflux activity. Compared with drug-sensitive cells, the detergent-insoluble glycosphingolipid-enriched membrane domains (DIGs) in drug-resistant cells differ specifically in sphingolipid content and not in protein, phospholipid, or cholesterol content. In drug-resistant cells, sphingolipids with specific fatty acids (especially C24:1) are enriched in these membrane domains. Together, these data show that multidrug resistance-associated changes in both sphingolipids and ABC transporters occur in DIGs, but in different regions of these domains.

  18. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, Dominik; Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg; Daniel, Volker

    2010-04-16

    Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity ofmore » P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.« less

  19. Whole genome re-sequencing identifies a mutation in an ABC transporter (mdr2) in a Plasmodium chabaudi clone with altered susceptibility to antifolate drugs☆

    PubMed Central

    Martinelli, Axel; Henriques, Gisela; Cravo, Pedro; Hunt, Paul

    2011-01-01

    In malaria parasites, mutations in two genes of folate biosynthesis encoding dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) modify responses to antifolate therapies which target these enzymes. However, the involvement of other genes which modify the availability of exogenous folate, for example, has been proposed. Here, we used short-read whole-genome re-sequencing to determine the mutations in a clone of the rodent malaria parasite, Plasmodium chabaudi, which has altered susceptibility to both sulphadoxine and pyrimethamine. This clone bears a previously identified S106N mutation in dhfr and no mutation in dhps. Instead, three additional point mutations in genes on chromosomes 2, 13 and 14 were identified. The mutated gene on chromosome 13 (mdr2 K392Q) encodes an ABC transporter. Because Quantitative Trait Locus analysis previously indicated an association of genetic markers on chromosome 13 with responses to individual and combined antifolates, MDR2 is proposed to modulate antifolate responses, possibly mediated by the transport of folate intermediates. PMID:20858498

  20. Complete sequence of Enterococcus faecium pVEF3 and the detection of an omega-epsilon-zeta toxin-antitoxin module and an ABC transporter.

    PubMed

    Sletvold, H; Johnsen, P J; Hamre, I; Simonsen, G S; Sundsfjord, A; Nielsen, K M

    2008-07-01

    Glycopeptide resistant Enterococcus faecium (GREF) persists on Norwegian poultry farms despite the ban on the growth promoter avoparcin. The biological basis for long-term persistence of avoparcin resistance is not fully understood. This study presents the complete DNA sequence of the E. faecium R-plasmid pVEF3 and functional studies of some plasmid-encoded traits (a toxin-antitoxin (TA) system and an ABC transporter) that may be of importance for plasmid persistence. The pVEF3 (63.1 kbp), isolated from an E. faecium strain of poultry origin sampled in Norway in 1999, has 71 coding sequences including the vanA avoparcin/vancomycin resistance encoding gene cluster. pVEF3 encodes the TA system omega-epsilon-zeta, and plasmid stability tests and transcription analysis show that omega-epsilon-zeta is functional in Enterococcus faecalis OGIX, although with decreasing effect over time. The predicted ABC transporter was not found to confer reduced susceptibility to any of the 28 substances tested. The TA system identified in the pVEF-type plasmids may contribute to vanA plasmid persistence on Norwegian poultry farms. However, size and compositional heterogeneity among E. faecium vanA plasmids suggest that additional plasmid maintenance systems in combination with host specific factors and frequent horizontal gene transfer and rearrangement causes the observed plasmid composition and distribution patterns.

  1. Maltose Uptake by the Novel ABC Transport System MusEFGK2I Causes Increased Expression of ptsG in Corynebacterium glutamicum

    PubMed Central

    Henrich, Alexander; Kuhlmann, Nora; Eck, Alexander W.; Krämer, Reinhard

    2013-01-01

    The Gram-positive Corynebacterium glutamicum efficiently metabolizes maltose by a pathway involving maltodextrin and glucose formation by 4-α-glucanotransferase, glucose phosphorylation by glucose kinases, and maltodextrin degradation via maltodextrin phosphorylase and α-phosphoglucomutase. However, maltose uptake in C. glutamicum has not been investigated. Interestingly, the presence of maltose in the medium causes increased expression of ptsG in C. glutamicum by an unknown mechanism, although the ptsG-encoded glucose-specific EII permease of the phosphotransferase system itself is not required for maltose utilization. We identified the maltose uptake system as an ABC transporter encoded by musK (cg2708; ATPase subunit), musE (cg2705; substrate binding protein), musF (cg2704; permease), and musG (cg2703; permease) by combination of data obtained from characterization of maltose uptake and reanalyses of transcriptome data. Deletion of the mus gene cluster in C. glutamicum Δmus abolished maltose uptake and utilization. Northern blotting and reverse transcription-PCR experiments revealed that musK and musE are transcribed monocistronically, whereas musF and musG are part of an operon together with cg2701 (musI), which encodes a membrane protein of unknown function with no homologies to characterized proteins. Characterization of growth and [14C]maltose uptake in the musI insertion strain C. glutamicum IMcg2701 showed that musI encodes a novel essential component of the maltose ABC transporter of C. glutamicum. Finally, ptsG expression during cultivation on different carbon sources was analyzed in the maltose uptake-deficient strain C. glutamicum Δmus. Indeed, maltose uptake by the novel ABC transport system MusEFGK2I is required for the positive effect of maltose on ptsG expression in C. glutamicum. PMID:23543710

  2. IMG-ABC: new features for bacterial secondary metabolism analysis and targeted biosynthetic gene cluster discovery in thousands of microbial genomes.

    PubMed

    Hadjithomas, Michalis; Chen, I-Min A; Chu, Ken; Huang, Jinghua; Ratner, Anna; Palaniappan, Krishna; Andersen, Evan; Markowitz, Victor; Kyrpides, Nikos C; Ivanova, Natalia N

    2017-01-04

    Secondary metabolites produced by microbes have diverse biological functions, which makes them a great potential source of biotechnologically relevant compounds with antimicrobial, anti-cancer and other activities. The proteins needed to synthesize these natural products are often encoded by clusters of co-located genes called biosynthetic gene clusters (BCs). In order to advance the exploration of microbial secondary metabolism, we developed the largest publically available database of experimentally verified and predicted BCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc/). Here, we describe an update of IMG-ABC, which includes ClusterScout, a tool for targeted identification of custom biosynthetic gene clusters across 40 000 isolate microbial genomes, and a new search capability to query more than 700 000 BCs from isolate genomes for clusters with similar Pfam composition. Additional features enable fast exploration and analysis of BCs through two new interactive visualization features, a BC function heatmap and a BC similarity network graph. These new tools and features add to the value of IMG-ABC's vast body of BC data, facilitating their in-depth analysis and accelerating secondary metabolite discovery. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Osmoregulated ABC-transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane.

    PubMed

    van der Heide, T; Poolman, B

    2000-06-20

    An osmoregulated ABC transporter (OpuA) with novel structural features has been identified that responds to water stress. This glycine betaine transport system consists of an ATP-binding/hydrolyzing subunit (OpuAA) and a protein (OpuABC) that contains both the translocator and the substrate-binding domain. The components of OpuA have been overexpressed, purified, and functionally incorporated into liposomes with an ATP-regenerating system in the vesicle lumen. A transmembrane osmotic gradient (outside hyperosmotic relative to the inside) of both ionic and nonionic compounds was able to osmotically activate OpuA in the proteoliposomal system. Hypoosmotic medium conditions inhibited the basal activity of the system. The data show that OpuAA and OpuABC are sufficient for osmoregulated transport, indicating that OpuA can act both as osmosensor and osmoregulator. Strikingly, OpuA could also be activated by low concentrations of cationic and anionic amphipaths, which interact with the membrane. This result indicates that activation by a transmembrane osmotic gradient is mediated by changes in membrane properties/protein-lipid interactions.

  4. Osmoregulated ABC-transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane

    PubMed Central

    van der Heide, Tiemen; Poolman, Bert

    2000-01-01

    An osmoregulated ABC transporter (OpuA) with novel structural features has been identified that responds to water stress. This glycine betaine transport system consists of an ATP-binding/hydrolyzing subunit (OpuAA) and a protein (OpuABC) that contains both the translocator and the substrate-binding domain. The components of OpuA have been overexpressed, purified, and functionally incorporated into liposomes with an ATP-regenerating system in the vesicle lumen. A transmembrane osmotic gradient (outside hyperosmotic relative to the inside) of both ionic and nonionic compounds was able to osmotically activate OpuA in the proteoliposomal system. Hypoosmotic medium conditions inhibited the basal activity of the system. The data show that OpuAA and OpuABC are sufficient for osmoregulated transport, indicating that OpuA can act both as osmosensor and osmoregulator. Strikingly, OpuA could also be activated by low concentrations of cationic and anionic amphipaths, which interact with the membrane. This result indicates that activation by a transmembrane osmotic gradient is mediated by changes in membrane properties/protein–lipid interactions. PMID:10860977

  5. ATP-induced conformational changes of nucleotide-binding domains in an ABC transporter. Importance of the water-mediated entropic force.

    PubMed

    Hayashi, Tomohiko; Chiba, Shuntaro; Kaneta, Yusuke; Furuta, Tadaomi; Sakurai, Minoru

    2014-11-06

    ATP binding cassette (ABC) proteins belong to a superfamily of active transporters. Recent experimental and computational studies have shown that binding of ATP to the nucleotide binding domains (NBDs) of ABC proteins drives the dimerization of NBDs, which, in turn, causes large conformational changes within the transmembrane domains (TMDs). To elucidate the active substrate transport mechanism of ABC proteins, it is first necessary to understand how the NBD dimerization is driven by ATP binding. In this study, we selected MalKs (NBDs of a maltose transporter) as a representative NBD and calculated the free-energy change upon dimerization using molecular mechanics calculations combined with a statistical thermodynamic theory of liquids, as well as a method to calculate the translational, rotational, and vibrational entropy change. This combined method is applied to a large number of snapshot structures obtained from molecular dynamics simulations containing explicit water molecules. The results suggest that the NBD dimerization proceeds with a large gain of water entropy when ATP molecules bind to the NBDs. The energetic gain arising from direct NBD-NBD interactions is canceled by the dehydration penalty and the configurational-entropy loss. ATP hydrolysis induces a loss of the shape complementarity between the NBDs, which leads to the dissociation of the dimer, due to a decrease in the water-entropy gain and an increase in the configurational-entropy loss. This interpretation of the NBD dimerization mechanism in concert with ATP, especially focused on the water-mediated entropy force, is potentially applicable to a wide variety of the ABC transporters.

  6. Iowa ABC connections.

    DOT National Transportation Integrated Search

    2015-06-01

    For several years the Iowa Department of Transportation (DOT), Iowa State University, the Federal Highway Administration, : and several Iowa counties have been working to develop accelerated bridge construction (ABC) concepts, details, and processes....

  7. Defining the ABC of gene essentiality in streptococci.

    PubMed

    Charbonneau, Amelia R L; Forman, Oliver P; Cain, Amy K; Newland, Graham; Robinson, Carl; Boursnell, Mike; Parkhill, Julian; Leigh, James A; Maskell, Duncan J; Waller, Andrew S

    2017-05-31

    Utilising next generation sequencing to interrogate saturated bacterial mutant libraries provides unprecedented information for the assignment of genome-wide gene essentiality. Exposure of saturated mutant libraries to specific conditions and subsequent sequencing can be exploited to uncover gene essentiality relevant to the condition. Here we present a barcoded transposon directed insertion-site sequencing (TraDIS) system to define an essential gene list for Streptococcus equi subsp. equi, the causative agent of strangles in horses, for the first time. The gene essentiality data for this group C Streptococcus was compared to that of group A and B streptococci. Six barcoded variants of pGh9:ISS1 were designed and used to generate mutant libraries containing between 33,000-66,000 unique mutants. TraDIS was performed on DNA extracted from each library and data were analysed separately and as a combined master pool. Gene essentiality determined that 19.5% of the S. equi genome was essential. Gene essentialities were compared to those of group A and group B streptococci, identifying concordances of 90.2% and 89.4%, respectively and an overall concordance of 83.7% between the three species. The use of barcoded pGh9:ISS1 to generate mutant libraries provides a highly useful tool for the assignment of gene function in S. equi and other streptococci. The shared essential gene set of group A, B and C streptococci provides further evidence of the close genetic relationships between these important pathogenic bacteria. Therefore, the ABC of gene essentiality reported here provides a solid foundation towards reporting the functional genome of streptococci.

  8. IMG-ABC: new features for bacterial secondary metabolism analysis and targeted biosynthetic gene cluster discovery in thousands of microbial genomes

    DOE PAGES

    Hadjithomas, Michalis; Chen, I-Min A.; Chu, Ken; ...

    2016-11-29

    Secondary metabolites produced by microbes have diverse biological functions, which makes them a great potential source of biotechnologically relevant compounds with antimicrobial, anti-cancer and other activities. The proteins needed to synthesize these natural products are often encoded by clusters of co-located genes called biosynthetic gene clusters (BCs). In order to advance the exploration of microbial secondary metabolism, we developed the largest publically available database of experimentally verified and predicted BCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc/). Here, we describe an update of IMG-ABC, which includes ClusterScout, a tool for targeted identification of custom biosynthetic genemore » clusters across 40 000 isolate microbial genomes, and a new search capability to query more than 700 000 BCs from isolate genomes for clusters with similar Pfam composition. Additional features enable fast exploration and analysis of BCs through two new interactive visualization features, a BC function heatmap and a BC similarity network graph. These new tools and features add to the value of IMG-ABC's vast body of BC data, facilitating their in-depth analysis and accelerating secondary metabolite discovery.« less

  9. IMG-ABC: new features for bacterial secondary metabolism analysis and targeted biosynthetic gene cluster discovery in thousands of microbial genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadjithomas, Michalis; Chen, I-Min A.; Chu, Ken

    Secondary metabolites produced by microbes have diverse biological functions, which makes them a great potential source of biotechnologically relevant compounds with antimicrobial, anti-cancer and other activities. The proteins needed to synthesize these natural products are often encoded by clusters of co-located genes called biosynthetic gene clusters (BCs). In order to advance the exploration of microbial secondary metabolism, we developed the largest publically available database of experimentally verified and predicted BCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc/). Here, we describe an update of IMG-ABC, which includes ClusterScout, a tool for targeted identification of custom biosynthetic genemore » clusters across 40 000 isolate microbial genomes, and a new search capability to query more than 700 000 BCs from isolate genomes for clusters with similar Pfam composition. Additional features enable fast exploration and analysis of BCs through two new interactive visualization features, a BC function heatmap and a BC similarity network graph. These new tools and features add to the value of IMG-ABC's vast body of BC data, facilitating their in-depth analysis and accelerating secondary metabolite discovery.« less

  10. IMG-ABC: An Atlas of Biosynthetic Gene Clusters to Fuel the Discovery of Novel Secondary Metabolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, I-Min; Chu, Ken; Ratner, Anna

    2014-10-28

    In the discovery of secondary metabolites (SMs), large-scale analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of relevant computational resources. We present IMG-ABC (https://img.jgi.doe.gov/abc/) -- An Atlas of Biosynthetic gene Clusters within the Integrated Microbial Genomes (IMG) system1. IMG-ABC is a rich repository of both validated and predicted biosynthetic clusters (BCs) in cultured isolates, single-cells and metagenomes linked with the SM chemicals they produce and enhanced with focused analysis tools within IMG. The underlying scalable framework enables traversal of phylogenetic dark matter and chemical structure space -- serving as a doorwaymore » to a new era in the discovery of novel molecules.« less

  11. ABC transporters and cytochromes P450 in the human central nervous system: influence on brain pharmacokinetics and contribution to neurodegenerative disorders.

    PubMed

    Dutheil, Fabien; Jacob, Aude; Dauchy, Sandrine; Beaune, Philippe; Scherrmann, Jean-Michel; Declèves, Xavier; Loriot, Marie-Anne

    2010-10-01

    The identification of xenobiotic metabolizing enzymes (i.e., CYP) and transporters (i.e., ABC transporters) (XMET) in the human brain, including the BBB, raises the question whether these transporters and enzymes have specific functions in brain physiology, neuropharmacology and toxicology. Relevant literature was identified using PubMed search articles published up to March 2010. Search terms included 'ABC transporters and P450 or CYP', 'drug metabolism, effect and toxicity' and 'neurodegenerative disease (Alzheimer and Parkinson diseases)' restricted to the field of 'brain or human brain'. This review aims to provide a better understanding of XMET functions in the human brain and show their pharmacological importance for improving drug delivery and efficacy and also for managing their side effects. Finally, the impact of brain XMET activity during neurodegenerative processes is discussed, giving an opportunity to identify new markers of human brain diseases. During the last 2 decades, much evidence concerning the specific distribution patterns of XMET, their induction by xenobiotics and endobiotics and their genetic variations have made cerebral ABC transporters and CYP enzymes key elements in the way individual patients respond to centrally acting drugs.

  12. Phosphorylation is required for the pathogen defense function of the Arabidopsis PEN3 ABC transporter

    USDA-ARS?s Scientific Manuscript database

    The Arabidopsis PEN3 ABC transporter accumulates at sites of pathogen detection, where it is involved in defense against multiple pathogens. Perception of PAMPs by pattern recognition receptors initiates recruitment of PEN3 and also leads to PEN3 phosphorylation at multiple amino acid residues. Whet...

  13. Profiling of ABC transporters ABCB5, ABCF2 and nestin-positive stem cells in nevi, in situ and invasive melanoma.

    PubMed

    Setia, Namrata; Abbas, Ossama; Sousa, Yessica; Garb, Jane L; Mahalingam, Meera

    2012-08-01

    Distinct ABCB5 forms and ABCF2, members of the ATP-binding cassette (ABC) superfamily of transporters, are normally expressed in various tissues and cells, and enhanced expression of both has been demonstrated in select cancers. In melanoma cell lines, gene expression profiling of ABC transporters has revealed enhanced expression of melanocyte-specific ABCB5 and ABCF2 proteins. Given this, our primary aim was to ascertain immunohistochemical expression of the ABC transporters ABCB5 and ABCF2 and, the stem cell marker, nestin in a spectrum of benign and malignant nevomelanocytic proliferations, including nevi (n=30), in situ (n=31) and invasive (n=24) primary cutaneous melanomas to assess their role in the stepwise development of malignancy. In addition, their expression was compared with established melanoma prognosticators to ascertain their utility as independent prognosticators. A semiquantitative scoring system was utilized by deriving a cumulative score (based on percentage positivity cells and intensity of expression) and statistical analyses was carried out using analysis of variance with linear contrasts. Mean cumulative score in nevi, in situ and invasive melanoma were as follows: 3.8, 4.4 and 5.3 for ABCB5, respectively (P<0.005 for all), and 4.6, 4.6 and 5.3 for nestin, respectively (P=not significant for all). No appreciable expression of ABCF2 was noted in any of the groups. While ulcerated lesions of melanoma demonstrated lower levels of expression of ABCB5 and nestin than non-ulcerated lesions, and nestin expression was lower in lesions with mitoses >1, after controlling for the presence of ulceration and mitotic activity, the expression of both proteins did not significantly correlate with known melanoma prognosticators. The gradual increase in the expression of ABCB5 from benign nevus to in situ to invasive melanoma suggests that it plays a role in melanomagenesis. On the basis of our findings, a prospective study with follow-up data is required to

  14. Loss of plastoglobule kinases ABC1K1 and ABC1K3 causes conditional degreening, modified prenyl-lipids, and recruitment of the jasmonic acid pathway

    USDA-ARS?s Scientific Manuscript database

    Plastoglobules (PGs) are plastid lipid-protein particles. This study examines the function of PG-localized kinases ABC1K1 and ABC1K3 in Arabidopsis thaliana. Several lines of evidence suggested that ABC1K1 and ABC1K3 form a protein complex. Null mutants for both genes (abc1k1 and abc1k3) and the dou...

  15. Characterization and regulation of the resistance-nodulation-cell division-type multidrug efflux pumps MdtABC and MdtUVW from the fire blight pathogen Erwinia amylovora.

    PubMed

    Pletzer, Daniel; Weingart, Helge

    2014-07-11

    The Gram-negative bacterium Erwinia amylovora is the causal agent of the devastating disease fire blight in rosaceous plants such as apple, pear, quince, raspberry, and cotoneaster. In order to survive and multiply in a host, microbes must be able to circumvent the toxic effects of antimicrobial plant compounds, such as flavonoids and tannins. E. amylovora uses multidrug efflux transporters that recognize and actively export toxic compounds out of the cells. Here, two heterotrimeric resistance-nodulation-cell division (RND)-type multidrug efflux pumps, MdtABC and MdtUVW, from E. amylovora were identified. These RND systems are unusual in that they contain two different RND proteins forming a functional pump. To find the substrate specificities of the two efflux systems, we overexpressed the transporters in a hypersensitive mutant lacking the major RND pump AcrB. Both transporters mediated resistance to several flavonoids, fusidic acid and novobiocin. Additionally, MdtABC mediated resistance towards josamycin, bile salts and silver nitrate, and MdtUVW towards clotrimazole. The ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock was reduced. Quantitative RT-PCR analyses revealed that the expression of the transporter genes was induced during infection of apple rootstock. The polyphenolic plant compound tannin, as well as the heavy metal salt tungstate was found to induce the expression of mdtABC. Finally, the expression of the mdtABC genes was shown to be regulated by BaeR, the response regulator of the two-component system BaeSR, a cell envelope stress response system that controls the adaptive responses to changes in the environment. The expression of MdtABC and MdtUVW is induced during growth of E. amylovora in planta. We identified the plant polyphenol tannin as inducer of mdtABC expression. The reduced ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock suggests that the efflux pumps are involved in

  16. Characterization and regulation of the Resistance-Nodulation-Cell Division-type multidrug efflux pumps MdtABC and MdtUVW from the fire blight pathogen Erwinia amylovora

    PubMed Central

    2014-01-01

    Background The Gram-negative bacterium Erwinia amylovora is the causal agent of the devastating disease fire blight in rosaceous plants such as apple, pear, quince, raspberry, and cotoneaster. In order to survive and multiply in a host, microbes must be able to circumvent the toxic effects of antimicrobial plant compounds, such as flavonoids and tannins. E. amylovora uses multidrug efflux transporters that recognize and actively export toxic compounds out of the cells. Here, two heterotrimeric resistance-nodulation-cell division (RND)-type multidrug efflux pumps, MdtABC and MdtUVW, from E. amylovora were identified. These RND systems are unusual in that they contain two different RND proteins forming a functional pump. Results To find the substrate specificities of the two efflux systems, we overexpressed the transporters in a hypersensitive mutant lacking the major RND pump AcrB. Both transporters mediated resistance to several flavonoids, fusidic acid and novobiocin. Additionally, MdtABC mediated resistance towards josamycin, bile salts and silver nitrate, and MdtUVW towards clotrimazole. The ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock was reduced. Quantitative RT-PCR analyses revealed that the expression of the transporter genes was induced during infection of apple rootstock. The polyphenolic plant compound tannin, as well as the heavy metal salt tungstate was found to induce the expression of mdtABC. Finally, the expression of the mdtABC genes was shown to be regulated by BaeR, the response regulator of the two-component system BaeSR, a cell envelope stress response system that controls the adaptive responses to changes in the environment. Conclusions The expression of MdtABC and MdtUVW is induced during growth of E. amylovora in planta. We identified the plant polyphenol tannin as inducer of mdtABC expression. The reduced ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock suggests that the

  17. Structural Diversification of Lyngbyatoxin A by Host-Dependent Heterologous Expression of the tleABC Biosynthetic Gene Cluster.

    PubMed

    Zhang, Lihan; Hoshino, Shotaro; Awakawa, Takayoshi; Wakimoto, Toshiyuki; Abe, Ikuro

    2016-08-03

    Natural products have enormous structural diversity, yet little is known about how such diversity is achieved in nature. Here we report the structural diversification of a cyanotoxin-lyngbyatoxin A-and its biosynthetic intermediates by heterologous expression of the Streptomyces-derived tleABC biosynthetic gene cluster in three different Streptomyces hosts: S. lividans, S. albus, and S. avermitilis. Notably, the isolated lyngbyatoxin derivatives, including four new natural products, were biosynthesized by crosstalk between the heterologous tleABC gene cluster and the endogenous host enzymes. The simple strategy described here has expanded the structural diversity of lyngbyatoxin A and its biosynthetic intermediates, and provides opportunities for investigation of the currently underestimated hidden biosynthetic crosstalk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effects of selected OATP and/or ABC transporter inhibitors on the brain and whole-body distribution of glyburide.

    PubMed

    Tournier, Nicolas; Saba, Wadad; Cisternino, Salvatore; Peyronneau, Marie-Anne; Damont, Annelaure; Goutal, Sébastien; Dubois, Albertine; Dollé, Frédéric; Scherrmann, Jean-Michel; Valette, Héric; Kuhnast, Bertrand; Bottlaender, Michel

    2013-10-01

    Glyburide (glibenclamide, GLB) is a widely prescribed antidiabetic with potential beneficial effects in central nervous system injury and diseases. In vitro studies show that GLB is a substrate of organic anion transporting polypeptide (OATP) and ATP-binding cassette (ABC) transporter families, which may influence GLB distribution and pharmacokinetics in vivo. In the present study, we used [(11)C]GLB positron emission tomography (PET) imaging to non-invasively observe the distribution of GLB at a non-saturating tracer dose in baboons. The role of OATP and P-glycoprotein (P-gp) in [(11)C]GLB whole-body distribution, plasma kinetics, and metabolism was assessed using the OATP inhibitor rifampicin and the dual OATP/P-gp inhibitor cyclosporine. Finally, we used in situ brain perfusion in mice to pinpoint the effect of ABC transporters on GLB transport at the blood-brain barrier (BBB). PET revealed the critical role of OATP on liver [(11)C]GLB uptake and its subsequent impact on [(11)C]GLB metabolism and plasma clearance. OATP-mediated uptake also occurred in the myocardium and kidney parenchyma but not the brain. The inhibition of P-gp in addition to OATP did not further influence [(11)C]GLB tissue and plasma kinetics. At the BBB, the inhibition of both P-gp and breast cancer resistance protein (BCRP) was necessary to demonstrate the role of ABC transporters in limiting GLB brain uptake. This study demonstrates that GLB distribution, metabolism, and elimination are greatly dependent on OATP activity, the first step in GLB hepatic clearance. Conversely, P-gp, BCRP, and probably multidrug resistance protein 4 work in synergy to limit GLB brain uptake.

  19. A wheat ABC transporter contributes to both grain formation and mycotoxin tolerance

    PubMed Central

    Walter, Stephanie; Kahla, Amal; Arunachalam, Chanemoughasoundharam; Perochon, Alexandre; Khan, Mojibur R.; Scofield, Steven R.; Doohan, Fiona M.

    2015-01-01

    The mycotoxin deoxynivalenol (DON) acts as a disease virulence factor for Fusarium fungi, and tolerance of DON enhances wheat resistance to Fusarium head blight (FHB) disease. Two variants of an ATP-binding cassette (ABC) family C transporter gene were cloned from DON-treated wheat mRNA, namely TaABCC3.1 and TaABCC3.2. These represent two of three putative genes identified on chromosomes 3A, 3B, and 3D of the wheat genome sequence. Variant TaABCC3.1 represents the DON-responsive transcript previously associated with DON resistance in wheat. PCR-based mapping and in silico sequence analyses located TaABCC3.1 to the short arm of wheat chromosome 3B (not within the FHB resistance quantitative trait locus Fhb1). In silico analyses of microarray data indicated that TaABCC3 genes are expressed in reproductive tissue and roots, and in response to the DON producer Fusarium graminearum. Gene expression studies showed that TaABCC3.1 is activated as part of the early host response to DON and in response to the FHB defence hormone jasmonic acid. Virus-induced gene silencing (VIGS) confirmed that TaABCC3 genes contributed to DON tolerance. VIGS was performed using two independent viral construct applications: one specifically targeted TaABCC3.1 for silencing, while the other targeted this gene and the chromosome 3A homeologue. In both instances, VIGS resulted in more toxin-induced discoloration of spikelets, compared with the DON effects in non-silenced spikelets at 14 d after toxin treatment (≥2.2-fold increase, P<0.05). Silencing by both VIGS constructs enhanced head ripening, and especially so in DON-treated heads. VIGS of TaABCC3 genes also reduced the grain number by more than 28% (P<0.05), both with and without DON treatment, and the effects were greater for the construct that targeted the two homeologues. Hence, DON-responsive TaABCC3 genes warrant further study to determine their potential as disease resistance breeding targets and their function in grain formation

  20. A new ABC half-transporter in Leishmania major is involved in resistance to antimony.

    PubMed

    Manzano, J I; García-Hernández, R; Castanys, S; Gamarro, F

    2013-08-01

    The characterization of ABCI4, a new intracellular ATP-binding cassette (ABC) half-transporter in Leishmania major, is described. We show that ABCI4 is involved in heavy metal export, thereby conferring resistance to Pentostam, to Sb(III), and to As(III) and Cd(II). Parasites overexpressing ABCI4 showed a lower mitochondrial toxic effect of antimony by decreasing reactive oxygen species production and maintained higher values of both the mitochondrial electrochemical potential and total ATP levels with respect to controls. The ABCI4 half-transporter forms homodimers as determined by a coimmunoprecipitation assay. A combination of subcellular localization studies under a confocal microscope and a surface biotinylation assay using parasites expressing green fluorescent protein- and FLAG-tagged ABCI4 suggests that the transporter presents a dual localization in both mitochondria and the plasma membrane. Parasites overexpressing ABCI4 present an increased replication in mouse peritoneal macrophages. We have determined that porphyrins are substrates for ABCI4. Consequently, the overexpression of ABCI4 confers resistance to some toxic porphyrins, such as zinc-protoporphyrin, due to the lower accumulation resulting from a significant efflux, as determined using the fluorescent zinc-mesoporphyrin, a validated heme analog. In addition, ABCI4 has a significant ability to efflux thiol after Sb(III) incubation, thus meaning that ABCI4 could be considered to be a potential thiol-X-pump that is able to recognize metal-conjugated thiols. In summary, we have shown that this new ABC transporter is involved in drug sensitivity to antimony and other compounds by efflux as conjugated thiol complexes.

  1. Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design

    NASA Astrophysics Data System (ADS)

    Ishikawa, Toshihisa; Tamura, Ai; Saito, Hikaru; Wakabayashi, Kanako; Nakagawa, Hiroshi

    2005-10-01

    In the post-genome-sequencing era, emerging genomic technologies are shifting the paradigm for drug discovery and development. Nevertheless, drug discovery and development still remain high-risk and high-stakes ventures with long and costly timelines. Indeed, the attrition of drug candidates in preclinical and development stages is a major problem in drug design. For at least 30% of the candidates, this attrition is due to poor pharmacokinetics and toxicity. Thus, pharmaceutical companies have begun to seriously re-evaluate their current strategies of drug discovery and development. In that light, we propose that a transport mechanism-based design might help to create new, pharmacokinetically advantageous drugs, and as such should be considered an important component of drug design strategy. Performing enzyme- and/or cell-based drug transporter, interaction tests may greatly facilitate drug development and allow the prediction of drug-drug interactions. We recently developed methods for high-speed functional screening and quantitative structure-activity relationship analysis to study the substrate specificity of ABC transporters and to evaluate the effect of genetic polymorphisms on their function. These methods would provide a practical tool to screen synthetic and natural compounds, and these data can be applied to the molecular design of new drugs. In this review article, we present an overview on the genetic polymorphisms of human ABC transporter ABCG2 and new camptothecin analogues that can circumvent AGCG2-associated multidrug resistance of cancer.

  2. Zinc transporters YbtX and ZnuABC are required for the virulence of Yersinia pestis in bubonic and pneumonic plague in mice.

    PubMed

    Bobrov, Alexander G; Kirillina, Olga; Fosso, Marina Y; Fetherston, Jacqueline D; Miller, M Clarke; VanCleave, Tiva T; Burlison, Joseph A; Arnold, William K; Lawrenz, Matthew B; Garneau-Tsodikova, Sylvie; Perry, Robert D

    2017-06-21

    A number of bacterial pathogens require the ZnuABC Zinc (Zn 2+ ) transporter and/or a second Zn 2+ transport system to overcome Zn 2+ sequestration by mammalian hosts. Previously we have shown that in addition to ZnuABC, Yersinia pestis possesses a second Zn 2+ transporter that involves components of the yersiniabactin (Ybt), siderophore-dependent iron transport system. Synthesis of the Ybt siderophore and YbtX, a member of the major facilitator superfamily, are both critical components of the second Zn 2+ transport system. Here we demonstrate that a ybtX znu double mutant is essentially avirulent in mouse models of bubonic and pneumonic plague while a ybtX mutant retains high virulence in both plague models. While sequestration of host Zn is a key nutritional immunity factor, excess Zn appears to have a significant antimicrobial role in controlling intracellular bacterial survival. Here, we demonstrate that ZntA, a Zn 2+ exporter, plays a role in resistance to Zn toxicity in vitro, but that a zntA zur double mutant retains high virulence in both pneumonic and bubonic plague models and survival in macrophages. We also confirm that Ybt does not directly bind Zn 2+ in vitro under the conditions tested. However, we detect a significant increase in Zn 2+ -binding ability of filtered supernatants from a Ybt + strain compared to those from a strain unable to produce the siderophore, supporting our previously published data that Ybt biosynthetic genes are involved in the production of a secreted Zn-binding molecule (zincophore). Our data suggest that Ybt or a modified Ybt participate in or promote Zn-binding activity in culture supernatants and is involved in Zn acquisition in Y. pestis.

  3. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    PubMed Central

    2012-01-01

    Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC) Superfamily and Major Facilitator Superfamily (MFS) in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to improve alcoholic

  4. A Neisseria meningitidis fbpABC mutant is incapable of using nonheme iron for growth.

    PubMed

    Khun, H H; Kirby, S D; Lee, B C

    1998-05-01

    The neisserial fbpABC locus has been proposed to act as an iron-specific ABC transporter system. To confirm this assigned function, we constructed an fbpABC mutant in Neisseria meningitidis by insertional inactivation of fbpABC with a selectable antibiotic marker. The mutant was unable to use iron supplied from human transferrin, human lactoferrin, or iron chelates. However, the use of iron from heme and human hemoglobin was unimpaired. These results support the obligatory participation of fbpABC in neisserial periplasmic iron transport and do not indicate a role for this genetic locus in the heme iron pathway.

  5. A Neisseria meningitidis fbpABC Mutant Is Incapable of Using Nonheme Iron for Growth

    PubMed Central

    Khun, Heng H.; Kirby, Shane D.; Lee, B. Craig

    1998-01-01

    The neisserial fbpABC locus has been proposed to act as an iron-specific ABC transporter system. To confirm this assigned function, we constructed an fbpABC mutant in Neisseria meningitidis by insertional inactivation of fbpABC with a selectable antibiotic marker. The mutant was unable to use iron supplied from human transferrin, human lactoferrin, or iron chelates. However, the use of iron from heme and human hemoglobin was unimpaired. These results support the obligatory participation of fbpABC in neisserial periplasmic iron transport and do not indicate a role for this genetic locus in the heme iron pathway. PMID:9573125

  6. ABC transporter content diversity in Streptococcus pneumoniae impacts competence regulation and bacteriocin production.

    PubMed

    Wang, Charles Y; Patel, Nisha; Wholey, Wei-Yun; Dawid, Suzanne

    2018-06-19

    The opportunistic pathogen Streptococcus pneumoniae (pneumococcus) uses natural genetic competence to increase its adaptability through horizontal gene transfer. One method of acquiring DNA is through predation of neighboring strains with antimicrobial peptides called "bacteriocins." Competence and production of the major family of pneumococcal bacteriocins, pneumocins, are regulated by the quorum-sensing systems com and blp , respectively. In the classical paradigm, the ABC transporters ComAB and BlpAB each secretes its own system's signaling pheromone and in the case of BlpAB also secretes the pneumocins. While ComAB is found in all pneumococci, only 25% of strains encode an intact version of BlpAB [BlpAB(+)] while the rest do not [BlpAB(-)]. Contrary to the classical paradigm, it was previously shown that BlpAB(-) strains can activate blp through ComAB-mediated secretion of the blp pheromone during brief periods of competence. To better understand the full extent of com - blp crosstalk, we examined the contribution of each transporter to competence development and pneumocin secretion. We found that BlpAB(+) strains have a greater capacity for competence activation through BlpAB-mediated secretion of the com pheromone. Similarly, we show that ComAB and BlpAB are promiscuous and both can secrete pneumocins. Consequently, differences in pneumocin secretion between BlpAB(+) and BlpAB(-) strains derive from the regulation and kinetics of transporter expression rather than substrate specificity. We speculate that BlpAB(-) strains (opportunists) use pneumocins mainly in a narrowly tailored role for DNA acquisition and defense during competence while BlpAB(+) strains (aggressors) expand their use for the general inhibition of rival strains. Copyright © 2018 the Author(s). Published by PNAS.

  7. 75 FR 49549 - ABC & D Recycling, Inc.-Lease and Operation Exemption-a Line of Railroad in Ware, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35397] ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line of Railroad in Ware, MA ABC & D Recycling, Inc. (ABC & D..., ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line of Railroad in Ware, Massachusetts (STB...

  8. Independent activity of the homologous small regulatory RNAs AbcR1 and AbcR2 in the legume symbiont Sinorhizobium meliloti.

    PubMed

    Torres-Quesada, Omar; Millán, Vicenta; Nisa-Martínez, Rafael; Bardou, Florian; Crespi, Martín; Toro, Nicolás; Jiménez-Zurdo, José I

    2013-01-01

    The legume symbiont Sinorhizobium meliloti expresses a plethora of small noncoding RNAs (sRNAs) whose function is mostly unknown. Here, we have functionally characterized two tandemly encoded S. meliloti Rm1021 sRNAs that are similar in sequence and structure. Homologous sRNAs (designated AbcR1 and AbcR2) have been shown to regulate several ABC transporters in the related α-proteobacteria Agrobacterium tumefaciens and Brucella abortus. In Rm1021, AbcR1 and AbcR2 exhibit divergent unlinked regulation and are stabilized by the RNA chaperone Hfq. AbcR1 is transcribed in actively dividing bacteria, either in culture, rhizosphere or within the invasion zone of mature alfalfa nodules. Conversely, AbcR2 expression is induced upon entry into stationary phase and under abiotic stress. Only deletion of AbcR1 resulted into a discrete growth delay in rich medium, but both are dispensable for symbiosis. Periplasmic proteome profiling revealed down-regulation of the branched-chain amino acid binding protein LivK by AbcR1, but not by AbcR2. A double-plasmid reporter assay confirmed the predicted specific targeting of the 5'-untranslated region of the livK mRNA by AbcR1 in vivo. Our findings provide evidences of independent regulatory functions of these sRNAs, probably to fine-tune nutrient uptake in free-living and undifferentiated symbiotic rhizobia.

  9. Independent Activity of the Homologous Small Regulatory RNAs AbcR1 and AbcR2 in the Legume Symbiont Sinorhizobium meliloti

    PubMed Central

    Torres-Quesada, Omar; Millán, Vicenta; Nisa-Martínez, Rafael; Bardou, Florian; Crespi, Martín; Toro, Nicolás; Jiménez-Zurdo, José I.

    2013-01-01

    The legume symbiont Sinorhizobium meliloti expresses a plethora of small noncoding RNAs (sRNAs) whose function is mostly unknown. Here, we have functionally characterized two tandemly encoded S. meliloti Rm1021 sRNAs that are similar in sequence and structure. Homologous sRNAs (designated AbcR1 and AbcR2) have been shown to regulate several ABC transporters in the related α-proteobacteria Agrobacterium tumefaciens and Brucella abortus. In Rm1021, AbcR1 and AbcR2 exhibit divergent unlinked regulation and are stabilized by the RNA chaperone Hfq. AbcR1 is transcribed in actively dividing bacteria, either in culture, rhizosphere or within the invasion zone of mature alfalfa nodules. Conversely, AbcR2 expression is induced upon entry into stationary phase and under abiotic stress. Only deletion of AbcR1 resulted into a discrete growth delay in rich medium, but both are dispensable for symbiosis. Periplasmic proteome profiling revealed down-regulation of the branched-chain amino acid binding protein LivK by AbcR1, but not by AbcR2. A double-plasmid reporter assay confirmed the predicted specific targeting of the 5′-untranslated region of the livK mRNA by AbcR1 in vivo. Our findings provide evidences of independent regulatory functions of these sRNAs, probably to fine-tune nutrient uptake in free-living and undifferentiated symbiotic rhizobia. PMID:23869210

  10. Investigating the dynamic nature of the ABC transporters: ABCB1 and MsbA as examples for the potential synergies of MD theory and EPR applications.

    PubMed

    Stockner, Thomas; Mullen, Anna; MacMillan, Fraser

    2015-10-01

    ABC transporters are primary active transporters found in all kingdoms of life. Human multidrug resistance transporter ABCB1, or P-glycoprotein, has an extremely broad substrate spectrum and confers resistance against chemotherapy drug treatment in cancer cells. The bacterial ABC transporter MsbA is a lipid A flippase and a homolog to the human ABCB1 transporter, with which it partially shares its substrate spectrum. Crystal structures of MsbA and ABCB1 have been solved in multiple conformations, providing a glimpse into the possible conformational changes the transporter could be going through during the transport cycle. Crystal structures are inherently static, while a dynamic picture of the transporter in motion is needed for a complete understanding of transporter function. Molecular dynamics (MD) simulations and electron paramagnetic resonance (EPR) spectroscopy can provide structural information on ABC transporters, but the strength of these two methods lies in the potential to characterise the dynamic regime of these transporters. Information from the two methods is quite complementary. MD simulations provide an all atom dynamic picture of the time evolution of the molecular system, though with a narrow time window. EPR spectroscopy can probe structural, environmental and dynamic properties of the transporter in several time regimes, but only through the attachment sites of an exogenous spin label. In this review the synergistic effects that can be achieved by combining the two methods are highlighted, and a brief methodological background is also presented. © 2015 Authors; published by Portland Press Limited.

  11. Molecular identification of an ABC transporter complex for manganese: analysis of a cyanobacterial mutant strain impaired in the photosynthetic oxygen evolution process.

    PubMed Central

    Bartsevich, V V; Pakrasi, H B

    1995-01-01

    During photosynthesis, the photosystem II (PSII) pigment-protein complex catalyzes oxygen evolution, a reaction in which a four-manganese ensemble plays a crucial role. Using a newly developed selection scheme, we have isolated BP13, a random photosynthesis-deficient mutant strain of the cyanobacterium, Synechocystis 6803. This mutant grew slowly under photoautotrophic conditions, and had a low oxygen evolution activity. Biochemical analysis revealed that the lesion in this mutant strain had specifically affected the Mn ensemble in PSII. Interestingly, incubation of BP13 cells with micromolar levels of added Mn induced rapid recovery of oxygen evolution activity. The mutant could be complemented with a fragment of wild-type chromosomal DNA containing three closely linked genes, mntA, mntB and mntC. These gene products showed significant sequence similarities with polypeptide components of bacterial permeases that are members of the 'ABC (ATP binding cassette) superfamily' of transporter proteins. We determined that in the BP13 strain, a single nucleotide change had resulted in the replacement of an alanine by an aspartic acid residue in MntA, a soluble protein containing ATP binding motifs. These results suggest that the mntCAB gene cluster encodes polypeptide components of a Mn transporter, the first such protein complex identified in any organism. PMID:7743991

  12. The yeast plasma membrane ATP binding cassette (ABC) transporter Aus1: purification, characterization, and the effect of lipids on its activity.

    PubMed

    Marek, Magdalena; Milles, Sigrid; Schreiber, Gabriele; Daleke, David L; Dittmar, Gunnar; Herrmann, Andreas; Müller, Peter; Pomorski, Thomas Günther

    2011-06-17

    The ATP binding cassette (ABC) transporter Aus1 is expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and is required for sterol uptake. These observations suggest that Aus1 promotes the translocation of sterols across membranes, but the precise transport mechanism has yet to be identified. In this study, an extraction and purification procedure was developed to characterize the Aus1 transporter. The detergent-solubilized protein was able to bind and hydrolyze ATP. Mutagenesis of the conserved lysine to methionine in the Walker A motif abolished ATP hydrolysis. Likewise, ATP hydrolysis was inhibited by classical inhibitors of ABC transporters. Upon reconstitution into proteoliposomes, the ATPase activity of Aus1 was specifically stimulated by phosphatidylserine (PS) in a stereoselective manner. We also found that Aus1-dependent sterol uptake, but not Aus1 expression and trafficking to the plasma membrane, was affected by changes in cellular PS levels. These results suggest a direct interaction between Aus1 and PS that is critical for the activity of the transporter.

  13. The phytoestrogen genistein enhances multidrug resistance in breast cancer cell lines by translational regulation of ABC transporters.

    PubMed

    Rigalli, Juan Pablo; Tocchetti, Guillermo Nicolás; Arana, Maite Rocío; Villanueva, Silvina Stella Maris; Catania, Viviana Alicia; Theile, Dirk; Ruiz, María Laura; Weiss, Johanna

    2016-06-28

    Breast cancer is the most frequent malignancy in women. Multidrug resistance due to overexpression of ABC drug transporters is a common cause of chemotherapy failure and disease recurrence. Genistein (GNT) is a phytoestrogen present in soybeans and hormone supplements. We investigated the effect of GNT on the expression and function of ABC transporters in MCF-7 and MDA-MB-231 breast cancer cell lines. Results demonstrated an induction at the protein level of ABCC1 and ABCG2 and of ABCC1 in MCF-7 and MDA-MB-231, respectively. MCF-7 cells showed a concomitant increase in doxorubicin and mitoxantrone efflux and resistance, dependent on ABCG2 activity. ABCC1 induction by GNT in MDA-MB-231 cells modified neither drug efflux nor chemoresistance due to simultaneous acute inhibition of the transporter activity by GNT. All inductions took place at the translational level, as no increment in mRNA was observed and protein increase was prevented by cycloheximide. miR-181a, already demonstrated to inhibit ABCG2 translation, was down-regulated by GNT, explaining translational induction. Effects were independent of classical estrogen receptors. Results suggest potential nutrient-drug interactions that could threaten chemotherapy efficacy, especially in ABCG2-expressing tumors treated with substrates of this transporter. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Phosphorylation is required for the pathogen defense function of the Arabidopsis PEN3 ABC transporter.

    PubMed

    Underwood, William; Somerville, Shauna C

    2017-10-03

    The Arabidopsis PEN3 ABC transporter accumulates at sites of pathogen detection, where it is involved in defense against a number of pathogens. Perception of PAMPs by pattern recognition receptors initiates recruitment of PEN3 and also leads to PEN3 phosphorylation at multiple amino acid residues. Whether PAMP-induced phosphorylation of PEN3 is important for its defense function or focal recruitment has not been addressed. In this study, we evaluated the role of PEN3 phosphorylation in modulating the localization and defense function of the transporter. We report that PEN3 phosphorylation is critical for its function in defense, but dispensable for recruitment to powdery mildew penetration sites. These results indicate that PAMP-induced phosphorylation is likely to regulate the transport activity of PEN3.

  15. Classification of a Haemophilus influenzae ABC Transporter HI1470/71 through Its Cognate Molybdate Periplasmic Binding Protein, MolA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C.

    2014-10-02

    molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB{sub 2}C{sub 2} (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 {angstrom} resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The {approx}100 {mu}M binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate.more » The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.« less

  16. LrABCF1, a GCN-type ATP-binding cassette transporter from lilium regale, is involved in defense responses against viral and fungal pathogens

    USDA-ARS?s Scientific Manuscript database

    ATP-binding cassette (ABC) transporters are essential for membrane translocation in diverse biological processes, such as plant development and defense response. Here, a general control non-derepressible (GCN)-type ABC transporter gene, designated LrABCF1, was identified from Cucumber mosaic virus (...

  17. Human and Rat ABC Transporter Efflux of Bisphenol A and Bisphenol A Glucuronide: Interspecies Comparison and Implications for Pharmacokinetic Assessment

    EPA Science Inventory

    Significant interspecies differences exist between human and rodent with respect to absorption, distribution, and excretion of bisphenol A (BPA) and its primary metabolite, BPA-glucuronide (BPA-G). ATP-Binding Cassette (ABC) transporter enzymes play important roles in these physi...

  18. The ABC Model and its Applicability to Basal Angiosperms

    PubMed Central

    Soltis, Douglas E.; Chanderbali, André S.; Kim, Sangtae; Buzgo, Matyas; Soltis, Pamela S.

    2007-01-01

    Background Although the flower is the central feature of the angiosperms, little is known of its origin and subsequent diversification. The ABC model has long been the unifying paradigm for floral developmental genetics, but it is based on phylogenetically derived eudicot models. Synergistic research involving phylogenetics, classical developmental studies, genomics and developmental genetics has afforded valuable new insights into floral evolution in general, and the early flower in particular. Scope and Conclusions Genomic studies indicate that basal angiosperms, and by inference the earliest angiosperms, had a rich tool kit of floral genes. Homologues of the ABCE floral organ identity genes are also present in basal angiosperm lineages; however, C-, E- and particularly B-function genes are more broadly expressed in basal lineages. There is no single model of floral organ identity that applies to all angiosperms; there are multiple models that apply depending on the phylogenetic position and floral structure of the group in question. The classic ABC (or ABCE) model may work well for most eudicots. However, modifications are needed for basal eudicots and, the focus of this paper, basal angiosperms. We offer ‘fading borders’ as a testable hypothesis for the basal-most angiosperms and, by inference, perhaps some of the earliest (now extinct) angiosperms. PMID:17616563

  19. Sialic acid catabolism and transport gene clusters are lineage specific in Vibrio vulnificus.

    PubMed

    Lubin, Jean-Bernard; Kingston, Joseph J; Chowdhury, Nityananda; Boyd, E Fidelma

    2012-05-01

    Sialic or nonulosonic acids are nine-carbon alpha ketosugars that are present in all vertebrate mucous membranes. Among bacteria, the ability to catabolize sialic acid as a carbon source is present mainly in pathogenic and commensal species of animals. Previously, it was shown that several Vibrio species carry homologues of the genes required for sialic acid transport and catabolism, which are genetically linked. In Vibrio cholerae on chromosome I, these genes are carried on the Vibrio pathogenicity island-2 region, which is confined to pathogenic isolates. We found that among the three sequenced Vibrio vulnificus clinical strains, these genes are present on chromosome II and are not associated with a pathogenicity island. To determine whether the sialic acid transport (SAT) and catabolism (SAC) region is universally present within V. vulnificus, we examined 67 natural isolates whose phylogenetic relationships are known. We found that the region was present predominantly among lineage I of V. vulnificus, which is comprised mainly of clinical isolates. We demonstrate that the isolates that contain this region can catabolize sialic acid as a sole carbon source. Two putative transporters are genetically linked to the region in V. vulnificus, the tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM and a component of an ATP-binding cassette (ABC) transporter. We constructed an in-frame deletion mutation in siaM, a component of the TRAP transporter, and demonstrate that this transporter is essential for sialic acid uptake in this species. Expression analysis of the SAT and SAC genes indicates that sialic acid is an inducer of expression. Overall, our study demonstrates that the ability to catabolize and transport sialic acid is predominately lineage specific in V. vulnificus and that the TRAP transporter is essential for sialic acid uptake.

  20. 75 FR 11991 - ABC & D Recycling, Inc.-Lease and Operation Exemption-a Line of Railroad in Ware, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [STB Finance Docket No. 35356] ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line of Railroad in Ware, MA ABC & D Recycling, Inc. (ABC & D), a noncarrier, has filed a verified notice of exemption under 49 CFR 1150.31 to lease from O...

  1. fbpABC gene cluster in Neisseria meningitidis is transcribed as an operon.

    PubMed

    Khun, H H; Deved, V; Wong, H; Lee, B C

    2000-12-01

    The neisserial fbpABC locus has been proposed to constitute a single transcriptional unit. To confirm this operonic arrangement, transcription assays using reverse transcriptase PCR amplification were conducted with Neisseria meningitidis. The presence of fbpAB and fbpBC transcripts obtained by priming cDNA synthesis with an fbpC-sequence-specific oligonucleotide indicates that fbpABC is organized as a single expression unit. The ratio of fbpA to fbpABC mRNA was approximately between 10- to 20-fold, as determined by real-time quantitative PCR.

  2. fbpABC Gene Cluster in Neisseria meningitidis Is Transcribed as an Operon

    PubMed Central

    Khun, Heng H.; Deved, Vinay; Wong, Howard; Lee, B. Craig

    2000-01-01

    The neisserial fbpABC locus has been proposed to constitute a single transcriptional unit. To confirm this operonic arrangement, transcription assays using reverse transcriptase PCR amplification were conducted with Neisseria meningitidis. The presence of fbpAB and fbpBC transcripts obtained by priming cDNA synthesis with an fbpC-sequence-specific oligonucleotide indicates that fbpABC is organized as a single expression unit. The ratio of fbpA to fbpABC mRNA was approximately between 10- to 20-fold, as determined by real-time quantitative PCR. PMID:11083849

  3. Identification of Residues in the Lipopolysaccharide ABC Transporter That Coordinate ATPase Activity with Extractor Function.

    PubMed

    Simpson, Brent W; Owens, Tristan W; Orabella, Matthew J; Davis, Rebecca M; May, Janine M; Trauger, Sunia A; Kahne, Daniel; Ruiz, Natividad

    2016-10-18

    The surface of most Gram-negative bacteria is covered with lipopolysaccharide (LPS), creating a permeability barrier against toxic molecules, including many antimicrobials. To assemble LPS on their surface, Gram-negative bacteria must extract newly synthesized LPS from the inner membrane, transport it across the aqueous periplasm, and translocate it across the outer membrane. The LptA to -G proteins assemble into a transenvelope complex that transports LPS from the inner membrane to the cell surface. The Lpt system powers LPS transport from the inner membrane by using a poorly characterized ATP-binding cassette system composed of the ATPase LptB and the transmembrane domains LptFG. Here, we characterize a cluster of residues in the groove region of LptB that is important for controlling LPS transport. We also provide the first functional characterization of LptFG and identify their coupling helices that interact with the LptB groove. Substitutions at conserved residues in these coupling helices compromise both the assembly and function of the LptB 2 FG complex. Defects in LPS transport conferred by alterations in the LptFG coupling helices can be rescued by changing a residue in LptB that is adjacent to functionally important residues in the groove region. This suppression is achieved by increasing the ATPase activity of the LptB 2 FG complex. Taken together, these data identify a specific binding site in LptB for the coupling helices of LptFG that is responsible for coupling of ATP hydrolysis by LptB with LptFG function to achieve LPS extraction. Lipopolysaccharide (LPS) is synthesized at the cytoplasmic membrane of Gram-negative bacteria and transported across several compartments to the cell surface, where it forms a barrier that protects these organisms from antibiotics. The LptB 2 FG proteins form an ATP-binding cassette (ABC) transporter that uses energy from ATP hydrolysis in the cytoplasm to facilitate extraction of LPS from the outer face of the

  4. Inactivation of the Ecs ABC transporter of Staphylococcus aureus attenuates virulence by altering composition and function of bacterial wall.

    PubMed

    Jonsson, Ing-Marie; Juuti, Jarmo T; François, Patrice; AlMajidi, Rana; Pietiäinen, Milla; Girard, Myriam; Lindholm, Catharina; Saller, Manfred J; Driessen, Arnold J M; Kuusela, Pentti; Bokarewa, Maria; Schrenzel, Jacques; Kontinen, Vesa P

    2010-12-02

    Ecs is an ATP-binding cassette (ABC) transporter present in aerobic and facultative anaerobic gram-positive Firmicutes. Inactivation of Bacillus subtilis Ecs causes pleiotropic changes in the bacterial phenotype including inhibition of intramembrane proteolysis. The molecule(s) transported by Ecs is (are) still unknown. In this study we mutated the ecsAB operon in two Staphylococcus aureus strains, Newman and LS-1. Phenotypic and functional characterization of these Ecs deficient mutants revealed a defect in growth, increased autolysis and lysostaphin sensitivity, altered composition of cell wall proteins including the precursor form of staphylokinase and an altered bacterial surface texture. DNA microarray analysis indicated that the Ecs deficiency changed expression of the virulence factor regulator protein Rot accompanied by differential expression of membrane transport proteins, particularly ABC transporters and phosphate-specific transport systems, protein A, adhesins and capsular polysaccharide biosynthesis proteins. Virulence of the ecs mutants was studied in a mouse model of hematogenous S. aureus infection. Mice inoculated with the ecs mutant strains developed markedly milder infections than those inoculated with the wild-type strains and had consequently lower mortality, less weight loss, milder arthritis and decreased persistence of staphylococci in the kidneys. The ecs mutants had higher susceptibility to ribosomal antibiotics and plant alkaloids chelerythrine and sanguinarine. Our results show that Ecs is essential for staphylococcal virulence and antimicrobial resistance probably since the transport function of Ecs is essential for the normal structure and function of the cell wall. Thus targeting Ecs may be a new approach in combating staphylococcal infection.

  5. Hydrogenase activity in the foodborne pathogen Campylobacter jejuni depends upon a novel ABC-type nickel transporter (NikZYXWV) and is SlyD-independent.

    PubMed

    Howlett, Robert M; Hughes, Bethan M; Hitchcock, Andrew; Kelly, David J

    2012-06-01

    Campylobacter jejuni is a human pathogen of worldwide significance. It is commensal in the gut of many birds and mammals, where hydrogen is a readily available electron donor. The bacterium possesses a single membrane-bound, periplasmic-facing NiFe uptake hydrogenase that depends on the acquisition of environmental nickel for activity. The periplasmic binding protein Cj1584 (NikZ) of the ATP binding cassette (ABC) transporter encoded by the cj1584c-cj1580c (nikZYXWV) operon in C. jejuni strain NCTC 11168 was found to be nickel-repressed and to bind free nickel ions with a submicromolar K(d) value, as measured by fluorescence spectroscopy. Unlike the Escherichia coli NikA protein, NikZ did not bind EDTA-chelated nickel and lacks key conserved residues implicated in metallophore interaction. A C. jejuni cj1584c null mutant strain showed an approximately 22-fold decrease in intracellular nickel content compared with the wild-type strain and a decreased rate of uptake of (63)NiCl(2). The inhibition of residual nickel uptake at higher nickel concentrations in this mutant by hexa-ammine cobalt (III) chloride or magnesium ions suggests that low-affinity uptake occurs partly through the CorA magnesium transporter. Hydrogenase activity was completely abolished in the cj1584c mutant after growth in unsupplemented media, but was fully restored after growth with 0.5 mM nickel chloride. Mutation of the putative metallochaperone gene slyD (cj0115) had no effect on either intracellular nickel accumulation or hydrogenase activity. Our data reveal a strict dependence of hydrogenase activity in C. jejuni on high-affinity nickel uptake through an ABC transporter that has distinct properties compared with the E. coli Nik system.

  6. The novel ABC transporter ABCH1 is a potential target for RNAi-based insect pest control and resistance management.

    PubMed

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Xia, Jixing; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-09-03

    Insect pests cause serious crop damage and develop high-level resistance to chemical insecticides and Bacillus thuringiensis (Bt) insecticidal Cry toxins. A new promising approach for controlling them and overcoming this resistance is RNA interference (RNAi). The RNAi-based insect control strategy depends on the selection of suitable target genes. In this study, we cloned and characterized a novel ABC transporter gene PxABCH1 in diamondback moth, Plutella xylostella (L.). Phylogenetic analysis showed that PxABCH1 is closely related to ABCA and ABCG subfamily members. Spatial-temporal expression detection revealed that PxABCH1 was expressed in all tissues and developmental stages, and highest expressed in head and male adult. Midgut sequence variation and expression analyses of PxABCH1 in all the susceptible and Bt-resistant P. xylostella strains and the functional analysis by sublethal RNAi demonstrated that Cry1Ac resistance was independent of this gene. Silencing of PxABCH1 by a relatively high dose of dsRNA dramatically reduced its expression and resulted in larval and pupal lethal phenotypes in both susceptible and Cry1Ac-resistant P. xylostella strains. To our knowledge, this study provides the first insight into ABCH1 in lepidopterans and reveals it as an excellent target for RNAi-based insect pest control and resistance management.

  7. The novel ABC transporter ABCH1 is a potential target for RNAi-based insect pest control and resistance management

    PubMed Central

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Xia, Jixing; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-01-01

    Insect pests cause serious crop damage and develop high-level resistance to chemical insecticides and Bacillus thuringiensis (Bt) insecticidal Cry toxins. A new promising approach for controlling them and overcoming this resistance is RNA interference (RNAi). The RNAi-based insect control strategy depends on the selection of suitable target genes. In this study, we cloned and characterized a novel ABC transporter gene PxABCH1 in diamondback moth, Plutella xylostella (L.). Phylogenetic analysis showed that PxABCH1 is closely related to ABCA and ABCG subfamily members. Spatial-temporal expression detection revealed that PxABCH1 was expressed in all tissues and developmental stages, and highest expressed in head and male adult. Midgut sequence variation and expression analyses of PxABCH1 in all the susceptible and Bt-resistant P. xylostella strains and the functional analysis by sublethal RNAi demonstrated that Cry1Ac resistance was independent of this gene. Silencing of PxABCH1 by a relatively high dose of dsRNA dramatically reduced its expression and resulted in larval and pupal lethal phenotypes in both susceptible and Cry1Ac-resistant P. xylostella strains. To our knowledge, this study provides the first insight into ABCH1 in lepidopterans and reveals it as an excellent target for RNAi-based insect pest control and resistance management. PMID:26333918

  8. The Pseudomonas aeruginosa PA14 ABC Transporter NppA1A2BCD Is Required for Uptake of Peptidyl Nucleoside Antibiotics.

    PubMed

    Pletzer, Daniel; Braun, Yvonne; Dubiley, Svetlana; Lafon, Corinne; Köhler, Thilo; Page, Malcolm G P; Mourez, Michael; Severinov, Konstantin; Weingart, Helge

    2015-07-01

    Analysis of the genome sequence of Pseudomonas aeruginosa PA14 revealed the presence of an operon encoding an ABC-type transporter (NppA1A2BCD) showing homology to the Yej transporter of Escherichia coli. The Yej transporter is involved in the uptake of the peptide-nucleotide antibiotic microcin C, a translation inhibitor that targets the enzyme aspartyl-tRNA synthetase. Furthermore, it was recently shown that the Opp transporter from P. aeruginosa PAO1, which is identical to Npp, is required for uptake of the uridyl peptide antibiotic pacidamycin, which targets the enzyme translocase I (MraY), which is involved in peptidoglycan synthesis. We used several approaches to further explore the substrate specificity of the Npp transporter. Assays of growth in defined minimal medium containing peptides of various lengths and amino acid compositions as sole nitrogen sources, as well as Biolog Phenotype MicroArrays, showed that the Npp transporter is not required for di-, tri-, and oligopeptide uptake. Overexpression of the npp operon increased susceptibility not just to pacidamycin but also to nickel chloride and the peptidyl nucleoside antibiotic blasticidin S. Furthermore, heterologous expression of the npp operon in a yej-deficient mutant of E. coli resulted in increased susceptibility to albomycin, a naturally occurring sideromycin with a peptidyl nucleoside antibiotic. Additionally, heterologous expression showed that microcin C is recognized by the P. aeruginosa Npp system. Overall, these results suggest that the NppA1A2BCD transporter is involved in the uptake of peptidyl nucleoside antibiotics by P. aeruginosa PA14. One of the world's most serious health problems is the rise of antibiotic-resistant bacteria. There is a desperate need to find novel antibiotic therapeutics that either act on new biological targets or are able to bypass known resistance mechanisms. Bacterial ABC transporters play an important role in nutrient uptake from the environment. These uptake

  9. Decreased detoxification genes and genome size make the human body louse an efficient model to study xenobiotic metabolism

    PubMed Central

    Lee, Si Hyeock; Kang, Jae Soon; Min, Jee Sun; Yoon, Kyong Sup; Strycharz, Joseph P.; Johnson, Reed; Mittapalli, Omprakash; Margam, Venu M.; Sun, Weilin; Li, Hong-Mei; Xie, Jun; Wu, Jing; Kirkness, Ewen F.; Berenbaum, May R.; Pittendrigh, Barry R.; Clark, J. Marshall

    2010-01-01

    The human body louse, Pediculus humanus humanus, has one of the smallest insect genomes, containing ~10,775 annotated genes (Kirkness et al. 2010). Annotation of detoxification [cytochrome P450 monooxygenase (P450), glutathione-S-transferase (GST), esterase (Est), and ATP-binding cassette transporter (ABC transporter)] genes revealed that they are dramatically reduced in P. h. humanus compared to other insects except for Apis mellifera. There are 37 P450, 13 GST and 17 Est genes present in P. h. humanus, approximately half of that found in Drosophila melanogaster and Anopheles gambiae. The number of putatively functional ABC transporter genes in P. h. humanus and A. mellifera are the same (36) but both have fewer than An. gambiae (44) or D. melanogaster (65). The reduction of detoxification genes in P. h. humanus may be due to their simple life history, where they do not encounter a wide variety of xenobiotics. Neuronal component genes are highly conserved across different insect species as expected due to their critical function. Although reduced in number, P. h. humanus still retains at least a minimum repertoire of genes known to confer metabolic or toxicokinetic resistance to xenobiotics (e.g., Cyp3 clade P450s, Delta GSTs, B clade Ests and B/C subfamily ABC transporters), suggestive of its high potential for resistance development. PMID:20561088

  10. Decreased detoxification genes and genome size make the human body louse an efficient model to study xenobiotic metabolism.

