Sample records for abcd ring structure

  1. A description of the ABCD organizational structure and communication framework.

    PubMed

    Auchter, Allison M; Hernandez Mejia, Margie; Heyser, Charles J; Shilling, Paul D; Jernigan, Terry L; Brown, Sandra A; Tapert, Susan F; Dowling, Gayathri J

    2018-04-16

    The Adolescent Brain Cognitive Development (ABCD) study is designed to be the largest study of brain development and child health in the United States, performing comprehensive assessments of 11,500 children repeatedly for 10 years. An endeavor of this magnitude requires an organized framework of governance and communication that promotes collaborative decision-making and dissemination of information. The ABCD consortium structure, built upon the Matrix Management approach of organizational theory, facilitates the integration of input from all institutions, numerous internal workgroups and committees, federal partners, and external advisory groups to make use of a broad range of expertise to ensure the study's success. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The Value of ABCD2F Scoring System (ABCD2 Combined with Atrial Fibrillation) to Predict 90-Day Recurrent Brain Stroke

    PubMed Central

    Almasi, Mostafa; Ghasemi, Faeze; Chardoli, Mojtaba

    2016-01-01

    Background. The ABCD2 score is now identified as a useful clinical prediction rule to determine the risk for stroke in the days following brain ischemic attacks. Aim. The present study aimed to introduce a new scoring system named “ABCD2F” and compare its value with the previous ABCD2 system to predict recurrent ischemic stroke within 90 days of the initial cerebrovascular accident (CVA). Methods. 138 consecutive patients with the final diagnosis of ischemic CVA or TIAs who referred to emergency ward of Rasoul-e-Akram general hospital in Tehran from September 2012 to December 2013 were eligible. By adding a new score in the presence of atrial fibrillation to ABCD2 system, the new scoring system as ABCD2F was introduced and the risk stratification was done again on this new system. Results. The area under the curve for ABCD2 was 0.434 and for ABCD2F it was 0.452 indicating low value of both systems for assessing recurrence of stroke within 90 days of primary event. Multivariable logistic regression analysis showed that none of the baseline factors could predict 90-day recurrent stroke. Conclusion. ABCD2 and/or atrial fibrillation are not good scoring candidates for assessing the risk of recurrent stroke within first 90 days. PMID:27642521

  3. A UNIMARC Bibliographic Format Database for ABCD

    ERIC Educational Resources Information Center

    Megnigbeto, Eustache

    2012-01-01

    Purpose: ABCD is a web-based open and free software suite for library management derived from the UNESCO CDS/ISIS software technology. The first version was launched officially in December 2009 with a MARC 21 bibliographic format database. This paper aims to detail the building of the UNIMARC bibliographic format database for ABCD.…

  4. Planetary rings: Structure and history

    NASA Astrophysics Data System (ADS)

    Esposito, L.

    The composition and structure of planetary rings provide the key evidence to understand their origin and evolution. Before the first space observations, we were able to maintain an idealized view of the rings around Saturn, the only known ring system at that time. Rings were then discovered around Jupiter, Uranus and Neptune. Saturn's F ring was discovered by Pioneer 11. Our ideal view of circular, planar, symmetric and unchanging rings was shattered by observations of inclined, eccentric rings, waves and wavy edges, and numerous processes acting at rates that give timescales much younger than the solar system. Moons within and near the rings sculpt them and are the likely progenitors of future rings. The moonlet lifetimes are much less than Saturn's age. The old idea of ancient rings gave rise to youthful rings, that are recently created by erosion and destruction of small nearby moons. Although this explanation may work well for most rings, Saturn's massive ring system provides a problem. It is extremely improbable that Saturn's rings were recently created by the destruction of a moon as large as Mimas, or even by the breakup of a large comet that passed too close to Saturn. The history of Saturn's rings has been a difficult problem, now made even more challenging by the close-up Cassini measurements. Cassini observations show unexpected ring variability in time and space. Time variations are seen in ring edges, in the thinner D and F rings, and in the neutral oxygen cloud, which outweighs the E ring in the same region around Saturn. The rings are inhomogeneous, with structures on all scales, sharp gradients and edges. Compositional gradients are sharper than expected, but nonetheless cross structural boundaries. This is evidence for ballistic transport that has not gone to completion. The autocovariance maximizes in the middle of the A ring, with smaller structure near the main rings' outer edge. Density wave locations have a fresher ice composition. The

  5. High ABCD2 Scores and In-Hospital Interventions following Transient Ischemic Attack

    PubMed Central

    Cutting, Shawna; Regan, Elizabeth; Lee, Vivien H.; Prabhakaran, Shyam

    2016-01-01

    Background and Purpose Following transient ischemic attack (TIA), there is increased risk for ischemic stroke. The American Heart Association recommends admission of patients with ABCD2 scores ≥3 for observation, rapid performance of diagnostic tests, and potential acute intervention. We aimed to determine if there is a relationship between ABCD2 scores, in-hospital ischemic events, and in-hospital treatments after TIA admission. Methods We reviewed consecutive patients admitted between 2006 and 2011 following a TIA, defined as transient focal neurological symptoms attributed to a specific vascular distribution and lasting <24 h. Three interventions were prespecified: anticoagulation for atrial fibrillation, carotid or intracranial revascularization, and intravenous or intra-arterial reperfusion therapies. We compared rates of in-hospital recurrent TIA or ischemic stroke and the receipt of interventions among patients with low (<3) versus high (≥3) ABCD2 scores. Results Of 249 patients, 11 patients (4.4%) had recurrent TIAs or strokes during their stay (8 TIAs, 3 strokes). All 11 had ABCD2 scores ≥3, and no neurological events occurred in patients with lower scores (5.1 vs. 0%; p = 0.37). Twelve patients (4.8%) underwent revascularization for large artery stenosis, 16 (6.4%) were started on anticoagulants, and no patient received intravenous or intra-arterial reperfusion therapy. The ABCD2 score was not associated with anticoagulation (p = 0.59) or revascularization (p = 0.20). Conclusions Higher ABCD2 scores may predict early ischemic events after TIA but do not predict the need for intervention. Outpatient evaluation for those with scores <3 would potentially have delayed revascularization or anticoagulant treatment in nearly one-fifth of ‘low-risk’ patients. PMID:27721312

  6. ABCD syndrome is caused by a homozygous mutation in the EDNRB gene.

    PubMed

    Verheij, Joke B G M; Kunze, Jürgen; Osinga, Jan; van Essen, Anthonie J; Hofstra, Robert M W

    2002-03-15

    ABCD syndrome is an autosomal recessive syndrome characterized by albinism, black lock, cell migration disorder of the neurocytes of the gut (Hirschsprung disease [HSCR]), and deafness. This phenotype clearly overlaps with the features of the Shah-Waardenburg syndrome, comprising sensorineural deafness; hypopigmentation of skin, hair, and irides; and HSCR. Therefore, we screened DNA of the index patient of the ABCD syndrome family for mutations in the endothelin B receptor (EDNRB) gene, a gene known to be involved in Shah-Waardenburg syndrome. A homozygous nonsense mutation in exon 3 (R201X) of the EDNRB gene was found. We therefore suggest that ABCD syndrome is not a separate entity, but an expression of Shah-Waardenburg syndrome.

  7. Effect of ABCD transformations on beam paraxiality.

    PubMed

    Vaveliuk, Pablo; Martinez-Matos, Oscar

    2011-12-19

    The limits of the paraxial approximation for a laser beam under ABCD transformations is established through the relationship between a parameter concerning the beam paraxiality, the paraxial estimator, and the beam second-order moments. The applicability of such an estimator is extended to an optical system composed by optical elements as mirrors and lenses and sections of free space, what completes the analysis early performed for free-space propagation solely. As an example, the paraxiality of a system composed by free space and a spherical thin lens under the propagation of Hermite-Gauss and Laguerre-Gauss modes is established. The results show that the the paraxial approximation fails for a certain feasible range of values of main parameters. In this sense, the paraxial estimator is an useful tool to monitor the limits of the paraxial optics theory under ABCD transformations.

  8. ICU team composition and its association with ABCDE implementation in a quality collaborative.

    PubMed

    Costa, Deena Kelly; Valley, Thomas S; Miller, Melissa A; Manojlovich, Milisa; Watson, Sam R; McLellan, Phyllis; Pope, Corine; Hyzy, Robert C; Iwashyna, Theodore J

    2018-04-01

    Awakening, Breathing Coordination, Delirium, and Early Mobility bundle (ABCDE) should involve an interprofessional team, yet no studies describe what team composition supports implementation. We administered a survey at MHA Keystone Center ICU 2015 workshop. We measured team composition by the frequency of nurse, respiratory therapist, physician, physical therapist, nurse practitioner/physician assistant or nursing assistant involvement in 1) spontaneous awakening trials (SATs), 2) spontaneous breathing trials, 3) delirium and 4) early mobility. We assessed ABCDE implementation using a 5-point Likert ("routine part of every patient's care" - "no plans to implement"). We used ordinal logistic regression to examine team composition and ABCDE implementation, adjusting for confounders and clustering. From 293 surveys (75% response rate), we found that frequent nurse [OR 6.1 (1.1-34.9)] and physician involvement [OR 4.2 (1.3-13.4)] in SATs, nurse [OR 4.7 (1.6-13.4)] and nursing assistant's involvement [OR 3.9 (1.2-13.5)] in delirium and nurse [OR 2.8 (1.2-6.7)], physician [OR (3.6 (1.2-10.3)], and nursing assistants' involvement [OR 2.3 (1.1-4.8)] in early mobility were significantly associated with higher odds of routine ABCDE implementation. ABCDE implementation was associated with frequent involvement of team members, suggesting a need for role articulation and coordination. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A mathematical analysis of the ABCD criteria for diagnosing malignant melanoma

    NASA Astrophysics Data System (ADS)

    Lee, Hyunju; Kwon, Kiwoon

    2017-03-01

    The medical community currently employs the ABCD (asymmetry, border irregularity, color variegation, and diameter of the lesion) criteria in the early diagnosis of a malignant melanoma. Although many image segmentation and classification methods are used to analyze the ABCD criteria, it is rare to see a study containing mathematical justification of the parameters that are used to quantify the ABCD criteria. In this paper, we suggest new parameters to assess asymmetry, border irregularity, and color variegation, and explain the mathematical meaning of the parameters. The suggested parameters are then tested with 24 skin samples. The parameters suggested for the 24 skin samples are displayed in three-dimensional coordinates and are compared to those presented in other studies (Ercal et al 1994 IEEE Trans. Biomed. Eng. 41 837-45, Cheerla and Frazier 2014 Int. J. Innovative Res. Sci., Eng. Technol. 3 9164-83) in terms of Pearson correlation coefficient and classification accuracy in determining the malignancy of the lesions.

  10. "Now I Know My ABCDs": Asset-Based Community Development with School Children in Ethiopia

    ERIC Educational Resources Information Center

    Johnson Butterfield, Alice K.; Yeneabat, Mulu; Moxley, David P.

    2016-01-01

    Asset-based community development (ABCD) is a promising practice for communities to engage in self-determination through the efforts residents invest in identifying community assets, framing and documenting the issues communities face, and taking action to advance quality of life. The ABCD literature does not report on the application of ABCD…

  11. Minimal size of coffee ring structure.

    PubMed

    Shen, Xiaoying; Ho, Chih-Ming; Wong, Tak-Sing

    2010-04-29

    A macroscopic evaporating water droplet with suspended particles on a solid surface will form a ring-like structure at the pinned contact line due to induced capillary flow. As the droplet size shrinks, the competition between the time scales of the liquid evaporation and the particle movement may influence the resulting ring formation. When the liquid evaporates much faster than the particle movement, coffee ring formation may cease. Here, we experimentally show that there exists a lower limit of droplet size, D(c), for the successful formation of a coffee ring structure. When the particle concentration is above a threshold value, D(c) can be estimated by considering the collective effects of the liquid evaporation and the particle diffusive motion within the droplet. For suspended particles of size approximately 100 nm, the minimum diameter of the coffee ring structure is found to be approximately 10 microm.

  12. The utility of twins in developmental cognitive neuroscience research: How twins strengthen the ABCD research design.

    PubMed

    Iacono, William G; Heath, Andrew C; Hewitt, John K; Neale, Michael C; Banich, Marie T; Luciana, Monica M; Madden, Pamela A; Barch, Deanna M; Bjork, James M

    2018-08-01

    The ABCD twin study will elucidate the genetic and environmental contributions to a wide range of mental and physical health outcomes in children, including substance use, brain and behavioral development, and their interrelationship. Comparisons within and between monozygotic and dizygotic twin pairs, further powered by multiple assessments, provide information about genetic and environmental contributions to developmental associations, and enable stronger tests of causal hypotheses, than do comparisons involving unrelated children. Thus a sub-study of 800 pairs of same-sex twins was embedded within the overall Adolescent Brain and Cognitive Development (ABCD) design. The ABCD Twin Hub comprises four leading centers for twin research in Minnesota, Colorado, Virginia, and Missouri. Each site is enrolling 200 twin pairs, as well as singletons. The twins are recruited from registries of all twin births in each State during 2006-2008. Singletons at each site are recruited following the same school-based procedures as the rest of the ABCD study. This paper describes the background and rationale for the ABCD twin study, the ascertainment of twin pairs and implementation strategy at each site, and the details of the proposed analytic strategies to quantify genetic and environmental influences and test hypotheses critical to the aims of the ABCD study. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. ABCD2 score and BNP level in patients with TIA and cerebral stroke.

    PubMed

    Mortezabeigi, H R; Taghizadeh, A; Talebi, M; Amini, K; Goldust, M

    2013-11-01

    Scoring systems have been designed to help physicians in early prediction of cerebral stroke following Transitional Ischemic Attack (TIA). ABCD2 system is one of these scoring systems. Considering increase of brain natriuretic peptide following cerebral ischemic stroke, BNP level may be associated with incidence of ischemic stroke following TIA. The present study evaluates ABCD2 score, BNP level in patients with TIA and incidence of cerebral stroke. This cross sectional-analytical study evaluated 78 patients with TIA. ABCD2 score was calculated for all patients based on some criteria including age, blood pressure, clinical manifestations (speech/motor disorder), symptoms duration and diabetes. BNP level was measured at the reference laboratory when the patient referred to the treatment center. The patients were followed up for 6 months considering incidence of cerebral stroke and TIA. Mean age of the patients was 66.53 +/- 13.08 years and the sample was consisted of 62.8% male and 37.2% female patients. Mean BNP level and mean ABCD2 score was 611.31 +/- 125.61 and 4.61 +/- 10.99 in all patients, respectively. During follow-up period, TIA recurrence and cerebral stroke were, respectively seen in 11.5 and 3.8% of cases. Mortality was reported in 5.1% of the patients. BNP was significantly higher in cases with recursive TIA (p = 0.03). But, there was not any difference considering ABCD2 score (p = 0.38). BNP is capable of predicting TIA recurrence following first TIA and it can be used in this case.

  14. Melanoma recognition framework based on expert definition of ABCD for dermoscopic images.

    PubMed

    Abbas, Qaisar; Emre Celebi, M; Garcia, Irene Fondón; Ahmad, Waqar

    2013-02-01

    Melanoma Recognition based on clinical ABCD rule is widely used for clinical diagnosis of pigmented skin lesions in dermoscopy images. However, the current computer-aided diagnostic (CAD) systems for classification between malignant and nevus lesions using the ABCD criteria are imperfect due to use of ineffective computerized techniques. In this study, a novel melanoma recognition system (MRS) is presented by focusing more on extracting features from the lesions using ABCD criteria. The complete MRS system consists of the following six major steps: transformation to the CIEL*a*b* color space, preprocessing to enhance the tumor region, black-frame and hair artifacts removal, tumor-area segmentation, quantification of feature using ABCD criteria and normalization, and finally feature selection and classification. The MRS system for melanoma-nevus lesions is tested on a total of 120 dermoscopic images. To test the performance of the MRS diagnostic classifier, the area under the receiver operating characteristics curve (AUC) is utilized. The proposed classifier achieved a sensitivity of 88.2%, specificity of 91.3%, and AUC of 0.880. The experimental results show that the proposed MRS system can accurately distinguish between malignant and benign lesions. The MRS technique is fully automatic and can easily integrate to an existing CAD system. To increase the classification accuracy of MRS, the CASH pattern recognition technique, visual inspection of dermatologist, contextual information from the patients, and the histopathological tests can be included to investigate the impact with this system. © 2012 John Wiley & Sons A/S.

  15. Small-Scale Structure in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Rehnberg, Morgan

    2017-08-01

    The rings of Saturn are the largest and most complex in the Solar System. Decades of observation from ground- and space-based observatories and spacecraft missions have revealed the broad structure of the rings and the intricate interactions between the planet's moons and its rings. Stellar occultations observed by the Ultraviolet Imaging Spectrograph's High Speed Photometer onboard the Cassini spacecraft now enable the direct study of the small-scale structure that results from these interactions. In this dissertation, I present three distinct phenomena resulting from the small-scale physics of the rings. Many resonance locations with Saturn's external satellites lie within the main (A and B) rings. Two of these satellites, Janus and Epimetheus, have a unique co-orbital relationship and move radially to switch positions every 4.0 years. This motion also moves the resonance locations within the rings. As the spiral density waves created at these resonances interact, they launch an enormous solitary wave every eight years. I provide the first-ever observations of this never-predicted phenomenon and detail a possible formation mechanism. Previous studies have reported a population of kilometer-scale aggregates in Saturn's F ring, which likely form as a result of self-gravitation between ring particles in Saturn's Roche zone. I expand the known catalog of features in UVIS occultations and provide the first estimates of their density derived from comparisons with the A ring. These features are orders of magnitude less dense than previously believed, a fact which reconciles them with detections made by other means. Theory and indirect observations indicate that the smallest regular structures in the rings are wavelike aggregates called self-gravity wakes. Using the highest-resolution occulta- tions, I provide the first-ever direct detection of these features by identifying the gaps that represent the minima of the wakes. I demonstrate that the distribution of these gaps

  16. Design and performance of an astigmatism-compensated self-mode-locked ring-cavity Ti:sapphire laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Y.; Dai, J.; Wang, Q.

    1996-12-31

    Based on the nonlinear ABCD matrix and the renormalized q-parameter for Gaussian-beam propagation, self-focusing in conjunction with a spatial gain profile for self-mode locking in a ring-cavity Ti:sapphire laser is analyzed. In the experiment, an astigmatism-compensated self-mode-locked ring-cavity Ti:sapphire laser is demonstrated, and self-mode-locked operation is achieved in both bidirection and unidirection with pulse durations as short as 36 fs and 32 fs, respectively. The experimental observations are in good agreement with theoretical predictions.

  17. Open Source Solutions for Libraries: ABCD vs Koha

    ERIC Educational Resources Information Center

    Macan, Bojan; Fernandez, Gladys Vanesa; Stojanovski, Jadranka

    2013-01-01

    Purpose: The purpose of this study is to present an overview of the two open source (OS) integrated library systems (ILS)--Koha and ABCD (ISIS family), to compare their "next-generation library catalog" functionalities, and to give comparison of other important features available through ILS modules. Design/methodology/approach: Two open source…

  18. Large and small-scale structures in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Albers, N.; Rehnberg, M. E.; Brown, Z. L.; Sremcevic, M.; Esposito, L. W.

    2017-09-01

    Observations made by the Cassini spacecraft have revealed both large and small scale structures in Saturn's rings in unprecedented detail. Analysis of high-resolution measurements by the Cassini Ultraviolet Spectrograph (UVIS) High Speed Photometer (HSP) and the Imaging Science Subsystem (ISS) show an abundance of intrinsic small-scale structures (or clumping) seen across the entire ring system. These include self-gravity wakes (50-100m), sub-km structure at the A and B ring edges, and "straw"/"ropy" structures (1-3km).

  19. Predictive Structure and Topology of Peroxisomal ATP-Binding Cassette (ABC) Transporters

    PubMed Central

    Andreoletti, Pierre; Raas, Quentin; Gondcaille, Catherine; Cherkaoui-Malki, Mustapha; Trompier, Doriane; Savary, Stéphane

    2017-01-01

    The peroxisomal ATP-binding Cassette (ABC) transporters, which are called ABCD1, ABCD2 and ABCD3, are transmembrane proteins involved in the transport of various lipids that allow their degradation inside the organelle. Defective ABCD1 leads to the accumulation of very long-chain fatty acids and is associated with a complex and severe neurodegenerative disorder called X-linked adrenoleukodystrophy (X-ALD). Although the nucleotide-binding domain is highly conserved and characterized within the ABC transporters family, solid data are missing for the transmembrane domain (TMD) of ABCD proteins. The lack of a clear consensus on the secondary and tertiary structure of the TMDs weakens any structure-function hypothesis based on the very diverse ABCD1 mutations found in X-ALD patients. Therefore, we first reinvestigated thoroughly the structure-function data available and performed refined alignments of ABCD protein sequences. Based on the 2.85  Å resolution crystal structure of the mitochondrial ABC transporter ABCB10, here we propose a structural model of peroxisomal ABCD proteins that specifies the position of the transmembrane and coupling helices, and highlight functional motifs and putative important amino acid residues. PMID:28737695

  20. Translocation of the ABC transporter ABCD4 from the endoplasmic reticulum to lysosomes requires the escort protein LMBD1.

    PubMed

    Kawaguchi, Kosuke; Okamoto, Takumi; Morita, Masashi; Imanaka, Tsuneo

    2016-07-26

    We previously demonstrated that ABCD4 does not localize to peroxisomes but rather, the endoplasmic reticulum (ER), because it lacks the NH2-terminal hydrophilic region required for peroxisomal targeting. It was recently reported that mutations in ABCD4 result in a failure to release vitamin B12 from lysosomes. A similar phenotype is caused by mutations in LMBRD1, which encodes the lysosomal membrane protein LMBD1. These findings suggested to us that ABCD4 translocated from the ER to lysosomes in association with LMBD1. In this report, it is demonstrated that ABCD4 interacts with LMBD1 and then localizes to lysosomes, and this translocation depends on the lysosomal targeting ability of LMBD1. Furthermore, endogenous ABCD4 was localized to both lysosomes and the ER, and its lysosomal localization was disturbed by knockout of LMBRD1. To the best of our knowledge, this is the first report demonstrating that the subcellular localization of the ABC transporter is determined by its association with an adaptor protein.

  1. The composition and structure of planetary rings

    NASA Technical Reports Server (NTRS)

    Burns, J. A.

    1985-01-01

    The properties of planetary ring systems are summarized herein; emphasis is given to the available evidence on their compositions and to their dynamical attributes. Somewhat contaminated water ice makes up the vast expanse of Saturn's rings. Modified methane ice may comprise Uranus' rings while silicates are the likely material of the Jovian ring. Saturn's rings form an elaborate system whose characteristics are still being documented and whose nature is being unravelled following the Voyager flybys. Uranus' nine narrow bands display an intriguing dynamical structure thought to be caused by unseen shephard satellites. Jupiter's ring system is a mere wisp, probably derived as ejecta off hidden parent bodies.

  2. Triaging TIA/minor stroke patients using the ABCD2 score does not predict those with significant carotid disease.

    PubMed

    Walker, J; Isherwood, J; Eveson, D; Naylor, A R

    2012-05-01

    'Rapid Access' TIA Clinics use the ABCD(2) score to triage patients as it is not possible to see everyone with a suspected TIA <24 h. Those scoring 0-3 are seen within seven days, while patients scoring 4-7 are seen as soon as possible (preferably <24 h). It was hypothesized that patients scoring 4-7 would have a higher yield of significant carotid disease. Prospective study of correlation between Family Doctor (FD) or Emergency Department (ED) ABCD(2) score and specialist consultant Stroke Physician measured ABCD(2) score and prevalence of ≥50% ipsilateral carotid stenosis or occlusion in patients presenting with 'any territory' TIA/minor stroke or 'carotid territory' TIA/minor stroke. Between 1.10.2008 and 31.04.2011, 2452 patients were referred to the Leicester Rapid Access TIA Service. After Stroke Physician review, 1273 (52%) were thought to have suffered a minor stroke/TIA. Of these, both FD/ED referrer and Specialist Stroke Consultant ABCD(2) scores and carotid Duplex ultrasound studies were available for 843 (66%). The yield for identifying a ≥50% stenosis or carotid occlusion was 109/843 (12.9%) in patients with 'any territory' TIA/minor stroke and 101/740 (13.6%) in those with a clinical diagnosis of 'carotid territory' TIA/minor stroke. There was no association between ABCD(2) score and the likelihood of encountering significant carotid disease and analyses of the area under the receiver operating characteristic curve (AUC) for FD/ED referrer and stroke specialist ABCD(2) scores showed no prediction of carotid stenosis (FD/ED: AUC 0.50 (95%CI 0.44-0.55, p = 0.9), Specialist: AUC 0.51 (95%CI 0.45-0.57, p = 0.78). The ABCD(2) score was unable to identify TIA/minor stroke patients with a higher prevalence of clinically important ipsilateral carotid disease. Copyright © 2012 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  3. Dynamics and structure of planetary rings

    NASA Technical Reports Server (NTRS)

    French, R. G.

