Sample records for abcb1 crystal structure

  1. Analysis of ABCB phosphoglycoproteins (PGPs) and their contribution to monocot biomass, structural stability, and productivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Angus Stuart

    2014-09-23

    Efforts to manipulate production of plant secondary cell walls to improve the quality of biofuel feedstocks are currently limited by an inability to regulate the transport of small molecule components out of the cell. Plant ABCB p-glycoproteins are a small family of plasma membrane organic molecule transporters that have become primary targets for this effort, as they can potentially be harnessed to control the export of aromatic compounds and organic acids. However, unlike promiscuous mammalian ABCBs that function in multidrug resistance, all plant ABCB proteins characterized to date exhibit relatively narrow substrate specificity. Although ABCBs exhibit a highly conserved architecture,more » efforts to modify ABCB activity have been hampered by a lack of structural information largely because an eukaryotic ABCB protein crystal structure has yet to be obtained. Structure/ function analyses have been further impeded by the lack of a common heterologous expression system that can be used to characterize recombinant ABCB proteins, as many cannot be functionally expressed in S. cereviseae or other systems where proteins with analogous function can be readily knocked out. Using experimentally-determined plant ABCB substrate affinities and the crystal structure of the bacterial Sav1866 “half” ABC transporter, we have developed sequence/structure models for ABCBs that provide a testable context for mutational analysis of plant ABCB transporters. We have also developed a flexible heterologous expression system in Schizosaccharomyces pombe in which all endogenous ABC transporters have been knocked out. The effectiveness of this system for transport studies has been demonstrated by the successful functional expression all of the known PIN, AUX/LAX and ABCB auxin transporters. Our central hypothesis is that the domains of the ABCB proteins that we have identified as substrate docking sites and regulators of transport directionality can be altered or swapped to alter

  2. Genomewide analysis of ABCBs with a focus on ABCB1 and ABCB19 in Malus domestica.

    PubMed

    Ma, Juan Juan; Han, Mingyu

    2016-03-01

    The B subfamily of ATP-binding cassette (ABC) proteins (ABCB) plays a vital role in auxin efflux. However, no systematic study has been done in apple. In this study, we performed genomewide identification and expression analyses of the ABCB family in Malus domestica for the first time. We identified a total of 25 apple ABCBs that were divided into three clusters based on the phylogenetic analysis. Most ABCBs within the same cluster demonstrated a similar exon-intron organization. Additionally, the digital expression profiles of ABCB genes shed light on their functional divergence. ABCB1 and ABCB19 are two well-studied auxin efflux carrier genes, and we found that their expression levels are higher in young shoots of M106 than in young shoots ofM9. Since young shoots are the main source of auxin synthesis and auxin efflux involves in tree height control. This suggests that ABCB1 and ABCB19 may also take a part in the auxin efflux and tree height control in apple.

  3. Breed distribution of the ABCB1-1Delta (multidrug sensitivity) polymorphism among dogs undergoing ABCB1 genotyping.

    PubMed

    Mealey, Katrina L; Meurs, Kathryn M

    2008-09-15

    To evaluate the breed distribution of the ABCB1-1Delta polymorphism in a large number of dogs in North America, including dogs of several herding breeds in which this polymorphism has been detected and other breeds in which this polymorphism has not yet been identified. Cross-sectional study. 5,368 dogs from which buccal swab samples were collected for purposes of ABCB1 genotyping. From May 1, 2004, to September 30, 2007, DNA specimens derived from buccal swab samples collected from 5,368 dogs underwent ABCB1 genotyping. These data were reviewed, and results for each dog were recorded in a spreadsheet, along with the dog's breed. The genotypes for each breed were tallied by use of a sorting function. The ABCB1-1Delta allele was identified in 9 breeds of dogs and in many mixed-breed dogs. Breeds that had the ABCB1-1Delta allele included Collie, Longhaired Whippet, Australian Shepherd (standard and miniature), Shetland Sheepdog, Old English Sheepdog, Border Collie, Silken Windhound, and German Shepherd Dog (a breed in which this mutation had not been detected previously). The ABCB1-1Delta polymorphism is associated with increased susceptibility to many adverse drug reactions and with suppression of the hypothalamic-pituitary-adrenal axis and is present in many herding breeds of dog. Veterinarians should be familiar with the breeds that have the ABCB1-1Delta polymorphism to make appropriate pharmacologic choices for these patients.

  4. Molecular model of the outward facing state of the human P-glycoprotein (ABCB1), and comparison to a model of the human MRP5 (ABCC5)

    PubMed Central

    Ravna, Aina W; Sylte, Ingebrigt; Sager, Georg

    2007-01-01

    Background Multidrug resistance is a particular limitation to cancer chemotherapy, antibiotic treatment and HIV medication. The ABC (ATP binding cassette) transporters human P-glycoprotein (ABCB1) and the human MRP5 (ABCC5) are involved in multidrug resistance. Results In order to elucidate structural and molecular concepts of multidrug resistance, we have constructed a molecular model of the ATP-bound outward facing conformation of the human multidrug resistance protein ABCB1 using the Sav1866 crystal structure as a template, and compared the ABCB1 model with a previous ABCC5 model. The electrostatic potential surface (EPS) of the ABCB1 substrate translocation chamber, which transports cationic amphiphilic and lipophilic substrates, was neutral with negative and weakly positive areas. In contrast, EPS of the ABCC5 substrate translocation chamber, which transports organic anions, was generally positive. Positive-negative ratios of amino acids in the TMDs of ABCB1 and ABCC5 were also analyzed, and the positive-negative ratio of charged amino acids was higher in the ABCC5 TMDs than in the ABCB1 TMDs. In the ABCB1 model residues Leu65 (transmembrane helix 1 (TMH1)), Ile306 (TMH5), Ile340 (TMH6) and Phe343 (TMH6) may form a binding site, and this is in accordance with previous site directed mutagenesis studies. Conclusion The Sav1866 X-ray structure may serve as a suitable template for the ABCB1 model, as it did with ABCC5. The EPS in the substrate translocation chambers and the positive-negative ratio of charged amino acids were in accordance with the transport of cationic amphiphilic and lipophilic substrates by ABCB1, and the transport of organic anions by ABCC5. PMID:17803828

  5. Uncaria alkaloids reverse ABCB1-mediated cancer multidrug resistance

    PubMed Central

    Huang, Bao-Yuan; Zeng, Yu; Li, Ying-Jie; Huang, Xiao-Jun; Hu, Nan; Yao, Nan; Chen, Min-Feng; Yang, Zai-Gang; Chen, Zhe-Sheng; Zhang, Dong-Mei; Zeng, Chang-Qing

    2017-01-01

    The overexpression of ATP-binding cassette (ABC) transporters is the main cause of cancer multidrug resistance (MDR), which leads to chemotherapy failure. Uncaria alkaloids are the major active components isolated from uncaria, which is a common Chinese herbal medicine. In this study, the MDR-reversal activities of uncaria alkaloids, including rhynchophylline, isorhynchophylline, corynoxeine, isocorynoxeine (Icory), hirsutine and hirsuteine, were screened; they all exhibited potent reversal efficacy when combined with doxorubicin. Among them, Icory significantly sensitized ABCB1-overexpressing HepG2/ADM and MCF-7/ADR cells to vincristine, doxorubicin and paclitaxel, but not to the non-ABCB1 substrate cisplatin. Noteworthy, Icory selectively reversed ABCB1-overexpressing MDR cancer cells but not ABCC1- or ABCG2-mediated MDR. Further mechanistic study revealed that Icory increased the intracellular accumulation of doxorubicin in ABCB1-overexpressing cells by blocking the efflux function of ABCB1. Instead of inhibiting ABCB1 expression and localization, Icory acts as a substrate of the ABCB1 transporter by competitively binding to substrate binding sites. Collectively, these results indicated that Icory reversed ABCB1-mediated MDR by suppressing its efflux function, and it would be beneficial to increase the efficacy of these types of uncaria alkaloids and develop them to be selective ABCB1-mediated MDR-reversal agents. PMID:28534954

  6. Karanjin interferes with ABCB1, ABCC1, and ABCG2.

    PubMed

    Michaelis, Martin; Rothweiler, Florian; Nerreter, Thomas; Sharifi, Mohsen; Ghafourian, Taravat; Cinatl, Jindrich

    2014-01-01

    The prominent ATP-binding cassette (ABC) transporters ABCB1, ABCC1, and ABCG2 are involved in substance transport across physiological barriers and therefore in drug absorption, distribution, and elimination. They also mediate multi-drug resistance in cancer cells. Different flavonoids are known to interfere with different ABC transporters. Here, the effect of the furanoflavonol karanjin, a potential drug with antiglycaemic, gastroprotective, antifungal, and antibacterial effects, was investigated on ABCB1, ABCC1, and ABCG2-mediated drug transport in comparison to the flavonoids apigenin, genistein, and naringenin. Cells expressing the relevant transporters (ABCB1: UKF-NB-3(ABCB1), UKF-NB-3(r)VCR¹⁰; ABCC1: G62, PC-3(r)VCR²⁰; ABCG2: UKF-NB-3(ABCG2)) were used in combination with specific fluorescent and cytotoxic ABC transporter substrates and ABC transporter inhibitors to study ABC transporter function. Moreover, the effects of the investigated flavonoids were determined on the ABC transporter ATPase activities. Karanjin interfered with drug efflux mediated by ABCB1, ABCC1, and ABCG2 and enhanced the ATPase activity of all three transporters. Moreover, karanjin exerted more pronounced effects than the control flavonoids apigenin, genistein, and naringenin on all three transporters. Most notably, karanjin interfered with ABCB1 at low concentrations being about 1 µM. Taken together, these findings should be taken into account during further consideration of karanjin as a potential drug for different therapeutic indications. The effects on ABCB1, ABCC1, and ABCG2 may affect the pharmacokinetics of co-administered drugs.

  7. ABCB1-1Delta polymorphism can predict hematologic toxicity in dogs treated with vincristine.

    PubMed

    Mealey, K L; Fidel, J; Gay, J M; Impellizeri, J A; Clifford, C A; Bergman, P J

    2008-01-01

    Dogs that harbor the naturally occurring ABCB1-1Delta polymorphism experience increased susceptibility to avermectin-induced neurological toxicosis as a result of deficient P-glycoprotein function. Whether or not the ABCB1-1Delta polymorphism affects susceptibility to toxicity of other P-glycoprotein substrate drugs has not been studied. Dogs that possess the ABCB1-1Delta mutation are more likely to develop hematologic toxicity associated with vincristine than ABCB1 wild-type dogs. Thirty-four dogs diagnosed with lymphoma were included in this study. Cheek swab samples were obtained from dogs diagnosed with lymphoma that were to be treated with vincristine. DNA was extracted from cheek swabs and the ABCB1 genotype was determined. Hematologic adverse drug reactions were recorded for each dog and graded according to the Veterinary Comparative Oncology Group's criteria for adverse event reporting (Consensus Document). In order to avoid possible bias, ABCB1 genotype results for a particular patient were not disclosed to oncologists until an initial adverse event report had been submitted. Dogs heterozygous or homozygous for the ABCB1-1Delta mutation were significantly more likely to develop hematologic toxicity, specifically neutropenia (P= .0005) and thrombocytopenia (P= .0001), after treatment with vincristine than ABCB1 wild-type dogs. At currently recommended dosages (0.5-0.7 mg/M(2)), vincristine is likely to cause hematologic toxicity in dogs with the ABCB1-1Delta mutation, resulting in treatment delays and unacceptable morbidity and mortality. Assessing the ABCB1-1Delta genotype before vincristine administration and decreasing the dosage may prevent toxicity and treatment delays resulting from neutropenia or thrombocytopenia.

  8. Investigating the dynamic nature of the ABC transporters: ABCB1 and MsbA as examples for the potential synergies of MD theory and EPR applications.

    PubMed

    Stockner, Thomas; Mullen, Anna; MacMillan, Fraser

    2015-10-01

    ABC transporters are primary active transporters found in all kingdoms of life. Human multidrug resistance transporter ABCB1, or P-glycoprotein, has an extremely broad substrate spectrum and confers resistance against chemotherapy drug treatment in cancer cells. The bacterial ABC transporter MsbA is a lipid A flippase and a homolog to the human ABCB1 transporter, with which it partially shares its substrate spectrum. Crystal structures of MsbA and ABCB1 have been solved in multiple conformations, providing a glimpse into the possible conformational changes the transporter could be going through during the transport cycle. Crystal structures are inherently static, while a dynamic picture of the transporter in motion is needed for a complete understanding of transporter function. Molecular dynamics (MD) simulations and electron paramagnetic resonance (EPR) spectroscopy can provide structural information on ABC transporters, but the strength of these two methods lies in the potential to characterise the dynamic regime of these transporters. Information from the two methods is quite complementary. MD simulations provide an all atom dynamic picture of the time evolution of the molecular system, though with a narrow time window. EPR spectroscopy can probe structural, environmental and dynamic properties of the transporter in several time regimes, but only through the attachment sites of an exogenous spin label. In this review the synergistic effects that can be achieved by combining the two methods are highlighted, and a brief methodological background is also presented. © 2015 Authors; published by Portland Press Limited.

  9. ABCB1 as predominant resistance mechanism in cells with acquired SNS-032 resistance

    PubMed Central

    Rothweiler, Florian; Voges, Yvonne; Balónová, Barbora; Blight, Barry A.; Cinatl, Jindrich

    2016-01-01

    The CDK inhibitor SNS-032 had previously exerted promising anti-neuroblastoma activity via CDK7 and 9 inhibition. ABCB1 expression was identified as major determinant of SNS-032 resistance. Here, we investigated the role of ABCB1 in acquired SNS-032 resistance. In contrast to ABCB1-expressing UKF-NB-3 sub-lines resistant to other ABCB1 substrates, SNS-032-adapted UKF-NB-3 (UKF-NB-3rSNS- 032300nM) cells remained sensitive to the non-ABCB1 substrate cisplatin and were completely re-sensitized to cytotoxic ABCB1 substrates by ABCB1 inhibition. Moreover, UKF-NB-3rSNS-032300nM cells remained similarly sensitive to CDK7 and 9 inhibition as UKF-NB-3 cells. In contrast, SHEPrSNS-0322000nM, the SNS-032-resistant sub-line of the neuroblastoma cell line SHEP, displayed low level SNS-032 resistance also when ABCB1 was inhibited. This discrepancy may be explained by the higher SNS-032 concentrations that were used to establish SHEPrSNS-0322000nM cells, since SHEP cells intrinsically express ABCB1 and are less sensitive to SNS-032 (IC50 912 nM) than UKF-NB-3 cells (IC50 153 nM). In conclusion, we show that ABCB1 expression represents the primary (sometimes exclusive) resistance mechanism in neuroblastoma cells with acquired resistance to SNS-032. Thus, ABCB1 inhibitors may increase the SNS-032 efficacy in ABCB1-expressing cells and prolong or avoid resistance formation. PMID:27517323

  10. ABCB1 gene polymorphisms and violent suicide attempt among survivors.

    PubMed

    Peñas-Lledó, E; Guillaume, S; Delgado, A; Naranjo, M E G; Jaussent, I; LLerena, A; Courtet, P

    2015-02-01

    Those suicide attempters that choose violent methods dramatically diminish the possibility of survival. Completed suicide using violent means, which is common among first-time suicide attempters, was recently found to be more likely among T allele carriers in the three most common ABCB1 SNPs, encoding for P-gp. Thus, this study examined, for the first time, whether these ABCB1 SNPs were associated with the use of violent means among survivors of a suicide attempt. Suicide attempters (n = 578, 87.4% women; of whom 16.6% committed a violent intent) were genotyped for exonic SNPs in the ABCB1 (C1236T, G2677T/A, C3435T). The relations of the three genotypes and of the TTT haplotype with the use of a violent suicide method were evaluated separately. The impact of confounds on these variables was controlled. A higher frequency (p = 0.02) of suicide attempters using violent methods was found among those carrying the ABCB1 haplotype (1236TT-2677TT-3435TT). Since gender and number of previous suicide attempts were identified as confounds, the relation was tested in the subset of women who were first-time attempters or second- and more-time attempters. The ABCB1 haplotype increased the risk more than three times in those women attempting a violent suicide for the first time (OR = 3.6; CI95%: 1.08-12.09; p = 0.04). The ABCB1 haplotype (1236TT-2677TT-3435TT) was related to the use of a violent suicide attempt method. Genotyping for these three ABCB1 SNPs may be helpful to detect people at risk of first suicide intents using violent methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Genetic variability in ABCB1, occupational pesticide exposure, and Parkinson's disease.

    PubMed

    Narayan, Shilpa; Sinsheimer, Janet S; Paul, Kimberly C; Liew, Zeyan; Cockburn, Myles; Bronstein, Jeff M; Ritz, Beate

    2015-11-01

    Studies suggested that variants in the ABCB1 gene encoding P-glycoprotein, a xenobiotic transporter, may increase susceptibility to pesticide exposures linked to Parkinson's Disease (PD) risk. To investigate the joint impact of two ABCB1 polymorphisms and pesticide exposures on PD risk. In a population-based case control study, we genotyped ABCB1 gene variants at rs1045642 (c.3435C/T) and rs2032582 (c.2677G/T/A) and assessed occupational exposures to organochlorine (OC) and organophosphorus (OP) pesticides based on self-reported occupational use and record-based ambient workplace exposures for 282 PD cases and 514 controls of European ancestry. We identified active ingredients in self-reported occupational use pesticides from a California database and estimated ambient workplace exposures between 1974 and 1999 employing a geographic information system together with records for state pesticide and land use. With unconditional logistic regression, we estimated marginal and joint contributions for occupational pesticide exposures and ABCB1 variants in PD. For occupationally exposed carriers of homozygous ABCB1 variant genotypes, we estimated odds ratios of 1.89 [95% confidence interval (CI): (0.87, 4.07)] to 3.71 [95% CI: (1.96, 7.02)], with the highest odds ratios estimated for occupationally exposed carriers of homozygous ABCB1 variant genotypes at both SNPs; but we found no multiplicative scale interactions. This study lends support to a previous report that commonly used pesticides, specifically OCs and OPs, and variant ABCB1 genotypes at two polymorphic sites jointly increase risk of PD. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. ABCB1 haplotype and OPRM1 118A > G genotype interaction in methadone maintenance treatment pharmacogenetics

    PubMed Central

    Barratt, Daniel T; Coller, Janet K; Hallinan, Richard; Byrne, Andrew; White, Jason M; Foster, David JR; Somogyi, Andrew A

    2012-01-01

    Background: Genetic variability in ABCB1, encoding the P-glycoprotein efflux transporter, has been linked to altered methadone maintenance treatment dose requirements. However, subsequent studies have indicated that additional environmental or genetic factors may confound ABCB1 pharmacogenetics in different methadone maintenance treatment settings. There is evidence that genetic variability in OPRM1, encoding the mu opioid receptor, and ABCB1 may interact to affect morphine response in opposite ways. This study aimed to examine whether a similar gene-gene interaction occurs for methadone in methadone maintenance treatment. Methods: Opioid-dependent subjects (n = 119) maintained on methadone (15–300 mg/day) were genotyped for five single nucleotide polymorphisms of ABCB1 (61A > G; 1199G > A; 1236C > T; 2677G > T; 3435C > T), as well as for the OPRM1 118A > G single nucleotide polymorphism. Subjects’ methadone doses and trough plasma (R)-methadone concentrations (Ctrough) were compared between ABCB1 haplotypes (with and without controlling for OPRM1 genotype), and between OPRM1 genotypes (with and without controlling for ABCB1 haplotype). Results: Among wild-type OPRM1 subjects, an ABCB1 variant haplotype group (subjects with a wild-type and 61A:1199G:1236C:2677T:3435T haplotype combination, or homozygous for the 61A:1199G:1236C:2677T:3435T haplotype) had significantly lower doses (median ± standard deviation 35 ± 5 versus 180 ± 65 mg/day, P < 0.01) and Ctrough (78 ± 22 versus 177 ± 97 ng/mL, P < 0.05) than ABCB1 wild-type subjects. Among subjects with the most common ABCB1 haplotype combination (wild-type with 61A:1199G:1236T:2677T:3435T), the OPRM1 118 A/G genotype was associated with a significantly higher Ctrough than 118 A/A (250 ± 126 versus 108 ± 36 ng/mL, P = 0.016). No ABCB1 haplotype group or OPRM1 genotype was associated with dose or Ctrough without taking into account confounding genetic variability at the other locus. Therefore, two

  13. Carfilzomib resistance due to ABCB1/MDR1 overexpression is overcome by nelfinavir and lopinavir in multiple myeloma

    PubMed Central

    Besse, A; Stolze, S C; Rasche, L; Weinhold, N; Morgan, G J; Kraus, M; Bader, J; Overkleeft, H S; Besse, L; Driessen, C

    2018-01-01

    Proteasome inhibitor (PI) carfilzomib (CFZ) has activity superior to bortezomib (BTZ) and is increasingly incorporated in multiple myeloma (MM) frontline therapy and relapsed settings. Most MM patients ultimately experience PI-refractory disease, an unmet medical need with poorly understood biology and dismal outcome. Pharmacologic targeting of ABCB1 improved patient outcomes, including MM, but suffered from adverse drug effects and insufficient plasma concentrations. Proteomics analysis identified ABCB1 overexpression as the most significant change in CFZ-resistant MM cells. We addressed the functional role of ABCB1 overexpression in MM and observed significantly upregulated ABCB1 in peripheral blood malignant plasma cells (PCs) vs untreated patients’ bone marrow PC. ABCB1 overexpression reduces the proteasome-inhibiting activity of CFZ due to drug efflux, in contrast to BTZ. Likewise, the cytotoxicity of established anti-MM drugs was significantly reduced in ABCB1-expressing MM cells. In search for potential drugs targeting ABCB1 in clinical trials, we identified the HIV protease inhibitors nelfinavir (NFV) and lopinavir (LPV) as potent functional modulators of ABCB1-mediated drug export, most likely via modulation of mitochondria permeability transition pore. NFV and LPV restored CFZ activity at therapeutically relevant drug levels and thus represent ready-to-use drugs to be tested in clinical trials to target ABCB1 and to re-sensitize PC to established myeloma drugs, in particular CFZ. PMID:28676669

  14. LKB1/AMPK and PKA control ABCB11 trafficking and polarization in hepatocytes.

    PubMed

    Homolya, László; Fu, Dong; Sengupta, Prabuddha; Jarnik, Michal; Gillet, Jean-Pierre; Vitale-Cross, Lynn; Gutkind, J Silvio; Lippincott-Schwartz, Jennifer; Arias, Irwin M

    2014-01-01

    Polarization of hepatocytes is manifested by bile canalicular network formation and activation of LKB1 and AMPK, which control cellular energy metabolism. The bile acid, taurocholate, also regulates development of the canalicular network through activation of AMPK. In the present study, we used collagen sandwich hepatocyte cultures from control and liver-specific LKB1 knockout mice to examine the role of LKB1 in trafficking of ABCB11, the canalicular bile acid transporter. In polarized hepatocytes, ABCB11 traffics from Golgi to the apical plasma membrane and endogenously cycles through the rab 11a-myosin Vb recycling endosomal system. LKB1 knockout mice were jaundiced, lost weight and manifested impaired bile canalicular formation and intracellular trafficking of ABCB11, and died within three weeks. Using live cell imaging, fluorescence recovery after photobleaching (FRAP), particle tracking, and biochemistry, we found that LKB1 activity is required for microtubule-dependent trafficking of ABCB11 to the canalicular membrane. In control hepatocytes, ABCB11 trafficking was accelerated by taurocholate and cAMP; however, in LKB1 knockout hepatocytes, ABCB11 trafficking to the apical membrane was greatly reduced and restored only by cAMP, but not taurocholate. cAMP acted through a PKA-mediated pathway which did not activate AMPK. Our studies establish a regulatory role for LKB1 in ABCB11 trafficking to the canalicular membrane, hepatocyte polarization, and canalicular network formation.

  15. The multidrug resistance 1 gene Abcb1 in brain and placenta: comparative analysis in human and guinea pig.

    PubMed

    Pappas, Jane J; Petropoulos, Sophie; Suderman, Matthew; Iqbal, Majid; Moisiadis, Vasilis; Turecki, Gustavo; Matthews, Stephen G; Szyf, Moshe

    2014-01-01

    The Multidrug Resistance 1 (MDR1; alternatively ABCB1) gene product P-glycoprotein (P-gp), an ATP binding cassette transporter, extrudes multiple endogenous and exogenous substrates from the cell, playing an important role in normal physiology and xenobiotic distribution and bioavailability. To date, the predominant animal models used to investigate the role of P-gp have been the mouse and rat, which have two distinct genes, Abcb1a and Abcb1b. In contrast, the human has a single gene, ABCB1, for which only a single isoform has been validated. We and others have previously shown important differences between Abcb1a and Abcb1b, limiting the extrapolation from rodent findings to the human. Since the guinea pig has a relatively long gestation, hemomonochorial placentation and neuroanatomically mature offspring, it is more similar to the human, and may provide a more comparable model for investigating the regulation of P-gp in the brain and placenta, however, to date, the Abcb1 gene in the guinea pig remains to be characterized. The placenta and fetal brain are barrier sites that express P-gp and that play a critical role of protection of the fetus and the fetal brain from maternally administered drugs and other xenobiotics. Using RNA sequencing (RNA-seq), reverse transcription-polymerase chain reaction (RT-PCR) and quantitative PCR (QPCR) to sequence the expressed isoforms of guinea pig Abcb1, we demonstrate that like the human, the guinea pig genome contains one gene for Abcb1 but that it is expressed as at least three different isoforms via alternative splicing and alternate exon usage. Further, we demonstrate that these isoforms are more closely related to human than to rat or mouse isoforms. This striking, overall similarity and evolutionary relatedness between guinea pig Abcb1 and human ABCB1 indicate that the guinea pig represents a relevant animal model for investigating the function and regulation of P-gp in the placenta and brain.

  16. The Multidrug Resistance 1 Gene Abcb1 in Brain and Placenta: Comparative Analysis in Human and Guinea Pig

    PubMed Central

    Pappas, Jane J.; Petropoulos, Sophie; Suderman, Matthew; Iqbal, Majid; Moisiadis, Vasilis; Turecki, Gustavo; Matthews, Stephen G.; Szyf, Moshe

    2014-01-01

    The Multidrug Resistance 1 (MDR1; alternatively ABCB1) gene product P-glycoprotein (P-gp), an ATP binding cassette transporter, extrudes multiple endogenous and exogenous substrates from the cell, playing an important role in normal physiology and xenobiotic distribution and bioavailability. To date, the predominant animal models used to investigate the role of P-gp have been the mouse and rat, which have two distinct genes, Abcb1a and Abcb1b. In contrast, the human has a single gene, ABCB1, for which only a single isoform has been validated. We and others have previously shown important differences between Abcb1a and Abcb1b, limiting the extrapolation from rodent findings to the human. Since the guinea pig has a relatively long gestation, hemomonochorial placentation and neuroanatomically mature offspring, it is more similar to the human, and may provide a more comparable model for investigating the regulation of P-gp in the brain and placenta, however, to date, the Abcb1 gene in the guinea pig remains to be characterized. The placenta and fetal brain are barrier sites that express P-gp and that play a critical role of protection of the fetus and the fetal brain from maternally administered drugs and other xenobiotics. Using RNA sequencing (RNA-seq), reverse transcription-polymerase chain reaction (RT-PCR) and quantitative PCR (QPCR) to sequence the expressed isoforms of guinea pig Abcb1, we demonstrate that like the human, the guinea pig genome contains one gene for Abcb1 but that it is expressed as at least three different isoforms via alternative splicing and alternate exon usage. Further, we demonstrate that these isoforms are more closely related to human than to rat or mouse isoforms. This striking, overall similarity and evolutionary relatedness between guinea pig Abcb1 and human ABCB1 indicate that the guinea pig represents a relevant animal model for investigating the function and regulation of P-gp in the placenta and brain. PMID:25353162

  17. ABCB1 polymorphisms are associated with clozapine plasma levels in psychotic patients.

    PubMed

    Consoli, Giorgio; Lastella, Marianna; Ciapparelli, Antonio; Catena Dell'Osso, Mario; Ciofi, Laura; Guidotti, Emanuele; Danesi, Romano; Dell'Osso, Liliana; Del Tacca, Mario; Di Paolo, Antonello

    2009-08-01

    ABCB1 is a transmembrane transporter that is expressed in excretory organs (kidneys and liver), in intestine mucosa and on the blood-brain barrier. Because of the particular distribution of the protein, the activity of ABCB1 may significantly affect drug pharmacokinetics during absorption and distribution. Of note, several SNPs of ABCB1 are known and many of them affect transporter activity and/or expression. In this view, changes in the pharmacokinetics of drugs that are ABCB1 substrates could be clinically relevant and the evaluation of ABCB1 SNPs should deserve particular attention. Therefore, the aim of the present study was to investigate the possible association between ABCB1 polymorphisms and clozapine plasma levels in psychotic patients. c.1236C>T (exon 12), c.2677G>T (exon 21) and c.3435C>T (exon 26) SNPs of ABCB1 were evaluated by PCR techniques, while plasma levels of clozapine and norclozapine were measured by HPLC in 40 men (aged, 47.6 +/- 16.6 years, median: 42 years) and 20 women (aged 40.7 +/- 11.4 years, median: 38 years) 1 month after the start of clozapine administration. A total of three SNPs were in Hardy-Weinberg equilibrium, with a calculated frequency of the wild-type alleles of 0.54, 0.55 and 0.45 for SNPs on exons 12, 21 and 26, respectively. Patients with c.3435CC or c.2677GG genotypes had significantly lower dose-normalized clozapine levels than those who were heterozygous or TT carriers. More interestingly, c.3435CC patients (15 subjects) needed significantly higher daily doses of clozapine (246 +/- 142 mg/day) compared with the remaining 24 CT and 21 TT patients (140 +/- 90 mg/day) in order to achieve the same clinical benefit. c.3435CC patients require higher clozapine doses to achieve the same plasma concentrations as CT or TT patients, and ABCB1 genotyping should be considered as a novel strategy that should improve drug use.

  18. ABCB1 identifies a subpopulation of uveal melanoma cells with high metastatic propensity

    PubMed Central

    Landreville, Solange; Agapova, Olga A.; Kneass, Zachary T.; Salesse, Christian; Harbour, J. William

    2011-01-01

    SUMMARY Metastasis of tumor cells to distant organs is the leading cause of death in melanoma. Yet, the mechanisms of metastasis remain poorly understood. One key question is whether all cells in a primary tumor are equally likely to metastasize or whether subpopulations of cells preferentially give rise to metastases. Here, we identified a subpopulation of uveal melanoma cells expressing the multidrug resistance transporter ABCB1 that are highly metastatic compared to ABCB1− bulk tumor cells. ABCB1+ cells also exhibited enhanced clonogenicity, anchorage independent growth, tumorigenicity and mitochondrial activity compared to ABCB1− cells. A375 cutaneous melanoma cells contained a similar subpopulation of highly metastatic ABCB1+ cells. These findings suggest that some uveal melanoma cells have greater potential for metastasis than others, and that a better understanding of such cells may be necessary for more successful therapies for metastatic melanoma. PMID:21575142

  19. Osimertinib (AZD9291), a Mutant-Selective EGFR Inhibitor, Reverses ABCB1-Mediated Drug Resistance in Cancer Cells.

    PubMed

    Zhang, Xiao-Yu; Zhang, Yun-Kai; Wang, Yi-Jun; Gupta, Pranav; Zeng, Leli; Xu, Megan; Wang, Xiu-Qi; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-09-15

    In recent years, tyrosine kinase inhibitors (TKIs) have been shown capable of inhibiting the ATP-binding cassette (ABC) transporter-mediated multidrug resistance (MDR). In this study, we determine whether osimertinib, a novel selective, irreversible EGFR (epidermal growth factor receptor) TKI, could reverse ABC transporter-mediated MDR. The results showed that, at non-toxic concentrations, osimertinib significantly sensitized both ABCB1-transfected and drug-selected cell lines to substrate anticancer drugs colchicine, paclitaxel, and vincristine. Osimertinib significantly increased the accumulation of [³H]-paclitaxel in ABCB1 overexpressing cells by blocking the efflux function of ABCB1 transporter. In contrast, no significant alteration in the expression levels and localization pattern of ABCB1 was observed when ABCB1 overexpressing cells were exposed to 0.3 µM osimertinib for 72 h. In addition, ATPase assay showed osimertinib stimulated ABCB1 ATPase activity. Molecular docking and molecular dynamic simulations showed osimertinib has strong and stable interactions at the transmembrane domain of human homology ABCB1. Taken together, our findings suggest that osimertinib, a clinically-approved third-generation EGFR TKI, can reverse ABCB1-mediated MDR, which supports the combination therapy with osimertinib and ABCB1 substrates may potentially be a novel therapeutic stategy in ABCB1-positive drug resistant cancers.

  20. Tangeretin, a citrus pentamethoxyflavone, antagonizes ABCB1-mediated multidrug resistance by inhibiting its transport function.

    PubMed

    Feng, Sen-Ling; Yuan, Zhong-Wen; Yao, Xiao-Jun; Ma, Wen-Zhe; Liu, Liang; Liu, Zhong-Qiu; Xie, Ying

    2016-08-01

    Multidrug resistance (MDR) and tumor metastasis are the main causes of chemotherapeutic treatment failure and mortality in cancer patients. In this study, at achievable nontoxic plasma concentrations, citrus flavonoid tangeretin has been shown to reverse ABCB1-mediated cancer resistance to a variety of chemotherapeutic agents effectively. Co-treatment of cells with tangeretin and paclitaxel activated apoptosis as well as arrested cell cycle at G2/M-phase. Tangeretin profoundly inhibited the ABCB1 transporter activity since it significantly increased the intracellular accumulation of doxorubicin, and flutax-2 in A2780/T cells and decreased the efflux of ABCB1 substrates in Caco2 cells without altering the expression of ABCB1. Moreover, it stimulated the ATPase activity and inhibited verapamil-stimulated ATPase activity in a concentration-dependent manner, indicating a direct interaction with the transporter. The molecular docking results indicated a favorable binding of tangeretin with the transmemberane region site 1 of homology modeled ABCB1 transporter. The overall results demonstrated that tangeretin could sensitize ABCB1-overexpressing cancer cells to chemotherapeutical agents by directly inhibiting ABCB1 transporter function, which encouraged further animal and clinical studies in the treatment of resistant cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Genetic association of NOS1 exon18, NOS1 exon29, ABCB1 1236C/T, and ABCB1 3435C/T polymorphisms with the risk of Parkinson's disease

    PubMed Central

    Huang, Hongbin; Peng, Cong; Liu, Yong; Liu, Xu; Chen, Qicong; Huang, Zunnan

    2016-01-01

    Abstract Background: Parkinson's disease (PD) is the second most frequent neurodegenerative disorder. Previous publications have investigated the association of NOS1 and ABCB1 polymorphisms with PD risk. However, those studies have provided some contradictory results. Methods: Literature searches were performed using PubMed, Embase, PDgene, China National Knowledge Infrastructure database, and Google Scholar. Odds ratios (ORs) with 95% confidence intervals (CIs) were applied to evaluate the strength of association. Results: The analysis results indicated that NOS1 exon18 polymorphism was associated with developing PD in 4 genetic models (allelic: OR = 1.25, 95%CI 1.09–1.44, P = 0.001; homozygous: OR = 1.79, 95%CI 1.32–2.45, P < 0.001; recessive: OR = 1.70, 95%CI 1.26–2.28, P < 0.001; dominant: OR = 1.22, 95%CI 1.02–1.46, P = 0.03), whereas exon29 polymorphism was not correlated to PD susceptibility. In addition, ABCB1 1236C/T polymorphism was related to PD in the recessive (OR = 0.80, 95%CI 0.66–0.97, P = 0.025) and overdominant (OR = 1.21, 95%CI 1.03–1.43, P = 0.02) models, which might indicate the opposite effects of 2 minor variants of this locus on Parkinson's disease. However, this associated result was not robust enough to withstand statistically significant correction. On the other hand, no association was found between ABCB1 3435C/T polymorphism and the predisposition to PD in 5 genetic models, and such an absence of relationship was further confirmed by subgroup analysis in Caucasians and Asians. Whether the polymorphisms of these 4 loci were linked to PD or not, our study provided some interesting findings that differ from the previous results with regard to their genetic susceptibility. Conclusion: The NOS1 exon18 and ABCB1 1236C/T variants might play a role in the risk of Parkinson's disease, whereas NOS1 exon29 and ABCB1 3435C/T polymorphisms might not contribute to PD susceptibility. PMID

  2. Novel insertion mutation of ABCB1 gene in an ivermectin-sensitive Border Collie.

    PubMed

    Han, Jae-Ik; Son, Hyoung-Won; Park, Seung-Cheol; Na, Ki-Jeong

    2010-12-01

    P-glycoprotein (P-gp) is encoded by the ABCB1 gene and acts as an efflux pump for xenobiotics. In the Border Collie, a nonsense mutation caused by a 4-base pair deletion in the ABCB1 gene is associated with a premature stop to P-gp synthesis. In this study, we examined the full-length coding sequence of the ABCB1 gene in an ivermectin-sensitive Border Collie that lacked the aforementioned deletion mutation. The sequence was compared to the corresponding sequences of a wild-type Beagle and seven ivermectin-tolerant family members of the Border Collie. When compared to the wild-type Beagle sequence, that of the ivermectin-sensitive Border Collie was found to have one insertion mutation and eight single nucleotide polymorphisms (SNPs) in the coding sequence of the ABCB1 gene. While the eight SNPs were also found in the family members' sequences, the insertion mutation was found only in the ivermectin-sensitive dog. These results suggest the possibility that the SNPs are species-specific features of the ABCB1 gene in Border Collies, and that the insertion mutation may be related to ivermectin intolerance.

  3. Novel insertion mutation of ABCB1 gene in an ivermectin-sensitive Border Collie

    PubMed Central

    Han, Jae-Ik; Son, Hyoung-Won; Park, Seung-Cheol

    2010-01-01

    P-glycoprotein (P-gp) is encoded by the ABCB1 gene and acts as an efflux pump for xenobiotics. In the Border Collie, a nonsense mutation caused by a 4-base pair deletion in the ABCB1 gene is associated with a premature stop to P-gp synthesis. In this study, we examined the full-length coding sequence of the ABCB1 gene in an ivermectin-sensitive Border Collie that lacked the aforementioned deletion mutation. The sequence was compared to the corresponding sequences of a wild-type Beagle and seven ivermectin-tolerant family members of the Border Collie. When compared to the wild-type Beagle sequence, that of the ivermectin-sensitive Border Collie was found to have one insertion mutation and eight single nucleotide polymorphisms (SNPs) in the coding sequence of the ABCB1 gene. While the eight SNPs were also found in the family members' sequences, the insertion mutation was found only in the ivermectin-sensitive dog. These results suggest the possibility that the SNPs are species-specific features of the ABCB1 gene in Border Collies, and that the insertion mutation may be related to ivermectin intolerance. PMID:21113104

  4. Paclitaxel sensitivity in relation to ABCB1 expression, efflux and single nucleotide polymorphisms in ovarian cancer.

    PubMed

    Gao, Bo; Russell, Amanda; Beesley, Jonathan; Chen, Xiao Qing; Healey, Sue; Henderson, Michelle; Wong, Mark; Emmanuel, Catherine; Galletta, Laura; Johnatty, Sharon E; Bowtell, David; Haber, Michelle; Norris, Murray; Harnett, Paul; Chenevix-Trench, Georgia; Balleine, Rosemary L; deFazio, Anna

    2014-05-09

    ABCB1 (adenosine triphosphate-binding cassette transporter B1) mediates cellular elimination of many chemotherapeutic agents including paclitaxel, which is commonly used to treat ovarian cancer. A significant association between common single nucleotide polymorphisms (SNPs) in ABCB1 and progression-free survival has been reported in patients with ovarian cancer. Variable paclitaxel clearance due to genotype specific differences in ABCB1 activity in cancer cells and/or normal tissues may underlie the association. Using cell-based models, we evaluated the correlations between ABCB1 expression, polymorphisms, transporter activity and paclitaxel sensitivity in ovarian cancer (n = 10) and lymphoblastoid (n = 19) cell lines. Close associations between ABCB1 expression, transporter function and paclitaxel sensitivity were found in lymphoblastoid cell lines, although we could not demonstrate an association with common SNPs. In ovarian cancer cell lines, ABCB1 expression was low and the association between expression and function was lost. These results suggest that ABCB1 related survival difference in ovarian cancer patients is more likely to be due to differential whole body paclitaxel clearance mediated by normal cells rather than a direct effect on cancer cells.

  5. Osimertinib (AZD9291) Attenuates the Function of Multidrug Resistance-Linked ATP-Binding Cassette Transporter ABCB1 in Vitro.

    PubMed

    Hsiao, Sung-Han; Lu, Yu-Jen; Li, Yan-Qing; Huang, Yang-Hui; Hsieh, Chia-Hung; Wu, Chung-Pu

    2016-06-06

    The effectiveness of cancer chemotherapy is often circumvented by multidrug resistance (MDR) caused by the overexpression of ATP-binding cassette (ABC) drug transporter ABCB1 (MDR1, P-glycoprotein). Several epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been shown previously capable of modulating the function of ABCB1 and reversing ABCB1-mediated MDR in human cancer cells. Furthermore, some TKIs are transported by ABCB1, which results in low oral bioavailability, reduced distribution, and the development of acquired resistance to these TKIs. In this study, we investigated the interaction between ABCB1 and osimertinib, a novel selective, irreversible third-generation EGFR TKI that has recently been approved by the U.S. Food and Drug Administration. We also evaluated the potential impact of ABCB1 on the efficacy of osimertinib in cancer cells, which can present a therapeutic challenge to clinicians in the future. We revealed that although osimertinib stimulates the ATPase activity of ABCB1, overexpression of ABCB1 does not confer resistance to osimertinib. Our results suggest that it is unlikely that the overexpression of ABCB1 can be a major contributor to the development of osimertinib resistance in cancer patients. More significantly, we revealed an additional action of osimertinib that directly inhibits the function of ABCB1 without affecting the expression level of ABCB1, enhances drug-induced apoptosis, and reverses the MDR phenotype in ABCB1-overexpressing cancer cells. Considering that osimertinib is a clinically approved third-generation EGFR TKI, our findings suggest that a combination therapy with osimertinib and conventional anticancer drugs may be beneficial to patients with MDR tumors.

  6. Association between ABCB1 genotype and seizure outcome in Collies with epilepsy.

    PubMed

    Muñana, K R; Nettifee-Osborne, J A; Bergman, R L; Mealey, K L

    2012-01-01

    Medically refractory seizures are an important problem in both humans and dogs with epilepsy. Altered expression of ABCB1, the gene encoding for p-glycoprotein (PGP), has been proposed to play a role in drug-resistant epilepsy. Heterogeneity of the ABCB1 gene is associated with seizure outcome in dogs with epilepsy. Twenty-nine Collies with epilepsy being treated with antiepileptic drugs (AEDs). Prospective and retrospective cohort study. Dogs were classified as having a good outcome (≤ 1 seizure/month, no cluster seizures) or a poor outcome (>1 seizure/month, with or without cluster seizures) based on owner-completed questionnaire. Serum AED concentrations were measured, and ABCB1 genotyping was performed on buccal tissue samples. Association analyses were performed for genotype and seizure outcome, number of AEDs administered, serum AED concentrations, and incidence of adverse effects. Fourteen dogs of 29 (48%) were homozygous for the ABCB1-1∆ mutation (M/M), 11 dogs (38%) were heterozygous (M/N), and 4 dogs (14%) had the wild-type genotype (N/N). Dogs with the M/M genotype were significantly more likely to have fewer seizures and have less AED-related sedation than M/N or N/N dogs (P = .003 and P = .001, respectively). Serum phenobarbital and bromide concentrations did not differ between groups, but the M/N and N/N groups received a larger number of AEDs than the M/M group (P = .014). ABCB1 genotype is associated with seizure outcome in Collies with epilepsy. This cannot be attributed to differences in PGP function, but might be because of intrinsic variations in seizure severity among phenotypes. Copyright © 2012 by the American College of Veterinary Internal Medicine.

  7. ABCB1 genetic variability and methadone dosage requirements in opioid-dependent individuals.

    PubMed

    Coller, Janet K; Barratt, Daniel T; Dahlen, Karianne; Loennechen, Morten H; Somogyi, Andrew A

    2006-12-01

    The most common treatment for opioid dependence is substitution therapy with another opioid such as methadone. The methadone dosage is individualized but highly variable, and program retention rates are low due in part to nonoptimal dosing resulting in withdrawal symptoms and further heroin craving and use. Methadone is a substrate for the P-glycoprotein transporter, encoded by the ABCB1 gene, which regulates central nervous system exposure. This retrospective study aimed to investigate the influence of ABCB1 genetic variability on methadone dose requirements. Genomic deoxyribonucleic acid was isolated from opioid-dependent subjects (n = 60) and non-opioid-dependent control subjects (n = 60), and polymerase chain reaction-restriction fragment length polymorphism and allele-specific polymerase chain reaction were used to determine the presence of single nucleotide polymorphisms at positions 61, 1199, 1236, 2677, and 3435. ABCB1 haplotypes were inferred with PHASE software (version 2.1). There were no significant differences in the allele or genotype frequencies of the individual single nucleotide polymorphisms or haplotypes between the 2 populations. ABCB1 genetic variability influenced daily methadone dose requirements, such that subjects carrying 2 copies of the wild-type haplotype required higher doses compared with those with 1 copy and those with no copies (98.3 +/- 10.4, 58.6 +/- 20.9, and 55.4 +/- 26.1 mg/d, respectively; P = .029). In addition, carriers of the AGCTT haplotype required significantly lower doses than noncarriers (38.0 +/- 16.8 and 61.3 +/- 24.6 mg/d, respectively; P = .04). Although ABCB1 genetic variability is not related to the development of opioid dependence, identification of variant haplotypes may, after larger prospective studies have been performed, provide clinicians with a tool for methadone dosage individualization.

  8. ABCB1 polymorphism as prognostic factor in breast cancer patients treated with docetaxel and doxorubicin neoadjuvant chemotherapy

    PubMed Central

    Kim, Hee-Jun; Im, Seock-Ah; Keam, Bhumsuk; Ham, Hye Seon; Lee, Kyung Hun; Kim, Tae Yong; Kim, Yu Jung; Oh, Do-Youn; Kim, Jee Hyun; Han, Wonshik; Jang, In-Jin; Kim, Tae-You; Park, In Ae; Noh, Dong Young

    2015-01-01

    Expression of the adenosine triphosphate-binding cassette B1 (ABCB1) transporter and P-glycoprotein are associated with resistance to anticancer drugs. The purpose of this study was to investigate the role of single nucleotide polymorphism in the ABCB1 and CYP3A genes in breast cancer patients who were treated with neoadjuvant chemotherapy. Stage II/III breast cancer patients were treated with three cycles of neoadjuvant, after which the patients received curative surgery and adjuvant chemotherapy. The polymorphisms of ABCB1 and CYP3A were genotyped. The correlation of polymorphism of ABCB1, CYP3A, and clinical outcomes was analyzed. Among the 216 patients, ABCB1 3435TT genotype had a longer overall survival (OS). than CC/CT. Multivariate analyses demonstrated that good PS, invasive ductal carcinoma, non-triple negative phenotype and initial operable stage were significantly associated with a lower death risk. ABCB1 3435TT genotype had a higher AUC than CC/CT for docetaxel. These higher AUCs in the C3435TT was associated with increased toxicities of neutropenia and diarrhea. This study showed that the genetic polymorphism of ABCB1 C3435T might be associated with a longer OS. Our results also suggest that the prediction of docetaxel toxicity might be possible for C3435T polymorphism. This study results provides valuable information on individualized therapy according to genotypes. PMID:25410489

  9. Enzastaurin inhibits ABCB1-mediated drug efflux independently of effects on protein kinase C signalling and the cellular p53 status.

    PubMed

    Michaelis, Martin; Rothweiler, Florian; Löschmann, Nadine; Sharifi, Mohsen; Ghafourian, Taravat; Cinatl, Jindrich

    2015-07-10

    The PKCβ inhibitor enzastaurin was tested in parental neuroblastoma and rhabdomyosarcoma cell lines, their vincristine-resistant sub-lines, primary neuroblastoma cells, ABCB1-transduced, ABCG2-transduced, and p53-depleted cells. Enzastaurin IC50s ranged from 3.3 to 9.5 μM in cell lines and primary cells independently of the ABCB1, ABCG2, or p53 status. Enzastaurin 0.3125 μM interfered with ABCB1-mediated drug transport. PKCα and PKCβ may phosphorylate and activate ABCB1 under the control of p53. However, enzastaurin exerted similar effects on ABCB1 in the presence or absence of functional p53. Also, enzastaurin inhibited PKC signalling only in concentrations ≥ 1.25 μM. The investigated cell lines did not express PKCβ. PKCα depletion reduced PKC signalling but did not affect ABCB1 activity. Intracellular levels of the fluorescent ABCB1 substrate rhodamine 123 rapidly decreased after wash-out of extracellular enzastaurin, and enzastaurin induced ABCB1 ATPase activity resembling the ABCB1 substrate verapamil. Computational docking experiments detected a direct interaction of enzastaurin and ABCB1. These data suggest that enzastaurin directly interferes with ABCB1 function. Enzastaurin further inhibited ABCG2-mediated drug transport but by a different mechanism since it reduced ABCG2 ATPase activity. These findings are important for the further development of therapies combining enzastaurin with ABC transporter substrates.

  10. Association of ABCB1 genetic variants with renal function in Africans and in Caucasians

    PubMed Central

    Bochud, Murielle; Eap, Chin B; Maillard, Marc; Johnson, Toby; Vollenweider, Peter; Bovet, Pascal; Elston, Robert C; Bergmann, Sven; Beckmann, Jacques S; Waterworth, Dawn M; Mooser, Vincent; Gabriel, Anne; Burnier, Michel

    2008-01-01

    Background The P-glycoprotein, encoded by the ABCB1 gene, is expressed in human endothelial and mesangial cells, which contribute to control renal plasma flow and glomerular filtration rate. We investigated the association of ABCB1 variants with renal function in African and Caucasian subjects. Methods In Africans (290 subjects from 62 pedigrees), we genotyped the 2677G>T and 3435 C>T ABCB1 polymorphisms. Glomerular filtration rate (GFR) was measured using inulin clearance and effective renal plasma flow (ERPF) using para-aminohippurate clearance. In Caucasians (5382 unrelated subjects), we analyzed 30 SNPs located within and around ABCB1, using data from the Affymetrix 500 K chip. GFR was estimated using the simplified Modification of the Diet in Renal Disease (MDRD) and Cockcroft-Gault equations. Results In Africans, compared to the reference genotype (GG or CC), each copy of the 2677T and 3435T allele was associated, respectively, with: GFR higher by 10.6 ± 2.9 (P < 0.001) and 4.4 ± 2.3 (P = 0.06) mL/min; ERPF higher by 47.5 ± 11.6 (P < 0.001) and 28.1 ± 10.5 (P = 0.007) mL/min; and renal resistances lower by 0.016 ± 0.004 (P < 0.001) and 0.011 ± 0.004 (P = 0.004) mm Hg/mL/min. In Caucasians, we identified 3 polymorphisms in the ABCB1 gene that were strongly associated with all estimates of GFR (smallest P value = 0.0006, overall P = 0.014 after multiple testing correction). Conclusion Variants of the ABCB1 gene were associated with renal function in both Africans and Caucasians and may therefore confer susceptibility to nephropathy in humans. If confirmed in other studies, these results point toward a new candidate gene for nephropathy in humans. PMID:18518969

  11. ABCB1 regulation through LRPPRC is influenced by the methylation status of the GC -100 box in its promoter

    PubMed Central

    Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Ferreira, Gerson; Cappelletti, Paola; Soares-Lima, Sheila; Pinto, Luis Felipe; Mencalha, André; Abdelhay, Eliana

    2014-01-01

    One of the potential mechanisms of imatinib mesylate (IM) resistance in chronic myeloid leukemia (CML) is increased level of P-glycoprotein (Pgp). Pgp is an efflux pump capable of activating the multidrug resistance (MDR) phenotype. The gene encoding Pgp (ABCB1) has several binding sites in its promoter region, along with CpG islands and GC boxes, involved in its epigenetic control. In previous work, we performed a proteomic study to identify proteins involved in IM cross-resistance in acute leukemia. Among these proteins, we identified LRPPRC as a potential regulator of ABCB1 transcription via an invMED1 binding site in ABCB1. Interestingly, this invMED1 binding site overlaps with the GC -100 box. In this work, we investigated the potential role of LRPPRC in the regulation of ABCB1 transcriptional activity in CML resistance. In addition, we evaluated the potential connection between this regulation and the methylation status of the ABCB1 promoter in its GC -100 box. Our results show that LRPPRC binds prominently to the ABCB1 promoter in Lucena cells, an IM-resistant cell line. Luciferase assays showed that ABCB1 transcription is positively regulated by LRPPRC upon its knockdown. Pyrosequencing analysis showed that the ABCB1 promoter is differentially methylated at its GC -100 box in K562 cells compared with Lucena cells, and in CML patients with different response to IM. Chromatin immunoprecipitation and Pgp expression after DNA demethylation treatment showed that LRPPRC binding is affected by the methylation status of ABCB1 GC -100 box. Taken together, our findings indicate that LRPPRC is a transcription factor related to ABCB1 expression and highlight the importance of epigenetic regulation in CML resistance. PMID:25089713

  12. ABCB1 regulation through LRPPRC is influenced by the methylation status of the GC -100 box in its promoter.

    PubMed

    Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Ferreira, Gerson; Cappelletti, Paola; Soares-Lima, Sheila; Pinto, Luis Felipe; Mencalha, André; Abdelhay, Eliana

    2014-08-01

    One of the potential mechanisms of imatinib mesylate (IM) resistance in chronic myeloid leukemia (CML) is increased level of P-glycoprotein (Pgp). Pgp is an efflux pump capable of activating the multidrug resistance (MDR) phenotype. The gene encoding Pgp (ABCB1) has several binding sites in its promoter region, along with CpG islands and GC boxes, involved in its epigenetic control. In previous work, we performed a proteomic study to identify proteins involved in IM cross-resistance in acute leukemia. Among these proteins, we identified LRPPRC as a potential regulator of ABCB1 transcription via an invMED1 binding site in ABCB1. Interestingly, this invMED1 binding site overlaps with the GC -100 box. In this work, we investigated the potential role of LRPPRC in the regulation of ABCB1 transcriptional activity in CML resistance. In addition, we evaluated the potential connection between this regulation and the methylation status of the ABCB1 promoter in its GC -100 box. Our results show that LRPPRC binds prominently to the ABCB1 promoter in Lucena cells, an IM-resistant cell line. Luciferase assays showed that ABCB1 transcription is positively regulated by LRPPRC upon its knockdown. Pyrosequencing analysis showed that the ABCB1 promoter is differentially methylated at its GC -100 box in K562 cells compared with Lucena cells, and in CML patients with different response to IM. Chromatin immunoprecipitation and Pgp expression after DNA demethylation treatment showed that LRPPRC binding is affected by the methylation status of ABCB1 GC -100 box. Taken together, our findings indicate that LRPPRC is a transcription factor related to ABCB1 expression and highlight the importance of epigenetic regulation in CML resistance.

  13. Long non-coding RNA LUCAT1 modulates methotrexate resistance in osteosarcoma via miR-200c/ABCB1 axis.

    PubMed

    Han, Zhe; Shi, Liying

    2018-01-01

    Long non-coding RNAs (lncRNAs) have been verified to participate in the tumorigenesis of multiple cancers. Nevertheless, the deepgoing role molecular mechanisms of lncRNAs on osteosarcoma chemoresistance remain unclear. In present study, we investigate the function of lncRNA LUCAT1 on osteosarcoma methotrexate (MTX) resistant phenotype and discover the potential regulatory mechanism. Results showed that LUCAT1 was up-regulated in MTX-resistant cells (MG63/MTX, HOS/MTX) compared to that in parental cells. LncRNA LUCAT1 and ABCB1 protein expression levels were both up-regulated when induced by different concentration of methotrexate. In vitro and vivo, LUCAT1 knockdown decreased the expression levels drug resistance related genes (MDR1, MRP5, LRP1), proliferation, invasion and tumor growth of osteosarcoma cells. Bioinformatics tools and luciferase assay reveled that miR-200c both targeted the 3'-UTR of LUCAT1 and ABCB1 mRNA, suggesting the modulation of LUCAT1 on ABCB1 through sponging miR-200c. Rescue experiments confirmed the combined role of LUCAT1, miR-200c and ABCB1 on osteosarcoma proliferation, invasion and methotrexate resistance. Overall, results indicate the vital role of LUCAT1 in the methotrexate resistance regulation through miR-200c/ABCB1 pathway, providing a novel insight and treatment strategy for osteosarcoma drug resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Alectinib (CH5424802) antagonizes ABCB1- and ABCG2-mediated multidrug resistance in vitro, in vivo and ex vivo.

    PubMed

    Yang, Ke; Chen, Yifan; To, Kenneth Kin Wah; Wang, Fang; Li, Delan; Chen, Likun; Fu, Liwu

    2017-03-17

    Alectinib, an inhibitor of anaplastic lymphoma kinase (ALK), was approved by the Food and Drug Administration (FDA) for the treatment of patients with ALK-positive non-small cell lung cancer (NSCLC). Here we investigated the reversal effect of alectinib on multidrug resistance (MDR) induced by ATP-binding cassette (ABC) transporters, which is the primary cause of chemotherapy failure. We provide the first evidence that alectinib increases the sensitivity of ABCB1- and ABCG2-overexpressing cells to chemotherapeutic agents in vitro and in vivo. Mechanistically, alectinib increased the intracellular accumulation of ABCB1/ABCG2 substrates such as doxorubicin (DOX) and Rhodamine 123 (Rho 123) by inhibiting the efflux function of the transporters in ABCB1- or ABCG2-overexpressing cells but not in their parental sensitive cells. Furthermore, alectinib stimulated ATPase activity and competed with substrates of ABCB1 or ABCG2 and competed with [125I] iodoarylazidoprazosin (IAAP) photolabeling bound to ABCB1 or ABCG2 but neither altered the expression and localization of ABCB1 or ABCG2 nor the phosphorylation levels of AKT and ERK. Alectinib also enhanced the cytotoxicity of DOX and the intracellular accumulation of Rho 123 in ABCB1-overexpressing primary leukemia cells. These findings suggest that alectinib combined with traditional chemotherapy may be beneficial to patients with ABCB1- or ABCG2-mediated MDR.

  15. Alectinib (CH5424802) antagonizes ABCB1- and ABCG2-mediated multidrug resistance in vitro, in vivo and ex vivo

    PubMed Central

    Yang, Ke; Chen, Yifan; To, Kenneth Kin Wah; Wang, Fang; Li, Delan; Chen, Likun; Fu, Liwu

    2017-01-01

    Alectinib, an inhibitor of anaplastic lymphoma kinase (ALK), was approved by the Food and Drug Administration (FDA) for the treatment of patients with ALK-positive non-small cell lung cancer (NSCLC). Here we investigated the reversal effect of alectinib on multidrug resistance (MDR) induced by ATP-binding cassette (ABC) transporters, which is the primary cause of chemotherapy failure. We provide the first evidence that alectinib increases the sensitivity of ABCB1- and ABCG2-overexpressing cells to chemotherapeutic agents in vitro and in vivo. Mechanistically, alectinib increased the intracellular accumulation of ABCB1/ABCG2 substrates such as doxorubicin (DOX) and Rhodamine 123 (Rho 123) by inhibiting the efflux function of the transporters in ABCB1- or ABCG2-overexpressing cells but not in their parental sensitive cells. Furthermore, alectinib stimulated ATPase activity and competed with substrates of ABCB1 or ABCG2 and competed with [125I] iodoarylazidoprazosin (IAAP) photolabeling bound to ABCB1 or ABCG2 but neither altered the expression and localization of ABCB1 or ABCG2 nor the phosphorylation levels of AKT and ERK. Alectinib also enhanced the cytotoxicity of DOX and the intracellular accumulation of Rho 123 in ABCB1-overexpressing primary leukemia cells. These findings suggest that alectinib combined with traditional chemotherapy may be beneficial to patients with ABCB1- or ABCG2-mediated MDR. PMID:28303028

  16. Ferulic acid reverses ABCB1-mediated paclitaxel resistance in MDR cell lines.

    PubMed

    Muthusamy, Ganesan; Balupillai, Agilan; Ramasamy, Karthikeyan; Shanmugam, Mohana; Gunaseelan, Srithar; Mary, Beaulah; Prasad, N Rajendra

    2016-09-05

    Multidrug resistance (MDR) remains a major obstacle in cancer chemotherapy. The use of the dietary phytochemicals as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention as a plausible approach for overcoming the drug resistance. The aim of this study was to investigate whether a naturally occurring diet-based phenolic acid, ferulic acid, could sensitize paclitaxel efficacy in ABCB1 overexpressing (P-glycoprotein) colchicine selected KB Ch(R)8-5 cell line. In vitro drug efflux assays demonstrated that ferulic acid inhibits P-glycoprotein transport function in drug resistant KB Ch(R)8-5 cell lines. However, ferulic acid significantly downregulates ABCB1 expression in a concentration dependent manner. Cytotoxicity assay reveals that ferulic acid decreased paclitaxel resistance in KBCh(R)8-5 and HEK293/ABCB1 cells, which indicates its chemosensitizing potential. Clonogenic cell survival assay and apoptotic morphological staining further confirm the chemosensitizing potential of ferulic acid in drug resistant KB Ch(R)8-5 cell lines. Ferulic acid treatment enhances paclitaxel mediated cell cycle arrest and upregulates paclitaxel-induced apoptotic signaling in KB resistant cells. Hence, it has been concluded that downregulation of ABCB1 and subsequent induction of paclitaxel-mediated cell cycle arrest and apoptotic signaling may be the cause for the chemosensitizing potential of ferulic acid in P-gp overexpressing cell lines. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Association of ABCB1 C3435T polymorphism with phenobarbital resistance in Thai patients with epilepsy.

    PubMed

    Keangpraphun, T; Towanabut, S; Chinvarun, Y; Kijsanayotin, P

    2015-06-01

    One-third of patients with epilepsy are resistant to anti-epileptic drugs (AEDs). Drug-resistant epilepsy is believed to be multifactorial involving both genetic and non-genetic factors. Genetic variations in the ABCB1 gene encoding the drug efflux transporter, p-glycoprotein (p-gp), may influence the interindividual variability in AED response by limiting drugs from reaching their target. Phenobarbital (PB), one of the most cost-effective and widely used AEDs in developing countries, has been reported to be transported by p-gp. This study aimed to investigate the association of a genetic variant, ABCB1 3435C>T, and non-genetic factors with phenobarbital response in Thai patients with epilepsy. One hundred and ten Thai patients with epilepsy who were treated with PB maintenance doses were enrolled in this study. Two phenotypic groups, PB-responsive epilepsy and PB-resistant epilepsy, were defined according to the International League Against Epilepsy (ILAE) criteria. Subjects were genotyped for ABCB1 3435C>T (rs1045642). Multiple logistic regression analysis was tested for the association of ABCB1 3435C>T polymorphism and non-genetic factors with PB response. Sixty-two PB-responsive epilepsy subjects and 48 PB-resistant epilepsy subjects were identified. All genotype frequencies of the ABCB1 3435C>T SNP were consistent with the Hardy-Weinberg equilibrium (P > 0·05). The ABCB1 3435C>T polymorphism and type of epilepsy were associated with response to PB. Patients with PB-resistant epilepsy had a significantly higher frequency of ABCB1 3435CC genotype and had focal epilepsy more often than patients with PB-responsive epilepsy (adjusted OR = 3·962, 95% CI = 1·075-14·610, P-value = 0·039; adjusted OR = 5·936, 95% CI = 2·272-15·513, P-value < 0·001, respectively). The model explained 25·5% of the variability in response to PB (R(2)  = 0·255). Thai patients of ABCB1 3435CC genotype and with focal epilepsy were more often PB resistant. Those two

  18. Complementary functions of the flippase ATP8B1 and the floppase ABCB4 in maintaining canalicular membrane integrity.

    PubMed

    Groen, Annemiek; Romero, Marta Rodriguez; Kunne, Cindy; Hoosdally, Sarah J; Dixon, Peter H; Wooding, Carol; Williamson, Catherine; Seppen, Jurgen; Van den Oever, Karin; Mok, Kam S; Paulusma, Coen C; Linton, Kenneth J; Oude Elferink, Ronald P J

    2011-11-01

    Progressive familial intrahepatic cholestasis can be caused by mutations in ABCB4 or ATP8B1; each encodes a protein that translocates phospholipids, but in opposite directions. ABCB4 flops phosphatidylcholine from the inner to the outer leaflet, where it is extracted by bile salts. ATP8B1, in complex with the accessory protein CDC50A, flips phosphatidylserine in the reverse direction. Abcb4(-/-) mice lack biliary secretion of phosphatidylcholine, whereas Atp8b1-deficient mice have increased excretion of phosphatidylserine into bile. Each system is thought to have a role protecting the canalicular membrane from bile salts. To investigate the relationship between the mechanisms of ABCB4 and ATP8B1, we expressed the transporters separately and together in cultured cells and studied viability and phospholipid transport. We also created mice with disruptions in ABCB4 and ATP8B1 (double knockouts) and studied bile formation and hepatic damage in mice fed bile salts. Overexpression of ABCB4 was toxic to HEK293T cells; the toxicity was counteracted by coexpression of the ATP8B1-CDC50A complex. In Atp8b1-deficient mice, bile salts induced extraction of phosphatidylserine and ectoenzymes from the canalicular membrane; this process was not observed in the double-knockout mice. ATP8B1 is required for hepatocyte function, particularly in the presence of ABCB4. This is most likely because the phosphatidylserine flippase complex of ATP8B1-CDC50A counteracts the destabilization of the membrane that occurs when ABCB4 flops phosphatidylcholine. Lipid asymmetry is therefore important for the integrity of the canalicular membrane; ABCB4 and ATP8B1 cooperate to protect hepatocytes from bile salts. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  19. Abcb1a but not Abcg2 played a predominant role in limiting the brain distribution of Huperzine A in mice.

    PubMed

    Li, Jiajun; Yue, Mei; Zhou, Dandan; Wang, Meiyu; Zhang, Hongjian

    2017-09-01

    Huperzine A has been used for improving symptoms of Alzheimer's disease. Its cholinergic side effect is thought to be an exaggerated pharmacological outcome linked to its high brain or CNS concentrations. Although Huperzine A is brain penetrable, its interaction with efflux transporters (ABCB1 and ABCG2) has not been fully investigated. The aim of the present study was to characterize roles of ABCB1 and ABCG2 in the transmembrane transport of Huperzine A and identify a rate limiting step in its brain distribution. Data obtained from stably transfected MDCK II cells showed that Huperzine A is a substrate of ABCB1 but not ABCG2. ABCB1 inhibitors significantly inhibited ABCB1 mediated efflux of Huperzine A. In Abcb1a -/- mice, the brain to plasma concentration ratio of Huperzine A was significantly increased as compared to the wild type mice, while there were no obvious differences between the wild type and Abcg2 -/- mice. Taken together, the present study demonstrated that ABCB1 but not ABCG2 played a predominant role in the efflux of Huperzine A across BBB. The current finding is clinically relevant as changes in ABCB1 activity in the presence of ABCB1 inhibitors or genetic polymorphism may affect efficacy and safety of Huperzine A. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Association of ABCB1 polymorphisms with the antiemetic efficacy of granisetron plus dexamethasone in breast cancer patients.

    PubMed

    Tsuji, Daiki; Kim, Yong-Il; Nakamichi, Hidenori; Daimon, Takashi; Suwa, Kaori; Iwabe, Yutaro; Hayashi, Hideki; Inoue, Kazuyuki; Yoshida, Masayuki; Itoh, Kunihiko

    2013-01-01

    Resistance to antiemetic treatment with 5-hydroxytryptamine 3 receptor antagonists is a problem, with 20-30% of patients showing unsatisfactory responses. Efflux transport by P-glycoprotein, encoded by the ATP-binding cassette ABCB1 gene in the blood-brain barrier, has been the suggested resistance mechanism. We evaluated the association between the antiemetic efficacy of granisetron plus dexamethasone and ABCB1 polymorphisms 3435C>T and 2677G>T/A. Sixty-four breast cancer patients treated with doxorubicin plus cyclophosphamide were evaluated for their responses to antiemetic therapy. Genotyping of patient DNA samples for ABCB1 single nucleotide polymorphisms was performed; the genotypes were then investigated for their association with the efficacy of prophylactic antiemetics. The acute phase complete response rate was 83% in GG subjects (n = 12), and 69% (n = 35) and 41% (n = 17) in heterozygous and homozygous carriers of the 2677T/A allele, respectively (p = 0.047). The ABCB1 2677 TT genotype group showed significantly lower rates of complete control of acute emesis than the group with GG genotypes (p = 0.045). No significant association with complete response was found for 3435C>T (p = 0.190). ABCB1 polymorphisms may influence the extent of acute emesis control in granisetron-treated patients, making the ABCB1 genotype a predictor of prophylactic antiemetic response.

  1. The lactate receptor (HCAR1/GPR81) contributes to doxorubicin chemoresistance via ABCB1 transporter up-regulation in human cervical cancer HeLa cells.

    PubMed

    Wagner, W; Kania, K D; Blauz, A; Ciszewski, W M

    2017-08-01

    The lactate receptor, also known as hydroxycarboxylic acid receptor 1 (HCAR1/GPR81), plays a vital role in cancer biology. Recently, HCAR1 was reported to enhance metastasis, cell growth, and survival of pancreatic, breast, and cervical cancer cells. This study showed, for the first time, the mechanism of HCAR1-mediated chemoresistance to doxorubicin through regulation of ABCB1 transporter. We observed the HCAR1 agonists L-lactate, D-lactate and 3,5-dihydroxybenzoic acid (DHBA) induced up-regulation of ABCB1. HCAR1 silencing decreased ABCB1 mRNA and protein by 80% and 40%, respectively. Moreover, cellular doxorubicin accumulation decreased by 30% after DHBA treatment, while HCAR1 silencing increased accumulation of ABCB1 substrates by nearly 2-fold. Based on growth inhibition assays, cell cycle analysis, and annexin V staining assays, we demonstrated that HCAR1 enhances cell survival and doxorubicin resistance. Finally, DHBA-stimulated up-regulation of ABCB1 functionality was suppressed by pharmacological inhibition of the PKC pathway. Taken together, our study shows the novel role of HCAR1 in development of chemoresistance in cervical carcinoma HeLa cells via ABCB1 transporter up-regulation.

  2. The BTK Inhibitor Ibrutinib (PCI-32765) Overcomes Paclitaxel Resistance in ABCB1- and ABCC10-Overexpressing Cells and Tumors.

    PubMed

    Zhang, Hui; Patel, Atish; Wang, Yi-Jun; Zhang, Yun-Kai; Kathawala, Rishil J; Qiu, Long-Hui; Patel, Bhargav A; Huang, Li-Hua; Shukla, Suneet; Yang, Dong-Hua; Ambudkar, Suresh V; Fu, Li-Wu; Chen, Zhe-Sheng

    2017-06-01

    Paclitaxel is one of the most widely used antineoplastic drugs in the clinic. Unfortunately, the occurrence of cellular resistance has limited its efficacy and application. The ATP-binding cassette subfamily B member 1 (ABCB1/P-glycoprotein) and subfamily C member 10 (ABCC10/MRP7) are the major membrane protein transporters responsible for the efflux of paclitaxel, constituting one of the most important mechanisms of paclitaxel resistance. Here, we demonstrated that the Bruton tyrosine kinase inhibitor, ibrutinib, significantly enhanced the antitumor activity of paclitaxel by antagonizing the efflux function of ABCB1 and ABCC10 in cells overexpressing these transporters. Furthermore, we demonstrated that the ABCB1 or ABCC10 protein expression was not altered after treatment with ibrutinib for up to 72 hours using Western blot analysis. However, the ATPase activity of ABCB1 was significantly stimulated by treatment with ibrutinib. Molecular docking analysis suggested the binding conformation of ibrutinib within the large cavity of the transmembrane region of ABCB1. Importantly, ibrutinib could effectively enhance paclitaxel-induced inhibition on the growth of ABCB1- and ABCC10-overexpressing tumors in nude athymic mice. These results demonstrate that the combination of ibrutinib and paclitaxel can effectively antagonize ABCB1- or ABCC10-mediated paclitaxel resistance that could be of great clinical interest. Mol Cancer Ther; 16(6); 1021-30. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. Selected ABCB1, ABCB4 and ABCC2 polymorphisms do not enhance the risk of drug-induced hepatotoxicity in a Spanish cohort.

    PubMed

    Ulzurrun, Eugenia; Stephens, Camilla; Ruiz-Cabello, Francisco; Robles-Diaz, Mercedes; Saenz-López, Pablo; Hallal, Hacibe; Soriano, German; Roman, Eva; Fernandez, M Carmen; Lucena, M Isabel; Andrade, Raúl J

    2014-01-01

    Flawed ABC transporter functions may contribute to increased risk of drug-induced liver injury (DILI). We aimed to analyse the influence of genetic variations in ABC transporters on the risk of DILI development and clinical presentations in a large Spanish DILI cohort. A total of ten polymorphisms in ABCB1 (1236T>C, 2677G>T,A, 3435T>C), ABCB4 (1954A>G) and ABCC2 (-1774G>del, -1549A>G, -24C>T, 1249G>A, 3972C>T and 4544G>A) were genotyped using Taqman 5' allelic discrimination assays or sequencing in 141 Spanish DILI patients and 161 controls. The influence of specific genotypes, alleles and haplotypes on the risk of DILI development and clinical presentations was analysed. None of the individual polymorphisms or haplotypes was found to be associated with DILI development. Carriers homozygous for the ABCC2 -1774del allele were however only found in DILI patients. Hence, this genotype could potentially be associated with increased risk, though its low frequency in our Spanish cohort prevented a final conclusion. Furthermore, carriers homozygous for the ABCC2 -1774G/-1549A/-24T/1249G/3972T/4544G haplotype were found to have a higher propensity for total bilirubin elevations when developing DILI. Our findings do not support a role for the analysed polymorphisms in the ABCB1, ABCB4 and ABCC2 transporter genes in DILI development in Spanish patients. The ABCC2 -1774deldel genotype was however restricted to DILI cases and could potentially contribute to enhanced DILI susceptibility.

  4. Relationship Between ABCB1 Polymorphisms and Cold Pain Sensitivity Among Healthy Opioid-naive Malay Males.

    PubMed

    Zahari, Zalina; Lee, Chee Siong; Ibrahim, Muslih Abdulkarim; Musa, Nurfadhlina; Mohd Yasin, Mohd Azhar; Lee, Yeong Yeh; Tan, Soo Choon; Mohamad, Nasir; Ismail, Rusli

    2017-09-01

    Endogenous and exogenous opioids are substrates of the permeability glycoprotein (P-gp) efflux transporter, which is encoded by the ABCB1 (MDR1) gene. Genetic polymorphisms of ABCB1 may contribute to interindividual differences in pain modulation and analgesic responses. We investigated the relationship between ABCB1 polymorphisms and cold pain sensitivity among healthy males. Cold pain responses, including pain threshold and pain tolerance, were measured using the cold-pressor test (CPT). DNA was extracted from whole blood and genotyped for ABCB1 polymorphisms, including c.1236C>T (rs1128503), c.2677G>T/A (rs2032582), and c.3435C>T (rs1045642), using the allelic discrimination real-time polymerase chain reaction. A total of 152 participants were recruited in this observational study. Frequencies of mutated allele for c.1236C>T, c.2677G>T/A, and c.3435C>T polymorphisms were 56.6%, 49.7%, and 43.4%, respectively. Our results revealed an association of the CGC/CGC diplotype (c.1236C>T, c.2677G>T/A, and c.3435C>T) with cold pain sensitivity. Participants with the CGC/CGC diplotype had 90% and 72% higher cold pain thresholds (87.62 seconds vs. 46.19 seconds, P = 0.010) and cold pain tolerances (97.24 seconds vs. 56.54 seconds, P = 0.021), respectively, when compared with those without the diplotype. The CGC/CGC diplotype of ABCB1 polymorphisms was associated with variability in cold pain threshold and pain tolerance in healthy males. © 2016 World Institute of Pain.

  5. Selected ABCB1, ABCB4 and ABCC2 Polymorphisms Do Not Enhance the Risk of Drug-Induced Hepatotoxicity in a Spanish Cohort

    PubMed Central

    Ulzurrun, Eugenia; Stephens, Camilla; Ruiz-Cabello, Francisco; Robles-Diaz, Mercedes; Saenz-López, Pablo; Hallal, Hacibe; Soriano, German; Roman, Eva; Fernandez, M. Carmen; Lucena, M. Isabel; Andrade, Raúl J.

    2014-01-01

    Background and Aims Flawed ABC transporter functions may contribute to increased risk of drug-induced liver injury (DILI). We aimed to analyse the influence of genetic variations in ABC transporters on the risk of DILI development and clinical presentations in a large Spanish DILI cohort. Methods A total of ten polymorphisms in ABCB1 (1236T>C, 2677G>T,A, 3435T>C), ABCB4 (1954A>G) and ABCC2 (−1774G>del, −1549A>G, −24C>T, 1249G>A, 3972C>T and 4544G>A) were genotyped using Taqman 5′ allelic discrimination assays or sequencing in 141 Spanish DILI patients and 161 controls. The influence of specific genotypes, alleles and haplotypes on the risk of DILI development and clinical presentations was analysed. Results None of the individual polymorphisms or haplotypes was found to be associated with DILI development. Carriers homozygous for the ABCC2 −1774del allele were however only found in DILI patients. Hence, this genotype could potentially be associated with increased risk, though its low frequency in our Spanish cohort prevented a final conclusion. Furthermore, carriers homozygous for the ABCC2 −1774G/−1549A/−24T/1249G/3972T/4544G haplotype were found to have a higher propensity for total bilirubin elevations when developing DILI. Conclusions Our findings do not support a role for the analysed polymorphisms in the ABCB1, ABCB4 and ABCC2 transporter genes in DILI development in Spanish patients. The ABCC2 −1774deldel genotype was however restricted to DILI cases and could potentially contribute to enhanced DILI susceptibility. PMID:24732756

  6. Genetic Variants in ABCB1, CYP2C19, and Cardiovascular Outcomes Following Treatment with Clopidogrel and Prasugrel

    PubMed Central

    Mega, Jessica L.; Close, Sandra L.; Wiviott, Stephen D.; Shen, Lei; Walker, Joseph R.; Simone, Tabassome; Antman, Elliott M.; Braunwald, Eugene; Sabatine, Marc S.

    2011-01-01

    Background The thienopyridine clopidogrel is one of the most commonly prescribed drugs worldwide. Both clopidogrel and the third-generation thienopyridine prasugrel are subject to efflux via P-glycoprotein (encoded by ABCB1, also known as MDR1). In vitro and clinical studies suggest that ABCB1 polymorphisms, particularly C3435T, may be associated with altered drug metabolism and efficacy. Methods We genotyped 2,932 patients with an acute coronary syndrome (ACS) in TRITON-TIMI 38 treated with clopidogrel or prasugrel and 321 healthy individuals in whom we measured the pharmacologic response to clopidogrel or prasugrel. Findings Among ACS patients treated with clopidogrel, ABCB1 C3435T genotype was significantly associated with risk for the primary endpoint of cardiovascular death, MI, or stroke (P=0.0064). TT homozygotes (804/2,932 [27%] of the population) had a 72% increased risk of the primary endpoint as compared with CT /CC individuals (52/414 [12.9%] vs. 80/1,057 [7.8%], HR 1.72, 95% CI 1.22–2.44, P=0.002). ABCB1 C3435T and CYP2C19 genotypes were significant, independent predictors of the primary endpoint, and the 47% (681/1454) of the population who were either CYP2C19 reduced-function allele carriers, ABCB1 3435 TT homozygotes, or both were at significantly increased risk of cardiovascular death, MI, or stroke (HR 1.97, 95% CI 1.38–2.82, P=0.0002). In healthy subjects, 3435 TT homozygotes had a reduction in platelet aggregation with clopidogrel that was 7.3 absolute percentage points lower (i.e., less platelet inhibition) vs. CT/CC individuals (P=0.0127). ABCB1 genotypes were not significantly associated with clinical or pharmacologic outcomes among ACS or healthy individuals treated with prasugrel. Interpretation Individuals with the ABCB1 3435 TT genotype have less platelet inhibition and are at significantly increased risk of recurrent ischemic events in the setting of clopidogrel treatment. Taking into account both ABCB1 and CYP2C19, nearly half of

  7. Modulation of bilirubin neurotoxicity by the Abcb1 transporter in the Ugt1-/- lethal mouse model of neonatal hyperbilirubinemia.

    PubMed

    Bockor, Luka; Bortolussi, Giulia; Vodret, Simone; Iaconcig, Alessandra; Jašprová, Jana; Zelenka, Jaroslav; Vitek, Libor; Tiribelli, Claudio; Muro, Andrés F

    2017-01-01

    Moderate neonatal jaundice is the most common clinical condition during newborn life. However, a combination of factors may result in acute hyperbilirubinemia, placing infants at risk of developing bilirubin encephalopathy and death by kernicterus. While most risk factors are known, the mechanisms acting to reduce susceptibility to bilirubin neurotoxicity remain unclear. The presence of modifier genes modulating the risk of developing bilirubin-induced brain damage is increasingly being recognised. The Abcb1 and Abcc1 members of the ABC family of transporters have been suggested to have an active role in exporting unconjugated bilirubin from the central nervous system into plasma. However, their role in reducing the risk of developing neurological damage and death during neonatal development is still unknown.To this end, we mated Abcb1a/b-/- and Abcc1-/- strains with Ugt1-/- mice, which develop severe neonatal hyperbilirubinemia. While about 60% of Ugt1-/- mice survived after temporary phototherapy, all Abcb1a/b-/-/Ugt1-/- mice died before postnatal day 21, showing higher cerebellar levels of unconjugated bilirubin. Interestingly, Abcc1 role appeared to be less important.In the cerebellum of Ugt1-/- mice, hyperbilirubinemia induced the expression of Car and Pxr nuclear receptors, known regulators of genes involved in the genotoxic response.We demonstrated a critical role of Abcb1 in protecting the cerebellum from bilirubin toxicity during neonatal development, the most clinically relevant phase for human babies, providing further understanding of the mechanisms regulating bilirubin neurotoxicity in vivo. Pharmacological treatments aimed to increase Abcb1 and Abcc1 expression, could represent a therapeutic option to reduce the risk of bilirubin neurotoxicity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Vincristine-induced central neurotoxicity in a collie homozygous for the ABCB1Δ mutation.

    PubMed

    Krugman, L; Bryan, J N; Mealey, K L; Chen, A

    2012-03-01

    A six-year-old, neutered, female collie was presented to an oncology specialty service after developing tetraparesis and self-mutilation that progressively worsened while receiving chemotherapy for lymphoma. Neurologic examination revealed ataxia, paresis and diminished conscious proprioception in all limbs with entire spinal reflexes. Magnetic resonance imaging of the brain and spinal cord was normal. Electromyography of the limbs ruled out a vincristine-induced peripheral neuropathy. Cerebrospinal fluid analysis and cerebrospinal fluid and serum testing for Neospora and Toxoplasma were normal. Results of MDR1 genotyping revealed that the dog was homozygous for the ABCB1-1Δ (MDR1) mutation. This clinical presentation strongly resembled the effects seen from inadvertent intrathecal administration of vincristine in humans. Dogs that are homozygous for the ABCB1-1Δ (MDR1) mutation should not receive standard dosages of chemotherapy drugs known to be eliminated by P-glycoprotein, the gene product of ABCB1. Testing for this mutation is strongly recommended before chemotherapy initiation for at-risk breeds. © 2011 British Small Animal Veterinary Association.

  9. Relationship between ABCB1 gene polymorphisms and severe neutropenia in patients with breast cancer treated with doxorubicin/cyclophosphamide chemotherapy.

    PubMed

    Ikeda, Midori; Tsuji, Daiki; Yamamoto, Keisuke; Kim, Yong-Il; Daimon, Takashi; Iwabe, Yutaro; Hatori, Masahiro; Makuta, Ryo; Hayashi, Hideki; Inoue, Kazuyuki; Nakamichi, Hidenori; Shiokawa, Mitsuru; Itoh, Kunihiko

    2015-04-01

    Chemotherapy-induced neutropenia is one of the major adverse events which results in the reduction of chemotherapy. Doxorubicin is a substrate of the adenosine triphosphate-binding cassette subfamily B member 1 (ABCB1) transporter; reportedly, ABCB1 polymorphisms influence doxorubicin pharmacokinetics. We evaluated the association between chemotherapy-induced neutropenia and ABCB1 polymorphisms in patients with breast cancer. We investigated 141 patients with breast cancer treated with doxorubicin and cyclophosphamide (AC) chemotherapy. Peripheral blood samples obtained from patients were genotyped for the ABCB1 2677G>T/A and 3435C>T polymorphisms. The genotypes were then investigated for their association with grade 3 or greater neutropenia, and further their risk factors were examined using a multivariate logistic regression. The proportion of patients with grade 3 or greater neutropenia was 85.7% in the homozygous variant group, and 80% and 58.6% in the heterozygous variant and GG genotype groups, respectively (p = 0.021). The multivariate logistic regression analysis revealed that the ABCB1 2677G>T/A polymorphism was a strong predictor of grade 3 or greater neutropenia (odds ratio: 3.76; 95% confidence interval: 1.44-9.81; p = 0.007). ABCB1 polymorphisms may influence the extent of chemotherapy-induced neutropenia in AC combination-treated patients with breast cancer. Copyright © 2014 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  10. Biliary excretion of technetium-99m-sestamibi in wild-type dogs and in dogs with intrinsic (ABCB1-1Delta mutation) and extrinsic (ketoconazole treated) P-glycoprotein deficiency.

    PubMed

    Coelho, J C; Tucker, R; Mattoon, J; Roberts, G; Waiting, D K; Mealey, K L

    2009-10-01

    P-glycoprotein (P-gp), the product of ABCB1 gene, is thought to play a role in the biliary excretion of a variety of drugs, but specific studies in dogs have not been performed. Because a number of endogenous (ABCB1 polymorphisms) and exogenous (pharmacological P-gp inhibition) factors can interfere with normal P-gp function, a better understanding of P-gp's role in biliary drug excretion is crucial in preventing adverse drug reactions and drug-drug interactions in dogs. The objectives of this study were to compare biliary excretion of technetium-99m-sestamibi ((99m)Tc-MIBI), a radio-labelled P-gp substrate, in wild-type dogs (ABCB1 wild/wild), and dogs with intrinsic and extrinsic deficiencies in P-gp function. Dogs with intrinsic P-gp deficiency included ABCB1 mut/mut dogs, and dogs with presumed intermediate P-gp phenotype (ABCB1 mut/wild). Dogs with extrinsic P-gp deficiency were considered to be ABCB1 wild/wild dogs treated with the P-gp inhibitor ketoconazole (5 mg/kg PO q12h x 9 doses). Results from this study indicate that ABCB1 mut/mut dogs have significantly decreased biliary excretion of (99m)Tc-MIBI compared with ABCB1 wild/wild dogs. Treatment with ketoconazole significantly decreased biliary excretion of (99m)Tc-MIBI in ABCB1 wild/wild dogs. P-gp appears to play an important role in the biliary excretion of (99m)Tc-MIBI in dogs. It is likely that concurrent administration of a P-gp inhibitor such as ketoconazole will decrease P-gp-mediated biliary excretion of other substrate drugs as well.