    PubMed

    Lee, S H; Kang, J S; Min, J S; Yoon, K S; Strycharz, J P; Johnson, R; Mittapalli, O; Margam, V M; Sun, W; Li, H-M; Xie, J; Wu, J; Kirkness, E F; Berenbaum, M R; Pittendrigh, B R; Clark, J M

    2010-10-01

    The human body louse, Pediculus humanus humanus, has one of the smallest insect genomes, containing ∼10 775 annotated genes. Annotation of detoxification [cytochrome P450 monooxygenase (P450), glutathione-S-transferase (GST), esterase (Est) and ATP-binding cassette transporter (ABC transporter)] genes revealed that they are dramatically reduced in P. h. humanus compared to other insects except for Apis mellifera. There are 37 P450, 13 GST and 17 Est genes present in P. h. humanus, approximately half the number found in Drosophila melanogaster and Anopheles gambiae. The number of putatively functional ABC transporter genes in P. h. humanus and Ap. mellifera are the same (36) but both have fewer than An. gambiae (44) or Dr. melanogaster (65). The reduction of detoxification genes in P. h. humanus may be a result of this louse's simple life history, in which it does not encounter a wide variety of xenobiotics. Neuronal component genes are highly conserved across different insect species as expected because of their critical function. Although reduced in number, P. h. humanus still retains at least a minimum repertoire of genes known to confer metabolic or toxicokinetic resistance to xenobiotics (eg Cyp3 clade P450s, Delta GSTs, B clade Ests and B/C subfamily ABC transporters), suggestive of its high potential for resistance development. © 2010 The Authors. Insect Molecular Biology © 2010 The Royal Entomological Society.

  11. The Yersinia pestis Siderophore, Yersiniabactin, and the ZnuABC system both contribute to Zinc acquisition and the development of lethal septicemic plague in mice

    PubMed Central

    Bobrov, Alexander G.; Kirillina, Olga; Fetherston, Jacqueline D.; Miller, M. Clarke; Burlison, Joseph A.; Perry, Robert D.

    2014-01-01

    Summary Bacterial pathogens must overcome host sequestration of zinc (Zn2+), an essential micronutrient, during the infectious disease process. While the mechanisms to acquire chelated Zn2+ by bacteria are largely undefined, many pathogens rely upon the ZnuABC family of ABC transporters. Here we show that in Yersinia pestis, irp2, a gene encoding the synthetase (HMWP2) for the siderophore yersiniabactin (Ybt) is required for growth under Zn2+-deficient conditions in a strain lacking ZnuABC. Moreover, growth stimulation with exogenous, purified apo-Ybt provides evidence that Ybt may serve as a zincophore for Zn2+ acquisition. Studies with the Zn2+-dependent transcriptional reporter znuA∷lacZ indicate that the ability to synthesize Ybt affects the levels of intracellular Zn2+. However, the outer membrane receptor Psn and TonB as well as the inner membrane (IM) ABC transporter YbtPQ, that are required for Fe3+ acquisition by Ybt, are not needed for Ybt-dependent Zn2+ uptake. In contrast, the predicted IM protein YbtX, a member of the Major Facilitator Superfamily, was essential for Ybt-dependent Zn2+ uptake. Finally, we show that the ZnuABC system and the Ybt synthetase HMWP2, presumably by Ybt synthesis, both contribute to the development of a lethal infection in a septicemic plague mouse model. PMID:24979062

  12. The Yersinia pestis siderophore, yersiniabactin, and the ZnuABC system both contribute to zinc acquisition and the development of lethal septicaemic plague in mice.

    PubMed

    Bobrov, Alexander G; Kirillina, Olga; Fetherston, Jacqueline D; Miller, M Clarke; Burlison, Joseph A; Perry, Robert D

    2014-08-01

    Bacterial pathogens must overcome host sequestration of zinc (Zn(2+) ), an essential micronutrient, during the infectious disease process. While the mechanisms to acquire chelated Zn(2+) by bacteria are largely undefined, many pathogens rely upon the ZnuABC family of ABC transporters. Here we show that in Yersinia pestis, irp2, a gene encoding the synthetase (HMWP2) for the siderophore yersiniabactin (Ybt) is required for growth under Zn(2+) -deficient conditions in a strain lacking ZnuABC. Moreover, growth stimulation with exogenous, purified apo-Ybt provides evidence that Ybt may serve as a zincophore for Zn(2+) acquisition. Studies with the Zn(2+) -dependent transcriptional reporter znuA::lacZ indicate that the ability to synthesize Ybt affects the levels of intracellular Zn(2+) . However, the outer membrane receptor Psn and TonB as well as the inner membrane (IM) ABC transporter YbtPQ, which are required for Fe(3+) acquisition by Ybt, are not needed for Ybt-dependent Zn(2+) uptake. In contrast, the predicted IM protein YbtX, a member of the Major Facilitator Superfamily, was essential for Ybt-dependent Zn(2+) uptake. Finally, we show that the ZnuABC system and the Ybt synthetase HMWP2, presumably by Ybt synthesis, both contribute to the development of a lethal infection in a septicaemic plague mouse model. © 2014 John Wiley & Sons Ltd.

  13. Multiple ABC transporters are involved in the acquisition of petrobactin in Bacillus anthracis

    PubMed Central

    Dixon, Shandee D.; Janes, Brian K.; Bourgis, Alexandra; Carlson, Paul E.; Hanna, Philip C.

    2012-01-01

    Summary In Bacillus anthracis the siderophore petrobactin is vital for iron acquisition and virulence. The petrobactin-binding receptor FpuA is required for these processes. Here additional components of petrobactin reacquisition are described. To identify these proteins, mutants of candidate permease and ATPase genes were generated allowing for characterization of multiple petrobactin ATP-binding cassette (ABC)-import systems. Either of two distinct permeases, FpuB or FatCD, are required for iron acquisition and play redundant roles in petrobactin transport. A mutant strain lacking both permeases, ΔfpuBΔfatCD, was incapable of using petrobactin as an iron source and exhibited attenuated virulence in a murine model of inhalational anthrax infection. ATPase mutants were generated in either of the permease mutant backgrounds to identify the ATPase(s) interacting with each individual permease channel. Mutants lacking the FpuB permease and FatE ATPase (ΔfpuBΔfatE) and a mutant lacking the distinct ATPases FpuC and FpuD generated in the ΔfatCD background (ΔfatCDΔfpuCΔfpuD) displayed phenotypic characteristics of a mutant deficient in petrobactin import. A mutant lacking all three of the identified ATPases (ΔfatEΔfpuCΔfpuD) exhibited the same growth defect in iron-depleted conditions. Taken together, these results provide the first description of the permease and ATPase proteins required for the import of petrobactin in B. anthracis. PMID:22429808

  14. Caenorhabditis elegans ABCRNAi Transporters Interact Genetically With rde-2 and mut-7

    PubMed Central

    Sundaram, Prema; Han, Wang; Cohen, Nancy; Echalier, Benjamin; Albin, John; Timmons, Lisa

    2008-01-01

    RNA interference (RNAi) mechanisms are conserved and consist of an interrelated network of activities that not only respond to exogenous dsRNA, but also perform endogenous functions required in the fine tuning of gene expression and in maintaining genome integrity. Not surprisingly, RNAi functions have widespread influences on cellular function and organismal development. Previously, we observed a reduced capacity to mount an RNAi response in nine Caenorhabditis elegans mutants that are defective in ABC transporter genes (ABCRNAi mutants). Here, we report an exhaustive study of mutants, collectively defective in 49 different ABC transporter genes, that allowed for the categorization of one additional transporter into the ABCRNAi gene class. Genetic complementation tests reveal functions for ABCRNAi transporters in the mut-7/rde-2 branch of the RNAi pathway. These second-site noncomplementation interactions suggest that ABCRNAi proteins and MUT-7/RDE-2 function together in parallel pathways and/or as multiprotein complexes. Like mut-7 and rde-2, some ABCRNAi mutants display transposon silencing defects. Finally, our analyses reveal a genetic interaction network of ABCRNAi gene function with respect to this part of the RNAi pathway. From our results, we speculate that the coordinated activities of ABCRNAi transporters, through their effects on endogenous RNAi-related mechanisms, ultimately affect chromosome function and integrity. PMID:18245353

  15. Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter.

    PubMed

    Adebesin, Funmilayo; Widhalm, Joshua R; Boachon, Benoît; Lefèvre, François; Pierman, Baptiste; Lynch, Joseph H; Alam, Iftekhar; Junqueira, Bruna; Benke, Ryan; Ray, Shaunak; Porter, Justin A; Yanagisawa, Makoto; Wetzstein, Hazel Y; Morgan, John A; Boutry, Marc; Schuurink, Robert C; Dudareva, Natalia

    2017-06-30

    Plants synthesize a diversity of volatile molecules that are important for reproduction and defense, serve as practical products for humans, and influence atmospheric chemistry and climate. Despite progress in deciphering plant volatile biosynthesis, their release from the cell has been poorly understood. The default assumption has been that volatiles passively diffuse out of cells. By characterization of a Petunia hybrida adenosine triphosphate-binding cassette (ABC) transporter, PhABCG1, we demonstrate that passage of volatiles across the plasma membrane relies on active transport. PhABCG1 down-regulation by RNA interference results in decreased emission of volatiles, which accumulate to toxic levels in the plasma membrane. This study provides direct proof of a biologically mediated mechanism of volatile emission. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. OsAGSW1, an ABC1-like kinase gene, is involved in the regulation of grain size and weight in rice.

    PubMed

    Li, Tao; Jiang, Jieming; Zhang, Shengchun; Shu, Haoran; Wang, Yaqin; Lai, Jianbin; Du, Jinju; Yang, Chengwei

    2015-09-01

    Grain shape and weight are two determining agronomic traits of rice yield. ABC1 (Activity of bc1 complex) is a newly found atypical kinase in plants. Here, we report on an ABC1 protein kinase gene, OsAGSW1 (ABC1-like kinase related to Grain size and Weight). Expression of OsAGSW1-GFP in rice revealed that OsAGSW1 is localized to the chloroplasts in rice. Analysis of OsAGSW1 promoter::β-glucuronidase transgenic rice indicated that this gene was highly expressed in vascular bundles in shoot, hull and caryopsis. Furthermore, OsAGSW1-RNAi and overexpressed transgenic rice lines were generated. Stable transgenic lines overexpressing OsAGSW1 exhibited a phenotype with a significant increase in grain size, grain weight, grain filling rate and 1000-grain weight compared with the wild-type and RNAi transgenic plants. Microscopy analysis showed that spikelet hulls just before heading were different in the OsAGSW1-overexpressed plants compared with wild-type and OsAGSW1 RNAi rice. Further cytological analysis showed that the number of external parenchyma cells in rice hulls of OsAGSW1-overexpressed plants increased, leading to wider and longer spikelet hulls than those of the wild-type and OsAGSW1-RNAi plants. The vascular cross-sectional area in lemma, carpopodium and ovules also strikingly increased and area of both xylem and phloem were enlarged in the OsAGSW1-overexpressed plants. Thus, our results demonstrated that OsAGSW1 plays an important role in seed shape and size of rice by regulating the number of external parenchyma cells and the development of vascular bundles, providing a new insight into the functions of ABC1 genes in plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Effect of SOS-induced levels of imuABC on spontaneous and damage-induced mutagenesis in Caulobacter crescentus.

    PubMed

    Alves, Ingrid R; Lima-Noronha, Marco A; Silva, Larissa G; Fernández-Silva, Frank S; Freitas, Aline Luiza D; Marques, Marilis V; Galhardo, Rodrigo S

    2017-11-01

    imuABC (imuAB dnaE2) genes are responsible for SOS-mutagenesis in Caulobacter crescentus and other bacterial species devoid of umuDC. In this work, we have constructed operator-constitutive mutants of the imuABC operon. We used this genetic tool to investigate the effect of SOS-induced levels of these genes upon both spontaneous and damage-induced mutagenesis. We showed that constitutive expression of imuABC does not increase spontaneous or damage-induced mutagenesis, nor increases cellular resistance to DNA-damaging agents. Nevertheless, the presence of the operator-constitutive mutation rescues mutagenesis in a recA background, indicating that imuABC are the only genes required at SOS-induced levels for translesion synthesis (TLS) in C. crescentus. Furthermore, these data also show that TLS mediated by ImuABC does not require RecA, unlike umuDC-dependent mutagenesis in E. coli. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Structural basis for allosteric cross-talk between the asymmetric nucleotide binding sites of a heterodimeric ABC exporter.

    PubMed

    Hohl, Michael; Hürlimann, Lea M; Böhm, Simon; Schöppe, Jendrik; Grütter, Markus G; Bordignon, Enrica; Seeger, Markus A

    2014-07-29

    ATP binding cassette (ABC) transporters mediate vital transport processes in every living cell. ATP hydrolysis, which fuels transport, displays positive cooperativity in numerous ABC transporters. In particular, heterodimeric ABC exporters exhibit pronounced allosteric coupling between a catalytically impaired degenerate site, where nucleotides bind tightly, and a consensus site, at which ATP is hydrolyzed in every transport cycle. Whereas the functional phenomenon of cooperativity is well described, its structural basis remains poorly understood. Here, we present the apo structure of the heterodimeric ABC exporter TM287/288 and compare it to the previously solved structure with adenosine 5'-(β,γ-imido)triphosphate (AMP-PNP) bound at the degenerate site. In contrast to other ABC exporter structures, the nucleotide binding domains (NBDs) of TM287/288 remain in molecular contact even in the absence of nucleotides, and the arrangement of the transmembrane domains (TMDs) is not influenced by AMP-PNP binding, a notion confirmed by double electron-electron resonance (DEER) measurements. Nucleotide binding at the degenerate site results in structural rearrangements, which are transmitted to the consensus site via two D-loops located at the NBD interface. These loops owe their name from a highly conserved aspartate and are directly connected to the catalytically important Walker B motif. The D-loop at the degenerate site ties the NBDs together even in the absence of nucleotides and substitution of its aspartate by alanine is well-tolerated. By contrast, the D-loop of the consensus site is flexible and the aspartate to alanine mutation and conformational restriction by cross-linking strongly reduces ATP hydrolysis and substrate transport.

  19. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhaojing; Xu, Yonghong; Meng, Xiangning

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABCmore » gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.« less

  20. Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Němcová-Fürstová, Vlasta, E-mail: vlasta.furstova@

    Development of taxane resistance has become clinically very important issue. The molecular mechanisms underlying the resistance are still unclear. To address this issue, we established paclitaxel-resistant sublines of the SK-BR-3 and MCF-7 breast cancer cell lines that are capable of long-term proliferation in 100 nM and 300 nM paclitaxel, respectively. Application of these concentrations leads to cell death in the original counterpart cells. Both sublines are cross-resistant to doxorubicin, indicating the presence of the MDR phenotype. Interestingly, resistance in both paclitaxel-resistant sublines is circumvented by the second-generation taxane SB-T-1216. Moreover, we demonstrated that it was not possible to establish sublinesmore » of SK-BR-3 and MCF-7 cells resistant to this taxane. It means that at least the tested breast cancer cells are unable to develop resistance to some taxanes. Employing mRNA expression profiling of all known human ABC transporters and subsequent Western blot analysis of the expression of selected transporters, we demonstrated that only the ABCB1/PgP and ABCC3/MRP3 proteins were up-regulated in both paclitaxel-resistant sublines. We found up-regulation of ABCG2/BCRP and ABCC4 proteins only in paclitaxel-resistant SK-BR-3 cells. In paclitaxel-resistant MCF-7 cells, ABCB4/MDR3 and ABCC2/MRP2 proteins were up-regulated. Silencing of ABCB1 expression using specific siRNA increased significantly, but did not completely restore full sensitivity to both paclitaxel and doxorubicin. Thus we showed a key, but not exclusive, role for ABCB1 in mechanisms of paclitaxel resistance. It suggests the involvement of multiple mechanisms in paclitaxel resistance in tested breast cancer cells. - Highlights: • Expression of all ABC transporters in paclitaxel-resistant sublines of SK-BR-3 and MCF-7 cells was analyzed. • SK-BR-3 and MCF-7 cells are unable to develop resistance to some taxanes. • Some taxanes are able to overcome developed resistance to

  1. Serum albumin promotes ATP-binding cassette transporter-dependent sterol uptake in yeast.

    PubMed

    Marek, Magdalena; Silvestro, Daniele; Fredslund, Maria D; Andersen, Tonni G; Pomorski, Thomas G

    2014-12-01

    Sterol uptake in fungi is a multistep process that involves interaction between external sterols and the cell wall, incorporation of sterol molecules into the plasma membrane, and subsequent integration into intracellular membranes for turnover. ATP-binding cassette (ABC) transporters have been implicated in sterol uptake, but key features of their activity remain to be elucidated. Here, we apply fluorescent cholesterol (NBD-cholesterol) to monitor sterol uptake under anaerobic and aerobic conditions in two fungal species, Candida glabrata (Cg) and Saccharomyces cerevisiae (Sc). We found that in both fungal species, ABC transporter-dependent uptake of cholesterol under anaerobic conditions and in mutants lacking HEM1 gene is promoted in the presence of the serum protein albumin that is able to bind the sterol molecule. Furthermore, the C. glabrata ABC transporter CgAus1p expressed in S. cerevisiae requires the presence of serum or albumin for efficient cholesterol uptake. These results suggest that albumin can serve as sterol donor in ABC transporter-dependent sterol uptake, a process potentially important for growth of C. glabrata inside infected humans. © 2014 The Authors. FEMS Yeast Research published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  2. An ABC Transporter System of Yersinia pestis Allows Utilization of Chelated Iron by Escherichia coli SAB11

    PubMed Central

    Bearden, Scott W.; Staggs, Teanna M.; Perry, Robert D.

    1998-01-01

    The acquisition of iron is an essential component in the pathogenesis of Yersinia pestis, the agent of bubonic and pneumonic plague. A cosmid library derived from the genomic DNA of Y. pestis KIM6+ was used for transduction of an Escherichia coli mutant (SAB11) defective in the biosynthesis of the siderophore enterobactin. Recombinant plasmids which had a common 13-kb BamHI fragment were isolated from SAB11 transductants in which growth but not enterobactin synthesis was restored on media containing the iron chelator EDDA [ethylenediamine-di(o-hydroxyphenyl acetic acid)]. Subcloning and transposon mutagenesis revealed a 5.6-kb region, designated yfe, essential for SAB11 growth stimulation. In vitro transcription-translation analysis identified polypeptides of 18, 29.5, 32, and 33 kDa encoded by the yfe locus. Sequence analysis shows this locus to be comprised of five genes in two separate operons which have potential Fur-binding sequences in both promoters. A putative polycistronic operon, yfeABCD, is Fur regulated and responds to iron and manganese. A functional Fur protein is required for the observed manganese repression of this operon. This operon encodes polypeptides which have strong similarity to the ATP-binding cassette (ABC) family of transporters and include a periplasmic binding protein (YfeA), an ATP-binding protein (YfeB), and two integral membrane proteins (YfeC and -D), which likely function in the acquisition of inorganic iron and possibly other ions. The ∼21-kDa protein encoded by the separately transcribed yfeE gene may be located in the cell envelope, since a yfeE::TnphoA fusion is PhoA+. Mutations in this gene abrogate growth of SAB11 on iron-chelated media. PMID:9495751

  3. An ABC transporter system of Yersinia pestis allows utilization of chelated iron by Escherichia coli SAB11.

    PubMed

    Bearden, S W; Staggs, T M; Perry, R D

    1998-03-01

    The acquisition of iron is an essential component in the pathogenesis of Yersinia pestis, the agent of bubonic and pneumonic plague. A cosmid library derived from the genomic DNA of Y. pestis KIM6+ was used for transduction of an Escherichia coli mutant (SAB11) defective in the biosynthesis of the siderophore enterobactin. Recombinant plasmids which had a common 13-kb BamHI fragment were isolated from SAB11 transductants in which growth but not enterobactin synthesis was restored on media containing the iron chelator EDDA [ethylenediamine-di(o-hydroxyphenyl acetic acid)]. Subcloning and transposon mutagenesis revealed a 5.6-kb region, designated yfe, essential for SAB11 growth stimulation. In vitro transcription-translation analysis identified polypeptides of 18, 29.5, 32, and 33 kDa encoded by the yfe locus. Sequence analysis shows this locus to be comprised of five genes in two separate operons which have potential Fur-binding sequences in both promoters. A putative polycistronic operon, yfeABCD, is Fur regulated and responds to iron and manganese. A functional Fur protein is required for the observed manganese repression of this operon. This operon encodes polypeptides which have strong similarity to the ATP-binding cassette (ABC) family of transporters and include a periplasmic binding protein (YfeA), an ATP-binding protein (YfeB), and two integral membrane proteins (YfeC and -D), which likely function in the acquisition of inorganic iron and possibly other ions. The approximately 21-kDa protein encoded by the separately transcribed yfeE gene may be located in the cell envelope, since a yfeE::TnphoA fusion is PhoA+. Mutations in this gene abrogate growth of SAB11 on iron-chelated media.

  4. Purification and biochemical characterization of NpABCG5/NpPDR5, a plant pleiotropic drug resistance transporter expressed in Nicotiana tabacum BY-2 suspension cells.

    PubMed

    Toussaint, Frédéric; Pierman, Baptiste; Bertin, Aurélie; Lévy, Daniel; Boutry, Marc

    2017-05-04

    Pleiotropic drug resistance (PDR) transporters belong to the ABCG subfamily of ATP-binding cassette (ABC) transporters and are involved in the transport of various molecules across plasma membranes. During evolution, PDR genes appeared independently in fungi and in plants from a duplication of a half-size ABC gene. The enzymatic properties of purified PDR transporters from yeast have been characterized. This is not the case for any plant PDR transporter, or, incidentally, for any purified plant ABC transporter. Yet, plant PDR transporters play important roles in plant physiology such as hormone signaling or resistance to pathogens or herbivores. Here, we describe the expression, purification, enzymatic characterization and 2D analysis by electron microscopy of NpABCG5/NpPDR5 from Nicotiana plumbaginifolia , which has been shown to be involved in the plant defense against herbivores. We constitutively expressed NpABCG5/NpPDR5, provided with a His-tag in a homologous system: suspension cells from Nicotiana tabacum (Bright Yellow 2 line). NpABCG5/NpPDR5 was targeted to the plasma membrane and was solubilized by dodecyl maltoside and purified by Ni-affinity chromatography. The ATP-hydrolyzing specific activity (27 nmol min -1  mg -1 ) was stimulated seven-fold in the presence of 0.1% asolectin. Electron microscopy analysis indicated that NpABCG5/NpPDR5 is monomeric and with dimensions shorter than those of known ABC transporters. Enzymatic data (optimal pH and sensitivity to inhibitors) confirmed that plant and fungal PDR transporters have different properties. These data also show that N. tabacum suspension cells are a convenient host for the purification and biochemical characterization of ABC transporters. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  5. ATP-Binding Cassette Efflux Transporters in Human Placenta

    PubMed Central

    Ni, Zhanglin; Mao, Qingcheng

    2010-01-01

    Pregnant women are often complicated with diseases including viral or bacterial infections, epilepsy, hypertension, or pregnancy-induced conditions such as depression and gestational diabetes that require treatment with medication. In addition, substance abuse during pregnancy remains a major public health problem. Many drugs used by pregnant women are off label without the necessary dose, efficacy, and safety data required for rational dosing regimens of these drugs. Thus, a major concern arising from the widespread use of drugs by pregnant women is the transfer of drugs across the placental barrier, leading to potential toxicity to the developing fetus. Knowledge regarding the ATP-binding cassette (ABC) efflux transporters, which play an important role in drug transfer across the placental barrier, is absolutely critical for optimizing the therapeutic strategy to treat the mother while protecting the fetus during pregnancy. Such transporters include P-glycoprotein (P-gp, gene symbol ABCB1), the breast cancer resistance protein (BCRP, gene symbol ABCG2), and the multidrug resistance proteins (MRPs, gene symbol ABCCs). In this review, we summarize the current knowledge with respect to developmental expression and regulation, membrane localization, functional significance, and genetic polymorphisms of these ABC transporters in the placenta and their relevance to fetal drug exposure and toxicity. PMID:21118087

  6. Application of fluorescent dye substrates for functional characterization of ABC multidrug transporters at a single cell level.

    PubMed

    Nerada, Zsuzsanna; Hegyi, Zoltán; Szepesi, Áron; Tóth, Szilárd; Hegedüs, Csilla; Várady, György; Matula, Zsolt; Homolya, László; Sarkadi, Balázs; Telbisz, Ágnes

    2016-09-01

    ABC multidrug transporters are key players in cancer multidrug resistance and in determining the ADME-Tox properties of drugs and xenobiotics. The most sensitive and specific detection of these transporters is based on functional assays. Assessment of the transporter-dependent reduction of cellular uptake of the fluorescent dyes, such as Hoechst 33342 (Ho) and more recently DyeCycle Violet (DCV), have been widely advocated for the characterization of both ABCB1 and ABCG2 multidrug transporters. Detailed comparison of these supravital DNA-binding dyes revealed that DCV is less toxic to ABCG2- and ABCB1-expressing cells than Ho. ATPase measurements imply that DCV and Ho are similarly handled by ABCB1, whereas ABCG2 seems to transport DVC more effectively. In addition, we have developed an image-based high content microscopy screening method for simultaneous in situ measurement of the cellular activity and expression of the ABCG2 multidrug transporter. We demonstrated the applicability of this method for identifying ABCG2-positive cells in heterogeneous cell population by a single dye uptake measurement. These results may promote multidrug transporter studies at a single cell level and allow the quantitative detection of clinically important drug-resistant sub-populations. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  7. The ABCs of membrane transporters in health and disease (SLC series): Introduction☆☆☆

    PubMed Central

    Hediger, Matthias A.; Clémençon, Benjamin; Burrier, Robert E.; Bruford, Elspeth A.

    2013-01-01

    The field of transport biology has steadily grown over the past decade and is now recognized as playing an important role in manifestation and treatment of disease. The SLC (solute carrier) gene series has grown to now include 52 families and 395 transporter genes in the human genome. A list of these genes can be found at the HUGO Gene Nomenclature Committee (HGNC) website (see www.genenames.org/genefamilies/SLC). This special issue features mini-reviews for each of these SLC families written by the experts in each field. The existing online resource for solute carriers, the Bioparadigms SLC Tables (www.bioparadigms.org), has been updated and significantly extended with additional information and cross-links to other relevant databases, and the nomenclature used in this database has been validated and approved by the HGNC. In addition, the Bioparadigms SLC Tables functionality has been improved to allow easier access by the scientific community. This introduction includes: an overview of all known SLC and “non-SLC” transporter genes; a list of transporters of water soluble vitamins; a summary of recent progress in the structure determination of transporters (including GLUT1/SLC2A1); roles of transporters in human diseases and roles in drug approval and pharmaceutical perspectives. PMID:23506860

  8. The feoABC Locus of Yersinia pestis Likely Has Two Promoters Causing Unique Iron Regulation

    PubMed Central

    O'Connor, Lauren; Fetherston, Jacqueline D.; Perry, Robert D.

    2017-01-01

    The FeoABC ferrous transporter is a wide-spread bacterial system. While the feoABC locus is regulated by a number of factors in the bacteria studied, we have previously found that regulation of feoABC in Yersinia pestis appears to be unique. None of the non-iron responsive transcriptional regulators that control expression of feoABC in other bacteria do so in Y. pestis. Another unique factor is the iron and Fur regulation of the Y. pestis feoABC locus occurs during microaerobic but not aerobic growth. Here we show that this unique iron-regulation is not due to a unique aspect of the Y. pestis Fur protein but to DNA sequences that regulate transcription. We have used truncations, alterations, and deletions of the feoA::lacZ reporter to assess the mechanism behind the failure of iron to repress transcription under aerobic conditions. These studies plus EMSAs and DNA sequence analysis have led to our proposal that the feoABC locus has two promoters: an upstream P1 promoter whose expression is relatively iron-independent but repressed under microaerobic conditions and the known downstream Fur-regulated P2 promoter. In addition, we have identified two regions that bind Y. pestis protein(s), although we have not identified these protein(s) or their function. Finally we used iron uptake assays to demonstrate that both FeoABC and YfeABCD transport ferrous iron in an energy-dependent manner and also use ferric iron as a substrate for uptake. PMID:28785546

  9. Cap 'n' collar C regulates genes responsible for imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Gaddelapati, Sharath Chandra; Kalsi, Megha; Roy, Amit; Palli, Subba Reddy

    2018-08-01

    The Colorado potato beetle (CPB), Leptinotarsa decemlineata developed resistance to imidacloprid after exposure to this insecticide for multiple generations. Our previous studies showed that xenobiotic transcription factor, cap 'n' collar isoform C (CncC) regulates the expression of multiple cytochrome P450 genes, which play essential roles in resistance to plant allelochemicals and insecticides. In this study, we sought to obtain a comprehensive picture of the genes regulated by CncC in imidacloprid-resistant CPB. We performed sequencing of RNA isolated from imidacloprid-resistant CPB treated with dsRNA targeting CncC or gene coding for green fluorescent protein (control). Comparative transcriptome analysis showed that CncC regulated the expression of 1798 genes, out of which 1499 genes were downregulated in CncC knockdown beetles. Interestingly, expression of 79% of imidacloprid induced P450 genes requires CncC. We performed quantitative real-time PCR to verify the reduction in the expression of 20 genes including those coding for detoxification enzymes (P450s, glutathione S-transferases, and esterases) and ABC transporters. The genes coding for ABC transporters are induced in insecticide resistant CPB and require CncC for their expression. Knockdown of genes coding for ABC transporters simultaneously or individually caused an increase in imidacloprid-induced mortality in resistant beetles confirming their contribution to insecticide resistance. These studies identified CncC as a transcription factor involved in regulation of genes responsible for imidacloprid resistance. Small molecule inhibitors of CncC or suppression of CncC by RNAi could provide effective synergists for pest control or management of insecticide resistance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Regulation of ATP-binding Cassette Transporters and Cholesterol Efflux by Glucose in Primary Human Monocytes and Murine Bone Marrow-derived Macrophages

    PubMed Central

    Spartano, N. L.; Lamon-Fava, S.; Matthan, N. R.; Ronxhi, J.; Greenberg, A. S.; Obin, M. S.; Lichtenstein, A. H.

    2014-01-01

    Purpose Individuals with type 2 diabetes mellitus are at increased risk of developing atherosclerosis. This may be partially attributable to suppression of macrophage ATP-binding cassette (ABC) transporter mediated cholesterol efflux by sustained elevated blood glucose concentrations. 2 models were used to assess this potential relationship: human monocytes/leukocytes and murine bone marrow-derived macrophages (BMDM). Methods 10 subjects (4 F/6 M, 50–85 years, BMI 25–35 kg/m2) underwent an oral glucose challenge. Baseline and 1- and 2-h post-challenge ABC-transporter mRNA expression was determined in monocytes, leukocytes and peripheral blood mononuclear cells (PBMC). In a separate study, murine-BMDM were exposed to 5 mmol/L D-glucose (control) or additional 20 mmol/L D-or L-glucose and 25 ug/mL oxidized low density lipoprotein (oxLDL). High density lipoprotein (HDL)-mediated cholesterol efflux and ABC-transporter (ABCA1 and ABCG1) expression were determined. Results Baseline ABCA1and ABCG1 expression was lower (> 50 %) in human monocytes and PBMC than leukocytes (p < 0.05). 1 h post-challenge leukocyte ABCA1 and ABCG1 expression increased by 37 % and 30 %, respectively (p < 0.05), and began to return to baseline thereafter. There was no significant change in monocyte ABC-transporter expression. In murine BMDM, higher glucose concentrations suppressed HDL-mediated cholesterol efflux (10 %; p < 0.01) without significantly affecting ABCA1 and ABCG1 expression. Data demonstrate that leukocytes are not a reliable indicator of monocyte ABC-transporter expression. Conclusions Human monocyte ABC-transporter gene expression was unresponsive to a glucose challenge. Correspondingly, in BMDM, hyperglycemia attenuated macrophage cholesterol efflux in the absence of altered ABC-transporter expression, suggesting that hyperglycemia, per se, suppresses cholesterol transporter activity. This glucose-related impairment in cholesterol efflux may potentially contribute to

  11. Requirement of ABC transporter inhibition and Hoechst 33342 dye deprivation for the assessment of side population-defined C6 glioma stem cell metabolism using fluorescent probes.

    PubMed

    Murota, Yoshitaka; Tabu, Kouichi; Taga, Tetsuya

    2016-11-04

    Elucidating the precise properties of cancer stem cells (CSCs) is indispensable for the development of effective therapies against tumors, because CSCs are key drivers of tumor development, metastasis and relapse. We previously reported that the Hoechst 33342 dye-low staining side population (SP) method can enrich for CSCs in the C6 glioma cell line, and that the positively stained main population (MP) cells are non-CSCs. Presence of cancer stem-like SP cells is reported in various types of cancer. Although altered cellular energy metabolism is a hallmark of cancer, very little has been studied on the applicability of fluorescent probes for the understanding of CSC energy metabolism. The metabolic status of C6 SP and MP cells are evaluated by CellROX, MitoTracker Green (MTG) and JC-1 for cellular oxidative stress, mitochondrial amount, and mitochondrial membrane potential, respectively. SP cells were found to exhibit significantly lower fluorescent intensities of CellROX and MTG than MP cells. However, inhibition of ATP binding cassette (ABC) transporters by verapamil enhanced the intensities of these probes in SP cells to the levels similar to those in MP cells, indicating that SP cells expel the probes outside of the cells through ABC transporters. Next, SP cells were stained with JC-1 dye which exhibits membrane potential dependent accumulation in mitochondrial matrix, followed by formation of aggregates. The mitochondrial membrane potential indicated by the aggregates of JC-1 was 5.0-fold lower in SP cells than MP cells. Inhibition of ABC transporters enhanced the fluorescent intensities of the JC-1 aggregates in both SP and MP cells, the former of which was still 2.2-fold lower than the latter. This higher JC-1 signal in MP cells was further found to be due to the Hoechst 33342 dye existing in MP cells. When SP and MP cells were recultured to deprive the intracellular Hoechst 33342 dye and then stained with JC-1 in the presence of verapamil, the intensities of

  12. Quantification and in situ localisation of abcb1 and abcc9genes in toxicant-exposed sea urchin embryos.

    PubMed

    Bošnjak, Ivana; Pleić, Ivana Lepen; Borra, Marco; Mladineo, Ivona

    2013-12-01

    A multixenobiotic resistance (MXR) mechanism mediated by ABC binding cassette (ABC) transport proteins is an efficient chemical defence mechanism in sea urchin embryos. The aim of our work was to evidence whether exposure to sub-lethal doses of specific contaminants (oxybenzone (OXI), mercuric chloride (HgCl2) and trybutiltin (TBT)) would induce MXR transporter activity during embryonic development (from zygote to blastula stage) in purple sea urchin (Paracentrotus lividus) embryos. Further, we present data on molecular identification, transport function, expression levels and gene localisation of two ABC efflux transporters-P-glycoprotein (ABCB1/P-gp) and sulfonylurea-receptor-like protein (ABCC9/SUR-like). Partial cDNA sequences of abcb1 and abcc9 were identified and quantitative PCR (qPCR) evidenced an increase in mRNA transcript levels of both ABC transporters during the two-cell, as well as an overall decrease during the blastulae stage. Calcein-AM efflux activity assay indicated the activation of multidrug resistance-associated protein/ABCC-like transport in the presence of HgCl2 and TBT in exposed blastulae. The in situ hybridisation of the two-cell and blastula stages showed ubiquitous localisation of both transcripts within cells, supporting qPCR data. In conclusion, ABCB1 and ABCC9 are constitutive, as are HgCl2, TBT and OXI-inducible ABC membrane transporters, coexpressed in the zygote, two-cell and blastula stages of the P. lividus. Their ubiquitous cell localisation further fortifies their protective role in early embryonic development.

  13. ABC transporters and the proteasome complex are implicated in susceptibility to Stevens-Johnson syndrome and toxic epidermal necrolysis across multiple drugs.

    PubMed

    Nicoletti, Paola; Bansal, Mukesh; Lefebvre, Celine; Guarnieri, Paolo; Shen, Yufeng; Pe'er, Itsik; Califano, Andrea; Floratos, Aris

    2015-01-01

    Stevens-Johnson syndrome (SJS) and Toxic Epidermal Necrolysis (TEN) represent rare but serious adverse drug reactions (ADRs). Both are characterized by distinctive blistering lesions and significant mortality rates. While there is evidence for strong drug-specific genetic predisposition related to HLA alleles, recent genome wide association studies (GWAS) on European and Asian populations have failed to identify genetic susceptibility alleles that are common across multiple drugs. We hypothesize that this is a consequence of the low to moderate effect size of individual genetic risk factors. To test this hypothesis we developed Pointer, a new algorithm that assesses the aggregate effect of multiple low risk variants on a pathway using a gene set enrichment approach. A key advantage of our method is the capability to associate SNPs with genes by exploiting physical proximity as well as by using expression quantitative trait loci (eQTLs) that capture information about both cis- and trans-acting regulatory effects. We control for known bias-inducing aspects of enrichment based analyses, such as: 1) gene length, 2) gene set size, 3) presence of biologically related genes within the same linkage disequilibrium (LD) region, and, 4) genes shared among multiple gene sets. We applied this approach to publicly available SJS/TEN genome-wide genotype data and identified the ABC transporter and Proteasome pathways as potentially implicated in the genetic susceptibility of non-drug-specific SJS/TEN. We demonstrated that the innovative SNP-to-gene mapping phase of the method was essential in detecting the significant enrichment for those pathways. Analysis of an independent gene expression dataset provides supportive functional evidence for the involvement of Proteasome pathways in SJS/TEN cutaneous lesions. These results suggest that Pointer provides a useful framework for the integrative analysis of pharmacogenetic GWAS data, by increasing the power to detect aggregate effects

  14. Accelerated bridge construction (ABC) decision making and economic modeling tool.

    DOT National Transportation Integrated Search

    2011-12-01

    In this FHWA-sponsored pool funded study, a set of decision making tools, based on the Analytic Hierarchy Process (AHP) was developed. This tool set is prepared for transportation specialists and decision-makers to determine if ABC is more effective ...

  15. ATP-binding cassette transporters in reproduction: a new frontier

    PubMed Central

    Bloise, E.; Ortiga-Carvalho, T.M.; Reis, F.M.; Lye, S.J.; Gibb, W.; Matthews, S.G.

    2016-01-01

    BACKGROUND The transmembrane ATP-binding cassette (ABC) transporters actively efflux an array of clinically relevant compounds across biological barriers, and modulate biodistribution of many physiological and pharmacological factors. To date, over 48 ABC transporters have been identified and shown to be directly and indirectly involved in peri-implantation events and fetal/placental development. They efflux cholesterol, steroid hormones, vitamins, cytokines, chemokines, prostaglandins, diverse xenobiotics and environmental toxins, playing a critical role in regulating drug disposition, immunological responses and lipid trafficking, as well as preventing fetal accumulation of drugs and environmental toxins. METHODS This review examines ABC transporters as important mediators of placental barrier functions and key reproductive processes. Expression, localization and function of all identified ABC transporters were systematically reviewed using PubMed and Google Scholar websites to identify relevant studies examining ABC transporters in reproductive tissues in physiological and pathophysiological states. Only reports written in English were incorporated with no restriction on year of publication. While a major focus has been placed on the human, extensive evidence from animal studies is utilized to describe current understanding of the regulation and function of ABC transporters relevant to human reproduction. RESULTS ABC transporters are modulators of steroidogenesis, fertilization, implantation, nutrient transport and immunological responses, and function as ‘gatekeepers’ at various barrier sites (i.e. blood-testes barrier and placenta) against potentially harmful xenobiotic factors, including drugs and environmental toxins. These roles appear to be species dependent and change as a function of gestation and development. The best-described ABC transporters in reproductive tissues (primarily in the placenta) are the multidrug transporters p-glycoprotein and

  16. Constitutive mRNA expression and protein activity levels of nine ABC efflux transporters in seven permanent cell lines derived from different tissues of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Fischer, Stephan; Loncar, Jovica; Zaja, Roko; Schnell, Sabine; Schirmer, Kristin; Smital, Tvrtko; Luckenbach, Till

    2011-01-25

    Permanent fish cell lines have become common model systems for determining ecotoxicological effects of pollutants. For these cell lines little is known on the cellular active transport mechanisms that control the amount of a compound entering the cell, such as the MXR (multixenobiotic resistance) system mediated by ATP binding cassette (ABC) transport proteins. Therefore, for toxic evaluation of chemicals with those cells information on MXR is important. We here present data on constitutive mRNA expression and protein activity levels of a series of ABC efflux transporters in seven permanent cell lines derived from liver (RTL-W1; R1) and liver hepatoma (RTH-149), gill (RTgill-W1), gonad (RTG-2), gut (RTgutGC) and brain (RTbrain) of rainbow trout (Oncorhynchus mykiss). In addition to known transporters abcb1 (designated here abcb1a), abcb11, abcc1-3, abcc5 and abcg2, we quantified expression levels of a newly identified abcb1 isoform (abcb1b) and abcc4, previously unknown in trout. Quantitative real time PCR (qPCR) indicated that mRNA of the examined ABC transporters was constitutively expressed in all cell lines. Transporter mRNA expression patterns were similar in all cell lines, with expression levels of abcc transporters being 80 to over 1000 fold higher than for abcg2, abcb1a/b and abcb11 (abcc1-5>abcg2>abcb1a/b, 11). Transporter activity in the cell lines was determined by measuring uptake of transporter type specific fluorescent substrates in the presence of activity inhibitors. The combination of the ABCB1 and ABCC transporter substrate calcein-AM with inhibitors cyclosporine A, PSC833 and MK571 resulted in a concentration-dependent fluorescence increase of up to 3-fold, whereas reversin 205 caused a slight, but not concentration-dependent fluorescence increase. Accumulation of the dyes Hoechst 33342 and 2',7'-dichlorodihydrofluorescein diacetate was basically unchanged in the presence of Ko134 and taurocholate, respectively, indicating low Abcg2 and Abcb11

  17. ABC transporter Cdr1p harbors charged residues in the intracellular loop and nucleotide-binding domain critical for protein trafficking and drug resistance.

    PubMed

    Shah, Abdul Haseeb; Banerjee, Atanu; Rawal, Manpreet Kaur; Saxena, Ajay Kumar; Mondal, Alok Kumar; Prasad, Rajendra

    2015-08-01

    The ABC transporter Cdr1 protein of Candida albicans, which plays a major role in antifungal resistance, has two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The 12 transmembrane helices of TMDs that are interconnected by extracellular and intracellular loops (ICLs) mainly harbor substrate recognition sites where drugs bind while cytoplasmic NBDs hydrolyze ATP which powers drug efflux. The coupling of ATP hydrolysis to drug transport requires proper communication between NBDs and TMDs typically accomplished by ICLs. This study examines the role of cytoplasmic ICLs of Cdr1p by rationally predicting the critical residues on the basis of their interatomic distances. Among nine pairs that fall within a proximity of <4 Å, an ion pair between K577 of ICL1 and E315 of NBD1 was found to be critical. The substitution, swapping and changing of the length or charge of K577 or E315 by directed mutagenesis led to a misfolded, non-rescuable protein entrapped in intracellular structures. Furthermore, the equipositional ionic pair-forming residues from ICL3 and NBD2 (R1260 and E1014) did not impact protein trafficking. These results point to a new role for ICL/NBD interacting residues in PDR ABC transporters in protein folding and trafficking. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Study of formation of green eggshell color in ducks through global gene expression.

    PubMed

    Xu, Fa Qiong; Li, Ang; Lan, Jing Jing; Wang, Yue Ming; Yan, Mei Jiao; Lian, Sen Yang; Wu, Xu

    2018-01-01

    The green eggshell color produced by ducks is a threshold trait that can be influenced by various factors, such as hereditary, environment and nutrition. The aim of this study was to investigate the genetic regulation of the formation of eggs with green shells in Youxian ducks. We performed integrative analysis of mRNAs and miRNAs expression profiling in the shell gland samples from ducks by RNA-Seq. We found 124 differentially expressed genes that were associated with various pathways, such as the ATP-binding cassette (ABC) transporter and solute carrier supper family pathways. A total of 31 differentially expressed miRNAs were found between ducks laying green eggs and white eggs. KEGG pathway analysis of the predicted miRNA target genes also indicated the functional characteristics of these miRNAs; they were involved in the ABC transporter pathway and the solute carrier (SLC) supper family. Analysis with qRT-PCR was applied to validate the results of global gene expression, which showed a correlation between results obtained by RNA-seq and RT-qPCR. Moreover, a miRNA-mRNA interaction network was established using correlation analysis of differentially expressed mRNA and miRNA. Compared to ducks that lay white eggs, ducks that lay green eggs include six up-regulated miRNAs that had regulatory effects on 35 down-regulated genes, and seven down-regulated miRNAs which influenced 46 up-regulated genes. For example, the ABC transporter pathway could be regulated by expressing gga-miR-144-3p (up-regulated) with ABCG2 (up-regulated) and other miRNAs and genes. This study provides valuable information about mRNA and miRNA regulation in duck shell gland tissues, and provides foundational information for further study on the eggshell color formation and marker-assisted selection for Youxian duck breeding.

  19. Mutations in the Cholesterol Transporter Gene ABCA5 Are Associated with Excessive Hair Overgrowth

    PubMed Central

    DeStefano, Gina M.; Kurban, Mazen; Anyane-Yeboa, Kwame; Dall'Armi, Claudia; Di Paolo, Gilbert; Feenstra, Heather; Silverberg, Nanette; Rohena, Luis; López-Cepeda, Larissa D.; Jobanputra, Vaidehi; Fantauzzo, Katherine A.; Kiuru, Maija; Tadin-Strapps, Marija; Sobrino, Antonio; Vitebsky, Anna; Warburton, Dorothy; Levy, Brynn; Salas-Alanis, Julio C.; Christiano, Angela M.

    2014-01-01

    Inherited hypertrichoses are rare syndromes characterized by excessive hair growth that does not result from androgen stimulation, and are often associated with additional congenital abnormalities. In this study, we investigated the genetic defect in a case of autosomal recessive congenital generalized hypertrichosis terminalis (CGHT) (OMIM135400) using whole-exome sequencing. We identified a single base pair substitution in the 5′ donor splice site of intron 32 in the ABC lipid transporter gene ABCA5 that leads to aberrant splicing of the transcript and a decrease in protein levels throughout patient hair follicles. The homozygous recessive disruption of ABCA5 leads to reduced lysosome function, which results in an accumulation of autophagosomes, autophagosomal cargos as well as increased endolysosomal cholesterol in CGHT keratinocytes. In an unrelated sporadic case of CGHT, we identified a 1.3 Mb cryptic deletion of chr17q24.2-q24.3 encompassing ABCA5 and found that ABCA5 levels are dramatically reduced throughout patient hair follicles. Collectively, our findings support ABCA5 as a gene underlying the CGHT phenotype and suggest a novel, previously unrecognized role for this gene in regulating hair growth. PMID:24831815

  20. Deciphering the Routes of invasion of Drosophila suzukii by Means of ABC Random Forest.

    PubMed

    Fraimout, Antoine; Debat, Vincent; Fellous, Simon; Hufbauer, Ruth A; Foucaud, Julien; Pudlo, Pierre; Marin, Jean-Michel; Price, Donald K; Cattel, Julien; Chen, Xiao; Deprá, Marindia; François Duyck, Pierre; Guedot, Christelle; Kenis, Marc; Kimura, Masahito T; Loeb, Gregory; Loiseau, Anne; Martinez-Sañudo, Isabel; Pascual, Marta; Polihronakis Richmond, Maxi; Shearer, Peter; Singh, Nadia; Tamura, Koichiro; Xuéreb, Anne; Zhang, Jinping; Estoup, Arnaud

    2017-04-01

    Deciphering invasion routes from molecular data is crucial to understanding biological invasions, including identifying bottlenecks in population size and admixture among distinct populations. Here, we unravel the invasion routes of the invasive pest Drosophila suzukii using a multi-locus microsatellite dataset (25 loci on 23 worldwide sampling locations). To do this, we use approximate Bayesian computation (ABC), which has improved the reconstruction of invasion routes, but can be computationally expensive. We use our study to illustrate the use of a new, more efficient, ABC method, ABC random forest (ABC-RF) and compare it to a standard ABC method (ABC-LDA). We find that Japan emerges as the most probable source of the earliest recorded invasion into Hawaii. Southeast China and Hawaii together are the most probable sources of populations in western North America, which then in turn served as sources for those in eastern North America. European populations are genetically more homogeneous than North American populations, and their most probable source is northeast China, with evidence of limited gene flow from the eastern US as well. All introduced populations passed through bottlenecks, and analyses reveal five distinct admixture events. These findings can inform hypotheses concerning how this species evolved between different and independent source and invasive populations. Methodological comparisons indicate that ABC-RF and ABC-LDA show concordant results if ABC-LDA is based on a large number of simulated datasets but that ABC-RF out-performs ABC-LDA when using a comparable and more manageable number of simulated datasets, especially when analyzing complex introduction scenarios. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Constitutive expression of catABC genes in the aniline-assimilating bacterium Rhodococcus species AN-22: production, purification, characterization and gene analysis of CatA, CatB and CatC

    PubMed Central

    Matsumura, Eitaro; Sakai, Masashi; Hayashi, Katsuaki; Murakami, Shuichiro; Takenaka, Shinji; Aoki, Kenji

    2005-01-01

    The aniline-assimilating bacterium Rhodococcus sp. AN-22 was found to constitutively synthesize CatB (cis,cis-muconate cycloisomerase) and CatC (muconolactone isomerase) in its cells growing on non-aromatic substrates, in addition to the previously reported CatA (catechol 1,2-dioxygenase). The bacterium maintained the specific activity of the three enzymes at an almost equal level during cultivation on succinate. CatB and CatC were purified to homogeneity and characterized. CatB was a monomer with a molecular mass of 44 kDa. The enzyme was activated by Mn2+, Co2+ and Mg2+. Native CatC was a homo-octamer with a molecular mass of 100 kDa. The enzyme was stable between pH 7.0 and 10.5 and was resistant to heating up to 90 °C. Genes coding for CatA, CatB and CatC were cloned and named catA, catB and catC respectively. The catABC genes were transcribed as one operon. The deduced amino acid sequences of CatA, CatB and CatC showed high identities with those from other Gram-positive micro-organisms. A regulator gene such as catR encoding a regulatory protein was not observed around the cat gene cluster of Rhodococcus sp. AN-22, but a possible relic of catR was found in the upstream region of catA. Reverse transcriptase-PCR and primer extension analyses showed that the transcriptional start site of the cat gene cluster was located 891 bp upstream of the catA initiation codon in the AN-22 strain growing on both aniline and succinate. Based on these data, we concluded that the bacterium constitutively transcribed the catABC genes and translated its mRNA into CatA, CatB and CatC. PMID:16156722

  2. Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents

    PubMed Central

    Wink, Michael; Ashour, Mohamed L.; El-Readi, Mahmoud Zaki

    2012-01-01

    Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion. PMID:22536197

  3. Hfq Influences Multiple Transport Systems and Virulence in the Plant Pathogen Agrobacterium tumefaciens

    PubMed Central

    Wilms, Ina; Möller, Philip; Stock, Anna-Maria; Gurski, Rosemarie; Lai, Erh-Min

    2012-01-01

    The Hfq protein mediates gene regulation by small RNAs (sRNAs) in about 50% of all bacteria. Depending on the species, phenotypic defects of an hfq mutant range from mild to severe. Here, we document that the purified Hfq protein of the plant pathogen and natural genetic engineer Agrobacterium tumefaciens binds to the previously described sRNA AbcR1 and its target mRNA atu2422, which codes for the substrate binding protein of an ABC transporter taking up proline and γ-aminobutyric acid (GABA). Several other ABC transporter components were overproduced in an hfq mutant compared to their levels in the parental strain, suggesting that Hfq plays a major role in controlling the uptake systems and metabolic versatility of A. tumefaciens. The hfq mutant showed delayed growth, altered cell morphology, and reduced motility. Although the DNA-transferring type IV secretion system was produced, tumor formation by the mutant strain was attenuated, demonstrating an important contribution of Hfq to plant transformation by A. tumefaciens. PMID:22821981

  4. Opioid transport by ATP-binding cassette transporters at the blood-brain barrier: implications for neuropsychopharmacology.

    PubMed

    Tournier, Nicolas; Declèves, Xavier; Saubaméa, Bruno; Scherrmann, Jean-Michel; Cisternino, Salvatore

    2011-01-01

    Some of the ATP-binding cassette (ABC) transporters like P-glycoprotein (P-gp; ABCB1, MDR1), BCRP (ABCG2) and MRPs (ABCCs) that are present at the blood-brain barrier (BBB) influence the brain pharmacokinetics (PK) of their substrates by restricting their uptake or enhancing their clearance from the brain into the blood, which has consequences for their CNS pharmacodynamics (PD). Opioid drugs have been invaluable tools for understanding the PK-PD relationships of these ABC-transporters. The effects of morphine, methadone and loperamide on the CNS are modulated by P-gp. This review examines the ways in which other opioid drugs and some of their active metabolites interact with ABC transporters and suggests new mechanisms that may be involved in the variability of the response of the CNS to these drugs like carrier-mediated system belonging to the solute carrier (SLC) superfamily. Exposure to opioids may also alter the expression of ABC transporters. P-gp can be overproduced during morphine treatment, suggesting that the drug has a direct or, more likely, an indirect action. Variations in cerebral neurotransmitters during exposure to opioids and the release of cytokines during pain could be new endogenous stimuli affecting transporter synthesis. This review concludes with an analysis of the pharmacotherapeutic and clinical impacts of the interactions between ABC transporters and opioids.

  5. Efficient extracellular production of type I secretion pathway-dependent Pseudomonas fluorescens lipase in recombinant Escherichia coli by heterologous ABC protein exporters.

    PubMed

    Eom, Gyeong Tae; Lee, Seung Hwan; Oh, Young Hoon; Choi, Ji Eun; Park, Si Jae; Song, Jae Kwang

    2014-10-01

    Heterologous ABC protein exporters, the apparatus of type I secretion pathway in Gram-negative bacteria, were used for extracellular production of Pseudomonas fluorescens lipase (TliA) in recombinant Escherichia coli. The effect of the expression of different ABC protein exporter gene clusters (P. fluorescens tliDEF, Pseudomonas aeruginosa aprDEF, Erwinia chrysanthemi prtDEF, and Serratia marcescens lipBCD genes) was examined on the secretion of TliA at growth temperatures of 20, 25, 30 and 35 °C. TliA secretion in recombinant E. coli XL10-Gold varied depending upon type of ABC protein exporter and culture temperature. E. coli expressing S. marcescens lipBCD genes showed the highest secretion level of TliA (122.8 U ml(-1)) when cultured at 25 °C. Thus, optimized culture conditions for efficient extracellular production of lipase in recombinant E. coli can be designed by changing the type of ABC protein exporter and the growth temperature.

  6. Fluconazole Resistance Associated with Drug Efflux and Increased Transcription of a Drug Transporter Gene, PDH1, in Candida glabrata

    PubMed Central

    Miyazaki, Haruko; Miyazaki, Yoshitsugu; Geber, Antonia; Parkinson, Tanya; Hitchcock, Christopher; Falconer, Derek J.; Ward, Douglas J.; Marsden, Katherine; Bennett, John E.

    1998-01-01

    Sequential Candida glabrata isolates were obtained from the mouth of a patient infected with human immunodeficiency virus type 1 who was receiving high doses of fluconazole for oropharyngeal thrush. Fluconazole-susceptible colonies were replaced by resistant colonies that exhibited both increased fluconazole efflux and increased transcripts of a gene which codes for a protein with 72.5% identity to Pdr5p, an ABC multidrug transporter in Saccharomyces cerevisiae. The deduced protein had a molecular mass of 175 kDa and was composed of two homologous halves, each with six putative transmembrane domains and highly conserved sequences of ATP-binding domains. When the earliest and most azole-susceptible isolate of C. glabrata from this patient was exposed to fluconazole, increased transcripts of the PDR5 homolog appeared, linking azole exposure to regulation of this gene. PMID:9661006

  7. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease.

    PubMed Central

    Urban, M; Bhargava, T; Hamer, J E

    1999-01-01

    Cells tolerate exposure to cytotoxic compounds through the action of ATP-driven efflux pumps belonging to the ATP-binding cassette (ABC) superfamily of membrane transporters. Phytopathogenic fungi encounter toxic environments during plant invasion as a result of the plant defense response. Here we demonstrate the requirement for an ABC transporter during host infection by the fungal plant pathogen Magnaporthe grisea. The ABC1 gene was identified in an insertional mutagenesis screen for pathogenicity mutants. The ABC1 insertional mutant and a gene-replacement mutant arrest growth and die shortly after penetrating either rice or barley epidermal cells. The ABC1-encoded protein is similar to yeast ABC transporters implicated in multidrug resistance, and ABC1 gene transcripts are inducible by toxic drugs and a rice phytoalexin. However, abc1 mutants are not hypersensitive to antifungal compounds. The non-pathogenic, insertional mutation in ABC1 occurs in the promoter region and dramatically reduces transcript induction by metabolic poisons. These data strongly suggest that M.grisea requires the up-regulation of specific ABC transporters for pathogenesis; most likely to protect itself against plant defense mechanisms. PMID:9927411

  8. RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa).

    PubMed

    Shiono, Katsuhiro; Ando, Miho; Nishiuchi, Shunsaku; Takahashi, Hirokazu; Watanabe, Kohtaro; Nakamura, Motoaki; Matsuo, Yuichi; Yasuno, Naoko; Yamanouchi, Utako; Fujimoto, Masaru; Takanashi, Hideki; Ranathunge, Kosala; Franke, Rochus B; Shitan, Nobukazu; Nishizawa, Naoko K; Takamure, Itsuro; Yano, Masahiro; Tsutsumi, Nobuhiro; Schreiber, Lukas; Yazaki, Kazufumi; Nakazono, Mikio; Kato, Kiyoaki

    2014-10-01

    Suberin is a complex polymer composed of aliphatic and phenolic compounds. It is a constituent of apoplastic plant interfaces. In many plant species, including rice (Oryza sativa), the hypodermis in the outer part of roots forms a suberized cell wall (the Casparian strip and/or suberin lamellae), which inhibits the flow of water and ions and protects against pathogens. To date, there is no genetic evidence that suberin forms an apoplastic transport barrier in the hypodermis. We discovered that a rice reduced culm number1 (rcn1) mutant could not develop roots longer than 100 mm in waterlogged soil. The mutated gene encoded an ATP-binding cassette (ABC) transporter named RCN1/OsABCG5. RCN1/OsABCG5 gene expression in the wild type was increased in most hypodermal and some endodermal roots cells under stagnant deoxygenated conditions. A GFP-RCN1/OsABCG5 fusion protein localized at the plasma membrane of the wild type. Under stagnant deoxygenated conditions, well suberized hypodermis developed in wild types but not in rcn1 mutants. Under stagnant deoxygenated conditions, apoplastic tracers (periodic acid and berberine) were blocked at the hypodermis in the wild type but not in rcn1, indicating that the apoplastic barrier in the mutant was impaired. The amount of the major aliphatic suberin monomers originating from C(28) and C(30) fatty acids or ω-OH fatty acids was much lower in rcn1 than in the wild type. These findings suggest that RCN1/OsABCG5 has a role in the suberization of the hypodermis of rice roots, which contributes to formation of the apoplastic barrier. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  9. Gene Cluster Responsible for Secretion of and Immunity to Multiple Bacteriocins, the NKR-5-3 Enterocins

    PubMed Central

    Ishibashi, Naoki; Himeno, Kohei; Masuda, Yoshimitsu; Perez, Rodney Honrada; Iwatani, Shun; Wilaipun, Pongtep; Leelawatcharamas, Vichien; Nakayama, Jiro; Sonomoto, Kenji

    2014-01-01

    Enterococcus faecium NKR-5-3, isolated from Thai fermented fish, is characterized by the unique ability to produce five bacteriocins, namely, enterocins NKR-5-3A, -B, -C, -D, and -Z (Ent53A, Ent53B, Ent53C, Ent53D, and Ent53Z). Genetic analysis with a genome library revealed that the bacteriocin structural genes (enkA [ent53A], enkC [ent53C], enkD [ent53D], and enkZ [ent53Z]) that encode these peptides (except for Ent53B) are located in close proximity to each other. This NKR-5-3ACDZ (Ent53ACDZ) enterocin gene cluster (approximately 13 kb long) includes certain bacteriocin biosynthetic genes such as an ABC transporter gene (enkT), two immunity genes (enkIaz and enkIc), a response regulator (enkR), and a histidine protein kinase (enkK). Heterologous-expression studies of enkT and ΔenkT mutant strains showed that enkT is responsible for the secretion of Ent53A, Ent53C, Ent53D, and Ent53Z, suggesting that EnkT is a wide-range ABC transporter that contributes to the effective production of these bacteriocins. In addition, EnkIaz and EnkIc were found to confer self-immunity to the respective bacteriocins. Furthermore, bacteriocin induction assays performed with the ΔenkRK mutant strain showed that EnkR and EnkK are regulatory proteins responsible for bacteriocin production and that, together with Ent53D, they constitute a three-component regulatory system. Thus, the Ent53ACDZ gene cluster is essential for the biosynthesis and regulation of NKR-5-3 enterocins, and this is, to our knowledge, the first report that demonstrates the secretion of multiple bacteriocins by an ABC transporter. PMID:25149515

  10. Expression Profile of Drug and Nutrient Absorption Related Genes in Madin-Darby Canine Kidney (MDCK) Cells Grown under Differentiation Conditions.

    PubMed

    Quan, Yong; Jin, Yisheng; Faria, Teresa N; Tilford, Charles A; He, Aiqing; Wall, Doris A; Smith, Ronald L; Vig, Balvinder S

    2012-06-18

    The expression levels of genes involved in drug and nutrient absorption were evaluated in the Madin-Darby Canine Kidney (MDCK) in vitro drug absorption model. MDCK cells were grown on plastic surfaces (for 3 days) or on Transwell® membranes (for 3, 5, 7, and 9 days). The expression profile of genes including ABC transporters, SLC transporters, and cytochrome P450 (CYP) enzymes was determined using the Affymetrix® Canine GeneChip®. Expression of genes whose probe sets passed a stringent confirmation process was examined. Expression of a few transporter (MDR1, PEPT1 and PEPT2) genes in MDCK cells was confirmed by RT-PCR. The overall gene expression profile was strongly influenced by the type of support the cells were grown on. After 3 days of growth, expression of 28% of the genes was statistically different (1.5-fold cutoff, p < 0.05) between the cells grown on plastic and Transwell® membranes. When cells were differentiated on Transwell® membranes, large changes in gene expression profile were observed during the early stages, which then stabilized after 5-7 days. Only a small number of genes encoding drug absorption related SLC, ABC, and CYP were detected in MDCK cells, and most of them exhibited low hybridization signals. Results from this study provide valuable reference information on endogenous gene expression in MDCK cells that could assist in design of drug-transporter and/or drug-enzyme interaction studies, and help interpret the contributions of various transporters and metabolic enzymes in studies with MDCK cells.

  11. Expression Profile of Drug and Nutrient Absorption Related Genes in Madin-Darby Canine Kidney (MDCK) Cells Grown under Differentiation Conditions

    PubMed Central

    Quan, Yong; Jin, Yisheng; Faria, Teresa N.; Tilford, Charles A.; He, Aiqing; Wall, Doris A.; Smith, Ronald L.; Vig, Balvinder S.

    2012-01-01

    The expression levels of genes involved in drug and nutrient absorption were evaluated in the Madin-Darby Canine Kidney (MDCK) in vitro drug absorption model. MDCK cells were grown on plastic surfaces (for 3 days) or on Transwell® membranes (for 3, 5, 7, and 9 days). The expression profile of genes including ABC transporters, SLC transporters, and cytochrome P450 (CYP) enzymes was determined using the Affymetrix® Canine GeneChip®. Expression of genes whose probe sets passed a stringent confirmation process was examined. Expression of a few transporter (MDR1, PEPT1 and PEPT2) genes in MDCK cells was confirmed by RT-PCR. The overall gene expression profile was strongly influenced by the type of support the cells were grown on. After 3 days of growth, expression of 28% of the genes was statistically different (1.5-fold cutoff, p < 0.05) between the cells grown on plastic and Transwell® membranes. When cells were differentiated on Transwell® membranes, large changes in gene expression profile were observed during the early stages, which then stabilized after 5–7 days. Only a small number of genes encoding drug absorption related SLC, ABC, and CYP were detected in MDCK cells, and most of them exhibited low hybridization signals. Results from this study provide valuable reference information on endogenous gene expression in MDCK cells that could assist in design of drug-transporter and/or drug-enzyme interaction studies, and help interpret the contributions of various transporters and metabolic enzymes in studies with MDCK cells. PMID:24300234

  12. Interaction of BDE-47 and its Hydroxylated Metabolite 6-OH-BDE-47 with the Human ABC Efflux Transporters P-gp and BCRP: Considerations for Human Exposure and Risk Assessment

    EPA Science Inventory

    ATP binding cassette (ABC) transporters, including P-glycoprotein (P-gp; also known as MDR1, ABCB1) and breast cancer resistance protein (BCRP; also known as ABCG2), are membrane-bound proteins that mediate the cellular efflux of xenobiotics as an important defense against chemic...