    1991-01-01

    Recent research efforts were directed towards sharpening the understanding of kinematical and dynamical properties of the Uranian rings, with the combination of Earth-based and Voyager observations, and in obtaining and interpreting new observations of the Saturn system from the remarkable stellar occultation of 3 Jul. 1989. Some of the highlights studied include: (1) a detailed comparison of structure and dynamics of the Uranus rings from joint analysis of high quality Earth-based data and the complete set of Voyager occultation measurements; (2) a comprehensive search for weak normal modes excited in the Uranian rings, analogous to the m = 2 and m = 0 normal modes previously identified for the delta and gamma rings; (3) an ongoing search for faint rings and ring arcs of Uranus, using both Voyager images of the rings and Earth-based and spacecraft stellar occultation data; (4) a comparison of upper stratospheric temperatures of Uranus inferred from Voyager ultraviolet occultations with results of ground-based occultation observations; and (5) observations of the 3 Jul. 1989 Saturn occultation of 28 Sgr.

  4. Propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere.

    PubMed

    Zhou, Guoquan; Cai, Yangjian; Chu, Xiuxiang

    2012-04-23

    The propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity and the degree of the polarization of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system are derived in turbulent atmosphere, respectively. The average intensity distribution and the degree of the polarization of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters, the topological charge, the transverse coherent lengths, and the structure constant of the atmospheric turbulence on the propagation of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are also examined in detail. This research is beneficial to the practical applications in free-space optical communications and the remote sensing of the dark hollow beams. © 2012 Optical Society of America

  5. Laparoscopic sleeve gastrectomy for type 2 diabetes mellitus: predicting the success by ABCD score.

    PubMed

    Lee, Wei-Jei; Almulaifi, Abdullah; Tsou, Ju Juin; Ser, Kong-Han; Lee, Yi-Chih; Chen, Shu-Chun

    2015-01-01

    Laparoscopic sleeve gastrectomy (LSG) is becoming a primary bariatric surgery for obesity and related diseases. This study presents the outcome of LSG with regard to the remission of type 2 diabetes mellitus (T2 DM) and the usefulness of a grading system to categorize and predict outcome of T2 DM remission. A total of 157 patients with T2 DM (82 women and 75 men) with morbid obesity (mean body mass index 39.0±7.4 kg/m(2)) who underwent LSG from 2006 to 2013 were selected for the present study. The ABCD score is composed of the patient's age, body mass index, C-peptide level, and duration of T2 DM (yr). The remission of T2 DM after LSG was evaluated using the ABCD score. At 12 months after surgery, 85 of the patients had complete follow-up data. The weight loss was 26.5% and the mean HbA1c decreased from 8.1% to 6.1%. A significant number of patients had improvement in their glycemic control, including 45 (52.9%) patients who had complete remission (HbA1c<6.0%), another 18 (21.2%) who had partial remission (HbA1c<6.5%), and 9 (10.6%) who improved (HbA1c<7%). Patients who had T2 DM remission after surgery had a higher ABCD score than those who did not (7.3±1.7 versus 5.2±2.1, P<.05). Patients with a higher ABCD score were also at a higher rate of success in T2 DM remission (from 0% in score 0 to 100% in score 10). LSG is an effective and well-tolerated procedure for achieving weight loss and T2 DM remission. The ABCD score, a simple multidimensional grading system, can predict the success of T2 DM treatment by LSG. Copyright © 2015 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  6. Advanced biological and chemical discovery (ABCD): centralizing discovery knowledge in an inherently decentralized world.

    PubMed

    Agrafiotis, Dimitris K; Alex, Simson; Dai, Heng; Derkinderen, An; Farnum, Michael; Gates, Peter; Izrailev, Sergei; Jaeger, Edward P; Konstant, Paul; Leung, Albert; Lobanov, Victor S; Marichal, Patrick; Martin, Douglas; Rassokhin, Dmitrii N; Shemanarev, Maxim; Skalkin, Andrew; Stong, John; Tabruyn, Tom; Vermeiren, Marleen; Wan, Jackson; Xu, Xiang Yang; Yao, Xiang

    2007-01-01

    We present ABCD, an integrated drug discovery informatics platform developed at Johnson & Johnson Pharmaceutical Research & Development, L.L.C. ABCD is an attempt to bridge multiple continents, data systems, and cultures using modern information technology and to provide scientists with tools that allow them to analyze multifactorial SAR and make informed, data-driven decisions. The system consists of three major components: (1) a data warehouse, which combines data from multiple chemical and pharmacological transactional databases, designed for supreme query performance; (2) a state-of-the-art application suite, which facilitates data upload, retrieval, mining, and reporting, and (3) a workspace, which facilitates collaboration and data sharing by allowing users to share queries, templates, results, and reports across project teams, campuses, and other organizational units. Chemical intelligence, performance, and analytical sophistication lie at the heart of the new system, which was developed entirely in-house. ABCD is used routinely by more than 1000 scientists around the world and is rapidly expanding into other functional areas within the J&J organization.

  7. Mapping magnetoelastic response of terfenol-D ring structure

    NASA Astrophysics Data System (ADS)

    Youssef, George; Newacheck, Scott; Lopez, Mario

    2017-05-01

    The magneto-elastic response of a Terfenol-D (Tb.3Dy.7Fe1.92) ring has been experimentally investigated and analyzed. Ring structures give rise to complex behavior based on the interaction of the magnetic field with the material, which is further compounded with anisotropies associated with mechanical and magnetic properties. Discrete strain measurements were used to construct magnetostriction maps, which are used to elucidate the non-uniformity of the strain distribution due to geometrical factors and magnetic field interactions, namely, magnetic shielding and stable onion state in the ring structure.

  8. East Indian Families Raising ABCD Adolescents: Cultural and Generational Challenges

    ERIC Educational Resources Information Center

    Poulsen, Shruti S.

    2009-01-01

    Immigration is a process fraught with both challenges and opportunities for families. In particular, East Indian families with U.S.-born adolescents experience the challenges of bridging cultures across generational divides; they are perceived by others as confused, identity less, and conflicted or as American-Born, Confused Desis (ABCDs). This…

  9. Comprehensively Surveying Structure and Function of RING Domains from Drosophila melanogaster

    PubMed Central

    Wu, Yuehao; Wan, Fusheng; Huang, Chunhong; Jie, Kemin

    2011-01-01

    Using a complete set of RING domains from Drosophila melanogaster, all the solved RING domains and cocrystal structures of RING-containing ubiquitin-ligases (RING-E3) and ubiquitin-conjugating enzyme (E2) pairs, we analyzed RING domains structures from their primary to quarternary structures. The results showed that: i) putative orthologs of RING domains between Drosophila melanogaster and the human largely occur (118/139, 84.9%); ii) of the 118 orthologous pairs from Drosophila melanogaster and the human, 117 pairs (117/118, 99.2%) were found to retain entirely uniform domain architectures, only Iap2/Diap2 experienced evolutionary expansion of domain architecture; iii) 4 evolutionary structurally conserved regions (SCRs) are responsible for homologous folding of RING domains at the superfamily level; iv) besides the conserved Cys/His chelating zinc ions, 6 equivalent residues (4 hydrophobic and 2 polar residues) in the SCRs possess good-consensus and conservation- these 4 SCRs function in the structural positioning of 6 equivalent residues as determinants for RING-E3 catalysis; v) members of these RING proteins located nucleus, multiple subcellular compartments, membrane protein and mitochondrion are respectively 42 (42/139, 30.2%), 71 (71/139, 51.1%), 22 (22/139, 15.8%) and 4 (4/139, 2.9%); vi) CG15104 (Topors) and CG1134 (Mul1) in C3HC4, and CG3929 (Deltex) in C3H2C3 seem to display broader E2s binding profiles than other RING-E3s; vii) analyzing intermolecular interfaces of E2/RING-E3 complexes indicate that residues directly interacting with E2s are all from the SCRs in RING domains. Of the 6 residues, 2 hydrophobic ones contribute to constructing the conserved hydrophobic core, while the 2 hydrophobic and 2 polar residues directly participate in E2/RING-E3 interactions. Based on sequence and structural data, SCRs, conserved equivalent residues and features of intermolecular interfaces were extracted, highlighting the presence of a nucleus for RING domain fold

  10. Lactose metabolism by Staphylococcus aureus: characterization of lacABCD, the structural genes of the tagatose 6-phosphate pathway.

    PubMed Central

    Rosey, E L; Oskouian, B; Stewart, G C

    1991-01-01

    The nucleotide and deduced amino acid sequences of the lacA and lacB genes of the Staphylococcus aureus lactose operon (lacABCDFEG) are presented. The primary translation products are polypeptides of 142 (Mr = 15,425) and 171 (Mr = 18,953) amino acids, respectively. The lacABCD loci were shown to encode enzymes of the tagatose 6-phosphate pathway through both in vitro studies and complementation analysis in Escherichia coli. A serum aldolase assay, modified to allow detection of the tagatose 6-phosphate pathway enzymes utilizing galactose 6-phosphate or fructose phosphate analogs as substrate, is described. Expression of both lacA and lacB was required for galactose 6-phosphate isomerase activity. LacC (34 kDa) demonstrated tagatose 6-phosphate kinase activity and was found to share significant homology with LacC from Lactococcus lactis and with both the minor 6-phosphofructokinase (PfkB) and 1-phosphofructokinase (FruK) from E. coli. Detection of tagatose 1,6-bisphosphate aldolase activity was dependent on expression of the 36-kDa protein specified by lacD. The LacD protein is highly homologous with LacD of L. lactis. Thus, the lacABCD genes comprise the tagatose 6-phosphate pathway and are cotranscribed with genes lacFEG, which specify proteins for transport and cleavage of lactose in S. aureus. PMID:1655695

  11. The structure of Jupiter’s main ring from New Horizons: A comparison with other ring-moon systems

    NASA Astrophysics Data System (ADS)

    Chancia, Robert; Hedman, Matthew

    2018-04-01

    During New Horizon’s Jupiter flyby in 2007, the Long-Range Reconnaissance Imager (LORRI) took several images of the planet’s main ring. The data set contains two extended image-movies of the main ring, along with several brief observations at varying ring azimuths, and a small set of high phase angle images. Thus far, the only published work on the New Horizons Jupiter rings data set found seven bright clumps with sub-km equivalent radii embedded in the main ring (Showalter et al. 2007 Science). In this work, we searched the inner region of the main ring for any structures that might be perturbed at the 3:2 resonances with the rotation of Jupiter’s magnetic field or massive storms. We also examined the structure of the outer main ring in order to assess how it is shaped by the small moons Metis and Adrastea. Some of the features seen in Jupiter’s main ring are similar to those found in other dusty rings around Saturn, Uranus, and Neptune. By comparing these different rings, we can gain a better understanding of how small moons sculpt tenuous rings.

  12. Metabolic Flux Analysis of the Synechocystis sp. PCC 6803 ΔnrtABCD Mutant Reveals a Mechanism for Metabolic Adaptation to Nitrogen-Limited Conditions.

    PubMed

    Nakajima, Tsubasa; Yoshikawa, Katsunori; Toya, Yoshihiro; Matsuda, Fumio; Shimizu, Hiroshi

    2017-03-01

    Metabolic flux redirection during nitrogen-limited growth was investigated in the Synechocystis sp. PCC 6803 glucose-tolerant (GT) strain under photoautotrophic conditions by isotopically non-stationary metabolic flux analysis (INST-MFA). A ΔnrtABCD mutant of Synechocystis sp. PCC 6803 was constructed to reproduce phenotypes arising during nitrogen starvation. The ΔnrtABCD mutant and the wild-type GT strain were cultured under photoautotrophic conditions by a photobioreactor. Intracellular metabolites were labeled over a time course using NaH13CO3 as a carbon source. Based on these data, the metabolic flux distributions in the wild-type and ΔnrtABCD cells were estimated by INST-MFA. The wild-type GT and ΔnrtABCD strains displayed similar distribution patterns, although the absolute levels of metabolic flux were lower in ΔnrtABCD. Furthermore, the relative flux levels for glycogen metabolism, anaplerotic reactions and the oxidative pentose phosphate pathway were increased in ΔnrtABCD. This was probably due to the increased expression of enzyme genes that respond to nitrogen depletion. Additionally, we found that the ratio of ATP/NADPH demand increased slightly in the ΔnrtABCD mutant. These results indicated that futile ATP consumption increases under nitrogen-limited conditions because the Calvin-Benson cycle and the oxidative pentose phosphate pathway form a metabolic futile cycle that consumes ATP without CO2 fixation and NADPH regeneration. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Structure of Saturn's Rings from Cassini Diametric Radio Occultations

    NASA Astrophysics Data System (ADS)

    Marouf, E.; French, R.; Rappaport, N.; Kliore, A.; Flasar, M.; Nagy, A.; McGhee, C.; Schinder, P.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Johnston, D.; Rochblatt, D.; Thomson, F.; Wong, K.

    2005-08-01

    Cassini orbits around Saturn were designed to provide eight optimized radio occultation observations of Saturn's rings during summer, 2005. Three monochromatic radio signals (0.94, 3.6, and 13 cm-wavelength) were transmitted by Cassini through the rings and observed at multiple stations of the NASA Deep Space Network. A rich data set has been collected. Detailed structure of Ring B is revealed for the first time, including multi-feature dense ''core'' ˜ 6,000 km wide of normal optical depth > 4.3, a ˜ 5,500 km region of oscillations in optical depth ( ˜ 1.7 to ˜ 3.4) over characteristic radial scales of few hundred kilometers interior to the core, and a ˜ 5,000 km region exterior to the core of similar nature but smaller optical depth fluctuation ( ˜ 2.2 to ˜ 3.3). The innermost ˜ 7,000 km region is the thinnest (mean optical depth ˜ 1.2), and includes two unusually uniform regions and a prominent density wave. With few exceptions, the structure is nearly identical for the three radio signals (when detectable), indicating that Ring B is relatively devoid of centimeters and smaller size particles. The structure is largely circularly symmetric, except for radius > ˜ 116,600 km. In Ring A, numerous (> 40) density waves are clearly observed at multiple longitudes, different average background optical depth is observed among different occultations suggesting that the azimuthal asymmetry extends over most Ring A, and strong dependence of the observed structure on wavelength implies increase in the abundance of centimeter and smaller size particles with increasing radius. Multiple longitude observations of Ring C and the Cassini Division structure reveal remarkable variability of gaps and their embedded narrow eccentric ringlets, and a wake/wave like feature interior to the gap at ˜ 118,200 km (embedded moonlet?). Wavelength dependent structure of Ring C implies abundance of centimeter size particles everywhere and sorting by size within dense embedded features.

  14. Collision mechanics and the structure of planetary ring edges

    NASA Technical Reports Server (NTRS)

    Spaute, Dominique; Greenberg, Richard

    1987-01-01

    The present numerical simulation of collisional evolution, in the case of a hypothetical ring whose parameters are modeled after those of Saturn's rings, gives attention to changes in radial structure near the ring edges and notes that when random motion is in equilibrium, the rings tend to spread in order to conserve angular momentum while energy is dissipated in collisions. As long as random motion is damped, ring edges may contract rather than spread, producing a concentration of material at the ring edges. For isotropic scattering, damping dominates for a coefficient of restitution of velocity value of up to 0.83.

  15. Coherent structures in interacting vortex rings

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Xue, Jingyu; Mao, Xuerui; Caulfield, C. P.

    2017-02-01

    We investigate experimentally the nonlinear structures that develop from interacting vortex rings induced by a sinusoidally oscillating ellipsoidal disk in fluid at rest. We vary the scaled amplitude or Keulegan-Carpenter number 0.3 structures with clear azimuthal wave number emerge as sequential vortex rings are shed from the disk. These organized structures exhibit wave numbers ranging from m =2 to m =9 and can be further divided into two distinct classes, distinguished by the phase and symmetry properties above and below the disk. We find some discrepancies between experiments and linear stability analysis, due to the inherent nonlinear mechanisms in the experiments, particulary on the boundary between the two branches, presenting unevenly distributed flow structures along the azimuthal direction.

  16. Basaltic Ring Structures as an Analog for Ring Features in Athabasca Valles, Mars

    NASA Technical Reports Server (NTRS)

    Jaeger, W. L.; Keszthelyi, L. P.; Burr, D. M.; Emery, J. P.; Baker, V. R.; McEwen, A. S.; Miyamoto, H.

    2005-01-01

    Basaltic ring structures (BRSs) are enigmatic, quasi-circular landforms in eastern Washington State that were first recognized in 1965. They remained a subject of geologic scrutiny through the 1970 s and subsequently faded from the spotlight, but recent Mars Orbiter Camera (MOC) images showing morphologically similar structures in Athabasca Valles, Mars, have sparked renewed interest in BRSs. The only known BRSs occur in the Channeled Scabland, a region where catastrophic Pleistocene floods from glacial Lake Missoula eroded into the Miocene flood basalts of the Columbia Plateau. The geologic setting of the martian ring structures (MRSs) is similar; Athabasca Valles is a young channel system that formed when catastrophic aqueous floods carved into a volcanic substrate. This study investigates the formation of terrestrial BRSs and examines the extent to which they are appropriate analogs for the MRSs in Athabasca Valles.

  17. Effectiveness and Safety of the Awakening and Breathing Coordination, Delirium Monitoring/Management, and Early Exercise/Mobility (ABCDE) Bundle

    PubMed Central

    Balas, Michele C.; Vasilevskis, Eduard E.; Olsen, Keith M.; Schmid, Kendra K.; Shostrom, Valerie; Cohen, Marlene Z.; Peitz, Gregory; Gannon, David E.; Sisson, Joseph; Sullivan, James; Stothert, Joseph C.; Lazure, Julie; Nuss, Suzanne L.; Jawa, Randeep S.; Freihaut, Frank; Ely, E. Wesley; Burke, William J.

    2014-01-01

    Objective The debilitating and persistent effects of intensive care unit (ICU)-acquired delirium and weakness warrant testing of prevention strategies. The purpose of this study was to evaluate the effectiveness and safety of implementing the Awakening and Breathing Coordination, Delirium monitoring/management, and Early exercise/mobility (ABCDE) bundle into everyday practice. Design Eighteen-month, prospective, cohort, before-after study conducted between November 2010 and May 2012. Setting Five adult ICUs, one step-down unit, and one oncology/hematology special care unit located in a 624-bed tertiary medical center. Patients Two hundred ninety-six patients (146 pre- and 150 post-bundle implementation), age ≥ 19 years, managed by the institutions’ medical or surgical critical care service. Interventions ABCDE bundle. Measurements For mechanically ventilated patients (n = 187), we examined the association between bundle implementation and ventilator-free days. For all patients, we used regression models to quantify the relationship between ABCDE bundle implementation and the prevalence/duration of delirium and coma, early mobilization, mortality, time to discharge, and change in residence. Safety outcomes and bundle adherence were monitored. Main Results Patients in the post-implementation period spent three more days breathing without mechanical assistance than did those in the pre-implementation period (median [IQR], 24 [7 to 26] vs. 21 [0 to 25]; p = 0.04). After adjusting for age, sex, severity of illness, comorbidity, and mechanical ventilation status, patients managed with the ABCDE bundle experienced a near halving of the odds of delirium (odds ratio [OR], 0.55; 95% confidence interval [CI], 0.33–0.93; p = 0.03) and increased odds of mobilizing out of bed at least once during an ICU stay (OR, 2.11; 95% CI, 1.29–3.45; p = 0.003). No significant differences were noted in self-extubation or reintubation rates. Conclusions Critically ill patients managed

  18. Adolescent brain cognitive development (ABCD) study: Overview of substance use assessment methods.

    PubMed

    Lisdahl, Krista M; Sher, Kenneth J; Conway, Kevin P; Gonzalez, Raul; Feldstein Ewing, Sarah W; Nixon, Sara Jo; Tapert, Susan; Bartsch, Hauke; Goldstein, Rita Z; Heitzeg, Mary

    2018-08-01

    One of the objectives of the Adolescent Brain Cognitive Development (ABCD) Study (https://abcdstudy.org/) is to establish a national longitudinal cohort of 9 and 10 year olds that will be followed for 10 years in order to prospectively study the risk and protective factors influencing substance use and its consequences, examine the impact of substance use on neurocognitive, health and psychosocial outcomes, and to understand the relationship between substance use and psychopathology. This article provides an overview of the ABCD Study Substance Use Workgroup, provides the goals for the workgroup, rationale for the substance use battery, and includes details on the substance use module methods and measurement tools used during baseline, 6-month and 1-year follow-up assessment time-points. Prospective, longitudinal assessment of these substance use domains over a period of ten years in a nationwide sample of youth presents an unprecedented opportunity to further understand the timing and interactive relationships between substance use and neurocognitive, health, and psychopathology outcomes in youth living in the United States. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. The puzzling structure in Saturn's outer B ring

    NASA Astrophysics Data System (ADS)

    Nicholson, Philip D.; Hedman, Matt; Buckingham, Rikley

    2017-06-01

    As first noted in Voyager images, the outer edge of Saturn's B ring is strongly perturbed by the 2:1 inner Lindblad resonance with Mimas (Porco \\etal\\ 1984). Cassini imaging and occultation data have revealed a more complex situation, where the expected resonantly-forced m=2 perturbation with an amplitude of 33~km is accompanied by freemodes with m=1, 2, 3, 4 and 5 (Spitale & Porco 2010, Nicholson \\etal\\ 2014a). To date, however, the structure immediately interior to the ring edge has not been examined carefully. We have compared optical depth profiles of the outer 1000~km of the B ring, using a large set of stellar occultations carried out since 2005 by the Cassini VIMS instrument. A search for wavelike structure, using a code written to search for hidden density waves (Hedman \\& Nicholson 2016), reveals a significant signature at a radius of ~117,150 km with a radial wavelength of ~110 km. This appears to be a trailing spiral with m=1 and a pattern speed equal to the local apsidal precession rate, $\\dpi\\simeq5.12\\dd$. Further searches for organized large-scale structure have revealed none with m=2 (as might have been expected), but several additional regions with significant m=1 variations and pattern speeds close to the local value of $\\dpi$. At present, it is unclear if these represent propagating spirals, standing waves, or perhaps features more akin to the eccentric ringlets often seen within gaps in the C ring and Cassini Division (Nicholson \\etal\\ 2014b, French \\etal\\ 2016). Comparisons of sets of profiles from 2008/9, 2012-14 and 2016 seem to show that these structures are changing over time.

  20. Special Features of the Advanced Loans Module of the ABCD Integrated Library System

    ERIC Educational Resources Information Center

    de Smet, Egbert

    2011-01-01

    Purpose: The "advanced loans" module of the relatively new library software, ABCD, is an addition to the normal loans module and it offers a "generic transaction decision-making engine" functionality. The module requires extra installation effort and parameterisation, so this article aims to explain to the many potentially interested libraries,…

  1. STRUCTURAL ASSESSMENT OF HYPERAUTOFLUORESCENT RING IN PATIENTS WITH RETINITIS PIGMENTOSA

    PubMed Central

    LIMA, LUIZ H.; CELLA, WENER; GREENSTEIN, VIVIENNE C.; WANG, NAN-KAI; BUSUIOC, MIHAI; THEODORE SMITH, R.; YANNUZZI, LAWRENCE A.; TSANG, STEPHEN H.

    2009-01-01

    Purpose To analyze the retinal structure underlying the hyperautofluorescent ring visible on fundus autofluorescence in patients with retinitis pigmentosa. Methods Twenty-four eyes of 13 patients with retinitis pigmentosa, aged 13 years to 67 years, were studied. The integrity of the photoreceptor cilia, also known as the inner/outer segment junction of the photoreceptors, the outer nuclear layer, and retinal pigment epithelium, was evaluated outside, across, and inside the ring with spectral-domain optical coherence tomography (OCT). Results Inside the foveal area, fundus autofluorescence did not detect abnormalities. Outside the ring, fundus autofluorescence revealed hypoautofluorescence compatible with the photoreceptor/retinal pigment epithelium degeneration. Spectral-domain OCT inside the ring, in the area of normal foveal fundus autofluorescence, revealed an intact retinal structure in all eyes and total retinal thickness values that were within normal limits. Across the ring, inner/outer segment junction disruption was observed and the outer nuclear layer was decreased in thickness in a centrifugal direction in all eyes. Outside the hyperautofluorescent ring, the inner/outer segment junction and the outer nuclear layer appeared to be absent and there were signs of retinal pigment epithelium degeneration. Conclusion Disruption of the inner/outer segment junction and a decrease in outer retinal thickness were found across the central hyperautofluorescent ring seen in retinitis pigmentosa. Outer segment phagocytosis by retinal pigment epithelium is necessary for the formation of an hyperautofluorescent ring. PMID:19584660

  2. Structure of the Mimas 5:3 Bending Wave in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Sega, Daniel D.; Colwell, Josh E.