  11. CYP3A5 and ABCB1 polymorphisms influence tacrolimus concentrations in peripheral blood mononuclear cells after renal transplantation.

    PubMed

    Capron, Arnaud; Mourad, Michel; De Meyer, Martine; De Pauw, Luc; Eddour, Djamila Chaib; Latinne, Dominique; Elens, Laure; Haufroid, Vincent; Wallemacq, Pierre

    2010-05-01

    This prospective study investigated the effect of genetic polymorphisms in a biotransformation enzyme (CYP3A5) and a transporter protein (ABCB1) on tacrolimus (Tac) whole blood concentrations in renal transplantation, and more specifically on peripheral blood mononuclear cell (PBMC) drug concentrations, after renal transplantation. A total of 96 renal transplant recipients were genotyped for the exon 11 (1199G>A), 21 (3435C>T) and 26 (2677G>T/A) polymorphisms in the ABCB1 gene and for the intron 3 polymorphism in the CYP3A5 gene. Tac blood and PBMC concentrations were determined at day 7 after transplantation and at steady state, and then compared with recipient genotypes. The ABCB1 1199G>A, 3435C>T and 2677G>T/A SNPs, appeared to reduce the activity of P-glycoprotein towards Tac, increasing Tac PBMC concentrations. The impact of ABCB1 genetic polymorphisms on Tac blood concentrations was negligible. As increased Tac intracellular concentrations might in turn enhance immunosuppressive status and prevention or rejection, ABCB1 recipient genotyping might be useful to better individualize the Tac immunosuppressive therapy in renal transplantation.

  12. ABCB1 c.2677G>T variation is associated with adverse reactions of OROS-methylphenidate in children and adolescents with ADHD.

    PubMed

    Kim, So Won; Lee, Ji Hyun; Lee, Sung Hee; Hong, Hyun Ju; Lee, Min Goo; Yook, Ki-Hwan

    2013-08-01

    Osmotic-release oral system (OROS)-methylphenidate (MPH) is a safe and well-tolerated drug. Some patients cannot continue this regimen with adverse drug reactions (ADRs). As drug efflux transporters of the central nervous system, ABCB1 plays an important role in the clearance of psychotropic drugs and their metabolites from brain tissues. We hypothesized that genetic variations in the ABCB1 gene may affect ADRs to OROS-MPH. We analyzed ADRs of OROS-MPH in 134 children and adolescents with attention-deficit hyperactivity disorder who completed a 4-week trial of OROS-MPH. The ADRs of OROS-MPH were evaluated by administering the Barkley Stimulant Side Effects Rating Scale. Our study proved that MPH is a substrate for ABCB1 by using membrane vesicle assay. We analyzed the influence of ABCB1 polymorphisms on ADRs to OROS-MPH. From the association study between ABCB1 polymorphisms and ADRs of OROS-MPH, c.2677G>T (p.Ala893Ser, rs2032582) showed a strong association with OROS-MPH-related ADRs (P = 0.008; odds ratio, 5.72). Furthermore, logistic regression analysis indicated that the TT genotype at the ABCB1 2677 locus is an independent determinant of ADRs attributed to OROS-MPH. In a functional study, the 893Ser variant markedly reduced MPH transport across the cell membrane. This is the first study to demonstrate that the TT genotype at position 2677 in the ABCB1 gene is associated with ADRs to OROS-MPH.

  13. Osimertinib (AZD9291) Enhanced the Efficacy of Chemotherapeutic Agents in ABCB1- and ABCG2-Overexpressing Cells In Vitro, In Vivo, and Ex Vivo.

    PubMed

    Chen, Zhen; Chen, Yifan; Xu, Meng; Chen, Likun; Zhang, Xu; To, Kenneth Kin Wah; Zhao, Hongyun; Wang, Fang; Xia, Zhongjun; Chen, Xiaoqin; Fu, Liwu

    2016-08-01

    The overexpression of ATP-binding cassette (ABC) transporters has been proved to be a major trigger for multidrug resistance (MDR) in certain types of cancer. In our study, we investigated whether osimertinib (AZD9291), a third-generation irreversible tyrosine kinase inhibitor of both activating EGFR mutations and resistance-associated T790M point mutation, could reverse MDR induced by ABCB1 and ABCG2 in vitro, in vivo, and ex vivo Our results showed that osimertinib significantly increased the sensitivity of ABCB1- and ABCG2-overexpressing cells to their substrate chemotherapeutic agents in vitro and in the model of ABCB1-overexpressing KBv200 cell xenograft in nude mice. Mechanistically, osimertinib increased the intracellular accumulations of doxorubicin (DOX) and Rhodamine 123 (Rho 123) by inhibiting the efflux function of the transporters in ABCB1- or ABCG2-overexpressing cells but not in their parental sensitive cells. Furthermore, osimertinib stimulated the ATPase activity of both ABCB1 and ABCG2 and competed with the [(125)I] iodoarylazidoprazosin photolabeling bound to ABCB1 or ABCG2, but did not alter the localization and expression of ABCB1 or ABCG2 in mRNA and protein levels nor the phosphorylations of EGFR, AKT, and ERK. Importantly, osimertinib also enhanced the cytotoxicity of DOX and intracellular accumulation of Rho 123 in ABCB1-overexpressing primary leukemia cells. Overall, these findings suggest osimertinib reverses ABCB1- and ABCG2-mediated MDR via inhibiting ABCB1 and ABCG2 from pumping out chemotherapeutic agents and provide possibility for cancer combinational therapy with osimertinib in the clinic. Mol Cancer Ther; 15(8); 1845-58. ©2016 AACR. ©2016 American Association for Cancer Research.

  14. The Pim kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by Pim-1-dependent and -independent mechanisms

    PubMed Central

    Natarajan, Karthika; Bhullar, Jasjeet; Shukla, Suneet; Burcu, Mehmet; Chen, Zhe-Sheng; Ambudkar, Suresh V.; Baer, Maria R.

    2013-01-01

    Overexpression of the ATP-binding cassette (ABC) drug efflux proteins P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on malignant cells is associated with inferior chemotherapy outcomes. Both, ABCB1 and ABCG2, are substrates of the serine/threonine kinase Pim-1; Pim-1 knockdown decreases their cell surface expression, but SGI-1776, the first clinically tested Pim inhibitor, was shown to reverse drug resistance by directly inhibiting ABCB1-mediated transport. We sought to characterize Pim-1-dependent and -independent effects of SGI-1776 on drug resistance. SGI-1776 at the Pim-1-inhibitory and non-cytotoxic concentration of 1 μM decreased the IC50s of the ABCG2 and ABCB1 substrate drugs in cytotoxicity assays in resistant cells, with no effect on the IC50 of non-substrate drug, nor in parental cells. SGI-1776 also increased apoptosis of cells overexpressing ABCG2 or ABCB1 exposed to substrate chemotherapy drugs and decreased their colony formation in the presence of substrate, but not non-substrate, drugs, with no effect on parental cells. SGI-1776 decreased ABCB1 and ABCG2 surface expression on K562/ABCB1 and K562/ABCG2 cells, respectively, with Pim-1 overexpression, but not HL60/VCR and 8226/MR20 cells, with lower-level Pim-1 expression. Finally, SGI-1776 inhibited uptake of ABCG2 and ABCB1 substrates in a concentration-dependent manner irrespective of Pim-1 expression, inhibited ABCB1 and ABCG2 photoaffinity labeling with the transport substrate [125I]iodoarylazidoprazosin ([125I]IAAP) and stimulated ABCB1 and ABCG2 ATPase activity. Thus SGI-1776 decreases cell surface expression of ABCB1 and ABCG2 and inhibits drug transport by Pim-1-dependent and -independent mechanisms, respectively. Decrease in ABCB1 and ABCG2 cell surface expression mediated by Pim-1 inhibition represents a novel mechanism of chemosensitization. PMID:23261525

  15. The Pim kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by Pim-1-dependent and -independent mechanisms.

    PubMed

    Natarajan, Karthika; Bhullar, Jasjeet; Shukla, Suneet; Burcu, Mehmet; Chen, Zhe-Sheng; Ambudkar, Suresh V; Baer, Maria R

    2013-02-15

    Overexpression of the ATP-binding cassette (ABC) drug efflux proteins P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on malignant cells is associated with inferior chemotherapy outcomes. Both, ABCB1 and ABCG2, are substrates of the serine/threonine kinase Pim-1; Pim-1 knockdown decreases their cell surface expression, but SGI-1776, the first clinically tested Pim inhibitor, was shown to reverse drug resistance by directly inhibiting ABCB1-mediated transport. We sought to characterize Pim-1-dependent and -independent effects of SGI-1776 on drug resistance. SGI-1776 at the Pim-1-inhibitory and non-cytotoxic concentration of 1 μM decreased the IC(50)s of the ABCG2 and ABCB1 substrate drugs in cytotoxicity assays in resistant cells, with no effect on the IC(50) of non-substrate drug, nor in parental cells. SGI-1776 also increased apoptosis of cells overexpressing ABCG2 or ABCB1 exposed to substrate chemotherapy drugs and decreased their colony formation in the presence of substrate, but not non-substrate, drugs, with no effect on parental cells. SGI-1776 decreased ABCB1 and ABCG2 surface expression on K562/ABCB1 and K562/ABCG2 cells, respectively, with Pim-1 overexpression, but not HL60/VCR and 8226/MR20 cells, with lower-level Pim-1 expression. Finally, SGI-1776 inhibited uptake of ABCG2 and ABCB1 substrates in a concentration-dependent manner irrespective of Pim-1 expression, inhibited ABCB1 and ABCG2 photoaffinity labeling with the transport substrate [(125)I]iodoarylazidoprazosin ([(125)I]IAAP) and stimulated ABCB1 and ABCG2 ATPase activity. Thus SGI-1776 decreases cell surface expression of ABCB1 and ABCG2 and inhibits drug transport by Pim-1-dependent and -independent mechanisms, respectively. Decrease in ABCB1 and ABCG2 cell surface expression mediated by Pim-1 inhibition represents a novel mechanism of chemosensitization. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Human ABCB1 (P-glycoprotein) and ABCG2 mediate resistance to BI 2536, a potent and selective inhibitor of Polo-like kinase 1.

    PubMed

    Wu, Chung-Pu; Hsiao, Sung-Han; Sim, Hong-May; Luo, Shi-Yu; Tuo, Wei-Cherng; Cheng, Hsing-Wen; Li, Yan-Qing; Huang, Yang-Hui; Ambudkar, Suresh V

    2013-10-01

    The overexpression of the serine/threonine specific Polo-like kinase 1 (Plk1) has been detected in various types of cancer, and thus has fast become an attractive therapeutic target for cancer therapy. BI 2536 is the first selective inhibitor of Plk1 that inhibits cancer cell proliferation by promoting G2/M cell cycle arrest at nanomolar concentrations. Unfortunately, alike most chemotherapeutic agents, the development of acquired resistance to BI 2536 is prone to present a significant therapeutic challenge. One of the most common mechanisms for acquired resistance in cancer chemotherapy is associated with the overexpression of ATP-binding cassette (ABC) transporters ABCB1, ABCC1 and ABCG2. Here, we discovered that overexpressing of either ABCB1 or ABCG2 is a novel mechanism of acquired resistance to BI 2536 in human cancer cells. Moreover, BI 2536 stimulates the ATPase activity of both ABCB1 and ABCG2 in a concentration-dependent manner, and inhibits the drug substrate transport mediated by these transporters. More significantly, the reduced chemosensitivity and BI 2536-mediated G2/M cell cycle arrest in cancer cells overexpressing either ABCB1 or ABCG2 can be significantly restored in the presence of selective inhibitor or other chemotherapeutic agents that also interact with ABCB1 and ABCG2, such as tyrosine kinase inhibitors nilotinib and lapatinib. Taken together, our findings indicate that in order to circumvent ABCB1 or ABCG2-mediated acquired resistance to BI 2536, a combined regimen of BI 2536 and inhibitors or clinically active drugs that potently inhibit the function of ABC drug transporters, should be considered as a potential treatment strategy in the clinic. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Influence of ABCB1 polymorphisms and haplotypes on tacrolimus nephrotoxicity and dosage requirements in children with liver transplant

    PubMed Central

    Hawwa, Ahmed F; McKiernan, Patrick J; Shields, Michael; Millership, Jeff S; Collier, Paul S; McElnay, James C

    2009-01-01

    AIMS The aim of this study was to investigate the influence of genetic polymorphisms in ABCB1 on the incidence of nephrotoxicity and tacrolimus dosage-requirements in paediatric patients following liver transplantation. METHODS Fifty-one paediatric liver transplant recipients receiving tacrolimus were genotyped for ABCB1 C1236>T, G2677>T and C3435>T polymorphisms. Dose-adjusted tacrolimus trough concentrations and estimated glomerular filtration rates (EGFR) indicative of renal toxicity were determined and correlated with the corresponding genotypes. RESULTS The present study revealed a higher incidence of the ABCB1 variant-alleles examined among patients with renal dysfunction (≥30% reduction in EGFR) at 6 months post-transplantation (1236T allele: 63.3% vs 37.5% in controls, P= 0.019; 2677T allele: 63.3% vs. 35.9%, p = 0.012; 3435T allele: 60% vs. 39.1%, P= 0.057). Carriers of the G2677->T variant allele also had a significant reduction (%) in EGFR at 12 months post-transplant (mean difference = 22.6%; P= 0.031). Haplotype analysis showed a significant association between T-T-T haplotypes and an increased incidence of nephrotoxicity at 6 months post-transplantation (haplotype-frequency = 52.9% in nephrotoxic patients vs 29.4% in controls; P= 0.029). Furthermore, G2677->T and C3435->T polymorphisms and T-T-T haplotypes were significantly correlated with higher tacrolimus dose-adjusted pre-dose concentrations at various time points examined long after drug initiation. CONCLUSIONS These findings suggest that ABCB1 polymorphisms in the native intestine significantly influence tacrolimus dosage-requirement in the stable phase after transplantation. In addition, ABCB1 polymorphisms in paediatric liver transplant recipients may predispose them to nephrotoxicity over the first year post-transplantation. Genotyping future transplant recipients for ABCB1 polymorphisms, therefore, could have the potential to individualize better tacrolimus immunosuppressive therapy and

  18. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    PubMed Central

    Andersen, Vibeke; Svenningsen, Katrine; Knudsen, Lina Almind; Hansen, Axel Kornerup; Holmskov, Uffe; Stensballe, Allan; Vogel, Ulla

    2015-01-01

    AIM: To evaluate ATP-binding cassette (ABC) transporters in colonic pathophysiology as they had recently been related to colorectal cancer (CRC) development. METHODS: Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1/Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function. RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes in relation to colitis was suggested by the animal studies. The finding that colitis was preceded by altered gut bacterial composition suggests that deletion of Abcb1 leads to fundamental changes of host-microbiota interaction. Also, high fat diet increases the frequency and severity of colitis in specific pathogen-free Abcb1 KO mice. The Abcb1 KO mice might thus serve as a model in which diet/environmental factors and microbes may be controlled and investigated in relation to intestinal inflammation. Potential molecular mechanisms include defective transport of inflammatory mediators and/or phospholipid translocation from one side to the other of the cell membrane lipid bilayer by ABC transporters affecting inflammatory response and/or function of tight junctions, phagocytosis and vesicle trafficking. Also, diet and microbes give rise to molecules which are potential substrates for the ABC transporters and which may additionally affect ABC transporter function through nuclear receptors and transcriptional regulation. Another critical role of ABCB1 was suggested by the finding that

  19. 1236 C/T and 3435 C/T polymorphisms of the ABCB1 gene in Mexican breast cancer patients.

    PubMed

    Gutierrez-Rubio, S A; Quintero-Ramos, A; Durán-Cárdenas, A; Franco-Topete, R A; Castro-Cervantes, J M; Oceguera-Villanueva, A; Jiménez-Pérez, L M; Balderas-Peña, L M A; Morgan-Villela, G; Del-Toro-Arreola, A; Daneri-Navarro, A

    2015-02-13

    MDR1, which is encoded by the ABCB1 gene, is involved in multidrug resistance (hydrophobic), as well as the elimination of xenotoxic agents. The association between ABCB1 gene polymorphisms and breast cancer risk in different populations has been described previously; however, the results have been inconclusive. In this study, we examined the association between polymorphisms 3435 C/T and 1236 C/T in the ABCB1 gene and breast cancer development in Mexican women according to their menopausal status and molecular classification. Molecular subtypes as well as allele and genotype frequencies were analyzed. A total of 248 women with initial breast cancer diagnosis and 180 ethnically matched, healthy, unrelated individuals were enrolled. Polymerase chain reaction-restriction fragment length polymorphism was performed to detect polymorphisms 3435 C/T and 1236 C/T in the ABCB1 gene. Premenopausal T allele carriers of the 3435 C/T polymorphism showed a 2-fold increased risk of breast cancer with respect to the reference and postmenopausal groups, as well as triple-negative expression regarding the luminal A/B molecular subrogated subtypes. In contrast, the CT genotype of the 1236 polymorphism was a protective factor against breast cancer. We conclude that the T allele carrier of the 3435 C/T polymorphism in the ABCB1 gene in combination with an estrogen receptor-negative status may be an important risk factor for breast cancer development in premenopausal women.

  20. ABCB1 C3435T polymorphism is associated with tetrahydrocannabinol blood levels in heavy cannabis users.

    PubMed

    Kebir, Oussama; Lafaye, Genevieve; Blecha, Lisa; Chaumette, Boris; Mouaffak, Fayçal; Laqueille, Xavier; Benyamina, Amine

    2018-04-01

    ABCB1 polymorphisms are known to modify drug pharmacokinetics but have yet to be studied for their role in generating and maintaining cannabis dependence. The objective of this study is to determine if ABCB1 C3435T (rs1045642) polymorphism may modulate Δ9-Tetrahydrocannabinol (THC) blood levels in a sample of heavy cannabis users. The study sample includes 39 Caucasian individuals, recruited in two French addictology centres, with isolated cannabis dependence and heavy use (defined as ≥ 7 joints per week). Each underwent clinical evaluation, cannabis blood metabolite dosage (THC, 11-OH-THC, and THC-COOH) and genotyping of ABCB1 C3435T polymorphism. In this population (males: 74.4%, average age 29.5 +/- 9), average cannabis use was 21 joints per week (median 12; range 7 - 80). T carriers (TT/CT) had significantly lower plasma THC levels (ng/ml) versus non T carriers (8 vs 15.70, significant), controlling for level of weekly use, 11-OH-THC and THC-COOH levels. Our results show that ABCB1 C3435T polymorphism may modulate serum THC levels in chronic heavy cannabis users. The exact mechanisms and roles that this may play in cannabis dependence genesis and evolution remain to be elucidated. These results should be controlled in a replication study using a larger population. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. ABCB1 polymorphism as a predictive biomarker for amrubicin-induced neutropenia.

    PubMed

    Takakuwa, Osamu; Oguri, Tetsuya; Uemura, Takehiro; Kunii, Eiji; Nakao, Makoto; Hijikata, Hisatoshi; Kawaguchi, Yuko; Ohkubo, Hirotsugu; Takemura, Masaya; Maeno, Ken; Niimi, Akio

    2014-07-01

    Amrubicin is a promising therapy for lung cancer, but is associated with a high incidence of severe neutropenia. The present study assessed the utility of ABCB1 and NAD(P)H quinone oxidoreductase 1 (NQO1) polymorphism as a predictor of amrubicin-induced neutropenia. Fifty-four Japanese lung cancer patients who received amrubicin chemotherapy were consecutively recruited and toxicities and SNPs (MDR1; C1236T, C3435T and G2677T/A, NQO1; C609T) were evaluated. The incidence of neutropenia was higher in patients treated with 40 mg/m2 of amrubicin (n=32) compared to patients treated with 35 mg/m2 of amrubicin (n=22) (53.1% vs. 22.7%). Patients who were homogenous for the wild-type allele of C3435T were at significantly higher risk of neutropenia compared to patients with other genotypes. By contrast, the C609T genotype of NQO1 was not related to neutropenia. C3435T polymorphisms of ABCB1 might be able to predict severe amrubicin-induced neutropenia. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Influence of CYP3A5 and ABCB1 gene polymorphisms on calcineurin inhibitor-related neurotoxicity after hematopoietic stem cell transplantation.

    PubMed

    Yanagimachi, Masakatsu; Naruto, Takuya; Tanoshima, Reo; Kato, Hiromi; Yokosuka, Tomoko; Kajiwara, Ryosuke; Fujii, Hisaki; Tanaka, Fumiko; Goto, Hiroaki; Yagihashi, Tatsuhiko; Kosaki, Kenjiro; Yokota, Shumpei

    2010-01-01

    One severe side effect of calcineurin inhibitors (CNIs: such as cyclosporine [CsA] and tacrolimus [FK506]) is neurotoxicity. CNIs are substrates for CYP3A5 and P-glycoprotein (P-gp), encoded by ABCB1 gene. In the present study, we hypothesized that genetic variability in CYP3A5 and ABCB1 genes may be associated with CNI-related neurotoxicity. The effects of the polymorphisms, such as CYP3A5 A6986G, ABCB1 C1236T, G2677T/A, and C3435T, associated with CNI-related neurotoxicity were evaluated in 63 patients with hematopoietic stem cell transplantation.   Of the 63 cases, 15 cases developed CNI-related neurotoxicity. In the CsA patient group (n = 30), age (p = 0.008), hypertension (p = 0.017), renal dysfunction (p < 0.001), ABCB1 C1236T (p < 0.001), and G2677T/A (p = 0.014) were associated with neurotoxicities. The CC genotype at ABCB1 C1236T was associated with it, but not significantly so (p = 0.07), adjusted for age, hypertension, and renal dysfunction. In the FK506 patient group (n = 33), CYP3A5 A6986G (p < 0.001), and ABCB1 C1236T (p = 0.002) were associated with neurotoxicity. At least one A allele at CYP3A5 A6986G (expressor genotype) was strongly associated with it according to logistic regression analysis (p = 0.01; OR, 8.5; 95% CI, 1.4-51.4).   The polymorphisms in CYP3A5 and ABCB1 genes were associated with CNI-related neurotoxicity. This outcome is probably because of CYP3A5 or P-gp functions or metabolites of CNIs. © 2009 John Wiley & Sons A/S.

  3. ABCB5 maintains melanoma-initiating cells through a pro-inflammatory cytokine signaling circuit

    PubMed Central

    Wilson, Brian J.; Saab, Karim R.; Ma, Jie; Schatton, Tobias; Pütz, Pablo; Zhan, Qian; Murphy, George F.; Gasser, Martin; Waaga-Gasser, Ana Maria; Frank, Natasha Y.; Frank, Markus H.

    2014-01-01

    The drug efflux transporter ABCB5 identifies cancer stem-like cells (CSC) in diverse human malignancies, where its expression is associated with clinical disease progression and tumor recurrence. ABCB5 confers therapeutic resistance but other functions in tumorigenesis independent of drug efflux have not been described that might help explain why it is so broadly overexpressed in human cancer. Here we show that in melanoma-initiating cells ABCB5 controls IL-1β secretion which serves to maintain slow-cycling, chemoresistant cells through an IL-1β/IL8/CXCR1 cytokine signaling circuit. This CSC maintenance circuit involved reciprocal paracrine interactions with ABCB5-negative cancer cell populations. ABCB5 blockade induced cellular differentiation, reversed resistance to multiple chemotherapeutic agents, and impaired tumor growth in vivo. Together, our results defined a novel function for ABCB5 in CSC maintenance and tumor growth. PMID:24934811

  4. Use of a combined effect model approach for discriminating between ABCB1- and ABCC1-type efflux activities in native bivalve gill tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faria, Melissa; CESAM & Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro; Pavlichenko, Vasiliy

    Aquatic organisms, such as bivalves, employ ATP binding cassette (ABC) transporters for efflux of potentially toxic chemicals. Anthropogenic water contaminants can, as chemosensitizers, disrupt efflux transporter function enabling other, putatively toxic compounds to enter the organism. Applying rapid amplification of cDNA ends (RACE) PCR we identified complete cDNAs encoding ABCB1- and ABCC1-type transporter homologs from zebra mussel providing the molecular basis for expression of both transporter types in zebra mussel gills. Further, efflux activities of both transporter types in gills were indicated with dye accumulation assays where efflux of the dye calcein-am was sensitive to both ABCB1- (reversin 205, verapamil)more » and ABCC1- (MK571) type specific inhibitors. The assumption that different inhibitors targeted different efflux pump types was confirmed when comparing measured effects of binary inhibitor compound mixtures in dye accumulation assays with predictions from mixture effect models. Effects by the MK571/reversin 205 mixture corresponded better with independent action, whereas reversin 205/verapamil joint effects were better predicted by the concentration addition model indicating different and equal targets, respectively. The binary mixture approach was further applied to identify the efflux pump type targeted by environmentally relevant chemosensitizing compounds. Pentachlorophenol and musk ketone, which were selected after a pre-screen of twelve compounds that previously had been identified as chemosensitizers, showed mixture effects that corresponded better with concentration addition when combined with reversine 205 but with independent action predictions when combined with MK571 indicating targeting of an ABCB1-type efflux pump by these compounds. - Highlights: • Sequences and function of ABC efflux transporters in bivalve gills were explored. • Full length Dreissena polymorpha abcb1 and abcc1 cDNA sequences were identified. • A

  5. Neurotoxic effects of ivermectin administration in genetically engineered mice with targeted insertion of the mutated canine ABCB1 gene.

    PubMed

    Orzechowski, Krystyna L; Swain, Marla D; Robl, Martin G; Tinaza, Constante A; Swaim, Heidi L; Jones, Yolanda L; Myers, Michael J; Yancy, Haile F

    2012-09-01

    To develop in genetically engineered mice an alternative screening method for evaluation of P-glycoprotein substrate toxicosis in ivermectin-sensitive Collies. 14 wild-type C57BL/6J mice (controls) and 21 genetically engineered mice in which the abcb1a and abcb1b genes were disrupted and the mutated canine ABCB1 gene was inserted. Mice were allocated to receive 10 mg of ivermectin/kg via SC injection (n = 30) or a vehicle-only formulation of propylene glycol and glycerol formal (5). Each was observed for clinical signs of toxic effects from 0 to 7 hours following drug administration. After ivermectin administration, considerable differences were observed in drug sensitivity between the 2 types of mice. The genetically engineered mice with the mutated canine ABCB1 gene had signs of severe sensitivity to ivermectin, characterized by progressive lethargy, ataxia, and tremors, whereas the wild-type control mice developed no remarkable effects related to the ivermectin. The ivermectin sensitivity modeled in the transgenic mice closely resembled the lethargy, stupor, disorientation, and loss of coordination observed in ivermectin-sensitive Collies with the ABCB1-1Δ mutation. As such, the model has the potential to facilitate toxicity assessments of certain drugs for dogs that are P-glycoprotein substrates, and it may serve to reduce the use of dogs in avermectin derivative safety studies that are part of the new animal drug approval process.

  6. Morphometric analysis of the cerebral expression of ATP-binding cassette transporter protein ABCB1 in chronic schizophrenia: Circumscribed deficits in the habenula.

    PubMed

    Bernstein, Hans-Gert; Hildebrandt, Jens; Dobrowolny, Henrik; Steiner, Johann; Bogerts, Bernhard; Pahnke, Jens

    2016-11-01

    There is increasing evidence that microvascular abnormalities and malfunction of the blood-brain barrier (BBB) significantly contribute to schizophrenia pathophysiology. The ATP-binding cassette transporter ABCB1 is an important molecular component of the intact BBB, which has been implicated in a number of neurodegenerative and psychiatric disorders, including schizophrenia. However, the regional and cellular expression of ABCB1 in schizophrenia is yet unexplored. Therefore, we studied ABCB1 protein expression immunohistochemically in twelve human post-mortem brain regions known to play a role in schizophrenia, in 13 patients with schizophrenia and nine controls. In ten out of twelve brain regions under study, no significant differences were found with regard to the numerical density of ABCB1-expressing capillaries between all patients with schizophrenia and control cases. The left and right habenular complex, however, showed significantly reduced capillary densities in schizophrenia patients. In addition, we found a significantly reduced density of ABCB1-expressing neurons in the left habenula. Reduced ABCB1 expression in habenular capillaries might contribute to increased brain levels of proinflammatory cytokines in patients with schizophrenia, while decreased expression of this protein in a subpopulation of medial habenular neurons (which are probably purinergic) might be related to abnormalities of purines and their receptors found in this disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Relation of polymorphism C1236T and C3435T in ABCB1 gene with bone marrow suppression in chemotherapy-treated breast cancer patients

    NASA Astrophysics Data System (ADS)

    Syarifah, S.; Hamdi, T.; Widyawati, T.; Sari, M. I.; Anggraini, D. R.

    2018-03-01

    ABCB1 is agene that encoded P-glycoprotein (P-gp), a transmembrane active efflux pump for a variety of carcinogens and cytostatics.ABCB1 polymorphisms C1236T and C3435T contribute to the variability oftherapeutic outcome and side effects.The present study was conducted to investigatethe relation of C1236T and C3435T polymorphisms in ABCB1 gene with bone marrow suppression in breast cancer patients treated withchemotherapy72 Indonesian womens isolated DNA sampleswere amplified using the PCR method. The analysis process of ABCB1 C1236T and C3435T polymorphism was by using thePCR-RFLP method. The frequencies of ABCB1 C1236T genotype for homozygous CC,heterozygous CT and variant TT was 11(15.28%), 42(58.33%), 19(26.39%), respectively. No associationwas between ABCB1 C1236T and C3435T polymorphisms in both individually and haplotypes with bone marrow suppression event (p > 0.05). There was no specific deviation of allele and genotype frequency from Hardy-Weinberg Equilibrium. There was a linkage between heterozygous CT-heterozygous CT in position 1236 and 3435 within 25 people (35%).

  8. Autophagy regulates cisplatin-induced stemness and chemoresistance via the upregulation of CD44, ABCB1 and ADAM17 in oral squamous cell carcinoma.

    PubMed

    Naik, Prajna Paramita; Mukhopadhyay, Subhadip; Panda, Prashanta Kumar; Sinha, Niharika; Das, Chandan Kanta; Mishra, Rajakishore; Patil, Shankargouda; Bhutia, Sujit Kumar

    2018-02-01

    We inspected the relevance of CD44, ABCB1 and ADAM17 in OSCC stemness and deciphered the role of autophagy/mitophagy in regulating stemness and chemoresistance. A retrospective analysis of CD44, ABCB1 and ADAM17 with respect to the various clinico-pathological factors and their correlation was analysed in sixty OSCC samples. Furthermore, the stemness and chemoresistance were studied in resistant oral cancer cells using sphere formation assay, flow cytometry and florescence microscopy. The role of autophagy/mitophagy was investigated by transient transfection of siATG14, GFP-LC3, tF-LC3, mKeima-Red-Mito7 and Western blot analysis of autophagic and mitochondrial proteins. In OSCC, high CD44, ABCB1 and ADAM17 expressions were correlated with higher tumour grades and poor differentiation and show significant correlation in their co-expression. In vitro and OSCC tissue double labelling confirmed that CD44 + cells co-expresses ABCB1 and ADAM17. Further, cisplatin (CDDP)-resistant FaDu cells displayed stem-like features and higher CD44, ABCB1 and ADAM17 expression. Higher autophagic flux and mitophagy were observed in resistant FaDu cells as compared to parental cells, and inhibition of autophagy led to the decrease in stemness, restoration of mitochondrial proteins and reduced expression of CD44, ABCB1 and ADAM17. The CD44 + /ABCB1 + /ADAM17 + expression in OSCC is associated with stemness and chemoresistance. Further, this study highlights the involvement of mitophagy in chemoresistance and autophagic regulation of stemness in OSCC. © 2017 John Wiley & Sons Ltd.

  9. Abcb4 acts as multixenobiotic transporter and active barrier against chemical uptake in zebrafish (Danio rerio) embryos

    PubMed Central

    2013-01-01

    Background In mammals, ABCB1 constitutes a cellular “first line of defense” against a wide array of chemicals and drugs conferring cellular multidrug or multixenobiotic resistance (MDR/MXR). We tested the hypothesis that an ABCB1 ortholog serves as protection for the sensitive developmental processes in zebrafish embryos against adverse compounds dissolved in the water. Results Indication for ABCB1-type efflux counteracting the accumulation of chemicals in zebrafish embryos comes from experiments with fluorescent and toxic transporter substrates and inhibitors. With inhibitors present, levels of fluorescent dyes in embryo tissue and sensitivity of embryos to toxic substrates were generally elevated. We verified two predicted sequences from zebrafish, previously annotated as abcb1, by cloning; our synteny analyses, however, identified them as abcb4 and abcb5, respectively. The abcb1 gene is absent in the zebrafish genome and we explored whether instead Abcb4 and/or Abcb5 show toxicant defense properties. Quantitative real-time polymerase chain reaction (qPCR) analyses showed the presence of transcripts of both genes throughout the first 48 hours of zebrafish development. Similar to transporter inhibitors, morpholino knock-down of Abcb4 increased accumulation of fluorescent substrates in embryo tissue and sensitivity of embryos toward toxic compounds. In contrast, morpholino knock-down of Abcb5 did not exert this effect. ATPase assays with recombinant protein obtained with the baculovirus expression system confirmed that dye and toxic compounds act as substrates of zebrafish Abcb4 and inhibitors block its function. The compounds tested comprised model substrates of human ABCB1, namely the fluorescent dyes rhodamine B and calcein-am and the toxic compounds vinblastine, vincristine and doxorubicin; cyclosporin A, PSC833, MK571 and verapamil were applied as inhibitors. Additionally, tests were performed with ecotoxicologically relevant compounds: phenanthrene (a

  10. Icariin may benefit the mesenchymal stem cells of patients with steroid-associated osteonecrosis by ABCB1-promoter demethylation: a preliminary study.

    PubMed

    Sun, Z-B; Wang, J-W; Xiao, H; Zhang, Q-S; Kan, W-S; Mo, F-B; Hu, S; Ye, S-N

    2015-01-01

    In this study, we found out a previously undefined function of icariin which restored the dynamic balance between osteogenic and adipogenic differentiation of mesenchymal stem cells (MSCs) in patients with osteonecrosis of femoral head (ONFH) via ABCB1-promoter demethylation. These findings provided important information regarding potential implication of icariin targeting epigenetic changes for the treatment of steroid -associated ONFH. Here, we investigated whether icariin can also exert a beneficial role in the reactivation of MSCs in the patients with steroid-associated ONFH via ABCB1-promoter demethylation. Bone marrow was collected from the proximal femur in patients with steroid-associated ONFH (n = 20) and patients with new femoral neck fractures (n = 22), and then MSCs were isolated. We investigated cell viability, intracellular reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), P-glycoprotein (P-gp) activity, the transcript levels of ABCB1 and oxidative stress-related genes, methylation extent at CpG islands of ABCB1 promoter, and osteogenic and adipogenic differentiation ability of MSCs from the femoral neck fractures group and from the steroid-associated ONFH group treated with or without icariin. We observed that MSCs from the steroid-associated ONFH group showed reduced proliferation ability, elevated ROS level, depressed MMP, weakened osteogenesis, and enhanced adipogenesis while low P-gp activity, transcription level of ABCB1, and oxidative stress-related genes as well as aberrant CpG islands hypermethylation of ABCB1 were also noted in steroid-associated ONFH group. Treatment with icariin obviously induced de novo P-gp expression, decreased oxidative stress, and promoted osteogenesis. Icariin may be a potential drug targeting epigenetic changes for the treatment of steroid-associated ONFH.

  11. P-glycoprotein (MDR1/ABCB1) restricts brain accumulation and Cytochrome P450-3A (CYP3A) limits oral availability of the novel ALK/ROS1 inhibitor lorlatinib.

    PubMed

    Li, Wenlong; Sparidans, Rolf W; Wang, Yaogeng; Lebre, Maria C; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H

    2018-05-09

    Lorlatinib (PF-06463922) is a promising oral anaplastic lymphoma kinase (ALK) and ROS1 inhibitor currently in Phase III clinical trials for treatment of non-small cell lung cancer (NSCLC) containing an ALK rearrangement. With therapy-resistant brain metastases a major concern in NSCLC, lorlatinib was designed to have high membrane and blood-brain barrier permeability. We investigated the roles of the multidrug efflux transporters ABCB1 and ABCG2, and the multispecific drug-metabolizing enzyme CYP3A in plasma pharmacokinetics and tissue distribution of lorlatinib using genetically modified mouse strains. In vitro, human ABCB1 and mouse Abcg2 modestly transported lorlatinib. Following oral lorlatinib administration (at 10 mg/kg), brain accumulation of lorlatinib, while relatively high in wild-type mice, was still 4-fold increased in Abcb1a/1b -/- and Abcb1a/1b;Abcg2 -/- mice, but not in single Abcg2 -/- mice. Lorlatinib plasma levels were not altered. Oral coadministration of the ABCB1/ABCG2 inhibitor elacridar increased the brain accumulation of lorlatinib in wild-type mice 4-fold, i.e. to the same level as in Abcb1a/1b;Abcg2 -/- mice, without altering plasma exposure. Similar results were obtained for lorlatinib testis accumulation. In Cyp3a -/- mice, the plasma exposure of lorlatinib was increased 1.3-fold, but was then 2-fold reduced upon transgenic over-expression of human CYP3A4 in liver and intestine, whereas relative tissue distribution of lorlatinib remained unaltered. Our data indicate that lorlatinib brain accumulation is substantially limited by P-glycoprotein in the blood-brain barrier, but this can be effectively reversed by elacridar coadministration. Moreover, oral availability of lorlatinib is markedly restricted by CYP3A4 activity. These insights may be used in optimizing the therapeutic application of lorlatinib. This article is protected by copyright. All rights reserved. © 2018 UICC.

  12. Genuine functions of P-glycoprotein (ABCB1).

    PubMed

    Mizutani, Takaharu; Masuda, Masatoshi; Nakai, Emi; Furumiya, Kenji; Togawa, Hiroshi; Nakamura, Yutaka; Kawai, Yuko; Nakahira, Keiko; Shinkai, Shigeko; Takahashi, Kazuhiko

    2008-02-01

    P-glycoprotein (P-gp, ABCB1, MDR1) was recognized as a drug-exporting protein from cancer cells three decade ago. Apart from the multidrug transporter side effects of P-gp, normal physiological functions of P-gp have been reported. P-gp could be responsible for translocating platelet-activating factor (PAF) across the plasma membrane and PAF inhibited drug transport mediated by P-gp in cancer cells. P-gp regulated the translocation of sphingomyelin (SM) and GlcCer, and short chain C(6)-NBD-GlcCer was found in the apical medium of P-gp cells exclusively and not in the basolateral membrane. SM plays an important role in the esterification of cholesterol. High expression of P-gp prevents stem-cell differentiation, leading to the proliferation and amplification of this cell repertoire, and functional P-gp plays a fundamental role in regulating programmed cell death, apoptosis. The transporter function of P-gp is therefore necessary to protect cells from death. P-gp can translocate both C(6)-NBD-PC and C(6)-NBD-PE across the apical membrane. This PC translocation was also confirmed with [(3)H]choline radioactivity. Progesterone is not transported by P-gp, but blocks P-gp-mediated efflux of other drugs and P-gp can mediate the transport of a variety of steroids. Cells transfected with human P-gp esterified more cholesterol. P-gp might also be involved in the transport of cytokines, particularly IL-1beta, IL-2, IL-4 and IFNgamma, out of activated normal lymphocytes into the surrounding medium. P-gp expression is also associated with a volume-activated chloride channel, thus P-gp is bifunctional with both transport and channel regulators. We also present information about P-gp polymorphism and new structural concepts, "gate" and "twist", of the P-gp structure.

  13. High-pressure crystal structures of an insensitive energetic crystal: 1,1-diamino-2,2-dinitroethene

    DOE PAGES

    Dreger, Zbigniew A.; Stash, Adam I.; Yu, Zhi -Gang; ...

    2015-12-03

    Understanding the insensitivity/stability of insensitive high explosive crystals requires detailed structural information at high pressures and high temperatures of interest. Synchrotron single crystal x-ray diffraction experiments were used to determine the high-pressure structures of 1,1-diamino-2,2-dinitroethene (FOX-7), a prototypical insensitive high explosive. The phase transition around 4.5 GPa was investigated and the structures were determined at 4.27 GPa (α’-phase) and 5.9 GPa (ε-phase). The α’-phase (monoclinic, P2 1/ n), structurally indistinguishable from the ambient α-phase, transforms to the new ε-phase (triclinic, P1). The most notable features of the ε-phase, compared to the α’-phase, are: formation of planar layers and flattening ofmore » molecules. Density functional theory (DFT-D2) calculations complemented the experimental results. Furthermore, the results presented here are important for understanding the molecular and crystalline attributes governing the high-pressure insensitivity/stability of insensitive high explosive crystals.« less

  14. High-pressure crystal structures of an insensitive energetic crystal: 1,1-diamino-2,2-dinitroethene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreger, Zbigniew A.; Stash, Adam I.; Yu, Zhi -Gang

    Understanding the insensitivity/stability of insensitive high explosive crystals requires detailed structural information at high pressures and high temperatures of interest. Synchrotron single crystal x-ray diffraction experiments were used to determine the high-pressure structures of 1,1-diamino-2,2-dinitroethene (FOX-7), a prototypical insensitive high explosive. The phase transition around 4.5 GPa was investigated and the structures were determined at 4.27 GPa (α’-phase) and 5.9 GPa (ε-phase). The α’-phase (monoclinic, P2 1/ n), structurally indistinguishable from the ambient α-phase, transforms to the new ε-phase (triclinic, P1). The most notable features of the ε-phase, compared to the α’-phase, are: formation of planar layers and flattening ofmore » molecules. Density functional theory (DFT-D2) calculations complemented the experimental results. Furthermore, the results presented here are important for understanding the molecular and crystalline attributes governing the high-pressure insensitivity/stability of insensitive high explosive crystals.« less

  15. One-Year Follow-up of Children and Adolescents with Major Depressive Disorder: Relationship between Clinical Variables and Abcb1 Gene Polymorphisms.

    PubMed

    Blázquez, A; Gassó, P; Mas, S; Plana, M T; Lafuente, A; Lázaro, L

    2016-11-01

    Introduction: Differences in response to fluoxetine (FLX) may be influenced by certain genes that are involved in FLX transportation ( ABCB1 ). We examined remission and recovery from the index episode in a cohort of patients treated with FLX, and also investigated associations between genetic variants in ABCB1 and remission, recovery, and suicide risk. Methods: This was a naturalistic 1-year follow-up study of 46 adolescents diagnosed with major depressive disorder (MDD). At 12 months they underwent a diagnostic interview with the K-SADS-PL. Results: It was found that remission was around 69.5% and recovery 56.5%. Remission and recovery were associated with lower scores on the CDI at baseline, with fewer readmissions and suicide attempts, and with lower scores on the CGI and higher scores on the GAF scale. No relationship was found between ABCB1 and remission or recovery. However, a significant association was observed between the G2677T ABCB1 polymorphism and suicide attempts. Conclusion: Other factors such as stressful events, family support, and other genetic factors are likely to be involved in MDD outcome. © Georg Thieme Verlag KG Stuttgart · New York.

  16. P-glycoprotein (ABCB1) inhibited network of mitochondrion transport along microtubule and BMP signal-induced cell shape in chimpanzee left cerebrum by systems-theoretical analysis.

    PubMed

    Lin, Hong; Wang, Lin; Jiang, Minghu; Huang, Juxiang; Qi, Lianxiu

    2012-10-01

    We constructed the significant low-expression P-glycoprotein (ABCB1) inhibited transport and signal network in chimpanzee compared with high-expression (fold change ≥2) the human left cerebrum in GEO data set, by using integration of gene regulatory activated and inhibited network inference method with gene ontology (GO) analysis. Our result showed that ABCB1 transport and signal upstream network RAB2A inhibited ABCB1, and downstream ABCB1-inhibited SMAD1_2, NCK2, SLC25A46, GDF10, RASGRP1, EGFR, LRPPRC, RASSF2, RASA4, CA2, CBLB, UBR5, SLC25A16, ITGB3BP, DDIT4, PDPN, RAB2A in chimpanzee left cerebrum. We obtained that the different biological processes of ABCB1 inhibited transport and signal network repressed carbon dioxide transport, ER to Golgi vesicle-mediated transport, folic acid transport, mitochondrion transport along microtubule, water transport, BMP signaling pathway, Ras protein signal transduction, transforming growth factor beta receptor signaling pathway in chimpanzee compared with the inhibited network of the human left cerebrum, as a result of inducing inhibition of mitochondrion transport along microtubule and BMP signal-induced cell shape in chimpanzee left cerebrum. Our hypothesis was verified by the same and different biological processes of ABCB1 inhibited transport and signal network of chimpanzee compared with the corresponding activated network of chimpanzee and the human left cerebrum, respectively. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Fentanyl Enhances Hepatotoxicity of Paclitaxel via Inhibition of CYP3A4 and ABCB1 Transport Activity in Mice

    PubMed Central

    Pan, Jia-Hao; Bi, Bing-Tian; Feng, Kun-Yao; Huang, Wan; Zeng, Wei-An

    2015-01-01

    Fentanyl, a potent opioid analgesic that is used to treat cancer pain, is commonly administered with paclitaxel in advanced tumors. However, the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanism of action is not well studied. The purpose of this study was to investigate the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanisms of action. Pharmacokinetic parameters of paclitaxel were tested using reversed phase high-performance liquid chromatography (RP-HPLC). Aspartate transaminase (AST), alanine aminotransferase (ALT), and mouse liver histopathology were examined. Moreover, the cytotoxicity of anti-carcinogens was examined using 1-(4, 5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), and the intracellular accumulation of doxorubicin and rhodamine 123 was detected by flow cytometry. Furthermore, the expression of ABCB1 and the activity of ABCB1 ATPase and CYP3A4 were also examined. In this study, the co-administration of fentanyl and paclitaxel prolonged the half-life (t1/2) of paclitaxel from 1.455 hours to 2.344 hours and decreased the clearance (CL) from 10.997 ml/h to 7.014 ml/h in mice. Fentanyl significantly increased the levels of ALT in mice to 88.2 U/L, which is more than 2-fold higher than the level detected in the control group, and it increased the histological damage in mouse livers. Furthermore, fentanyl enhanced the cytotoxicity of anti-carcinogens that are ABCB1 substrates and increased the accumulation of doxorubicin and rhodamine 123. Additionally, fentanyl stimulated ABCB1 ATPase activity and inhibited CYP3A4 activity in the liver microsomes of mice. Our study indicates that the obvious hepatotoxicity during this co-administration was due to the inhibition of CYP3A4 activity and ABCB1 transport activity. These findings suggested that the accumulation-induced hepatotoxicity of paclitaxel when it is combined with fentanyl should be avoided. PMID:26633878

  18. Population pharmacokinetics of gabapentin in healthy Korean subjects with influence of genetic polymorphisms of ABCB1.

    PubMed

    Tran, Phuong; Yoo, Hee-Doo; Ngo, Lien; Cho, Hea-Young; Lee, Yong-Bok

    2017-12-01

    The objective of this study was to perform population pharmacokinetic (PK) analysis of gabapentin in healthy Korean subjects and to investigate the possible effect of genetic polymorphisms (1236C > T, 2677G > T/A, and 3435C > T) of ABCB1 gene on PK parameters of gabapentin. Data were collected from bioequivalence studies, in which 173 subjects orally received three different doses of gabapentin (300, 400, and 800 mg). Only data from reference formulation were used. Population pharmacokinetics (PKs) of gabapentin was estimated using a nonlinear mixed-effects model (NONMEM). Gabapentin showed considerable inter-individual variability (from 5.2- to 8.7-fold) in PK parameters. Serum concentration of gabapentin was well fitted by a one-compartment model with first-order absorption and lag time. An inhibitory Emax model was applied to describe the effect of dose on bioavailability. The oral clearance was estimated to be 11.1 L/h. The volume of distribution was characterized as 81.0 L. The absorption rate constant was estimated at 0.860 h -1 , and the lag time was predicted at 0.311 h. Oral bioavailability was estimated to be 68.8% at dose of 300 mg, 62.7% at dose of 400 mg, and 47.1% at dose of 800 mg. The creatinine clearance significantly influenced on the oral clearance (P < 0.005) and ABCB1 2677G > T/A genotypes significantly influenced on the absorption rate constant (P < 0.05) of gabapentin. However, ABCB1 1236C > T and 3435C > T genotypes showed no significant effect on gabapentin PK parameters. The results of the present study indicate that the oral bioavailability of gabapentin is decreased when its dosage is increased. In addition, ABCB1 2677G > T/A polymorphism can explain the substantial inter-individual variability in the absorption of gabapentin.

  19. Detection of ABCB5 tumour antigen-specific CD8+ T cells in melanoma patients and implications for immunotherapy.

    PubMed

    Borchers, S; Maβlo, C; Müller, C A; Tahedl, A; Volkind, J; Nowak, Y; Umansky, V; Esterlechner, J; Frank, M H; Ganss, C; Kluth, M A; Utikal, J

    2018-01-01

    ATP binding cassette subfamily B member 5 (ABCB5) has been identified as a tumour-initiating cell marker and is expressed in various malignancies, including melanoma. Moreover, treatment with anti-ABCB5 monoclonal antibodies has been shown to inhibit tumour growth in xenotransplantation models. Therefore, ABCB5 represents a potential target for cancer immunotherapy. However, cellular immune responses against ABCB5 in humans have not been described so far. Here, we investigated whether ABCB5-reactive T cells are present in human melanoma patients and tested the applicability of ABCB5-derived peptides for experimental induction of human T cell responses. Peripheral blood mononuclear cells (PBMNC) isolated from blood samples of melanoma patients (n = 40) were stimulated with ABCB5 peptides, followed by intracellular cytokine staining (ICS) for interferon (IFN)-γ and tumour necrosis factor (TNF)-α. To evaluate immunogenicity of ABCB5 peptides in naive healthy donors, CD8 T cells were co-cultured with ABCB5 antigen-loaded autologous dendritic cells (DC). ABCB5 reactivity in expanded T cells was assessed similarly by ICS. ABCB5-reactive CD8 + T cells were detected ex vivo in 19 of 29 patients, melanoma antigen recognised by T cells (MART-1)-reactive CD8 + T cells in six of 21 patients. In this small, heterogeneous cohort, reactivity against ABCB5 was significantly higher than against MART-1. It occurred significantly more often and independently of clinical characteristics. Reactivity against ABCB5 could be induced in 14 of 16 healthy donors in vitro by repeated stimulation with peptide-loaded autologous DC. As ABCB5-reactive CD8 T cells can be found in the peripheral blood of melanoma patients and an ABCB5-specific response can be induced in vitro in naive donors, ABCB5 could be a new target for immunotherapies in melanoma. © 2017 British Society for Immunology.

  20. ABCB1 genetic polymorphism and risk of upper aerodigestive tract cancers among smokers, tobacco chewers and alcoholics in an Indian population.

    PubMed

    Sam, Soya Sisy; Thomas, Vinod; Sivagnanam, Kumaran; Reddy, Kanipakapatanam Sathyanarayana; Surianarayanan, Gopalakrishnan; Chandrasekaran, Adithan

    2007-10-01

    Upper aerodigestive tract (UADT) cancers are associated with the tobacco use and alcohol consumption. Certain toxins and carcinogens causing UADT cancers are found to be substrates of polymorphic ABCB1 gene encoded P-glycoprotein efflux pump. This study investigates the association between ABCB1 gene polymorphism at exon 26 (3435C>T) and risk to UADT cancers in Tamilians, a population of south India. The study included 219 unrelated histopathologically confirmed cases and 210 population-based controls. Genomic DNA was extracted from peripheral leukocytes and genotyped for ABCB1 3435C>T polymorphism by PCR-restriction fragment length polymorphism method. The multivariate logistic regression analyses demonstrated that the homozygous ABCB1 TT genotype was significantly associated with an overall increased risk for developing UADT cancers [odds ratio (OR): 2.53; 95% confidence interval (CI): 1.28-5.02]. Further, the determination of gene-environment interaction by stratified analyses have revealed a significant interaction between the smoking and homozygous TT genotype [(OR: 7.52; CI: 1.50-37.70) and (OR: 16.89; CI: 3.87-73.79) for 11-20 and >20 pack-years, respectively]. The strongest interaction was observed among the regular tobacco chewers (OR: 45.29; CI: 8.94-130.56) homozygous for TT genotype. No suggestion, however, of an interaction between the genotypes and the alcohol consumption on the multiplicative scale was made. The ABCB1 gene polymorphism at exon 26 (3435C>T) may be one of the risk factors for susceptibility to UADT cancers. Furthermore, the significant interaction among habitual smokers and tobacco chewers, homozygous for TT genotype modulates the risk to UADT cancers in the Tamilian population of south India.

  1. P-glycoprotein (ABCB1) inhibits the influx and increases the efflux of 11C-metoclopramide across the blood-brain barrier: a PET study on non-human primates.

    PubMed

    Auvity, Sylvain; Caillé, Fabien; Marie, Solène; Wimberley, Catriona; Bauer, Martin; Langer, Oliver; Buvat, Irène; Goutal, Sébastien; Tournier, Nicolas

    2018-05-10

    Rationale : PET imaging using radiolabeled high-affinity substrates of P-glycoprotein (ABCB1) has convincingly revealed the role of this major efflux transporter in limiting the influx of its substrates from blood into the brain across the blood-brain barrier (BBB). Many drugs, such as metoclopramide, are weak ABCB1 substrates and distribute into the brain even when ABCB1 is fully functional. In this study, we used kinetic modeling and validated simplified methods to highlight and quantify the impact of ABCB1 on the BBB influx and efflux of 11 C-metoclopramide, as a model weak ABCB1 substrate, in non-human primates. Methods : The regional brain kinetics of a tracer dose of 11 C-metoclopramide (298 ± 44 MBq) were assessed in baboons using PET without (n = 4) or with intravenous co-infusion of the ABCB1 inhibitor tariquidar (4 mg/kg/h, n = 4). Metabolite-corrected arterial input functions were generated to estimate the regional volume of distribution ( V T ) as well as the influx ( K 1 ) and efflux ( k 2 ) rate constants, using a one-tissue compartment model. Modeling outcome parameters were correlated with image-derived parameters, i.e. area under the curve AUC 0-30 min and AUC 30-60 min (SUV.min) as well as the elimination slope (k E ; min -1 ) from 30 to 60 min of the regional time-activity curves. Results : Tariquidar significantly increased the brain distribution of 11 C-metoclopramide ( V T = 4.3 ± 0.5 mL/cm 3 and 8.7 ± 0.5 mL/cm 3 for baseline and ABCB1 inhibition conditions, respectively, P<0.001), with a 1.28-fold increase in K 1 (P < 0.05) and a 1.64-fold decrease in k 2 (P < 0.001). The effect of tariquidar was homogeneous across different brain regions. The most sensitive parameters to ABCB1 inhibition were V T (2.02-fold increase) and AUC 30-60 min (2.02-fold increase). V T was significantly (P < 0.0001) correlated with AUC 30-60 min (r 2 = 0.95), AUC 0-30 min (r 2 = 0.87) and k E (r 2 = 0.62). Conclusion : 11 C-metoclopramide PET imaging revealed the

  2. The prevalence of ABCB1:c.227_230delATAG mutation in affected dog breeds from European countries.

    PubMed

    Firdova, Zuzana; Turnova, Evelina; Bielikova, Marcela; Turna, Jan; Dudas, Andrej

    2016-06-01

    Deletion of 4-base pairs in the canine ABCB1 (MDR1) gene, responsible for encoding P-glycoprotein, leads to nonsense frame-shift mutation, which causes hypersensitivity to macrocyclic lactones drugs (e.g. ivermectin). To date, at least 12 purebred dog breeds have been found to be affected by this mutation. The aim of this study was to update information about the prevalence of ABCB1 mutation (c.227_230delATAG) in predisposed breeds in multiple European countries. This large scale survey also includes countries which were not involved in previous studies. The samples were collected in the period from 2012 to 2014. The overview is based on genotyping data of 4729 individuals. The observed mutant allele frequencies were 58.5% (Smooth Collie), 48.3% (Rough Collie), 35% (Australian Shepherd), 30.3% (Shetland Sheepdog), 28.1% (Silken Windhound), 26.1% (Miniature Australian Shepherd), 24.3% (Longhaired Whippet), 16.2% (White Swiss Shepherd) and 0% (Border Collie). The possible presence of an ABCB1 mutant allele in Akita-Inu breed has been investigated with negative results. This information could be helpful for breeders in optimization of their breeding strategy and for veterinarians when prescribing drug therapy for dogs of predisposed breeds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. phot1 Inhibition of ABCB19 Primes Lateral Auxin Fluxes in the Shoot Apex Required For Phototropism

    PubMed Central

    Christie, John M.; Thomson, Catriona E.; Lin, Jinshan; Titapiwatanakun, Boosaree; Ennis, Margaret; Kaiserli, Eirini; Lee, Ok Ran; Adamec, Jiri; Peer, Wendy A.; Murphy, Angus S.

    2011-01-01

    It is well accepted that lateral redistribution of the phytohormone auxin underlies the bending of plant organs towards light. In monocots, photoreception occurs at the shoot tip above the region of differential growth. Despite more than a century of research, it is still unresolved how light regulates auxin distribution and where this occurs in dicots. Here, we establish a system in Arabidopsis thaliana to study hypocotyl phototropism in the absence of developmental events associated with seedling photomorphogenesis. We show that auxin redistribution to the epidermal sites of action occurs at and above the hypocotyl apex, not at the elongation zone. Within this region, we identify the auxin efflux transporter ATP-BINDING CASSETTE B19 (ABCB19) as a substrate target for the photoreceptor kinase PHOTOTROPIN 1 (phot1). Heterologous expression and physiological analyses indicate that phosphorylation of ABCB19 by phot1 inhibits its efflux activity, thereby increasing auxin levels in and above the hypocotyl apex to halt vertical growth and prime lateral fluxes that are subsequently channeled to the elongation zone by PIN-FORMED 3 (PIN3). Together, these results provide new insights into the roles of ABCB19 and PIN3 in establishing phototropic curvatures and demonstrate that the proximity of light perception and differential phototropic growth is conserved in angiosperms. PMID:21666806

  4. phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism.

    PubMed

    Christie, John M; Yang, Haibing; Richter, Gregory L; Sullivan, Stuart; Thomson, Catriona E; Lin, Jinshan; Titapiwatanakun, Boosaree; Ennis, Margaret; Kaiserli, Eirini; Lee, Ok Ran; Adamec, Jiri; Peer, Wendy A; Murphy, Angus S

    2011-06-01

    It is well accepted that lateral redistribution of the phytohormone auxin underlies the bending of plant organs towards light. In monocots, photoreception occurs at the shoot tip above the region of differential growth. Despite more than a century of research, it is still unresolved how light regulates auxin distribution and where this occurs in dicots. Here, we establish a system in Arabidopsis thaliana to study hypocotyl phototropism in the absence of developmental events associated with seedling photomorphogenesis. We show that auxin redistribution to the epidermal sites of action occurs at and above the hypocotyl apex, not at the elongation zone. Within this region, we identify the auxin efflux transporter ATP-BINDING CASSETTE B19 (ABCB19) as a substrate target for the photoreceptor kinase PHOTOTROPIN 1 (phot1). Heterologous expression and physiological analyses indicate that phosphorylation of ABCB19 by phot1 inhibits its efflux activity, thereby increasing auxin levels in and above the hypocotyl apex to halt vertical growth and prime lateral fluxes that are subsequently channeled to the elongation zone by PIN-FORMED 3 (PIN3). Together, these results provide new insights into the roles of ABCB19 and PIN3 in establishing phototropic curvatures and demonstrate that the proximity of light perception and differential phototropic growth is conserved in angiosperms.

  5. ABC-B transporter genes in Dirofilaria immitis.

    PubMed

    Bourguinat, Catherine; Che, Hua; Mani, Thangadurai; Keller, Kathy; Prichard, Roger K

    2016-08-01

    Dirofilaria immitis is a filarial nematode causing infection and heartworm disease in dogs and other canids, cats, and occasionally in humans. Prevention with macrocyclic lactones (ML) is recommended during the mosquito transmission season. Recently, ML resistance has been reported. ABC-B transporter genes are thought to be involved in the mechanism of ML resistance in other nematodes. This study aimed to identify all the ABC-B transporter genes in D. immitis using as a reference the nDi.2.2 D. immitis whole genome, which is not completely annotated. Using bioinformatic tools and PCR amplification on pooled D. immitis genomic DNA and on pooled cDNA, nine ABC transporter genes including one pseudogene were characterized. Bioinformatic and phylogenetic analyses allowed identification of three P-glycoproteins (Pgps) (Dim-pgp-3 Dim-pgp-10, Dim-pgp-11), of two ABC-B half transporter genes (one ortholog of Cel-haf-4 and Cel-haf-9; and one ortholog of Cel-haf-1 and Cel-haf-3), of one ABC half transporter gene (ortholog of Cel-haf-5) that contained an ABC-C motif, and of one additional half transporter that would require functional study for characterization. The number of ABC-B transporter genes identified was lower than in Caenorhabditis elegans and Haemonchus contortus. Further studies are needed to understand their possible role in ML resistance in D. immitis. These ABC transporters constitute a base for ML resistance investigation in D. immitis and advance our understanding of the molecular biology of this parasite. Copyright © 2016. Published by Elsevier Ltd.

  6. The effect of CYP3A5 and ABCB1 single nucleotide polymorphisms on tacrolimus dose requirements in Caucasian liver transplant patients.

    PubMed

    Provenzani, Alessio; Notarbartolo, Monica; Labbozzetta, Manuela; Poma, Paola; Biondi, Filippo; Sanguedolce, Rosario; Vizzini, Giovanni; Palazzo, Ugo; Polidori, Piera; Triolo, Fabio; Gridelli, Bruno; D'Alessandro, Natale

    2009-01-01

    Tacrolimus is a substrate of cytochrome P-450 (CYP) 3A enzyme and of the drug transporter ABCB1. We have investigated the effects of possible relevant CYP3A5 and ABCB1 single nucleotide polymorphisms (SNPs) present in both donors and recipients on tacrolimus blood levels achieved in a population of 32 Caucasian liver transplant patients. At 1, 3 and 6 months after transplantation, tacrolimus doses (mg/kg/day) and trough blood levels (C(0)) were determined. Polymerase chain reaction followed by restriction fragment length polymorphism analysis was used for genotyping CYP3A5*3 [6986A>G] as well as ABCB1 at exons 21 [2677G>T] and 26 [3435C>T]. 87.5% of the population showed a CYP3A5*3/*3 genotype. For the ABCB1 SNPs, in the case of 3435C>T the total frequency observed for the allelic variant was 50%. For the 2677G>T, the total frequency of the allelic variant was 12.5%, lower than in other Caucasian populations and without any significant linkage with 3435C>T. At 3 and 6 months after transplantation, tacrolimus dose requirements were significantly higher in patients receiving a liver with one copy of the *1 allele compared to those homozygous for the *3 allele (0.111+/-0.057 vs. 0.057+/-0.030 [P<0.05] at 3 month and 0.086+/-0.051 vs. 0.044+/-0.025 [P<0.05] at 6 month). For the recipients' genotypes, the presence of at least one *1 copy tended, though not statistically significantly, to increase tacrolimus doses. With regard to the ABCB1 SNPs, they did not show any influence on tacrolimus dosing requirements. Pharmacogenetic analysis of CYP3A5 in the donor could contribute to determine the appropriate initial dosage of tacrolimus in liver transplant patients.

  7. Cytochrome P450 and ABCB1 genetics: association with quetiapine and norquetiapine plasma and cerebrospinal fluid concentrations and with clinical response in patients suffering from schizophrenia. A pilot study.

    PubMed

    Nikisch, Georg; Baumann, Pierre; Oneda, Beatrice; Kiessling, Bernhard; Weisser, Heike; Mathé, Aleksander A; Yoshitake, Takashi; Kehr, Jan; Wiedemann, Georg; Eap, Chin B

    2011-07-01

    Variability in response to atypical antipsychotic drugs is due to genetic and environmental factors. Cytochrome P450 (CYP) isoforms are implicated in the metabolism of drugs, while the P-glycoprotein transporter (P-gp), encoded by the ABCB1 gene, may influence both the blood and brain drug concentrations. This study aimed to identify the possible associations of CYP and ABCB1 genetic polymorphisms with quetiapine and norquetiapine plasma and cerebrospinal fluid (CSF) concentrations and with response to treatment. Twenty-two patients with schizophrenia receiving 600 mg of quetiapine daily were genotyped for four CYP isoforms and ABCB1 polymorphisms. Quetiapine and norquetiapine peak plasma and CSF concentrations were measured after 4 weeks of treatment. Stepwise multiple regression analysis revealed that ABCB1 3435C > T (rs1045642), 2677G > T (rs2032582) and 1236C > T (rs1128503) polymorphisms predicted plasma quetiapine concentrations, explaining 41% of the variability (p = 0.001). Furthermore, the ABCB1 polymorphisms predicted 48% (p = 0.024) of the variability of the Δ PANSS total score, with the non-carriers of the 3435TT showing higher changes in the score. These results suggest that ABCB1 genetic polymorphisms may be a predictive marker of quetiapine treatment in schizophrenia.

  8. ABCB5 promotes melanoma metastasis through enhancing NF-κB p65 protein stability.

    PubMed

    Wang, Shenghao; Tang, Li; Lin, Junyu; Shen, Zhongliang; Yao, Yikun; Wang, Wei; Tao, Shuai; Gu, Chenjian; Ma, Jie; Xie, Youhua; Liu, Yanfeng

    2017-10-07

    Melanoma is the most aggressive type of skin cancer. Melanoma has an extremely poor prognosis because of its high potential for vascular invasion, metastasis and recurrence. The mechanism of melanoma metastasis is not well understood. ATP-binding cassette sub-family B member 5 (ABCB5) plays a key role in melanoma growth. However, it is uncertain what function ABCB5 may exert in melanoma metastasis. In this report, we for the first time demonstrate ABCB5 as a crucial factor that promotes melanoma metastasis. ABCB5 positive (ABCB5 + ) malignant melanoma initiating cells (MMICs) display a higher metastatic potential compared with ABCB5 negative (ABCB5 - ) melanoma subpopulation. Knockdown of ABCB5 expression reduces melanoma cell migration and invasion in vitro and melanoma pulmonary metastasis in tumor xenograft mice. ABCB5 and NF-κB p65 expression levels are positively correlated in both melanoma tissues and cell lines. Consequently, ABCB5 activates the NF-κB pathway by inhibiting p65 ubiquitination to enhance p65 protein stability. Our finding highlights ABCB5 as a novel pro-metastasis factor and provides a potential therapeutic target for melanoma. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. SLC22A1-ABCB1 haplotype profiles predict imatinib pharmacokinetics in Asian patients with chronic myeloid leukemia.

    PubMed

    Singh, Onkar; Chan, Jason Yongsheng; Lin, Keegan; Heng, Charles Chuah Thuan; Chowbay, Balram

    2012-01-01

    This study aimed to explore the influence of SLC22A1, PXR, ABCG2, ABCB1 and CYP3A5 3 genetic polymorphisms on imatinib mesylate (IM) pharmacokinetics in Asian patients with chronic myeloid leukemia (CML). Healthy subjects belonging to three Asian populations (Chinese, Malay, Indian; n = 70 each) and CML patients (n = 38) were enrolled in a prospective pharmacogenetics study. Imatinib trough (C(0h)) and clearance (CL) were determined in the patients at steady state. Haplowalk method was applied to infer the haplotypes and generalized linear model (GLM) to estimate haplotypic effects on IM pharmacokinetics. Association of haplotype copy numbers with IM pharmacokinetics was defined by Mann-Whitney U test. Global haplotype score statistics revealed a SLC22A1 sub-haplotypic region encompassing three polymorphisms (rs3798168, rs628031 and IVS7+850C>T), to be significantly associated with IM clearance (p = 0.013). Haplotype-specific GLM estimated that the haplotypes AGT and CGC were both associated with 22% decrease in clearance compared to CAC [CL (10(-2) L/hr/mg): CAC vs AGT: 4.03 vs 3.16, p = 0.017; CAC vs CGC: 4.03 vs 3.15, p = 0.017]. Patients harboring 2 copies of AGT or CGC haplotypes had 33.4% lower clearance and 50% higher C(0h) than patients carrying 0 or 1 copy [CL (10(-2) L/hr/mg): 2.19 vs 3.29, p = 0.026; C(0h) (10(-6) 1/ml): 4.76 vs 3.17, p = 0.013, respectively]. Further subgroup analysis revealed SLC22A1 and ABCB1 haplotypic combinations to be significantly associated with clearance and C(0h) (p = 0.002 and 0.009, respectively). This exploratory study suggests that SLC22A1-ABCB1 haplotypes may influence IM pharmacokinetics in Asian CML patients.

  10. Evolutionary history of the ABCB2 genomic region in teleosts

    USGS Publications Warehouse

    Palti, Y.; Rodriguez, M.F.; Gahr, S.A.; Hansen, J.D.

    2007-01-01

    Gene duplication, silencing and translocation have all been implicated in shaping the unique genomic architecture of the teleost MH regions. Previously, we demonstrated that trout possess five unlinked regions encoding MH genes. One of these regions harbors ABCB2 which in all other vertebrate classes is found in the MHC class II region. In this study, we sequenced a BAC contig for the trout ABCB2 region. Analysis of this region revealed the presence of genes homologous to those located in the human class II (ABCB2, BRD2, ??DAA), extended class II (RGL2, PHF1, SYGP1) and class III (PBX2, Notch-L) regions. The organization and syntenic relationships of this region were then compared to similar regions in humans, Tetraodon and zebrafish to learn more about the evolutionary history of this region. Our analysis indicates that this region was generated during the teleost-specific duplication event while also providing insight about potential MH paralogous regions in teleosts. ?? 2006 Elsevier Ltd. All rights reserved.

  11. Host genetic variants of ABCB1 and IL15 influence treatment outcome in paediatric acute lymphoblastic leukaemia

    PubMed Central

    Lu, Y; Kham, S K Y; Ariffin, H; Oei, A M I; Lin, H P; Tan, A M; Quah, T C; Yeoh, A E J

    2014-01-01

    Background: Host germline variations and their potential prognostic importance is an emerging area of interest in paediatric ALL. Methods: We investigated the associations between 20 germline variations and various clinical end points in 463 children with ALL. Results: After adjusting for known prognostic factors, variants in two genes were found to be independently associated with poorer EFS: ABCB1 T/T at either 2677 (rs2032582) or 3435 (rs1045642) position (P=0.003) and IL15 67276493G/G (rs17015014; P=0.022). These variants showed a strong additive effect affecting outcome (P<0.001), whereby patients with both risk genotypes had the worst EFS (P=0.001), even after adjusting for MRD levels at the end of remission induction. The adverse effect of ABCB1 T/T genotypes was most pronounced in patients with favourable cytogenetics (P=0.011) while the IL15 67276493G/G genotype mainly affected patients without common chromosomal abnormalities (P=0.022). In both cytogenetic subgroups, increasing number of such risk genotypes still predicted worsening outcome (P<0.001 and=0.009, respectively). Conclusion: These results point to the prognostic importance of host genetic variants, although the specific mechanisms remain unclarified. Inclusion of ABCB1 and IL15 variants may help improve risk assignment strategies in paediatric ALL. PMID:24434428

  12. Novel mutations of ABCB6 associated with autosomal dominant dyschromatosis universalis hereditaria.

    PubMed

    Cui, Ying-Xia; Xia, Xin-Yi; Zhou, Yang; Gao, Lin; Shang, Xue-Jun; Ni, Tong; Wang, Wei-Ping; Fan, Xiao-Buo; Yin, Hong-Lin; Jiang, Shao-Jun; Yao, Bing; Hu, Yu-An; Wang, Gang; Li, Xiao-Jun

    2013-01-01

    Dyschromatosis universalis hereditaria (DUH) is a rare heterogeneous pigmentary genodermatosis, which was first described in 1933. The genetic cause has recently been discovered by the discovery of mutations in ABCB6. Here we investigated a Chinese family with typical features of autosomal dominant DUH and 3 unrelated patients with sporadic DUH. Skin tissues were obtained from the proband, of this family and the 3 sporadic patients. Histopathological examination and immunohistochemical analysis of ABCB6 were performed. Peripheral blood DNA samples were obtained from 21 affected, 14 unaffected, 11 spouses in the family and the 3 sporadic patients. A genome-wide linkage scan for the family was carried out to localize the causative gene. Exome sequencing was performed from 3 affected and 1 unaffected in the family. Sanger sequencing of ABCB6 was further used to identify the causative gene for all samples obtained from available family members, the 3 sporadic patients and a panel of 455 ethnically-matched normal Chinese individuals. Histopathological analysis showed melanocytes in normal control's skin tissue and the hyperpigmented area contained more melanized, mature melanosomes than those within the hypopigmented areas. Empty immature melanosomes were found in the hypopigmented melanocytes. Parametric multipoint linkage analysis produced a HLOD score of 4.68, with markers on chromosome 2q35-q37.2. A missense mutation (c.1663 C>A, p.Gln555Lys) in ABCB6 was identified in this family by exome and Sanger sequencing. The mutation perfectly cosegregated with the skin phenotype. An additional mutation (g.776 delC, c.459 delC) in ABCB6 was found in an unrelated sporadic patient. No mutation in ABCB6 was discovered in the other two sporadic patients. Neither of the two mutations was present in the 455 controls. Melanocytes showed positive immunoreactivity to ABCB6. Our data add new variants to the repertoire of ABCB6 mutations with DUH.

  13. The clinical relevance and prognostic significance of adenosine triphosphate ATP-binding cassette (ABCB5) and multidrug resistance (MDR1) genes expression in acute leukemia: an Egyptian study.

    PubMed

    Farawela, Hala M; Khorshied, Mervat M; Kassem, Neemat M; Kassem, Heba A; Zawam, Hamdy M

    2014-08-01

    Multidrug resistance (MDR1) represents a major obstacle in the chemotherapeutic treatment of acute leukemia (AL). Adenosine triphosphate ATP-binding cassette (ABCB5) and MDR1 genes are integral membrane proteins belonging to ATP-binding cassette transporters superfamily. The present work aimed to investigate the impact of ABCB5 and MDR1 genes expression on the response to chemotherapy in a cohort of Egyptian AL patients. The study included 90 patients: 53 AML cases and 37 ALL cases in addition to 20 healthy volunteers as controls. Quantitative assessment of MDR1 and ABCB5 genes expression was performed by quantitative real-time polymerase chain reaction. Additional prognostic molecular markers were determined as internal tandem duplications of the FLT3 gene (FLT3-ITD) and nucleophosmin gene mutation (NPM1) for AML cases, and mbcr-abl fusion transcript for B-ALL cases. In AML patients, ABCB5 and MDR1 expression levels did not differ significantly between de novo and relapsed cases and did not correlate with the overall survival or disease-free survival. AML patients were stratified according to the studied genetic markers, and complete remission rate was found to be more prominent in patients having low expression of MDR1 and ABCB5 genes together with mutated NPM1 gene. In ALL patients, ABCB5 gene expression level was significantly higher in relapsed cases and MDR1 gene expression was significantly higher in patients with resistant disease. In conclusion, the results obtained by the current study provide additional evidence of the role played by these genes as predictive factors for resistance of leukemic cells to chemotherapy and hence treatment outcome.

  14. Low ABCB1 and high OCT1 levels play a favorable role in the molecular response to imatinib in CML patients in the community clinical practice.

    PubMed

    da Cunha Vasconcelos, Flavia; Mauricio Scheiner, Marcos Antonio; Moellman-Coelho, Arthur; Mencalha, André Luiz; Renault, Ilana Zalcberg; Rumjanek, Vivian Mary; Maia, Raquel Ciuvalschi

    2016-12-01

    Despite the favorable clinical evolution of patients with chronic myeloid leukemia (CML), resistance or intolerance to imatinib is present in approximately 35% of patients. Sokal score is a widely used risk factor, however efflux and influx transporters are provisional risk factors implicated in imatinib resistance. This study analyzed Sokal score, ABCB1, ABCG2 and OCT1 mRNA transporter expression levels as well as P-glycoprotein expression and efflux transporters activity to seek a possible correlation between these factors and the molecular response at 12 months from imatinib start as well as 8-year overall survival (OS). Low plus intermediate Sokal score correlated to optimal imatinib responses, as well as OS at 8-years, thus confirming the established role of Sokal score as a prognostic factor in CML patients. Low ABCB1 and high OCT1 mRNA levels were associated with an optimal molecular response, while the inverse levels were associated with non-responders (warning and failure) patients. Our results suggest that ABCB1 and OCT1 mRNA expressions may present biological relevance to identify responder and non-responder patients to imatinib treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Correlation between clinical response to sorafenib in hepatocellular carcinoma treatment and polymorphisms of P-glycoprotein (ABCB1) and of breast cancer resistance protein (ABCG2): monocentric study.

    PubMed

    Tandia, Mahamadou; Mhiri, Asma; Paule, Bernard; Saffroy, Raphaël; Cailliez, Valérie; Noé, Gaëlle; Farinotti, Robert; Bonhomme-Faivre, Laurence

    2017-04-01

    We studied the relation between the polymorphism of P-glycoprotein (P-gp) and of breast cancer resistance protein (BCRP), encoded by ABCB1 and ABCG2 genes, respectively, and the pharmacokinetic variability and clinical response during the treatment with sorafenib of hepatocellular carcinoma. At the Paul Brousse Hospital in Villejuif, France, 47 consecutive patients with advanced HCC treated with a single agent sorafenib, were enrolled. Sorafenib exposure was measured by its plasma concentration 3 h after oral administration of 400 mg (bid) by liquid chromatography. All enrolled patients were genotyped for ABCB1 (rs2032582; rs1045642) and ABCG2 (rs2231137; rs2231142; rs2622604) by blood genomic DNA extraction and Mass ARRAY genotyping. The clinical response was evaluated after 3months of treatment according to the RECIST criteria. Significant associations between sorafenib exposure and the studied polymorphisms were observed for ABCB1 3435C>T, ABCG2 34G>A, ABCG2 1143C>T and ABCG2 421C>A, but not for ABCB1 2677G>TA SNP. In heterozygous patients for ABCB1 3435 C>T, ABCG2 34 G>A and ABCG2 1143 C>T polymorphisms were significantly associated with the lowest sorafenib plasma levels. Those patients presented a tendency to have the best clinical evolution. Heterozygous forms of the studied polymorphisms could be associated with a better therapeutic response.

  16. ABCB1 and ABCC1-like transporters in immune system cells from sea urchins Echinometra lucunter and Echinus esculentus and oysters Crassostrea gasar and Crassostrea gigas.

    PubMed

    Marques-Santos, Luis Fernando; Hégaret, Hélène; Lima-Santos, Leonardo; Queiroga, Fernando Ramos; da Silva, Patricia Mirella

    2017-11-01

    ABC transporters activity and expression have been associated with the multixenobiotic resistance phenotype (MXR). The activity of these proteins leads to a reduction in the intracellular concentration of several xenobiotics, thus reducing their toxicity. However, little attention has been given to the expression of ABC transporters in marine invertebrates and few studies have investigated their role in immune system cells of sea urchins and shellfish bivalves. The aim of the present study was to investigate the activity of the ABC transporters ABCB1 and ABCC1 in immune system cells of sea urchins (coelomocytes) and oysters (hemocytes) from different climatic regions (Brazil and France). Sea urchins and oysters were collected at Paraíba coast; Brazil (Echinometra lucunter and Crassostrea gasar) and Rade of Brest; France (Echinus esculentus and Crassostrea gigas). Coelomocytes and hemocytes were stained with the ABC transporter substrate calcein-AM and dye accumulation analyzed under flow cytometry. Reversin 205 (ABCB1 transporter blocker) and MK571 (ABCC1 transporter blocker) were used as pharmacological tools to investigate ABC transporter activity. A different pattern of calcein accumulation was observed in coelomocytes: phagocytes > colorless spherulocytes > vibrate cells > red spherulocytes. The treatment with MK571 increased calcein fluorescence levels in coelomocytes from both species. However, reversin 205 treatment was not able to increase calcein fluorescence in E. esculentus coelomocytes. These data suggest that ABCC1-like transporter activity is present in both sea urchin species, but ABCB1-like transporter activity might only be present in E. lucunter coelomocytes. The activity of ABCC1-like transporter was observed in all cell types from both bivalve species. However, reversin 205 only increased calcein accumulation in hyalinocytes of the oyster C. gasar, suggesting the absence of ABCB1-like transporter activity in all other cell types

  17. Diversification and Expression of the PIN, AUX/LAX, and ABCB Families of Putative Auxin Transporters in Populus

    PubMed Central

    Carraro, Nicola; Tisdale-Orr, Tracy Eizabeth; Clouse, Ronald Matthew; Knöller, Anne Sophie; Spicer, Rachel

    2012-01-01

    Intercellular transport of the plant hormone auxin is mediated by three families of membrane-bound protein carriers, with the PIN and ABCB families coding primarily for efflux proteins and the AUX/LAX family coding for influx proteins. In the last decade our understanding of gene and protein function for these transporters in Arabidopsis has expanded rapidly but very little is known about their role in woody plant development. Here we present a comprehensive account of all three families in the model woody species Populus, including chromosome distribution, protein structure, quantitative gene expression, and evolutionary relationships. The PIN and AUX/LAX gene families in Populus comprise 16 and 8 members respectively and show evidence for the retention of paralogs following a relatively recent whole genome duplication. There is also differential expression across tissues within many gene pairs. The ABCB family is previously undescribed in Populus and includes 20 members, showing a much deeper evolutionary history, including both tandem and whole genome duplication as well as probable gene loss. A striking number of these transporters are expressed in developing Populus stems and we suggest that evolutionary and structural relationships with known auxin transporters in Arabidopsis can point toward candidate genes for further study in Populus. This is especially important for the ABCBs, which is a large family and includes members in Arabidopsis that are able to transport other substrates in addition to auxin. Protein modeling, sequence alignment and expression data all point to ABCB1.1 as a likely auxin transport protein in Populus. Given that basipetal auxin flow through the cambial zone shapes the development of woody stems, it is important that we identify the full complement of genes involved in this process. This work should lay the foundation for studies targeting specific proteins for functional characterization and in situ localization. PMID:22645571

  18. Defective canalicular transport and toxicity of dietary ursodeoxycholic acid in the abcb11-/- mouse: transport and gene expression studies.

    PubMed

    Wang, Renxue; Liu, Lin; Sheps, Jonathan A; Forrest, Dana; Hofmann, Alan F; Hagey, Lee R; Ling, Victor

    2013-08-15

    The bile salt export pump (BSEP), encoded by the abcb11 gene, is the major canalicular transporter of bile acids from the hepatocyte. BSEP malfunction in humans causes bile acid retention and progressive liver injury, ultimately leading to end-stage liver failure. The natural, hydrophilic, bile acid ursodeoxycholic acid (UDCA) is efficacious in the treatment of cholestatic conditions, such as primary biliary cirrhosis and cholestasis of pregnancy. The beneficial effects of UDCA include promoting bile flow, reducing hepatic inflammation, preventing apoptosis, and maintaining mitochondrial integrity in hepatocytes. However, the role of BSEP in mediating UDCA efficacy is not known. Here, we used abcb11 knockout mice (abcb11-/-) to test the effects of acute and chronic UDCA administration on biliary secretion, bile acid composition, liver histology, and liver gene expression. Acutely infused UDCA, or its taurine conjugate (TUDC), was taken up by the liver but retained, with negligible biliary output, in abcb11-/- mice. Feeding UDCA to abcb11-/- mice led to weight loss, retention of bile acids, elevated liver enzymes, and histological damage to the liver. Semiquantitative RT-PCR showed that genes encoding Mdr1a and Mdr1b (canalicular) as well as Mrp4 (basolateral) transporters were upregulated in abcb11-/- mice. We concluded that infusion of UDCA and TUDC failed to induce bile flow in abcb11-/- mice. UDCA fed to abcb11-/- mice caused liver damage and the appearance of biliary tetra- and penta-hydroxy bile acids. Supplementation with UDCA in the absence of Bsep caused adverse effects in abcb11-/- mice.

  19. Quantification and in situ localisation of abcb1 and abcc9genes in toxicant-exposed sea urchin embryos.

    PubMed

    Bošnjak, Ivana; Pleić, Ivana Lepen; Borra, Marco; Mladineo, Ivona

    2013-12-01

    A multixenobiotic resistance (MXR) mechanism mediated by ABC binding cassette (ABC) transport proteins is an efficient chemical defence mechanism in sea urchin embryos. The aim of our work was to evidence whether exposure to sub-lethal doses of specific contaminants (oxybenzone (OXI), mercuric chloride (HgCl2) and trybutiltin (TBT)) would induce MXR transporter activity during embryonic development (from zygote to blastula stage) in purple sea urchin (Paracentrotus lividus) embryos. Further, we present data on molecular identification, transport function, expression levels and gene localisation of two ABC efflux transporters-P-glycoprotein (ABCB1/P-gp) and sulfonylurea-receptor-like protein (ABCC9/SUR-like). Partial cDNA sequences of abcb1 and abcc9 were identified and quantitative PCR (qPCR) evidenced an increase in mRNA transcript levels of both ABC transporters during the two-cell, as well as an overall decrease during the blastulae stage. Calcein-AM efflux activity assay indicated the activation of multidrug resistance-associated protein/ABCC-like transport in the presence of HgCl2 and TBT in exposed blastulae. The in situ hybridisation of the two-cell and blastula stages showed ubiquitous localisation of both transcripts within cells, supporting qPCR data. In conclusion, ABCB1 and ABCC9 are constitutive, as are HgCl2, TBT and OXI-inducible ABC membrane transporters, coexpressed in the zygote, two-cell and blastula stages of the P. lividus. Their ubiquitous cell localisation further fortifies their protective role in early embryonic development.

  20. A new fluorescent dye accumulation assay for parallel measurements of the ABCG2, ABCB1 and ABCC1 multidrug transporter functions.

    PubMed

    Szabó, Edit; Türk, Dóra; Telbisz, Ágnes; Kucsma, Nóra; Horváth, Tamás; Szakács, Gergely; Homolya, László; Sarkadi, Balázs; Várady, György

    2018-01-01

    ABC multidrug transporters are key players in cancer multidrug resistance and in general xenobiotic elimination, thus their functional assays provide important tools for research and diagnostic applications. In this study we have examined the potential interactions of three key human ABC multidrug transporters with PhenGreen diacetate (PGD), a cell permeable fluorescent metal ion indicator. The non-fluorescent, hydrophobic PGD rapidly enters the cells and, after cleavage by cellular esterases, in the absence of quenching metal ions, PhenGreen (PG) becomes highly fluorescent. We found that in cells expressing functional ABCG2, ABCB1, or ABCC1 transporters, cellular PG fluorescence is strongly reduced. This fluorescence signal in the presence of specific transporter inhibitors is increased to the fluorescence levels in the control cells. Thus the PG accumulation assay is a new, unique tool for the parallel determination of the function of the ABCG2, ABCB1, and ABCC1 multidrug transporters. Since PG has very low cellular toxicity, the PG accumulation assay also allows the selection, separation and culturing of selected cell populations expressing either of these transporters.

  1. The severity of hereditary porphyria is modulated by the porphyrin exporter and Lan antigen ABCB6

    PubMed Central

    Fukuda, Yu; Cheong, Pak Leng; Lynch, John; Brighton, Cheryl; Frase, Sharon; Kargas, Vasileios; Rampersaud, Evadnie; Wang, Yao; Sankaran, Vijay G.; Yu, Bing; Ney, Paul A.; Weiss, Mitchell J.; Vogel, Peter; Bond, Peter J.; Ford, Robert C.; Trent, Ronald J.; Schuetz, John D.