  13. The ABC and AUSSAT.

    ERIC Educational Resources Information Center

    McGarritty, Ian

    1985-01-01

    Discusses the Australian Broadcasting Corporation's (ABC) utilization of the AUSSAT telecommunications satellite to extend its television and radio transmission range to reach remote Australian audiences; the satellite's program gathering and interchange capabilities; and ABC's generation of other benefits to offset cost of satellite services.…

  14. Structure of the MacAB-TolC ABC-type tripartite multidrug efflux pump

    PubMed Central

    Llabrés, Salomé; Neuberger, Arthur; Blaza, James N.; Bai, Xiao-chen; Okada, Ui; Murakami, Satoshi; van Veen, Hendrik W.; Zachariae, Ulrich; Scheres, Sjors H.W.; Luisi, Ben F.

    2017-01-01

    The MacA-MacB-TolC assembly of Escherichia coli is a transmembrane machine that spans the cell envelope and actively extrudes substrates, including macrolide antibiotics and polypeptide virulence factors. These transport processes are energized by the ATPase MacB, a member of the ATP-binding cassette (ABC) superfamily. We present an electron cryo-microscopy structure of the ABC-type tripartite assembly at near-atomic resolution. A hexamer of the periplasmic protein MacA bridges between a TolC trimer in the outer membrane and a MacB dimer in the inner membrane, generating a quaternary structure with a central channel for substrate translocation. A gating ring found in MacA is proposed to act as a one-way valve in substrate transport. The MacB structure features an atypical transmembrane domain (TMD) with a closely packed dimer interface and a periplasmic opening that is the likely portal for substrate entry from the periplasm, with subsequent displacement through an allosteric transport mechanism. PMID:28504659

  15. Role of the Fur Regulon in Iron Transport in Bacillus subtilis

    PubMed Central

    Ollinger, Juliane; Song, Kyung-Bok; Antelmann, Haike; Hecker, Michael; Helmann, John D.

    2006-01-01

    The Bacillus subtilis ferric uptake regulator (Fur) protein mediates the iron-dependent repression of at least 20 operons encoding ∼40 genes. We investigated the physiological roles of Fur-regulated genes by the construction of null mutations in 14 transcription units known or predicted to function in siderophore biosynthesis or iron uptake. We demonstrate that ywbLMN, encoding an elemental iron uptake system orthologous to the copper oxidase-dependent Fe(III) uptake system of Saccharomyces cerevisiae, is essential for growth in low iron minimal medium lacking citric acid. 2,3-Dihydroxybenzoyl-glycine (Itoic acid), the siderophore precursor produced by laboratory strains of B. subtilis, is of secondary importance. In the presence of citrate, the YfmCDEF ABC transporter is required for optimal growth. B. subtilis is unable to grow in minimal medium containing the iron chelator EDDHA unless the ability to synthesize the intact bacillibactin siderophore is restored (by the introduction of a functional sfp gene) or exogenous siderophores are provided. Utilization of the catecholate siderophores bacillibactin and enterobactin requires the FeuABC importer and the YusV ATPase. Utilization of hydroxamate siderophores requires the FhuBGC ABC transporter together with the FhuD (ferrichrome) or YxeB (ferrioxamine) substrate-binding proteins. Growth with schizokinen or arthrobactin is at least partially dependent on the YfhA YfiYZ importer and the YusV ATPase. We have also investigated the effects of a fur mutation on the proteome and documented the derepression of 11 Fur-regulated proteins, including a newly identified thioredoxin reductase homolog, YcgT. PMID:16672620

  16. Role of the Fur regulon in iron transport in Bacillus subtilis.

    PubMed

    Ollinger, Juliane; Song, Kyung-Bok; Antelmann, Haike; Hecker, Michael; Helmann, John D

    2006-05-01

    The Bacillus subtilis ferric uptake regulator (Fur) protein mediates the iron-dependent repression of at least 20 operons encoding approximately 40 genes. We investigated the physiological roles of Fur-regulated genes by the construction of null mutations in 14 transcription units known or predicted to function in siderophore biosynthesis or iron uptake. We demonstrate that ywbLMN, encoding an elemental iron uptake system orthologous to the copper oxidase-dependent Fe(III) uptake system of Saccharomyces cerevisiae, is essential for growth in low iron minimal medium lacking citric acid. 2,3-Dihydroxybenzoyl-glycine (Itoic acid), the siderophore precursor produced by laboratory strains of B. subtilis, is of secondary importance. In the presence of citrate, the YfmCDEF ABC transporter is required for optimal growth. B. subtilis is unable to grow in minimal medium containing the iron chelator EDDHA unless the ability to synthesize the intact bacillibactin siderophore is restored (by the introduction of a functional sfp gene) or exogenous siderophores are provided. Utilization of the catecholate siderophores bacillibactin and enterobactin requires the FeuABC importer and the YusV ATPase. Utilization of hydroxamate siderophores requires the FhuBGC ABC transporter together with the FhuD (ferrichrome) or YxeB (ferrioxamine) substrate-binding proteins. Growth with schizokinen or arthrobactin is at least partially dependent on the YfhA YfiYZ importer and the YusV ATPase. We have also investigated the effects of a fur mutation on the proteome and documented the derepression of 11 Fur-regulated proteins, including a newly identified thioredoxin reductase homolog, YcgT.

  17. Minireview: SLCO and ABC Transporters: A Role for Steroid Transport in Prostate Cancer Progression

    PubMed Central

    Cho, Eunpi; Montgomery, R. Bruce

    2014-01-01

    Androgens play a critical role in the development and progression of prostate cancer (PCa), and androgen deprivation therapy via surgical or medical castration is front-line therapy for patients with advanced PCa. However, intratumoral testosterone levels are elevated in metastases from patients with castration-resistant disease, and residual intratumoral androgens have been implicated in mediating ligand-dependent mechanisms of androgen receptor activation. The source of residual tissue androgens present despite castration has not been fully elucidated, but proposed mechanisms include uptake and conversion of adrenal androgens, such as dehdroepiandrosterone to testosterone and dihydrotestosterone, or de novo androgen synthesis from cholesterol or progesterone precursors. In this minireview, we discuss the emerging evidence that suggests a role for specific transporters in mediating transport of steroids into or out of prostate cells, thereby influencing intratumoral androgen levels and PCa development and progression. We focus on the solute carrier and ATP binding cassette gene families, which have the most published data for a role in PCa-related steroid transport, and review the potential impact of genetic variation on steroid transport activity and PCa outcomes. Continued assessment of transport activity in PCa models and human tumor tissue is needed to better delineate the different roles these transporters play in physiologic and neoplastic settings, and in order to determine whether targeting the uptake of steroid substrates by specific transporters may be a clinically feasible therapeutic strategy. PMID:25147980

  18. Detergent Screening and Purification of the Human Liver ABC Transporters BSEP (ABCB11) and MDR3 (ABCB4) Expressed in the Yeast Pichia pastoris

    PubMed Central

    Stindt, Jan; Smits, Sander H. J.; Schmitt, Lutz

    2013-01-01

    The human liver ATP-binding cassette (ABC) transporters bile salt export pump (BSEP/ABCB11) and the multidrug resistance protein 3 (MDR3/ABCB4) fulfill the translocation of bile salts and phosphatidylcholine across the apical membrane of hepatocytes. In concert with ABCG5/G8, these two transporters are responsible for the formation of bile and mutations within these transporters can lead to severe hereditary diseases. In this study, we report the heterologous overexpression and purification of human BSEP and MDR3 as well as the expression of the corresponding C-terminal GFP-fusion proteins in the yeast Pichia pastoris. Confocal laser scanning microscopy revealed that BSEP-GFP and MDR3-GFP are localized in the plasma membrane of P. pastoris. Furthermore, we demonstrate the first purification of human BSEP and MDR3 yielding ∼1 mg and ∼6 mg per 100 g of wet cell weight, respectively. By screening over 100 detergents using a dot blot technique, we found that only zwitterionic, lipid-like detergents such as Fos-cholines or Cyclofos were able to extract both transporters in sufficient amounts for subsequent functional analysis. For MDR3, fluorescence-detection size exclusion chromatography (FSEC) screens revealed that increasing the acyl chain length of Fos-Cholines improved monodispersity. BSEP purified in n-dodecyl-β-D-maltoside or Cymal-5 after solubilization with Fos-choline 16 from P. pastoris membranes showed binding to ATP-agarose. Furthermore, detergent-solubilized and purified MDR3 showed a substrate-inducible ATPase activity upon addition of phosphatidylcholine lipids. These results form the basis for further biochemical analysis of human BSEP and MDR3 to elucidate the function of these clinically relevant ABC transporters. PMID:23593265

  19. The structure of the human ABC transporter ABCG2 reveals a novel mechanism for drug extrusion.

    PubMed

    Khunweeraphong, Narakorn; Stockner, Thomas; Kuchler, Karl

    2017-10-23

    The human ABC transporter ABCG2 (Breast Cancer Resistance Protein, BCRP) is implicated in anticancer resistance, in detoxification across barriers and linked to gout. Here, we generate a novel atomic model of ABCG2 using the crystal structure of ABCG5/G8. Extensive mutagenesis verifies the structure, disclosing hitherto unrecognized essential residues and domains in the homodimeric ABCG2 transporter. The elbow helix, the first intracellular loop (ICL1) and the nucleotide-binding domain (NBD) constitute pivotal elements of the architecture building the transmission interface that borders a central cavity which acts as a drug trap. The transmission interface is stabilized by salt-bridge interactions between the elbow helix and ICL1, as well as within ICL1, which is essential to control the conformational switch of ABCG2 to the outward-open drug-releasing conformation. Importantly, we propose that ICL1 operates like a molecular spring that holds the NBD dimer close to the membrane, thereby enabling efficient coupling of ATP hydrolysis during the catalytic cycle. These novel mechanistic data open new opportunities to therapeutically target ABCG2 in the context of related diseases.

  20. The ATP-binding cassette transporter Cbc (choline/betaine/carnitine) recruits multiple substrate-binding proteins with strong specificity for distinct quaternary ammonium compounds

    PubMed Central

    Chen, Chiliang; Malek, Adel A.; Wargo, Matthew J.; Hogan, Deborah A.; Beattie, Gwyn A.

    2017-01-01

    Summary We identified a choline, betaine and carnitine transporter, designated Cbc, from Pseudomonas syringae and Pseudomonas aeruginosa that is unusual among members of the ATP-binding cassette (ABC) transporter family in its use of multiple periplasmic substrate-binding proteins (SBPs) that are highly specific for their substrates. The SBP encoded by the cbcXWV operon, CbcX, binds choline with a high affinity (Km, 2.6 μM) and, although it also binds betaine (Km, 24.2 μM), CbcXWV-mediated betaine uptake did not occur in the presence of choline. The CbcX orthologue ChoX from Sinorhizobium meliloti was similar to CbcX in these binding properties. The core transporter CbcWV also interacts with the carnitine-specific SBP CaiX (Km, 24 μM) and the betaine-specific SBP BetX (Km, 0.6 μM). Unlike most ABC transporter loci, caiX, betX and cbcXWV are separated in the genome. CaiX-mediated carnitine uptake was reduced by CbcX and BetX only when they were bound by their individual ligands, providing the first in vivo evidence for a higher affinity for ligand-bound than ligand-free SBPs by an ABC transporter. These studies demonstrate not only that the Cbc transporter serves as a useful model for exploring ABC transporter component interactions, but also that the orphan SBP genes common to bacterial genomes can encode functional SBPs. PMID:19919675

  1. The ATP-binding cassette transporter Cbc (choline/betaine/carnitine) recruits multiple substrate-binding proteins with strong specificity for distinct quaternary ammonium compounds.

    PubMed

    Chen, Chiliang; Malek, Adel A; Wargo, Matthew J; Hogan, Deborah A; Beattie, Gwyn A

    2010-01-01

    We identified a choline, betaine and carnitine transporter, designated Cbc, from Pseudomonas syringae and Pseudomonas aeruginosa that is unusual among members of the ATP-binding cassette (ABC) transporter family in its use of multiple periplasmic substrate-binding proteins (SBPs) that are highly specific for their substrates. The SBP encoded by the cbcXWV operon, CbcX, binds choline with a high affinity (K(m), 2.6 microM) and, although it also binds betaine (K(m), 24.2 microM), CbcXWV-mediated betaine uptake did not occur in the presence of choline. The CbcX orthologue ChoX from Sinorhizobium meliloti was similar to CbcX in these binding properties. The core transporter CbcWV also interacts with the carnitine-specific SBP CaiX (K(m), 24 microM) and the betaine-specific SBP BetX (K(m), 0.6 microM). Unlike most ABC transporter loci, caiX, betX and cbcXWV are separated in the genome. CaiX-mediated carnitine uptake was reduced by CbcX and BetX only when they were bound by their individual ligands, providing the first in vivo evidence for a higher affinity for ligand-bound than ligand-free SBPs by an ABC transporter. These studies demonstrate not only that the Cbc transporter serves as a useful model for exploring ABC transporter component interactions, but also that the orphan SBP genes common to bacterial genomes can encode functional SBPs.

  2. LhnR and upstream operon LhnABC in Agrobacterium vitis regulate the induction of tobacco hypersensitive responses, grape necrosis and swarming motility.

    PubMed

    Zheng, Desen; Hao, Guixia; Cursino, Luciana; Zhang, Hongsheng; Burr, Thomas J

    2012-09-01

    The characterization of Tn5 transposon insertional mutants of Agrobacterium vitis strain F2/5 revealed a gene encoding a predicted LysR-type transcriptional regulator, lhnR (for 'LysR-type regulator associated with HR and necrosis'), and an immediate upstream operon consisting of three open reading frames (lhnABC) required for swarming motility, surfactant production and the induction of a hypersensitive response (HR) on tobacco and necrosis on grape. The operon lhnABC is unique to A. vitis among the sequenced members in Rhizobiaceae. Mutagenesis of lhnR and lhnABC by gene disruption and complementation of ΔlhnR and ΔlhnABC confirmed their roles in the expression of these phenotypes. Mutation of lhnR resulted in complete loss of HR, swarming motility, surfactant production and reduced necrosis, whereas mutation of lhnABC resulted in loss of swarming motility, delayed and reduced HR development and reduced surfactant production and necrosis. The data from promoter-green fluorescent protein (gfp) fusions showed that lhnR suppresses the expression of lhnABC and negatively autoregulates its own expression. It was also shown that lhnABC negatively affects its own expression and positively affects the transcription of lhnR. lhnR and lhnABC constitute a regulatory circuit that coordinates the transcription level of lhnR, resulting in the expression of swarming, surfactant, HR and necrosis phenotypes. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  3. In Vitro Reassembly of the Ribose ATP-binding Cassette Transporter Reveals a Distinct Set of Transport Complexes*

    PubMed Central

    Clifton, Matthew C.; Simon, Michael J.; Erramilli, Satchal K.; Zhang, Huide; Zaitseva, Jelena; Hermodson, Mark A.; Stauffacher, Cynthia V.

    2015-01-01

    Bacterial ATP-binding cassette (ABC) importers are primary active transporters that are critical for nutrient uptake. Based on structural and functional studies, ABC importers can be divided into two distinct classes, type I and type II. Type I importers follow a strict alternating access mechanism that is driven by the presence of the substrate. Type II importers accept substrates in a nucleotide-free state, with hydrolysis driving an inward facing conformation. The ribose transporter in Escherichia coli is a tripartite complex consisting of a cytoplasmic ATP-binding cassette protein, RbsA, with fused nucleotide binding domains; a transmembrane domain homodimer, RbsC2; and a periplasmic substrate binding protein, RbsB. To investigate the transport mechanism of the complex RbsABC2, we probed intersubunit interactions by varying the presence of the substrate ribose and the hydrolysis cofactors, ATP/ADP and Mg2+. We were able to purify a full complex, RbsABC2, in the presence of stable, transition state mimics (ATP, Mg2+, and VO4); a RbsAC complex in the presence of ADP and Mg2+; and a heretofore unobserved RbsBC complex in the absence of cofactors. The presence of excess ribose also destabilized complex formation between RbsB and RbsC. These observations suggest that RbsABC2 shares functional traits with both type I and type II importers, as well as possessing unique features, and employs a distinct mechanism relative to other ABC transporters. PMID:25533465

  4. Analysis of rice PDR-like ABC transporter genes in sheath blight resistance

    USDA-ARS?s Scientific Manuscript database

    Sheath blight caused by Rhizoctonia solani is one of the most damaging diseases of rice worldwide. To understand the molecular mechanism of resistance, we identified 450 differentially expressed genes in a resistant rice cultivar Jasmine 85 after R. solani infection with a combination of DNA microar...

  5. N-retinylidene-phosphatidylethanolamine is the preferred retinoid substrate for the photoreceptor-specific ABC transporter ABCA4 (ABCR).

    PubMed

    Beharry, Seelochan; Zhong, Ming; Molday, Robert S

    2004-12-24

    ABCA4, a member of the family of ATP binding cassette (ABC) proteins found in rod and cone photoreceptors, has been implicated in the transport of retinoid compounds across the outer segment disk membrane following the photoactivation of rhodopsin. Mutations in the ABCA4 gene are responsible for Stargardt macular dystrophy and related retinal degenerative diseases that cause a loss in vision. To identify the retinoid substrate that interacts with ABCA4, we have isolated ABCA4 from rod outer segment disk membranes on an immunoaffinity matrix and analyzed retinoid compounds that bind to ABCA4 using high performance liquid chromatography and radiolabeling methods. When all-trans-retinal was added to ABCA4 in the presence of phosphatidylethanolamine, approximately 0.9 mol of N-retinylidene-phosphatidylethanolamine and 0.3 mol of all-trans-retinal were bound per mol of ABCA4 with an apparent K(d) of 2-5 microm. ATP and GTP released these retinoids from ABCA4, whereas ADP, GDP, and nonhydrolyzable derivatives, adenosine 5'-(beta,gamma-imido)triphosphate and guanosine 5'-(beta,gamma-imido)triphosphate, were ineffective. One mole of N-retinyl-phosphatidylethanolamine, the reduced form of N-retinylidene-phosphatidylethanolamine, bound per mol of ABCA4, whereas 0.3 mol of all-trans-retinal were bound in the absence of phosphatidylethanolamine. No binding of all-trans-retinol to ABCA4 was observed. Our results indicate that ABCA4 preferentially binds N-retinylidene-phosphatidylethanolamine with high affinity in the absence of ATP. Our studies further suggest that ATP binding and hydrolysis induces a protein conformational change that causes N-retinylidene-phosphatidylethanolamine to dissociate from ABCA4.

  6. ABC's of Construction. Final Report.

    ERIC Educational Resources Information Center

    Greater Baton Rouge Chamber of Commerce, LA.

    The ABC's of Construction project was a demonstration project designed to integrate basic skills training with an industry-developed vocational-craft training program. The program was located at the central training facility of the Pelican Chapter of Associated Builders and Contractors (ABC), an organization made up of nearly 300 member companies…

  7. Statistical Hypothesis Testing in Intraspecific Phylogeography: NCPA versus ABC

    PubMed Central

    Templeton, Alan R.

    2009-01-01

    Nested clade phylogeographic analysis (NCPA) and approximate Bayesian computation (ABC) have been used to test phylogeographic hypotheses. Multilocus NCPA tests null hypotheses, whereas ABC discriminates among a finite set of alternatives. The interpretive criteria of NCPA are explicit and allow complex models to be built from simple components. The interpretive criteria of ABC are ad hoc and require the specification of a complete phylogeographic model. The conclusions from ABC are often influenced by implicit assumptions arising from the many parameters needed to specify a complex model. These complex models confound many assumptions so that biological interpretations are difficult. Sampling error is accounted for in NCPA, but ABC ignores important sources of sampling error that creates pseudo-statistical power. NCPA generates the full sampling distribution of its statistics, but ABC only yields local probabilities, which in turn make it impossible to distinguish between a good fitting model, a non-informative model, and an over-determined model. Both NCPA and ABC use approximations, but convergences of the approximations used in NCPA are well defined whereas those in ABC are not. NCPA can analyze a large number of locations, but ABC cannot. Finally, the dimensionality of tested hypothesis is known in NCPA, but not for ABC. As a consequence, the “probabilities” generated by ABC are not true probabilities and are statistically non-interpretable. Accordingly, ABC should not be used for hypothesis testing, but simulation approaches are valuable when used in conjunction with NCPA or other methods that do not rely on highly parameterized models. PMID:19192182

  8. Tungsten Transport Protein A (WtpA) in Pyrococcus furiosus: the First Member of a New Class of Tungstate and Molybdate Transporters

    PubMed Central

    Bevers, Loes E.; Hagedoorn, Peter-Leon; Krijger, Gerard C.; Hagen, Wilfred R.

    2006-01-01

    A novel tungstate and molybdate binding protein has been discovered from the hyperthermophilic archaeon Pyrococcus furiosus. This tungstate transport protein A (WtpA) is part of a new ABC transporter system selective for tungstate and molybdate. WtpA has very low sequence similarity with the earlier-characterized transport proteins ModA for molybdate and TupA for tungstate. Its structural gene is present in the genome of numerous archaea and some bacteria. The identification of this new tungstate and molybdate binding protein clarifies the mechanism of tungstate and molybdate transport in organisms that lack the known uptake systems associated with the ModA and TupA proteins, like many archaea. The periplasmic protein of this ABC transporter, WtpA (PF0080), was cloned and expressed in Escherichia coli. Using isothermal titration calorimetry, WtpA was observed to bind tungstate (dissociation constant [KD] of 17 ± 7 pM) and molybdate (KD of 11 ± 5 nM) with a stoichiometry of 1.0 mol oxoanion per mole of protein. These low KD values indicate that WtpA has a higher affinity for tungstate than do ModA and TupA and an affinity for molybdate similar to that of ModA. A displacement titration of molybdate-saturated WtpA with tungstate showed that the tungstate effectively replaced the molybdate in the binding site of the protein. PMID:16952940

  9. Do You Know Your ABC?

    ERIC Educational Resources Information Center

    Neale, Claire

    2013-01-01

    Within primary schools, the core subjects of literacy and numeracy are highly regarded, and rightly so, as children need to learn to read, write and be numerically literate. This means that all children learn their ABCs at an early age, But, what about the "other ABC"--"Airway, Breathing and Circulation?" Accidents and medical…

  10. Mutations in the Arabidopsis Peroxisomal ABC Transporter COMATOSE Allow Differentiation between Multiple Functions In Planta: Insights from an Allelic Series

    PubMed Central

    Dietrich, Daniela; Schmuths, Heike; Lousa, Carine De Marcos; Baldwin, Jocelyn M.; Baldwin, Stephen A.; Baker, Alison; Holdsworth, Michael J.

    2009-01-01

    COMATOSE (CTS), the Arabidopsis homologue of human Adrenoleukodystrophy protein (ALDP), is required for import of substrates for peroxisomal β-oxidation. A new allelic series and a homology model based on the bacterial ABC transporter, Sav1866, provide novel insights into structure-function relations of ABC subfamily D proteins. In contrast to ALDP, where the majority of mutations result in protein absence from the peroxisomal membrane, all CTS mutants produced stable protein. Mutation of conserved residues in the Walker A and B motifs in CTS nucleotide-binding domain (NBD) 1 resulted in a null phenotype but had little effect in NBD2, indicating that the NBDs are functionally distinct in vivo. Two alleles containing mutations in NBD1 outside the Walker motifs (E617K and C631Y) exhibited resistance to auxin precursors 2,4-dichlorophenoxybutyric acid (2,4-DB) and indole butyric acid (IBA) but were wild type in all other tests. The homology model predicted that the transmission interfaces are domain-swapped in CTS, and the differential effects of mutations in the conserved “EAA motif” of coupling helix 2 supported this prediction, consistent with distinct roles for each NBD. Our findings demonstrate that CTS functions can be separated by mutagenesis and the structural model provides a framework for interpretation of phenotypic data. PMID:19019987

  11. Biochemical characterization of an ABC transporter LptBFGC complex required for the outer membrane sorting of lipopolysaccharides.

    PubMed

    Narita, Shin-ichiro; Tokuda, Hajime

    2009-07-07

    Seven Lpt proteins (A through G) are thought to be involved in lipopolysaccharide transport from the inner to outer membrane of Escherichia coli. LptB belongs to the ATP-binding cassette transporter superfamily. Although the lptB gene lacks neighboring genes encoding membrane subunits, bioinformatic analyses recently indicated that two distantly located consecutive genes, lptF and lptG, could encode membrane subunits. To examine this possibility, LptB was expressed with LptF and LptG. We report here that both LptF and LptG formed a complex with LptB. Furthermore, an inner membrane protein, LptC, which had been implicated in lipopolysaccharide transport, was also included in this complex.

  12. Substrate Binding Protein DppA1 of ABC Transporter DppBCDF Increases Biofilm Formation in Pseudomonas aeruginosa by Inhibiting Pf5 Prophage Lysis

    PubMed Central

    Lee, Yunho; Song, Sooyeon; Sheng, Lili; Zhu, Lei; Kim, Jun-Seob; Wood, Thomas K.

    2018-01-01

    Filamentous phage impact biofilm development, stress tolerance, virulence, biofilm dispersal, and colony variants. Previously, we identified 137 Pseudomonas aeruginosa PA14 mutants with more than threefold enhanced and 88 mutants with more than 10-fold reduced biofilm formation by screening 5850 transposon mutants (PLoS Pathogens 5: e1000483, 2009). Here, we characterized the function of one of these 225 mutations, dppA1 (PA14_58350), in regard to biofilm formation. DppA1 is a substrate-binding protein (SBP) involved in peptide utilization via the DppBCDF ABC transporter system. We show that compared to the wild-type strain, inactivating dppA1 led to 68-fold less biofilm formation in a static model and abolished biofilm formation in flow cells. Moreover, the dppA1 mutant had a delay in swarming and produced 20-fold less small-colony variants, and both biofilm formation and swarming were complemented by producing DppA1. A whole-transcriptome analysis showed that only 10 bacteriophage Pf5 genes were significantly induced in the biofilm cells of the dppA1 mutant compared to the wild-type strain, and inactivation of dppA1 resulted in a 600-fold increase in Pf5 excision and a million-fold increase in phage production. As expected, inactivating Pf5 genes PA0720 and PA0723 increased biofilm formation substantially. Inactivation of DppA1 also reduced growth (due to cell lysis). Hence, DppA1 increases biofilm formation by repressing Pf5 prophage. PMID:29416528

  13. Overexpression of an ABC transporter and mutations of GyrA, GyrB, and ParC in contributing to high-level ciprofloxacin resistance in Streptococcus suis type 2.

    PubMed

    Yao, Jie; Shang, Kexin; Huang, Jinhu; Ran, Wei; Kashif, Jam; Wang, Liping

    2014-04-01

    Streptococcus suis is a pathogen of zoonotic diseases. Moreover, the emergence of fluoro-quinolones (FQs) resistance in this pathogen has severe consequences for pigs and human health. In this study, the molecular mechanism of FQs resistance in S. suis type 2 (SS2) sensitive strains isolated from pigs was assessed after in vitro induction of resistance against the most frequently used FQs: ciprofloxacin, norfloxacin, and enrofloxacin. Proteome analysis, sequencing and real-time RT-PCR results strongly established an overexpression of an ABC transporter protein (other than SatAB) and topoisomerase mutations in GyrA (Ser81Arg), GyrB (Glu354Lys), and ParC (Ser79Phe) in contributing to high level ciprofloxacin resistance in SS2. Due to the overexpression of the ABC transporter, intracellular ciprofloxacin concentrations were significantly lower in the resistant strains than those of sensitive strains after 20, 35, and 60 min exposures to ciprofloxacin (p < 0.05). It was concluded that improper use of FQs is one of the main causes of the emergence of this zoonotic pathogen as a multiresistant organism against commonly used antibiotics. The existence of an efflux-like protein is an incentive to find new drug targets to avoid the spread of FQs-resistant S. suis isolates in pigs and the human population.

  14. Comparative molecular biological analysis of membrane transport genes in organisms

    PubMed Central

    Nagata, Toshifumi; Iizumi, Shigemi; Satoh, Kouji

    2008-01-01

    Comparative analyses of membrane transport genes revealed many differences in the features of transport homeostasis in eight diverse organisms, ranging from bacteria to animals and plants. In bacteria, membrane-transport systems depend mainly on single genes encoding proteins involved in an ATP-dependent pump and secondary transport proteins that use H+ as a co-transport molecule. Animals are especially divergent in their channel genes, and plants have larger numbers of P-type ATPase and secondary active transporters than do other organisms. The secondary transporter genes have diverged evolutionarily in both animals and plants for different co-transporter molecules. Animals use Na+ ions for the formation of concentration gradients across plasma membranes, dependent on secondary active transporters and on membrane voltages that in turn are dependent on ion transport regulation systems. Plants use H+ ions pooled in vacuoles and the apoplast to transport various substances; these proton gradients are also dependent on secondary active transporters. We also compared the numbers of membrane transporter genes in Arabidopsis and rice. Although many transporter genes are similar in these plants, Arabidopsis has a more diverse array of genes for multi-efflux transport and for response to stress signals, and rice has more secondary transporter genes for carbohydrate and nutrient transport. Electronic supplementary material The online version of this article (doi:10.1007/s11103-007-9287-z) contains supplementary material, which is available to authorized users. PMID:18293089

  15. Cellular engineering of Artemisia annua and Artemisia dubia with the rol ABC genes for enhanced production of potent anti-malarial drug artemisinin.

    PubMed

    Kiani, Bushra Hafeez; Suberu, John; Mirza, Bushra

    2016-05-04

    Malaria is causing more than half of a million deaths and 214 million clinical cases annually. Despite tremendous efforts for the control of malaria, the global morbidity and mortality have not been significantly changed in the last 50 years. Artemisinin, extracted from the medicinal plant Artemisia sp. is an effective anti-malarial drug. In 2015, elucidation of the effectiveness of artemisinin as a potent anti-malarial drug was acknowledged with a Nobel prize. Owing to the tight market and low yield of artemisinin, an economical way to increase its production is to increase its content in Artemisia sp. through different biotechnological approaches including genetic transformation. Artemisia annua and Artemisia dubia were transformed with rol ABC genes through Agrobacterium tumefacienes and Agrobacterium rhizogenes methods. The artemisinin content was analysed and compared between transformed and untransformed plants with the help of LC-MS/MS. Expression of key genes [Cytochrome P450 (CYP71AV1), aldehyde dehydrogenase 1 (ALDH1), amorpha-4, 11 diene synthase (ADS)] in the biosynthetic pathway of artemisinin and gene for trichome development and sesquiterpenoid biosynthetic (TFAR1) were measured using Quantitative real time PCR (qRT-PCR). Trichome density was analysed using confocal microscope. Artemisinin content was significantly increased in transformed material of both Artemisia species when compared to un-transformed plants. The artemisinin content within leaves of transformed lines was increased by a factor of nine, indicating that the plant is capable of synthesizing much higher amounts than has been achieved so far through traditional breeding. Expression of all artemisinin biosynthesis genes was significantly increased, although variation between the genes was observed. CYP71AV1 and ALDH1 expression levels were higher than that of ADS. Levels of the TFAR1 expression were also increased in all transgenic lines. Trichome density was also significantly

  16. A Mutation within the Extended X Loop Abolished Substrate-induced ATPase Activity of the Human Liver ATP-binding Cassette (ABC) Transporter MDR3*

    PubMed Central

    Kluth, Marianne; Stindt, Jan; Dröge, Carola; Linnemann, Doris; Kubitz, Ralf; Schmitt, Lutz

    2015-01-01

    The human multidrug resistance protein 3 (MDR3/ABCB4) belongs to the ubiquitous family of ATP-binding cassette (ABC) transporters and is located in the canalicular membrane of hepatocytes. There it flops the phospholipids of the phosphatidylcholine (PC) family from the inner to the outer leaflet. Here, we report the characterization of wild type MDR3 and the Q1174E mutant, which was identified previously in a patient with progressive familial intrahepatic cholestasis type 3 (PFIC-3). We expressed different variants of MDR3 in the yeast Pichia pastoris, purified the proteins via tandem affinity chromatography, and determined MDR3-specific ATPase activity in the presence or absence of phospholipids. The ATPase activity of wild type MDR3 was stimulated 2-fold by liver PC or 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine lipids. Furthermore, the cross-linking of MDR3 with a thiol-reactive fluorophore blocked ATP hydrolysis and exhibited no PC stimulation. Similarly, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin lipids did not induce an increase of wild type MDR3 ATPase activity. The phosphate analogues beryllium fluoride and aluminum fluoride led to complete inhibition of ATPase activity, whereas orthovanadate inhibited exclusively the PC-stimulated ATPase activity of MDR3. The Q1174E mutation is located in the nucleotide-binding domain in direct proximity of the leucine of the ABC signature motif and extended the X loop, which is found in ABC exporters. Our data on the Q1174E mutant demonstrated basal ATPase activity, but PC lipids were incapable of stimulating ATPase activity highlighting the role of the extended X loop in the cross-talk of the nucleotide-binding domain and the transmembrane domain. PMID:25533467

  17. The trehalose-specific transporter LpqY-SugABC is required for antimicrobial and anti-biofilm activity of trehalose analogues in Mycobacterium smegmatis.

    PubMed

    Wolber, Jeffrey M; Urbanek, Bailey L; Meints, Lisa M; Piligian, Brent F; Lopez-Casillas, Irene C; Zochowski, Kailey M; Woodruff, Peter J; Swarts, Benjamin M

    2017-10-10

    Mycobacteria, including the bacterial pathogen that causes human tuberculosis, possess distinctive pathways for synthesizing and utilizing the non-mammalian disaccharide trehalose. Trehalose metabolism is essential for mycobacterial viability and has been linked to in vitro biofilm formation, which may bear relevance to in vivo drug tolerance. Previous research has shown that some trehalose analogues bearing modifications at the 6-position inhibit growth of various mycobacterial species. In this work, 2-, 5-, and 6-position-modified trehalose analogues were synthesized using our previously reported one-step chemoenzymatic method and shown to inhibit growth and biofilm formation in the two-to three-digit micromolar range in Mycobacterium smegmatis. The trehalose-specific ABC transporter LpqY-SugABC was essential for antimicrobial and anti-biofilm activity, suggesting that inhibition by monosubstituted trehalose analogues requires cellular uptake and does not proceed via direct action on extracellular targets such as antigen 85 acyltransferases or trehalose dimycolate hydrolase. Although the potency of the described compounds in in vitro growth and biofilm assays is moderate, this study reports the first trehalose-based mycobacterial biofilm inhibitors and reinforces the concept of exploiting unique sugar uptake pathways to deliver inhibitors and other chemical cargo to mycobacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Seasonal Expression of the Picocyanobacterial Phosphonate Transporter Gene phnD in the Sargasso Sea

    PubMed Central

    Ilikchyan, Irina N.; McKay, Robert Michael L.; Kutovaya, Olga A.; Condon, Rob; Bullerjahn, George S.

    2010-01-01

    In phosphorus-limited marine environments, picocyanobacteria (Synechococcus and Prochlorococcus spp.) can hydrolyze naturally occurring phosphonates as a P source. Utilization of 2-aminoethylphosphonate (2-AEP) is dependent on expression of the phn genes, encoding functions required for uptake, and C–P bond cleavage. Prior work has indicated that expression of picocyanobacterial phnD, encoding the phosphonate binding protein of the phosphonate ABC transporter, is a proxy for the assimilation of phosphonates in natural assemblages of Synechococcus spp. and Prochlorococcus spp (Ilikchyan et al., 2009). In this study, we expand this work to assess seasonal phnD expression in the Sargasso Sea. By RT-PCR, our data confirm that phnD expression is constitutive for the Prochlorococcus spp. detected, but in Synechococcus spp. phnD transcription follows patterns of phosphorus availability in the mixed layer. Specifically, our data suggest that phnD is repressed in the spring when P is bioavailable following deep winter mixing. In the fall, phnD expression follows a depth-dependent pattern reflecting depleted P at the surface following summertime drawdown, and elevated P at depth. PMID:21687717

  19. Enhancement of antibiotic productions by engineered nitrate utilization in actinomycetes.

    PubMed

    Meng, Sitong; Wu, Hang; Wang, Lei; Zhang, Buchang; Bai, Linquan

    2017-07-01

    Nitrate is necessary for primary and secondary metabolism of actinomycetes and stimulates the production of a few antibiotics, such as lincomycin and rifamycin. However, the mechanism of this nitrate-stimulating effect was not fully understood. Two putative ABC-type nitrate transporters were identified in Streptomyces lincolnensis NRRL2936 and verified to be involved in lincomycin biosynthesis. With nitrate supplementation, the transcription of nitrogen assimilation genes, nitrate-specific ABC1 transporter genes, and lincomycin exporter gene lmrA was found to be enhanced and positively regulated by the global regulator GlnR, whose expression was also improved. Moreover, heterologous expression of ABC2 transporter genes in Streptomyces coelicolor M145 resulted in an increased actinorhodin production. Further incorporation of a nitrite-specific transporter gene nirC, as in nirC-ABC2 cassette, led to an even higher actinorhodin production. Similarly, the titers of salinomycin, ansamitocin, lincomycin, and geldanamycin were increased with the integration of this cassette to Streptomyces albus BK3-25, Actinosynnema pretiosum ATCC31280, S. lincolnensis LC-G, and Streptomyces hygroscopicus XM201, respectively. Our work expanded the nitrate-stimulating effect to many antibiotic producers by utilizing the nirC-ABC2 cassette for enhanced nitrate utilization, which could become a general tool for titer increase of antibiotics in actinomycetes.

  20. Comparative symbiotic plasmid analysis indicates that symbiosis gene ancestor type affects plasmid genetic evolution.

    PubMed

    Wang, X; Zhao, L; Zhang, L; Wu, Y; Chou, M; Wei, G

    2018-07-01

    Rhizobial symbiotic plasmids play vital roles in mutualistic symbiosis with legume plants by executing the functions of nodulation and nitrogen fixation. To explore the gene composition and genetic constitution of rhizobial symbiotic plasmids, comparison analyses of 24 rhizobial symbiotic plasmids derived from four rhizobial genera was carried out. Results illustrated that rhizobial symbiotic plasmids had higher proportion of functional genes participating in amino acid transport and metabolism, replication; recombination and repair; carbohydrate transport and metabolism; energy production and conversion and transcription. Mesorhizobium amorphae CCNWGS0123 symbiotic plasmid - pM0123d had similar gene composition with pR899b and pSNGR234a. All symbiotic plasmids shared 13 orthologous genes, including five nod and eight nif/fix genes which participate in the rhizobia-legume symbiosis process. These plasmids contained nod genes from four ancestors and fix genes from six ancestors. The ancestral type of pM0123d nod genes was similar with that of Rhizobium etli plasmids, while the ancestral type of pM0123d fix genes was same as that of pM7653Rb. The phylogenetic trees constructed based on nodCIJ and fixABC displayed different topological structures mainly due to nodCIJ and fixABC ancestral type discordance. The study presents valuable insights into mosaic structures and the evolution of rhizobial symbiotic plasmids. This study compared 24 rhizobial symbiotic plasmids that included four genera and 11 species, illuminating the functional gene composition and symbiosis gene ancestor types of symbiotic plasmids from higher taxonomy. It provides valuable insights into mosaic structures and the evolution of symbiotic plasmids. © 2018 The Society for Applied Microbiology.

  1. Mdr65 decreases toxicity of multiple insecticides in Drosophila melanogaster.

    PubMed

    Sun, Haina; Buchon, Nicolas; Scott, Jeffrey G

    2017-10-01

    ABC transporters are ubiquitous membrane-bound proteins, present in both prokaryotes and eukaryotes. The major function of eukaryotic ABC transporters is to mediate the efflux of a variety of substrates (including xenobiotics) out of cells. ABC transporters have been widely investigated in humans, particularly for their involvement in multidrug resistance (MDR). Considerably less is known about their roles in transport and/or excretion in insects. ABC transporters are only known to function as exporters in insects. Drosophila melanogaster has 56 ABC transporter genes, including eight which are phylogenetically most similar to the human Mdr genes (ABCB1 clade). We investigated the role of ABC transporters in the ABCB1 clade in modulating the susceptibility to insecticides. We took advantage of the GAL4/UAS system in D. melanogaster to knockdown the expression levels of Mdr65, Mdr50, Mdr49 and ABCB6 using transgenic UAS-RNAi lines and conditional driver lines. The most notable effects were increased sensitivities to nine different insecticides by silencing of Mdr65. Furthermore, a null mutation of Mdr65 decreased the malathion, malaoxon and fipronil LC 50 values by a factor of 1.9, 2.1 and 3.9, respectively. Altogether, this data demonstrates the critical role of ABC transporters, particularly Mdr65, in altering the toxicity of specific, structurally diverse, insecticides in D. melanogaster. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. 4th International Consensus Conference on Advanced Breast Cancer (ABC4), Lisbon, November 4, 2017 : ABC4 Consensus: Assessment by a Panel of German Experts.

    PubMed

    Untch, Michael; Würstlein, Rachel; Marschner, Norbert; Lüftner, Diana; Augustin, Doris; Briest, Susanne; Ettl, Johannes; Haidinger, Renate; Müller, Lothar; Müller, Volkmar; Ruckhäberle, Eugen; Harbeck, Nadia; Thomssen, Christoph

    2018-05-01

    The fourth international advanced breast cancer consensus conference (ABC4) on the diagnosis and treatment of advanced breast cancer (ABC) headed by Professor Fatima Cardoso was once again held in Lisbon on November 2 - 4, 2017. To simplify matters, the abbreviation ABC will be used hereinafter in the text. In clinical practice, the abbreviation corresponds to metastatic breast cancer or locally far-advanced disease. This year the focus was on new developments in the treatment of ABC. Topics discussed included the importance of CDK4/6 inhibition in hormone receptor (HR)-positive ABC, the use of dual antibody blockade to treat HER2-positive ABC, PARP inhibition in triple-negative ABC and the potential therapeutic outcomes. Another major area discussed at the conference was BRCA-associated breast cancer, the treatment of cerebral metastasis, and individualized treatment decisions based on molecular testing (so-called precision medicine). As in previous years, close cooperation with representatives from patient organizations from around the world is an important aspect of the ABC conference. This cooperation was reinforced and expanded at the ABC4 conference. A global alliance was founded at the conclusion of the consensus conference, which aims to promote and coordinate the measures considered necessary by patient advocates worldwide. Because the panel of experts was composed of specialists from all over the world, it was inevitable that the ABC consensus also reflected country-specific features. As in previous years, a team of German breast cancer specialists who closely followed the consensus voting of the ABC panelists in Lisbon and intensively discussed the votes has therefore commented on the consensus in the context of the current German guidelines on the diagnosis and treatment of breast cancer 1 ,  2 used in clinical practice in Germany. The ABC consensus is based on the votes of the ABC panelists in Lisbon.

  3. Induction of hepatic ABC transporter expression is part of the PPARalpha-mediated fasting response in the mouse.

    PubMed

    Kok, Tineke; Wolters, Henk; Bloks, Vincent W; Havinga, Rick; Jansen, Peter L M; Staels, Bart; Kuipers, Folkert

    2003-01-01

    Fatty acids are natural ligands of the peroxisome proliferator-activated receptor alpha (PPARalpha). Synthetic ligands of this nuclear receptor, i.e., fibrates, induce the hepatic expression of the multidrug resistance 2 gene (Mdr2), encoding the canalicular phospholipid translocator, and affect hepatobiliary lipid transport. We tested whether fasting-associated fatty acid release from adipose tissues alters hepatic transporter expression and bile formation in a PPARalpha-dependent manner. A 24-hour fasting/48-hour refeeding schedule was used in wild-type and Pparalpha((-/-)) mice. Expression of genes involved in the control of bile formation was determined and related to secretion rates of biliary components. Expression of Pparalpha, farnesoid X receptor, and liver X receptor alpha genes encoding nuclear receptors that control hepatic bile salt and sterol metabolism was induced on fasting in wild-type mice only. The expression of Mdr2 was 5-fold increased in fasted wild-type mice and increased only marginally in Pparalpha((-/-)) mice, and it normalized on refeeding. Mdr2 protein levels and maximal biliary phospholipid secretion rates were clearly increased in fasted wild-type mice. Hepatic expression of the liver X receptor target genes ATP binding cassette transporter a1 (Abca1), Abcg5, and Abcg8, implicated in hepatobiliary cholesterol transport, was induced in fasted wild-type mice only. However, the maximal biliary cholesterol secretion rate was reduced by approximately 50%. Induction of Mdr2 expression and function is part of the PPARalpha-mediated fasting response in mice. Fasting also induces expression of the putative hepatobiliary cholesterol transport genes Abca1, Abcg5, and Abcg8, but, nonetheless, maximal biliary cholesterol excretion is decreased after fasting.

  4. eUnaG: a new ligand-inducible fluorescent reporter to detect drug transporter activity in live cells

    PubMed Central

    Yeh, Johannes T.-H.; Nam, Kwangho; Yeh, Joshua T.-H.; Perrimon, Norbert

    2017-01-01

    The absorption, distribution, metabolism and excretion (ADME) of metabolites and toxic organic solutes are orchestrated by the ATP-binding cassette (ABC) transporters and the organic solute carrier family (SLC) proteins. A large number of ABC and SLC transpoters exist; however, only a small number have been well characterized. To facilitate the analysis of these transporters, which is important for drug safety and physiological studies, we developed a sensitive genetically encoded bilirubin (BR)-inducible fluorescence sensor (eUnaG) to detect transporter-coupled influx/efflux of organic compounds. This sensor can be used in live cells to measure transporter activity, as excretion of BR depends on ABC and SLC transporters. Applying eUnaG in functional RNAi screens, we characterize l(2)03659 as a Drosophila multidrug resistant-associated ABC transporter. PMID:28176814

  5. The minimal-ABC trees with B1-branches.

    PubMed

    Dimitrov, Darko; Du, Zhibin; Fonseca, Carlos M da

    2018-01-01

    The atom-bond connectivity index (or, for short, ABC index) is a molecular structure descriptor bridging chemistry to graph theory. It is probably the most studied topological index among all numerical parameters of a graph that characterize its topology. For a given graph G = (V, E), the ABC index of G is defined as [Formula: see text], where di denotes the degree of the vertex i, and ij is the edge incident to the vertices i and j. A combination of physicochemical and the ABC index properties are commonly used to foresee the bioactivity of different chemical composites. Additionally, the applicability of the ABC index in chemical thermodynamics and other areas of chemistry, such as in dendrimer nanostars, benzenoid systems, fluoranthene congeners, and phenylenes is well studied in the literature. While finding of the graphs with the greatest ABC-value is a straightforward assignment, the characterization of the tree(s) with minimal ABC index is a problem largely open and has recently given rise to numerous studies and conjectures. A B1-branch of a graph is a pendent path of order 2. In this paper, we provide an important step forward to the full characterization of these minimal trees. Namely, we show that a minimal-ABC tree contains neither 4 nor 3 B1-branches. The case when the number of B1-branches is 2 is also considered.

  6. Yang-Mills theory and the ABC conjecture

    NASA Astrophysics Data System (ADS)

    He, Yang-Hui; Hu, Zhi; Probst, Malte; Read, James

    2018-05-01

    We establish a precise correspondence between the ABC Conjecture and 𝒩 = 4 super-Yang-Mills theory. This is achieved by combining three ingredients: (i) Elkies’ method of mapping ABC-triples to elliptic curves in his demonstration that ABC implies Mordell/Faltings; (ii) an explicit pair of elliptic curve and associated Belyi map given by Khadjavi-Scharaschkin; and (iii) the fact that the bipartite brane-tiling/dimer model for a gauge theory with toric moduli space is a particular dessin d’enfant in the sense of Grothendieck. We explore this correspondence for the highest quality ABC-triples as well as large samples of random triples. The conjecture itself is mapped to a statement about the fundamental domain of the toroidal compactification of the string realization of 𝒩 = 4 SYM.

  7. Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters.

    PubMed

    Liu, Su; Jiang, Wei; Wu, Bing; Yu, Jing; Yu, Haiyan; Zhang, Xu-Xiang; Torres-Duarte, Cristina; Cherr, Gary N

    2016-01-01

    Low levels of graphene and graphene oxide (GO) are considered to be environmentally safe. In this study, we analyzed the potential effects of graphene and GO at relatively low concentrations on cellular xenobiotic defense system mediated by efflux transporters. The results showed that graphene (<0.5 μg/mL) and GO (<20 μg/mL) did not decrease cell viability, generate reactive oxygen species, or disrupt mitochondrial function. However, graphene and GO at the nontoxic concentrations could increase calcein-AM (CAM, an indicator of membrane ATP-binding cassette (ABC) transporter) activity) accumulation, indicating inhibition of ABC transporters' efflux capabilities. This inhibition was observed even at 0.005 μg/mL graphene and 0.05 μg/mL GO, which are 100 times and 400 times lower than their lowest toxic concentration from cytotoxicity experiments, respectively. The inhibition of ABC transporters significantly increased the toxicity of paraquat and arsenic, known substrates of ABC transporters. The inhibition of ABC transporters was found to be based on graphene and GO damaging the plasma membrane structure and fluidity, thus altering functions of transmembrane ABC transporters. This study demonstrates that low levels of graphene and GO are not environmentally safe since they can significantly make cell more susceptible to other xenobiotics, and this chemosensitizing activity should be considered in the risk assessment of graphene and GO.

  8. A mutation within the extended X loop abolished substrate-induced ATPase activity of the human liver ATP-binding cassette (ABC) transporter MDR3.

    PubMed

    Kluth, Marianne; Stindt, Jan; Dröge, Carola; Linnemann, Doris; Kubitz, Ralf; Schmitt, Lutz

    2015-02-20

    The human multidrug resistance protein 3 (MDR3/ABCB4) belongs to the ubiquitous family of ATP-binding cassette (ABC) transporters and is located in the canalicular membrane of hepatocytes. There it flops the phospholipids of the phosphatidylcholine (PC) family from the inner to the outer leaflet. Here, we report the characterization of wild type MDR3 and the Q1174E mutant, which was identified previously in a patient with progressive familial intrahepatic cholestasis type 3 (PFIC-3). We expressed different variants of MDR3 in the yeast Pichia pastoris, purified the proteins via tandem affinity chromatography, and determined MDR3-specific ATPase activity in the presence or absence of phospholipids. The ATPase activity of wild type MDR3 was stimulated 2-fold by liver PC or 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine lipids. Furthermore, the cross-linking of MDR3 with a thiol-reactive fluorophore blocked ATP hydrolysis and exhibited no PC stimulation. Similarly, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin lipids did not induce an increase of wild type MDR3 ATPase activity. The phosphate analogues beryllium fluoride and aluminum fluoride led to complete inhibition of ATPase activity, whereas orthovanadate inhibited exclusively the PC-stimulated ATPase activity of MDR3. The Q1174E mutation is located in the nucleotide-binding domain in direct proximity of the leucine of the ABC signature motif and extended the X loop, which is found in ABC exporters. Our data on the Q1174E mutant demonstrated basal ATPase activity, but PC lipids were incapable of stimulating ATPase activity highlighting the role of the extended X loop in the cross-talk of the nucleotide-binding domain and the transmembrane domain. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. A Cluster of Five Genes Essential for the Utilization of Dihydroxamate Xenosiderophores in Synechocystis sp. PCC 6803.

    PubMed

    Obando S, Tobias A; Babykin, Michael M; Zinchenko, Vladislav V

    2018-05-21

    The unicellular freshwater cyanobacterium Synechocystis sp. PCC 6803 is capable of using dihydroxamate xenosiderophores, either ferric schizokinen (FeSK) or a siderophore of the filamentous cyanobacterium Anabaena variabilis ATCC 29413 (SAV), as the sole source of iron in the TonB-dependent manner. The fecCDEB1-schT gene cluster encoding a siderophore transport system that is involved in the utilization of FeSK and SAV in Synechocystis sp. PCC 6803 was identified. The gene schT encodes TonB-dependent outer membrane transporter, whereas the remaining four genes encode the ABC-type transporter FecB1CDE formed by the periplasmic binding protein FecB1, the transmembrane permease proteins FecC and FecD, and the ATPase FecE. Inactivation of any of these genes resulted in the inability of cells to utilize FeSK and SAV. Our data strongly suggest that Synechocystis sp. PCC 6803 can readily internalize Fe-siderophores via the classic TonB-dependent transport system.

  10. Hijacking membrane transporters for arsenic phytoextraction

    PubMed Central

    LeBlanc, Melissa S.; McKinney, Elizabeth C.; Meagher, Richard B.; Smith, Aaron P.

    2012-01-01

    Arsenic is a toxic metalloid and recognized carcinogen. Arsenate and arsenite are the most common arsenic species available for uptake by plants. As an inorganic phosphate (Pi) analog, arsenate is acquired by plant roots through endogenous Pi transport systems. Inside the cell, arsenate is reduced to the thiol-reactive form arsenite. Glutathione (GSH)-conjugates of arsenite may be extruded from the cell or sequestered in vacuoles by members of the ATP-binding cassette (ABC) family of transporters. In the present study we sought to enhance both plant arsenic uptake through Pi transporter overexpression, and plant arsenic tolerance through ABC transporter overexpression. We demonstrate that Arabidopsis thaliana plants overexpressing the high-affinity Pi transporter family members, AtPht1;1 or AtPht1;7, are hypersensitive to arsenate due to increased arsenate uptake. These plants do not exhibit increased sensitivity to arsenite. Co-overexpression of the yeast ABC transporter YCF1 in combination with AtPht1;1 or AtPht1;7 suppresses the arsenate-sensitive phenotype while further enhancing arsenic uptake. Taken together, our results support an arsenic transport mechanism in which arsenate uptake is increased through Pi transporter overexpression, and arsenic tolerance is enhanced through YCF1-mediated vacuolar sequestration. This work substantiates the viability of coupling enhanced uptake and vacuolar sequestration as a means for developing a prototypical engineered arsenic hyperaccumulator. PMID:23108027

  11. Redefining C and D in the petunia ABC.

    PubMed

    Heijmans, Klaas; Ament, Kai; Rijpkema, Anneke S; Zethof, Jan; Wolters-Arts, Mieke; Gerats, Tom; Vandenbussche, Michiel

    2012-06-01

    According to the ABC(DE) model for flower development, C-genes are required for stamen and carpel development and floral determinacy, and D-genes were proposed to play a unique role in ovule development. Both C- and D-genes belong to the AGAMOUS (AG) subfamily of MADS box transcription factors. We show that the petunia (Petunia hybrida) C-clade genes PETUNIA MADS BOX GENE3 and FLORAL BINDING PROTEIN6 (FBP6) largely overlap in function, both in floral organ identity specification and floral determinacy, unlike the pronounced subfunctionalization observed in Arabidopsis thaliana and snapdragon (Antirrhinum majus). Some specialization has also evolved, since FBP6 plays a unique role in the development of the style and stigma. Furthermore, we show that the D-genes FBP7 and FBP11 are not essential to confer ovule identity. Instead, this function is redundantly shared among all AG members. In turn, the D-genes also participate in floral determinacy. Gain-of-function analyses suggest the presence of a posttranscriptional C-repression mechanism in petunia, most likely not existing in Arabidopsis. Finally, we show that expression maintenance of the paleoAPETALA3-type B-gene TOMATO MADS BOX GENE6 depends on the activity of C-genes. Taken together, this demonstrates considerable variation in the molecular control of floral development between eudicot species.

  12. ArgR is an essential local transcriptional regulator of the arcABC operon in Streptococcus suis and is crucial for biological fitness in an acidic environment.

    PubMed

    Fulde, Marcus; Willenborg, Joerg; de Greeff, Astrid; Benga, Laurentiu; Smith, Hilde E; Valentin-Weigand, Peter; Goethe, Ralph

    2011-02-01

    Streptococcus suis is one of the most important pathogens in pigs and can also cause severe infections in humans. Despite its clinical relevance, very little is known about the factors that contribute to its virulence. Recently, we identified a new putative virulence factor in S. suis, the arginine deiminase system (ADS), an arginine catabolic enzyme system encoded by the arcABC operon, which enables S. suis to survive in an acidic environment. In this study, we focused on ArgR, an ADS-associated regulator belonging to the ArgR/AhrC arginine repressor family. Using an argR knockout strain we were able to show that ArgR is essential for arcABC operon expression and necessary for the biological fitness of S. suis. By cDNA expression microarray analyses and quantitative real-time RT-PCR we found that the arcABC operon is the only gene cluster regulated by ArgR, which is in contrast to the situation in many other bacteria. Reporter gene analysis with gfp under the control of the arcABC promoter demonstrated that ArgR is able to activate the arcABC promoter. Electrophoretic mobility shift assays with fragments of the arcABC promoter and recombinant ArgR, and chromatin immunoprecipitation with antibodies directed against ArgR, revealed that ArgR interacts with the arcABC promoter in vitro and in vivo by binding to a region from -147 to -72 bp upstream of the transcriptional start point. Overall, our results show that in S. suis, ArgR is an essential, system-specific transcriptional regulator of the ADS that interacts directly with the arcABC promoter in vivo.

  13. ABC1 Consensus Conference - a German Perspective: First International Consensus Conference on Advanced Breast Cancer (ABC1), Lisbon, November 5, 2011.

    PubMed

    Thomssen, Christoph; Marschner, Norbert; Untch, Michael; Decker, Thomas; Hegewisch-Becker, Susanna; Jackisch, Christian; Janni, Wolfgang; Hans-Joachim, Lück; von Minckwitz, Gunter; Scharl, Anton; Schneeweiss, Andreas; Tesch, Hans; Welt, Anja; Harbeck, Nadia

    2012-02-01

    A group of German breast cancer experts (medical oncologists and gynaecologists) reviewed and commented on the results of the first international 'Advanced Breast Cancer First Consensus Conference' (ABC1) for the diagnosis and treatment of advanced breast cancer. The ABC1 Conference is an initiative of the European School of Oncology (ESO) Metastatic Breast Cancer Task Force in cooperation with the EBCC (European Breast Cancer Conference), ESMO (European Society of Medical Oncology) and the American JNCI (Journal of the National Cancer Institute). The main focus of the ABC1 Conference was metastatic breast cancer (stage IV). The ABC1 consensus is based on the vote of 33 breast cancer experts from different countries and has been specified as a guideline for therapeutic practice by the German expert group. It is the objective of the ABC1 consensus as well as of the German comments to provide an internationally standardized and evidence-based foundation for qualified decision-making in the treatment of metastatic breast cancer.

  14. Polymorphisms in ATP-binding cassette transporters associated with maternal methylmercury disposition and infant neurodevelopment in mother-infant pairs in the Seychelles Child Development Study

    PubMed Central

    Engström, Karin; Love, Tanzy M; Watson, Gene E; Zareba, Grazyna; Yeates, Alison; Wahlberg, Karin; Alhamdow, Ayman; Thurston, Sally W; Mulhern, Maria; McSorley, Emeir M; Strain, JJ; Davidson, Philip W; Shamlaye, Conrad F; Myers, GJ; Rand, Matthew D; van Wijngaarden, Edwin; Broberg, Karin

    2016-01-01

    Background ATP-binding cassette (ABC) transporters have been associated with methylmercury (MeHg) toxicity in experimental animal models. Aims To evaluate the association of single nucleotide polymorphisms (SNPs) in maternal ABC transporter genes with 1) maternal hair MeHg concentrations during pregnancy and 2) child neurodevelopmental outcomes. Materials and methods Nutrition Cohort 2 (NC2) is an observational mother-child cohort recruited in the Republic of Seychelles from 2008–2011. Total mercury (Hg) was measured in maternal hair growing during pregnancy as a biomarker for prenatal MeHg exposure (N=1313) (mean 3.9 ppm). Infants completed developmental assessments by Bayley Scales of Infant Development II (BSID-II) at 20 months of age (N=1331). Genotyping for fifteen SNPs in ABCC1, ABCC2 and ABCB1 was performed for the mothers. Results Seven of fifteen ABC SNPs (ABCC1 rs11075290, rs212093, and rs215088; ABCC2 rs717620; ABCB1 rs10276499, rs1202169, and rs2032582) were associated with concentrations of maternal hair Hg (p<0.001 to 0.013). One SNP (ABCC1 rs11075290) was also significantly associated with neurodevelopment; children born to mothers with rs11075290 CC genotype (mean hair Hg 3.6 ppm) scored on average 2 points lower on the Mental Development Index (MDI) and 3 points lower on the Psychomotor Development Index (PDI) than children born to mothers with TT genotype (mean hair Hg 4.7 ppm) while children with the CT genotype (mean hair Hg 4.0 ppm) had intermediate BSID scores. Discussion Genetic variation in ABC transporter genes was associated with maternal hair Hg concentrations. The implications for MeHg dose in the developing child and neurodevelopmental outcomes need to be further investigated. PMID:27262785

  15. Polymorphisms in ATP-binding cassette transporters associated with maternal methylmercury disposition and infant neurodevelopment in mother-infant pairs in the Seychelles Child Development Study.

    PubMed

    Engström, Karin; Love, Tanzy M; Watson, Gene E; Zareba, Grazyna; Yeates, Alison; Wahlberg, Karin; Alhamdow, Ayman; Thurston, Sally W; Mulhern, Maria; McSorley, Emeir M; Strain, J J; Davidson, Philip W; Shamlaye, Conrad F; Myers, G J; Rand, Matthew D; van Wijngaarden, Edwin; Broberg, Karin

    2016-09-01

    ATP-binding cassette (ABC) transporters have been associated with methylmercury (MeHg) toxicity in experimental animal models. To evaluate the association of single nucleotide polymorphisms (SNPs) in maternal ABC transporter genes with 1) maternal hair MeHg concentrations during pregnancy and 2) child neurodevelopmental outcomes. Nutrition Cohort 2 (NC2) is an observational mother-child cohort recruited in the Republic of Seychelles from 2008-2011. Total mercury (Hg) was measured in maternal hair growing during pregnancy as a biomarker for prenatal MeHg exposure (N=1313) (mean 3.9ppm). Infants completed developmental assessments by Bayley Scales of Infant Development II (BSID-II) at 20months of age (N=1331). Genotyping for fifteen SNPs in ABCC1, ABCC2 and ABCB1 was performed for the mothers. Seven of fifteen ABC SNPs (ABCC1 rs11075290, rs212093, and rs215088; ABCC2 rs717620; ABCB1 rs10276499, rs1202169, and rs2032582) were associated with concentrations of maternal hair Hg (p<0.001 to 0.013). One SNP (ABCC1 rs11075290) was also significantly associated with neurodevelopment; children born to mothers with rs11075290 CC genotype (mean hair Hg 3.6ppm) scored on average 2 points lower on the Mental Development Index (MDI) and 3 points lower on the Psychomotor Development Index (PDI) than children born to mothers with TT genotype (mean hair Hg 4.7ppm) while children with the CT genotype (mean hair Hg 4.0ppm) had intermediate BSID scores. Genetic variation in ABC transporter genes was associated with maternal hair Hg concentrations. The implications for MeHg dose in the developing child and neurodevelopmental outcomes need to be further investigated. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. ABCE1 Is a Highly Conserved RNA Silencing Suppressor

    PubMed Central

    Kärblane, Kairi; Gerassimenko, Jelena; Nigul, Lenne; Piirsoo, Alla; Smialowska, Agata; Vinkel, Kadri; Kylsten, Per; Ekwall, Karl; Swoboda, Peter; Truve, Erkki; Sarmiento, Cecilia

    2015-01-01

    ATP-binding cassette sub-family E member 1 (ABCE1) is a highly conserved protein among eukaryotes and archaea. Recent studies have identified ABCE1 as a ribosome-recycling factor important for translation termination in mammalian cells, yeast and also archaea. Here we report another conserved function of ABCE1. We have previously described AtRLI2, the homolog of ABCE1 in the plant Arabidopsis thaliana, as an endogenous suppressor of RNA silencing. In this study we show that this function is conserved: human ABCE1 is able to suppress RNA silencing in Nicotiana benthamiana plants, in mammalian HEK293 cells and in the worm Caenorhabditis elegans. Using co-immunoprecipitation and mass spectrometry, we found a number of potential ABCE1-interacting proteins that might support its function as an endogenous suppressor of RNA interference. The interactor candidates are associated with epigenetic regulation, transcription, RNA processing and mRNA surveillance. In addition, one of the identified proteins is translin, which together with its binding partner TRAX supports RNA interference. PMID:25659154

  17. ATP-binding cassette transporters in tumor endothelial cells and resistance to metronomic chemotherapy.

    PubMed

    Hida, Kyoko; Kikuchi, Hiroshi; Maishi, Nako; Hida, Yasuhiro

    2017-08-01

    Drug resistance is a major problem in anticancer therapy. ATP-binding cassette (ABC) transporters have a role in the multidrug resistance. A new regimen of chemotherapy has been proposed, called "metronomic chemotherapy". Metronomic chemotherapy is the frequent, regular administration of drug doses designed to maintain low, but active, concentrations of chemotherapeutic drugs over prolonged periods of time, without causing serious toxicities. Metronomic chemotherapy regimens were developed to optimize the antitumor efficacy of agents that target the tumor vasculature instead of tumor cells, and to reduce toxicity of antineoplastic drugs [1]. Nevertheless, recent studies revealed that ABC transporters are expressed at a higher level in the endothelium in the tumor. To avoid resistance to metronomic anti-angiogenic chemotherapy, ABC transporter inhibition of tumor endothelial cells may be a promising strategy. In this mini-review, we discuss the possible mechanism of resistance to metronomic chemotherapy from the viewpoint of tumor endothelial cell biology, focusing on ABC transporters. Copyright © 2017. Published by Elsevier B.V.