    2016-10-01

    Saturn's moon Mimas is on an inclined orbit with several strong vertical orbital resonances in Saturn's rings. The 5:3 inner vertical resonance with Mimas lies in the outer A ring and produces a prominent spiral bending wave (BW) that propagates away from Mimas. While dozens of density waves in Saturn's rings have been analyzed to determine local surface mass densities and viscosities, the number of bending waves is limited by the requirement for a moon on an inclined orbit and because, unlike the Lindblad resonances that excite density waves, there can be no first order vertical resonances. The Mimas 5:3 BW is the most prominent in the ring system. Bending wave theory was initially developed by Shu et al. (1983, Icarus, 53, 185-206) following the Voyager encounters with Saturn. Later, Gresh et al. (1986, Icarus, 68, 481-502) modeled radio science occultation data of the Mimas 5:3 BW with an imperfect fit to the theory. The multitude of high resolution stellar occultations observed by Cassini UVIS provides an opportunity to reconstruct the full three-dimensional structure of this wave and learn more about local ring properties. Occultations at high elevation angles out of the ring plane are insensitive to the wave structure due to the small angles of the vertical warping of the rings in the wave. They thus reveal the underlying structure in the wave region. There is a symmetric increase in optical depth throughout the Mimas 5:3 BW region. This may be due to an increase in the abundance of small particles without a corresponding increase in surface mass density. We include this feature in a ray-tracing model of the vertical structure of the wave and fit it to multiple UVIS occultations. The observed amplitude of the wave and its damping behavior of are not well-described by the Shu et al. model, which assumes a fluid-like damping mechanism. A different damping behavior of the ring, perhaps radially varying across the wave region due to differences in the particle

  3. From clinical to tissue-based dual TIA: Validation and refinement of ABCD3-I score.

    PubMed

    Dai, Qiliang; Sun, Wen; Xiong, Yunyun; Hankey, Graeme J; Xiao, Lulu; Zhu, Wusheng; Ma, Minmin; Liu, Wenhua; Liu, Dezhi; Cai, Qiankun; Han, Yunfei; Duan, Lihui; Chen, Xiangliang; Xu, Gelin; Liu, Xinfeng

    2015-04-07

    To investigate whether dual tissue-defined ischemic attacks, defined as multiple diffusion-weighted imaging lesions of different age and/or arterial territory (dual DWI), are an independent and stronger predictor of 90-day stroke than dual clinical TIAs (dual TIA). Consecutive patients with clinically defined TIA were enrolled and assessed clinically and by MRI within 3 days. The predictive ability of the ABCD clinical factors, dual TIA, and dual DWI was evaluated by means of multivariate logistic regression. Among 658 patients who were included in the study and completed 90 days of follow-up, a total of 70 patients (10.6%) experienced subsequent stroke by 90 days. Multivariate logistic regression indicated that dual DWI was an independent predictor for subsequent stroke (odds ratio 4.64, 95% confidence interval 2.15-10.01), while dual TIA was not (odds ratio 1.18, 95% confidence interval 0.69-2.01). C statistics was higher when the item of dual TIA in ABCD3-I score was replaced by dual DWI (0.759 vs 0.729, p = 0.035). The net reclassification value for 90-day stroke risk was also improved (continuous net reclassification improvement 0.301, p = 0.017). Dual DWI independently predicted future stroke in patients with TIA. A new ABCD3-I score with dual DWI instead of dual clinical TIA may improve risk stratification for early stroke risk after TIA. © 2015 American Academy of Neurology.

  4. Promoting Protective Factors for Young Adolescents: ABCD Parenting Young Adolescents Program Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Burke, Kylie; Brennan, Leah; Cann, Warren

    2012-01-01

    This study examined the efficacy of a program for parents of young adolescents combining behavioral family intervention with acceptance-based strategies. 180 parents were randomly allocated to a 6-session group ABCD Parenting Young Adolescent Program or wait-list condition. Completer analysis indicated parents in the intervention reported…

  5. Assessing appearance-related disturbances in HIV-infected men who have sex with men (MSM): psychometrics of the body change and distress questionnaire-short form (ABCD-SF).

    PubMed

    Blashill, Aaron J; Wilson, Johannes M; Baker, Joshua S; Mayer, Kenneth H; Safren, Steven A

    2014-06-01

    Appearance-related disturbances are common among HIV-infected MSM; however, to date, there have been limited options in the valid assessment of this construct. The aim of the current study was to assess the structural, internal, and convergent validity of the assessment of body change distress questionnaire (ABCD) and its short version. Exploratory and confirmatory factor analyses indicated that both versions fit the data well. Four subfactors were revealed measuring the following body disturbance constructs: (1) negative affect about appearance, (2) HIV health-related outcomes and stigma, (3) eating and exercise confusion, and (4) ART non-adherence. The subfactors and total scores revealed bivariate associations with salient health outcomes, including depressive symptoms, HIV sexual transmission risk behaviors, and ART non-adherence. The ABCD and its short form, offer valid means to assess varied aspects of body image disturbance among HIV-infected MSM, and require modest participant burden.

  6. The Structure of Chariklo’s Rings from Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Bérard, D.; Sicardy, B.; Camargo, J. I. B.; Desmars, J.; Braga-Ribas, F.; Ortiz, J.-L.; Duffard, R.; Morales, N.; Meza, E.; Leiva, R.; Benedetti-Rossi, G.; Vieira-Martins, R.; Gomes Júnior, A.-R.; Assafin, M.; Colas, F.; Dauvergne, J.-L.; Kervella, P.; Lecacheux, J.; Maquet, L.; Vachier, F.; Renner, S.; Monard, B.; Sickafoose, A. A.; Breytenbach, H.; Genade, A.; Beisker, W.; Bath, K.-L.; Bode, H.-J.; Backes, M.; Ivanov, V. D.; Jehin, E.; Gillon, M.; Manfroid, J.; Pollock, J.; Tancredi, G.; Roland, S.; Salvo, R.; Vanzi, L.; Herald, D.; Gault, D.; Kerr, S.; Pavlov, H.; Hill, K. M.; Bradshaw, J.; Barry, M. A.; Cool, A.; Lade, B.; Cole, A.; Broughton, J.; Newman, J.; Horvat, R.; Maybour, D.; Giles, D.; Davis, L.; Paton, R. A.; Loader, B.; Pennell, A.; Jaquiery, P.-D.; Brillant, S.; Selman, F.; Dumas, C.; Herrera, C.; Carraro, G.; Monaco, L.; Maury, A.; Peyrot, A.; Teng-Chuen-Yu, J.-P.; Richichi, A.; Irawati, P.; De Witt, C.; Schoenau, P.; Prager, R.; Colazo, C.; Melia, R.; Spagnotto, J.; Blain, A.; Alonso, S.; Román, A.; Santos-Sanz, P.; Rizos, J.-L.; Maestre, J.-L.; Dunham, D.

    2017-10-01

    Two narrow and dense rings (called C1R and C2R) were discovered around the Centaur object (10199) Chariklo during a stellar occultation observed on 2013 June 3. Following this discovery, we planned observations of several occultations by Chariklo’s system in order to better characterize the physical properties of the ring and main body. Here, we use 12 successful occulations by Chariklo observed between 2014 and 2016. They provide ring profiles (physical width, opacity, edge structure) and constraints on the radii and pole position. Our new observations are currently consistent with the circular ring solution and pole position, to within the ±3.3 km formal uncertainty for the ring radii derived by Braga-Ribas et al. The six resolved C1R profiles reveal significant width variations from ˜5 to 7.5 km. The width of the fainter ring C2R is less constrained, and may vary between 0.1 and 1 km. The inner and outer edges of C1R are consistent with infinitely sharp boundaries, with typical upper limits of one kilometer for the transition zone between the ring and empty space. No constraint on the sharpness of C2R’s edges is available. A 1σ upper limit of ˜20 m is derived for the equivalent width of narrow (physical width < 4 km) rings up to distances of 12,000 km, counted in the ring plane.

  7. Dissecting the space-time structure of tree-ring datasets using the partial triadic analysis.

    PubMed

    Rossi, Jean-Pierre; Nardin, Maxime; Godefroid, Martin; Ruiz-Diaz, Manuela; Sergent, Anne-Sophie; Martinez-Meier, Alejandro; Pâques, Luc; Rozenberg, Philippe

    2014-01-01

    Tree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or early/latewood density, measured for a set of individual trees. Because successive rings correspond to successive years, the resulting dataset is a ring variables × trees × time datacube. Multivariate statistical analyses, such as principal component analysis, have been widely used for extracting worthwhile information from ring datasets, but they typically address two-way matrices, such as ring variables × trees or ring variables × time. Here, we explore the potential of the partial triadic analysis (PTA), a multivariate method dedicated to the analysis of three-way datasets, to apprehend the space-time structure of tree-ring datasets. We analyzed a set of 11 tree-ring descriptors measured in 149 georeferenced individuals of European larch (Larix decidua Miller) during the period of 1967-2007. The processing of densitometry profiles led to a set of ring descriptors for each tree and for each year from 1967-2007. The resulting three-way data table was subjected to two distinct analyses in order to explore i) the temporal evolution of spatial structures and ii) the spatial structure of temporal dynamics. We report the presence of a spatial structure common to the different years, highlighting the inter-individual variability of the ring descriptors at the stand scale. We found a temporal trajectory common to the trees that could be separated into a high and low frequency signal, corresponding to inter-annual variations possibly related to defoliation events and a long-term trend possibly related to climate change. We conclude that PTA is a powerful tool to unravel and hierarchize the different sources of variation within tree-ring datasets.

  8. Structural analysis of the space shuttle solid rocket booster/external tank attach ring

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.

    1988-01-01

    An External Tank (ET) attach ring is used in the Space Shuttle System to transfer lateral loads between the ET and the Solid Rocket Booster (SRB). Following the Challenger (51-L) accident, the flight performance of the ET attach ring was reviewed, and negative margins of safety and failed bolts in the attach ring were subsequently identified. The analyses described in this report were performed in order to understand the existing ET attach ring structural response to motor case internal pressurization as well as to aid in an ET attach ring redesign effort undertaken by NASA LaRC. The finite element model as well as the results from linear and nonlinear static structural analyses are described.

  9. Self-gravity wake structures in Saturn's a ring revealed by Cassini vims

    USGS Publications Warehouse

    Hedman, M.M.; Nicholson, P.D.; Salo, H.; Wallis, B.D.; Buratti, B.J.; Baines, K.H.; Brown, R.H.; Clark, R.N.

    2007-01-01

    During the summer of 2005, the Visual and Infrared Mapping Spectrometer onboard the Cassini spacecraft observed a series of occultations of the star o Ceti (Mira) by Saturn's rings. These observations revealed pronounced variations in the optical depth of the A ring with longitude, which can be attributed to oriented structures in the rings known as self-gravity wakes. While the wakes themselves are only tens of meters across and below the resolution of the measurements, we are able to obtain information about the orientation and shapes of these structures by comparing the observed transmission at different longitudes with predictions from a simple model. Our findings include the following: (1) The orientation of the wakes varies systematically with radius, trailing by between 64?? and 72?? relative to the local radial direction. (2) The maximum transmission peaks at roughly 8% for B = 3.45?? in the middle A ring (???129,000 km). (3) Both the wake orientation and maximum transmission vary anomalously in the vicinity of two strong density waves (Janus 5:4 and Mimas 5:3). (4) The ratio of the wake vertical thickness H to the wake pattern wavelength ?? (assuming infinite, straight, regularly-spaced wake structures) varies from 0.12 to 0.09 across the A ring. Gravitational instability theory predicts ?? ??? 60 m, which suggests that the wake structures in the A ring are only ???6 m thick. ?? 2007. The American Astronomical Society. All rights reserved.

  10. FORMATION OF A PROPELLER STRUCTURE BY A MOONLET IN A DENSE PLANETARY RING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michikoshi, Shugo; Kokubo, Eiichiro, E-mail: michikoshi@cfca.jp, E-mail: kokubo@th.nao.ac.jp

    2011-05-10

    The Cassini spacecraft discovered a propeller-shaped structure in Saturn's A. This propeller structure is thought to be formed by gravitational scattering of ring particles by an unseen embedded moonlet. Self-gravity wakes are prevalent in dense rings due to gravitational instability. Strong gravitational wakes affect the propeller structure. Here, we derive the condition for the formation of a propeller structure by a moonlet embedded in a dense ring with gravitational wakes. We find that a propeller structure is formed when the wavelength of the gravitational wakes is smaller than the Hill radius of the moonlet. We confirm this formation condition bymore » performing numerical simulations. This condition is consistent with observations of propeller structures in Saturn's A.« less

  11. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly

    NASA Astrophysics Data System (ADS)

    Caillat, Christophe; Macheboeuf, Pauline; Wu, Yuanfei; McCarthy, Andrew A.; Boeri-Erba, Elisabetta; Effantin, Gregory; Göttlinger, Heinrich G.; Weissenhorn, Winfried; Renesto, Patricia

    2015-12-01

    The vacuolar protein sorting 4 AAA-ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly.

  12. The ABCD2 score is better for stroke risk prediction after anterior circulation TIA compared to posterior circulation TIA.

    PubMed

    Wang, Junjun; Wu, Jimin; Liu, Rongyi; Gao, Feng; Hu, Haitao; Yin, Xinzhen

    2015-01-01

    Transient ischemic attacks (TIAs) are divided into anterior and posterior circulation types (AC-TIA, PC-TIA, respectively). In the present study, we sought to evaluate the ABCD2 score for predicting stroke in either AC-TIA or PC-TIA. We prospectively studied 369 consecutive patients who presented with TIA between June 2009 and December 2012. The 7 d occurrence of stroke after TIA was recorded and correlated with the ABCD2 score with regards to AC-TIA or PC-TIA. Overall, 273 AC-TIA and 96 PC-TIA patients were recruited. Twenty-one patients with AC-TIA and seven with PC-TIA developed a stroke within the subsequent 7 d (7.7% vs. 7.3%, p = 0.899). The ABCD2 score had a higher predictive value of stroke occurrence in AC-TIA (the AUC was 0.790; 95% CI, 0.677-0.903) than in PC-TIA (the AUC was 0.535; 95% CI, 0.350-0.727) and the z-value of two receiver operating characteristic (ROC) curves was 2.24 (p = 0.025). AC-TIA resulted in a higher incidence of both unilateral weakness and speech disturbance and longer durations of the symptoms. Inversely, PC-TIA was associated with a higher incidence of diabetes mellitus (19.8% vs. 10.6%, p = 0.022). Evaluating each component of scores, age ≥ 60 yr (OR = 7.010, 95% CI 1.599-30.743), unilateral weakness (OR = 3.455, 95% CI 1.131-10.559), and blood pressure (OR = 9.652, 95% CI 2.202-42.308) were associated with stroke in AC-TIA, while in PC-TIA, diabetes mellitus (OR = 9.990, 95% CI 1.895-52.650) was associated with stroke. In our study, the ABCD2 score could predict the short-term risk of stroke after AC-TIA, but might have limitation for PC-TIA.

  13. Structure of a BMI-1-Ring1B Polycomb Group Ubiquitin Ligase Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li,Z.; Cao, R.; Wang, M.

    2006-01-01

    Polycomb group (PcG) proteins Bmi-1 and Ring1B are core subunits of the PRC1 complex which plays important roles in the regulation of Hox gene expression, X-chromosome inactivation, tumorigenesis and stem cell self-renewal. The RING finger protein Ring1B is an E3 ligase that participates in the ubiquitination of lysine 119 of histone H2A, and the binding of Bmi-1 stimulates the E3 ligase activity. We have mapped the regions of Bmi-1 and Ring1B required for efficient ubiquitin transfer and determined a 2.5 Angstroms structure of the Bmi-1-Ring1B core domain complex. The structure reveals that Ring1B 'hugs' Bmi-1 through extensive RING domain contactsmore » and its N-terminal tail wraps around Bmi-1. The two regions of interaction have a synergistic effect on the E3 ligase activity. Our analyses suggest a model where the Bmi-1-Ring1B complex stabilizes the interaction between the E2 enzyme and the nucleosomal substrate to allow efficient ubiquitin transfer.« less

  14. Experiments on Diffusion Flame Structure of a Laminar Vortex Ring

    NASA Technical Reports Server (NTRS)

    Chen, Shin-Juh; Dahm, Werner J. A.

    1999-01-01

    The study of flame-vortex interactions provides one of the means to better understand turbulent combustion, and allows for canonical configurations that contain the fundamental elements found in turbulent flames, These include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, and heat release effects. In flame- vortex configurations, these fundamental elements can be studied under more controlled conditions than is possible in direct investigations of turbulent flames. Since the paper of Marble, the problem of the flame-vortex interaction has received considerable attention theoretically, numerically and experimentally. Several configurations exist for study of the premixed flame/vortex ring interaction but more limited results have been obtained to date for the diffusion flame/vortex ring case. The setup of Chen and Dahm, which is conceptually similar to that of Karagozian and Manda and Karagozian, Suganuma and Strom where the ring is composed of fuel and air and combustion begins during the ring formation process, is used in the current study. However, it is essential to conduct the experiments in microgravity to remove the asymmetries caused by buoyancy and thus obtain highly symmetric and repeatable interactions. In previous studies it was found that the flame structure of the vortex ring was similar to that obtained analytically by Karagozian and Manda. Dilution of propane with nitrogen led mainly to a reduction in flame luminosities, flame burnout times were affected by both fuel volumes and amount of dilution, and a simple model of the burnout times was developed. In this paper, a discussion on reacting ring displacement and flame burnout time will be given, and the flame structures of vortex rings containing ethane and air will be compared to those of propane reacting in air.

  15. The Abcd Formula of Phase Definition in Optical Interferometry: Combined Effect of Air Dispersion and Broad Passband

    NASA Astrophysics Data System (ADS)

    Mathar, Richard J.

    Long-baseline interferometry detects fringes created by superposition of two beams of light collected by two telescopes pointing into a common direction. The external path difference is commonly compensated by adding a variable optical path length (delay) through air for one beam such that the optical path difference between the beams remains close to zero near the detector. The ABCD formula assigns a (wrapped) phase to the signals A to D of an interference pattern shifted by multiples of 90 degrees in phase. We study the interplay between a broad spectral passband of the optics and the dispersion of the air in the compensating delay, which leads to small deviations between the ABCD phase and the reduced, monochromatic group-delay representation of the wave packets. This adds dispersion to the effects that have been discussed for evacuated interferometers before (Milman 2005).

  16. The FlxABCD-HdrABC proteins correspond to a novel NADH dehydrogenase/heterodisulfide reductase widespread in anaerobic bacteria and involved in ethanol metabolism in Desulfovibrio vulgaris Hildenborough.

    PubMed

    Ramos, Ana Raquel; Grein, Fabian; Oliveira, Gonçalo P; Venceslau, Sofia S; Keller, Kimberly L; Wall, Judy D; Pereira, Inês A C

    2015-07-01

    Flavin-based electron bifurcation (FBEB) is an important mechanism for the energy metabolism of anaerobes. A new family of NADH dehydrogenases, the flavin oxidoreductase (FlxABCD, previously called FloxABCD), was proposed to perform FBEB in sulphate-reducing organisms coupled with heterodisulfide reductase (HdrABC). We found that the hdrABC-flxABCD gene cluster is widespread among anaerobic bacteria, pointing to a general and important role in their bioenergetics. In this work, we studied FlxABCD of Desulfovibrio vulgaris Hildenborough. The hdr-flx genes are part of the same transcriptional unit and are increased in transcription during growth in ethanol-sulfate, and to a less extent during pyruvate fermentation. Two mutant strains were generated: one where expression of the hdr-flx genes was interrupted and another lacking the flxA gene. Both strains were unable to grow with ethanol-sulfate, whereas growth was restored in a flxA-complemented strain. The mutant strains also produced very reduced amounts of ethanol compared with the wild type during pyruvate fermentation. Our results show that in D. vulgaris, the FlxABCD-HdrABC proteins are essential for NADH oxidation during growth on ethanol, probably involving a FBEB mechanism that leads to reduction of ferredoxin and the small protein DsrC, while in fermentation they operate in reverse, reducing NAD(+) for ethanol production. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Development of an Acoustic Levitation Linear Transportation System Based on a Ring-Type Structure.

    PubMed

    Thomas, Gilles P L; Andrade, Marco A B; Adamowski, Julio Cezar; Silva, Emilio Carlos Nelli

    2017-05-01

    A linear acoustic levitation transportation system based on a ring-type vibrator is presented. The system is composed by two 21-kHz Langevin transducers connected to a ring-shaped structure formed by two semicircular sections and two flat plates. In this system, a flexural standing wave is generated along the ring structure, producing an acoustic standing wave between the vibrating ring and a plane reflector located at a distance of approximately a half wavelength from the ring. The acoustic standing wave in air has a series of pressure nodes, where small particles can be levitated and transported. The ring-type transportation system was designed and analyzed by using the finite element method. Additionally, a prototype was built and the acoustic levitation and transport of a small polystyrene particle was demonstrated.

  18. The ABCD's of 5'-adenosine monophosphate-activated protein kinase and adrenoleukodystrophy.

    PubMed

    Weidling, Ian; Swerdlow, Russell H

    2016-07-01

    This Editorial highlights a study by Singh and coworkers in the current issue of Journal of Neurochemistry, in which the authors present additional evidence that AMPKα1 is reduced in X-linked adrenoleukodystrophy (X-ALD). They make a case for increasing AMPKα1 activity for therapeutic purposes in this disease, and indicate how this goal may be achieved. Read the highlighted article 'Metformin-induced mitochondrial function and ABCD2 up regulation in X-linked adrenoleukodystrophy involves AMP activated protein kinase' on page 86. © 2016 International Society for Neurochemistry.

  19. Ring-type structures in the Planck map of the CMB

    NASA Astrophysics Data System (ADS)

    An, Daniel; Meissner, Krzysztof A.; Nurowski, Paweł

    2018-01-01

    We present the results of the quest for ring-type structures on the maps observed by the Planck satellite. The results show that the vicinity of one radius (γ = 0.14 rad) of the rings is distinguished. Twisting the circles into deformed ellipses gives a pronounced drop of significance with the increase of twisting; however, this behaviour is also present in some statistically isotropic simulations.

  20. The vertical structure of the F ring of Saturn from ring-plane crossings

    NASA Astrophysics Data System (ADS)

    Scharringhausen, Britt R.; Nicholson, Philip D.

    2013-11-01

    We present a photometric model of the rings of Saturn which includes the main rings and an F ring, inclined to the main rings, with a Gaussian vertical profile of optical depth. This model reproduces the asymmetry in brightness between the east and west ansae of the rings of Saturn that was observed by the Hubble Space Telescope (HST) within a few hours after the Earth ring-plane crossing (RPX) of 10 August 1995. The model shows that during this observation the inclined F ring unevenly blocked the east and west ansae of the main rings. The brightness asymmetry produced by the model is highly sensitive to the vertical thickness and radial optical depth of the F ring. The F-ring model that best matches the observations has a vertical full width at half maximum of 13 ± 7 km and an equivalent depth of 10 ± 4 km. The model also reproduces the shape of the HST profiles of ring brightness vs. distance from Saturn, both before and after the time of ring-plane crossing. Smaller asymmetries observed before the RPX, when the Earth was on the dark side of the rings, cannot be explained by blocking of the main rings by the F ring or vice versa and are probably instead due to the intrinsic longitudinal variation exhibited by the F ring.

  1. In vivo structure of the E. coli FtsZ-ring revealed by photoactivated localization microscopy (PALM).

    PubMed

    Fu, Guo; Huang, Tao; Buss, Jackson; Coltharp, Carla; Hensel, Zach; Xiao, Jie

    2010-09-13

    The FtsZ protein, a tubulin-like GTPase, plays a pivotal role in prokaryotic cell division. In vivo it localizes to the midcell and assembles into a ring-like structure-the Z-ring. The Z-ring serves as an essential scaffold to recruit all other division proteins and generates contractile force for cytokinesis, but its supramolecular structure remains unknown. Electron microscopy (EM) has been unsuccessful in detecting the Z-ring due to the dense cytoplasm of bacterial cells, and conventional fluorescence light microscopy (FLM) has only provided images with limited spatial resolution (200-300 nm) due to the diffraction of light. Hence, given the small sizes of bacteria cells, identifying the in vivo structure of the Z-ring presents a substantial challenge. Here, we used photoactivated localization microscopy (PALM), a single molecule-based super-resolution imaging technique, to characterize the in vivo structure of the Z-ring in E. coli. We achieved a spatial resolution of ∼35 nm and discovered that in addition to the expected ring-like conformation, the Z-ring of E. coli adopts a novel compressed helical conformation with variable helical length and pitch. We measured the thickness of the Z-ring to be ∼110 nm and the packing density of FtsZ molecules inside the Z-ring to be greater than what is expected for a single-layered flat ribbon configuration. Our results strongly suggest that the Z-ring is composed of a loose bundle of FtsZ protofilaments that randomly overlap with each other in both longitudinal and radial directions of the cell. Our results provide significant insight into the spatial organization of the Z-ring and open the door for further investigations of structure-function relationships and cell cycle-dependent regulation of the Z-ring.