    2016-01-01

    Hereditary porphyrias are caused by mutations in genes that encode haem biosynthetic enzymes with resultant buildup of cytotoxic metabolic porphyrin intermediates. A long-standing open question is why the same causal porphyria mutations exhibit widely variable penetrance and expressivity in different individuals. Here we show that severely affected porphyria patients harbour variant alleles in the ABCB6 gene, also known as Lan, which encodes an ATP-binding cassette (ABC) transporter. Plasma membrane ABCB6 exports a variety of disease-related porphyrins. Functional studies show that most of these ABCB6 variants are expressed poorly and/or have impaired function. Accordingly, homozygous disruption of the Abcb6 gene in mice exacerbates porphyria phenotypes in the Fechm1Pas mouse model, as evidenced by increased porphyrin accumulation, and marked liver injury. Collectively, these studies support ABCB6 role as a genetic modifier of porphyria and suggest that porphyrin-inducing drugs may produce excessive toxicities in individuals with the rare Lan(−) blood type. PMID:27507172

  2. Genetic association analysis of ATP binding cassette protein family reveals a novel association of ABCB1 genetic variants with epilepsy risk, but not with drug-resistance.

    PubMed

    Balan, Shabeesh; Bharathan, Sumitha Prameela; Vellichiramal, Neetha Nanoth; Sathyan, Sanish; Joseph, Vijai; Radhakrishnan, Kurupath; Banerjee, Moinak

    2014-01-01

    Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED)-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) (prototype for AED-resistant epilepsy); juvenile myoclonic epilepsy (JME) (prototype for AED-responsive epilepsy); and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T) rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004). This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004) and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05) cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with greater tendency for MTLE

  3. Genetic Association Analysis of ATP Binding Cassette Protein Family Reveals a Novel Association of ABCB1 Genetic Variants with Epilepsy Risk, but Not with Drug-Resistance

    PubMed Central

    Balan, Shabeesh; Bharathan, Sumitha Prameela; Vellichiramal, Neetha Nanoth; Sathyan, Sanish; Joseph, Vijai; Radhakrishnan, Kurupath; Banerjee, Moinak

    2014-01-01

    Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED)-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) (prototype for AED-resistant epilepsy); juvenile myoclonic epilepsy (JME) (prototype for AED-responsive epilepsy); and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T) rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004). This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004) and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05) cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with

  4. First Analysis of the Association Between CYP3A4/5, ABCB1 Genetic Polymorphisms and Oxcarbazepine Metabolism and Transport in Chinese Epileptic Patients with Oxcarbazepine Monotherapy and Bitherapy.

    PubMed

    Wang, Ping; Yin, Tao; Ma, Hong-ying; Liu, Dan-Qi; Sheng, Yangh-ao; Zhou, Bo-Ting

    2015-01-01

    Oxcarbazepine (OXC) is widely used in anti-epileptic treatment. Cytochrome P450 3A4 (CYP3A4), cytochrome P450 3A5(CYP3A5), and ATP-binding cassette sub-family B member 1 (ABCB1) are potential genes involved in OXC metabolisms and transport in vivo. This study aims to examine the genetic effects of CYP3A4, CYP3A5, and ABCB1 on OXC metabolism and transport in Chinese epileptic patients using OXC as monotherapy and bitherapy with lamotrigine (LTG), levetiracetam (LEV), or valproic acid (VPA). Sixty-six Chinese epileptic patients were recruited from Xiangya Hospital Central South University, of whom 40 patients were receiving OXC monotherapy, 11 patients were placed in the OXC bitherapy group combined with one enzyme-inducing anti-epileptic drugs (LTG or LEV), and 15 patients were placed in the OXC bitherapy group combined with VPA. Oxcarbazepine and its main metabolite 10-hydrocarbazepine (MHD) plasma concentrations were measured using high performance liquid chromatography (HPLC)-UV method. In addition, eight single nucleotide polymorphisms (SNPs) in CYP3A4, CYP3A5, ABCB1 gene were genotyped by polymerase chain reaction-improved multiple ligase detection reaction (PCR-iMLDR). In the OXC+VPA group, ABCB1 rs2032582 and rs2032582-rs10234411-rs1045642 TAG haplotype were associated with MHD and MHD+OXC plasma concentration before permutation test. In OXC monotherapy and OXC+ LTG/LEV groups, no significant association between genetic polymorphisms in CYP3A4/5, ABCB1 gene and OXC plasma concentration parameters were observed. CYP3A4/5 and ABCB1 genetic variants might not take part in the metabolism and transport of MHD and OXC among epileptic patients using OXC monotherapy and bitherapy in combination with LEV, LTG or VPA.

  5. Molecular mechanistic explanation for the spectrum of cholestatic disease caused by the S320F variant of ABCB4.

    PubMed

    Andress, Edward J; Nicolaou, Michael; Romero, Marta R; Naik, Sandhia; Dixon, Peter H; Williamson, Catherine; Linton, Kenneth J

    2014-05-01

    ABCB4 flops phosphatidylcholine into the bile canaliculus to protect the biliary tree from the detergent activity of bile salts. Homozygous-null ABCB4 mutations cause the childhood liver disease, progressive familial intrahepatic cholestasis, but cause and effect is less clear, with many missense mutations linked to less severe cholestatic diseases. ABCB4(S320F), in particular, is described in 13 patients, including in heterozygosity with ABCB4(A286V), ABCB4(A953D), and null mutants, whose symptoms cover the spectrum of cholestatic disease. We sought to define the impact of these mutations on the floppase, explain the link with multiple conditions at the molecular level, and investigate the potential for reversal. ABCB4(S320F), ABCB4(A286V), and ABCB4(A953D) expression was engineered in naïve cultured cells. Floppase expression, localization, and activity were measured by western blot, confocal microscopy, and lipid transport assays, respectively. ABCB4(S320F) was fully active for floppase activity but expression at the plasma membrane was reduced to 50%. ABCB4(A286V) expressed and trafficked efficiently but could not flop lipid, and ABCB4(A953D) expressed poorly and was impaired in floppase activity. Proteasome inhibition stabilized nascent ABCB4(S320F) and ABCB4(A953D) but did not improve plasma membrane localization. Cyclosporin-A improved plasma membrane localization of both ABCB4(S320F) and ABCB4(A953D), but inhibited floppase activity. The level of ABCB4 functionality correlates with, and is the primary determinant of, cholestatic disease severity in these patients. ABCB4(S320F) homozygosity, with half the normal level of ABCB4, is the tipping point between more benign and potentially fatal cholestasis and makes these patients more acutely sensitive to environmental effects. Cyclosporin-A increased expression of ABCB4(S320F) and ABCB4(A953D), suggesting that chemical chaperones could be exploited for therapeutic benefit to usher in a new era of personalized

  6. Transgenic Overexpression of Abcb11 Enhances Biliary Bile Salt Outputs, But Does Not Affect Cholesterol Cholelithogenesis in Mice

    PubMed Central

    Wang, Helen H.; Lammert, Frank; Schmitz, Anne; Wang, David Q.-H.

    2010-01-01

    Background Cholesterol gallstone disease is a complex genetic trait and induced by multiple but as yet unknown genes. A major Lith gene, Lith1 was first identified on chromosome 2 in gallstone-susceptible C57L mice compared with resistant AKR mice. Abcb11, encoding the canalicular bile salt export pump in the hepatocyte, co-localizes with the Lith1 QTL region and its hepatic expression is significantly higher in C57L mice than in AKR mice. Material and methods To investigate whether Abcb11 influences cholesterol gallstone formation, we created an Abcb11 transgenic strain on the AKR genetic background and fed these mice with a lithogenic diet for 56 days. Result We excluded functionally relevant polymorphisms of the Abcb11 gene and its promoter region between C57L and AKR mice. Overexpression of Abcb11 significantly promoted biliary bile salt secretion and increased circulating bile salt pool size and bile salt-dependent bile flow rate. However, biliary cholesterol and phospholipid secretion, as well as gallbladder size and contractility were comparable in transgenic and wild-type mice. At 56 days on the lithogenic diet, cholesterol saturation indexes of gallbladder biles and gallstone prevalence rates were essentially similar in these two groups of mice. Conclusion Overexpression of Abcb11 augments biliary bile salt secretion, but does not affect cholelithogenesis in mice. PMID:20456485

  7. Molecular Imaging of ABCB1 and ABCG2 Inhibition at the Human Blood-Brain Barrier Using Elacridar and 11C-Erlotinib PET.

    PubMed

    Verheijen, Remy B; Yaqub, Maqsood; Sawicki, Emilia; van Tellingen, Olaf; Lammertsma, Adriaan A; Nuijen, Bastiaan; Schellens, Jan H M; Beijnen, Jos H; Huitema, Alwin D R; Hendrikse, N Harry; Steeghs, Neeltje

    2018-06-01

    Transporters such as ABCB1 and ABCG2 limit the exposure of several anticancer drugs to the brain, leading to suboptimal treatment in the central nervous system. The purpose of this study was to investigate the effects of the ABCB1 and ABCG2 inhibitor elacridar on brain uptake using 11 C-erlotinib PET. Methods: Elacridar and cold erlotinib were administered orally to wild-type (WT) and Abcb1a/b;Abcg2 knockout mice. In addition, brain uptake was measured using 11 C-erlotinib imaging and ex vivo scintillation counting in knockout and WT mice. Six patients with advanced solid tumors underwent 11 C-erlotinib PET scans before and after a 1,000-mg dose of elacridar. 11 C-erlotinib brain uptake was quantified by pharmacokinetic modeling using volume of distribution (V T ) as the outcome parameter. In addition, 15 O-H 2 O scans to measure cerebral blood flow were acquired before each 11 C-erlotinib scan. Results: Brain uptake of 11 C-erlotinib was 2.6-fold higher in Abcb1a/b;Abcg2 knockout mice than in WT mice, measured as percentage injected dose per gram of tissue ( P = 0.01). In WT mice, the addition of elacridar (at systemic plasma concentrations of ≥200 ng/mL) resulted in an increased brain concentration of erlotinib, without affecting erlotinib plasma concentration. In patients, the V T of 11 C-erlotinib did not increase after intake of elacridar (0.213 ± 0.12 vs. 0.205 ± 0.07, P = 0.91). 15 O-H 2 O PET showed no significant changes in cerebral blood flow. Elacridar exposure in patients was 401 ± 154 ng/mL. No increase in V T with increased elacridar plasma exposure was found over the 271-619 ng/mL range. Conclusion: When Abcb1 and Abcg2 were disrupted in mice, brain uptake of 11 C-erlotinib increased both at a tracer dose and at a pharmacologic dose. In patients, brain uptake of 11 C-erlotinib was not higher after administration of elacridar. The more pronounced role that ABCG2 appears to play at the human blood-brain barrier and the lower potency of elacridar

  8. Crystal structure of the human 4-1BB/4-1BBL complex.

    PubMed

    Gilbreth, Ryan N; Oganesyan, Vaheh Y; Amdouni, Hamza; Novarra, Shabazz; Grinberg, Luba; Barnes, Arnita; Baca, Manuel

    2018-05-02

    4-1BBL is a member of the TNF superfamily and is the ligand for the TNFRsuperfamily receptor, 4-1BB. 4-1BB plays an immunomodulatory role in T cells and NK cells and agonists of this receptor have garnered strong attention as potentialimmunotherapy agents. Broadly speaking, the structural features of TNF superfamilymembers, their receptors and ligand/receptor complexes are similar. However, apublished crystal structure of human 4-1BBL suggests that it may be unique in thisregard, exhibiting a three-bladed propeller-like trimer assembly that is distinctly different from that observed in other family members. This unusual structure also suggests that the human 4-1BB/4-1BBL complex may be structurally unique within the TNF/TNFR superfamily, but to date no structural data have been reported. Here we report the crystal structure of the human 4-1BB/4-1BBL complex at 2.4 Å resolution. In this structure, 4-1BBL does not adopt the unusual trimer assembly previously reported, but instead forms a canonical bell-shaped trimer typical of other TNF superfamily members. The structure of 4-1BB is also largely canonical as is the 4-1BB/4-1BBL complex. Mutational data support the 4-1BBL structure reported here as being biologically relevant, suggesting that the previously reported structure is not. Together, the data presented here offer insight into structure/function relationships in the 4-1BB/4-1BBL system and improve our structural understanding of the TNF/TNFR superfamily more broadly. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Crystal Structures of MEK1 Binary and Ternary Complexes with Nucleotides and Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischmann, Thierry O.; Smith, Catherine K.; Mayhood, Todd W.

    MEK1 is a member of the MAPK signal transduction pathway that responds to growth factors and cytokines. We have determined that the kinase domain spans residues 35-382 by proteolytic cleavage. The complete kinase domain has been crystallized and its X-ray crystal structure as a complex with magnesium and ATP-{gamma}S determined at 2.1 {angstrom}. Unlike crystals of a truncated kinase domain previously published, the crystals of the intact domain can be grown either as a binary complex with a nucleotide or as a ternary complex with a nucleotide and one of a multitude of allosteric inhibitors. Further, the crystals allow formore » the determination of costructures with ATP competitive inhibitors. We describe the structures of nonphosphorylated MEK1 (npMEK1) binary complexes with ADP and K252a, an ATP-competitive inhibitor (see Table 1), at 1.9 and 2.7 {angstrom} resolution, respectively. Ternary complexes have also been solved between npMEK1, a nucleotide, and an allosteric non-ATP competitive inhibitor: ATP-{gamma}S with compound 1 and ADP with either U0126 or the MEK1 clinical candidate PD325089 at 1.8, 2.0, and 2.5 {angstrom}, respectively. Compound 1 is structurally similar to PD325901. These structures illustrate fundamental differences among various mechanisms of inhibition at the molecular level. Residues 44-51 have previously been shown to play a negative regulatory role in MEK1 activity. The crystal structure of the integral kinase domain provides a structural rationale for the role of these residues. They form helix A and repress enzymatic activity by stabilizing an inactive conformation in which helix C is displaced from its active state position. Finally, the structure provides for the first time a molecular rationale that explains how mutations in MEK may lead to the cardio-facio-cutaneous syndrome.« less

  10. MicroRNA-873 mediates multidrug resistance in ovarian cancer cells by targeting ABCB1.

    PubMed

    Wu, Di-di; Li, Xue-Song; Meng, Xiao-Na; Yan, Jing; Zong, Zhi-Hong

    2016-08-01

    Ovarian cancer is commonly treated with cisplatin and paclitaxel combination chemotherapy; however, ovarian cancer cells often develop resistance to these drugs. Increasingly, microRNAs (miRNAs) including miR-873 have been implicated in drug resistance in many cancers, but the role of miR-873 in ovarian cancer remains unknown. MTT cell viability assays revealed that the sensitivities of ovarian cancer lines to cisplatin and paclitaxel increased following transfection with miR-873 (P < 0.05). After predicting the miR-873 binding region in the 3'-untranslated region of ABCB1, dual-luciferase reporter assay confirmed this prediction. RT-PCR and Western blotting revealed that MDR1 expression was significantly downregulated after transfection with miR-873 and upregulated after transfection with anti-miR-873 at both mRNA and protein levels compared to negative controls (P < 0.05). Experiments in a mouse xenograft model confirmed that intratumoral administration of miR-873 could enhance the efficacy of cisplatin in inhibiting tumor growth in ovarian cancer in vivo (P < 0.05). ABCB1 overexpression reduced sensitivities of ovarian cancer lines OVCAR3 and A2780 to cisplatin and paclitaxel, which can be reversed by miR-873 mimic transfection (P < 0.05). In summary, we demonstrated that overexpression of miR-873 increased the sensitivity of ovarian cancer cells to cisplatin and paclitaxel by targeting MDR1 expression. Our findings suggest that combination therapies with chemotherapy agents and miR-873 may suppress drug resistance in ovarian cancer.

  11. Effects of ABCB1, ABCC2, UGT2B7 and HNF4α genetic polymorphisms on oxcarbazepine concentrations and therapeutic efficacy in patients with epilepsy.

    PubMed

    Shen, Chunhong; Zhang, Bijun; Liu, Zhirong; Tang, Yelei; Zhang, Yinxi; Wang, Shan; Guo, Yi; Ding, Yao; Wang, Shuang; Ding, Meiping

    2017-10-01

    The aim of the study is to investigate the effects of ABCB1, ABCC2, UGT2B7 and HNF4α genetic polymorphisms on plasma oxcarbazepine (OXC) concentrations and therapeutic efficacy in Han Chinese patients with epilepsy. We recruited 116 Han Chinese patients with epilepsy who were receiving OXC monotherapy. Blood samples were taken and OXC levels were measured. The polymorphisms of ABCB1 rs1045642, ABCC2 rs2273697, UGT2B7 rs7439366, and HNF4α rs2071197 were determined. The therapeutic efficacy of OXC at the 1-year time-point was assessed. Data analysis was performed using IBM SPSS Statistics 22.0. The genetic polymorphism of ABCB1 rs1045642 was found to be associated with normalized OXC concentration and therapeutic efficacy in patients with epilepsy (P<0.05). As for UGT2B7 rs7439366, the allele polymorphism exhibited a correlation with treatment outcome, but not OXC concentration. The polymorphisms of ABCC2 rs2273697 and HNF4α rs2071197 was not associated with OXC concentrations and therapeutic efficacy. These results suggested that ABCB1 rs1045642 and UGT2B7 rs7439366 may affect OXC pharmacokinetics and therapeutic efficacy in Han Chinese patients with epilepsy. However, further studies in larger populations and other ethnic groups are required. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  12. X-ray structure investigation of some substituted indoles, and the x-ray crystal of 1,1'-bishomocubane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quarles, William G.

    1970-05-01

    The crystal structures of 5-methoxytryptamine, melatonin, and the p-bromobenzoate of 1,1'-bishomocubane have been solved by x-ray diffraction methods. A computer program for the trial and error solution of crystal structures is also described here.

  13. Impact of ABCB1, ABCG2, and CYP3A5 polymorphisms on plasma trough concentrations of apixaban in Japanese patients with atrial fibrillation.

    PubMed

    Ueshima, Satoshi; Hira, Daiki; Fujii, Ryo; Kimura, Yuuma; Tomitsuka, Chiho; Yamane, Takuya; Tabuchi, Yohei; Ozawa, Tomoya; Itoh, Hideki; Horie, Minoru; Terada, Tomohiro; Katsura, Toshiya

    2017-09-01

    During anticoagulant therapy, major bleeding is one of the most severe adverse effects. This study aimed to evaluate the relationships between ABCB1, ABCG2, and CYP3A5 polymorphisms and plasma trough concentrations of apixaban, a direct inhibitor of coagulation factor X. A total of 70 plasma concentrations of apixaban from 44 Japanese patients with atrial fibrillation were analyzed. In these analyses, the plasma trough concentration/dose (C/D) ratio of apixaban was used as a pharmacokinetic index and all data were stratified according to the presence of ABCB1 (ABCB1 1236C>T, 2677G>T/A, and 3435C>T), ABCG2 (ABCG2 421C>A), and CYP3A5 (CYP3A5*3) polymorphisms. Influences of various clinical laboratory parameters (age, serum creatinine, estimated glomerular filtration rate, aspartate amino transferase, and alanine amino transferase) on the plasma trough C/D ratio of apixaban were included in analyses. Although no ABCB1 polymorphisms affected the plasma trough C/D ratio of apixaban, the plasma trough C/D ratio of apixaban was significantly higher in patients with the ABCG2 421A/A genotype than in patients with the ABCG2 421C/C genotype (P<0.01). The plasma trough C/D ratio of apixaban in patients with CYP3A5*1/*3 or *3/*3 genotypes was also significantly higher than that in patients with the CYP3A5*1/*1 genotype (P<0.05). Furthermore, the plasma trough C/D ratio of apixaban decreased with increased estimated glomerular filtration rate. These results indicate that ABCG2 421A/A and CYP3A5*3 genotypes and renal function are considered potential factors affecting trough concentrations of apixaban.

  14. OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa L.).

    PubMed

    Xu, Yanxia; Zhang, Saina; Guo, Haipeng; Wang, Suikang; Xu, Ligen; Li, Chuanyou; Qian, Qian; Chen, Fan; Geisler, Markus; Qi, Yanhua; Jiang, De An

    2014-07-01

    Members of the ATP Binding Cassette B/Multidrug-Resistance/P-glyco-protein (ABCB/MDR/PGP) subfamily were shown to function primarily in Oryza sativa (rice) auxin transport; however, none of the rice ABCB transporters have been functionally characterized. Here, we describe that a knock-down of OsABCB14 confers decreased auxin concentrations and polar auxin transport rates, conferring insensitivity to 2,4-dichlorophenoxyacetic acid (2,4-D) and indole-3-acetic acid (IAA). OsABCB14 displays enhanced specific auxin influx activity in yeast and protoplasts prepared from rice knock-down alleles. OsABCB14 is localized at the plasma membrane, pointing to an important directionality under physiological conditions. osabcb14 mutants were surprisingly found to be insensitive to iron deficiency treatment (-Fe). Their Fe concentration is higher and upregulation of Fe deficiency-responsive genes is lower in osabcb14 mutants than in wild-type rice (Nipponbare, NIP). Taken together, our results strongly support the role of OsABCB14 as an auxin influx transporter involved in Fe homeostasis. The functional characterization of OsABCB14 provides insights in monocot auxin transport and its relationship to Fe nutrition. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  15. Functional Rescue of Trafficking-Impaired ABCB4 Mutants by Chemical Chaperones

    PubMed Central

    Gordo-Gilart, Raquel; Andueza, Sara; Hierro, Loreto; Jara, Paloma; Alvarez, Luis

    2016-01-01

    Multidrug resistance protein 3 (MDR3, ABCB4) is a hepatocellular membrane protein that mediates biliary secretion of phosphatidylcholine. Null mutations in ABCB4 gene give rise to severe early-onset cholestatic liver disease. We have previously shown that the disease-associated mutations p.G68R, p.G228R, p.D459H, and p.A934T resulted in retention of ABCB4 in the endoplasmic reticulum, thus failing to target the plasma membrane. In the present study, we tested the ability of two compounds with chaperone-like activity, 4-phenylbutyrate and curcumin, to rescue these ABCB4 mutants by assessing their effects on subcellular localization, protein maturation, and phospholipid efflux capability. Incubation of transfected cells at a reduced temperature (30°C) or exposure to pharmacological doses of either 4-PBA or curcumin restored cell surface expression of mutants G228R and A934T. The delivery of these mutants to the plasma membrane was accompanied by a switch in the ratio of mature to inmature protein forms, leading to a predominant expression of the mature protein. This effect was due to an improvement in the maturation rate and not to the stabilization of the mature forms. Both mutants were also functionally rescued, displaying bile salt-dependent phospholipid efflux activity after addition of 4-PBA or curcumin. Drug-induced rescue was mutant specific, given neither 4-PBA nor curcumin had an effect on the ABCB4 mutants G68R and A934T. Collectively, these data indicate that the functionality of selected trafficking-defective ABCB4 mutants can be recovered by chemical chaperones through restoration of membrane localization, suggesting a potential treatment for patients carrying such mutations. PMID:26900700

  16. Crystal growth, structure analysis and characterisation of 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankari, R. Siva, E-mail: sivasankari.sh@act.edu.in; Perumal, Rajesh Narayana

    2014-04-24

    Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.

  17. ABCB1-Gen-Polymorphismus in einer polnischen Kohorte ist mit Risiko für bullöses Pemphigoid assoziiert.

    PubMed

    Rychlik-Sych, Mariola; Barańska, Małgorzata; Dudarewicz, Michał; Skrętkowicz, Jadwiga; Żebrowska, Agnieszka; Owczarek, Jacek; Waszczykowska, Elżbieta

    2017-05-01

    Polymorphismen im ABCB1-Gen, das für das P-Glykoprotein kodiert, können die intrazelluläre Konzentration von Xenobiotika beeinflussen und so zur Entwicklung von Autoimmunerkrankungen, einschließlich des bullösen Pemphigoids (BP), beitragen. In der vorliegenden Studie sollte untersucht werden, ob in einer polnischen Kohorte die C3435T- und G2677T/A-Polymorphismen im ABCB1-Gen mit dem Risiko für ein BP assoziiert sind. Die Studie umfasste 71 Patienten mit BP und 156 gesunde Probanden. Der C3435T-Polymorphismus wurde mittels PCR-RFLP bestimmt und der G2677T/A-Polymorphismus mittels Allel-spezifischer PCR. Es gab zwar keine Korrelation zwischen dem C3435-Polymorphismus und dem BP-Risiko, aber wir konnten eine derartige Assoziation hinsichtlich des G2677T/A-Polymorphismus nachweisen. Das relative Risiko eines BP war bei Personen mit dem 2677TA-Genotyp um mehr als den Faktor fünf erhöht (OR = 5,52; p = 0,0063) und bei Trägern des 2677TT-Genotyps mehr als verdoppelt (OR = 2,40; p = 0,0076). Mit 2,40 (p = 0,000018) war die OR bei Trägern des 2677T-Allels ebenfalls erhöht. Die höhere Prävalenz des 2677GG-Genotyps und des 2677G-Allels bei der Kontrollgruppe sowie eine OR < 1,0 (0,22 beziehungsweise 0,33) legen eine Schutzfunktion des 2677G-Allels hinsichtlich der Ausbildung eines BP nahe. Die Ergebnisse der vorliegenden Studie zeigen, dass der G2677T/A-Polymorphismus im ABCB1-Gen das Risiko für die Entstehung eines BP beeinflussen könnte. © 2017 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  18. Association of ABCB1 and SLC22A16 Gene Polymorphisms with Incidence of Doxorubicin-Induced Febrile Neutropenia: A Survey of Iranian Breast Cancer Patients.

    PubMed

    Faraji, Abolfazl; Dehghan Manshadi, Hamid Reza; Mobaraki, Maryam; Zare, Mahkameh; Houshmand, Massoud

    2016-01-01

    Breast cancer is the most common cancer in women worldwide. Doxorubicin-based chemotherapy is used to treat breast cancer patients; however, neutropenia is a common hematologic side effect and can be life-threatening. The ABCB1 and SLC22A16 genes encode proteins that are essential for doxorubicin transport. In this study, we explored the effect of 2 common polymorphisms in ABCB1 (rs10276036 C/T) and SLC22A16 (rs12210538 A/G) on the development of grade 3/4 febrile neutropenia in Iranian breast cancer patients. Our results showed no significant association between these polymorphisms and grade 3/4 febrile neutropenia; however, allele C of ABCB1 (rs10276036 C/T) (p = 0.315, OR = 1.500, 95% CI = 0.679-3.312) and allele A of SLC22A16 (rs12210538 A/G) (p = 0.110, OR = 2.984, 95% CI = 0.743-11.988) tended to have a greater association with grade 3/4 febrile neutropenia, whereas allele T of ABCB1 (rs10276036) (p = 0.130, OR = 0.515, 95% CI = 0.217-1.223) and allele G of SLC22A16 (rs12210538) (p = 0.548, OR = 0.786, 95% CI = 0.358-1.726) tended to protect against this condition. In addition to breast cancer, a statistically significant association was also observed between the development of grade 3/4 febrile neutropenia and other clinical manifestations such as stage IIIC cancer (p = 0.037) and other diseases (p = 0.026). Our results indicate that evaluation of the risk of grade 3/4 neutropenia development and consideration of molecular and clinical findings may be of value when screening for high-risk breast cancer patients.

  19. Association of genotypes and haplotypes of multi-drug transporter genes ABCB1 and ABCG2 with clinical response to imatinib mesylate in chronic myeloid leukemia patients.

    PubMed

    Au, Anthony; Aziz Baba, Abdul; Goh, Ai Sim; Wahid Fadilah, S Abdul; Teh, Alan; Rosline, Hassan; Ankathil, Ravindran

    2014-04-01

    The introduction and success of imatinib mesylate (IM) has become a paradigm shift in chronic myeloid leukemia (CML) treatment. However, the high efficacy of IM has been hampered by the issue of clinical resistance that might due to pharmacogenetic variability. In the current study, the contribution of three common single nucleotide polymorphisms (SNPs) of ABCB1 (T1236C, G2677T/A and C3435T) and two SNPs of ABCG2 (G34A and C421A) genes in mediating resistance and/or good response among 215 CML patients on IM therapy were investigated. Among these patients, the frequency distribution of ABCG2 421 CC, CA and AA genotypes were significantly different between IM good response and resistant groups (P=0.01). Resistance was significantly associated with patients who had homozygous ABCB1 1236 CC genotype with OR 2.79 (95%CI: 1.217-6.374, P=0.01). For ABCB1 G2677T/A polymorphism, a better complete cytogenetic remission was observed for patients with variant TT/AT/AA genotype, compared to other genotype groups (OR=0.48, 95%CI: 0.239-0.957, P=0.03). Haplotype analysis revealed that ABCB1 haplotypes (C1236G2677C3435) was statistically linked to higher risk to IM resistance (25.8% vs. 17.4%, P=0.04), while ABCG2 diplotype A34A421 was significantly correlated with IM good response (9.1% vs. 3.9%, P=0.03). In addition, genotypic variant in ABCG2 421C>A was associated with a major molecular response (MMR) (OR=2.20, 95%CI: 1.273-3.811, P=0.004), whereas ABCB1 2677G>T/A variant was associated with a significantly lower molecular response (OR=0.49, 95%CI: 0.248-0.974, P=0.04). However, there was no significant correlation of these SNPs with IM intolerance and IM induced hepatotoxicity. Our results suggest the usefulness of genotyping of these single nucleotide polymorphisms in predicting IM response among CML patients. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Association of ABCB1 and ABCG2 single nucleotide polymorphisms with clinical findings and response to chemotherapy treatments in Kurdish patients with breast cancer.

    PubMed

    Ghafouri, Houshiyar; Ghaderi, Bayazid; Amini, Sabrieh; Nikkhoo, Bahram; Abdi, Mohammad; Hoseini, Abdolhakim

    2016-06-01

    The possible interaction between gene polymorphisms and risk of cancer progression is very interesting. Polymorphisms in multi-drug resistance genes have an important role in response to anti-cancer drugs. The present study was aimed to evaluate the possible effects of ABCB1 C3435T and ABCG2 C421A single nucleotide polymorphisms on clinical and pathological outcomes of Kurdish patients with breast cancer. One hundred breast cancer patients and 200 healthy controls were enrolled in this case-control study. Clinical and pathological findings of all individuals were reported, and immunohistochemistry staining was used to assess the tissue expression of specific breast cancer proteins. The ABCB1 C3435T and ABCG2 C421 genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP). The distribution of different genotypes between patient and control groups was only significant for ABCG2 C421A. A allele of ABCG2 C421A polymorphisms were significantly higher in patients than in controls. Patients with AA genotype of ABCG2 C421A were at higher risk of progressing breast cancer. Patients with A allele of ABCG2 had complete response to chemotherapeutic agents. There was no statistically significant association between ABCB1 C3435T and ABCG2 C421A polymorphisms and tissue expression of ER, PR, Her2/neu, and Ki67. The ABCB1 C3435T has no correlation with clinical findings and treatment with chemotherapy drugs. The A allele of ABCG2 C421A may be a risk factor for progression of breast cancer in Kurdish patients. In addition, breast cancer patients with C allele of this polymorphism have weaker response to treatments with anthracyclines and Paclitaxol.

  1. A CRISPR-Cas9 Generated MDCK Cell Line Expressing Human MDR1 Without Endogenous Canine MDR1 (cABCB1): An Improved Tool for Drug Efflux Studies.

    PubMed

    Karlgren, Maria; Simoff, Ivailo; Backlund, Maria; Wegler, Christine; Keiser, Markus; Handin, Niklas; Müller, Janett; Lundquist, Patrik; Jareborg, Anne-Christine; Oswald, Stefan; Artursson, Per

    2017-09-01

    Madin-Darby canine kidney (MDCK) II cells stably transfected with transport proteins are commonly used models for drug transport studies. However, endogenous expression of especially canine MDR1 (cMDR1) confounds the interpretation of such studies. Here we have established an MDCK cell line stably overexpressing the human MDR1 transporter (hMDR1; P-glycoprotein), and used CRISPR-Cas9 gene editing to knockout the endogenous cMDR1. Genomic screening revealed the generation of a clonal cell line homozygous for a 4-nucleotide deletion in the canine ABCB1 gene leading to a frameshift and a premature stop codon. Knockout of cMDR1 expression was verified by quantitative protein analysis and functional studies showing retained activity of the human MDR1 transporter. Application of this cell line allowed unbiased reclassification of drugs previously defined as both substrates and non-substrates in different studies using commonly used MDCK-MDR1 clones. Our new MDCK-hMDR1 cell line, together with a previously developed control cell line, both with identical deletions in the canine ABCB1 gene and lack of cMDR1 expression represent excellent in vitro tools for use in drug discovery. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Influence of CYP3A5 and ABCB1 gene polymorphisms and other factors on tacrolimus dosing in Caucasian liver and kidney transplant patients.

    PubMed

    Provenzani, Alessio; Notarbartolo, Monica; Labbozzetta, Manuela; Poma, Paola; Vizzini, Giovanni; Salis, Paola; Caccamo, Chiara; Bertani, Tullio; Palazzo, Ugo; Polidori, Piera; Gridelli, Bruno; D'Alessandro, Natale

    2011-12-01

    Tacrolimus is a substrate of cytochrome P4503A (CYP3A) enzymes as well as of the drug transporter ABCB1. We have investigated the possible influence of CYP3A5 and ABCB1 single nucleotide polymorphisms (SNPs) and other factors (e.g. albumin, hematocrit and steroids) on tacrolimus blood levels achieved in a population of Caucasian liver (n=51) and kidney (n=50) transplant recipients. At 1, 3 and 6 months after transplantation, tacrolimus doses (mg/kg/day) and trough blood levels (C0) were recorded and the weight-adjusted tacrolimus dosage (mg/kg/day) was calculated. Polymerase chain reaction followed by restriction fragment length polymorphism analysis was used for genotyping CYP3A5*1 and *3 [6986A>G] as well as ABCB1 at exons 21 [2677G>T/A] and 26 [3435C>T] in both liver transplant donors and recipients and in kidney transplant recipients. Of the 152 subjects studied, 84.9% showed a CYP3A5*3/*3 genotype. The total frequency of the allelic variant *3 was 93%. For the G2677T/A and C3435T polymorphisms the total frequencies of the allelic variants T/A and T were 44.7 and 46.7%, respectively. At 1, 3 and 6 months after transplantation the dose-adjusted C0 levels were significantly lower in patients with one copy of the *1 allele compared to those homozygous for the *3 allele. In the case of liver transplant patients the tacrolimus dose requirements were dominantly influenced by the polymorphisms of the CYP3A5 gene in the donors. With regard to the ABCB1 SNPs, in general they did not show any appreciable influence on tacrolimus dosing requirements; however, kidney transplant recipients carrying the 2677T/A allele required significantly higher daily tacrolimus doses than subjects homozygous for the wild-type allele. Identification of CYP3A5 single nucleotide polymorphisms prior to transplantation could contribute to evaluate the appropriate initial dosage of tacrolimus in the patients.

  3. Drug resistance is conferred on the model yeast Saccharomyces cerevisiae by expression of full-length melanoma-associated human ATP-binding cassette transporter ABCB5.

    PubMed

    Keniya, Mikhail V; Holmes, Ann R; Niimi, Masakazu; Lamping, Erwin; Gillet, Jean-Pierre; Gottesman, Michael M; Cannon, Richard D

    2014-10-06

    ABCB5, an ATP-binding cassette (ABC) transporter, is highly expressed in melanoma cells, and may contribute to the extreme resistance of melanomas to chemotherapy by efflux of anti-cancer drugs. Our goal was to determine whether we could functionally express human ABCB5 in the model yeast Saccharomyces cerevisiae, in order to demonstrate an efflux function for ABCB5 in the absence of background pump activity from other human transporters. Heterologous expression would also facilitate drug discovery for this important target. DNAs encoding ABCB5 sequences were cloned into the chromosomal PDR5 locus of a S. cerevisiae strain in which seven endogenous ABC transporters have been deleted. Protein expression in the yeast cells was monitored by immunodetection using both a specific anti-ABCB5 antibody and a cross-reactive anti-ABCB1 antibody. ABCB5 function in recombinant yeast cells was measured by determining whether the cells possessed increased resistance to known pump substrates, compared to the host yeast strain, in assays of yeast growth. Three ABCB5 constructs were made in yeast. One was derived from the ABCB5-β mRNA, which is highly expressed in human tissues but is a truncation of a canonical full-size ABC transporter. Two constructs contained full-length ABCB5 sequences: either a native sequence from cDNA or a synthetic sequence codon-harmonized for S. cerevisiae. Expression of all three constructs in yeast was confirmed by immunodetection. Expression of the codon-harmonized full-length ABCB5 DNA conferred increased resistance, relative to the host yeast strain, to the putative substrates rhodamine 123, daunorubicin, tetramethylrhodamine, FK506, or clorgyline. We conclude that full-length ABCB5 can be functionally expressed in S. cerevisiae and confers drug resistance.

  4. Crystal structure of prethrombin-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhiwei; Pelc, Leslie A.; Di Cera, Enrico

    2010-11-15

    Prothrombin is the zymogen precursor of the clotting enzyme thrombin, which is generated by two sequential cleavages at R271 and R320 by the prothrombinase complex. The structure of prothrombin is currently unknown. Prethrombin-1 differs from prothrombin for the absence of 155 residues in the N-terminal domain and is composed of a single polypeptide chain containing fragment 2 (residues 156-271), A chain (residues 272-320), and B chain (residues 321-579). The X-ray crystal structure of prethrombin-1 solved at 2.2-{angstrom} resolution shows an overall conformation significantly different (rmsd = 3.6 {angstrom}) from that of its active form meizothrombin desF1 carrying a cleavage atmore » R320. Fragment 2 is rotated around the y axis by 29{sup o} and makes only few contacts with the B chain. In the B chain, the oxyanion hole is disrupted due to absence of the I16-D194 ion pair and the Na{sup +} binding site and adjacent primary specificity pocket are highly perturbed. A remarkable feature of the structure is that the autolysis loop assumes a helical conformation enabling W148 and W215, located 17 {angstrom} apart in meizothrombin desF1, to come within 3.3 {angstrom} of each other and completely occlude access to the active site. These findings suggest that the zymogen form of thrombin possesses conformational plasticity comparable to that of the mature enzyme and have significant implications for the mechanism of prothrombin activation and the zymogen {yields} protease conversion in trypsin-like proteases.« less

  5. Genome-Wide Identification and Expression Profiling Analysis of ZmPIN, ZmPILS, ZmLAX and ZmABCB Auxin Transporter Gene Families in Maize (Zea mays L.) under Various Abiotic Stresses

    PubMed Central

    Sun, Tao; Zhang, Lei; Yang, Yanjun; Qi, Jianshuang; Yan, Shufeng; Han, Xiaohua; Wang, Huizhong; Shen, Chenjia

    2015-01-01

    The auxin influx carriers auxin resistant 1/like aux 1 (AUX/LAX), efflux carriers pin-formed (PIN) (together with PIN-like proteins) and efflux/conditional P-glycoprotein (ABCB) are major protein families involved in auxin polar transport. However, how they function in responses to exogenous auxin and abiotic stresses in maize is largely unknown. In this work, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmLAX, ZmPIN, ZmPILS and ZmABCB family genes from maize. The results showed that five ZmLAXs, fifteen ZmPINs, nine ZmPILSs and thirty-five ZmABCBs were mapped on all ten maize chromosomes. Highly diversified gene structures, nonconservative transmembrane helices and tissue-specific expression patterns suggested the possibility of function diversification for these genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the expression patterns of ZmLAX, ZmPIN, ZmPILS and ZmABCB genes under exogenous auxin and different environmental stresses. The expression levels of most ZmPIN, ZmPILS, ZmLAX and ZmABCB genes were induced in shoots and were reduced in roots by various abiotic stresses (drought, salt and cold stresses). The opposite expression response patterns indicated the dynamic auxin transport between shoots and roots under abiotic stresses. Analysis of the expression patterns of ZmPIN, ZmPILS, ZmLAX and ZmABCB genes under drought, salt and cold treatment may help us to understand the possible roles of maize auxin transporter genes in responses and tolerance to environmental stresses. PMID:25742625

  6. [Relationship between phenotype and genotype of ABCB11 deficiency in siblings and literature review].

    PubMed

    Peng, X R; Lu, Y; Zhang, M H; Li, L T; Xie, X B; Gong, J Y; Wang, J S

    2018-06-02

    Objective: To explore the relationship between genotype and phenotype of ABCB11 deficiency. Methods: Clinical data of two siblings with ABCB11 deficiency were retrospectively analyzed. Related literature from PubMed, CNKI and Wangfang databases was reviewed to date (up to August 2017) with 'ABCB11 gene' or 'bile salt export pump', 'cholestasis' and 'child' as key words. Results: The patients were siblings. Both of them presented as jaundice, pruritus and hepatosplenomegaly since 3 days after birth. Significant laboratory findings on admission of the older sister included high total bilirubin, 170 µmol/L;conjugated bilirubin, 115.8 µmol/L;alanine aminotransferase, 168 U/L;total bile acid 186.3 µmol/L and normal gamma-glutamyl transpeptidase. While routine laboratory data of the younger brother were as follows: total bilirubin, 148.8 µmol/L;conjugated bilirubin, 96.3 µmol/L;alanine aminotransferase, 232.8 U/L;total bile acid 226 µmol/L, and normal gamma-glutamyl transpeptidase.Both received ursodeoxycholic acid and fat-soluble vitamins. Liver pathology of the younger brother showed giant hepatocytes with ballooning degeneration, focal necrosis and intrahepatic cholestasis. Both the patients harbor the same compound heterozygous mutations in ABCB11 gene, c.145C>T (p.Q49X) and c.1510G>A (p.E504K). The sister is 9 years old now, with normal liver function. Jaundice faded around 3 months after birth, pruritus relieved at age 5, and medications was stopped since then. The brother progressed to liver failure after an operation on perianal abscess when he was 8-month-old, and received living-related liver transplantation when he was 9 month and 20 days old (from his mother). Now he is 1 year and 5 months old, with normal liver function. Both are under our follow-up. Literature review revealed 18 ABCB11 deficiency patients from 7 families who had apparent different prognoses, within each family the siblings had the same ABCB11 gene mutation. Seven cases relieved after

  7. Role of interleukin-1 and its antagonism of hepatic stellate cell proliferation and liver fibrosis in the Abcb4-/- mouse model

    PubMed Central

    Reiter, Florian P; Wimmer, Ralf; Wottke, Lena; Artmann, Renate; Nagel, Jutta M; Carranza, Manuel O; Mayr, Doris; Rust, Christian; Fickert, Peter; Trauner, Michael; Gerbes, Alexander L; Hohenester, Simon; Denk, Gerald U

    2016-01-01

    AIM: To study the interleukin-1 (IL-1) pathway as a therapeutic target for liver fibrosis in vitro and in vivo using the ATP-binding cassette transporter b4-/- (Abcb4-/-) mouse model. METHODS: Female and male Abcb4-/- mice from 6 to 13 mo of age were analysed for the degree of cholestasis (liver serum tests), extent of liver fibrosis (hydroxyproline content and Sirius red staining) and tissue-specific activation of signalling pathways such as the IL-1 pathway [quantitative polymerase chain reaction (qPCR)]. For in vivo experiments, murine hepatic stellate cells (HSCs) were isolated via pronase-collagenase perfusion followed by density gradient centrifugation using female mice. Murine HSCs were stimulated with up to 1 ng/mL IL-1β with or without 2.5 μg/mL Anakinra, an IL-1 receptor antagonist, respectively. The proliferation of murine HSCs was assessed via the BrdU assay. The toxicity of Anakinra was evaluated via the fluorescein diacetate hydrolysis (FDH) assay. In vivo 8-wk-old Abcb4-/- mice with an already fully established hepatic phenotype were treated with Anakinra (1 mg/kg body-weight daily intraperitoneally) or vehicle and liver injury and liver fibrosis were evaluated via serum tests, qPCR, hydroxyproline content and Sirius red staining. RESULTS: Liver fibrosis was less pronounced in males than in female Abcb4-/- animals as defined by a lower hydroxyproline content (274 ± 64 μg/g vs 436 ± 80 μg/g liver, respectively; n = 13-15; P < 0.001; Mann-Whitney U-test) and lower mRNA expression of the profibrogenic tissue inhibitor of metalloproteinase-1 (TIMP) (1 ± 0.41 vs 0.66 ± 0.33 fold, respectively; n = 13-15; P < 0.05; Mann-Whitney U-test). Reduced liver fibrosis was associated with significantly lower levels of F4/80 mRNA expression (1 ± 0.28 vs 0.71 ± 0.41 fold, respectively; n = 12-15; P < 0.05; Mann-Whitney U-test) and significantly lower IL-1β mRNA expression levels (1 ± 0.38 vs 0.44 ± 0.26 fold, respectively; n = 13-15; P < 0.001; Mann

  8. Abcb1 in Pigs: Molecular cloning, tissues distribution, functional analysis, and its effect on pharmacokinetics of enrofloxacin

    PubMed Central

    Guo, Tingting; Huang, Jinhu; Zhang, Hongyu; Dong, Lingling; Guo, Dawei; Guo, Li; He, Fang; Bhutto, Zohaib Ahmed; Wang, Liping

    2016-01-01

    P-glycoprotein (P-gp) is one of the best-known ATP-dependent efflux transporters, contributing to differences in pharmacokinetics and drug-drug interactions. Until now, studies on pig P-gp have been scarce. In our studies, the full-length porcine P-gp cDNA was cloned and expressed in a Madin-Darby Canine Kidney (MDCK) cell line. P-gp expression was then determined in tissues and its role in the pharmacokinetics of oral enrofloxacin in pigs was studied. The coding region of pig Abcb1 gene was 3,861 bp, encoding 1,286 amino acid residues (Mw = 141,966). Phylogenetic analysis indicated a close evolutionary relationship between porcine P-gp and those of cow and sheep. Pig P-gp was successfully stably overexpressed in MDCK cells and had efflux activity for rhodamine 123, a substrate of P-gp. Tissue distribution analysis indicated that P-gp was highly expressed in brain capillaries, small intestine, and liver. In MDCK-pAbcb1 cells, enrofloxacin was transported by P-gp with net efflux ratio of 2.48 and the efflux function was blocked by P-gp inhibitor verapamil. High expression of P-gp in the small intestine could modify the pharmacokinetics of orally administrated enrofloxacin by increasing the Cmax, AUC and Ka, which was demonstrated using verapamil, an inhibitor of P-gp. PMID:27572343

  9. Crystal structure of the human glucose transporter GLUT1

    NASA Astrophysics Data System (ADS)

    Deng, Dong; Xu, Chao; Sun, Pengcheng; Wu, Jianping; Yan, Chuangye; Hu, Mingxu; Yan, Nieng

    2014-06-01

    The glucose transporter GLUT1 catalyses facilitative diffusion of glucose into erythrocytes and is responsible for glucose supply to the brain and other organs. Dysfunctional mutations may lead to GLUT1 deficiency syndrome, whereas overexpression of GLUT1 is a prognostic indicator for cancer. Despite decades of investigation, the structure of GLUT1 remains unknown. Here we report the crystal structure of human GLUT1 at 3.2 Å resolution. The full-length protein, which has a canonical major facilitator superfamily fold, is captured in an inward-open conformation. This structure allows accurate mapping and potential mechanistic interpretation of disease-associated mutations in GLUT1. Structure-based analysis of these mutations provides an insight into the alternating access mechanism of GLUT1 and other members of the sugar porter subfamily. Structural comparison of the uniporter GLUT1 with its bacterial homologue XylE, a proton-coupled xylose symporter, allows examination of the transport mechanisms of both passive facilitators and active transporters.

  10. Molecular Dynamic Simulation of Space and Earth-Grown Crystal Structures of Thermostable T1 Lipase Geobacillus zalihae Revealed a Better Structure.

    PubMed

    Ishak, Siti Nor Hasmah; Aris, Sayangku Nor Ariati Mohamad; Halim, Khairul Bariyyah Abd; Ali, Mohd Shukuri Mohamad; Leow, Thean Chor; Kamarudin, Nor Hafizah Ahmad; Masomian, Malihe; Rahman, Raja Noor Zaliha Raja Abd

    2017-09-25

    Less sedimentation and convection in a microgravity environment has become a well-suited condition for growing high quality protein crystals. Thermostable T1 lipase derived from bacterium Geobacillus zalihae has been crystallized using the counter diffusion method under space and earth conditions. Preliminary study using YASARA molecular modeling structure program for both structures showed differences in number of hydrogen bond, ionic interaction, and conformation. The space-grown crystal structure contains more hydrogen bonds as compared with the earth-grown crystal structure. A molecular dynamics simulation study was used to provide insight on the fluctuations and conformational changes of both T1 lipase structures. The analysis of root mean square deviation (RMSD), radius of gyration, and root mean square fluctuation (RMSF) showed that space-grown structure is more stable than the earth-grown structure. Space-structure also showed more hydrogen bonds and ion interactions compared to the earth-grown structure. Further analysis also revealed that the space-grown structure has long-lived interactions, hence it is considered as the more stable structure. This study provides the conformational dynamics of T1 lipase crystal structure grown in space and earth condition.

  11. An insertion mutation in ABCB4 is associated with gallbladder mucocele formation in dogs

    USDA-ARS?s Scientific Manuscript database

    The only known physiologic function of the ABCB4 gene product is translocation of phosphatidylcholine (PC) across the hepatocyte plasma membrane into biliary canaliculi. In people, mutations of the ABCB4 gene produce several disease syndromes involving the biliary system including intrahepatic chol...

  12. Effects of Zuccagnia punctata extracts and their flavonoids on the function and expression of ABCB1/P-glycoprotein multidrug transporter.

    PubMed

    Chieli, Elisabetta; Romiti, Nadia; Catiana Zampini, Iris; Garrido, Gabino; Inés Isla, María

    2012-12-18

    Zuccagnia punctata extracts (ZpE) are used in ethnomedicine as antimicrobial and anti-inflammatory drugs. The pharmacological properties of ZpE and their polyphenolic components suggest that they may be used as potential modulators on the P-glycoprotein (P-gp) multidrug transporter. P-gp is well known for its role in the acquired drug resistance by tumors following chemotherapy, causing a low drug bioavailability by extruding them out of the cells. To evaluate the effects of ZpE and three of their phenolic components: 7-hydroxyflavanone (HF), 3,7-dihydroxyflavone (DHF) and 2',4'-dihydroxychalcone (DHC) on P-gp activity and expression. The effects of natural products on ABCB1/P-gp function and expression were evaluated by R-123 accumulation assay and western blot analysis using HK-2 cells as experimental model. The ABCB1 mRNA content was determined by SQRT-PCR. The accumulation of R-123 in HK-2 cells was significantly increased by ZpE and DHF, and to a lesser extent by DHC, indicating their roles on the efflux transporter activity. However, HF did not show any effect. HK-2 cells maintained in the presence of ZpE or DHF for 72 h, showed an increase in P-gp expression whereas activity was unchanged or decreased. No changes were observed in ABCB1 mRNA content. Furthermore, in these assay conditions, more sensibility of HK-2 cells to the cytotoxic action of cyclosporine A (P-gp substrate) was observed. These results may suggest an impact of Zuccagnia punctata and some of its components on the pharmacokinetics of drugs that are P-gp substrates, as well as a potential role on multidrug resistance modulation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Studies on the syntheses, structural Characterization, antimicrobial of the CO-CRYSTAL 1,10-phenanthrolin-1-IUM(1,10-phenH+)-caffeine(caf)-hexafluorophosphate

    NASA Astrophysics Data System (ADS)

    El Hamdani, H.; El Amane, M.; Duhayon, C.

    2018-03-01

    Co-crystal of 1,10-phenanthrolin-1-ium-caffeine-hexafluorophosphate was synthesized, studied by FTIR, 1H, 13C NMR, DSC and X-ray structure and crystallized in the monoclinic space group C2/c. The unit cell parameters are a = 19.3761 (3), b = 17.9548 (3), c = 13.8074 (3) with β = 117.8132 (10). The final R value is 0.069 for 29,522 measured reflections. The co-crystal structure analysis indicate the 1,10-phenanthroline is protonated by one nitrogen atom and formed the 1,10-phenanthrolin-1-ium cation, which is stabilized by hydrogen bonds N+-H…Odbnd C interaction with carbonyl and imidazol ring in caffeine molecule. The intermolecular hydrogen bonds: Csbnd H...O, Csbnd H...N, Nsbnd H...O, Csbnd H...F and intramolecular hydrogen bond: C1sbnd H12...O14, together play a vital role in stabilizing the structure of co-crystal. The X-ray structural analysis confirm the assignments of the structure from infrared, 1H, 13C NMR, spectroscopic data DSC and molar conductivity analysis. The antimicrobial activity of the co-crystal was studied.

  14. Genome-Wide Linkage, Exome Sequencing and Functional Analyses Identify ABCB6 as the Pathogenic Gene of Dyschromatosis Universalis Hereditaria

    PubMed Central

    Wang, Na; Wang, Chuan; Chen, Xuechao; Sheng, Donglai; Fu, Xi’an; See, Kelvin; Foo, Jia Nee; Low, Huiqi; Liany, Herty; Irwan, Ishak Darryl; Liu, Jian; Yang, Baoqi; Chen, Mingfei; Yu, Yongxiang; Yu, Gongqi; Niu, Guiye; You, Jiabao; Zhou, Yan; Ma, Shanshan; Wang, Ting; Yan, Xiaoxiao; Goh, Boon Kee; Common, John E. A.; Lane, Birgitte E.; Sun, Yonghu; Zhou, Guizhi; Lu, Xianmei; Wang, Zhenhua; Tian, Hongqing; Cao, Yuanhua; Chen, Shumin; Liu, Qiji; Liu, Jianjun; Zhang, Furen

    2014-01-01

    Background As a genetic disorder of abnormal pigmentation, the molecular basis of dyschromatosis universalis hereditaria (DUH) had remained unclear until recently when ABCB6 was reported as a causative gene of DUH. Methodology We performed genome-wide linkage scan using Illumina Human 660W-Quad BeadChip and exome sequencing analyses using Agilent SureSelect Human All Exon Kits in a multiplex Chinese DUH family to identify the pathogenic mutations and verified the candidate mutations using Sanger sequencing. Quantitative RT-PCR and Immunohistochemistry was performed to verify the expression of the pathogenic gene, Zebrafish was also used to confirm the functional role of ABCB6 in melanocytes and pigmentation. Results Genome-wide linkage (assuming autosomal dominant inheritance mode) and exome sequencing analyses identified ABCB6 as the disease candidate gene by discovering a coding mutation (c.1358C>T; p.Ala453Val) that co-segregates with the disease phenotype. Further mutation analysis of ABCB6 in four other DUH families and two sporadic cases by Sanger sequencing confirmed the mutation (c.1358C>T; p.Ala453Val) and discovered a second, co-segregating coding mutation (c.964A>C; p.Ser322Lys) in one of the four families. Both mutations were heterozygous in DUH patients and not present in the 1000 Genome Project and dbSNP database as well as 1,516 unrelated Chinese healthy controls. Expression analysis in human skin and mutagenesis interrogation in zebrafish confirmed the functional role of ABCB6 in melanocytes and pigmentation. Given the involvement of ABCB6 mutations in coloboma, we performed ophthalmological examination of the DUH carriers of ABCB6 mutations and found ocular abnormalities in them. Conclusion Our study has advanced our understanding of DUH pathogenesis and revealed the shared pathological mechanism between pigmentary DUH and ocular coloboma. PMID:24498303

  15. Crystal structure of human IRAK1.

    PubMed

    Wang, Li; Qiao, Qi; Ferrao, Ryan; Shen, Chen; Hatcher, John M; Buhrlage, Sara J; Gray, Nathanael S; Wu, Hao

    2017-12-19

    Interleukin 1 (IL-1) receptor-associated kinases (IRAKs) are serine/threonine kinases that play critical roles in initiating innate immune responses against foreign pathogens and other types of dangers through their role in Toll-like receptor (TLR) and interleukin 1 receptor (IL-1R) mediated signaling pathways. Upon ligand binding, TLRs and IL-1Rs recruit adaptor proteins, such as myeloid differentiation primary response gene 88 (MyD88), to the membrane, which in turn recruit IRAKs via the death domains in these proteins to form the Myddosome complex, leading to IRAK kinase activation. Despite their biological and clinical significance, only the IRAK4 kinase domain structure has been determined among the four IRAK family members. Here, we report the crystal structure of the human IRAK1 kinase domain in complex with a small molecule inhibitor. The structure reveals both similarities and differences between IRAK1 and IRAK4 and is suggestive of approaches to develop IRAK1- or IRAK4-specific inhibitors for potential therapeutic applications. While the IRAK4 kinase domain is capable of homodimerization in the unphosphorylated state, we found that the IRAK1 kinase domain is constitutively monomeric regardless of its phosphorylation state. Additionally, the IRAK1 kinase domain forms heterodimers with the phosphorylated, but not unphosphorylated, IRAK4 kinase domain. Collectively, these data indicate a two-step kinase activation process in which the IRAK4 kinase domain first homodimerizes in the Myddosome, leading to its trans -autophosphorylation and activation. The phosphorylated IRAK4 kinase domain then forms heterodimers with the IRAK1 kinase domain within the Myddosome, leading to its subsequent phosphorylation and activation.

  16. Crystal Structure and Crystal Chemistry of Some Common REE Minerals and Nanpingite

    NASA Astrophysics Data System (ADS)

    Ni, Yunxiang

    1995-01-01

    Part I. Crystal structure and crystal chemistry of fluorocarbonate minerals. The crystal structure of bastnasite-(Ce) have been solved in P-62c and refined to R = 0.018. The structure is composed of (001) (CeF) layers interspersed with (CO_3) layers in a 1:1 ratio. The Ce atom is coordinated in rm CeO_6F_3 polyhedra. The atomic arrangement of synchysite-(Ce) has been solved and refined to R = 0.036 with a monoclinic space group C2/c. It possesses a (001) layer structure, with layers of (Ca) and (CeF) separated by layers of carbonate groups. The layers stack in a manner analogous to C2/c muscovite. Polytypism similar to the micas may exist in synchysite. The crystal structures of cordylite-(Ce) have been solved in P6 _3/mmc and refined to R = 0.023. The structure and chemical formula are different from those deduced by Oftedal. The formula is rm MBaCe_2(CO _3)_4F, where M is rm Na^+, Ca^{2+}_{1/2 }+ O_{1/2}, or any solution. The presence of (NaF) layer in the structure is the key difference from the Oftedal's structure. This redefinition of the chemical formula and crystal structure of cordylite will be proposed to IMA-CNMMN. Part II. Crystal structure and crystal chemistry of monazite-xenotime series. Monazite is monoclinic, P2 _1/n, and xenotime is isostructural with zircon (I4_1/amd). Both atomic arrangements are based on (001) chains of intervening phosphate tetrahedra and RE polyhedra, with a REO_8 polyhedron in xenotime that accommodates HRE (Tb - Lu) and a REO_9 polyhedron in monazite that preferentially incorporates LRE (La - Gd). As the structure "transforms" from xenotime to monazite, the crystallographic properties are comparable along the (001) chains, with structural adjustments of 2.2 A along (010) to accommodate the different size RE atoms. Part III. Crystal structure of nanpingite-2M _2, the Cs end-member of muscovite. The crystal structure of nanpingite has been refined to R = 0.058. Compared to K^+ in muscovite, the largest interlayer Cs^+ in

  17. Pharmacogenetic study of the impact of ABCB1 single-nucleotide polymorphisms on lenalidomide treatment outcomes in patients with multiple myeloma: results from a phase IV observational study and subsequent phase II clinical trial.

    PubMed

    Jakobsen Falk, Ingrid; Lund, Johan; Gréen, Henrik; Gruber, Astrid; Alici, Evren; Lauri, Birgitta; Blimark, Cecilie; Mellqvist, Ulf-Henrik; Swedin, Agneta; Forsberg, Karin; Carlsson, Conny; Hardling, Mats; Ahlberg, Lucia; Lotfi, Kourosh; Nahi, Hareth

    2018-01-01

    Despite therapeutic advances, patients with multiple myeloma (MM) continue to experience disease relapse and treatment resistance. The gene ABCB1 encodes the drug transporter P-glycoprotein, which confers resistance through drug extrusion across the cell membrane. Lenalidomide (Len) is excreted mainly via the kidneys, and, given the expression of P-gp in the renal tubuli, single-nucleotide polymorphisms (SNPs) in the ABCB1 gene may influence Len plasma concentrations and, subsequently, the outcome of treatment. We, therefore, investigated the influence of ABCB1 genetic variants on Len treatment outcomes and adverse events (AEs). Ninety patients with relapsed or refractory MM, who received the second-line Len plus dexamethasone in the Rev II trial, were genotyped for the ABCB1 SNPs 1199G>A (Ser400Asn, rs2229109), 1236C>T (silent, rs1128503), 2677G>T/A (Ala893Ser, rs2032582), and 3435C>T (silent, rs1045642) using pyrosequencing, and correlations to response parameters, outcomes, and AEs were investigated. No significant associations were found between genotype and either best response rates or hematological AEs, and 1236C>T, 2677G>T or 3435C>T genotypes had no impact on survival. There was a trend towards increased time to progression (TTP) in patients carrying the 1199A variant, and a significant difference in TTP between genotypes in patients with standard-risk cytogenetics. Our findings show a limited influence of ABCB1 genotype on lenalidomide treatment efficacy and safety. The results suggest that 1199G>A may be a marker of TTP following Len treatment in standard-risk patients; however, larger studies are needed to validate and clarify the relationship.

  18. The Crystal Structure of Coxsackievirus A21 and Its Interaction with ICAM-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Chuan; Bator-Kelly, Carol M.; Rieder, Elizabeth

    2010-11-30

    CVA21 and polioviruses both belong to the Enterovirus genus in the family of Picornaviridae, whereas rhinoviruses form a distinct picornavirus genus. Nevertheless, CVA21 and the major group of human rhinoviruses recognize intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor, whereas polioviruses use poliovirus receptor. The crystal structure of CVA21 has been determined to 3.2 {angstrom} resolution. Its structure has greater similarity to poliovirus structures than to other known picornavirus structures. Cryo-electron microscopy (cryo-EM) was used to determine an 8.0 {angstrom} resolution structure of CVA21 complexed with an ICAM-1 variant, ICAM-1{sup Kilifi}. The cryo-EM map was fitted with the crystal structuresmore » of ICAM-1 and CVA21. Significant differences in the structure of CVA21 with respect to the poliovirus structures account for the inability of ICAM-1 to bind polioviruses. The interface between CVA21 and ICAM-1 has shape and electrostatic complementarity with many residues being conserved among those CVAs that bind ICAM-1.« less

  19. Different frequencies and effects of ABCB1 T3435C polymorphism on clinical and laboratory features of B cell chronic lymphocytic leukemia in Kurdish patients.

    PubMed

    Maroofi, Farzad; Amini, Sabrieh; Roshani, Daem; Ghaderi, Bayazid; Abdi, Mohammad

    2015-04-01

    Finding the effects of gene polymorphism on cancer pathogenesis is very desirable. The ATP-binding cassette is involved in drug metabolism, and the polymorphism of this gene may be an important risk factor in B cell chronic lymphocytic leukemia (B-CLL) or progression and/or response to chemotherapy agents. For the first time, the present study was aimed to evaluate the probable effects of ABCB1 T3435C polymorphism on clinical and laboratory features of Kurdish patients with B-CLL. This descriptive analytical case-control study was performed on 50 B-CLL patients and 100 healthy subjects. Serum levels of beta-2-microglobulin (B2M) and lactate dehydrogenase (LDH) and blood WBC, RBC, Plt and ESR were measured. The T3435C polymorphism of the ABCB1 gene was determined by PCR-RFLP. Concentration of serum and blood markers was significantly higher in the malignant group than in the benign subjects. The CC genotype had the highest frequency (66%) in the patient groups. There are no significant differences between the genotypes and type of treatment. Our results demonstrate the high frequency of C allele of ABCB1 T3435C in B-CLL patients with Kurdish ethnicity. We also show that this polymorphism has a significant risk factor in B-CLL. However, the effect of this polymorphism on clinical and laboratory characteristics of B-CLL patients was not significant.

  20. A novel ABCB11 mutation in an Iranian girl with progressive familial intrahepatic cholestasis

    PubMed Central

    Saber, Sassan; Vazifehmand, Reza; Bagherizadeh, Iman; Kasiri, Mahbubeh

    2013-01-01

    Progressive familial intrahepatic cholestasis is an autosomal recessive liver disorder caused by (biallelic) mutations in the ATP8B1 of ABCB11 gene. A nine-year-old girl with cholestasis was referred for genetic counseling. She had a family history of cholestasis in two previous expired siblings. Genetic analysis of the ABCB11 gene led to the identification of a novel homozygous mutation in exon 25. The mutation 3593- A > G lead to a missense mutation at the amino acid level (His1198Arg). This mutation caused PFIC2 due to abnormal function in the bile salt export pump protein (BSEP). PMID:24339557

  1. CYP3A5*3 and ABCB1 61A>G Significantly Influence Dose-adjusted Trough Blood Tacrolimus Concentrations in the First Three Months Post-Kidney Transplantation.

    PubMed

    Hu, Rong; Barratt, Daniel T; Coller, Janet K; Sallustio, Benedetta C; Somogyi, Andrew A

    2018-03-30

    Tacrolimus (TAC) is a first-line immunosuppressant used to prevent organ rejection after kidney transplantation. There is large inter-individual variability in its pharmacokinetics. Single nucleotide polymorphisms (SNPs) in genes encoding TAC metabolizing enzymes cytochromes P450 3A4/5 (CYP3A4/5), P-glycoprotein efflux transporter (ABCB1), their expression regulator pregnane X receptor (NR1I2) and CYP3A co-factor cytochrome P450 reductase (POR) have been studied for their effects on tacrolimus disposition. However, except for CYP3A5*3, controversies remain about their roles in predicting dose-adjusted trough blood TAC concentrations (C 0 /D). This study aimed to investigate the effects of ABCB1 (61A>G, 1199G>A, 1236C>T, 2677G>T and 3435C>T), CYP3A4*22, CYP3A5*3, NR1I2 (8055C>T, 63396C>T and -25385C>T) and POR*28 SNPs on TAC C 0 /D. In total, 165 kidney transplant recipients were included in this study. SNPs were genotyped by probe-based real-time polymerase chain reaction. Associations between log-transformed whole blood TAC C 0 /D (measured at 1 and 3 months post-transplant) and genotypes/haplotypes were assessed by linear mixed effects analysis, controlling for age, sex and haematocrit. It was observed that CYP3A5 expressors (*1/*1 + *1/*3) (p = 5.5 × 10 -16 ) and ABCB1 61G allele carriers (p = 0.001) had lower log-transformed TAC C 0 /D (56% and 26% lower geometric mean TAC C 0 /D, respectively) and accounted for approximately 30% and 4%, respectively, of log-transformed TAC C 0 /D variability in the first 3 months post-transplant. In conclusion, CYP3A5*3 is a major, and ABCB1 61A>G is a novel, although minor, genetic factor affecting TAC C 0 /D in kidney transplant recipients. © 2018 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  2. A Markov chain model to evaluate the effect of CYP3A5 and ABCB1 polymorphisms on adverse events associated with tacrolimus in pediatric renal transplantation.

    PubMed

    Sy, Sherwin K B; Heuberger, Jules; Shilbayeh, Sireen; Conrado, Daniela J; Derendorf, Hartmut

    2013-10-01

    The SNP A6986G of the CYP3A5 gene (*3) results in a non-functional protein due to a splicing defect whereas the C3435T was associated with variable expression of the ABCB1 gene, due to protein instability. Part of the large interindividual variability in tacrolimus efficacy and toxicity can be accounted for by these genetic factors. Seventy-two individuals were examined for A6986G and C3435T polymorphism using a PCR-RFLP-based technique to estimate genotype and allele frequencies in the Jordanian population. The association of age, hematocrit, platelet count, CYP3A5, and ABCB1 polymorphisms with tacrolimus dose- and body-weight-normalized levels in the subset of 38 pediatric renal transplant patients was evaluated. A Markov model was used to evaluate the time-dependent probability of an adverse event occurrence by CYP3A5 phenotypes and ABCB1 genotypes. The time-dependent probability of adverse event was about double in CYP3A5 non-expressors compared to the expressors for the first 12 months of therapy. The CYP3A5 non-expressors had higher corresponding normalized tacrolimus levels compared to the expressors in the first 3 months. The correlation trend between probability of adverse events and normalized tacrolimus concentrations for the two CYP3A5 phenotypes persisted for the first 9 months of therapy. The differences among ABCB1 genotypes in terms of adverse events and normalized tacrolimus levels were only observed in the first 3 months of therapy. The information on CYP3A5 genotypes and tacrolimus dose requirement is important in designing effective programs toward management of tacrolimus side effects particularly for the initial dose when tacrolimus blood levels are not available for therapeutic drug monitoring.

  3. Crystal structural characterization reveals novel oligomeric interactions of human voltage-dependent anion channel 1.

    PubMed

    Hosaka, Toshiaki; Okazaki, Masateru; Kimura-Someya, Tomomi; Ishizuka-Katsura, Yoshiko; Ito, Kaori; Yokoyama, Shigeyuki; Dodo, Kosuke; Sodeoka, Mikiko; Shirouzu, Mikako

    2017-09-01

    Voltage-dependent anion channel 1 (VDAC1), which is located in the outer mitochondrial membrane, plays important roles in various cellular processes. For example, oligomerization of VDAC1 is involved in the release of cytochrome c to the cytoplasm, leading to apoptosis. However, it is unknown how VDAC1 oligomerization occurs in the membrane. In the present study, we determined high-resolution crystal structures of oligomeric human VDAC1 (hVDAC1) prepared by using an Escherichia coli cell-free protein synthesis system, which avoided the need for denaturation and refolding of the protein. Broad-range screening using a bicelle crystallization method produced crystals in space groups C222 and P22 1 2 1 , which diffracted to a resolution of 3.10 and 3.15 Å, respectively. Each crystal contained two hVDAC1 protomers in the asymmetric unit. Dimer within the asymmetrical unit of the crystal in space group C222 were oriented parallel, whereas those of the crystal in space group P22 1 2 1 were oriented anti-parallel. From a model of the crystal in space group C222, which we constructed by using crystal symmetry operators, a heptameric structure with eight patterns of interaction between protomers, including hydrophobic interactions with β-strands, hydrophilic interactions with loop regions, and protein-lipid interactions, was observed. It is possible that by having multiple patterns of interaction, VDAC1 can form homo- or hetero-oligomers not only with other VDAC1 protomers but also with other proteins such as VDAC2, VDAC3 and apoptosis-regulating proteins in the Bcl-2 family. © 2017 The Protein Society.

  4. Detection and functional characterization of Pgp1 (ABCB1) and MRP3 (ABCC3) efflux transporters in the PLHC-1 fish hepatoma cell line.

    PubMed

    Zaja, Roko; Klobucar, Roberta Sauerborn; Smital, Tvrtko

    2007-03-30

    The PLHC-1 hepatoma cell line derived from topminnow (Poeciliopsis lucida) is one of the most frequently used fish cell lines in aquatic ecotoxicology. These cells have been well characterized regarding the presence of phase I and phase II enzymes involved in the metabolism of xenobiotics. However, the presence of the ABC transport proteins possibly involved in the MultiXenobiotic Resistance (MXR) mechanism as phase III of cellular detoxification has never been described in the PLHC-1 cells. The main goal of this study was the detection and functional characterization of toxicologically relevant xenobiotic efflux transporters from ABCB and ABCC subfamily in the PLHC-1 cells. Using specific primer pairs two PCR products 1769 and 1023bp in length were successfully cloned and sequenced. Subsequent multiple alignment and phylogenetic analysis showed that these sequences share a high degree of homology with the P-glycoprotein (Pgp1; ABCB1) and the MRP3 (ABCC3). Functional experiments with fluorescent model substrates and specific inhibitors were used to verify that transport activities of Pgp- and MRP-related proteins are indeed present in PLHC-1 cells. Accumulation or efflux/retention rates of rhodamine 123, calcein-AM or monochlorbimane were time- and concentration-dependent. Cyclosporine A, MK571, verapamil, reversine 205, indomethacine and probenecid were used as specific inhibitors of Pgp1 and/or MRPs transport activities, resulting in a dose dependent inhibition of related transport activities in PLHC-1 cells. Similar to mammalian systems, the obtained IC(50) values were in the lower micromolar range. Taken together these data demonstrate that: (1) the PLHC-1 cells do express a functional MXR mechanism mediated by toxicologically relevant ABC efflux transporters; and (2) the presence of all three critical phases of cellular detoxification additionally affirms the PLHC-1 cells as a reliable in vitro model in aquatic toxicology.

  5. Functional characterization of novel ABCB6 mutations and their clinical implications in familial pseudohyperkalemia

    PubMed Central

    Andolfo, Immacolata; Russo, Roberta; Manna, Francesco; De Rosa, Gianluca; Gambale, Antonella; Zouwail, Soha; Detta, Nicola; Pardo, Catia Lo; Alper, Seth L.; Brugnara, Carlo; Sharma, Alok K.; De Franceschi, Lucia; Iolascon, Achille

    2016-01-01

    Isolated familial pseudohyperkalemia is a dominant red cell trait characterized by cold-induced ‘passive leak’ of red cell potassium ions into plasma. The causative gene of this condition is ABCB6, which encodes an erythrocyte membrane ABC transporter protein bearing the Langereis blood group antigen system. In this study analyzing three new families, we report the first functional characterization of ABCB6 mutants, including the homozygous mutation V454A, heterozygous mutation R276W, and compound heterozygous mutations R276W and R723Q (in trans). All these mutations are annotated in public databases, suggesting that familial pseudohyperkalemia could be common in the general population. Indeed, we identified variant R276W in one of 327 random blood donors (0.3%). Four weeks’ storage of heterozygous R276W blood cells resulted in massive loss of potassium compared to that from healthy control red blood cells. Moreover, measurement of cation flux demonstrated greater loss of potassium or rubidium ions from HEK-293 cells expressing ABCB6 mutants than from cells expressing wild-type ABCB6. The R276W/R723Q mutations elicited greater cellular potassium ion efflux than did the other mutants tested. In conclusion, ABCB6 missense mutations in red blood cells from subjects with familial pseudohyperkalemia show elevated potassium ion efflux. The prevalence of such individuals in the blood donor population is moderate. The fact that storage of blood from these subjects leads to significantly increased levels of potassium in the plasma could have serious clinical implications for neonates and infants receiving large-volume transfusions of whole blood. Genetic tests for familial pseudohyperkalemia could be added to blood donor pre-screening. Further study of ABCB6 function and trafficking could be informative for the study of other pathologies of red blood cell hydration. PMID:27151991

  6. Crystal Structure of the Catalytic Domain of Drosophila [beta]1,4-Galactosyltransferase-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakrishnan, Boopathy; Qasba, Pradman K.

    2010-11-03

    The {beta}1,4-galactosyltransferase-7 ({beta}4Gal-T7) enzyme, one of seven members of the {beta}4Gal-T family, transfers in the presence of manganese Gal from UDP-Gal to an acceptor sugar (xylose) that is attached to a side chain hydroxyl group of Ser/Thr residues of proteoglycan proteins. It exhibits the least protein sequence similarity with the other family members, including the well studied family member {beta}4Gal-T1, which, in the presence of manganese, transfers Gal from UDP-Gal to GlcNAc. We report here the crystal structure of the catalytic domain of {beta}4Gal-T7 from Drosophila in the presence of manganese and UDP at 1.81 {angstrom} resolution. In the crystalmore » structure, a new manganese ion-binding motif (HXH) has been observed. Superposition of the crystal structures of {beta}4Gal-T7 and {beta}4Gal-T1 shows that the catalytic pocket and the substrate-binding sites in these proteins are similar. Compared with GlcNAc, xylose has a hydroxyl group (instead of an N-acetyl group) at C2 and lacks the CH{sub 2}OH group at C5; thus, these protein structures show significant differences in their acceptor-binding site. Modeling of xylose in the acceptor-binding site of the {beta}4Gal-T7 crystal structure shows that the aromatic side chain of Tyr{sup 177} interacts strongly with the C5 atom of xylose, causing steric hindrance to any additional group at C5. Because Drosophila Cd7 has a 73% protein sequence similarity to human Cd7, the present crystal structure offers a structure-based explanation for the mutations in human Cd7 that have been linked to Ehlers-Danlos syndrome.« less

  7. Functional defect of variants in the adenosine triphosphate-binding sites of ABCB4 and their rescue by the cystic fibrosis transmembrane conductance regulator potentiator, ivacaftor (VX-770).

    PubMed

    Delaunay, Jean-Louis; Bruneau, Alix; Hoffmann, Brice; Durand-Schneider, Anne-Marie; Barbu, Véronique; Jacquemin, Emmanuel; Maurice, Michèle; Housset, Chantal; Callebaut, Isabelle; Aït-Slimane, Tounsia

    2017-02-01

    ABCB4 (MDR3) is an adenosine triphosphate (ATP)-binding cassette (ABC) transporter expressed at the canalicular membrane of hepatocytes, where it mediates phosphatidylcholine (PC) secretion. Variations in the ABCB4 gene are responsible for several biliary diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3), a rare disease that can be lethal in the absence of liver transplantation. In this study, we investigated the effect and potential rescue of ABCB4 missense variations that reside in the highly conserved motifs of ABC transporters, involved in ATP binding. Five disease-causing variations in these motifs have been identified in ABCB4 (G535D, G536R, S1076C, S1176L, and G1178S), three of which are homologous to the gating mutations of cystic fibrosis transmembrane conductance regulator (CFTR or ABCC7; i.e., G551D, S1251N, and G1349D), that were previously shown to be function defective and corrected by ivacaftor (VX-770; Kalydeco), a clinically approved CFTR potentiator. Three-dimensional structural modeling predicted that all five ABCB4 variants would disrupt critical interactions in the binding of ATP and thereby impair ATP-induced nucleotide-binding domain dimerization and ABCB4 function. This prediction was confirmed by expression in cell models, which showed that the ABCB4 mutants were normally processed and targeted to the plasma membrane, whereas their PC secretion activity was dramatically decreased. As also hypothesized on the basis of molecular modeling, PC secretion activity of the mutants was rescued by the CFTR potentiator, ivacaftor (VX-770). Disease-causing variations in the ATP-binding sites of ABCB4 cause defects in PC secretion, which can be rescued by ivacaftor. These results provide the first experimental evidence that ivacaftor is a potential therapy for selected patients who harbor mutations in the ATP-binding sites of ABCB4. (Hepatology 2017;65:560-570). © 2016 by the American Association for the Study of Liver

  8. Crystal structure of 4,4′-(disulfanediyl)dibutanoic acid–4,4′-bipyridine (1/1)

    PubMed Central

    Atria, Ana María; Garland, Maria Teresa; Baggio, Ricardo

    2014-01-01

    4,4′-(Disulfanediyl)dibutanoic acid (dtba) and 4,4′-bipyridine (4,4′-bpy) crystallize in an 1:1 ratio, leading to the title co-crystal with composition C8H14O4S2·C10H8N2. A distinctive feature of the crystal structure is the geometry of the dtba moiety, which appears to be stretched [with a 9.98 (1) Å span between outermost carbons] and acts as an hydrogen-bonding connector, forming linear chains along [-211] with the 4,4′-bpy moiety by way of O—H⋯N hydrogen bonds and C—H⋯O interactions. The influence of the mol­ecular shape on the hydrogen-bonding pattern is analysed by comparing the title compound and two other 4,4′-bpy co-crystals with closely related mol­ecules of similar formulation but different geometry, showing the way in which this correlates with the packing arrangement. PMID:25309167

  9. Crystal structures of inhibitor complexes of human T-cell leukemia virus (HTLV-1) protease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satoh, Tadashi; Li, Mi; Nguyen, Jeffrey-Tri

    2010-09-28

    Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with several serious diseases, such as adult T-cell leukemia and tropical spastic paraparesis/myelopathy. For a number of years, the protease (PR) encoded by HTLV-1 has been a target for designing antiviral drugs, but that effort was hampered by limited available structural information. We report a high-resolution crystal structure of HTLV-1 PR complexed with a statine-containing inhibitor, a significant improvement over the previously available moderate-resolution structure. We also report crystal structures of the complexes of HTLV-1 PR with five different inhibitors that are more compact and more potent. A detailedmore » study of structure-activity relationships was performed to interpret in detail the influence of the polar and hydrophobic interactions between the inhibitors and the protease.« less

  10. Crystal Structures of Inhibitir Complexes of Human T-Cell Leukemia Virus (HTLV-1) Protease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satoh, Tadashi; Li, Mi; Nguyen, Jeffrey-Tri

    2010-09-17

    Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with several serious diseases, such as adult T-cell leukemia and tropical spastic paraparesis/myelopathy. For a number of years, the protease (PR) encoded by HTLV-1 has been a target for designing antiviral drugs, but that effort was hampered by limited available structural information. We report a high-resolution crystal structure of HTLV-1 PR complexed with a statine-containing inhibitor, a significant improvement over the previously available moderate-resolution structure. We also report crystal structures of the complexes of HTLV-1 PR with five different inhibitors that are more compact and more potent. A detailedmore » study of structure-activity relationships was performed to interpret in detail the influence of the polar and hydrophobic interactions between the inhibitors and the protease.« less

  11. Crystal structure of spinach plastocyanin at 1.7 A resolution.

    PubMed Central

    Xue, Y.; Okvist, M.; Hansson, O.; Young, S.

    1998-01-01

    The crystal structure of plastocyanin from spinach has been determined using molecular replacement, with the structure of plastocyanin from poplar as a search model. Successful crystallization was facilitated by site-directed mutagenesis in which residue Gly8 was substituted with Asp. The region around residue 8 was believed to be too mobile for the wild-type protein to form crystals despite extensive screening. The current structure represents the oxidized plastocyanin, copper (II), at low pH (approximately 4.4). In contrast to the similarity in the core region as compared to its poplar counterpart, the structure shows some significant differences in loop regions. The most notable is the large shift of the 59-61 loop where the largest shift is 3.0 A for the C(alpha) atom of Glu59. This results in different patterns of electrostatic potential around the acidic patches for the two proteins. PMID:9792096

  12. Crystal structure of a putative exo-β-1,3-galactanase from Bifidobacterium bifidum S17

    PubMed Central

    Godoy, Andre S.; de Lima, Mariana Z. T.; Camilo, Cesar M.; Polikarpov, Igor

    2016-01-01

    Given the current interest in second-generation biofuels, carbohydrate-active enzymes have become the most important tool to overcome the structural recalcitrance of the plant cell wall. While some glycoside hydrolase families have been exhaustively described, others remain poorly characterized, especially with regard to structural information. The family 43 glycoside hydrolases are a diverse group of inverting enzymes; the available structure information on these enzymes is mainly from xylosidases and arabinofuranosidase. Currently, only one structure of an exo-β-1,3-galactanase is available. Here, the production, crystallization and structure determination of a putative exo-β-1,3-galactanase from Bifidobacterium bifidum S17 (BbGal43A) are described. BbGal43A was successfully produced and showed activity towards synthetic galactosides. BbGal43A was subsequently crystallized and data were collected to 1.4 Å resolution. The structure shows a single-domain molecule, differing from known homologues, and crystal contact analysis predicts the formation of a dimer in solution. Further biochemical studies are necessary to elucidate the differences between BbGal43A and its characterized homologues. PMID:27050262

  13. Profiling of ABC transporters ABCB5, ABCF2 and nestin-positive stem cells in nevi, in situ and invasive melanoma.

    PubMed

    Setia, Namrata; Abbas, Ossama; Sousa, Yessica; Garb, Jane L; Mahalingam, Meera

    2012-08-01

    Distinct ABCB5 forms and ABCF2, members of the ATP-binding cassette (ABC) superfamily of transporters, are normally expressed in various tissues and cells, and enhanced expression of both has been demonstrated in select cancers. In melanoma cell lines, gene expression profiling of ABC transporters has revealed enhanced expression of melanocyte-specific ABCB5 and ABCF2 proteins. Given this, our primary aim was to ascertain immunohistochemical expression of the ABC transporters ABCB5 and ABCF2 and, the stem cell marker, nestin in a spectrum of benign and malignant nevomelanocytic proliferations, including nevi (n=30), in situ (n=31) and invasive (n=24) primary cutaneous melanomas to assess their role in the stepwise development of malignancy. In addition, their expression was compared with established melanoma prognosticators to ascertain their utility as independent prognosticators. A semiquantitative scoring system was utilized by deriving a cumulative score (based on percentage positivity cells and intensity of expression) and statistical analyses was carried out using analysis of variance with linear contrasts. Mean cumulative score in nevi, in situ and invasive melanoma were as follows: 3.8, 4.4 and 5.3 for ABCB5, respectively (P<0.005 for all), and 4.6, 4.6 and 5.3 for nestin, respectively (P=not significant for all). No appreciable expression of ABCF2 was noted in any of the groups. While ulcerated lesions of melanoma demonstrated lower levels of expression of ABCB5 and nestin than non-ulcerated lesions, and nestin expression was lower in lesions with mitoses >1, after controlling for the presence of ulceration and mitotic activity, the expression of both proteins did not significantly correlate with known melanoma prognosticators. The gradual increase in the expression of ABCB5 from benign nevus to in situ to invasive melanoma suggests that it plays a role in melanomagenesis. On the basis of our findings, a prospective study with follow-up data is required to

  14. The Role of Abcb5 Alleles in Susceptibility to Haloperidol-Induced Toxicity in Mice and Humans

    PubMed Central

    Zheng, Ming; Zhang, Haili; Dill, David L.; Clark, J. David; Tu, Susan; Yablonovitch, Arielle L.; Tan, Meng How; Zhang, Rui; Rujescu, Dan; Wu, Manhong; Tessarollo, Lino; Vieira, Wilfred; Gottesman, Michael M.; Deng, Suhua; Eberlin, Livia S.; Zare, Richard N.; Billard, Jean-Martin; Gillet, Jean-Pierre; Li, Jin Billy; Peltz, Gary

    2015-01-01

    Background We know very little about the genetic factors affecting susceptibility to drug-induced central nervous system (CNS) toxicities, and this has limited our ability to optimally utilize existing drugs or to develop new drugs for CNS disorders. For example, haloperidol is a potent dopamine antagonist that is used to treat psychotic disorders, but 50% of treated patients develop characteristic extrapyramidal symptoms caused by haloperidol-induced toxicity (HIT), which limits its clinical utility. We do not have any information about the genetic factors affecting this drug-induced toxicity. HIT in humans is directly mirrored in a murine genetic model, where inbred mouse strains are differentially susceptible to HIT. Therefore, we genetically analyzed this murine model and performed a translational human genetic association study. Methods and Findings A whole genome SNP database and computational genetic mapping were used to analyze the murine genetic model of HIT. Guided by the mouse genetic analysis, we demonstrate that genetic variation within an ABC-drug efflux transporter (Abcb5) affected susceptibility to HIT. In situ hybridization results reveal that Abcb5 is expressed in brain capillaries, and by cerebellar Purkinje cells. We also analyzed chromosome substitution strains, imaged haloperidol abundance in brain tissue sections and directly measured haloperidol (and its metabolite) levels in brain, and characterized Abcb5 knockout mice. Our results demonstrate that Abcb5 is part of the blood-brain barrier; it affects susceptibility to HIT by altering the brain concentration of haloperidol. Moreover, a genetic association study in a haloperidol-treated human cohort indicates that human ABCB5 alleles had a time-dependent effect on susceptibility to individual and combined measures of HIT. Abcb5 alleles are pharmacogenetic factors that affect susceptibility to HIT, but it is likely that additional pharmacogenetic susceptibility factors will be discovered

  15. Crystal structure of 1-methyl-3-([2,2-dimethyl-4,6-dioxo-1,3-dioxane-5-ylidene]methyl)urea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, A., E-mail: habibi@khu.ac.ir; Ghorbani, H. S.; Bruno, G.