  18. Novel Mutation in the ATP-Binding Cassette Transporter A3 (ABCA3) Encoding Gene Causes Respiratory Distress Syndrome in A Term Newborn in Southwest Iran

    PubMed Central

    Rezaei, Farideh; Shafiei, Mohammad; Shariati, Gholamreza; Dehdashtian, Ali; Mohebbi, Maryam; Galehdari, Hamid

    2016-01-01

    Introduction ABCA3 glycoprotein belongs to the ATP-binding cassette (ABC) superfamily of transporters, which utilize the energy derived from hydrolysis of ATP for the translocation of a wide variety of substrates across the plasma membrane. Mutations in the ABCA3 gene are knowingly causative for fatal surfactant deficiency, particularly respiratory distress syndrome (RDS) in term babies. Case Presentation In this study, Sanger sequencing of the whole ABCA3 gene (NCBI NM_001089) was performed in a neonatal boy with severe RDS. A homozygous mutation has been identified in the patient. Parents were heterozygous for the same missense mutation GGA > AGA at position 202 in exon 6 of the ABCA3 gene (c.604G > A; p.G202R). Furthermore, 70 normal individuals have been analyzed for the mentioned change with negative results. Conclusions Regarding Human Genome Mutation Database (HGMD) and other literature recherche, the detected change is a novel mutation and has not been reported before. Bioinformatics mutation predicting tools prefer it as pathogenic. PMID:27437095

  19. Computer simulations of transport through membranes: passive diffusion, pores, channels and transporters.

    PubMed

    Tieleman, D Peter

    2006-10-01

    A key function of biological membranes is to provide mechanisms for the controlled transport of ions, nutrients, metabolites, peptides and proteins between a cell and its environment. We are using computer simulations to study several processes involved in transport. In model membranes, the distribution of small molecules can be accurately calculated; we are making progress towards understanding the factors that determine the partitioning behaviour in the inhomogeneous lipid environment, with implications for drug distribution, membrane protein folding and the energetics of voltage gating. Lipid bilayers can be simulated at a scale that is sufficiently large to study significant defects, such as those caused by electroporation. Computer simulations of complex membrane proteins, such as potassium channels and ATP-binding cassette (ABC) transporters, can give detailed information about the atomistic dynamics that form the basis of ion transport, selectivity, conformational change and the molecular mechanism of ATP-driven transport. This is illustrated in the present review with recent simulation studies of the voltage-gated potassium channel KvAP and the ABC transporter BtuCD.

  20. DNA methylation of amino acid transporter genes in the human placenta.

    PubMed

    Simner, C; Novakovic, B; Lillycrop, K A; Bell, C G; Harvey, N C; Cooper, C; Saffery, R; Lewis, R M; Cleal, J K

    2017-12-01

    Placental transfer of amino acids via amino acid transporters is essential for fetal growth. Little is known about the epigenetic regulation of amino acid transporters in placenta. This study investigates the DNA methylation status of amino acid transporters and their expression across gestation in human placenta. BeWo cells were treated with 5-aza-2'-deoxycytidine to inhibit methylation and assess the effects on amino acid transporter gene expression. The DNA methylation levels of amino acid transporter genes in human placenta were determined across gestation using DNA methylation array data. Placental amino acid transporter gene expression across gestation was also analysed using data from publically available Gene Expression Omnibus data sets. The expression levels of these transporters at term were established using RNA sequencing data. Inhibition of DNA methylation in BeWo cells demonstrated that expression of specific amino acid transporters can be inversely associated with DNA methylation. Amino acid transporters expressed in term placenta generally showed low levels of promoter DNA methylation. Transporters with little or no expression in term placenta tended to be more highly methylated at gene promoter regions. The transporter genes SLC1A2, SLC1A3, SLC1A4, SLC7A5, SLC7A11 and SLC7A10 had significant changes in enhancer DNA methylation across gestation, as well as gene expression changes across gestation. This study implicates DNA methylation in the regulation of amino acid transporter gene expression. However, in human placenta, DNA methylation of these genes remains low across gestation and does not always play an obvious role in regulating gene expression, despite clear evidence for differential expression as gestation proceeds. Copyright © 2017. Published by Elsevier Ltd.

  1. Prediction and analysis of three gene families related to leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum L.).

    PubMed

    Peng, Fred Y; Yang, Rong-Cai

    2017-06-20

    The resistance to leaf rust (Lr) caused by Puccinia triticina in wheat (Triticum aestivum L.) has been well studied over the past decades with over 70 Lr genes being mapped on different chromosomes and numerous QTLs (quantitative trait loci) being detected or mapped using DNA markers. Such resistance is often divided into race-specific and race-nonspecific resistance. The race-nonspecific resistance can be further divided into resistance to most or all races of the same pathogen and resistance to multiple pathogens. At the molecular level, these three types of resistance may cover across the whole spectrum of pathogen specificities that are controlled by genes encoding different protein families in wheat. The objective of this study is to predict and analyze genes in three such families: NBS-LRR (nucleotide-binding sites and leucine-rich repeats or NLR), START (Steroidogenic Acute Regulatory protein [STaR] related lipid-transfer) and ABC (ATP-Binding Cassette) transporter. The focus of the analysis is on the patterns of relationships between these protein-coding genes within the gene families and QTLs detected for leaf rust resistance. We predicted 526 ABC, 1117 NLR and 144 START genes in the hexaploid wheat genome through a domain analysis of wheat proteome. Of the 1809 SNPs from leaf rust resistance QTLs in seedling and adult stages of wheat, 126 SNPs were found within coding regions of these genes or their neighborhood (5 Kb upstream from transcription start site [TSS] or downstream from transcription termination site [TTS] of the genes). Forty-three of these SNPs for adult resistance and 18 SNPs for seedling resistance reside within coding or neighboring regions of the ABC genes whereas 14 SNPs for adult resistance and 29 SNPs for seedling resistance reside within coding or neighboring regions of the NLR gene. Moreover, we found 17 nonsynonymous SNPs for adult resistance and five SNPs for seedling resistance in the ABC genes, and five nonsynonymous SNPs for

  2. Involvement of LeMRP, an ATP-binding cassette transporter, in shikonin transport and biosynthesis in Lithospermum erythrorhizon.

    PubMed

    Zhu, Y; Chu, S-J; Luo, Y-L; Fu, J-Y; Tang, C-Y; Lu, G-H; Pang, Y-J; Wang, X-M; Yang, R-W; Qi, J-L; Yang, Y-H

    2018-03-01

    Shikonin and its derivatives are important medicinal secondary metabolites accumulating in roots of Lithospermum erythrorhizon. Although some membrane proteins have been identified as transporters of secondary metabolites, the mechanisms underlying shikonin transport and accumulation in L. erythrorhizon cells still remain largely unknown. In this study, we isolated a cDNA encoding LeMRP, an ATP-binding cassette transporter from L. erythrorhizon, and further investigated its functions in the transport and biosynthesis of shikonin using the yeast transformation and transgenic hairy root methods, respectively. Real-time PCR was applied for expression analyses of LeMRP and shikonin biosynthetic enzyme genes. Functional analysis of LeMRP using the heterologous yeast cell expression system showed that LeMRP could be involved in shikonin transport. Transgenic hairy roots of L. erythrorhizon demonstrated that LeMRP overexpressing hairy roots produced more shikonin than the empty vector (EV) control. Real-time PCR results revealed that the enhanced shikonin biosynthesis in the overexpression lines was mainly caused by highly up-regulated expression of genes coding key enzymes (LePAL, HMGR, Le4CL and LePGT) involved in shikonin biosynthesis. Conversely, LeMRP RNAi decreased the accumulation of shikonin and effectively down-regulated expression level of the above genes. Typical inhibitors of ABC proteins, such as azide and buthionine sulphoximine, dramatically inhibited accumulation of shikonin in hairy roots. Our findings provide evidence for the important direct or indirect role of LeMRP in transmembrane transport and biosynthesis of shikonin. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  3. Expression of Genes for Drug Transporters in the Human Female Genital Tract and Modulatory Effect of Antiretroviral Drugs.

    PubMed

    Hijazi, Karolin; Cuppone, Anna M; Smith, Kieron; Stincarelli, Maria A; Ekeruche-Makinde, Julia; De Falco, Giulia; Hold, Georgina L; Shattock, Robin; Kelly, Charles G; Pozzi, Gianni; Iannelli, Francesco

    2015-01-01

    Anti-retroviral (ARV) -based microbicides are one of the strategies pursued to prevent HIV-1 transmission. Delivery of ARV drugs to subepithelial CD4+ T cells at concentrations for protection is likely determined by drug transporters expressed in the cervicovaginal epithelium. To define the role of drug transporters in mucosal disposition of topically applied ARV-based microbicides, these must be tested in epithelial cell line-based biopharmaceutical assays factoring the effect of relevant drug transporters. We have characterised gene expression of influx and efflux drug transporters in a panel of cervicovaginal cell lines and compared this to expression in cervicovaginal tissue. We also investigated the effect of dapivirine, darunavir and tenofovir, currently at advanced stages of microbicides development, on expression of drug transporters in cell lines. Expression of efflux ABC transporters in cervical tissue was best represented in HeLa, Ect1/E6E7 and End1/E6E7 cell lines. Expression of influx OCT and ENT transporters in ectocervix matched expression in Hela while expression of influx SLCO transporters in vagina was best reflected in VK2/E6E7 cell line. Stimulation with darunavir and dapivirine upregulated MRP transporters, including MRP5 involved in transport of tenofovir. Dapivirine also significantly downregulated tenofovir substrate MRP4 in cervical cell lines. Treatment with darunavir and dapivirine showed no significant effect on expression of BCRP, MRP2 and P-glycoprotein implicated in efflux of different ARV drugs. Darunavir strongly induced expression in most cell lines of CNT3 involved in cell uptake of nucleotide/nucleoside analogue reverse transcriptase inhibitors and SLCO drug transporters involved in cell uptake of protease inhibitors. This study provides insight into the suitability of cervicovaginal cell lines for assessment of ARV drugs in transport kinetics studies. The modulatory effect of darunavir and dapivirine on expression of drug

  4. Expression of Genes for Drug Transporters in the Human Female Genital Tract and Modulatory Effect of Antiretroviral Drugs

    PubMed Central

    Hijazi, Karolin; Cuppone, Anna M.; Smith, Kieron; Stincarelli, Maria A.; Ekeruche-Makinde, Julia; De Falco, Giulia; Hold, Georgina L.; Shattock, Robin; Kelly, Charles G.; Pozzi, Gianni; Iannelli, Francesco

    2015-01-01

    Anti-retroviral (ARV) –based microbicides are one of the strategies pursued to prevent HIV-1 transmission. Delivery of ARV drugs to subepithelial CD4+ T cells at concentrations for protection is likely determined by drug transporters expressed in the cervicovaginal epithelium. To define the role of drug transporters in mucosal disposition of topically applied ARV-based microbicides, these must be tested in epithelial cell line-based biopharmaceutical assays factoring the effect of relevant drug transporters. We have characterised gene expression of influx and efflux drug transporters in a panel of cervicovaginal cell lines and compared this to expression in cervicovaginal tissue. We also investigated the effect of dapivirine, darunavir and tenofovir, currently at advanced stages of microbicides development, on expression of drug transporters in cell lines. Expression of efflux ABC transporters in cervical tissue was best represented in HeLa, Ect1/E6E7 and End1/E6E7 cell lines. Expression of influx OCT and ENT transporters in ectocervix matched expression in Hela while expression of influx SLCO transporters in vagina was best reflected in VK2/E6E7 cell line. Stimulation with darunavir and dapivirine upregulated MRP transporters, including MRP5 involved in transport of tenofovir. Dapivirine also significantly downregulated tenofovir substrate MRP4 in cervical cell lines. Treatment with darunavir and dapivirine showed no significant effect on expression of BCRP, MRP2 and P-glycoprotein implicated in efflux of different ARV drugs. Darunavir strongly induced expression in most cell lines of CNT3 involved in cell uptake of nucleotide/nucleoside analogue reverse transcriptase inhibitors and SLCO drug transporters involved in cell uptake of protease inhibitors. This study provides insight into the suitability of cervicovaginal cell lines for assessment of ARV drugs in transport kinetics studies. The modulatory effect of darunavir and dapivirine on expression of drug

  5. Searching for the fastest dynamo: laminar ABC flows.

    PubMed

    Alexakis, Alexandros

    2011-08-01

    The growth rate of the dynamo instability as a function of the magnetic Reynolds number R(M) is investigated by means of numerical simulations for the family of the Arnold-Beltrami-Childress (ABC) flows and for two different forcing scales. For the ABC flows that are driven at the largest available length scale, it is found that, as the magnetic Reynolds number is increased: (a) The flow that results first in a dynamo is the 2 1/2-dimensional flow for which A=B and C=0 (and all permutations). (b) The second type of flow that results in a dynamo is the one for which A=B≃2C/5 (and permutations). (c) The most symmetric flow, A=B=C, is the third type of flow that results in a dynamo. (d) As R(M) is increased, the A=B=C flow stops being a dynamo and transitions from a local maximum to a third-order saddle point. (e) At larger R(M), the A=B=C flow reestablishes itself as a dynamo but remains a saddle point. (f) At the largest examined R(M), the growth rate of the 2 1/2-dimensional flows starts to decay, the A=B=C flow comes close to a local maximum again, and the flow A=B≃2C/5 (and permutations) results in the fastest dynamo with growth rate γ≃0.12 at the largest examined R(M). For the ABC flows that are driven at the second largest available length scale, it is found that (a) the 2 1/2-dimensional flows A=B,C=0 (and permutations) are again the first flows that result in a dynamo with a decreased onset. (b) The most symmetric flow, A=B=C, is the second type of flow that results in a dynamo. It is, and it remains, a local maximum. (c) At larger R(M), the flow A=B≃2C/5 (and permutations) appears as the third type of flow that results in a dynamo. As R(M) is increased, it becomes the flow with the largest growth rate. The growth rates appear to have some correlation with the Lyapunov exponents, but constructive refolding of the field lines appears equally important in determining the fastest dynamo flow.

  6. Attenuated mutant strain of Salmonella Typhimurium lacking the ZnuABC transporter contrasts tumor growth promoting anti-cancer immune response.

    PubMed

    Chirullo, Barbara; Ammendola, Serena; Leonardi, Leonardo; Falcini, Roberto; Petrucci, Paola; Pistoia, Claudia; Vendetti, Silvia; Battistoni, Andrea; Pasquali, Paolo

    2015-07-10

    Salmonella Typhimurium has been shown to be highly effective as antitumor agent. The aim of this study was to investigate the tumor targeting efficacy and the mechanism of action of a specific attenuated mutant strain of Salmonella Typhimurium (STM) devoid of the whole operon coding for the high-affinity zinc transporter ZnuABC, which is required for bacterial growth in environments poor in zinc and for conferring full virulence to different Gram-negative pathogens.We showed that STM is able to penetrate and replicate into tumor cells in in vitro and in vivo models. The subcutaneous administration of STM in mammary adenocarcinoma mouse model led to both reduction of tumor growth and increase in life expectancy of STM treated mice. Moreover, investigating the potential mechanism behind the favorable clinical outcomes, we provide evidence that STM stimulates a potent inflammatory response and a specific immune pattern, recruiting a large number of innate and adaptive immune cells capable to contrast the immunosuppressive environment generated by tumors.

  7. Bfr1p is responsible for tributyltin resistance in Schizosaccharomyces pombe.

    PubMed

    Akiyama, Koichi; Iwaki, Tomoko; Sugimoto, Naoko; Chardwiriyapreecha, Soracom; Kawano, Miyuki; Nishimoto, Sogo; Sugahara, Takuya; Sekito, Takayuki; Kakinuma, Yoshimi

    2011-01-01

    ATP-binding cassette (ABC) transporter plays an important role for resistance against xenobiotics. There are eleven ABC transporter genes in the genome of fission yeast Schizosaccharomyces pombe. We examined the role of ABC transporter against the toxicity of tributyltin chloride (TBT), a widespread environmental pollutant, in cell growth. Among individual ABC transporter mutants, the growth of a mutant deficient in Bfr1p, a plasma membrane-embedded transporter, was extremely sensitive to TBT. The lethal TBT concentration inducing 50% of cell death (LC(50)) was 25 µM for the parent strain and 10.2 µM for the bfr1∆ mutant. Thus, Bfr1p was responsible for TBT resistance in S. pombe.

  8. Redefining C and D in the Petunia ABC[W

    PubMed Central

    Heijmans, Klaas; Ament, Kai; Rijpkema, Anneke S.; Zethof, Jan; Wolters-Arts, Mieke; Gerats, Tom; Vandenbussche, Michiel

    2012-01-01

    According to the ABC(DE) model for flower development, C-genes are required for stamen and carpel development and floral determinacy, and D-genes were proposed to play a unique role in ovule development. Both C- and D-genes belong to the AGAMOUS (AG) subfamily of MADS box transcription factors. We show that the petunia (Petunia hybrida) C-clade genes PETUNIA MADS BOX GENE3 and FLORAL BINDING PROTEIN6 (FBP6) largely overlap in function, both in floral organ identity specification and floral determinacy, unlike the pronounced subfunctionalization observed in Arabidopsis thaliana and snapdragon (Antirrhinum majus). Some specialization has also evolved, since FBP6 plays a unique role in the development of the style and stigma. Furthermore, we show that the D-genes FBP7 and FBP11 are not essential to confer ovule identity. Instead, this function is redundantly shared among all AG members. In turn, the D-genes also participate in floral determinacy. Gain-of-function analyses suggest the presence of a posttranscriptional C-repression mechanism in petunia, most likely not existing in Arabidopsis. Finally, we show that expression maintenance of the paleoAPETALA3-type B-gene TOMATO MADS BOX GENE6 depends on the activity of C-genes. Taken together, this demonstrates considerable variation in the molecular control of floral development between eudicot species. PMID:22706285

  9. Trafficking and processing of bacterial proteins by mammalian cells: Insights from chondroitinase ABC.

    PubMed

    Muir, Elizabeth; Raza, Mansoor; Ellis, Clare; Burnside, Emily; Love, Fiona; Heller, Simon; Elliot, Matthew; Daniell, Esther; Dasgupta, Debayan; Alves, Nuno; Day, Priscilla; Fawcett, James; Keynes, Roger

    2017-01-01

    There is very little reported in the literature about the relationship between modifications of bacterial proteins and their secretion by mammalian cells that synthesize them. We previously reported that the secretion of the bacterial enzyme Chondroitinase ABC by mammalian cells requires the strategic removal of at least three N-glycosylation sites. The aim of this study was to determine if it is possible to enhance the efficacy of the enzyme as a treatment for spinal cord injury by increasing the quantity of enzyme secreted or by altering its cellular location. To determine if the efficiency of enzyme secretion could be further increased, cells were transfected with constructs encoding the gene for chondroitinase ABC modified for expression by mammalian cells; these contained additional modifications of strategic N-glycosylation sites or alternative signal sequences to direct secretion of the enzyme from the cells. We show that while removal of certain specific N-glycosylation sites enhances enzyme secretion, N-glycosylation of at least two other sites, N-856 and N-773, is essential for both production and secretion of active enzyme. Furthermore, we find that the signal sequence directing secretion also influences the quantity of enzyme secreted, and that this varies widely amongst the cell types tested. Last, we find that replacing the 3'UTR on the cDNA encoding Chondroitinase ABC with that of β-actin is sufficient to target the enzyme to the neuronal growth cone when transfected into neurons. This also enhances neurite outgrowth on an inhibitory substrate. Some intracellular trafficking pathways are adversely affected by cryptic signals present in the bacterial gene sequence, whilst unexpectedly others are required for efficient secretion of the enzyme. Furthermore, targeting chondroitinase to the neuronal growth cone promotes its ability to increase neurite outgrowth on an inhibitory substrate. These findings are timely in view of the renewed prospects for

  10. ABCE1 is essential for S phase progression in human cells

    PubMed Central

    Toompuu, Marina; Kärblane, Kairi; Pata, Pille; Truve, Erkki; Sarmiento, Cecilia

    2016-01-01

    ABSTRACT ABCE1 is a highly conserved protein universally present in eukaryotes and archaea, which is crucial for the viability of different organisms. First identified as RNase L inhibitor, ABCE1 is currently recognized as an essential translation factor involved in several stages of eukaryotic translation and ribosome biogenesis. The nature of vital functions of ABCE1, however, remains unexplained. Here, we study the role of ABCE1 in human cell proliferation and its possible connection to translation. We show that ABCE1 depletion by siRNA results in a decreased rate of cell growth due to accumulation of cells in S phase, which is accompanied by inefficient DNA synthesis and reduced histone mRNA and protein levels. We infer that in addition to the role in general translation, ABCE1 is involved in histone biosynthesis and DNA replication and therefore is essential for normal S phase progression. In addition, we analyze whether ABCE1 is implicated in transcript-specific translation via its association with the eIF3 complex subunits known to control the synthesis of cell proliferation-related proteins. The expression levels of a few such targets regulated by eIF3A, however, were not consistently affected by ABCE1 depletion. PMID:26985706

  11. Solitary BioY Proteins Mediate Biotin Transport into Recombinant Escherichia coli

    PubMed Central

    Finkenwirth, Friedrich; Kirsch, Franziska

    2013-01-01

    Energy-coupling factor (ECF) transporters form a large group of vitamin uptake systems in prokaryotes. They are composed of highly diverse, substrate-specific, transmembrane proteins (S units), a ubiquitous transmembrane protein (T unit), and homo- or hetero-oligomeric ABC ATPases. Biotin transporters represent a special case of ECF-type systems. The majority of the biotin-specific S units (BioY) is known or predicted to interact with T units and ABC ATPases. About one-third of BioY proteins, however, are encoded in organisms lacking any recognizable T unit. This finding raises the question of whether these BioYs function as transporters in a solitary state, a feature ascribed to certain BioYs in the past. To address this question in living cells, an Escherichia coli K-12 derivative deficient in biotin synthesis and devoid of its endogenous high-affinity biotin transporter was constructed as a reference strain. This organism is particularly suited for this purpose because components of ECF transporters do not naturally occur in E. coli K-12. The double mutant was viable in media containing either high levels of biotin or a precursor of the downstream biosynthetic path. Importantly, it was nonviable on trace levels of biotin. Eight solitary bioY genes of proteobacterial origin were individually expressed in the reference strain. Each of the BioYs conferred biotin uptake activity on the recombinants, which was inferred from uptake assays with [3H]biotin and growth of the cells on trace levels of biotin. The results underscore that solitary BioY transports biotin across the cytoplasmic membrane. PMID:23836870

  12. Rooting and Other Characteristics of a Transgenic Walnut Hybrid (Juglans hindsii x J. regia) Rootstock Expressing rolABC

    Treesearch

    Kourosh Vahdati; James R. McKenna; Abhaya M. Dandekar; Charles A. Leslie; Sandie L. Uratsu; Wesley P. Hackett; Paola Negri; Gale H. McGranahan

    2002-01-01

    Walnuts (Juglans spp.) are difficult-to-root woody plants. The rolABC genes (rolA + rolB + rolC), derived from the bacteria Agrobacterium rhizogenes, have been shown to increase the rooting potential of other difficult-to-root woody plants. We inserted the...

  13. Effects of lithium on growth, maturation, reproduction and gene expression in the nematode Caenorhabditis elegans.

    PubMed

    Inokuchi, Ayako; Yamamoto, Ryoko; Morita, Fumiyo; Takumi, Shota; Matsusaki, Hiromi; Ishibashi, Hiroshi; Tominaga, Nobuaki; Arizono, Koji

    2015-09-01

    Lithium (Li) has been widely used to treat bipolar disorder, and industrial use of Li has been increasing; thus, environmental pollution and ecological impacts of Li have become a concern. This study was conducted to clarify the potential biological effects of LiCl and Li(2)CO(3) on a nematode, Caenorhabditis elegans as a model system for evaluating soil contaminated with Li. Exposure of C. elegans to LiCl and Li(2)CO(3) decreased growth/maturation and reproduction. The lowest observed effect concentrations for growth, maturation and reproduction were 1250, 313 and 10 000 µm, respectively, for LiCl and 750, 750 and 3000 µm, respectively, for Li(2)CO(3). We also investigated the physiological function of LiCl and LiCO(3) in C. elegans using DNA microarray analysis as an eco-toxicogenomic approach. Among approximately 300 unique genes, including metabolic genes, the exposure to 78 µm LiCl downregulated the expression of 36 cytochrome P450, 16 ABC transporter, 10 glutathione S-transferase, 16 lipid metabolism and two vitellogenin genes. On the other hand, exposure to 375 µm Li(2)CO(3) downregulated the expression of 11 cytochrome P450, 13 ABC transporter, 13 lipid metabolism and one vitellogenin genes. No gene was upregulated by LiCl or Li(2)CO(3). These results suggest that LiCl and Li(2)CO(3) potentially affect the biological and physiological function in C. elegans associated with alteration of the gene expression such as metabolic genes. Our data also provide experimental support for the utility of toxicogenomics by integrating gene expression profiling into a toxicological study of an environmentally important organism such as C. elegans. Copyright © 2015 John Wiley & Sons, Ltd.

  14. CREATING AN IPHONE APPLICATION FOR COLLECTING CONTINUOUS ABC DATA

    PubMed Central

    Whiting, Seth W; Dixon, Mark R

    2012-01-01

    This paper provides an overview and task analysis for creating a continuous ABC data-collection application using Xcode on a Mac computer. Behavior analysts can program an ABC data collection system, complete with a customized list of target clients, antecedents, behaviors, and consequences to be recorded, and have the data automatically sent to an e-mail account after observations have concluded. Further suggestions are provided to customize the ABC data- collection system for individual preferences and clinical needs. PMID:23060682

  15. ABCs of Being Smart: S Is for Supporting

    ERIC Educational Resources Information Center

    Foster, Joanne

    2014-01-01

    Joanne Foster's article "R We There Yet?" was first published in "Parenting for High Potential" ("PHP") in 2006, which became the springboard for the "ABCs of Being Smart" series of columns. At that time, Foster invited "PHP" readers to think about their own versions of the "ABCs of Being…

  16. Oxidative Stress in HIV Infection and Alcohol Use: Role of Redox Signals in Modulation of Lipid Rafts and ATP-Binding Cassette Transporters.

    PubMed

    Thangavel, Samikkannu; Mulet, Carmen T; Atluri, Venkata S R; Agudelo, Marisela; Rosenberg, Rhonda; Devieux, Jessy G; Nair, Madhavan P N

    2018-02-01

    Human immunodeficiency virus (HIV) infection induces oxidative stress and alcohol use accelerates disease progression, subsequently causing immune dysfunction. However, HIV and alcohol impact on lipid rafts-mediated immune dysfunction remains unknown. In this study, we investigate the modulation by which oxidative stress induces reactive oxygen species (ROS) affecting redox expression, lipid rafts caveiloin-1, ATP-binding cassette (ABC) transporters, and transcriptional sterol regulatory element-binding protein (SREBP) gene and protein modification and how these mechanisms are associated with arachidonic acid (AA) metabolites in HIV positive alcohol users, and how they escalate immune dysfunction. In both alcohol using HIV-positive human subjects and in vitro studies of alcohol with HIV-1 gp120 protein in peripheral blood mononuclear cells, increased ROS production significantly affected redox expression in glutathione synthetase (GSS), super oxide dismutase (SOD), and glutathione peroxidase (GPx), and subsequently impacted lipid rafts Cav-1, ABC transporters ABCA1, ABCG1, ABCB1, and ABCG4, and SREBP transcription. The increased level of rate-limiting enzyme 3-hydroxy-3-methylglutaryl HMG-CoA reductase (HMGCR), subsequently, inhibited 7-dehydrocholesterol reductase (DHCR-7). Moreover, the expression of cyclooxygenase-2 (COX-2) and lipoxygenase-5 (5-LOX) mRNA and protein modification tentatively increased the levels of prostaglandin E2 synthases (PGE 2 ) in plasma when compared with either HIV or alcohol alone. This article suggests for the first time that the redox inhibition affects lipid rafts, ABC-transporter, and SREBP transcription and modulates AA metabolites, serving as an important intermediate signaling network during immune cell dysfunction in HIV-positive alcohol users. These findings indicate that HIV infection induces oxidative stress and redox inhibition, affecting lipid rafts and ABC transports, subsequently upregulating AA metabolites and leading to

  17. Phase 0 and phase III transport in various organs: combined concept of phases in xenobiotic transport and metabolism.

    PubMed

    Döring, Barbara; Petzinger, Ernst

    2014-08-01

    The historical phasing concept of drug metabolism and elimination was introduced to comprise the two phases of metabolism: phase I metabolism for oxidations, reductions and hydrolyses, and phase II metabolism for synthesis. With this concept, biological membrane barriers obstructing the accessibility of metabolism sites in the cells for drugs were not considered. The concept of two phases was extended to a concept of four phases when drug transporters were detected that guided drugs and drug metabolites in and out of the cells. In particular, water soluble or charged drugs are virtually not able to overcome the phospholipid membrane barrier. Drug transporters belong to two main clusters of transporter families: the solute carrier (SLC) families and the ATP binding cassette (ABC) carriers. The ABC transporters comprise seven families with about 20 carriers involved in drug transport. All of them operate as pumps at the expense of ATP splitting. Embedded in the former phase concept, the term "phase III" was introduced by Ishikawa in 1992 for drug export by ABC efflux pumps. SLC comprise 52 families, from which many carriers are drug uptake transporters. Later on, this uptake process was referred to as the "phase 0 transport" of drugs. Transporters for xenobiotics in man and animal are most expressed in liver, but they are also present in extra-hepatic tissues such as in the kidney, the adrenal gland and lung. This review deals with the function of drug carriers in various organs and their impact on drug metabolism and elimination.

  18. Sugar transporter genes of the brown planthopper, Nilaparvata lugens: A facilitated glucose/fructose transporter.

    PubMed

    Kikuta, Shingo; Kikawada, Takahiro; Hagiwara-Komoda, Yuka; Nakashima, Nobuhiko; Noda, Hiroaki

    2010-11-01

    The brown planthopper (BPH), Nilaparvata lugens, attacks rice plants and feeds on their phloem sap, which contains large amounts of sugars. The main sugar component of phloem sap is sucrose, a disaccharide composed of glucose and fructose. Sugars appear to be incorporated into the planthopper body by sugar transporters in the midgut. A total of 93 expressed sequence tags (ESTs) for putative sugar transporters were obtained from a BPH EST database, and 18 putative sugar transporter genes (Nlst1-18) were identified. The most abundantly expressed of these genes was Nlst1. This gene has previously been identified in the BPH as the glucose transporter gene NlHT1, which belongs to the major facilitator superfamily. Nlst1, 4, 6, 9, 12, 16, and 18 were highly expressed in the midgut, and Nlst2, 7, 8, 10, 15, 17, and 18 were highly expressed during the embryonic stages. Functional analyses were performed using Xenopus oocytes expressing NlST1 or 6. This showed that NlST6 is a facilitative glucose/fructose transporter that mediates sugar uptake from rice phloem sap in the BPH midgut in a manner similar to NlST1. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Novel 2,4-Dichlorophenoxyacetic Acid Degradation Genes from Oligotrophic Bradyrhizobium sp. Strain HW13 Isolated from a Pristine Environment

    PubMed Central

    Kitagawa, Wataru; Takami, Sachiko; Miyauchi, Keisuke; Masai, Eiji; Kamagata, Yoichi; Tiedje, James M.; Fukuda, Masao

    2002-01-01

    The tfd genes of Ralstonia eutropha JMP134 are the only well-characterized set of genes responsible for 2,4-dichlorophenoxyacetic acid (2,4-D) degradation among 2,4-D-degrading bacteria. A new family of 2,4-D degradation genes, cadRABKC, was cloned and characterized from Bradyrhizobium sp. strain HW13, a strain that was isolated from a buried Hawaiian soil that has never experienced anthropogenic chemicals. The cadR gene was inferred to encode an AraC/XylS type of transcriptional regulator from its deduced amino acid sequence. The cadABC genes were predicted to encode 2,4-D oxygenase subunits from their deduced amino acid sequences that showed 46, 44, and 37% identities with the TftA and TftB subunits of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) oxygenase of Burkholderia cepacia AC1100 and with a putative ferredoxin, ThcC, of Rhodococcus erythropolis NI86/21, respectively. They are thoroughly different from the 2,4-D dioxygenase gene, tfdA, of R. eutropha JMP134. The cadK gene was presumed to encode a 2,4-D transport protein from its deduced amino acid sequence that showed 60% identity with the 2,4-D transporter, TfdK, of strain JMP134. Sinorhizobium meliloti Rm1021 cells containing cadRABKC transformed several phenoxyacetic acids, including 2,4-D and 2,4,5-T, to corresponding phenol derivatives. Frameshift mutations indicated that each of the cadRABC genes was essential for 2,4-D conversion in strain Rm1021 but that cadK was not. Five 2,4-D degraders, including Bradyrhizobium and Sphingomonas strains, were found to have cadA gene homologs, suggesting that these 2,4-D degraders share 2,4-D degradation genes similar to those of strain HW13 cadABC. PMID:11751829

  20. Optimization of Straight Cylindrical Turning Using Artificial Bee Colony (ABC) Algorithm

    NASA Astrophysics Data System (ADS)

    Prasanth, Rajanampalli Seshasai Srinivasa; Hans Raj, Kandikonda

    2017-04-01

    Artificial bee colony (ABC) algorithm, that mimics the intelligent foraging behavior of honey bees, is increasingly gaining acceptance in the field of process optimization, as it is capable of handling nonlinearity, complexity and uncertainty. Straight cylindrical turning is a complex and nonlinear machining process which involves the selection of appropriate cutting parameters that affect the quality of the workpiece. This paper presents the estimation of optimal cutting parameters of the straight cylindrical turning process using the ABC algorithm. The ABC algorithm is first tested on four benchmark problems of numerical optimization and its performance is compared with genetic algorithm (GA) and ant colony optimization (ACO) algorithm. Results indicate that, the rate of convergence of ABC algorithm is better than GA and ACO. Then, the ABC algorithm is used to predict optimal cutting parameters such as cutting speed, feed rate, depth of cut and tool nose radius to achieve good surface finish. Results indicate that, the ABC algorithm estimated a comparable surface finish when compared with real coded genetic algorithm and differential evolution algorithm.

  1. Translocation of the ABC transporter ABCD4 from the endoplasmic reticulum to lysosomes requires the escort protein LMBD1.

    PubMed

    Kawaguchi, Kosuke; Okamoto, Takumi; Morita, Masashi; Imanaka, Tsuneo

    2016-07-26

    We previously demonstrated that ABCD4 does not localize to peroxisomes but rather, the endoplasmic reticulum (ER), because it lacks the NH2-terminal hydrophilic region required for peroxisomal targeting. It was recently reported that mutations in ABCD4 result in a failure to release vitamin B12 from lysosomes. A similar phenotype is caused by mutations in LMBRD1, which encodes the lysosomal membrane protein LMBD1. These findings suggested to us that ABCD4 translocated from the ER to lysosomes in association with LMBD1. In this report, it is demonstrated that ABCD4 interacts with LMBD1 and then localizes to lysosomes, and this translocation depends on the lysosomal targeting ability of LMBD1. Furthermore, endogenous ABCD4 was localized to both lysosomes and the ER, and its lysosomal localization was disturbed by knockout of LMBRD1. To the best of our knowledge, this is the first report demonstrating that the subcellular localization of the ABC transporter is determined by its association with an adaptor protein.

  2. Bombyx mori ABC transporter C2 structures responsible for the receptor function of Bacillus thuringiensis Cry1Aa toxin.

    PubMed

    Tanaka, Shiho; Endo, Haruka; Adegawa, Satomi; Iizuka, Ami; Imamura, Kazuhiro; Kikuta, Shingo; Sato, Ryoichi

    2017-12-01

    Because Bombyx mori ABC transporter C2 (BmABCC2) has 1000-fold higher potential than B. mori cadherin-like protein as a receptor for Bacillus thuringiensis Cry1Aa toxin (Tanaka et al., 2013), the gate-opening ability of the latent pore under six extracellular loops (ECLs) of BmABCC2 was expected to be the reason for its higher potential (Heckel, 2012). In this study, cell swelling assays in Sf9 cells showed that BmABCC2 mutants lacking substrate-excreting activity retained receptor activity, indicating that the gate-opening activity of BmABCC2 is not responsible for Cry1Aa toxicity. The analysis of 29 BmABCC2 mutants demonstrated that 770 DYWL 773 of ECL 4 comprise a putative binding site to Cry1Aa. This suggests that specific toxicity of Cry1Aa toxin to a restricted range of lepidopteran insects is dependent on conservation and variation in the amino acid residues around 770 DYWL 773 of ECL 4 in the ABCC2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) in wheat

    PubMed Central

    Buchner, Peter; Hawkesford, Malcolm J.

    2014-01-01

    NPF (formerly referred to as low-affinity NRT1) and ‘high-affinity’ NRT2 nitrate transporter genes are involved in nitrate uptake by the root, and transport and distribution of nitrate within the plant. The NPF gene family consists of 53 members in Arabidopsis thaliana, however only 11 of these have been functionally characterized. Although homologous genes have been identified in genomes of different plant species including some cereals, there is little information available for wheat (Triticum aestivum). Sixteen genes were identified in wheat homologous to characterized Arabidopsis low-affinity nitrate transporter NPF genes, suggesting a complex wheat NPF gene family. The regulation of wheat NFP genes by plant N-status indicated involvement of these transporters in substrate transport in relation to N-metabolism. The complex expression pattern in relation to tissue specificity, nitrate availability and senescence may be associated with the complex growth patterns of wheat depending on sink/source demands, as well as remobilization during grain filling. PMID:24913625

  4. Genes and proteins of urea transporters.

    PubMed

    Sands, Jeff M; Blount, Mitsi A

    2014-01-01

    A urea transporter protein in the kidney was first proposed in 1987. The first urea transporter cDNA was cloned in 1993. The SLC14a urea transporter family contains two major subgroups: SLC14a1, the UT-B urea transporter originally isolated from erythrocytes; and SLC14a2, the UT-A group originally isolated from kidney inner medulla. Slc14a1, the human UT-B gene, arises from a single locus located on chromosome 18q12.1-q21.1, which is located close to Slc14a2. Slc14a1 includes 11 exons, with the coding region extending from exon 4 to exon 11, and is approximately 30 kb in length. The Slc14a2 gene is a very large gene with 24 exons, is approximately 300 kb in length, and encodes 6 different isoforms. Slc14a2 contains two promoter elements: promoter I is located in the typical position, upstream of exon 1, and drives the transcription of UT-A1, UT-A1b, UT-A3, UT-A3b, and UT-A4; while promoter II is located within intron 12 and drives the transcription of UT-A2 and UT-A2b. UT-A1 and UT-A3 are located in the inner medullary collecting duct, UT-A2 in the thin descending limb and liver, UT-A5 in testis, UT-A6 in colon, UT-B1 primarily in descending vasa recta and erythrocytes, and UT-B2 in rumen.

  5. Genetic polymorphisms of ATP-binding cassette (ABC) proteins, overall survival and drug toxicity in patients with Acute Myeloid Leukemia

    PubMed Central

    Hampras, Shalaka S; Sucheston, Lara; Weiss, Joli; Baer, Maria R; Zirpoli, Gary; Singh, Prashant K; Wetzler, Meir; Chennamaneni, Raj; Blanco, Javier G; Ford, LaurieAnn; Moysich, Kirsten B

    2010-01-01

    The overall survival of patients with acute myeloid leukemia (AML) remains poor due to both intrinsic and acquired chemotherapy resistance. Over expression of ATP binding cassette (ABC) proteins in AML cells has been suggested as a putative mechanism of drug resistance. Genetic variation among individuals affecting the expression or function of these proteins may contribute to inter-individual variation in treatment outcomes. DNA from pre-treatment bone marrow or blood samples from 261 patients age 20-85 years, who received cytarabine and anthracycline-based therapy at Roswell Park Cancer Institute between 1994 and 2006, was genotyped for eight non-synonymous single nucleotide polymorphisms in the ABCB1, ABCC1 and ABCG2 drug transporter genes. Heterozygous (AG) or homozygous (AA) variant genotypes for rs2231137 (G34A) in the ABCG2 (BRCP) gene, compared to the wild type (GG) genotype were associated with both significantly improved survival (HR=0.44, 95%CI=0.25-0.79), and increased odds for toxicity (OR=8.41, 95%CI= 1.10-64.28). Thus genetic polymorphisms in the ABCG2 (BRCP) gene may contribute to differential survival outcomes and toxicities in AML patients via a mechanism of decreased drug efflux in both, AML cells and normal progenitors. PMID:21311724

  6. Involvement of a cyclic adenosine monophosphate-dependent signal in the diet-induced canalicular trafficking of adenosine triphosphate-binding cassette transporter g5/g8.

    PubMed

    Yamazaki, Yasuhiro; Yasui, Kenta; Hashizume, Takahiro; Suto, Arisa; Mori, Ayaka; Murata, Yuzuki; Yamaguchi, Masahiko; Ikari, Akira; Sugatani, Junko

    2015-10-01

    The adenosine triphosphate-binding cassette (ABC) half-transporters Abcg5 and Abcg8 promote the secretion of neutral sterol into bile. Studies have demonstrated the diet-induced gene expression of these transporters, but the regulation of their trafficking when the nutritional status changes in the liver remains to be elucidated. Here, we generated a novel in vivo kinetic analysis that can monitor the intracellular trafficking of Abcg5/Abcg8 in living mouse liver by in vivo transfection of the genes of fluorescent protein-tagged transporters and investigated how hypernutrition affects the canalicular trafficking of these transporters. The kinetic analysis showed that lithogenic diet consumption accelerated the translocation of newly synthesized fluorescent-tagged transporters to intracellular pools in an endosomal compartment and enhanced the recruitment of these pooled gene products into the bile canalicular membrane in mouse liver. Because some ABC transporters are reported to be recruited from intracellular pools to the bile canaliculi by cyclic adenosine monophosphate (cAMP) signaling, we next evaluated the involvement of this machinery in a diet-induced event. Administration of a protein kinase A inhibitor, N-(2-{[3-(4-bromophenyl)-2-propenyl]amino}ethyl)-5-isoquinolinesulfonamide, decreased the canalicular expression of native Abcg5/Abcg8 in lithogenic diet-fed mice, and injection of a cAMP analog, dibutyryl cAMP, transiently increased their levels in standard diet-fed mice, indicating the involvement of cAMP signaling. Indeed, canalicular trafficking of the fluorescent-tagged Abcg5/Abcg8 was enhanced by dibutyryl cAMP administration. These observations suggest that diet-induced lipid loading into liver accelerates the trafficking of Abcg5/Abcg8 to the bile canalicular membrane through cAMP signaling machinery. © 2015 by the American Association for the Study of Liver Diseases.

  7. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling

    PubMed Central

    2010-01-01

    Background In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis. Results In grapevine, one of the most economically important fruit crop in the world, it appeared that sucrose and monosaccharide transporter genes are present in 4 and 59 loci, respectively and that the monosaccharide transporter family can be divided into 7 subfamilies. Phylogenetic analysis of protein sequences has indicated that orthologs exist between Vitis and Arabidospis. A search for cis-regulatory elements in the promoter sequences of the most characterized transporter gene families (sucrose, hexoses and polyols transporters), has revealed that some of them might probably be regulated by sugars. To profile several genes simultaneously, we created a macroarray bearing cDNA fragments specific to 20 sugar transporter genes. This macroarray analysis has revealed that two hexose (VvHT1, VvHT3), one polyol (VvPMT5) and one sucrose (VvSUC27) transporter genes, are highly expressed in most vegetative organs. The expression of one hexose transporter (VvHT2) and two tonoplastic monosaccharide transporter (VvTMT1, VvTMT2) genes are regulated during berry development. Finally, three putative hexose transporter genes show a preferential organ specificity being highly expressed in seeds (VvHT3, VvHT5), in roots (VvHT2) or in mature leaves (VvHT5). Conclusions This study provides an exhaustive survey of sugar transporter genes in Vitis vinifera and revealed that sugar

  8. Application of activity-based costing (ABC) for a Peruvian NGO healthcare provider.

    PubMed

    Waters, H; Abdallah, H; Santillán, D

    2001-01-01

    This article describes the application of activity-based costing (ABC) to calculate the unit costs of the services for a health care provider in Peru. While traditional costing allocates overhead and indirect costs in proportion to production volume or to direct costs, ABC assigns costs through activities within an organization. ABC uses personnel interviews to determine principal activities and the distribution of individual's time among these activities. Indirect costs are linked to services through time allocation and other tracing methods, and the result is a more accurate estimate of unit costs. The study concludes that applying ABC in a developing country setting is feasible, yielding results that are directly applicable to pricing and management. ABC determines costs for individual clinics, departments and services according to the activities that originate these costs, showing where an organization spends its money. With this information, it is possible to identify services that are generating extra revenue and those operating at a loss, and to calculate cross subsidies across services. ABC also highlights areas in the health care process where efficiency improvements are possible. Conclusions about the ultimate impact of the methodology are not drawn here, since the study was not repeated and changes in utilization patterns and the addition of new clinics affected applicability of the results. A potential constraint to implementing ABC is the availability and organization of cost information. Applying ABC efficiently requires information to be readily available, by cost category and department, since the greatest benefits of ABC come from frequent, systematic application of the methodology in order to monitor efficiency and provide feedback for management. The article concludes with a discussion of the potential applications of ABC in the health sector in developing countries.

  9. Creating an iPhone application for collecting continuous ABC data.

    PubMed

    Whiting, Seth W; Dixon, Mark R

    2012-01-01

    This paper provides an overview and task analysis for creating a continuous ABC data-collection application using Xcode on a Mac computer. Behavior analysts can program an ABC data collection system, complete with a customized list of target clients, antecedents, behaviors, and consequences to be recorded, and have the data automatically sent to an e-mail account after observations have concluded. Further suggestions are provided to customize the ABC data- collection system for individual preferences and clinical needs.

  10. ABC versus CAB for cardiopulmonary resuscitation: a prospective, randomized simulator-based trial.

    PubMed

    Marsch, Stephan; Tschan, Franziska; Semmer, Norbert K; Zobrist, Roger; Hunziker, Patrick R; Hunziker, Sabina

    2013-09-06

    After years of advocating ABC (Airway-Breathing-Circulation), current guidelines of cardiopulmonary resuscitation (CPR) recommend CAB (Circulation-Airway-Breathing). This trial compared ABC with CAB as initial approach to CPR from the arrival of rescuers until the completion of the first resuscitation cycle. 108 teams, consisting of two physicians each, were randomized to receive a graphical display of either the ABC algorithm or the CAB algorithm. Subsequently teams had to treat a simulated cardiac arrest. Data analysis was performed using video recordings obtained during simulations. The primary endpoint was the time to completion of the first resuscitation cycle of 30 compressions and two ventilations. The time to execution of the first resuscitation measure was 32 ± 12 seconds in ABC teams and 25 ± 10 seconds in CAB teams (P = 0.002). 18/53 ABC teams (34%) and none of the 55 CAB teams (P = 0.006) applied more than the recommended two initial rescue breaths which caused a longer duration of the first cycle of 30 compressions and two ventilations in ABC teams (31 ± 13 vs.23 ± 6 sec; P = 0.001). Overall, the time to completion of the first resuscitation cycle was longer in ABC teams (63 ± 17 vs. 48 ± 10 sec; P <0.0001). This randomized controlled trial found CAB superior to ABC with an earlier start of CPR and a shorter time to completion of the first 30:2 resuscitation cycle. These findings endorse the change from ABC to CAB in international resuscitation guidelines.

  11. Repositioning of Tyrosine Kinase Inhibitors as Antagonists of ATP-Binding Cassette Transporters in Anticancer Drug Resistance

    PubMed Central

    Wang, Yi-Jun; Zhang, Yun-Kai; Kathawala, Rishil J.; Chen, Zhe-Sheng

    2014-01-01

    The phenomenon of multidrug resistance (MDR) has attenuated the efficacy of anticancer drugs and the possibility of successful cancer chemotherapy. ATP-binding cassette (ABC) transporters play an essential role in mediating MDR in cancer cells by increasing efflux of drugs from cancer cells, hence reducing the intracellular accumulation of chemotherapeutic drugs. Interestingly, small-molecule tyrosine kinase inhibitors (TKIs), such as AST1306, lapatinib, linsitinib, masitinib, motesanib, nilotinib, telatinib and WHI-P154, have been found to have the capability to overcome anticancer drug resistance by inhibiting ABC transporters in recent years. This review will focus on some of the latest and clinical developments with ABC transporters, TKIs and anticancer drug resistance. PMID:25268163

  12. Alzheimer's disease: neuroprogesterone, epoxycholesterol, and ABC transporters as determinants of neurodesmosterol tissue levels and its role in amyloid protein processing.

    PubMed

    Javitt, Norman B

    2013-01-01

    Evidence is emerging that during the development of Alzheimer's disease (AD), changes in the synthesis and metabolism of cholesterol and progesterone are occurring that may or may not affect the progression of the disease. The concept arose from the recognition that dehydrocholesterol 24-reductase (DHCR24/Seladin-1), one of the nine enzymes in the endoplasmic reticulum that determines the transformation of lanosterol to cholesterol, is selectively reduced in late AD. As a consequence, the tissue level of desmosterol increases, affecting the expression of ABC transporters and the structure of lipid rafts, both determinants of amyloid-β processing. However, the former effect is considered beneficial and the latter detrimental to processing. Other determinants of desmosterol tissue levels are 24,25 epoxycholesterol and the ABCG1 and ABCG4 transporters. Progesterone and its metabolites are determinants of tissue levels of desmosterol and several other sterol intermediates in cholesterol synthesis. Animal models indicate marked elevations in the tissue levels of these sterols at early time frames in the progression of neurodegenerative diseases. The low level of neuroprogesterone and metabolites in AD are consonant with the low level of desmosterol and may have a role in amyloid-β processing. The sparse data that has accumulated appears to be a sufficient basis for proposing a systematic evaluation of the biologic roles of sterol intermediates in the slowly progressive neurodegeneration characteristic of AD.

  13. Transformation of Lettuce with rol ABC Genes: Extracts Show Enhanced Antioxidant, Analgesic, Anti-Inflammatory, Antidepressant, and Anticoagulant Activities in Rats.

    PubMed

    Ismail, Hammad; Dilshad, Erum; Waheed, Mohammad Tahir; Mirza, Bushra

    2017-03-01

    Lettuce is an edible crop that is well known for dietary and antioxidant benefits. The present study was conducted to investigate the effects of rol ABC genes on antioxidant and medicinal potential of lettuce by Agrobacterium-mediated transformation. Transgene integration and expression was confirmed through PCR and real-time RT-PCR, respectively. The transformed plants showed 91-102 % increase in total phenolic contents and 53-65 % increase in total flavonoid contents compared to untransformed plants. Total antioxidant capacity and total reducing power increased up to 112 and 133 % in transformed plants, respectively. Results of DPPH assay showed maximum 51 % increase, and lipid peroxidation assay exhibited 20 % increase in antioxidant activity of transformed plants compared to controls. Different in vivo assays were carried out in rats. The transgenic plants showed up to 80 % inhibition in both hot plate analgesic assay and carrageenan-induced hind paw edema test, while untransformed plants showed only 45 % inhibition. Antidepressant and anticoagulant potential of transformed plants was also significantly enhanced compared to untransformed plants. Taken together, the present work highlights the use of rol genes to enhance the secondary metabolite production in lettuce and improve its analgesic, anti-inflammatory, antidepressant, and anticoagulatory properties.

  14. Mutations in sit B and sit D genes affect manganese-growth requirements in Sinorhizobium meliloti.

    PubMed

    Platero, Raúl A; Jaureguy, Melina; Battistoni, Federico J; Fabiano, Elena R

    2003-01-21

    Two transposon-induced mutants of Sinorhizobium meliloti 242 were isolated based on their inability to grow on rich medium supplemented with the metal chelator ethylenediamine di-o-hydroxyphenylacetic acid (EDDHA) and either heme-compounds or siderophores as iron sources. Tagged loci of these mutants were identified as sit B and sit D genes. These genes encode components of an ABC (ATP-binding cassette) metal-type permease in several Gram-negative bacteria. In this work, the phenotypes of these two mutants were compared with those of two siderophore-mediated iron transport mutants. The results strongly implicate a role of the sit genes in manganese acquisition when this metal is limiting in S. meliloti.

  15. Characterisation of single domain ATP-binding cassette protien homologues of Theileria parva.

    PubMed

    Kibe, M K; Macklin, M; Gobright, E; Bishop, R; Urakawa, T; ole-MoiYoi, O K

    2001-09-01

    Two distinct genes encoding single domain, ATP-binding cassette transport protein homologues of Theileria parva were cloned and sequenced. Neither of the genes is tandemly duplicated. One gene, TpABC1, encodes a predicted protein of 593 amino acids with an N-terminal hydrophobic domain containing six potential membrane-spanning segments. A single discontinuous ATP-binding element was located in the C-terminal region of TpABC1. The second gene, TpABC2, also contains a single C-terminal ATP-binding motif. Copies of TpABC2 were present at four loci in the T. parva genome on three different chromosomes. TpABC1 exhibited allelic polymorphism between stocks of the parasite. Comparison of cDNA and genomic sequences revealed that TpABC1 contained seven short introns, between 29 and 84 bp in length. The full-length TpABC1 protein was expressed in insect cells using the baculovirus system. Application of antibodies raised against the recombinant antigen to western blots of T. parva piroplasm lysates detected an 85 kDa protein in this life-cycle stage.

  16. Anticipated Benefits of Care (ABC): psychometrics and predictive value in psychiatric disorders.

    PubMed

    Warden, D; Trivedi, M H; Carmody, T J; Gollan, J K; Kashner, T M; Lind, L; Crismon, M L; Rush, A J

    2010-06-01

    Attitudes and expectations about treatment have been associated with symptomatic outcomes, adherence and utilization in patients with psychiatric disorders. No measure of patients' anticipated benefits of treatment on domains of everyday functioning has previously been available. The Anticipated Benefits of Care (ABC) is a new, 10-item questionnaire used to measure patient expectations about the impact of treatment on domains of everyday functioning. The ABC was collected at baseline in adult out-patients with major depressive disorder (MDD) (n=528), bipolar disorder (n=395) and schizophrenia (n=447) in the Texas Medication Algorithm Project (TMAP). Psychometric properties of the ABC were assessed, and the association of ABC scores with treatment response at 3 months was evaluated. Evaluation of the ABC's internal consistency yielded Cronbach's alpha of 0.90-0.92 for patients across disorders. Factor analysis showed that the ABC was unidimensional for all patients and for patients with each disorder. For patients with MDD, lower anticipated benefits of treatment was associated with less symptom improvement and lower odds of treatment response [odds ratio (OR) 0.72, 95% confidence interval (CI) 0.57-0.87, p=0.0011]. There was no association between ABC and symptom improvement or treatment response for patients with bipolar disorder or schizophrenia, possibly because these patients had modest benefits with treatment. The ABC is the first self-report that measures patient expectations about the benefits of treatment on everyday functioning, filling an important gap in available assessments of attitudes and expectations about treatment. The ABC is simple, easy to use, and has acceptable psychometric properties for use in research or clinical settings.

  17. Object Detection Based on Template Matching through Use of Best-So-Far ABC

    PubMed Central

    2014-01-01

    Best-so-far ABC is a modified version of the artificial bee colony (ABC) algorithm used for optimization tasks. This algorithm is one of the swarm intelligence (SI) algorithms proposed in recent literature, in which the results demonstrated that the best-so-far ABC can produce higher quality solutions with faster convergence than either the ordinary ABC or the current state-of-the-art ABC-based algorithm. In this work, we aim to apply the best-so-far ABC-based approach for object detection based on template matching by using the difference between the RGB level histograms corresponding to the target object and the template object as the objective function. Results confirm that the proposed method was successful in both detecting objects and optimizing the time used to reach the solution. PMID:24812556

  18. Downregulation of miR-29a/b/c in placenta accreta inhibits apoptosis of implantation site intermediate trophoblast cells by targeting MCL1.

    PubMed

    Gu, Yongzhong; Bian, Yuehong; Xu, Xiaofei; Wang, Xietong; Zuo, Changting; Meng, Jinlai; Li, Hongyan; Zhao, Shigang; Ning, Yunnan; Cao, Yongzhi; Huang, Tao; Yan, Junhao; Chen, Zi-Jiang

    2016-12-01

    Placenta accreta is defined as abnormal adhesion of placental villi to the uterine myometrium. Although this condition has become more common as a result of the increasing rate of cesarean sections, the underlying causative mechanism(s) remain elusive. Because microRNA-29a/b/c (miR-29a/b/c) have been shown to play important roles in placental development, this study evaluated the roles of these microRNAs in placenta accreta. Expression of miR-29a/b/c and myeloid cell leukemia-1 (MCL1) were quantified in patient tissues and HTR8/SVneo trophoblast cells using the real-time quantitative polymerase chain reaction. Western blotting was used to analyze expression of the MCL1 protein in HTR8/SVneo trophoblast cells with altered expression of miR-29a/b/c. To determine their role in apoptosis, miR-29a/b/c were overexpressed in HTR-8/SVneo cells, and levels of apoptosis were analyzed by flow cytometry. Luciferase activity assays were used to determine whether MCL1 is a target gene of miR-29a/b/c. Expression of miR-29a/b/c was significantly lower in creta sites compared to noncreta sites (p = 0.018, 0.041, and 0.022, respectively), but expression of MCL1 was upregulated in creta sites (p = 0.039). MCL1 expression was significantly downregulated in HTR-8/SVneo cells overexpressing miR-29a/b/c (p = 0.002, 0.008, and 0.013, respectively). Luciferase activity assays revealed that miR-29a/b/c directly target the 3' untranslated region of MCL1 in 293T cells. Over-expression of miR-29a/b/c induced apoptosis in the HTR-8/SVneo trophoblast cell line. Moreover, histopathological evaluation revealed that the number of implantation site intermediate trophoblast (ISIT) cells was increased in creta sites and that these cells were positive for MCL1. Our results demonstrate that in placenta accreta, miR-29a/b/c inhibits apoptosis of ISIT cells by targeting MCL1. These findings provide new insights into the pathogenesis of placenta accreta. Copyright © 2016 Elsevier Ltd. All rights

  19. Characterization of a novel domain ‘GATE’ in the ABC protein DrrA and its role in drug efflux by the DrrAB complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Han; Rahman, Sadia; Li, Wen

    2015-03-27

    A novel domain, GATE (Glycine-loop And Transducer Element), is identified in the ABC protein DrrA. This domain shows sequence and structural conservation among close homologs of DrrA as well as distantly-related ABC proteins. Among the highly conserved residues in this domain are three glycines, G215, G221 and G231, of which G215 was found to be critical for stable expression of the DrrAB complex. Other conserved residues, including E201, G221, K227 and G231, were found to be critical for the catalytic and transport functions of the DrrAB transporter. Structural analysis of both the previously published crystal structure of the DrrA homologmore » MalK and the modeled structure of DrrA showed that G215 makes close contacts with residues in and around the Walker A motif, suggesting that these interactions may be critical for maintaining the integrity of the ATP binding pocket as well as the complex. It is also shown that G215A or K227R mutation diminishes some of the atomic interactions essential for ATP catalysis and overall transport function. Therefore, based on both the biochemical and structural analyses, it is proposed that the GATE domain, located outside of the previously identified ATP binding and hydrolysis motifs, is an additional element involved in ATP catalysis. - Highlights: • A novel domain ‘GATE’ is identified in the ABC protein DrrA. • GATE shows high sequence and structural conservation among diverse ABC proteins. • GATE is located outside of the previously studied ATP binding and hydrolysis motifs. • Conserved GATE residues are critical for stability of DrrAB and for ATP catalysis.« less

  20. Transport genes and chemotaxis in Laribacter hongkongensis: a genome-wide analysis

    PubMed Central

    2011-01-01

    Background Laribacter hongkongensis is a Gram-negative, sea gull-shaped rod associated with community-acquired gastroenteritis. The bacterium has been found in diverse freshwater environments including fish, frogs and drinking water reservoirs. Using the complete genome sequence data of L. hongkongensis, we performed a comprehensive analysis of putative transport-related genes and genes related to chemotaxis, motility and quorum sensing, which may help the bacterium adapt to the changing environments and combat harmful substances. Results A genome-wide analysis using Transport Classification Database TCDB, similarity and keyword searches revealed the presence of a large diversity of transporters (n = 457) and genes related to chemotaxis (n = 52) and flagellar biosynthesis (n = 40) in the L. hongkongensis genome. The transporters included those from all seven major transporter categories, which may allow the uptake of essential nutrients or ions, and extrusion of metabolic end products and hazardous substances. L. hongkongensis is unique among closely related members of Neisseriaceae family in possessing higher number of proteins related to transport of ammonium, urea and dicarboxylate, which may reflect the importance of nitrogen and dicarboxylate metabolism in this assacharolytic bacterium. Structural modeling of two C4-dicarboxylate transporters showed that they possessed similar structures to the determined structures of other DctP-TRAP transporters, with one having an unusual disulfide bond. Diverse mechanisms for iron transport, including hemin transporters for iron acquisition from host proteins, were also identified. In addition to the chemotaxis and flagella-related genes, the L. hongkongensis genome also contained two copies of qseB/qseC homologues of the AI-3 quorum sensing system. Conclusions The large number of diverse transporters and genes involved in chemotaxis, motility and quorum sensing suggested that the bacterium may utilize a complex system to

  1. The ABCs of Sex Ed.

    ERIC Educational Resources Information Center

    Sroka, Stephen R.

    2002-01-01

    Cites statistics on extent of sexually transmitted diseases and pregnancies among adolescents; describes ideological dispute over how to teach sex education; advocates teaching the ABCs of sex education: Abstinence, Be Monogamous, and Condoms. (PKP)

  2. Abrasive wear behavior of heat-treated ABC-silicon carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  3. The naphthoquinones, vitamin K3 and its structural analog plumbagin, are substrates of the multidrug resistance-linked ABC drug transporter ABCG2

    PubMed Central

    Shukla, Suneet; Wu, Chung-Pu; Nandigama, Krishnamachary; Ambudkar, Suresh V.

    2008-01-01

    Vitamin K3 (Menadione; 2-methyl-1,4-naphthoquinone) is a structural precursor of vitamins K1 and K2 which are essential for blood clotting. The naturally occurring structural analog of this vitamin, plumbagin (5-hydroxy-menadione), is known to modulate cellular proliferation, apoptosis, carcinogenesis, and radioresistance. We, here, report that both vitamin K3 and plumbagin are substrates of the multidrug resistance-linked ATP binding cassette (ABC) drug transporter, ABCG2. Vitamin K3 and plumbagin specifically inhibited the ABCG2-mediated efflux of mitoxantrone, but did not have any effect on the ABCB1-mediated efflux of rhodamine 123. This inhibition of ABCG2 function was due to their interaction at the substrate-binding site(s). They inhibited the binding of [125I]-Iodoarylazidoprazosin (IAAP), a substrate of ABCG2, to this transporter in a concentration-dependent manner with IC50 values of 7.3 and 22.6 μM, respectively, but had no effect on the binding of this photoaffinity analog to ABCB1. Both compounds stimulated ABCG2-mediated ATP hydrolysis and also inhibited the mitoxantrone-stimulated ATPase activity of this transporter, but did not have any significant effect on the ATPase activity of ABCB1. In a cytotoxicity assay, ABCG2-expressing HEK cells were 2.8- and 2.3-fold resistant to plumbagin and vitamin K3, respectively, compared to the control cells, suggesting that they are substrates of this transporter. Collectively, these data demonstrate for the first time that vitamin K3 is a substrate of the ABCG2 transporter. Thus, ABCG2 may have a role in the regulation of vitamin K3 levels in the body. In addition, vitamin K3 and its structural derivative, plumbagin, could potentially be used to modulate ABCG2 function. PMID:18065489

  4. Conserved ABC Transport System Regulated by the General Stress Response Pathways of Alpha- and Gammaproteobacteria.

    PubMed

    Herrou, Julien; Willett, Jonathan W; Czyż, Daniel M; Babnigg, Gyorgy; Kim, Youngchang; Crosson, Sean

    2017-03-01

    Brucella abortus σ E1 is an EcfG family sigma factor that regulates the transcription of dozens of genes in response to diverse stress conditions and is required for maintenance of chronic infection in a mouse model. A putative ATP-binding cassette transporter operon, bab1_0223-bab1_0226 , is among the most highly activated gene sets in the σ E1 regulon. The proteins encoded by the operon resemble quaternary ammonium-compatible solute importers but are most similar in sequence to the broadly conserved YehZYXW system, which remains largely uncharacterized. Transcription of yehZYXW is activated by the general stress sigma factor σ S in Enterobacteriaceae , which suggests a functional role for this transport system in bacterial stress response across the classes Alphaproteobacteria and Gammaproteobacteria We present evidence that B. abortus YehZYXW does not function as an importer of known compatible solutes under physiological conditions and does not contribute to the virulence defect of a σ E1 -null strain. The sole in vitro phenotype associated with genetic disruption of this putative transport system is reduced growth in the presence of high Li + ion concentrations. A crystal structure of B. abortus YehZ revealed a class II periplasmic binding protein fold with significant structural homology to Archaeoglobus fulgidus ProX, which binds glycine betaine. However, the structure of the YehZ ligand-binding pocket is incompatible with high-affinity binding to glycine betaine. This is consistent with weak measured binding of YehZ to glycine betaine and related compatible solutes. We conclude that YehZYXW is a conserved, stress-regulated transport system that is phylogenetically and functionally distinct from quaternary ammonium-compatible solute importers. IMPORTANCE Brucella abortus σ E1 regulates transcription in response to stressors encountered in its mammalian host and is necessary for maintenance of chronic infection in a mouse model. The functions of the

  5. Conserved ABC Transport System Regulated by the General Stress Response Pathways of Alpha- and Gammaproteobacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrou, Julien; Willett, Jonathan W.; Czyż, Daniel M.