  2. Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Cuzzi, J. N.

    2014-12-01

    The rings are changing before our eyes; structure varies on all timescales and unexpected things have been discovered. Many questions have been answered, but some answers remain elusive (see Cuzzi et al 2010 for a review). Here we highlight the major ring science progress over the mission to date, and describe new observations planned for Cassini's final three years. Ring Composition and particle sizes: The rings are nearly all water ice with no other ices - so why are they reddish? The C Ring and Cassini Division are "dirtier" than the more massive B and A Rings, as shown by near-IR and, recently, microwave observations. Particle sizes, from stellar and radio occultations, vary from place to place. Ring structure, micro and macro: numerous spiral density waves and ubiquitous "self-gravity wakes" reveal processes which fostered planet formation in the solar system and elsewhere. However, big puzzles remain regarding the main ring divisions, the C Ring plateau structures, and the B Ring irregular structure. Moonlets, inside and out, seen and unseen: Two gaps contain sizeable moonlets, but more gaps seem to contain none; even smaller embedded "propeller" objects wander, systematically or randomly, through the A ring. Rubble pile ringmoons just outside the rings may escaped from the rings, and the recently discovered "Peggy" may be trying this as we watch. Impact bombardment of the rings: Comet fragments set the rings to rippling on century-timescales, and boulders crash through hourly; meanwhile, the constant hail of infalling Kuiper belt material has a lower mass flux than previously thought. Origin and Age of the Rings: The ring mass and bombardment play key roles. The ring mass is well known everywhere but in the B Ring (where most of it is). New models suggest how tidal breakup of evolving moons may have formed massive ancient rings, of which the current ring is just a shadow. During its last three years, the Cassini tour profile will allow entirely new

  3. Vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony

    1992-01-01

    The vortex-ring problem in fluid mechanics is examined generally in terms of formation, the steady state, the duration of the rings, and vortex interactions. The formation is studied by examining the generation of laminar and turbulent vortex rings and their resulting structures with attention given to the three stages of laminar ring development. Inviscid dynamics is addressed to show how core dynamics affects overall ring motion, and laminar vortex structures are described in two dimensions. Viscous and inviscid structures are related in terms of 'leapfrogging', head-on collisions, and collisions with a no-slip wall. Linear instability theory is shown to successfully describe observational data, although late stages in the breakdown are not completely understood. This study of vortex rings has important implications for key aerodynamic issues including sound generation, transport and mixing, and vortex interactions.

  4. Crystal structure of a two-subunit TrkA octameric gating ring assembly

    DOE PAGES

    Deller, Marc C.; Johnson, Hope A.; Miller, Mitchell D.; ...

    2015-03-31

    The TM1088 locus of T. maritima codes for two proteins designated TM1088A and TM1088B, which combine to form the cytosolic portion of a putative Trk K⁺ transporter. We report the crystal structure of this assembly to a resolution of 3.45 Å. The high resolution crystal structures of the components of the assembly, TM1088A and TM1088B, were also determined independently to 1.50 Å and 1.55 Å, respectively. The TM1088 proteins are structurally homologous to each other and to other K⁺ transporter proteins, such as TrkA. These proteins form a cytosolic gating ring assembly that controls the flow of K⁺ ions acrossmore » the membrane. TM1088 represents the first structure of a two-subunit Trk assembly. Despite the atypical genetics and chain organization of the TM1088 assembly, it shares significant structural homology and an overall quaternary organization with other single-subunit K⁺ gating ring assemblies. This structure provides the first structural insights into what may be an evolutionary ancestor of more modern single-subunit K⁺ gating ring assemblies.« less

  5. Research on propagation properties of controllable hollow flat-topped beams in turbulent atmosphere based on ABCD matrix

    NASA Astrophysics Data System (ADS)

    Liu, Huilong; Lü, Yanfei; Zhang, Jing; Xia, Jing; Pu, Xiaoyun; Dong, Yuan; Li, Shutao; Fu, Xihong; Zhang, Angfeng; Wang, Changjia; Tan, Yong; Zhang, Xihe

    2015-01-01

    This paper studies the propagation properties of controllable hollow flat-topped beams (CHFBs) in turbulent atmosphere based on ABCD matrix, sets up a propagation model and obtains an analytical expression for the propagation. With the help of numerical simulation, the propagation properties of CHFBs in different parameters are studied. Results indicate that in turbulent atmosphere, with the increase of propagation distance, the darkness of CHFBs gradually annihilate, and eventually evolve into Gaussian beams. Compared with the propagation properties in free space, the turbulent atmosphere enhances the diffraction effect of CHFBs and reduces the propagation distance for CHFBs to evolve into Gaussian beams. In strong turbulence atmospheric propagation, Airy disk phenomenon will disappear. The study on the propagation properties of CHFBs in turbulence atmosphere by using ABCD matrix is simple and convenient. This method can also be applied to study the propagation properties of other hollow laser beams in turbulent atmosphere.

  6. Implementing the ABCDE Bundle into Everyday Care: Opportunities, Challenges and Lessons Learned for Implementing the ICU Pain, Agitation and Delirium (PAD) Guidelines

    PubMed Central

    Balas, Michele C.; Burke, William J.; Gannon, David; Cohen, Marlene Z.; Colburn, Lois; Bevil, Catherine; Franz, Doug; Olsen, Keith M.; Ely, E. Wesley; Vasilevskis, Eduard E.

    2014-01-01

    Objective The Awakening and Breathing Coordination, Delirium monitoring/management and Early exercise/mobility (ABCDE) bundle is an evidence-based, interprofessional, multicomponent strategy for minimizing sedative exposure, reducing duration of mechanical ventilation and managing intensive care unit (ICU) acquired delirium and weakness. The purpose of this study was to identify facilitators and barriers to ABCDE bundle adoption and to evaluate the extent to which bundle implementation was effective, sustainable, and conducive to dissemination. Design Prospective, before-after, mixed-methods study. Setting Five adult ICUs, 1 step-down unit, and a special care unit located in a 624 bed, academic medical center Subjects Interprofessional ICU team members at participating institution. Interventions and Measurements In collaboration with the participating institution, we developed, implemented, and refined an ABCDE bundle policy. Over the course of an 18 month period, all ICU team members were offered the opportunity to participate in numerous, multimodal educational efforts. Three focus group sessions, 3 online surveys, and 1 educational evaluation were administered in an attempt to identify facilitators and barriers to bundle adoption. Main Results Factors believed to facilitate bundle implementation included: 1) the performance of daily, interdisciplinary, rounds, 2) engagement of key implementation leaders, 3) sustained and diverse educational efforts, and 4) the bundle's quality and strength. Barriers identified included: 1) intervention related issues (e.g. timing of trials, fear of adverse events), 2) communication and care coordination challenges, 3) knowledge deficits, 4) workload concerns, and 5) documentation burden. Despite these challenges, participants believed implementation ultimately benefited patients, improved interdisciplinary communication, and empowered nurses and other ICU team members. Conclusions In this study of the implementation of the ABCDE

  7. Self-assembly of vertically aligned quantum ring-dot structure by Multiple Droplet Epitaxy

    NASA Astrophysics Data System (ADS)

    Elborg, Martin; Noda, Takeshi; Mano, Takaaki; Kuroda, Takashi; Yao, Yuanzhao; Sakuma, Yoshiki; Sakoda, Kazuaki

    2017-11-01

    We successfully grow vertically aligned quantum ring-dot structures by Multiple Droplet Epitaxy technique. The growth is achieved by depositing GaAs quantum rings in a first droplet epitaxy process which are subsequently covered by a thin AlGaAs barrier. In a second droplet epitaxy process, Ga droplets preferentially position in the center indentation of the ring as well as attached to the edge of the ring in [ 1 1 bar 0 ] direction. By designing the ring geometry, full selectivity for the center position of the ring is achieved where we crystallize the droplets into quantum dots. The geometry of the ring and dot as well as barrier layer can be controlled in separate growth steps. This technique offers great potential for creating complex quantum molecules for novel quantum information technologies.

  8. Solar system history as recorded in the Saturnian ring structure

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1983-01-01

    Holberg's analysis of the Voyager Saturn photographs in reflected and transparent light, and occultation data of stars seen through the rings are discussed. A hyperfine structure, with 10,000 ringlets can be explained by the Baxter-Thompson negative diffusion. This gives the ringlets a stability which makes it possible to interpret them as fossils, which originated at cosmogonic times. It is shown that the bulk structure can be explained by the combined cosmogonic shadows of the satellites Mimas, Janus and the Shepherd satellites. This structure originated at the transition from the plasma phase to the planetesimal phase. The shadows are not simple void regions but exhibit a characteristic signature. Parts of the fine structure, explained by Holberg as resonances with satellites, are interpreted as cosmogonic shadow effects. However, there are a number of ringlets which can neither be explained by cosmogonic nor by resonance effects. Analysis of ring data can reconstruct the plasma-planetesimal transition with an accuracy of a few percent.

  9. Double-bosonization and Majid's conjecture, (I): Rank-inductions of ABCD

    NASA Astrophysics Data System (ADS)

    Hu, Hongmei; Hu, Naihong

    2015-11-01

    Majid developed in [S. Majid, Math. Proc. Cambridge Philos. Soc. 125, 151-192 (1999)] the double-bosonization theory to construct Uq(𝔤) and expected to generate inductively not just a line but a tree of quantum groups starting from a node. In this paper, the authors confirm Majid's first expectation (see p. 178 [S. Majid, Math. Proc. Cambridge Philos. Soc. 125, 151-192 (1999)]) through giving and verifying the full details of the inductive constructions of Uq(𝔤) for the classical types, i.e., the ABCD series. Some examples in low ranks are given to elucidate that any quantum group of classical type can be constructed from the node corresponding to Uq(𝔰𝔩2).

  10. Affect, Behavior, Cognition, and Desire in the Big Five: An Analysis of Item Content and Structure

    PubMed Central

    Wilt, Joshua; Revelle, William

    2015-01-01

    Personality psychology is concerned with affect (A), behavior (B), cognition (C) and desire (D), and personality traits have been defined conceptually as abstractions used to either explain or summarize coherent ABC (and sometimes D) patterns over time and space. However, this conceptual definition of traits has not been reflected in their operationalization, possibly resulting in theoretical and practical limitations to current trait inventories. Thus, the goal of this project was to determine the affective, behavioral, cognitive and desire (ABCD) components of Big-Five personality traits. The first study assessed the ABCD content of items measuring Big-Five traits in order to determine the ABCD composition of traits and identify items measuring relatively high amounts of only one ABCD content. The second study examined the correlational structure of scales constructed from items assessing ABCD content via a large, web-based study. An assessment of Big-Five traits that delineates ABCD components of each trait is presented, and the discussion focuses on how this assessment builds upon current approaches of assessing personality. PMID:26279606

  11. Plasmon-emitter interaction using integrated ring grating-nanoantenna structures.

    PubMed

    Rahbany, Nancy; Geng, Wei; Bachelot, Renaud; Couteau, Christophe

    2017-05-05

    Overcoming the diffraction limit to achieve high optical resolution is one of the main challenges in the fields of plasmonics, nanooptics and nanophotonics. In this work, we introduce novel plasmonic structures consisting of nanoantennas (nanoprisms, single bowtie nanoantennas and double bowtie nanoantennas) integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and coupled with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in their gap. SPPs are widely used for optical waveguiding but provide low resolution due to their weak spatial confinement. In contrast, LSPs provide excellent sub-wavelength confinement but induce large losses. The phenomenon of SPP-LSP coupling witnessed in our structures allows for achieving more precise focusing at the nanoscale, causing an increase in the fluorescence emission of the emitters. Finite-difference time-domain simulations as well as experimental fabrication and optical characterization results are presented to study plasmon-emitter coupling between an ensemble of dye molecules and our integrated plasmonic structures. A comparison is given to highlight the importance of each structure on the photoluminescence and radiative decay enhancement of the molecules.

  12. Plasmon-emitter interaction using integrated ring grating-nanoantenna structures

    NASA Astrophysics Data System (ADS)

    Rahbany, Nancy; Geng, Wei; Bachelot, Renaud; Couteau, Christophe

    2017-05-01

    Overcoming the diffraction limit to achieve high optical resolution is one of the main challenges in the fields of plasmonics, nanooptics and nanophotonics. In this work, we introduce novel plasmonic structures consisting of nanoantennas (nanoprisms, single bowtie nanoantennas and double bowtie nanoantennas) integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and coupled with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in their gap. SPPs are widely used for optical waveguiding but provide low resolution due to their weak spatial confinement. In contrast, LSPs provide excellent sub-wavelength confinement but induce large losses. The phenomenon of SPP-LSP coupling witnessed in our structures allows for achieving more precise focusing at the nanoscale, causing an increase in the fluorescence emission of the emitters. Finite-difference time-domain simulations as well as experimental fabrication and optical characterization results are presented to study plasmon-emitter coupling between an ensemble of dye molecules and our integrated plasmonic structures. A comparison is given to highlight the importance of each structure on the photoluminescence and radiative decay enhancement of the molecules.

  13. Propagation of various dark hollow beams through an apertured paraxial ABCD optical system

    NASA Astrophysics Data System (ADS)

    Cai, Yangjian; Ge, Di

    2006-08-01

    Propagation of a dark hollow beam (DHB) of circular, elliptical or rectangular symmetry through an apertured paraxial ABCD optical system is investigated. Approximate analytical formulas for various DHBs propagating through an apertured paraxial optical system are derived by expanding the hard-aperture function into a finite sum of complex Gaussian functions in terms of a tensor method. Some numerical results are given. Our formulas provide a convenient way for studying the propagation of various DHBs through an apertured paraxial optical system.

  14. Propagation of partially coherent Lorentz and Lorentz-Gauss beams through a paraxial ABCD optical system in a turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Zhao, Chengliang; Cai, Yangjian

    2011-05-01

    Based on the generalized Huygens-Fresnel integral, propagation of partially coherent Lorentz and Lorentz-Gauss beams through a paraxial ABCD optical system in a turbulent atmosphere was investigated. Analytical propagation formulae were derived for the cross-spectral densities of partially coherent Lorentz and Lorentz-Gauss beams. As an application example, the focusing properties of partially coherent Gaussian, Lorentz and Lorentz-Gauss beams in a turbulent atmosphere and in free space were studied numerically and comparatively. It is found that the focusing properties of such beams are closely related to the initial coherence length and the structure constant of turbulence. By choosing a suitable initial coherence length, a partially coherent Lorentz beam can be focused more tightly than a Gaussian or Lorentz-Gauss beam in free space or in a turbulent atmosphere with small structure constant at the geometrical focal plane.

  15. Gravity profiles across the Uyaijah Ring structure, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Gettings, M.E.; Andreasen, G.E.

    1987-01-01

    The resulting structural model, based on profile fits to gravity responses of three-dimensional models and excess-mass calculations, gives a depth estimate to the base of the complex of 4.75 km. The contacts of the complex are inferred to be steeply dipping inward along the southwest margin of the structure. To the north and east, however, the basal contact of the complex dips more gently inward (about 30 degrees). The ring structure appears to be composed of three laccolith-shaped plutons; two are granitic in composition and make up about 85 percent of the volume of the complex, and one is granodioritic and comprises the remaining 15 percent. The source area for the plutons appears to be in the southwest quadrant of the Uyaijah ring structure. A northwest-trending shear zone cuts the northern half of the structure and contains mafic dikes that have a small but identifiable gravity-anomaly response. The structural model agrees with models derived from geological interpretation except that the estimated depth to which the structure extends is decreased considerably by the gravity results.

  16. Solar system history as recorded in the Saturnian ring structure

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1983-01-01

    Holberg's analysis of the Voyager Saturn photographs in reflected and transparent light, and occultation data of stars seen through the rings are discussed. A hyperfine structure with 10,000 ringlets can be explained by the Baxter-Thompson negative diffusion. This gives the ringlets a stability which makes it possible to interpret them as fossils which originated at cosmogonic times. It is shown that the bulk structure can be explained by the combined cosmogonic shadows of the satellites Mimas and Janus and the Shepherd satellites. This structure originated at the transition from the plasma phase to the planetesimal phase. The shadows are not simple void regions but exhibit a characteristic signature. Parts of the fine structure, explained by Holberg as resonances with satellites, are interpreted as cosmogonic shadow effects. However, there are a number of ringlets which can neither be explained by cosmogonic nor by resonance effects. Analysis of ring data can reconstruct the plasma-planetesimal transition with an accuracy of a few percent. Previously announced in STAR as N84-12013

  17. Structure and assembly of the essential RNA ring component of a viral DNA packaging motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fang; Lu, Changrui; Zhao, Wei

    2011-07-25

    Prohead RNA (pRNA) is an essential component in the assembly and operation of the powerful bacteriophage {psi}29 DNA packaging motor. The pRNA forms a multimeric ring via intermolecular base-pairing interactions between protomers that serves to guide the assembly of the ring ATPase that drives DNA packaging. Here we report the quaternary structure of this rare multimeric RNA at 3.5 {angstrom} resolution, crystallized as tetrameric rings. Strong quaternary interactions and the inherent flexibility helped rationalize how free pRNA is able to adopt multiple oligomerization states in solution. These characteristics also allowed excellent fitting of the crystallographic pRNA protomers into previous prohead/pRNAmore » cryo-EM reconstructions, supporting the presence of a pentameric, but not hexameric, pRNA ring in the context of the DNA packaging motor. The pentameric pRNA ring anchors itself directly to the phage prohead by interacting specifically with the fivefold symmetric capsid structures that surround the head-tail connector portal. From these contacts, five RNA superhelices project from the pRNA ring, where they serve as scaffolds for binding and assembly of the ring ATPase, and possibly mediate communication between motor components. Construction of structure-based designer pRNAs with little sequence similarity to the wild-type pRNA were shown to fully support the packaging of {psi}29 DNA.« less

  18. Micro-Ring Structures Stabilize Microdroplets to Enable Long Term Spheroid Culture in 384 Hanging Drop Array Plates

    PubMed Central

    Hsiao, Amy Y.; Tung, Yi-Chung; Kuo, Chuan-Hsien; Mosadegh, Bobak; Bedenis, Rachel; Pienta, Kenneth J.; Takayama, Shuichi

    2012-01-01

    Using stereolithography, 20 different structural variations comprised of millimeter diameter holes surrounded by trenches, plateaus, or micro-ring structures were prepared and tested for their ability to stably hold arrays of microliter sized droplets within the structures over an extended period of time. The micro-ring structures were the most effective in stabilizing droplets against mechanical and chemical perturbations. After confirming the importance of micro-ring structures using rapid prototyping, we developed an injection molding tool for mass production of polystyrene 3D cell culture plates with an array of 384 such micro-ring surrounded through-hole structures. These newly designed and injection molded polystyrene 384 hanging drop array plates with micro-rings were stable and robust against mechanical perturbations as well as surface fouling-facilitated droplet spreading making them capable of long term cell spheroid culture of up to 22 days within the droplet array. This is a significant improvement over previously reported 384 hanging drop array plates which are susceptible to small mechanical shocks and could not reliably maintain hanging drops for longer than a few days. With enhanced droplet stability, the hanging drop array plates with micro-ring structures provide better platforms and open up new opportunities for high-throughput preparation of microscale 3D cell constructs for drug screening and cell analysis. PMID:22057945

  19. Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates.

    PubMed

    Hsiao, Amy Y; Tung, Yi-Chung; Kuo, Chuan-Hsien; Mosadegh, Bobak; Bedenis, Rachel; Pienta, Kenneth J; Takayama, Shuichi

    2012-04-01

    Using stereolithography, 20 different structural variations comprised of millimeter diameter holes surrounded by trenches, plateaus, or micro-ring structures were prepared and tested for their ability to stably hold arrays of microliter sized droplets within the structures over an extended period of time. The micro-ring structures were the most effective in stabilizing droplets against mechanical and chemical perturbations. After confirming the importance of micro-ring structures using rapid prototyping, we developed an injection molding tool for mass production of polystyrene 3D cell culture plates with an array of 384 such micro-ring surrounded through-hole structures. These newly designed and injection molded polystyrene 384 hanging drop array plates with micro-rings were stable and robust against mechanical perturbations as well as surface fouling-facilitated droplet spreading making them capable of long term cell spheroid culture of up to 22 days within the droplet array. This is a significant improvement over previously reported 384 hanging drop array plates which are susceptible to small mechanical shocks and could not reliably maintain hanging drops for longer than a few days. With enhanced droplet stability, the hanging drop array plates with micro-ring structures provide better platforms and open up new opportunities for high-throughput preparation of microscale 3D cell constructs for drug screening and cell analysis.

  20. Architecture for an advanced biomedical collaboration domain for the European paediatric cancer research community (ABCD-4-E).

    PubMed

    Nitzlnader, Michael; Falgenhauer, Markus; Gossy, Christian; Schreier, Günter

    2015-01-01

    Today, progress in biomedical research often depends on large, interdisciplinary research projects and tailored information and communication technology (ICT) support. In the context of the European Network for Cancer Research in Children and Adolescents (ENCCA) project the exchange of data between data source (Source Domain) and data consumer (Consumer Domain) systems in a distributed computing environment needs to be facilitated. This work presents the requirements and the corresponding solution architecture of the Advanced Biomedical Collaboration Domain for Europe (ABCD-4-E). The proposed concept utilises public as well as private cloud systems, the Integrating the Healthcare Enterprise (IHE) framework and web-based applications to provide the core capabilities in accordance with privacy and security needs. The utility of crucial parts of the concept was evaluated by prototypic implementation. A discussion of the design indicates that the requirements of ENCCA are fully met. A whole system demonstration is currently being prepared to verify that ABCD-4-E has the potential to evolve into a domain-bridging collaboration platform in the future.

  1. Impact of an ABCDE team triage process combined with public guidance on the division of work in an emergency department.

    PubMed

    Kantonen, Jarmo; Lloyd, Robert; Mattila, Juho; Kauppila, Timo; Menezes, Ricardo

    2015-06-01

    To study the effects of applying an emergency department (ED) triage system, combined with extensive publicity in local media about the "right" use of emergency services, on the division of work between ED nurses and general practitioners (GPs). An observational and quasi-experimental study based on before-after comparisons. Implementation of the ABCDE triage system in a Finnish combined ED where secondary care is adjacent, and in a traditional primary care ED where secondary care is located elsewhere. GPs and nurses from two different primary care EDs. Numbers of monthly visits to different professional groups before and after intervention in the studied primary care EDs and numbers of monthly visits to doctors in the local secondary care ED. The beginning of the triage process increased temporarily the number of independent consultations and patient record entries by ED nurses in both types of studied primary care EDs and reduced the number of patient visits to a doctor compared with previous years but had no effect on doctor visits in the adjacent secondary care ED. No further decrease in the number of nurse or GP visits was observed by inhibiting the entrance of non-urgent patients. The ABCDE triage system combined with public guidance may reduce non-urgent patient visits to doctors in different kinds of primary care EDs without increasing visits in the secondary care ED. However, the additional work to implement the ABCDE system is mainly directed to nurses, which may pose a challenge for staffing.

  2. Universal size properties of a star-ring polymer structure in disordered environments

    NASA Astrophysics Data System (ADS)

    Haydukivska, K.; Blavatska, V.

    2018-03-01

    We consider the complex polymer system, consisting of a ring polymer connected to the f1-branched starlike structure, in a good solvent in the presence of structural inhomogeneities. In particular cases f1=1 and f1=2 , such a system restores the synthesized tadpole-shaped polystyrenes [Doi et al., Macromolecules 46, 1075 (2013), 10.1021/ma302511j]. We assume that structural defects are correlated at large distances x according to a power law x-a. Applying the direct polymer renormalization approach, we evaluate the universal size characteristics such as the ratio of the radii of gyration of star-ring and star topologies, and compare the effective sizes of single arms in complex structures and isolated polymers of the same total molecular weight. The nontrivial impact of disorder on these quantities is analyzed.

  3. Structure, stratigraphy, and eruption chronology of the Hanauma Bay Tuff Ring, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Rottas, K. M.; Houghton, B. F.