    2013-12-15

    The crystal structure of 1-Methyl-3-([2,2-dimethyl-4,6-dioxo-1,3-dioxane-5-ylidene]methyl)urea (C{sub 9}H{sub 12}N{sub 2}O{sub 5}) has been determined by single crystal X-ray diffraction analysis. The crystals are monoclinic, a = 5.3179(2), b = 18.6394(6), c =10.8124(3) Å, β = 100.015(2)°, Z = 4, sp. gr. P2{sub 1}/c, R = 0.0381 for 2537 reflections with I > 2σ(I). Except for C(CH{sub 3}){sub 2} group, the molecule is planar. The structure is stabilized by inter- and intramolecular N-H...O hydrogen bonds and weak C-H...O interactions.

  16. An ABC transporter B family protein, ABCB19, is required for cytoplasmic streaming and gravitropism of the inflorescence stems.

    PubMed

    Okamoto, Keishi; Ueda, Haruko; Shimada, Tomoo; Tamura, Kentaro; Koumoto, Yasuko; Tasaka, Masao; Morita, Miyo Terao; Hara-Nishimura, Ikuko

    2016-01-01

    A significant feature of plant cells is the extensive motility of organelles and the cytosol, which was originally defined as cytoplasmic streaming. We suggested previously that a three-way interaction between plant-specific motor proteins myosin XIs, actin filaments, and the endoplasmic reticulum (ER) was responsible for cytoplasmic streaming. (1) Currently, however, there are no reports of molecular components for cytoplasmic streaming other than the actin-myosin-cytoskeleton and ER-related proteins. In the present study, we found that elongated cells of inflorescence stems of Arabidopsis thaliana exhibit vigorous cytoplasmic streaming. Statistical analysis showed that the maximal velocity of plastid movements is 7.26 µm/s, which is much faster than the previously reported velocities of organelles. Surprisingly, the maximal velocity of streaming in the inflorescence stem cells was significantly reduced to 1.11 µm/s in an Arabidopsis mutant, abcb19-101, which lacks ATP BINDING CASSETTE SUBFAMILY B19 (ABCB19) that mediates the polar transport of the phytohormone auxin together with PIN-FORMED (PIN) proteins. Polar auxin transport establishes the auxin concentration gradient essential for plant development and tropisms. Deficiency of ABCB19 activity eventually caused enhanced gravitropic responses of the inflorescence stems and abnormally flexed inflorescence stems. These results suggest that ABCB19-mediated auxin transport plays a role not only in tropism regulation, but also in cytoplasmic streaming.

  17. Crystal structures of ASK1-inhibtor complexes provide a platform for structure-based drug design

    PubMed Central

    Singh, Onkar; Shillings, Anthony; Craggs, Peter; Wall, Ian; Rowland, Paul; Skarzynski, Tadeusz; Hobbs, Clare I; Hardwick, Phil; Tanner, Rob; Blunt, Michelle; Witty, David R; Smith, Kathrine J

    2013-01-01

    ASK1, a member of the MAPK Kinase Kinase family of proteins has been shown to play a key role in cancer, neurodegeneration and cardiovascular diseases and is emerging as a possible drug target. Here we describe a ‘replacement-soaking’ method that has enabled the high-throughput X-ray structure determination of ASK1/ligand complexes. Comparison of the X-ray structures of five ASK1/ligand complexes from 3 different chemotypes illustrates that the ASK1 ATP binding site is able to accommodate a range of chemical diversity and different binding modes. The replacement-soaking system is also able to tolerate some protein flexibility. This crystal system provides a robust platform for ASK1/ligand structure determination and future structure based drug design. PMID:23776076

  18. High-Pressure Structural Response of an Insensitive Energetic Crystal: Dihydroxylammonium 5,5'-Bistetrazole-1,1'-diolate (TKX-50)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreger, Zbigniew A.; Stash, Adam I.; Yu, Zhi-Gang

    2017-03-06

    The structural response of a novel, insensitive energetic crystal—dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50)—was examined under high pressure. Using synchrotron single-crystal X-ray diffraction measurements, details of molecular, intermolecular, and crystal changes were determined to ~10 GPa to understand its structural stability. The experimental results showed that TKX-50 exhibits highly anisotropic compression and significantly lower volume compressibility than currently known energetic crystals. These results are found to be in general agreement with our previous predictions from the DFT calculations. Additionally, the experimental data revealed anomalous compression—an expansion of the unit cell along the a axis (negative linear compressibility, NLC) upon compression to ~3 GPa.more » The structural analyses demonstrated that this unusual effect, the first such observation in an energetic crystal, is a consequence of the highly anisotropic response of 3D motifs, comprised of two parallel anions [(C 2N 8O 2) 2–] linked with two cations [(NH 3OH) +] through four strong hydrogen bonds. The present results demonstrate that the structural stability of TKX-50 is controlled by the strong and highly anisotropic intermolecular interactions, and these may contribute to its shock insensitivity.« less

  19. High-pressure structural response of an insensitive energetic crystal: Dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreger, Zbigniew A.; Stash, Adam I.; Yu, Zhi -Gang

    The structural response of a novel, insensitive energetic crystal—dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50)—was examined under high pressure. Using synchrotron single-crystal X-ray diffraction measurements, details of molecular, intermolecular, and crystal changes were determined to ~10 GPa to understand its structural stability. The experimental results showed that TKX-50 exhibits highly anisotropic compression and significantly lower volume compressibility than currently known energetic crystals. These results are found to be in general agreement with our previous predictions from the DFT calculations. Additionally, the experimental data revealed anomalous compression—an expansion of the unit cell along the a axis (negative linear compressibility, NLC) upon compression to ~3 GPa.more » The structural analyses demonstrated that this unusual effect, the first such observation in an energetic crystal, is a consequence of the highly anisotropic response of 3D motifs, comprised of two parallel anions [(C 2N 8O 2) 2–] linked with two cations [(NH 3OH) +] through four strong hydrogen bonds. Finally, the present results demonstrate that the structural stability of TKX-50 is controlled by the strong and highly anisotropic intermolecular interactions, and these may contribute to its shock insensitivity.« less

  20. High-pressure structural response of an insensitive energetic crystal: Dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50)

    DOE PAGES

    Dreger, Zbigniew A.; Stash, Adam I.; Yu, Zhi -Gang; ...

    2017-02-28

    The structural response of a novel, insensitive energetic crystal—dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50)—was examined under high pressure. Using synchrotron single-crystal X-ray diffraction measurements, details of molecular, intermolecular, and crystal changes were determined to ~10 GPa to understand its structural stability. The experimental results showed that TKX-50 exhibits highly anisotropic compression and significantly lower volume compressibility than currently known energetic crystals. These results are found to be in general agreement with our previous predictions from the DFT calculations. Additionally, the experimental data revealed anomalous compression—an expansion of the unit cell along the a axis (negative linear compressibility, NLC) upon compression to ~3 GPa.more » The structural analyses demonstrated that this unusual effect, the first such observation in an energetic crystal, is a consequence of the highly anisotropic response of 3D motifs, comprised of two parallel anions [(C 2N 8O 2) 2–] linked with two cations [(NH 3OH) +] through four strong hydrogen bonds. Finally, the present results demonstrate that the structural stability of TKX-50 is controlled by the strong and highly anisotropic intermolecular interactions, and these may contribute to its shock insensitivity.« less

  1. Crystal structure of the Mus81-Eme1 complex.

    PubMed

    Chang, Jeong Ho; Kim, Jeong Joo; Choi, Jung Min; Lee, Jung Hoon; Cho, Yunje

    2008-04-15

    The Mus81-Eme1 complex is a structure-specific endonuclease that plays an important role in rescuing stalled replication forks and resolving the meiotic recombination intermediates in eukaryotes. We have determined the crystal structure of the Mus81-Eme1 complex. Both Mus81 and Eme1 consist of a central nuclease domain, two repeats of the helix-hairpin-helix (HhH) motif at their C-terminal region, and a linker helix. While each domain structure resembles archaeal XPF homologs, the overall structure is significantly different from those due to the structure of a linker helix. We show that a flexible intradomain linker that formed with 36 residues in the nuclease domain of Eme1 is essential for the recognition of DNA. We identified several basic residues lining the outer surface of the active site cleft of Mus81 that are involved in the interaction with a flexible arm of a nicked Holliday junction (HJ). These interactions might contribute to the optimal positioning of the opposite junction across the nick into the catalytic site, which provided the basis for the "nick and counternick" mechanism of Mus81-Eme1 and for the nicked HJ to be the favored in vitro substrate of this enzyme.

  2. Constitutive androstane receptor upregulates Abcb1 and Abcg2 at the blood-brain barrier after CITCO activation.

    PubMed

    Lemmen, Julia; Tozakidis, Iasson E P; Bele, Prachee; Galla, Hans-Joachim

    2013-03-21

    ATP-driven efflux transporters are considered to be the major hurdle in the treatment of central nervous system (CNS) diseases. Abcb1 (P-glycoprotein) and Abcg2 (breast cancer resistance protein/brain multidrug resistance protein) belong to the best known ABC-transporters. These ABC-transporters limit the permeability of the blood-brain barrier and protect the brain against toxic compounds in the blood but on the other hand they also reduce the efficacy of CNS pharmacotherapy. Even after 40 years of extensive research, the regulatory mechanisms of these efflux transporters are still not completely understood. To unravel the efflux transporter regulation, we analyzed the effect of the nuclear receptor CAR (constitutive androstane receptor) on the expression of Abcb1 and Abcg2 in primary cultures of porcine brain capillary endothelial cells (PBCEC). CAR is a xenobiotic-activated transcription factor, which is, like the other important nuclear receptor pregnane X receptor (PXR), highly expressed in barrier tissue and known to be a positive regulator of ABC-transporters. We demonstrate that activation of porcine CAR by the human CAR (hCAR) ligand CITCO (6-(4-chlorophenyl)-imidazo[2,1-b]thiazole-5-carbaldehyde) leads to an up-regulation of both transporters, whereas the mouse-specific CAR ligand TCPOBOP (1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene) had no effect on transporter expression. The stimulation of PBCEC with CITCO caused a significant up-regulation of both efflux-transporters on RNA-level, protein level and transport level. Furthermore the additional application of a CAR inhibitor significantly decreased the transporter expression to control niveau. In conclusion our data prove CAR activation only by the human ligand CITCO leading to an increased ABC-transporter expression and transport activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Crystal structure of a putative exo-β-1,3-galactanase from Bifidobacterium bifidum S17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godoy, Andre S.; de Lima, Mariana Z. T.; Camilo, Cesar M.

    2016-03-16

    Given the current interest in second-generation biofuels, carbohydrate-active enzymes have become the most important tool to overcome the structural recalcitrance of the plant cell wall. While some glycoside hydrolase families have been exhaustively described, others remain poorly characterized, especially with regard to structural information. The family 43 glycoside hydrolases are a diverse group of inverting enzymes; the available structure information on these enzymes is mainly from xylosidases and arabinofuranosidase. Currently, only one structure of an exo-β-1,3-galactanase is available. Here, the production, crystallization and structure determination of a putative exo-β-1,3-galactanase fromBifidobacterium bifidumS17 (BbGal43A) are described.BbGal43A was successfully produced and showed activitymore » towards synthetic galactosides.BbGal43A was subsequently crystallized and data were collected to 1.4 Å resolution. The structure shows a single-domain molecule, differing from known homologues, and crystal contact analysis predicts the formation of a dimer in solution. Further biochemical studies are necessary to elucidate the differences betweenBbGal43A and its characterized homologues.« less

  4. Crystal Structure of Oligomeric β1-Adrenergic G Protein- Coupled Receptors in Ligand-Free Basal State

    PubMed Central

    Huang, Jianyun; Chen, Shuai; Zhang, J. Jillian; Huang, Xin-Yun

    2013-01-01

    G protein-coupled receptors (GPCRs) mediate transmembrane signaling. Before ligand binding, GPCRs exist in a basal state. Crystal structures of several GPCRs bound with antagonists or agonists have been solved. However, the crystal structure of the ligand-free basal state of a GPCR, the starting point of GPCR activation and function, has not been determined. Here we report the X-ray crystal structure of the first ligand-free basal state of a GPCR in a lipid membrane-like environment. Oligomeric turkey β1-adrenergic receptors display two alternating dimer interfaces. One interface involves the transmembrane domain (TM) 1, TM2, the C-terminal H8, and the extracellular loop 1. The other interface engages residues from TM4, TM5, the intracellular loop 2 and the extracellular loop 2. Structural comparisons show that this ligand-free state is in an inactive conformation. This provides the structural information regarding GPCR dimerization and oligomerization. PMID:23435379

  5. High-speed prediction of crystal structures for organic molecules

    NASA Astrophysics Data System (ADS)

    Obata, Shigeaki; Goto, Hitoshi

    2015-02-01

    We developed a master-worker type parallel algorithm for allocating tasks of crystal structure optimizations to distributed compute nodes, in order to improve a performance of simulations for crystal structure predictions. The performance experiments were demonstrated on TUT-ADSIM supercomputer system (HITACHI HA8000-tc/HT210). The experimental results show that our parallel algorithm could achieve speed-ups of 214 and 179 times using 256 processor cores on crystal structure optimizations in predictions of crystal structures for 3-aza-bicyclo(3.3.1)nonane-2,4-dione and 2-diazo-3,5-cyclohexadiene-1-one, respectively. We expect that this parallel algorithm is always possible to reduce computational costs of any crystal structure predictions.

  6. Synthesis, crystal structure, NLO and Hirshfeld surface analysis of 1,2,3-triazolyl chalcone single crystal

    NASA Astrophysics Data System (ADS)

    Shruthi, C.; Ravindrachary, V.; Guruswamy, B.; Lokanath, N. K.; Kumara, Karthik; Goveas, Janet

    2018-05-01

    Needle shaped brown coloured single crystal of the title compound was grown by slow evaporation technique using methanol as solvent. The grown crystal was characterized using FT-IR, Single crystal XRD, UV-visible and NLO studies. Crystal structure was confirmed by FT-IR study and the functional groups were identified. XRD study reveals that the crystal belongs to orthorhombic crystal system with pnaa space group and the corresponding cell parameters were calculated. UV-visible spectrum shows that the crystal is transparent in the entire visible region and absorption takes place in the UV-range. NLO efficiency of the crystal obtained 0.66 times that of urea was determined by SHG test. The intermolecular interaction and percentage contribution of each individual atom in the crystal lattice was quantized using Hirshfeld surface and 2D finger print analysis.

  7. Synthesis, spectral characterization, and single crystal structure studies of (2-nitro-ethene-1,1-diyl)-bis-((4-isopropyl-benzyl)sulfane)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakthikumar, L., E-mail: lsakthisbk@gmail.com; Mahalakshmy, R.; Bhargavi, G.

    2015-12-15

    The title compound (2-nitro-ethene-1,1-diyl)-bis-(4-isopropylbenzyl)sulfane) (5), was synthesised using a two step process. The structure of the product (5) was established by UV, FT-IR, {sup 1}H NMR, {sup 13}C NMR, C,H,N analysis, LC-MS and single crystal X-ray diffraction analysis. The single crystal of the title compound (5) was crystallized in Monoclinic with the space group of P21/c. The crystal exhibit the following unit cell parameters a = 12.8165(18), b = 6.1878(6), c = 27.082(4) Å, β = 90.705(17)°, V = 2147.6(5) A{sup 3}, Z = 4, D{sub x} = 1.242 Mg/m{sup 3} and the molecular formula of C{sub 22}H{sub 27}N{sub 1}O{submore » 2}S{sub 2} was found. The final R value was 0.0776. The crystal structure is stabilized by an interesting intramolecular push and pull five membered electrocyclic interaction between the O1–N1–C2–C1–S1- and via the intermolecular H-bonding interaction between C2–H2···O2.« less

  8. Crystal structure of human dual specificity phosphatase, JNK stimulatory phosphatase-1, at 1.5 A resolution.

    PubMed

    Yokota, Takehiro; Nara, Yukinori; Kashima, Akiko; Matsubara, Keiko; Misawa, Satoru; Kato, Ryohei; Sugio, Shigetoshi

    2007-02-01

    Human JNK stimulatory phosphatase-1 (JSP-1) is a novel member of dual specificity phosphatases. A C-terminus truncated JSP-1 was expressed in Escherichia coli and was crystallized using the sitting-drop vapor diffusion method. Thin-plate crystals obtained at 278 K belong to a monoclinic space group, C2, with unit-cell parameters a = 84.0 A, b = 49.3 A, c = 47.3 A, and beta = 119.5 degrees , and diffract up to 1.5 A resolution at 100 K. The structure of JSP-1 has a single compact (alpha/beta) domain, which consists of six alpha-helices and five beta-strands, and shows a conserved structural scaffold in regard to both DSPs and PTPs. A cleft formed by a PTP-loop at the active site is very shallow, and is occupied by one sulfonate compound, MES, at the bottom. In the binary complex structure of JSP-1 with MES, the conformations of three important segments in regard to the catalytic mechanism are not similar to those in PTP1B. JSP-1 has no loop corresponding to the Lys120-loop of PTP1B, and tryptophan residue corresponding to the substrate-stacking in PTP1B is substituted by alanine residue in JSP-1. Copyright 2006 Wiley-Liss, Inc.

  9. Clustering of ABCB1 and CYP2C19 Genetic Variants Predicts Risk of Major Bleeding and Thrombotic Events in Elderly Patients with Acute Coronary Syndrome Receiving Dual Antiplatelet Therapy with Aspirin and Clopidogrel.

    PubMed

    Galeazzi, Roberta; Olivieri, Fabiola; Spazzafumo, Liana; Rose, Giuseppina; Montesanto, Alberto; Giovagnetti, Simona; Cecchini, Sara; Malatesta, Gelsomina; Di Pillo, Raffaele; Antonicelli, Roberto

    2018-06-23

    The clinical efficacy of clopidogrel in secondary prevention of vascular events is hampered by marked inter-patient variability in drug response, which partially depends on genetic make-up. The aim of this pilot prospective study was to evaluate 12-month cardiovascular outcomes in elderly patients with acute coronary syndrome (ACS) receiving dual antiplatelet therapy (aspirin and clopidogrel) according to the clustering of CYP2C19 and ABCB1 genetic variants. Participants were 100 consecutive ACS patients who were genotyped for CYP2C19 (G681A and C-806T) and ABCB1 (C3435T) polymorphisms, which affect clopidogrel metabolism and bioavailability, using PCR-restriction fragment length polymorphism. They were then grouped as poor, extensive and ultra-rapid metabolisers based on the combination of CYP2C19 loss-of-function (CYP2C19*2) and gain-of-function (CYP2C19*17) alleles and ABCB1 alleles. The predictive value of each phenotype for acute vascular events was estimated based on 12-month cardiovascular outcomes. The poor metabolisers were at an increased risk of thrombotic events (OR 1.26; 95% CI 1.099-1.45; χ 2  = 5.676; p = 0.027), whereas the ultra-rapid metabolisers had a 1.31-fold increased risk of bleeding events compared with the poor and extensive metabolisers (OR 1.31; 95% CI 1.033-1.67; χ 2  = 5.676; p = 0.048). Logistic regression model, including age, sex, BMI and smoking habit, confirmed the differential risk of major events in low and ultra-rapid metabolisers. Our findings suggest that ACS patients classified as 'poor or ultra-rapid' metabolisers based on CYP2C19 and ABCB1 genotypes should receive alternative antiplatelet therapies to clopidogrel.

  10. Crystal Structure of the Neuropilin-1 MAM Domain: Completing the Neuropilin-1 Ectodomain Picture.

    PubMed

    Yelland, Tamas; Djordjevic, Snezana

    2016-11-01

    Neuropilins (NRPs) are single-pass transmembrane receptors involved in several signaling pathways that regulate key physiological processes such as vascular morphogenesis and axon guidance. The MAM domain of NRP, which has previously been implicated in receptor multimerization, was the only portion of the ectopic domain of the NRPs for which the structure, until now, has been elusive. Using site-directed mutagenesis in the linker region preceding the MAM domain we generated a protein construct amenable to crystallization. Here we present the crystal structure of the MAM domain of human NRP1 at 2.24 Å resolution. The protein exhibits a jellyroll topology, with Ca 2+ ions bound at the inter-strand space enhancing the thermostability of the domain. We show that the MAM domain of NRP1 is monomeric in solution and insufficient to drive receptor dimerization, which leads us to propose a different role for this domain in the context of NRP membrane assembly and signaling. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Crystal structure and theoretical studies of derivative of imidazo-1,2,4-triazine

    NASA Astrophysics Data System (ADS)

    Dybała, Izabela; Sztanke, Krzysztof

    2016-09-01

    In this study, we present the result of X-ray structure analysis of methyl [8-(3-chlorophenyl)-4-oxo-2,3,4,6,7,8-heksahydroimidazo[2,1-c][1,2,4]triazin-3-yl]acetate (1). The molecule conformation is flat, with a chlorophenyl substituent and the ester moiety lying in the plain of the heterobicyclic scaffold. Its conformation is stabilized by an intramolecular Nsbnd H…O hydrogen bond. Within the crystalline structure of 1, molecules associate with one another by weak Csbnd H…O, Csbnd H…Cl and Csbnd H…π bonds. The molecular and crystal structure of 1 was compared with the previously described structurally similar compound possessing the same bicyclic rigid core and similar chemical nature of the functional ester moiety. Very interesting differences in molecules geometry and association were observed. Non-covalent bonds within the crystals are additionally visualized by determination of Hirshfeld surfaces. Moreover, the quantum chemical calculation for 1 in the gas phase were carried out. The DFT calculation methods was used to optimize of molecule geometry and obtain molecular energy profiles with respect to selected torsion angles. The quantum chemical conformational analysis that was carried out for compound 1 in the gas phase suggests that in the solid state the molecules adopt the minimum energy conformation.

  12. Glycosphingolipid storage in Fabry mice extends beyond globotriaosylceramide and is affected by ABCB1 depletion

    PubMed Central

    Kamani, Mustafa A; Provençal, Philippe; Boutin, Michel; Pacienza, Natalia; Fan, Xin; Novak, Anton; Huang, Tonny C; Binnington, Beth; Au, Bryan C; Auray-Blais, Christiane; Lingwood, Clifford A; Medin, Jeffrey A

    2016-01-01

    Aim: Fabry disease is caused by α-galactosidase A deficiency leading to accumulation of globotriaosylceramide (Gb3) in tissues. Clinical manifestations do not appear to correlate with total Gb3 levels. Studies examining tissue distribution of specific acyl chain species of Gb3 and upstream glycosphingolipids are lacking. Material & methods/Results: Thorough characterization of the Fabry mouse sphingolipid profile by LC-MS revealed unique Gb3 acyl chain storage profiles. Storage extended beyond Gb3; all Fabry tissues also accumulated monohexosylceramides. Depletion of ABCB1 had a complex effect on glycosphingolipid storage. Conclusion: These data provide insights into how specific sphingolipid species correlate with one another and how these correlations change in the α-galactosidase A-deficient state, potentially leading to the identification of more specific biomarkers of Fabry disease. PMID:28116130

  13. Decoding Corticotropin-Releasing Factor Receptor Type 1 CrystalStructures

    PubMed Central

    Doré, Andrew S.; Bortolato, Andrea; Hollenstein, Kaspar; Cheng, Robert K.Y.; Read, Randy J.; Marshall, Fiona H.

    2017-01-01

    The structural analysis of class B G protein-coupled receptors (GPCR), cell surface proteins responding to peptide hormones, has until recently been restricted to the extracellular domain (ECD). Cor-ticotropin-releasing factor receptor type 1 (CRF1R) is a class B receptor mediating stress response and also considered a drug target for depression and anxiety. Here we report the crystal structure of the trans-membrane domain of human CRF1R in complex with the small-molecule antagonist CP-376395 in a hex-agonal setting with translational non-crystallographic symmetry. Molecular dynamics and metadynamics simulations on this novel structure and the existing TMD structure for CRF1R provides insight as to how the small molecule ligand gains access to the induced-fit allosteric binding site with implications for the observed selectivity against CRF2R. Furthermore, molecular dynamics simulations performed using a full-length receptor model point to key interactions between the ECD and extracellular loop 3 of the TMD providing insight into the full inactive state of multidomain class B GPCRs. PMID:28183242

  14. Crystal structure of PAV1-137: a protein from the virus PAV1 that infects Pyrococcus abyssi.

    PubMed

    Leulliot, N; Quevillon-Cheruel, S; Graille, M; Geslin, C; Flament, D; Le Romancer, M; van Tilbeurgh, H

    2013-01-01

    Pyrococcus abyssi virus 1 (PAV1) was the first virus particle infecting a hyperthermophilic Euryarchaeota (Pyrococcus abyssi strain GE23) that has been isolated and characterized. It is lemon shaped and is decorated with a short fibered tail. PAV1 morphologically resembles the fusiform members of the family Fuselloviridae or the genus Salterprovirus. The 18 kb dsDNA genome of PAV1 contains 25 predicted genes, most of them of unknown function. To help assigning functions to these proteins, we have initiated structural studies of the PAV1 proteome. We determined the crystal structure of a putative protein of 137 residues (PAV1-137) at a resolution of 2.2 Å. The protein forms dimers both in solution and in the crystal. The fold of PAV1-137 is a four- α -helical bundle analogous to those found in some eukaryotic adhesion proteins such as focal adhesion kinase, suggesting that PAV1-137 is involved in protein-protein interactions.

  15. Crystal structure of minoxidil at low temperature and polymorph prediction.

    PubMed

    Martín-Islán, Africa P; Martín-Ramos, Daniel; Sainz-Díaz, C Ignacio

    2008-02-01

    An experimental and theoretical investigation on crystal forms of the popular and ubiquitous pharmaceutical Minoxidil is presented here. A new crystallization method is presented for Minoxidil (6-(1-piperidinyl)-2,4-pyrimidinediamide 3-oxide) in ethanol-poly(ethylene glycol), yielding crystals with good quality. The crystal structure is determined at low temperature, with a final R value of 0.035, corresponding to space group P2(1) (monoclinic) with cell dimensions a = 9.357(1) A, b = 8.231(1) A, c = 12.931(2) A, and beta = 90.353(4) degrees . Theoretical calculations of the molecular structure of Minoxidil are set forward using empirical force fields and quantum-mechanical methods. A theoretical prediction for Minoxidil crystal structure shows many possible polymorphs. The predicted crystal structures are compared with X-ray experimental data obtained in our laboratory, and the experimental crystal form is found to be one of the lowest energy polymorphs.

  16. Discovery of novel Trypanosoma brucei phosphodiesterase B1 inhibitors by virtual screening against the unliganded TbrPDEB1 crystal structure

    PubMed Central

    Jansen, Chimed; Wang, Huanchen; Kooistra, Albert J.; de Graaf, Chris; Orrling, Kristina; Tenor, Hermann; Seebeck, Thomas; Bailey, David; de Esch, Iwan J.P.; Ke, Hengming; Leurs, Rob

    2013-01-01

    Trypanosoma brucei cyclic nucleotide phosphodiesterase B1 (TbrPDEB1) and TbrPDEB2 have recently been validated as new therapeutic targets for human African Trypanosomiasis by both genetic and pharmacological means. In this study we report the crystal structure of the catalytic domain of the unliganded TbrPDEB1 and its use for the in silico screening for new TbrPDEB1 inhibitors with novel scaffolds. The TbrPDEB1 crystal structure shows the characteristic folds of human PDE enzymes, but also contains the parasite-specific P-pocket found in the structures of Leishmania major PDEB1 and Trypanosoma cruzi PDEC. The unliganded TbrPDEB1 X-ray structure was subjected to a structure-based in silico screening approach that combines molecular docking simulations with a protein-ligand interaction fingerprint (IFP) scoring method. This approach identified, six novel TbrPDEB1 inhibitors with IC50 values of 10–80 μM, which may be further optimized as potential selective TbrPDEB inhibitors. PMID:23409953

  17. Polycyclic Aromatic Hydrocarbons (PAHs) Mediate Transcriptional Activation of the ATP Binding Cassette Transporter ABCB6 Gene via the Aryl Hydrocarbon Receptor (AhR)*

    PubMed Central

    Chavan, Hemantkumar; Krishnamurthy, Partha

    2012-01-01

    Liver is endowed with a mechanism to induce hepatic cytochromes P450 (CYP450s) in response to therapeutic drugs and environmental contaminants, leading to increased detoxification and elimination of the xenobiotics. Each CYP450 is composed of an apoprotein moiety and a heme prosthetic group, which is required for CYP450 activity. Thus, under conditions of CYP450 induction, there is a coordinate increase in heme biosynthesis to compensate for the increased expression of CYP450s. ABCB6, a mitochondrial ATP binding cassette transporter, which regulates coproporphyrinogen transport from the cytoplasm into the mitochondria to complete heme biosynthesis, represents a previously unrecognized rate-limiting step in heme biosynthesis. However, it is not known if exposure to drugs and environmental contaminants induces ABCB6 expression, to assure an adequate and apparently coordinated supply of heme for the generation of functional cytochrome holoprotein. In the present study, we demonstrate that polycyclic aromatic hydrocarbons (PAHs), the widely distributed environmental toxicants shown to induce porphyrin accumulation causing hepatic porphyria, up-regulate ABCB6 expression in both mice and humans. Using siRNA technology and Abcb6 knock-out mice, we demonstrate that PAH-mediated increase in hepatic porphyrins is compromised in the absence of ABCB6. Moreover, in vivo studies in aryl hydrocarbon receptor (AhR) knock-out mice demonstrate that PAH induction of ABCB6 is mediated by AhR. Promoter activation studies combined with electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrate direct interactions between the AhR binding sites in the ABCB6 promoter and the AhR receptor, implicating drug activation mechanisms for ABCB6 similar to those found in inducible cytochrome P450s. These studies are the first to describe direct transcriptional activation of both mouse and human ABCB6 by xenobiotics. PMID:22761424

  18. Photonic crystal based 1-bit full-adder optical circuit by using ring resonators in a nonlinear structure

    NASA Astrophysics Data System (ADS)

    Alipour-Banaei, Hamed; Seif-Dargahi, Hamed

    2017-05-01

    In this paper we proposed a novel design for realizing all optical 1*bit full-adder based on photonic crystals. The proposed structure was realized by cascading two optical 1-bit half-adders. The final structure is consisted of eight optical waveguides and two nonlinear resonant rings, created inside rod type two dimensional photonic crystal with square lattice. The structure has ;X;, ;Y; and ;Z; as input and ;SUM; and ;CARRY; as output ports. The performance and functionality of the proposed structure was validated by means of finite difference time domain method.

  19. Crystal structure of low-symmetry rondorfite

    NASA Astrophysics Data System (ADS)

    Rastsvetaeva, R. K.; Zadov, A. E.; Chukanov, N. V.

    2008-03-01

    The crystal structure of an aluminum-rich variety of the mineral rondorfite with the composition Ca16[Mg2(Si7Al)(O31OH)]Cl4 from the skarns of the Verkhne-Chegemskoe plateau (the Kabardino-Balkarian Republic, the Northern Caucasus Region, Russia) was solved in the triclinic space group with the unit-cell parameters a = 15.100(2) Å, b = 15.110(2) Å, c = 15.092(2) Å, α = 90.06(1)°, β = 90.01(1)°, γ = 89.93(1)°, Z = 4, sp. gr. P1. The structural model consisting of 248 independent atoms was determined by the phase-correction method and refined to R = 3.8% with anisotropic displacement parameters based on all 7156 independent reflections with 7156 F > 3σ( F). The crystal structure is based on pentamers consisting of four Si tetrahedra linked by the central Mg tetrahedron. The structure can formally be refined in the cubic space group ( a = 15.105 Å, sp. gr. Fd overline 3 , seven independent positions) with anisotropic displacement parameters to R = 2.74% based on 579 reflections with F > 3σ( F) without accounting for more than 1000 observed reflections, which are inconsistent with the cubic symmetry of the crystal structure.

  20. Generation of crystal structures using known crystal structures as analogues

    PubMed Central

    Cole, Jason C.; Groom, Colin R.; Read, Murray G.; Giangreco, Ilenia; McCabe, Patrick; Reilly, Anthony M.; Shields, Gregory P.

    2016-01-01

    This analysis attempts to answer the question of whether similar molecules crystallize in a similar manner. An analysis of structures in the Cambridge Structural Database shows that the answer is yes – sometimes they do, particularly for single-component structures. However, one does need to define what we mean by similar in both cases. Building on this observation we then demonstrate how this correlation between shape similarity and packing similarity can be used to generate potential lattices for molecules with no known crystal structure. Simple intermolecular interaction potentials can be used to minimize these potential lattices. Finally we discuss the many limitations of this approach. PMID:27484374

  1. Crystal structures of two mononuclear complexes of terbium(III) nitrate with the tripodal alcohol 1,1,1-tris-(hy-droxy-meth-yl)propane.

    PubMed

    Gregório, Thaiane; Giese, Siddhartha O K; Nunes, Giovana G; Soares, Jaísa F; Hughes, David L

    2017-02-01

    Two new mononuclear cationic complexes in which the Tb III ion is bis-chelated by the tripodal alcohol 1,1,1-tris-(hy-droxy-meth-yl)propane (H 3 L Et , C 6 H 14 O 3 ) were prepared from Tb(NO 3 ) 3 ·5H 2 O and had their crystal and mol-ecular structures solved by single-crystal X-ray diffraction analysis after data collection at 100 K. Both products were isolated in reasonable yields from the same reaction mixture by using different crystallization conditions. The higher-symmetry complex dinitratobis[1,1,1-tris-(hy-droxy-meth-yl)propane]-terbium(III) nitrate di-meth-oxy-ethane hemisolvate, [Tb(NO 3 ) 2 (H 3 L Et ) 2 ]NO 3 ·0.5C 4 H 10 O 2 , 1 , in which the lanthanide ion is 10-coordinate and adopts an s -bicapped square-anti-prismatic coordination geometry, contains two bidentate nitrate ions bound to the metal atom; another nitrate ion functions as a counter-ion and a half-mol-ecule of di-meth-oxy-ethane (completed by a crystallographic twofold rotation axis) is also present. In product aqua-nitratobis[1,1,1-tris-(hy-droxy-meth-yl)propane]-terbium(III) dinitrate, [Tb(NO 3 )(H 3 L Et ) 2 (H 2 O)](NO 3 ) 2 , 2 , one bidentate nitrate ion and one water mol-ecule are bound to the nine-coordinate terbium(III) centre, while two free nitrate ions contribute to charge balance outside the tricapped trigonal-prismatic coordination polyhedron. No free water mol-ecule was found in either of the crystal structures and, only in the case of 1 , di-meth-oxy-ethane acts as a crystallizing solvent. In both mol-ecular structures, the two tripodal ligands are bent to one side of the coordination sphere, leaving room for the anionic and water ligands. In complex 2 , the methyl group of one of the H 3 L Et ligands is disordered over two alternative orientations. Strong hydrogen bonds, both intra- and inter-molecular, are found in the crystal structures due to the number of different donor and acceptor groups present.

  2. Crystal structure of extracellular domain of human lectin-like transcript 1 (LLT1), the ligand for natural killer receptor-P1A.

    PubMed

    Kita, Shunsuke; Matsubara, Haruki; Kasai, Yoshiyuki; Tamaoki, Takaharu; Okabe, Yuki; Fukuhara, Hideo; Kamishikiryo, Jun; Krayukhina, Elena; Uchiyama, Susumu; Ose, Toyoyuki; Kuroki, Kimiko; Maenaka, Katsumi

    2015-06-01

    Emerging evidence has revealed the pivotal roles of C-type lectin-like receptors (CTLRs) in the regulation of a wide range of immune responses. Human natural killer cell receptor-P1A (NKRP1A) is one of the CTLRs and recognizes another CTLR, lectin-like transcript 1 (LLT1) on target cells to control NK, NKT and Th17 cells. The structural basis for the NKRP1A-LLT1 interaction was limitedly understood. Here, we report the crystal structure of the ectodomain of LLT1. The plausible receptor-binding face of the C-type lectin-like domain is flat, and forms an extended β-sheet. The residues of this face are relatively conserved with another CTLR, keratinocyte-associated C-type lectin, which binds to the CTLR member, NKp65. A LLT1-NKRP1A complex model, prepared using the crystal structures of LLT1 and the keratinocyte-associated C-type lectin-NKp65 complex, reasonably satisfies the charge consistency and the conformational complementarity to explain a previous mutagenesis study. Furthermore, crystal packing and analytical ultracentrifugation revealed dimer formation, which supports a complex model. Our results provide structural insights for understanding the binding modes and signal transduction mechanisms, which are likely to be conserved in the CTLR family, and for further rational drug design towards regulating the LLT1 function. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Crystal structure, spectral, thermal and dielectric studies of a new zinc benzoate single crystal

    NASA Astrophysics Data System (ADS)

    Bijini, B. R.; Prasanna, S.; Deepa, M.; Nair, C. M. K.; Rajendra Babu, K.

    2012-11-01

    Single crystals of zinc benzoate with a novel structure were grown in gel media. Sodium metasilicate of gel density 1.04 g/cc at pH 6 was employed to yield transparent single crystals. The crystal structure of the compound was ascertained by single crystal X-ray diffractometry. It was noted that the crystal belongs to monoclinic system with space group P21/c with unit cell parameters a = 10.669(1) Å, b = 12.995(5) Å, c = 19.119(3) Å, and β = 94.926(3)°. The crystal was seen to possess a linear polymeric structure along b-axis; with no presence of coordinated or lattice water. CHN analysis established the stoichiometric composition of the crystal. The existence of functional groups present in the single crystal system was confirmed by FT-IR studies. The thermal characteristic of the sample was analysed by TGA-DTA techniques, and the sample was found to be thermally stable up to 280 °C. The kinetic and thermodynamic parameters were also determined. UV-Vis spectroscopy corroborated the transparency of the crystal and revealed the optical band gap to be 4 eV. Dielectric studies showed decrease in the dielectric constant of the sample with increase in frequency.

  4. The crystal structure of the mixed-layer Aurivillius phase Bi 5Ti 1.5W 1.5O 15

    NASA Astrophysics Data System (ADS)

    Tellier, J.; Boullay, Ph.; Créon, N.; Mercurio, D.

    2005-09-01

    The crystal structure of the 1+2 mixed-layer Aurivillius phase Bi 5Ti 1.5W 1.5O 15 (SG I2cm n o 46: -cba, Z=4, a=5.4092(3) Å, b=5.3843(3) Å and c=41.529(3) Å) consisting of the ordered intergrowth of one and two octahedra thick perovskite-type blocks separated by [Bi 2O 2] 2+ slabs is reported. Supported by an electron diffraction investigation and, using the Rietveld analysis, it is shown that this compound should be described using a I-centering lattice in agreement with the generalised structural model of the Aurivillius type compounds recently presented by the authors. The structure of this Bi 5Ti 1.5W 1.5O 15 phase is analyzed in comparison with the related simple members (Bi 2WO 6 and Bi 3Ti 1.5W 0.5O 9). The crystal structure of Bi 3Ti 1.5W 0.5O 9 is also reported.

  5. Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor.

    PubMed

    Underwood, Christina Rye; Garibay, Patrick; Knudsen, Lotte Bjerre; Hastrup, Sven; Peters, Günther H; Rudolph, Rainer; Reedtz-Runge, Steffen

    2010-01-01

    GLP-1 (glucagon-like peptide-1) is an incretin released from intestinal L-cells in response to food intake. Activation of the GLP-1 receptor potentiates the synthesis and release of insulin from pancreatic beta-cells in a glucose-dependent manner. The GLP-1 receptor belongs to class B of the G-protein-coupled receptors, a subfamily characterized by a large N-terminal extracellular ligand binding domain. Exendin-4 and GLP-1 are 50% identical, and exendin-4 is a full agonist with similar affinity and potency for the GLP-1 receptor. We recently solved the crystal structure of the GLP-1 receptor extracellular domain in complex with the competitive antagonist exendin-4(9-39). Interestingly, the isolated extracellular domain binds exendin-4 with much higher affinity than the endogenous agonist GLP-1. Here, we have solved the crystal structure of the extracellular domain in complex with GLP-1 to 2.1 Aresolution. The structure shows that important hydrophobic ligand-receptor interactions are conserved in agonist- and antagonist-bound forms of the extracellular domain, but certain residues in the ligand-binding site adopt a GLP-1-specific conformation. GLP-1 is a kinked but continuous alpha-helix from Thr(13) to Val(33) when bound to the extracellular domain. We supplemented the crystal structure with site-directed mutagenesis to link the structural information of the isolated extracellular domain with the binding properties of the full-length receptor. The data support the existence of differences in the binding modes of GLP-1 and exendin-4 on the full-length GLP-1 receptor.

  6. Oxysterols decrease apical-to-basolateral transport of Aß peptides via an ABCB1-mediated process in an in vitro Blood-brain barrier model constituted of bovine brain capillary endothelial cells.

    PubMed

    Saint-Pol, Julien; Candela, Pietra; Boucau, Marie-Christine; Fenart, Laurence; Gosselet, Fabien

    2013-06-23

    It is known that activation of the liver X receptors (LXRs) by natural or synthetic agonists decreases the amyloid burden and enhances cognitive function in transgenic murine models of Alzheimer's disease (AD). Recent evidence suggests that LXR activation may affect the transport of amyloid ß (Aß) peptides across the blood-brain barrier (the BBB, which isolates the brain from the peripheral circulation). By using a well-characterized in vitro BBB model, we demonstrated that LXR agonists (24S-hydroxycholesterol, 27-hydroxycholesterol and T0901317) modulated the expression of target genes involved in cholesterol homeostasis (such as ATP-binding cassette sub-family A member 1 (ABCA1)) and promoted cellular cholesterol efflux to apolipoprotein A-I and high density lipoproteins. Interestingly, we also observed a decrease in Aß peptide influx across brain capillary endothelial cells, although ABCA1 did not appear to be directly involved in this process. By focusing on others receptors and transporters that are thought to have major roles in Aß peptide entry into the brain, we then demonstrated that LXR stimulation provoked an increase in expression of the ABCB1 transporter (also named P-glycoprotein (P-gp)). Further investigations confirmed ABCB1's involvement in the restriction of Aß peptide influx. Taken as a whole, our results not only reinforce the BBB's key role in cerebral cholesterol homeostasis but also demonstrate the importance of the LXR/ABCB1 axis in Aß peptide influx-highlighting an attractive new therapeutic approach whereby the brain could be protected from peripheral Aß peptide entry. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Neurological toxicity after phenytoin infusion in a pediatric patient with epilepsy: influence of CYP2C9, CYP2C19 and ABCB1 genetic polymorphisms.

    PubMed

    Dorado, P; López-Torres, E; Peñas-Lledó, E M; Martínez-Antón, J; Llerena, A

    2013-08-01

    Pharmacogenetic studies have shown that genetic defects in drug-metabolizing enzymes encoded by CYP2C9, CYP2C19 genes and by the transporter ABCB1 gene can influence phenytoin (PTH) plasma levels and toxicity. The patient reported here is a 2-year-old girl with a medical history of cryptogenic (probably symptomatic) epilepsy, who had her first focal seizure with secondary generalization at 13 months of age. She initially received oral valproate treatment and three months later, she was prescribed an oral oxcarbazepine treatment. At 20 months of age, she was admitted to the Emergency Department because of generalized convulsive Status Epilepticus needing to be immediately treated with rectal diazepam (0.5 mg kg(-1)), intravenous diazepam (0.3 mg kg(-1)), and intravenous phenytoin with an initial-loading dose of 15 mg kg(-1). However, two hours after the initial-loading dose of PTH, the patient developed dizziness, nystagmus, ataxia and excessive sedation. Other potential causes of PTH toxicity were excluded such as drug interactions, decreased albumin or lab error. Therefore, to explain the neurological toxicity, PTH plasma levels and CYP2C9, CYP2C19 and ABCB1 genetic polymorphisms were analyzed. Initial plasma PTH levels were higher than expected (69 mg l(-1); normal range: 10-20 mg l(-1)), and the patient was homozygous for the CYP2C9*2 allele, heterozygous for the CYP2C19*4 allele and homozygous for the 3435C and 1236C ABCB1 alleles. Present findings support the previously established relationship between CYP2C9 and CYP2C19 genetic polymorphisms and the increased risk to develop PTH toxicity owing to high plasma concentrations. Nevertheless, although the association of these genes with PTH-induced adverse effects has been well-documented in adult populations, this is the first report examining the influence of these genetic polymorphisms on PTH plasma levels and toxicity in a pediatric patient.

  8. Inorganic Crystal Structure Database (ICSD)

    National Institute of Standards and Technology Data Gateway

    SRD 84 FIZ/NIST Inorganic Crystal Structure Database (ICSD) (PC database for purchase)   The Inorganic Crystal Structure Database (ICSD) is produced cooperatively by the Fachinformationszentrum Karlsruhe(FIZ) and the National Institute of Standards and Technology (NIST). The ICSD is a comprehensive collection of crystal structure data of inorganic compounds containing more than 140,000 entries and covering the literature from 1915 to the present.

  9. Crystal structures of the ATP-binding and ADP-release dwells of the V1 rotary motor

    PubMed Central

    Suzuki, Kano; Mizutani, Kenji; Maruyama, Shintaro; Shimono, Kazumi; Imai, Fabiana L.; Muneyuki, Eiro; Kakinuma, Yoshimi; Ishizuka-Katsura, Yoshiko; Shirouzu, Mikako; Yokoyama, Shigeyuki; Yamato, Ichiro; Murata, Takeshi

    2016-01-01

    V1-ATPases are highly conserved ATP-driven rotary molecular motors found in various membrane systems. We recently reported the crystal structures for the Enterococcus hirae A3B3DF (V1) complex, corresponding to the catalytic dwell state waiting for ATP hydrolysis. Here we present the crystal structures for two other dwell states obtained by soaking nucleotide-free V1 crystals in ADP. In the presence of 20 μM ADP, two ADP molecules bind to two of three binding sites and cooperatively induce conformational changes of the third site to an ATP-binding mode, corresponding to the ATP-binding dwell. In the presence of 2 mM ADP, all nucleotide-binding sites are occupied by ADP to induce conformational changes corresponding to the ADP-release dwell. Based on these and previous findings, we propose a V1-ATPase rotational mechanism model. PMID:27807367

  10. Structure-property evolution during polymer crystallization

    NASA Astrophysics Data System (ADS)

    Arora, Deepak

    The main theme of this research is to understand the structure-property evolution during crystallization of a semicrystalline thermoplastic polymer. A combination of techniques including rheology, small angle light scattering, differential scanning calorimetry and optical microscopy are applied to follow the mechanical and optical properties along with crystallinity and the morphology. Isothermal crystallization experiments on isotactic poly-1-butene at early stages of spherulite growth provide quantitative information about nucleation density, volume fraction of spherulites and their crystallinity, and the mechanism of connecting into a sample spanning structure. Optical microscopy near the fluid-to-solid transition suggests that the transition, as determined by time-resolved mechanical spectroscopy, is not caused by packing/jamming of spherulites but by the formation of a percolating network structure. The effect of strain, Weissenberg number (We ) and specific mechanical work (w) on rate of crystallization (nucleation followed by growth) and on growth of anisotropy was studied for shear-induced crystallization of isotactic poly-1-butene. The samples were sheared for a finite strain at the beginning of the experiment and then crystallized without further flow (Janeschitz-Kriegl protocol). Strain requirements to attain steady state/leveling off of the rate of crystallization were found to be much larger than the strain needed to achieve steady state of flow. The large strain and We>1 criteria were also observed for morphological transition from spherulitic growth to oriented growth. An apparatus for small angle light scattering (SALS) and light transmission measurements under shear was built and tested at the University of Massachusetts Amherst. As a new development, the polarization direction can be rotated by a liquid crystal polarization rotator (LCPR) with a short response time of 20 ms. The experiments were controlled and analyzed with a LabVIEW(TM) based

  11. Structural, crystal structure, Hirshfeld surface analysis and physicochemical studies of a new chlorocadmate template by 1-(2-hydroxyethyl)piperazine

    NASA Astrophysics Data System (ADS)

    Soudani, S.; Jeanneau, E.; Jelsch, C.; Lefebvre, F.; Ben Nasr, C.

    2016-11-01

    The synthesis, crystal structure and spectroscopic characterization of a new chlorocadmate template by the 1-(2-hydroxyethyl)piperazine ligand are reported. In the atomic arrangement, the CdCl5O entities are deployed in corrugated rows along the a-axis at y = 1/4 and y = 3/4 to form layers parallel to the (a,b) plane. In these crystals, piperazinediium cations are in a chair conformation and are inserted between these layers through Nsbnd H⋯Cl, Csbnd H⋯Cl, Osbnd H⋯Cl and Nsbnd H⋯O hydrogen bonds to form infinite three-dimensional network. Investigation of intermolecular interactions and crystal packing via Hirshfeld surface analysis reveals that H⋯Cl and Csbnd H⋯Hsbnd C intermolecular interactions are the most abundant contacts of the organic cation in the crystal packing. The crystal contacts enrichments reveals that, the Cd++ … Cl- salt bridges, the Cd⋯O complexation and Osbnd H⋯Cl- and Nsbnd H⋯Cl-strong H-bonds are the driving forces in the packing formation. The presence of twelve independent chloride anions and four organic cation in the asymmetric unit allowed comparing their contact propensities. The 13C and 15N CP-MAS NMR spectra are in agreement with the X-ray structure. Additional characterization of this compound has also been performed by IR spectroscopy.

  12. Crystal structure of human PCNA in complex with the PIP box of DVC1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yong; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049; Xu, Min

    2016-05-27

    In higher eukaryotes, DVC1 (SPRTN, Spartan or C1orf124) is implicated in the translesion synthesis (TLS) pathway. DVC1 localizes to sites of DNA damage, binds to the proliferating cell nuclear antigen (PCNA) via its conserved PCNA-interacting motif (PIP box), and associates with ubiquitin selective segregase p97 and other factors, thus regulating translesion synthesis polymerases. Here, we report the crystal structure of human PCNA in complex with a peptide ({sup 321}SNSHQNVLSNYFPRVS{sup 336}) derived from human DVC1 that contains a unique YF type PIP box. Structural analysis reveals the detailed PIP box-PCNA interaction. Interestingly, substitution of Y331 with Phe severely reduces its PCNAmore » binding affinity. These findings offer new insights into the determinants of PIP box for PCNA binding. -- Highlights: •Crystal structure of PCNA in complex with DVC1{sup PIP} peptide was determined. •The Y331{sup P7}F mutation severely impairs DVC1's PCNA binding affinity. •The intramolecular hydrogen bond N326−Y331 in the 3{sub 10} helix affects DVC1's PCNA binding affinity.« less

  13. Population pharmacokinetic analysis of cilostazol in healthy subjects with genetic polymorphisms of CYP3A5, CYP2C19 and ABCB1

    PubMed Central

    Yoo, Hee-Doo; Cho, Hea-Young; Lee, Yong-Bok

    2010-01-01

    AIMS To investigate the influence of genetic polymorphisms in the CYP3A5, CYP2C19 and ABCB1 genes on the population pharmacokinetics of cilostazol in healthy subjects. METHODS Subjects who participated in four separate cilostazol bioequivalence studies with the same protocols were included in this retrospective analysis. One hundred and four healthy Korean volunteers were orally administered a single 50- or 100-mg dose of cilostazol. We estimated the population pharmacokinetics of cilostazol using a nonlinear mixed effects modelling (nonmem) method and explored the possible influence of genetic polymorphisms in CYP3A (CYP3A5*3), CYP2C19 (CYP2C19*2 and CYP2C19*3) and ABCB1 (C1236T, G2677T/A and C3435T) on the population pharmacokinetics of cilostazol. RESULTS A two-compartment model with a first-order absorption and lag time described the cilostazol serum concentrations well. The apparent oral clearance (CL/F) was estimated to be 12.8 l h−1. The volumes of the central and the peripheral compartment were characterized as 20.5 l and 73.1 l, respectively. Intercompartmental clearance was estimated at 5.6 l h−1. Absorption rate constant was estimated at 0.24 h−1 and lag time was predicted at 0.57 h. The genetic polymorphisms of CYP3A5 had a significant (P < 0.001) influence on the CL/F of cilostazol. When CYP2C19 was evaluated, a significant difference (P < 0.01) was observed among the three genotypes (extensive metabolizers, intermediate metabolizers and poor metabolizers) for the CL/F. In addition, a combination of CYP3A5 and CYP2C19 genotypes was found to be associated with a significant difference (P < 0.005) in the CL/F. When including these genotypes, the interindividual variability of the CL/F was reduced from 34.1% in the base model to 27.3% in the final model. However, no significant differences between the ABCB1 genotypes and cilostazol pharmacokinetic parameters were observed. CONCLUSIONS The results of the present study indicate that CYP3A5 and CYP2C19

  14. Crystal Structure of Glucagon-like Peptide-1 in Complex with the Extracellular Domain of the Glucagon-like Peptide-1 Receptor*

    PubMed Central

    Underwood, Christina Rye; Garibay, Patrick; Knudsen, Lotte Bjerre; Hastrup, Sven; Peters, Günther H.; Rudolph, Rainer; Reedtz-Runge, Steffen

    2010-01-01

    GLP-1 (glucagon-like peptide-1) is an incretin released from intestinal L-cells in response to food intake. Activation of the GLP-1 receptor potentiates the synthesis and release of insulin from pancreatic β-cells in a glucose-dependent manner. The GLP-1 receptor belongs to class B of the G-protein-coupled receptors, a subfamily characterized by a large N-terminal extracellular ligand binding domain. Exendin-4 and GLP-1 are 50% identical, and exendin-4 is a full agonist with similar affinity and potency for the GLP-1 receptor. We recently solved the crystal structure of the GLP-1 receptor extracellular domain in complex with the competitive antagonist exendin-4(9–39). Interestingly, the isolated extracellular domain binds exendin-4 with much higher affinity than the endogenous agonist GLP-1. Here, we have solved the crystal structure of the extracellular domain in complex with GLP-1 to 2.1 Åresolution. The structure shows that important hydrophobic ligand-receptor interactions are conserved in agonist- and antagonist-bound forms of the extracellular domain, but certain residues in the ligand-binding site adopt a GLP-1-specific conformation. GLP-1 is a kinked but continuous α-helix from Thr13 to Val33 when bound to the extracellular domain. We supplemented the crystal structure with site-directed mutagenesis to link the structural information of the isolated extracellular domain with the binding properties of the full-length receptor. The data support the existence of differences in the binding modes of GLP-1 and exendin-4 on the full-length GLP-1 receptor. PMID:19861722

  15. The influence of genetic polymorphisms of cytochrome P450 3A5 and ABCB1 on starting dose- and weight-standardized tacrolimus trough concentrations after kidney transplantation in relation to renal function.

    PubMed

    Mourad, Michel; Wallemacq, Pierre; De Meyer, Martine; Brandt, Dimitri; Van Kerkhove, Valérie; Malaise, Jacques; Chaïb Eddour, Djamila; Lison, Dominique; Haufroid, Vincent

    2006-01-01

    Cytochrome P450 3A5 (CYP3A5) and ABCB1 polymorphisms have been shown to influence tacrolimus (Tc) blood concentrations in the stable phase after organ transplantation. We hypothesized that Tc pharmacokinetics may be affected by genetic mutations subsequent to starting doses. We retrospectively analyzed data from a cohort of 59 kidney transplant recipients, in whom CYP3A5 (intron 3) and ABCB1 (exons 12, 21 and 26) genotypes were correlated to dose- and weight-standardized Tc trough concentrations obtained after initial Tc doses. Renal function, expressed as glomerular filtration rate (GFR) (MDRD equation), on days 7 and 14 after transplantation was evaluated and its relationship with Tc concentrations was analyzed. Dose- and weight-standardized Tc trough concentrations were lower in patients carrying the CYP3A5 *1 allele (p<0.01). There was no statistically significant association with ABCB1 polymorphisms. In a multivariate analysis, both the presence of at least one CYP3A5 *1 allele (p=0.006) and age at the time of transplantation (p=0.010) were significant independent variables affecting Tc trough blood concentrations standardized to the first dosages (model r2=0.23). GFR was not affected by Tc concentrations. Prospective trials are needed to prove that a genetic approach to Tc pharmacokinetics and its related side effects during the early period after grafting may improve patient outcome.

  16. Crystal Structure of Hydrazinium Iodide by Neutron Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Eric V.; Wang, Xiaoping; Miller, Joel S.

    The structure of hydrazinium iodide, [H 5N 2] +·I -, at 100 K has monoclinic (P2 1/n) symmetry from single crystal neutron diffraction with a = 7.4599(7) Å, b = 5.3185(6) Å, c = 10.1628(11) Å, β = 103.150(10)°, V = 392.64(7) Å 3, Z = 4. The refinement converged to R = 0.0575, wR 2 = 0.1602, S = 1.022. Data for the crystal structure was collected on the SNS TOPAZ single-crystal time-of-flight Laue diffractometer. The compound has a one-dimensional structure which displays N–H···N hydrogen bonding. Finally, accurate intra- and intermolecular N–H distances have been determined.

  17. Crystal Structure of Hydrazinium Iodide by Neutron Diffraction

    DOE PAGES

    Campbell, Eric V.; Wang, Xiaoping; Miller, Joel S.

    2017-10-31

    The structure of hydrazinium iodide, [H 5N 2] +·I -, at 100 K has monoclinic (P2 1/n) symmetry from single crystal neutron diffraction with a = 7.4599(7) Å, b = 5.3185(6) Å, c = 10.1628(11) Å, β = 103.150(10)°, V = 392.64(7) Å 3, Z = 4. The refinement converged to R = 0.0575, wR 2 = 0.1602, S = 1.022. Data for the crystal structure was collected on the SNS TOPAZ single-crystal time-of-flight Laue diffractometer. The compound has a one-dimensional structure which displays N–H···N hydrogen bonding. Finally, accurate intra- and intermolecular N–H distances have been determined.

  18. Refined structures of three crystal forms of toxic shock syndrome toxin-1 and of a tetramutant with reduced activity.

    PubMed Central

    Prasad, G. S.; Radhakrishnan, R.; Mitchell, D. T.; Earhart, C. A.; Dinges, M. M.; Cook, W. J.; Schlievert, P. M.; Ohlendorf, D. H.

    1997-01-01

    The structure of toxic shock syndrome toxin-1 (TSST-1), the causative agent in toxic shock syndrome, has been determined in three crystal forms. The three structural models have been refined to R-factors of 0.154, 0.150, and 0.198 at resolutions of 2.05 A, 2.90 A, and 2.75 A, respectively. One crystal form of TSST-1 contains a zinc ion bound between two symmetry-related molecules. Although not required for biological activity, zinc dramatically potentiates the mitogenicity of TSST-1 at very low concentrations. In addition, the structure of the tetramutant TSST-1H [T69I, Y80W, E132K, I140T], which is nonmitogenic and does not amplify endotoxin shock, has been determined and refined in a fourth crystal form (R-factor = 0.173 to 1.9 A resolution). PMID:9194182

  19. Photonic Crystals: Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide (Small 25/2016).

    PubMed

    Tong, Liping; Qi, Wei; Wang, Mengfan; Huang, Renliang; Su, Rongxin; He, Zhimin

    2016-07-01

    The production of structural colors based on graphene oxide (GO) pseudo-one-dimensional photonic crystals (p1D-PhCs) in the visible spectrum is reported on page 3433 by W. Qi and co-workers. The structural colors could be tuned by simply changing either the volume or concentration of the aqueous GO dispersion. Moreover, GO p1D-PhCs exhibit visible and rapid responsiveness to humidity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Crystal structure of [propane-1,3-diylbis(piperidine-4,1-di-yl)]bis-[(pyridin-4-yl)methanone]-4,4'-oxydi-benzoic acid (1/1).

    PubMed

    Low, Emily M; LaDuca, Robert L

    2014-09-01

    In the title co-crystal, C25H32N4O2·C14H10O5, mol-ecules are connected into supra-molecular chains aligned along [102] by O-H⋯N hydrogen bonding. These aggregate into supra-molecular layers oriented parallel to (20-1) by C-H⋯O inter-actions. These layers then stack in an ABAB pattern along the c crystal direction to give the full three-dimensional crystal structure. The central chain in the dipyridylamide has an anti-anti conformation. The dihedral angle between the aromatic ring planes is 29.96 (3)°. Disorder is noted in some of the residues in the structure and this is manifested in two coplanar dispositions of one statistically disordered carb-oxy-lic acid group.

  1. Synthesis and crystal structure of bis(di- n-butyldithiocarbamato)(1,10-phenanthroline)cadmium(II)

    NASA Astrophysics Data System (ADS)

    Ivanchenko, A. V.; Gromilov, S. A.; Zemskova, S. M.; Baidina, I. A.; Glinskaya, L. A.

    2002-02-01

    A new mixed-ligand complex, Cd(S2CN(C4H9)2)2Phen, is synthesized and investigated by thermal, element, and IR analyses and by diffractometry of polycrystals (DRON-3M, CuKα radiation, Ni filter). The crystal structure was determined on a CAD-4 Enraf-Nonius automatic diffractometer (MoKα radiation, θ from 1.5 to 25‡, 2325 nonzero independent reflections, 190 refined parameters, R = 0.036 for I > 2Σ(I)). Crystal data for C30H44CdN4S4 : a = 15.592(3), b = 22.724(5), c = 9.922(2) å, space group Pbcn, V = 3515.5(12) å3, Z = 4, M = 701.33, dcalc = 1.325 g/cm3. The structure involves monomeric molecules in which the cadmium atom has a distorted octahedral environment.

  2. Likelihood-based modification of experimental crystal structure electron density maps

    DOEpatents

    Terwilliger, Thomas C [Sante Fe, NM

    2005-04-16

    A maximum-likelihood method for improves an electron density map of an experimental crystal structure. A likelihood of a set of structure factors {F.sub.h } is formed for the experimental crystal structure as (1) the likelihood of having obtained an observed set of structure factors {F.sub.h.sup.OBS } if structure factor set {F.sub.h } was correct, and (2) the likelihood that an electron density map resulting from {F.sub.h } is consistent with selected prior knowledge about the experimental crystal structure. The set of structure factors {F.sub.h } is then adjusted to maximize the likelihood of {F.sub.h } for the experimental crystal structure. An improved electron density map is constructed with the maximized structure factors.

  3. DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein

    PubMed Central

    Duan, Ming-Rui; Nan, Jie; Liang, Yu-He; Mao, Peng; Lu, Lu; Li, Lanfen; Wei, Chunhong; Lai, Luhua; Li, Yi; Su, Xiao-Dong

    2007-01-01

    WRKY proteins, defined by the conserved WRKYGQK sequence, are comprised of a large superfamily of transcription factors identified specifically from the plant kingdom. This superfamily plays important roles in plant disease resistance, abiotic stress, senescence as well as in some developmental processes. In this study, the Arabidopsis WRKY1 was shown to be involved in the salicylic acid signaling pathway and partially dependent on NPR1; a C-terminal domain of WRKY1, AtWRKY1-C, was constructed for structural studies. Previous investigations showed that DNA binding of the WRKY proteins was localized at the WRKY domains and these domains may define novel zinc-binding motifs. The crystal structure of the AtWRKY1-C determined at 1.6 Å resolution has revealed that this domain is composed of a globular structure with five β strands, forming an antiparallel β-sheet. A novel zinc-binding site is situated at one end of the β-sheet, between strands β4 and β5. Based on this high-resolution crystal structure and site-directed mutagenesis, we have defined and confirmed that the DNA-binding residues of AtWRKY1-C are located at β2 and β3 strands. These results provided us with structural information to understand the mechanism of transcriptional control and signal transduction events of the WRKY proteins. PMID:17264121

  4. Anisotropic lattice softening near the structural phase transition in the thermosalient crystal 1,2,4,5-tetrabromobenzene.

    PubMed

    Zakharov, Boris A; Michalchuk, Adam A L; Morrison, Carole A; Boldyreva, Elena V

    2018-03-28

    The thermosalient effect (crystal jumping on heating) attracts much attention as both an intriguing academic phenomenon and in relation to its potential for the development of molecular actuators but its mechanism remains unclear. 1,2,4,5-Tetrabromobenzene (TBB) is one of the most extensively studied thermosalient compounds that has been shown previously to undergo a phase transition on heating, accompanied by crystal jumping and cracking. The difference in the crystal structures and intermolecular interaction energies of the low- and high-temperature phases is, however, too small to account for the large stress that arises over the course of the transformation. The energy is released spontaneously, and crystals jump across distances that exceed the crystal size by orders of magnitude. In the present work, the anisotropy of lattice strain is followed across the phase transition by single-crystal X-ray diffraction, focusing on the structural evolution from 273 to 343 K. A pronounced lattice softening is observed close to the transition point, with the structure becoming more rigid immediately after the phase transition. The diffraction studies are further supported by theoretical analysis of pairwise intermolecular energies and zone-centre lattice vibrations. Only three modes are found to monotonically soften up to the phase transition, with complex behaviour exhibited by the remaining lattice modes. The thermosalient effect is delayed with respect to the structural transformation itself. This can originate from the martensitic mechanism of the transformation, and the accumulation of stress associated with vibrational switching across the phase transition. The finding of this study sheds more light on the nature of the thermosalient effect in 1,2,4,5-tetrabromobenzene and can be applicable also to other thermosalient compounds.

  5. Correlation between the conformational states of F1-ATPase as determined from its crystal structure and single-molecule rotation

    PubMed Central

    Okuno, Daichi; Fujisawa, Ryo; Iino, Ryota; Hirono-Hara, Yoko; Imamura, Hiromi; Noji, Hiroyuki

    2008-01-01

    F1-ATPase is a rotary molecular motor driven by ATP hydrolysis that rotates the γ-subunit against the α3β3 ring. The crystal structures of F1, which provide the structural basis for the catalysis mechanism, have shown essentially 1 stable conformational state. In contrast, single-molecule studies have revealed that F1 has 2 stable conformational states: ATP-binding dwell state and catalytic dwell state. Although structural and single-molecule studies are crucial for the understanding of the molecular mechanism of F1, it remains unclear as to which catalytic state the crystal structure represents. To address this issue, we introduced cysteine residues at βE391 and γR84 of F1 from thermophilic Bacillus PS3. In the crystal structures of the mitochondrial F1, the corresponding residues in the ADP-bound β (βDP) and γ were in direct contact. The βE190D mutation was additionally introduced into the β to slow ATP hydrolysis. By incorporating a single copy of the mutant β-subunit, the chimera F1, α3β2β(E190D/E391C)γ(R84C), was prepared. In single-molecule rotation assay, chimera F1 showed a catalytic dwell pause in every turn because of the slowed ATP hydrolysis of β(E190D/E391C). When the mutant β and γ were cross-linked through a disulfide bond between βE391C and γR84C, F1 paused the rotation at the catalytic dwell angle of β(E190D/E391C), indicating that the crystal structure represents the catalytic dwell state and that βDP is the catalytically active form. The former point was again confirmed in experiments where F1 rotation was inhibited by adenosine-5′-(β,γ-imino)-triphosphate and/or azide, the most commonly used inhibitors for the crystallization of F1. PMID:19075235

  6. Evaluation of structural vacancies for 1/1-Al-Re-Si approximant crystals by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Suzuki, H.; Kitahata, H.; Matsushita, Y.; Nozawa, K.; Komori, F.; Yu, R. S.; Kobayashi, Y.; Ohdaira, T.; Oshima, N.; Suzuki, R.; Takagiwa, Y.; Kimura, K.; Kanazawa, I.

    2018-01-01

    The size of structural vacancies and structural vacancy density of 1/1-Al-Re-Si approximant crystals with different Re compositions were evaluated by positron annihilation lifetime and Doppler broadening measurements. Incident positrons were found to be trapped at the monovacancy-size open space surrounded by Al atoms. From a previous analysis using the maximum entropy method and Rietveld method, such an open space is shown to correspond to the centre of Al icosahedral clusters, which locates at the vertex and body centre. The structural vacancy density of non-metallic Al73Re17Si10 was larger than that of metallic Al73Re15Si12. The observed difference in the structural vacancy density reflects that in bonding nature and may explain that in the physical properties of the two samples.

  7. Molecular and crystal structure and the Hirshfeld surface analysis of 1-amino-1-deoxy-α-D-sorbopyranose and 1-amino-1-deoxy-α-D-psicopyranose ("D-sorbosamine" and "D-psicosamine") derivatives

    NASA Astrophysics Data System (ADS)

    Mossine, Valeri V.; Barnes, Charles L.; Mawhinney, Thomas P.

    2018-05-01

    Sorbosamine and psicosamine are the last two 1-amino-1-deoxy-hexuloses for which no structural data were available. We report on a13C NMR and a single crystal X-ray diffraction study of 1-deoxy-1-(N-methylphenylamino)-D-sorbose (1) and 1-deoxy-1-(N-methylphenylamino)-D-psicose (2). In solutions, both aminosugars are conformationally unstable and establish equilibria, with 90.7% α-pyranose, 3.8% α-furanose, 1.0% β-pyranose, 0.5% β-furanose, and 4.0% acyclic keto form for 1 and 32.4% α-furanose, 27.2% α-pyranose, 21.0% β-pyranose, 9.1% β-furanose, and 11.0% acyclic keto form for 2. X-ray diffraction data provided detailed structural information on 1 and 2 in the α-pyranose form. Both molecules adopt the 5C2 ring conformations, the bond distances and valence angles compare well with respective pyranose structures. All hydroxyl groups in crystal structures of both 1 and 2 participate in two-dimensional hydrogen bonding networks, the H-bonding pattern in 1 is dominated by co-crystallized water molecules. The Hirshfeld surface analysis revealed a significant contribution of non- or weakly polar interactions to the packing forces for both molecules, with crystal structure of 2 featuring short H⋯H contacts. Other structural features found in 2 are a significant planarity of the tertiary amino group (the pyramid heights are 0.127 Å in 2 vs 0.231 Å in 1), a concomitant non-involvement of the amine nitrogen in heteroatom contacts, and a unique anti-periplanar conformation around the C1sbnd C2 bond.

  8. Crystal structures of (Mg1-x,Fex)SiO3postperovskite at high pressures

    PubMed Central

    Yamanaka, Takamitsu; Hirose, Kei; Mao, Wendy L.; Meng, Yue; Ganesh, P.; Shulenburger, Luke; Shen, Guoyin; Hemley, Russell J.

    2012-01-01

    X-ray diffraction experiments on postperovskite (ppv) with compositions (Mg0.9Fe0.1)SiO3 and (Mg0.6Fe0.4)SiO3 at Earth core-mantle boundary pressures reveal different crystal structures. The former adopts the CaIrO3-type structure with space group Cmcm, whereas the latter crystallizes in a structure with the Pmcm (Pmma) space group. The latter has a significantly higher density (ρ = 6.119(1) g/cm3) than the former (ρ = 5.694(8) g/cm3) due to both the larger amount of iron and the smaller ionic radius of Fe2+ as a result of an electronic spin transition observed by X-ray emission spectroscopy (XES). The smaller ionic radius for low-spin compared to high-spin Fe2+ also leads to an ordered cation distribution in the M1 and M2 crystallographic sites of the higher density ppv structure. Rietveld structure refinement indicates that approximately 70% of the total Fe2+ in that phase occupies the M2 site. XES results indicate a loss of 70% of the unpaired electronic spins consistent with a low spin M2 site and high spin M1 site. First-principles calculations of the magnetic ordering confirm that Pmcm with a two-site model is energetically more favorable at high pressure, and predict that the ordered structure is anisotropic in its electrical and elastic properties. These results suggest that interpretations of seismic structure in the deep mantle need to treat a broader range of mineral structures than previously considered. PMID:22223656

  9. Structure analysis on synthetic emerald crystals

    NASA Astrophysics Data System (ADS)

    Lee, Pei-Lun; Lee, Jiann-Shing; Huang, Eugene; Liao, Ju-Hsiou

    2013-05-01

    Single crystals of emerald synthesized by means of the flux method were adopted for crystallographic analyses. Emerald crystals with a wide range of Cr3+-doping content up to 3.16 wt% Cr2O3 were examined by X-ray single crystal diffraction refinement method. The crystal structures of the emerald crystals were refined to R 1 (all data) of 0.019-0.024 and w R 2 (all data) of 0.061-0.073. When Cr3+ substitutes for Al3+, the main adjustment takes place in the Al-octahedron and Be-tetrahedron. The effect of substitution of Cr3+ for Al3+ in the beryl structure results in progressively lengthening of the Al-O distance, while the length of the other bonds remains nearly unchanged. The substitution of Cr3+ for Al3+ may have caused the expansion of a axis, while keeping the c axis unchanged in the emerald lattice. As a consequence, the Al-O-Si and Al-O-Be bonding angles are found to decrease, while the angle of Si-O-Be increases as the Al-O distance increases during the Cr replacement.

  10. The co-crystal structure of ubiquitin carboxy-terminal hydrolase L1 (UCHL1) with a tripeptide fluoromethyl ketone (Z-VAE(OMe)-FMK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, Christopher W.; Chaney, Joseph; Korbel, Gregory

    2012-07-25

    UCHL1 is a 223 amino acid member of the UCH family of deubiquitinating enzymes (DUBs), found abundantly and exclusively expressed in neurons and the testis in normal tissues. Two naturally occurring variants of UCHL1 are directly involved in Parkinson's disease (PD). Not only has UCHL1 been linked to PD, but it has oncogenic properties, having been found abnormally expressed in lung, pancreatic, and colorectal cancers. Although inhibitors of UCHL1 have been described previously the co-crystal structure of the enzyme bound to any inhibitor has not been reported. Herein, we report the X-ray structure of UCHL1 co-crystallized with a peptide-based fluoromethylketonemore » inhibitor, Z-VAE(OMe)-FMK (VAEFMK) at 2.35 {angstrom} resolution. The co-crystal structure reveals that the inhibitor binds in the active-site cleft, irreversibly modifying the active-site cysteine; however, the catalytic histidine is still misaligned as seen in the native structure, suggesting that the inhibitor binds to an inactive form of the enzyme. Our structure also reveals that the inhibitor approaches the active-site cleft from the opposite side of the crossover loop as compared to the direction of approach of ubiquitin's C-terminal tail, thereby occupying the P1{prime} (leaving group) site, a binding site perhaps used by the unknown C-terminal extension of ubiquitin in the actual in vivo substrate(s) of UCHL1. This structure provides a view of molecular contacts at the active-site cleft between the inhibitor and the enzyme as well as furnishing structural information needed to facilitate further design of inhibitors targeted to UCHL1 with high selectivity and potency.« less

  11. Crystal structures of substrate-free and retinoic acid-bound cyanobacterial cytochrome P450 CYP120A1.

    PubMed

    Kühnel, Karin; Ke, Na; Cryle, Max J; Sligar, Stephen G; Schuler, Mary A; Schlichting, Ilme

    2008-06-24

    The crystal structures of substrate-free and all-trans-retinoic acid-bound CYP120A1 from Synechocystis sp. PCC 6803 were determined at 2.4 and 2.1 A resolution, respectively, representing the first structural characterization of a cyanobacterial P450. Features of CYP120A1 not observed in other P450 structures include an aromatic ladder flanking the channel leading to the active site and a triple-glycine motif within SRS5. Using spectroscopic methods, CYP120A1 is shown to bind 13-cis-retinoic acid, 9-cis-retinoic acid, and retinal with high affinity and dissociation constants of less than 1 microM. Metabolism of retinoic acid by CYP120A1 suggests that CYP120A1 hydroxylates a variety of retinoid derivatives in vivo. On the basis of the retinoic acid-bound CYP120A1 crystal structure, we propose that either carbon 2 or the methyl groups (C16 or C17) of the beta-ionone ring are modified by CYP120A1.

  12. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome

    PubMed Central

    McGinty, Robert K.; Henrici, Ryan C.; Tan, Song

    2014-01-01

    The Polycomb group of epigenetic enzymes represses expression of developmentally regulated genes in higher eukaryotes. This group includes the Polycomb repressive complex 1 (PRC1), which ubiquitylates nucleosomal histone H2A Lys119 using its E3 ubiquitin ligase subunits, Ring1B and Bmi1, together with an E2 ubiquitin-conjugating enzyme, UbcH5c. However, the molecular mechanism of nucleosome substrate recognition by PRC1 or other chromatin enzymes is unclear. Here we present the crystal structure of the Ring1B/Bmi1/UbcH5c E3-E2 complex (the PRC1 ubiquitylation module) bound to its nucleosome core particle substrate. The structure shows how a chromatin enzyme achieves substrate specificity by interacting with multiple nucleosome surfaces spatially distinct from the site of catalysis. Our structure further reveals an unexpected role for the ubiquitin E2 enzyme in substrate recognition, and provides insight into how the related histone H2A E3 ligase, BRCA1, interacts with and ubiquitylates the nucleosome. PMID:25355358

  13. 1D cyanide complexes with 2-pyridinemethanol: Synthesis, crystal structures and spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Sayın, Elvan; Kürkçüoğlu, Güneş Süheyla; Yeşilel, Okan Zafer; Hökelek, Tuncer

    2015-12-01

    Two new one-dimensional coordination polymers, [Cu(hmpH)2Pd(μ-CN)2(CN)2]n (1) and [Cu(hmpH)2Pt(μ-CN)2(CN)2]n (2), (hmpH = 2-pyridinemethanol), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. Single crystal X-ray diffraction analysis indicates that complexes 1 and 2 are isomorphous and isostructural, and crystallize in the triclinic system and P-1 space group. The Pd(II) or Pt(II) ions are four coordinated with four cyanide-carbon atoms in a square planar geometry. Cu(II) ion displays a distorted octahedral coordination by two N-atoms and two O-atoms of hmpH ligands, two bridging cyanide groups. In one dimensional structure of the complexes, [M(CN)4]2- (M = Pd(II) or Pt(II)) anions and [Cu(hmpH)2]2+ cations are linked via bridging cyanide ligands. In the complexes, the presence of intramolecular C-H⋯M (M = Pd(II) or Pt(II)) interactions with distance values of 3.00-2.95 Å are established, respectively.

  14. Crystal structure refinement of ReSi1.75 with an ordered arrangement of silicon vacancies

    NASA Astrophysics Data System (ADS)

    Harada, Shunta; Hoshikawa, Hiroaki; Kuwabara, Kosuke; Tanaka, Katsushi; Okunishi, Eiji; Inui, Haruyuki

    2011-08-01

    The crystal structure and microstructure of ReSi1.75 were investigated by synchrotron X-ray diffraction combined with scanning transmission electron microscopy. ReSi1.75 contains an ordered arrangement of vacancies in Si sites in the underlying tetragonal C11b lattice of the MoSi2-type and the crystal structure is monoclinic with the space group Cm. Atomic positions of Si atoms near vacancies are considerably displaced from the corresponding positions in the parent C11b structure, and they exhibit anomalously large local thermal vibration accompanied by large values of atomic displacement parameter. There are four differently-oriented domains with two of them being related to each other by the 90° rotation about the c-axis of the underlying C11b lattice and the other two being their respective twins. The habit planes for domain boundaries observed experimentally are consistent with those predicted with ferroelastic theory.

  15. Synthesis, crystal structure, and properties of KSbO{sub 3}-type Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Manrong; Retuerto, Maria; Bok Go, Yong

    2013-01-15

    Single crystals of Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} were prepared from NaCl+KCl flux. This compound adopts KSbO{sub 3}-type crystal structure as evidenced by electron and single crystal X-ray diffraction analysis. The three-dimensional channel structure is formed by corner-sharing octahedral (Mn{sub 0.63}Te{sub 0.37}){sub 2}O{sub 10} dimers and two identical (Bi1){sub 4}(Bi2){sub 2} interpenetrating lattices. The intra-dimer Mn/Te-Mn/Te distances in Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} are short and are consistent with weak metal-metal interactions. The mixed oxidation state of manganese and the edge-sharing octahedral features are confirmed by X-ray near edge absorption spectroscopy measurements, which indicate Bi{sub 3}(Mn{sup III}{sub 1.1}Mn{sup IV}{sub 0.8})Te{supmore » VI}{sub 1.1}O{sub 11} with 57.7% Mn{sup 3+} and 42.3% Mn{sup 4+}. The partial substitution of Te for Mn perturbs long-range magnetic interactions, thereby destroying the ferromagnetic ordering found in Bi{sub 3}Mn{sub 3}O{sub 11} (T{sub C}=150 K). - Graphical abstract: Single crystal of Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} was grown from NaCl+KCl binary flux, suggesting that the high pressure Bi{sub 3}Mn{sub 3}O{sub 11} phase can be stabilized by partial substitution of Mn by Te at ambient pressure. Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} adopts a typical three dimensional KSbO{sub 3}-type crystal structure with three interpenetrating lattices and weak intra-dimmer metal-metal interaction caused by the d electrons of Mn. The edge-shared (Mn{sub 0.63}Te{sub 0.37}){sub 2}O{sub 10} octahedral dimer and mixed oxidation state of manganese (Bi{sub 3}(Mn{sup III}{sub 1.1}Mn{sup IV}{sub 0.8})Te{sup VI}{sub 1.1}O{sub 11} with 57.7% Mn{sup 3+} and 42.3% Mn{sup 4+}) features were evidenced by X-ray absorption near edge spectroscopy. Compared with Bi{sub 3}Mn{sub 3}O{sub 11}, the Te substituted Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} relaxes the crystal structure, but destroys the long

  16. Crystal Structure of Hyperthermophilic Endo-β-1,4-glucanase

    PubMed Central

    Zheng, Baisong; Yang, Wen; Zhao, Xinyu; Wang, Yuguo; Lou, Zhiyong; Rao, Zihe; Feng, Yan

    2012-01-01

    Endo-β-1,4-glucanase from thermophilic Fervidobacterium nodosum Rt17-B1 (FnCel5A), a new member of glycosyl hydrolase family 5, is highly thermostable and exhibits the highest activity on carboxymethylcellulose among the reported homologues. To understand the structural basis for the thermostability and catalytic mechanism, we report here the crystal structures of FnCel5A and the complex with glucose at atomic resolution. FnCel5A exhibited a (β/α)8-barrel structure typical of clan GH-A of the glycoside hydrolase families with a large and deep catalytic pocket located in the C-terminal end of the β-strands that may permit substrate access. A comparison of the structure of FnCel5A with related structures from thermopile Clostridium thermocellum, mesophile Clostridium cellulolyticum, and psychrophile Pseudoalteromonas haloplanktis showed significant differences in intramolecular interactions (salt bridges and hydrogen bonds) that may account for the difference in their thermostabilities. The substrate complex structure in combination with a mutagenesis analysis of the catalytic residues implicates a distinctive catalytic module Glu167-His226-Glu283, which suggests that the histidine may function as an intermediate for the electron transfer network between the typical Glu-Glu catalytic module. Further investigation suggested that the aromatic residues Trp61, Trp204, Phe231, and Trp240 as well as polar residues Asn51, His127, Tyr228, and His235 in the active site not only participated in substrate binding but also provided a unique microenvironment suitable for catalysis. These results provide substantial insight into the unique characteristics of FnCel5A for catalysis and adaptation to extreme temperature. PMID:22128157

  17. Cabazitaxel is more active than first-generation taxanes in ABCB1(+) cell lines due to its reduced affinity for P-glycoprotein.

    PubMed

    Duran, George E; Derdau, Volker; Weitz, Dietmar; Philippe, Nicolas; Blankenstein, Jörg; Atzrodt, Jens; Sémiond, Dorothée; Gianolio, Diego A; Macé, Sandrine; Sikic, Branimir I

    2018-04-19

    The primary aim of this study was to determine cabazitaxel's affinity for the ABCB1/P-glycoprotein (P-gp) transporter compared to first-generation taxanes. We determined the kinetics of drug accumulation and retention using [ 14 C]-labeled taxanes in multidrug-resistant (MDR) cells. In addition, membrane-enriched fractions isolated from doxorubicin-selected MES-SA/Dx5 cells were used to determine sodium orthovanadate-sensitive ATPase stimulation after exposure to taxanes. Custom [ 3 H]-azido-taxane analogues were synthesized for the photoaffinity labeling of P-gp. The maximum intracellular drug concentration was achieved faster with [ 14 C]-cabazitaxel (5 min) than [ 14 C]-docetaxel (15-30 min). MDR cells accumulated twice as much cabazitaxel than docetaxel, and these levels could be restored to parental levels in the presence of the P-gp inhibitor PSC-833 (valspodar). Efflux in drug-free medium confirmed that MDR cells retained twice as much cabazitaxel than docetaxel. There was a strong association (r 2  = 0.91) between the degree of taxane resistance conferred by P-gp expression and the accumulation differences observed with the two taxanes. One cell model expressing low levels of P-gp was not cross-resistant to cabazitaxel while demonstrating modest resistance to docetaxel. Furthermore, there was a 1.9 × reduction in sodium orthovanadate-sensitive ATPase stimulation resulting from treatment with cabazitaxel compared to docetaxel. We calculated a dissociation constant (Kd) value of 1.7 µM for [ 3 H]-azido-docetaxel and ~ 7.5 µM for [ 3 H]-azido-cabazitaxel resulting in a 4.4 × difference in P-gp labeling, and cold docetaxel was a more effective competitor than cabazitaxel. Our studies confirm that cabazitaxel is more active in ABCB1(+) cell models due to its reduced affinity for P-gp compared to docetaxel.

  18. Crystal structures of trimethoprim-resistant DfrA1 rationalize potent inhibition by propargyl-linked antifolates

    PubMed Central

    Lombardo, Michael N.; G-Dayanandan, Narendran; Wright, Dennis L.; Anderson, Amy C.

    2016-01-01

    Multidrug-resistant Enterobacteriaceae, notably Escherichia coli and Klebsiella pneumoniae, have become major health concerns worldwide. Resistance to effective therapeutics is often carried by class I and II integrons that can confer insensitivity to carbapenems, extended spectrum beta-lactamases, the antifolate trimethoprim, fluoroquinolones and aminoglycosides. Specifically of interest to the study here, a prevalent gene (dfrA1) coding for an insensitive dihydrofolate reductase (DHFR) confers 190- or 1000-fold resistance to trimethoprim for K. pneumoniae and E. coli, respectively. Attaining inhibition of both the wild-type and resistant forms of the enzyme is critical for new antifolates. For several years, we have been developing the propargyl-linked antifolates (PLAs) as effective inhibitors against trimethoprim-resistant DHFR enzymes. Here, we show that the PLAs are active against both the wild-type and DfrA1 DHFR proteins. We report two high resolution crystal structures of DfrA1 bound to potent PLAs. The structure-activity relationships and crystal structures will be critical in driving the design of broadly active inhibitors against wild-type and resistant DHFR. PMID:27624966

  19. Crystal Structure of Two V-shaped Ligands with N-Heterocycles

    NASA Astrophysics Data System (ADS)

    Wang, Gao-Feng; Sun, Shu-Wen; Zhang, Xiao; Sun, Shu-Gang

    2017-12-01

    Two V-shaped ligands with N-heterocycles, bis(4-(1 H-imidazol-1-yl) phenyl)methanone ( 1), and bis(4-(1 H-benzo[d]imidazol-1-yl)phenyl)methanone ( 2) have been synthesized and characterized by elemental analyses, IR and 1 H NMR spectroscopy. Crystal structures of 1 and 2 have been determined by X-ray diffraction. The crystal of 1 is monoclinic, sp. gr. P21/ c, Z = 4. The crystal of 2 is orthorhombic, sp. gr. Fdd2, Z = 8. X-ray diffraction analyses show that the V-shaped angles of 1 and 2 are 122.72(15)° and 120.7(4)°, respectively. Intermolecular C-H···O, C-H···N, C-H···π, and π···π interactions link the components into three-dimensional networks in the crystal structures.