    ABSTRACT Brucella abortusσ E1is an EcfG family sigma factor that regulates the transcription of dozens of genes in response to diverse stress conditions and is required for maintenance of chronic infection in a mouse model. A putative ATP-binding cassette transporter operon,bab1_0223-bab1_0226, is among the most highly activated gene sets in the σ E1regulon. The proteins encoded by the operon resemble quaternary ammonium-compatible solute importers but are most similar in sequence to the broadly conserved YehZYXW system, which remains largely uncharacterized. Transcription ofyehZYXWis activated by the general stress sigma factor σ SinEnterobacteriaceae, which suggests a functional role for this transport systemmore » in bacterial stress response across the classesAlphaproteobacteriaandGammaproteobacteria. We present evidence thatB. abortusYehZYXW does not function as an importer of known compatible solutes under physiological conditions and does not contribute to the virulence defect of a σ E1-null strain. The solein vitrophenotype associated with genetic disruption of this putative transport system is reduced growth in the presence of high Li +ion concentrations. A crystal structure ofB. abortusYehZ revealed a class II periplasmic binding protein fold with significant structural homology toArchaeoglobus fulgidusProX, which binds glycine betaine. However, the structure of the YehZ ligand-binding pocket is incompatible with high-affinity binding to glycine betaine. This is consistent with weak measured binding of YehZ to glycine betaine and related compatible solutes. We conclude that YehZYXW is a conserved, stress-regulated transport system that is phylogenetically and functionally distinct from quaternary ammonium-compatible solute importers. IMPORTANCEBrucella abortusσ E1regulates transcription in response to stressors encountered in its mammalian host and is necessary for maintenance of chronic infection in a mouse model. The functions of the majority of

  6. A Manual for Implementation of ABC Video Duplication Projects.

    ERIC Educational Resources Information Center

    Hill, Joseph, Ed.

    The ABC (Appalachian BOCES Consortium) consists of 10 BOCES (Boards of Cooperative Educational Services) which serve the 14 southern counties of New York State designated as Appalachia. Each year since 1974, the ABC has participated in regional video duplication projects, which have yielded a total of nearly 4,000 video titles. The complexity of…

  7. A lower isoelectric point increases signal sequence-mediated secretion of recombinant proteins through a bacterial ABC transporter.

    PubMed

    Byun, Hyunjong; Park, Jiyeon; Kim, Sun Chang; Ahn, Jung Hoon

    2017-12-01

    Efficient protein production for industrial and academic purposes often involves engineering microorganisms to produce and secrete target proteins into the culture. Pseudomonas fluorescens has a TliDEF ATP-binding cassette transporter, a type I secretion system, which recognizes C-terminal LARD3 signal sequence of thermostable lipase TliA. Many proteins are secreted by TliDEF in vivo when recombined with LARD3, but there are still others that cannot be secreted by TliDEF even when LARD3 is attached. However, the factors that determine whether or not a recombinant protein can be secreted through TliDEF are still unknown. Here, we recombined LARD3 with several proteins and examined their secretion through TliDEF. We found that the proteins secreted via LARD3 are highly negatively charged with highly-acidic isoelectric points (pI) lower than 5.5. Attaching oligo-aspartate to lower the pI of negatively-charged recombinant proteins improved their secretion, and attaching oligo-arginine to negatively-charged proteins blocked their secretion by LARD3. In addition, negatively supercharged green fluorescent protein (GFP) showed improved secretion, whereas positively supercharged GFP did not secrete. These results disclosed that proteins' acidic pI and net negative charge are major factors that determine their secretion through TliDEF. Homology modeling for TliDEF revealed that TliD dimer forms evolutionarily-conserved positively-charged clusters in its pore and substrate entrance site, which also partially explains the pI dependence of the TliDEF-dependent secretions. In conclusion, lowering the isoelectric point improved LARD3-mediated protein secretion, both widening the range of protein targets for efficient production via secretion and signifying an important aspect of ABC transporter-mediated secretions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. MetaABC--an integrated metagenomics platform for data adjustment, binning and clustering.

    PubMed

    Su, Chien-Hao; Hsu, Ming-Tsung; Wang, Tse-Yi; Chiang, Sufeng; Cheng, Jen-Hao; Weng, Francis C; Kao, Cheng-Yan; Wang, Daryi; Tsai, Huai-Kuang

    2011-08-15

    MetaABC is a metagenomic platform that integrates several binning tools coupled with methods for removing artifacts, analyzing unassigned reads and controlling sampling biases. It allows users to arrive at a better interpretation via series of distinct combinations of analysis tools. After execution, MetaABC provides outputs in various visual formats such as tables, pie and bar charts as well as clustering result diagrams. MetaABC source code and documentation are available at http://bits2.iis.sinica.edu.tw/MetaABC/ CONTACT: dywang@gate.sinica.edu.tw; hktsai@iis.sinica.edu.tw Supplementary data are available at Bioinformatics online.

  9. TaABC1, a member of the activity of bc1 complex protein kinase family from common wheat, confers enhanced tolerance to abiotic stresses in Arabidopsis

    PubMed Central

    Wang, Caixiang; Jing, Ruilian; Mao, Xinguo; Chang, Xiaoping; Li, Ang

    2011-01-01

    Abiotic stresses such as drought, salinity, and low temperature have drastic effects on plant growth and development. However, the molecular mechanisms regulating biochemical and physiological changes in response to stresses are not well understood. Protein kinases are major signal transduction factors among the reported molecular mechanisms mediating acclimation to environmental changes. Protein kinase ABC1 (activity of bc1 complex) is involved in regulating coenzyme Q biosynthesis in mitochondria in yeast (Saccharomyces cersvisiae), and in balancing oxidative stress in chloroplasts in Arabidopsis thaliana. In the current study, TaABC1 (Triticum aestivum L. activity of bc1 complex) protein kinase was localized to the cell membrane, cytoplasm, and nucleus. The effects of overexpressing TaABC1 in transgenic Arabidopsis plants on responses to drought, salt, and cold stress were further investigated. Transgenic Arabidopsis overexpressing the TaABC1 protein showed lower water loss and higher osmotic potential, photochemistry efficiency, and chlorophyll content, while cell membrane stability and controlled reactive oxygen species homeostasis were maintained. In addition, overexpression of TaABC1 increased the expression of stress-responsive genes, such as DREB1A, DREB2A, RD29A, ABF3, KIN1, CBF1, LEA, and P5CS, detected by real-time PCR analysis. The results suggest that TaABC1 overexpression enhances drought, salt, and cold stress tolerance in Arabidopsis, and imply that TaABC1 may act as a regulatory factor involved in a multiple stress response pathways. PMID:21115661

  10. Phase behavior of model ABC triblock copolymers

    NASA Astrophysics Data System (ADS)

    Chatterjee, Joon

    The phase behavior of poly(isoprene-b-styrene- b-ethylene oxide) (ISO), a model ABC triblock copolymer has been studied. This class of materials exhibit self-assembly, forming a large array of ordered morphologies at length scales of 5-100 nm. The formation of stable three-dimensionally continuous network morphologies is of special interest in this study. Since these nanostructures considerably impact the material properties, fundamental knowledge for designing ABC systems have high technological importance for realizing applications in the areas of nanofabrication, nanoporous media, separation membranes, drug delivery and high surface area catalysts. A comprehensive framework was developed to describe the phase behavior of the ISO triblock copolymers at weak to intermediate segregation strengths spanning a wide range of composition. Phases were characterized through a combination of characterization techniques, including small angle x-ray scattering, dynamic mechanical spectroscopy, transmission electron microscopy, and birefringence measurements. Combined with previous investigations on ISO, six different stable ordered state symmetries have been identified: lamellae (LAM), Fddd orthorhombic network (O70), double gyroid (Q230), alternating gyroid (Q214), hexagonal (HEX), and body-centered cubic (BCC). The phase map was found to be somewhat asymmetric around the fI = fO isopleth. This work provides a guide for theoretical studies and gives insight into the intricate effects of various parameters on the self-assembly of ABC triblock copolymers. Experimental SAXS data evaluated with a simple scattering intensity model show that local mixing varies continuously across the phase map between states of two- and three-domain segregation. Strategies of blending homopolymers with ISO triblock copolymer were employed for studying the swelling properties of a lamellar state. Results demonstrate that lamellar domains swell or shrink depending upon the type of homopolymer that

  11. Purification and characterization of chondroitinase ABC from Acinetobacter sp. C26.

    PubMed

    Zhu, Changliang; Zhang, Jingliang; Zhang, Jing; Jiang, Yanhui; Shen, Zhaopeng; Guan, Huashi; Jiang, Xiaolu

    2017-02-01

    An extracellular chondroitinase ABC (ChSase ABC, EC 4.2.2.4) produced by cultivating Acinetobacter sp. C26, was purified to homogeneity from the supernatant by ammonium sulfate fractionation, Q-Sepharose Fast Flow and Sephadex G-100 chromatography. The 76kDa enzyme was purified 48.09-fold to homogeneity with specific activity of 348.64U/mg, Using the chondroitin sulfate A (CS-A) as substrate, the maximal reaction rate (Vmax) and Michaelis-Menten constant (Km) of ChSase ABC were found to be 10.471μmol/min/ml and 0.105mg/ml, respectively. The enzyme showed the highest activity at the optimal conditions of pH 6.0 and 42 ∘C, respectively. This enzyme was stable at pH 5-10, 5-9 and 5-7 at 4°C, 37°C and 42°C, respectively. Investigation about thermal stability of ChSase ABC displayed that it was stable at 37°C. ChSase ABC activity was increased in presence of Na + , K + , Mn 2+ , 1,10-phenanthrolin and strongly inhibited by Cu 2+ , Hg 2+ , Al 3+ and SDS. These properties suggested that ChSase ABC from Acinetobacter sp. C26 bring promising prospects in medical and industry applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Signaling from soybean roots to rhizobium: An ATP-binding cassette-type transporter mediates genistein secretion.

    PubMed

    Sugiyama, Akifumi; Shitan, Nobukazu; Yazaki, Kazufumi

    2008-01-01

    Legume plants have a unique ability to fix atmospheric nitrogen via symbiosis with rhizobia. For the establishment of symbiosis, legume plants secrete signaling molecules such as flavonoids from root tissues, leading to the attraction of rhizobia and the induction of rhizobial nod genes. Genistein and daidzein are found in soybean root exudates and function as signal molecules in soybean-Bradyrhizobium japonicum chemical communication. Although it is more than 20 years since these signal flavonoids were identified, almost nothing has been characterized concerning the membrane transport process of these molecules from soybean roots. To elucidate the transport mechanism we performed membrane transport assays with plasma membrane-enriched vesicles and various inhibitors. As a result, we concluded that an ATP-binding cassette-type transporter is involved in the secretion of genistein from soybean roots. The possible involvement of a pleiotropic drug resistance-type ABC transporter in this secretion is also discussed.

  13. Flavone-resistant Leishmania donovani Overexpresses LdMRP2 Transporter in the Parasite and Activates Host MRP2 on Macrophages to Circumvent the Flavone-mediated Cell Death*

    PubMed Central

    Chowdhury, Sayan; Mukhopadhyay, Rupkatha; Saha, Sourav; Mishra, Amartya; Sengupta, Souvik; Roy, Syamal; Majumder, Hemanta K.

    2014-01-01

    In parasites, ATP-binding cassette (ABC) transporters represent an important family of proteins related to drug resistance and other biological activities. Resistance of leishmanial parasites to therapeutic drugs continues to escalate in developing countries, and in many instances, it is due to overexpressed ABC efflux pumps. Progressively adapted baicalein (BLN)-resistant parasites (pB25R) show overexpression of a novel ABC transporter, which was classified as ABCC2 or Leishmania donovani multidrug resistance protein 2 (LdMRP2). The protein is primarily localized in the flagellar pocket region and in internal vesicles. Overexpressed LdABCC2 confers substantial BLN resistance to the parasites by rapid drug efflux. The BLN-resistant promastigotes when transformed into amastigotes in macrophage cells cannot be cured by treatment of macrophages with BLN. Amastigote resistance is concomitant with the overexpression of macrophage MRP2 transporter. Reporter analysis and site-directed mutagenesis assays demonstrated that antioxidant response element 1 is activated upon infection. The expression of this phase II detoxifying gene is regulated by NFE2-related factor 2 (Nrf2)-mediated antioxidant response element activation. In view of the fact that the signaling pathway of phosphoinositol 3-kinase controls microfilament rearrangement and translocation of actin-associated proteins, the current study correlates with the intricate pathway of phosphoinositol 3-kinase-mediated nuclear translocation of Nrf2, which activates MRP2 expression in macrophages upon infection by the parasites. In contrast, phalloidin, an agent that prevents depolymerization of actin filaments, inhibits Nrf2 translocation and Mrp2 gene activation by pB25R infection. Taken together, these results provide insight into the mechanisms by which resistant clinical isolates of L. donovani induce intracellular events relevant to drug resistance. PMID:24706751

  14. Homologues of the human multidrug resistance genes MRP and MDR contribute to heavy metal resistance in the soil nematode Caenorhabditis elegans.

    PubMed Central

    Broeks, A; Gerrard, B; Allikmets, R; Dean, M; Plasterk, R H

    1996-01-01

    Acquired resistance of mammalian cells to multiple chemotherapeutic drugs can result from enhanced expression of the multidrug resistance-associated protein (MRP), which belongs to the ABC transporter superfamily. ABC transporters play a role in the protection of organisms against exogenous toxins by cellular detoxification processes. We have identified four MRP homologues in the soil nematode Caenorhabditis elegans, and we have studied one member, mrp-1, in detail. Using an mrp::lacZ gene fusion, mrp-l expression was found in cells of the pharynx, the pharynx-intestinal valve and the anterior intestinal cells, the rectum-intestinal valve and the epithelial cells of the vulva. Targeted inactivation of mrp-l resulted in increased sensitivity to the heavy metal ions cadmium and arsenite, to which wild-type worms are highly tolerant. The most pronounced effect of the mrp-1 mutation is on the ability of animals to recover from temporary exposure to high concentrations of heavy metals. Nematodes were found to be hypersensitive to heavy metals when both the MRP homologue, mrp-1, and a member of the P-glycoprotein (Pgp) gene family, pgp-1, were deleted. We conclude that nematodes have multiple proteins, homologues of mammalian proteins involved in the cellular resistance to chemotherapeutic drugs, that protect them against heavy metals. Images PMID:8947035

  15. Plant Flavonoids—Biosynthesis, Transport and Involvement in Stress Responses

    PubMed Central

    Petrussa, Elisa; Braidot, Enrico; Zancani, Marco; Peresson, Carlo; Bertolini, Alberto; Patui, Sonia; Vianello, Angelo

    2013-01-01

    This paper aims at analysing the synthesis of flavonoids, their import and export in plant cell compartments, as well as their involvement in the response to stress, with particular reference to grapevine (Vitis vinifera L.). A multidrug and toxic compound extrusion (MATE) as well as ABC transporters have been demonstrated in the tonoplast of grape berry, where they perform a flavonoid transport. The involvement of a glutathione S-transferase (GST) gene has also been inferred. Recently, a putative flavonoid carrier, similar to mammalian bilitranslocase (BTL), has been identified in both grape berry skin and pulp. In skin the pattern of BTL expression increases from véraison to harvest, while in the pulp its expression reaches the maximum at the early ripening stage. Moreover, the presence of BTL in vascular bundles suggests its participation in long distance transport of flavonoids. In addition, the presence of a vesicular trafficking in plants responsible for flavonoid transport is discussed. Finally, the involvement of flavonoids in the response to stress is described. PMID:23867610

  16. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells

    PubMed Central

    Lara, Flavio Alves; Pohl, Paula C.; Gandara, Ana Caroline; Ferreira, Jessica da Silva; Nascimento-Silva, Maria Clara; Bechara, Gervásio Henrique; Sorgine, Marcos H. F.; Almeida, Igor C.; Vaz, Itabajara da Silva; Oliveira, Pedro L.

    2015-01-01

    In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus) microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA), a well-known inhibitor of ATP binding cassette (ABC) transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may represent a new

  17. A Genetic Locus Necessary for Rhamnose Uptake and Catabolism in Rhizobium leguminosarum bv. trifolii

    PubMed Central

    Richardson, Jason S.; Hynes, Michael F.; Oresnik, Ivan J.

    2004-01-01

    Rhizobium leguminosarum bv. trifolii mutants unable to catabolize the methyl-pentose rhamnose are unable to compete effectively for nodule occupancy. In this work we show that the locus responsible for the transport and catabolism of rhamnose spans 10,959 bp. Mutations in this region were generated by transposon mutagenesis, and representative mutants were characterized. The locus contains genes coding for an ABC-type transporter, a putative dehydrogenase, a probable isomerase, and a sugar kinase necessary for the transport and subsequent catabolism of rhamnose. The regulation of these genes, which are inducible by rhamnose, is carried out in part by a DeoR-type negative regulator (RhaR) that is encoded within the same transcript as the ABC-type transporter but is separated from the structural genes encoding the transporter by a terminator-like sequence. RNA dot blot analysis demonstrated that this terminator-like sequence is correlated with transcript attenuation only under noninducing conditions. Transport assays utilizing tritiated rhamnose demonstrated that uptake of rhamnose was inducible and dependent upon the presence of the ABC transporter at this locus. Phenotypic analyses of representative mutants from this locus provide genetic evidence that the catabolism of rhamnose differs from previously described methyl-pentose catabolic pathways. PMID:15576793

  18. Functional Interaction between the Cytoplasmic ABC Protein LptB and the Inner Membrane LptC Protein, Components of the Lipopolysaccharide Transport Machinery in Escherichia coli

    PubMed Central

    Martorana, Alessandra M.; Benedet, Mattia; Maccagni, Elisa A.; Sperandeo, Paola; Villa, Riccardo; Dehò, Gianni

    2016-01-01

    ABSTRACT The assembly of lipopolysaccharide (LPS) in the outer leaflet of the outer membrane (OM) requires the transenvelope Lpt (lipopolysaccharide transport) complex, made in Escherichia coli of seven essential proteins located in the inner membrane (IM) (LptBCFG), periplasm (LptA), and OM (LptDE). At the IM, LptBFG constitute an unusual ATP binding cassette (ABC) transporter, composed by the transmembrane LptFG proteins and the cytoplasmic LptB ATPase, which is thought to extract LPS from the IM and to provide the energy for its export across the periplasm to the cell surface. LptC is a small IM bitopic protein that binds to LptBFG and recruits LptA via its N- and C-terminal regions, and its role in LPS export is not completely understood. Here, we show that the expression level of lptB is a critical factor for suppressing lethality of deletions in the C-terminal region of LptC and the functioning of a hybrid Lpt machinery that carries Pa-LptC, the highly divergent LptC orthologue from Pseudomonas aeruginosa. We found that LptB overexpression stabilizes C-terminally truncated LptC mutant proteins, thereby allowing the formation of a sufficient amount of stable IM complexes to support growth. Moreover, the LptB level seems also critical for the assembly of IM complexes carrying Pa-LptC which is otherwise defective in interactions with the E. coli LptFG components. Overall, our data suggest that LptB and LptC functionally interact and support a model whereby LptB plays a key role in the assembly of the Lpt machinery. IMPORTANCE The asymmetric outer membrane (OM) of Gram-negative bacteria contains in its outer leaflet an unusual glycolipid, the lipopolysaccharide (LPS). LPS largely contributes to the peculiar permeability barrier properties of the OM that prevent the entry of many antibiotics, thus making Gram-negative pathogens difficult to treat. In Escherichia coli the LPS transporter (the Lpt machine) is made of seven essential proteins (LptABCDEFG) that form a

  19. The FlxABCD-HdrABC proteins correspond to a novel NADH dehydrogenase/heterodisulfide reductase widespread in anaerobic bacteria and involved in ethanol metabolism in Desulfovibrio vulgaris Hildenborough.

    PubMed

    Ramos, Ana Raquel; Grein, Fabian; Oliveira, Gonçalo P; Venceslau, Sofia S; Keller, Kimberly L; Wall, Judy D; Pereira, Inês A C

    2015-07-01

    Flavin-based electron bifurcation (FBEB) is an important mechanism for the energy metabolism of anaerobes. A new family of NADH dehydrogenases, the flavin oxidoreductase (FlxABCD, previously called FloxABCD), was proposed to perform FBEB in sulphate-reducing organisms coupled with heterodisulfide reductase (HdrABC). We found that the hdrABC-flxABCD gene cluster is widespread among anaerobic bacteria, pointing to a general and important role in their bioenergetics. In this work, we studied FlxABCD of Desulfovibrio vulgaris Hildenborough. The hdr-flx genes are part of the same transcriptional unit and are increased in transcription during growth in ethanol-sulfate, and to a less extent during pyruvate fermentation. Two mutant strains were generated: one where expression of the hdr-flx genes was interrupted and another lacking the flxA gene. Both strains were unable to grow with ethanol-sulfate, whereas growth was restored in a flxA-complemented strain. The mutant strains also produced very reduced amounts of ethanol compared with the wild type during pyruvate fermentation. Our results show that in D. vulgaris, the FlxABCD-HdrABC proteins are essential for NADH oxidation during growth on ethanol, probably involving a FBEB mechanism that leads to reduction of ferredoxin and the small protein DsrC, while in fermentation they operate in reverse, reducing NAD(+) for ethanol production. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Multiple α-Glucoside Transporter Genes in Brewer’s Yeast

    PubMed Central

    Jespersen, Lene; Cesar, Lene B.; Meaden, Philip G.; Jakobsen, Mogens

    1999-01-01

    Maltose and maltotriose are the two most abundant fermentable sugars in brewer’s wort, and the rate of uptake of these sugars by brewer’s yeast can have a major impact on fermentation performance. In spite of this, no information is currently available on the genetics of maltose and maltotriose uptake in brewing strains of yeast. In this work, we studied 30 brewing strains of yeast (5 ale strains and 25 lager strains) with the aim of examining the alleles of maltose and maltotriose transporter genes contained by them. To do this, we hybridized gene probes to chromosome blots. Studies performed with laboratory strains have shown that maltose utilization is conferred by any one of five unlinked but highly homologous MAL loci (MAL1 to MAL4 and MAL6). Gene 1 at each locus encodes a maltose transporter. All of the strains of brewer’s yeast examined except two were found to contain MAL11 and MAL31 sequences, and only one of these strains lacked MAL41. MAL21 was not present in the five ale strains and 12 of the lager strains. MAL61 was not found in any of the yeast strains. In three of the lager strains, there was evidence that MAL transporter gene sequences occurred on chromosomes other than those known to carry MAL loci. Sequences corresponding to the AGT1 gene, which encodes a transporter of several α-glucosides, including maltose and maltotriose, were detected in all but one of the yeast strains. Homologues of AGT1 were identified in three of the lager strains, and two of these homologues were mapped, one to chromosome II and the other to chromosome XI. AGT1 appears to be a member of a family of closely related genes, which may have arisen in brewer’s yeast in response to selective pressure. PMID:9925567

  1. Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury.

    PubMed

    Lee, Hyunjung; McKeon, Robert J; Bellamkonda, Ravi V

    2010-02-23

    Chondroitin sulfate proteoglycans (CSPGs) are a major class of axon growth inhibitors that are up-regulated after spinal cord injury (SCI) and contribute to regenerative failure. Chondroitinase ABC (chABC) digests glycosaminoglycan chains on CSPGs and can thereby overcome CSPG-mediated inhibition. But chABC loses its enzymatic activity rapidly at 37 degrees C, necessitating the use of repeated injections or local infusions for a period of days to weeks. These infusion systems are invasive, infection-prone, and clinically problematic. To overcome this limitation, we have thermostabilized chABC and developed a system for its sustained local delivery in vivo, obviating the need for chronically implanted catheters and pumps. Thermostabilized chABC remained active at 37 degrees C in vitro for up to 4 weeks. CSPG levels remained low in vivo up to 6 weeks post-SCI when thermostabilized chABC was delivered by a hydrogel-microtube scaffold system. Axonal growth and functional recovery following the sustained local release of thermostabilized chABC versus a single treatment of unstabilized chABC demonstrated significant differences in CSPG digestion. Animals treated with thermostabilized chABC in combination with sustained neurotrophin-3 delivery showed significant improvement in locomotor function and enhanced growth of cholera toxin B subunit-positive sensory axons and sprouting of serotonergic fibers. Therefore, improving chABC thermostability facilitates minimally invasive, sustained, local delivery of chABC that is potentially effective in overcoming CSPG-mediated regenerative failure. Combination therapy with thermostabilized chABC with neurotrophic factors enhances axonal regrowth, sprouting, and functional recovery after SCI.

  2. SU-E-T-401: Feasibility Study of Using ABC to Gate Lung SBRT Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, D; Xie, X; Shepard, D

    2014-06-01

    Purpose: The current SBRT treatment techniques include free breathing (FB) SBRT and gated FB SBRT. Gated FB SBRT has smaller target and less lung toxicity with longer treatment time. The recent development of direct connectivity between the ABC and linac allowing for automated beam gating. In this study, we have examined the feasibility of using ABC system to gate the lung SBRT treatment. Methods: A CIRS lung phantom with a 3cm sphere-insert and a moving chest plate was used in this study. Sinusoidal motion was used for the FB pattern. An ABC signal was imported to simulate breath holds. 4D-CTmore » was taken in FB mode and average-intensity-projection (AIP) was used to create FB and 50% gated FB SBRT planning CT. A manually gated 3D CT scan was acquired for ABC gated SBRT planning.An SBRT plan was created for each treatment option. A surface-mapping system was used for 50% gating and ABC system was used for ABC gating. A manually gated CBCT scan was also performed to verify setup. Results: Among three options, the ABC gated plan has the smallest PTV of 35.94cc, which is 35% smaller comparing to that of the FB plan. Consequently, the V20 of the left lung reduced by 15% and 23% comparing to the 50% gated FB and FB plans, respectively. The FB plan took 4.7 minutes to deliver, while the 50% gated FB plan took 18.5 minutes. The ABC gated plan delivery took only 10.6 minutes. A stationary target with 3cm diameter was also obtained from the manually gated CBCT scan. Conclusion: A strategy for ABC gated lung SBRT was developed. ABC gating can significantly reduce the lung toxicity while maintaining the target coverage. Comparing to the 50% gated FB SBRT, ABC gated treatment can also provide less lung toxicity as well as improved delivery efficiency. This research is funded by Elekta.« less

  3. Creating an iPhone Application for Collecting Continuous ABC Data

    ERIC Educational Resources Information Center

    Whiting, Seth W.; Dixon, Mark R.

    2012-01-01

    This paper provides an overview and task analysis for creating a continuous ABC data- collection application using Xcode on a Mac computer. Behavior analysts can program an ABC data collection system, complete with a customized list of target clients, antecedents, behaviors, and consequences to be recorded, and have the data automatically sent to…

  4. ABCB1 and ABCC1-like transporters in immune system cells from sea urchins Echinometra lucunter and Echinus esculentus and oysters Crassostrea gasar and Crassostrea gigas.

    PubMed

    Marques-Santos, Luis Fernando; Hégaret, Hélène; Lima-Santos, Leonardo; Queiroga, Fernando Ramos; da Silva, Patricia Mirella

    2017-11-01

    ABC transporters activity and expression have been associated with the multixenobiotic resistance phenotype (MXR). The activity of these proteins leads to a reduction in the intracellular concentration of several xenobiotics, thus reducing their toxicity. However, little attention has been given to the expression of ABC transporters in marine invertebrates and few studies have investigated their role in immune system cells of sea urchins and shellfish bivalves. The aim of the present study was to investigate the activity of the ABC transporters ABCB1 and ABCC1 in immune system cells of sea urchins (coelomocytes) and oysters (hemocytes) from different climatic regions (Brazil and France). Sea urchins and oysters were collected at Paraíba coast; Brazil (Echinometra lucunter and Crassostrea gasar) and Rade of Brest; France (Echinus esculentus and Crassostrea gigas). Coelomocytes and hemocytes were stained with the ABC transporter substrate calcein-AM and dye accumulation analyzed under flow cytometry. Reversin 205 (ABCB1 transporter blocker) and MK571 (ABCC1 transporter blocker) were used as pharmacological tools to investigate ABC transporter activity. A different pattern of calcein accumulation was observed in coelomocytes: phagocytes > colorless spherulocytes > vibrate cells > red spherulocytes. The treatment with MK571 increased calcein fluorescence levels in coelomocytes from both species. However, reversin 205 treatment was not able to increase calcein fluorescence in E. esculentus coelomocytes. These data suggest that ABCC1-like transporter activity is present in both sea urchin species, but ABCB1-like transporter activity might only be present in E. lucunter coelomocytes. The activity of ABCC1-like transporter was observed in all cell types from both bivalve species. However, reversin 205 only increased calcein accumulation in hyalinocytes of the oyster C. gasar, suggesting the absence of ABCB1-like transporter activity in all other cell types

  5. Laboratory investigation of grouted coupler connection details for ABC bridge projects.

    DOT National Transportation Integrated Search

    2015-08-01

    With an ever increasing desire to utilize accelerated bridge construction (ABC) techniques, it is becoming critical that bridge : designers and contractors have confidence in typical details. The Keg Creek Bridge on US 6 in Iowa was a recent ABC exam...

  6. Genome-Wide Comparative Gene Family Classification

    PubMed Central

    Frech, Christian; Chen, Nansheng

    2010-01-01

    Correct classification of genes into gene families is important for understanding gene function and evolution. Although gene families of many species have been resolved both computationally and experimentally with high accuracy, gene family classification in most newly sequenced genomes has not been done with the same high standard. This project has been designed to develop a strategy to effectively and accurately classify gene families across genomes. We first examine and compare the performance of computer programs developed for automated gene family classification. We demonstrate that some programs, including the hierarchical average-linkage clustering algorithm MC-UPGMA and the popular Markov clustering algorithm TRIBE-MCL, can reconstruct manual curation of gene families accurately. However, their performance is highly sensitive to parameter setting, i.e. different gene families require different program parameters for correct resolution. To circumvent the problem of parameterization, we have developed a comparative strategy for gene family classification. This strategy takes advantage of existing curated gene families of reference species to find suitable parameters for classifying genes in related genomes. To demonstrate the effectiveness of this novel strategy, we use TRIBE-MCL to classify chemosensory and ABC transporter gene families in C. elegans and its four sister species. We conclude that fully automated programs can establish biologically accurate gene families if parameterized accordingly. Comparative gene family classification finds optimal parameters automatically, thus allowing rapid insights into gene families of newly sequenced species. PMID:20976221

  7. Transport genes of Chromobacterium violaceum: an overview.

    PubMed

    Grangeiro, Thalles Barbosa; Jorge, Daniel Macedo de Melo; Bezerra, Walderly Melgaço; Vasconcelos, Ana Tereza Ribeiro; Simpson, Andrew John George

    2004-03-31

    The complete genome sequence of the free-living bacterium Chromobacterium violaceum has been determined by a consortium of laboratories in Brazil. Almost 500 open reading frames (ORFs) coding for transport-related membrane proteins were identified in C. violaceum, which represents 11% of all genes found. The main class of transporter proteins is the primary active transporters (212 ORFs), followed by electrochemical potential-driven transporters (154 ORFs) and channels/pores (62 ORFs). Other classes (61 ORFs) include group translocators, transport electron carriers, accessory factors, and incompletely characterized systems. Therefore, all major categories of transport-related membrane proteins currently recognized in the Transport Protein Database (http://tcdb.ucsd.edu/tcdb) are present in C. violaceum. The complex apparatus of transporters of C. violaceum is certainly an important factor that makes this bacterium a dominant microorganism in a variety of ecosystems in tropical and subtropical regions. From a biotechnological point of view, the most important finding is the transporters of heavy metals, which could lead to the exploitation of C. violaceum for bioremediation.

  8. Automated brainstem co-registration (ABC) for MRI.

    PubMed

    Napadow, Vitaly; Dhond, Rupali; Kennedy, David; Hui, Kathleen K S; Makris, Nikos

    2006-09-01

    Group data analysis in brainstem neuroimaging is predicated on accurate co-registration of anatomy. As the brainstem is comprised of many functionally heterogeneous nuclei densely situated adjacent to one another, relatively small errors in co-registration can manifest in increased variance or decreased sensitivity (or significance) in detecting activations. We have devised a 2-stage automated, reference mask guided registration technique (Automated Brainstem Co-registration, or ABC) for improved brainstem co-registration. Our approach utilized a brainstem mask dataset to weight an automated co-registration cost function. Our method was validated through measurement of RMS error at 12 manually defined landmarks. These landmarks were also used as guides for a secondary manual co-registration option, intended for outlier individuals that may not adequately co-register with our automated method. Our methodology was tested on 10 healthy human subjects and compared to traditional co-registration techniques (Talairach transform and automated affine transform to the MNI-152 template). We found that ABC had a significantly lower mean RMS error (1.22 +/- 0.39 mm) than Talairach transform (2.88 +/- 1.22 mm, mu +/- sigma) and the global affine (3.26 +/- 0.81 mm) method. Improved accuracy was also found for our manual-landmark-guided option (1.51 +/- 0.43 mm). Visualizing individual brainstem borders demonstrated more consistent and uniform overlap for ABC compared to traditional global co-registration techniques. Improved robustness (lower susceptibility to outliers) was demonstrated with ABC through lower inter-subject RMS error variance compared with traditional co-registration methods. The use of easily available and validated tools (AFNI and FSL) for this method should ease adoption by other investigators interested in brainstem data group analysis.

  9. Role of the Caenorhabditis elegans multidrug resistance gene, mrp-4, in gut granule differentiation.

    PubMed

    Currie, Erin; King, Brian; Lawrenson, Andrea L; Schroeder, Lena K; Kershner, Aaron M; Hermann, Greg J

    2007-11-01

    Caenorhabditis elegans gut granules are lysosome-related organelles with birefringent contents. mrp-4, which encodes an ATP-binding cassette (ABC) transporter homologous to mammalian multidrug resistance proteins, functions in the formation of gut granule birefringence. mrp-4(-) embryos show a delayed appearance of birefringent material in the gut granule but otherwise appear to form gut granules properly. mrp-4(+) activity is required for the extracellular mislocalization of birefringent material, body-length retraction, and NaCl sensitivity, phenotypes associated with defective gut granule biogenesis exhibited by embryos lacking the activity of GLO-1/Rab38, a putative GLO-1 guanine nucleotide exchange factor GLO-4, and the AP-3 complex. Multidrug resistance protein (MRP)-4 localizes to the gut granule membrane, consistent with it playing a direct role in the transport of molecules that compose and/or facilitate the formation of birefringent crystals within the gut granule. However, MRP-4 is also present in oocytes and early embryos, and our genetic analyses indicate that its site of action in the formation of birefringent material may not be limited to just the gut granule in embryos. In a search for genes that function similarly to mrp-4(+), we identified WHT-2, another ABC transporter that acts in parallel to MRP-4 for the formation of birefringent material in the gut granule.

  10. Anger and the ABC model underlying Rational-Emotive Behavior Therapy.

    PubMed

    Ziegler, Daniel J; Smith, Phillip N

    2004-06-01

    The ABC model underlying Ellis's Rational-Emotive Behavior Therapy predicts that people who think more irrationally should display greater trait anger than do people who think less irrationally. This study tested this prediction regarding the ABC model. 186 college students were administered the Survey of Personal Beliefs and the State-Trait Anger Expression Inventory-Second Edition to measure irrational thinking and trait anger, respectively. Students who scored higher on Overall Irrational Thinking and Low Frustration Tolerance scored significantly higher on Trait Anger than did those who scored lower on Overall Irrational Thinking and Low Frustration Tolerance. This indicates support for the ABC model, especially Ellis's construct of irrational beliefs which is central to the model.

  11. The Composite 259-kb Plasmid of Martelella mediterranea DSM 17316T–A Natural Replicon with Functional RepABC Modules from Rhodobacteraceae and Rhizobiaceae

    PubMed Central

    Bartling, Pascal; Brinkmann, Henner; Bunk, Boyke; Overmann, Jörg; Göker, Markus; Petersen, Jörn

    2017-01-01

    A multipartite genome organization with a chromosome and many extrachromosomal replicons (ECRs) is characteristic for Alphaproteobacteria. The best investigated ECRs of terrestrial rhizobia are the symbiotic plasmids for legume root nodulation and the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens. RepABC plasmids represent the most abundant alphaproteobacterial replicon type. The currently known homologous replication modules of rhizobia and Rhodobacteraceae are phylogenetically distinct. In this study, we surveyed type-strain genomes from the One Thousand Microbial Genomes (KMG-I) project and identified a roseobacter-specific RepABC-type operon in the draft genome of the marine rhizobium Martelella mediterranea DSM 17316T. PacBio genome sequencing demonstrated the presence of three circular ECRs with sizes of 593, 259, and 170-kb. The rhodobacteral RepABC module is located together with a rhizobial equivalent on the intermediate sized plasmid pMM259, which likely originated in the fusion of a pre-existing rhizobial ECR with a conjugated roseobacter plasmid. Further evidence for horizontal gene transfer (HGT) is given by the presence of a roseobacter-specific type IV secretion system on the 259-kb plasmid and the rhodobacteracean origin of 62% of the genes on this plasmid. Functionality tests documented that the genuine rhizobial RepABC module from the Martelella 259-kb plasmid is only maintained in A. tumefaciens C58 (Rhizobiaceae) but not in Phaeobacter inhibens DSM 17395 (Rhodobacteraceae). Unexpectedly, the roseobacter-like replication system is functional and stably maintained in both host strains, thus providing evidence for a broader host range than previously proposed. In conclusion, pMM259 is the first example of a natural plasmid that likely mediates genetic exchange between roseobacters and rhizobia. PMID:28983283

  12. Phylodynamic Inference with Kernel ABC and Its Application to HIV Epidemiology.

    PubMed

    Poon, Art F Y

    2015-09-01

    The shapes of phylogenetic trees relating virus populations are determined by the adaptation of viruses within each host, and by the transmission of viruses among hosts. Phylodynamic inference attempts to reverse this flow of information, estimating parameters of these processes from the shape of a virus phylogeny reconstructed from a sample of genetic sequences from the epidemic. A key challenge to phylodynamic inference is quantifying the similarity between two trees in an efficient and comprehensive way. In this study, I demonstrate that a new distance measure, based on a subset tree kernel function from computational linguistics, confers a significant improvement over previous measures of tree shape for classifying trees generated under different epidemiological scenarios. Next, I incorporate this kernel-based distance measure into an approximate Bayesian computation (ABC) framework for phylodynamic inference. ABC bypasses the need for an analytical solution of model likelihood, as it only requires the ability to simulate data from the model. I validate this "kernel-ABC" method for phylodynamic inference by estimating parameters from data simulated under a simple epidemiological model. Results indicate that kernel-ABC attained greater accuracy for parameters associated with virus transmission than leading software on the same data sets. Finally, I apply the kernel-ABC framework to study a recent outbreak of a recombinant HIV subtype in China. Kernel-ABC provides a versatile framework for phylodynamic inference because it can fit a broader range of models than methods that rely on the computation of exact likelihoods. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Hop resistance in the beer spoilage bacterium Lactobacillus brevis is mediated by the ATP-binding cassette multidrug transporter HorA.

    PubMed

    Sakamoto, K; Margolles, A; van Veen, H W; Konings, W N

    2001-09-01

    Lactobacillus brevis is a major contaminant of spoiled beer. The organism can grow in beer in spite of the presence of antibacterial hop compounds that give the beer a bitter taste. The hop resistance in L. brevis is, at least in part, dependent on the expression of the horA gene. The deduced amino acid sequence of HorA is 53% identical to that of LmrA, an ATP-binding cassette multidrug transporter in Lactococcus lactis. To study the role of HorA in hop resistance, HorA was functionally expressed in L. lactis as a hexa-histidine-tagged protein using the nisin-controlled gene expression system. HorA expression increased the resistance of L. lactis to hop compounds and cytotoxic drugs. Drug transport studies with L. lactis cells and membrane vesicles and with proteoliposomes containing purified HorA protein identified HorA as a new member of the ABC family of multidrug transporters.

  14. Abc Amino Acids: Design, Synthesis, and Properties of New Photoelastic Amino Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Standaert, Robert F; Park, Dr Seung Bum

    2006-01-01

    Photoisomerizable amino acids provide a direct avenue to the experimental manipulation of bioactive polypeptides, potentially allowing real-time, remote control of biological systems and enabling useful applications in nanobiotechnology. Herein, we report a new class of photoisomerizable amino acids intended to cause pronounced expansion and contraction in the polypeptide backbone, i.e., to be photoelastic. These compounds, termed Abc amino acids, employ a photoisomerizable azobiphenyl chromophore to control the relative disposition of aminomethyl and carboxyl substituents. Molecular modeling of nine Abc isomers led to the identification of one with particularly attractive properties, including the ability to induce contractions up to 13A inmore » the backbone upon transa?cis photoisomerization. This isomer, designated mpAbc, has substituents at meta and para positions on the inner (azo-linked) and outer rings, respectively. An efficient synthesis of Fmoc-protected mpAbc was executed in which the biaryl components were formed via Suzuki couplings and the azo linkage was formed via amine/nitroso condensation; protected forms of three other Abc isomers were prepared similarly. A decapeptide incorporating mpAbc was synthesized by conventional solid-phase methods and displayed characteristic azobenzene photochemical behavior with optimal conversion to the cis isomer at 360 nm and a thermal cisa?trans half life of 100 min. at 80 AoC.« less

  15. Fasting Induces Nuclear Factor E2-Related Factor 2 and ATP-Binding Cassette Transporters via Protein Kinase A and Sirtuin-1 in Mouse and Human

    PubMed Central

    Kulkarni, Supriya R.; Donepudi, Ajay C.; Xu, Jialin; Wei, Wei; Cheng, Qiuqiong C.; Driscoll, Maureen V.; Johnson, Delinda A.; Johnson, Jeffrey A.; Li, Xiaoling

    2014-01-01

    Abstract Aims: The purpose of this study was to determine whether 3′-5′-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and Sirtuin-1 (SIRT1) dependent mechanisms modulate ATP-binding Cassette (ABC) transport protein expression. ABC transport proteins (ABCC2–4) are essential for chemical elimination from hepatocytes and biliary excretion. Nuclear factor-E2 related-factor 2 (NRF2) is a transcription factor that mediates ABCC induction in response to chemical inducers and liver injury. However, a role for NRF2 in the regulation of transporter expression in nonchemical models of liver perturbation is largely undescribed. Results: Here we show that fasting increased NRF2 target gene expression through NRF2- and SIRT1–dependent mechanisms. In intact mouse liver, fasting induces NRF2 target gene expression by at least 1.5 to 5-fold. In mouse and human hepatocytes, treatment with 8-Bromoadenosine-cAMP, a cAMP analogue, increased NRF2 target gene expression and antioxidant response element activity, which was decreased by the PKA inhibitor, H-89. Moreover, fasting induced NRF2 target gene expression was decreased in liver and hepatocytes of SIRT1 liver-specific null mice and NRF2-null mice. Lastly, NRF2 and SIRT1 were recruited to MAREs and Antioxidant Response Elements (AREs) in the human ABCC2 promoter. Innovation: Oxidative stress mediated NRF2 activation is well described, yet the influence of basic metabolic processes on NRF2 activation is just emerging. Conclusion: The current data point toward a novel role of nutrient status in regulation of NRF2 activity and the antioxidant response, and indicates that cAMP/PKA and SIRT1 are upstream regulators for fasting-induced activation of the NRF2-ARE pathway. Antioxid. Redox Signal. 20, 15–30. PMID:23725046

  16. Step 2: Know Your Diabetes ABCs

    MedlinePlus

    ... please turn JavaScript on. Feature: Type 2 Diabetes Step 2: Know Your Diabetes ABCs Past Issues / Fall ... 2 Diabetes" Articles Diabetes Is Serious But Manageable / Step 1: Learn About Diabetes / Step 2: Know Your ...

  17. The ABCs of Student Engagement

    ERIC Educational Resources Information Center

    Parsons, Seth A.; Nuland, Leila Richey; Parsons, Allison Ward

    2014-01-01

    Student engagement is an important consideration for teachers and administrators because it is explicitly associated with achievement. What the authors call the ABC's of engagement they outline as: Affective engagement, Behavioral engagement, and Cognitive engagement. They also present "Three Things Every Teacher Needs to Know about…

  18. Herbivory-induced glucose transporter gene expression in the brown planthopper, Nilaparvata lugens.

    PubMed

    Kikuta, Shingo; Nakamura, Yuki; Hattori, Makoto; Sato, Ryoichi; Kikawada, Takahiro; Noda, Hiroaki

    2015-09-01

    Nilaparvata lugens, the brown planthopper (BPH) feeds on rice phloem sap, containing high amounts of sucrose as a carbon source. Nutrients such as sugars in the digestive tract are incorporated into the body cavity via transporters with substrate selectivity. Eighteen sugar transporter genes of BPH (Nlst) were reported and three transporters have been functionally characterized. However, individual characteristics of NlST members associated with sugar transport remain poorly understood. Comparative gene expression analyses using oligo-microarray and quantitative RT-PCR revealed that the sugar transporter gene Nlst16 was markedly up-regulated during BPH feeding. Expression of Nlst16 was induced 2 h after BPH feeding on rice plants. Nlst16, mainly expressed in the midgut, appears to be involved in carbohydrate incorporation from the gut cavity into the hemolymph. Nlst1 (NlHT1), the most highly expressed sugar transporter gene in the midgut was not up-regulated during BPH feeding. The biochemical function of NlST16 was shown as facilitative glucose transport along gradients. Glucose uptake activity by NlST16 was higher than that of NlST1 in the Xenopus oocyte expression system. At least two NlST members are responsible for glucose uptake in the BPH midgut, suggesting that the midgut of BPH is equipped with various types of transporters having diversified manner for sugar uptake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Direct Spectroscopic Detection of ATP Turnover Reveals Mechanistic Divergence of ABC Exporters.

    PubMed

    Collauto, Alberto; Mishra, Smriti; Litvinov, Aleksei; Mchaourab, Hassane S; Goldfarb, Daniella

    2017-08-01

    We have applied high-field (W-band) pulse electron-nuclear double resonance (ENDOR) and electron-electron double resonance (ELDOR)-detected nuclear magnetic resonance (EDNMR) to characterize the coordination sphere of the Mn 2+ co-factor in the nucleotide binding sites (NBSs) of ABC transporters. MsbA and BmrCD are two efflux transporters hypothesized to represent divergent catalytic mechanisms. Our results reveal distinct coordination of Mn 2+ to ATP and transporter residues in the consensus and degenerate NBSs of BmrCD. In contrast, the coordination of Mn 2+ at the two NBSs of MsbA is similar, which provides a mechanistic rationale for its higher rate constant of ATP hydrolysis relative to BmrCD. Direct detection of vanadate ion, trapped in a high-energy post-hydrolysis intermediate, further supports the notion of asymmetric hydrolysis by the two NBSs of BmrCD. The integrated spectroscopic approach presented here, which link energy input to conformational dynamics, can be applied to a variety of systems powered by ATP turnover. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Differential Adipose Tissue Gene Expression Profiles in Abacavir Treated Patients That May Contribute to the Understanding of Cardiovascular Risk: A Microarray Study

    PubMed Central

    Shahmanesh, Mohsen; Phillips, Kenneth; Boothby, Meg; Tomlinson, Jeremy W.

    2015-01-01

    Objective To compare changes in gene expression by microarray from subcutaneous adipose tissue from HIV treatment naïve patients treated with efavirenz based regimens containing abacavir (ABC), tenofovir (TDF) or zidovidine (AZT). Design Subcutaneous fat biopsies were obtained before, at 6- and 18–24-months after treatment, and from HIV negative controls. Groups were age, ethnicity, weight, biochemical profile, and pre-treatment CD4 count matched. Microarray data was generated using the Agilent Whole Human Genome Microarray. Identification of differentially expressed genes and genomic response pathways was performed using limma and gene set enrichment analysis. Results There were significant divergences between ABC and the other two groups 6 months after treatment in genes controlling cell adhesion and environmental information processing, with some convergence at 18–24 months. Compared to controls the ABC group, but not AZT or TDF showed enrichment of genes controlling adherence junction, at 6 months and 18–24 months (adjusted p<0.05) and focal adhesions and tight junction at 6 months (p<0.5). Genes controlling leukocyte transendothelial migration (p<0.05) and ECM-receptor interactions (p = 0.04) were over-expressed in ABC compared to TDF and AZT at 6 months but not at 18–24 months. Enrichment of pathways and individual genes controlling cell adhesion and environmental information processing were specifically dysregulated in the ABC group in comparison with other treatments. There was little difference between AZT and TDF. Conclusion After initiating treatment, there is divergence in the expression of genes controlling cell adhesion and environmental information processing between ABC and both TDF and AZT in subcutaneous adipose tissue. If similar changes are also taking place in other tissues including the coronary vasculature they may contribute to the increased risk of cardiovascular events reported in patients recently started on abacavir

  1. Implication of RuvABC and RecG in homologous recombination in Streptomyces ambofaciens.

    PubMed

    Hoff, Grégory; Bertrand, Claire; Piotrowski, Emilie; Thibessard, Annabelle; Leblond, Pierre

    2017-01-01

    Most bacterial organisms rely on homologous recombination to repair DNA double-strand breaks and for the post-replicative repair of DNA single-strand gaps. Homologous recombination can be divided into three steps: (i) a pre-synaptic step in which the DNA 3'-OH ends are processed, (ii) a recA-dependent synaptic step allowing the invasion of an intact copy and the formation of Holliday junctions, and (iii) a post-synaptic step consisting of migration and resolution of these junctions. Currently, little is known about factors involved in homologous recombination, especially for the post-synaptic step. In Escherichia coli, branch migration and resolution are performed by the RuvABC complex, but could also rely on the RecG helicase in a redundant manner. In this study, we show that recG and ruvABC are well-conserved among Streptomyces. ΔruvABC, ΔrecG and ΔruvABC ΔrecG mutant strains were constructed. ΔruvABC ΔrecG is only slightly affected by exposure to DNA damage (UV). We also show that conjugational recombination decreases in the absence of RuvABC and RecG, but that intra-chromosomal recombination is not affected. These data suggest that RuvABC and RecG are indeed involved in homologous recombination in Streptomyces ambofaciens and that alternative factors are able to take over Holliday junction in Streptomyces. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. The ABCs of flower development: mutational analysis of AP1/FUL-like genes in rice provides evidence for a homeotic (A)-function in grasses.

    PubMed

    Wu, Feng; Shi, Xiaowei; Lin, Xuelei; Liu, Yuan; Chong, Kang; Theißen, Günter; Meng, Zheng

    2017-01-01

    The well-known ABC model describes the combinatorial interaction of homeotic genes in specifying floral organ identities. While the B- and C-functions are highly conserved throughout flowering plants and even in gymnosperms, the A-function, which specifies the identity of perianth organs (sepals and petals in eudicots), remains controversial. One reason for this is that in most plants that have been investigated thus far, with Arabidopsis being a remarkable exception, one does not find recessive mutants in which the identity of both types of perianth organs is affected. Here we report a comprehensive mutational analysis of all four members of the AP1/FUL-like subfamily of MADS-box genes in rice (Oryza sativa). We demonstrate that OsMADS14 and OsMADS15, in addition to their function of specifying meristem identity, are also required to specify palea and lodicule identities. Because these two grass-specific organs are very likely homologous to sepals and petals of eudicots, respectively, we conclude that there is a floral homeotic (A)-function in rice as defined previously. Together with other recent findings, our data suggest that AP1/FUL-like genes were independently recruited to fulfil the (A)-function in grasses and some eudicots, even though other scenarios cannot be excluded and are discussed. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  3. Effects of impurities in biodiesel-derived glycerol on growth and expression of heavy metal ion homeostasis genes and gene products in Pseudomonas putida LS46.

    PubMed

    Fu, Jilagamazhi; Sharma, Parveen; Spicer, Vic; Krokhin, Oleg V; Zhang, Xiangli; Fristensky, Brian; Wilkins, John A; Cicek, Nazim; Sparling, Richard; Levin, David B

    2015-07-01

    Biodiesel production-derived waste glycerol (WG) was previously investigated as potential carbon source for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas putida LS46. In this study, we evaluated the effect of impurities in the WG on P. putida LS46 physiology during exponential growth and corresponding changes in transcription and protein expression profiles compared with cells grown on pure, reagent grade glycerol. High concentration of metal ions, such as Na(+), and numbers of heavy metals ion, such as copper, ion, zinc, were detected in biodiesel-derived WG. Omics analysis from the corresponding cultures suggested altered expression of genes involved in transport and metabolism of ammonia and heavy metal ions. Expression of three groups of heavy metal homeostasis genes was significantly changed (mostly upregulated) in WG cultures and included the following: copper-responded cluster 1 and 2 genes, primarily containing cusABC; two copies of copAB and heavy metal translocating P-type ATPase; Fur-regulated, TonB-dependent siderophore receptor; and several cobalt/zinc/cadmium transporters. Expression of these genes suggests regulation of intracellular concentrations of heavy metals during growth on biodiesel-derived glycerol. Finally, a number of genes involved in adapting to, or metabolizing free fatty acids and other nonheavy metal contaminants, such as Na(+), were also upregulated in P. putida LS46 grown on biodiesel-derived glycerol.

  4. Comparison of a Rat Primary Cell-Based Blood-Brain Barrier Model With Epithelial and Brain Endothelial Cell Lines: Gene Expression and Drug Transport.

    PubMed

    Veszelka, Szilvia; Tóth, András; Walter, Fruzsina R; Tóth, Andrea E; Gróf, Ilona; Mészáros, Mária; Bocsik, Alexandra; Hellinger, Éva; Vastag, Monika; Rákhely, Gábor; Deli, Mária A

    2018-01-01

    Cell culture-based blood-brain barrier (BBB) models are useful tools for screening of CNS drug candidates. Cell sources for BBB models include primary brain endothelial cells or immortalized brain endothelial cell lines. Despite their well-known differences, epithelial cell lines are also used as surrogate models for testing neuropharmaceuticals. The aim of the present study was to compare the expression of selected BBB related genes including tight junction proteins, solute carriers (SLC), ABC transporters, metabolic enzymes and to describe the paracellular properties of nine different culture models. To establish a primary BBB model rat brain capillary endothelial cells were co-cultured with rat pericytes and astrocytes (EPA). As other BBB and surrogate models four brain endothelial cells lines, rat GP8 and RBE4 cells, and human hCMEC/D3 cells with or without lithium treatment (D3 and D3L), and four epithelial cell lines, native human intestinal Caco-2 and high P-glycoprotein expressing vinblastine-selected VB-Caco-2 cells, native MDCK and MDR1 transfected MDCK canine kidney cells were used. To test transporter functionality, the permeability of 12 molecules, glucopyranose, valproate, baclofen, gabapentin, probenecid, salicylate, rosuvastatin, pravastatin, atorvastatin, tacrine, donepezil, was also measured in the EPA and epithelial models. Among the junctional protein genes, the expression level of occludin was high in all models except the GP8 and RBE4 cells, and each model expressed a unique claudin pattern. Major BBB efflux (P-glycoprotein or ABCB1) and influx transporters (GLUT-1, LAT-1) were present in all models at mRNA levels. The transcript of BCRP (ABCG2) was not expressed in MDCK, GP8 and RBE4 cells. The absence of gene expression of important BBB efflux and influx transporters BCRP, MRP6, -9, MCT6, -8, PHT2, OATPs in one or both types of epithelial models suggests that Caco-2 or MDCK models are not suitable to test drug candidates which are substrates

  5. Parents' Perspectives on Braille Literacy: Results from the ABC Braille Study

    ERIC Educational Resources Information Center

    Kamei-Hannan, Cheryl; Sacks, Sharon Zell

    2012-01-01

    Introduction: Parents who were the primary caretakers of children in the Alphabetic and Contracted Braille Study (ABC Braille Study) revealed their perspectives about braille literacy. Methods: A 30-item questionnaire was constructed by the ABC Braille research team, and researchers conducted telephone interviews with 31 parents who were the…

  6. Determination of multidrug resistance mechanisms in Clostridium perfringens type A isolates using RNA sequencing and 2D-electrophoresis.

    PubMed

    Ma, Yu-Hua; Ye, Gui-Sheng

    2018-06-11

    In this study, we screened differentially expressed genes in a multidrug-resistant isolate strain of Clostridium perfringens by RNA sequencing. We also separated and identified differentially expressed proteins (DEPs) in the isolate strain by two-dimensional electrophoresis (2-DE) and mass spectrometry (MS). The RNA sequencing results showed that, compared with the control strain, 1128 genes were differentially expressed in the isolate strain, and these included 227 up-regulated genes and 901 down-regulated genes. Bioinformatics analysis identified the following genes and gene categories that are potentially involved in multidrug resistance (MDR) in the isolate strain: drug transport, drug response, hydrolase activity, transmembrane transporter, transferase activity, amidase transmembrane transporter, efflux transmembrane transporter, bacterial chemotaxis, ABC transporter, and others. The results of the 2-DE showed that 70 proteins were differentially expressed in the isolate strain, 45 of which were up-regulated and 25 down-regulated. Twenty-seven DEPs were identified by MS and these included the following protein categories: ribosome, antimicrobial peptide resistance, and ABC transporter, all of which may be involved in MDR in the isolate strain of C. perfringens. The results provide reference data for further investigations on the drug resistant molecular mechanisms of C. perfringens.

  7. Early Observations of the Type Ia Supernova iPTF 16abc

    NASA Astrophysics Data System (ADS)

    Miller, Adam; iPTF Collaboration

    2018-01-01

    Early observations of Type Ia supernovae (SNe) provide a unique probe of their progenitor systems and explosion physics. Here, we report the intermediate Palomar Transient Factory (iPTF) discovery of an extraordinarily young SN Ia, iPTF 16abc. By fitting a power law to our early light curve, we infer that first light for the SN only occurred 0.15 +0.15-0.07 d before our first detection. In the ~24 hr after discovery, iPTF 16abc rose by ~2 mag, following a near-linear rise in flux for ~3 d. Strong C II absorption is detected in the early spectra of iPTF 16abc, before disappearing after ~7 d. Unlike the extensively-observed Type Ia SN 2011fe, the (B-V)_0 colors of iPTF 16abc are blue and nearly constant in the days after explosion. We show that our early observations of iPTF 16abc cannot be explained by either SN shock breakout and the associated, subsequent cooling, or the SN ejecta colliding with a stellar companion. Instead, we argue that the early characteristics of iPTF 16abc, including: (i) the rapid, near-linear rise, (ii) the non-evolving blue colors, and (iii) the strong absorption from ionized carbon, are the result of either vigorous mixing of radioactive-Ni in the SN ejecta, or ejecta interaction with diffuse material, or a combination of the two. In the next few years, dozens of very young normal SNe Ia will be discovered, and observations similar to those presented here will constrain the white dwarf explosion mechanism.

  8. ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection.

    PubMed

    Sharkey, Liam K R; Edwards, Thomas A; O'Neill, Alex J

    2016-03-22

    Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to anin vitrotranslation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosomein vitro To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection.IMPORTANCEAntimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which includelsa(A),msr(A),optr(A), andvga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition. Copyright © 2016 Sharkey et al.

  9. Nutrient transporter gene expression in poultry, livestock and fish

    USDA-ARS?s Scientific Manuscript database

    The absorption of nutrients such as amino acids, peptides, monosaccharides and minerals by cells and tissues is mediated by a series of membrane bound transporters that are members of the solute carrier (SLC) gene family. These transporters regulate the influx and efflux of nutrients in a wide vari...

  10. Brassboard Astrometric Beam Combiner (ABC) Development for the Space Interferometry Mission (SIM)

    NASA Technical Reports Server (NTRS)

    Jeganathan, Muthu; Kuan, Gary; Rud, Mike; Lin, Sean; Sutherland, Kristen; Moore, James; An, Xin

    2008-01-01

    The Astrometric Beam Combiner (ABC) is a critical element of the Space Interferometry Mission (SIM) that performs three key functions: coherently combine starlight from two siderostats; individually detect starlight for angle tracking; and disperse and detect the interferometric fringes. In addition, the ABC contains: a stimulus, cornercubes and shutters for in-orbit calibration; several tip/tilt mirror mechanisms for in-orbit alignment; and internal metrology beam launcher for pathlength monitoring. The detailed design of the brassboard ABC (which has the form, fit and function of the flight unit) is complete, procurement of long-lead items is underway, and assembly and testing is expected to be completed in Spring 2009. In this paper, we present the key requirements for the ABC, details of the completed optical and mechanical design as well as plans for assembly and alignment.

  11. Comparative genomics of transport proteins in developmental bacteria: Myxococcus xanthus and Streptomyces coelicolor

    PubMed Central

    2013-01-01

    Background Two of the largest fully sequenced prokaryotic genomes are those of the actinobacterium, Streptomyces coelicolor (Sco), and the δ-proteobacterium, Myxococcus xanthus (Mxa), both differentiating, sporulating, antibiotic producing, soil microbes. Although the genomes of Sco and Mxa are the same size (~9 Mbp), Sco has 10% more genes that are on average 10% smaller than those in Mxa. Results Surprisingly, Sco has 93% more identifiable transport proteins than Mxa. This is because Sco has amplified several specific types of its transport protein genes, while Mxa has done so to a much lesser extent. Amplification is substrate- and family-specific. For example, Sco but not Mxa has amplified its voltage-gated ion channels but not its aquaporins and mechano-sensitive channels. Sco but not Mxa has also amplified drug efflux pumps of the DHA2 Family of the Major Facilitator Superfamily (MFS) (49 versus 6), amino acid transporters of the APC Family (17 versus 2), ABC-type sugar transport proteins (85 versus 6), and organic anion transporters of several families. Sco has not amplified most other types of transporters. Mxa has selectively amplified one family of macrolid exporters relative to Sco (16 versus 1), consistent with the observation that Mxa makes more macrolids than does Sco. Conclusions Except for electron transport carriers, there is a poor correlation between the types of transporters found in these two organisms, suggesting that their solutions to differentiative and metabolic needs evolved independently. A number of unexpected and surprising observations are presented, and predictions are made regarding the physiological functions of recognizable transporters as well as the existence of yet to be discovered transport systems in these two important model organisms and their relatives. The results provide insight into the evolutionary processes by which two dissimilar prokaryotes evolved complexity, particularly through selective chromosomal gene

  12. Transport of Magnesium by a Bacterial Nramp-Related Gene

    PubMed Central

    Rodionov, Dmitry A.; Freedman, Benjamin G.; Senger, Ryan S.; Winkler, Wade C.

    2014-01-01

    Magnesium is an essential divalent metal that serves many cellular functions. While most divalent cations are maintained at relatively low intracellular concentrations, magnesium is maintained at a higher level (∼0.5–2.0 mM). Three families of transport proteins were previously identified for magnesium import: CorA, MgtE, and MgtA/MgtB P-type ATPases. In the current study, we find that expression of a bacterial protein unrelated to these transporters can fully restore growth to a bacterial mutant that lacks known magnesium transporters, suggesting it is a new importer for magnesium. We demonstrate that this transport activity is likely to be specific rather than resulting from substrate promiscuity because the proteins are incapable of manganese import. This magnesium transport protein is distantly related to the Nramp family of proteins, which have been shown to transport divalent cations but have never been shown to recognize magnesium. We also find gene expression of the new magnesium transporter to be controlled by a magnesium-sensing riboswitch. Importantly, we find additional examples of riboswitch-regulated homologues, suggesting that they are a frequent occurrence in bacteria. Therefore, our aggregate data discover a new and perhaps broadly important path for magnesium import and highlight how identification of riboswitch RNAs can help shed light on new, and sometimes unexpected, functions of their downstream genes. PMID:24968120

  13. Genetic basis of pyrethroid resistance in a population of Anopheles arabiensis, the primary malaria vector in Lower Moshi, north-eastern Tanzania.