    2010-12-01

    The Hanauma Bay-Koko Head Complex is one of several volcanic landforms along the Koko fissure, in southeastern Oahu, that formed during rejuvenated volcanism. The Hanauma Bay region of the complex is comprised of two nested tuff rings. The internal structure of the inner tuff ring is well exposed due to subsequent breaching and wave erosion and is described in detail here for the first time. The inner tuff ring is currently believed to have formed during a single eruption episode. However, field observations, detailed photography, structural mapping in both the vertical and horizontal planes, extensive measurements of bedding attitudes, and stratigraphic analysis suggest that there were a minimum of five distinct intervals of deposition, which also blanketed the deposits of the outer tuff ring with ejecta. These intervals of sedimentation were separated by significant collapses, generating major unconformities that cross the inner wall of the inner ring. The planes of failure are marked by smaller steep-walled channels and gullies, eroded by rainfall-induced runoff and suggesting the failures were each followed by short time breaks with erosion. Within each pyroclastic sequence there are also smaller slump scars and local unconformities. The inner tuff ring was predominately formed by pyroclastic surges, although the beds of Phase 3 are primarily fall deposits. From ballistic trajectories and bedding features, it is apparent that the eruption locus shifted a minimum of two times during tuff ring growth. Ballistic blocks in the final Phase 5 indicate that the Hanauma Bay eruption was contemporaneous with a separate eruption to the north, most likely that of the Kahauloa tuff ring 880 meters away.

  4. Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings.

    PubMed

    Ma, Hongmin; Hao, Jingcheng

    2011-11-01

    Self-assembly is now being intensively studied in chemistry, physics, biology, and materials engineering and has become an important "bottom-up" approach to create intriguing structures for different applications. Self-assembly is not only a practical approach for creating a variety of nanostructures, but also shows great superiority in building hierarchical structures with orders on different length scales. The early work in self-assembly focused on molecular self-assembly in bulk solution, including the resultant dye aggregates, liposomes, vesicles, liquid crystals, gels and so on. Interfacial self-assembly has been a great concern over the last two decades, largely because of the unique and ingenious roles of this method for constructing materials at interfaces, such as self-assembled monolayers, Langmuir-Blodgett films, and capsules. Nanocrystal superlattices, honeycomb films and coffee rings are intriguing structural materials with more complex features and can be prepared by interfacial self-assembly on different length scales. In this critical review, we outline the recent development in the preparation and application of colloidal nanocrystal superlattices, honeycomb-patterned macroporous structures by the breath figure method, and coffee-ring-like patterns (247 references). This journal is © The Royal Society of Chemistry 2011

  5. Saturn's dynamic D ring

    USGS Publications Warehouse

    Hedman, M.M.; Burns, J.A.; Showalter, M.R.; Porco, C.C.; Nicholson, P.D.; Bosh, A.S.; Tiscareno, M.S.; Brown, R.H.; Buratti, B.J.; Baines, K.H.; Clark, R.

    2007-01-01

    The Cassini spacecraft has provided the first clear images of the D ring since the Voyager missions. These observations show that the structure of the D ring has undergone significant changes over the last 25 years. The brightest of the three ringlets seen in the Voyager images (named D72), has transformed from a narrow, <40-km wide ringlet to a much broader and more diffuse 250-km wide feature. In addition, its center of light has shifted inwards by over 200 km relative to other features in the D ring. Cassini also finds that the locations of other narrow features in the D ring and the structure of the diffuse material in the D ring differ from those measured by Voyager. Furthermore, Cassini has detected additional ringlets and structures in the D ring that were not observed by Voyager. These include a sheet of material just interior to the inner edge of the C ring that is only observable at phase angles below about 60??. New photometric and spectroscopic data from the ISS (Imaging Science Subsystem) and VIMS (Visual and Infrared Mapping Spectrometer) instruments onboard Cassini show the D ring contains a variety of different particle populations with typical particle sizes ranging from 1 to 100 microns. High-resolution images reveal fine-scale structures in the D ring that appear to be variable in time and/or longitude. Particularly interesting is a remarkably regular, periodic structure with a wavelength of ??? 30 ?? km extending between orbital radii of 73,200 and 74,000 km. A similar structure was previously observed in 1995 during the occultation of the star GSC5249-01240, at which time it had a wavelength of ??? 60 ?? km. We interpret this structure as a periodic vertical corrugation in the D ring produced by differential nodal regression of an initially inclined ring. We speculate that this structure may have formed in response to an impact with a comet or meteoroid in early 1984. ?? 2006 Elsevier Inc. All rights reserved.

  6. Topological ring currents in the "empty" ring of benzo-annelated perylenes.

    PubMed

    Dickens, Timothy K; Mallion, Roger B

    2011-01-27

    Cyclic conjugation in benzo-annelated perylenes is examined by means of the topological π-electron ring currents calculated for each of their constituent rings, in a study that is an exact analogy of a recent investigation by Gutman et al. based on energy-effect values for the corresponding rings in each of these structures. "Classical" approaches, such as Kekulé structures, Clar "sextet" formulas, and circuits of conjugation, predict that the central ring in perylene is "empty" and thus contributes negligibly to cyclic conjugation. However, conclusions from the present calculations of topological ring currents agree remarkably with those arising from the earlier study involving energy-effect values in that, contrary to what would be predicted from the classical approaches, rings annelated in an angular fashion relative to the central ring of these perylene structures materially increase the extent of that ring's involvement in cyclic conjugation. It is suggested that such close quantitative agreement between the predictions of these two superficially very different indices (energy effect and topological ring current) might be due to the fact that, ultimately, both depend, albeit in ostensibly quite different ways, only on an adjacency matrix that contains information about the carbon-carbon connectivity of the conjugated system in question.

  7. Integration and initial operation of the multi-component large ring laser structure ROMY

    NASA Astrophysics Data System (ADS)

    Schreiber, Karl Ulrich; Igel, Heiner; Wassermann, Joachim; Gebauer, André; Simonelli, Andrea; Bernauer, Felix; Donner, Stefanie; Hadziioannou, Celine; Egdorf, Sven; Wells, Jon-Paul

    2017-04-01

    Rotation sensing for the geosciences requires a high sensor resolution of the order of 10 pico- radians per second or even less. An optical Sagnac interferometer offers this sensitivity, provided that the scale factor can be made very large. We have designed and built a multi- component ring laser system, consisting of 4 individual large ring lasers, each covering an area of more than 62 square m. The rings are orientated in the shape of a tetrahedron, so that all 3 spatial directions are covered, allowing also for some redundancy. We report on the initial operation of the free running gyroscopes in their underground facility in order to establish a performance estimate for the ROMY ring laser structure. Preliminary results suggest that the quantum noise limit is lower than that of the G ring laser.

  8. Nuclear reactor containment structure with continuous ring tunnel at grade

    DOEpatents

    Seidensticker, Ralph W.; Knawa, Robert L.; Cerutti, Bernard C.; Snyder, Charles R.; Husen, William C.; Coyer, Robert G.

    1977-01-01

    A nuclear reactor containment structure which includes a reinforced concrete shell, a hemispherical top dome, a steel liner, and a reinforced-concrete base slab supporting the concrete shell is constructed with a substantial proportion thereof below grade in an excavation made in solid rock with the concrete poured in contact with the rock and also includes a continuous, hollow, reinforced-concrete ring tunnel surrounding the concrete shell with its top at grade level, with one wall integral with the reinforced concrete shell, and with at least the base of the ring tunnel poured in contact with the rock.

  9. Monoclinic structures of niobium trisulfide

    NASA Astrophysics Data System (ADS)

    Bloodgood, Matthew A.; Wei, Pingrong; Aytan, Ece; Bozhilov, Krassimir N.; Balandin, Alexander A.; Salguero, Tina T.

    2018-02-01

    Two new polymorphs of niobium trisulfide are established by single crystal x-ray diffraction. NbS3-iv crystallizes in the monoclinic space group P21/c with lattice parameters a = 6.7515(5) Å, b = 4.9736(4) Å, c = 18.1315(13) Å, and β = 90.116(2)°. Its structure is based on chains of [NbS6] trigonal prisms containing Nb-Nb pairs with a bond length of 3.0448(8) Å; this pairing causes the chains to corrugate slightly along their axis, a feature also present in triclinic NbS3-i that leads to semiconductor properties. The stacking arrangement of chains is different in these polymorphs, however, with NbS3-i having an ABCDE repeating sequence of chain bilayers and NbS3-iv having an AB repeating sequence. HRTEM studies show the presence of topotactically-oriented intergrown zones and numerous dislocations, which result in mosaic structuring. A second new polymorph, NbS3-v, crystallizes in the monoclinic space group P21/m with lattice parameters a = 4.950(5) Å, b = 3.358(4) Å, c = 9.079(10) Å, β = 97.35(2)°. In contrast to NbS3-iv, NbS3-v maintains fixed a Nb-Nb bond distance of 3.358(4) Å along the chains, and it has an ABCDE repeating sequence of chain bilayers similar to NbS3-i. High resolution scanning transmission electron microscopy (HR-STEM) imaging of an exfoliated NbS3-v nanoribbon shows the continuous [NbS6] chains oriented along the b-axis. These results provide the first firmly established structural data for monoclinic NbS3. In addition, SEM images show the formation of NbS3 rings and cylinders, and a combination of powder x-ray diffraction and Raman spectroscopy provides a way to distinguish between NbS3 polymorphs.

  10. The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities

    NASA Astrophysics Data System (ADS)

    Dupraz, K.; Cassou, K.; Martens, A.; Zomer, F.

    2015-10-01

    The ABCD matrix for parabolic reflectors is derived for any incident angles. It is used in numerical studies of four-mirror cavities composed of two flat and two parabolic mirrors. Constraints related to laser beam injection efficiency, optical stability, cavity-mode, beam-waist size and high stacking power are satisfied. A dedicated alignment procedure leading to stigmatic cavity-modes is employed to overcome issues related to the optical alignment of parabolic reflectors.

  11. Jupiter's Main Ring/Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (28.5 miles) per picture element (pixel) along Jupiter's rings. Because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow, peering back toward the Sun; the ring was approximately 2.3 million kilometers (1.4 million miles) away. The arc on the far right of the image is produced when sunlight is scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts - - a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, outside the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the figure's far left side. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. Some radial structure is barely visible across the ring's ansa (top image). A faint mist of particles can be seen above and below the main rings. This vertically extended 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces pushing the smallest grains out of the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. To accentuate faint features in the bottom image of the ring halo, different brightnesses are shown through color. Brightest features are white or yellow and the

  12. Ring dynamics

    NASA Technical Reports Server (NTRS)

    Borderies, Nicole

    1989-01-01

    Theoretical models of planetary-ring dynamics are discussed in a detailed analytical review and illustrated with graphs and diagrams. The streamline concept is introduced, and the phenomena associated with the transport of angular momentum are described. Particular attention is then given to (1) broad rings like those of Saturn (shepherding, density-wave excitation, gaps, bending-wave excitation, multiringlet structures, inner-edge shepherding, and the possibility of polar rings around Neptune), (2) narrow rings like those of Uranus (shepherding, ring shapes, and a self-gravity model of rigid precession), and (3) ring arcs like those seen in stellar-occultation observations of Neptune.

  13. High sensitivity rotation sensing based on tunable asymmetrical double-ring structure

    NASA Astrophysics Data System (ADS)

    Gu, Hong; Liu, Xiaoqing

    2017-05-01

    A very high sensitivity rotation sensor comprising a tunable asymmetrical double-ring structure (TADRS) coupled by a 3 × 3 coupler is presented. The phase difference caused by the TADRS between the counter-propagating waves is derived and discussed. At the resonant frequency, the phase shift difference has the maximum value when the light power in one cavity is amplified about 1.85 times while attenuated 79% in another. The maximum sensitivity of the TADRS sensor is two times larger than that of a single-ring structure. An experimental system is designed to verify the theoretical results and introduce the method of demodulation. The rotation sensor based on TADRS can enhance the sensitivity of the detection of the angular velocity by more than three orders of magnitude.

  14. CIRS High-Resolution Thermal Scans and the Structure of Saturn's B Ring

    NASA Astrophysics Data System (ADS)

    Brooks, S. M.; Spilker, L. J.; Showalter, M.; Pilorz, S.; Edgington, S. G.

    2017-12-01

    The flyby of Titan on November 29, 2016, sent the Cassini spacecraft on a trajectory that would take it within 10,000 kilometers of Saturn's F ring multiple times before a subsequent Titan encounter on April 22, 2017, would send it on ballistic trajectory carrying it between Saturn's cloud tops and the planet's D ring for several flybys. This geometry has proven beneficial for high-resolution studies of the rings, not just because of Cassini's proximity to the rings, but also because of the spacecraft's high elevation angle above the rings, which reduces the foreshortening that tends to degrade resolution in the ring plane. We will report on several observations of Saturn's main rings at the high spatial resolutions enabled by the end-of-mission geometry, particulary the B ring, with the Composite Infrared Spectrometer onboard Cassini during the F-ring and proximal orbits. CIRS' three infrared detectors cover a combined spectral range of 10 to 1400 cm-1 (1 mm down to 7 microns). We focus on data from Focal Plane 1, which covers the 10 to 600 cm-1 range (1 mm to 16 microns). The apodized spectral resolution of the instrument can be varied from 15 cm-1 to 0.5 cm-1 (Flasar et al. 2004). FP1's wavelength range makes it well-suited to sensing thermal emission from objects at temperatures typical of Saturn's rings. Correlating ring optical depth with temperatures retrieved from scans of the face of the rings exposed to direct solar illumination (the lit face) and the opposite (unlit) face suggests differences in ring structure or particle transport between the lit and unlit sides of the rings in different regions of the B ring. Lit side temperatures in the core of the B ring range between 82 and 87 K; temperatures on the unlit side of the core vary from 66 K up to 74 K. Ferrari and Reffet (2013) and Pilorz et al. (2015) published thorough analyses of the thermal throughput across this optically thick ring. We will discuss these recent CIRS rings observations and their

  15. ABCD2 identifies a subclass of peroxisomes in mouse adipose tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaoxi, E-mail: xiaoxi.liu@uky.edu; Liu, Jingjing, E-mail: jingjing.liu0@gmail.com; Lester, Joshua D., E-mail: joshua.lester@uky.edu

    2015-01-02

    Highlights: • We examined the D2 localization and the proteome of D2-containing compartment in mouse adipose tissue. • We confirmed the presence of D2 on a subcellular compartment that has typical structure as a microperoxisome. • We demonstrated the scarcity of peroxisome markers on D2-containing compartment. • The D2-containing compartment may be a subpopulation of peroxisome in mouse adipose tissue. • Proteomic data suggests potential association between D2-containing compartment and mitochondria and ER. - Abstract: ATP-binding cassette transporter D2 (D2) is an ABC half transporter that is thought to promote the transport of very long-chain fatty acyl-CoAs into peroxisomes. Bothmore » D2 and peroxisomes increase during adipogenesis. Although peroxisomes are essential to both catabolic and anabolic lipid metabolism, their function, and that of D2, in adipose tissues remain largely unknown. Here, we investigated the D2 localization and the proteome of D2-containing organelles, in adipose tissue. Centrifugation of mouse adipose homogenates generated a fraction enriched with D2, but deficient in peroxisome markers including catalase, PEX19, and ABCD3 (D3). Electron microscopic imaging of this fraction confirmed the presence of D2 protein on an organelle with a dense matrix and a diameter of ∼200 nm, the typical structure and size of a microperoxisome. D2 and PEX19 antibodies recognized distinct structures in mouse adipose. Immunoisolation of the D2-containing compartment confirmed the scarcity of PEX19 and proteomic profiling revealed the presence of proteins associated with peroxisome, endoplasmic reticulum (ER), and mitochondria. D2 is localized to a distinct class of peroxisomes that lack many peroxisome proteins, and may associate physically with mitochondria and the ER.« less

  16. Structure and origin of Australian ring and dome features with reference to the search for asteroid impact events

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew

    2018-01-01

    Ring, dome and crater features on the Australian continent and shelf include (A) 38 structures of confirmed or probable asteroid and meteorite impact origin and (B) numerous buried and exposed ring, dome and crater features of undefined origin. A large number of the latter include structural and geophysical elements consistent with impact structures, pending test by field investigations and/or drilling. This paper documents and briefly describes 43 ring and dome features with the aim of appraising their similarities and differences from those of impact structures. Discrimination between impact structures and igneous plugs, volcanic caldera and salt domes require field work and/or drilling. Where crater-like morphological patterns intersect pre-existing linear structural features and contain central morphological highs and unique thrust and fault patterns an impact connection needs to tested in the field. Hints of potential buried impact structures may be furnished by single or multi-ring TMI patterns, circular TMI quiet zones, corresponding gravity patterns, low velocity and non-reflective seismic zones.

  17. Computer-automated ABCD versus dermatologists with different degrees of experience in dermoscopy.

    PubMed

    Piccolo, Domenico; Crisman, Giuliana; Schoinas, Spyridon; Altamura, Davide; Peris, Ketty

    2014-01-01

    Dermoscopy is a very useful and non-invasive technique for in vivo observation and preoperative diagnosis of pigmented skin lesions (PSLs) inasmuch as it enables analysis of surface and subsurface structures that are not discernible to the naked eye. The authors used the ABCD rule of dermoscopy to test the accuracy of melanoma diagnosis with respect to a panel of 165 PSLs and the intra- and inter-observer diagnostic agreement obtained between three dermatologists with different degrees of experience, one General Practitioner and a DDA for computer-assisted diagnosis (Nevuscreen(®), Arkè s.a.s., Avezzano, Italy). 165 Pigmented Skin Lesions from 165 patients were selected. Histopathological examination revealed 132 benign melanocytic skin lesions and 33 melanomas. The kappa statistic, sensitivity, specificity and predictive positive and negative values were calculated to measure agreement between all the human observers and in comparison with the automated DDA. Our results revealed poor reproducibility of the semi-quantitative algorithm devised by Stolz et al. independently of observers' experience in dermoscopy. Nevuscreen(®) (Arkè s.a.s., Avezzano, Italy) proved to be 'user friendly' to all observers, thus enabling a more critical evaluation of each lesion and representing a helpful tool for clinicians without significant experience in dermoscopy in improving and achieving more accurate diagnosis of PSLs.

  18. So Long, C Ring

    NASA Image and Video Library

    2017-11-13

    Saturn's C ring is home to a surprisingly rich array of structures and textures. Much of the structure seen in the outer portions of Saturn's rings is the result of gravitational perturbations on ring particles by moons of Saturn. Such interactions are called resonances. However, scientists are not clear as to the origin of the structures seen in this image which has captured an inner ring region sparsely populated with particles, making interactions between ring particles rare, and with few satellite resonances. In this image, a bright and narrow ringlet located toward the outer edge of the C ring is flanked by two broader features called plateaus, each about 100 miles (160 kilometers) wide. Plateaus are unique to the C ring. Cassini data indicates that the plateaus do not necessarily contain more ring material than the C ring at large, but the ring particles in the plateaus may be smaller, enhancing their brightness. This view looks toward the sunlit side of the rings from about 53 degrees above the ring plane. The image was taken in green light with the Cassini spacecraft narrow-angle camera on Aug. 14, 2017. The view was acquired at a distance of approximately 117,000 miles (189,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 74 degrees. Image scale is 3,000 feet (1 kilometer) per pixel. The Cassini spacecraft ended its mission on Sept. 15, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21356

  19. G345.45+1.50: an expanding ring-like structure with massive star formation

    NASA Astrophysics Data System (ADS)

    López-Calderón, Cristian; Bronfman, Leonardo; Nyman, Lars-Åke; Garay, Guido; de Gregorio-Monsalvo, Itziar; Bergman, Per

    2016-11-01

    Context. Ring-like structures in the interstellar medium (ISM) are commonly associated with high-mass stars. Kinematic studies of large structures in giant molecular clouds (GMCs) toward these ring-like structures may help us to understand how massive stars form. Aims: The origin and properties of the ring-like structure G345.45+1.50 is investigated through observations of the 13CO(3-2) line. The aim of the observations is to determine the kinematics in the region and to compare physical characteristics estimated from gas emission with those previously determined using dust continuum emission. This area in the sky is well suited for studies like this because the ring is located 1.5° above the Galactic plane at 1.8 kpc from the Sun, thus molecular structures are rarely superposed on our line of sight, which minimizes confusion effects that might hinder identifying of individual molecular condensations. Methods: The 13CO(3-2) line was mapped toward the whole ring using the Atacama Pathfinder Experiment (APEX) telescope. The observations cover 17' × 20' in the sky with a spatial resolution of 0.2 pc and an rms of 1 K at a spectral resolution of 0.1 km s-1. Results: The ring is found to be expanding with a velocity of 1.0 km s-1, containing a total mass of 6.9 × 103M⊙, which agrees well with that determined using 1.2 mm dust continuum emission. An expansion timescale of 3 × 106 yr and a total energy of 7 × 1046 erg are estimated. The origin of the ring might have been a supernova explosion, since a 35.5 cm source, J165920-400424, is located at the center of the ring without an infrared counterpart. The ring is fragmented, and 104 clumps were identified with diameters of between 0.3 and 1.6 pc, masses of between 2.3 and 7.5 × 102M⊙, and densities of between 102 and 104 cm-3. At least 18% of the clumps are forming stars, as is shown in infrared images. Assuming that the clumps can be modeled as Bonnor-Ebert spheres, 13 clumps are collapsing, and the rest of

  20. ABCD3-I score and the risk of early or 3-month stroke recurrence in tissue- and time-based definitions of TIA and minor stroke.

    PubMed

    Mayer, Lukas; Ferrari, Julia; Krebs, Stefan; Boehme, Christian; Toell, Thomas; Matosevic, Benjamin; Tinchon, Alexander; Brainin, Michael; Gattringer, Thomas; Sommer, Peter; Thun, Peter; Willeit, Johann; Lang, Wilfried; Kiechl, Stefan; Knoflach, Michael

    2018-03-01

    Changing definition of TIA from time to a tissue basis questions the validity of the well-established ABCD3-I risk score for recurrent ischemic cerebrovascular events. We analyzed patients with ischemic stroke with mild neurological symptoms arriving < 24 h after symptom onset in a phase where it is unclear, if the event turns out to be a TIA or minor stroke, in the prospective multi-center Austrian Stroke Unit Registry. Patients were retrospectively categorized according to a time-based (symptom duration below/above 24 h) and tissue-based (without/with corresponding brain lesion on CT or MRI) definition of TIA or minor stroke. Outcome parameters were early stroke during stroke unit stay and 3-month ischemic stroke. Of the 5237 TIA and minor stroke patients with prospectively documented ABCD3-I score, 2755 (52.6%) had a TIA by the time-based and 2183 (41.7%) by the tissue-based definition. Of the 2457 (46.9%) patients with complete 3-month followup, corresponding numbers were 1195 (48.3%) for the time- and 971 (39.5%) for the tissue-based definition of TIA. Early and 3-month ischemic stroke occurred in 1.1 and 2.5% of time-based TIA, 3.8 and 5.9% of time-based minor stroke, 1.2 and 2.3% of tissue-based TIA as well as in 3.1 and 5.5% of tissue-based minor stroke patients. Irrespective of the definition of TIA and minor stroke, the risk of early and 3-month ischemic stroke steadily increased with increasing ABCD3-I score points. The ABCD3-I score performs equally in TIA patients in tissue- as well as time-based definition and the same is true for minor stroke patients.

  1. Whole brain CT perfusion deficits using 320-detector-row CT scanner in TIA patients are associated with ABCD2 score.

    PubMed

    Mehta, Bijal K; Mustafa, Ghulam; McMurtray, Aaron; Masud, Mohammed W; Gunukula, Sameer K; Kamal, Haris; Kandel, Amit; Beltagy, Abdelrahman; Li, Ping

    2014-01-01

    Transient ischemic attacks (TIA) are cerebral ischemic events without infarction. The uses of CT perfusion (CTP) techniques such as cerebral blood volume (CBV), time to peak (TTP), mean transit time (MTT) and cerebral blood flow (CBF) provide real time data about ischemia. It has been shown that CTP changes occur in less sensitive CTP scanners in patients with TIA. Larger detector row CTP (whole brain perfusion studies) may show that CTP abnormalities are more prevalent than previously noted. It is also unclear if these changes are associated with TIA severity. To demonstrate that TIA patients are associated with perfusion deficits using whole brain 320-detector-row CT perfusion, and to determine an association between ABCD2 score and perfusion deficit using whole brain perfusion. We retrospectively reviewed all TIA patients for CTP deficits from 2008-2010. Perfusion imaging was reviewed at admission; and it was determined if a perfusion deficit was present along with vascular territory involved. Of 364 TIA patients, 62 patients had CTP deficits. The largest group of patients had MCA territory involved with 48 of 62 patients (77.42%). The most common perfusion abnormality was increased TTP with 46 patients (74.19%). The ABCD2 score was reviewed in association with perfusion deficit. Increased age >60, severe hypertension (>180/100 mmHg), patients with speech abnormalities, and duration of symptoms >10 min were associated with a perfusion deficit but history of diabetes or minimal/moderate hypertension (140/90-179/99 mmHg) was not. There was no association between motor deficit and perfusion abnormality. Perfusion deficits are found in TIA patients using whole brain CTP and associated with components of the ABCD2 score.