  20. Crystal structure of 3-(adamantan-1-yl)-4-(4-chloro-phen-yl)-1H-1,2,4-triazole-5(4H)-thione.

    PubMed

    Al-Wabli, Reem I; El-Emam, Ali A; Alroqi, Obaid S; Chidan Kumar, C S; Fun, Hoong-Kun

    2015-02-01

    The title compound, C18H20ClN3S, is a functionalized triazoline-3-thione derivative. The benzene ring is almost perpendic-ular to the planar 1,2,4-triazole ring [maximum deviation = 0.007 (1) Å] with a dihedral angle of 89.61 (5)° between them and there is an adamantane substituent at the 3-position of the triazole-thione ring. In the crystal, N-H⋯S hydrogen-bonding inter-actions link the mol-ecules into chains extending along the c-axis direction. The crystal packing is further stabilized by weak C-H⋯π inter-actions that link adjacent chains into a two-dimensional structure in the bc plane. The crystal studied was an inversion twin with a 0.50 (3):0.50 (3) domain ratio.

  1. Extended-Range Ultrarefractive 1D Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    A proposal has been made to exploit the special wavelength-dispersive characteristics of devices of the type described in One-Dimensional Photonic Crystal Superprisms (NPO-30232) NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 10a. A photonic crystal is an optical component that has a periodic structure comprising two dielectric materials with high dielectric contrast (e.g., a semiconductor and air), with geometrical feature sizes comparable to or smaller than light wavelengths of interest. Experimental superprisms have been realized as photonic crystals having three-dimensional (3D) structures comprising regions of amorphous Si alternating with regions of SiO2, fabricated in a complex process that included sputtering. A photonic crystal of the type to be exploited according to the present proposal is said to be one-dimensional (1D) because its contrasting dielectric materials would be stacked in parallel planar layers; in other words, there would be spatial periodicity in one dimension only. The processes of designing and fabricating 1D photonic crystal superprisms would be simpler and, hence, would cost less than do those for 3D photonic crystal superprisms. As in 3D structures, 1D photonic crystals may be used in applications such as wavelength-division multiplexing. In the extended-range configuration, it is also suitable for spectrometry applications. As an engineered structure or artificially engineered material, a photonic crystal can exhibit optical properties not commonly found in natural substances. Prior research had revealed several classes of photonic crystal structures for which the propagation of electromagnetic radiation is forbidden in certain frequency ranges, denoted photonic bandgaps. It had also been found that in narrow frequency bands just outside the photonic bandgaps, the angular wavelength dispersion of electromagnetic waves propagating in photonic crystal superprisms is much stronger than is the angular wavelength dispersion obtained

  2. Tailoring the Crystal Structure Toward Optimal Super Conductors

    DTIC Science & Technology

    2016-06-23

    AFRL-AFOSR-VA-TR-2016-0210 TAILORING THE CRYSTAL STRUCTURE TOWARD OPTIMAL SUPERCONDUCTORS Emilia Morosan WILLIAM MARSH RICE UNIV HOUSTON TX Final...TAILORING THE CRYSTAL STRUCTURE TOWARD OPTIMAL SUPERCONDUCTORS 5a. CONTRACT NUMBER FA9550-11-1-0023 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...studied the properties of layered transition metal compounds in search of unconventional superconductors . The aim is to identify ground states competing

  3. Crystal structures of (Mg1-x,Fe(x))SiO3 postperovskite at high pressures.

    PubMed

    Yamanaka, Takamitsu; Hirose, Kei; Mao, Wendy L; Meng, Yue; Ganesh, P; Shulenburger, Luke; Shen, Guoyin; Hemley, Russell J

    2012-01-24

    X-ray diffraction experiments on postperovskite (ppv) with compositions (Mg(0.9)Fe(0.1))SiO(3) and (Mg(0.6)Fe(0.4))SiO(3) at Earth core-mantle boundary pressures reveal different crystal structures. The former adopts the CaIrO(3)-type structure with space group Cmcm, whereas the latter crystallizes in a structure with the Pmcm (Pmma) space group. The latter has a significantly higher density (ρ = 6.119(1) g/cm(3)) than the former (ρ = 5.694(8) g/cm(3)) due to both the larger amount of iron and the smaller ionic radius of Fe(2+) as a result of an electronic spin transition observed by X-ray emission spectroscopy (XES). The smaller ionic radius for low-spin compared to high-spin Fe(2+) also leads to an ordered cation distribution in the M1 and M2 crystallographic sites of the higher density ppv structure. Rietveld structure refinement indicates that approximately 70% of the total Fe(2+) in that phase occupies the M2 site. XES results indicate a loss of 70% of the unpaired electronic spins consistent with a low spin M2 site and high spin M1 site. First-principles calculations of the magnetic ordering confirm that Pmcm with a two-site model is energetically more favorable at high pressure, and predict that the ordered structure is anisotropic in its electrical and elastic properties. These results suggest that interpretations of seismic structure in the deep mantle need to treat a broader range of mineral structures than previously considered.

  4. Crystal structure of MTCP-1: Implications for role of TCL-1 and MTCP-1 in T cell malignancies

    PubMed Central

    Fu, Zheng-Qing; Du Bois, Garrett C.; Song, Sherry P.; Kulikovskaya, Irina; Virgilio, Laura; Rothstein, Jay L.; Croce, Carlo M.; Weber, Irene T.; Harrison, Robert W.

    1998-01-01

    Two related oncogenes, TCL-1 and MTCP-1, are overexpressed in T cell prolymphocytic leukemias as a result of chromosomal rearrangements that involve the translocation of one T cell receptor gene to either chromosome 14q32 or Xq28. The crystal structure of human recombinant MTCP-1 protein has been determined at 2.0 Å resolution by using multiwavelength anomalous dispersion data from selenomethionine-enriched protein and refined to an R factor of 0.21. MTCP-1 folds into a compact eight-stranded β barrel structure with a short helix between the fourth and fifth strands. The topology is unique. The structure of TCL-1 has been predicted by molecular modeling based on 40% amino acid sequence identity with MTCP-1. The identical residues are clustered inside the barrel and on the surface at one side of the barrel. The overall structure of MTCP-1 superficially resembles the structures of proteins in the lipocalin family and calycin superfamily. These proteins have diverse functions, including transport of retinol, fatty acids, chromophores, pheromones, synthesis of prostaglandin, immune modulation, and cell regulation. However, MTCP-1 differs in the topology of the β strands. The structural similarity suggests that MTCP-1 and TCL-1 form a unique family of β barrel proteins that is predicted to bind small hydrophobic ligands and function in cell regulation. PMID:9520380

  5. Synthesis and crystal structures of three new benzotriazolylpropanamides

    PubMed Central

    Amenta, Donna S.; Liebing, Phil; Biero, Julia E.; Sherman, Robert J.; Gilje, John W.

    2017-01-01

    The base-catalyzed Michael addition of 2-methyl­acryl­amide to benzotriazole afforded 3-(1H-benzotriazol-1-yl)-2-methyl­propanamide, C10H12N4O (1), in 32% yield in addition to small amounts of isomeric 3-(2H-benzotriazol-2-yl)-2-methyl­propanamide, C10H12N4O (2). In a similar manner, 3-(1H-benzotriazol-1-yl)-N,N-di­methyl­propanamide, C11H14N4O (3), was prepared from benzotriazole and N,N-di­methyl­acryl­amide. All three products have been structurally characterized by single-crystal X-ray diffraction. The crystal structures of 1 and 2 comprise infinite arrays formed by N—H⋯O and N—H⋯N bridges, as well as π–π inter­actions, while the mol­ecules of 3 are aggregated to simple π-dimers in the crystal. PMID:28638650

  6. Tailor-made force fields for crystal-structure prediction.

    PubMed

    Neumann, Marcus A

    2008-08-14

    A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom.

  7. Undergraduates Improve upon Published Crystal Structure in Class Assignment

    ERIC Educational Resources Information Center

    Horowitz, Scott; Koldewey, Philipp; Bardwell, James C.

    2014-01-01

    Recently, 57 undergraduate students at the University of Michigan were assigned the task of solving a crystal structure, given only the electron density map of a 1.3 Å crystal structure from the electron density server, and the position of the N-terminal amino acid. To test their knowledge of amino acid chemistry, the students were not given the…

  8. The crystal structure of a partial mouse Notch-1 ankyrin domain: Repeats 4 through 7 preserve an ankyrin fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lubman, Olga Y.; Kopan, Raphael; Waksman, Gabriel

    Folding and stability of proteins containing ankyrin repeats (ARs) is of great interest because they mediate numerous protein-protein interactions involved in a wide range of regulatory cellular processes. Notch, an ankyrin domain containing protein, signals by converting a transcriptional repression complex into an activation complex. The Notch ANK domain is essential for Notch function and contains seven ARs. Here, we present the 2.2 {angstrom} crystal structure of ARs 4-7 from mouse Notch 1 (m1ANK). These C-terminal repeats were resistant to degradation during crystallization, and their secondary and tertiary structures are maintained in the absence of repeats 1-3. The crystallized fragmentmore » adopts a typical ankyrin fold including the poorly conserved seventh AR, as seen in the Drosophila Notch ANK domain (dANK). The structural preservation and stability of the C-terminal repeats shed a new light onto the mechanism of hetero-oligomeric assembly during Notch-mediated transcriptional activation.« less

  9. Revisiting the blind tests in crystal structure prediction: accurate energy ranking of molecular crystals.

    PubMed

    Asmadi, Aldi; Neumann, Marcus A; Kendrick, John; Girard, Pascale; Perrin, Marc-Antoine; Leusen, Frank J J

    2009-12-24

    In the 2007 blind test of crystal structure prediction hosted by the Cambridge Crystallographic Data Centre (CCDC), a hybrid DFT/MM method correctly ranked each of the four experimental structures as having the lowest lattice energy of all the crystal structures predicted for each molecule. The work presented here further validates this hybrid method by optimizing the crystal structures (experimental and submitted) of the first three CCDC blind tests held in 1999, 2001, and 2004. Except for the crystal structures of compound IX, all structures were reminimized and ranked according to their lattice energies. The hybrid method computes the lattice energy of a crystal structure as the sum of the DFT total energy and a van der Waals (dispersion) energy correction. Considering all four blind tests, the crystal structure with the lowest lattice energy corresponds to the experimentally observed structure for 12 out of 14 molecules. Moreover, good geometrical agreement is observed between the structures determined by the hybrid method and those measured experimentally. In comparison with the correct submissions made by the blind test participants, all hybrid optimized crystal structures (apart from compound II) have the smallest calculated root mean squared deviations from the experimentally observed structures. It is predicted that a new polymorph of compound V exists under pressure.

  10. 1,25-(OH){sub 2}-vitamin D{sub 3} prevents activation of hepatic stellate cells in vitro and ameliorates inflammatory liver damage but not fibrosis in the Abcb4{sup −/−} model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiter, Florian P., E-mail: florian.reiter@med.uni-muenchen.de; Hohenester, Simon; Nagel, Jutta M.

    Background/Purpose of the study: Vitamin D{sub 3}-deficiency is common in patients with chronic liver-disease and may promote disease progression. Vitamin D{sub 3}-administration has thus been proposed as a therapeutic approach. Vitamin D{sub 3} has immunomodulatory effects and may modulate autoimmune liver-disease such as primary sclerosing cholangitis. Although various mechanisms of action have been proposed, experimental evidence is limited. Here we test the hypothesis that active 1,25-(OH){sub 2}-vitamin D{sub 3} inhibits activation of hepatic stellate cells (HSC) in vitro and modulates liver-injury in vivo. Methods: Proliferation and activation of primary murine HSC were assessed by BrdU- and PicoGreen{sup ®}-assays, immunoblotting, immunofluorescence-microscopy, quantitative-PCR, andmore » zymography following calcitriol-treatment. Wild-type and ATP-binding cassette transporter b4{sup −/−} (Abcb4{sup −/−})-mice received calcitriol for 4 weeks. Liver-damage, inflammation, and fibrosis were assessed by serum liver-tests, Sirius-red staining, quantitative-PCR, immunoblotting, immunohistochemistry and hydroxyproline quantification. Results: In vitro, calcitriol inhibited activation and proliferation of murine HSC as shown by reduced α-smooth muscle actin and platelet-derived growth factor-receptor-β-protein-levels, BrdU and PicoGreen®-assays. Furthermore, mRNA-levels and activity of matrix metalloproteinase 13 were profoundly increased. In vivo, calcitriol ameliorated inflammatory liver-injury reflected by reduced levels of alanine aminotransferase in Abcb4{sup −/−}-mice. In accordance, their livers had lower mRNA-levels of F4/80, tumor necrosis factor-receptor 1 and a lower count of portal CD11b positive cells. In contrast, no effect on overall fibrosis was observed. Conclusion: Calcitriol inhibits activation and proliferation of HSCs in vitro. In Abcb4{sup −/−}-mice, administration of calcitriol ameliorates inflammatory liver

  11. Impact of ABCB1 and CYP2B6 Genetic Polymorphisms on Methadone Metabolism, Dose and Treatment Response in Patients with Opioid Addiction: A Systematic Review and Meta-Analysis

    PubMed Central

    Dennis, Brittany B.; Bawor, Monica; Thabane, Lehana; Sohani, Zahra; Samaan, Zainab

    2014-01-01

    Background Genetic variability may influence methadone metabolism, dose requirements, and risk of relapse. Objectives To determine whether the CYP2B6*6 or ABCB1 (rs1045642) polymorphisms are associated with variation in methadone response (plasma concentration, dose, or response to treatment). Methods Two independent reviewers searched Medline, EMBASE, CINAHL, PsycINFO, and Web of Science databases. We included studies that reported methadone plasma concentration, methadone response, or methadone dose in relation to the CYP2B6*6 or ABCB1 polymorphisms. Results We screened 182 articles and extracted 7 articles for inclusion in the meta-analysis. Considerable agreement was observed between the two independent raters on the title (kappa, 0.82), abstract (kappa, 0.43), and full text screening (kappa, 0.43). Trough (R) methadone plasma concentration was significantly higher in CYP2B6*6 homozygous carriers when compared to non-carriers (standardized mean difference [SMD] = 0.53, 95% confidence interval [CI], 0.05–1.00, p = 0.03) with minimal heterogeneity (I2 = 0%). Similarly, trough (S) methadone plasma concentration was higher in homozygous carriers of the *6 haplotype when compared to non-carriers, (SMD = 1.44, 95% CI 0.27–2.61, p = 0.02) however significant heterogeneity was observed (I2 = 69%). Carriers of the CYP2B6*6 haplotype were not found to be significantly different from non-carriers with respect to dose or response to treatment. We found no significant association between the ABCB1 polymorphism and the trough (R), (S) plasma concentrations, methadone dose, or methadone response. Conclusion Although the number of studies included and sample size were modest, this is the first meta analysis to show participants homozygous for the CYP2B6*6 genotype have higher trough (R) and (S) methadone plasma concentrations, suggesting that methadone metabolism is significantly slower in *6 homozygous carriers. PMID:24489693

  12. Synthesis and crystal structure of novel fluorescent 1,3,4-oxadiazole-containing carboxylate ligands

    NASA Astrophysics Data System (ADS)

    Mikhailov, Igor E.; Popov, Leonid D.; Tkachev, Valery V.; Aldoshin, Sergey M.; Dushenko, Galina A.; Revinskii, Yurii V.; Minkin, Vladimir I.

    2018-04-01

    Novel chelating ligands, 3-(5-aryl-1,3,4-oxadiazol-2-yl)acrylic acids and their zinc complexes were synthesized and their spectral and luminescent properties studied. The compounds intensively (quantum efficiencies φ = 0.18-0.76) luminesce in nonpolar solvents in the blue-green region (λmaxPL = 458-504 nm) of the spectrum. Molecular and crystal structures of 3-[5-(4-dimethylaminophenyl)-1,3,4-oxadiazol-2-yl]acrylic acid were established using X-ray crystallography. In crystal, the infinite chains of the molecules lie in the parallel planes and are arranged by the "head to tail" type to provide for strong π-π stacking interactions between the layers facilitating appearance of high electron transport properties and formation of excimers.

  13. Crystal Structure of Neurotropism-Associated Variable Surface Protein 1 (VSP1) of Borrelia Turicatae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawson,C.; Yung, B.; Barbour, A.

    2006-01-01

    Vsp surface lipoproteins are serotype-defining antigens of relapsing fever spirochetes that undergo multiphasic antigenic variation to allow bacterial persistence in spite of an immune response. Two isogenic serotypes of Borrelia turicatae strain Oz1 differ in their Vsp sequences and in disease manifestations in infected mice: Vsp1 is associated with the selection of a neurological niche, while Vsp2 is associated with blood and skin infection. We report here crystal structures of the Vsp1 dimer at 2.7 and 2.2 Angstroms. The structures confirm that relapsing fever Vsp proteins share a common helical fold with OspCs of Lyme disease-causing Borrelia. The fold featuresmore » an inner stem formed by highly conserved N and C termini and an outer 'dome' formed by the variable central residues. Both Vsp1 and OspC structures possess small water-filled cavities, or pockets, that are lined largely by variable residues and are thus highly variable in shape. These features appear to signify tolerance of the Vsp-OspC fold for imperfect packing of residues at its antigenic surface. Structural comparison of Vsp1 with a homology model for Vsp2 suggests that observed differences in disease manifestation may arise in part from distinct differences in electrostatic surface properties; additional predicted positively charged surface patches on Vsp2 compared to Vsp1 may be sufficient to explain the relative propensity of Vsp2 to bind to acidic glycosaminoglycans.« less

  14. Crystal structure, optical and thermal studies of a new organic nonlinear optical material: L-Histidinium maleate 1.5-hydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonsago, C. Alosious; Albert, Helen Merina; Karthikeyan, J.

    2012-07-15

    Highlights: ► L-Histidinium maleate 1.5-hydrate, a new organic crystal has been grown for the first time. ► The crystal structure is reported for the first time (CCDC 845975). ► The crystal belongs to monoclinic system with space group P2{sub 1}, Z = 4, a = 11.4656(7) Å, b = 8.0530(5) Å, c = 14.9705(9) Å and β = 101.657(2)°. ► The optical absorption study substantiates the complete transparency of the crystal. ► Kurtz powder SHG test confirms the nonlinear property of the crystal. -- Abstract: A new organic nonlinear optical material L-histidinium maleate 1.5-hydrate (LHM) with the molecular formula C{submore » 10}H{sub 16}N{sub 3}O{sub 7.5} has been successfully synthesized from aqueous solution by slow solvent evaporation method. The structural characterization of the grown crystal was carried out by single crystal X-ray diffraction at 293(2) K. In the crystal, molecules are linked through inter and intramolecular N-H⋯O and O-H⋯O hydrogen bonds, generate edge fused ring motif. The hydrogen bonded motifs are linked to each other to form a three dimensional network. The FT-IR spectroscopy was used to identify the functional groups of the synthesized compound. The optical behavior of the grown crystal was examined by UV–visible spectral analysis, which shows that the optical absorption is almost negligible in the wavelength range 280–1300 nm. The nonlinear optical property was confirmed by the powder technique of Kurtz and Perry. The thermal behavior of the grown crystal was analyzed by thermogravimetric analysis.« less

  15. Single-Crystal Structure of a Covalent Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, YB; Su, J; Furukawa, H

    2013-11-06

    The crystal structure of a new covalent organic framework, termed COF-320, is determined by single-crystal 3D electron diffraction using the rotation electron diffraction (RED) method for data collection. The COF crystals are prepared by an imine condensation of tetra-(4-anilyl)methane and 4,4'-biphenyldialdehyde in 1,4-dioxane at 120 degrees C to produce a highly porous 9-fold interwoven diamond net. COF-320 exhibits permanent porosity with a Langmuir surface area of 2400 m(2)/g and a methane total uptake of 15.0 wt % (176 cm(3)/cm(3)) at 25 degrees C and 80 bar. The successful determination of the structure of COF-320 directly from single-crystal samples is anmore » important advance in the development of COF chemistry.« less

  16. ExpandplusCrystal Structures of Poly(ADP-ribose) Polymerase-1 (PARP-1) Zinc Fingers Bound to DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Langelier; J Planck; S Roy

    2011-12-31

    Poly(ADP-ribose) polymerase-1 (PARP-1) has two homologous zinc finger domains, Zn1 and Zn2, that bind to a variety of DNA structures to stimulate poly(ADP-ribose) synthesis activity and to mediate PARP-1 interaction with chromatin. The structural basis for interaction with DNA is unknown, which limits our understanding of PARP-1 regulation and involvement in DNA repair and transcription. Here, we have determined crystal structures for the individual Zn1 and Zn2 domains in complex with a DNA double strand break, providing the first views of PARP-1 zinc fingers bound to DNA. The Zn1-DNA and Zn2-DNA structures establish a novel, bipartite mode of sequence-independent DNAmore » interaction that engages a continuous region of the phosphodiester backbone and the hydrophobic faces of exposed nucleotide bases. Biochemical and cell biological analysis indicate that the Zn1 and Zn2 domains perform distinct functions. The Zn2 domain exhibits high binding affinity to DNA compared with the Zn1 domain. However, the Zn1 domain is essential for DNA-dependent PARP-1 activity in vitro and in vivo, whereas the Zn2 domain is not strictly required. Structural differences between the Zn1-DNA and Zn2-DNA complexes, combined with mutational and structural analysis, indicate that a specialized region of the Zn1 domain is re-configured through the hydrophobic interaction with exposed nucleotide bases to initiate PARP-1 activation.« less

  17. Crystal structure of human IPS-1/MAVS/VISA/Cardif caspase activation recruitment domain.

    PubMed

    Potter, Jane A; Randall, Richard E; Taylor, Garry L

    2008-02-28

    IPS-1/MAVS/VISA/Cardif is an adaptor protein that plays a crucial role in the induction of interferons in response to viral infection. In the initial stage of the intracellular antiviral response two RNA helicases, retinoic acid inducible gene-I (RIG-I) and melanoma differentiation-association gene 5 (MDA5), are independently able to bind viral RNA in the cytoplasm. The 62 kDa protein IPS-1/MAVS/VISA/Cardif contains an N-terminal caspase activation and recruitment (CARD) domain that associates with the CARD regions of RIG-I and MDA5, ultimately leading to the induction of type I interferons. As a first step towards understanding the molecular basis of this important adaptor protein we have undertaken structural studies of the IPS-1 MAVS/VISA/Cardif CARD region. The crystal structure of human IPS-1/MAVS/VISA/Cardif CARD has been determined to 2.1A resolution. The protein was expressed and crystallized as a maltose-binding protein (MBP) fusion protein. The MBP and IPS-1 components each form a distinct domain within the structure. IPS-1/MAVS/VISA/Cardif CARD adopts a characteristic six-helix bundle with a Greek-key topology and, in common with a number of other known CARD structures, contains two major polar surfaces on opposite sides of the molecule. One face has a surface-exposed, disordered tryptophan residue that may explain the poor solubility of untagged expression constructs. The IPS-1/MAVS/VISA/Cardif CARD domain adopts the classic CARD fold with an asymmetric surface charge distribution that is typical of CARD domains involved in homotypic protein-protein interactions. The location of the two polar areas on IPS-1/MAVS/VISA/Cardif CARD suggest possible types of associations that this domain makes with the two CARD domains of MDA5 or RIG-I. The N-terminal CARD domains of RIG-I and MDA5 share greatest sequence similarity with IPS-1/MAVS/VISA/Cardif CARD and this has allowed modelling of their structures. These models show a very different charge profile for the

  18. Average and local crystal structures of (Ga 1–xZn x)(N 1–xO x) solid solution nanoparticles

    DOE PAGES

    Feygenson, Mikhail; Neuefeind, Joerg C.; Tyson, Trevor A.; ...

    2015-11-06

    We report the comprehensive study of the crystal structure of (Ga 1–xZn x)(N 1–xO x) solid solution nanoparticles by means of neutron and synchrotron x-ray scattering. In our study we used four different types of (Ga 1–xZn x)(N 1–xO x) nanoparticles, with diameters of 10–27 nm and x = 0.075–0.51, which show the narrow energy-band gaps from 2.21 to 2.61 eV. The Rietveld analysis of the neutron diffraction data revealed that the average crystal structure is the hexagonal wurtzite (space group P6 3mc), in agreement with previous reports on similar bulk materials. The pair-distribution function (PDF) analysis of the samemore » data found that the local structure is more disordered than the average one. It is best described by the model with a lower symmetry space group P1, where atoms are quasirandomly distorted from their nominal positions in the hexagonal wurtzite lattice.« less

  19. Crystallization of dienelactone hydrolase in two space groups: structural changes caused by crystal packing

    PubMed Central

    Porter, Joanne L.; Carr, Paul D.; Collyer, Charles A.; Ollis, David L.

    2014-01-01

    Dienelactone hydrolase (DLH) is a monomeric protein with a simple α/β-hydrolase fold structure. It readily crystallizes in space group P212121 from either a phosphate or ammonium sulfate precipitation buffer. Here, the structure of DLH at 1.85 Å resolution crystallized in space group C2 with two molecules in the asymmetric unit is reported. When crystallized in space group P212121 DLH has either phosphates or sulfates bound to the protein in crucial locations, one of which is located in the active site, preventing substrate/inhibitor binding. Another is located on the surface of the enzyme coordinated by side chains from two different molecules. Crystallization in space group C2 from a sodium citrate buffer results in new crystallographic protein–protein interfaces. The protein backbone is highly similar, but new crystal contacts cause changes in side-chain orientations and in loop positioning. In regions not involved in crystal contacts, there is little change in backbone or side-chain configuration. The flexibility of surface loops and the adaptability of side chains are important factors enabling DLH to adapt and form different crystal lattices. PMID:25005082

  20. Delicate crystal structure changes govern the magnetic properties of 1D coordination polymers based on 3d metal carboxylates.

    PubMed

    Gavrilenko, Konstantin S; Cador, Olivier; Bernot, Kevin; Rosa, Patrick; Sessoli, Roberta; Golhen, Stéphane; Pavlishchuk, Vitaly V; Ouahab, Lahcène

    2008-01-01

    Homo- and heterometallic 1D coordination polymers of transition metals (Co II, Mn II, Zn II) have been synthesized by an in-situ ligand generation route. Carboxylato-based complexes [Co(PhCOO)2]n (1 a, 1 b), [Co(p-MePhCOO)2]n (2), [ZnMn(PhCOO)4]n (3), and [CoZn(PhCOO)4]n (4) (PhCOOH=benzoic acid, p-MePhCOOH=p-methylbenzoic acid) have been characterized by chemical analysis, single-crystal X-ray diffraction, and magnetization measurements. The new complexes 2 and 3 crystallize in orthorhombic space groups Pnab and Pcab respectively. Their crystal structures consist of zigzag chains, with alternating M(II) centers in octahedral and tetrahedral positions, which are similar to those of 1 a and 1 b. Compound 4 crystallizes in monoclinic space group P2 1/c and comprises zigzag chains of M II ions in a tetrahedral coordination environment. Magnetic investigations reveal the existence of antiferromagnetic interactions between magnetic centers in the heterometallic complexes 3 and 4, while ferromagnetic interactions operate in homometallic compounds (1 a, 1 b, and 2). Compound 1 b orders ferromagnetically at TC=3.7 K whereas 1 a does not show any magnetic ordering down to 330 mK and displays typical single-chain magnet (SCM) behavior with slowing down of magnetization relaxation below 0.6 K. Single-crystal measurements reveal that the system is easily magnetized in the chain direction for 1 a whereas the chain direction coincides with the hard magnetic axis in 1 b. Despite important similarities, small differences in the molecular and crystal structures of these two compounds lead to this dramatic change in properties.

  1. Crystal structure of alpha poly-p-xylylene.

    NASA Technical Reports Server (NTRS)

    Kubo, S.; Wunderlich, B.

    1971-01-01

    A crystal structure of alpha poly-p-xylylene is proposed with the help of data of oriented crystals grown during polymerization. The unit cell is monoclinic with the parameters a = 8.57 A, b = 10.62 A, c = 6.54 A (chain axis), and beta = 101.3 deg. Four repeating units per cell lead to a calculated density of 1.185 g/cu cm and a packing density of 0.71. The probable space group is P2 sub 1/m.

  2. Iron vacancy in tetragonal Fe1-xS crystals and its effect on the structure and superconductivity.

    PubMed

    Guo, Zhongnan; Sun, Fun; Han, Bingling; Lin, Kun; Zhou, Liang; Yuan, Wenxia

    2017-03-29

    Understanding the effects of non-stoichiometry on the structure and physical properties of tetragonal Fe chalcogenides is of great importance, especially for developing fascinating superconductivity in this system, which might be very sensitive to the non-stoichiometry. In this study, a series of Fe 1-x S single crystals were synthesized by a hydrothermal method, which show varying concentrations of Fe vacancies (0 ≤ x ≤ 0.1) in the structure. Based on the crystal samples, the effects of vacancies on the crystal structure and physical properties were studied. The vacancy-free sample (x = 0) showed a metallic state in resistance and superconductivity below 4.5 K, whereas for the samples with Fe vacancies (x ≥ 0.05), the SC was degraded and the sample exhibited semiconducting behavior. Structural analysis showed that the Fe vacancy decreases the lattice parameter a, but elongates c, leading to enhanced tetragonality in Fe 1-x S. Selected-area electron diffraction showed that the vacancy in Fe 1-x S was disordered, which is different from the scenario in FeSe-based materials. On combining the abovementioned results with the first-principles calculations, it was speculated that the disappearance of SC in non-stoichiometric Fe 1-x S resulted from the localization of the 3d electrons of Fe. Moreover, the accompanied metal-insulator transition induced by Fe vacancy mainly belonged to the Mott mechanism because the vacancy did not significantly alter the band structure. These results not only provide deep insight into the effect of Fe vacancy in Fe chalcogenides, but also provide a basis to effectively induce SC in Fe sulfides by decreasing the number of Fe vacancies.

  3. Use of Crystal Structure Informatics for Defining the Conformational Space Needed for Predicting Crystal Structures of Pharmaceutical Molecules.

    PubMed

    Iuzzolino, Luca; Reilly, Anthony M; McCabe, Patrick; Price, Sarah L

    2017-10-10

    Determining the range of conformations that a flexible pharmaceutical-like molecule could plausibly adopt in a crystal structure is a key to successful crystal structure prediction (CSP) studies. We aim to use conformational information from the crystal structures in the Cambridge Structural Database (CSD) to facilitate this task. The conformations produced by the CSD Conformer Generator are reduced in number by considering the underlying rotamer distributions, an analysis of changes in molecular shape, and a minimal number of molecular ab initio calculations. This method is tested for five pharmaceutical-like molecules where an extensive CSP study has already been performed. The CSD informatics-derived set of crystal structure searches generates almost all the low-energy crystal structures previously found, including all experimental structures. The workflow effectively combines information on individual torsion angles and then eliminates the combinations that are too high in energy to be found in the solid state, reducing the resources needed to cover the solid-state conformational space of a molecule. This provides insights into how the low-energy solid-state and isolated-molecule conformations are related to the properties of the individual flexible torsion angles.

  4. Single crystal structure analyses of scheelite-powellite CaW1-xMoxO4 solidsolutions and unique occurrence in Jisyakuyama skarn deposits

    NASA Astrophysics Data System (ADS)

    Yamashita, K.; Yoshiasa, A.; Miyazaki, H.; Tokuda, M.; Tobase, T.; Isobe, H.; Nishiyama, T.; Sugiyama, K.; Miyawaki, R.

    2017-12-01

    Jisyakuyama skarn deposit, Fukuchi, Fukuoka, Japan, shows a simple occurrenceformed by penetration of hot water into limestone cracks. A unique occurrence of scheelite-powellite CaW1-xMoxO4 minerals is observed in the skarn deposit. Many syntheticexperiments for scheelite-powellite solid solutions have been reported as research onfluorescent materials. In this system it is known that a complete continuous solid solution isformed even at room temperature. In this study, we have carried out the chemical analyses,crystal structural refinements and detail description of occurrence on scheelite-powelliteminerals. We have also attempted synthesis of single crystal of solid solution in a widecomposition range. The chemical compositions were determined by JEOL scanningelectron microscope and EDS, INCA system. We have performed the crystal structurerefinements of the scheelite-powellite CaW1-xMoxO4 solid solutions (x=0.0-1.0) byRIGAKU single-crystal structure analysis system RAPID. The R and S values are around0.0s and 1.03. As the result of structural refinements of natural products and many solidsolutions, we confirm that most large natural single crystals have compositions at bothendmembers, and large solid solution crystals are rare. The lattice constants, interatomicdistances and other crystallographic parameters for the solid solution change uniquely withcomposition and it was confirmed as a continuous solid solution. Single crystals of scheeliteendmember + powellite endmember + solid solution with various compositions form anaggregate in the deposit (Figure 1). Crystal shapes of powellite and scheelite arehypidiomorphic and allotriomorphic, respectively. Many solid solution crystals areaccompanied by scheelite endmember and a compositional gap is observed betweenpowellite and solid-solution crystals. The presence of several penetration solutions withsignificantly different W and Mo contents may be assumed. This research can be expectedto lead to giving restrictive

  5. Crystal structure of the Tum1 protein from the yeast Saccharomyces cerevisiae.

    PubMed

    Qiu, Rui; Wang, Fengbin; Liu, Meiruo; Lou, Tiantian; Ji, Chaoneng

    2012-11-01

    Yeast tRNA-thiouridine modification protein 1 (Tum1) plays essential role in the sulfur transfer process of Urm1 system, which in turn is involved in many important cellular processes. In the rhodanese-like domain (RLD), conserved cysteine residue is proved to be the centre of active site of sulfurtransferases and crucial for the substrate recognition. In this report, we describe the crystal structure of Tum1 protein at 1.90 A resolution which, despite consisting of two RLDs, has only one conserved cysteine residue in the C-terminal RLD. An unaccounted electron density is found near the active site, which might point to the new cofactor in the sulfur transfer mechanism.

  6. 2.4 Å resolution crystal structure of human TRAP1 NM , the Hsp90 paralog in the mitochondrial matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Nuri; Lee, Jungsoon; Kim, Ji-Hyun

    2016-07-13

    TRAP1 is an organelle-specific Hsp90 paralog that is essential for neoplastic growth. As a member of the Hsp90 family, TRAP1 is presumed to be a general chaperone facilitating the late-stage folding of Hsp90 client proteins in the mitochondrial matrix. Interestingly, TRAP1 cannot replace cytosolic Hsp90 in protein folding, and none of the known Hsp90 co-chaperones are found in mitochondria. Thus, the three-dimensional structure of TRAP1 must feature regulatory elements that are essential to the ATPase activity and chaperone function of TRAP1. Here, the crystal structure of a human TRAP1 NMdimer is presented, featuring an intact N-domain and M-domain structure, boundmore » to adenosine 5'-β,γ-imidotriphosphate (ADPNP). The crystal structure together with epitope-mapping results shows that the TRAP1 M-domain loop 1 contacts the neighboring subunit and forms a previously unobserved third dimer interface that mediates the specific interaction with mitochondrial Hsp70.« less

  7. Crystal structures of carbonates up to Mbar pressures determined by single crystal synchrotron radiation diffraction

    NASA Astrophysics Data System (ADS)

    Merlini, M.

    2013-12-01

    The recent improvements at synchrotron beamlines, currently allow single crystal diffraction experiments at extreme pressures and temperatures [1,2] on very small single crystal domains. We successfully applied such technique to determine the crystal structure adopted by carbonates at mantle pressures. The knowledge of carbon-bearing phases is in fact fundamental for any quantitative modelling of global carbon cycle. The major technical difficulty arises after first order transitions or decomposition reactions, since original crystal (apx. 10x10x5 μm3) is transformed in much smaller crystalline domains often with random orientation. The use of 3D reciprocal space visualization software and the improved resolution of new generation flat panel detectors, however, allow both identification and integration of each single crystal domain, with suitable accuracy for ab-initio structure solution, performed with direct and charge-flipping methods and successive structure refinements. The results obtained on carbonates, indicate two major crystal-chemistry trends established at high pressures. The CO32- units, planar and parallel in ambient pressure calcite and dolomite structures, becomes non parallel in calcite- and dolomite-II and III phases, allowing more flexibility in the structures with possibility to accommodate strain arising from different cation sizes (Ca and Mg in particular). Dolomite-III is therefore also observed to be thermodynamically stable at lower mantle pressures and temperatures, differently from dolomite, which undergoes decomposition into pure end-members in upper mantle. At higher pressure, towards Mbar (lowermost mantle and D'' region) in agreement with theoretical calculations [3,4] and other experimental results [5], carbon coordination transform into 4-fold CO4 units, with different polymerisation in the structure depending on carbonate composition. The second important crystal chemistry feature detected is related to Fe2+ in Fe

  8. Crystal structures of two mononuclear complexes of terbium(III) nitrate with the tripodal alcohol 1,1,1-tris­(hy­droxy­meth­yl)propane

    PubMed Central

    Gregório, Thaiane; Giese, Siddhartha O. K.; Nunes, Giovana G.; Soares, Jaísa F.; Hughes, David L.

    2017-01-01

    Two new mononuclear cationic complexes in which the TbIII ion is bis-chelated by the tripodal alcohol 1,1,1-tris­(hy­droxy­meth­yl)propane (H3 L Et, C6H14O3) were prepared from Tb(NO3)3·5H2O and had their crystal and mol­ecular structures solved by single-crystal X-ray diffraction analysis after data collection at 100 K. Both products were isolated in reasonable yields from the same reaction mixture by using different crystallization conditions. The higher-symmetry complex dinitratobis[1,1,1-tris­(hy­droxy­meth­yl)propane]­terbium(III) nitrate di­meth­oxy­ethane hemisolvate, [Tb(NO3)2(H3 L Et)2]NO3·0.5C4H10O2, 1, in which the lanthanide ion is 10-coordinate and adopts an s-bicapped square-anti­prismatic coordination geometry, contains two bidentate nitrate ions bound to the metal atom; another nitrate ion functions as a counter-ion and a half-mol­ecule of di­meth­oxy­ethane (completed by a crystallographic twofold rotation axis) is also present. In product aqua­nitratobis[1,1,1-tris­(hy­droxy­meth­yl)propane]­terbium(III) dinitrate, [Tb(NO3)(H3 L Et)2(H2O)](NO3)2, 2, one bidentate nitrate ion and one water mol­ecule are bound to the nine-coordinate terbium(III) centre, while two free nitrate ions contribute to charge balance outside the tricapped trigonal-prismatic coordination polyhedron. No free water mol­ecule was found in either of the crystal structures and, only in the case of 1, di­meth­oxy­ethane acts as a crystallizing solvent. In both mol­ecular structures, the two tripodal ligands are bent to one side of the coordination sphere, leaving room for the anionic and water ligands. In complex 2, the methyl group of one of the H3 L Et ligands is disordered over two alternative orientations. Strong hydrogen bonds, both intra- and inter­molecular, are found in the crystal structures due to the number of different donor and acceptor groups present. PMID:28217359

  9. Crystal structures of the structure-selective nuclease Mus81-Eme1 bound to flap DNA substrates

    PubMed Central

    Gwon, Gwang Hyeon; Jo, Aera; Baek, Kyuwon; Jin, Kyeong Sik; Fu, Yaoyao; Lee, Jong-Bong; Kim, YoungChang; Cho, Yunje

    2014-01-01

    The Mus81-Eme1 complex is a structure-selective endonuclease with a critical role in the resolution of recombination intermediates during DNA repair after interstrand cross-links, replication fork collapse, or double-strand breaks. To explain the molecular basis of 3′ flap substrate recognition and cleavage mechanism by Mus81-Eme1, we determined crystal structures of human Mus81-Eme1 bound to various flap DNA substrates. Mus81-Eme1 undergoes gross substrate-induced conformational changes that reveal two key features: (i) a hydrophobic wedge of Mus81 that separates pre- and post-nick duplex DNA and (ii) a “5′ end binding pocket” that hosts the 5′ nicked end of post-nick DNA. These features are crucial for comprehensive protein-DNA interaction, sharp bending of the 3′ flap DNA substrate, and incision strand placement at the active site. While Mus81-Eme1 unexpectedly shares several common features with members of the 5′ flap nuclease family, the combined structural, biochemical, and biophysical analyses explain why Mus81-Eme1 preferentially cleaves 3′ flap DNA substrates with 5′ nicked ends. PMID:24733841

  10. Crystal structure of κ-Ag2Mg5

    NASA Astrophysics Data System (ADS)

    Castro, Facundo J.; Primo, Gastón A.; Urretavizcaya, Guillermina

    2018-02-01

    The structure of κ-Ag2Mg5 has been refined based on X-ray powder diffraction measurements (Rwp = 0.083). The compound has been prepared by combining mechanical alloying techniques and thermal treatments. The intermetallic presents the prototypical structure of Co2Al5, an hexagonal crystal with the symmetries of space group P63/mmc, and belongs to the family of kappa-phase structure compounds. The unit cell dimensions are a=8.630(1) Å and c=8.914(1) Å. Five crystallographically independent sites are occupied, Wyckoff positions 12k, 6h and 2a are filled with Mg, another 6h site is occupied with Ag, and the 2c site presents mixed Ag/Mg occupancy. The crystal chemistry of the structure and bonding are briefly discussed in the paper.

  11. Crystal structure of simple metals at high pressures

    NASA Astrophysics Data System (ADS)

    Degtyareva, Olga

    2010-09-01

    The effects of pressure on the crystal structure of simple (or sp-) elements are analysed in terms of changes in coordination number, packing density, and interatomic distances, and general rules are established. In the polyvalent elements from groups 14-17, the covalently bonded structures tend to transform to metallic phases with a gradual increase in coordination number and packing density, a behaviour normally expected under pressure. Group 1 and 2 metallic elements, however, show a reverse trend towards structures with low packing density due to intricate changes in their electronic structure. Complex crystal structures such as host-guest and incommensurately modulated structures found in these elements are given special attention in this review in an attempt to determine their role in the observed phase-transition sequences.

  12. Crystal structure of zwitterionic bisimidazolium sulfonates

    NASA Astrophysics Data System (ADS)

    Kohmoto, Shigeo; Okuyama, Shinpei; Yokota, Nobuyuki; Takahashi, Masahiro; Kishikawa, Keiki; Masu, Hyuma; Azumaya, Isao

    2012-05-01

    Crystal structures of three zwitterionic bisimidazolium salts 1-3 in which imidazolium sulfonate moieties were connected with aromatic linkers, p-xylylene, 4,4'-dimethylenebiphenyl, and phenylene, respectively, were examined. The latter two were obtained as hydrates. An S-shaped molecular structure in which the sulfonate moiety was placed on the imidazolium ring was observed for 1. A helical array of hydrated water molecules was obtained for 2 while a linear array of hydrated water molecules was observed for 3.

  13. Crystal structure of 1-meth-oxy-2,2,2-tris-(pyrazol-1-yl)ethane.

    PubMed

    Lyubartseva, Ganna; Parkin, Sean; Coleman, Morgan D; Mallik, Uma Prasad

    2014-09-01

    The title compound, C12H14N6O, consists of three pyrazole rings bound via nitro-gen to the distal ethane carbon of meth-oxy ethane. The dihedral angles between the three pyrazole rings are 67.62 (14), 73.74 (14), and 78.92 (12)°. In the crystal, mol-ecules are linked by bifurcated C-H,H⋯N hydrogen bonds, forming double-stranded chains along [001]. The chains are linked via C-H⋯O hydrogen bonds, forming a three-dimensional framework structure. The crystal was refined as a perfect (0.5:0.5) inversion twin.

  14. Physicochemical and crystal structure analyses of the antidiabetic agent troglitazone.

    PubMed

    Kobayashi, Katsuhiro; Fukuhara, Hiroshi; Hata, Tadashi; Sekine, Akiko; Uekusa, Hidehiro; Ohashi, Yuji

    2003-07-01

    The antidiabetic agent troglitazone has two asymmetric carbons located at the chroman ring and the thiazolidine ring and is produced as a mixture of equal amounts of four optical isomers, 2R-5S, 2S-5R, 2R-5R, and 2S-5S. The crystalline powdered drug substance consists of two diastereomer pairs, 2R-5R/2S-5S and 2R-5S/2S-5R. There are many types of crystals obtained from various crystallization conditions. The X-ray structure analysis and the physicochemical analyses of troglitazone were performed. The solvated crystals of the 2R-5R/2S-5S pair were crystallized from several solutions: methanol, ethanol, acetonitrile, and dichloromethane. The ratio of solvent and troglitazone was 1 : 2 (L1/2-form). The monohydrate crystals were obtained from aqueous acetone solution (L1-form). On the other hand, only an anhydrate crystal of the 2R-5S/2S-5R pair was crystallized from various solutions (H0-form). The dihydrous mixed crystal (MA2-form) was obtained from a mixture of the two diastereomer pairs of 2R-5R/2S-5S and 2R-5S/2S-5R in equal amounts by the slow evaporation of aqueous acetone solution. The crystal structure of the MA2-form is similar to the H0-form. When the MA2 crystal was kept under low humidity, it was converted into the dehydrated form (MA0-form) with retention of the single crystal form. The structure of the MA0-form is isomorphous to the H0-form. The MA2-form was converted into the MA0-form and vice versa with retention of the single crystal under low and high humidity, respectively. The crystallization and storage conditions of the drug substances were successfully analyzed.

  15. Crystal Structures of Mite Allergens Der f 1 and Der p 1 Reveal Differences in Surface-Exposed Residues that May Influence Antibody Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chruszcz, Maksymilian; Chapman, Martin D.; Vailes, Lisa D.

    2009-12-01

    The Group 1 mite allergens, Der f 1 and Der p 1, are potent allergens excreted by Dermatophagoides farinae and Dermatophagoides pteronyssinus, respectively. The human IgE antibody responses to the Group 1 allergens show more cross-reactivity than the murine IgG antibody responses which are largely species-specific. Here, we report the crystal structure of the mature form of Der f 1, which was isolated from its natural source, and a new, high-resolution structure of mature recombinant Der p 1. Unlike Der p 1, Der f 1 is monomeric both in the crystalline state and in solution. Moreover, no metal binding ismore » observed in the structure of Der f 1, despite the fact that all amino acids involved in Ca{sup 2+} binding in Der p 1 are completely conserved in Der f 1. Although Der p 1 and Der f 1 share extensive sequence identity, comparison of the crystal structures of both allergens revealed structural features which could explain the differences in murine and human IgE antibody responses to these allergens. There are structural differences between Der f 1 and Der p 1 which are unevenly distributed on the allergens' surfaces. This uneven spatial arrangement of conserved versus altered residues could explain both the specificity and cross-reactivity of antibodies against Der f 1 and Der p 1.« less

  16. Integrative interactive visualization of crystal structure, band structure, and Brillouin zone

    NASA Astrophysics Data System (ADS)

    Hanson, Robert; Hinke, Ben; van Koevering, Matthew; Oses, Corey; Toher, Cormac; Hicks, David; Gossett, Eric; Plata Ramos, Jose; Curtarolo, Stefano; Aflow Collaboration

    The AFLOW library is an open-access database for high throughput ab-initio calculations that serves as a resource for the dissemination of computational results in the area of materials science. Our project aims to create an interactive web-based visualization of any structure in the AFLOW database that has associate band structure data in a way that allows novel simultaneous exploration of the crystal structure, band structure, and Brillouin zone. Interactivity is obtained using two synchronized JSmol implementations, one for the crystal structure and one for the Brillouin zone, along with a D3-based band-structure diagram produced on the fly from data obtained from the AFLOW database. The current website portal (http://aflowlib.mems.duke.edu/users/jmolers/matt/website) allows interactive access and visualization of crystal structure, Brillouin zone and band structure for more than 55,000 inorganic crystal structures. This work was supported by the US Navy Office of Naval Research through a Broad Area Announcement administered by Duke University.

  17. Multiple solvent crystal structures of ribonuclease A: An assessment of the method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechene, Michelle; Wink, Glenna; Smith, Mychal

    2010-11-12

    The multiple solvent crystal structures (MSCS) method uses organic solvents to map the surfaces of proteins. It identifies binding sites and allows for a more thorough examination of protein plasticity and hydration than could be achieved by a single structure. The crystal structures of bovine pancreatic ribonuclease A (RNAse A) soaked in the following organic solvents are presented: 50% dioxane, 50% dimethylformamide, 70% dimethylsulfoxide, 70% 1,6-hexanediol, 70% isopropanol, 50% R,S,R-bisfuran alcohol, 70% t-butanol, 50% trifluoroethanol, or 1.0M trimethylamine-N-oxide. This set of structures is compared with four sets of crystal structures of RNAse A from the protein data bank (PDB) andmore » with the solution NMR structure to assess the validity of previously untested assumptions associated with MSCS analysis. Plasticity from MSCS is the same as from PDB structures obtained in the same crystal form and deviates only at crystal contacts when compared to structures from a diverse set of crystal environments. Furthermore, there is a good correlation between plasticity as observed by MSCS and the dynamic regions seen by NMR. Conserved water binding sites are identified by MSCS to be those that are conserved in the sets of structures taken from the PDB. Comparison of the MSCS structures with inhibitor-bound crystal structures of RNAse A reveals that the organic solvent molecules identify key interactions made by inhibitor molecules, highlighting ligand binding hot-spots in the active site. The present work firmly establishes the relevance of information obtained by MSCS.« less

  18. HG-829 Is a Potent Noncompetitive Inhibitor of the ATP-Binding Cassette Multidrug Resistance Transporter ABCB1

    PubMed Central

    Caceres, Gisela; Robey, Robert W.; Sokol, Lubomir; McGraw, Kathy L.; Clark, Justine; Lawrence, Nicholas J.; Sebti, Said M.; Wiese, Michael; List, Alan F.

    2015-01-01

    Transmembrane drug export mediated by the ATP-binding cassette (ABC) transporter P-glycoprotein contributes to clinical resistance to antineoplastics. In this study, we identified the substituted quinoline HG-829 as a novel, noncompetitive, and potent P-glycoprotein inhibitor that overcomes in vitro and in vivo drug resistance. We found that nontoxic concentrations of HG-829 restored sensitivity to P-glycoprotein oncolytic substrates. In ABCB1-overexpressing cell lines, HG-829 significantly enhanced cytotoxicity to daunorubicin, paclitaxel, vinblastine, vincristine, and etoposide. Coadministration of HG-829 fully restored in vivo antitumor activity of daunorubicin in mice without added toxicity. Functional assays showed that HG-829 is not a Pgp substrate or competitive inhibitor of Pgp-mediated drug efflux but rather acts as a noncompetitive modulator of P-glycoprotein transport function. Taken together, our findings indicate that HG-829 is a potent, long-acting, and noncompetitive modulator of P-glycoprotein export function that may offer therapeutic promise for multidrugresistant malignancies. PMID:22761337

  19. Shear induced structures in crystallizing cocoa butter

    NASA Astrophysics Data System (ADS)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  20. X-ray crystal structures of native HIV-1 capsid protein reveal conformational variability

    DOE PAGES

    Gres, Anna T.; Kirby, Karen A.; KewalRamani, Vineet N.; ...

    2015-06-04

    The detailed molecular interactions between native HIV-1 capsid protein (CA) hexamers that shield the viral genome and proteins have been elusive. In this paper, we report crystal structures describing interactions between CA monomers related by sixfold symmetry within hexamers (intrahexamer) and threefold and twofold symmetry between neighboring hexamers (interhexamer). The structures describe how CA builds hexagonal lattices, the foundation of mature capsids. Lattice structure depends on an adaptable hydration layer modulating interactions among CA molecules. Disruption of this layer alters interhexamer interfaces, highlighting an inherent structural variability. A CA-targeting antiviral affects capsid stability by binding across CA molecules and subtlymore » altering interhexamer interfaces remote to the ligand-binding site. Finally, inherent structural plasticity, hydration layer rearrangement, and effector binding affect capsid stability and have functional implications for the retroviral life cycle.« less

  1. Myotonic Dystrophy Type 1 RNA Crystal Structures Reveal Heterogeneous 1×1 Nucleotide UU Internal Loop Conformations⊥

    PubMed Central

    Kumar, Amit; Park, HaJeung; Fang, Pengfei; Parkesh, Raman; Guo, Min; Nettles, Kendall W.; Disney, Matthew D.

    2011-01-01

    RNA internal loops often display a variety of conformations in solution. Herein, we visualize conformational heterogeneity in the context of the 5′CUG/3′GUC repeat motif present in the RNA that causes myotonic dystrophy type 1 (DM1). Specifically, two crystal structures are disclosed of a model DM1 triplet repeating construct, 5′r(UUGGGC(CUG)3GUCC)2, refined to 2.20 Å and 1.52 Å resolution. Here, differences in orientation of the 5′ dangling UU end between the two structures induce changes in the backbone groove width, which reveals that non-canonical 1×1 nucleotide UU internal loops can display an ensemble of pairing conformations. In the 2.20 Å structure, CUGa, the 5′UU forms one hydrogen-bonded pairs with a 5′UU of a neighboring helix in the unit cell to form a pseudo-infinite helix. The central 1×1 nucleotide UU internal loop has no hydrogen bonds, while the terminal 1×1 nucleotide UU internal loops each form a one hydrogen-bonded pair. In the 1.52 Å structure, CUGb, the 5′ UU dangling end is tucked into the major groove of the duplex. While the canonical paired bases show no change in base pairing, in CUGb the terminal 1×1 nucleotide UU internal loops form now two hydrogen-bonded pairs. Thus, the shift in major groove induced by the 5′UU dangling end alters non-canonical base patterns. Collectively, these structures indicate that 1×1 nucleotide UU internal loops in DM1 may sample multiple conformations in vivo. This observation has implications for the recognition of this RNA, and other repeating transcripts, by protein and small molecule ligands. PMID:21988728

  2. Myotonic dystrophy type 1 RNA crystal structures reveal heterogeneous 1 × 1 nucleotide UU internal loop conformations.

    PubMed

    Kumar, Amit; Park, HaJeung; Fang, Pengfei; Parkesh, Raman; Guo, Min; Nettles, Kendall W; Disney, Matthew D

    2011-11-15

    RNA internal loops often display a variety of conformations in solution. Herein, we visualize conformational heterogeneity in the context of the 5'CUG/3'GUC repeat motif present in the RNA that causes myotonic dystrophy type 1 (DM1). Specifically, two crystal structures of a model DM1 triplet repeating construct, 5'r[UUGGGC(CUG)(3)GUCC](2), refined to 2.20 and 1.52 Å resolution are disclosed. Here, differences in the orientation of the 5' dangling UU end between the two structures induce changes in the backbone groove width, which reveals that noncanonical 1 × 1 nucleotide UU internal loops can display an ensemble of pairing conformations. In the 2.20 Å structure, CUGa, the 5' UU forms a one hydrogen-bonded pair with a 5' UU of a neighboring helix in the unit cell to form a pseudoinfinite helix. The central 1 × 1 nucleotide UU internal loop has no hydrogen bonds, while the terminal 1 × 1 nucleotide UU internal loops each form a one-hydrogen bond pair. In the 1.52 Å structure, CUGb, the 5' UU dangling end is tucked into the major groove of the duplex. While the canonically paired bases show no change in base pairing, in CUGb the terminal 1 × 1 nucleotide UU internal loops now form two hydrogen-bonded pairs. Thus, the shift in the major groove induced by the 5' UU dangling end alters noncanonical base patterns. Collectively, these structures indicate that 1 × 1 nucleotide UU internal loops in DM1 may sample multiple conformations in vivo. This observation has implications for the recognition of this RNA, and other repeating transcripts, by protein and small molecule ligands.

  3. Myotonic Dystrophy Type 1 RNA Crystal Structures Reveal Heterogeneous 1 × 1 Nucleotide UU Internal Loop Conformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Amit; Park, HaJeung; Fang, Pengfei

    2012-03-27

    RNA internal loops often display a variety of conformations in solution. Herein, we visualize conformational heterogeneity in the context of the 5'CUG/3'GUC repeat motif present in the RNA that causes myotonic dystrophy type 1 (DM1). Specifically, two crystal structures of a model DM1 triplet repeating construct, 5'r[{und UU}GGGC(C{und U}G){sub 3}GUCC]{sub 2}, refined to 2.20 and 1.52 {angstrom} resolution are disclosed. Here, differences in the orientation of the 5' dangling UU end between the two structures induce changes in the backbone groove width, which reveals that noncanonical 1 x 1 nucleotide UU internal loops can display an ensemble of pairing conformations.more » In the 2.20 {angstrom} structure, CUGa, the 5' UU forms a one hydrogen-bonded pair with a 5' UU of a neighboring helix in the unit cell to form a pseudoinfinite helix. The central 1 x 1 nucleotide UU internal loop has no hydrogen bonds, while the terminal 1 x 1 nucleotide UU internal loops each form a one-hydrogen bond pair. In the 1.52 {angstrom} structure, CUGb, the 5' UU dangling end is tucked into the major groove of the duplex. While the canonically paired bases show no change in base pairing, in CUGb the terminal 1 x 1 nucleotide UU internal loops now form two hydrogen-bonded pairs. Thus, the shift in the major groove induced by the 5' UU dangling end alters noncanonical base patterns. Collectively, these structures indicate that 1 x 1 nucleotide UU internal loops in DM1 may sample multiple conformations in vivo. This observation has implications for the recognition of this RNA, and other repeating transcripts, by protein and small molecule ligands.« less

  4. Synthesis, crystal structure investigation and magnetism of the complex metal-rich boride series Crx(Rh1-yRuy)7-xB3 (x=0.88-1; y=0-1) with Th7Fe3-type structure

    NASA Astrophysics Data System (ADS)

    Misse, Patrick R. N.; Mbarki, Mohammed; Fokwa, Boniface P. T.

    2012-08-01

    Powder samples and single crystals of the new complex boride series Crx(Rh1-yRuy)7-xB3 (x=0.88-1; y=0-1) have been synthesized by arc-melting the elements under purified argon atmosphere on a water-cooled copper crucible. The products, which have metallic luster, were structurally characterized by single-crystal and powder X-ray diffraction as well as EDX measurements. Within the whole solid solution range the hexagonal Th7Fe3 structure type (space group P63mc, no. 186, Z=2) was identified. Single-crystal structure refinement results indicate the presence of chromium at two sites (6c and 2b) of the available three metal Wyckoff sites, with a pronounced preference for the 6c site. An unexpected Rh/Ru site preference was found in the Ru-rich region only, leading to two different magnetic behaviors in the solid solution: The Rh-rich region shows a temperature-independent (Pauli) paramagnetism whereas an additional temperature-dependent paramagnetic component is found in the Ru-rich region.

  5. Monitoring structural transformations in crystals. 7. 1-Chloroanthracene and its photodimer.

    PubMed

    Turowska-Tyrk, Ilona; Grześniak, Karolina

    2004-02-01

    Crystals of the 1-chloroanthracene photodimer, viz. trans-bi(1-chloro-9,10-dihydro-9,10-anthracenediyl), C(28)H(18)Cl(2), were obtained from the solid-state [4+4]-photodimerization of the monomer, C(14)H(9)Cl, followed by recrystallization. The symmetry of the product molecules is defined by the orientation of the reactant molecules in the crystal. The mutual orientation parameters calculated for adjacent monomers explain the reactivity of the compound. The molecules in the crystal of the monomer and the recrystallized photodimer pack differently and the photodimer has crystallographically imposed inversion symmetry.

  6. The crystal structure of the AgamOBP1•Icaridin complex reveals alternative binding modes and stereo-selective repellent recognition.

    PubMed

    Drakou, Christina E; Tsitsanou, Katerina E; Potamitis, Constantinos; Fessas, Dimitrios; Zervou, Maria; Zographos, Spyros E

    2017-01-01

    Anopheles gambiae Odorant Binding Protein 1 in complex with the most widely used insect repellent DEET, was the first reported crystal structure of an olfactory macromolecule with a repellent, and paved the way for OBP1-structure-based approaches for discovery of new host-seeking disruptors. In this work, we performed STD-NMR experiments to directly monitor and verify the formation of a complex between AgamOBP1 and Icaridin, an efficient DEET alternative. Furthermore, Isothermal Titration Calorimetry experiments provided evidence for two Icaridin-binding sites with different affinities (Kd = 0.034 and 0.714 mM) and thermodynamic profiles of ligand binding. To elucidate the binding mode of Icaridin, the crystal structure of AgamOBP1•Icaridin complex was determined at 1.75 Å resolution. We found that Icaridin binds to the DEET-binding site in two distinct orientations and also to a novel binding site located at the C-terminal region. Importantly, only the most active 1R,2S-isomer of Icaridin's equimolar diastereoisomeric mixture binds to the AgamOBP1 crystal, providing structural evidence for the possible contribution of OBP1 to the stereoselectivity of Icaridin perception in mosquitoes. Structural analysis revealed two ensembles of conformations differing mainly in spatial arrangement of their sec-butyl moieties. Moreover, structural comparison with DEET indicates a common recognition mechanism for these structurally related repellents. Ligand interactions with both sites and binding modes were further confirmed by 2D 1 H- 15 N HSQC NMR spectroscopy. The identification of a novel repellent-binding site in AgamOBP1 and the observed structural conservation and stereoselectivity of its DEET/Icaridin-binding sites open new perspectives for the OBP1-structure-based discovery of next-generation insect repellents.

  7. Detergent Screening and Purification of the Human Liver ABC Transporters BSEP (ABCB11) and MDR3 (ABCB4) Expressed in the Yeast Pichia pastoris

    PubMed Central

    Stindt, Jan; Smits, Sander H. J.; Schmitt, Lutz

    2013-01-01

    The human liver ATP-binding cassette (ABC) transporters bile salt export pump (BSEP/ABCB11) and the multidrug resistance protein 3 (MDR3/ABCB4) fulfill the translocation of bile salts and phosphatidylcholine across the apical membrane of hepatocytes. In concert with ABCG5/G8, these two transporters are responsible for the formation of bile and mutations within these transporters can lead to severe hereditary diseases. In this study, we report the heterologous overexpression and purification of human BSEP and MDR3 as well as the expression of the corresponding C-terminal GFP-fusion proteins in the yeast Pichia pastoris. Confocal laser scanning microscopy revealed that BSEP-GFP and MDR3-GFP are localized in the plasma membrane of P. pastoris. Furthermore, we demonstrate the first purification of human BSEP and MDR3 yielding ∼1 mg and ∼6 mg per 100 g of wet cell weight, respectively. By screening over 100 detergents using a dot blot technique, we found that only zwitterionic, lipid-like detergents such as Fos-cholines or Cyclofos were able to extract both transporters in sufficient amounts for subsequent functional analysis. For MDR3, fluorescence-detection size exclusion chromatography (FSEC) screens revealed that increasing the acyl chain length of Fos-Cholines improved monodispersity. BSEP purified in n-dodecyl-β-D-maltoside or Cymal-5 after solubilization with Fos-choline 16 from P. pastoris membranes showed binding to ATP-agarose. Furthermore, detergent-solubilized and purified MDR3 showed a substrate-inducible ATPase activity upon addition of phosphatidylcholine lipids. These results form the basis for further biochemical analysis of human BSEP and MDR3 to elucidate the function of these clinically relevant ABC transporters. PMID:23593265

  8. Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism.

    PubMed

    Price, Sarah Sally L

    2009-01-20

    The phenomenon of polymorphism, the ability of a molecule to adopt more than one crystal structure, is a well-established property of crystalline solids. The possible variations in physical properties between polymorphs make the reliable reproduction of a crystalline form essential for all research using organic materials, as well as quality control in manufacture. Thus, the last two decades have seen both an increase in interest in polymorphism and the availability of the computer power needed to make the computational prediction of organic crystal structures a practical possibility. In the past decade, researchers have made considerable improvements in the theoretical basis for calculating the sets of structures that are within the energy range of possible polymorphism, called crystal energy landscapes. It is common to find that a molecule has a wide variety of ways of packing with lattice energy within a few kilojoules per mole of the most stable structure. However, as we develop methods to search for and characterize "all" solid forms, it is also now usual for polymorphs and solvates to be found. Thus, the computed crystal energy landscape reflects and to an increasing extent "predicts" the emerging complexity of the solid state observed for many organic molecules. This Account will discuss the ways in which the calculation of the crystal energy landscape of a molecule can be used as a complementary technique to solid form screening for polymorphs. Current methods can predict the known crystal structure, even under "blind test" conditions, but such successes are generally restricted to those structures that are the most stable over a wide range of thermodynamic conditions. The other low-energy structures can be alternative polymorphs, which have sometimes been found in later experimental studies. Examining the computed structures reveals the various compromises between close packing, hydrogen bonding, and pi-pi stacking that can result in energetically feasible

  9. Growth, structural, optical, thermal and laser damage threshold studies of an organic single crystal: 1,3,5 – triphenylbenzene (TPB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raja, R. Subramaniyan; Babu, G. Anandha; Ramasamy, P., E-mail: E-mail-ramasamyp@ssn.edu.in

    2016-05-23

    Good quality single crystals of pure hydrocarbon 1,3,5-Triphenylbenzene (TPB) have been successfully grown using toluene as a solvent using controlled slow cooling solution growth technique. TPB crystallizes in orthorhombic structure with the space group Pna2{sub 1}. The structural perfection of the grown crystal has been analysed by high resolution X-ray diffraction measurements. The range and percentage of the optical transmission are ascertained by recording the UV-vis spectrum. Thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study its thermal properties. Powder second harmonic generation studies were carried out to explore its NLO properties. Laser damage threshold valuemore » has been determined using Nd:YAG laser operating at 1064 nm.« less

  10. Crystal structure and crystal chemistry of melanovanadite, a natural vanadium bronze.

    USGS Publications Warehouse

    Konnert, J.A.; Evans, H.T.

    1987-01-01

    The crystal structure of melanovanadite from Minas Ragra, Peru, has been determined in space group P1. The triclinic unit cell (non-standard) has a 6.360(2), b 18.090(9), c 6.276(2) A, alpha 110.18(4)o, beta 101.62(3)o, gamma 82.86(4)o. A subcell with b' = b/2 was found by crystal-structure analysis to contain CaV4O10.5H2O. The subcell has a layer structure in which the vanadate sheet consists of corner-shared tetrahedral VO4 and double square-pyramidal V2O8 groups, similar to that previously found in synthetic CsV2O5. Refinement of the full structure (R = 0.056) showed that the Ca atom, which half-occupies a general position in the subcell, is 90% ordered at one of these sites in the whole unit cell. Bond length-bond strength estimates indicate that the tetrahedra contain V5+, and the square pyramids, V4+.-J.A.Z.

  11. Crystal structures of ryanodine receptor SPRY1 and tandem-repeat domains reveal a critical FKBP12 binding determinant

    NASA Astrophysics Data System (ADS)

    Yuchi, Zhiguang; Yuen, Siobhan M. Wong King; Lau, Kelvin; Underhill, Ainsley Q.; Cornea, Razvan L.; Fessenden, James D.; van Petegem, Filip

    2015-08-01

    Ryanodine receptors (RyRs) form calcium release channels located in the membranes of the sarcoplasmic and endoplasmic reticulum. RyRs play a major role in excitation-contraction coupling and other Ca2+-dependent signalling events, and consist of several globular domains that together form a large assembly. Here we describe the crystal structures of the SPRY1 and tandem-repeat domains at 1.2-1.5 Å resolution, which reveal several structural elements not detected in recent cryo-EM reconstructions of RyRs. The cryo-EM studies disagree on the position of SPRY domains, which had been proposed based on homology modelling. Computational docking of the crystal structures, combined with FRET studies, show that the SPRY1 domain is located next to FK506-binding protein (FKBP). Molecular dynamics flexible fitting and mutagenesis experiments suggest a hydrophobic cluster within SPRY1 that is crucial for FKBP binding. A RyR1 disease mutation, N760D, appears to directly impact FKBP binding through interfering with SPRY1 folding.

  12. Radiation coloring of nonstoichiometric M(1-x)R(x)F(2+x) single crystals with a fluorite defect structure

    NASA Astrophysics Data System (ADS)

    Rustamov, Ia.; Tavshunskii, G. A.; Khabibullaev, P. K.; Bessonova, T. S.; Sobolev, B. P.

    1985-06-01

    Experimental results are reported concerning the radiation coloring of nonstoichiometric crystals of the M(1-x)R(x)F(2+x) type in the presence of fluorite defects. Samples of the crystals are cut using the Stockbarger technique in a chemically active fluoridating atmosphere generated by pyrolysis of tetrafluoroethylene. The samples were irradiated at 77 and 300 K using a Co-60 gamma-ray source and the total doses were in the range 10 to the 6th to 10 to the 7th roentgen. Absorption spectra of the crystals were analogous spectra for MF2-RF3 single crystals with RF 3 contents of less than 1 mole percent. It is shown that the properties of radiation coloring of the two types of crystal are very different: F-centers formed at 300 K in Ca(1-x)R(x) F(2+x), but not at 77 K. Complex color centers were observed at 77 K in Ca(1-x)R(x)F(2+x) single crystals and the intensity of the centers was determined by the competition among the electron trapping processes involving the r3(+) ions. It is concluded that the coloring characteristics of the M(1-x)R(x)F(2+x) crystals are related to their structural characteristics as compared with the MF2-RF3 crystals.

  13. 2.4 Å resolution crystal structure of human TRAP1NM, the Hsp90 paralog in the mitochondrial matrix.

    PubMed

    Sung, Nuri; Lee, Jungsoon; Kim, Ji Hyun; Chang, Changsoo; Tsai, Francis T F; Lee, Sukyeong

    2016-08-01

    TRAP1 is an organelle-specific Hsp90 paralog that is essential for neoplastic growth. As a member of the Hsp90 family, TRAP1 is presumed to be a general chaperone facilitating the late-stage folding of Hsp90 client proteins in the mitochondrial matrix. Interestingly, TRAP1 cannot replace cytosolic Hsp90 in protein folding, and none of the known Hsp90 co-chaperones are found in mitochondria. Thus, the three-dimensional structure of TRAP1 must feature regulatory elements that are essential to the ATPase activity and chaperone function of TRAP1. Here, the crystal structure of a human TRAP1NM dimer is presented, featuring an intact N-domain and M-domain structure, bound to adenosine 5'-β,γ-imidotriphosphate (ADPNP). The crystal structure together with epitope-mapping results shows that the TRAP1 M-domain loop 1 contacts the neighboring subunit and forms a previously unobserved third dimer interface that mediates the specific interaction with mitochondrial Hsp70.

  14. The Influence of C3435T Polymorphism of the ABCB1 Gene on Genetic Susceptibility to Depression and Treatment Response in Polish Population - Preliminary Report.

    PubMed

    Jeleń, Agnieszka Maria; Sałagacka, Aleksandra; Żebrowska, Marta Karolina; Mirowski, Marek; Talarowska, Monika; Gałecki, Piotr; Balcerczak, Ewa Izabela

    2015-01-01

    Despite the high prevalence of depression, the mechanism of the origin of this disease as well as the causes of resistance to therapy in some patients are still not fully understood. Increasingly, the possible role of genetic factors is considered. One of them is polymorphisms in the ABCB1 (MDR1) gene which encodes P-glycoprotein, responsible for the transport of xenobiotics, including antidepressant drugs, through the blood-brain barrier. C3435T was evaluated in 90 patients with recurrent depressive disorders (rDD). Genotyping was performed using a polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). The obtained results indicate that the TT genotype occurred more frequently among patients with rDD than in healthy volunteers (p=0.0441). Also, at least one C allele was present significantly less frequent in the study group than in healthy individuals (p=0.0300). The severity of depressive symptoms was higher among patient with the CC genotype in comparison with the other genotypes (p=0.0106) but treatment response to antidepressants was better in this group than among patients with CT or TT genotypes (p=0.0301). Likewise, patients with the T allele have a significantly lower severity of symptoms (p=0.0026) and decreased therapy effectiveness (p=0.0142) than C allele carriers. This study suggests that C3435T polymorphisms in the ABCB1 gene are strongly associated with a predisposition to depression development, the severity of depressive symptoms and the effectiveness of therapy with using different groups of antidepressant agents.

  15. Crystal structures of HIV-1 nonnucleoside reverse transcriptase inhibitors: N-benzyl-4-methyl-benzimidazoles

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2009-07-01

    HIV-1 nonnucleoside reverse transcriptase inhibitors are potentially specific and effective drugs in AIDS therapy. The presence of two aromatic systems with an angled orientation in the molecule of the inhibitor is crucial for interactions with HIV-1 RT. The inhibitor drives like a wedge into the cluster of aromatic residues of RT HIV-1 and restrains the enzyme in a conformation that blocks the chemical step of nucleotide incorporation. Structural studies provide useful information for designing new, more active inhibitors. The crystal structures of four NNRTIs are presented here. The investigated compounds are derivatives of N-benzyl-4-methyl-benzimidazole with various aliphatic and aromatic substituents at carbon 2 positions and a 2,6-dihalogeno-substituted N-benzyl moiety. Structural data reported here show that the conformation of the investigated compounds is relatively rigid. Such feature is important for the nonnucleoside inhibitor binding to HIV-1 reverse transcriptase.

  16. Crystal structure of MboIIA methyltransferase.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipiuk, J.; Walsh, M. A.; Joachimiak, A.

    2003-09-15

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 {angstrom} resolution the crystal structure of a {beta}-class DNA MTase MboIIA (M {center_dot} MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M {center_dot} MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules inmore » the asymmetric unit which we propose to resemble the dimer when M {center_dot} MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M {center_dot} RsrI. However, the cofactor-binding pocket in M {center_dot} MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.« less

  17. Crystal structure of MboIIA methyltransferase.

    PubMed

    Osipiuk, Jerzy; Walsh, Martin A; Joachimiak, Andrzej

    2003-09-15

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 A resolution the crystal structure of a beta-class DNA MTase MboIIA (M.MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M.MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules in the asymmetric unit which we propose to resemble the dimer when M.MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M.RsrI. However, the cofactor-binding pocket in M.MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.

  18. Conformational analysis of flavonoids: crystal and molecular structures of morin hydrate and myricetin (1:2) triphenylphosphine oxide complex

    NASA Astrophysics Data System (ADS)

    Cody, Vivian; Luft, Joseph R.

    1994-01-01

    The crystal and molecular structures of morin (2',3,4',5,7-pentahydroxyflavone) hydrate ( I), and myricetin (3',4',5',3,5,7-hexahydroxyflavone) triphenylphosphine oxide (TPPO) (1:2) co-crystal complex ( II) have been studied by X-ray analysis and AM1 molecular orbital methods. The molecular conformation of the two flavones described by the torsion angle θ[C(3)-C(2)-C(1t')-C(2')] between the benzopyrone and phenyl ring is -43.3° and 51.0° for molecules A and B of morin, respectively, and -37.0° for myricetin. Minimum energy conformations from AM1 molecular orbital calculations have θ values of -38.2° for morin and -27.0° for myricetin. The energy profile for rotation about θ for morin has a 28 kcal mol -1 barrier at 0° due to steric interactions between the 2'-hydroxy and the 3-hydroxy group. There are two local minima near 30 and 140°, in good agreement with structural results. The profile for myricetin has two equivalent minima near 30 and 150° with a barrier of less than 2 kcal mol -1. In the crystal both flavones form extensive networks of intra- and intermolecular hydrogen bonds. In ( I), each morin conformer packs in alternating layers linked by water molecules, while in ( II), TPPO stabilizes the crystal by formation of short hydrogen bonds (2.58-2.65 Å) of the phosphoryl oxygen to the flavone. Myricetin also forms a two dimensional sheet-like packing in which myricetin molecules hydrogen bond to each other, as well as to TPPO. These conformational and hydrogen bonding patterns provide insight into specific types of ligand-receptor interactions and support structure activity data which suggest the importance of electronic and hydrogen bonding properties in the bioactivity of flavones.

  19. The dimer interface of the membrane type 1 matrix metalloproteinase hemopexin domain: crystal structure and biological functions.

    PubMed

    Tochowicz, Anna; Goettig, Peter; Evans, Richard; Visse, Robert; Shitomi, Yasuyuki; Palmisano, Ralf; Ito, Noriko; Richter, Klaus; Maskos, Klaus; Franke, Daniel; Svergun, Dmitri; Nagase, Hideaki; Bode, Wolfram; Itoh, Yoshifumi

    2011-03-04

    Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion.

  20. Crystal structure of simple metals at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degtyareva, Olga

    2010-10-22

    The effects of pressure on the crystal structure of simple (or sp-) elements are analysed in terms of changes in coordination number, packing density, and interatomic distances, and general rules are established. In the polyvalent elements from groups 14-17, the covalently bonded structures tend to transform to metallic phases with a gradual increase in coordination number and packing density, a behaviour normally expected under pressure. Group 1 and 2 metallic elements, however, show a reverse trend towards structures with low packing density due to intricate changes in their electronic structure. Complex crystal structures such as host-guest and incommensurately modulated structuresmore » found in these elements are given special attention in this review in an attempt to determine their role in the observed phase-transition sequences.« less

  1. The Crystal Structure of Oxaliplatin: A Case of Overlooked Pseudo Symmetry.

    PubMed

    Johnstone, Timothy C

    2014-01-08

    The crystal structure of the anticancer drug oxaliplatin, [Pt( R,R- DACH)(oxalate)] (DACH = diaminocyclohexane), was first reported in the non-centrosymmetric space group P2 1 , confirming the sole presence of the R , R enantiomer of the DACH ligand [M. A. Bruck et al. , Inorg. Chim. Acta , 92 (1984) 279-284]. It was later proposed that the crystal structure is better described in the centrosymmetric space group P2 1 /m, signifying the presence of the compound as a racemic mixture [A. S. Abu-Surrah et al. , Polyhedron , 22 (2003) 1529-1534]. Herein is presented a reinvestigation of this crystal structure, which shows that the discrepancy between the two proposed space group assignments arises from overlooked pseudo symmetry. The crystal structures of the synthetic precursor to oxaliplatin, Pt( R , R -DACH)I 2 , and a platinum(IV) derivative, trans -[Pt( R , R -DACH)(oxalate)(OH) 2 ], were also determined, and the absolute configuration of the DACH ligand in each was confirmed to be R , R . A spectroscopic investigation of the optical rotatory dispersion (ORD) of the oxaliplatin crystals was carried out to further confirm the lack of the true crystallographic mirror plane required for a P2 1 /m solution. The ORD was theoretically simulated, in one instance, by applying the Kramers-Kronig transform to the computed circular dichroism spectrum and was found to corroborate the spectroscopic and crystallographic findings. Finally, a brief discussion is given of the importance of discussing the details of nuanced crystal structures and of providing evidence in addition to X-ray structure determination if chemically unexpected results are obtained.

  2. Molecular basis for TANK recognition by TRAF1 revealed by the crystal structure of TRAF1/TANK complex.

    PubMed

    Kim, Chang Min; Jeong, Jae-Hee; Son, Young-Jin; Choi, Jun-Hyuk; Kim, Sunghwan; Park, Hyun Ho

    2017-03-01

    Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a multifunctional adaptor protein involved in important processes of cellular signaling, including innate immunity and apoptosis. TRAF family member-associated NF-kappaB activator (TANK) has been identified as a competitive intracellular inhibitor of TRAF2 function. Although TRAF recognition by various receptors has been studied extensively in the field of TRAF-mediated biology, molecular and functional details of TANK recognition and interaction with TRAF1 have not been studied. In this study, we report the crystal structure of the TRAF1/TANK peptide complex. Quantitative interaction experiments showed that TANK peptide interacts with both TRAF1 and TRAF2 with similar affinity in a micromolar range. Our structural study also reveals that TANK binds TRAF1 using a minor minimal consensus motif for TRAF binding, Px(Q/E)xT. Coordinate and structural factor were deposited in the Protein Data Bank under PDB ID code 5H10. © 2017 Federation of European Biochemical Societies.

  3. Crystal structure of TBC1D15 GTPase‐activating protein (GAP) domain and its activity on Rab GTPases

    PubMed Central

    Chen, Yan‐Na; Gu, Xin; Zhou, X. Edward; Wang, Weidong; Cheng, Dandan; Ge, Yinghua; Ye, Fei

    2017-01-01

    Abstract TBC1D15 belongs to the TBC (Tre‐2/Bub2/Cdc16) domain family and functions as a GTPase‐activating protein (GAP) for Rab GTPases. So far, the structure of TBC1D15 or the TBC1D15·Rab complex has not been determined, thus, its catalytic mechanism on Rab GTPases is still unclear. In this study, we solved the crystal structures of the Shark and Sus TBC1D15 GAP domains, to 2.8 Å and 2.5 Å resolution, respectively. Shark‐TBC1D15 and Sus‐TBC1D15 belong to the same subfamily of TBC domain‐containing proteins, and their GAP‐domain structures are highly similar. This demonstrates the evolutionary conservation of the TBC1D15 protein family. Meanwhile, the newly determined crystal structures display new variations compared to the structures of yeast Gyp1p Rab GAP domain and TBC1D1. GAP assays show that Shark and Sus GAPs both have higher catalytic activity on Rab11a·GTP than Rab7a·GTP, which differs from the previous study. We also demonstrated the importance of arginine and glutamine on the catalytic sites of Shark GAP and Sus GAP. When arginine and glutamine are changed to alanine or lysine, the activities of Shark GAP and Sus GAP are lost. PMID:28168758

  4. Crystal structure of TBC1D15 GTPase-activating protein (GAP) domain and its activity on Rab GTPases.

    PubMed

    Chen, Yan-Na; Gu, Xin; Zhou, X Edward; Wang, Weidong; Cheng, Dandan; Ge, Yinghua; Ye, Fei; Xu, H Eric; Lv, Zhengbing

    2017-04-01

    TBC1D15 belongs to the TBC (Tre-2/Bub2/Cdc16) domain family and functions as a GTPase-activating protein (GAP) for Rab GTPases. So far, the structure of TBC1D15 or the TBC1D15·Rab complex has not been determined, thus, its catalytic mechanism on Rab GTPases is still unclear. In this study, we solved the crystal structures of the Shark and Sus TBC1D15 GAP domains, to 2.8 Å and 2.5 Å resolution, respectively. Shark-TBC1D15 and Sus-TBC1D15 belong to the same subfamily of TBC domain-containing proteins, and their GAP-domain structures are highly similar. This demonstrates the evolutionary conservation of the TBC1D15 protein family. Meanwhile, the newly determined crystal structures display new variations compared to the structures of yeast Gyp1p Rab GAP domain and TBC1D1. GAP assays show that Shark and Sus GAPs both have higher catalytic activity on Rab11a·GTP than Rab7a·GTP, which differs from the previous study. We also demonstrated the importance of arginine and glutamine on the catalytic sites of Shark GAP and Sus GAP. When arginine and glutamine are changed to alanine or lysine, the activities of Shark GAP and Sus GAP are lost. © 2017 The Protein Society.

  5. Crystal structures of the M 1 and M 4 muscarinic acetylcholine receptors

    DOE PAGES

    Thal, David M.; Sun, Bingfa; Feng, Dan; ...

    2016-03-09

    Muscarinic M1–M5 acetylcholine receptors are G-protein-coupled receptors that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer’s disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. In this paper, we report the crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures with each other, as well as with the previously reported M2 andmore » M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. Finally, we also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains.« less

  6. Crystal structures of the M 1 and M 4 muscarinic acetylcholine receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thal, David M.; Sun, Bingfa; Feng, Dan

    Muscarinic M1–M5 acetylcholine receptors are G-protein-coupled receptors that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer’s disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. In this paper, we report the crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures with each other, as well as with the previously reported M2 andmore » M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. Finally, we also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains.« less

  7. Predictive Structure and Topology of Peroxisomal ATP-Binding Cassette (ABC) Transporters

    PubMed Central

    Andreoletti, Pierre; Raas, Quentin; Gondcaille, Catherine; Cherkaoui-Malki, Mustapha; Trompier, Doriane; Savary, Stéphane

    2017-01-01

    The peroxisomal ATP-binding Cassette (ABC) transporters, which are called ABCD1, ABCD2 and ABCD3, are transmembrane proteins involved in the transport of various lipids that allow their degradation inside the organelle. Defective ABCD1 leads to the accumulation of very long-chain fatty acids and is associated with a complex and severe neurodegenerative disorder called X-linked adrenoleukodystrophy (X-ALD). Although the nucleotide-binding domain is highly conserved and characterized within the ABC transporters family, solid data are missing for the transmembrane domain (TMD) of ABCD proteins. The lack of a clear consensus on the secondary and tertiary structure of the TMDs weakens any structure-function hypothesis based on the very diverse ABCD1 mutations found in X-ALD patients. Therefore, we first reinvestigated thoroughly the structure-function data available and performed refined alignments of ABCD protein sequences. Based on the 2.85  Å resolution crystal structure of the mitochondrial ABC transporter ABCB10, here we propose a structural model of peroxisomal ABCD proteins that specifies the position of the transmembrane and coupling helices, and highlight functional motifs and putative important amino acid residues. PMID:28737695

  8. A unified picture of the crystal structures of metals

    NASA Astrophysics Data System (ADS)

    Söderlind, Per; Eriksson, Olle; Johansson, Börje; Wills, J. M.; Boring, A. M.

    1995-04-01

    THE crystal structures of the light actinides have intrigued physicists and chemists for several decades1. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic and hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry-tetragonal, orthorhombic and monoclinic. To understand these differences, we have performed total-energy calculations, as a function of volume, for both high-and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all of these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression.

  9. Six new complexes constructed from silver(I) and 2-(dinitromethylene)-1,3-diazacyclopentane (DNDZ): Synthesis, crystal structure and properties

    NASA Astrophysics Data System (ADS)

    Feng, Zhicun; Zhang, Hang; Xu, Kangzhen; Song, Jirong; Zhao, Fengqi

    2018-04-01

    Six different energetic silver complexes of 2-(dinitromethylene)-1,3-diazacyclopentane (DNDZ), Ag(DNDZ) (1), [Ag2(H2O)(DNDZ)]n (2), Ag(NH3)DNDZ (3), Ag(CH3NH2)(DNDZ) (4), Ag(C2H5NH2)(DNDZ) (5) and Ag(C3H7NH2)(DNDZ) (6), were first synthesized and structurally characterized. Complexes 2, 3, 5 and 6 were characterized by the single crystal X-ray diffraction analysis. Complexes 2, 5 and 6 crystallize in the monoclinic crystal system with space group P21/n containing four molecules per unit cell, but the crystal of complex 3 is triclinic with space group P-1 containing two molecules in each unit cell. Complexes 2 and 3 possess Ag⋯Ag interaction and corresponding central symmetric structure, but complexes 5 and 6 do not. Thermal behaviors of complexes 1-6 were determined and analyzed. The order of thermal stability for the six complexes is 4 > 3 >1 > 2 >5 > 6. Impact sensitivities for complexes 1-6 are >12 J, > 4 J, > 13 J, > 16 J, > 8 J and >7 J respectively, which corresponds well to the results of thermal stability for the six complexes except for complex 2. Moreover, natural bond orbital (NBO) analysis was used to investigate the bonding and hybridization of complex 3.

  10. Crystal structure and vibrational spectra of piperazinium bis(4-hydroxybenzenesulphonate) molecular-ionic crystal

    NASA Astrophysics Data System (ADS)

    Marchewka, M. K.; Pietraszko, A.