    PubMed

    Matowo, Johnson; Jones, Christopher M; Kabula, Bilali; Ranson, Hilary; Steen, Keith; Mosha, Franklin; Rowland, Mark; Weetman, David

    2014-06-19

    Pyrethroid resistance has been slower to emerge in Anopheles arabiensis than in An. gambiae s.s and An. funestus and, consequently, studies are only just beginning to unravel the genes involved. Permethrin resistance in An. arabiensis in Lower Moshi, Tanzania has been linked to elevated levels of both P450 monooxygenases and β-esterases. We have conducted a gene expression study to identify specific genes linked with metabolic resistance in the Lower Moshi An. arabiensis population. Microarray experiments employing an An. gambiae whole genome expression chip were performed on An. arabiensis, using interwoven loop designs. Permethrin-exposed survivors were compared to three separate unexposed mosquitoes from the same or a nearby population. A subsection of detoxification genes were chosen for subsequent quantitative real-time PCR (qRT-PCR). Microarray analysis revealed significant over expression of 87 probes and under expression of 85 probes (in pairwise comparisons between permethrin survivors and unexposed sympatric and allopatric samples from Dar es Salaam (controls). For qRT-PCR we targeted over expressed ABC transporter genes (ABC '2060'), a glutathione-S-transferase, P450s and esterases. Design of efficient, specific primers was successful for ABC '2060'and two P450s (CYP6P3, CYP6M2). For the CYP4G16 gene, we used the primers that were previously used in a microarray study of An. arabiensis from Zanzibar islands. Over expression of CYP4G16 and ABC '2060' was detected though with contrasting patterns in pairwise comparisons between survivors and controls. CYP4G16 was only up regulated in survivors, whereas ABC '2060' was similar in survivors and controls but over expressed in Lower Moshi samples compared to the Dar es Salaam samples. Increased transcription of CYP4G16 and ABC '2060' are linked directly and indirectly respectively, with permethrin resistance in Lower Moshi An. arabiensis. Increased transcription of a P450 (CYP4G16) and an ABC transporter (ABC

  14. Gene Expression Profiling Reveals Novel Candidate Markers of Ovarian Carcinoma Intraperitoneal Metastasis.

    PubMed

    Elsnerova, Katerina; Bartakova, Alena; Tihlarik, Josef; Bouda, Jiri; Rob, Lukas; Skapa, Petr; Hruda, Martin; Gut, Ivan; Mohelnikova-Duchonova, Beatrice; Soucek, Pavel; Vaclavikova, Radka

    2017-01-01

    Epithelial ovarian cancer (EOC) has the highest mortality among gynecological carcinomas. The lack of specific markers for prognostic determination of EOC progression hinders the search for novel effective therapies. The aim of the present study was (i) to explore differences in expressions of ATP-binding cassette (ABC) and solute carrier (SLC) transporter genes, genes associated with drug metabolism and cell cycle regulation between control ovarian tissues (n = 14), primary EOCs (n = 44) and intraperitoneal metastases (n = 29); (ii) to investigate associations of gene expression levels with prognosis of patients with intraperitoneal metastases. In all tissue samples, transcript levels of the above target genes were assessed using quantitative real-time PCR. Gene expression levels were compared between particular tissue types and evaluated with regard to progression-free survival (PFS) and drug-resistance status of patients with metastases. Gene expression of ABCA7 significantly increased and that of ESR2 decreased in the order control ovarian tissues - primary EOCs - metastases. High expressions of ABCA2 / 8 / 9 / 10 , ABCB1 , ABCC9 , ABCG2 , ATP7A , SLC16A14 , and SOD3 genes were significantly associated with longer progression-free survival of patients. In intraperitoneal metastases, expression of all of these genes highly correlated and indicated prognostic profile. Transporters from the ABCA family, ABCG2, and ESR2 are involved mainly in lipid metabolism, membrane transport, and cell proliferation. These processes are thus probably the most important for EOC progression. Based on these results, we have proposed novel markers of ovarian carcinoma progression and metastatic spread which might be potentially useful as therapeutic targets. Their significance should be further explored on a larger independent set of patients.

  15. ABC gene expression profiles have clinical importance and possibly form a new hallmark of cancer.

    PubMed

    Dvorak, Pavel; Pesta, Martin; Soucek, Pavel

    2017-05-01

    Adenosine triphosphate-binding cassette proteins constitute a large family of active transporters through extracellular and intracellular membranes. Increased drug efflux based on adenosine triphosphate-binding cassette protein activity is related to the development of cancer cell chemoresistance. Several articles have focused on adenosine triphosphate-binding cassette gene expression profiles (signatures), based on the expression of all 49 human adenosine triphosphate-binding cassette genes, in individual tumor types and reported connections to established clinicopathological features. The aim of this study was to test our theory about the existence of adenosine triphosphate-binding cassette gene expression profiles common to multiple types of tumors, which may modify tumor progression and provide clinically relevant information. Such general adenosine triphosphate-binding cassette profiles could constitute a new attribute of carcinogenesis. Our combined cohort consisted of tissues from 151 cancer patients-breast, colorectal, and pancreatic carcinomas. Standard protocols for RNA isolation and quantitative real-time polymerase chain reaction were followed. Gene expression data from individual tumor types as well as a merged tumor dataset were analyzed by bioinformatics tools. Several general adenosine triphosphate-binding cassette profiles, with differences in gene functions, were established and shown to have significant relations to clinicopathological features such as tumor size, histological grade, or clinical stage. Genes ABCC7, A3, A8, A12, and C8 prevailed among the most upregulated or downregulated ones. In conclusion, the results supported our theory about general adenosine triphosphate-binding cassette gene expression profiles and their importance for cancer on clinical as well as research levels. The presence of ABCC7 (official symbol CFTR) among the genes with key roles in the profiles supports the emerging evidence about its crucial role in various

  16. The cabABC Operon Essential for Biofilm and Rugose Colony Development in Vibrio vulnificus

    PubMed Central

    Park, Jin Hwan; Jo, Youmi; Jang, Song Yee; Kwon, Haenaem; Irie, Yasuhiko; Parsek, Matthew R.; Kim, Myung Hee; Choi, Sang Ho

    2015-01-01

    A transcriptome analysis identified Vibrio vulnificus cabABC genes which were preferentially expressed in biofilms. The cabABC genes were transcribed as a single operon. The cabA gene was induced by elevated 3′,5′-cyclic diguanylic acid (c-di-GMP) and encoded a calcium-binding protein CabA. Comparison of the biofilms produced by the cabA mutant and its parent strain JN111 in microtiter plates using crystal-violet staining demonstrated that CabA contributed to biofilm formation in a calcium-dependent manner under elevated c-di-GMP conditions. Genetic and biochemical analyses revealed that CabA was secreted to the cell exterior through functional CabB and CabC, distributed throughout the biofilm matrix, and produced as the biofilm matured. These results, together with the observation that CabA also contributes to the development of rugose colony morphology, indicated that CabA is a matrix-associated protein required for maturation, rather than adhesion involved in the initial attachment, of biofilms. Microscopic comparison of the structure of biofilms produced by JN111 and the cabA mutant demonstrated that CabA is an extracellular matrix component essential for the development of the mature biofilm structures in flow cells and on oyster shells. Exogenously providing purified CabA restored the biofilm- and rugose colony-forming abilities of the cabA mutant when calcium was available. Circular dichroism and size exclusion analyses revealed that calcium binding induces CabA conformational changes which may lead to multimerization. Extracellular complementation experiments revealed that CabA can assemble a functional matrix only when exopolysaccharides coexist. Consequently, the combined results suggested that CabA is a structural protein of the extracellular matrix and multimerizes to a conformation functional in building robust biofilms, which may render V. vulnificus to survive in hostile environments and reach a concentrated infective dose. PMID:26406498

  17. DNA sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among avian Escherichia coli strains.

    PubMed

    Johnson, Timothy J; Siek, Kylie E; Johnson, Sara J; Nolan, Lisa K

    2006-01-01

    ColV plasmids have long been associated with the virulence of Escherichia coli, despite the fact that their namesake trait, ColV production, does not appear to contribute to virulence. Such plasmids or their associated sequences appear to be quite common among avian pathogenic E. coli (APEC) and are strongly linked to the virulence of these organisms. In the present study, a 180-kb ColV plasmid was sequenced and analyzed. This plasmid, pAPEC-O2-ColV, possesses a 93-kb region containing several putative virulence traits, including iss, tsh, and four putative iron acquisition and transport systems. The iron acquisition and transport systems include those encoding aerobactin and salmochelin, the sit ABC iron transport system, and a putative iron transport system novel to APEC, eit. In order to determine the prevalence of the virulence-associated genes within this region among avian E. coli strains, 595 APEC and 199 avian commensal E. coli isolates were examined for genes of this region using PCR. Results indicate that genes contained within a portion of this putative virulence region are highly conserved among APEC and that the genes of this region occur significantly more often in APEC than in avian commensal E. coli. The region of pAPEC-O2-ColV containing genes that are highly prevalent among APEC appears to be a distinguishing trait of APEC strains.

  18. DNA Sequence of a ColV Plasmid and Prevalence of Selected Plasmid-Encoded Virulence Genes among Avian Escherichia coli Strains

    PubMed Central

    Johnson, Timothy J.; Siek, Kylie E.; Johnson, Sara J.; Nolan, Lisa K.

    2006-01-01

    ColV plasmids have long been associated with the virulence of Escherichia coli, despite the fact that their namesake trait, ColV production, does not appear to contribute to virulence. Such plasmids or their associated sequences appear to be quite common among avian pathogenic E. coli (APEC) and are strongly linked to the virulence of these organisms. In the present study, a 180-kb ColV plasmid was sequenced and analyzed. This plasmid, pAPEC-O2-ColV, possesses a 93-kb region containing several putative virulence traits, including iss, tsh, and four putative iron acquisition and transport systems. The iron acquisition and transport systems include those encoding aerobactin and salmochelin, the sit ABC iron transport system, and a putative iron transport system novel to APEC, eit. In order to determine the prevalence of the virulence-associated genes within this region among avian E. coli strains, 595 APEC and 199 avian commensal E. coli isolates were examined for genes of this region using PCR. Results indicate that genes contained within a portion of this putative virulence region are highly conserved among APEC and that the genes of this region occur significantly more often in APEC than in avian commensal E. coli. The region of pAPEC-O2-ColV containing genes that are highly prevalent among APEC appears to be a distinguishing trait of APEC strains. PMID:16385064

  19. ABCC1, an ATP Binding Cassette Protein from Grape Berry, Transports Anthocyanidin 3-O-Glucosides[W][OA

    PubMed Central

    Francisco, Rita Maria; Regalado, Ana; Ageorges, Agnès; Burla, Bo J.; Bassin, Barbara; Eisenach, Cornelia; Zarrouk, Olfa; Vialet, Sandrine; Marlin, Thérèse; Chaves, Maria Manuela; Martinoia, Enrico; Nagy, Réka

    2013-01-01

    Accumulation of anthocyanins in the exocarp of red grapevine (Vitis vinifera) cultivars is one of several events that characterize the onset of grape berry ripening (véraison). Despite our thorough understanding of anthocyanin biosynthesis and regulation, little is known about the molecular aspects of their transport. The participation of ATP binding cassette (ABC) proteins in vacuolar anthocyanin transport has long been a matter of debate. Here, we present biochemical evidence that an ABC protein, ABCC1, localizes to the tonoplast and is involved in the transport of glucosylated anthocyanidins. ABCC1 is expressed in the exocarp throughout berry development and ripening, with a significant increase at véraison (i.e., the onset of ripening). Transport experiments using microsomes isolated from ABCC1-expressing yeast cells showed that ABCC1 transports malvidin 3-O-glucoside. The transport strictly depends on the presence of GSH, which is cotransported with the anthocyanins and is sensitive to inhibitors of ABC proteins. By exposing anthocyanin-producing grapevine root cultures to buthionine sulphoximine, which reduced GSH levels, a decrease in anthocyanin concentration is observed. In conclusion, we provide evidence that ABCC1 acts as an anthocyanin transporter that depends on GSH without the formation of an anthocyanin-GSH conjugate. PMID:23723325

  20. Multidrug resistance in fungi: regulation of transporter-encoding gene expression

    PubMed Central

    Paul, Sanjoy; Moye-Rowley, W. Scott

    2014-01-01

    A critical risk to the continued success of antifungal chemotherapy is the acquisition of resistance; a risk exacerbated by the few classes of effective antifungal drugs. Predictably, as the use of these drugs increases in the clinic, more resistant organisms can be isolated from patients. A particularly problematic form of drug resistance that routinely emerges in the major fungal pathogens is known as multidrug resistance. Multidrug resistance refers to the simultaneous acquisition of tolerance to a range of drugs via a limited or even single genetic change. This review will focus on recent progress in understanding pathways of multidrug resistance in fungi including those of most medical relevance. Analyses of multidrug resistance in Saccharomyces cerevisiae have provided the most detailed outline of multidrug resistance in a eukaryotic microorganism. Multidrug resistant isolates of S. cerevisiae typically result from changes in the activity of a pair of related transcription factors that in turn elicit overproduction of several target genes. Chief among these is the ATP-binding cassette (ABC)-encoding gene PDR5. Interestingly, in the medically important Candida species, very similar pathways are involved in acquisition of multidrug resistance. In both C. albicans and C. glabrata, changes in the activity of transcriptional activator proteins elicits overproduction of a protein closely related to S. cerevisiae Pdr5 called Cdr1. The major filamentous fungal pathogen, Aspergillus fumigatus, was previously thought to acquire resistance to azole compounds (the principal antifungal drug class) via alterations in the azole drug target-encoding gene cyp51A. More recent data indicate that pathways in addition to changes in the cyp51A gene are important determinants in A. fumigatus azole resistance. We will discuss findings that suggest azole resistance in A. fumigatus and Candida species may share more mechanistic similarities than previously thought. PMID:24795641

  1. Transport of tylosin and tylosin-resistance genes in subsurface drainage water from manured fields

    USDA-ARS?s Scientific Manuscript database

    Animal agriculture appears to contribute to the spread of antibiotic resistance genes, but few studies have quantified gene transport in agricultural fields. The transport of tylosin, tylosin-resistance genes (erm B, F, A) and tylosin-resistant Enterococcus were measured in tile drainage water from ...

  2. Expression, purification and characterization of GAPDH-ChSase ABC I from Proteus vulgaris in Escherichia coli.

    PubMed

    Li, Ye; Chen, Zhenya; Zhou, Zhao; Yuan, Qipeng

    2016-12-01

    Chondroitinases (ChSases) are a family of polysaccharide lyases that can depolymerize high molecular weight chondroitin sulfate (CS) and dermatan sulfate (DS). In this study, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is stably expressed in different cells like normal cells and cancer cells and the expression is relatively insensitive to experimental conditions, was expressed as a fusion protein with ChSase ABC I. Results showed that the expression level and enzyme activity of GAPDH-ChSase ABC I were about 2.2 and 3.0 times higher than those of ChSase ABC I. By optimization of fermentation conditions, higher productivity of ChSase ABC I was achieved as 880 ± 61 IU/g wet cell weight compared with the reported ones. The optimal temperature and pH of GAPDH-ChSase ABC I were 40 °C and 7.5, respectively. GAPDH-ChSase ABC I had a kcat/Km of 131 ± 4.1 L/μmol s and the catalytic efficiency was decreased as compared to ChSase ABC I. The relative activity of GAPDH-ChSase ABC I remained 89% after being incubated at 30 °C for 180 min and the thermostability of ChSase ABC I was enhanced by GAPDH when it was incubated at 30, 35, 40 and 45 °C. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. ABC estimation of unit costs for emergency department services.

    PubMed

    Holmes, R L; Schroeder, R E

    1996-04-01

    Rapid evolution of the health care industry forces managers to make cost-effective decisions. Typical hospital cost accounting systems do not provide emergency department managers with the information needed, but emergency department settings are so complex and dynamic as to make the more accurate activity-based costing (ABC) system prohibitively expensive. Through judicious use of the available traditional cost accounting information and simple computer spreadsheets. managers may approximate the decision-guiding information that would result from the much more costly and time-consuming implementation of ABC.

  4. Structural elucidation of transmembrane domain zero (TMD0) of EcdL: A multidrug resistance-associated protein (MRP) family of ATP-binding cassette transporter protein revealed by atomistic simulation.

    PubMed

    Bera, Krishnendu; Rani, Priyanka; Kishor, Gaurav; Agarwal, Shikha; Kumar, Antresh; Singh, Durg Vijay

    2017-09-20

    ATP-Binding cassette (ABC) transporters play an extensive role in the translocation of diverse sets of biologically important molecules across membrane. EchnocandinB (antifungal) and EcdL protein of Aspergillus rugulosus are encoded by the same cluster of genes. Co-expression of EcdL and echinocandinB reflects tightly linked biological functions. EcdL belongs to Multidrug Resistance associated Protein (MRP) subfamily of ABC transporters with an extra transmembrane domain zero (TMD0). Complete structure of MRP subfamily comprising of TMD0 domain, at atomic resolution is not known. We hypothesized that the transportation of echonocandinB is mediated via EcdL protein. Henceforth, it is pertinent to know the topological arrangement of TMD0, with other domains of protein and its possible role in transportation of echinocandinB. Absence of effective template for TMD0 domain lead us to model by I-TASSER, further structure has been refined by multiple template modelling using homologous templates of remaining domains (TMD1, NBD1, TMD2, NBD2). The modelled structure has been validated for packing, folding and stereochemical properties. MD simulation for 0.1 μs has been carried out in the biphasic environment for refinement of modelled protein. Non-redundant structures have been excavated by clustering of MD trajectory. The structural alignment of modelled structure has shown Z-score -37.9; 31.6, 31.5 with RMSD; 2.4, 4.2, 4.8 with ABC transporters; PDB ID 4F4C, 4M1 M, 4M2T, respectively, reflecting the correctness of structure. EchinocandinB has been docked to the modelled as well as to the clustered structures, which reveals interaction of echinocandinB with TMD0 and other TM helices in the translocation path build of TMDs.

  5. The ABCs of Activity-Based Costing: A Cost Containment and Reallocation Tool.

    ERIC Educational Resources Information Center

    Turk, Frederick J.

    1992-01-01

    This article describes activity-based costing (ABC) and how this tool may help management understand the costs of major activities and identify possible alternatives. Also discussed are the traditional costing systems used by higher education and ways of applying ABC to higher education. (GLR)

  6. Therapeutic and biological importance of getting nucleotides out of cells: a case for the ABC transporters, MRP4 and 5.

    PubMed

    Adachi, Masashi; Reid, Glen; Schuetz, John D

    2002-11-18

    The energy dependent transport of drugs contributes to cellular resistance and is undoubtedly a prime suspect in chemotherapeutic failure of a variety of disease processes. Early studies focused on a single gene, the multidrug resistance gene, MDR1, as a main contributor to chemotherapeutic failure. However, the multifaceted nature of cellular resistance lead to the discovery of the MRP gene. This pivotal finding and the concurrent rapid development of gene databases lead to the expansion of the MRP gene family. The purpose of this review is to discuss two of the recently described MRP family members that were orphans until their role in drug resistance was discovered. This review will provide an overview of the current state of our understanding of MRP4 and 5.

  7. Transporters associated with antigen processing (TAP) in sea bass (Dicentrarchus labrax, L.): molecular cloning and characterization of TAP1 and TAP2.

    PubMed

    Pinto, Rute D; Pereira, Pedro J B; dos Santos, Nuno M S

    2011-11-01

    The transporters associated with antigen processing (TAP), play an important role in the MHC class I antigen presentation pathway. In this work, sea bass (Dicentrarchus labrax) TAP1 and TAP2 genes and transcripts were isolated and characterized. Only the TAP2 gene is structurally similar to its human orthologue. As other TAP molecules, sea bass TAP1 and TAP2 are formed by one N-terminal accessory domain, one core membrane-spanning domain and one canonical C-terminal nucleotide-binding domain. Homology modelling of the sea bass TAP dimer predicts that its quaternary structure is in accordance with that of other ABC transporters. Phylogenetic analysis segregates sea bass TAP1 and TAP2 into each subfamily cluster of transporters, placing them in the fish class and suggesting that the basic structure of these transport-associated proteins is evolutionarily conserved. Furthermore, the present data provides information that will enable more studies on the class I antigen presentation pathway in this important fish species. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Applying Activity Based Costing (ABC) Method to Calculate Cost Price in Hospital and Remedy Services

    PubMed Central

    Rajabi, A; Dabiri, A

    2012-01-01

    Background Activity Based Costing (ABC) is one of the new methods began appearing as a costing methodology in the 1990’s. It calculates cost price by determining the usage of resources. In this study, ABC method was used for calculating cost price of remedial services in hospitals. Methods: To apply ABC method, Shahid Faghihi Hospital was selected. First, hospital units were divided into three main departments: administrative, diagnostic, and hospitalized. Second, activity centers were defined by the activity analysis method. Third, costs of administrative activity centers were allocated into diagnostic and operational departments based on the cost driver. Finally, with regard to the usage of cost objectives from services of activity centers, the cost price of medical services was calculated. Results: The cost price from ABC method significantly differs from tariff method. In addition, high amount of indirect costs in the hospital indicates that capacities of resources are not used properly. Conclusion: Cost price of remedial services with tariff method is not properly calculated when compared with ABC method. ABC calculates cost price by applying suitable mechanisms but tariff method is based on the fixed price. In addition, ABC represents useful information about the amount and combination of cost price services. PMID:23113171

  9. Expression, purification and thermostability of MBP-chondroitinase ABC I from Proteus vulgaris.

    PubMed

    Chen, Zhenya; Li, Ye; Yuan, Qipeng

    2015-01-01

    Chondroitinase ABC I (ChSase ABC I) which can degrade chondroitin sulfate (CS) and other glycosaminoglycan to oligosaccharide or unsaturated disaccharide, was fusionally expressed with maltose-binding protein (MBP) in Escherichia coli BL21(DE3) (E. coli BL21(DE3)) and purified for the first time in this study. The result showed that the productivity of recombinant MBP-ChSase ABC I was 3180 IU/(L fermentation liquor) with CS A as substrate, and the productivity might be the highest level when compared to the reported ones. The specific activity of recombinant MBP-ChSase ABC I was 76 IU/(mg protein) after purification. The Vmax, Km and kcat were 18.7 ± 0.3 μmol/Ls, 73.1 ± 4.1 μmol/L and 586.7 ± 10.8 s(-1), respectively. Enzyme activity of the purified enzyme remained about 78% after 210 min when the enzyme incubated at 30 °C. This study introduces a rapid method for highly expressing ChSase ABC I, and the method could be adopted in the process of industrial production. Furthermore the investigation of thermostability might lead to an important guide in clinical treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Intact coding region of the serotonin transporter gene in obsessive-compulsive disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altemus, M.; Murphy, D.L.; Greenberg, B.

    1996-07-26

    Epidemiologic studies indicate that obsessive-compulsive disorder is genetically transmitted in some families, although no genetic abnormalities have been identified in individuals with this disorder. The selective response of obsessive-compulsive disorder to treatment with agents which block serotonin reuptake suggests the gene coding for the serotonin transporter as a candidate gene. The primary structure of the serotonin-transporter coding region was sequenced in 22 patients with obsessive-compulsive disorder, using direct PCR sequencing of cDNA synthesized from platelet serotonin-transporter mRNA. No variations in amino acid sequence were found among the obsessive-compulsive disorder patients or healthy controls. These results do not support a rolemore » for alteration in the primary structure of the coding region of the serotonin-transporter gene in the pathogenesis of obsessive-compulsive disorder. 27 refs.« less

  11. MntABC and MntH Contribute to Systemic Staphylococcus aureus Infection by Competing with Calprotectin for Nutrient Manganese

    PubMed Central

    Kehl-Fie, Thomas E.; Zhang, Yaofang; Moore, Jessica L.; Farrand, Allison J.; Hood, M. Indriati; Rathi, Subodh; Chazin, Walter J.; Caprioli, Richard M.

    2013-01-01

    During infection, vertebrates limit access to manganese and zinc, starving invading pathogens, such as Staphylococcus aureus, of these essential metals in a process termed “nutritional immunity.” The manganese and zinc binding protein calprotectin is a key component of the nutrient-withholding response, and mice lacking this protein do not sequester manganese from S. aureus liver abscesses. One potential mechanism utilized by S. aureus to minimize host-imposed manganese and zinc starvation is the expression of the metal transporters MntABC and MntH. We performed transcriptional analyses of both mntA and mntH, which revealed increased expression of both systems in response to calprotectin treatment. MntABC and MntH compete with calprotectin for manganese, which enables S. aureus growth and retention of manganese-dependent superoxide dismutase activity. Loss of MntABC and MntH results in reduced staphylococcal burdens in the livers of wild-type but not calprotectin-deficient mice, suggesting that these systems promote manganese acquisition during infection. During the course of these studies, we observed that metal content and the importance of calprotectin varies between murine organs, and infection leads to profound changes in the anatomical distribution of manganese and zinc. In total, these studies provide insight into the mechanisms utilized by bacteria to evade host-imposed nutrient metal starvation and the critical importance of restricting manganese availability during infection. PMID:23817615

  12. Novel Polymorphisms in Plasmodium falciparum ABC Transporter Genes Are Associated with Major ACT Antimalarial Drug Resistance

    PubMed Central

    Veiga, Maria Isabel; Ferreira, Pedro Eduardo; Jörnhagen, Louise; Malmberg, Maja; Kone, Aminatou; Schmidt, Berit Aydin; Petzold, Max; Björkman, Anders; Nosten, Francois; Gil, Jose Pedro

    2011-01-01

    Chemotherapy is a critical component of malaria control. However, the most deadly malaria pathogen, Plasmodium falciparum, has repeatedly mounted resistance against a series of antimalarial drugs used in the last decades. Southeast Asia is an epicenter of emerging antimalarial drug resistance, including recent resistance to the artemisinins, the core component of all recommended antimalarial combination therapies. Alterations in the parasitic membrane proteins Pgh-1, PfCRT and PfMRP1 are believed to be major contributors to resistance through decreasing intracellular drug accumulation. The pfcrt, pfmdr1 and pfmrp1 genes were sequenced from a set of P.falciparum field isolates from the Thai-Myanmar border. In vitro drug susceptibility to artemisinin, dihydroartemisinin, mefloquine and lumefantrine were assessed. Positive correlations were seen between the in vitro susceptibility responses to artemisinin and dihydroartemisinin and the responses to the arylamino-alcohol quinolines lumefantrine and mefloquine. The previously unstudied pfmdr1 F1226Y and pfmrp1 F1390I SNPs were associated significantly with artemisinin, mefloquine and lumefantrine in vitro susceptibility. A variation in pfmdr1 gene copy number was also associated with parasite drug susceptibility of artemisinin, mefloquine and lumefantrine. Our work unveils new candidate markers of P. falciparum multidrug resistance in vitro, while contributing to the understanding of subjacent genetic complexity, essential for future evidence-based drug policy decisions. PMID:21633513

  13. Novel polymorphisms in Plasmodium falciparum ABC transporter genes are associated with major ACT antimalarial drug resistance.

    PubMed

    Veiga, Maria Isabel; Ferreira, Pedro Eduardo; Jörnhagen, Louise; Malmberg, Maja; Kone, Aminatou; Schmidt, Berit Aydin; Petzold, Max; Björkman, Anders; Nosten, Francois; Gil, Jose Pedro

    2011-01-01

    Chemotherapy is a critical component of malaria control. However, the most deadly malaria pathogen, Plasmodium falciparum, has repeatedly mounted resistance against a series of antimalarial drugs used in the last decades. Southeast Asia is an epicenter of emerging antimalarial drug resistance, including recent resistance to the artemisinins, the core component of all recommended antimalarial combination therapies. Alterations in the parasitic membrane proteins Pgh-1, PfCRT and PfMRP1 are believed to be major contributors to resistance through decreasing intracellular drug accumulation. The pfcrt, pfmdr1 and pfmrp1 genes were sequenced from a set of P.falciparum field isolates from the Thai-Myanmar border. In vitro drug susceptibility to artemisinin, dihydroartemisinin, mefloquine and lumefantrine were assessed. Positive correlations were seen between the in vitro susceptibility responses to artemisinin and dihydroartemisinin and the responses to the arylamino-alcohol quinolines lumefantrine and mefloquine. The previously unstudied pfmdr1 F1226Y and pfmrp1 F1390I SNPs were associated significantly with artemisinin, mefloquine and lumefantrine in vitro susceptibility. A variation in pfmdr1 gene copy number was also associated with parasite drug susceptibility of artemisinin, mefloquine and lumefantrine. Our work unveils new candidate markers of P. falciparum multidrug resistance in vitro, while contributing to the understanding of subjacent genetic complexity, essential for future evidence-based drug policy decisions.

  14. MDR1 and BCRP Transporter-Mediated Drug-Drug Interaction between Rilpivirine and Abacavir and Effect on Intestinal Absorption

    PubMed Central

    Reznicek, Josef; Ceckova, Martina; Ptackova, Zuzana; Martinec, Ondrej; Tupova, Lenka; Cerveny, Lukas

    2017-01-01

    ABSTRACT Rilpivirine (TMC278) is a highly potent nonnucleoside reverse transcriptase inhibitor (NNRTI) representing an effective component of combination antiretroviral therapy (cART) in the treatment of HIV-positive patients. Many antiretroviral drugs commonly used in cART are substrates of ATP-binding cassette (ABC) and/or solute carrier (SLC) drug transporters and, therefore, are prone to pharmacokinetic drug-drug interactions (DDIs). The aim of our study was to evaluate rilpivirine interactions with abacavir and lamivudine on selected ABC and SLC transporters in vitro and assess its importance for pharmacokinetics in vivo. Using accumulation assays in MDCK cells overexpressing selected ABC or SLC drug transporters, we revealed rilpivirine as a potent inhibitor of MDR1 and BCRP, but not MRP2, OCT1, OCT2, or MATE1. Subsequent transport experiments across monolayers of MDCKII-MDR1, MDCKII-BCRP, and Caco-2 cells demonstrated that rilpivirine inhibits MDR1- and BCRP-mediated efflux of abacavir and increases its transmembrane transport. In vivo experiments in male Wistar rats confirmed inhibition of MDR1/BCRP in the small intestine, leading to a significant increase in oral bioavailability of abacavir. In conclusion, rilpivirine inhibits MDR1 and BCRP transporters and may affect pharmacokinetic behavior of concomitantly administered substrates of these transporters, such as abacavir. PMID:28696229

  15. Molecular and genetic characterization of the rhizopine catabolism (mocABRC) genes of Rhizobium meliloti L5-30.

    PubMed

    Rossbach, S; Kulpa, D A; Rossbach, U; de Bruijn, F J

    1994-10-17

    Rhizopine (L-3-O-methyl-scyllo-inosamine, 3-O-MSI) is a symbiosis-specific compound, which is synthesized in nitrogen-fixing nodules of Medicago sativa induced by Rhizobium meliloti strain L5-30. 3-O-MSI is thought to function as an unusual growth substrate for R. meliloti L5-30, which carries a locus (mos) responsible for its synthesis closely linked to a locus (moc) responsible for its degradation. Here, the essential moc genes were delimited by Tn5 mutagenesis and shown to be organized into two regions, separated by 3 kb of DNA. The DNA sequence of a 9-kb fragment spanning the two moc regions was determined, and four genes were identified that play an essential role in rhizopine catabolism (mocABC and mocR). The analysis of the DNA sequence and the amino acid sequence of the deduced protein products revealed that MocA resembles NADH-dependent dehydrogenases. MocB exhibits characteristic features of periplasmic-binding proteins that are components of high-affinity transport systems. MocC does not share significant homology with any protein in the database. MocR shows homology with the GntR class of bacterial regulator proteins. These results suggest that the mocABC genes are involved in the uptake and subsequent degradation of rhizopine, whereas mocR is likely to play a regulatory role.

  16. Multidrug ATP-binding cassette transporters are essential for hepatic development of Plasmodium sporozoites.

    PubMed

    Rijpma, Sanna R; van der Velden, Maarten; González-Pons, Maria; Annoura, Takeshi; van Schaijk, Ben C L; van Gemert, Geert-Jan; van den Heuvel, Jeroen J M W; Ramesar, Jai; Chevalley-Maurel, Severine; Ploemen, Ivo H; Khan, Shahid M; Franetich, Jean-Francois; Mazier, Dominique; de Wilt, Johannes H W; Serrano, Adelfa E; Russel, Frans G M; Janse, Chris J; Sauerwein, Robert W; Koenderink, Jan B; Franke-Fayard, Blandine M

    2016-03-01

    Multidrug resistance-associated proteins (MRPs) belong to the C-family of ATP-binding cassette (ABC) transport proteins and are known to transport a variety of physiologically important compounds and to be involved in the extrusion of pharmaceuticals. Rodent malaria parasites encode a single ABC transporter subfamily C protein, whereas human parasites encode two: MRP1 and MRP2. Although associated with drug resistance, their biological function and substrates remain unknown. To elucidate the role of MRP throughout the parasite life cycle, Plasmodium berghei and Plasmodium falciparum mutants lacking MRP expression were generated. P. berghei mutants lacking expression of the single MRP as well as P. falciparum mutants lacking MRP1, MRP2 or both proteins have similar blood stage growth kinetics and drug-sensitivity profiles as wild type parasites. We show that MRP1-deficient parasites readily invade primary human hepatocytes and develop into mature liver stages. In contrast, both P. falciparum MRP2-deficient parasites and P. berghei mutants lacking MRP protein expression abort in mid to late liver stage development, failing to produce mature liver stages. The combined P. berghei and P. falciparum data are the first demonstration of a critical role of an ABC transporter during Plasmodium liver stage development. © 2015 John Wiley & Sons Ltd.

  17. Influence of multidrug resistance and drug transport proteins on chemotherapy drug metabolism.

    PubMed

    Joyce, Helena; McCann, Andrew; Clynes, Martin; Larkin, Annemarie

    2015-05-01

    Chemotherapy involving the use of anticancer drugs remains an important strategy in the overall management of patients with metastatic cancer. Acquisition of multidrug resistance remains a major impediment to successful chemotherapy. Drug transporters in cell membranes and intracellular drug metabolizing enzymes contribute to the resistance phenotype and determine the pharmacokinetics of anticancer drugs in the body. ATP-binding cassette (ABC) transporters mediate the transport of endogenous metabolites and xenobiotics including cytotoxic drugs out of cells. Solute carrier (SLC) transporters mediate the influx of cytotoxic drugs into cells. This review focuses on the substrate interaction of these transporters, on their biology and what role they play together with drug metabolizing enzymes in eliminating therapeutic drugs from cells. The majority of anticancer drugs are substrates for the ABC transporter and SLC transporter families. Together, these proteins have the ability to control the influx and the efflux of structurally unrelated chemotherapeutic drugs, thereby modulating the intracellular drug concentration. These interactions have important clinical implications for chemotherapy because ultimately they determine therapeutic efficacy, disease progression/relapse and the success or failure of patient treatment.

  18. Arsenic Transport in Rice and Biological Solutions to Reduce Arsenic Risk from Rice

    PubMed Central

    Chen, Yanshan; Han, Yong-He; Cao, Yue; Zhu, Yong-Guan; Rathinasabapathi, Bala; Ma, Lena Q.

    2017-01-01

    Rice (Oryza sativa L.) feeds ∼3 billion people. Due to the wide occurrence of arsenic (As) pollution in paddy soils and its efficient plant uptake, As in rice grains presents health risks. Genetic manipulation may offer an effective approach to reduce As accumulation in rice grains. The genetics of As uptake and metabolism have been elucidated and target genes have been identified for genetic engineering to reduce As accumulation in grains. Key processes controlling As in grains include As uptake, arsenite (AsIII) efflux, arsenate (AsV) reduction and AsIII sequestration, and As methylation and volatilization. Recent advances, including characterization of AsV uptake transporter OsPT8, AsV reductase OsHAC1;1 and OsHAC1;2, rice glutaredoxins, and rice ABC transporter OsABCC1, make many possibilities to develop low-arsenic rice. PMID:28298917

  19. ATP and AMP Mutually Influence Their Interaction with the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) at Separate Binding Sites*

    PubMed Central

    Randak, Christoph O.; Dong, Qian; Ver Heul, Amanda R.; Elcock, Adrian H.; Welsh, Michael J.

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, also have adenylate kinase activity. All three ABC adenylate kinases bind and hydrolyze ATP in the absence of other nucleotides. However, little is known about how an ABC adenylate kinase interacts with ATP and AMP when both are present. Based on data from non-ABC adenylate kinases, we hypothesized that ATP and AMP mutually influence their interaction with CFTR at separate binding sites. We further hypothesized that only one of the two CFTR ATP-binding sites is involved in the adenylate kinase reaction. We found that 8-azidoadenosine 5′-triphosphate (8-N3-ATP) and 8-azidoadenosine 5′-monophosphate (8-N3-AMP) photolabeled separate sites in CFTR. Labeling of the AMP-binding site with 8-N3-AMP required the presence of ATP. Conversely, AMP enhanced photolabeling with 8-N3-ATP at ATP-binding site 2. The adenylate kinase active center probe P1,P5-di(adenosine-5′) pentaphosphate interacted simultaneously with an AMP-binding site and ATP-binding site 2. These results show that ATP and AMP interact with separate binding sites but mutually influence their interaction with the ABC adenylate kinase CFTR. They further indicate that the active center of the adenylate kinase comprises ATP-binding site 2. PMID:23921386

  20. Expression of biomineralization-related ion transport genes in Emiliania huxleyi.

    PubMed

    Mackinder, Luke; Wheeler, Glen; Schroeder, Declan; von Dassow, Peter; Riebesell, Ulf; Brownlee, Colin

    2011-12-01

    Biomineralization in the marine phytoplankton Emiliania huxleyi is a stringently controlled intracellular process. The molecular basis of coccolith production is still relatively unknown although its importance in global biogeochemical cycles and varying sensitivity to increased pCO₂ levels has been well documented. This study looks into the role of several candidate Ca²⁺, H⁺ and inorganic carbon transport genes in E. huxleyi, using quantitative reverse transcriptase PCR. Differential gene expression analysis was investigated in two isogenic pairs of calcifying and non-calcifying strains of E. huxleyi and cultures grown at various Ca²⁺ concentrations to alter calcite production. We show that calcification correlated to the consistent upregulation of a putative HCO₃⁻ transporter belonging to the solute carrier 4 (SLC4) family, a Ca²⁺/H⁺ exchanger belonging to the CAX family of exchangers and a vacuolar H⁺-ATPase. We also show that the coccolith-associated protein, GPA is downregulated in calcifying cells. The data provide strong evidence that these genes play key roles in E. huxleyi biomineralization. Based on the gene expression data and the current literature a working model for biomineralization-related ion transport in coccolithophores is presented. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  1. A Putative ABC Transporter Permease Is Necessary for Resistance to Acidified Nitrite and EDTA in Pseudomonas aeruginosa under Aerobic and Anaerobic Planktonic and Biofilm Conditions

    PubMed Central

    McDaniel, Cameron; Su, Shengchang; Panmanee, Warunya; Lau, Gee W.; Browne, Tristan; Cox, Kevin; Paul, Andrew T.; Ko, Seung-Hyun B.; Mortensen, Joel E.; Lam, Joseph S.; Muruve, Daniel A.; Hassett, Daniel J.

    2016-01-01

    Pseudomonas aeruginosa (PA) is an important airway pathogen of cystic fibrosis and chronic obstructive disease patients. Multiply drug resistant PA is becoming increasing prevalent and new strategies are needed to combat such insidious organisms. We have previously shown that a mucoid, mucA22 mutant PA is exquisitely sensitive to acidified nitrite (A-NO2−, pH 6.5) at concentrations that are well tolerated in humans. Here, we used a transposon mutagenesis approach to identify PA mutants that are hypersensitive to A-NO2−. Among greater than 10,000 mutants screened, we focused on PA4455, in which the transposon was found to disrupt the production of a putative cytoplasmic membrane-spanning ABC transporter permease. The PA4455 mutant was not only highly sensitive to A-NO2−, but also the membrane perturbing agent, EDTA and the antibiotics doxycycline, tigecycline, colistin, and chloramphenicol, respectively. Treatment of bacteria with A-NO2− plus EDTA, however, had the most dramatic and synergistic effect, with virtually all bacteria killed by 10 mM A-NO2−, and EDTA (1 mM, aerobic, anaerobic). Most importantly, the PA4455 mutant was also sensitive to A-NO2− in biofilms. A-NO2− sensitivity and an anaerobic growth defect was also noted in two mutants (rmlC and wbpM) that are defective in B-band LPS synthesis, potentially indicating a membrane defect in the PA4455 mutant. Finally, this study describes a gene, PA4455, that when mutated, allows for dramatic sensitivity to the potential therapeutic agent, A-NO2− as well as EDTA. Furthermore, the synergy between the two compounds could offer future benefits against antibiotic resistant PA strains. PMID:27064218

  2. Identification of a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi.

    PubMed

    Ruocco, Michelina; Lanzuise, Stefania; Vinale, Francesco; Marra, Roberta; Turrà, David; Woo, Sheridan Lois; Lorito, Matteo

    2009-03-01

    Successful biocontrol interactions often require that the beneficial microbes involved are resistant or tolerant to a variety of toxicants, including antibiotics produced by themselves or phytopathogens, plant antimicrobial compounds, and synthetic chemicals or contaminants. The ability of Trichoderma spp., the most widely applied biocontrol fungi, to withstand different chemical stresses, including those associated with mycoparasitism, is well known. In this work, we identified an ATP-binding cassette transporter cell membrane pump as an important component of the above indicated resistance mechanisms that appears to be supported by an extensive and powerful cell detoxification system. The encoding gene, named Taabc2, was cloned from a strain of Trichoderma atroviride and characterized. Its expression was found to be upregulated in the presence of pathogen-secreted metabolites, specific mycotoxins and some fungicides, and in conditions that stimulate the production in Trichoderma spp. of antagonism-related factors (toxins and enzymes). The key role of this gene in antagonism and biocontrol was demonstrated by the characterization of the obtained deletion mutants. They suffered an increased susceptibility to inhibitory compounds either secreted by pathogenic fungi or possibly produced by the biocontrol microbe itself and lost, partially or entirely, the ability to protect tomato plants from Pythium ultimum and Rhizoctonia solani attack.

  3. GPS-ABC radiated chamber testing overview and results : GPS-ABC Workshop VI : RTCA Washington, DC, March 30, 2017.

    DOT National Transportation Integrated Search

    2017-03-30

    This presentation, which was given during the GPS-ABC Workshop VI in Washington, DC on March 30, 2017 details the authors' radiated testing protocols and results. GPS receiver testing was carried out April 25-29, 2016 at the Army : Research Laborator...

  4. Comparative transcriptome analysis of Sogatella furcifera (Horváth) exposed to different insecticides.

    PubMed

    Zhou, Cao; Yang, Hong; Wang, Zhao; Long, Gui-Yun; Jin, Dao-Chao

    2018-06-08

    White-backed planthopper, Sogatella furcifera (Horváth) (Hemiptera: Delphacidae), one of the main agricultural insect pests in China, is resistant to a wide variety of insecticides. We used transcriptome analysis to compare the expression patterns of resistance- and stress-response genes in S. furcifera subjected to imidacloprid, deltamethrin, and triazophos stress, to determine the molecular mechanisms of resistance to these insecticides. A comparative analysis of gene expression under imidacloprid, deltamethrin, and triazophos stress revealed 1,123, 841, and 316 upregulated unigenes, respectively, compared to the control. These upregulated genes included seven P450s (two CYP2 clade, three CYP3 clade, and two CYP4 clade), one GST, one ABC transporter (ABCF), and seven Hsps (one 90 and six Hsp70s) under imidacloprid stress; one P450 (CYP3 clade), two ABC transporters (one ABCF and one ABCD), and one Hsp (Hsp90) under deltamethrin stress; one P450 (CYP3 clade) and one ABC transporter (ABCF) under triazophos stress. In addition, 80 genes were commonly upregulated in response to the three insecticide treatments, including laminin, larval cuticle protein, and fasciclin, which are associated with epidermal formation. These results provide a valuable resource for the molecular characterisation of insecticide action in S. furcifera, especially the molecular characteristics of insecticide cross resistance.

  5. Targeting the chromatin remodeling enzyme BRG1 increases the efficacy of chemotherapy drugs in breast cancer cells

    PubMed Central

    Wu, Qiong; Sharma, Soni; Cui, Hang; LeBlanc, Scott E.; Zhang, Hong; Muthuswami, Rohini; Nickerson, Jeffrey A.; Imbalzano, Anthony N.

    2016-01-01

    Brahma related gene product 1 (BRG1) is an ATPase that drives the catalytic activity of a subset of the mammalian SWI/SNF chromatin remodeling enzymes. BRG1 is overexpressed in most human breast cancer tumors without evidence of mutation and is required for breast cancer cell proliferation. We demonstrate that knockdown of BRG1 sensitized triple negative breast cancer cells to chemotherapeutic drugs used to treat breast cancer. An inhibitor of the BRG1 bromodomain had no effect on breast cancer cell viability, but an inhibitory molecule that targets the BRG1 ATPase activity recapitulated the increased drug efficacy observed in the presence of BRG1 knockdown. We further demonstrate that inhibition of BRG1 ATPase activity blocks the induction of ABC transporter genes by these chemotherapeutic drugs and that BRG1 binds to ABC transporter gene promoters. This inhibition increased intracellular concentrations of the drugs, providing a likely mechanism for the increased chemosensitivity. Since ABC transporters and their induction by chemotherapy drugs are a major cause of chemoresistance and treatment failure, these results support the idea that targeting the enzymatic activity of BRG1 would be an effective adjuvant therapy for breast cancer. PMID:27029062

  6. Evolution of Mycolic Acid Biosynthesis Genes and Their Regulation during Starvation in Mycobacterium tuberculosis

    PubMed Central

    Jamet, Stevie; Quentin, Yves; Coudray, Coralie; Texier, Pauline; Laval, Françoise; Daffé, Mamadou

    2015-01-01

    ABSTRACT Mycobacterium tuberculosis, the etiological agent of tuberculosis, is a Gram-positive bacterium with a unique cell envelope composed of an essential outer membrane. Mycolic acids, which are very-long-chain (up to C100) fatty acids, are the major components of this mycomembrane. The enzymatic pathways involved in the biosynthesis and transport of mycolates are fairly well documented and are the targets of the major antituberculous drugs. In contrast, only fragmented information is available on the expression and regulation of the biosynthesis genes. In this study, we report that the hadA, hadB, and hadC genes, which code for the mycolate biosynthesis dehydratase enzymes, are coexpressed with three genes that encode proteins of the translational apparatus. Consistent with the well-established control of the translation potential by nutrient availability, starvation leads to downregulation of the hadABC genes along with most of the genes required for the synthesis, modification, and transport of mycolates. The downregulation of a subset of the biosynthesis genes is partially dependent on RelMtb, the key enzyme of the stringent response. We also report the phylogenetic evolution scenario that has shaped the current genetic organization, characterized by the coregulation of the hadABC operon with genes of the translational apparatus and with genes required for the modification of the mycolates. IMPORTANCE Mycobacterium tuberculosis infects one-third of the human population worldwide, and despite the available therapeutic arsenal, it continues to kill millions of people each year. There is therefore an urgent need to identify new targets and develop a better understanding of how the bacterium is adapting itself to host defenses during infection. A prerequisite of this understanding is knowledge of how this adaptive skill has been implanted by evolution. Nutrient scarcity is an environmental condition the bacterium has to cope with during infection. In many

  7. A test of the ABC model underlying rational emotive behavior therapy.

    PubMed

    Ziegler, Daniel J; Leslie, Yvonne M

    2003-02-01

    The ABC model underlying Ellis's Rational Emotive Behavior Therapy predicts that people who think more irrationally should respond to daily stressors or hassles differently than do people who think less irrationally. This study tested this aspect of the ABC model. 192 college students were administered the Survey of Personal Beliefs and the Hassles Scale to measure irrational thinking and daily hassles, respectively. Students who scored higher on overall irrational thinking reported a significantly higher frequency of hassles than did those who scored lower on overall irrational thinking, while students who scored higher on awfulizing and low frustration tolerance reported a significantly greater intensity of hassles than did those who scored lower on awfulizing and low frustration tolerance. This indicates support for the ABC model, especially Ellis's construct of irrational beliefs central to this model.

  8. Increased expression of electron transport chain genes in uterine leiomyoma.

    PubMed

    Tuncal, Akile; Aydin, Hikmet Hakan; Askar, Niyazi; Ozkaya, Ali Burak; Ergenoglu, Ahmet Mete; Yeniel, Ahmet Ozgur; Akdemir, Ali; Ak, Handan

    2014-01-01

    The etiology and pathophysiology of uterine leiomyomas, benign smooth muscle tumors of the uterus, are not well understood. To evaluate the role of mitochondria in uterine leiomyoma, we compared electron transport gene expressions of uterine leiomyoma tissue with myometrium tissue in six uterine leiomyoma patients by RT-PCR array. Our results showed an average of 1.562 (±0.445) fold increase in nuclear-encoded electron transport genes. These results might suggest an increase in size, number, or activity of mitochondria in uterine leiomyoma that, to our knowledge, has not been previously reported. © 2014 by the Association of Clinical Scientists, Inc.

  9. Applying the Post-Modern Double ABC-X Model to Family Food Insecurity

    ERIC Educational Resources Information Center

    Hutson, Samantha; Anderson, Melinda; Swafford, Melinda

    2015-01-01

    This paper develops the argument that using the Double ABC-X model in family and consumer sciences (FCS) curricula is a way to educate nutrition and dietetics students regarding a family's perceptions of food insecurity. The Double ABC-X model incorporates ecological theory as a basis to explain family stress and the resulting adjustment and…

  10. An ATP-Binding Cassette Transporter and Two rRNA Methyltransferases Are Involved in Resistance to Avilamycin in the Producer Organism Streptomyces viridochromogenes Tü57

    PubMed Central

    Weitnauer, Gabriele; Gaisser, Sibylle; Trefzer, Axel; Stockert, Sigrid; Westrich, Lucy; Quiros, Luis M.; Mendez, Carmen; Salas, Jose A.; Bechthold, Andreas

    2001-01-01

    Three different resistance factors from the avilamycin biosynthetic gene cluster of Streptomyces viridochromogenes Tü57, which confer avilamycin resistance when expressed in Streptomyces lividans TK66, were isolated. Analysis of the deduced amino acid sequences showed that AviABC1 is similar to a large family of ATP-binding transporter proteins and that AviABC2 resembles hydrophobic transmembrane proteins known to act jointly with the ATP-binding proteins. The deduced amino acid sequence of aviRb showed similarity to those of other rRNA methyltransferases, and AviRa did not resemble any protein in the databases. Independent expression in S. lividans TK66 of aviABC1 plus aviABC2, aviRa, or aviRb conferred different levels of resistance to avilamycin: 5, 10, or 250 μg/ml, respectively. When either aviRa plus aviRb or aviRa plus aviRb plus aviABC1 plus aviABC2 was coexpressed in S. lividans TK66, avilamycin resistance levels reached more than 250 μg/ml. Avilamycin A inhibited poly(U)-directed polyphenylalanine synthesis in an in vitro system using ribosomes of S. lividans TK66(pUWL201) (GWO), S. lividans TK66(pUWL201-Ra) (GWRa), or S. lividans TK66(pUWL201-Rb) (GWRb), whereas ribosomes of S. lividans TK66 containing pUWL201-Ra+Rb (GWRaRb) were highly resistant. aviRa and aviRb were expressed in Escherichia coli, and both enzymes were purified as fusion proteins to near homogeneity. Both enzymes showed rRNA methyltransferase activity using a mixture of 16S and 23S rRNAs from E. coli as the substrate. Coincubation experiments revealed that the enzymes methylate different positions of rRNA. PMID:11181344

  11. An ATP-binding cassette transporter and two rRNA methyltransferases are involved in resistance to avilamycin in the producer organism Streptomyces viridochromogenes Tü57.

    PubMed

    Weitnauer, G; Gaisser, S; Trefzer, A; Stockert, S; Westrich, L; Quiros, L M; Mendez, C; Salas, J A; Bechthold, A

    2001-03-01

    Three different resistance factors from the avilamycin biosynthetic gene cluster of Streptomyces viridochromogenes Tü57, which confer avilamycin resistance when expressed in Streptomyces lividans TK66, were isolated. Analysis of the deduced amino acid sequences showed that AviABC1 is similar to a large family of ATP-binding transporter proteins and that AviABC2 resembles hydrophobic transmembrane proteins known to act jointly with the ATP-binding proteins. The deduced amino acid sequence of aviRb showed similarity to those of other rRNA methyltransferases, and AviRa did not resemble any protein in the databases. Independent expression in S. lividans TK66 of aviABC1 plus aviABC2, aviRa, or aviRb conferred different levels of resistance to avilamycin: 5, 10, or 250 microg/ml, respectively. When either aviRa plus aviRb or aviRa plus aviRb plus aviABC1 plus aviABC2 was coexpressed in S. lividans TK66, avilamycin resistance levels reached more than 250 microg/ml. Avilamycin A inhibited poly(U)-directed polyphenylalanine synthesis in an in vitro system using ribosomes of S. lividans TK66(pUWL201) (GWO), S. lividans TK66(pUWL201-Ra) (GWRa), or S. lividans TK66(pUWL201-Rb) (GWRb), whereas ribosomes of S. lividans TK66 containing pUWL201-Ra+Rb (GWRaRb) were highly resistant. aviRa and aviRb were expressed in Escherichia coli, and both enzymes were purified as fusion proteins to near homogeneity. Both enzymes showed rRNA methyltransferase activity using a mixture of 16S and 23S rRNAs from E. coli as the substrate. Coincubation experiments revealed that the enzymes methylate different positions of rRNA.

  12. Molecular cloning and expressional analysis of five sucrose transporter (SUT) genes in sugarcane

    USDA-ARS?s Scientific Manuscript database

    The sucrose transport and accumulation in sugarcane internodes are very complicated processes and how sugarcane sucrose transporter (SUT) genes function in these processes remains unclear. In this study, five sugarcane SUT genes, namely, SoSUT1, SoSUT2, SoSUT3, SoSUT4 and SoSUT5, were cloned and the...

  13. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid.

    PubMed

    Ro, Dae-Kyun; Ouellet, Mario; Paradise, Eric M; Burd, Helcio; Eng, Diana; Paddon, Chris J; Newman, Jack D; Keasling, Jay D

    2008-11-04

    Due to the global occurrence of multi-drug-resistant malarial parasites (Plasmodium falciparum), the anti-malarial drug most effective against malaria is artemisinin, a natural product (sesquiterpene lactone endoperoxide) extracted from sweet wormwood (Artemisia annua). However, artemisinin is in short supply and unaffordable to most malaria patients. Artemisinin can be semi-synthesized from its precursor artemisinic acid, which can be synthesized from simple sugars using microorganisms genetically engineered with genes from A. annua. In order to develop an industrially competent yeast strain, detailed analyses of microbial physiology and development of gene expression strategies are required. Three plant genes coding for amorphadiene synthase, amorphadiene oxidase (AMO or CYP71AV1), and cytochrome P450 reductase, which in concert divert carbon flux from farnesyl diphosphate to artemisinic acid, were expressed from a single plasmid. The artemisinic acid production in the engineered yeast reached 250 microg mL(-1) in shake-flask cultures and 1 g L(-1) in bio-reactors with the use of Leu2d selection marker and appropriate medium formulation. When plasmid stability was measured, the yeast strain synthesizing amorphadiene alone maintained the plasmid in 84% of the cells, whereas the yeast strain synthesizing artemisinic acid showed poor plasmid stability. Inactivation of AMO by a point-mutation restored the high plasmid stability, indicating that the low plasmid stability is not caused by production of the AMO protein but by artemisinic acid synthesis or accumulation. Semi-quantitative reverse-transcriptase (RT)-PCR and quantitative real time-PCR consistently showed that pleiotropic drug resistance (PDR) genes, belonging to the family of ATP-Binding Cassette (ABC) transporter, were massively induced in the yeast strain producing artemisinic acid, relative to the yeast strain producing the hydrocarbon amorphadiene alone. Global transcriptional analysis by yeast

  14. The ABC's of Learning in Infancy.

    ERIC Educational Resources Information Center

    Saunders, Minta M.

    Learning in infancy is based on activity, beginnings, and curiosity, the so-called ABC's. Earliest behavior consists of mass activity, the period from birth to 24 months of sensory-motor development which provides the foundation for all future learning. Adults must provide space, toys, and affectionate care to help infants proceed through…

  15. Interaction of Food Additives with Intestinal Efflux Transporters.

    PubMed

    Sjöstedt, Noora; Deng, Feng; Rauvala, Oskari; Tepponen, Tuomas; Kidron, Heidi

    2017-11-06

    Breast cancer resistance protein (BCRP), multidrug resistance associated protein 2 (MRP2) and P-glycoprotein (P-gp) are ABC transporters that are expressed in the intestine, where they are involved in the efflux of many drugs from enterocytes back into the intestinal lumen. The inhibition of BCRP, MRP2, and P-gp can result in enhanced absorption and exposure of substrate drugs. Food additives are widely used by the food industry to improve the stability, flavor, and consistency of food products. Although they are considered safe for consumption, their interactions with intestinal transporters are poorly characterized. Therefore, in this study, selected food additives, including preservatives, colorants, and sweeteners, were studied in vitro for their inhibitory effects on intestinal ABC transporters. Among the studied compounds, several colorants were able to inhibit BCRP and MRP2, whereas P-gp was fairly insensitive to inhibition. Additionally, one sweetener was identified as a potent inhibitor of BCRP. Dose-response studies revealed that the IC 50 values of the inhibitors were lower than the estimated intestinal concentrations after the consumption of beverages containing food colorants. This suggests that there is potential for previously unrecognized transporter-mediated food additive-drug interactions.

  16. The genomic organization of a human creatine transporter (CRTR) gene located in Xq28

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, N.; Bauer, D.; Brenner, V.

    1996-07-15

    During the course of a large-scale sequencing project in Xq28, a human creatine transporter (CRTR) gene was discovered. The gene is located approximately 36 kb centromeric to ALD. The gene contains 13 exons and spans about 8.5 kb of genomic DNA. Since the creatine transporter has a prominent function in muscular physiology, it is a candidate gene for Barth syndrome and infantile cardiomyopathy mapped to Xq28. 19 refs., 1 fig., 1 tab.

  17. Repression of the Low Affinity Iron Transporter Gene FET4

    PubMed Central

    Caetano, Soraia M.; Menezes, Regina; Amaral, Catarina; Rodrigues-Pousada, Claudina; Pimentel, Catarina

    2015-01-01

    Cadmium is a well known mutagenic metal that can enter cells via nonspecific metal transporters, causing several cellular damages and eventually leading to death. In the yeast Saccharomyces cerevisiae, the transcription factor Yap1 plays a key role in the regulation of several genes involved in metal stress response. We have previously shown that Yap1 represses the expression of FET4, a gene encoding a low affinity iron transporter able to transport metals other than iron. Here, we have studied the relevance of this repression in cell tolerance to cadmium. Our results indicate that genomic deletion of Yap1 increases FET4 transcript and protein levels. In addition, the cadmium toxicity exhibited by this strain is completely reversed by co-deletion of FET4 gene. These data correlate well with the increased intracellular levels of cadmium observed in the mutant yap1. Rox1, a well known aerobic repressor of hypoxic genes, conveys the Yap1-mediated repression of FET4. We further show that, in a scenario where the activity of Yap1 or Rox1 is compromised, cells activate post-transcriptional mechanisms, involving the exoribonuclease Xrn1, to compensate the derepression of FET4. Our data thus reveal a novel protection mechanism against cadmium toxicity mediated by Yap1 that relies on the aerobic repression of FET4 and results in the impairment of cadmium uptake. PMID:26063801

  18. Our bodies are our own: resistance to ABC-based HIV-prevention programmes in northern Tanzanian conservation organisations.

    PubMed

    Reid-Hresko, John

    2014-01-01

    ABC-based HIV-prevention programmes have been widely employed in northern Tanzanian wildlife conservation settings in an attempt to (re)shape the sexual behaviours of conservation actors. Utilising findings from 66 semi-structured interviews conducted in 2009-2010, this paper examines ABC prevention as a form of Foucauldian governmentality--circulating technologies of power that mobilise disciplinary technologies and attempt to transform such efforts into technologies of the self--and explores how individuals understand and respond to attempts to govern their behaviour. ABC regimes attempt to rework subjectivity, positioning HIV-related behaviours within a risk-based neoliberal rationality. However, efforts to use ABC as a technology to govern populations and individual bodies are largely incommensurate with existing Tanzanian sociocultural formations, including economic and gendered inequalities, and local understandings of sexuality. The language research participants used to talk about ABC and the justifications they offered for non-compliance illuminate this discrepancy. Data reveal that the recipients of ABC campaigns are active producers of understandings that work for them in their lives, but may not produce the behavioural shifts envisioned by programme goals. These findings corroborate previous research, which questions the continued plausibility of ABC as a stand-alone HIV- prevention framework.

  19. Peroxisomal ATP-binding cassette transporters form mainly tetramers

    PubMed Central

    Geillon, Flore; Gondcaille, Catherine; Raas, Quentin; Dias, Alexandre M. M.; Pecqueur, Delphine; Truntzer, Caroline; Lucchi, Géraldine; Ducoroy, Patrick; Falson, Pierre; Savary, Stéphane; Trompier, Doriane

    2017-01-01

    ABCD1 and its homolog ABCD2 are peroxisomal ATP-binding cassette (ABC) half-transporters of fatty acyl-CoAs with both distinct and overlapping substrate specificities. Although it is established that ABC half-transporters have at least to dimerize to generate a functional unit, functional equivalents of tetramers (i.e. dimers of full-length transporters) have also been reported. However, oligomerization of peroxisomal ABCD transporters is incompletely understood but is of potential significance because more complex oligomerization might lead to differences in substrate specificity. In this work, we have characterized the quaternary structure of the ABCD1 and ABCD2 proteins in the peroxisomal membrane. Using various biochemical approaches, we clearly demonstrate that both transporters exist as both homo- and heterotetramers, with a predominance of homotetramers. In addition to tetramers, some larger molecular ABCD assemblies were also found but represented only a minor fraction. By using quantitative co-immunoprecipitation assays coupled with tandem mass spectrometry, we identified potential binding partners of ABCD2 involved in polyunsaturated fatty-acid metabolism. Interestingly, we identified calcium ATPases as ABCD2-binding partners, suggesting a role of ABCD2 in calcium signaling. In conclusion, we have shown here that ABCD1 and its homolog ABCD2 exist mainly as homotetramers in the peroxisomal membrane. PMID:28258215

  20. MDR1 and BCRP Transporter-Mediated Drug-Drug Interaction between Rilpivirine and Abacavir and Effect on Intestinal Absorption.

    PubMed

    Reznicek, Josef; Ceckova, Martina; Ptackova, Zuzana; Martinec, Ondrej; Tupova, Lenka; Cerveny, Lukas; Staud, Frantisek

    2017-09-01

    Rilpivirine (TMC278) is a highly potent nonnucleoside reverse transcriptase inhibitor (NNRTI) representing an effective component of combination antiretroviral therapy (cART) in the treatment of HIV-positive patients. Many antiretroviral drugs commonly used in cART are substrates of ATP-binding cassette (ABC) and/or solute carrier (SLC) drug transporters and, therefore, are prone to pharmacokinetic drug-drug interactions (DDIs). The aim of our study was to evaluate rilpivirine interactions with abacavir and lamivudine on selected ABC and SLC transporters in vitro and assess its importance for pharmacokinetics in vivo Using accumulation assays in MDCK cells overexpressing selected ABC or SLC drug transporters, we revealed rilpivirine as a potent inhibitor of MDR1 and BCRP, but not MRP2, OCT1, OCT2, or MATE1. Subsequent transport experiments across monolayers of MDCKII-MDR1, MDCKII-BCRP, and Caco-2 cells demonstrated that rilpivirine inhibits MDR1- and BCRP-mediated efflux of abacavir and increases its transmembrane transport. In vivo experiments in male Wistar rats confirmed inhibition of MDR1/BCRP in the small intestine, leading to a significant increase in oral bioavailability of abacavir. In conclusion, rilpivirine inhibits MDR1 and BCRP transporters and may affect pharmacokinetic behavior of concomitantly administered substrates of these transporters, such as abacavir. Copyright © 2017 American Society for Microbiology.

  1. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-04-23

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  2. Vitamin E transport gene variants and prostate cancer

    USDA-ARS?s Scientific Manuscript database

    In the February 15, 2009 issue of Cancer Research, Wright et al. investigated whether polymorphisms in two vitamin E transport genes are associated with elevated prostate cancer risk resulting from altered plasma vitamin E concentrations. However, the circulating vitamin E level is influenced by man...