  2. Ring structure in the HII region of NGC 5930

    NASA Astrophysics Data System (ADS)

    Su, Bu-Mei; Mutel, R. L.; Zhang, Fu-Jing; Li, Yong-Sheng

    1992-03-01

    Radio continuous observations of the barred spiral galaxy NGC5930 at 2- and 3.6-cm wavelengths have been carried out with the VLA. It has been found that at 2 cm the HII region appears to be a ring structure on which hot spots are distributed. The outer angular diameter of the ring is 2.2 arcsec, and the inner angular diameter - 0.3 arcsec. The center is a hole from which no radio emission has been detected. The electron density in the HII region is 80 - 90 cu cm, and its mass is 10 exp 7 solar mass units. In NGC 5930 there is very strong infrared radiation. The infrared luminosity is 10 exp 6 times larger than the radio luminosity. There is a steep Balmer attenuation. This is a region where a star is being formed violently.

  3. Comparison of dermatoscopic diagnostic algorithms based on calculation: The ABCD rule of dermatoscopy, the seven-point checklist, the three-point checklist and the CASH algorithm in dermatoscopic evaluation of melanocytic lesions.

    PubMed

    Unlu, Ezgi; Akay, Bengu N; Erdem, Cengizhan

    2014-07-01

    Dermatoscopic analysis of melanocytic lesions using the CASH algorithm has rarely been described in the literature. The purpose of this study was to compare the sensitivity, specificity, and diagnostic accuracy rates of the ABCD rule of dermatoscopy, the seven-point checklist, the three-point checklist, and the CASH algorithm in the diagnosis and dermatoscopic evaluation of melanocytic lesions on the hairy skin. One hundred and fifteen melanocytic lesions of 115 patients were examined retrospectively using dermatoscopic images and compared with the histopathologic diagnosis. Four dermatoscopic algorithms were carried out for all lesions. The ABCD rule of dermatoscopy showed sensitivity of 91.6%, specificity of 60.4%, and diagnostic accuracy of 66.9%. The seven-point checklist showed sensitivity, specificity, and diagnostic accuracy of 87.5, 65.9, and 70.4%, respectively; the three-point checklist 79.1, 62.6, 66%; and the CASH algorithm 91.6, 64.8, and 70.4%, respectively. To our knowledge, this is the first study that compares the sensitivity, specificity and diagnostic accuracy of the ABCD rule of dermatoscopy, the three-point checklist, the seven-point checklist, and the CASH algorithm for the diagnosis of melanocytic lesions on the hairy skin. In our study, the ABCD rule of dermatoscopy and the CASH algorithm showed the highest sensitivity for the diagnosis of melanoma. © 2014 Japanese Dermatological Association.

  4. CN rings in full protoplanetary disks around young stars as probes of disk structure

    NASA Astrophysics Data System (ADS)

    Cazzoletti, P.; van Dishoeck, E. F.; Visser, R.; Facchini, S.; Bruderer, S.

    2018-01-01

    Aims: Bright ring-like structure emission of the CN molecule has been observed in protoplanetary disks. We investigate whether such structures are due to the morphology of the disk itself or if they are instead an intrinsic feature of CN emission. With the intention of using CN as a diagnostic, we also address to which physical and chemical parameters CN is most sensitive. Methods: A set of disk models were run for different stellar spectra, masses, and physical structures via the 2D thermochemical code DALI. An updated chemical network that accounts for the most relevant CN reactions was adopted. Results: Ring-shaped emission is found to be a common feature of all adopted models; the highest abundance is found in the upper outer regions of the disk, and the column density peaks at 30-100 AU for T Tauri stars with standard accretion rates. Higher mass disks generally show brighter CN. Higher UV fields, such as those appropriate for T Tauri stars with high accretion rates or for Herbig Ae stars or for higher disk flaring, generally result in brighter and larger rings. These trends are due to the main formation paths of CN, which all start with vibrationally excited H_2^* molecules, that are produced through far ultraviolet (FUV) pumping of H2. The model results compare well with observed disk-integrated CN fluxes and the observed location of the CN ring for the TW Hya disk. Conclusions: CN rings are produced naturally in protoplanetary disks and do not require a specific underlying disk structure such as a dust cavity or gap. The strong link between FUV flux and CN emission can provide critical information regarding the vertical structure of the disk and the distribution of dust grains which affects the UV penetration, and could help to break some degeneracies in the SED fitting. In contrast with C2H or c-C3H2, the CN flux is not very sensitive to carbon and oxygen depletion.

  5. Nonlinear mechanics of a ring structure subjected to multi-pairs of evenly distributed equal radial forces

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Sun, F.; Li, Z. Y.; Taxis, L.; Pugno, N.

    2017-10-01

    Combining the elastica theory, finite element (FE) analysis, and a geometrical topological experiment, we studied the mechanical behavior of a ring subjected to multi-pairs of evenly distributed equal radial forces by looking at its seven distinct states. The results showed that the theoretical predictions of the ring deformation and strain energy matched the FE results very well, and that the ring deformations were comparable to the topological experiment. Moreover, no matter whether the ring was compressed or tensioned by N-pairs of forces, the ring always tended to be regular polygons with 2 N sides as the force increased, and a proper compressive force deformed the ring into exquisite flower-like patterns. The present study solves a basic mechanical problem of a ring subjected to lateral forces, which can be useful for studying the relevant mechanical behavior of ring structures from the nano- to the macro-scale.

  6. Double-ring structure formation of intense ion beams with finite radius in a pre-formed plasma

    NASA Astrophysics Data System (ADS)

    Hu, Zhang-Hu; Wang, Xiao-Juan; Zhao, Yong-Tao; Wang, You-Nian

    2017-12-01

    The dynamic structure evolution of intense ion beams with a large edge density gradient is investigated in detail with an analytical model and two-dimensional particle-in-cell (PIC) simulations, with special attention paid to the influence of beam radius. At the initial stage of beam-plasma interactions, the ring structure is formed due to the transverse focusing magnetic field induced by the unneutralized beam current in the beam edge region. As the beam-plasma system evolves self-consistently, a second ring structure appears in the case of ion beams with a radius much larger than the plasma skin depth, due to the polarity change in the transverse magnetic field in the central regions compared with the outer, focusing field. Influences of the current-filamentation and two-stream instability on the ring structure can be clearly observed in PIC simulations by constructing two different simulation planes.

  7. Mechanical improvement of metal reinforcement rings for a finite ring-shaped superconducting bulk

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Guang; Zhou, You-He

    2018-03-01

    As a key technique, reinforcement of type-II superconducting bulks with metal rings can efficiently improve their mechanical properties to enhance the maximum trapped field. In this paper, we study the magnetostrictive and fracture behaviors of a finite superconducting ring bulk reinforced by three typical reinforcing structures composed of metal rings during the magnetizing process by means of the minimization of magnetic energy and the finite element method. After a field-dependent critical current density is adopted, the magnetostriction, pinning-induced stress, and crack tip stress intensity factor are calculated considering the demagnetization effects. The results show that the mechanical properties of the ring bulk are strongly dependent on the reinforcing structure and the material and geometrical parameters of the metal rings. Introducing the metal ring can significantly reduce the hoop stress, and the reduction effect by internal reinforcement is much improved relative to external reinforcement. By comparison, bilateral reinforcement seems to be the best candidate structure. Only when the metal rings have particular Young's modulus and radial thickness will they contribute to improve the mechanical properties the most. In addition, if an edge crack is pre-existing in the ring bulk, the presence of metal rings can effectively avoid crack propagation since it reduces the crack tip stress intensity factor by nearly one order of magnitude.

  8. Ring-Shaped Seismicity Structures in Southern California: Possible Preparation for Large Earthquake in the Los Angeles Basin

    NASA Astrophysics Data System (ADS)

    Kopnichev, Yu. F.; Sokolova, I. N.

    2017-12-01

    Some characteristics of seismicity in Southern California are studied. It is found that ring-shaped seismicity structures with threshold magnitudes M th of 4.1, 4.1, and 3.8 formed prior to three large ( M w > 7.0) earthquakes in 1992, 1999, and 2010, respectively. The sizes of these structures are several times smaller than for intracontinental strike-slip events with similar magnitudes. Two ring-shaped structures are identified in areas east of the city of Los Angeles, where relatively large earthquakes have not occurred for at least 150 years. The magnitudes of large events which can occur in the areas of these structures are estimated on the basis of the previously obtained correlation dependence of ring sizes on magnitudes of the strike-slip earthquakes. Large events with magnitudes of M w = 6.9 ± 0.2 and M w = 8.6 ± 0.2 can occur in the area to the east of the city of Los Angeles and in the rupture zone of the 1857 great Fort Tejon earthquake, respectively. We believe that ring-structure formation, similarly to the other regions, is connected with deep-seated fluid migration.

  9. Tunable band-stop plasmonic filter based on square ring resonators in a metal-insulator-metal structure

    NASA Astrophysics Data System (ADS)

    Zavvari, Mahdi; Taleb Hesami Azar, Milad; Arashmehr, Armin

    2017-11-01

    A novel high-performance plasmonic filter based on a metal-insulator-metal structure is analysed for band-rejection applications. A square ring is used in proximity to the waveguide in order to resonate with some transmitted wavelengths and drop them to prevent from propagation towards the output. The effect of the structural parameters of square ring resonator is studied deploying the finite difference time domain method and the possibility of tuning the rejected wavelength is investigated in detail. The simulation results demonstrate that the rejected wavelength has a red-shift with increase in the size of the ring's dimensions. A further study is carried out considering narrowing the bandwidth. To improve the quality factor of the proposed filter, a small ring within the resonator is introduced that considerably decreases the bandwidth of the peak with respect to its central wavelength.

  10. Structure and catalytic activation of the TRIM23 RING E3 ubiquitin ligase: DAWIDZIAK et al.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawidziak, Daria M.; Sanchez, Jacint G.; Wagner, Jonathan M.

    Tripartite motif (TRIM) proteins comprise a large family of RING-type ubiquitin E3 ligases that regulate important biological processes. An emerging general model is that TRIMs form elongated antiparallel coiled-coil dimers that prevent interaction of the two attendant RING domains. The RING domains themselves bind E2 conjugating enzymes as dimers, implying that an active TRIM ligase requires higher-order oligomerization of the basal coiled-coil dimers. Here, we report crystal structures of the TRIM23 RING domain in isolation and in complex with an E2–ubiquitin conjugate. Our results indicate that TRIM23 enzymatic activity requires RING dimerization, consistent with the general model of TRIM activation.

  11. Crystallographic structure of the turbine C-ring from spinach chloroplast F-ATP synthase

    PubMed Central

    Balakrishna, Asha Manikkoth; Seelert, Holger; Marx, Sven-Hendric; Dencher, Norbert A.; Grüber, Gerhard

    2014-01-01

    In eukaryotic and prokaryotic cells, F-ATP synthases provide energy through the synthesis of ATP. The chloroplast F-ATP synthase (CF1FO-ATP synthase) of plants is integrated into the thylakoid membrane via its FO-domain subunits a, b, b’ and c. Subunit c with a stoichiometry of 14 and subunit a form the gate for H+-pumping, enabling the coupling of electrochemical energy with ATP synthesis in the F1 sector. Here we report the crystallization and structure determination of the c14-ring of subunit c of the CF1FO-ATP synthase from spinach chloroplasts. The crystals belonged to space group C2, with unit-cell parameters a=144.420, b=99.295, c=123.51 Å, and β=104.34° and diffracted to 4.5 Å resolution. Each c-ring contains 14 monomers in the asymmetric unit. The length of the c-ring is 60.32 Å, with an outer ring diameter 52.30 Å and an inner ring width of 40 Å. PMID:27919036

  12. Structure of Saturn's rings: Optical and dynamical considerations

    NASA Technical Reports Server (NTRS)

    Franklin, F. A.

    1974-01-01

    The photometric phase curves of Saturn's rings are considered, as well as a conflict between dynamical and photometric models of the rings. The dependence of ring brightness on angular separation of the earth and sun as viewed from Saturn is discussed. The nonlinear brightness surge is interpreted. Some quantitative calculations were carried out for bodies in and near the asteroidal belt. Predicted density profiles of the ring obtained with Mimas in an eccentric orbit and in a circular orbit are also included.

  13. The angular electronic band structure and free particle model of aromatic molecules: High-frequency photon-induced ring current

    NASA Astrophysics Data System (ADS)

    Öncan, Mehmet; Koç, Fatih; Şahin, Mehmet; Köksal, Koray

    2017-05-01

    This work introduces an analysis of the relationship of first-principles calculations based on DFT method with the results of free particle model for ring-shaped aromatic molecules. However, the main aim of the study is to reveal the angular electronic band structure of the ring-shaped molecules. As in the case of spherical molecules such as fullerene, it is possible to observe a parabolic dispersion of electronic states with the variation of angular quantum number in the planar ring-shaped molecules. This work also discusses the transition probabilities between the occupied and virtual states by analyzing the angular electronic band structure and the possibility of ring currents in the case of spin angular momentum (SAM) or orbital angular momentum (OAM) carrying light. Current study focuses on the benzene molecule to obtain its angular electronic band structure. The obtained electronic band structure can be considered as a useful tool to see the transition probabilities between the electronic states and possible contribution of the states to the ring currents. The photoinduced current due to the transfer of SAM into the benzene molecule has been investigated by using analytical calculations within the frame of time-dependent perturbation theory.

  14. Insight into structural remodeling of the FlhA ring responsible for bacterial flagellar type III protein export

    PubMed Central

    2018-01-01

    The bacterial flagellum is a supramolecular motility machine. Flagellar assembly begins with the basal body, followed by the hook and finally the filament. A carboxyl-terminal cytoplasmic domain of FlhA (FlhAC) forms a nonameric ring structure in the flagellar type III protein export apparatus and coordinates flagellar protein export with assembly. However, the mechanism of this process remains unknown. We report that a flexible linker of FlhAC (FlhAL) is required not only for FlhAC ring formation but also for substrate specificity switching of the protein export apparatus from the hook protein to the filament protein upon completion of the hook structure. FlhAL was required for cooperative ring formation of FlhAC. Alanine substitutions of residues involved in FlhAC ring formation interfered with the substrate specificity switching, thereby inhibiting filament assembly at the hook tip. These observations lead us to propose a mechanistic model for export switching involving structural remodeling of FlhAC. PMID:29707633

  15. Evolution of Structure and Composition in Saturn's Rings Due to Ballistic Transport of Micrometeoroid Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Estrada, P. R.; Durisen, R. H.; Cuzzi, J. N.

    2014-04-01

    We introduce improved numerical techniques for simulating the structural and compositional evolution of planetary rings due to micrometeoroid bombardment and subsequent ballistic transport of impact ejecta. Our current, robust code, which is based on the original structural code of [1] and on the pollution transport code of [3], is capable of modeling structural changes and pollution transport simultaneously over long times on both local and global scales. We provide demonstrative simulations to compare with, and extend upon previous work, as well as examples of how ballistic transport can maintain the observed structure in Saturn's rings using available Cassini occultation optical depth data.

  16. Strain distribution and band structure of InAs/GaAs quantum ring superlattice

    NASA Astrophysics Data System (ADS)

    Mughnetsyan, Vram; Kirakosyan, Albert

    2017-12-01

    The elastic strain distribution and the band structure of InAs/GaAs one-layer quantum ring superlattice with square symmetry has been considered in this work. The Green's function formalism based on the method of inclusions has been implied to calculate the components of the strain tensor, while the combination of Green's function method with the Fourier transformation to momentum space in Pikus-Bir Hamiltonian has been used for obtaining the miniband energy dispersion surfaces via the exact diagonalization procedure. The dependencies of the strain tensor components on spatial coordinates are compared with ones for single quantum ring and are in good agreement with previously obtained results for cylindrical quantum disks. It is shown that strain significantly affects the miniband structure of the superlattice and has contribution to the degeneracy lifting effect due to heavy hole-light hole coupling. The demonstrated method is simple and provides reasonable results for comparatively small Hamiltonian matrix. The obtained results may be useful for further investigation and construction of novel devices based on quantum ring superlattices.

  17. User's guide to computer program CIVM-JET 4B to calculate the transient structural responses of partial and/or complete structural rings to engine-rotor-fragment impact

    NASA Technical Reports Server (NTRS)

    Stagliano, T. R.; Spilker, R. L.; Witmer, E. A.

    1976-01-01

    A user-oriented computer program CIVM-JET 4B is described to predict the large-deflection elastic-plastic structural responses of fragment impacted single-layer: (a) partial-ring fragment containment or deflector structure or (b) complete-ring fragment containment structure. These two types of structures may be either free or supported in various ways. Supports accommodated include: (1) point supports such as pinned-fixed, ideally-clamped, or supported by a structural branch simulating mounting-bracket structure and (2) elastic foundation support distributed over selected regions of the structure. The initial geometry of each partial or complete ring may be circular or arbitrarily curved; uniform or variable thicknesses of the structure are accommodated. The structural material is assumed to be initially isotropic; strain hardening and strain rate effects are taken into account.

  18. A Pauson-Khand and ring-expansion approach to the aquariane ring system.

    PubMed

    Thornton, Paul D; Burnell, D Jean

    2006-07-20

    [Structure: see text] The carbocyclic ring system of the aquariolide diterpenes has been synthesized by two routes involving a diastereoselective Pauson-Khand reaction and subsequent ring expansion. In one route, a tetracyclic enone was elaborated to generate the nine-membered ring by Grob fragmentation. In the second approach, a spirocyclic tricycle underwent a facile anionic oxy-Cope rearrangement to complete the synthesis of the desired ring system.

  19. Mega-rings Surrounding Timber Mountain Nested Calderas, Geophysical Anomalies: Rethinking Structure and Volcanism Near Yucca Mountain (YM), Nevada

    NASA Astrophysics Data System (ADS)

    Tynan, M. C.; Smith, K. D.; Savino, J. M.; Vogt, T. J.

    2004-12-01

    Observed regional mega-rings define a zone ˜80-100 km in diameter centered on Timber Mountain (TM). The mega-rings encompass known smaller rhyolitic nested Miocene calderas ( ˜11-15 my, < 10 km circular to elliptical small "rings") and later stage basaltic features (< 11 my, small flows, cones, dikes) in the Southwest Nevada Volcanic Field. Miocene rhyolitic calderas cluster within the central area and on the outer margin of the interpreted larger mega-ring complex. The mega-ring interpretation is consistent with observations of regional physiography, tomographic images, seismicity patterns, and structural relationships. Mega-rings consist of arcuate faulted blocks with deformation (some remain active structures) patterns showing a genetic relationship to the TM volcanic system; they appear to be spatially associated and temporally correlated with Miocene volcanism and two geophysically identified crustal/upper mantle features. A 50+ km diameter pipe-like high velocity anomaly extends from crustal depth to over 200 km beneath TM (evidence for 400km depth to NE). The pipe is located between two ˜100 km sub-parallel N/S linear trends of small-magnitude earthquake activity, one extending through the central NV Test Site, and a second located near Beatty, NV. Neither the kinematics nor relational mechanism of 100km seismically active N/S linear zones, pipe, and mega-rings are understood. Interpreted mega-rings are: 1) Similar in size to larger terrestrial volcanic complexes (e.g., Yellowstone, Indonesia's Toba system); 2) Located in the region of structural transition from the Mohave block to the south, N/S Basin and Range features to the north, Walker Lane to the NW, and the Las Vegas Valley shear zone to the SE; 3) Associated with the two seismically active zones (similar to other caldera fault-bounded sags), the mantle high velocity feature, and possibly a regional bouguer gravity anomaly; 4) Nearly coincident with area hydrologic basins and sub-basins; 5

  20. Ring Structure and Warp of NGC 5907: Interaction with Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Shang, Zhaohui; Zheng, Zhongyuan; Brinks, Elias; Chen, Jiansheng; Burstein, David; Su, Hongjun; Byun, Yong-ik; Deng, Licai; Deng, Zugan; Fan, Xiaohui; Jiang, Zhaoji; Li, Yong; Lin, Weipeng; Ma, Feng; Sun, Wei-hsin; Wills, Beverley; Windhorst, Rogier A.; Wu, Hong; Xia, Xiaoyang; Xu, Wen; Xue, Suijian; Yan, Haojing; Zhou, Xu; Zhu, Jin; Zou, Zhenlong

    1998-09-01

    The edge-on, nearby spiral galaxy NGC 5907 has long been used as the prototype of a ``noninteracting'' warped galaxy. We report here the discovery of two interactions with companion dwarf galaxies that substantially change this picture. First, a faint ring structure is discovered around this galaxy that is likely due to the tidal disruption of a companion dwarf spheroidal galaxy. The ring is elliptical in shape with the center of NGC 5907 close to one of the ring's foci. This suggests that the ring material is in orbit around NGC 5907. No gaseous component to the ring has been detected either with deep Hα images or in Very Large Array H I 21 cm line maps. The visible material in the ring has an integrated luminosity <=108 Lsolar, and its brightest part has a color R-I~0.9. All of these properties are consistent with the ring being a tidally disrupted dwarf spheroidal galaxy. Second, we find that NGC 5907 has a dwarf companion galaxy, PGC 54419, which is projected to be only 36.9 kpc from the center of NGC 5907, close in radial velocity (ΔV=45 km s-1) to the giant spiral galaxy. This dwarf is seen at the tip of the H I warp and in the direction of the warp. Hence, NGC 5907 can no longer be considered noninteracting but is obviously interacting with its dwarf companions much as the Milky Way interacts with its dwarf galaxies. These results, coupled with the finding by others that dwarf galaxies tend to be found around giant galaxies, suggest that tidal interaction with companions, even if containing a mere 1% of the mass of the parent galaxy, might be sufficient to excite the warps found in the disks of many large spiral galaxies. Partially based on observations taken with the Very Large Array of the National Radio Astronomy Observatory is a facility of the National Science Foundation operated by a cooperative agreement with Associated Universities, Inc.

  1. Combined Structural and Compositional Evolution of Planetary Rings Due to Micrometeoroid Impacts and Ballistic Transport

    NASA Technical Reports Server (NTRS)

    Estrada, Paul R.; Durisen, Richard H.; Cuzzi, Jeffrey N.; Morgan, Demitri A.

    2015-01-01

    We introduce improved numerical techniques for simulating the structural and compositional evolution of planetary rings due to micrometeoroid bombardment and subsequent ballistic transport of impact ejecta. Our current, robust code is capable of modeling structural changes and pollution transport simultaneously over long times on both local and global scales. In this paper, we describe the methodology based on the original structural code of Durisen et al. (1989, Icarus 80, 136-166) and on the pollution transport code of Cuzzi and Estrada (1998, Icarus 132, 1-35). We provide demonstrative simulations to compare with, and extend upon previous work, as well as examples of how ballistic transport can maintain the observed structure in Saturn's rings using available Cassini occultation optical depth data. In particular, we explicitly verify the claim that the inner B (and presumably A) ring edge can be maintained over long periods of time due to an ejecta distribution that is heavily biased in the prograde direction through a balance between the sharpening effects of ballistic transport and the broadening effects of viscosity. We also see that a "ramp"-like feature forms over time just inside that edge. However, it does not remain linear for the duration of the runs presented here unless a less steep ejecta velocity distribution is adopted. We also model the C ring plateaus and find that their outer edges can be maintained at their observed sharpness for long periods due to ballistic transport. We hypothesize that the addition of a significant component of a retrograde-biased ejecta distribution may help explain the linearity of the ramp and is probably essential for maintaining the sharpness of C ring plateau inner edges. This component would arise for the subset of micrometeoroid impacts which are destructive rather than merely cratering. Such a distribution will be introduced in future work.

  2. Ring structure of a neutral gas cloud studied in a one-dimensional expansion into space

    NASA Technical Reports Server (NTRS)

    Davidson, R. E.

    1972-01-01

    A one dimensional treatment of the expansion of a gas cloud of uncharged particles into vacuum is discussed. It is determined that the whole cloud does not change from continuum to free molecular flow at the same time. Some regions of the cloud make the transition sooner than others. An explanation of the ring structure observed during barium cloud experiments is presented using this conclusion. An analysis of the velocity distributions for the two kinds of flow yields a velocity distribution for the whole cloud that exhibits ring structure.

  3. Electronic structures of GaAs/AlxGa1-xAs quantum double rings

    PubMed Central

    Xia, Jian-Bai

    2006-01-01

    In the framework of effective mass envelope function theory, the electronic structures of GaAs/AlxGa1-xAs quantum double rings (QDRs) are studied. Our model can be used to calculate the electronic structures of quantum wells, wires, dots, and the single ring. In calculations, the effects due to the different effective masses of electrons and holes in GaAs and AlxGa1-xAs and the valence band mixing are considered. The energy levels of electrons and holes are calculated for different shapes of QDRs. The calculated results are useful in designing and fabricating the interrelated photoelectric devices. The single electron states presented here are useful for the study of the electron correlations and the effects of magnetic fields in QDRs.