    2008-02-01

    The piperazinium bis(4-hydroxybenzenesulphonate) crystallizes from water solution at room temperature in P2 1/ c space group of monoclinic system. The crystals are built up of doubly protonated piperazinium cations and ionized 4-hydroxybenzenesulphonate anions that interact through weak hydrogen bonds of O-H⋯O and N-H⋯O type. Mutual orientation of anions is determined by non-conventional hydrogen bonds of C-H⋯π type. Room temperature powder FT IR and FT Raman measurements were carried out. The vibrational spectra are in full agreement with the structure obtained from X-ray crystallography. The big single crystals of the title salt can be grown.

  11. Synthesis, antityrosinase activity of curcumin analogues, and crystal structure of (1 E,4 E)-1,5-bis(4-ethoxyphenyl)penta-1,4-dien-3-one

    NASA Astrophysics Data System (ADS)

    Chantrapromma, S.; Ruanwas, P.; Boonnak, N.; Chantrapromma, K.; Fun, H.-K.

    2016-12-01

    Five derivatives of curcumin analogue ( R = OCH2CH3 ( 1), R = N(CH3)2 ( 2), R = 2,4,5-OCH3 ( 3), R = 2,4,6-OCH3 ( 4), and R = 3,4,5-OCH3 ( 5)) were synthesized and characterized by 1H NMR, FT-IR and UV-Vis spectroscopy. The synthesized derivatives were screened for antityrosinase activity, and found that 4 and 5 possess such activity. The crystal structure of 1 was determined by single crystal X-ray diffraction: monoclinic, sp. gr. P21/ c, a = 17.5728(15) Å, b = 5.9121(5) Å, c = 19.8269(13) Å, β = 121.155(5)°, Z = 4. The molecule 1 is twisted with the dihedral angle between two phenyl rings being 15.68(10)°. In the crystal packing, the molecules 1 are linked into chains by C-H···π interactions and further stacked by π···π interactions with the centroid-centroid distance of 3.9311(13) Å.

  12. Crystal Structures of Aedes Aegypt Alanine Glyoxylate Aminotransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han,Q.; Robinson, H.; Gao, Y.

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75{angstrom} high-resolution three-dimensional crystal structure of AGT from themore » mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1{angstrom} resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.« less

  13. Substrate specificity determinants of human macrophage elastase (MMP-12) based on the 1.1 A crystal structure.

    PubMed

    Lang, R; Kocourek, A; Braun, M; Tschesche, H; Huber, R; Bode, W; Maskos, K

    2001-09-28

    The macrophage elastase enzyme (MMP-12) expressed mainly in alveolar macrophages has been identified in the mouse lung as the main destructive agent associated with cigarette smoking, which gives rise to emphysema, both directly via elastin degradation and indirectly by disturbing the proteinase/antiproteinase balance via inactivation of the alpha1-proteinase inhibitor (alpha1-PI), the antagonist of the leukocyte elastase. The catalytic domain of human recombinant MMP-12 has been crystallized in complex with the broad-specificity inhibitor batimastat (BB-94). The crystal structure analysis of this complex, determined using X-ray data to 1.1 A and refined to an R-value of 0.165, reveals an overall fold similar to that of other MMPs. However, the S-shaped double loop connecting strands III and IV is fixed closer to the beta-sheet and projects its His172 side-chain further into the rather hydrophobic active-site cleft, defining the S3 and the S1-pockets and separating them from each other to a larger extent than is observed in other MMPs. The S2-site is planar, while the characteristic S1'-subsite is a continuous tube rather than a pocket, in which the MMP-12-specific Thr215 replaces a Val residue otherwise highly conserved in almost all other MMPs. This alteration might allow MMP-12 to accept P1' Arg residues, making it unique among MMPs. The active-site cleft of MMP-12 is well equipped to bind and efficiently cleave the AlaMetPhe-LeuGluAla sequence in the reactive-site loop of alpha1-PI, as occurs experimentally. Similarities in contouring and particularly a common surface hydrophobicity both inside and distant from the active-site cleft explain why MMP-12 shares many substrates with matrilysin (MMP-7). The MMP-12 structure is an excellent template for the structure-based design of specific inhibitors for emphysema therapy and for the construction of mutants to clarify the role of this MMP. Copyright 2001 Academic Press.

  14. Crystal Structure of a Complex of the Intracellular Domain of Interferon λ Receptor 1 (IFNLR1) and the FERM/SH2 Domains of Human JAK1.

    PubMed

    Zhang, Di; Wlodawer, Alexander; Lubkowski, Jacek

    2016-11-20

    The crystal structure of a construct consisting of the FERM and SH2-like domains of the human Janus kinase 1 (JAK1) bound to a fragment of the intracellular domain of the interferon-λ receptor 1 (IFNLR1) has been determined at the nominal resolution of 2.1Å. In this structure, the receptor peptide forms an 85-Å-long extended chain, in which both the previously identified box1 and box2 regions bind simultaneously to the FERM and SH2-like domains of JAK1. Both domains of JAK1 are generally well ordered, with regions not seen in the crystal structure limited to loops located away from the receptor-binding regions. The structure provides a much more complete and accurate picture of the interactions between JAK1 and IFNLR1 than those given in earlier reports, illuminating the molecular basis of the JAK-cytokine receptor association. A glutamate residue adjacent to the box2 region in IFNLR1 mimics the mode of binding of a phosphotyrosine in classical SH2 domains. It was shown here that a deletion of residues within the box1 region of the receptor abolishes stable interactions with JAK1, although it was previously shown that box2 alone is sufficient to stabilize a similar complex of the interferon-α receptor and TYK2. Published by Elsevier Ltd.

  15. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornaby, Sterling; CHESS; Szebenyi, Doletha M. E.

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Lauemore » technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.« less

  16. Potassium and magnesium succinatouranilates – Synthesis and crystal structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, S.A., E-mail: serg.alex.novikov@gmail.com; Grigoriev, M.S.; Serezhkina, L.B.

    2017-04-15

    Single crystal X-ray diffraction has been applied to determine the structures of two new uranyl coordination polymers: K{sub 2}[(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}] (1) and [Mg(H{sub 2}O){sub 6}] [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]·2H{sub 2}O (2), where C{sub 4}H{sub 4}O{sub 4}{sup 2-} is succinate anion. Crystals of 1 and 2 contain polymeric complex anions [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]{sup 2-} with the same A{sub 2}Q{sup 02}{sub 3} crystallochemical formula (A=UO{sub 2}{sup 2+}, Q{sup 02}=C{sub 4}O{sub 4}H{sub 4}{sup 2-}), and have layered (1) or chain (2) structure. It has been found, that conformation of succinate ionsmore » is one of the factors, which affects the structure of [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]{sup 2-} anions. IR spectra of these new compounds are in good agreement with crystallographic data. Topological analysis of the uranium dicarboxylates with A{sub 2}Q{sup 02}{sub 3} crystallochemical formula has shown the presence of five isomers which differ from each other in coordination sequences and / or dimensionality. - Graphical abstract: Crystal structures of two new uranium(VI) coordination polymers with succinate linkers, namely K{sub 2}[(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}] (1) and [Mg(H{sub 2}O){sub 6}][(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]·2H{sub 2}O (2), were determined by single-crystal XRD. Crystals of studied compounds are based on 2D or 1D structural units with the same composition and crystallochemical formula. Topological isomerism in A{sub 2}Q{sup 02}{sub 3} crystallochemical group and conformations of succinate anions in uranyl complexes are under discussion. - Highlights: • Two new uranium coordination polymers were synthesized. • Their structural units have the same composition and crystallochemical formula. • In spite the same composition and CCF dimensionality of units is different. • Structural features of

  17. Monomer structure of a hyperthermophilic β-glucosidase mutant forming a dodecameric structure in the crystal form

    PubMed Central

    Nakabayashi, Makoto; Kataoka, Misumi; Watanabe, Masahiro; Ishikawa, Kazuhiko

    2014-01-01

    One of the β-glucosidases from Pyrococcus furiosus (BGLPf) is found to be a hyperthermophilic tetrameric enzyme that can degrade cellooligosaccharides. Recently, the crystal structures of the tetrameric and dimeric forms were solved. Here, a new monomeric form of BGLPf was constructed by removing the C-terminal region of the enzyme and its crystal structure was solved at a resolution of 2.8 Å in space group P1. It was discovered that the mutant enzyme forms a unique dodecameric structure consisting of two hexameric rings in the asymmetric unit of the crystal. Under biological conditions, the mutant enzyme forms a monomer. This result helps explain how BGLPf has attained its oligomeric structure and thermostability. PMID:25005077

  18. VO{sub 2} (A): Reinvestigation of crystal structure, phase transition and crystal growth mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao Popuri, Srinivasa; University of Bordeaux, ICMCB, UPR 9048, F-33608 Pessac; National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Plautius Andronescu Str. No. 1, 300224 Timisoara

    2014-05-01

    Well crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal reaction in the presence of V{sub 2}O{sub 5} and oxalic acid. With the advantage of high crystalline samples, we propose P4/ncc as an appropriate space group at room temperature. From morphological studies, we found that the oriented attachment and layer by layer growth mechanisms are responsible for the formation of VO{sub 2} (A) micro rods. The structural and electronic transitions in VO{sub 2} (A) are strongly first order in nature, and a marked difference between the structural transition temperatures and electronic transitions temperature was evidenced. The reversiblemore » intra- (LTP-A to HTP-A) and irreversible inter- (HTP-A to VO{sub 2} (M1)) structural phase transformations were studied by in-situ powder X-ray diffraction. Attempts to increase the size of the VO{sub 2} (A) microrods are presented and the possible formation steps for the flower-like morphologies of VO{sub 2} (M1) are described. - Graphical abstract: Using a single step and template free hydrothermal synthesis, well crystallized VO{sub 2} (A) microrods were prepared and the P4/ncc space group was assigned to the room temperature crystal structure. Reversible and irreversible phase transitions among different VO{sub 2} polymorphs were identified and their progressive nature was highlighted. Attempts to increase the microrods size, involving layer by layer formation mechanisms, are presented. - Highlights: • Highly crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal process. • The P4/ncc space group was determined for VO{sub 2} (A) at room temperature. • The electronic structure and progressive nature of the structural phase transition were investigated. • A weak coupling between structural and electronic phase transitions was identified. • Different crystallite morphologies were discussed in relation with growth mechanisms.« less

  19. Synthesis and Crystal Structure of a Chalcone Derivative

    NASA Astrophysics Data System (ADS)

    Singh, Vikram D.; Salian, Vinutha V.; Narayana, B.; Sarojini, B. K.; Kamni; Anthal, Sumati; Kant, Rajni

    2017-12-01

    (2E)-3-(anthrance-9-yl)-1-(3,4-dichlorophenyl)prop-2-en-1-one [C23H14OCl2] is synthesized and its crystal structure is determined by single X-ray diffraction. There exist two molecules in the asymmetric unit. The dihedral angle between the benzene and anthracene moiety of the molecule A and B is 86.51(12)° and 76.42(13)°, respectively. No classical hydrogen bonds are observed and only van der Waals forces stabilize the crystal packing.

  20. Functional and evolutionary insight from the crystal structure of rubella virus protein E1.

    PubMed

    DuBois, Rebecca M; Vaney, Marie-Christine; Tortorici, M Alejandra; Kurdi, Rana Al; Barba-Spaeth, Giovanna; Krey, Thomas; Rey, Félix A

    2013-01-24

    Little is known about the three-dimensional organization of rubella virus, which causes a relatively mild measles-like disease in children but leads to serious congenital health problems when contracted in utero. Although rubella virus belongs to the same family as the mosquito-borne alphaviruses, in many respects it is more similar to other aerosol-transmitted human viruses such as the agents of measles and mumps. Although the use of the triple MMR (measles, mumps and rubella) live vaccine has limited its incidence in western countries, congenital rubella syndrome remains an important health problem in the developing world. Here we report the 1.8 Å resolution crystal structure of envelope glycoprotein E1, the main antigen and sole target of neutralizing antibodies against rubella virus. E1 is the main player during entry into target cells owing to its receptor-binding and membrane-fusion functions. The structure reveals the epitope and the neutralization mechanism of an important category of protecting antibodies against rubella infection. It also shows that rubella virus E1 is a class II fusion protein, which had hitherto only been structurally characterized for the arthropod-borne alphaviruses and flaviviruses. In addition, rubella virus E1 has an extensive membrane-fusion surface that includes a metal site, reminiscent of the T-cell immunoglobulin and mucin family of cellular proteins that bind phosphatidylserine lipids at the plasma membrane of cells undergoing apoptosis. Such features have not been seen in any fusion protein crystallized so far. Structural comparisons show that the class II fusion proteins from alphaviruses and flaviviruses, despite belonging to different virus families, are closer to each other than they are to rubella virus E1. This suggests that the constraints on arboviruses imposed by alternating cycles between vertebrates and arthropods resulted in more conservative evolution. By contrast, in the absence of this constraint, the

  1. Crystal Structure of the Complex Between Programmed Death-1 (PD-1) and its Ligand PD-L2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazar-Molnar,E.; Yan, Q.; Cao, E.

    2008-01-01

    Programmed death-1 (PD-1) is a member of the CD28/B7 superfamily that delivers negative signals upon interaction with its two ligands, PD-L1 or PD-L2. The high-resolution crystal structure of the complex formed by the complete ectodomains of murine PD-1 and PD-L2 revealed a 1:1 receptor:ligand stoichiometry and displayed a binding interface and overall molecular organization distinct from that observed in the CTLA-4/B7 inhibitory complexes. Furthermore, our structure also provides insights into the association between PD-1 and PD-L1 and highlights differences in the interfaces formed by the two PD-1 ligands (PD-Ls) Mutagenesis studies confirmed the details of the proposed PD-1/PD-L binding interfacesmore » and allowed for the design of a mutant PD-1 receptor with enhanced affinity. These studies define spatial and organizational constraints that control the localization and signaling of PD-1/PD-L complexes within the immunological synapse and provide a basis for manipulating the PD-1 pathways for immunotherapy.« less

  2. Crystal structure optimisation using an auxiliary equation of state

    NASA Astrophysics Data System (ADS)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; Walsh, Aron

    2015-11-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1.

  3. Crystal and magnetic structure of the La1-xCaxMnO3 compound (0.11⩽x⩽0.175)

    NASA Astrophysics Data System (ADS)

    Pissas, M.; Margiolaki, I.; Papavassiliou, G.; Stamopoulos, D.; Argyriou, D.

    2005-08-01

    We studied the crystal and magnetic structure of the La1-xCaxMnO3 compound for (0.11⩽x⩽0.175) using stoichiometric samples. For x<0.13 the system’s ground state is insulating canted antiferromagnetic. For 0.13⩽x⩽0.175 below the Jahn-Teller transition temperature (TJT) the crystal structure undergoes a monoclinic distortion. The crystal structure can be described with P21/c space group which permits two Mn sites. The unit-cell strain parameter s=2(a-c)/(a+c) increases for Tstructure is preserved. The monoclinic structure is discussed with relation to the orbital ordering, which can produce the ferromagnetic insulating ground state. We also studied samples that were prepared in air atmosphere. This category of samples shows ferromagnetic insulating behavior without following the particular variation of the s parameter. The crystal structure of these samples is related to the so-called O* (c>a>b/2) structure.

  4. The crystal structure of Toxoplasma gondii pyruvate kinase 1.

    PubMed

    Bakszt, Rebecca; Wernimont, Amy; Allali-Hassani, Abdellah; Mok, Man Wai; Hills, Tanya; Hui, Raymond; Pizarro, Juan C

    2010-09-14

    Pyruvate kinase (PK), which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population. We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain in the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers. We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two α-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.

  5. The Crystal Structure of Toxoplasma gondii Pyruvate Kinase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakszt, R.; Wernimont, A; Allali-Hassani, A

    Pyruvate kinase (PK), which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population. We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain inmore » the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers. We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two {alpha}-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.« less

  6. Synthesis, crystal structure, spectroscopic characterization, docking simulation and density functional studies of 1-(3,4-dimethoxyphenyl) -3-(4-flurophenyl)-propan-1-one

    NASA Astrophysics Data System (ADS)

    Khamees, Hussien Ahmed; Jyothi, Mahima; Khanum, Shaukath Ara; Madegowda, Mahendra

    2018-06-01

    The compound 1-(3,4-dimethoxyphenyl)-3-(4-flurophenyl)-propan-1-one (DFPO) was synthesized by Claisen-Schmidt condensation reaction and the single crystals were obtained by slow evaporation method. Three-dimensional structure was confirmed by single crystal X-ray diffraction method and exhibiting the triclinic crystal system with space group P-1. The crystal structure is stabilized by Csbnd H⋯O intermolecular and weak interactions. Computed molecular geometry has been obtained by density functional theory (DFT) and compared with experimental results. The spectra of both FT-IR in the range (4000-400 cm-1) and FT- Raman (3500-50 cm-1) of DFPO were recorded experimentally and computed by (DFT) using B3LYP/6-311G (d,p) as basis sets. Intramolecular charge transfer has been scanned using natural bond orbital (NBO) analysis and revealed the various contribution of bonding and lone pair to the stabilization of molecule. Nonlinear optical activity (NLO) of the title compound has been determined by second harmonic generation (SHG) and computed using DFT method. Hyperpolarizability, HOMO-LUMO energy gap, hardness, softness electronegativity and others Global reactivity descriptors of DFPO has been calculated and revealed complete picture of chemical reactivity of DFPO. Hirshfeld surface analyses were applied to investigate the intermolecular interactions and revealed that more than two-thirds of the inter contacts are associated with O⋯H, C⋯H and H⋯H interactions. Docking studies of DFPO showed inhibition of Vascular endothelial growth Factor human receptor (VEGFR-2) signalling pathway, which indicates DFPO as anti-angiogenesis, that play pivotal role in cancer, so we suggest it for clinical studies to evaluate its potential to treat human cancers.

  7. Synthesis, crystal structure and luminescent properties of a new pyrochlore type tungstate CsGa0.333W1.667O6

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Zhao, Ji; Fan, Yun-Chang; Ma, Zhao; Zhang, Rui-Juan; Liu, Bao-Zhong

    2018-06-01

    High temperature solution reaction leads to a new tungstate compound CsGa0.333W1.667O6, whose structure was determined by single-crystal X-ray diffraction analysis. The results show that it crystallizes in pyrochlore structure with cubic space group Fd-3m and a = 10.2529 (13) Å. In this structure, Ga and W atoms are in a statistical disorder manner. The self-activated luminescent properties CsGa0.333W1.667O6 were studied. Under the excitation of 323 nm, the emission spectrum exhibits a blue emission centered at 466 nm with the chromaticity coordinates (0.1838, 0.1814).

  8. Crystal structure of the V(D)J recombinase RAG1–RAG2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Min-Sung; Lapkouski, Mikalai; Yang, Wei

    2016-04-29

    V(D)J recombination in the vertebrate immune system generates a highly diverse population of immunoglobulins and T-cell receptors by combinatorial joining of segments of coding DNA. The RAG1–RAG2 protein complex initiates this site-specific recombination by cutting DNA at specific sites flanking the coding segments. Here we report the crystal structure of the mouse RAG1–RAG2 complex at 3.2 Å resolution. The 230-kilodalton RAG1–RAG2 heterotetramer is ‘Y-shaped’, with the amino-terminal domains of the two RAG1 chains forming an intertwined stalk. Each RAG1–RAG2 heterodimer composes one arm of the ‘Y’, with the active site in the middle and RAG2 at its tip. The RAG1–RAG2more » structure rationalizes more than 60 mutations identified in immunodeficient patients, as well as a large body of genetic and biochemical data. The architectural similarity between RAG1 and the hairpin-forming transposases Hermes and Tn5 suggests the evolutionary conservation of these DNA rearrangements.« less

  9. Crystal Structure of the N-Terminal Half of the Traffic Controller UL37 from Herpes Simplex Virus 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koenigsberg, Andrea L.; Heldwein, Ekaterina E.; Sandri-Goldin, Rozanne M.

    Inner tegument protein UL37 is conserved among all three subfamilies of herpesviruses. Studies of UL37 homologs from two alphaherpesviruses, herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV), have suggested that UL37 plays an essential albeit poorly defined role in intracellular capsid trafficking. At the same time, HSV and PRV homologs cannot be swapped, which suggests that in addition to a conserved function, UL37 homologs also have divergent virus-specific functions. Accurate dissection of UL37 functions requires detailed maps in the form of atomic-resolution structures. Previously, we reported the crystal structure of the N-terminal half of UL37 (UL37N) from PRV. Here,more » we report the crystal structure of HSV-1 UL37N. Comparison of the two structures reveals that UL37 homologs differ in their overall shapes, distributions of surface charges, and locations of projecting loops. In contrast, the previously identified R2 surface region is structurally conserved. We propose that within the N-terminal half of UL37, functional conservation is centered within the R2 surface region, whereas divergent structural elements pinpoint regions mediating virus-specific functions and may engage different binding partners. Together, the two structures can now serve as templates for a structure-guided exploration of both conserved and virus-specific functions of UL37. IMPORTANCEThe ability to move efficiently within host cell cytoplasm is essential for replication in all viruses. It is especially important in the neuroinvasive alphaherpesviruses, such as human herpes simplex virus 1 (HSV-1), HSV-2, and veterinarian pseudorabies virus (PRV), that infect the peripheral nervous system and have to travel long distances along axons. Capsid movement in these viruses is controlled by capsid-associated tegument proteins, yet their specific roles have not yet been defined. Systematic exploration of the roles of tegument proteins in capsid trafficking requires detailed

  10. Synthesis, antityrosinase activity of curcumin analogues, and crystal structure of (1E,4E)-1,5-bis(4-ethoxyphenyl)penta-1,4-dien-3-one

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chantrapromma, S., E-mail: suchada.c@psu.ac.th; Ruanwas, P.; Boonnak, N.

    2016-12-15

    Five derivatives of curcumin analogue (R = OCH{sub 2}CH{sub 3} (1), R = N(CH{sub 3}){sub 2} (2), R = 2,4,5-OCH{sub 3} (3), R = 2,4,6-OCH{sub 3} (4), and R = 3,4,5-OCH{sub 3} (5)) were synthesized and characterized by {sup 1}H NMR, FT-IR and UV–Vis spectroscopy. The synthesized derivatives were screened for antityrosinase activity, and found that 4 and 5 possess such activity. The crystal structure of 1 was determined by single crystal X-ray diffraction: monoclinic, sp. gr. P2{sub 1}/c, a = 17.5728(15) Å, b = 5.9121(5) Å, c = 19.8269(13) Å, β = 121.155(5)°, Z = 4. The molecule 1more » is twisted with the dihedral angle between two phenyl rings being 15.68(10)°. In the crystal packing, the molecules 1 are linked into chains by C−H···π interactions and further stacked by π···π interactions with the centroid–centroid distance of 3.9311(13) Å.« less

  11. Confirming the Revised C-Terminal Domain of the MscL Crystal Structure

    PubMed Central

    Maurer, Joshua A.; Elmore, Donald E.; Clayton, Daniel; Xiong, Li; Lester, Henry A.; Dougherty, Dennis A.

    2008-01-01

    The structure of the C-terminal domain of the mechanosensitive channel of large conductance (MscL) has generated significant controversy. As a result, several structures have been proposed for this region: the original crystal structure (1MSL) of the Mycobacterium tuberculosis homolog (Tb), a model of the Escherichia coli homolog, and, most recently, a revised crystal structure of Tb-MscL (2OAR). To understand which of these structures represents a physiological conformation, we measured the impact of mutations to the C-terminal domain on the thermal stability of Tb-MscL using circular dichroism and performed molecular dynamics simulations of the original and the revised crystal structures of Tb-MscL. Our results imply that this region is helical and adopts an α-helical bundle conformation similar to that observed in the E. coli MscL model and the revised Tb-MscL crystal structure. PMID:18326638

  12. Crystal structure of the second fibronectin type III (FN3) domain from human collagen α1 type XX.

    PubMed

    Zhao, Jingfeng; Ren, Jixia; Wang, Nan; Cheng, Zhong; Yang, Runmei; Lin, Gen; Guo, Yi; Cai, Dayong; Xie, Yong; Zhao, Xiaohong

    2017-12-01

    Collagen α1 type XX, which contains fibronectin type III (FN3) repeats involving six FN3 domains (referred to as the FN#1-FN#6 domains), is an unusual member of the fibril-associated collagens with interrupted triple helices (FACIT) subfamily of collagens. The results of standard protein BLAST suggest that the FN3 repeats might contribute to collagen α1 type XX acting as a cytokine receptor. To date, solution NMR structures of the FN#3, FN#4 and FN#6 domains have been determined. To obtain further structural evidence to understand the relationship between the structure and function of the FN3 repeats from collagen α1 type XX, the crystal structure of the FN#2 domain from human collagen α1 type XX (residues Pro386-Pro466; referred to as FN2-HCXX) was solved at 2.5 Å resolution. The crystal structure of FN2-HCXX shows an immunoglobulin-like fold containing a β-sandwich structure, which is formed by a three-stranded β-sheet (β1, β2 and β5) packed onto a four-stranded β-sheet (β3, β4, β6 and β7). Two consensus domains, tencon and fibcon, are structural analogues of FN2-HCXX. Fn8, an FN3 domain from human oncofoetal fibronectin, is the closest structural analogue of FN2-HCXX derived from a naturally occurring sequence. Based solely on the structural similarity of FN2-HCXX to other FN3 domains, the detailed functions of FN2-HCXX and the FN3 repeats in collagen α1 type XX cannot be identified.

  13. Structural and optical properties of WTe2 single crystals synthesized by DVT technique

    NASA Astrophysics Data System (ADS)

    Dixit, Vijay; Vyas, Chirag; Pathak, V. M.; Soalanki, G. K.; Patel, K. D.

    2018-05-01

    Layered transition metal di-chalcogenide (LTMDCs) crystals have attracted much attention due to their potential in optoelectronic device applications recently due to realization of their monolayer based structures. In the present investigation we report growth of WTe2 single crystals by direct vapor transport (DVT) technique. These crystals are then characterized by energy dispersive analysis of x-rays (EDAX) to study stoichiometric composition after growth. The structural properties are studied by x-ray diffraction (XRD) and selected area electron diffraction (SAED) is used to confirm orthorhombic structure of grown WTe2 crystal. Surface morphological properties of the crystals are also studied by scanning electron microscope (SEM). The optical properties of the grown crystals are studied by UV-Visible spectroscopy which gives direct band gap of 1.44 eV for grown WTe2 single crystals.

  14. Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure.

    PubMed

    Lemieux, M Joanne

    2007-01-01

    The major facilitator superfamily (MFS) of transporters represents the largest family of secondary active transporters and has a diverse range of substrates. With structural information for four MFS transporters, we can see a strong structural commonality suggesting, as predicted, a common architecture for MFS transporters. The rate for crystal structure determination of MFS transporters is slow, making modeling of both prokaryotic and eukaryotic transporters more enticing. In this review, models of eukaryotic transporters Glut1, G6PT, OCT1, OCT2 and Pho84, based on the crystal structures of the prokaryotic GlpT, based on the crystal structure of LacY are discussed. The techniques used to generate the different models are compared. In addition, the validity of these models and the strategy of using prokaryotic crystal structures to model eukaryotic proteins are discussed. For comparison, E. coli GlpT was modeled based on the E. coli LacY structure and compared to the crystal structure of GlpT demonstrating that experimental evidence is essential for accurate modeling of membrane proteins.

  15. Low-temperature crystal and magnetic structure of α – RuCl 3

    DOE PAGES

    Cao, Huibo B.; Yan, Jiaqiang; Bridges, Craig A.; ...

    2016-04-19

    Here, single crystals of the Kitaev spin-liquid candidate α – RuCl 3 have been studied to determine the low-temperature bulk properties, the structure, and the magnetic ground state. Refinements of x-ray diffraction data show that the low-temperature crystal structure is described by space group C2/m with a nearly perfect honeycomb lattice exhibiting less than 0.2% in-plane distortion. The as-grown single crystals exhibit only one sharp magnetic transition at T N = 7 K. The magnetic order below this temperature exhibits a propagation vector of k=(0,1,1/3), which coincides with a three-layer stacking of the C2/m unit cells. Magnetic transitions at highermore » temperatures up to 14 K can be introduced by deformations of the crystal that result in regions in the crystal with a two-layer stacking sequence. The best-fit symmetry-allowed magnetic structure of the as-grown crystals shows that the spins lie in the ac plane, with a zigzag configuration in each honeycomb layer. The three-layer repeat out-of-plane structure can be refined as a 120° spiral order or a collinear structure with a spin direction of 35° away from the a axis. The collinear spin configuration yields a slightly better fit and also is physically preferred. The average ordered moment in either structure is less than 0.45(5) μB per Ru 3+ ion.« less

  16. Crystal structure of a 2:1 piroxicam–gentisic acid co-crystal featuring neutral and zwitterionic piroxicam molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horstman, Elizabeth M.; Bertke, Jeffery A.; Woods, Toby J.

    2016-11-04

    A new 2:1 co-crystal of piroxicam and gentisic acid [systematic name: 4-hydroxy-1,1-dioxo-N-(pyridin-2-yl)-2H-1λ 6,2-benzothiazine-3-carboxamide–2-(4-oxido-1,1-dioxo-2H-1λ 6,2-benzothiazine-3-amido)pyridin-1-ium–2,5-dihydroxybenzoic acid, 2C 15H 13N 3O 4S·C 7H 6O 4] has been synthesized using a microfluidic platform and initially identified using Raman spectroscopy. In the co-crystal, one piroxicam molecule is in its neutral form and an intramolecular O—H...O hydrogen bond is observed. The other piroxicam molecule is zwitterionic (proton transfer from the OH group to the pyridine N atom) and two intramolecular N—H...O hydrogen bonds occur. The gentisic acid molecule shows whole-molecule disorder over two sets of sites in a 0.809(2):0.191(2) ratio. In the crystal, extensive hydrogenmore » bonding between the components forms layers propagating in theabplane.« less

  17. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI

    NASA Astrophysics Data System (ADS)

    Karthigha, S.; Krishnamoorthi, C.

    2018-03-01

    An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.

  18. Highly sensitive quartz crystal microbalance based biosensor using Au dendrite structure

    NASA Astrophysics Data System (ADS)

    Asai, Naoto; Terasawa, Hideaki; Shimizu, Tomohiro; Shingubara, Shoso; Ito, Takeshi

    2018-02-01

    A Au dendrite structure was obtained by only electroplating under a suitable potential. A blanch like nanostructure was formed along the crystal orientation. In this study, we attempted to fabricate a Au dendrite structure on the electrode of a quartz crystal by electroplating to increase the specific surface area. We estimated the effective surface area by cyclic voltammetry (CV) and monitored the frequency shift induced by antigen-antibody interaction by the quartz crystal microbalance (QCM) method. The dendrite structure with the largest surface area was formed under -0.95 V for 5 min. In the measurement of the antigen-antibody interaction, the frequency shifts of 40, 80, and 110 Hz were obtained with the dendrite structured QCM chips formed at the above potential for 1, 1.5, and 2.0 min, respectively. The sensitivity was improved compared with that QCM chip having a flat surface electrode.

  19. VEGFR-1 expressed by malignant melanoma-initiating cells is required for tumor growth.

    PubMed

    Frank, Natasha Y; Schatton, Tobias; Kim, Soo; Zhan, Qian; Wilson, Brian J; Ma, Jie; Saab, Karim R; Osherov, Veronika; Widlund, Hans R; Gasser, Martin; Waaga-Gasser, Ana-Maria; Kupper, Thomas S; Murphy, George F; Frank, Markus H

    2011-02-15

    Melanoma growth is driven by malignant melanoma-initiating cells (MMIC) identified by expression of the ATP-binding cassette (ABC) member ABCB5. ABCB5(+) melanoma subpopulations have been shown to overexpress the vasculogenic differentiation markers CD144 (VE-cadherin) and TIE1 and are associated with CD31(-) vasculogenic mimicry (VM), an established biomarker associated with increased patient mortality. Here we identify a critical role for VEGFR-1 signaling in ABCB5(+) MMIC-dependent VM and tumor growth. Global gene expression analyses, validated by mRNA and protein determinations, revealed preferential expression of VEGFR-1 on ABCB5(+) tumor cells purified from clinical melanomas and established melanoma lines. In vitro, VEGF induced the expression of CD144 in ABCB5(+) subpopulations that constitutively expressed VEGFR-1 but not in ABCB5(-) bulk populations that were predominantly VEGFR-1(-). In vivo, melanoma-specific shRNA-mediated knockdown of VEGFR-1 blocked the development of ABCB5(+) VM morphology and inhibited ABCB5(+) VM-associated production of the secreted melanoma mitogen laminin. Moreover, melanoma-specific VEGFR-1 knockdown markedly inhibited tumor growth (by > 90%). Our results show that VEGFR-1 function in MMIC regulates VM and associated laminin production and show that this function represents one mechanism through which MMICs promote tumor growth. ©2011 AACR.

  20. Crystal structure of conjugated polyketone reductase (CPR-C1) from Candida parapsilosis IFO 0708 complexed with NADPH.

    PubMed

    Qin, Hui-Min; Yamamura, Akihiro; Miyakawa, Takuya; Kataoka, Michihiko; Maruoka, Shintaro; Ohtsuka, Jun; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2013-11-01

    Conjugated polyketone reductase (CPR-C1) from Candida parapsilosis IFO 0708 is a member of the aldo-keto reductase (AKR) superfamily and reduces ketopantoyl lactone to d-pantoyl lactone in a NADPH-dependent and stereospecific manner. We determined the crystal structure of CPR-C1.NADPH complex at 2.20 Å resolution. CPR-C1 adopted a triose-phosphate isomerase (TIM) barrel fold at the core of the structure in which Thr25 and Lys26 of the GXGTX motif bind uniquely to the adenosine 2'-phosphate group of NADPH. This finding provides a novel structural basis for NADPH binding of the AKR superfamily. Copyright © 2013 Wiley Periodicals, Inc.

  1. Growth and structural, optical, and electrical properties of zincite crystals

    NASA Astrophysics Data System (ADS)

    Kaurova, I. A.; Kuz'micheva, G. M.; Rybakov, V. B.

    2013-03-01

    An X-ray diffraction study of ZnO crystals grown by the hydrothermal method has revealed reflections that give grounds to assign them to the sp. gr. P3 rather than to P63 mc. The distribution of Zn1, Zn2, O1, and O2 over structural positions, along with vacancies and incorporated zinc atoms, explains the dissymmetrization observed in terms of the kinetic (growth) phase transition of the order-disorder type, which is caused by ordering Zn and O atoms over structural positions. The color of crystals of refined compositions (Zn0.975□0.025)Zn i(0.015)(O0.990□0.010) (green) and (Zn0.965□0.035)Zn i(0.035)O (bright green) is related to different oxygen contents, which is confirmed by the results of electron probe X-ray microanalysis and absorption spectroscopy. The degree of the structural quality of crystals, their resistivity, and activation energy are also related to oxygen vacancies.

  2. Synthesis, crystal structure, thermal and nonlinear optical properties of new metal-organic single crystal: Tetrabromo (piperazinium) zincate (II) (TBPZ)

    NASA Astrophysics Data System (ADS)

    Boopathi, K.; Babu, S. Moorthy; Ramasamy, P.

    2018-04-01

    Tetrabromo (piperazinium) zincate, a new metal-organic crystal has been synthesized and its single crystal grown by slow evaporation method. The grown crystal has characterized by structural, spectral, thermal, linear and nonlinear optical properties. Single crystal X-ray diffractions study reveals that grown crystal belongs to orthorhombic crystal system with space group P212121. The presence of functional groups is identified by FT-IR spectral analysis. Thermal stability of the crystal was ascertained by TG-DTA measurement. The second order harmonic generation efficiency was measured using Kurtz and Perry technique and it was found to be 1.5 times that of KDP.

  3. One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur

    2016-11-01

    Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.

  4. Crystal structures and intermolecular interactions of two novel antioxidant triazolyl-benzimidazole compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karayel, A., E-mail: matchlessjimmy@163.com, E-mail: yccaoh@hotmail.com; Özbey, S.; Ayhan-Kılcıgil, G.

    2015-12-15

    The crystal structures of 5-(2-(p-chlorophenylbenzimidazol-1-yl-methyl)-4-(3-fluorophenyl)-2, 4-dihydro-[1,2,4]-triazole-3-thione (G6C) and 5-(2-(p-chlorophenylbenzimidazol-1-yl-methyl)-4-(2-methylphenyl)-2, 4-dihydro-[1,2,4]-triazole-3-thione (G4C) have been determined by single-crystal X-ray diffraction. Benzimidazole ring systems in both molecules are planar. The triazole part is almost perpendicular to the phenyl and the benzimidazole parts of the molecules in order to avoid steric interactions between the rings. The crystal structures are stabilized by intermolecular hydrogen bonds between the amino group of the triazole and the nitrogen atom of benzimidazole of a neighboring molecule.

  5. Crystal-contact engineering to obtain a crystal form of the Kelch domain of human Keap1 suitable for ligand-soaking experiments.

    PubMed

    Hörer, Stefan; Reinert, Dirk; Ostmann, Katja; Hoevels, Yvette; Nar, Herbert

    2013-06-01

    Keap1 is a substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex and plays an important role in the cellular response to oxidative stress. It binds Nrf2 with its Kelch domain and thus triggers the ubiquitinylation and degradation of Nrf2. Oxidative stress prevents the degradation of Nrf2 and leads to the activation of cytoprotective genes. Therefore, Keap1 is an attractive drug target in inflammatory diseases. The support of a medicinal chemistry effort by structural research requires a robust crystallization system in which the crystals are preferably suited for performing soaking experiments. This facilitates the generation of protein-ligand complexes in a routine and high-throughput manner. The structure of human Keap1 has been described previously. In this crystal form, however, the binding site for Nrf2 was blocked by a crystal contact. This interaction was analysed and mutations were introduced to disrupt this crystal contact. One double mutation (E540A/E542A) crystallized in a new crystal form in which the binding site for Nrf2 was not blocked and was accessible to small-molecule ligands. The crystal structures of the apo form of the mutated Keap1 Kelch domain (1.98 Å resolution) and of the complex with an Nrf2-derived peptide obtained by soaking (2.20 Å resolution) are reported.

  6. Spectroscopic studies, antimicrobial activities and crystal structures of N-(2-hydroxy-3-methoxybenzalidene)1-aminonaphthalene

    NASA Astrophysics Data System (ADS)

    Ünver, Hüseyin; Yıldız, Mustafa; Dülger, Başaran; Özgen, Özen; Kendi, Engin; Durlu, Tahsin Nuri

    2005-03-01

    Schiff base N-(2-hydroxy-3-methoxybenzalidene)1-aminonaphthalene has been synthesized from the reaction of 2-hydroxy-3-methoxybenzaldehyde with 1-aminonaphthalene. The compound were characterized by elemental analysis, FT-IR, 1H NMR, 13C NMR and UV-visible techniques. The UV-visible spectra of the Schiff base were studied in polar and nonpolar solvents in acidic and basic media. The structure of the compound has been examined cyrstallographically. There are two independent molecules in the asymmetric unit. It crystallizes in the monoclinic space group P21/c, with unit cell parameters: a=14, 602(2), b=5,800(1), c=16, 899(1) Å, V=1394.4(2) Å 3, Dx=1.321 g cm -3 and Z=4. The crystal structure was solved by direct methods and refined by full-matrix least squares to a find R=0.041 of for 1179 observed reflections. The title compound's antimicrobial activities also have been studied. The antimicrobial activities of the ligand has been screened in vitro against the organisms Escherichia coli ATCC 11230, Staphylococcus aureus ATCC 6538, Klebsiella pneumoniae UC57, Micrococcus luteus La 2971, Proteus vulgaris ATCC 8427, Pseudomonas aeruginosa ATCC 27853, Mycobacterium smegmatis CCM 2067, Bacillus cereus ATCC 7064 and Listeria monocytogenes ATCC 15313, the yeast cultures Candida albicans ATCC 10231, Kluyveromyces fragilis NRRL 2415, Rhodotorula rubra DSM 70403, Debaryomyces hansenii DSM 70238 and Hanseniaspora guilliermondii DSM 3432.

  7. The Crystal Structure of GXGD Membrane Protease FlaK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Hu; Y Xue; S Lee

    2011-12-31

    The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 {angstrom} resolution. The structure contains six transmembrane helices.more » The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.« less

  8. The crystal structure of GXGD membrane protease FlaK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jian; Xue, Yi; Lee, Sangwon

    2011-09-20

    The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 {angstrom} resolution. The structure contains six transmembrane helices.more » The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.« less

  9. Correlation among far-infrared reflection modes, crystal structures and dielectric properties of Ba(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}–CaTiO{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Feng, E-mail: sf751106@sina.com.cn; Sun, Haiqing; Liu, Hongquan

    Highlights: • Crystal symmetry decreases with CT concentration from cubic to hexagonal structure. • Lattice constants as well as the ordered degree change with CT concentration. • Ordered structures turn from 1:1 to 1:2 ordering with change of crystal structures. • There is a correlation between FIR phonon modes and dielectric properties. • There is a correlation between FIR phonon modes and crystal structures. - Abstract: Ba(Zn{sub 1/3}Nb{sub 2/3})O{sub 3} (BZN)–CaTiO{sub 3} (CT) microwave dielectric ceramics were synthesized at 1395 °C for 4 h using conventional solid-state sintering technique with different CT contents. The ceramics were characterized by X-ray diffractionmore » (XRD) and far-infrared reflection (FIR) spectroscopy to evaluate correlations among crystal structures, dielectric properties, and infrared modes. XRD results showed that crystal symmetry decreased with increased CT concentration from cubic to hexagonal structure, and lattice constants and ordered degree changed accordingly. Ordered phases transformed from 1:1 to 1:2 ordered structure with crystal-structure change. FIR results demonstrated that two new IR active modes appeared at 300 cm{sup −1}, and another new mode appeared at 600 cm{sup −1} for the x ≥ 0.60 sample, which agreed with the change in crystal structures as confirmed by XRD results. Correlations between FIR modes and dielectric properties were established.« less

  10. Neratinib reverses ATP-binding cassette B1-mediated chemotherapeutic drug resistance in vitro, in vivo, and ex vivo.

    PubMed

    Zhao, Xiao-qin; Xie, Jing-dun; Chen, Xing-gui; Sim, Hong May; Zhang, Xu; Liang, Yong-ju; Singh, Satyakam; Talele, Tanaji T; Sun, Yueli; Ambudkar, Suresh V; Chen, Zhe-Sheng; Fu, Li-wu

    2012-07-01

    Neratinib, an irreversible inhibitor of epidermal growth factor receptor and human epidermal receptor 2, is in phase III clinical trials for patients with human epidermal receptor 2-positive, locally advanced or metastatic breast cancer. The objective of this study was to explore the ability of neratinib to reverse tumor multidrug resistance attributable to overexpression of ATP-binding cassette (ABC) transporters. Our results showed that neratinib remarkably enhanced the sensitivity of ABCB1-overexpressing cells to ABCB1 substrates. It is noteworthy that neratinib augmented the effect of chemotherapeutic agents in inhibiting the growth of ABCB1-overexpressing primary leukemia blasts and KBv200 cell xenografts in nude mice. Furthermore, neratinib increased doxorubicin accumulation in ABCB1-overexpressing cell lines and Rhodamine 123 accumulation in ABCB1-overexpressing cell lines and primary leukemia blasts. Neratinib stimulated the ATPase activity of ABCB1 at low concentrations but inhibited it at high concentrations. Likewise, neratinib inhibited the photolabeling of ABCB1 with [(125)I]iodoarylazidoprazosin in a concentration-dependent manner (IC(50) = 0.24 μM). Neither the expression of ABCB1 at the mRNA and protein levels nor the phosphorylation of Akt was affected by neratinib at reversal concentrations. Docking simulation results were consistent with the binding conformation of neratinib within the large cavity of the transmembrane region of ABCB1, which provides computational support for the cross-reactivity of tyrosine kinase inhibitors with human ABCB1. In conclusion, neratinib can reverse ABCB1-mediated multidrug resistance in vitro, ex vivo, and in vivo by inhibiting its transport function.

  11. Neratinib Reverses ATP-Binding Cassette B1-Mediated Chemotherapeutic Drug Resistance In Vitro, In Vivo, and Ex Vivo

    PubMed Central

    Zhao, Xiao-qin; Xie, Jing-dun; Chen, Xing-gui; Sim, Hong May; Zhang, Xu; Liang, Yong-ju; Singh, Satyakam; Talele, Tanaji T.; Sun, Yueli; Ambudkar, Suresh V.; Chen, Zhe-Sheng

    2012-01-01

    Neratinib, an irreversible inhibitor of epidermal growth factor receptor and human epidermal receptor 2, is in phase III clinical trials for patients with human epidermal receptor 2-positive, locally advanced or metastatic breast cancer. The objective of this study was to explore the ability of neratinib to reverse tumor multidrug resistance attributable to overexpression of ATP-binding cassette (ABC) transporters. Our results showed that neratinib remarkably enhanced the sensitivity of ABCB1-overexpressing cells to ABCB1 substrates. It is noteworthy that neratinib augmented the effect of chemotherapeutic agents in inhibiting the growth of ABCB1-overexpressing primary leukemia blasts and KBv200 cell xenografts in nude mice. Furthermore, neratinib increased doxorubicin accumulation in ABCB1-overexpressing cell lines and Rhodamine 123 accumulation in ABCB1-overexpressing cell lines and primary leukemia blasts. Neratinib stimulated the ATPase activity of ABCB1 at low concentrations but inhibited it at high concentrations. Likewise, neratinib inhibited the photolabeling of ABCB1 with [125I]iodoarylazidoprazosin in a concentration-dependent manner (IC50 = 0.24 μM). Neither the expression of ABCB1 at the mRNA and protein levels nor the phosphorylation of Akt was affected by neratinib at reversal concentrations. Docking simulation results were consistent with the binding conformation of neratinib within the large cavity of the transmembrane region of ABCB1, which provides computational support for the cross-reactivity of tyrosine kinase inhibitors with human ABCB1. In conclusion, neratinib can reverse ABCB1-mediated multidrug resistance in vitro, ex vivo, and in vivo by inhibiting its transport function. PMID:22491935

  12. Thermoelectric properties of SnSe1-xSx(0 1) single crystals

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Minh Hai; Duong, Anh Tuan; Duvjir, Ganbat; Trinh, Thi Ly; Nguyen, Van Quang; Kim, Jungdae; Cho, Sunglae

    Tin selenide (SnSe), a p-type semiconductor, has attracted many attention due to its excellent thermoelectric efficiency, i.e., ZT = 2.6 along the b-axis of its high temperature phase. This issue has renewed interests in thermoelectric properties of the materials which adopted the same layered structure as SnSe, such as SnS, GeS, and GeSe. Among these compounds, tin (II) sulfide (SnS) is exceptionally attractive because of its natural abundance and low toxicity. However, the experimental results show that SnS has possessed a small value of the figure of merit. To optimize the thermoelectric performance of SnS, making solid solution is a potential way. That is our motivation for the investigation of SnSe1-xSx single crystals' thermoelectric properties. In this study, SnSe1-xSx (0 1) single crystals were fabricated using the temperature gradient method. The crystal structure was investigated by SEM and XRD, which indicated that fabricated SnSe1-xSx single crystals have layered structure with lattice constants change gradually following Vegard's law. Transport properties were synthesized by physical properties measurement system (PPMS). We observed that for x = 0.2, SnSe0.8S0.2, electrical resistivity and Seebeck coefficient were 0.52 Ω . cm and 639.36 μVK-1 at 270 K, respectively, which resulted in the power factor of 0.78 μWK-2cm-1. Furthermore, we will discuss about the thermal conductivity and microscopic surface structure of these samples.

  13. Development of a high-throughput crystal structure-determination platform for JAK1 using a novel metal-chelator soaking system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caspers, Nicole L.; Han, Seungil; Rajamohan, Francis

    2016-10-27

    Crystals of phosphorylated JAK1 kinase domain were initially generated in complex with nucleotide (ADP) and magnesium. The tightly bound Mg 2+-ADP at the ATP-binding site proved recalcitrant to ligand displacement. Addition of a molar excess of EDTA helped to dislodge the divalent metal ion, promoting the release of ADP and allowing facile exchange with ATP-competitive small-molecule ligands. Many kinases require the presence of a stabilizing ligand in the ATP site for crystallization. This procedure could be useful for developing co-crystallization systems with an exchangeable ligand to enable structure-based drug design of other protein kinases.

  14. Crystal structure and hydrogen-bonding patterns in 5-fluoro-cytosinium picrate.

    PubMed

    Mohana, Marimuthu; Thomas Muthiah, Packianathan; McMillen, Colin D

    2017-03-01

    In the crystal structure of the title compound, 5-fluoro-cytosinium picrate, C 4 H 5 FN 3 O + ·C 6 H 2 N 3 O 7 - , one N heteroatom of the 5-fluoro-cytosine (5FC) ring is protonated. The 5FC ring forms a dihedral angle of 19.97 (11)° with the ring of the picrate (PA - ) anion. In the crystal, the 5FC + cation inter-acts with the PA - anion through three-centre N-H⋯O hydrogen bonds, forming two conjoined rings having R 2 1 (6) and R 1 2 (6) motifs, and is extended by N-H⋯O hydrogen bonds and C-H⋯O inter-actions into a two-dimensional sheet structure lying parallel to (001). Also present in the crystal structure are weak C-F⋯π inter-actions.

  15. 1.55 Å resolution X-ray crystal structure of Rv3902c from Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Bharat G.; Moates, Derek B.; Kim, Heung-Bok

    The 1.55 Å resolution X-ray crystal structure of Rv3902c from M. tuberculosis reveals a novel fold. The crystallographic structure of the Mycobacterium tuberculosis (TB) protein Rv3902c (176 residues; molecular mass of 19.8 kDa) was determined at 1.55 Å resolution. The function of Rv3902c is unknown, although several TB genes involved in bacterial pathogenesis are expressed from the operon containing the Rv3902c gene. The unique structural fold of Rv3902c contains two domains, each consisting of antiparallel β-sheets and α-helices, creating a hand-like binding motif with a small binding pocket in the palm. Structural homology searches reveal that Rv3902c has an overallmore » structure similar to that of the Salmonella virulence-factor chaperone InvB, with an r.m.s.d. for main-chain atoms of 2.3 Å along an aligned domain.« less

  16. Crystal structure determination of new antimitotic agent bis(p-fluorobenzyl)trisulfide.

    PubMed

    An, Haoyun; Hu, Xiurong; Gu, Jianming; Chen, Linshen; Xu, Weiming; Mo, Xiaopeng; Xu, Wanhong; Wang, Xiaobo; Xu, Xiao

    2008-01-01

    The purpose of this research was to investigate the physical characteristics and crystalline structure of bis(p-fluorobenzyl)trisulfide, a new anti-tumor agent. Methods used included X-ray single crystal diffraction, X-ray powder diffraction (XRPD), Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetric (DSC) and thermogravimetric (TG) analyses. The findings obtained with X-ray single crystal diffraction showed that a monoclinic unit cell was a = 12.266(1) A, b = 4.7757(4) A, c = 25.510(1) A, beta = 104.25(1) degrees ; cell volume = 1,448.4(2) A(3), Z = 4, and space group C2/c. The XRPD studies of the four crystalline samples, obtained by recrystallization from four different solvents, indicated that they had the same diffraction patterns. The diffraction pattern stimulated from the crystal structure data is in excellent agreement with the experimental results. In addition, the identical FT-IR spectra of the four crystalline samples revealed absorption bands corresponding to S-S and C-S stretching as well as the characteristic aromatic substitution. Five percent weight loss at 163.3 degrees C was observed when TG was used to study the decomposition process in the temperature range of 20-200 degrees C. DSC also allowed for the determination of onset temperatures at 60.4(1)-60.7(3) degrees C and peak temperatures at 62.1(3)-62.4(3) degrees C for the four crystalline samples studied. The results verified that the single crystal structure shared the same crystal form with the four crystalline samples investigated.

  17. The Crystal Structure Analysis of Group B Streptococcus Sortase C1: A Model for the ;Lid; Movement upon Substrate Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khare, Baldeep; Fu, Zheng-Qing; Huang, I-Hsiu

    2012-02-07

    A unique feature of the class-C-type sortases, enzymes essential for Gram-positive pilus biogenesis, is the presence of a flexible 'lid' anchored in the active site. However, the mechanistic details of the 'lid' displacement, suggested to be a critical prelude for enzyme catalysis, are not yet known. This is partly due to the absence of enzyme-substrate and enzyme-inhibitor complex crystal structures. We have recently described the crystal structures of the Streptococcus agalactiae SAG2603 V/R sortase SrtC1 in two space groups (type II and type III) and that of its 'lid' mutant and proposed a role of the 'lid' as a protectormore » of the active-site hydrophobic environment. Here, we report the crystal structures of SAG2603 V/R sortase C1 in a different space group (type I) and that of its complex with a small-molecule cysteine protease inhibitor. We observe that the catalytic Cys residue is covalently linked to the small-molecule inhibitor without lid displacement. However, the type I structure provides a view of the sortase SrtC1 lid displacement while having structural elements similar to a substrate sorting motif suitably positioned in the active site. We propose that these major conformational changes seen in the presence of a substrate mimic in the active site may represent universal features of class C sortase substrate recognition and enzyme activation.« less

  18. Relationship of CYP2D6, CYP3A, POR, and ABCB1 genotypes with galantamine plasma concentrations.

    PubMed

    Noetzli, Muriel; Guidi, Monia; Ebbing, Karsten; Eyer, Stephan; Zumbach, Serge; Giannakopoulos, Panteleimon; von Gunten, Armin; Csajka, Chantal; Eap, Chin B

    2013-04-01

    The frequently prescribed antidementia drug galantamine is extensively metabolized by the enzymes cytochrome P450 (CYP) 2D6 and CYP3A and is a substrate of the P-glycoprotein. We aimed to study the relationship between genetic variants influencing the activity of these enzymes and transporters with galantamine steady state plasma concentrations. In this naturalistic cross-sectional study, 27 older patients treated with galantamine were included. The patients were genotyped for common polymorphisms in CYP2D6, CYP3A4/5, POR, and ABCB1, and galantamine steady state plasma concentrations were determined. The CYP2D6 genotype seemed to be an important determinant of galantamine pharmacokinetics, with CYP2D6 poor metabolizers presenting 45% and 61% higher dose-adjusted galantamine plasma concentrations than heterozygous and homozygous CYP2D6 extensive metabolizers (median 2.9 versus 2.0 ng/mL · mg, P = 0.025, and 1.8 ng/mL · mg, P = 0.004), respectively. The CYP2D6 genotype significantly influenced galantamine plasma concentrations. The influence of CYP2D6 polymorphisms on the treatment efficacy and tolerability should be further investigated.

  19. Crystallization and preliminary X-ray diffraction studies of polyketide synthase-1 (PKS-1) from Cannabis sativa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taguchi, Chiho; Quantum Beam Science Directorate, Japan Atomic Energy Agency; Taura, Futoshi

    Polyketide synthase-1 from C. sativa has been crystallized. The crystal diffracted to 1.55 Å resolution with sufficient quality for further structure determination. Polyketide synthase-1 (PKS-1) is a novel type III polyketide synthase that catalyzes the biosynthesis of hexanoyl triacetic acid lactone in Cannabis sativa (Mexican strain). PKS-1 was overproduced in Escherichia coli, purified and finally crystallized in two different space groups. The crystal obtained in 0.1 M HEPES buffer pH 7.5 containing 0.2 M calcium acetate and 20%(w/v) polyethylene glycol 3350 diffracted to 1.65 Å resolution and belonged to space group P1, with unit-cell parameters a = 54.3, b =more » 59.3, c = 62.6 Å, α = 69, β = 81, γ = 80°. Another crystal obtained in 0.1 M HEPES buffer pH 7.5 containing 0.2 M sodium chloride and 20%(w/v) polyethylene glycol 3350 diffracted to 1.55 Å resolution and belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 54.3, b = 110, c = 130 Å. These data will enable us to determine the crystal structure of PKS-1.« less

  20. The Crystal and Molecular Structure of an Asymmetric Diacetylene Monomer, 6-(2-methyl-4-nitroanilino)-2,4-hexadiyne-1-ol

    NASA Technical Reports Server (NTRS)

    Vlasse, Marcus; Paley, Mark S.

    1993-01-01

    The crystal and molecular structure of an asymmetric diacetylene monomer has been determined from x-ray diffraction data. The crystals, obtained from an acetone/pentane solution, are orthorhombic, Fdd2 with Z = 16 in a unit cell having dimensions of a = 42.815(6) A, b = 22.224(5) A, c = 4.996(l) A. The structure was solved by direct methods and refined by least- squares techniques to an R(sub F) of 6.4% for 988 reflections and 171 variables. The diacetylene chains are disposed in the unit cell in a complex manner in order to satisfy the hydrogen- bonding, crystal packing, and symmetry requirements of the system. The solid state polymerization mechanism is discussed with respect to the geometric disposition of the diacetylene chains. These chains are far apart and incorrectly oriented with respect to each other to permit polymerization in the crystal by means of 1,4-addition, consistent with the Baughman mechanistic model.

  1. VEGFR-1 Expressed by Malignant Melanoma-Initiating Cells Is Required for Tumor Growth

    PubMed Central

    Frank, Natasha Y.; Schatton, Tobias; Kim, Soo; Zhan, Qian; Wilson, Brian J.; Ma, Jie; Saab, Karim R.; Osherov, Veronika; Widlund, Hans R.; Gasser, Martin; Waaga-Gasser, Ana-Maria; Kupper, Thomas S.; Murphy, George F.; Frank, Markus H.

    2011-01-01

    Melanoma growth is driven by malignant melanoma-initiating cells (MMIC) identified by expression of the ATP-binding cassette (ABC) member ABCB5. ABCB5+ melanoma subpopulations have been shown to overexpress the vasculogenic differentiation markers CD144 (VE-cadherin) and TIE1 and are associated with CD31− vasculogenic mimicry (VM), an established biomarker associated with increased patient mortality. Here we identify a critical role for VEGFR-1 signaling in ABCB5+ MMIC-dependent VM and tumor growth. Global gene expression analyses, validated by mRNA and protein determinations, revealed preferential expression of VEGFR-1 on ABCB5+ tumor cells purified from clinical melanomas and established melanoma lines. In vitro, VEGF induced the expression of CD144 in ABCB5+ subpopulations that constitutively expressed VEGFR-1 but not in ABCB5− bulk populations that were predominantly VEGFR-1−. In vivo, melanoma-specific shRNA-mediated knockdown of VEGFR-1 blocked the development of ABCB5+ VM morphology and inhibited ABCB5+ VM-associated production of the secreted melanoma mitogen laminin. Moreover, melanoma-specific VEGFR-1 knockdown markedly inhibited tumor growth (by >90%). Our results show that VEGFR-1 function in MMIC regulates VM and associated laminin production and show that this function represents one mechanism through which MMICs promote tumor growth. PMID:21212411

  2. Synthesis, crystal structure, and magnetic properties of two-dimensional divalent metal glutarate/dipyridylamine coordination polymers, with a single crystal-to-single crystal transformation in the copper derivative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montney, Matthew R.; Supkowski, Ronald M.; Staples, Richard J.

    Hydrothermal reaction of divalent metal chlorides with glutaric acid and 4,4'-dipyridylamine (dpa) has afforded an isostructural family of coordination polymers with formulation [M(glu)(dpa)]{sub n} (M=Co (1), Ni (2), Cu (3); glu=glutarate). Square pyramidal coordination is seen in 1-3, with semi-ligation of a sixth donor to produce a '5+1' extended coordination sphere. Neighboring metal atoms are linked into 1D [M(glu)]{sub n} neutral chains through chelating/monodentate bridging glutarate moieties with a syn-anti binding mode, and semi-chelation of the pendant carboxylate oxygen. These chains further connect into 2D layers through dipodal dpa ligands. Neighboring layers stack into the pseudo 3D crystal structure ofmore » 1-3 through supramolecular hydrogen bonding between dpa amine units and the semi-chelated glutarate oxygen atoms. The variable temperature magnetic behavior of 1-3 was explored and modeled as infinite 1D Heisenberg chains. Notably, complex 3 undergoes a thermally induced single crystal-to-single crystal transformation between centric and acentric space groups, with a conformationally disordered unilayer structure at 293 K and an ordered bilayer structure at 173 K. All materials were further characterized via infrared spectroscopy and elemental and thermogravimetric analyses. - Graphical abstract: The coordination polymers [M(glu)(dpa)]{sub n} (M=Co (1), Ni (2), Cu (3); glu=glutarate, dpa=4,4'-dipyridylamine) exhibit 2D layer structures based on 1D [M(glu)]{sub n} chains linked through dpa tethers. Antiferromagnetic coupling is observed for 2 and 3, while ferromagnetism is predominant in 1. Compound 3 undergoes a thermally induced single crystal-to-single crystal transformation from an acentric to a centrosymmetric space group.« less

  3. Crystal Structure and Regulation of the Citrus Pol III Repressor MAF1 by Auxin and Phosphorylation.

    PubMed

    Soprano, Adriana Santos; Giuseppe, Priscila Oliveira de; Shimo, Hugo Massayoshi; Lima, Tatiani Brenelli; Batista, Fernanda Aparecida Heleno; Righetto, Germanna Lima; Pereira, José Geraldo de Carvalho; Granato, Daniela Campos; Nascimento, Andrey Fabricio Ziem; Gozzo, Fabio Cesar; de Oliveira, Paulo Sérgio Lopes; Figueira, Ana Carolina Migliorini; Smetana, Juliana Helena Costa; Paes Leme, Adriana Franco; Murakami, Mario Tyago; Benedetti, Celso Eduardo

    2017-09-05

    MAF1 is the main RNA polymerase (Pol) III repressor that controls cell growth in eukaryotes. The Citrus ortholog, CsMAF1, was shown to restrict cell growth in citrus canker disease but its role in plant development and disease is still unclear. We solved the crystal structure of the globular core of CsMAF1, which reveals additional structural elements compared with the previously available structure of hMAF1, and explored the dynamics of its flexible regions not present in the structure. CsMAF1 accumulated in the nucleolus upon leaf excision, and this translocation was inhibited by auxin and by mutation of the PKA phosphorylation site, S45, to aspartate. Additionally, mTOR phosphorylated recombinant CsMAF1 and the mTOR inhibitor AZD8055 blocked canker formation in normal but not CsMAF1-silenced plants. These results indicate that the role of TOR on cell growth induced by Xanthomonas citri depends on CsMAF1 and that auxin controls CsMAF1 interaction with Pol III in citrus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Solvent effects on the crystal growth structure and morphology of the pharmaceutical dirithromycin

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Liang, Zuozhong

    2017-12-01

    Solvent effects on the crystal structure and morphology of pharmaceutical dirithromycin molecules were systematically investigated using both experimental crystallization and theoretical simulation. Dirithromycin is one of the new generation of macrolide antibiotics with two polymorphic forms (Form I and Form II) and many solvate forms. Herein, six solvates of the dirithromycin, including acetonitrile, acetonitrile/water, acetone, 1-propanol, N,N-dimethylformamide (DMF) and cyclohexane, were studied. Experimentally, we crystallized the dirithromycin molecules in different solvents by the solvent evaporating method and measured the crystal structures with the X-ray diffraction (XRD). We compared these crystal structures of dirithromycin solvates and analyzed the solvent property-determined structure evolution. The solvents have a strong interaction with the dirithromycin molecule due to the formation of inter-molecular interactions (such as the hydrogen bonding and close contacts (sum of vdW radii)). Theoretically, we calculated the ideal crystal habit based on the solvated structures with the attachment growth (AE) model. The predicted morphologies and aspect ratios of dirithromycin solvates agree well with the experimental results. This work could be helpful to better understand the structure and morphology evolution of solvates controlled by solvents and guide the crystallization of active pharmaceutical ingredients in the pharmaceutical industry.

  5. Crystal Structure of the Cohesin Gatekeeper Pds5 and in Complex with Kleisin Scc1.

    PubMed

    Lee, Byung-Gil; Roig, Maurici B; Jansma, Marijke; Petela, Naomi; Metson, Jean; Nasmyth, Kim; Löwe, Jan

    2016-03-08

    Sister chromatid cohesion is mediated by cohesin, whose Smc1, Smc3, and kleisin (Scc1) subunits form a ring structure that entraps sister DNAs. The ring is opened either by separase, which cleaves Scc1 during anaphase, or by a releasing activity involving Wapl, Scc3, and Pds5, which bind to Scc1 and open its interface with Smc3. We present crystal structures of Pds5 from the yeast L. thermotolerans in the presence and absence of the conserved Scc1 region that interacts with Pds5. Scc1 binds along the spine of the Pds5 HEAT repeat fold and is wedged between the spine and C-terminal hook of Pds5. We have isolated mutants that confirm the observed binding mode of Scc1 and verified their effect on cohesin by immunoprecipitation and calibrated ChIP-seq. The Pds5 structure also reveals architectural similarities to Scc3, the other large HEAT repeat protein of cohesin and, most likely, Scc2. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Magnetic assembly of nonmagnetic particles into photonic crystal structures.

    PubMed

    He, Le; Hu, Yongxing; Kim, Hyoki; Ge, Jianping; Kwon, Sunghoon; Yin, Yadong

    2010-11-10

    We report the rapid formation of photonic crystal structures by assembly of uniform nonmagnetic colloidal particles in ferrofluids using external magnetic fields. Magnetic manipulation of nonmagnetic particles with size down to a few hundred nanometers, suitable building blocks for producing photonic crystals with band gaps located in the visible regime, has been difficult due to their weak magnetic dipole moment. Increasing the dipole moment of magnetic holes has been limited by the instability of ferrofluids toward aggregation at high concentration or under strong magnetic field. By taking advantage of the superior stability of highly surface-charged magnetite nanocrystal-based ferrofluids, in this paper we have been able to successfully assemble 185 nm nonmagnetic polymer beads into photonic crystal structures, from 1D chains to 3D assemblies as determined by the interplay of magnetic dipole force and packing force. In a strong magnetic field with large field gradient, 3D photonic crystals with high reflectance (83%) in the visible range can be rapidly produced within several minutes, making this general strategy promising for fast creation of large-area photonic crystals using nonmagnetic particles as building blocks.

  7. The Surface Structure of Ground Metal Crystals

    NASA Technical Reports Server (NTRS)

    Boas, W.; Schmid, E.

    1944-01-01

    The changes produced on metallic surfaces as a result of grinding and polishing are not as yet fully understood. Undoubtedly there is some more or less marked change in the crystal structure, at least, in the top layer. Hereby a diffusion of separated crystal particles may be involved, or, on plastic material, the formation of a layer in greatly deformed state, with possible recrystallization in certain conditions. Czochralski verified the existence of such a layer on tin micro-sections by successive observations of the texture after repeated etching; while Thomassen established, roentgenographically by means of the Debye-Scherrer method, the existence of diffused crystal fractions on the surface of ground and polished tin bars, which he had already observed after turning (on the lathe). (Thickness of this layer - 0.07 mm). Whether this layer borders direct on the undamaged base material or whether deformed intermediate layers form the transition, nothing is known. One observation ty Sachs and Shoji simply states that after the turning of an alpha-brass crystal the disturbance starting from the surface, penetrates fairly deep (approx. 1 mm) into the crystal (proof by recrystallization at 750 C).

  8. Band structures in fractal grading porous phononic crystals

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  9. Construction of crystal structure prototype database: methods and applications.

    PubMed

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-26

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  10. Construction of crystal structure prototype database: methods and applications

    NASA Astrophysics Data System (ADS)

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-01

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  11. The Crystal Structure of TAL Effector PthXo1 Bound to Its DNA Target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mak, Amanda Nga-Sze; Bradley, Philip; Cernadas, Raul A.

    2012-02-10

    DNA recognition by TAL effectors is mediated by tandem repeats, each 33 to 35 residues in length, that specify nucleotides via unique repeat-variable diresidues (RVDs). The crystal structure of PthXo1 bound to its DNA target was determined by high-throughput computational structure prediction and validated by heavy-atom derivatization. Each repeat forms a left-handed, two-helix bundle that presents an RVD-containing loop to the DNA. The repeats self-associate to form a right-handed superhelix wrapped around the DNA major groove. The first RVD residue forms a stabilizing contact with the protein backbone, while the second makes a base-specific contact to the DNA sense strand.more » Two degenerate amino-terminal repeats also interact with the DNA. Containing several RVDs and noncanonical associations, the structure illustrates the basis of TAL effector-DNA recognition.« less

  12. Crystal engineering of ibuprofen compounds: From molecule to crystal structure to morphology prediction by computational simulation and experimental study

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Liang, Zuozhong; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong

    2017-06-01

    We selected the crystal structures of ibuprofen with seven common space groups (Cc, P21/c, P212121, P21, Pbca, Pna21, and Pbcn), which was generated from ibuprofen molecule by molecular simulation. The predicted crystal structures of ibuprofen with space group P21/c has the lowest total energy and the largest density, which is nearly indistinguishable with experimental result. In addition, the XRD patterns for predicted crystal structure are highly consistent with recrystallization from solvent of ibuprofen. That indicates that the simulation can accurately predict the crystal structure of ibuprofen from the molecule. Furthermore, based on this crystal structure, we predicted the crystal habit in vacuum using the attachment energy (AE) method and considered solvent effects in a systematic way using the modified attachment energy (MAE) model. The simulation can accurately construct a complete process from molecule to crystal structure to morphology prediction. Experimentally, we observed crystal morphologies in four different polarity solvents compounds (ethanol, acetonitrile, ethyl acetate, and toluene). We found that the aspect ratio decreases of crystal habits in this ibuprofen system were found to vary with increasing solvent relative polarity. Besides, the modified crystal morphologies are in good agreement with the observed experimental morphologies. Finally, this work may guide computer-aided design of the desirable crystal morphology.

  13. Specific features of the structural and magnetic states of a Zn1 - x Ni x Se crystal ( x = 0.0025) at low temperatures

    NASA Astrophysics Data System (ADS)

    Dubinin, S. F.; Sokolov, V. I.; Parkhomenko, V. D.; Teploukhov, S. G.; Gruzdev, N. B.

    2008-12-01

    The magnetic state and the structure of a Zn1 - x Ni x Se ( x = 0.0025) bulk crystal were studied at low temperatures. It is revealed that the magnetic and crystal structures below T ≅ 15 K are dependent on the cooling rate of this dilute semiconductor. For example, on fast cooling to 4.2 K, about 10% hexagonal ferromagnetic phase is formed in the crystal. During heating, the phase disappears at T ≅ 15 K. The results obtained are discussed with allowance for the specific features of the Jahn-Teller distortions in this compound.

  14. Synthesis and Crystal Structure Study of 2’-Se-Adenosine-Derivatized DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, J.; Salon, J; Gan, J

    2010-01-01

    The selenium derivatization of nucleic acids is a novel and promising strategy for 3D structure determination of nucleic acids. Selenium can serve as an excellent anomalous scattering center to solve the phase problem, which is one of the two major bottlenecks in macromolecule X-ray crystallography. The other major bottleneck is crystallization. It has been demonstrated that the incorporated selenium functionality at the 2'-positions of the nucleosides and nucleotides is stable and does not cause significant structure perturbation. Furthermore, it was observed that the 2'-Se-derivatization could facilitate crystallization of oligonucleotides with fast crystal growth and high diffraction quality. Herein, we describemore » a convenient synthesis of the 2'-Se-adenosine phosphoramidite, and report the first synthesis and X-ray crystal structure determination of the DNA containing the 2'-Se-A derivatization. The 3D structure of 2'-Se-A-DNA decamer [5'-GTACGCGT(2'-Se-A)C-3']{sub 2} was determined at 1.75 {angstrom} resolution, the 2'-Se-functionality points to the minor groove, and the Se-modified and native structures are virtually identical. Moreover, we have observed that the 2'-Se-A modification can greatly facilitate the crystal growth with high diffraction quality. In conjunction with the crystallization facilitation by the 2'-Se-U and 2'-Se-T, this novel observation on the 2'-Se-A functionality suggests that the 2'-Se moiety is sole responsible for the crystallization facilitation and the identity of nucleobases does not influence the crystal growth significantly.« less

  15. Insights into Strand Exchange in BTB Domain Dimers from the Crystal Structures of FAZF and Miz1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stogios, Peter J.; Cuesta-Seijo, Jose Antonio; Chen, Lu

    2010-09-22

    The BTB domain is a widely distributed protein-protein interaction motif that is often found at the N-terminus of zinc finger transcription factors. Previous crystal structures of BTB domains have revealed tightly interwound homodimers, with the N-terminus from one chain forming a two-stranded anti-parallel {beta}-sheet with a strand from the other chain. We have solved the crystal structures of the BTB domains from Fanconi anemia zinc finger (FAZF) and Miz1 (Myc-interacting zinc finger 1) to resolutions of 2.0 {angstrom} and 2.6 {angstrom}, respectively. Unlike previous examples of BTB domain structures, the FAZF BTB domain is a nonswapped dimer, with each N-terminalmore » {beta}-strand associated with its own chain. As a result, the dimerization interface in the FAZF BTB domain is about half as large as in the domain-swapped dimers. The Miz1 BTB domain resembles a typical swapped BTB dimer, although it has a shorter N-terminus that is not able to form the interchain sheet. Using cysteine cross-linking, we confirmed that the promyelocytic leukemia zinc finger (PLZF) BTB dimer is strand exchanged in solution, while the FAZF BTB dimer is not. A phylogenic tree of the BTB fold based on both sequence and structural features shows that the common ancestor of the BTB domain in BTB-ZF (bric a brac, tramtrack, broad-complex zinc finger) proteins was a domain-swapped dimer. The differences in the N-termini seen in the FAZF and Miz1 BTB domains appear to be more recent developments in the structural evolution of the domain.« less

  16. Crystal chemistry and structure refinement of five hydrated calcium borates

    USGS Publications Warehouse

    Clark, J.R.; Appleman, D.E.; Christ, C.L.

    1964-01-01

    The crystal structures of the five known members of the series Ca2B6O11??xH2O (x = 1, 5, 5, 7, 9, and 13) have been refined by full-matrix least-squares techniques, yielding bond distances and angles with standard errors of less than 0??01 A?? and 0??5??, respectively. The results illustrate the crystal chemical principles that govern the structures of hydrated borate compounds. The importance of hydrogen bonding in the ferroelectric transition of colemanite is confirmed by more accurate proton assignments. ?? 1964.

  17. The 1.1 Å resolution structure of a periplasmic phosphate-binding protein from Stenotrophomonas maltophilia: a crystallization contaminant identified by molecular replacement using the entire Protein Data Bank.

    PubMed

    Keegan, Ronan; Waterman, David G; Hopper, David J; Coates, Leighton; Taylor, Graham; Guo, Jingxu; Coker, Alun R; Erskine, Peter T; Wood, Steve P; Cooper, Jonathan B

    2016-08-01

    During efforts to crystallize the enzyme 2,4-dihydroxyacetophenone dioxygenase (DAD) from Alcaligenes sp. 4HAP, a small number of strongly diffracting protein crystals were obtained after two years of crystal growth in one condition. The crystals diffracted synchrotron radiation to almost 1.0 Å resolution and were, until recently, assumed to be formed by the DAD protein. However, when another crystal form of this enzyme was eventually solved at lower resolution, molecular replacement using this new structure as the search model did not give a convincing solution with the original atomic resolution data set. Hence, it was considered that these crystals might have arisen from a protein impurity, although molecular replacement using the structures of common crystallization contaminants as search models again failed. A script to perform molecular replacement using MOLREP in which the first chain of every structure in the PDB was used as a search model was run on a multi-core cluster. This identified a number of prokaryotic phosphate-binding proteins as scoring highly in the MOLREP peak lists. Calculation of an electron-density map at 1.1 Å resolution based on the solution obtained with PDB entry 2q9t allowed most of the amino acids to be identified visually and built into the model. A BLAST search then indicated that the molecule was most probably a phosphate-binding protein from Stenotrophomonas maltophilia (UniProt ID B4SL31; gene ID Smal_2208), and fitting of the corresponding sequence to the atomic resolution map fully corroborated this. Proteins in this family have been linked to the virulence of antibiotic-resistant strains of pathogenic bacteria and with biofilm formation. The structure of the S. maltophilia protein has been refined to an R factor of 10.15% and an Rfree of 12.46% at 1.1 Å resolution. The molecule adopts the type II periplasmic binding protein (PBP) fold with a number of extensively elaborated loop regions. A fully dehydrated phosphate

  18. Crystal Structure of a Two-domain Fragment of Hepatocyte Growth Factor Activator Inhibitor-1

    PubMed Central

    Hong, Zebin; De Meulemeester, Laura; Jacobi, Annemarie; Pedersen, Jan Skov; Morth, J. Preben; Andreasen, Peter A.; Jensen, Jan K.

    2016-01-01

    Hepatocyte growth factor activator inhibitor-1 (HAI-1) is a type I transmembrane protein and inhibitor of several serine proteases, including hepatocyte growth factor activator and matriptase. The protein is essential for development as knock-out mice die in utero due to placental defects caused by misregulated extracellular proteolysis. HAI-1 contains two Kunitz-type inhibitor domains (Kunitz), which are generally thought of as a functionally self-contained protease inhibitor unit. This is not the case for HAI-1, where our results reveal how interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. Here we present an x-ray crystal structure of an HAI-1 fragment covering the internal domain and Kunitz-1. The structure reveals not only that the previously uncharacterized internal domain is a member of the polycystic kidney disease domain family but also how the two domains engage in interdomain interactions. Supported by solution small angle x-ray scattering and a combination of site-directed mutagenesis and functional assays, we show that interdomain interactions not only stabilize the fold of the internal domain but also stimulate the inhibitory activity of Kunitz-1. By completing our structural characterization of the previously unknown N-terminal region of HAI-1, we provide new insight into the interplay between tertiary structure and the inhibitory activity of a multidomain protease inhibitor. We propose a previously unseen mechanism by which the association of an auxiliary domain stimulates the inhibitory activity of a Kunitz-type inhibitor (i.e. the first structure of an intramolecular interaction between a Kunitz and another domain). PMID:27189939

  19. From molecule to solid: The prediction of organic crystal structures

    NASA Astrophysics Data System (ADS)

    Dzyabchenko, A. V.

    2008-10-01

    A method for predicting the structure of a molecular crystal based on the systematic search for a global potential energy minimum is considered. The method takes into account unequal occurrences of the structural classes of organic crystals and symmetry of the multidimensional configuration space. The programs of global minimization PMC, comparison of crystal structures CRYCOM, and approximation to the distributions of the electrostatic potentials of molecules FitMEP are presented as tools for numerically solving the problem. Examples of predicted structures substantiated experimentally and the experience of author’s participation in international tests of crystal structure prediction organized by the Cambridge Crystallographic Data Center (Cambridge, UK) are considered.

  20. Brooker's merocyanine: Comparison of single crystal structures

    NASA Astrophysics Data System (ADS)

    Hayes, Kathleen L.; Lasher, Emily M.; Choczynski, Jack M.; Crisci, Ralph R.; Wong, Calvin Y.; Dragonette, Joseph; Deschner, Joshua; Cardenas, Allan Jay P.

    2018-06-01

    Brooker's merocyanine and its derivatives are well-studied molecules due to their very interesting optical properties. Merocyanine dyes exhibit different colors in solution depending on the solvent's polarity, pH, aggregation and intermolecular interactions. The synthesis of 1-methyl-4-[(oxocyclohexadienylidene)ethylidene]-1,4-dihydropyridine (MOED) dye yielded a particularly interesting solid state structure where in one crystal lattice, MOED and its protonated form are bound by hydrogen bonding interactions.

  1. Crystal structure of group II intron domain 1 reveals a template for RNA assembly

    DOE PAGES

    Zhao, Chen; Rajashankar, Kanagalaghatta R.; Marcia, Marco; ...

    2015-10-26

    Although the importance of large noncoding RNAs is increasingly appreciated, our understanding of their structures and architectural dynamics remains limited. In particular, we know little about RNA folding intermediates and how they facilitate the productive assembly of RNA tertiary structures. In this paper, we report the crystal structure of an obligate intermediate that is required during the earliest stages of group II intron folding. Composed of domain 1 from the Oceanobacillus iheyensis group II intron (266 nucleotides), this intermediate retains native-like features but adopts a compact conformation in which the active site cleft is closed. Transition between this closed andmore » the open (native) conformation is achieved through discrete rotations of hinge motifs in two regions of the molecule. Finally, the open state is then stabilized by sequential docking of downstream intron domains, suggesting a 'first come, first folded' strategy that may represent a generalizable pathway for assembly of large RNA and ribonucleoprotein structures.« less

  2. Crystallized N-terminal domain of influenza virus matrix protein M1 and method of determining and using same

    NASA Technical Reports Server (NTRS)

    Luo, Ming (Inventor); Sha, Bingdong (Inventor)

    2000-01-01

    The matrix protein, M1, of influenza virus strain A/PR/8/34 has been purified from virions and crystallized. The crystals consist of a stable fragment (18 Kd) of the M1 protein. X-ray diffraction studies indicated that the crystals have a space group of P3.sub.t 21 or P3.sub.2 21. Vm calculations showed that there are two monomers in an asymmetric unit. A crystallized N-terminal domain of M1, wherein the N-terminal domain of M1 is crystallized such that the three dimensional structure of the crystallized N-terminal domain of M1 can be determined to a resolution of about 2.1 .ANG. or better, and wherein the three dimensional structure of the uncrystallized N-terminal domain of M1 cannot be determined to a resolution of about 2.1 .ANG. or better. A method of purifying M1 and a method of crystallizing M1. A method of using the three-dimensional crystal structure of M1 to screen for antiviral, influenza virus treating or preventing compounds. A method of using the three-dimensional crystal structure of M1 to screen for improved binding to or inhibition of influenza virus M1. The use of the three-dimensional crystal structure of the M1 protein of influenza virus in the manufacture of an inhibitor of influenza virus M1. The use of the three-dimensional crystal structure of the M1 protein of influenza virus in the screening of candidates for inhibition of influenza virus M1.

  3. Copper(II) complexes with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid: Syntheses, crystal structures and antifungal activities

    NASA Astrophysics Data System (ADS)

    Xiong, Pingping; Li, Jie; Bu, Huaiyu; Wei, Qing; Zhang, Ruolin; Chen, Sanping

    2014-07-01

    Reaction of Cu(II) with an asymmetric semi-rigid organic ligand 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid (HL), yielded five compounds, [Cu0.5L]n (1), [Cu(HL)2Cl2]n (2), [Cu(HL)2Cl2(H2O)] (3), [Cu(L)2(H2O)]n (4) and [Cu(L)(phen)(HCO2)]n (5), which have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. As for compounds 1, 2 and 5, Cu(II) is bridged through HL, Cl-, and formic acid, respectively, featuring 1D chain-structure. In compound 3, Cu(II) with hexahedral coordination sphere is assembled through hydrogen-bonding into 3D supramolecular framework. In compound 4, 1D chain units -Cu-O-Cu-O- are ligand-bridged into a 3D network. All compounds were tested on fungi (Fusarium graminearum, Altemaria solani, Macrophoma kawatsukai, Alternaria alternata and Colletotrichum gloeosporioides). Compound 1 exhibits a better antifungal effect compared to other compounds. An effect of structure on the antifungal activity has also been correlated.

  4. Crystal structures of three co-crystals of 1,2-bis-(pyridin-4-yl)ethane with 4-alk-oxy-benzoic acids: 4-eth-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), 4-n-propoxybenzoic acid-1,2-bis(pyridin-4-yl)ethane (2/1) and 4-n-but-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1).

    PubMed

    Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki

    2015-11-01

    The crystal structures of three hydrogen-bonded co-crystals of 4-alk-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), namely, 2C9H10O3·C12H12N2, (I), 2C10H12O3·C12H12N2, (II), and 2C11H14O3·C12H12N2, (III), have been determined at 93, 290 and 93 K, respectively. In (I), the asymmetric unit consists of one 4-eth-oxy-benzoic acid mol-ecule and one half-mol-ecule of 1,2-bis-(pyridin-4-yl)ethane, which lies on an inversion centre. In (II) and (III), the asymmetric units each comprise two crystallographically independent 4-alk-oxy-benzoic acid mol-ecules and one 1,2-bis-(pyridin-4-yl)ethane mol-ecule. In each crystal, the two components are linked by O-H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1unit of the acid and the base. Similar to the structure of 2:1 unit of (I), the units of (II) and (III) adopt nearly pseudo-inversion symmetry. The 2:1 units of (I), (II) and (III) are linked via C-H⋯O hydrogen bonds, forming tape structures.

  5. Crystal Structures of Intermediates in the Nitroalkane Oxidase Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heroux, A.; Bozinovski, D; Valley, M

    2009-01-01

    The flavoenzyme nitroalkane oxidase is a member of the acyl-CoA dehydrogenase superfamily. Nitroalkane oxidase catalyzes the oxidation of neutral nitroalkanes to nitrite and the corresponding aldehydes or ketones. Crystal structures to 2.2 {angstrom} resolution or better of enzyme complexes with bound substrates and of a trapped substrate-flavin adduct are described. The D402N enzyme has no detectable activity with neutral nitroalkanes. The structure of the D402N enzyme crystallized in the presence of 1-nitrohexane or 1-nitrooctane shows the presence of the substrate in the binding site. The aliphatic chain of the substrate extends into a tunnel leading to the enzyme surface. Themore » oxygens of the substrate nitro group interact both with amino acid residues and with the 2'-hydroxyl of the FAD. When nitroalkane oxidase oxidizes nitroalkanes in the presence of cyanide, an electrophilic flavin imine intermediate can be trapped (Valley, M. P., Tichy, S. E., and Fitzpatrick, P. F. (2005) J. Am. Chem. Soc. 127, 2062-2066). The structure of the enzyme trapped with cyanide during oxidation of 1-nitrohexane shows the presence of the modified flavin. A continuous hydrogen bond network connects the nitrogen of the CN-hexyl-FAD through the FAD 2'-hydroxyl to a chain of water molecules extending to the protein surface. Together, our complementary approaches provide strong evidence that the flavin cofactor is in the appropriate oxidation state and correlates well with the putative intermediate state observed within each of the crystal structures. Consequently, these results provide important structural descriptions of several steps along the nitroalkane oxidase reaction cycle.« less

  6. Protein crystal growth (5-IML-1)

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1992-01-01

    Proteins (enzymes, hormones, immunoglobulins) account for 50 pct. or more of the dry weight of most living systems. A detailed understanding of the structural makeup of a protein is essential to any systematic research pertaining to it. Most macromolecules are extremely difficult to crystallize, and many otherwise exciting projects have terminated at the crystal growth stage. In principle, there are several aspects of microgravity that might be exploited to enhance protein crystal growth. The major factor is the elimination of density driven convective flow. Other factors that can be controlled in the absence of gravity is the sedimentation of growing crystals in a gravitational field, and the potential advantage of doing containerless crystal growth. As a result of these theories and facts, one can readily understand why the microgravity environment of an Earth orbiting vehicle seems to offer unique opportunities for the protein crystallographer. This perception has led to the establishment of the Protein Crystal Growth in a Microgravity Environment (PCG/ME) project. The results of experiments already performed during STS missions have in many cases resulted in large protein crystals which are structurally correct. Thus, the near term objective of the PCG/ME project is to continue to improve the techniques, procedures, and hardware systems used to grow protein crystals in Earth orbit.

  7. Metal Complexes of New Bioactive Pyrazolone Phenylhydrazones; Crystal Structure of 4-Acetyl-3-methyl-1-phenyl-2-pyrazoline-5-one phenylhydrazone Ampp-Ph

    PubMed Central

    Idemudia, Omoruyi G.; Sadimenko, Alexander P.; Hosten, Eric C.