  3. Purification and characterisation of the yeast plasma membrane ATP binding cassette transporter Pdr11p

    PubMed Central

    Laub, Katrine Rude; Marek, Magdalena; Stanchev, Lyubomir Dimitrov; Herrera, Sara Abad; Kanashova, Tamara; Bourmaud, Adèle; Dittmar, Gunnar

    2017-01-01

    The ATP binding cassette (ABC) transporters Pdr11p and its paralog Aus1p are expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and are required for sterol uptake. However, the precise mechanism by which these ABC transporters facilitate sterol movement is unknown. In this study, an overexpression and purification procedure was developed with the aim to characterise the Pdr11p transporter. Engineering of Pdr11p variants fused at the C terminus with green fluorescent protein (Pdr11p-GFP) and containing a FLAG tag at the N terminus facilitated expression analysis and one-step purification, respectively. The detergent-solubilised and purified protein displayed a stable ATPase activity with a broad pH optimum near 7.4. Mutagenesis of the conserved lysine to methionine (K788M) in the Walker A motif abolished ATP hydrolysis. Remarkably, and in contrast to Aus1p, ATPase activity of Pdr11p was insensitive to orthovanadate and not specifically stimulated by phosphatidylserine upon reconstitution into liposomes. Our results highlight distinct differences between Pdr11p and Aus1p and create an experimental basis for further biochemical studies of both ABC transporters to elucidate their function. PMID:28922409

  4. Identification of genes and pathways associated with aluminum stress and tolerance using transcriptome profiling of wheat near-isogenic lines.

    PubMed

    Houde, Mario; Diallo, Amadou Oury

    2008-08-27

    Aluminum is considered the most limiting factor for plant productivity in acidic soils, which cover large areas of the world's potential arable lands. The inhibition of root growth is recognized as the primary effect of Al toxicity. To identify genes associated with Al stress and tolerance, transcriptome analyses of four different wheat lines (2 Al-tolerant and 2 Al sensitive) that differ in their response to Al were performed. Microarray expression profiling revealed that 83 candidate genes are associated with Al stress and 25 are associated with tolerance. The stress-associated genes include important enzymes such as pyruvate dehydrogenase, alternative oxidase, and galactonolactone oxidase, ABC transporter and ascorbate oxido-reducatase. The Al tolerance-associated genes include the ALMT-1 malate transporter, glutathione S-transferase, germin/oxalate oxidase, fructose 1,6-bisphosphatase, cysteine-rich proteins, cytochrome P450 monooxygenase, cellulose synthase, zinc finger transcription factor, disease resistance response protein and F-box containing domain protein. In this survey, we identified stress- and tolerance-associated genes that may be involved in the detoxification of Al and reactive oxygen species. Alternative pathways could help maintain the supply of important metabolites (H2O2, ascorbate, NADH, and phosphate) needed for Al tolerance and root growth. The Al tolerance-associated genes may be key factors that regulate these pathways.

  5. astroABC : An Approximate Bayesian Computation Sequential Monte Carlo sampler for cosmological parameter estimation

    NASA Astrophysics Data System (ADS)

    Jennings, E.; Madigan, M.

    2017-04-01

    Given the complexity of modern cosmological parameter inference where we are faced with non-Gaussian data and noise, correlated systematics and multi-probe correlated datasets,the Approximate Bayesian Computation (ABC) method is a promising alternative to traditional Markov Chain Monte Carlo approaches in the case where the Likelihood is intractable or unknown. The ABC method is called "Likelihood free" as it avoids explicit evaluation of the Likelihood by using a forward model simulation of the data which can include systematics. We introduce astroABC, an open source ABC Sequential Monte Carlo (SMC) sampler for parameter estimation. A key challenge in astrophysics is the efficient use of large multi-probe datasets to constrain high dimensional, possibly correlated parameter spaces. With this in mind astroABC allows for massive parallelization using MPI, a framework that handles spawning of processes across multiple nodes. A key new feature of astroABC is the ability to create MPI groups with different communicators, one for the sampler and several others for the forward model simulation, which speeds up sampling time considerably. For smaller jobs the Python multiprocessing option is also available. Other key features of this new sampler include: a Sequential Monte Carlo sampler; a method for iteratively adapting tolerance levels; local covariance estimate using scikit-learn's KDTree; modules for specifying optimal covariance matrix for a component-wise or multivariate normal perturbation kernel and a weighted covariance metric; restart files output frequently so an interrupted sampling run can be resumed at any iteration; output and restart files are backed up at every iteration; user defined distance metric and simulation methods; a module for specifying heterogeneous parameter priors including non-standard prior PDFs; a module for specifying a constant, linear, log or exponential tolerance level; well-documented examples and sample scripts. This code is hosted

  6. Genome-Wide Identification of Differentially Expressed Genes Associated with the High Yielding of Oleoresin in Secondary Xylem of Masson Pine (Pinus massoniana Lamb) by Transcriptomic Analysis

    PubMed Central

    Liu, Qinghua; Zhou, Zhichun; Wei, Yongcheng; Shen, Danyu; Feng, Zhongping; Hong, Shanping

    2015-01-01

    Masson pine is an important timber and resource for oleoresin in South China. Increasing yield of oleoresin in stems can raise economic benefits and enhance the resistance to bark beetles. However, the genetic mechanisms for regulating the yield of oleoresin were still unknown. Here, high-throughput sequencing technology was used to investigate the transcriptome and compare the gene expression profiles of high and low oleoresin-yielding genotypes. A total of 40,690,540 reads were obtained and assembled into 137,499 transcripts from the secondary xylem tissues. We identified 84,842 candidate unigenes based on sequence annotation using various databases and 96 unigenes were candidates for terpenoid backbone biosynthesis in pine. By comparing the expression profiles of high and low oleoresin-yielding genotypes, 649 differentially expressed genes (DEGs) were identified. GO enrichment analysis of DEGs revealed that multiple pathways were related to high yield of oleoresin. Nine candidate genes were validated by QPCR analysis. Among them, the candidate genes encoding geranylgeranyl diphosphate synthase (GGPS) and (-)-alpha/beta-pinene synthase were up-regulated in the high oleoresin-yielding genotype, while tricyclene synthase revealed lower expression level, which was in good agreement with the GC/MS result. In addition, DEG encoding ABC transporters, pathogenesis-related proteins (PR5 and PR9), phosphomethylpyrimidine synthase, non-specific lipid-transfer protein-like protein and ethylene responsive transcription factors (ERFs) were also confirmed to be critical for the biosynthesis of oleoresin. The next-generation sequencing strategy used in this study has proven to be a powerful means for analyzing transcriptome variation related to the yield of oleoresin in masson pine. The candidate genes encoding GGPS, (-)-alpha/beta-pinene, tricyclene synthase, ABC transporters, non-specific lipid-transfer protein-like protein, phosphomethylpyrimidine synthase, ERFs and pathogen

  7. Gene selection for cancer classification with the help of bees.

    PubMed

    Moosa, Johra Muhammad; Shakur, Rameen; Kaykobad, Mohammad; Rahman, Mohammad Sohel

    2016-08-10

    Development of biologically relevant models from gene expression data notably, microarray data has become a topic of great interest in the field of bioinformatics and clinical genetics and oncology. Only a small number of gene expression data compared to the total number of genes explored possess a significant correlation with a certain phenotype. Gene selection enables researchers to obtain substantial insight into the genetic nature of the disease and the mechanisms responsible for it. Besides improvement of the performance of cancer classification, it can also cut down the time and cost of medical diagnoses. This study presents a modified Artificial Bee Colony Algorithm (ABC) to select minimum number of genes that are deemed to be significant for cancer along with improvement of predictive accuracy. The search equation of ABC is believed to be good at exploration but poor at exploitation. To overcome this limitation we have modified the ABC algorithm by incorporating the concept of pheromones which is one of the major components of Ant Colony Optimization (ACO) algorithm and a new operation in which successive bees communicate to share their findings. The proposed algorithm is evaluated using a suite of ten publicly available datasets after the parameters are tuned scientifically with one of the datasets. Obtained results are compared to other works that used the same datasets. The performance of the proposed method is proved to be superior. The method presented in this paper can provide subset of genes leading to more accurate classification results while the number of selected genes is smaller. Additionally, the proposed modified Artificial Bee Colony Algorithm could conceivably be applied to problems in other areas as well.

  8. Genome-wide identification and expression characterization of ABCC-MRP transporters in hexaploid wheat

    PubMed Central

    Bhati, Kaushal K.; Sharma, Shivani; Aggarwal, Sipla; Kaur, Mandeep; Shukla, Vishnu; Kaur, Jagdeep; Mantri, Shrikant; Pandey, Ajay K.

    2015-01-01

    The ABCC multidrug resistance associated proteins (ABCC-MRP), a subclass of ABC transporters are involved in multiple physiological processes that include cellular homeostasis, metal detoxification, and transport of glutathione-conjugates. Although they are well-studied in humans, yeast, and Arabidopsis, limited efforts have been made to address their possible role in crop like wheat. In the present work, 18 wheat ABCC-MRP proteins were identified that showed the uniform distribution with sub-families from rice and Arabidopsis. Organ-specific quantitative expression analysis of wheat ABCC genes indicated significantly higher accumulation in roots (TaABCC2, TaABCC3, and TaABCC11 and TaABCC12), stem (TaABCC1), leaves (TaABCC16 and TaABCC17), flag leaf (TaABCC14 and TaABCC15), and seeds (TaABCC6, TaABCC8, TaABCC12, TaABCC13, and TaABCC17) implicating their role in the respective tissues. Differential transcript expression patterns were observed for TaABCC genes during grain maturation speculating their role during seed development. Hormone treatment experiments indicated that some of the ABCC genes could be transcriptionally regulated during seed development. In the presence of Cd or hydrogen peroxide, distinct molecular expression of wheat ABCC genes was observed in the wheat seedlings, suggesting their possible role during heavy metal generated oxidative stress. Functional characterization of the wheat transporter, TaABCC13 a homolog of maize LPA1 confirms its role in glutathione-mediated detoxification pathway and is able to utilize adenine biosynthetic intermediates as a substrate. This is the first comprehensive inventory of wheat ABCC-MRP gene subfamily. PMID:26191068

  9. Genome-wide identification and expression characterization of ABCC-MRP transporters in hexaploid wheat.

    PubMed

    Bhati, Kaushal K; Sharma, Shivani; Aggarwal, Sipla; Kaur, Mandeep; Shukla, Vishnu; Kaur, Jagdeep; Mantri, Shrikant; Pandey, Ajay K

    2015-01-01

    The ABCC multidrug resistance associated proteins (ABCC-MRP), a subclass of ABC transporters are involved in multiple physiological processes that include cellular homeostasis, metal detoxification, and transport of glutathione-conjugates. Although they are well-studied in humans, yeast, and Arabidopsis, limited efforts have been made to address their possible role in crop like wheat. In the present work, 18 wheat ABCC-MRP proteins were identified that showed the uniform distribution with sub-families from rice and Arabidopsis. Organ-specific quantitative expression analysis of wheat ABCC genes indicated significantly higher accumulation in roots (TaABCC2, TaABCC3, and TaABCC11 and TaABCC12), stem (TaABCC1), leaves (TaABCC16 and TaABCC17), flag leaf (TaABCC14 and TaABCC15), and seeds (TaABCC6, TaABCC8, TaABCC12, TaABCC13, and TaABCC17) implicating their role in the respective tissues. Differential transcript expression patterns were observed for TaABCC genes during grain maturation speculating their role during seed development. Hormone treatment experiments indicated that some of the ABCC genes could be transcriptionally regulated during seed development. In the presence of Cd or hydrogen peroxide, distinct molecular expression of wheat ABCC genes was observed in the wheat seedlings, suggesting their possible role during heavy metal generated oxidative stress. Functional characterization of the wheat transporter, TaABCC13 a homolog of maize LPA1 confirms its role in glutathione-mediated detoxification pathway and is able to utilize adenine biosynthetic intermediates as a substrate. This is the first comprehensive inventory of wheat ABCC-MRP gene subfamily.

  10. Accelerator-based conversion (ABC) of weapons plutonium: Plant layout study and related design issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowell, B.S.; Fontana, M.H.; Krakowski, R.A.

    1995-04-01

    In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although the ABC Plant Layout Study included the Accelerator Equipment as an essential element, the engineering assessment focused primarily on the Target; Primary System (blanket and all systems containing plutonium-bearing fuel salt); the Heat-Removal System (secondary-coolant-salt and supercritical-steam systems); Chemicalmore » Processing; Operation and Maintenance; Containment and Safety; and Instrumentation and Control systems. Although constrained primarily to a reflection of an accelerator-driven (subcritical) variant of MSBR system, unique features and added flexibilities of the ABC suggest improved or alternative approaches to each of the above-listed subsystems; these, along with the key technical issues in need of resolution through a detailed R&D plan for ABC are described on the bases of the ``strawman`` or ``point-of-departure`` plant layout that resulted from this study.« less

  11. Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation.

    PubMed

    Cornuet, Jean-Marie; Santos, Filipe; Beaumont, Mark A; Robert, Christian P; Marin, Jean-Michel; Balding, David J; Guillemaud, Thomas; Estoup, Arnaud

    2008-12-01

    Genetic data obtained on population samples convey information about their evolutionary history. Inference methods can extract part of this information but they require sophisticated statistical techniques that have been made available to the biologist community (through computer programs) only for simple and standard situations typically involving a small number of samples. We propose here a computer program (DIY ABC) for inference based on approximate Bayesian computation (ABC), in which scenarios can be customized by the user to fit many complex situations involving any number of populations and samples. Such scenarios involve any combination of population divergences, admixtures and population size changes. DIY ABC can be used to compare competing scenarios, estimate parameters for one or more scenarios and compute bias and precision measures for a given scenario and known values of parameters (the current version applies to unlinked microsatellite data). This article describes key methods used in the program and provides its main features. The analysis of one simulated and one real dataset, both with complex evolutionary scenarios, illustrates the main possibilities of DIY ABC. The software DIY ABC is freely available at http://www.montpellier.inra.fr/CBGP/diyabc.

  12. Effect of body temperature on chondroitinase ABC's ability to cleave chondroitin sulfate glycosaminoglycans.

    PubMed

    Tester, Nicole J; Plaas, Anna H; Howland, Dena R

    2007-04-01

    Chondroitinase ABC (Ch'ase ABC) is a bacterial lyase that degrades chondroitin sulfate (CS), dermatan sulfate, and hyaluronan glycosaminoglycans (GAGs). This enzyme has received significant attention as a potential therapy for promoting central nervous system and peripheral nervous system repair based on its degradation of CS GAGs. Determination of the stability of Ch'ase ABC activity at temperatures equivalent to normal (37 degrees C) and elevated (39 degrees C) body temperatures is important for optimizing its clinical usage. We report here data obtained from examining enzymatic activity at these temperatures across nine lots of commercially available protease-free Ch'ase ABC. CS GAG degrading activity was assayed by using 1) immunohistochemical detection of unsaturated disaccharide stubs generated by digestion of proteoglycans in tissue sections and 2) fluorophore-assisted carbohydrate electrophoresis (FACE) and/or high-performance liquid chromatography (HPLC) to separate and quantify unsaturated disaccharide digestion products. Our results indicate that there is a significant effect of lot and time on enzymatic thermostability. Average enzymatic activity is significantly decreased at 1 and 3 days at 39 degrees C and 37 degrees C, respectively. Furthermore, the average activity seen after 1 day was significantly different between the two temperatures. Addition of bovine serum albumin as a stabilizer significantly preserved enzymatic activity at 1 day, but not 3 days, at 39 degrees C. These results show that the CS GAG degrading activity of Ch'ase ABC is significantly decreased with incubation at body temperature over time and that all lots do not show equal thermostability. These findings are important for the design and interpretation of experimental and potential clinical studies involving Ch'ase ABC. (c) 2007 Wiley-Liss, Inc.

  13. Beyond cellular detoxification: a plethora of physiological roles for MDR transporter homologs in plants

    PubMed Central

    Remy, Estelle; Duque, Paula

    2014-01-01

    Higher plants possess a multitude of Multiple Drug Resistance (MDR) transporter homologs that group into three distinct and ubiquitous families—the ATP-Binding Cassette (ABC) superfamily, the Major Facilitator Superfamily (MFS), and the Multidrug And Toxic compound Extrusion (MATE) family. As in other organisms, such as fungi, mammals, and bacteria, MDR transporters make a primary contribution to cellular detoxification processes in plants, mainly through the extrusion of toxic compounds from the cell or their sequestration in the central vacuole. This review aims at summarizing the currently available information on the in vivo roles of MDR transporters in plant systems. Taken together, these data clearly indicate that the biological functions of ABC, MFS, and MATE carriers are not restricted to xenobiotic and metal detoxification. Importantly, the activity of plant MDR transporters also mediates biotic stress resistance and is instrumental in numerous physiological processes essential for optimal plant growth and development, including the regulation of ion homeostasis and polar transport of the phytohormone auxin. PMID:24910617

  14. Aerosol and Cloud Properties during the Cloud Cheju ABC Plume -Asian Monsoon Experiment (CAPMEX) 2008: Linking between Ground-based and UAV Measurements

    NASA Astrophysics Data System (ADS)

    Kim, S.; Yoon, S.; Venkata Ramana, M.; Ramanathan, V.; Nguyen, H.; Park, S.; Kim, M.

    2009-12-01

    Cheju Atmospheric Brown Cloud (ABC) Plume-Monsoon Experiment (CAPMEX), comprehsensive ground-based measurements and a series of data-gathering flights by specially equipped autonomous unmanned aerial vehicles (AUAVs) for aerosol and cloud, had conducted at Jeju (formerly, Cheju), South Korea during August-September 2008, to improve our understanding of how the reduction of anthropogenic emissions in China (so-called “great shutdown” ) during and after the Summer Beijing Olympic Games 2008 effcts on the air quliaty and radiation budgets and how atmospheric brown clouds (ABCs) influences solar radiation budget off Asian continent. Large numbers of in-situ and remote sensing instruments at the Gosan ABC observatory and miniaturized instruments on the aircraft measure a range of properties such as the quantity of soot, size-segregated aerosol particle numbers, total particle numbers, size-segregated cloud droplet numbers (only AUAV), aerosol scattering properties (only ground), aerosol vertical distribution, column-integrated aerosol properties, and meteorological variables. By integrating ground-level and high-elevation AUAV measurements with NASA-satellite observations (e.g., MODIS, CALIPSO), we investigate the long range transport of aerosols, the impact of ABCs on clouds, and the role of biogenic and anthropogenic aerosols on cloud condensation nuclei (CCN). In this talk, we will present the results from CAPMEX focusing on: (1) the characteristics of aerosol optical, physical and chemical properties at Gosan observatory, (2) aerosol solar heating calculated from the ground-based micro-pulse lidar and AERONET sun/sky radiometer synergy, and comparison with direct measurements from UAV, and (3) aerosol-cloud interactions in conjunction with measurements by satellites and Gosan observatory.

  15. Symbiotic Burkholderia Species Show Diverse Arrangements of nif/fix and nod Genes and Lack Typical High-Affinity Cytochrome cbb3 Oxidase Genes.

    PubMed

    De Meyer, Sofie E; Briscoe, Leah; Martínez-Hidalgo, Pilar; Agapakis, Christina M; de-Los Santos, Paulina Estrada; Seshadri, Rekha; Reeve, Wayne; Weinstock, George; O'Hara, Graham; Howieson, John G; Hirsch, Ann M

    2016-08-01

    Genome analysis of fourteen mimosoid and four papilionoid beta-rhizobia together with fourteen reference alpha-rhizobia for both nodulation (nod) and nitrogen-fixing (nif/fix) genes has shown phylogenetic congruence between 16S rRNA/MLSA (combined 16S rRNA gene sequencing and multilocus sequence analysis) and nif/fix genes, indicating a free-living diazotrophic ancestry of the beta-rhizobia. However, deeper genomic analysis revealed a complex symbiosis acquisition history in the beta-rhizobia that clearly separates the mimosoid and papilionoid nodulating groups. Mimosoid-nodulating beta-rhizobia have nod genes tightly clustered in the nodBCIJHASU operon, whereas papilionoid-nodulating Burkholderia have nodUSDABC and nodIJ genes, although their arrangement is not canonical because the nod genes are subdivided by the insertion of nif and other genes. Furthermore, the papilionoid Burkholderia spp. contain duplications of several nod and nif genes. The Burkholderia nifHDKEN and fixABC genes are very closely related to those found in free-living diazotrophs. In contrast, nifA is highly divergent between both groups, but the papilionoid species nifA is more similar to alpha-rhizobia nifA than to other groups. Surprisingly, for all Burkholderia, the fixNOQP and fixGHIS genes required for cbb3 cytochrome oxidase production and assembly are missing. In contrast, symbiotic Cupriavidus strains have fixNOQPGHIS genes, revealing a divergence in the evolution of two distinct electron transport chains required for nitrogen fixation within the beta-rhizobia.

  16. Methods to identify and analyze gene products involved in neuronal intracellular transport using Drosophila

    PubMed Central

    Neisch, Amanda L.; Avery, Adam W.; Machame, James B.; Li, Min-gang; Hays, Thomas S.

    2017-01-01

    Proper neuronal function critically depends on efficient intracellular transport and disruption of transport leads to neurodegeneration. Molecular pathways that support or regulate neuronal transport are not fully understood. A greater understanding of these pathways will help reveal the pathological mechanisms underlying disease. Drosophila melanogaster is the premier model system for performing large-scale genetic functional screens. Here we describe methods to carry out primary and secondary genetic screens in Drosophila aimed at identifying novel gene products and pathways that impact neuronal intracellular transport. These screens are performed using whole animal or live cell imaging of intact neural tissue to ensure integrity of neurons and their cellular environment. The primary screen is used to identify gross defects in neuronal function indicative of a disruption in microtubule-based transport. The secondary screens, conducted in both motoneurons and dendritic arborization neurons, will confirm the function of candidate gene products in intracellular transport. Together, the methodologies described here will support labs interested in identifying and characterizing gene products that alter intracellular transport in Drosophila. PMID:26794520

  17. The short version of the Activities-specific Balance Confidence (ABC) scale: its validity, reliability, and relationship to balance impairment and falls in older adults.

    PubMed

    Schepens, Stacey; Goldberg, Allon; Wallace, Melissa

    2010-01-01

    A shortened version of the ABC 16-item scale (ABC-16), the ABC-6, has been proposed as an alternative balance confidence measure. We investigated whether the ABC-6 is a valid and reliable measure of balance confidence and examined its relationship to balance impairment and falls in older adults. Thirty-five community-dwelling older adults completed the ABC-16, including the 6 questions of the ABC-6. They also completed the following clinical balance tests: unipedal stance time (UST), functional reach (FR), Timed Up and Go (TUG), and maximum step length (MSL). Participants reported 12-month falls history. Balance confidence on the ABC-6 was significantly lower than on the ABC-16, however scores were highly correlated. Fallers reported lower balance confidence than non-fallers as measured by the ABC-6 scale, but confidence did not differ between the groups with the ABC-16. The ABC-6 significantly correlated with all balance tests assessed and number of falls. The ABC-16 significantly correlated with all balance tests assessed, but not with number of falls. Test-retest reliability for the ABC-16 and ABC-6 was good to excellent. The ABC-6 is a valid and reliable measure of balance confidence in community-dwelling older adults, and shows stronger relationships to falls than does the ABC-16. The ABC-6 may be a more useful balance confidence assessment tool than the ABC-16. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  18. Knowing the ABCs: A Comparative Effectiveness Study of Two Methods of Diabetes Education

    PubMed Central

    Naik, Aanand D.; Teal, Cayla R.; Rodriguez, Elisa; Haidet, Paul

    2011-01-01

    Objective To test an active-learning, empowerment approach to teaching patients about the “diabetes ABCs” (hemoglobin A1C, systolic blood pressure, and low density lipoprotein cholesterol). Methods 84 (97%) diabetic patients who participated in a randomized effectiveness trial of two clinic-based group educational methods and completed a post-intervention assessment. The empowerment arm participated in a group session that incorporated two educational innovations (a conceptual metaphor to foster understanding, and team-based learning methods to foster active learning). The traditional diabetes education arm received a didactic group session focused on self-management and educational materials about the diabetes ABCs. Participants in both arms received individual review of their current ABC values. Results A questionnaire evaluated knowledge, understanding, and recall of the diabetes ABCs was administered three months after enrollment in the study. At three months, participants in the empowerment group demonstrated greater understanding of the diabetes ABCs (P<.0001), greater knowledge of their own values (P<.0001), and greater knowledge of guideline-derived target goals for the ABCs compared with participants in the traditional arm (P<.0001). Conclusion An active-learning, empowerment-based approach applied to diabetes education can lead to greater understanding and knowledge retention. Practice Implications An empowerment approach to education can facilitate informed, activated patients and increase performance of self-management behaviors. PMID:21300516

  19. Inhibition of Human Drug Transporter Activities by the Pyrethroid Pesticides Allethrin and Tetramethrin

    PubMed Central

    Chedik, Lisa; Bruyere, Arnaud; Le Vee, Marc; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Potin, Sophie; Fardel, Olivier

    2017-01-01

    Pyrethroids are widely-used chemical insecticides, to which humans are commonly exposed, and known to alter functional expression of drug metabolizing enzymes. Limited data have additionally suggested that drug transporters, that constitute key-actors of the drug detoxification system, may also be targeted by pyrethroids. The present study was therefore designed to analyze the potential regulatory effects of these pesticides towards activities of main ATP-binding cassette (ABC) and solute carrier (SLC) drug transporters, using transporter-overexpressing cells. The pyrethroids allethrin and tetramethrin were found to inhibit various ABC and SLC drug transporters, including multidrug resistance-associated protein (MRP) 2, breast cancer resistance protein (BCRP), organic anion transporter polypeptide (OATP) 1B1, organic anion transporter (OAT) 3, multidrug and toxin extrusion transporter (MATE) 1, organic cation transporter (OCT) 1 and OCT2, with IC50 values however ranging from 2.6 μM (OCT1 inhibition by allethrin) to 77.6 μM (OAT3 inhibition by tetramethrin) and thus much higher than pyrethroid concentrations (in the nM range) reached in environmentally pyrethroid-exposed humans. By contrast, allethrin and tetramethrin cis-stimulated OATP2B1 activity and failed to alter activities of OATP1B3, OAT1 and MATE2-K, whereas P-glycoprotein activity was additionally moderately inhibited. Twelve other pyrethoids used at 100 μM did not block activities of the various investigated transporters, or only moderately inhibited some of them (inhibition by less than 50%). In silico analysis of structure-activity relationships next revealed that molecular parameters, including molecular weight and lipophilicity, are associated with transporter inhibition by allethrin/tetramethrin and successfully predicted transporter inhibition by the pyrethroids imiprothrin and prallethrin. Taken together, these data fully demonstrated that two pyrethoids, i.e., allethrin and tetramethrin, can

  20. A LuxR homolog in a cottonwood tree endophyte that activates gene expression in response to a plant signal or specific peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, Amy L.; Oda, Yasuhiro; Coutinho, Bruna Goncalves

    Homologs of the LuxR acyl-homoserine lactone (AHL) quorum-sensing signal receptor are prevalent in Proteobacteria isolated from roots of the Eastern cottonwood tree, Populus deltoides. Many of these isolates possess an orphan LuxR homolog, closely related to OryR from the rice pathogen Xanthomonas oryzae. OryR does not respond to AHL signals but, instead, responds to an unknown plant compound. We discovered an OryR homolog, PipR, in the cottonwood endophyte Pseudomonas sp. strain GM79. The genes adjacent to pipR encode a predicted ATP-binding cassette (ABC) peptide transporter and peptidases. We purified the putative peptidases, PipA and AapA, and confirmed their predicted activities.more » A transcriptional pipA-gfp reporter was responsive to PipR in the presence of plant leaf macerates, but it was not influenced by AHLs, similar to findings with OryR. We found that PipR also responded to protein hydrolysates to activate pipA-gfp expression. Among many peptides tested, the tripeptide Ser-His-Ser showed inducer activity but at relatively high concentrations. An ABC peptide transporter mutant failed to respond to leaf macerates, peptone, or Ser-His-Ser, while peptidase mutants expressed higher-than-wild-type levels of pipA-gfp in response to any of these signals. Our studies are consistent with a model where active transport of a peptidelike signal is required for the signal to interact with PipR, which then activates peptidase gene expression. As a result, the identification of a peptide ligand for PipR sets the stage to identify plant-derived signals for the OryR family of orphan LuxR proteins.« less

  1. A LuxR homolog in a cottonwood tree endophyte that activates gene expression in response to a plant signal or specific peptides

    DOE PAGES

    Schaefer, Amy L.; Oda, Yasuhiro; Coutinho, Bruna Goncalves; ...

    2016-08-02

    Homologs of the LuxR acyl-homoserine lactone (AHL) quorum-sensing signal receptor are prevalent in Proteobacteria isolated from roots of the Eastern cottonwood tree, Populus deltoides. Many of these isolates possess an orphan LuxR homolog, closely related to OryR from the rice pathogen Xanthomonas oryzae. OryR does not respond to AHL signals but, instead, responds to an unknown plant compound. We discovered an OryR homolog, PipR, in the cottonwood endophyte Pseudomonas sp. strain GM79. The genes adjacent to pipR encode a predicted ATP-binding cassette (ABC) peptide transporter and peptidases. We purified the putative peptidases, PipA and AapA, and confirmed their predicted activities.more » A transcriptional pipA-gfp reporter was responsive to PipR in the presence of plant leaf macerates, but it was not influenced by AHLs, similar to findings with OryR. We found that PipR also responded to protein hydrolysates to activate pipA-gfp expression. Among many peptides tested, the tripeptide Ser-His-Ser showed inducer activity but at relatively high concentrations. An ABC peptide transporter mutant failed to respond to leaf macerates, peptone, or Ser-His-Ser, while peptidase mutants expressed higher-than-wild-type levels of pipA-gfp in response to any of these signals. Our studies are consistent with a model where active transport of a peptidelike signal is required for the signal to interact with PipR, which then activates peptidase gene expression. As a result, the identification of a peptide ligand for PipR sets the stage to identify plant-derived signals for the OryR family of orphan LuxR proteins.« less

  2. Deficiency of ATP-binding cassette transporters A1 and G1 in macrophages increases inflammation and accelerates atherosclerosis in mice.

    PubMed

    Westerterp, Marit; Murphy, Andrew J; Wang, Mi; Pagler, Tamara A; Vengrenyuk, Yuliya; Kappus, Mojdeh S; Gorman, Darren J; Nagareddy, Prabhakara R; Zhu, Xuewei; Abramowicz, Sandra; Parks, John S; Welch, Carrie; Fisher, Edward A; Wang, Nan; Yvan-Charvet, Laurent; Tall, Alan R

    2013-05-24

    Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. To assess the role of macrophage cholesterol efflux pathways in atherogenesis. We developed mice with efficient deletion of the ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) in macrophages (MAC-ABC(DKO) mice) but not in hematopoietic stem or progenitor populations. MAC-ABC(DKO) bone marrow (BM) was transplanted into Ldlr(-/-) recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared with controls. On the Western-type diet, MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice had disproportionate atherosclerosis, considering they also had lower very low-density lipoprotein/low-density lipoprotein cholesterol levels than controls. ABCA1/G1-deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, Western-type diet-fed MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice displayed monocytosis and neutrophilia in the absence of hematopoietic stem and multipotential progenitor cells proliferation. Mechanistic studies revealed increased expressions of machrophage colony stimulating factor and granulocyte colony stimulating factor in splenic macrophage foam cells, driving BM monocyte and neutrophil production. These studies show that macrophage deficiency of ABCA1/G1 is proatherogenic likely by promoting plaque inflammation and uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways.

  3. Inferring epidemiological parameters from phylogenies using regression-ABC: A comparative study

    PubMed Central

    Gascuel, Olivier

    2017-01-01

    Inferring epidemiological parameters such as the R0 from time-scaled phylogenies is a timely challenge. Most current approaches rely on likelihood functions, which raise specific issues that range from computing these functions to finding their maxima numerically. Here, we present a new regression-based Approximate Bayesian Computation (ABC) approach, which we base on a large variety of summary statistics intended to capture the information contained in the phylogeny and its corresponding lineage-through-time plot. The regression step involves the Least Absolute Shrinkage and Selection Operator (LASSO) method, which is a robust machine learning technique. It allows us to readily deal with the large number of summary statistics, while avoiding resorting to Markov Chain Monte Carlo (MCMC) techniques. To compare our approach to existing ones, we simulated target trees under a variety of epidemiological models and settings, and inferred parameters of interest using the same priors. We found that, for large phylogenies, the accuracy of our regression-ABC is comparable to that of likelihood-based approaches involving birth-death processes implemented in BEAST2. Our approach even outperformed these when inferring the host population size with a Susceptible-Infected-Removed epidemiological model. It also clearly outperformed a recent kernel-ABC approach when assuming a Susceptible-Infected epidemiological model with two host types. Lastly, by re-analyzing data from the early stages of the recent Ebola epidemic in Sierra Leone, we showed that regression-ABC provides more realistic estimates for the duration parameters (latency and infectiousness) than the likelihood-based method. Overall, ABC based on a large variety of summary statistics and a regression method able to perform variable selection and avoid overfitting is a promising approach to analyze large phylogenies. PMID:28263987

  4. An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice.

    PubMed

    Chen, Guoxiong; Komatsuda, Takao; Ma, Jian Feng; Nawrath, Christiane; Pourkheirandish, Mohammad; Tagiri, Akemi; Hu, Yin-Gang; Sameri, Mohammad; Li, Xinrong; Zhao, Xin; Liu, Yubing; Li, Chao; Ma, Xiaoying; Wang, Aidong; Nair, Sudha; Wang, Ning; Miyao, Akio; Sakuma, Shun; Yamaji, Naoki; Zheng, Xiuting; Nevo, Eviatar

    2011-07-26

    Land plants have developed a cuticle preventing uncontrolled water loss. Here we report that an ATP-binding cassette (ABC) subfamily G (ABCG) full transporter is required for leaf water conservation in both wild barley and rice. A spontaneous mutation, eibi1.b, in wild barley has a low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. Map-based cloning revealed that Eibi1 encodes an HvABCG31 full transporter. The gene was highly expressed in the elongation zone of a growing leaf (the site of cutin synthesis), and its gene product also was localized in developing, but not in mature tissue. A de novo wild barley mutant named "eibi1.c," along with two transposon insertion lines of rice mutated in the ortholog of HvABCG31 also were unable to restrict water loss from detached leaves. HvABCG31 is hypothesized to function as a transporter involved in cutin formation. Homologs of HvABCG31 were found in green algae, moss, and lycopods, indicating that this full transporter is highly conserved in the evolution of land plants.

  5. An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice

    PubMed Central

    Chen, Guoxiong; Komatsuda, Takao; Ma, Jian Feng; Nawrath, Christiane; Pourkheirandish, Mohammad; Tagiri, Akemi; Hu, Yin-Gang; Sameri, Mohammad; Li, Xinrong; Zhao, Xin; Liu, Yubing; Li, Chao; Ma, Xiaoying; Wang, Aidong; Nair, Sudha; Wang, Ning; Miyao, Akio; Sakuma, Shun; Yamaji, Naoki; Zheng, Xiuting; Nevo, Eviatar

    2011-01-01

    Land plants have developed a cuticle preventing uncontrolled water loss. Here we report that an ATP-binding cassette (ABC) subfamily G (ABCG) full transporter is required for leaf water conservation in both wild barley and rice. A spontaneous mutation, eibi1.b, in wild barley has a low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. Map-based cloning revealed that Eibi1 encodes an HvABCG31 full transporter. The gene was highly expressed in the elongation zone of a growing leaf (the site of cutin synthesis), and its gene product also was localized in developing, but not in mature tissue. A de novo wild barley mutant named “eibi1.c,” along with two transposon insertion lines of rice mutated in the ortholog of HvABCG31 also were unable to restrict water loss from detached leaves. HvABCG31 is hypothesized to function as a transporter involved in cutin formation. Homologs of HvABCG31 were found in green algae, moss, and lycopods, indicating that this full transporter is highly conserved in the evolution of land plants. PMID:21737747

  6. Export of extracellular polysaccharides modulates adherence of the Cyanobacterium synechocystis.

    PubMed

    Fisher, Michael L; Allen, Rebecca; Luo, Yingqin; Curtiss, Roy

    2013-01-01

    The field of cyanobacterial biofuel production is advancing rapidly, yet we know little of the basic biology of these organisms outside of their photosynthetic pathways. We aimed to gain a greater understanding of how the cyanobacterium Synechocystis PCC 6803 (Synechocystis, hereafter) modulates its cell surface. Such understanding will allow for the creation of mutants that autoflocculate in a regulated way, thus avoiding energy intensive centrifugation in the creation of biofuels. We constructed mutant strains lacking genes predicted to function in carbohydrate transport or synthesis. Strains with gene deletions of slr0977 (predicted to encode a permease component of an ABC transporter), slr0982 (predicted to encode an ATP binding component of an ABC transporter) and slr1610 (predicted to encode a methyltransferase) demonstrated flocculent phenotypes and increased adherence to glass. Upon bioinformatic inspection, the gene products of slr0977, slr0982, and slr1610 appear to function in O-antigen (OAg) transport and synthesis. However, the analysis provided here demonstrated no differences between OAg purified from wild-type and mutants. However, exopolysaccharides (EPS) purified from mutants were altered in composition when compared to wild-type. Our data suggest that there are multiple means to modulate the cell surface of Synechocystis by disrupting different combinations of ABC transporters and/or glycosyl transferases. Further understanding of these mechanisms may allow for the development of industrially and ecologically useful strains of cyanobacteria. Additionally, these data imply that many cyanobacterial gene products may possess as-yet undiscovered functions, and are meritorious of further study.

  7. Export of Extracellular Polysaccharides Modulates Adherence of the Cyanobacterium Synechocystis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, ML; Allen, R; Luo, YQ

    2013-09-10

    The field of cyanobacterial biofuel production is advancing rapidly, yet we know little of the basic biology of these organisms outside of their photosynthetic pathways. We aimed to gain a greater understanding of how the cyanobacterium Synechocystis PCC 6803 (Synechocystis, hereafter) modulates its cell surface. Such understanding will allow for the creation of mutants that autoflocculate in a regulated way, thus avoiding energy intensive centrifugation in the creation of biofuels. We constructed mutant strains lacking genes predicted to function in carbohydrate transport or synthesis. Strains with gene deletions of slr0977 (predicted to encode a permease component of an ABC transporter),more » slr0982 (predicted to encode an ATP binding component of an ABC transporter) and slr1610 (predicted to encode a methyltransferase) demonstrated flocculent phenotypes and increased adherence to glass. Upon bioinformatic inspection, the gene products of slr0977, slr0982, and slr1610 appear to function in O-antigen (OAg) transport and synthesis. However, the analysis provided here demonstrated no differences between OAg purified from wild-type and mutants. However, exopolysaccharides (EPS) purified from mutants were altered in composition when compared to wild-type. Our data suggest that there are multiple means to modulate the cell surface of Synechocystis by disrupting different combinations of ABC transporters and/or glycosyl transferases. Further understanding of these mechanisms may allow for the development of industrially and ecologically useful strains of cyanobacteria. Additionally, these data imply that many cyanobacterial gene products may possess as-yet undiscovered functions, and are meritorious of further study.« less

  8. Association of Norepinephrine Transporter Gene with Methylphenidate Response.

    ERIC Educational Resources Information Center

    Yang, Li; Wang, Yu-Feng; Li, Jun; Faraone, Stephen V.

    2004-01-01

    Objective: This study aimed to explore the association between alleles of the norepinephrine transporter gene and the methylphenidate response. Method: Chinese Han youths with attention-deficit/hyperactivity disorder recruited in the Outpatient Department of the Institute of Mental Health from 2001 to 2004 were treated with methylphenidate in…

  9. Molecular evolution and expression of oxygen transport genes in livebearing fishes (Poeciliidae) from hydrogen sulfide rich springs.

    PubMed

    Barts, Nicholas; Greenway, Ryan; Passow, Courtney N; Arias-Rodriguez, Lenin; Kelley, Joanna L; Tobler, Michael

    2018-04-01

    Hydrogen sulfide (H 2 S) is a natural toxicant in some aquatic environments that has diverse molecular targets. It binds to oxygen transport proteins, rendering them non-functional by reducing oxygen-binding affinity. Hence, organisms permanently inhabiting H 2 S-rich environments are predicted to exhibit adaptive modifications to compensate for the reduced capacity to transport oxygen. We investigated 10 lineages of fish of the family Poeciliidae that have colonized freshwater springs rich in H 2 S-along with related lineages from non-sulfidic environments-to test hypotheses about the expression and evolution of oxygen transport genes in a phylogenetic context. We predicted shifts in the expression of and signatures of positive selection on oxygen transport genes upon colonization of H 2 S-rich habitats. Our analyses indicated significant shifts in gene expression for multiple hemoglobin genes in lineages that have colonized H 2 S-rich environments, and three hemoglobin genes exhibited relaxed selection in sulfidic compared to non-sulfidic lineages. However, neither changes in gene expression nor signatures of selection were consistent among all lineages in H 2 S-rich environments. Oxygen transport genes may consequently be predictable targets of selection during adaptation to sulfidic environments, but changes in gene expression and molecular evolution of oxygen transport genes in H 2 S-rich environments are not necessarily repeatable across replicated lineages.

  10. Small substrate transport and mechanism of a molybdate ATP binding cassette transporter in a lipid environment.

    PubMed

    Rice, Austin J; Harrison, Alistair; Alvarez, Frances J D; Davidson, Amy L; Pinkett, Heather W

    2014-05-23

    Embedded in the plasma membrane of all bacteria, ATP binding cassette (ABC) importers facilitate the uptake of several vital nutrients and cofactors. The ABC transporter, MolBC-A, imports molybdate by passing substrate from the binding protein MolA to a membrane-spanning translocation pathway of MolB. To understand the mechanism of transport in the biological membrane as a whole, the effects of the lipid bilayer on transport needed to be addressed. Continuous wave-electron paramagnetic resonance and in vivo molybdate uptake studies were used to test the impact of the lipid environment on the mechanism and function of MolBC-A. Working with the bacterium Haemophilus influenzae, we found that MolBC-A functions as a low affinity molybdate transporter in its native environment. In periods of high extracellular molybdate concentration, H. influenzae makes use of parallel molybdate transport systems (MolBC-A and ModBC-A) to take up a greater amount of molybdate than a strain with ModBC-A alone. In addition, the movement of the translocation pathway in response to nucleotide binding and hydrolysis in a lipid environment is conserved when compared with in-detergent analysis. However, electron paramagnetic resonance spectroscopy indicates that a lipid environment restricts the flexibility of the MolBC translocation pathway. By combining continuous wave-electron paramagnetic resonance spectroscopy and substrate uptake studies, we reveal details of molybdate transport and the logistics of uptake systems that employ multiple transporters for the same substrate, offering insight into the mechanisms of nutrient uptake in bacteria. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification.

    PubMed

    Gulati, Sonia; Balderes, Dina; Kim, Christine; Guo, Zhongmin A; Wilcox, Lisa; Area-Gomez, Estela; Snider, Jamie; Wolinski, Heimo; Stagljar, Igor; Granato, Juliana T; Ruggles, Kelly V; DeGiorgis, Joseph A; Kohlwein, Sepp D; Schon, Eric A; Sturley, Stephen L

    2015-11-01

    A key component of eukaryotic lipid homeostasis is the esterification of sterols with fatty acids by sterol O-acyltransferases (SOATs). The esterification reactions are allosterically activated by their sterol substrates, the majority of which accumulate at the plasma membrane. We demonstrate that in yeast, sterol transport from the plasma membrane to the site of esterification is associated with the physical interaction of the major SOAT, acyl-coenzyme A:cholesterol acyltransferase (ACAT)-related enzyme (Are)2p, with 2 plasma membrane ATP-binding cassette (ABC) transporters: Aus1p and Pdr11p. Are2p, Aus1p, and Pdr11p, unlike the minor acyltransferase, Are1p, colocalize to sterol and sphingolipid-enriched, detergent-resistant microdomains (DRMs). Deletion of either ABC transporter results in Are2p relocalization to detergent-soluble membrane domains and a significant decrease (53-36%) in esterification of exogenous sterol. Similarly, in murine tissues, the SOAT1/Acat1 enzyme and activity localize to DRMs. This subcellular localization is diminished upon deletion of murine ABC transporters, such as Abcg1, which itself is DRM associated. We propose that the close proximity of sterol esterification and transport proteins to each other combined with their residence in lipid-enriched membrane microdomains facilitates rapid, high-capacity sterol transport and esterification, obviating any requirement for soluble intermediary proteins. © FASEB.

  12. Functional Validation of ABCA3 as a Miltefosine Transporter in Human Macrophages: IMPACT ON INTRACELLULAR SURVIVAL OF LEISHMANIA (VIANNIA) PANAMENSIS.

    PubMed

    Dohmen, Luuk C T; Navas, Adriana; Vargas, Deninson Alejandro; Gregory, David J; Kip, Anke; Dorlo, Thomas P C; Gomez, Maria Adelaida

    2016-04-29

    Within its mammalian host, Leishmania resides and replicates as an intracellular parasite. The direct activity of antileishmanials must therefore depend on intracellular drug transport, metabolism, and accumulation within the host cell. In this study, we explored the role of human macrophage transporters in the intracellular accumulation and antileishmanial activity of miltefosine (MLF), the only oral drug available for the treatment of visceral and cutaneous leishmaniasis (CL). Membrane transporter gene expression in primary human macrophages infected in vitro with Leishmania Viannia panamensis and exposed to MLF showed modulation of ABC and solute liquid carrier transporters gene transcripts. Among these, ABCA3, a lipid transporter, was significantly induced after exposure to MLF, and this induction was confirmed in primary macrophages from CL patients. Functional validation of MLF as a substrate for ABCA3 was performed by shRNA gene knockdown (KD) in THP-1 monocytes. Intracellular accumulation of radiolabeled MLF was significantly higher in ABCA3(KD) macrophages. ABCA3(KD) resulted in increased cytotoxicity induced by MLF exposure. ABCA3 gene expression inversely correlated with intracellular MLF content in primary macrophages from CL patients. ABCA3(KD) reduced parasite survival during macrophage infection with an L. V. panamensis strain exhibiting low in vitro susceptibility to MLF. Confocal microscopy showed ABCA3 to be located in the cell membrane of resting macrophages and in intracellular compartments in L. V. panamensis-infected cells. These results provide evidence of ABCA3 as an MLF efflux transporter in human macrophages and support its role in the direct antileishmanial effect of this alkylphosphocholine drug. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation

    PubMed Central

    Cornuet, Jean-Marie; Santos, Filipe; Beaumont, Mark A.; Robert, Christian P.; Marin, Jean-Michel; Balding, David J.; Guillemaud, Thomas; Estoup, Arnaud

    2008-01-01

    Summary: Genetic data obtained on population samples convey information about their evolutionary history. Inference methods can extract part of this information but they require sophisticated statistical techniques that have been made available to the biologist community (through computer programs) only for simple and standard situations typically involving a small number of samples. We propose here a computer program (DIY ABC) for inference based on approximate Bayesian computation (ABC), in which scenarios can be customized by the user to fit many complex situations involving any number of populations and samples. Such scenarios involve any combination of population divergences, admixtures and population size changes. DIY ABC can be used to compare competing scenarios, estimate parameters for one or more scenarios and compute bias and precision measures for a given scenario and known values of parameters (the current version applies to unlinked microsatellite data). This article describes key methods used in the program and provides its main features. The analysis of one simulated and one real dataset, both with complex evolutionary scenarios, illustrates the main possibilities of DIY ABC. Availability: The software DIY ABC is freely available at http://www.montpellier.inra.fr/CBGP/diyabc. Contact: j.cornuet@imperial.ac.uk Supplementary information: Supplementary data are also available at http://www.montpellier.inra.fr/CBGP/diyabc PMID:18842597

  14. Divergent Evolutionary Pattern of Sugar Transporter Genes is Associated with the Difference in Sugar Accumulation between Grasses and Eudicots.

    PubMed

    Wang, Wei; Zhou, Hui; Ma, Baiquan; Owiti, Albert; Korban, Schuyler S; Han, Yuepeng

    2016-06-30

    Sugars play a variety of roles in plants, and their accumulation in seeds and/or surrounding pericarp tissues is distinctly different between grasses and eudicots. However, little is known about the evolutionary pattern of genes involved in sugar accumulation in these two major groups of flowering plants. Here, we compared evolutionary rates, gene duplication, and selective patterns of genes involved in sugar metabolism and transport between grasses and eudicots using six grass species and seven eudicot species as materials. Overall, sugar transporter genes exhibit divergent evolutionary patterns, whereas, sugar metabolism genes showing similar evolutionary pattern between monocots and eudicots. Sugar transporter genes have higher frequencies of recent duplication in eudicots than in grasses and their patterns of evolutionary rate are different. Evidence for divergent selection of these two groups of flowering plants is also observed in sugar transporter genes, wherein, these genes have undergone positive selection in eudicots, but not in grasses. Taken together, these findings suggest that sugar transporter genes rather than sugar metabolism genes play important roles in sugar accumulation in plants, and that divergent evolutionary patterns of sugar transporter genes are associated with the difference of sugar accumulation in storage tissues of grasses and eudicots.

  15. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears

    PubMed Central

    Cahill, James A; Stirling, Ian; Kistler, Logan; Salamzade, Rauf; Ersmark, Erik; Fulton, Tara L; Stiller, Mathias; Green, Richard E; Shapiro, Beth

    2015-01-01

    Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we present an analysis of data from a large panel of polar bear and brown bear genomes that includes brown bears from the ABC islands, the Alaskan mainland and Europe. Our results provide clear evidence that gene flow between the two species had a geographically wide impact, with polar bear DNA found within the genomes of brown bears living both on the ABC islands and in the Alaskan mainland. Intriguingly, while brown bear genomes contain up to 8.8% polar bear ancestry, polar bear genomes appear to be devoid of brown bear ancestry, suggesting the presence of a barrier to gene flow in that direction. PMID:25490862

  16. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears.

    PubMed

    Cahill, James A; Stirling, Ian; Kistler, Logan; Salamzade, Rauf; Ersmark, Erik; Fulton, Tara L; Stiller, Mathias; Green, Richard E; Shapiro, Beth

    2015-03-01

    Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we present an analysis of data from a large panel of polar bear and brown bear genomes that includes brown bears from the ABC islands, the Alaskan mainland and Europe. Our results provide clear evidence that gene flow between the two species had a geographically wide impact, with polar bear DNA found within the genomes of brown bears living both on the ABC islands and in the Alaskan mainland. Intriguingly, while brown bear genomes contain up to 8.8% polar bear ancestry, polar bear genomes appear to be devoid of brown bear ancestry, suggesting the presence of a barrier to gene flow in that direction. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  17. A Novel Class of Modular Transporters for Vitamins in Prokaryotes ▿ †

    PubMed Central

    Rodionov, Dmitry A.; Hebbeln, Peter; Eudes, Aymerick; ter Beek, Josy; Rodionova, Irina A.; Erkens, Guus B.; Slotboom, Dirk J.; Gelfand, Mikhail S.; Osterman, Andrei L.; Hanson, Andrew D.; Eitinger, Thomas

    2009-01-01

    The specific and tightly controlled transport of numerous nutrients and metabolites across cellular membranes is crucial to all forms of life. However, many of the transporter proteins involved have yet to be identified, including the vitamin transporters in various human pathogens, whose growth depends strictly on vitamin uptake. Comparative analysis of the ever-growing collection of microbial genomes coupled with experimental validation enables the discovery of such transporters. Here, we used this approach to discover an abundant class of vitamin transporters in prokaryotes with an unprecedented architecture. These transporters have energy-coupling modules comprised of a conserved transmembrane protein and two nucleotide binding proteins similar to those of ATP binding cassette (ABC) transporters, but unlike ABC transporters, they use small integral membrane proteins to capture specific substrates. We identified 21 families of these substrate capture proteins, each with a different specificity predicted by genome context analyses. Roughly half of the substrate capture proteins (335 cases) have a dedicated energizing module, but in 459 cases distributed among almost 100 gram-positive bacteria, including numerous human pathogens, different and unrelated substrate capture proteins share the same energy-coupling module. The shared use of energy-coupling modules was experimentally confirmed for folate, thiamine, and riboflavin transporters. We propose the name energy-coupling factor transporters for the new class of membrane transporters. PMID:18931129

  18. Investigating the compatibility of the biocontrol agent Clonostachys rosea IK726 with prodigiosin-producing Serratia rubidaea S55 and phenazine-producing Pseudomonas chlororaphis ToZa7.

    PubMed

    Kamou, Nathalie N; Dubey, Mukesh; Tzelepis, Georgios; Menexes, Georgios; Papadakis, Emmanouil N; Karlsson, Magnus; Lagopodi, Anastasia L; Jensen, Dan Funck

    2016-05-01

    This study was carried out to assess the compatibility of the biocontrol fungus Clonostachys rosea IK726 with the phenazine-producing Pseudomonas chlororaphis ToZa7 or with the prodigiosin-producing Serratia rubidaea S55 against Fusarium oxysporum f. sp. radicis-lycopersici. The pathogen was inhibited by both strains in vitro, whereas C. rosea displayed high tolerance to S. rubidaea but not to P. chlororaphis. We hypothesized that this could be attributed to the ATP-binding cassette (ABC) proteins. The results of the reverse transcription quantitative PCR showed an induction of seven genes (abcB1, abcB20, abcB26, abcC12, abcC12, abcG8 and abcG25) from subfamilies B, C and G. In planta experiments showed a significant reduction in foot and root rot on tomato plants inoculated with C. rosea and P. chlororaphis. This study demonstrates the potential for combining different biocontrol agents and suggests an involvement of ABC transporters in secondary metabolite tolerance in C. rosea.

  19. A phylogenomic analysis of the Actinomycetales mce operons.

    PubMed

    Casali, Nicola; Riley, Lee W

    2007-02-26

    The genome of Mycobacterium tuberculosis harbors four copies of a cluster of genes termed mce operons. Despite extensive research that has demonstrated the importance of these operons on infection outcome, their physiological function remains obscure. Expanding databases of complete microbial genome sequences facilitate a comparative genomic approach that can provide valuable insight into the role of uncharacterized proteins. The M. tuberculosis mce loci each include two yrbE and six mce genes, which have homology to ABC transporter permeases and substrate-binding proteins, respectively. Operons with an identical structure were identified in all Mycobacterium species examined, as well as in five other Actinomycetales genera. Some of the Actinomycetales mce operons include an mkl gene, which encodes an ATPase resembling those of ABC uptake transporters. The phylogenetic profile of Mkl orthologs exactly matched that of the Mce and YrbE proteins. Through topology and motif analyses of YrbE homologs, we identified a region within the penultimate cytoplasmic loop that may serve as the site of interaction with the putative cognate Mkl ATPase. Homologs of the exported proteins encoded adjacent to the M. tuberculosis mce operons were detected in a conserved chromosomal location downstream of the majority of Actinomycetales operons. Operons containing linked mkl, yrbE and mce genes, resembling the classic organization of an ABC importer, were found to be common in Gram-negative bacteria and appear to be associated with changes in properties of the cell surface. Evidence presented suggests that the mce operons of Actinomycetales species and related operons in Gram-negative bacteria encode a subfamily of ABC uptake transporters with a possible role in remodeling the cell envelope.

  20. A phylogenomic analysis of the Actinomycetales mce operons

    PubMed Central

    Casali, Nicola; Riley, Lee W

    2007-01-01

    Background The genome of Mycobacterium tuberculosis harbors four copies of a cluster of genes termed mce operons. Despite extensive research that has demonstrated the importance of these operons on infection outcome, their physiological function remains obscure. Expanding databases of complete microbial genome sequences facilitate a comparative genomic approach that can provide valuable insight into the role of uncharacterized proteins. Results The M. tuberculosis mce loci each include two yrbE and six mce genes, which have homology to ABC transporter permeases and substrate-binding proteins, respectively. Operons with an identical structure were identified in all Mycobacterium species examined, as well as in five other Actinomycetales genera. Some of the Actinomycetales mce operons include an mkl gene, which encodes an ATPase resembling those of ABC uptake transporters. The phylogenetic profile of Mkl orthologs exactly matched that of the Mce and YrbE proteins. Through topology and motif analyses of YrbE homologs, we identified a region within the penultimate cytoplasmic loop that may serve as the site of interaction with the putative cognate Mkl ATPase. Homologs of the exported proteins encoded adjacent to the M. tuberculosis mce operons were detected in a conserved chromosomal location downstream of the majority of Actinomycetales operons. Operons containing linked mkl, yrbE and mce genes, resembling the classic organization of an ABC importer, were found to be common in Gram-negative bacteria and appear to be associated with changes in properties of the cell surface. Conclusion Evidence presented suggests that the mce operons of Actinomycetales species and related operons in Gram-negative bacteria encode a subfamily of ABC uptake transporters with a possible role in remodeling the cell envelope. PMID:17324287

  1. Simulation-based estimation of mean and standard deviation for meta-analysis via Approximate Bayesian Computation (ABC).

    PubMed

    Kwon, Deukwoo; Reis, Isildinha M

    2015-08-12

    When conducting a meta-analysis of a continuous outcome, estimated means and standard deviations from the selected studies are required in order to obtain an overall estimate of the mean effect and its confidence interval. If these quantities are not directly reported in the publications, they must be estimated from other reported summary statistics, such as the median, the minimum, the maximum, and quartiles. We propose a simulation-based estimation approach using the Approximate Bayesian Computation (ABC) technique for estimating mean and standard deviation based on various sets of summary statistics found in published studies. We conduct a simulation study to compare the proposed ABC method with the existing methods of Hozo et al. (2005), Bland (2015), and Wan et al. (2014). In the estimation of the standard deviation, our ABC method performs better than the other methods when data are generated from skewed or heavy-tailed distributions. The corresponding average relative error (ARE) approaches zero as sample size increases. In data generated from the normal distribution, our ABC performs well. However, the Wan et al. method is best for estimating standard deviation under normal distribution. In the estimation of the mean, our ABC method is best regardless of assumed distribution. ABC is a flexible method for estimating the study-specific mean and standard deviation for meta-analysis, especially with underlying skewed or heavy-tailed distributions. The ABC method can be applied using other reported summary statistics such as the posterior mean and 95 % credible interval when Bayesian analysis has been employed.

  2. Functional significance of the E loop, a novel motif conserved in the lantibiotic immunity ATP-binding cassette transport systems.

    PubMed

    Okuda, Ken-ichi; Yanagihara, Sae; Sugayama, Tomomichi; Zendo, Takeshi; Nakayama, Jiro; Sonomoto, Kenji

    2010-06-01

    Lantibiotics are peptide-derived antibacterial substances produced by some Gram-positive bacteria and characterized by the presence of unusual amino acids, like lanthionines and dehydrated amino acids. Because lantibiotic producers may be attacked by self-produced lantibiotics, they express immunity proteins on the cytoplasmic membrane. An ATP-binding cassette (ABC) transport system mediated by the LanFEG protein complex is a major system in lantibiotic immunity. Multiple-sequence alignment analysis revealed that LanF proteins contain the E loop, a variant of the Q loop, which is a well-conserved motif in the nucleotide-binding domains (NBDs) of general ABC transporters. To elucidate E loop function, we introduced a mutation in the NukF protein, which is involved in the nukacin-ISK-1 immunity system. Amino acid replacement of glutamic acid in the E loop with glutamine (E85Q) resulted in slight decreases in the immunity level and transport activity. Additionally, the E85A mutation severely impaired the immunity level and transport activity. On the other hand, ATPase activities of purified E85Q and E85A mutants were almost similar to that of the wild type. These results suggested that the E loop found in ABC transporters involved in lantibiotic immunity plays a significant role in the function of these transporters, especially in the structural change of transmembrane domains.

  3. Global Screening of Salmonella enterica Serovar Typhimurium Genes for Desiccation Survival

    PubMed Central

    Mandal, Rabindra K.; Kwon, Young M.

    2017-01-01

    Salmonella spp., one of the most common foodborne bacterial pathogens, has the ability to survive under desiccation conditions in foods and food processing facilities for years. This raises the concerns of Salmonella infection in humans associated with low water activity foods. Salmonella responds to desiccation stress via complex pathways involving immediate physiological actions as well as coordinated genetic responses. However, the exact mechanisms of Salmonella to resist desiccation stress remain to be fully elucidated. In this study, we screened a genome-saturating transposon (Tn5) library of Salmonella Typhimurium (S. Typhimurium) 14028s under the in vitro desiccation stress using transposon sequencing (Tn-seq). We identified 61 genes and 6 intergenic regions required to overcome desiccation stress. Salmonella desiccation resistance genes were mostly related to energy production and conversion; cell wall/membrane/envelope biogenesis; inorganic ion transport and metabolism; regulation of biological process; DNA metabolic process; ABC transporters; and two component system. More than 20% of the Salmonella desiccation resistance genes encode either putative or hypothetical proteins. Phenotypic evaluation of 12 single gene knockout mutants showed 3 mutants (atpH, atpG, and corA) had significantly (p < 0.02) reduced survival as compared to the wild type during desiccation survival. Thus, our study provided new insights into the molecular mechanisms utilized by Salmonella for survival against desiccation stress. The findings might be further exploited to develop effective control strategies against Salmonella contamination in low water activity foods and food processing facilities. PMID:28943871

  4. New Enhanced Artificial Bee Colony (JA-ABC5) Algorithm with Application for Reactive Power Optimization

    PubMed Central

    2015-01-01

    The standard artificial bee colony (ABC) algorithm involves exploration and exploitation processes which need to be balanced for enhanced performance. This paper proposes a new modified ABC algorithm named JA-ABC5 to enhance convergence speed and improve the ability to reach the global optimum by balancing exploration and exploitation processes. New stages have been proposed at the earlier stages of the algorithm to increase the exploitation process. Besides that, modified mutation equations have also been introduced in the employed and onlooker-bees phases to balance the two processes. The performance of JA-ABC5 has been analyzed on 27 commonly used benchmark functions and tested to optimize the reactive power optimization problem. The performance results have clearly shown that the newly proposed algorithm has outperformed other compared algorithms in terms of convergence speed and global optimum achievement. PMID:25879054

  5. New enhanced artificial bee colony (JA-ABC5) algorithm with application for reactive power optimization.

    PubMed

    Sulaiman, Noorazliza; Mohamad-Saleh, Junita; Abro, Abdul Ghani

    2015-01-01

    The standard artificial bee colony (ABC) algorithm involves exploration and exploitation processes which need to be balanced for enhanced performance. This paper proposes a new modified ABC algorithm named JA-ABC5 to enhance convergence speed and improve the ability to reach the global optimum by balancing exploration and exploitation processes. New stages have been proposed at the earlier stages of the algorithm to increase the exploitation process. Besides that, modified mutation equations have also been introduced in the employed and onlooker-bees phases to balance the two processes. The performance of JA-ABC5 has been analyzed on 27 commonly used benchmark functions and tested to optimize the reactive power optimization problem. The performance results have clearly shown that the newly proposed algorithm has outperformed other compared algorithms in terms of convergence speed and global optimum achievement.

  6. Cloning and functional expression of a gene encoding a P1 type nucleoside transporter from Trypanosoma brucei.

    PubMed

    Sanchez, M A; Ullman, B; Landfear, S M; Carter, N S

    1999-10-15

    Nucleoside transporters are likely to play a central role in the biochemistry of the parasite Trypanosoma brucei, since these protozoa are unable to synthesize purines de novo and must salvage them from their hosts. Furthermore, nucleoside transporters have been implicated in the uptake of antiparasitic and experimental drugs in these and other parasites. We have cloned the gene for a T. brucei nucleoside transporter, TbNT2, and shown that this permease is related in sequence to mammalian equilibrative nucleoside transporters. Expression of the TbNT2 gene in Xenopus oocytes reveals that the permease transports adenosine, inosine, and guanosine and hence has the substrate specificity of the P1 type nucleoside transporters that have been previously characterized by uptake assays in intact parasites. TbNT2 mRNA is expressed in bloodstream form (mammalian host stage) parasites but not in procyclic form (insect stage) parasites, indicating that the gene is developmentally regulated during the parasite life cycle. Genomic Southern blots suggest that there are multiple genes related in sequence to TbNT2, implying the existence of a family of nucleoside transporter genes in these parasites.