  4. The pgaABCD Locus of Escherichia coli Promotes the Synthesis of a Polysaccharide Adhesin Required for Biofilm Formation

    PubMed Central

    Wang, Xin; Preston, James F.; Romeo, Tony

    2004-01-01

    Production of a polysaccharide matrix is a hallmark of bacterial biofilms, but the composition of matrix polysaccharides and their functions are not widely understood. Previous studies of the regulation of Escherichia coli biofilm formation suggested the involvement of an unknown adhesin. We now establish that the pgaABCD (formerly ycdSRQP) locus affects biofilm development by promoting abiotic surface binding and intercellular adhesion. All of the pga genes are required for optimal biofilm formation under a variety of growth conditions. A pga-dependent cell-bound polysaccharide was isolated and determined by nuclear magnetic resonance analyses to consist of unbranched β-1,6-N-acetyl-d-glucosamine, a polymer previously unknown from the gram-negative bacteria but involved in adhesion by staphylococci. The pga genes are predicted to encode envelope proteins involved in synthesis, translocation, and possibly surface docking of this polysaccharide. As predicted, if poly-β-1,6-GlcNAc (PGA) mediates cohesion, metaperiodate caused biofilm dispersal and the release of intact cells, whereas treatment with protease or other lytic enzymes had no effect. The pgaABCD operon exhibits features of a horizontally transferred locus and is present in a variety of eubacteria. Therefore, we propose that PGA serves as an adhesin that stabilizes biofilms of E. coli and other bacteria. PMID:15090514

  5. Structure of an E3:E2~Ub Complex Reveals an Allosteric Mechanism Shared among RING/U-box Ligases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruneda, Jonathan N.; Littlefield, Peter J.; Soss, Sarah E.

    2012-09-28

    Despite the widespread importance of RING/U-box E3 ubiquitin ligases in ubiquitin (Ub) signaling, the mechanismby which this class of enzymes facilitates Ub transfer remains enigmatic. Here, we present a structural model for a RING/U-box E3:E2~Ub complex poised for Ub transfer. The model and additional analyses reveal that E3 binding biases dynamic E2~Ub ensembles toward closed conformations with enhanced reactivity for substrate lysines. We identify a key hydrogen bond between a highly conserved E3 side chain and an E2 backbone carbonyl, observed in all structures of active RING/ U-Box E3/E2 pairs, as the linchpin for allosteric activation of E2~Ub. The conformationalmore » biasing mechanism is generalizable across diverse E2s and RING/U-box E3s, but is not shared by HECT-type E3s. The results provide a structural model for a RING/ U-box E3:E2~Ub ligase complex and identify the long sought-after source of allostery for RING/UBox activation of E2~Ub conjugates.« less

  6. The Saturn Ring Observer: In situ studies of planetary rings

    NASA Astrophysics Data System (ADS)

    Nicholson, P. D.; Tiscareno, M. S.; Spilker, L. J.

    2010-12-01

    As part of the Planetary Science Decadal Survey recently undertaken by the NRC's Space Studies Board for the National Academy of Sciences, studies were commissioned for a number of potential missions to outer planet targets. One of these studies examined the technological feasibility of a mission to carry out in situ studies of Saturn's rings, from a spacecraft placed in a circular orbit above the ring plane: the Saturn Ring Observer. The technical findings and background are discussed in a companion poster by T. R. Spilker et al. Here we outline the science goals of such a mission. Most of the fundamental interactions in planetary rings occur on spatial scales that are unresolved by flyby or orbiter spacecraft. Typical particle sizes in the rings of Saturn are in the 1 cm - 10 m range, and average interparticle spacings are a few meters. Indirect evidence indicates that the vertical thickness of the rings is as little as 5 - 10 m, which implies a velocity dispersion of only a few mm/sec. Theories of ring structure and evolution depend on the unknown characteristics of interparticle collisions and on the size distribution of the ring particles. The SRO could provide direct measurements of both the coefficient of restitution -- by monitoring individual collisions -- and the particles’ velocity dispersion. High-resolution observations of individual ring particles should also permit estimates of their spin states. Numerical simulations of Saturn’s rings incorporating both collisions and self-gravity predict that the ring particles are not uniformly distributed, but are instead clustered into elongated structures referred to as “self-gravity wakes”, which are continually created and destroyed on an orbital timescale. Theory indicates that the average separation between wakes in the A ring is of order 30-100 m. Direct imaging of self-gravity wakes, including their formation and subsequent dissolution, would provide critical validation of these models. Other

  7. Molecular structure, interatomic interactions and vibrational analysis of 1,4-diazabicyclo[3.2.1]octane parent ring system

    NASA Astrophysics Data System (ADS)

    Britvin, Sergey N.; Rumyantsev, Andrey M.; Zobnina, Anastasia E.; Padkina, Marina V.

    2017-02-01

    Molecular structure of 1,4-diazabicyclo[3.2.1]octane, a parent ring of TAN1251 family of alkaloids, is herein characterized for the first time in comparison with the structure of nortropane (8-azabicyclo[3.2.1]octane), the parent framework of tropane ring system. The methods of study involve X-ray structural analysis, DFT geometry optimizations with infrared frequency calculations followed by natural bond orbital (NBO) analysis, and vibrational analysis of infrared spectrum.

  8. Using multi-ring structure for suppression of mode competition in stable single-longitudinal-mode erbium fiber laser

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Huang, Tzu-Jung; Yang, Zi-Qing; Chow, Chi-Wai

    2017-12-01

    In this demonstration, a stable and tunable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser with multiple-ring configuration is proposed and investigated. The proposed compound-ring structure can create different free spectrum ranges (FSRs) to result in the mode-filter effect based on the Vernier effect for suppressing the other modes. Additionally, the output stabilization of power and wavelength in the proposed EDF multiple-ring laser are also discussed.

  9. A-ring Propeller

    NASA Image and Video Library

    2010-08-26

    A propeller-shaped structure, created by an unseen moon, can be seen in Saturn A ring and looks like a small, dark line interrupting the bright surrounding ring material in the upper left of this image taken by NASA Cassini spacecraft.

  10. New group-V elemental bilayers: A tunable structure model with four-, six-, and eight-atom rings

    NASA Astrophysics Data System (ADS)

    Kong, Xiangru; Li, Linyang; Leenaerts, Ortwin; Liu, Xiong-Jun; Peeters, François M.

    2017-07-01

    Two-dimensional group-V elemental materials have attracted widespread attention due to their nonzero band gap while displaying high electron mobility. Using first-principles calculations, we propose a series of new elemental bilayers with group-V elements (Bi, Sb, As). Our study reveals the dynamical stability of four-, six-, and eight-atom ring structures, demonstrating their possible coexistence in such bilayer systems. The proposed structures for Sb and As are large-gap semiconductors that are potentially interesting for applications in future nanodevices. The Bi structures have nontrivial topological properties with a direct nontrivial band gap. The nontrivial gap is shown to arise from a band inversion at the Brillouin zone center due to the strong intrinsic spin-orbit coupling in Bi atoms. Moreover, we demonstrate the possibility of tuning the properties of these materials by enhancing the ratio of six-atom rings to four- and eight-atom rings, which results in wider nontrivial band gaps and lower formation energies.

  11. Slowing down of ring polymer diffusion caused by inter-ring threading.

    PubMed

    Lee, Eunsang; Kim, Soree; Jung, YounJoon

    2015-06-01

    Diffusion of long ring polymers in a melt is much slower than the reorganization of their internal structures. While direct evidence for entanglements has not been observed in the long ring polymers unlike linear polymer melts, threading between the rings is suspected to be the main reason for slowing down of ring polymer diffusion. It is, however, difficult to define the threading configuration between two rings because the rings have no chain end. In this work, evidence for threading dynamics of ring polymers is presented by using molecular dynamics simulation and applying a novel analysis method. The simulation results are analyzed in terms of the statistics of persistence and exchange times that have proved useful in studying heterogeneous dynamics of glassy systems. It is found that the threading time of ring polymer melts increases more rapidly with the degree of polymerization than that of linear polymer melts. This indicates that threaded ring polymers cannot diffuse until an unthreading event occurs, which results in the slowing down of ring polymer diffusion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Modelling nonlinearity in superconducting split ring resonator and its effects on metamaterial structures

    NASA Astrophysics Data System (ADS)

    Mazdouri, Behnam; Mohammad Hassan Javadzadeh, S.

    2017-09-01

    Superconducting materials are intrinsically nonlinear, because of nonlinear Meissner effect (NLME). Considering nonlinear behaviors, such as harmonic generation and intermodulation distortion (IMD) in superconducting structures, are very important. In this paper, we proposed distributed nonlinear circuit model for superconducting split ring resonators (SSRRs). This model can be analyzed by using Harmonic Balance method (HB) as a nonlinear solver. Thereafter, we considered a superconducting metamaterial filter which was based on split ring resonators and we calculated fundamental and third-order IMD signals. There are good agreement between nonlinear results from proposed model and measured ones. Additionally, based on the proposed nonlinear model and by using a novel method, we considered nonlinear effects on main parameters in the superconducting metamaterial structures such as phase constant (β) and attenuation factor (α).

  13. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    NASA Astrophysics Data System (ADS)

    Hsu, Feng-Chia; Hsu, Jin-Chen; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin

    2011-09-01

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  14. Mapping Ring Particle Cooling across Saturn's Rings with Cassini CIRS

    NASA Astrophysics Data System (ADS)

    Brooks, Shawn M.; Spilker, L. J.; Edgington, S. G.; Pilorz, S. H.; Deau, E.

    2010-10-01

    Previous studies have shown that the rings' thermal inertia, a measure of their response to changes in the thermal environment, varies from ring to ring. Thermal inertia can provide insight into the physical structure of Saturn's ring particles and their regoliths. Low thermal inertia and quick temperature responses are suggestive of ring particles that have more porous or fluffy regoliths or that are riddled with cracks. Solid, coherent particles can be expected to have higher thermal inertias (Ferrari et al. 2005). Cassini's Composite Infrared Spectrometer has recorded millions of spectra of Saturn's rings since its arrival at Saturn in 2004 (personal communication, M. Segura). CIRS records far infrared radiation between 10 and 600 cm-1 (16.7 and 1000 µm) at focal plane 1 (FP1), which has a field of view of 3.9 mrad. Thermal emission from Saturn's rings peaks in this wavelength range. FP1 spectra can be used to infer ring temperatures. By tracking how ring temperatures vary, we can determine the thermal inertia of the rings. In this work we focus on CIRS observations of the shadowed portion of Saturn's rings. The thermal budget of the rings is dominated by the solar radiation absorbed by its constituent particles. When ring particles enter Saturn's shadow this source of energy is abruptly cut off. As a result, ring particles cool as they traverse Saturn's shadow. From these shadow observations we can create cooling curves at specific locations across the rings. We will show that the rings' cooling curves and thus their thermal inertia vary not only from ring to ring, but by location within the individual rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  15. Ring faults and ring dikes around the Orientale basin on the Moon.

    PubMed

    Andrews-Hanna, Jeffrey C; Head, James W; Johnson, Brandon; Keane, James T; Kiefer, Walter S; McGovern, Patrick J; Neumann, Gregory A; Wieczorek, Mark A; Zuber, Maria T

    2018-08-01

    The Orientale basin is the youngest and best-preserved multiring impact basin on the Moon, having experienced only modest modification by subsequent impacts and volcanism. Orientale is often treated as the type example of a multiring basin, with three prominent rings outside of the inner depression: the Inner Rook Montes, the Outer Rook Montes, and the Cordillera. Here we use gravity data from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission to reveal the subsurface structure of Orientale and its ring system. Gradients of the gravity data reveal a continuous ring dike intruded into the Outer Rook along the plane of the fault associated with the ring scarp. The volume of this ring dike is ~18 times greater than the volume of all extrusive mare deposits associated with the basin. The gravity gradient signature of the Cordillera ring indicates an offset along the fault across a shallow density interface, interpreted to be the base of the low-density ejecta blanket. Both gravity gradients and crustal thickness models indicate that the edge of the central cavity is shifted inward relative to the equivalent Inner Rook ring at the surface. Models of the deep basin structure show inflections along the crust-mantle interface at both the Outer Rook and Cordillera rings, indicating that the basin ring faults extend from the surface to at least the base of the crust. Fault dips range from 13-22° for the Cordillera fault in the northeastern quadrant, to 90° for the Outer Rook in the northwestern quadrant. The fault dips for both outer rings are lowest in the northeast, possibly due to the effects of either the direction of projectile motion or regional gradients in pre-impact crustal thickness. Similar ring dikes and ring faults are observed around the majority of lunar basins.

  16. Combined structural and compositional evolution of planetary rings due to micrometeoroid impacts and ballistic transport

    NASA Astrophysics Data System (ADS)

    Estrada, Paul R.; Durisen, Richard H.; Cuzzi, Jeffrey N.; Morgan, Demitri A.

    2015-05-01

    We introduce improved numerical techniques for simulating the structural and compositional evolution of planetary rings due to micrometeoroid bombardment and subsequent ballistic transport of impact ejecta. Our current, robust code is capable of modeling structural changes and pollution transport simultaneously over long times on both local and global scales. In this paper, we describe the methodology based on the original structural code of Durisen et al. (Durisen, R.H. et al. [1989]. Icarus 80, 136-166) and on the pollution transport code of Cuzzi and Estrada (Cuzzi, J.N., Estrada, P.R. [1998]. Icarus 132, 1-35). We provide demonstrative simulations to compare with, and extend upon previous work, as well as examples of how ballistic transport can maintain the observed structure in Saturn's rings using available Cassini occultation optical depth data. In particular, we explicitly verify the claim that the inner B (and presumably A) ring edge can be maintained over long periods of time due to an ejecta distribution that is heavily biased in the prograde direction through a balance between the sharpening effects of ballistic transport and the broadening effects of viscosity. We also see that a "ramp"-like feature forms over time just inside that edge. However, it does not remain linear for the duration of the runs presented here unless a less steep ejecta velocity distribution is adopted. We also model the C ring plateaus and find that their outer edges can be maintained at their observed sharpness for long periods due to ballistic transport. We hypothesize that the addition of a significant component of a retrograde-biased ejecta distribution may help explain the linearity of the ramp and could provide a mechanism for maintaining the sharpness of C ring plateau inner edges. This component would arise for the subset of micrometeoroid impacts which are destructive rather than merely cratering. Such a distribution will be introduced in future work.

  17. Enumeration method for tree-like chemical compounds with benzene rings and naphthalene rings by breadth-first search order.

    PubMed

    Jindalertudomdee, Jira; Hayashida, Morihiro; Zhao, Yang; Akutsu, Tatsuya

    2016-03-01

    Drug discovery and design are important research fields in bioinformatics. Enumeration of chemical compounds is essential not only for the purpose, but also for analysis of chemical space and structure elucidation. In our previous study, we developed enumeration methods BfsSimEnum and BfsMulEnum for tree-like chemical compounds using a tree-structure to represent a chemical compound, which is limited to acyclic chemical compounds only. In this paper, we extend the methods, and develop BfsBenNaphEnum that can enumerate tree-like chemical compounds containing benzene rings and naphthalene rings, which include benzene isomers and naphthalene isomers such as ortho, meta, and para, by treating a benzene ring as an atom with valence six, instead of a ring of six carbon atoms, and treating a naphthalene ring as two benzene rings having a special bond. We compare our method with MOLGEN 5.0, which is a well-known general purpose structure generator, to enumerate chemical structures from a set of chemical formulas in terms of the number of enumerated structures and the computational time. The result suggests that our proposed method can reduce the computational time efficiently. We propose the enumeration method BfsBenNaphEnum for tree-like chemical compounds containing benzene rings and naphthalene rings as cyclic structures. BfsBenNaphEnum was from 50 times to 5,000,000 times faster than MOLGEN 5.0 for instances with 8 to 14 carbon atoms in our experiments.

  18. Jupiter's ring system - New results on structure and particle properties

    NASA Technical Reports Server (NTRS)

    Showalter, Mark R.; Burns, Joseph A.; Cuzzi, Jeffrey N.; Pollack, James B.

    1987-01-01

    Jupiter's diffuse ring system is upon reexamination of Voyager images noted to be composed of a relatively bright narrow ring and an inner toroidal halo as well as the 'gossamer' exterior ring, while the previously suspected inner disk is missing. Several narrow, bright features are visible in the main ring, and are suggested to be related in some way to Adrastea and Metis. The smallest ring particles and the dark, rough, red largest bodies both have total optical depths of 1-6 x 10 to the -6th. After arising at the bright ring's inner boundary, the halo rapidly expands inward to a 20,000-km thickness, and disappears at a radius of 90,000 km halfway between the main ring and the planet's cloudtops.

  19. Fan in the F Ring

    NASA Image and Video Library

    2010-07-20

    This mosaic of images from NASA Cassini spacecraft depicts fan-like structures in Saturn tenuous F ring. Bright features are also visible near the core of the ring. Such features suggest the existence of additional objects in the F ring.

  20. F Ring Bright Core Clumps

    NASA Image and Video Library

    2010-07-20

    Bright clumps of ring material and a fan-like structure appear near the core of Saturn tenuous F ring in this mosaic of images from NASA Cassini spacecraft. Such features suggest the existence of additional objects in the F ring.

  1. Gaps, rings, and non-axisymmetric structures in protoplanetary disks: Emission from large grains

    NASA Astrophysics Data System (ADS)

    Ruge, J. P.; Flock, M.; Wolf, S.; Dzyurkevich, N.; Fromang, S.; Henning, Th.; Klahr, H.; Meheut, H.

    2016-05-01

    Aims: Dust grains with sizes around (sub)mm are expected to couple only weakly to the gas motion in regions beyond 10 au of circumstellar disks. In this work, we investigate the influence of the spatial distribution of these grains on the (sub)mm appearance of magnetized protoplanetary disks. Methods: We perform non-ideal global 3D magneto-hydrodynamic (MHD) stratified disk simulations, including particles of different sizes (50 μm to 1 cm), using a Lagrangian particle solver. Subsequently, we calculate the spatial dust temperature distribution, including the dynamically coupled submicron-sized dust grains, and derive ideal continuum re-emission maps of the disk through radiative transfer simulations. Finally, we investigate the feasibility of observing specific structures in the thermal re-emission maps with the Atacama Large Millimeter/submillimeter Array (ALMA). Results: Depending on the level of turbulence, the radial pressure gradient of the gas, and the grain size, particles settle to the midplane and/or drift radially inward. The pressure bump close to the outer edge of the dead-zone leads to particle-trapping in ring structures. More specifically, vortices in the disk concentrate the dust and create an inhomogeneous distribution of solid material in the azimuthal direction. The large-scale disk perturbations are preserved in the (sub)mm re-emission maps. The observable structures are very similar to those expected from planet-disk interaction. Additionally, the larger dust particles increase the brightness contrast between the gap and ring structures. We find that rings, gaps, and the dust accumulation in the vortex could be traced with ALMA down to a scale of a few astronomical units in circumstellar disks located in nearby star-forming regions. Finally, we present a brief comparison of these structures with those recently found with ALMA in the young circumstellar disks of HL Tau and Oph IRS 48.

  2. Plasma Structure and Behavior of Miniature Ring-Cusp Discharges

    NASA Astrophysics Data System (ADS)

    Mao, Hann-Shin

    Miniature ring-cusp ion thrusters provide a unique blend of high efficiencies and millinewton level thrust for future spacecraft. These thrusters are attractive as a primary propulsion for small satellites that require a high delta V, and as a secondary propulsion for larger spacecraft that require precision formation flying, disturbance rejection, or attitude control. To ensure desirable performance throughout the life of such missions, an advancement in the understanding of the plasma structure and behavior of miniature ring-cusp discharges is required. A research model was fabricated to provide a simplified experimental test bed for the analysis of the plasma discharge chamber of a miniature ion thruster. The plasma source allowed for spatially resolved measurements with a Langmuir probe along a meridian plane. Probe measurements yielded plasma density, electron temperature, and plasma potential data. The magnetic field strength was varied along with the discharge current to determine the plasma behavior under various conditions. The structure of the plasma properties were found to be independent of the discharge power under the proper scaling. It was concluded that weaker magnetic fields can improve the overall performance for ion thruster operation. To further analyze the experimental measurements, a framework was developed based on the magnetic field. A flux aligned coordinate system was developed to decouple the perpendicular and parallel plasma motion with respect to the magnetic field. This was done using the stream function and magnetic scalar potential. Magnetic formulae provided intuition on the field profiles dependence on magnet dimensions. The flux aligned coordinate system showed that the plasma was isopycnic along constant stream function values. This was used to develop an empirical relation suitable for estimating the spatial behavior and to determine the plasma volume and loss areas. The plasma geometry estimates were applied to a control volume

  3. Formation of lunar basin rings

    USGS Publications Warehouse

    Hodges, C.A.; Wilhelms, D.E.

    1978-01-01

    The origin of the multiple concentric rings that characterize lunar impact basins, and the probable depth and diameter of the transient crater have been widely debated. As an alternative to prevailing "megaterrace" hypotheses, we propose that the outer scarps or mountain rings that delineate the topographic rims of basins-the Cordilleran at Orientale, the Apennine at Imbrium, and the Altai at Nectaris-define the transient cavities, enlarged relatively little by slumping, and thus are analogous to the rim crests of craters like Copernicus; inner rings are uplifted rims of craters nested within the transient cavity. The magnitude of slumping that occurs on all scarps is insufficient to produce major inner rings from the outer. These conclusions are based largely on the observed gradational sequence in lunar central uplifts:. from simple peaks through somewhat annular clusters of peaks, peak and ring combinations and double ring basins, culminating in multiring structures that may also include peaks. In contrast, belts of slump terraces are not gradational with inner rings. Terrestrial analogs suggest two possible mechanisms for producing rings. In some cases, peaks may expand into rings as material is ejected from their cores, as apparently occurred at Gosses Bluff, Australia. A second process, differential excavation of lithologically diverse layers, has produced nested experimental craters and is, we suspect, instrumental in the formation of terrestrial ringed impact craters. Peak expansion could produce double-ring structures in homogeneous materials, but differential excavation is probably required to produce multiring and peak-in-ring configurations in large lunar impact structures. Our interpretation of the representative lunar multiring basin Orientale is consistent with formation of three rings in three layers detected seismically in part of the Moon-the Cordillera (basin-bounding) ring in the upper crust, the composite Montes Rook ring in the underlying

  4. [Design and Analysis of CT High-speed Data Transmission Rotating Connector Ring System Retaining Ring].

    PubMed

    Pan, Li; Cao, Jujiang; Liu, Min; Fu, Weiwei

    2017-11-30

    High speed data transmission rotating connector system for signal high-speed transmission used in the fixed end and rotating end, it is one of the core component in the CT system. This paper involves structure design and analysis of the retaining ring in the CT high speed data transmission rotating connector system based on the principle of off-axis free space optical transmission. According to the problem of the actual engineering application of space limitations, optical fiber fixed and collimator installation location, we designed the structure of the retaining ring. Using the static analysis function of ANSYS Workbench, it verifies rationality and safety of the strength of retaining ring structure. And based on modal analysis function of ANSYS Workbench, it evaluates the effect of the retaining ring on the stability of the system date transmission, and provides theoretical basis for the feasibility of the structure in practical application.

  5. Ordered quasi-two-dimensional structure of nanoparticles in semiflexible ring polymer brushes under compression

    NASA Astrophysics Data System (ADS)

    Hua, Yunfeng; Deng, Zhenyu; Jiang, Yangwei; Zhang, Linxi

    2017-06-01

    Molecular dynamics simulations of a coarse-grained bead-spring model of ring polymer brushes under compression are presented. Flexible polymer brushes are always disordered during compression, whereas semiflexible polymer brushes tend to be ordered under sufficiently strong compression. Further, the polymer monomer density of the semiflexible polymer brush is very high near the brush surface, inducing a peak value of the free energy near the surface. Therefore, when nanoparticles are compressed in semiflexible ring polymer brushes, they tend to exhibit a closely packed single-layer structure between the brush surface and the impenetrable wall, and a quasi-two-dimensional ordered structure near the brush surface is formed under strong compression. These findings provide a new approach to designing responsive applications.

  6. Gravitational lensing by ring-like structures

    NASA Astrophysics Data System (ADS)

    Lake, Ethan; Zheng, Zheng

    2017-02-01

    We study a class of gravitational lensing systems consisting of an inclined ring/belt, with and without an added point mass at the centre. We show that a common feature of such systems are so-called pseudo-caustics, across which the magnification of a point source changes discontinuously and yet remains finite. Such a magnification change can be associated with either a change in image multiplicity or a sudden change in the size of a lensed image. The existence of pseudo-caustics and the complex interplay between them and the formal caustics (which correspond to points of infinite magnification) can lead to interesting consequences, such as truncated or open caustics and a non-conservation of total image parity. The origin of the pseudo-caustics is found to be the non-differentiability of the solutions to the lens equation across the ring/belt boundaries, with the pseudo-caustics corresponding to ring/belt boundaries mapped into the source plane. We provide a few illustrative examples to understand the pseudo-caustic features, and in a separate paper consider a specific astronomical application of our results to study microlensing by extrasolar asteroid belts.

  7. High-pressure structure made of rings with peripheral weldments of reduced thickness

    DOEpatents

    Leventry, Samuel C.