    2016-01-01

    The condensation reaction of phenylhydrazine and dinitrophenylhydrazine with 4-acetyl and 4-benzoyl pyrazolone precipitated air-stable acetyldinitrophenylhydrazone Ampp-Dh, benzoylphenylhydrazone Bmpp-Ph and benzoyldinitrophenylhydrazone Bmpp-Dh in their keto imine form; a study inspired by the burning interest for the development of new bioactive materials with novel properties that may become alternative therapeutic agents. Elemental analysis, FTIR, 1H, and 13C NMR, and mass spectroscopy have been used to justify their proposed chemical structures, which were in agreement with the single crystal structure of Bmpp-Dh earlier reported according to X-ray crystallography. The single crystal structure of 4-acetyl-3-methyl-1-phenyl--pyrazoline-5-one phenylhydrazone Ampp-Ph, which crystallizes in a triclinic crystal system with a P-1 (No. 2) space group is presented. Octahedral Mn(II), Ni(II), Co(II), and Cu(II) complexes of these respective ligands with two molecules each of the bidentate Schiff base, coordinating to the metal ion through the azomethine nitrogen C=N and the keto oxygen C=O, which were afforded by the reaction of aqueous solutions of the corresponding metal salts with the ligands are also reported. Their identity and proposed structures were according to elemental analysis, FTIR spectroscopy, UV-VIS spectrophotometry (electronic spectra) and Bohr magnetic moments, as well as thermogravimetric analysis (TGA) results. A look at the antibacterial and antioxidant activities of synthesized compounds using the methods of the disc diffusion against some selected bacterial isolates and 1,1-diphenyl-2-picryl-hydrazil (DPPH) respectively, showed biological activities in relation to employed standard medicinal drugs. PMID:27213342

  8. a Study of the Synchrotron Laue Method for Quantitative Crystal Structure Analysis.

    NASA Astrophysics Data System (ADS)

    Gomez de Anderez, Dora M.

    1990-01-01

    Available from UMI in association with The British Library. Quantitative crystal structure analyses have been carried out on small molecule crystals using synchrotron radiation and the Laue method. A variety of single crystal structure determinations and associated refinements are used and compared with the monochromatic analyses. The new molecular structure of 7-amino-5-bromo -4-methyl-2-oxo-1,2,3,4-tetrahidro-1, 6 -naphthyridine-8-carbonitrile (C_{10 }H_9ON_4 Br.H_2O) has been determined, first using monochromatic Mo Kalpha radiation and a four-circle diffractometer, then using synchrotron Laue diffraction photography. The structure refinements showed a R-factor of 4.97 and 14.0% for the Mo Kalpha and Laue data respectively. The molecular structure of (S)-2-chloro-2-fluoro-N-((S)-1-phenylethyl) ethanamide, (C_{10}H _{11}ClFNO), has been determined using the same crystal throughout for X-ray monochromatic analyses (Mo Kalpha and Cu K alpha) followed by synchrotron Laue data collection. The Laue and monochromatic data compare favourably. The R -factors (on F) were 6.23, 6.45 and 8.19% for the Mo K alpha, Cu Kalpha and Laue data sets respectively. The molecular structure of 3-(5-hydroxy-3-methyl-1-phenylpyrazol-4-yl)-1,3-diphenyl -prop- 2-en-1-one, (C_{25 }H_{20}N _2O_2) has been determined using the synchrotron Laue method. The results compare very well with Mo Kalpha monochromatic data. The R-factors (on F) were 4.60 and 5.29% for Mo Kalpha and Laue analysis respectively. The Laue method is assessed in locating the 20 hydrogen atoms in this structure. The structure analysis of the benzil compound ((C_6H_5 O.CO_2)) is carried out using the synchrotron Laue method firstly at room temperature and secondly at low temperature -114 ^circC. The structure shows an R-factor (on F) of 13.06% and 6.85% for each data set respectively. The synchrotron Laue method was used to collect data for ergocalciferol (Vitamin D_2). The same crystal was also used to record oscillation

  9. A Study of the Synchrotron Laue Method for Quantitative Crystal Structure Analysis

    NASA Astrophysics Data System (ADS)

    Gomez de Anderez, Dora M.

    1990-01-01

    Quantitative crystal structure analyses have been carried out on small molecule crystals using synchrotron radiation and the Laue method. A variety of single crystal structure determinations and associated refinements are used and compared with the monochromatic analyses. The new molecular structure of 7-amino-5-bromo -4-methyl-2-oxo-1,2,3,4 -tetrahidro-1,6 -naphthyridine-8-carbonitrile (C_{10 }H_9ON_4 BrcdotH_2O) has been determined, first using monochromatic Mo K alpha radiation and a four-circle diffractometer, then using synchrotron Laue diffraction photography. The structure refinements showed an R-factor of 4.97 and 14.0% for the Mo Kalpha and Laue data respectively. The molecular structure of (S)-2-chloro-2-fluoro-N-((S)-1-phenylethyl) ethanamide, (C_{10}H _{11}ClFNO), has been determined using the same crystal throughout for X-ray monochromatic analyses (Mo Kalpha and Cu K alpha) followed by synchrotron Laue data collection. The Laue and monochromatic data compare favourably. The R -factors (on F) were 6.23, 6.45 and 8.19% for the Mo K alpha, Cu Kalpha and Laue data sets respectively. The molecular structure of 3-(5-hydroxy-3-methyl-1-phenylpyrazol-4-yl)-1,3-diphenyl -prop-2-en-1-one, (C_{25}H _{20}N_2 O_2) has been determined using the synchrotron Laue method. The results compare very well with Mo Kalpha monochromatic data. The R-factors (on F) were 4.60 and 5.29% for Mo Kalpha and Laue analyses respectively. The Laue method is assessed in locating the 20 hydrogen atoms in this structure. The structure analyses of the benzil compound ((C_6H_5 OcdotCO_2)) is carried out using the synchrotron Laue method firstly at room temperature and secondly at low temperature. The structure shows an R-factor (on F) of 13.06% and 6.85% for each data set respectively. The synchrotron Laue method was used to collect data for ergocalciferol (Vitamin D_2). The same crystal was also used to record oscillation data with the synchrotron radiation monochromatic beam. A new

  10. Crystal structure analysis reveals Pseudomonas PilY1 as an essential calcium-dependent regulator of bacterial surface motility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orans, Jillian; Johnson, Michael D.L.; Coggan, Kimberly A.

    Several bacterial pathogens require the 'twitching' motility produced by filamentous type IV pili (T4P) to establish and maintain human infections. Two cytoplasmic ATPases function as an oscillatory motor that powers twitching motility via cycles of pilus extension and retraction. The regulation of this motor, however, has remained a mystery. We present the 2.1 {angstrom} resolution crystal structure of the Pseudomonas aeruginosa pilus-biogenesis factor PilY1, and identify a single site on this protein required for bacterial translocation. The structure reveals a modified {beta}-propeller fold and a distinct EF-hand-like calcium-binding site conserved in pathogens with retractile T4P. We show that preventing calciummore » binding by PilY1 using either an exogenous calcium chelator or mutation of a single residue disrupts Pseudomonas twitching motility by eliminating surface pili. In contrast, placing a lysine in this site to mimic the charge of a bound calcium interferes with motility in the opposite manner - by producing an abundance of nonfunctional surface pili. Our data indicate that calcium binding and release by the unique loop identified in the PilY1 crystal structure controls the opposing forces of pilus extension and retraction. Thus, PilY1 is an essential, calcium-dependent regulator of bacterial twitching motility.« less

  11. Crystal growth, spectral, structural and optical studies of π-conjugated stilbazolium crystal: 4-bromobenzaldehyde-4'-N'-methylstilbazolium tosylate.

    PubMed

    Krishna Kumar, M; Sudhahar, S; Bhagavannarayana, G; Mohan Kumar, R

    2014-05-05

    Nonlinear optical (NLO) organic compound, 4-bromobenzaldehyde-4'-N'-methylstilbazolium tosylate was synthesized by reflux method. The formation of molecular complex was confirmed from (1)H NMR, FT-IR and FT-Raman spectral analyses. The single crystals were grown by slow evaporation solution growth method and the crystal structure and atomic packing of grown crystal was identified. The morphology and growth axis of grown crystal were determined. The crystal perfection was analyzed using high resolution X-ray diffraction study on (001) plane. Thermal stability, decomposition stages and melting point of the grown crystal were analyzed. The optical absorption coefficient (α) and energy band gap (E(g)) of the crystal were determined using UV-visible absorption studies. Second harmonic generation efficiency of the grown crystal was examined by Kurtz powder method with different particle size using 1064 nm laser. Laser induced damage threshold study was carried out for the grown crystal using Nd:YAG laser. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Synthesis, crystal structure, Hirshfeld surfaces analysis and anti-ischemic activity of cinnamide derivatives

    NASA Astrophysics Data System (ADS)

    Zhong, Jian-gang; Han, Jia-pei; Li, Xiao-feng; Xu, Yi; Zhong, Yan; Wu, Bin

    2018-02-01

    Two cinnamide derivatives, namely, (E)-1-(4-(bis(4-methylphenyl)- methyl)piperazin-1-yl)-3-(3,4-diethoxyphenyl)prop-2-en-1-one (5) and (E)-1-(4-(bis- (4-fluorophenyl)methyl)piperazin-1-yl)-3-(4-methoxyphenyl)prop-2-en-1-one (6), have been synthesized and characterized by IR spectra, High resolution mass spectra, 1H NMR spectra, 13C NMR spectra. The compound 5 is a novel compound and has never been reported in the literature. Their crystal structures were studied by single-crystal X-ray diffraction. They all crystallize in the monoclinic system. The single-crystal X-ray revealed that compound 5 has infinite X-shaped 1-D polymeric chains structure and compound 6 has a layered 3-D structure by intermolecular interactions. Hirshfeld surface analysis demonstrated the presence of H⋯H, O⋯H, C⋯H, F⋯H, Csbnd H⋯π and π⋯π intermolecular interactions. In addition, the MTT assay results indicated that the compounds 5 and 6 display effective activities against neurotoxicity which is induced by glutamine in PC12 cells. The in vivo experiment indicated that the compound 6 has a good protective effect on cerebral infarction.

  13. Magnetic properties and crystal structure of RENiA1 and UniA1 hydrides.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordallo, H. N.; Drulis, H.; Havela, L.

    1999-08-11

    RENiAl (RE = rare-earth metal) and UNiAl compounds crystallizing in the hexagonal ZrNiAl-type structure (space group P{bar 6}2m) can absorb up to 2 and 3 hydrogen (deuterium) atoms per formula unit, respectively. Hydrogenation leads to a notable lattice expansion and modification of magnetic properties. However, the impact of hydrogenation on magnetism is the opposite for 4f- and 5f-materials: TN(T{sub c})is lowered in the case of rare-earth hydrides, while for UNiAlH(D){sub x} it increases by an order of magnitude. Here we present results of magnetic and structure studies performed of these compounds, focusing on the correlation between magnetic and structural variationsmore » and discussing possible reasons of the striking difference in effect of hydrogenation on rare-earth and actinide intermetallics.« less

  14. Crystal Structure of the Cul2-Rbx1-EloBC-VHL Ubiquitin Ligase Complex.

    PubMed

    Cardote, Teresa A F; Gadd, Morgan S; Ciulli, Alessio

    2017-06-06

    Cullin RING E3 ubiquitin ligases (CRLs) function in the ubiquitin proteasome system to catalyze the transfer of ubiquitin from E2 conjugating enzymes to specific substrate proteins. CRLs are large dynamic complexes and attractive drug targets for the development of small-molecule inhibitors and chemical inducers of protein degradation. The atomic details of whole CRL assembly and interactions that dictate subunit specificity remain elusive. Here we present the crystal structure of a pentameric CRL2 VHL complex, composed of Cul2, Rbx1, Elongin B, Elongin C, and pVHL. The structure traps a closed state of full-length Cul2 and a new pose of Rbx1 in a trajectory from closed to open conformation. We characterize hotspots and binding thermodynamics at the interface between Cul2 and pVHL-EloBC and identify mutations that contribute toward a selectivity switch for Cul2 versus Cul5 recognition. Our findings provide structural and biophysical insights into the whole Cul2 complex that could aid future drug targeting. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. The crystal structure of calcite III

    NASA Astrophysics Data System (ADS)

    Smyth, Joseph R.; Ahrens, Thomas J.

    The crystal structure of calcite III has been deduced from existing high pressure powder X-ray diffraction patterns, based on the assumption that it is a displacive modification of the calcite I structure. The structure is monoclinic with space group C2 and a Z of 6. There are two Ca and two C positions, and five O positions, and atom coordinates have been refined by distance-least-squares methods to give reasonable octahedral coordination for Ca and parallel, planar CO3 groups. Unit cell parameters refined from a published powder diffraction pattern at 4.1 GPa are: a = 8.746(8)Å b = 4.685(5)Å c = 8.275(8)Å and β= 94.4°. The structure has a calculated density of 2.949 Mg/m³ at 4.1 GPa which is less than that of aragonite at this pressure and consistent with early piston cylinder studies. This implies that calcite III is indeed a metastable intermediary between calcite I and aragonite.

  16. Crystal growth, structure and morphology of hydrocortisone methanol solvate

    NASA Astrophysics Data System (ADS)

    Chen, Jianxin; Wang, Jiangkang; Zhang, Ying; Wu, Hong; Chen, Wei; Guo, Zhichao

    2004-04-01

    Hydrocortisone (HC), an important grucocorticoid, was crystallized from methanol solvent in the form of its methanol solvate. Its crystal structure belongs to orthorhombic, space group P2 12 12 1, with the unit cell parameters a=7.712(3) Å, b=14.392(5) Å, c=18.408(6) Å, Z=4. The methanol takes part in intermolecular hydrogen bonding, so if we change the solvent, the crystal habit of HC maybe different. The long parallelepiped morphology was also predicted by Cerius 2TM simulation program. The influence of intermolecular interaction was taken into account in the attachment energy model. The morphology calculation performed on the potential energy minimized model using a generic DREIDING 2.21 force field and developed minimization protocol with derived partial charges fits the experimental crystal shape well.

  17. Growth and structural characterization of large superconducting crystals of La 2 - x Ca 1 + x Cu 2 O 6

    DOE PAGES

    Schneeloch, J. A.; Guguchia, Z.; Stone, M. B.; ...

    2017-12-01

    Lmore » arge crystals of a 2 - x Ca 1 + x Cu 2 O 6 (a-Ca-2126) with x = 0:10 and 0.15 have been grown and converted to bulk superconductors by high-pressure oxygen annealing. The superconducting transition temperature, T c, is as high as 55 K; this can be raised to 60 K by post-annealing in air. Here we present structural and magnetic characterizations of these crystals using neutron scattering and muon spin rotation techniques. While the as-grown, non-superconducting crystals are single phase, we nd that the superconducting crystals contain 3 phases forming coherent domains stacked along the c axis: the dominant a-Ca-2126 phase, very thin (1.5 unit-cell) intergrowths of a 2CuO 4, and an antiferromagnetic a 8Cu 8O 20 phase. We propose that the formation and segregation of the latter phases increases the Ca concentration of the a-Ca-2126, thus providing the hole-doping that supports superconductivity.« less

  18. Growth and structural characterization of large superconducting crystals of La 2 - x Ca 1 + x Cu 2 O 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneeloch, J. A.; Guguchia, Z.; Stone, M. B.

    Lmore » arge crystals of a 2 - x Ca 1 + x Cu 2 O 6 (a-Ca-2126) with x = 0:10 and 0.15 have been grown and converted to bulk superconductors by high-pressure oxygen annealing. The superconducting transition temperature, T c, is as high as 55 K; this can be raised to 60 K by post-annealing in air. Here we present structural and magnetic characterizations of these crystals using neutron scattering and muon spin rotation techniques. While the as-grown, non-superconducting crystals are single phase, we nd that the superconducting crystals contain 3 phases forming coherent domains stacked along the c axis: the dominant a-Ca-2126 phase, very thin (1.5 unit-cell) intergrowths of a 2CuO 4, and an antiferromagnetic a 8Cu 8O 20 phase. We propose that the formation and segregation of the latter phases increases the Ca concentration of the a-Ca-2126, thus providing the hole-doping that supports superconductivity.« less

  19. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    PubMed

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-04-05

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  20. Crystal Structure Prediction via Deep Learning.

    PubMed

    Ryan, Kevin; Lengyel, Jeff; Shatruk, Michael

    2018-06-06

    We demonstrate the application of deep neural networks as a machine-learning tool for the analysis of a large collection of crystallographic data contained in the crystal structure repositories. Using input data in the form of multi-perspective atomic fingerprints, which describe coordination topology around unique crystallographic sites, we show that the neural-network model can be trained to effectively distinguish chemical elements based on the topology of their crystallographic environment. The model also identifies structurally similar atomic sites in the entire dataset of ~50000 crystal structures, essentially uncovering trends that reflect the periodic table of elements. The trained model was used to analyze templates derived from the known binary and ternary crystal structures in order to predict the likelihood to form new compounds that could be generated by placing elements into these structural templates in combinatorial fashion. Statistical analysis of predictive performance of the neural-network model, which was applied to a test set of structures never seen by the model during training, indicates its ability to predict known elemental compositions with a high likelihood of success. In ~30% of cases, the known compositions were found among top-10 most likely candidates proposed by the model. These results suggest that the approach developed in this work can be used to effectively guide the synthetic efforts in the discovery of new materials, especially in the case of systems composed of 3 or more chemical elements.

  1. Apatinib (YN968D1) reverses multidrug resistance by inhibiting the efflux function of multiple ATP-binding cassette transporters

    PubMed Central

    Mi, Yan-jun; Liang, Yong-ju; Huang, Hong-bing; Zhao, Hong-yun; Wu, Chung-Pu; Wang, Fang; Tao, Li-yang; Zhang, Chuan-zhao; Dai, Chun-Ling; Tiwari, Amit K.; Ma, Xiao-xu; Wah To, Kenneth Kin; Ambudkar, Suresh V.; Chen, Zhe-Sheng; Fu, Li-wu

    2010-01-01

    Apatinib, a small-molecule multi-targeted tyrosine kinase inhibitor, is in phase III clinical trial for treatment of patients with non-small cell lung cancer and gastric cancer in China. In this study, we determined the effect of apatinib on the interaction of specific antineoplastic compounds with P-glycoprotein (P-gp, ABCB1), multidrug resistance protein 1 (MRP1, ABCC1) and breast cancer resistance protein (BCRP, ABCG2). Our results showed that apatinib significantly enhanced the cytotoxicity of ABCB1 or ABCG2 substrate drugs in KBv200, MCF-7/adr and HEK293/ABCB1 cells overexpressing ABCB1 and S1-M1-80, MCF-7/FLV1000 and HEK293/ABCG2-R2 cells overexpressing ABCG2 (wild-type). In contrast, apatinib did not alter the cytotoxicity of specific substrates in the parental cells and cells overexpressing ABCC1. Apatinib significantly increased the intracellular accumulation of rhodamine 123 and doxorubicin in the multidrug resistance (MDR) cells. Furthermore, apatinib significantly inhibited the photolabeling of both ABCB1 and ABCG2 with [125I]-iodoarylazidoprazosin in a concentration-dependent fashion. The ATPase activity of both ABCB1 and ABCG2 was significantly increased by apatinib. However, apatinib, at a concentration the produced a reversal of MDRl, did not significantly alter the expression of the ABCB1 or ABCG2 protein or mRNA levels or the phosphorylation of AKT and ERK1/2. Importantly, apatinib significantly enhanced the effect of paclitaxel against the ABCB1 resistant KBv200 cancer cell xenografts in nude mice. In conclusion, apatinib reverses ABCB1- and ABCG2-mediated MDR by inhibiting their transport function, but not by blocking AKT or ERK1/2 pathway or downregulating ABCB1 or ABCG2 expression. Apatinib may be useful in circumventing MDR to other conventional antineoplastic drugs. PMID:20876799

  2. Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite.

    PubMed

    Li, Z Y; Lam, W M; Yang, C; Xu, B; Ni, G X; Abbah, S A; Cheung, K M C; Luk, K D K; Lu, W W

    2007-03-01

    Recently, strontium (Sr) as ranelate compound has become increasingly popular in the treatment of osteoporosis. However, the lattice structure of bone crystal after Sr incorporation is yet to be extensively reported. In this study, we synthesized strontium-substituted hydroxyapatite (Sr-HA) with different Sr content (0.3%, 1.5% and 15% Sr-HA in mole ratio) to simulate bone crystals incorporated with Sr. The changes in chemical composition and lattice structure of apetite after synthetic incorporation of Sr were evaluated to gain insight into bone crystal changes after incorporation of Sr. X-ray diffraction (XRD) patterns revealed that 0.3% and 1.5% Sr-HA exhibited single phase spectrum, which was similar to that of HA. However, 15% Sr-HA induced the incorporation of HPO4(2-) and more CO3(2-), the crystallinity reduced dramatically. Transmission electron microscopy (TEM) images showed that the crystal length and width of 0.3% and 1.5% Sr-HA increased slightly. Meanwhile, the length and width distribution were broadened and the aspect ratio decreased from 10.68+/-4.00 to 7.28+/-2.80. The crystal size and crystallinity of 15% Sr-HA dropped rapidly, which may suggest that the fundamental crystal structure is changed. The findings from this work indicate that current clinical dosage which usually results in Sr incorporation of below 1.5% may not change chemical composition and lattice structure of bone, while it will broaden the bone crystal size distribution and strengthen the bone.

  3. Structure, dielectric and electric properties of diisobutylammonium hydrogen sulfate crystal

    NASA Astrophysics Data System (ADS)

    Bednarchuk, Tamara J.; Kinzhybalo, Vasyl; Markiewicz, Ewa; Hilczer, Bożena; Pietraszko, Adam

    2018-02-01

    Diisobutylammonium hydrogen sulfate, a new organic-inorganic hybrid compound, was successfully synthesized and three structural phases in 298-433 K temperature range were revealed by differential scanning calorimetry and X-ray powder diffraction studies. Single crystal X-ray diffraction data were used to describe the crystal structures in each particular case. In phase III (below 336/319 K on heating/cooling) the crystal arrangement appears to be within the triclinic symmetry with P-1 space group. During heating in the 336-339 K region (and 319-337 K on cooling) the crystal exists in the phase II, characterized by monoclinic symmetry with P21/c space group. Consequently, above 339 K (during heating, and 337 K during cooling temperature sequences), i.e. in phase I the crystal exhibits orthorhombic symmetry (Cmce space group). Ferroelastic domain structure was observed in phase III. These phase boundaries (III→II and II→I) were accompanied by the presence of small anomalies, apparent in the dielectric permittivity and electric conductivity experimental data. Fast proton transport with activation energy of 0.23 eV was observed in the high temperature phase I and related to phonon assisted proton diffusion conditioned by disorder of diisobutylammonium (diba) cations, as well as by high thermal displacements of oxygen and sulfur atoms of hydrogen sulfate anion (hs).

  4. Crystal structure of human aldehyde dehydrogenase 1A3 complexed with NAD+ and retinoic acid

    PubMed Central

    Moretti, Andrea; Li, Jianfeng; Donini, Stefano; Sobol, Robert W.; Rizzi, Menico; Garavaglia, Silvia

    2016-01-01

    The aldehyde dehydrogenase family 1 member A3 (ALDH1A3) catalyzes the oxidation of retinal to the pleiotropic factor retinoic acid using NAD+. The level of ALDHs enzymatic activity has been used as a cancer stem cell marker and seems to correlate with tumour aggressiveness. Elevated ALDH1A3 expression in mesenchymal glioma stem cells highlights the potential of this isozyme as a prognosis marker and drug target. Here we report the first crystal structure of human ALDH1A3 complexed with NAD+ and the product all-trans retinoic acid (REA). The tetrameric ALDH1A3 folds into a three domain-based architecture highly conserved along the ALDHs family. The structural analysis revealed two different and coupled conformations for NAD+ and REA that we propose to represent two snapshots along the catalytic cycle. Indeed, the isoprenic moiety of REA points either toward the active site cysteine, or moves away adopting the product release conformation. Although ALDH1A3 shares high sequence identity with other members of the ALDH1A family, our structural analysis revealed few peculiar residues in the 1A3 isozyme active site. Our data provide information into the ALDH1As catalytic process and can be used for the structure-based design of selective inhibitors of potential medical interest. PMID:27759097

  5. Heat shock factor-1 knockout induces multidrug resistance gene, MDR1b, and enhances P-glycoprotein (ABCB1)-based drug extrusion in the heart

    PubMed Central

    Krishnamurthy, Karthikeyan; Vedam, Kaushik; Kanagasabai, Ragu; Druhan, Lawrence J.; Ilangovan, Govindasamy

    2012-01-01

    Heat-shock factor 1 (HSF-1), a transcription factor for heat-shock proteins (HSPs), is known to interfere with the transcriptional activity of many oncogenic factors. In the present work, we have discovered that HSF-1 ablation induced the multidrug resistance gene, MDR1b, in the heart and increased the expression of P-glycoprotein (P-gp, ABCB1), an ATP binding cassette that is usually associated with multidrug-resistant cancer cells. The increase in P-gp enhanced the extrusion of doxorubicin (Dox) to alleviate Dox-induced heart failure and reduce mortality in mice. Dox-induced left ventricular (LV) dysfunction was significantly reduced in HSF-1−/− mice. DNA-binding activity of NF-κB was higher in HSF-1−/− mice. IκB, the NF-κB inhibitor, was depleted due to enhanced IκB kinase (IKK)-α activity. In parallel, MDR1b gene expression and a large increase in P-gp and lowering Dox loading were observed in HSF-1−/− mouse hearts. Moreover, application of the P-gp antagonist, verapamil, increased Dox loading in HSF-1−/− cardiomyocytes, deteriorated cardiac function in HSF-1−/− mice, and decreased survival. MDR1 promoter activity was higher in HSF-1−/− cardiomyocytes, whereas a mutant MDR1 promoter with heat-shock element (HSE) mutation showed increased activity only in HSF-1+/+ cardiomyocytes. However, deletion of HSE and NF-κB binding sites diminished luminescence in both HSF-1+/+ and HSF-1−/− cardiomyocytes, suggesting that HSF-1 inhibits MDR1 activity in the heart. Thus, because high levels of HSF-1 are attributed to poor prognosis of cancer, systemic down-regulation of HSF-1 before chemotherapy is a potential therapeutic approach to ameliorate the chemotherapy-induced cardiotoxicity and enhance cancer prognosis. PMID:22615365

  6. Amplified Emission and Field-Effect Transistor Characteristics of One-Dimensionally Structured 2,5-Bis(4-biphenylyl)thiophene Crystals.

    PubMed

    Hashimoto, Kazumasa; Sasaki, Fumio; Hotta, Shu; Yanagi, Hisao

    2016-04-01

    One-dimensional (1D) structures of 2,5-bis(4-biphenylyl)thiophene (BP1T) crystals are fabricated for light amplification and field-effect transistor (FET) measurements. A strip-shaped 1D structure (10 µm width) made by photolitography of a vapor-deposited polycrystalline film shows amplified spontaneous emission and lasing oscillations under optical pumping. An FET fabricated with this 1D structure exhibits hole-conduction with a mobility of µh = 8.0 x 10(-3) cm2/Vs. Another 1 D-structured FET is fabricated with epitaxially grown needle-like crystals of BP1T. This needle-crystal FET exhibits higher mobility of µh = 0.34 cm2/Vs. This improved hole mobility is attributed to the single-crystal channel of epitaxial needles while the grain boudaries in the polycrystalline 1 D-structure decrease the carrier transport.

  7. Crystal and Molecular Structure of a Collagen-Like Peptide at 1.9 overset{circ}{A} Resolution

    NASA Astrophysics Data System (ADS)

    Bella, Jordi; Eaton, Mark; Brodsky, Barbara; Berman, Helen M.

    1994-10-01

    The structure of a protein triple helix has been determined at 1.9 angstrom resolution by x-ray crystallographic studies of a collagen-like peptide containing a single substitution of the consensus sequence. This peptide adopts a triple-helical structure that confirms the basic features determined from fiber diffraction studies on collagen: supercoiling of polyproline II helices and interchain hydrogen bonding that follows the model II of Rich and Crick. In addition, the structure provides new information concerning the nature of this protein fold. Each triple helix is surrounded by a cylinder of hydration, with an extensive hydrogen bonding network between water molecules and peptide acceptor groups. Hydroxyproline residues have a critical role in this water network. The interaxial spacing of triple helices in the crystal is similar to that in collagen fibrils, and the water networks linking adjacent triple helices in the crystal structure are likely to be present in connective tissues. The breaking of the repeating (X-Y-Gly)_n pattern by a Gly-->Ala substitution results in a subtle alteration of the conformation, with a local untwisting of the triple helix. At the substitution site, direct interchain hydrogen bonds are replaced with interstitial water bridges between the peptide groups. Similar conformational changes may occur in Gly-->X mutated collagens responsible for the diseases osteogenesis imperfecta, chondrodysplasias, and Ehlers-Danlos syndrome IV.

  8. A novel perovskite-like Ta-bronze KTa1+zO3: preparation, stoichiometry, conductivity and crystal structure studies.

    PubMed

    Arakcheeva, A; Chapuis, G; Grinevitch, V; Shamray, V

    2001-04-01

    A new cubic Ta-bronze (1) KTa(1+z)(+(5-delta))O(3) [z approximately 0.107 (3)] was obtained on a cathode by molten salt electrolysis of the system K(2)TaOF(5)-K(3)TaO(2)F(4)-(KF + NaF + LiF)(eutectic). Black, metallic cubic crystals of (1) are formed together with tetragonal beta-Ta. The perovskite-like crystal structure of (1) [a = 4.005 (1) A, space group Pm3m] was refined with anharmonic displacement parameters for Ta and K atoms and anisotropic displacement parameters for a split O-atom position [KM4CCD diffractometer; lambda(Mo Kalpha); 3320 measured reflections with I > 3sigma(I); R = 0.0095, wR = 0.0065, Deltarho(min) = -0.91 e A(-3), Deltarho(max) = 0.65 e A(-3)]. Defects in the O and K atomic positions were found. (1) is a semiconductor in the temperature range 4-300 K, whereas the well studied and closely related colourless transparent crystals KTa(+5)O(3) (2) are dielectric. Differences in the properties of (1) and (2) are assumed to be connected with the existence of Ta dumb-bells statistically distributed into the KTaO(3) matrix.

  9. Correlating Single Crystal Structure, Nanomechanical, and Bulk Compaction Behavior of Febuxostat Polymorphs.

    PubMed

    Yadav, Jayprakash A; Khomane, Kailas S; Modi, Sameer R; Ugale, Bharat; Yadav, Ram Naresh; Nagaraja, C M; Kumar, Navin; Bansal, Arvind K

    2017-03-06

    Febuxostat exhibits unprecedented solid forms with a total of 40 polymorphs and pseudopolymorphs reported. Polymorphs differ in molecular arrangement and conformation, intermolecular interactions, and various physicochemical properties, including mechanical properties. Febuxostat Form Q (FXT Q) and Form H1 (FXT H1) were investigated for crystal structure, nanomechanical parameters, and bulk deformation behavior. FXT Q showed greater compressibility, densification, and plastic deformation as compared to FXT H1 at a given compaction pressure. Lower mechanical hardness of FXT Q (0.214 GPa) as compared to FXT H1 (0.310 GPa) was found to be consistent with greater compressibility and lower mean yield pressure (38 MPa) of FXT Q. Superior compaction behavior of FXT Q was attributed to the presence of active slip systems in crystals which offered greater plastic deformation. By virtue of greater compressibility and densification, FXT Q showed higher tabletability over FXT H1. Significant correlation was found with anticipation that the preferred orientation of molecular planes into a crystal lattice translated nanomechanical parameters to a bulk compaction process. Moreover, prediction of compactibility of materials based on true density or molecular packing should be carefully evaluated, as slip-planes may cause deviation in the structure-property relationship. This study supported how molecular level crystal structure confers a bridge between particle level nanomechanical parameters and bulk level deformation behavior.

  10. The crystal structure of galactitol-1-phosphate 5-dehydrogenase from Escherichia coli K12 provides insights into its anomalous behavior on IMAC processes.

    PubMed

    Esteban-Torres, María; Alvarez, Yanaisis; Acebrón, Iván; de las Rivas, Blanca; Muñoz, Rosario; Kohring, Gert-Wieland; Roa, Ana María; Sobrino, Mónica; Mancheño, José M

    2012-09-21

    Endogenous galactitol-1-phosphate 5-dehydrogenase (GPDH) (EC 1.1.1.251) from Escherichia coli spontaneously interacts with Ni(2+)-NTA matrices becoming a potential contaminant for recombinant, target His-tagged proteins. Purified recombinant, untagged GPDH (rGPDH) converted galactitol into tagatose, and d-tagatose-6-phosphate into galactitol-1-phosphate, in a Zn(2+)- and NAD(H)-dependent manner and readily crystallized what has permitted to solve its crystal structure. In contrast, N-terminally His-tagged GPDH was marginally stable and readily aggregated. The structure of rGPDH revealed metal-binding sites characteristic from the medium-chain dehydrogenase/reductase protein superfamily which may explain its ability to interact with immobilized metals. The structure also provides clues on the harmful effects of the N-terminal His-tag. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Crystal structure and hydrogen-bonding patterns in 5-fluoro­cytosinium picrate

    PubMed Central

    Mohana, Marimuthu; Thomas Muthiah, Packianathan; McMillen, Colin D.

    2017-01-01

    In the crystal structure of the title compound, 5-fluoro­cytosinium picrate, C4H5FN3O+·C6H2N3O7 −, one N heteroatom of the 5-fluoro­cytosine (5FC) ring is protonated. The 5FC ring forms a dihedral angle of 19.97 (11)° with the ring of the picrate (PA−) anion. In the crystal, the 5FC+ cation inter­acts with the PA− anion through three-centre N—H⋯O hydrogen bonds, forming two conjoined rings having R 2 1(6) and R 1 2(6) motifs, and is extended by N—H⋯O hydrogen bonds and C—H⋯O inter­actions into a two-dimensional sheet structure lying parallel to (001). Also present in the crystal structure are weak C—F⋯π inter­actions. PMID:28316809

  12. A novel structure of gel grown strontium cyanurate crystal and its structural, optical, electrical characterization

    NASA Astrophysics Data System (ADS)

    Divya, R.; Nair, Lekshmi P.; Bijini, B. R.; Nair, C. M. K.; Gopakumar, N.; Babu, K. Rajendra

    2017-12-01

    Strontium cyanurate crystals with novel structure and unique optical property like mechanoluminescence have been grown by conventional gel method. Transparent crystals were obtained. The single crystal X-ray diffraction analysis reveals the exquisite structure of the grown crystal. The crystal is centrosymmetric and has a three dimensional polymeric structure. The powder X ray diffraction analysis confirms its crystalline nature. The functional groups present in the crystal were identified by Fourier transform infrared spectroscopy. Elemental analysis confirmed the composition of the complex. A study of thermal properties was done by thermo gravimetric analysis and differential thermal analysis. The optical properties like band gap, refractive index and extinction coefficient were evaluated from the UV visible spectral analysis. The etching study was done to reveal the dislocations in the crystal which in turn explains mechanoluminescence emission. The mechanoluminescence property exhibited by the crystal makes it suitable for stress sensing applications. Besides being a centrosymmetric crystal, it also exhibits NLO behavior. Dielectric properties were studied and theoretical calculations of Fermi energy, valence electron plasma energy, penn gap and polarisability have been done.

  13. Crystal structure of enolase from Drosophila melanogaster.

    PubMed

    Sun, Congcong; Xu, Baokui; Liu, Xueyan; Zhang, Zhen; Su, Zhongliang

    2017-04-01

    Enolase is an important enzyme in glycolysis and various biological processes. Its dysfunction is closely associated with diseases. Here, the enolase from Drosophila melanogaster (DmENO) was purified and crystallized. A crystal of DmENO diffracted to 2.0 Å resolution and belonged to space group R32. The structure was solved by molecular replacement. Like most enolases, DmENO forms a homodimer with conserved residues in the dimer interface. DmENO possesses an open conformation in this structure and contains conserved elements for catalytic activity. This work provides a structural basis for further functional and evolutionary studies of enolase.

  14. High frequency of a single nucleotide substitution (c.-6-180T>G) of the canine MDR1/ABCB1 gene associated with phenobarbital-resistant idiopathic epilepsy in Border Collie dogs.

    PubMed

    Mizukami, Keijiro; Yabuki, Akira; Chang, Hye-Sook; Uddin, Mohammad Mejbah; Rahman, Mohammad Mahbubur; Kushida, Kazuya; Kohyama, Moeko; Yamato, Osamu

    2013-01-01

    A single nucleotide substitution (c.-6-180T>G) associated with resistance to phenobarbital therapy has been found in the canine MDR1/ABCB1 gene in Border Collies with idiopathic epilepsy. In the present study, a PCR-restriction fragment length polymorphism assay was developed for genotyping this mutation, and a genotyping survey was carried out in a population of 472 Border Collies in Japan to determine the current allele frequency. The survey demonstrated the frequencies of the T/T wild type, T/G heterozygote, and G/G mutant homozygote to be 60.0%, 30.3%, and 9.8%, respectively, indicating that the frequency of the mutant G allele is extremely high (24.9%) in Border Collies. The results suggest that this high mutation frequency of the mutation is likely to cause a high prevalence of phenobarbital-resistant epilepsy in Border Collies.

  15. Crystal Structure of Cocosin, A Potential Food Allergen from Coconut (Cocos nucifera).

    PubMed

    Jin, Tengchuan; Wang, Cheng; Zhang, Caiying; Wang, Yang; Chen, Yu-Wei; Guo, Feng; Howard, Andrew; Cao, Min-Jie; Fu, Tong-Jen; McHugh, Tara H; Zhang, Yuzhu

    2017-08-30

    Coconut (Cocos nucifera) is an important palm tree. Coconut fruit is widely consumed. The most abundant storage protein in coconut fruit is cocosin (a likely food allergen), which belongs to the 11S globulin family. Cocosin was crystallized near a century ago, but its structure remains unknown. By optimizing crystallization conditions and cryoprotectant solutions, we were able to obtain cocosin crystals that diffracted to 1.85 Å. The cocosin gene was cloned from genomic DNA isolated from dry coconut tissue. The protein sequence deduced from the predicted cocosin coding sequence was used to guide model building and structure refinement. The structure of cocosin was determined for the first time, and it revealed a typical 11S globulin feature of a double layer doughnut-shaped hexamer.

  16. High-brightness tapered laser diodes with photonic crystal structures

    NASA Astrophysics Data System (ADS)

    Li, Yi; Du, Weichuan; Kun, Zhou; Gao, Songxin; Ma, Yi; Tang, Chun

    2018-02-01

    Beam quality of tapered laser diodes is limited by higher order lateral mode. On purpose of optimizing the brightness of tapered laser diodes, we developed a novel design of tapered diodes. This devices based on InGaAs/AlGaAs asymmetry epitaxial structure, containing higher order lateral mode filtering schemes especially photonic crystal structures, which fabricated cost effectively by using standard photolithography and dry etch processes. Meanwhile, the effects of photonic crystal structures on mode control are also investigated theoretically by FDBPM (Finite-Difference Beam Propagation Method) calculation. We achieved a CW optical output power of 6.9W at 940nm for a single emitter with 4 mm cavity length. A nearly diffraction limited beam of M2 ≍1.9 @ 0.5W has been demonstrated, and a highest brightness of β =75MW/(cm2 ·sr) was reached.

  17. Crystal orientation dependence of femtosecond laser-induced periodic surface structure on (100) silicon.

    PubMed

    Jiang, Lan; Han, Weina; Li, Xiaowei; Wang, Qingsong; Meng, Fantong; Lu, Yongfeng

    2014-06-01

    It is widely believed that laser-induced periodic surface structures (LIPSS) are independent of material crystal structures. This Letter reports an abnormal phenomenon of strong dependence of the anisotropic formation of periodic ripples on crystal orientation, when Si (100) is processed by a linearly polarized femtosecond laser (800 nm, 50 fs, 1 kHz). LIPSS formation sensitivity with a π/2 modulation is found along different crystal orientations with a quasi-cosinusoid function when the angle between the crystal orientation and polarization direction is changed from 0° to 180°. Our experiments indicate that it is much easier (or more difficult) to form ripple structures when the polarization direction is aligned with the lattice axis [011]/[011¯] (or [001]). The modulated nonlinear ionization rate along different crystal orientations, which arises from the direction dependence of the effective mass of the electron is proposed to interpret the unexpected anisotropic LIPSS formation phenomenon. Also, we demonstrate that the abnormal phenomenon can be applied to control the continuity of scanned ripple lines along different crystal orientations.

  18. Physical and Structural Studies on the Cryo-cooling of Insulin Crystals

    NASA Technical Reports Server (NTRS)

    Lovelace, J.; Bellamy, H.; Snell, E. H.; Borgstahl, G.

    2003-01-01

    Reflection profiles were analyzed from microgravity-(mg) and earth-grown insulin crystals to measure mosaicity (h) and to reveal mosaic domain structure and composition. The effects of cryocooling on single and multi-domain crystals were compared. The effects of cryocooling on insulin structure were also re-examined. Microgravity crystals were larger, more homogeneous, and more perfect than earth crystals. Several mg crystals contained primarily a single mosaic domain with havg of 0.005deg. The earth crystals varied in quality and all contained multiple domains with havg of 0.031deg. Cryocooling caused a 43-fold increase in h for mg crystals (havg=0.217deg) and an %fold increase for earth crystals (havg=0.246deg). These results indicate that very well-ordered crystals are not completely protected from the stresses associated with cryocooling, especially when structural perturbations occur. However, there were differences in the reflection profiles. For multi-mosaic domain crystals, each domain individually broadened and separated from the other domains upon cryo-cooling. Cryo-cooling did not cause an increase in the number of domains. A crystal composed of a single domain retained this domain structure and the reflection profiles simply broadened. Therefore, an improved signal-to-noise ratio for each reflection was measured from cryo-cooled single domain crystals relative to cryo-cooled multi-domain crystals. This improved signal, along with the increase in crystal size, facilitated the measurement of the weaker high- resolution reflections. The observed broadening of reflection profiles indicates increased variation in unit cell dimensions which may be linked to cryo-cooling-associated structural changes and disorder.

  19. Crystal structure of the ligand-bound glucagon-like peptide-1 receptor extracellular domain.

    PubMed

    Runge, Steffen; Thøgersen, Henning; Madsen, Kjeld; Lau, Jesper; Rudolph, Rainer

    2008-04-25

    The glucagon-like peptide-1 receptor (GLP-1R) belongs to Family B1 of the seven-transmembrane G protein-coupled receptors, and its natural agonist ligand is the peptide hormone glucagon-like peptide-1 (GLP-1). GLP-1 is involved in glucose homeostasis, and activation of GLP-1R in the plasma membrane of pancreatic beta-cells potentiates glucose-dependent insulin secretion. The N-terminal extracellular domain (nGLP-1R) is an important ligand binding domain that binds GLP-1 and the homologous peptide Exendin-4 with differential affinity. Exendin-4 has a C-terminal extension of nine amino acid residues known as the "Trp cage", which is absent in GLP-1. The Trp cage was believed to interact with nGLP-1R and thereby explain the superior affinity of Exendin-4. However, the molecular details that govern ligand binding and specificity of nGLP-1R remain undefined. Here we report the crystal structure of human nGLP-1R in complex with the antagonist Exendin-4(9-39) solved by the multiwavelength anomalous dispersion method to 2.2A resolution. The structure reveals that Exendin-4(9-39) is an amphipathic alpha-helix forming both hydrophobic and hydrophilic interactions with nGLP-1R. The Trp cage of Exendin-4 is not involved in binding to nGLP-1R. The hydrophobic binding site of nGLP-1R is defined by discontinuous segments including primarily a well defined alpha-helix in the N terminus of nGLP-1R and a loop between two antiparallel beta-strands. The structure provides for the first time detailed molecular insight into ligand binding of the human GLP-1 receptor, an established target for treatment of type 2 diabetes.

  20. Synthesis and crystal structure analysis of uranyl triple acetates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klepov, Vladislav V., E-mail: vladislavklepov@gmail.com; Department of Chemistry, Samara National Research University, 443086 Samara; Serezhkina, Larisa B.

    2016-12-15

    Single crystals of triple acetates NaR[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O (R=Mg, Co, Ni, Zn), well-known for their use as reagents for sodium determination, were grown from aqueous solutions and their structural and spectroscopic properties were studied. Crystal structures of the mentioned phases are based upon (Na[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}){sup 2–} clusters and [R(H{sub 2}O){sub 6}]{sup 2+} aqua-complexes. The cooling of a single crystal of NaMg[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O from 300 to 100 K leads to a phase transition from trigonal to monoclinic crystal system. Intermolecular interactions between the structural units and their mutual packing were studiedmore » and compared from the point of view of the stereoatomic model of crystal structures based on Voronoi-Dirichlet tessellation. Using this method we compared the crystal structures of the triple acetates with Na[UO{sub 2}(CH{sub 3}COO){sub 3}] and [R(H{sub 2}O){sub 6}][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} and proposed reasons of triple acetates stability. Infrared and Raman spectra were collected and their bands were assigned. - Graphical abstract: Single crystals of uranium based triple acetates, analytical reagents for sodium determination, were synthesized and structurally, spectroscopically and topologically characterized. The structures were compared with the structures of compounds from preceding families [M(H{sub 2}O){sub 6})][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} (M = Mg, Co, Ni, Zn) and Na[UO{sub 2}(CH{sub 3}COO){sub 3}]. Analysis was performed with the method of molecular Voronoi-Dirichlet polyhedra to reveal a large contribution of the hydrogen bonds into intermolecular interactions which can be a reason of low solubility of studied complexes.« less

  1. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  2. The use of small-molecule structures to complement protein–ligand crystal structures in drug discovery

    PubMed Central

    Cole, Jason C.

    2017-01-01

    Many ligand-discovery stories tell of the use of structures of protein–ligand complexes, but the contribution of structural chemistry is such a core part of finding and improving ligands that it is often overlooked. More than 800 000 crystal structures are available to the community through the Cambridge Structural Database (CSD). Individually, these structures can be of tremendous value and the collection of crystal structures is even more helpful. This article provides examples of how small-molecule crystal structures have been used to complement those of protein–ligand complexes to address challenges ranging from affinity, selectivity and bioavailability though to solubility. PMID:28291759

  3. Copper(II) complexes with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid: Syntheses, crystal structures and antifungal activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Pingping; Li, Jie; Bu, Huaiyu, E-mail: 7213792@qq.com

    2014-07-01

    Reaction of Cu(II) with an asymmetric semi-rigid organic ligand 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid (HL), yielded five compounds, [Cu{sub 0.5}L]{sub n} (1), [Cu(HL){sub 2}Cl{sub 2}]{sub n} (2), [Cu(HL){sub 2}Cl{sub 2}(H{sub 2}O)] (3), [Cu(L){sub 2}(H{sub 2}O)]{sub n} (4) and [Cu(L)(phen)(HCO{sub 2})]{sub n} (5), which have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. As for compounds 1, 2 and 5, Cu(II) is bridged through HL, Cl{sup -}, and formic acid, respectively, featuring 1D chain-structure. In compound 3, Cu(II) with hexahedral coordination sphere is assembled through hydrogen-bonding into 3D supramolecular framework. In compound 4, 1D chain units –Cu–O–Cu–O–more » are ligand-bridged into a 3D network. All compounds were tested on fungi (Fusarium graminearum, Altemaria solani, Macrophoma kawatsukai, Alternaria alternata and Colletotrichum gloeosporioides). Compound 1 exhibits a better antifungal effect compared to other compounds. An effect of structure on the antifungal activity has also been correlated. - Graphical abstract: Copper(II) compounds with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid, were prepared, structurally characterized and investigated for antifungal activity. - Highlights: • The title compounds formed by thermodynamics and thermokinetics. • The five compounds show higher inhibition percentage than reactants. • The structure effect on the antifungal activity.« less

  4. Comparison of the crystal structure and function to wild-type and His25Ala mutant human heme oxygenase-1.

    PubMed

    Zhou, Wen-Pu; Zhong, Wen-Wei; Zhang, Xue-Hong; Ding, Jian-Ping; Zhang, Zi-Li; Xia, Zhen-Wei

    2009-03-01

    Human heme oxygenase-1 (hHO-1) is a rate-limiting enzyme in heme metabolism. It regulates serum bilirubin level. Site-directed mutagenesis studies indicate that the proximal residue histidine 25 (His25) plays a key role in hHO-1 activity. A highly purified hHO-1 His25Ala mutant was generated and crystallized with a new expression system. The crystal structure of the mutant was determined by X-ray diffraction technology and molecular replacement at the resolution of 2.8 A, and the model of hHO-1 His25Ala mutant was refined. The final crystallographic and free R factors were 0.245 and 0.283, respectively. The standard bond length deviation was 0.007 A, and the standard bond angle deviation was 1.3 degrees . The mutation of His25 to Ala led to an empty pocket underneath the ferric ion in the heme, leading to loss of binding iron ligand. Although this did not cause an overall structural change, the enzymatic activity of the mutant hHO-1 was reduced by 90%. By supplementing imidazole, the HO-1 activity was restored approximately 90% to its normal level. These data suggest that Ala25 remains unchanged in the structure compared to His25, but the important catalytic function of hHO-1 is lost. Thus, it appears that His25 is a crucial residue for proper hHO-1 catalysis.

  5. Improved synthesis and crystal structure of the flexible pillared layer porous coordination polymer: Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN) 4

    DOE PAGES

    Wong-Ng, W.; Culp, J. T.; Chen, Y. S.; ...

    2013-01-01

    This paper reports our synthesis of flexible coordination polymer, Ni(L)[Ni(CN) 4], (L = 1,2-bis(4-pyridyl)ethylene (nicknamed bpene)), and its structural characterization using synchrotron single crystal X-ray diffraction. The structure of the purplish crystals has been determined to be monoclinic, space group P2 1/m, a = 13.5941(12) Å, b = 14.3621(12) Å, c = 14.2561(12) Å, β = 96.141(2)°, V = 2767.4(4) Å 3, Z = 4, D c = 1.46 g cm -1. Ni(bpene)[Ni(CN) 4] assumes a pillared layer structure with layers defined by Ni[Ni(CN) 4] n nets and bpene ligands acting as pillars. With the present crystallization technique which involvesmore » the use of concentrated ammonium hydroxide solution and dimethyl sulfoxide (DMSO), disordered free bpene ligands and solvents of crystallization (DMSO and water molecules) occupy the pores, resulting in a formula of Ni(bpene)[Ni(CN) 4](1/2)bpene∙DMSO 2H 2O, or Ni 2N 7C 24H 25SO 3. Without the inclusion of free bpene ligands and solvent molecules, the free volume is approximately 61% of the total volume; this free volume fraction is reduced to 50% with the free ligands present. Pores without the free ligands were found to have a local diameter of 5.7 Å and a main aperture of 3.5 Å. Based on the successful crystal synthesis, we also devised a new bulk synthetic technique which yielded a polycrystalline material with a significantly improved CO 2 uptake as compared to the originally reported powder material. The improved synthetic technique yielded a polycrystalline material with 40% higher CO 2 uptake compared to the previously reported powder material. An estimated 14.4 molecules of CO 2 per unit cell was obtained.« less

  6. Crystal structure of tri­hydrogen bis­{[1,1,1-tris­(2-oxido­ethyl­amino­meth­yl)ethane]­cobalt(III)} trinitrate

    PubMed Central

    Sethi, Waqas; Johannesen, Heini V.; Morsing, Thorbjørn J.; Piligkos, Stergios; Weihe, Høgni

    2015-01-01

    The title compound, [Co2(L)2]3+·3NO3 − [where L = CH3C(CH2NHCH2CH2OH1/2)3], has been synthesized from the ligand 1,1,1-tris­(2-hy­droxy­ethyl­amino­meth­yl)ethane. The cobalt(III) dimer has an inter­esting and uncommon O—H⋯O hydrogen-bonding motif with the three bridging hy­droxy H atoms each being equally disordered over two positions. In the dimeric trication, the octa­hedrally coordinated CoIII atoms and the capping C atoms lie on a threefold rotation axis. The N atoms of two crystallographically independent nitrate anions also lie on threefold rotation axes. N—H⋯O hydrogen bonding between the complex cations and nitrate anions leads to the formation of a three-dimensional network structure. The compound is a racemic conglomerate of crystals containing either d or l mol­ecules. The crystal used for this study is a d crystal. PMID:26870462

  7. Synthesis and crystal structure of chromium-bearing anhydrous wadsleyite

    NASA Astrophysics Data System (ADS)

    Sirotkina, E. A.; Bindi, L.; Bobrov, A. V.; Aksenov, S. M.; Irifune, T.

    2018-04-01

    A chromium-bearing wadsleyite (Cr- Wad) was synthesized in the model system Mg2SiO4-MgCr2O4 at 14 GPa and 1600 °C and studied from the chemical and structural point of views. Microprobe data gave the formula Mg1.930Cr0.120Si0.945O4, on the basis of 4 oxygen atoms. The crystal structure has been studied by single-crystal X-ray diffraction. The orthorhombic unit-cell parameters are: a = 5.6909(5) Å, b = 11.4640(10) Å, c = 8.2406(9) Å, V = 537.62(9) Å3, Z = 8. The structure, space group Imma, was refined to R 1 = 5.99% in anisotropic approximation using 1135 reflections with F o > 4σ( F o) and 43 parameters. Chromium was found to substitute for both Mg at the octahedral sites and Si at the tetrahedral site, according to the reaction VIMg2+ + IVSi4+ = VICr3+ + IVCr3+. On the whole, the structural topology is nearly identical to that of pure wadsleyite. The successful synthesis of Cr- Wad may be important for the thermobarometry of mantle phase associations.

  8. Preparation, crystal structure and thermal decomposition kinetics of 1-(2,4-dinitrophenyl)azo-1-nitrocyclohexane

    NASA Astrophysics Data System (ADS)

    Yang, Desuo; Ma, Haixia; Hu, Rongzu; Song, Jirong; Zhao, Fengqi

    2005-11-01

    A new three-nitro-group compound of 1-(2,4-dinitrophenyl)azo-1-nitrocyclohexane was prepared by the reaction of cyclohexanone-2,4-dinitrophenylhydrazine with nitric oxide at ambient temperature. The single crystal structure has been determined by a four-circle X-ray diffractometer. The compound is monoclinic with space group P2(1)/ c and unit-cell parameters a=11.300(2) Å, b=12.993(2) Å, c=10.155(1) Å, β=98.33(1) o, F(000)=672, the unit-cell volume V=1475.2(5) Å 3, the molecule number in one unit-cell Z=4, the absorption coefficient μ=1.19 cm -1, the calculated density Dc=1.456 g cm -3. The exothermic decomposition reaction kinetics of the compound has been studied by DSC. The kinetic model function in differential form, apparent activation energy and pre-exponential constant of this reaction are (3/4)(1-α)[-ln(1-α)] 1/4, 123.88 kJ mol -1 and 10 11.49 s -1, respectively. The critical temperature of thermal explosion of the title compound is 161.15 oC and the entropy of activation (ΔS), enthalpy of activation (ΔH), and free energy of activation (ΔG) are -34.16 J mol -1 K -1, 115.7, and 130.48 kJ mol -1, respectively.

  9. The Cambridge Structural Database: a quarter of a million crystal structures and rising.

    PubMed

    Allen, Frank H

    2002-06-01

    The Cambridge Structural Database (CSD) now contains data for more than a quarter of a million small-molecule crystal structures. The information content of the CSD, together with methods for data acquisition, processing and validation, are summarized, with particular emphasis on the chemical information added by CSD editors. Nearly 80% of new structural data arrives electronically, mostly in CIF format, and the CCDC acts as the official crystal structure data depository for 51 major journals. The CCDC now maintains both a CIF archive (more than 73,000 CIFs dating from 1996), as well as the distributed binary CSD archive; the availability of data in both archives is discussed. A statistical survey of the CSD is also presented and projections concerning future accession rates indicate that the CSD will contain at least 500,000 crystal structures by the year 2010.

  10. Growth and structure of a new photonic crystal: Chlorine substituted chalcone

    NASA Astrophysics Data System (ADS)

    Sarveshwara, H. P.; Raghavendra, S.; A, Jayarama; Menezes, Anthoni Praveen; Dharmaprakash, S. M.

    2015-06-01

    A new organic photonic material 3-(2, 4-dichlorophenyl)-1-(2,5-dimethylthiophen-3-yl)propan-1-one(DMTP) has been synthesized and crystallised in acetone solution. The functional groups present in the new material were identified by FTIR spectroscopy. The material is optically transparent in the wavelength range of 400-1100 nm. The crystal structure of DMTP was determined by single crystal X-ray diffraction. The title compound crystallizes in monoclinic system with a centrosymmetric space group P21/c. The Z-scan study revealed that the optical limiting property exhibited by the DMTP molecule is based on the reverse saturable absorption phenomena.

  11. Synthesis, crystal structure determination and antiproliferative activity of novel 2-amino-4-aryl-4,10-dihydro[1,3,5]triazino[1,2- a]benzimidazoles

    NASA Astrophysics Data System (ADS)

    Hranjec, Marijana; Pavlović, Gordana; Karminski-Zamola, Grace

    2012-01-01

    This manuscript describes the synthesis of novel 2-amino-4-aryl-4,10-dihydro-[1,3,5]triazino[1,2- a]benzimidazoles as hydrochloride salts 4a-n and 5b which were prepared in the reaction of cyclocondensation between 2-guanidinobenzimidazole and versatile heteroaromatic aldehydes. Structures of all prepared compounds have been studied by using 1H and 13C NMR, IR and UV/Vis spectroscopy. The crystal and molecular structure of 4f was determined by X-ray diffraction on single crystals. The molecule of 2-amino-4-(4'-methylphenyl)-4,10-dihydro[1,3,5]triazino[1,2- a]benzimidazole hydrochloride 4f (C 16H 16N 5+·Cl -) exists in the solid state in one of the possible tautomeric forms, being protonated at the one of the nitrogen atoms of the 1,4-dihydrotriazine ring. The molecule is highly delocalized within the 4,10-dihydro[1,3,5]triazino[1,2- a]benzimidazole moiety with the highest deviation from the plane for the methine carbon atom and the protonated nitrogen atom of the 1,4-dihydrotriazine ring. The cations are joined via N-H⋯N hydrogen bonds into R22(8) centrosymmetric dimers. Cation dimers are further connected with Cl - ions via N-H⋯Cl and C-H⋯Cl hydrogen bonds into 2D chains spreading along the b axis. The obtained single-crystal X-ray structure determination unequivocally confirms tautomeric form of the compound present in the solid-state and can represent tantative pattern for other prepared compounds. All prepared compounds were tested on their antiproliferative activity in vitro on several human cancer cell lines. Compound 4m was the most active one (IC 50 ≈ 20 μM), while compounds 4d, 4f, 4k, 4l4m showed moderate, but non-selective, antiproliferative activity with IC 50 25-60 μM.

  12. Crystal structures of 2-acetyl-4-ethynylphenol and 2-acetyl-4-(3-hy­droxy-3-methylbut-1-yn-1-yl)phenol

    PubMed Central

    Hübscher, Jörg; Rosin, Robert; Seichter, Wilhelm; Weber, Edwin

    2016-01-01

    In the title compounds, C10H8O2, (I), and C13H14O3, (II), the 2-acetyl-4-ethynylphenol unit displays a planar geometry, which is stabilized by an intra­molecular O—H⋯O hydrogen bond. The crystal structure of (I) is constructed of infinite strands, along [101], of C—H⋯O=C hydrogen-bonded mol­ecules, which in turn are linked by C—H⋯π inter­actions. In the crystal of (II), which crystallized with three independent mol­ecules per asymmetric unit, the non-polar parts of the mol­ecules form hydro­phobic layered domains, parallel to (10-1), which are separated by the polar groups. While the 2-acetyl­phenol part of the mol­ecules are involved in O—H⋯O=C hydrogen bonding, the ternary OH groups creates a cyclic pattern of O—H⋯O hydrogen bonds. PMID:27746920

  13. Crystal structures of a rat anti-CD52 (CAMPATH-1) therapeutic antibody Fab fragment and its humanized counterpart.

    PubMed

    Cheetham, G M; Hale, G; Waldmann, H; Bloomer, A C

    1998-11-20

    The CAMPATH-1 family of antibodies are able systematically to lyse human lymphocytes with human complement by targeting the small cell-surface glycoprotein CD52, commonly called the CAMPATH-1 antigen. These antibodies have been used clinically for several years, providing therapy for patients with a variety of immunologically mediated diseases. We report here the first X-ray crystallographic analyses of a Fab fragment from a rat antibody, the original therapeutic monoclonal CAMPATH-1G and its humanized counterpart CAMPATH-1H, into which the six complementarity-determining regions of the rat antibody have been introduced. These structures have been refined at 2.6 A and 3.25 A resolution, respectively. The VL domains of adjacent molecules of CAMPATH-1H form a symmetric dimer within the crystals with an inter-molecular extended beta-sheet as seen in light chain dimers of the kappa class. Crystals of CAMPATH-1G have translational pseudo-symmetry. Within the antibody-combining sites, which are dominated by the protrusion of LysH52b and LysH53 from hypervariable loop H2, the charge distribution and overall integrity are highly conserved, but large changes in the position of loop H1 are observed and an altered conformation of loop H2. The major determinants of this are framework residues H71 and H24, whose identity differs in these two antibodies. These structures provide a detailed structural insight into the transplantation of an intact antibody-combining site between a rodent and a human framework, and provide an increased understanding of the specificity and antigen affinity of this pair of CAMPATH-1 antibodies for CD52. This study forms the structural basis for future modification and design of more effective antibodies to this important antigen. Copyright 1998 Academic Press

  14. Modulation of Mrp1 (ABCc1) and Pgp (ABCb1) by Bilirubin at the Blood-CSF and Blood-Brain Barriers in the Gunn Rat

    PubMed Central

    Gazzin, Silvia; Berengeno, Andrea Lorena; Strazielle, Nathalie; Fazzari, Francesco; Raseni, Alan; Ostrow, J. Donald; Wennberg, Richard; Ghersi-Egea, Jean-François; Tiribelli, Claudio

    2011-01-01

    Accumulation of unconjugated bilirubin (UCB) in the brain causes bilirubin encephalopathy. Pgp (ABCb1) and Mrp1 (ABCc1), highly expressed in the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) respectively, may modulate the accumulation of UCB in brain. We examined the effect of prolonged exposure to elevated concentrations of UCB on expression of the two transporters in homozygous, jaundiced (jj) Gunn rats compared to heterozygous, not jaundiced (Jj) littermates at different developmental stages (2, 9, 17 and 60 days after birth). BBB Pgp protein expression was low in both jj and Jj pups at 9 days (about 16–27% of adult values), despite the up-regulation in jj animals (2 and 1.3 fold higher than age matched Jj animals at P9 and P17–P60, respectively); Mrp1 protein expression was barely detectable. Conversely, at the BCSFB Mrp1 protein expression was rather high (60–70% of the adult values) in both jj and Jj at P2, but was markedly (50%) down-regulated in jj pups starting at P9, particularly in the 4th ventricle choroid plexuses: Pgp was almost undetectable. The Mrp1 protein down regulation was accompanied by a modest up-regulation of mRNA, suggesting a translational rather than a transcriptional inhibition. In vitro exposure of choroid plexus epithelial cells obtained from normal rats to UCB, also resulted in a down-regulation of Mrp1 protein. These data suggest that down-regulation of Mrp1 protein at the BSCFB, resulting from a direct effect of UCB on epithelial cells, may impact the Mrp1-mediated neuroprotective functions of the blood-cerebrospinal fluid barrier and actually potentiate UCB neurotoxicity. PMID:21297965

  15. Modulation of Mrp1 (ABCc1) and Pgp (ABCb1) by bilirubin at the blood-CSF and blood-brain barriers in the Gunn rat.

    PubMed

    Gazzin, Silvia; Berengeno, Andrea Lorena; Strazielle, Nathalie; Fazzari, Francesco; Raseni, Alan; Ostrow, J Donald; Wennberg, Richard; Ghersi-Egea, Jean-François; Tiribelli, Claudio

    2011-01-31

    Accumulation of unconjugated bilirubin (UCB) in the brain causes bilirubin encephalopathy. Pgp (ABCb1) and Mrp1 (ABCc1), highly expressed in the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) respectively, may modulate the accumulation of UCB in brain. We examined the effect of prolonged exposure to elevated concentrations of UCB on expression of the two transporters in homozygous, jaundiced (jj) Gunn rats compared to heterozygous, not jaundiced (Jj) littermates at different developmental stages (2, 9, 17 and 60 days after birth). BBB Pgp protein expression was low in both jj and Jj pups at 9 days (about 16-27% of adult values), despite the up-regulation in jj animals (2 and 1.3 fold higher than age matched Jj animals at P9 and P17-P60, respectively); Mrp1 protein expression was barely detectable. Conversely, at the BCSFB Mrp1 protein expression was rather high (60-70% of the adult values) in both jj and Jj at P2, but was markedly (50%) down-regulated in jj pups starting at P9, particularly in the 4(th) ventricle choroid plexuses: Pgp was almost undetectable. The Mrp1 protein down regulation was accompanied by a modest up-regulation of mRNA, suggesting a translational rather than a transcriptional inhibition. In vitro exposure of choroid plexus epithelial cells obtained from normal rats to UCB, also resulted in a down-regulation of Mrp1 protein. These data suggest that down-regulation of Mrp1 protein at the BSCFB, resulting from a direct effect of UCB on epithelial cells, may impact the Mrp1-mediated neuroprotective functions of the blood-cerebrospinal fluid barrier and actually potentiate UCB neurotoxicity.

  16. Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry.

    PubMed

    Allen, Frank H; Motherwell, W D Samuel

    2002-06-01

    The Cambridge Structural Database (CSD) and its associated software systems have formed the basis for more than 800 research applications in structural chemistry, crystallography and the life sciences. Relevant references, dating from the mid-1970s, and brief synopses of these papers are collected in a database, DBUse, which is freely available via the CCDC website. This database has been used to review research applications of the CSD in organic chemistry, including supramolecular applications, and in organic crystal chemistry. The review concentrates on applications that have been published since 1990 and covers a wide range of topics, including structure correlation, conformational analysis, hydrogen bonding and other intermolecular interactions, studies of crystal packing, extended structural motifs, crystal engineering and polymorphism, and crystal structure prediction. Applications of CSD information in studies of crystal structure precision, the determination of crystal structures from powder diffraction data, together with applications in chemical informatics, are also discussed.

  17. Molecular Genetic and Crystal Structural Analysis of 1-(4-Hydroxyphenyl)-Ethanol Dehydrogenase from 'Aromatoleum aromaticum' EbN1.

    PubMed

    Büsing, Imke; Höffken, H Wolfgang; Breuer, Michael; Wöhlbrand, Lars; Hauer, Bernhard; Rabus, Ralf

    2015-01-01

    The dehydrogenation of 1-(4-hydroxyphenyl)-ethanol to 4-hydroxyacetophenone represents the second reaction step during anaerobic degradation of p-ethylphenol in the denitrifying bacterium 'Aromatoleum aromaticum' EbN1. Previous proteogenomic studies identified two different proteins (ChnA and EbA309) as possible candidates for catalyzing this reaction [Wöhlbrand et al: J Bacteriol 2008;190:5699-5709]. Physiological-molecular characterization of newly generated unmarked in-frame deletion and complementation mutants allowed defining ChnA (renamed here as Hped) as the enzyme responsible for 1-(4-hydroxyphenyl)-ethanol oxidation. Hped [1-(4-hydroxyphenyl)-ethanol dehydrogenase] belongs to the 'classical' family within the short-chain alcohol dehydrogenase/reductase (SDR) superfamily. Hped was overproduced in Escherichia coli, purified and crystallized. The X-ray structures of the apo- and NAD(+)-soaked form were resolved at 1.5 and 1.1 Å, respectively, and revealed Hped as a typical homotetrameric SDR. Modeling of the substrate 4-hydroxyacetophenone (reductive direction of Hped) into the active site revealed the structural determinants of the strict (R)-specificity of Hped (Phe(187)), contrasting the (S)-specificity of previously reported 1-phenylethanol dehydrogenase (Ped; Tyr(93)) from strain EbN1 [Höffken et al: Biochemistry 2006;45:82-93]. © 2015 S. Karger AG, Basel.

  18. Crystal Structures of Phosphite Dehydrogenase Provide Insights into Nicotinamide Cofactor Regeneration

    PubMed Central

    Zou, Yaozhong; Zhang, Houjin; Brunzelle, Joseph S.; Johannes, Tyler W.; Woodyer, Ryan; Hung, John E.; Nair, Nikhil; van der Donk, Wilfred A.; Zhao, Huimin; Nair, Satish K.

    2015-01-01

    The enzyme phosphite dehydrogenase (PTDH) catalyzes the NAD+-dependent conversion of phosphite to phosphate and represents the first biological catalyst that has been characterized to carry out the enzymatic oxidation of phosphorus. Despite over a decade’s worth of investigation into both the mechanism of its unusual reaction, as well as its utility in cofactor regeneration, there has been a lack of any structural data on PTDH. Here we present the co-crystal structure of an engineered thermostable variant of PTDH bound to NAD+ (1.7 Å resolution), as well as four other co-crystal structures of thermostable PTDH and its variants with different ligands (all between 1.85 – 2.3 Å resolution). These structures provide a molecular framework for understanding prior mutational analysis, and point to additional residues, located in the active site, that may contribute to the enzymatic activity of this highly unusual catalyst. PMID:22564171

  19. An automated parallel crystallisation search for predicted crystal structures and packing motifs of carbamazepine.

    PubMed

    Florence, Alastair J; Johnston, Andrea; Price, Sarah L; Nowell, Harriott; Kennedy, Alan R; Shankland, Norman

    2006-09-01

    An automated parallel crystallisation search for physical forms of carbamazepine, covering 66 solvents and five crystallisation protocols, identified three anhydrous polymorphs (forms I-III), one hydrate and eight organic solvates, including the single-crystal structures of three previously unreported solvates (N,N-dimethylformamide (1:1); hemi-furfural; hemi-1,4-dioxane). Correlation of physical form outcome with the crystallisation conditions demonstrated that the solvent adopts a relatively nonspecific role in determining which polymorph is obtained, and that the previously reported effect of a polymer template facilitating the formation of form IV could not be reproduced by solvent crystallisation alone. In the accompanying computational search, approximately half of the energetically feasible predicted crystal structures exhibit the C=O...H--N R2(2)(8)dimer motif that is observed in the known polymorphs, with the most stable correctly corresponding to form III. Most of the other energetically feasible structures, including the global minimum, have a C=O...H--N C(4) chain hydrogen bond motif. No such chain structures were observed in this or any other previously published work, suggesting that kinetic, rather than thermodynamic, factors determine which of the energetically feasible crystal structures are observed experimentally, with the kinetics apparently favouring nucleation of crystal structures based on the CBZ-CBZ R2(2)(8) motif. (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association.

  20. Crystal structure and thermal expansion of a CsCe 2Cl 7 scintillator

    DOE PAGES

    Zhuravleva, M.; Lindsey, A.; Chakoumakos, B. C.; ...

    2015-04-06

    Here we used single-crystal X-ray diffraction data to determine crystal structure of CsCe 2Cl 7. It crystallizes in a P112 1/b space group with a = 19.352(1) Å, b = 19.352(1) Å, c = 14.838(1) Å, γ = 119.87(2) ° , and V = 4818.6(5) Å 3. Differential scanning calorimetry measurements combined with the structural evolution of CsCe 2Cl 7 via X-ray diffractometry over a temperature range from room temperature to the melting point indicates no obvious intermediate solid-solid phase transitions. The anisotropy in the average linear coefficient of thermal expansion of the a axis (21.3 10 -6/ °C) withmore » respect to the b and c axes (27.0 10 -6/ °C) was determined through lattice parameter refinement of the temperature dependent diffraction patterns. Lastly, these findings suggest that the reported cracking behavior during melt growth of CsCe 2Cl 7 bulk crystals using conventional Bridgman and Czochralski techniques may be largely attributed to the anisotropy in thermal expansion.« less

  1. Crystal Structure of Toxoplasma gondii Porphobilinogen Synthase

    PubMed Central

    Jaffe, Eileen K.; Shanmugam, Dhanasekaran; Gardberg, Anna; Dieterich, Shellie; Sankaran, Banumathi; Stewart, Lance J.; Myler, Peter J.; Roos, David S.

    2011-01-01

    Porphobilinogen synthase (PBGS) is essential for heme biosynthesis, but the enzyme of the protozoan parasite Toxoplasma gondii (TgPBGS) differs from that of its human host in several important respects, including subcellular localization, metal ion dependence, and quaternary structural dynamics. We have solved the crystal structure of TgPBGS, which contains an octamer in the crystallographic asymmetric unit. Crystallized in the presence of substrate, each active site contains one molecule of the product porphobilinogen. Unlike prior structures containing a substrate-derived heterocycle directly bound to an active site zinc ion, the product-bound TgPBGS active site contains neither zinc nor magnesium, placing in question the common notion that all PBGS enzymes require an active site metal ion. Unlike human PBGS, the TgPBGS octamer contains magnesium ions at the intersections between pro-octamer dimers, which are presumed to function in allosteric regulation. TgPBGS includes N- and C-terminal regions that differ considerably from previously solved crystal structures. In particular, the C-terminal extension found in all apicomplexan PBGS enzymes forms an intersubunit β-sheet, stabilizing a pro-octamer dimer and preventing formation of hexamers that can form in human PBGS. The TgPBGS structure suggests strategies for the development of parasite-selective PBGS inhibitors. PMID:21383008

  2. Crystal structure of bile salt hydrolase from Lactobacillus salivarius.

    PubMed

    Xu, Fuzhou; Guo, Fangfang; Hu, Xiao Jian; Lin, Jun

    2016-05-01

    Bile salt hydrolase (BSH) is a gut-bacterial enzyme that negatively influences host fat digestion and energy harvesting. The BSH enzyme activity functions as a gateway reaction in the small intestine by the deconjugation of glycine-conjugated or taurine-conjugated bile acids. Extensive gut-microbiota studies have suggested that BSH is a key mechanistic microbiome target for the development of novel non-antibiotic food additives to improve animal feed production and for the design of new measures to control obesity in humans. However, research on BSH is still in its infancy, particularly in terms of the structural basis of BSH function, which has hampered the development of BSH-based strategies for improving human and animal health. As an initial step towards the structure-function analysis of BSH, C-terminally His-tagged BSH from Lactobacillus salivarius NRRL B-30514 was crystallized in this study. The 1.90 Å resolution crystal structure of L. salivarius BSH was determined by molecular replacement using the structure of Clostridium perfringens BSH as a starting model. It revealed this BSH to be a member of the N-terminal nucleophile hydrolase superfamily. Crystals of apo BSH belonged to space group P21212, with unit-cell parameters a = 90.79, b = 87.35, c = 86.76 Å (PDB entry 5hke). Two BSH molecules packed perfectly as a dimer in one asymmetric unit. Comparative structural analysis of L. salivarius BSH also identified potential residues that contribute to catalysis and substrate specificity.

  3. Crystal structure and crystal growth of the polar ferrimagnet CaBaFe4O7

    NASA Astrophysics Data System (ADS)

    Perry, R. S.; Kurebayashi, H.; Gibbs, A.; Gutmann, M. J.

    2018-05-01

    Magnetic materials are a cornerstone for developing spintronic devices for the transport of information via magnetic excitations. To date, relatively few materials have been investigated for the purpose of spin transport, mostly due to the paucity of suitable candidates as these materials are often chemically complex and difficult to synthesize. We present the crystal growth and a structure solution on the high-temperature crystal structure of the layered, polar ferrimagnet CaBaFe4O7 , which is a possible new contender for spintronics research. The space group is identified as P 3 by refinement of single crystal and powder neutron diffraction data. At 400 K, the trigonal lattice parameters are a =11.0114 (11 )Å and c =10.330 (3 )Å . The structure is similar to the low-temperature phase with alternating layers of triangular and Kagome-arranged Fe-O tetrahedra. We also present details of the crystal growth by traveling solvent method.

  4. Crystal structures of sialyltransferase from Photobacterium damselae

    DOE PAGES

    Huynh, Nhung; Li, Yanhong; Yu, Hai; ...

    2014-11-15

    Sialyltransferase structures fall into either GT-A or GT-B glycosyltransferase fold. Some sialyltransferases from the Photobacterium genus have been shown to contain an additional N-terminal immunoglobulin (Ig)-like domain. Photobacterium damselae α2–6-sialyltransferase has been used efficiently in enzymatic and chemoenzymatic synthesis of α2–6-linked sialosides. In this paper, we report three crystal structures of this enzyme. Two structures with and without a donor substrate analog CMP-3F(a)Neu5Ac contain an immunoglobulin (Ig)-like domain and adopt the GT-B sialyltransferase fold. The binary structure reveals a non-productive pre-Michaelis complex, which are caused by crystal lattice contacts that prevent the large conformational changes. The third structure lacks themore » Ig-domain. Finally, comparison of the three structures reveals small inherent flexibility between the two Rossmann-like domains of the GT-B fold.« less

  5. A Two-Tailed Phosphopeptide Crystallizes to Form a Lamellar Structure.

    PubMed

    Pellach, Michal; Mondal, Sudipta; Harlos, Karl; Mance, Deni; Baldus, Marc; Gazit, Ehud; Shimon, Linda J W

    2017-03-13

    The crystal structure of a designed phospholipid-inspired amphiphilic phosphopeptide at 0.8 Å resolution is presented. The phosphorylated β-hairpin peptide crystallizes to form a lamellar structure that is stabilized by intra- and intermolecular hydrogen bonding, including an extended β-sheet structure, as well as aromatic interactions. This first reported crystal structure of a two-tailed peptidic bilayer reveals similarities in thickness to a typical phospholipid bilayer. However, water molecules interact with the phosphopeptide in the hydrophilic region of the lattice. Additionally, solid-state NMR was used to demonstrate correlation between the crystal structure and supramolecular nanostructures. The phosphopeptide was shown to self-assemble into semi-elliptical nanosheets, and solid-state NMR provides insight into the self-assembly mechanisms. This work brings a new dimension to the structural study of biomimetic amphiphilic peptides with determination of molecular organization at the atomic level. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Crystal Structures of New Ammonium 5-Aminotetrazolates

    PubMed Central

    Lampl, Martin; Salchner, Robert; Laus, Gerhard; Braun, Doris E.; Kahlenberg, Volker; Wurst, Klaus; Fuhrmann, Gerda; Schottenberger, Herwig; Huppertz, Hubert

    2015-01-01

    The crystal structures of three salts of anionic 5-aminotetrazole are described. The tetramethylammonium salt (P1‒) forms hydrogen-bonded ribbons of anions which accept weak C–H⋯N contacts from the cations. The cystamine salt (C2/c) shows wave-shaped ribbons of anions linked by hydrogen bonds to screw-shaped dications. The tetramethylguanidine salt (P21/c) exhibits layers of anions hydrogen-bonded to the cations. PMID:26753100

  7. The mitochondrial transporter ABC-me (ABCB10), a downstream target of GATA-1, is essential for erythropoiesis in vivo.

    PubMed

    Hyde, B B; Liesa, M; Elorza, A A; Qiu, W; Haigh, S E; Richey, L; Mikkola, H K; Schlaeger, T M; Shirihai, O S

    2012-07-01

    The mitochondrial transporter ATP binding cassette mitochondrial erythroid (ABC-me/ABCB10) is highly induced during erythroid differentiation by GATA-1 and its overexpression increases hemoglobin production rates in vitro. However, the role of ABC-me in erythropoiesis in vivo is unknown. Here we report for the first time that erythrocyte development in mice requires ABC-me. ABC-me-/- mice die at day 12.5 of gestation, showing nearly complete eradication of primitive erythropoiesis and lack of hemoglobinized cells at day 10.5. ABC-me-/- erythroid cells fail to differentiate because they exhibit a marked increase in apoptosis, both in vivo and ex vivo. Erythroid precursors are particularly sensitive to oxidative stress and ABC-me in the heart and its yeast ortholog multidrug resistance-like 1 have been shown to protect against oxidative stress. Thus, we hypothesized that increased apoptosis in ABC-me-/- erythroid precursors was caused by oxidative stress. Within this context, ABC-me deletion causes an increase in mitochondrial superoxide production and protein carbonylation in erythroid precursors. Furthermore, treatment of ABC-me-/- erythroid progenitors with the mitochondrial antioxidant MnTBAP (superoxide dismutase 2 mimetic) supports survival, ex vivo differentiation and increased hemoglobin production. Altogether, our findings demonstrate that ABC-me is essential for erythropoiesis in vivo.

  8. The mitochondrial transporter ABC-me (ABCB10), a downstream target of GATA-1, is essential for erythropoiesis in vivo

    PubMed Central

    Hyde, B B; Liesa, M; Elorza, A A; Qiu, W; Haigh, S E; Richey, L; Mikkola, H K; Schlaeger, T M; Shirihai, O S

    2012-01-01

    The mitochondrial transporter ATP binding cassette mitochondrial erythroid (ABC-me/ABCB10) is highly induced during erythroid differentiation by GATA-1 and its overexpression increases hemoglobin production rates in vitro. However, the role of ABC-me in erythropoiesis in vivo is unknown. Here we report for the first time that erythrocyte development in mice requires ABC-me. ABC-me−/− mice die at day 12.5 of gestation, showing nearly complete eradication of primitive erythropoiesis and lack of hemoglobinized cells at day 10.5. ABC-me−/− erythroid cells fail to differentiate because they exhibit a marked increase in apoptosis, both in vivo and ex vivo. Erythroid precursors are particularly sensitive to oxidative stress and ABC-me in the heart and its yeast ortholog multidrug resistance-like 1 have been shown to protect against oxidative stress. Thus, we hypothesized that increased apoptosis in ABC-me−/− erythroid precursors was caused by oxidative stress. Within this context, ABC-me deletion causes an increase in mitochondrial superoxide production and protein carbonylation in erythroid precursors. Furthermore, treatment of ABC-me−/− erythroid progenitors with the mitochondrial antioxidant MnTBAP (superoxide dismutase 2 mimetic) supports survival, ex vivo differentiation and increased hemoglobin production. Altogether, our findings demonstrate that ABC-me is essential for erythropoiesis in vivo. PMID:22240895

  9. Crystal structure, electronic structure, temperature-dependent optical and scintillation properties of CsCe 2Br 7

    DOE PAGES

    Wu, Yuntao; Shi, Hongliang; Chakoumakos, Bryan C.; ...

    2015-10-05

    CsCe 2Br 7 is a self-activated inorganic scintillator that shows promising performance, but the understanding of the important structure-property relationships is lacking. In this work, we conduct a comprehensive study on CCsCe 2Br 7. The crystal structure of CsCe 2Br 7 is refined using single crystal X-ray study for the first time. It crystallizes into the orthorhombic crystal system with Pmnb space group. Its electronic structure is revealed by Density Functional Theory (DFT) calculations. Two cerium emission centers are identified and the energy barriers related to the thermal quenching to 4f ground states of Ce 3+ for these two Cemore » centers are evaluated. CsCe 2Br 7 single crystal has better light yield and energy resolution than CsCe 2Cl 7, but with an additional slow decay component of 1.7 s. The existence of a deep trap with a depth of 0.9 eV in CsCe 2Cl 7 contributes to its higher afterglow level in comparison to that of CsCe 2Br 7. The most possible point defects in CsCe 2Cl 7 and CsCe 2Br 7 are proposed by considering the vapour pressure in the growth atmosphere upon melting point.« less

  10. The crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1: Implications to protein function and drug design.

    PubMed

    Ronin, Céline; Costa, David Mendes; Tavares, Joana; Faria, Joana; Ciesielski, Fabrice; Ciapetti, Paola; Smith, Terry K; MacDougall, Jane; Cordeiro-da-Silva, Anabela; Pemberton, Iain K

    2018-01-01

    The de novo crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1 (LiSir2rp1) has been solved at 1.99Å in complex with an acetyl-lysine peptide substrate. The structure is broadly commensurate with Hst2/SIRT2 proteins of yeast and human origin, reproducing many of the structural features common to these sirtuin deacetylases, including the characteristic small zinc-binding domain, and the larger Rossmann-fold domain involved in NAD+-binding interactions. The two domains are linked via a cofactor binding loop ordered in open conformation. The peptide substrate binds to the LiSir2rp1 protein via a cleft formed between the small and large domains, with the acetyl-lysine side chain inserting further into the resultant hydrophobic tunnel. Crystals were obtained only with recombinant LiSir2rp1 possessing an extensive internal deletion of a proteolytically-sensitive region unique to the sirtuins of kinetoplastid origin. Deletion of 51 internal amino acids (P253-E303) from LiSir2rp1 did not appear to alter peptide substrate interactions in deacetylation assays, but was indispensable to obtain crystals. Removal of this potentially flexible region, that otherwise extends from the classical structural elements of the Rossmann-fold, specifically the β8-β9 connector, appears to result in lower accumulation of the protein when expressed from episomal vectors in L. infantum SIR2rp1 single knockout promastigotes. The biological function of the large serine-rich insertion in kinetoplastid/trypanosomatid sirtuins, highlighted as a disordered region with strong potential for post-translational modification, remains unknown but may confer additional cellular functions that are distinct from their human counterparts. These unique molecular features, along with the resolution of the first kinetoplastid sirtuin deacetylase structure, present novel opportunities for drug design against a protein target previously established as essential to

  11. Crystal structure of human aquaporin 4 at 1.8 A and its mechanism of conductance.

    PubMed

    Ho, Joseph D; Yeh, Ronald; Sandstrom, Andrew; Chorny, Ilya; Harries, William E C; Robbins, Rebecca A; Miercke, Larry J W; Stroud, Robert M

    2009-05-05

    Aquaporin (AQP) 4 is the predominant water channel in the mammalian brain, abundantly expressed in the blood-brain and brain-cerebrospinal fluid interfaces of glial cells. Its function in cerebral water balance has implications in neuropathological disorders, including brain edema, stroke, and head injuries. The 1.8-A crystal structure reveals the molecular basis for the water selectivity of the channel. Unlike the case in the structures of water-selective AQPs AqpZ and AQP1, the asparagines of the 2 Asn-Pro-Ala motifs do not hydrogen bond to the same water molecule; instead, they bond to 2 different water molecules in the center of the channel. Molecular dynamics simulations were performed to ask how this observation bears on the proposed mechanisms for how AQPs remain totally insulating to any proton conductance while maintaining a single file of hydrogen bonded water molecules throughout the channel.

  12. Band Structure Engineering by Substitutional Doping in Solid-State Solutions of [5-Me-PLY(O,O)]2B(1-x)Be(x) Radical Crystals.

    PubMed

    Bag, Pradip; Itkis, Mikhail E; Stekovic, Dejan; Pal, Sushanta K; Tham, Fook S; Haddon, Robert C

    2015-08-12

    We report the substitutional doping of solid-state spiro-bis(5-methyl-1,9-oxido-phenalenyl)boron radical ([2]2B) by co-crystallization of this radical with the corresponding spiro-bis(5-methyl-1,9-oxido-phenalenyl)beryllium compound ([2]2Be). The pure compounds crystallize in different space groups ([2]2B, P1̅, Z = 2; [2]2Be, P2₁/c, Z = 4) with distinct packing arrangements, yet we are able to isolate crystals of composition [2]2B(1-x)Be(x), where x = 0-0.59. The phase transition from the P1̅ to the P2₁/c space group occurs at x = 0.1, but the conductivities of the solid solutions are enhanced and the activation energies reduced for values of x = 0-0.25. The molecular packing is driven by the relative concentration of the spin-bearing ([2]2B) and spin-free ([2]2Be) molecules in the crystals, and the extended Hückel theory band structures show that the progressive incorporation of spin-free [2]2Be in the lattice of the [2]2B radical (overall bandwidth, W = 1.4 eV, in the pure compound) leads to very strong narrowing of the bandwidth, which reaches a minimum at [2]2Be (W = 0.3 eV). The results provide a graphic picture of the structural transformations undergone by the lattice, and at certain compositions we are able to identify distinct structures for the [2]2B and [2]2Be molecules in a single crystalline phase.