  7. Divergent Evolutionary Pattern of Sugar Transporter Genes is Associated with the Difference in Sugar Accumulation between Grasses and Eudicots

    PubMed Central

    Wang, Wei; Zhou, Hui; Ma, Baiquan; Owiti, Albert; Korban, Schuyler S.; Han, Yuepeng

    2016-01-01

    Sugars play a variety of roles in plants, and their accumulation in seeds and/or surrounding pericarp tissues is distinctly different between grasses and eudicots. However, little is known about the evolutionary pattern of genes involved in sugar accumulation in these two major groups of flowering plants. Here, we compared evolutionary rates, gene duplication, and selective patterns of genes involved in sugar metabolism and transport between grasses and eudicots using six grass species and seven eudicot species as materials. Overall, sugar transporter genes exhibit divergent evolutionary patterns, whereas, sugar metabolism genes showing similar evolutionary pattern between monocots and eudicots. Sugar transporter genes have higher frequencies of recent duplication in eudicots than in grasses and their patterns of evolutionary rate are different. Evidence for divergent selection of these two groups of flowering plants is also observed in sugar transporter genes, wherein, these genes have undergone positive selection in eudicots, but not in grasses. Taken together, these findings suggest that sugar transporter genes rather than sugar metabolism genes play important roles in sugar accumulation in plants, and that divergent evolutionary patterns of sugar transporter genes are associated with the difference of sugar accumulation in storage tissues of grasses and eudicots. PMID:27356489

  8. Forkhead-associated (FHA) Domain Containing ABC Transporter Rv1747 Is Positively Regulated by Ser/Thr Phosphorylation in Mycobacterium tuberculosis*

    PubMed Central

    Spivey, Vicky L.; Molle, Virginie; Whalan, Rachael H.; Rodgers, Angela; Leiba, Jade; Stach, Lasse; Walker, K. Barry; Smerdon, Stephen J.; Buxton, Roger S.

    2011-01-01

    One major signaling method employed by Mycobacterium tuberculosis, the causative agent of tuberculosis, is through reversible phosphorylation of proteins mediated by protein kinases and phosphatases. This study concerns one of these enzymes, the serine/threonine protein kinase PknF, that is encoded in an operon with Rv1747, an ABC transporter that is necessary for growth of M. tuberculosis in vivo and contains two forkhead-associated (FHA) domains. FHA domains are phosphopeptide recognition motifs that specifically recognize phosphothreonine-containing epitopes. Experiments to determine how PknF regulates the function of Rv1747 demonstrated that phosphorylation occurs on two specific threonine residues, Thr-150 and Thr-208. To determine the in vivo consequences of phosphorylation, infection experiments were performed in bone marrow-derived macrophages and in mice using threonine-to-alanine mutants of Rv1747 that prevent specific phosphorylation and revealed that phosphorylation positively modulates Rv1747 function in vivo. The role of the FHA domains in this regulation was further demonstrated by isothermal titration calorimetry, using peptides containing both phosphothreonine residues. FHA-1 domain mutation resulted in attenuation in macrophages highlighting the critical role of this domain in Rv1747 function. A mutant deleted for pknF did not, however, have a growth phenotype in an infection, suggesting that other kinases can fulfill its role when it is absent. This study provides the first information on the molecular mechanism(s) regulating Rv1747 through PknF-dependent phosphorylation but also indicates that phosphorylation activates Rv1747, which may have important consequences in regulating growth of M. tuberculosis. PMID:21622570

  9. Hepatic Transporter Expression in Metabolic Syndrome: Phenotype, Serum Metabolic Hormones, and Transcription Factor Expression

    PubMed Central

    Donepudi, Ajay C.; Cheng, Qiuqiong; Lu, Zhenqiang James; Cherrington, Nathan J.

    2016-01-01

    Metabolic syndrome is a multifactorial disease associated with obesity, insulin resistance, diabetes, and the alteration of multiple metabolic hormones. Obesity rates have been rising worldwide, which increases our need to understand how this population will respond to drugs and exposure to other chemicals. The purpose of this study was to determine in lean and obese mice the ontogeny of clinical biomarkers such as serum hormone and blood glucose levels as well as the physiologic markers that correlate with nuclear receptor– and transporter-related pathways. Livers from male and female wild-type (WT) (C57BL/6) and ob/ob mice littermates were collected before, during, and after the onset of obesity. Serum hormone and mRNA levels were analyzed. Physiologic changes and gene expression during maturation and progression to obesity were performed and correlation analysis was performed using canonical correlations. Significant ontogenic changes in both WT and ob/ob mice were observed and these ontogenic changes differ in ob/ob mice with the development of obesity. In males and females, the ontogenic pattern of the expression of genes such as Abcc3, 4, Abcg2, Cyp2b10, and 4a14 started to differ from week 3, and became significant at weeks 4 and 8 in ob/ob mice compared with WT mice. In obese males, serum resistin, glucagon, and glucose levels correlated with the expression of most hepatic ATP-binding cassette (Abc) transporters, whereas in obese females, serum glucagon-like peptide 1 levels were correlated with most hepatic uptake transporters and P450 enzymes. Overall, the correlation between physiologic changes and gene expression indicate that metabolism-related hormones may play a role in regulating the genes involved in drug metabolism and transport. PMID:26847773

  10. Hepatic Transporter Expression in Metabolic Syndrome: Phenotype, Serum Metabolic Hormones, and Transcription Factor Expression.

    PubMed

    Donepudi, Ajay C; Cheng, Qiuqiong; Lu, Zhenqiang James; Cherrington, Nathan J; Slitt, Angela L

    2016-04-01

    Metabolic syndrome is a multifactorial disease associated with obesity, insulin resistance, diabetes, and the alteration of multiple metabolic hormones. Obesity rates have been rising worldwide, which increases our need to understand how this population will respond to drugs and exposure to other chemicals. The purpose of this study was to determine in lean and obese mice the ontogeny of clinical biomarkers such as serum hormone and blood glucose levels as well as the physiologic markers that correlate with nuclear receptor- and transporter-related pathways. Livers from male and female wild-type (WT) (C57BL/6) and ob/ob mice littermates were collected before, during, and after the onset of obesity. Serum hormone and mRNA levels were analyzed. Physiologic changes and gene expression during maturation and progression to obesity were performed and correlation analysis was performed using canonical correlations. Significant ontogenic changes in both WT and ob/ob mice were observed and these ontogenic changes differ in ob/ob mice with the development of obesity. In males and females, the ontogenic pattern of the expression of genes such as Abcc3, 4, Abcg2, Cyp2b10, and 4a14 started to differ from week 3, and became significant at weeks 4 and 8 in ob/ob mice compared with WT mice. In obese males, serum resistin, glucagon, and glucose levels correlated with the expression of most hepatic ATP-binding cassette (Abc) transporters, whereas in obese females, serum glucagon-like peptide 1 levels were correlated with most hepatic uptake transporters and P450 enzymes. Overall, the correlation between physiologic changes and gene expression indicate that metabolism-related hormones may play a role in regulating the genes involved in drug metabolism and transport. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Comparison between the Movement ABC-2 and the Zurich Neuromotor Assessment in Preschool Children.

    PubMed

    Kakebeeke, Tanja H; Knaier, Elisa; Köchli, Sabrina; Chaouch, Aziz; Rousson, Valentin; Kriemler, Susi; Jenni, Oskar G

    2016-12-01

    An established test instrument for the assessment of motor performance in children between 3 and 16 years is the Movement Assessment Battery for Children - Second Edition (M-ABC-2). The Zurich Neuromotor Assessment (ZNA) is also widely used for the evaluation of children's motor performance but has not been compared with the M-ABC-2 for children below five years for the purpose of convergent validity. Forty-seven children (26 boys, 21 girls) between three and five years of age were assessed using the M-ABC-2 and the ZNA3-5. Rank correlations between scores of different test components were calculated. Only low-to-moderate correlations were observed when separate components of these tests were compared (.31 to .68, p < .05), especially when involving the associated movements from the ZNA3-5 (-.05 to -.13, p > .05). However, the correlation between summary scores of the two tests was .77 (p < .001), and it increased to .84 when associated movements were excluded, which was comparable in magnitude to the test-retest reliability of the M-ABC-2, supporting convergent validity between the two tests. Although the ZNA3-5 and M-ABC-2 measure different aspects of motor behavior, the two instruments may thus measure essentially the same construct. © The Author(s) 2016.

  12. Neuroprotective effect of chondroitinase ABC on primary and secondary brain injury after stroke in hypertensive rats.

    PubMed

    Chen, Xin-ran; Liao, Song-jie; Ye, Lan-xiang; Gong, Qiong; Ding, Qiao; Zeng, Jin-sheng; Yu, Jian

    2014-01-16

    Focal cerebral infarction causes secondary damage in the ipsilateral ventroposterior thalamic nucleus (VPN). Chondroitin sulfate proteoglycans (CSPGs) are a family of putative inhibitory components, and its degradation by chondroitinase ABC (ChABC) promotes post-injury neurogenesis. This study investigated the role of ChABC in the primary and secondary injury post stroke in hypertension. Renovascular hypertensive Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAO), and were subjected to continuous intra-infarct infusion of ChABC (0.12 U/d for 7 days) 24 h later. Neurological function was evaluated by a modified neurologic severity score. Neurons were counted in the peri-infarct region and the ipsilateral VPN 8 and 14 days after MCAO by Nissl staining and NeuN labeling. The expressions of CSPGs, growth-associated protein-43 (GAP-43) and synaptophysin (SYN) were detected with immunofluorescence or Western blotting. The intra-infarct infusion of ChABC, by degrading accumulated CSPGs, rescued neuronal loss and increased the levels of GAP-43 and SYN in both the ipsilateral cortex and VPN, indicating enhancd neuron survival as well as augmented axonal growth and synaptic plasticity, eventually improving overall neurological function. The study demonstrated that intra-infarct ChABC infusion could salvage the brain from both primary and secondary injury by the intervention on the neuroinhibitory environment post focal cerebral infarction. © 2013 Published by Elsevier B.V.

  13. The Role of Activity Based Costing (ABC) in Educational Support Services: A White Paper.

    ERIC Educational Resources Information Center

    Edds, Daniel B.

    Many front-line managers who are assuming more financial responsibility for their organizations find traditional cost accounting inadequate for their needs and are turning to Activity Based Costing (ABC). ABC is not a financial reporting system to serve the needs of regulatory agencies, but a tool that tracks costs from the general ledger…

  14. Prochlorococcus Genetic Transformation and the Genomics of Nitrogen Metabolism

    DTIC Science & Technology

    2005-09-01

    MIT9313 and MED4 have ABC-type urea transporters and urease genes. Prochlorococcus PCC 9511 urease activity is independent of the nitrogen source in the...medium (Palinska et al., 2000), suggesting that the urease genes lack genetic regulation. MIT9313 has genes for nitrite transport and utilization...cyanobacterium, synthesizes the smallest urease ." Microbiology 146 Pt 12: 3099-107. Palinska, K. A., W. Laloui, et al. (2002). "The signal transducer P-Il and

  15. Calculus ABCs: A Gateway for Freshman Calculus

    ERIC Educational Resources Information Center

    Fulton, Scott R.

    2003-01-01

    This paper describes a gateway testing program designed to ensure that students acquire basic skills in freshman calculus. Students must demonstrate they have mastered standards for "Absolutely Basic Competency"--the Calculus ABCs--in order to pass the course with a grade of C or better. We describe the background, standards, and testing program.…

  16. Sustainable urban stormwater management in the tropics: An evaluation of Singapore's ABC Waters Program

    NASA Astrophysics Data System (ADS)

    Lim, H. S.; Lu, X. X.

    2016-07-01

    The Active Beautiful Clean (ABC) Waters Program was implemented in 2006 as part of Singapore's stormwater management strategy and reflects the country's move towards Water Sensitive Urbanism through the adoption of Low-Impact Development (LID) ideology and practices. It is the first holistic and comprehensive LID program in the tropics and holds promise for extension to other tropical cities. This paper presents a comprehensive summary of the goals, LID practices (ABC design features) and design considerations as well as results of several monitored sites, including a constructed wetland, two rain gardens, green roofs and three canal restoration projects. We evaluate the ABC Waters Program based on these initial results and consider the challenges, issues and the research needs for it to meet its hydrological and water quality remediation goals. So far, the ABC design features evaluated perform well in removing particulates. Performance in nutrient removal is poor. With over 60 projects completed within 10 years, post-project monitoring and evaluation is necessary and complements on-going laboratory and modelling research projects conducted by local academic institutions.

  17. The biosynthetic gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor contains its co-expressed vacuolar MATE transporter

    PubMed Central

    Darbani, Behrooz; Motawia, Mohammed Saddik; Olsen, Carl Erik; Nour-Eldin, Hussam H.; Møller, Birger Lindberg; Rook, Fred

    2016-01-01

    Genomic gene clusters for the biosynthesis of chemical defence compounds are increasingly identified in plant genomes. We previously reported the independent evolution of biosynthetic gene clusters for cyanogenic glucoside biosynthesis in three plant lineages. Here we report that the gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor additionally contains a gene, SbMATE2, encoding a transporter of the multidrug and toxic compound extrusion (MATE) family, which is co-expressed with the biosynthetic genes. The predicted localisation of SbMATE2 to the vacuolar membrane was demonstrated experimentally by transient expression of a SbMATE2-YFP fusion protein and confocal microscopy. Transport studies in Xenopus laevis oocytes demonstrate that SbMATE2 is able to transport dhurrin. In addition, SbMATE2 was able to transport non-endogenous cyanogenic glucosides, but not the anthocyanin cyanidin 3-O-glucoside or the glucosinolate indol-3-yl-methyl glucosinolate. The genomic co-localisation of a transporter gene with the biosynthetic genes producing the transported compound is discussed in relation to the role self-toxicity of chemical defence compounds may play in the formation of gene clusters. PMID:27841372

  18. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk.

    PubMed

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P; Lawrenson, Kate; Dennis, Joe; Amankwah, Ernest K; Qu, Xiaotao; Tsai, Ya-Yu; Jim, Heather S L; Chen, Zhihua; Chen, Ann Y; Permuth-Wey, Jennifer; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bunker, Clareann H; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F; Eccles, Diana M; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goodman, Marc T; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Claus K; Hogdall, Estrid; Hosono, Satoyo; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kelemen, Linda E; Kellar, Mellissa; Kiemeney, Lambertus A; Krakstad, Camilla; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Iain; Menon, Usha; Milne, Roger L; Modugno, Francesmary; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Pike, Malcolm C; Poole, Elizabeth M; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Spiewankiewicz, Beata; Sucheston, Lara; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Thomsen, Lotte; Tangen, Ingvild L; Tworoger, Shelley S; van Altena, Anne M; Vierkant, Robert A; Vergote, Ignace; Walsh, Christine S; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Wu, Anna H; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Hasmad, Hanis N; Berchuck, Andrew; Iversen, Edwin S; Schildkraut, Joellen M; Ramus, Susan J; Goode, Ellen L; Monteiro, Alvaro N A; Gayther, Simon A; Narod, Steven A; Pharoah, Paul D P; Sellers, Thomas A; Phelan, Catherine M

    2015-01-01

    Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk. In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons. The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020); this SNP was also associated with the borderline/low malignant potential (LMP) tumors (P = 0.021). Other genes significantly associated with EOC histological subtypes (p<0.05) included the UGT1A (endometrioid), SLC25A45 (mucinous), SLC39A11 (low malignant potential), and SERPINA7 (clear cell carcinoma). In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A) were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4). These results, generated on a large cohort of women, revealed associations between inherited cellular transport

  19. ABC's of Being Smart: I Can "C" Clearly Now

    ERIC Educational Resources Information Center

    Foster, Joanne

    2011-01-01

    In this paper, the author focuses on C of the ABC's of being smart. She continues to categorize the points for readers. These categories include the following: (1) being; (2) doing; and (3) stretching.

  20. Compilation of accelerated bridge construction (ABC) bridges : final report.

    DOT National Transportation Integrated Search

    2016-01-01

    Development of accelerated bridge construction (ABC) technologies has been occurring across the country, many times in : isolation. Although FHWA and others have worked to facilitate communication between these efforts, there was not a : comprehensiv...

  1. The ABC model of recombination reinterpreted: Impact on understanding carrier transport and efficiency droop in InGaN/GaN light emitting diodes

    NASA Astrophysics Data System (ADS)

    Hopkins, M. A.; Allsopp, D. W. E.; Kappers, M. J.; Oliver, R. A.; Humphreys, C. J.

    2017-12-01

    The efficiency of light emitting diodes (LEDs) remains a topic of great contemporary interest due to their potential to reduce the amount of energy consumed in lighting. The current consensus is that electrons and holes distribute themselves through the emissive region by a drift-diffusion process which results in a highly non-uniform distribution of the light emission and can reduce efficiency. In this paper, the measured variations in the external quantum efficiency of a range of InGaN/GaN LEDs with different numbers of quantum wells (QWs) are shown to compare closely with the predictions of a revised ABC model, in which it is assumed that the electrically injected electrons and holes are uniformly distributed through the multi-quantum well (MQW) region, or nearly so, and hence carrier recombination occurs equally in all the quantum wells. The implications of the reported results are that drift-diffusion plays a far lesser role in cross-well carrier transport than previously thought; that the dominant cause of efficiency droop is intrinsic to the quantum wells and that reductions in the density of non-radiative recombination centers in the MQW would enable the use of more QWs and thereby reduce Auger losses by spreading carriers more evenly across a wider emissive region.

  2. Protein complexes formed during the incision reaction catalyzed by the Escherichia coli UvrABC endonuclease.

    PubMed Central

    Yeung, A T; Mattes, W B; Grossman, L

    1986-01-01

    An examination has been made into the nature of the nucleoprotein complexes formed during the incision reaction catalyzed by the Escherichia coli UvrABC endonuclease when acting on a pyrimidine dimer-containing fd RF-I DNA species. The complexes of proteins and DNA form in unique stages. The first stage of binding involves an ATP-stimulated interaction of the UvrA protein with duplex DNA containing pyrimidine dimer sites. The UvrB protein significantly stabilizes the UvrA-pyrimidine dimer containing DNA complex which, in turn, provides a foundation for the binding of UvrC to activate the UvrABC endonuclease. The binding of one molecule of UvrC to each UvrAB-damaged DNA complex is needed to catalyze incision in the vicinity of pyrimidine dimer sites. The UvrABC-DNA complex persists after the incision event suggesting that the lack of UvrABC turnover may be linked to other activities in the excision-repair pathway beyond the initial incision reaction. PMID:3960727

  3. Classification of E-Nose Aroma Data of Four Fruit Types by ABC-Based Neural Network

    PubMed Central

    Adak, M. Fatih; Yumusak, Nejat

    2016-01-01

    Electronic nose technology is used in many areas, and frequently in the beverage industry for classification and quality-control purposes. In this study, four different aroma data (strawberry, lemon, cherry, and melon) were obtained using a MOSES II electronic nose for the purpose of fruit classification. To improve the performance of the classification, the training phase of the neural network with two hidden layers was optimized using artificial bee colony algorithm (ABC), which is known to be successful in exploration. Test data were given to two different neural networks, each of which were trained separately with backpropagation (BP) and ABC, and average test performances were measured as 60% for the artificial neural network trained with BP and 76.39% for the artificial neural network trained with ABC. Training and test phases were repeated 30 times to obtain these average performance measurements. This level of performance shows that the artificial neural network trained with ABC is successful in classifying aroma data. PMID:26927124

  4. Classification of E-Nose Aroma Data of Four Fruit Types by ABC-Based Neural Network.

    PubMed

    Adak, M Fatih; Yumusak, Nejat

    2016-02-27

    Electronic nose technology is used in many areas, and frequently in the beverage industry for classification and quality-control purposes. In this study, four different aroma data (strawberry, lemon, cherry, and melon) were obtained using a MOSES II electronic nose for the purpose of fruit classification. To improve the performance of the classification, the training phase of the neural network with two hidden layers was optimized using artificial bee colony algorithm (ABC), which is known to be successful in exploration. Test data were given to two different neural networks, each of which were trained separately with backpropagation (BP) and ABC, and average test performances were measured as 60% for the artificial neural network trained with BP and 76.39% for the artificial neural network trained with ABC. Training and test phases were repeated 30 times to obtain these average performance measurements. This level of performance shows that the artificial neural network trained with ABC is successful in classifying aroma data.

  5. Volume Quantification of Acute Infratentorial Hemorrhage with Computed Tomography: Validation of the Formula 1/2ABC and 2/3SH

    PubMed Central

    Zhang, Yunyun; Yan, Jing; Fu, Yi; Chen, Shengdi

    2013-01-01

    Objective To compare the accuracy of formula 1/2ABC with 2/3SH on volume estimation for hypertensive infratentorial hematoma. Methods One hundred and forty-seven CT scans diagnosed as hypertensive infratentorial hemorrhage were reviewed. Based on the shape, hematomas were categorized as regular or irregular. Multilobular was defined as a special shape of irregular. Hematoma volume was calculated employing computer-assisted volumetric analysis (CAVA), 1/2ABC and 2/3SH, respectively. Results The correlation coefficients between 1/2ABC (or 2/3SH) and CAVA were greater than 0.900 in all subgroups. There were neither significant differences in absolute values of volume deviation nor percentage deviation between 1/2ABC and 2/3SH for regular hemorrhage (P>0.05). While for cerebellar, brainstem and irregular hemorrhages, the absolute values of volume deviation and percentage deviation by formula 1/2ABC were greater than 2/3SH (P<0.05). 1/2ABC and 2/3SH underestimated hematoma volume each by 10% and 5% for cerebellar hemorrhage, 14% and 9% for brainstem hemorrhage, 19% and 16% for regular hemorrhage, 9% and 3% for irregular hemorrhage, respectively. In addition, for the multilobular hemorrhage, 1/2ABC underestimated the volume by 9% while 2/3SH overestimated it by 2%. Conclusions For regular hemorrhage volume calculation, the accuracy of 2/3SH is similar to 1/2ABC. While for cerebellar, brainstem or irregular hemorrhages (including multilobular), 2/3SH is more accurate than 1/2ABC. PMID:23638025

  6. Candidatus Frankia Datiscae Dg1, the Actinobacterial Microsymbiont of Datisca glomerata, Expresses the Canonical nod Genes nodABC in Symbiosis with Its Host Plant

    PubMed Central

    Persson, Tomas; Battenberg, Kai; Demina, Irina V.; Vigil-Stenman, Theoden; Vanden Heuvel, Brian; Pujic, Petar; Facciotti, Marc T.; Wilbanks, Elizabeth G.; O'Brien, Anna; Fournier, Pascale; Cruz Hernandez, Maria Antonia; Mendoza Herrera, Alberto; Médigue, Claudine; Normand, Philippe; Pawlowski, Katharina; Berry, Alison M.

    2015-01-01

    Frankia strains are nitrogen-fixing soil actinobacteria that can form root symbioses with actinorhizal plants. Phylogenetically, symbiotic frankiae can be divided into three clusters, and this division also corresponds to host specificity groups. The strains of cluster II which form symbioses with actinorhizal Rosales and Cucurbitales, thus displaying a broad host range, show suprisingly low genetic diversity and to date can not be cultured. The genome of the first representative of this cluster, Candidatus Frankia datiscae Dg1 (Dg1), a microsymbiont of Datisca glomerata, was recently sequenced. A phylogenetic analysis of 50 different housekeeping genes of Dg1 and three published Frankia genomes showed that cluster II is basal among the symbiotic Frankia clusters. Detailed analysis showed that nodules of D. glomerata, independent of the origin of the inoculum, contain several closely related cluster II Frankia operational taxonomic units. Actinorhizal plants and legumes both belong to the nitrogen-fixing plant clade, and bacterial signaling in both groups involves the common symbiotic pathway also used by arbuscular mycorrhizal fungi. However, so far, no molecules resembling rhizobial Nod factors could be isolated from Frankia cultures. Alone among Frankia genomes available to date, the genome of Dg1 contains the canonical nod genes nodA, nodB and nodC known from rhizobia, and these genes are arranged in two operons which are expressed in D. glomerata nodules. Furthermore, Frankia Dg1 nodC was able to partially complement a Rhizobium leguminosarum A34 nodC::Tn5 mutant. Phylogenetic analysis showed that Dg1 Nod proteins are positioned at the root of both α- and β-rhizobial NodABC proteins. NodA-like acyl transferases were found across the phylum Actinobacteria, but among Proteobacteria only in nodulators. Taken together, our evidence indicates an Actinobacterial origin of rhizobial Nod factors. PMID:26020781

  7. Field distribution and DNA transport in solid tumors during electric field-mediated gene delivery.

    PubMed

    Henshaw, Joshua W; Yuan, Fan

    2008-02-01

    Gene therapy has a great potential in cancer treatment. However, the efficacy of cancer gene therapy is currently limited by the lack of a safe and efficient means to deliver therapeutic genes into the nucleus of tumor cells. One method under investigation for improving local gene delivery is based on the use of pulsed electric field. Despite repeated demonstration of its effectiveness in vivo, the underlying mechanisms behind electric field-mediated gene delivery remain largely unknown. Without a thorough understanding of these mechanisms, it will be difficult to further advance the gene delivery. In this review, the electric field-mediated gene delivery in solid tumors will be examined by following individual transport processes that must occur in vivo for a successful gene transfer. The topics of examination include: (i) major barriers for gene delivery in the body, (ii) distribution of electric fields at both cell and tissue levels during the application of external fields, and (iii) electric field-induced transport of genes across each of the barriers. Through this approach, the review summarizes what is known about the mechanisms behind electric field-mediated gene delivery and what require further investigations in future studies.

  8. So, You Need To Justify Your Existing ABC Program (or Lobby for a New One).

    ERIC Educational Resources Information Center

    Walsh, Jean Terry; Gillis, Lee

    1998-01-01

    Advice for adventure-based counseling (ABC) programs seeking funding includes setting realistic goals, designing an evaluation that matches program resources, and keeping it simple. Low recidivism is most important to grantors. Published research on ABC is scarce, but on-site process research generates useful data, and local schools and agencies…

  9. An ABC estimate of pedigree error rate: application in dog, sheep and cattle breeds.

    PubMed

    Leroy, G; Danchin-Burge, C; Palhiere, I; Baumung, R; Fritz, S; Mériaux, J C; Gautier, M

    2012-06-01

    On the basis of correlations between pairwise individual genealogical kinship coefficients and allele sharing distances computed from genotyping data, we propose an approximate Bayesian computation (ABC) approach to assess pedigree file reliability through gene-dropping simulations. We explore the features of the method using simulated data sets and show precision increases with the number of markers. An application is further made with five dog breeds, four sheep breeds and one cattle breed raised in France and displaying various characteristics and population sizes, using microsatellite or SNP markers. Depending on the breeds, pedigree error estimations range between 1% and 9% in dog breeds, 1% and 10% in sheep breeds and 4% in cattle breeds. © 2011 The Authors, Animal Genetics © 2011 Stichting International Foundation for Animal Genetics.

  10. Identification of Two myo-Inositol Transporter Genes of Bacillus subtilis

    PubMed Central

    Yoshida, Ken-Ichi; Yamamoto, Yoshiyuki; Omae, Kaoru; Yamamoto, Mami; Fujita, Yasutaro

    2002-01-01

    Among hundreds of mutants constructed systematically by the Japanese groups participating in the functional analysis of the Bacillus subtilis genome project, we found that a mutant with inactivation of iolT (ydjK) exhibited a growth defect on myo-inositol as the sole carbon source. The putative product of iolT exhibits significant similarity with many bacterial sugar transporters in the databases. In B. subtilis, the iolABCDEFGHIJ and iolRS operons are known to be involved in inositol utilization, and its transcription is regulated by the IolR repressor and induced by inositol. Among the iol genes, iolF was predicted to encode an inositol transporter. Inactivation of iolF alone did not cause such an obvious growth defect on inositol as the iolT inactivation, while simultaneous inactivation of the two genes led to a more severe defect than the single iolT inactivation. Determination of inositol uptake by the mutants revealed that iolT inactivation almost completely abolished uptake, but uptake by IolF itself was slightly detectable. These results, as well as the Km and Vmax values for the IolT and IolF inositol transporters, indicated that iolT and iolF encode major and minor inositol transporters, respectively. Northern and primer extension analyses of iolT transcription revealed that the gene is monocistronically transcribed from a promoter likely recognized by ςsgr;A RNA polymerase and negatively regulated by IolR as well. The interaction between IolR and the iolT promoter region was analyzed by means of gel retardation and DNase I footprinting experiments, it being suggested that the mode of interaction is quite similar to that found for the promoter regions of the iol divergon. PMID:11807058

  11. Escherichia coli yjjPB genes encode a succinate transporter important for succinate production.

    PubMed

    Fukui, Keita; Nanatani, Kei; Hara, Yoshihiko; Yamakami, Suguru; Yahagi, Daiki; Chinen, Akito; Tokura, Mitsunori; Abe, Keietsu

    2017-09-01

    Under anaerobic conditions, Escherichia coli produces succinate from glucose via the reductive tricarboxylic acid cycle. To date, however, no genes encoding succinate exporters have been established in E. coli. Therefore, we attempted to identify genes encoding succinate exporters by screening an E. coli MG1655 genome library. We identified the yjjPB genes as candidates encoding a succinate transporter, which enhanced succinate production in Pantoea ananatis under aerobic conditions. A complementation assay conducted in Corynebacterium glutamicum strain AJ110655ΔsucE1 demonstrated that both YjjP and YjjB are required for the restoration of succinate production. Furthermore, deletion of yjjPB decreased succinate production in E. coli by 70% under anaerobic conditions. Taken together, these results suggest that YjjPB constitutes a succinate transporter in E. coli and that the products of both genes are required for succinate export.

  12. Reward dependence is related to norepinephrine transporter T-182C gene polymorphism in a Korean population.

    PubMed

    Ham, Byung-Joo; Choi, Myoung-Jin; Lee, Heon-Jeong; Kang, Rhee-Hun; Lee, Min-Soo

    2005-06-01

    It is well established that approximately 50% of the variance in personality traits is genetic. The goal of this study was to investigate a relationship between personality traits and the T-182C polymorphism in the norepinephrine transporter gene. The participants included 115 healthy adults with no history of psychiatric disorders and other physical illness during the past 6 months. All participants were tested with the Temperament and Character Inventory and genotyped norepinephrine transporter gene polymorphism. Differences on the Temperament and Character Inventory dimensions among three groups were examined with one-way analysis of variance. Our study suggests that the norepinephrine transporter T-182C gene polymorphism is associated with reward dependence in Koreans, but the small number of study participants and their sex and age heterogeneity limits generalization of our results. Further studies are necessary with a larger number of homogeneous participants to confirm whether the norepinephrine transporter gene is related to personality traits.

  13. A new human lung adenocarcinoma cell line harboring the EML4-ALK fusion gene.

    PubMed

    Isozaki, Hideko; Yasugi, Masayuki; Takigawa, Nagio; Hotta, Katsuyuki; Ichihara, Eiki; Taniguchi, Akihiko; Toyooka, Shinichi; Hashida, Shinsuke; Sendo, Toshiaki; Tanimoto, Mitsune; Kiura, Katsuyuki

    2014-10-01

    The echinoderm microtubule associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion gene was identified in patients with non-small cell lung cancer. To the best of our knowledge, there are only three cell lines harboring the EML4-ALK fusion gene, which have contributed to the development of therapeutic strategies. Therefore, we tried to establish a new lung cancer cell line harboring EML4-ALK. A 61-year-old Japanese female presented with chest discomfort. She was diagnosed with left lung adenocarcinoma with T4N3M1 Stage IV. Although she was treated with chemotherapy, her disease progressed with massive pleural effusion. Because the EML4-ALK rearrangement was found in a biopsied specimen using fluorescence in situ hybridization, she was treated with crizotinib. She did well for 3 months. Tumor cells were obtained from the malignant pleural effusion before treatment with crizotinib. Cells continued to proliferate substantially for several weeks. The cell line was designated ABC-11. The EML4-ALK fusion protein and genes were identified in ABC-11 cells using fluorescence in situ hybridization and immunohistochemistry, respectively. ABC-11 cells were sensitive to crizotinib and next-generation ALK inhibitors (ceritinib and AP26113), as determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Phosphorylated ALK protein and its downstream signaling were suppressed by treatment with crizotinib in western blotting. Furthermore, we could transplant ABC-11 cells subcutaneously into BALB/c nu/nu mice. We successfully established a new lung adenocarcinoma cell line harboring the EML4-ALK fusion gene. This cell line could contribute to future research of EML4-ALK-positive lung cancer both in vivo and in vitro. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Gene expression variability in human hepatic drug metabolizing enzymes and transporters.

    PubMed

    Yang, Lun; Price, Elvin T; Chang, Ching-Wei; Li, Yan; Huang, Ying; Guo, Li-Wu; Guo, Yongli; Kaput, Jim; Shi, Leming; Ning, Baitang

    2013-01-01

    Interindividual variability in the expression of drug-metabolizing enzymes and transporters (DMETs) in human liver may contribute to interindividual differences in drug efficacy and adverse reactions. Published studies that analyzed variability in the expression of DMET genes were limited by sample sizes and the number of genes profiled. We systematically analyzed the expression of 374 DMETs from a microarray data set consisting of gene expression profiles derived from 427 human liver samples. The standard deviation of interindividual expression for DMET genes was much higher than that for non-DMET genes. The 20 DMET genes with the largest variability in the expression provided examples of the interindividual variation. Gene expression data were also analyzed using network analysis methods, which delineates the similarities of biological functionalities and regulation mechanisms for these highly variable DMET genes. Expression variability of human hepatic DMET genes may affect drug-gene interactions and disease susceptibility, with concomitant clinical implications.

  15. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    NASA Astrophysics Data System (ADS)

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-10-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring.

  16. Novel organization of the common nodulation genes in Rhizobium leguminosarum bv. phaseoli strains.

    PubMed Central

    Vázquez, M; Dávalos, A; de las Peñas, A; Sánchez, F; Quinto, C

    1991-01-01

    Nodulation by Rhizobium, Bradyrhizobium, and Azorhizobium species in the roots of legumes and nonlegumes requires the proper expression of plant genes and of both common and specific bacterial nodulation genes. The common nodABC genes form an operon or are physically mapped together in all species studied thus far. Rhizobium leguminosarum bv. phaseoli strains are classified in two groups. The type I group has reiterated nifHDK genes and a narrow host range of nodulation. The type II group has a single copy of the nifHDK genes and a wide host range of nodulation. We have found by genetic and nucleotide sequence analysis that in type I strain CE-3, the functional common nodA gene is separated from the nodBC genes by 20 kb and thus is transcriptionally separated from the latter genes. This novel organization could be the result of a complex rearrangement, as we found zones of identity between the two separated nodA and nodBC regions. Moreover, this novel organization of the common nodABC genes seems to be a general characteristic of R. leguminosarum bv. phaseoli type I strains. Despite the separation, the coordination of the expression of these genes seems not to be altered. PMID:1991718

  17. Functional expression and characterization of a purine nucleobase transporter gene from Leishmania major.

    PubMed

    Sanchez, Marco A; Tryon, Rob; Pierce, Steven; Vasudevan, Gayatri; Landfear, Scott M

    2004-01-01

    Leishmania major, like all the other kinetoplastid protozoa, are unable to synthesize purines and rely on purine nucleobase and nucleoside acquisition across the parasite plasma membrane by specific permeases. Although, several genes have been cloned that encode nucleoside transporters in Leishmania and Trypanosoma brucei, much less progress has been made on nucleobase transporters, especially at the molecular level. The studies reported here have cloned and expressed the first gene for a L. major nucleobase transporter, designated LmaNT3. The LmaNT3 permease shows 33% identity to L. donovani nucleoside transporter 1.1 (LdNT1.1) and is, thus, a member of the equilibrative nucleoside transporter (ENT) family. ENT family members identified to date are nucleoside transporters, some of which also transport one or several nucleobases. Functional expression studies in Xenopus laevis oocytes revealed that LmaNT3 mediates high levels of uptake of hypoxanthine, xanthine, adenine and guanine. Moreover, LmaNT3 is an high affinity transporter with K(m) values for hypoxanthine, xanthine, adenine and guanine of 16.5 +/- 1.5, 8.5 +/- 0.6, 8.5 +/- 1.1, and 8.8 +/- 4.0 microM, respectively. LmaNT3 is, thus, the first member of the ENT family identified in any organism that functions as a nucleobase rather than nucleoside or nucleoside/nucleobase transporter.

  18. Determination of Flower Structure in Elaeis guineensis: Do Palms use the Same Homeotic Genes as Other Species?

    PubMed Central

    Adam, Helene; Jouannic, Stefan; Morcillo, Fabienne; Verdeil, Jean-Luc; Duval, Yves; Tregear, James W.

    2007-01-01

    Aims In this article a review is made of data recently obtained on the structural diversity and possible functions of MADS box genes in the determination of flower structure in the African oil palm (Elaeis guineensis). MADS box genes play a dominant role in the ABC model established to explain how floral organ identity is determined in model dicotyledon species such as Arabidopsis thaliana and Antirrhinum majus. In the monocotyledons, although there appears to be a broad general conservation of ABC gene functions, the model itself needs to be adapted in some cases, notably for certain species which produce flowers with sepals and petals of similar appearance. For the moment, ABC genes remain unstudied in a number of key monocot clades, so only a partial picture is available for the Liliopsida as a whole. The aim of this article is to summarize data recently obtained for the African oil palm Elaeis guineensis, a member of the family Arecaceae (Arecales), and to discuss their significance with respect to knowledge gained from other Angiosperm groups, particularly within the monocotyledons. Scope The essential details of reproductive development in oil palm are discussed and an overview is provided of the structural and functional characterization of MADS box genes likely to play a homeotic role in flower development in this species. Conclusions The structural and functional data provide evidence for a general conservation of the generic ‘ABC’ model in oil palm, rather than the ‘modified ABC model’ proposed for some other monocot species which produce homochlamydeous flowers (i.e. with morphologically similar organs in both perianth whorls), such as members of the Liliales. Our oil palm data therefore follow a similar pattern to those obtained for other Commelinid species in the orders Commelinales and Poales. The significance of these findings is discussed. PMID:17355996

  19. K-ABC Mental Processing Profiles for Gifted Referrals.

    ERIC Educational Resources Information Center

    Harrison, Patti L.; And Others

    This study sought to extend previous research by investigating performance of intellectucally gifted children on the Mental Processing Composite of the Kaufman Assessment Battery for Children (K-ABC). A sample of 54 children (aged 6-12) referred for possible gifted placement were administered the Sequential and Simultaneous scales. Average scores…

  20. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    PubMed Central

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Amankwah, Ernest K.; Qu, Xiaotao; Tsai, Ya-Yu; Jim, Heather S. L.; Chen, Zhihua; Chen, Ann Y.; Permuth-Wey, Jennifer; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bunker, Clareann H.; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F.; Eccles, Diana M.; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goodman, Marc T.; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A. T.; Hillemanns, Peter; Hogdall, Claus K.; Hogdall, Estrid; Hosono, Satoyo; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Kelemen, Linda E.; Kellar, Mellissa; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F. A. G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Iain; Menon, Usha; Milne, Roger L.; Modugno, Francesmary; Moysich, Kirsten B.; Ness, Roberta B.; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Pike, Malcolm C.; Poole, Elizabeth M.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Spiewankiewicz, Beata; Sucheston, Lara; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Thomsen, Lotte; Tangen, Ingvild L.; Tworoger, Shelley S.; van Altena, Anne M.; Vierkant, Robert A.; Vergote, Ignace; Walsh, Christine S.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wu, Anna H.; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Hasmad, Hanis N.; Berchuck, Andrew; Iversen, Edwin S.; Schildkraut, Joellen M.; Ramus, Susan J.; Goode, Ellen L.; Monteiro, Alvaro N. A.; Gayther, Simon A.; Narod, Steven A.; Pharoah, Paul D. P.; Sellers, Thomas A.; Phelan, Catherine M.

    2015-01-01

    Background Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk. Methods In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons. Results The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020); this SNP was also associated with the borderline/low malignant potential (LMP) tumors (P = 0.021). Other genes significantly associated with EOC histological subtypes (p<0.05) included the UGT1A (endometrioid), SLC25A45 (mucinous), SLC39A11 (low malignant potential), and SERPINA7 (clear cell carcinoma). In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A) were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4). Conclusion These results, generated on a large cohort of women, revealed associations

  1. Regulation of Zn and Fe transporters by the GPC1 gene during early wheat monocarpic senescence.

    PubMed

    Pearce, Stephen; Tabbita, Facundo; Cantu, Dario; Buffalo, Vince; Avni, Raz; Vazquez-Gross, Hans; Zhao, Rongrong; Conley, Christopher J; Distelfeld, Assaf; Dubcovksy, Jorge

    2014-12-19

    During wheat senescence, leaf components are degraded in a coordinated manner, releasing amino acids and micronutrients which are subsequently transported to the developing grain. We have previously shown that the simultaneous downregulation of Grain Protein Content (GPC) transcription factors, GPC1 and GPC2, greatly delays senescence and disrupts nutrient remobilization, and therefore provide a valuable entry point to identify genes involved in micronutrient transport to the wheat grain. We generated loss-of-function mutations for GPC1 and GPC2 in tetraploid wheat and showed in field trials that gpc1 mutants exhibit significant delays in senescence and reductions in grain Zn and Fe content, but that mutations in GPC2 had no significant effect on these traits. An RNA-seq study of these mutants at different time points showed a larger proportion of senescence-regulated genes among the GPC1 (64%) than among the GPC2 (37%) regulated genes. Combined, the two GPC genes regulate a subset (21.2%) of the senescence-regulated genes, 76.1% of which are upregulated at 12 days after anthesis, before the appearance of any visible signs of senescence. Taken together, these results demonstrate that GPC1 is a key regulator of nutrient remobilization which acts predominantly during the early stages of senescence. Genes upregulated at this stage include transporters from the ZIP and YSL gene families, which facilitate Zn and Fe export from the cytoplasm to the phloem, and genes involved in the biosynthesis of chelators that facilitate the phloem-based transport of these nutrients to the grains. This study provides an overview of the transport mechanisms activated in the wheat flag leaf during monocarpic senescence. It also identifies promising targets to improve nutrient remobilization to the wheat grain, which can help mitigate Zn and Fe deficiencies that afflict many regions of the developing world.

  2. Systemic and local regulation of phosphate and nitrogen transporter genes by arbuscular mycorrhizal fungi in roots of winter wheat (Triticum aestivum L.).

    PubMed

    Duan, Jianfeng; Tian, Hui; Drijber, Rhae A; Gao, Yajun

    2015-11-01

    Previous studies have reported that the expression of phosphate (Pi) or nitrogen (N) transporter genes in roots of plants could be regulated by arbuscular mycorrhizal (AM) fungi, but little is known whether the regulation is systemic or not. The present study investigated the systemic and local regulation of multiple phosphate and nitrogen transporter genes by four AM fungal species belonging to four genera in the roots of winter wheat. A split-root culture system with AM inoculated (MR) and non-inoculated root compartments (NR) was used to investigate the systemic or local responses of phosphate and nitrogen transporter genes to colonization by four AM fungi in the roots of wheat. The expression of four Pi transporter, five nitrate transporter, and three ammonium transporter genes was quantified using real-time PCR. Of the four AM fungi tested, all locally increased expression of the AM-inducible Pi transporter genes, and most locally decreased expression of a Pi-starvation inducible Pi transporter gene. The addition of N in soil increased the expression of either Pi starvation inducible Pi transporters or AM inducible Pi transporters. Inoculation with AM fungi either had no effect, or could locally or systemically down-regulate expression of nitrogen transporter genes depending on gene type and AM fungal species. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. An alternative physiological role for the EmhABC efflux pump in Pseudomonas fluorescens cLP6a

    PubMed Central

    2011-01-01

    Background Efflux pumps belonging to the resistance-nodulation-division (RND) superfamily in bacteria are involved in antibiotic resistance and solvent tolerance but have an unknown physiological role. EmhABC, a RND-type efflux pump in Pseudomonas fluorescens strain cLP6a, extrudes hydrophobic antibiotics, dyes and polycyclic aromatic hydrocarbons including phenanthrene. The effects of physico-chemical factors such as temperature or antibiotics on the activity and expression of EmhABC were determined in order to deduce its physiological role(s) in strain cLP6a in comparison to the emhB disruptant strain, cLP6a-1. Results Efflux assays conducted with 14C-phenanthrene showed that EmhABC activity is affected by incubation temperature. Increased phenanthrene efflux was measured in cLP6a cells grown at 10°C and decreased efflux was observed at 35°C compared with cells grown at the optimum temperature of 28°C. Membrane fatty acids in cLP6a cells were substantially altered by changes in growth temperature and in the presence of tetracycline. Changed membrane fatty acids and increased membrane permeability were associated with ~30-fold increased expression of emhABC in cLP6a cells grown at 35°C, and with increased extracellular free fatty acids. Growth of P. fluorescens cLP6a at supra-optimal temperature was enhanced by the presence of EmhABC compared to strain cLP6a-1. Conclusions Combined, these observations suggest that the EmhABC efflux pump may be involved in the management of membrane stress effects such as those due to unfavourable incubation temperatures. Efflux of fatty acids replaced as a result of membrane damage or phospholipid turnover may be the primary physiological role of the EmhABC efflux pump in P. fluorescens cLP6a. PMID:22085438

  4. A Sensory Complex Consisting of an ATP-binding Cassette Transporter and a Two-component Regulatory System Controls Bacitracin Resistance in Bacillus subtilis*

    PubMed Central

    Dintner, Sebastian; Heermann, Ralf; Fang, Chong; Jung, Kirsten; Gebhard, Susanne

    2014-01-01

    Resistance against antimicrobial peptides in many Firmicutes bacteria is mediated by detoxification systems that are composed of a two-component regulatory system (TCS) and an ATP-binding cassette (ABC) transporter. The histidine kinases of these systems depend entirely on the transporter for sensing of antimicrobial peptides, suggesting a novel mode of signal transduction where the transporter constitutes the actual sensor. The aim of this study was to investigate the molecular mechanisms of this unusual signaling pathway in more detail, using the bacitracin resistance system BceRS-BceAB of Bacillus subtilis as an example. To analyze the proposed communication between TCS and the ABC transporter, we characterized their interactions by bacterial two-hybrid analyses and could show that the permease BceB and the histidine kinase BceS interact directly. In vitro pulldown assays confirmed this interaction, which was found to be independent of bacitracin. Because it was unknown whether BceAB-type transporters could detect their substrate peptides directly or instead recognized the peptide-target complex in the cell envelope, we next analyzed substrate binding by the transport permease, BceB. Direct and specific binding of bacitracin by BceB was demonstrated by surface plasmon resonance spectroscopy. Finally, in vitro signal transduction assays indicated that complex formation with the transporter influenced the autophosphorylation activity of the histidine kinase. Taken together, our findings clearly show the existence of a sensory complex composed of TCS and ABC transporters and provide the first functional insights into the mechanisms of stimulus perception, signal transduction, and antimicrobial resistance employed by Bce-like detoxification systems. PMID:25118291

  5. Identification of conserved drought stress responsive gene-network across tissues and developmental stages in rice.

    PubMed

    Smita, Shuchi; Katiyar, Amit; Pandey, Dev Mani; Chinnusamy, Viswanathan; Archak, Sunil; Bansal, Kailash Chander

    2013-01-01

    Identification of genes that are coexpressed across various tissues and environmental stresses is biologically interesting, since they may play coordinated role in similar biological processes. Genes with correlated expression patterns can be best identified by using coexpression network analysis of transcriptome data. In the present study, we analyzed the temporal-spatial coordination of gene expression in root, leaf and panicle of rice under drought stress and constructed network using WGCNA and Cytoscape. Total of 2199 differentially expressed genes (DEGs) were identified in at least three or more tissues, wherein 88 genes have coordinated expression profile among all the six tissues under drought stress. These 88 highly coordinated genes were further subjected to module identification in the coexpression network. Based on chief topological properties we identified 18 hub genes such as ABC transporter, ATP-binding protein, dehydrin, protein phosphatase 2C, LTPL153 - Protease inhibitor, phosphatidylethanolaminebinding protein, lactose permease-related, NADP-dependent malic enzyme, etc. Motif enrichment analysis showed the presence of ABRE cis-elements in the promoters of > 62% of the coordinately expressed genes. Our results suggest that drought stress mediated upregulated gene expression was coordinated through an ABA-dependent signaling pathway across tissues, at least for the subset of genes identified in this study, while down regulation appears to be regulated by tissue specific pathways in rice.

  6. Culture-gene coevolution of individualism-collectivism and the serotonin transporter gene.

    PubMed

    Chiao, Joan Y; Blizinsky, Katherine D

    2010-02-22

    Culture-gene coevolutionary theory posits that cultural values have evolved, are adaptive and influence the social and physical environments under which genetic selection operates. Here, we examined the association between cultural values of individualism-collectivism and allelic frequency of the serotonin transporter functional polymorphism (5-HTTLPR) as well as the role this culture-gene association may play in explaining global variability in prevalence of pathogens and affective disorders. We found evidence that collectivistic cultures were significantly more likely to comprise individuals carrying the short (S) allele of the 5-HTTLPR across 29 nations. Results further show that historical pathogen prevalence predicts cultural variability in individualism-collectivism owing to genetic selection of the S allele. Additionally, cultural values and frequency of S allele carriers negatively predict global prevalence of anxiety and mood disorder. Finally, mediation analyses further indicate that increased frequency of S allele carriers predicted decreased anxiety and mood disorder prevalence owing to increased collectivistic cultural values. Taken together, our findings suggest culture-gene coevolution between allelic frequency of 5-HTTLPR and cultural values of individualism-collectivism and support the notion that cultural values buffer genetically susceptible populations from increased prevalence of affective disorders. Implications of the current findings for understanding culture-gene coevolution of human brain and behaviour as well as how this coevolutionary process may contribute to global variation in pathogen prevalence and epidemiology of affective disorders, such as anxiety and depression, are discussed.

  7. Culture–gene coevolution of individualism–collectivism and the serotonin transporter gene

    PubMed Central

    Chiao, Joan Y.; Blizinsky, Katherine D.

    2010-01-01

    Culture–gene coevolutionary theory posits that cultural values have evolved, are adaptive and influence the social and physical environments under which genetic selection operates. Here, we examined the association between cultural values of individualism–collectivism and allelic frequency of the serotonin transporter functional polymorphism (5-HTTLPR) as well as the role this culture–gene association may play in explaining global variability in prevalence of pathogens and affective disorders. We found evidence that collectivistic cultures were significantly more likely to comprise individuals carrying the short (S) allele of the 5-HTTLPR across 29 nations. Results further show that historical pathogen prevalence predicts cultural variability in individualism–collectivism owing to genetic selection of the S allele. Additionally, cultural values and frequency of S allele carriers negatively predict global prevalence of anxiety and mood disorder. Finally, mediation analyses further indicate that increased frequency of S allele carriers predicted decreased anxiety and mood disorder prevalence owing to increased collectivistic cultural values. Taken together, our findings suggest culture–gene coevolution between allelic frequency of 5-HTTLPR and cultural values of individualism–collectivism and support the notion that cultural values buffer genetically susceptible populations from increased prevalence of affective disorders. Implications of the current findings for understanding culture–gene coevolution of human brain and behaviour as well as how this coevolutionary process may contribute to global variation in pathogen prevalence and epidemiology of affective disorders, such as anxiety and depression, are discussed. PMID:19864286

  8. Transepithelial transport of rosuvastatin and effect of ursolic acid on its transport in Caco-2 monolayers.

    PubMed

    Hua, Wen Jin; Fang, Hu Jin; Hua, Wei Xiao

    2012-09-01

    The aim of this study was to determine transepithelial transport characteristics of rosuvastatin and effect of ursolic acid (P-gp potential inhibitor) and ko143 (ABC transporters selective inhibitor) on its transport in Caco-2 monolayers. A reliable Caco-2 cell monolayers model was established. The TEER value was used to inspect integrity of cell model. Apparent permeability coefficients (Papp(BL-AP) and Papp(AP-BL)) were used to analyze transepithelial transport of rosuvastatin. Uptake of rosuvastatin was time- and concentration-dependent in Caco-2 cell. The ko143 but not ursolic acid had effect on the uptake of rosuvastatin in Caco-2 cell monolayer model and affected apparent permeability coefficient and apparent permeability of rosuvastatin. Active transport and passive diffusion absorption existed in transepithelial transport of rosuvastatin in Caco-2 cell model. Ursolic acid had no effect on transport of rosuvastatin in Caco-2 cell monolayer. The result indicated that ursolic acid may not cause effect on intestinal absorption of rosuvastatin.

  9. Arnold Diffusion of Charged Particles in ABC Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Luque, Alejandro; Peralta-Salas, Daniel

    2017-06-01

    We prove the existence of diffusing solutions in the motion of a charged particle in the presence of ABC magnetic fields. The equations of motion are modeled by a 3DOF Hamiltonian system depending on two parameters. For small values of these parameters, we obtain a normally hyperbolic invariant manifold and we apply the so-called geometric methods for a priori unstable systems developed by A. Delshams, R. de la Llave and T.M. Seara. We characterize explicitly sufficient conditions for the existence of a transition chain of invariant tori having heteroclinic connections, thus obtaining global instability (Arnold diffusion). We also check the obtained conditions in a computer-assisted proof. ABC magnetic fields are the simplest force-free-type solutions of the magnetohydrodynamics equations with periodic boundary conditions, and can be considered as an elementary model for the motion of plasma-charged particles in a tokamak.

  10. Evolutionary Analysis of MIKCc-Type MADS-Box Genes in Gymnosperms and Angiosperms

    PubMed Central

    Chen, Fei; Zhang, Xingtan; Liu, Xing; Zhang, Liangsheng

    2017-01-01

    MIKCc-type MADS-box genes encode transcription factors that control floral organ morphogenesis and flowering time in flowering plants. Here, in order to determine when the subfamilies of MIKCc originated and their early evolutionary trajectory, we sampled and analyzed the genomes and large-scale transcriptomes representing all the orders of gymnosperms and basal angiosperms. Through phylogenetic inference, the MIKCc-type MADS-box genes were subdivided into 14 monophyletic clades. Among them, the gymnosperm orthologs of AGL6, SEP, AP1, GMADS, SOC1, AGL32, AP3/PI, SVP, AGL15, ANR1, and AG were identified. We identified and characterized the origin of a novel subfamily GMADS within gymnosperms but lost orthologs in monocots and Brassicaceae. ABCE model prototype genes were relatively conserved in terms of gene number in gymnosperms, but expanded in angiosperms, whereas SVP, SOC1, and GMADS had dramatic expansions in gymnosperms but conserved in angiosperms. Our results provided the most detailed evolutionary history of all MIKCc gene clades in gymnosperms and angiosperms. We proposed that although the near complete set of MIKCc genes had evolved in gymnosperms, the duplication and expressional transition of ABCE model MIKCc genes in the ancestor of angiosperms triggered the first flower. PMID:28611810

  11. Evolutionary Analysis of MIKCc-Type MADS-Box Genes in Gymnosperms and Angiosperms.

    PubMed

    Chen, Fei; Zhang, Xingtan; Liu, Xing; Zhang, Liangsheng

    2017-01-01

    MIKC c -type MADS-box genes encode transcription factors that control floral organ morphogenesis and flowering time in flowering plants. Here, in order to determine when the subfamilies of MIKC c originated and their early evolutionary trajectory, we sampled and analyzed the genomes and large-scale transcriptomes representing all the orders of gymnosperms and basal angiosperms. Through phylogenetic inference, the MIKC c -type MADS-box genes were subdivided into 14 monophyletic clades. Among them, the gymnosperm orthologs of AGL6, SEP , AP1 , GMADS , SOC1 , AGL32 , AP3 / PI , SVP , AGL15 , ANR1 , and AG were identified. We identified and characterized the origin of a novel subfamily GMADS within gymnosperms but lost orthologs in monocots and Brassicaceae. ABCE model prototype genes were relatively conserved in terms of gene number in gymnosperms, but expanded in angiosperms, whereas SVP , SOC1 , and GMADS had dramatic expansions in gymnosperms but conserved in angiosperms. Our results provided the most detailed evolutionary history of all MIKC c gene clades in gymnosperms and angiosperms. We proposed that although the near complete set of MIKC c genes had evolved in gymnosperms, the duplication and expressional transition of ABCE model MIKC c genes in the ancestor of angiosperms triggered the first flower.

  12. Know a Baby Who Needs Help? Call ABC.

    ERIC Educational Resources Information Center

    Kromer, Megan E.

    The booklet describes Project ABC (Any Baby Can), a model networking effort to promote coordinated services for disabled and high-risk infants in San Antonio, Texas. The model features a volunteer, grass-roots emphasis in an aggressive community awareness campaign with a long-term goal of improving the effectiveness of social services and health…

  13. Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification.

    PubMed

    Alshamlan, Hala M; Badr, Ghada H; Alohali, Yousef A

    2015-06-01

    Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effect of drug efflux transporters on placental transport of antiretroviral agent abacavir.

    PubMed

    Neumanova, Zuzana; Cerveny, Lukas; Greenwood, Susan L; Ceckova, Martina; Staud, Frantisek

    2015-11-01

    Abacavir is as a frequent part of combination antiretroviral therapy used in pregnant women. The aim of this study was to investigate, using in vitro, in situ and ex vivo experimental approaches, whether the transplacental pharmacokinetics of abacavir is affected by ATP-binding cassette (ABC) efflux transporters functionally expressed in the placenta: P-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2), multidrug resistance-associated protein 2 (ABCC2) and multidrug resistance-associated protein 5 (ABCC5). In vitro transport assays revealed that abacavir is a substrate of human ABCB1 and ABCG2 transporters but not of ABCC2 or ABCC5. In addition, in situ experiments using dually perfused rat term placenta confirmed interactions of abacavir with placental Abcb1/Abcg2. In contrast, uptake studies in human placental villous fragments did not reveal any interaction of abacavir with efflux transporters suggesting a large contribution of passive diffusion and/or influx mechanisms to net transplacental abacavir transfer. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Structural Validity of the Movement ABC-2 Test: Factor Structure Comparisons across Three Age Groups

    ERIC Educational Resources Information Center

    Schulz, Joerg; Henderson, Sheila E.; Sugden, David A.; Barnett, Anna L.

    2011-01-01

    Background: The Movement ABC test is one of the most widely used assessments in the field of Developmental Coordination Disorder (DCD). Improvements to the 2nd edition of the test (M-ABC-2) include an extension of the age range and reduction in the number of age bands as well as revision of tasks. The total test score provides a measure of motor…

  16. Comprehensive Analysis of the Soybean (Glycine max) GmLAX Auxin Transporter Gene Family

    PubMed Central

    Chai, Chenglin; Wang, Yongqin; Valliyodan, Babu; Nguyen, Henry T.

    2016-01-01

    The phytohormone auxin plays a critical role in regulation of plant growth and development as well as plant responses to abiotic stresses. This is mainly achieved through its uneven distribution in plant via a polar auxin transport process. Auxin transporters are major players in polar auxin transport. The AUXIN RESISTENT 1/LIKE AUX1 (AUX/LAX) auxin influx carriers belong to the amino acid permease family of proton-driven transporters and function in the uptake of indole-3-acetic acid (IAA). In this study, genome-wide comprehensive analysis of the soybean AUX/LAX (GmLAX) gene family, including phylogenic relationships, chromosome localization, and gene structure, was carried out. A total of 15 GmLAX genes, including seven duplicated gene pairs, were identified in the soybean genome. They were distributed on 10 chromosomes. Despite their higher percentage identities at the protein level, GmLAXs exhibited versatile tissue-specific expression patterns, indicating coordinated functioning during plant growth and development. Most GmLAXs were responsive to drought and dehydration stresses and auxin and abscisic acid (ABA) stimuli, in a tissue- and/or time point- sensitive mode. Several GmLAX members were involved in responding to salt stress. Sequence analysis revealed that promoters of GmLAXs contained different combinations of stress-related cis-regulatory elements. These studies suggest that the soybean GmLAXs were under control of a very complex regulatory network, responding to various internal and external signals. This study helps to identity candidate GmLAXs for further analysis of their roles in soybean development and adaption to adverse environments. PMID:27014306

  17. The involvement of the nif-associated ferredoxin-like genes fdxA and fdxN of Herbaspirillum seropedicae in nitrogen fixation.

    PubMed

    Souza, André L F; Invitti, Adriana L; Rego, Fabiane G M; Monteiro, Rose A; Klassen, Giseli; Souza, Emanuel M; Chubatsu, Leda S; Pedrosa, Fábio O; Rigo, Liu U

    2010-02-01

    The pathway of electron transport to nitrogenase in the endophytic beta-Proteobacterium Herbaspirillum seropedicae has not been characterized. We have generated mutants in two nif-associated genes encoding putative ferredoxins, fdxA and fdxN. The fdxA gene is part of the operon nifHDKENXorf1orf2fdxAnifQmodABC and is transcribed from the nifH promoter, as revealed by lacZ gene fusion. The fdxN gene is probably cotranscribed with the nifB gene. Mutational analysis suggests that the FdxA protein is essential for maximum nitrogenase activity, since the nitrogenase activity of the fdxA mutant strain was reduced to about 30% of that of the wild-type strain. In addition, the fdxA mutation had no effect on the nitrogenase switch-off in response to ammonium. Nitrogenase activity of a mutant strain lacking the fdxN gene was completely abolished. This phenotype was reverted by complementation with fdxN expressed under lacZ promoter control. The results suggest that the products of both the fdxA and fdxN genes are probably involved in electron transfer during nitrogen fixation.

  18. The ABC of non-inferiority margin setting from indirect comparisons.

    PubMed

    Julious, Steven A

    2011-01-01

    In a non-inferiority trial to assess a new investigative treatment, there may need to be consideration of an indirect comparison with placebo using the active control in the current trial. We can, therefore, use the fact that there is a common active control in the comparisons of the investigative treatment and placebo. In analysing a non-inferiority trial, the ABC of: Assay sensitivity, Bias minimisation and Constancy assumption needs to be considered. It is highlighted how the ABC assumptions can potentially fail when there is placebo creep or a patient population shift. In this situation, the belief about the placebo response expressed in terms of a prior probability in Bayesian formulation could be used with the observed treatment effects to set the non-inferiority limit. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Adaptation in Caco-2 Human Intestinal Cell Differentiation and Phenolic Transport with Chronic Exposure to Blackberry (Rubus sp.) Extract.

    PubMed

    Redan, Benjamin W; Albaugh, George P; Charron, Craig S; Novotny, Janet A; Ferruzzi, Mario G

    2017-04-05

    As evidence mounts for a health-protective role of dietary phenolics, the importance of understanding factors influencing bioavailability increases. Recent evidence has suggested chronic exposure to phenolics may impact their absorption and metabolism. To explore alterations occurring from chronic dietary exposure to phenolics, Caco-2 cell monolayers were differentiated on Transwell inserts with 0-10 μM blackberry (Rubus sp.) total phenolics extracts rich in anthocyanins, flavonols, and phenolic acids. Following differentiation, apical to basolateral transport of phenolics was assessed from an acute treatment of 100 μM blackberry phenolics from 0 to 4 h. Additionally, differences in gene expression of transport and phase II metabolizing systems including ABC transporters, organic anion transporters (OATs), and uridine 5'-diphospho (UDP) glucuronosyltransferases (UGTs) were probed. After 4 h, 1 μM pretreated monolayers showed a significant (P < 0.05) decrease in the percentage of cumulative transport including less epicatechin (42.1 ± 0.53), kaempferol glucoside (23.5 ± 0.29), and dicaffeoylquinic acid (31.9 ± 0.20) compared to control. Finally, significant (P < 0.05) alterations in mRNA expression of key phase II metabolizing enzymes and transport proteins were observed with treatment. Therefore, adaptation to blackberry extract exposure may impact intestinal transport and metabolism of phenolics.

  20. Preclinical properties and human in vivo assessment of 123 I-ABC577 as a novel SPECT agent for imaging amyloid-β

    PubMed Central

    Okumura, Yuki; Kobayashi, Ryohei; Onishi, Takako; Shoyama, Yoshinari; Barret, Olivier; Alagille, David; Jennings, Danna; Marek, Kenneth; Seibyl, John; Tamagnan, Gilles; Tanaka, Akihiro; Shirakami, Yoshifumi

    2016-01-01

    Abstract Non-invasive imaging of amyloid-β in the brain, a hallmark of Alzheimer’s disease, may support earlier and more accurate diagnosis of the disease. In this study, we assessed the novel single photon emission computed tomography tracer 123 I-ABC577 as a potential imaging biomarker for amyloid-β in the brain. The radio-iodinated imidazopyridine derivative 123 I-ABC577 was designed as a candidate for a novel amyloid-β imaging agent. The binding affinity of 123 I-ABC577 for amyloid-β was evaluated by saturation binding assay and in vitro autoradiography using post-mortem Alzheimer’s disease brain tissue. Biodistribution experiments using normal rats were performed to evaluate the biokinetics of 123 I-ABC577. Furthermore, to validate 123 I-ABC577 as a biomarker for Alzheimer’s disease, we performed a clinical study to compare the brain uptake of 123 I-ABC577 in three patients with Alzheimer’s disease and three healthy control subjects. 123 I-ABC577 binding was quantified by use of the standardized uptake value ratio, which was calculated for the cortex using the cerebellum as a reference region. Standardized uptake value ratio images were visually scored as positive or negative. As a result, 123 I-ABC577 showed high binding affinity for amyloid-β and desirable pharmacokinetics in the preclinical studies. In the clinical study, 123 I-ABC577 was an effective marker for discriminating patients with Alzheimer’s disease from healthy control subjects based on visual images or the ratio of cortical-to-cerebellar binding. In patients with Alzheimer’s disease, 123 I-ABC577 demonstrated clear retention in cortical regions known to accumulate amyloid, such as the frontal cortex, temporal cortex, and posterior cingulate. In contrast, less, more diffuse, and non-specific uptake without localization to these key regions was observed in healthy controls. At 150 min after injection, the cortical standardized uptake value ratio increased by ∼60% in patients