  13. Crystal structure of 1-(8-meth-oxy-2H-chromen-3-yl)ethanone.

    PubMed

    Koh, Dongsoo

    2014-09-01

    In the structure of the title compound, C12H12O3, the di-hydro-pyran ring is fused with the benzene ring. The di-hydro-pyran ring is in a half-chair conformation, with the ring O and methyl-ene C atoms positioned 1.367 (3) and 1.504 (4) Å, respectively, on either side of the mean plane formed by the other four atoms. The meth-oxy group is coplanar with the benzene ring to which it is connected [Cb-Cb-Om-Cm torsion angle = -0.2 (4)°; b = benzene and m = meth-oxy], and similarly the aldehyde is coplanar with respect to the double bond of the di-hydro-pyran ring [Cdh-Cdh-Ca-Oa = -178.1 (3)°; dh = di-hydro-pyran and a = aldehyde]. In the crystal, mol-ecules are linked by weak meth-yl-meth-oxy C-H⋯O hydrogen bonds into supra-molecular chains along the a-axis direction.

  14. High Frequency of a Single Nucleotide Substitution (c.-6-180T>G) of the Canine MDR1/ABCB1 Gene Associated with Phenobarbital-Resistant Idiopathic Epilepsy in Border Collie Dogs

    PubMed Central

    Mizukami, Keijiro; Yabuki, Akira; Chang, Hye-Sook; Uddin, Mohammad Mejbah; Rahman, Mohammad Mahbubur; Kushida, Kazuya; Kohyama, Moeko

    2013-01-01

    A single nucleotide substitution (c.-6-180T>G) associated with resistance to phenobarbital therapy has been found in the canine MDR1/ABCB1 gene in Border Collies with idiopathic epilepsy. In the present study, a PCR-restriction fragment length polymorphism assay was developed for genotyping this mutation, and a genotyping survey was carried out in a population of 472 Border Collies in Japan to determine the current allele frequency. The survey demonstrated the frequencies of the T/T wild type, T/G heterozygote, and G/G mutant homozygote to be 60.0%, 30.3%, and 9.8%, respectively, indicating that the frequency of the mutant G allele is extremely high (24.9%) in Border Collies. The results suggest that this high mutation frequency of the mutation is likely to cause a high prevalence of phenobarbital-resistant epilepsy in Border Collies. PMID:24302812

  15. The Crystal Structure of the Ring-Hydroxylating Dioxygenase from Sphingomonas CHY-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakoncic,J.; Jouanneau, Y.; Meyer, C.

    The ring-hydroxylating dioxygenase (RHD) from Sphingomonas CHY-1 is remarkable due to its ability to initiate the oxidation of a wide range of polycyclic aromatic hydrocarbons (PAHs), including PAHs containing four- and five-fused rings, known pollutants for their toxic nature. Although the terminal oxygenase from CHY-1 exhibits limited sequence similarity with well characterized RHDs from the naphthalene dioxygenase family, the crystal structure determined to 1.85 {angstrom} by molecular replacement revealed the enzyme to share the same global {alpha}{sub 3}{beta}{sub 3} structural pattern. The catalytic domain distinguishes itself from other bacterial non-heme Rieske iron oxygenases by a substantially larger hydrophobic substrate bindingmore » pocket, the largest ever reported for this type of enzyme. While residues in the proximal region close to the mononuclear iron atom are conserved, the central region of the catalytic pocket is shaped mainly by the side chains of three amino acids, Phe350, Phe404 and Leu356, which contribute to the rather uniform trapezoidal shape of the pocket. Two flexible loops, LI and LII, exposed to the solvent seem to control the substrate access to the catalytic pocket and control the pocket length. Compared with other naphthalene dioxygenases residues Leu223 and Leu226, on loop LI, are moved towards the solvent, thus elongating the catalytic pocket by at least 2 {angstrom}. An 11 {angstrom} long water channel extends from the interface between the {alpha} and {beta} subunits to the catalytic site. The comparison of these structures with other known oxygenases suggests that the broad substrate specificity presented by the CHY-1 oxygenase is primarily due to the large size and particular topology of its catalytic pocket and provided the basis for the study of its reaction mechanism.« less

  16. Facile synthesis of gold nanomaterials with unusual crystal structures.

    PubMed

    Fan, Zhanxi; Huang, Xiao; Chen, Ye; Huang, Wei; Zhang, Hua

    2017-11-01

    Gold (Au) nanomaterials have attracted wide research attention, owing to their high chemical stability, promising catalytic properties, excellent biocompatibility, unique electronic structure and outstanding localized surface plasmon resonance (LSPR) absorption properties; all of which are closely related to their size and shape. Recently, crystal-phase-controlled synthesis of noble metal nanomaterials has emerged as a promising strategy to tune their physicochemical properties. This protocol describes the detailed experimental procedures for the crystal-phase-controlled syntheses of Au nanomaterials with unusual crystal structures under mild conditions. Briefly, pure hexagonal close-packed (hcp) Au square sheets (AuSSs) with a thickness of ∼2.4 nm are synthesized using a graphene-oxide-assisted method in which HAuCl 4 is reduced by oleylamine in a mixture of hexane and ethanol. By using pure hexane as the solvent, well-dispersed ultrathin hcp/face-centered cubic (fcc) Au nanowires with a diameter of ∼1.6 nm on graphene oxide can be obtained. Meanwhile, hcp/fcc Au square-like plates with a side length of 200-400 nm are prepared via the secondary growth of Au on the hcp AuSSs. Remarkably, hexagonal (4H) Au nanoribbons with a thickness of 2.0-6.0 nm can be synthesized with a one-pot colloidal method in which HAuCl 4 is reduced by oleylamine in a mixed solvent of hexane and 1,2-dichloropropane. It takes 17-37 h for the synthesis of these Au nanomaterials with unusual crystal structures. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) are used to characterize the resultant Au nanomaterials, which could have many promising applications, such as biosensing, near-IR photothermal therapy, catalysis and surface-enhanced Raman scattering (SERS).

  17. Crystal structures, in-silico study and anti-microbial potential of synthetic monocarbonyl curcuminoids

    NASA Astrophysics Data System (ADS)

    Ud Din, Zia; Serrano, N. F. G.; Ademi, Kastriot; Sousa, C. P.; Deflon, Victor Marcelo; Maia, Pedro Ivo da Silva; Rodrigues-Filho, Edson

    2017-09-01

    In this work the screening of 20 unsymmetrical chalcone and curcuminoids analogues in regard of their antimicrobial properties was conducted. Electron donating groups in the aromatic rings in the chalcone and curcuminoid derivatives produced higher antimicrobial effect. Compounds 1, 9 and 15 exhibited good activity against Escherichia coli and Staphylococcus aureus. These compounds were further evaluated against nine micro-organisms of pathological interest. Pharmmaper was used for target fishing of compounds against important bacterial targets. Molecular Docking helped to verify the results of these compounds against the selected bacterial target D-alanyl-D-alanine carboxypeptidase (PDB ID: 1PW1). The crystal structure of ligand and docked conformers in the active site of 1PW1 were analyzed. As a result structure-activity relationships are proposed. Structures of compounds 14 and 16 were obtained through single crystals X-ray diffraction studies. Compound 14 crystallizes in monoclinic space group P21/c with unit cell dimensions a = 13.1293(3) Å, b = 17.5364(4) Å, c = 15.1433(3) Å, β = 95.6440(10), V = 3469.70(13) Å3 and Z = 8. Compound 16 crystallizes in triclinic space group Pī with unit cell dimensions a = 6.8226(4) Å, b = 7.2256(4) Å, c = 18.1235(12) Å, β = 87.322(4), V = 850.57(9) Å3 and Z = 2.

  18. How evolutionary crystal structure prediction works--and why.

    PubMed

    Oganov, Artem R; Lyakhov, Andriy O; Valle, Mario

    2011-03-15

    Once the crystal structure of a chemical substance is known, many properties can be predicted reliably and routinely. Therefore if researchers could predict the crystal structure of a material before it is synthesized, they could significantly accelerate the discovery of new materials. In addition, the ability to predict crystal structures at arbitrary conditions of pressure and temperature is invaluable for the study of matter at extreme conditions, where experiments are difficult. Crystal structure prediction (CSP), the problem of finding the most stable arrangement of atoms given only the chemical composition, has long remained a major unsolved scientific problem. Two problems are entangled here: search, the efficient exploration of the multidimensional energy landscape, and ranking, the correct calculation of relative energies. For organic crystals, which contain a few molecules in the unit cell, search can be quite simple as long as a researcher does not need to include many possible isomers or conformations of the molecules; therefore ranking becomes the main challenge. For inorganic crystals, quantum mechanical methods often provide correct relative energies, making search the most critical problem. Recent developments provide useful practical methods for solving the search problem to a considerable extent. One can use simulated annealing, metadynamics, random sampling, basin hopping, minima hopping, and data mining. Genetic algorithms have been applied to crystals since 1995, but with limited success, which necessitated the development of a very different evolutionary algorithm. This Account reviews CSP using one of the major techniques, the hybrid evolutionary algorithm USPEX (Universal Structure Predictor: Evolutionary Xtallography). Using recent developments in the theory of energy landscapes, we unravel the reasons evolutionary techniques work for CSP and point out their limitations. We demonstrate that the energy landscapes of chemical systems have an

  19. Crystal structures of five new substituted tetrahydro-1-benzazepines with potential antiparasitic activity.

    PubMed

    Macías, Mario A; Acosta, Lina M; Sanabria, Carlos M; Palma, Alirio; Roussel, Pascal; Gauthier, Gilles H; Suescun, Leopoldo

    2016-05-01

    Tetrahydro-1-benzazepines have been described as potential antiparasitic drugs for the treatment of chagas disease and leishmaniasis, two of the most important so-called `forgotten tropical diseases' affecting South and Central America, caused by Trypanosoma cruzi and Leishmania chagasi parasites, respectively. Continuing our extensive work describing the structural characteristics of some related compounds with interesting biological properties, the crystallographic features of three epoxy-1-benzazepines, namely (2SR,4RS)-6,8-dimethyl-2-(naphthalen-1-yl)-2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine, (1), (2SR,4RS)-6,9-dimethyl-2-(naphthalen-1-yl)-2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine, (2), and (2SR,4RS)-8,9-dimethyl-2-(naphthalen-1-yl)-2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine, (3), all C22H21NO, and two 1-benzazepin-4-ols, namely 7-fluoro-cis-2-[(E)-styryl]-2,3,4,5-tetrahydro-1H-1-benzazepin-4-ol, C18H18FNO, (4), and 7-fluoro-cis-2-[(E)-pent-1-enyl]-2,3,4,5-tetrahydro-1H-1-benzazepin-4-ol, C15H20FNO, (5), are described. Some peculiarities in the crystallization behaviour were found, involving significant variations in the crystalline structures as a result of modest changes in the peripheral substituents in (1)-(3) and the occurrence of discrete disorder due to the molecular overlay of enantiomers with more than one conformation in (5). In particular, an interesting phase change on cooling was observed for compound (5), accompanied by an approximate fourfold increase of the unit-cell volume and a change of the Z' value from 1 to 4. This transition is a consequence of the partial ordering of the pentenyl chains in half of the molecules breaking half of the -3 symmetry axes observed in the room-temperature structure of (5). The structural assembly in all the title compounds is characterized by not only (N,O)-H...(O,N) hydrogen bonds, but also by unconventional C-H...O contacts, resulting in a wide diversity of packing.

  20. In situ X-ray data collection and structure phasing of protein crystals at Structural Biology Center 19-ID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalska, Karolina; Tan, Kemin; Chang, Changsoo

    A prototype of a 96-well plate scanner forin situdata collection has been developed at the Structural Biology Center (SBC) beamline 19-ID, located at the Advanced Photon Source, USA. The applicability of this instrument for protein crystal diffraction screening and data collection at ambient temperature has been demonstrated. Several different protein crystals, including selenium-labeled, were used for data collection and successful SAD phasing. Without the common procedure of crystal handling and subsequent cryo-cooling for data collection atT= 100 K, crystals in a crystallization buffer show remarkably low mosaicity (<0.1°) until deterioration by radiation damage occurs. Data presented here show that cryo-coolingmore » can cause some unexpected structural changes. Based on the results of this study, the integration of the plate scanner into the 19-ID end-station with automated controls is being prepared. With improvement of hardware and software,in situdata collection will become available for the SBC user program including remote access.« less

  1. Nonlinear coherent structures in granular crystals

    NASA Astrophysics Data System (ADS)

    Chong, C.; Porter, Mason A.; Kevrekidis, P. G.; Daraio, C.

    2017-10-01

    The study of granular crystals, which are nonlinear metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures—which include traveling solitary waves, dispersive shock waves, and discrete breathers—have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research to date has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.

  2. Crystal structure of low-molecular-weight protein tyrosine phosphatase from Mycobacterium tuberculosis at 1.9-A resolution.

    PubMed

    Madhurantakam, Chaithanya; Rajakumara, Eerappa; Mazumdar, Pooja Anjali; Saha, Baisakhee; Mitra, Devrani; Wiker, Harald G; Sankaranarayanan, Rajan; Das, Amit Kumar

    2005-03-01

    The low-molecular-weight protein tyrosine phosphatase (LMWPTPase) belongs to a distinctive class of phosphotyrosine phosphatases widely distributed among prokaryotes and eukaryotes. We report here the crystal structure of LMWPTPase of microbial origin, the first of its kind from Mycobacterium tuberculosis. The structure was determined to be two crystal forms at 1.9- and 2.5-A resolutions. These structural forms are compared with those of the LMWPTPases of eukaryotes. Though the overall structure resembles that of the eukaryotic LMWPTPases, there are significant changes around the active site and the protein tyrosine phosphatase (PTP) loop. The variable loop forming the wall of the crevice leading to the active site is conformationally unchanged from that of mammalian LMWPTPase; however, differences are observed in the residues involved, suggesting that they have a role in influencing different substrate specificities. The single amino acid substitution (Leu12Thr [underlined below]) in the consensus sequence of the PTP loop, CTGNICRS, has a major role in the stabilization of the PTP loop, unlike what occurs in mammalian LMWPTPases. A chloride ion and a glycerol molecule were modeled in the active site where the chloride ion interacts in a manner similar to that of phosphate with the main chain nitrogens of the PTP loop. This structural study, in addition to identifying specific mycobacterial features, may also form the basis for exploring the mechanism of the substrate specificities of bacterial LMWPTPases.

  3. The crystal structure of the secreted aspartic protease 1 from Candida parapsilosis in complex with pepstatin A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dostál, Jiří; Brynda, Jiří; Hrušková-Heidingsfeldová, Olga

    2010-09-01

    Opportunistic pathogens of the genus Candida cause infections representing a major threat to long-term survival of immunocompromised patients. Virulence of the Candida pathogens is enhanced by production of extracellular proteolytic enzymes and secreted aspartic proteases (Saps) are therefore studied as potential virulence factors and possible targets for therapeutic drug design. Candida parapsilosis is less invasive than C. albicans, however, it is one of the leading causative agents of yeast infections. We report three-dimensional crystal structure of Sapp1p from C. parapsilosis in complex with pepstatin A, the classical inhibitor of aspartic proteases. The structure of Sapp1p was determined from protein isolatedmore » from its natural source and represents the first structure of Sap from C. parapsilosis. Overall fold and topology of Sapp1p is very similar to the archetypic fold of monomeric aspartic protease family and known structures of Sap isoenzymes from C. albicans and Sapt1p from C. tropicalis. Structural comparison revealed noticeable differences in the structure of loops surrounding the active site. This resulted in differential character, shape, and size of the substrate binding site explaining divergent substrate specificities and inhibitor affinities. Determination of structures of Sap isoenzymes from various species might contribute to the development of new Sap-specific inhibitors.« less

  4. Synthesis and Crystal Structure of 2’-Se-modified guanosine Containing DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salon, J.; Sheng, J; Gan, J

    Selenium modification of nucleic acids is of great importance in X-ray crystal structure determination and functional study of nucleic acids. Herein, we describe a convenient synthesis of a new building block, the 2{prime}-SeMe-modified guanosine (G{sub Se}) phosphoramidite, and report the first incorporation of the 2{prime}-Se-G moiety into DNA. The X-ray crystal structure of the 2{prime}-Se-modified octamer DNA (5{prime}-GTG{sub Se}TACAC-3{prime}) was determined at a resolution of 1.20 {angstrom}. We also found that the 2{prime}-Se modification points to the minor groove and that the modified and native structures are virtually identical. Furthermore, we observed that the 2{prime}-Se-G modification can significantly facilitate themore » crystal growth with respect to the corresponding native DNA.« less

  5. Synthesis, crystal structure, and protonation behaviour in solution of the recently-discovered drug metabolite, N1,N10-diacetyltriethylenetetramine

    NASA Astrophysics Data System (ADS)

    Wichmann, Kathrin A.; Söhnel, Tilo; Cooper, Garth J. S.

    2012-03-01

    N1,N10-diacetyltriethylenetetramine (DAT) is a recently-discovered major in vivo metabolite of triethylenetetramine (TETA), a highly-selective CuII chelator currently under clinical development as a novel first-in-class therapeutic for the cardiovascular, renal and retinal complications of diabetes mellitus. Characterisation of DAT is an integral aspect of the pharmacological work-up required to support this clinical development programme and, to our knowledge, no previous synthesis for it has been published. Here we report the synthesis of DAT dihydrochloride (DAT·2 HCl); its crystal structure as determined by X-ray single-crystal (XRD) and powder diffraction (XRPD); and protonation constants and species distribution in aqueous solution, which represents the different protonation states of DAT at different pH values. The crystal structure of DAT·2 HCl reveals 3D-assemblies of alternating 2D-layers comprising di-protonated DAT strands and anionic species, which form an extensive hydrogen-bond network between amine groups, acetyl groups, and chloride anions. Potentiometric titrations show that HDAT+ is the physiologically relevant state of DAT in solution. These findings contribute to the understanding of TETA's pharmacology and to its development for the experimental therapeutics of the diabetic complications.

  6. How large B-factors can be in protein crystal structures.

    PubMed

    Carugo, Oliviero

    2018-02-23

    Protein crystal structures are potentially over-interpreted since they are routinely refined without any restraint on the upper limit of atomic B-factors. Consequently, some of their atoms, undetected in the electron density maps, are allowed to reach extremely large B-factors, even above 100 square Angstroms, and their final positions are purely speculative and not based on any experimental evidence. A strategy to define B-factors upper limits is described here, based on the analysis of protein crystal structures deposited in the Protein Data Bank prior 2008, when the tendency to allow B-factor to arbitrary inflate was limited. This B-factor upper limit (B_max) is determined by extrapolating the relationship between crystal structure average B-factor and percentage of crystal volume occupied by solvent (pcVol) to pcVol =100%, when, ab absurdo, the crystal contains only liquid solvent, the structure of which is, by definition, undetectable in electron density maps. It is thus possible to highlight structures with average B-factors larger than B_max, which should be considered with caution by the users of the information deposited in the Protein Data Bank, in order to avoid scientifically deleterious over-interpretations.

  7. The X-ray Crystal Structures of Human {alpha}-Phosphomannomutase 1 Reveal the Structural Basis of Congenital Disorder of Glycosylation Type 1a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silvaggi,N.; Zhang, C.; Lu, Z.

    2006-01-01

    Carbohydrate-deficient glycoprotein syndrome type 1a (CDG-1a) is a congenital disease characterized by severe defects in nervous system development. It is caused by mutations in alpha -phosphomannomutase (of which there are two isozymes, {alpha}-PMM1 and {alpha}-PPM2). Here we report the X-ray crystal structures of human {alpha}-PMM1 in the open conformation, with and without the bound substrate, {alpha}-D-mannose 1-phosphate. {alpha}-PMM1, like most Haloalkanoic Acid Dehalogenase Superfamily (HADSF) members, consists of two domains, the cap and core, which open to bind substrate and then close to provide a solvent exclusive environment for catalysis. The substrate phosphate group is observed at a positively chargedmore » site of the cap domain, rather than at the core domain phosphoryl-transfer site defined by the D19 nucleophile and Mg{sup 2+} cofactor. This suggests that substrate binds first to the cap and then is swept into the active site upon cap closure. The orientation of the acid/base residue D21 suggests that {alpha}-PMM uses a different method of protecting the aspartylphosphate from hydrolysis than the HADSF member {beta}-phosphoglucomutase. It is hypothesized that the electrostatic repulsion of positive charges at the interface of the cap and core domains stabilizes {alpha}-PMM1 in the open conformation, and that the negatively charged substrate binds to the cap, thereby facilitating its closure over the core domain. The two isozymes {alpha}-PMM1 and {alpha}-PMM2 are shown to have a conserved active-site structure and to display similar kinetic properties. Analysis of the known mutation sites in the context of the structures reveals the genotype-phenotype relationship underlying CDG-1a.« less

  8. Clathrate Structure Determination by Combining Crystal Structure Prediction with Computational and Experimental 129Xe NMR Spectroscopy

    PubMed Central

    Selent, Marcin; Nyman, Jonas; Roukala, Juho; Ilczyszyn, Marek; Oilunkaniemi, Raija; Bygrave, Peter J.; Laitinen, Risto; Jokisaari, Jukka

    2017-01-01

    Abstract An approach is presented for the structure determination of clathrates using NMR spectroscopy of enclathrated xenon to select from a set of predicted crystal structures. Crystal structure prediction methods have been used to generate an ensemble of putative structures of o‐ and m‐fluorophenol, whose previously unknown clathrate structures have been studied by 129Xe NMR spectroscopy. The high sensitivity of the 129Xe chemical shift tensor to the chemical environment and shape of the crystalline cavity makes it ideal as a probe for porous materials. The experimental powder NMR spectra can be used to directly confirm or reject hypothetical crystal structures generated by computational prediction, whose chemical shift tensors have been simulated using density functional theory. For each fluorophenol isomer one predicted crystal structure was found, whose measured and computed chemical shift tensors agree within experimental and computational error margins and these are thus proposed as the true fluorophenol xenon clathrate structures. PMID:28111848

  9. Probing Zeolite Crystal Architecture and Structural Imperfections using Differently Sized Fluorescent Organic Probe Molecules.

    PubMed

    Hendriks, Frank C; Schmidt, Joel E; Rombouts, Jeroen A; Lammertsma, Koop; Bruijnincx, Pieter C A; Weckhuysen, Bert M

    2017-05-05

    A micro-spectroscopic method has been developed to probe the accessibility of zeolite crystals using a series of fluorescent 4-(4-diethylaminostyryl)-1-methylpyridinium iodide (DAMPI) probes of increasing molecular size. Staining large zeolite crystals with MFI (ZSM-5) topology and subsequent mapping of the resulting fluorescence using confocal fluorescence microscopy reveal differences in structural integrity: the 90° intergrowth sections of MFI crystals are prone to develop structural imperfections, which act as entrance routes for the probes into the zeolite crystal. Polarization-dependent measurements provide evidence for the probe molecule's alignment within the MFI zeolite pore system. The developed method was extended to BEA (Beta) crystals, showing that the previously observed hourglass pattern is a general feature of BEA crystals with this morphology. Furthermore, the probes can accurately identify at which crystal faces of BEA straight or sinusoidal pores open to the surface. The results show this method can spatially resolve the architecture-dependent internal pore structure of microporous materials, which is difficult to assess using other characterization techniques such as X-ray diffraction. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Crystal Structure of HIV-1 Primary Receptor CD4 i Complex with a Potent Antiviral Antibody

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, M.M.; Hong, X.; Seaman, M.S.

    2010-06-18

    Ibalizumab is a humanized, anti-CD4 monoclonal antibody. It potently blocks HIV-1 infection and targets an epitope in the second domain of CD4 without interfering with immune functions mediated by interaction of CD4 with major histocompatibility complex (MHC) class II molecules. We report here the crystal structure of ibalizumab Fab fragment in complex with the first two domains (D1-D2) of CD4 at 2.2 {angstrom} resolution. Ibalizumab grips CD4 primarily by the BC-loop (residues 121125) of D2, sitting on the opposite side of gp120 and MHC-II binding sites. No major conformational change in CD4 accompanies binding to ibalizumab. Both monovalent and bivalentmore » forms of ibalizumab effectively block viral infection, suggesting that it does not need to crosslink CD4 to exert antiviral activity. While gp120-induced structural rearrangements in CD4 are probably minimal, CD4 structural rigidity is dispensable for ibalizumab inhibition. These results could guide CD4-based immunogen design and lead to a better understanding of HIV-1 entry.« less

  11. One-dimensional dielectric bi-periodic photonic structures based on ternary photonic crystals

    NASA Astrophysics Data System (ADS)

    Dadoenkova, Nataliya N.; Dadoenkova, Yuliya S.; Panyaev, Ivan S.; Sannikov, Dmitry G.; Lyubchanskii, Igor L.

    2018-01-01

    We investigate the transmittivity spectra, fields, and energy distribution of the electromagnetic eigenwaves propagating in a one-dimensional (1D) dielectric photonic crystal [(TiO2/SiO2)NAl2O3]M with two periods formed by unit cells TiO2/SiO2 and (TiO2/SiO2)NAl2O3. Spectra of TE- and TM-modes depend on the geometric parameters of the structure and undergo modifications with the change in the period numbers, layer thicknesses, and incidence angle. Special attention is paid to the applicability of the hybrid effective medium approximation comprising the long-wave approximation and two-dimensional (2 × 2) transfer matrix method. We demonstrate spectral peculiarities of the bi-periodic structure and also show the differences between the band gap spectra of the bi-periodic and ternary 1D dielectric photonic crystals. The presented photonic crystal structure can find its applications in optoelectronics and nanophotonics areas as omnidirectional reflectors, optical ultra-narrow bandpass filters, and antireflection coatings.

  12. Crystal structures of the coil 2B fragment and the globular tail domain of human lamin B1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, Jianbin; Xu, Chao; Bian, Chuanbing

    2012-07-18

    We present here the crystal structures of human lamin B1 globular tail domain and coiled 2B domain, which adopt similar folds to Ig-like domain and coiled-coil domain of lamin A, respectively. Despite the overall similarity, we found an extra intermolecular disulfide bond in the lamin B1 coil 2B domain, which does not exist in lamin A/C. In addition, the structural analysis indicates that interactions at the lamin B1 homodimer interface are quite different from those of lamin A/C. Thus our research not only reveals the diversely formed homodimers among lamin family members, but also sheds light on understanding the importantmore » roles of lamin B1 in forming the nuclear lamina matrix.« less

  13. Crystal structure and functional characterization of SF216 from Shigella flexneri.

    PubMed

    Kim, Ha-Neul; Seok, Seung-Hyeon; Lee, Yoo-Sup; Won, Hyung-Sik; Seo, Min-Duk

    2017-11-01

    Shigella flexneri is a Gram-negative anaerobic bacterium that causes highly infectious bacterial dysentery in humans. Here, we solved the crystal structure of SF216, a hypothetical protein from the S. flexneri 5a strain M90T, at 1.7 Å resolution. The crystal structure of SF216 represents a homotrimer stabilized by intersubunit interactions and ion-mediated electrostatic interactions. Each subunit consists of three β-strands and five α-helices with the β-β-β-α-α-α-α-α topology. Based on the structural information, we also demonstrate that SF216 shows weak ribonuclease activity by a fluorescence quenching assay. Furthermore, we identify potential druggable pockets (putative hot spots) on the surface of the SF216 structure by computational mapping. © 2017 Federation of European Biochemical Societies.

  14. Machine learning for the structure-energy-property landscapes of molecular crystals.

    PubMed

    Musil, Félix; De, Sandip; Yang, Jack; Campbell, Joshua E; Day, Graeme M; Ceriotti, Michele

    2018-02-07

    Molecular crystals play an important role in several fields of science and technology. They frequently crystallize in different polymorphs with substantially different physical properties. To help guide the synthesis of candidate materials, atomic-scale modelling can be used to enumerate the stable polymorphs and to predict their properties, as well as to propose heuristic rules to rationalize the correlations between crystal structure and materials properties. Here we show how a recently-developed machine-learning (ML) framework can be used to achieve inexpensive and accurate predictions of the stability and properties of polymorphs, and a data-driven classification that is less biased and more flexible than typical heuristic rules. We discuss, as examples, the lattice energy and property landscapes of pentacene and two azapentacene isomers that are of interest as organic semiconductor materials. We show that we can estimate force field or DFT lattice energies with sub-kJ mol -1 accuracy, using only a few hundred reference configurations, and reduce by a factor of ten the computational effort needed to predict charge mobility in the crystal structures. The automatic structural classification of the polymorphs reveals a more detailed picture of molecular packing than that provided by conventional heuristics, and helps disentangle the role of hydrogen bonded and π-stacking interactions in determining molecular self-assembly. This observation demonstrates that ML is not just a black-box scheme to interpolate between reference calculations, but can also be used as a tool to gain intuitive insights into structure-property relations in molecular crystal engineering.

  15. Synthesis, spectral characterization, crystal structure and molecular docking study of 2,7-diaryl-1,4-diazepan-5-ones

    NASA Astrophysics Data System (ADS)

    Sethuvasan, S.; Sugumar, P.; Maheshwaran, V.; Ponnuswamy, M. N.; Ponnuswamy, S.

    2016-07-01

    In this study, a series of variously substituted r-2,c-7-diaryl-1,4-diazepan-5-ones 9-16 have been synthesized using Schmidt rearrangement and are characterized by IR, mass and 1D & 2D NMR spectral data. The proton NMR coupling constant and estimated dihedral angles reveal that the compounds 9-16 prefer a chair conformation with equatorial orientation of alkyl and aryl groups. Single crystal X-ray structure has been solved for compounds 9 and 11 which also indicates the preference for distorted chair conformation with equatorial orientation of substituents. The compounds 9-16 have been docked with the structure of Methicillin-resistant Staphylococcus aureus (MRSA) and the results demonstrate that compound 10 is having better docking score and glide energy than others and it is comparable to co-crystal ligand. Furthermore, all the compounds have been evaluated for their antibacterial and antioxidant activities. All the compounds show moderate antibacterial activity and only 11 exhibits better activity against S. aures and Escherichia coli. The compounds 11, 13 and 14 exhibit half of the antioxidant power when compared to the BHT and the remaining compounds show moderate activity.

  16. Crystal structure of the human natural killer cell inhibitory receptor KIR2DL1-HLA-Cw4 complex.

    PubMed

    Fan, Q R; Long, E O; Wiley, D C

    2001-05-01

    Inhibitory natural killer (NK) cell receptors down-regulate the cytotoxicity of NK cells upon recognition of specific class I major histocompatibility complex (MHC) molecules on target cells. We report here the crystal structure of the inhibitory human killer cell immunoglobulin-like receptor 2DL1 (KIR2DL1) bound to its class I MHC ligand, HLA-Cw4. The KIR2DL1-HLA-Cw4 interface exhibits charge and shape complementarity. Specificity is mediated by a pocket in KIR2DL1 that hosts the Lys80 residue of HLA-Cw4. Many residues conserved in HLA-C and in KIR2DL receptors make different interactions in KIR2DL1-HLA-Cw4 and in a previously reported KIR2DL2-HLA-Cw3 complex. A dimeric aggregate of KIR-HLA-C complexes was observed in one KIR2DL1-HLA-Cw4 crystal. Most of the amino acids that differ between human and chimpanzee KIRs with HLA-C specificities form solvent-accessible clusters outside the KIR-HLA interface, which suggests undiscovered interactions by KIRs.

  17. Synthesis, growth, structural, spectroscopic and optical studies of a semiorganic NLO crystal: zinc guanidinium phosphate.

    PubMed

    Suvitha, A; Murugakoothan, P

    2012-02-01

    The semi-organic nonlinear optical (NLO) crystal, zinc guanidinium phosphate (ZGuP) has been grown through synthesis between zinc sulphate, guanidine carbonate and orthophosphoric acid from its aqueous solution by slow solvent evaporation technique. Solubility of the synthesized material has been determined for various temperatures using water as solvent. The grown crystal has been characterized by powder X-ray diffraction to confirm the crystal structure. Investigation has been carried out to assign the vibrational frequencies of the grown crystals by Fourier transform infrared spectroscopy technique. (1)H and (13)C FT-NMR have been recorded to elucidate the molecular structure. The optical absorption study confirms the suitability of the crystal for device applications. The second harmonic generation (SHG) efficiency of ZGuP is found to be 1.825 times that of potassium dihydrogen phosphate (KDP). Thermal behavior of the grown crystals has been studied by thermogravimetric and differential thermal analysis. The mechanical properties of the grown crystals have been studied using Vickers microhardness tester. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Crystal Structure of the Chromodomain Helicase DNA-binding Protein 1 (Chd1) DNA-binding Domain in Complex with DNA*

    PubMed Central

    Sharma, Amit; Jenkins, Katherine R.; Héroux, Annie; Bowman, Gregory D.

    2011-01-01

    Chromatin remodelers are ATP-dependent machines that dynamically alter the chromatin packaging of eukaryotic genomes by assembling, sliding, and displacing nucleosomes. The Chd1 chromatin remodeler possesses a C-terminal DNA-binding domain that is required for efficient nucleosome sliding and believed to be essential for sensing the length of DNA flanking the nucleosome core. The structure of the Chd1 DNA-binding domain was recently shown to consist of a SANT and SLIDE domain, analogous to the DNA-binding domain of the ISWI family, yet the details of how Chd1 recognized DNA were not known. Here we present the crystal structure of the Saccharomyces cerevisiae Chd1 DNA-binding domain in complex with a DNA duplex. The bound DNA duplex is straight, consistent with the preference exhibited by the Chd1 DNA-binding domain for extranucleosomal DNA. Comparison of this structure with the recently solved ISW1a DNA-binding domain bound to DNA reveals that DNA lays across each protein at a distinct angle, yet contacts similar surfaces on the SANT and SLIDE domains. In contrast to the minor groove binding seen for Isw1 and predicted for Chd1, the SLIDE domain of the Chd1 DNA-binding domain contacts the DNA major groove. The majority of direct contacts with the phosphate backbone occur only on one DNA strand, suggesting that Chd1 may not strongly discriminate between major and minor grooves. PMID:22033927

  19. Crystal structure of an orthomyxovirus matrix protein reveals mechanisms for self-polymerization and membrane association.

    PubMed

    Zhang, Wenting; Zheng, Wenjie; Toh, Yukimatsu; Betancourt-Solis, Miguel A; Tu, Jiagang; Fan, Yanlin; Vakharia, Vikram N; Liu, Jun; McNew, James A; Jin, Meilin; Tao, Yizhi J

    2017-08-08

    Many enveloped viruses encode a matrix protein. In the influenza A virus, the matrix protein M1 polymerizes into a rigid protein layer underneath the viral envelope to help enforce the shape and structural integrity of intact viruses. The influenza virus M1 is also known to mediate virus budding as well as the nuclear export of the viral nucleocapsids and their subsequent packaging into nascent viral particles. Despite extensive studies on the influenza A virus M1 (FLUA-M1), only crystal structures of its N-terminal domain are available. Here we report the crystal structure of the full-length M1 from another orthomyxovirus that infects fish, the infectious salmon anemia virus (ISAV). The structure of ISAV-M1 assumes the shape of an elbow, with its N domain closely resembling that of the FLUA-M1. The C domain, which is connected to the N domain through a flexible linker, is made of four α-helices packed as a tight bundle. In the crystal, ISAV-M1 monomers form infinite 2D arrays with a network of interactions involving both the N and C domains. Results from liposome flotation assays indicated that ISAV-M1 binds membrane via electrostatic interactions that are primarily mediated by a positively charged surface loop from the N domain. Cryoelectron tomography reconstruction of intact ISA virions identified a matrix protein layer adjacent to the inner leaflet of the viral membrane. The physical dimensions of the virion-associated matrix layer are consistent with the 2D ISAV-M1 crystal lattice, suggesting that the crystal lattice is a valid model for studying M1-M1, M1-membrane, and M1-RNP interactions in the virion.

  20. Structure and Dynamics of Freely Suspended Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Clark, Noel A.

    2004-01-01

    Smectic liquid crystals are phases of rod shaped molecules organized into one dimensionally (1 D) periodic arrays of layers, each layer being between one and two molecular lengths thick. In the least ordered smectic phases, the smectics A and C, each layer is a two dimensional (2D) liquid. Additionally there are a variety of more ordered smectic phases having hexatic short range translational order or 2D crystalline or quasi long range translational order within the layers. The inherent fluid-layer structure and low vapor pressure of smectic liquid crystals enables the long term stabilization of freely suspended, single component, layered fluid films as thin as 30A, a single molecular layer. The layering forces the films to be an integral number of smectic layers thick, quantizing their thickness in layer units and forcing a film of a particular number of layers to be physically homogeneous with respect to its layer structure over its entire area. Optical reflectivity enables the precise determination of the number of layers. These ultrathin freely suspended liquid crystal films are structures of fundamental interest in condensed matter and fluid physics. They are the thinnest known stable fluid structures and have the largest surface-to-volume ratio of any stable fluid preparation, making them ideal for the study of the effects of reduced dimensionality on phase behavior and on fluctuation and interface phenomena. Their low vapor pressure and quantized thickness enable the effective use of microgravity to extend the study of basic capillary phenomena to ultrathin fluid films. Freely suspended films have been a wellspring of new LC physics. They have been used to provide unique experimental conditions for the study of condensed phase transitions in two dimensions. They are the only system in which the hexatic has been unambiguously identified as a phase of matter, and the only physical system in which fluctuations of a 2D XY system and Kosterlitz Thouless phase

  1. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations.

    PubMed

    van de Streek, Jacco; Neumann, Marcus A

    2010-10-01

    This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.

  2. Study and analysis of filtering characteristics of 1D photonic crystal

    NASA Astrophysics Data System (ADS)

    Juyal, Rohan; Suthar, Bhuvneshwer; Kumar, Arun

    2018-05-01

    Propagation of electromagnetic wave have been studied and analyzed through 1D photonic crystal. 1D photonic band gap material with low and high refractive index material has been chosen for this study. Band structure and reflectivity of this 1D structure has been calculated using transmission matrix method (TMM). Study and analysis of the band structure and reflectivity of this structure shows that this structure may work as an optical filter.

  3. Powder diffraction and crystal structure prediction identify four new coumarin polymorphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shtukenberg, Alexander G.; Zhu, Qiang; Carter, Damien J.

    Coumarin, a simple, commodity chemical isolated from beans in 1820, has, to date, only yielded one solid state structure. Here, we report a rich polymorphism of coumarin grown from the melt. Four new metastable forms were identified and their crystal structures were solved using a combination of computational crystal structure prediction algorithms and X-ray powder diffraction. With five crystal structures, coumarin has become one of the few rigid molecules showing extensive polymorphism at ambient conditions. We demonstrate the crucial role of advanced electronic structure calculations including many-body dispersion effects for accurate ranking of the stability of coumarin polymorphs and themore » need to account for anharmonic vibrational contributions to their free energy. As such, coumarin is a model system for studying weak intermolecular interactions, crystallization mechanisms, and kinetic effects.« less

  4. Powder diffraction and crystal structure prediction identify four new coumarin polymorphs

    DOE PAGES

    Shtukenberg, Alexander G.; Zhu, Qiang; Carter, Damien J.; ...

    2017-05-15

    Coumarin, a simple, commodity chemical isolated from beans in 1820, has, to date, only yielded one solid state structure. Here, we report a rich polymorphism of coumarin grown from the melt. Four new metastable forms were identified and their crystal structures were solved using a combination of computational crystal structure prediction algorithms and X-ray powder diffraction. With five crystal structures, coumarin has become one of the few rigid molecules showing extensive polymorphism at ambient conditions. We demonstrate the crucial role of advanced electronic structure calculations including many-body dispersion effects for accurate ranking of the stability of coumarin polymorphs and themore » need to account for anharmonic vibrational contributions to their free energy. As such, coumarin is a model system for studying weak intermolecular interactions, crystallization mechanisms, and kinetic effects.« less

  5. Effect of structural defects on the magnetic properties of the EuBaCo1.90O5.36 single crystal

    NASA Astrophysics Data System (ADS)

    Arbuzova, T. I.; Naumov, S. V.; Telegin, S. V.

    2018-01-01

    The effect of structural defects in cobalt and oxygen sublattices with the constant average oxidation level 3+ of all cobalt ions on the magnetic properties of the EuBaCo1.90O5.36 single crystal has been studied. The magnetic properties of the single crystal and the polycrystalline sample of the corresponding composition are compared in the range T = 200-650 K. The results show that the cobalt-deficient EuBaCo2- x O5.5-δ samples demonstrate a three-dimensional XY ferromagnetic ordering of magnetic sublattices. The values of the effective magnetic moment at T > 480 K indicate the existence of the IS and HS states of Co3+ ions. The large difference of values of μeff of the EuBaCo1.90O5.36 single crystal and polycrystal can be due to that the magnetic ion spins lie in plane ab. The magnetic field directed along plane ab substantially influences the magnetic ordering at T < 300 K.

  6. Future therapeutic targets for the treatment and prevention of cholesterol gallstones.

    PubMed

    Castro-Torres, Ibrahim Guillermo; de Jesús Cárdenas-Vázquez, René; Velázquez-González, Claudia; Ventura-Martínez, Rosa; De la O-Arciniega, Minarda; Naranjo-Rodríguez, Elia Brosla; Martínez-Vázquez, Mariano

    2015-10-15

    The formation of cholesterol gallstones involves very complex imbalances, such as alterations in the secretion of biliary lipids (which involves the ABCG5, ABCG8, ABCB4 and ABCB11 transporters), biochemical and immunological reactions in the gallbladder that produce biliary sludge (mucins), physicochemical changes in the structure of cholesterol (crystallization), alterations in gallbladder motility, changes in the intestinal absorption of cholesterol (ABCG5/8 transporters and Niemann-Pick C1L1 protein) and alterations in small intestine motility. Some of these proteins have been studied at the clinical and experimental levels, but more research is required. In this review, we discuss the results of studies on some molecules involved in the pathophysiology of gallstones that may be future therapeutic targets to prevent the development of this disease, and possible sites for treatment based mainly on the absorption of intestinal cholesterol (Niemann-Pick C1L1 and ABCG5/8 proteins). Copyright © 2015. Published by Elsevier B.V.

  7. Crystal structure, spectral and thermal properties of 1,2-bis[2-(4,4,4-trifluoro-1-hydroxy-3-oxobut-1-enyl)phenoxy]-ethane and luminescent properties of its complexes with Al(III) and Eu(III)

    NASA Astrophysics Data System (ADS)

    Khamidullina, Liliya A.; Obydennov, Konstantin L.; Slepukhin, Pavel A.; Puzyrev, Igor S.

    2016-12-01

    Describing the crystal structure, packing, FT-IR, UV-Vis and NMR spectra and thermal properties of new polydentate O-ligand based on aryl-β-diketone moieties connected by ethylene glycol spacer is the subject of this article. The results of IR, UV-Vis and 1H NMR spectroscopy as well X-ray crystallography of 1,2-bis[2-(4,4,4-trifluoro-1-hydroxy-3-oxobut-1-enyl)phenoxy]-ethane (BTFPE) indicate that the compound exists in solution and in solid as enol. The crystal structure analysis shows that BTFPE has C2/c group of the monoclinic system. Typical S(6) intramolecular hydrogen bond occurs in each 1,3-diketo moiety. This bond is asymmetric and the H atom is closest to the O atom adjacent to the phenyl ring. The packing of the crystal is sustained by numerous Csbnd H⋯O, Osbnd H⋯F, Csbnd H⋯F interactions. In the crystal, supramolecular zig-zag chains are formed along the c-axis. Short contacts interconnect the molecules into a two-dimensional layered structure wherein each molecule is node between chains. According to the thermal investigation this compound is stable up to 200 °C in air atmosphere, above this temperature it decomposes. Photoluminescent properties of aluminum(III) and europium(III) complexes of BTFPE were evaluated in chloroform solution and in the solid state. Aluminum complex of BTFPE shows blue luminescence with maximum at 445 nm. Europium complex exhibits intense red color luminescence at 613 nm from central Eu(III) ion through the excitation of the ligand.

  8. Crystal structure and magnetic properties of cyclohexylammonium trichlorocuprate(II): A quasi 1d Heisenberg S = {1}/{2} ferromagnet

    NASA Astrophysics Data System (ADS)

    Groenendijk, H. A.; Blöte, H. W. J.; van Duyneveldt, A. J.; Gaura, R. M.; Landee, C. P.; Willett, R. D.

    1981-06-01

    The crystal structure of [C 6H 11NH 3] CuCl 3, cyclohexylammonium trichlorocuprate(II) (CHAC), is orthorhombic, space group P2 12 12 1 with a = 19.441(5), b = 8.549(2) and c = 6.190(1) Å. The salt contains chains of CuCl -3 ions along the c axis. From magnetization and susceptibility measurements it is found that the compound behaves as a one-dimensional S = {1}/{2} Heisenberg ferromagnet with J1/ k = 70(2) K. Antiferromagnetic ordering with a weak ferromagnetic moment along the a axis occurs below T c = 2.18(2) K. From the metamagnetic phase diagram the interchain interactions are derived using mean field theory: z2J2/ z1J1 = 1.1 × 10 -3 and z3J3/ z1J1 = -1.0 × 10 -4. Also a small anisotropy ( J|/ J⊥ ≈ 0.01) is found in the intrachain interaction. The measurements indicate that CHAC is one of the best approximations to the 1d Heisenberg ferromagnet known to date.

  9. Dual curved photonic crystal ring resonator based channel drop filter using two-dimensional photonic crystal structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com; Dusad, Lalit Kumar

    In this paper channel drop filter (CDF) is designed using dual curved photonic crystal ring resonator (PCRR). The photonic band gap (PBG) is calculated by plane wave expansion (PWE) method and the photonic crystal (PhC) based on two dimensional (2D) square lattice periodic arrays of silicon (Si) rods in air structure have been investigated using finite difference time domain (FDTD) method. The number of rods in Z and X directions is 21 and 20 respectively with lattice constant 0.540 nm and rod radius r = 0.1 µm. The channel drop filter has been optimized for telecommunication wavelengths λ = 1.591 µm with refractivemore » indices 3.533. In the designed structure further analysis is also done by changing whole rods refractive index and it has been observed that this filter may be used for filtering several other channels also. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.« less

  10. Disparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape

    PubMed Central

    Sripathi, Kamali N.; Tay, Wendy W.; Banáš, Pavel; Otyepka, Michal; Šponer, Jiří; Walter, Nils G.

    2014-01-01

    The hepatitis delta virus (HDV) ribozyme is a member of the class of small, self-cleaving catalytic RNAs found in a wide range of genomes from HDV to human. Both pre- and post-catalysis (precursor and product) crystal structures of the cis-acting genomic HDV ribozyme have been determined. These structures, together with extensive solution probing, have suggested that a significant conformational change accompanies catalysis. A recent crystal structure of a trans-acting precursor, obtained at low pH and by molecular replacement from the previous product conformation, conforms to the product, raising the possibility that it represents an activated conformer past the conformational change. Here, using fluorescence resonance energy transfer (FRET), we discovered that cleavage of this ribozyme at physiological pH is accompanied by a structural lengthening in magnitude comparable to previous trans-acting HDV ribozymes. Conformational heterogeneity observed by FRET in solution appears to have been removed upon crystallization. Analysis of a total of 1.8 µsec of molecular dynamics (MD) simulations showed that the crystallographically unresolved cleavage site conformation is likely correctly modeled after the hammerhead ribozyme, but that crystal contacts and the removal of several 2′-oxygens near the scissile phosphate compromise catalytic in-line fitness. A cis-acting version of the ribozyme exhibits a more dynamic active site, while a G-1 residue upstream of the scissile phosphate favors poor fitness, allowing us to rationalize corresponding changes in catalytic activity. Based on these data, we propose that the available crystal structures of the HDV ribozyme represent intermediates on an overall rugged RNA folding free-energy landscape. PMID:24854621

  11. Disparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape.

    PubMed

    Sripathi, Kamali N; Tay, Wendy W; Banáš, Pavel; Otyepka, Michal; Šponer, Jiří; Walter, Nils G

    2014-07-01

    The hepatitis delta virus (HDV) ribozyme is a member of the class of small, self-cleaving catalytic RNAs found in a wide range of genomes from HDV to human. Both pre- and post-catalysis (precursor and product) crystal structures of the cis-acting genomic HDV ribozyme have been determined. These structures, together with extensive solution probing, have suggested that a significant conformational change accompanies catalysis. A recent crystal structure of a trans-acting precursor, obtained at low pH and by molecular replacement from the previous product conformation, conforms to the product, raising the possibility that it represents an activated conformer past the conformational change. Here, using fluorescence resonance energy transfer (FRET), we discovered that cleavage of this ribozyme at physiological pH is accompanied by a structural lengthening in magnitude comparable to previous trans-acting HDV ribozymes. Conformational heterogeneity observed by FRET in solution appears to have been removed upon crystallization. Analysis of a total of 1.8 µsec of molecular dynamics (MD) simulations showed that the crystallographically unresolved cleavage site conformation is likely correctly modeled after the hammerhead ribozyme, but that crystal contacts and the removal of several 2'-oxygens near the scissile phosphate compromise catalytic in-line fitness. A cis-acting version of the ribozyme exhibits a more dynamic active site, while a G-1 residue upstream of the scissile phosphate favors poor fitness, allowing us to rationalize corresponding changes in catalytic activity. Based on these data, we propose that the available crystal structures of the HDV ribozyme represent intermediates on an overall rugged RNA folding free-energy landscape. © 2014 Sripathi et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  12. Crystal structure of (2E)-3-[4-(di-methyl-amino)-phen-yl]-1-(thio-phen-2-yl)prop-2-en-1-one.

    PubMed

    de Oliveira, Gabriela Porto; Bresolin, Leandro; Flores, Darlene Correia; de Farias, Renan Lira; de Oliveira, Adriano Bof

    2017-04-01

    The equimolar reaction between 4-(di-methyl-amino)-benzaldehyde and 2-acetyl-thio-phene in basic ethano-lic solution yields the title compound, C 15 H 15 NOS, whose mol-ecular structure matches the asymmetric unit. The mol-ecule is not planar, the dihedral angle between the aromatic and the thio-phene rings being 11.4 (2)°. In the crystal, mol-ecules are linked by C-H⋯O and weak C-H⋯S inter-actions along [100], forming R 2 2 (8) rings, and by weak C-H⋯O inter-actions along [010], forming chains with a C (6) graph-set motif. In addition, mol-ecules are connected into centrosymmetric dimers by weak C-H⋯π inter-actions, as indicated by the Hirshfeld surface analysis. The most important contributions for the crystal structure are the H⋯H (46.50%) and H⋯C (23.40%) inter-actions. The crystal packing resembles a herringbone arrangement when viewed along [100]. A mol-ecular docking calculation of the title compound with the neuraminidase enzyme was carried out. The enzyme shows ( ASN263 )N-H⋯O, ( PRO245 )C-H⋯ Cg (thio-phene ring) and ( AGR287 )C-H⋯N inter-molecular inter-actions with the title compound. The crystal structure was refined as a two-component twin with a fractional contribution to the minor domain of 0.0181 (8).

  13. Hydrogen-bond coordination in organic crystal structures: statistics, predictions and applications.

    PubMed

    Galek, Peter T A; Chisholm, James A; Pidcock, Elna; Wood, Peter A

    2014-02-01

    Statistical models to predict the number of hydrogen bonds that might be formed by any donor or acceptor atom in a crystal structure have been derived using organic structures in the Cambridge Structural Database. This hydrogen-bond coordination behaviour has been uniquely defined for more than 70 unique atom types, and has led to the development of a methodology to construct hypothetical hydrogen-bond arrangements. Comparing the constructed hydrogen-bond arrangements with known crystal structures shows promise in the assessment of structural stability, and some initial examples of industrially relevant polymorphs, co-crystals and hydrates are described.

  14. Four highly pseudosymmetric and/or twinned structures of d(CGCGCG) 2 extend the repertoire of crystal structures of Z-DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Zhipu; Dauter, Zbigniew; Gilski, Miroslaw

    DNA oligomer duplexes containing alternating cytosines and guanines in their sequences tend to form left-handed helices of the Z-DNA type, with the sugar and phosphate backbone in a zigzag conformation and a helical repeat of two successive nucleotides. Z-DNA duplexes usually crystallize as hexagonally arranged parallel helical tubes, with various relative orientations and translation of neighboring duplexes. Four novel high-resolution crystal structures of d(CGCGCG) 2duplexes are described here. They are characterized by a high degree of pseudosymmetry and/or twinning, with three or four independent duplexes differently oriented in a monoclinicP2 1lattice of hexagonal metric. The various twinning criteria give somewhatmore » conflicting indications in these complicated cases of crystal pathology. The details of molecular packing in these crystal structures are compared with other known crystal forms of Z-DNA.« less

  15. Crystal structure of 4,5-dinitro-1 H-imidazole

    DOE PAGES

    Windler, G. Kenneth; Scott, Brian L.; Tomson, Neil C.; ...

    2015-01-01

    Here, the title compound, C 3H 2N 4O 4, forms crystals with two molecules in the asymmetric unit which are conformationally similar. With the exception of the O atoms of the nitro groups, the molecules are essentially planar. In the crystal, adjacent molecules are associated by N—H...N hydrogen bonds involving the imidazole N—H donors and N-atom acceptors of the unsaturated nitrogen of neighboring rings, forming layers parallel to (010).

  16. Crystal Structure Characterization of Thin Layer Zinc Oxide

    NASA Astrophysics Data System (ADS)

    Doyan, Aris; Susilawati; Azizatul Fitri, Siti; Ahzan, Sukainil

    2017-05-01

    In this research the characterization of the crystal structure of a thin layer of ZnO (zinc oxide) were synthesized by sol - gel method and spin coating deposited on a glass substrate. The samples were divided into three sol concentrations of 0.1, 0.3, 0.5 Molar and two deposition temperature is 350 °C, and 550 °C. UV-Vis. spectrophotometer results showed that in the spectrum of visible light (wavelength range 300-800 nm) has a transmittance value of which increases with increasing concentration and temperature deposition of zinc oxide, otherwise the value of the absorption and the band gap energy decreases with the addition of concentration and deposition temperature. The transmittances value of the highest and lowest absorption was 93.5% and 0.03 is at a concentration of 0.1 M and zinc oxide deposition temperature of 550 °C, with a value of band gap energy of 2.98 eV. The XRD results showed that the zinc oxide crystal orientation in the field of 013 with a crystal grain size 14.4472 nm. SEM results showed the surface morphology of zinc oxide such as rod-like.

  17. Crystal structure of 1-(3-chloro-phen-yl)piperazin-1-ium picrate-picric acid (2/1).

    PubMed

    Kavitha, Channappa N; Jasinski, Jerry P; Kaur, Manpreet; Anderson, Brian J; Yathirajan, H S

    2014-11-01

    The title salt {systematic name: bis-[1-(3-chloro-phen-yl)piperazinium 2,4,6-tri-nitro-phenolate]-picric acid (2/1)}, 2C10H14ClN2 (+)·2C6H5N3O7 (-)·C6H6N3O7, crystallized with two independent 1-(3-chloro-phen-yl)piperazinium cations, two picrate anions and a picric acid mol-ecule in the asymmetric unit. The six-membered piperazine ring in each cation adopts a slightly distorted chair conformation and contains a protonated N atom. In the picric acid mol-ecule, the mean planes of the nitro groups in the ortho-, meta-, and para-positions are twisted from the benzene ring by 31.5 (3), 7.7 (1), and 3.8 (2)°, respectively. In the anions, the dihedral angles between the benzene ring and the ortho-, meta-, and para-nitro groups are 36.7 (1), 5.0 (6), 4.8 (2)°, and 34.4 (9), 15.3 (8), 4.5 (1)°, respectively. The nitro group in one anion is disordered and was modeled with two sites for one O atom with an occupancy ratio of 0.627 (7):0.373 (7). In the crystal, the picric acid mol-ecule inter-acts with the picrate anion through a trifurcated O-H⋯O four-centre hydrogen bond involving an intra-molecular O-H⋯O hydrogen bond and a weak C-H⋯O inter-action. Weak inter-molecular C-H⋯O inter-actions are responsible for the formation of cation-anion-cation trimers resulting in a chain along [010]. In addition, weak C-H⋯Cl and weak π-π inter-actions [centroid-centroid distances of 3.532 (3), 3.756 (4) and 3.705 (3) Å] are observed and contribute to the stability of the crystal packing.

  18. Hydrothermal synthesis and crystal structure of alkaline earth metal (Mg, Ca) based on 2,5-Dimethylbenzene-1,4-diylbis(methylene) diphosphonic acid

    NASA Astrophysics Data System (ADS)

    Xie, Y. C.; Cheng, Q. R.; Pan, Z. Q.

    2018-02-01

    New magnesium phosphonates Mg(H2L)31 (H4L = 2,5-dimethylbenzene-1,4 -diylbis(methylene)diphosphonic acid) and Ca(H2L)·2H2O 2 have been hydrothermally synthesized from H4L and the corresponding metal salts. Complex 1 and 2 have been characterized by IR, powder and single-crystal X-ray diffraction methods. Complex 1 crystallizes in trigonal space group R-3c and complex 2 belongs to the triclinic space group. The complexes both form two-dimensional (2D) network structure and show three-dimensional (3D) network through hydrogen bonds. Thermal stability of complex 1 and 2 have also been investigated. CCDC: 1534599 for 1; 1536423 for 2.

  19. Crystallization and preliminary X-ray analysis of alginate lyases A1-II and A1-II′ from Sphingomonas sp. A1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamasaki, Masayuki; Ogura, Kohei; Moriwaki, Satoko

    The crystallization and preliminary characterization of the family PL-7 alginate lyases A1-II and A1-II′ from Sphingomonas sp. A1 are presented. Alginate lyases depolymerize alginate, a heteropolysaccharide consisting of α-l-guluronate and β-d-mannuronate, through a β-elimination reaction. The alginate lyases A1-II (25 kDa) and A1-II′ (25 kDa) from Sphingomonas sp. A1, which belong to polysaccharide lyase family PL-7, exhibit 68% homology in primary structure but have different substrate specificities. To determine clearly the structural basis for substrate recognition in the depolymerization mechanism by alginate lyases, both proteins were crystallized at 293 K using the vapour-diffusion method. A crystal of A1-II belonged tomore » space group P2{sub 1} and diffracted to 2.2 Å resolution, with unit-cell parameters a = 51.3, b = 30.1, c = 101.6 Å, β = 100.2°, while a crystal of A1-II′ belonged to space group P2{sub 1}2{sub 1}2{sub 1} and diffracted to 1.0 Å resolution, with unit-cell parameters a = 34.6, b = 68.5, c = 80.3 Å.« less

  20. Crystal structure of a poly(rA) staggered zipper at acidic pH: evidence that adenine N1 protonation mediates parallel double helix formation

    DOE PAGES

    Gleghorn, Michael L.; Zhao, Jianbo; Turner, Douglas H.; ...

    2016-06-10

    We have solved at 1.07 Å resolution the X-ray crystal structure of a polyriboadenylic acid (poly(rA)) parallel and continuous double helix. Fifty-nine years ago, double helices of poly(rA) were first proposed to form at acidic pH. Here, we show that 7-mer oligo(rA), i.e. rA 7, hybridizes and overlaps in all registers at pH 3.5 to form stacked double helices that span the crystal. Under these conditions, rA 7 forms well-ordered crystals, whereas rA 6 forms fragile crystalline-like structures, and rA 5, rA 8 and rA 11 fail to crystallize. Our findings support studies from ~50 years ago: one showed usingmore » spectroscopic methods that duplex formation at pH 4.5 largely starts with rA 7 and begins to plateau with rA 8; another proposed a so-called ‘staggered zipper’ model in which oligo(rA) strands overlap in multiple registers to extend the helical duplex. While never shown, protonation of adenines at position N1 has been hypothesized to be critical for helix formation. Bond angles in our structure suggest that N1 is protonated on the adenines of every other rAMP–rAMP helix base pair. Lastly, our data offer new insights into poly(rA) duplex formation that may be useful in developing a pH sensor.« less

  1. Crystal structure of a poly(rA) staggered zipper at acidic pH: evidence that adenine N1 protonation mediates parallel double helix formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleghorn, Michael L.; Zhao, Jianbo; Turner, Douglas H.

    We have solved at 1.07 Å resolution the X-ray crystal structure of a polyriboadenylic acid (poly(rA)) parallel and continuous double helix. Fifty-nine years ago, double helices of poly(rA) were first proposed to form at acidic pH. Here, we show that 7-mer oligo(rA), i.e. rA 7, hybridizes and overlaps in all registers at pH 3.5 to form stacked double helices that span the crystal. Under these conditions, rA 7 forms well-ordered crystals, whereas rA 6 forms fragile crystalline-like structures, and rA 5, rA 8 and rA 11 fail to crystallize. Our findings support studies from ~50 years ago: one showed usingmore » spectroscopic methods that duplex formation at pH 4.5 largely starts with rA 7 and begins to plateau with rA 8; another proposed a so-called ‘staggered zipper’ model in which oligo(rA) strands overlap in multiple registers to extend the helical duplex. While never shown, protonation of adenines at position N1 has been hypothesized to be critical for helix formation. Bond angles in our structure suggest that N1 is protonated on the adenines of every other rAMP–rAMP helix base pair. Lastly, our data offer new insights into poly(rA) duplex formation that may be useful in developing a pH sensor.« less

  2. Crystal Structure Variations of Sn Nanoparticles upon Heating

    NASA Astrophysics Data System (ADS)

    Mittal, Jagjiwan; Lin, Kwang-Lung

    2018-04-01

    Structural changes in Sn nanoparticles during heating below the melting point have been investigated using differential scanning calorimetry (DSC), x-ray diffraction (XRD) analysis, electron diffraction (ED), and high-resolution transmission electron microscopy (HRTEM). DSC revealed that the heat required to melt the nanoparticles (28.43 J/g) was about half compared with Sn metal (52.80 J/g), which was attributed to the large surface energy contribution for the nanoparticles. ED and XRD analyses of the Sn nanoparticles revealed increased intensity for crystal planes having large interplaner distances compared with regular crystal planes with increasing heat treatment temperature (HTT). HRTEM revealed an increase in interlayer spacing at the surface and near joints between nanoparticles with the HTT, leading to an amorphous structure of nanoparticles at the surface at 220°C. These results highlight the changes that occur in the morphology and crystal structure of Sn nanoparticles at the surface and in the interior with increase of the heat treatment temperature.

  3. Mg(1 + x)Ir(1 - x) (x = 0, 0.037 and 0.054), a binary intermetallic compound with a new orthorhombic structure type determined from powder and single-crystal X-ray diffraction.

    PubMed

    Cerný, Radovan; Renaudin, Guillaume; Favre-Nicolin, Vincent; Hlukhyy, Viktor; Pöttgen, Rainer

    2004-06-01

    The new binary compound Mg(1 + x)Ir(1 - x) (x = 0-0.054) was prepared by melting the elements in the Mg:Ir ratio 2:3 in a sealed tantalum tube under an argon atmosphere in an induction furnace (single crystals) or by annealing cold-pressed pellets of the starting composition Mg:Ir 1:1 in an autoclave under an argon atmosphere (powder sample). The structure was independently solved from high-resolution synchrotron powder and single-crystal X-ray data: Pearson symbol oC304, space group Cmca, lattice parameters from synchrotron powder data a = 18.46948 (6), b = 16.17450 (5), c = 16.82131 (5) A. Mg(1 + x)Ir(1 - x) is a topologically close-packed phase, containing 13 Ir and 12 Mg atoms in the asymmetric unit, and has a narrow homogeneity range. Nearly all the atoms have Frank-Kasper-related coordination polyhedra, with the exception of two Ir atoms, and this compound contains the shortest Ir-Ir distances ever observed. The solution of a rather complex crystal structure from powder diffraction, which was fully confirmed by the single-crystal method, shows the power of powder diffraction in combination with the high-resolution data and the global optimization method.

  4. Synthesis, crystal structure, and luminescent properties of two coordination polymers based on 1,4-phenylenediacetic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Meili; Ren, Yixia; Ma, Zhenzhen; Qiao, Lei

    2017-06-01

    Two coordination polymers, [Zn(pda)(bib)]n (1) and [Cd(pda)0.5(bib)Cl]n (2)]. (H2pda = 1,4-phenylenediacetic acid, bib = 1,2-bis(imidazol-1-ylmethyl)benzene), have been synthesized by using Zn(II)/Cd(II) salts with two flexible ligands pda and bib under hydrothermal conditions. Their structures have been characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography and powder X-ray diffraction (PXRD) analysis. Due to the coordination geometry around the metal ions and the diverse coordination modes of the flexible ligands, the obtained complex show diverse structures. In the structure of 1, a pair of bib ligands connect two Zn(II) atoms give rise a 22-membered ring, which is further extended by pda ligands in bidentate coordination mode leading a ring-containing 2D layer. In 2, bib ligands join [Cd2Cl2]2+ dimmers generate 1D polymeric ribbon, the pda ligands further extend such ribbon forming a 2D layer network containing rectangular windows, which discovers the effect of the central metal ions on the formation of metal-organic frameworks. In additional, luminescent properties of two complexes have also been studied, they could be potential fluorescence materials.

  5. Characterization of molecular associations involving L-ornithine and α-ketoglutaric acid: crystal structure of L-ornithinium α-ketoglutarate.

    PubMed

    Allouchi, H; Céolin, R; Berthon, L; Tombret, F; Rietveld, I B

    2014-07-01

    The crystal structure of L-ornithinium α-ketoglutarate (C5H13N2O2, C5H5O5) has been solved by direct methods using single crystal X-ray diffraction data. It crystallizes in the monoclinic system, space group P21, unit cell parameters a=15.4326(3), b=5.2015(1), c=16.2067(3) Å and β=91.986(1)°, containing two independent pairs of molecular ions in the asymmetric unit. An extensive hydrogen-bond network and electrostatic charges due to proton transfer provide an important part of the cohesive energy of the crystal. The conformational versatility of L-ornithine and α-ketoglutaric acid is illustrated by the present results and crystal structures available from the Cambridge Structural Database. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Crystal structure of reovirus attachment protein σ1 in complex with sialylated oligosaccharides.

    PubMed

    Reiter, Dirk M; Frierson, Johnna M; Halvorson, Elizabeth E; Kobayashi, Takeshi; Dermody, Terence S; Stehle, Thilo

    2011-08-01

    Many viruses attach to target cells by binding to cell-surface glycans. To gain a better understanding of strategies used by viruses to engage carbohydrate receptors, we determined the crystal structures of reovirus attachment protein σ1 in complex with α-2,3-sialyllactose, α-2,6-sialyllactose, and α-2,8-di-siallylactose. All three oligosaccharides terminate in sialic acid, which serves as a receptor for the reovirus serotype studied here. The overall structure of σ1 resembles an elongated, filamentous trimer. It contains a globular head featuring a compact β-barrel, and a fibrous extension formed by seven repeating units of a triple β-spiral that is interrupted near its midpoint by a short α-helical coiled coil. The carbohydrate-binding site is located between β-spiral repeats two and three, distal from the head. In all three complexes, the terminal sialic acid forms almost all of the contacts with σ1 in an identical manner, while the remaining components of the oligosaccharides make little or no contacts. We used this structural information to guide mutagenesis studies to identify residues in σ1 that functionally engage sialic acid by assessing hemagglutination capacity and growth in murine erythroleukemia cells, which require sialic acid binding for productive infection. Our studies using σ1 mutant viruses reveal that residues 198, 202, 203, 204, and 205 are required for functional binding to sialic acid by reovirus. These findings provide insight into mechanisms of reovirus attachment to cell-surface glycans and contribute to an understanding of carbohydrate binding by viruses. They also establish a filamentous, trimeric carbohydrate-binding module that could potentially be used to endow other trimeric proteins with carbohydrate-binding properties.

  7. Structural colored gels for tunable soft photonic crystals.

    PubMed

    Harun-Ur-Rashid, Mohammad; Seki, Takahiro; Takeoka, Yukikazu

    2009-01-01

    A periodically ordered interconnecting porous structure can be embodied in chemical gels by using closest-packed colloidal crystals as templates. The interconnecting porosity not only provides a quick response but also endows the porous gels with structural color arising from coherent Bragg optical diffraction. The structural colors revealed by porous gels can be regulated by several techniques, and thus, it is feasible to obtain desirable, smart, soft materials. A well-known thermosensitive monomer, N-isopropylacrylamide (NIPA), and other minor monomers were used to fabricate various structural colored gels. The selection of minor monomers depended on the targeted properties. This review focuses on the synthesis of templates, structural colored porous gels, and the applications of structural colored gel as smart soft materials for tunable photonic crystals. (c) 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  8. Synthesis, spectral characterization and X-ray crystal structure studies of 3-(benzo[d][1,3]dioxol-5-yl)-5-(3-methylthiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-carboxamide: Hirshfeld surface, DFT and thermal analysis

    NASA Astrophysics Data System (ADS)

    Kumara, Karthik; Dileep Kumar, A.; Naveen, S.; Ajay Kumar, K.; Lokanath, N. K.

    2018-06-01

    A novel pyrazole derivative, 3-(benzo[d][1,3]dioxol-5-yl)-5-(3-methylthiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-carboxamide was synthesized and characterized by elemental analysis, FT-IR, NMR (1H and 13C), MS, UV-visible spectra and finally the structure was confirmed by the single crystal X-ray diffraction studies. The title compound (C16H15N3O3S) crystallized in the triclinic crystal system, with the space group Pī. A dihedral angle of 65.84(1)° between the pyrazole and the thiophene rings confirms the twisted conformation between them. The X-ray structure revealed that the pyrazole ring adopts an E-form and an envelope conformation on C7 atom. The crystal and molecular structure of the title compound is stabilized by inter molecular hydrogen bonds. The compound possesses three dimensional supramolecular self-assembly, in which Csbnd H⋯O and Nsbnd H⋯O chains build up two dimensional arrays, which are extended to 3D network through Csbnd H···Cg and Csbnd O···Cg interactions. The structure also exhibits intramolecular hydrogen bonds of the type Nsbnd H⋯N and π···π stacking interactions, which contributes to the crystal packing. Further, Hirshfeld surface analysis was carried out for the graphical visualization of several short intermolecular interactions on the molecular surface while the 2D finger-print plot provides percentage contribution of each individual atom-to-atom interactions. The thermal decomposition of the compound has been studied by thermogravimetric analysis. The molecular geometries and electronic structures of the compounds were fully optimized, calculated with ab-initio methods by HF, DFT/B3LYP functional in combination of different basis set with different solvent environment and the structural parameters were compared with the experimental data. The Mulliken atomic charges and molecular electrostatic potential on molecular van der Waals (vdW) surface were calculated to know the electrophilic and nucleophilic regions

  9. The synthesis and crystal structure of α-Ca 3UO 6

    NASA Astrophysics Data System (ADS)

    Holc, J.; Golic̆, L.

    1983-07-01

    Single crystals of α-Ca 3UO 6 were grown from a UO 3CaCl 2CaO melt by the slow cooling method from 950°C. The crystal structure was determined by means of X-ray diffraction with R = 0.032 and Rw = 0.019. The structure of α-Ca 3UO 6 is of Mg 3TeO 6 type. α-Ca 3UO 6 is rhombohedral with a = 6.729 (1)Å, α = 90.30 (1)°, Z = 2, Dc = 4.955 g/cm 3, Dm = 4.79 g/cm 3, space group R overline3. Uranium and calcium atoms are six-coordinated. At 1200°C rhombohedral α-Ca 3UO 6 irreversibly transforms to monoclinic β-Ca 3UO 6.

  10. Does Z' equal 1 or 2? Enhanced powder NMR crystallography verification of a disordered room temperature crystal structure of a p38 inhibitor for chronic obstructive pulmonary disease.

    PubMed

    Widdifield, Cory M; Nilsson Lill, Sten O; Broo, Anders; Lindkvist, Maria; Pettersen, Anna; Svensk Ankarberg, Anna; Aldred, Peter; Schantz, Staffan; Emsley, Lyndon

    2017-06-28

    The crystal structure of the Form A polymorph of N-cyclopropyl-3-fluoro-4-methyl-5-[3-[[1-[2-[2-(methylamino)ethoxy]phenyl]cyclopropyl]amino]-2-oxo-pyrazin-1-yl]benzamide (i.e., AZD7624), determined using single-crystal X-ray diffraction (scXRD) at 100 K, contains two molecules in the asymmetric unit (Z' = 2) and has regions of local static disorder. This substance has been in phase IIa drug development trials for the treatment of chronic obstructive pulmonary disease, a disease which affects over 300 million people and contributes to nearly 3 million deaths annually. While attempting to verify the crystal structure using nuclear magnetic resonance crystallography (NMRX), we measured 13 C solid-state NMR (SSNMR) spectra at 295 K that appeared consistent with Z' = 1 rather than Z' = 2. To understand this surprising observation, we used multinuclear SSNMR ( 1 H, 13 C, 15 N), gauge-including projector augmented-wave density functional theory (GIPAW DFT) calculations, crystal structure prediction (CSP), and powder XRD (pXRD) to determine the room temperature crystal structure. Due to the large size of AZD7624 (ca. 500 amu, 54 distinct 13 C environments for Z' = 2), static disorder at 100 K, and (as we show) dynamic disorder at ambient temperatures, NMR spectral assignment was a challenge. We introduce a method to enhance confidence in NMR assignments by comparing experimental 13 C isotropic chemical shifts against site-specific DFT-calculated shift distributions established using CSP-generated crystal structures. The assignment and room temperature NMRX structure determination process also included measurements of 13 C shift tensors and the observation of residual dipolar coupling between 13 C and 14 N. CSP generated ca. 90 reasonable candidate structures (Z' = 1 and Z' = 2), which when coupled with GIPAW DFT results, room temperature pXRD, and the assigned SSNMR data, establish Z' = 2 at room temperature. We find that the polymorphic Form A of AZD7624 is maintained at

  11. Structure of initial crystals formed during human amelogenesis

    NASA Astrophysics Data System (ADS)

    Cuisinier, F. J. G.; Voegel, J. C.; Yacaman, J.; Frank, R. M.

    1992-02-01

    X-ray diffraction analysis revealed only the existence of carbonated hydroxyapatite (c.HA) during amelogenesis, whereas conventional transmission electron microscopy investigations showed that developing enamel crystals have a ribbon-like habit. The described compositional changes could be an indication for the presence of minerals different from c.HA. However, the absence of identification of such a mineral shows the need of studies by high resolution electron microscopy (HREM) of initial formed human enamel crystals. We demonstrate the existence of two crystal families involved in the early stages of biomineralization: (a) nanometer-size particles which appeared as a precursor phase; (b) ribbon-like crystals, with a structure closely related to c.HA, which by a progressive thickening process tend to attain the mature enamel crystal habit.

  12. Synthesis, structure and luminescence of novel co-crystals based on bispyridyl-substituted α,β-unsaturated ketones with coformers

    NASA Astrophysics Data System (ADS)

    Li, Hong-Juan; Wang, Lei; Zhao, Juan-Juan; Sun, Ju-Feng; Sun, Ji-Liang; Wang, Chun-Hua; Hou, Gui-Ge

    2015-01-01

    Based on 2,6-bis((pyridin-4-yl)methylene)cyclohexanone (A) and N-methyl-3,5-bis((pyridin-4-yl)methylene)-4-piperidone (B) with coformers, three novel macrocyclic co-crystals, (A)ṡ(resorcinol) (1), (A)ṡ(1,3,5-benzenetriol) (2), (B)2ṡ(1,3,5-benzenetriol)2 (3) and three chain co-crystals, (A)ṡ(hydroquinone) (4), (A)ṡ(isophthalic acid) (5), (B)ṡ(isophthalic acid) (6) have been synthesized and structurally characterized by IR, 1H NMR and X-ray crystal structure analysis. Structural analysis indicates that four-component macrocycles in 1-3 are generated from "clip-like" resorcinol templates and building blocks, while 4-6 show infinite H-bonding chains. In addition, the luminescent properties of A, B and 1-6 are investigated primarily in the solid state. Compared with free building blocks, 1-6 are blue-shifted 55-60 nm with decreasing emission intensities in spite of the enhancement in 6. The change of luminescent properties might be caused mainly by incorporation of coformers into co-crystals, including H-bonds, molecular conformations, arranging dispositions and π-π characteristics. It might have potential applications for crystal engineering to construct patentable crystals with interesting luminescent properties.

  13. The Crystal and Molecular Structure of Acetatochlorobis(4-methylpyridine)oxovanadium (IV)

    NASA Technical Reports Server (NTRS)

    Schupp, John D.; Hepp, Aloysius F.; Duraj, Stan A.; Richman, Robert M.; Fanwick, Phillip E.; Hakimzadeh, Roshanak (Technical Monitor)

    2001-01-01

    The crystal and molecular structure of the title compound, VOCl(O2CCH3)(4-CH3C5H4N)2, has been determined by single-crystal x-ray diffraction. The material crystallizes in the space group P 1(bar) (#2) with a = 7.822(2), b = 8.023(l), c = 14.841(2) Angstroms, alpha = 99.73(l), beta = 91.41(l), and gamma = 117.13(l). The coordination geometry around the vanadium is a highly distorted octahedron. The molecule is remarkable for being a monomeric oxovanadium (IV) carboxylate. A generalized synthetic strategy is proposed for the preparation of oxovanadium (IV) monomers.

  14. In situ data collection and structure refinement from microcapillary protein crystallization

    PubMed Central

    Yadav, Maneesh K.; Gerdts, Cory J.; Sanishvili, Ruslan; Smith, Ward W.; Roach, L. Spencer; Ismagilov, Rustem F.; Kuhn, Peter; Stevens, Raymond C.

    2007-01-01

    In situ X-ray data collection has the potential to eliminate the challenging task of mounting and cryocooling often fragile protein crystals, reducing a major bottleneck in the structure determination process. An apparatus used to grow protein crystals in capillaries and to compare the background X-ray scattering of the components, including thin-walled glass capillaries against Teflon, and various fluorocarbon oils against each other, is described. Using thaumatin as a test case at 1.8 Å resolution, this study demonstrates that high-resolution electron density maps and refined models can be obtained from in situ diffraction of crystals grown in microcapillaries. PMID:17468785

  15. Crystal structure analysis of Great Cormorant (Phalacrocorax carbo) Hemoglobin.

    PubMed

    Ganapathy, Jagadeesan; Palayam, Malathy; Pennathur, Gautam; Sanmargam, Aravindhan; Krishnasamy, Gunasekaran

    2018-06-20

    Hemoglobin (Hb) molecule consists of α2β2 dimers arranged in fashion having pseudo-222 symmetry. The subunits are composed of the specific functional prosthetic group "heme'' and a protein moiety "globin". Bird Hbs are functionally similar to mammalian Hbs and regulated by inositol pentaphosphate (IPP) but they are structurally dissimilar with mammalian Hbs in adaptation to vital environment such as high altitudes, high speed flights and oxygen affinity. The insufficient structural studies on avian Hbs limit us to understand their degree of adaptation to such critical environments. So far, detailed structural studies of bar-headed goose (BHG) and graylag goose (GLG) Hb structures were reported to expose their remarkable difference in molecular level adaptation. The striking contrasts to its close relative the bar headed goose, which lives at high altitude and capable of tolerating severe hypoxic environment is mainly due its structural features. The Great Cormorant (GCT) can fly and swim, the dual characteristic of GCT leads to study the details of adaptation of high oxygen affinity in avian species and to know about the role of amino acid substitutions at α1β1 interface, the crystal structure of Great cormorant is studied. The structure of GCT Hb has been solved at 3.5Å resolution and it is compared with the other high oxygen affinity Hb (graylag goose (GLG), bar headed goose (BHG) and human (HMN) hemoglobin) structures. To determine the crystal structure of Great Cormorant (GCT) Hemoglobin and to compare its three dimensional structure with other high and low oxygen affinity hemoglobin species to understand its characteristic features of high oxygen affinity. The GCT hemoglobin has been purified, crystallized and data sets were processed using iMosflm. The integrated data has been solved using Molecular replacement method using Graylag hemoglobin (1FAW) as the template. The structure refinement has been carried out using Refmac which reduced the Rwork and

  16. Structure of Bacillus halmapalus α-amylase crystallized with and without the substrate analogue acarbose and maltose

    PubMed Central

    Lyhne-Iversen, Louise; Hobley, Timothy J.; Kaasgaard, Svend G.; Harris, Pernille

    2006-01-01

    Recombinant Bacillus halmapalus α-amylase (BHA) was studied in two different crystal forms. The first crystal form was obtained by crystallization of BHA at room temperature in the presence of acarbose and maltose; data were collected at cryogenic temperature to a resolution of 1.9 Å. It was found that the crystal belonged to space group P212121, with unit-cell parameters a = 47.0, b = 73.5, c = 151.1 Å. A maltose molecule was observed and found to bind to BHA and previous reports of the binding of a nonasaccharide were confirmed. The second crystal form was obtained by pH-induced crystallization of BHA in a MES–HEPES–boric acid buffer (MHB buffer) at 303 K; the solubility of BHA in MHB has a retrograde temperature dependency and crystallization of BHA was only possible by raising the temperature to at least 298 K. Data were collected at cryogenic temperature to a resolution of 2.0 Å. The crystal belonged to space group P212121, with unit-cell parameters a = 38.6, b = 59.0, c = 209.8 Å. The structure was solved using molecular replacement. The maltose-binding site is described and the two structures are compared. No significant changes were seen in the structure upon binding of the substrates. PMID:16946462

  17. High-throughput screening for thermoelectric sulphides by using crystal structure features as descriptors

    NASA Astrophysics Data System (ADS)

    Zhang, Ruizhi; Du, Baoli; Chen, Kan; Reece, Mike; Materials Research Insititute Team

    With the increasing computational power and reliable databases, high-throughput screening is playing a more and more important role in the search of new thermoelectric materials. Rather than the well established density functional theory (DFT) calculation based methods, we propose an alternative approach to screen for new TE materials: using crystal structural features as 'descriptors'. We show that a non-distorted transition metal sulphide polyhedral network can be a good descriptor for high power factor according to crystal filed theory. By using Cu/S containing compounds as an example, 1600+ Cu/S containing entries in the Inorganic Crystal Structure Database (ICSD) were screened, and of those 84 phases are identified as promising thermoelectric materials. The screening results are validated by both electronic structure calculations and experimental results from the literature. We also fabricated some new compounds to test our screening results. Another advantage of using crystal structure features as descriptors is that we can easily establish structural relationships between the identified phases. Based on this, two material design approaches are discussed: 1) High-pressure synthesis of metastable phase; 2) In-situ 2-phase composites with coherent interface. This work was supported by a Marie Curie International Incoming Fellowship of the European Community Human Potential Program.

  18. Caught in the Act: 1.5 Å Resolution Crystal Structures of the HIV-1 Protease and the I54V Mutant Reveal a Tetrahedral Reaction Intermediate

    PubMed Central

    Kovalevsky, Andrey Y.; Chumanevich, Alexander A.; Liu, Fengling; Louis, John M.; Weber, Irene T.

    2008-01-01

    HIV-1 protease (PR) is the target for several important antiviral drugs used in AIDS therapy. The drugs bind inside the active-site cavity of PR where normally the viral poly-protein substrate is bound and hydrolyzed. We report two high resolution crystal structures of wild-type PR (PRWT) and the multi-drug resistant variant with the I54V mutation (PRI54V) in complex with a peptide at 1.46 Å and 1.50 Å resolution, respectively. The peptide forms a gem-diol tetrahedral reaction intermediate (TI) in the crystal structures. Distinctive interactions are observed for the TI binding in the active site cavity of PRWT and PRI54V. The mutant PRI54V /TI complex has lost water-mediated hydrogen bond interactions with the amides of Ile 50 and 50′ in the flap. Hence, the structures provide insight into the mechanism of drug resistance arising from this mutation. The structures also illustrate an intermediate state in the hydrolysis reaction. One of the gem-diol hydroxide groups in the PRWT complex forms a very short (2.3 Å) hydrogen bond with the outer carboxylate oxygen of Asp25. Quantum chemical calculations based on this TI structure are consistent with protonation of the inner carboxylate oxygen of Asp25′, in contrast to several theoretical studies. These TI complexes and quantum calculations are discussed in relation to the chemical mechanism of the peptide bond hydrolysis catalyzed by PR. PMID:18052235

  19. Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212.

    PubMed

    Shanmugaiah, V; Mathivanan, N; Varghese, B

    2010-02-01

    To purify and characterize an antimicrobial compound produced by a biocontrol bacterium, Pseudomonas aeruginosa MML2212, and evaluate its activity against rice pathogens, Rhizoctonia solani and Xanthomonas oryzae pv. oryzae. Pseudomonas aeruginosa strain MML2212 isolated from the rice rhizosphere with wide-spectrum antimicrobial activity was cultured in Kings'B broth using a fermentor for 36 h. The extracellular metabolites were isolated from the fermented broth using ethyl acetate extraction and purified by two-step silica-gel column chromatography. Three fractions were separated, of which a major compound was obtained in pure state as yellow needles. It was crystallized after dissolving with chloroform followed by slow evaporation. It is odourless with a melting point of 220-222 degrees C. It was soluble in most of the organic solvents and poorly soluble in water. The molecular mass of purified compound was estimated as 223.3 by mass spectral analysis. Further, it was characterized by IR, (1)H and (13)C NMR spectral analyses. The crystal structure of the compound was elucidated for the first time by X-ray diffraction study and deposited in the Cambridge Crystallographic Data Centre (http://www.ccde.com.ac.uk) with the accession no. CCDC 617344. The crystal compound was undoubtedly identified as phenazine-1-carboxamide (PCN) with the empirical formula of C(13)H(9)N(3)O. As this is the first report on the crystal structure of PCN, it provides additional information to the structural chemistry. Furthermore, the present study reports the antimicrobial activity of purified PCN on major rice pathogens, R. solani and X. oryzae pv. oryzae. Therefore, the PCN can be developed as an ideal agrochemical candidate for the control of both sheath blight and bacterial leaf blight diseases of rice.

  20. Crystal structure of the Japanese encephalitis virus envelope protein.

    PubMed

    Luca, Vincent C; AbiMansour, Jad; Nelson, Christopher A; Fremont, Daved H

    2012-02-01

    Japanese encephalitis virus (JEV) is the leading global cause of viral encephalitis. The JEV envelope protein (E) facilitates cellular attachment and membrane fusion and is the primary target of neutralizing antibodies. We have determined the 2.1-Å resolution crystal structure of the JEV E ectodomain refolded from bacterial inclusion bodies. The E protein possesses the three domains characteristic of flavivirus envelopes and epitope mapping of neutralizing antibodies onto the structure reveals determinants that correspond to the domain I lateral ridge, fusion loop, domain III lateral ridge, and domain I-II hinge. While monomeric in solution, JEV E assembles as an antiparallel dimer in the crystal lattice organized in a highly similar fashion as seen in cryo-electron microscopy models of mature flavivirus virions. The dimer interface, however, is remarkably small and lacks many of the domain II contacts observed in other flavivirus E homodimers. In addition, uniquely conserved histidines within the JEV serocomplex suggest that pH-mediated structural transitions may be aided by lateral interactions outside the dimer interface in the icosahedral virion. Our results suggest that variation in dimer structure and stability may significantly influence the assembly, receptor interaction, and uncoating of virions.