    1988-01-01

    A high-pressure structure having a circular cylindrical metal shell made of metal rings joined together by weldments and which have peripheral areas of reduced shell thickness at the weldments which permit a reduction in the amount of weld metal deposited while still maintaining sufficient circumferential or hoop stress strength.

  8. Current, future and potential use of mobile and wearable technologies and social media data in the ABCD study to increase understanding of contributors to child health.

    PubMed

    Bagot, K S; Matthews, S A; Mason, M; Squeglia, Lindsay M; Fowler, J; Gray, K; Herting, M; May, A; Colrain, I; Godino, J; Tapert, S; Brown, S; Patrick, K

    2018-08-01

    Mobile and wearable technologies and novel methods of data collection are innovating health-related research. These technologies and methods allow for multi-system level capture of data across environmental, physiological, behavioral, and psychological domains. In the Adolescent Brain Cognitive Development (ABCD) Study, there is great potential for harnessing the acceptability, accessibility, and functionality of mobile and social technologies for in-vivo data capture to precisely measure factors, and interactions between factors, that contribute to childhood and adolescent neurodevelopment and psychosocial and health outcomes. Here we discuss advances in mobile and wearable technologies and methods of analysis of geospatial, ecologic, social network and behavioral data. Incorporating these technologies into the ABCD study will allow for interdisciplinary research on the effects of place, social interactions, environment, and substance use on health and developmental outcomes in children and adolescents. Copyright © 2018. Published by Elsevier Ltd.

  9. In silico predictions of LH2 ring sizes from the crystal structure of a single subunit using molecular dynamics simulations.

    PubMed

    Janosi, Lorant; Keer, Harindar; Cogdell, Richard J; Ritz, Thorsten; Kosztin, Ioan

    2011-07-01

    Most of the currently known light-harvesting complexes 2 (LH2) rings are formed by 8 or 9 subunits. As of now, questions like "what factors govern the LH2 ring size?" and "are there other ring sizes possible?" remain largely unanswered. Here, we investigate by means of molecular dynamics (MD) simulations and stochastic modeling the possibility of predicting the size of an LH2 ring from the sole knowledge of the high resolution crystal structure of a single subunit. Starting with single subunits of two LH2 rings with known size, that is, an 8-ring from Rs. moliscianum (MOLI) and a 9-ring from Rps. acidophila (ACI), and one with unknown size (referred to as X), we build atomic models of subunit dimers corresponding to assumed 8-, 9-, and 10-ring geometries. After inserting each of the dimers into a lipid-water environment, we determine the preferred angle between the corresponding subunits by three methods: (1) energy minimization, (2) free MD simulations, and (3) potential of mean force calculations. We find that the results from all three methods are consistent with each other, and when taken together, it allows one to predict with reasonable level of confidence the sizes of the corresponding ring structures. One finds that X and ACI very likely form a 9-ring, while MOLI is more likely to form an 8-ring than a 9-ring. Finally, we discuss both the merits and limitations of all three prediction methods. Copyright © 2011 Wiley-Liss, Inc.

  10. Jupiter's Main Ring

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. Some radial structure is barely visible across the ring's ansa. A faint mist of particles can be seen above and below the main rings; this vertically extended 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces pushing the smallest grains out of the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic.

    Jupiter's main ring is a thin strand of material encircling the planet. The diffuse innermost boundary begins at approximately 123,000 km. The main ring's outer radius is found to be

  11. Earth: A Ringed Planet?

    NASA Astrophysics Data System (ADS)

    Hancock, L. O.; Povenmire, H.

    2010-12-01

    Among the most beautiful findings of the Space Age have been the discoveries of planetary rings. Not only Saturn but also Jupiter, Uranus and Neptune have rings; Saturn’s ring system has structures newly discovered; even Saturn's moon Rhea itself has a ring. All these are apparently supplied by material from the planetary moons (Rhea's ring by Rhea itself). The question naturally arises, why should the Earth not have a ring, and on the other hand, if it does, why has it not been observed? No rings have yet been observed in the inner solar system, but after all, rings in the inner solar system might simply tend to be fainter and more transient than those of the outer solar system: the inner solar system is more affected by the solar wind, and the Sun’s perturbing gravitational influence is greater. J.A. O’Keefe first suggested (1980) that Earth might have a ring system of its own. An Earth ring could account for some climate events. O’Keefe remarked that formation or thickening of a ring system in Earth’s equatorial plane could drive glaciation by deepening the chill of the winter hemisphere. (It is very well established that volcanic dust is an effective agent for the extinction of sunlight; this factor can be overwhelmingly apparent in eclipse observations.) O’Keefe died in 2000 and the speculation was not pursued, but the idea of an Earth ring has a prima facie reasonableness that calls for its renewed consideration. The program of this note is to hypothesize that, as O’Keefe proposed: (a) an Earth ring system exists; (b) it affects Earth's weather and climate; (c) the tektite strewn fields comprise filaments of the ring fallen to Earth's surface on various occasions of disturbance by comets or asteroids. On this basis, and drawing on the world's weather records, together with the Twentieth Century Reanalysis by NCEP/CIRES covering the period 1870-2010 and the geology of the tektite strewn fields, we herein propose the hypothesized Earth ring

  12. Crystal structures of alkylperoxo and anhydride intermediates in an intradiol ring-cleaving dioxygenase

    DOE PAGES

    Knoot, Cory J.; Purpero, Vincent M.; Lipscomb, John D.

    2014-12-29

    Intradiol aromatic ring-cleaving dioxygenases use an active site, nonheme Fe 3+ to activate O 2 and catecholic substrates for reaction. The inability of Fe 3+ to directly bind O 2 presents a mechanistic conundrum. The reaction mechanism of protocatechuate 3,4-dioxygenase is investigated in this paper using the alternative substrate 4-fluorocatechol. This substrate is found to slow the reaction at several steps throughout the mechanistic cycle, allowing the intermediates to be detected in solution studies. When the reaction was initiated in an enzyme crystal, it was found to halt at one of two intermediates depending on the pH of the surroundingmore » solution. The X-ray crystal structure of the intermediate at pH 6.5 revealed the key alkylperoxo-Fe 3+ species, and the anhydride-Fe 3+ intermediate was found for a crystal reacted at pH 8.5. Intermediates of these types have not been structurally characterized for intradiol dioxygenases, and they validate four decades of spectroscopic, kinetic, and computational studies. In contrast to our similar in crystallo crystallographic studies of an Fe 2+-containing extradiol dioxygenase, no evidence for a superoxo or peroxo intermediate preceding the alkylperoxo was found. This observation and the lack of spectroscopic evidence for an Fe 2+ intermediate that could bind O 2 are consistent with concerted formation of the alkylperoxo followed by Criegee rearrangement to yield the anhydride and ultimately ring-opened product. Finally, structural comparison of the alkylperoxo intermediates from the intra- and extradiol dioxygenases provides a rationale for site specificity of ring cleavage.« less

  13. Strained Cyclophane Macrocycles: Impact of Progressive Ring Size Reduction on Synthesis and Structure

    PubMed Central

    Bogdan, Andrew R.; Jerome, Steven V.; Houk, K. N.; James, Keith

    2012-01-01

    The synthesis, X-ray crystal structures, and calculated strain energies are reported for a homologous series of 11- to 14-membered drug-like cyclophane macrocycles, representing an unusual region of chemical space that can be difficult to access synthetically. The ratio of macrocycle to dimer, generated via a copper catalyzed azide-alkyne cycloaddition macrocyclization in flow at elevated temperature, could be rationalized in terms of the strain energy in the macrocyclic product. The progressive increase in strain resulting from reduction in macrocycle ring size, or the introduction of additional conformational constraints, results in marked deviations from typical geometries. These strained cyclophane macrocyclic systems provide access to spatial orientations of functionality that would not be readily available in unstrained or acyclic analogs. The most strained system prepared represents the first report of an 11-membered cyclophane containing a 1,4-disubstituted 1,2,3-triazole ring, and establishes a limit to the ring strain that can be generated using this macrocycle synthesis methodology. PMID:22133103

  14. Experimental investigation on sandwich structure ring-type ultrasonic motor.

    PubMed

    Peng, Taijiang; Shi, Hongyan; Liang, Xiong; Luo, Feng; Wu, Xiaoyu

    2015-02-01

    This paper presents a manufacture method for a sandwich structure Ultrasonic Motor (USM) and experiment. Two pieces of rotor clamped on a stator, and a stainless steel disk-spring is bonded on the hollow rotor disk to provide the press by a nut assembled on the shaft. The stator is made of a double-side Printed-Circuit Board (PCB) which is sawed out the ring in the center and connected on the board with three legs. On each side of the ring surface, there are electrodes connected at the same position via through hole. The three layer drive circuit for sine, cosine, and ground signal is connected on the board through each leg. There are many piezoelectric components (PZT) bonded between two electrodes and fill soldering tin on each electrode. Then PZT is welded on PCB by reflow soldering. Finally, rub the gibbous soldering tin down to the position of PZT surface makes sure the surface contacts with rotor evenly. The welding process can also be completed by Surface Mounted Technology (SMT). A prototype motor is manufactured by this method. Two B03 model shapes of the stator are obtained by the finite element analysis and the optimal frequency of the motor is 56.375 kHz measured by impedance instrument. The theoretical analysis is conducted for the relationship between the revolving speed of the USM and thickness of stator ring, number of the travelling waves, PZT amplitude, frequency and the other parameters. The experiment result shows that the maximum revolving speed is 116 RPM and the maximum torque is 25 N mm, when the actuate voltage is 200 VAC. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Geology and evaluation of tungsten anomalies, Buhairan-Abu Khurg area, southeastern part of the Uyaijah ring structure, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Dodge, F.C.W.

    1973-01-01

    Previous geochemical exploration has indicated areas in the Precambrian Al Uyaijah ring structure for further investigation. This report encompasses the results of geologic and geochemical investigations made in a 40 square kilometer area located on the southeast perimeter of the ring structure, an area where previous geochemical exploration revealed anomalous tungsten and molybdenum values. Igneous rocks exposed in the area include batholithic plutonic rocks, intrusive rocks of the ring dike, hypabyssal dike rocks, and late epithermal quartz veins; remnants of metamorphosed, prebatholithic rocks are also exposed. About two-thirds of the area is covered with a veneer of surficial debris. Structural patterns of the area are dominated by the ring structure. The principal mineralization consists of powellite and scheelite in high-temperature, quartz-rich veinlets and pods and in contact metamorphic rocks. Although the areas of metallization account for the previously discovered sediment geochemical anomalies, mineralization is sparse, and no currently valuable mineral deposits are known or thought to be present in the area.

  16. Planetary Rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  17. Symmetrical collision of multiple vortex rings

    NASA Astrophysics Data System (ADS)

    Hernández, R. H.; Reyes, T.

    2017-10-01

    In this work, we investigate the motion, interaction, and simultaneous collision between many initially stable vortex rings arranged symmetrically in two initial configurations, three and six rings making an angle of 60 and 120° between their straight path lines, respectively. We report results for laminar vortex rings in air obtained through numerical simulations of the ring velocity, pressure, and vorticity fields, both in free flight and during the entire collision. Each collision was studied for small Reynolds numbers R e <1 03 based on both the self-induced velocity and diameter of the ring. The case of three rings produces secondary vortical structures formed by laterally expanding dipolar arms with top and bottom secondary vortex rings. The case of six colliding rings produces, as secondary structures, two big rings moving in opposite directions, a process that reminds us of the head-on collision of two rings [T. T. Lim and T. B. Nickels, "Instability and reconnection in the head-on collision of two vortex rings," Nature 357, 225-227 (1992)] under a hypothetical time reversal transformation. Both collisions display a characteristic kinetic energy evolution where mean collision stages can be identified within the range of Reynolds numbers investigated here.

  18. Suzaku Observations of the Monogem Ring and the Origin of the Gemini Hα Ring

    NASA Astrophysics Data System (ADS)

    Knies, Jonathan R.; Sasaki, Manami; Plucinsky, Paul P.

    2018-04-01

    We present the analysis of Suzaku X-ray observations of the Galactic supernova remnant (SNR) 'Monogem Ring', a large structure observed in X-rays with an extent of ≈ 25°, located at an anti-centre position. One observation close to the shock also coincides with a large ring-like structure observed in Hα, which is called the 'Gemini Hα ring'. We investigate the origin of the ring-like structure and also possible interactions with the SNR. We show that the SNR is expanding in a region with a density gradient, which has an effect on the morphology of the SNR and the properties of the plasma. The X-ray spectra are fit well with a collisional ionisation equilibrium (CIE) model with a temperature of kT ≈ 0.3 keV. The spectra obtained at a position where the SNR coincides with the Gemini Hα ring are better described with non-equilibrium ionisation (NEI) with a temperature of kT ≈ 1.0 keV. Based on the spectral analysis results, we estimate an age of t ≈ 6.8 × 104 yr for a distance of ≈300 pc, using the Sedov-Taylor solution. We have identified several early-type stars in the Hipparcos catalogue at a distance of 200- 300pc, which have most likely formed the 'Gemini Hα ring' by their powerful stellar winds.

  19. Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching.

    PubMed

    Lee, Lawrence K; Ginsburg, Michael A; Crovace, Claudia; Donohoe, Mhairi; Stock, Daniela

    2010-08-19

    The flagellar motor drives the rotation of flagellar filaments at hundreds of revolutions per second, efficiently propelling bacteria through viscous media. The motor uses the potential energy from an electrochemical gradient of cations across the cytoplasmic membrane to generate torque. A rapid switch from anticlockwise to clockwise rotation determines whether a bacterium runs smoothly forward or tumbles to change its trajectory. A protein called FliG forms a ring in the rotor of the flagellar motor that is involved in the generation of torque through an interaction with the cation-channel-forming stator subunit MotA. FliG has been suggested to adopt distinct conformations that induce switching but these structural changes and the molecular mechanism of switching are unknown. Here we report the molecular structure of the full-length FliG protein, identify conformational changes that are involved in rotational switching and uncover the structural basis for the formation of the FliG torque ring. This allows us to propose a model of the complete ring and switching mechanism in which conformational changes in FliG reverse the electrostatic charges involved in torque generation.

  20. Variations in Ring Particle Cooling across Saturn's Rings with Cassini CIRS

    NASA Astrophysics Data System (ADS)

    Brooks, S. M.; Spilker, L. J.; Pilorz, S.; Edgington, S. G.; Déau, E.; Altobelli, N.

    2010-12-01

    Cassini's Composite Infrared Spectrometer has recorded over two million of spectra of Saturn's rings in the far infrared since arriving at Saturn in 2004. CIRS records far infrared radiation between 10 and 600 cm-1 ( 16.7 and 1000 μ {m} ) at focal plane 1 (FP1), which has a field of view of 3.9 mrad. Thermal emission from Saturn’s rings peaks in this wavelength range. Ring temperatures can be inferred from FP1 data. By tracking how ring temperatures vary, we can determine the thermal inertia of the rings. Previous studies have shown that the rings' thermal inertia, a measure of their response to changes in the thermal environment, varies from ring to ring. Thermal inertia can provide insight into the physical structure of Saturn's ring particles and their regoliths. Low thermal inertia and rapidly changing temperatures are suggestive of ring particles that have more porous or fluffy regoliths or that are riddled with cracks. Solid particles can be expected to have higher thermal inertias. Ferrari et al. (2005) fit thermal inertia values of 5218 {Jm)-2 {K}-1 {s}-1/2 to their B ring data and 6412 {Jm)-2 {K}-1 {s}-1/2 to their C ring data. In this work we focus on CIRS observations of the shadowed portion of Saturn's rings. The rings’ thermal budget is dominated by its absorption of solar radiation. As a result, ring particles abruptly cool as they traverse Saturn's shadow. From these shadow observations we can create cooling curves at specific locations across the rings. We will show that the rings' cooling curves and thus their thermal inertia vary not only from ring to ring, but by location within the individual rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  1. Ringed Structures of the HD 163296 Protoplanetary Disk Revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Isella, Andrea; Guidi, Greta; Testi, Leonardo; Liu, Shangfei; Li, Hui; Li, Shengtai; Weaver, Erik; Boehler, Yann; Carperter, John M.; De Gregorio-Monsalvo, Itziar; Manara, Carlo F.; Natta, Antonella; Pérez, Laura M.; Ricci, Luca; Sargent, Anneila; Tazzari, Marco; Turner, Neal

    2016-12-01

    We present Atacama Large Millimeter and Submillimeter Array observations of the protoplanetary disk around the Herbig Ae star HD 163296 that trace the spatial distribution of millimeter-sized particles and cold molecular gas on spatial scales as small as 25 astronomical units (A.U.). The image of the disk recorded in the 1.3 mm continuum emission reveals three dark concentric rings that indicate the presence of dust depleted gaps at about 60, 100, and 160 A.U. from the central star. The maps of the 12CO, 13CO, and C 18O J =2 -1 emission do not show such structures but reveal a change in the slope of the radial intensity profile across the positions of the dark rings in the continuum image. By comparing the observations with theoretical models for the disk emission, we find that the density of CO molecules is reduced inside the middle and outer dust gaps. However, in the inner ring there is no evidence of CO depletion. From the measurements of the dust and gas densities, we deduce that the gas-to-dust ratio varies across the disk and, in particular, it increases by at least a factor 5 within the inner dust gap compared to adjacent regions of the disk. The depletion of both dust and gas suggests that the middle and outer rings could be due to the gravitational torque exerted by two Saturn-mass planets orbiting at 100 and 160 A.U. from the star. On the other hand, the inner dust gap could result from dust accumulation at the edge of a magnetorotational instability dead zone, or from dust opacity variations at the edge of the CO frost line. Observations of the dust emission at higher angular resolution and of molecules that probe dense gas are required to establish more precisely the origins of the dark rings observed in the HD 163296 disk.

  2. Ringed Structures of the HD 163296 Protoplanetary Disk Revealed by ALMA.

    PubMed

    Isella, Andrea; Guidi, Greta; Testi, Leonardo; Liu, Shangfei; Li, Hui; Li, Shengtai; Weaver, Erik; Boehler, Yann; Carperter, John M; De Gregorio-Monsalvo, Itziar; Manara, Carlo F; Natta, Antonella; Pérez, Laura M; Ricci, Luca; Sargent, Anneila; Tazzari, Marco; Turner, Neal

    2016-12-16

    We present Atacama Large Millimeter and Submillimeter Array observations of the protoplanetary disk around the Herbig Ae star HD 163296 that trace the spatial distribution of millimeter-sized particles and cold molecular gas on spatial scales as small as 25 astronomical units (A.U.). The image of the disk recorded in the 1.3 mm continuum emission reveals three dark concentric rings that indicate the presence of dust depleted gaps at about 60, 100, and 160 A.U. from the central star. The maps of the ^{12}CO, ^{13}CO, and C^{18}O J=2-1 emission do not show such structures but reveal a change in the slope of the radial intensity profile across the positions of the dark rings in the continuum image. By comparing the observations with theoretical models for the disk emission, we find that the density of CO molecules is reduced inside the middle and outer dust gaps. However, in the inner ring there is no evidence of CO depletion. From the measurements of the dust and gas densities, we deduce that the gas-to-dust ratio varies across the disk and, in particular, it increases by at least a factor 5 within the inner dust gap compared to adjacent regions of the disk. The depletion of both dust and gas suggests that the middle and outer rings could be due to the gravitational torque exerted by two Saturn-mass planets orbiting at 100 and 160 A.U. from the star. On the other hand, the inner dust gap could result from dust accumulation at the edge of a magnetorotational instability dead zone, or from dust opacity variations at the edge of the CO frost line. Observations of the dust emission at higher angular resolution and of molecules that probe dense gas are required to establish more precisely the origins of the dark rings observed in the HD 163296 disk.

  3. Interaction of vortex rings with multiple permeable screens

    NASA Astrophysics Data System (ADS)

    Musta, Mustafa N.; Krueger, Paul S.

    2014-11-01

    Interaction of a vortex ring impinging on multiple permeable screens orthogonal to the ring axis was studied to experimentally investigate the persistence and decay of vortical structures inside the screen array using digital particle image velocimetry in a refractive index matched environment. The permeable screens had porosities (open area ratios) of 83.8%, 69.0%, and 55.7% and were held by a transparent frame that allowed the screen spacing to be changed. Vortex rings were generated using a piston-cylinder mechanism at nominal jet Reynolds numbers of 1000, 2000, and 3000 with piston stroke length-to-diameter ratios of 2 and 3. The interaction of vortex rings with the porous medium showed a strong dependence of the overall flow evolution on the screen porosity, with a central flow being preserved and vortex ring-like structures (with smaller diameter than the primary vortex ring) being generated near the centerline. Due to the large rod size used in the screens, immediate reformation of the transmitted vortex ring with size comparable to the primary ring (as has been observed with thin screens) was not observed in most cases. Since the screens have lower complexity and high open area ratios, centerline vortex ring-like flow structures formed with comparable size to the screen pore size and penetrated through the screens. In the case of low porosity screens (55.7%) with large screen spacing, re-emergence of large scale (large separation), weak vortical structures/pairs (analogous to a transmitted vortex ring) was observed downstream of the first screen. Additional smaller scale vortical structures were generated by the interaction of the vortex ring with subsequent screens. The size distribution of the generated vortical structures were shown to be strongly affected by porosity, with smaller vortical structures playing a stronger role as porosity decreased. Finally, porosity significantly affected the decay of total energy, but the effect of screen spacing

  4. A new F-actin structure in fungi: actin ring formation around the cell nucleus of Cryptococcus neoformans.

    PubMed

    Kopecká, Marie; Kawamoto, Susumu; Yamaguchi, Masashi

    2013-04-01

    The F-actin cytoskeleton of Cryptococcus neoformans is known to comprise actin cables, cortical patches and cytokinetic ring. Here, we describe a new F-actin structure in fungi, a perinuclear F-actin collar ring around the cell nucleus, by fluorescent microscopic imaging of rhodamine phalloidin-stained F-actin. Perinuclear F-actin rings form in Cryptococcus neoformans treated with the microtubule inhibitor Nocodazole or with the drug solvent dimethyl sulfoxide (DMSO) or grown in yeast extract peptone dextrose (YEPD) medium, but they are absent in cells treated with Latrunculin A. Perinuclear F-actin rings may function as 'funicular cabin' for the cell nucleus, and actin cables as intracellular 'funicular' suspending nucleus in the central position in the cell and moving nucleus along the polarity axis along actin cables.

  5. High-Resolution Structure and Mechanism of an F/V-Hybrid Rotor Ring in a Na+-coupled ATP Synthase

    PubMed Central

    Matthies, Doreen; Zhou, Wenchang; Klyszejko, Adriana L.; Anselmi, Claudio; Yildiz, Özkan; Brandt, Karsten; Müller, Volker; Faraldo-Gómez, José D.; Meier, Thomas

    2014-01-01

    All rotary ATPases catalyze the interconversion of ATP and ADP-Pi through a mechanism that is coupled to the transmembrane flow of H+ or Na+. Physiologically, however, F/A-type enzymes specialize in ATP synthesis driven by downhill ion diffusion, while eukaryotic V-type ATPases function as ion pumps. To begin to rationalize the molecular basis for this functional differentiation, we solved the crystal structure of the Na+-driven membrane rotor of the Acetobacterium woodii ATP synthase, at 2.1 Å resolution. Unlike known structures, this rotor ring is a 9:1 heteromer of F- and V-type c-subunits, and therefore features a hybrid configuration of ion-binding sites along its circumference. Molecular and kinetic simulations are used to dissect the mechanisms of Na+ recognition and rotation of this c-ring, and to explain the functional implications of the V-type c-subunit. These structural and mechanistic insights indicate an evolutionary path between synthases and pumps involving adaptations in the rotor ring. PMID:25381992

  6. One ring or two? Determination of ring number in carotenoids by lycopene epsilon-cyclases.

    PubMed

    Cunningham, F X; Gantt, E

    2001-02-27

    Carotenoids in the photosynthetic membranes of plants typically contain two beta-rings (e.g., beta-carotene and zeaxanthin) or one epsilon- and one beta-ring (e.g., lutein). Carotenoids with two epsilon-rings are uncommon. We reported earlier that the Arabidopsis thaliana lycopene epsilon-cyclase (LCYe) adds one epsilon-ring to the symmetrical linear substrate lycopene, whereas the structurally related lycopene beta-cyclase (LCYb) adds two beta-rings. Here we describe a cDNA encoding LCYe in romaine lettuce (Lactuca sativa var. romaine), one of the few plant species known to accumulate substantial quantities of a carotenoid with two epsilon-rings: lactucaxanthin. The product of the lettuce cDNA, similar in sequence to the Arabidopsis LCYe (77% amino acid identity), efficiently converted lycopene into the bicyclic epsilon-carotene in a heterologous Escherichia coli system. Regions of the lettuce and Arabidopsis epsilon-cyclases involved in the determination of ring number were mapped by analysis of chimeric epsilon-cyclases constructed by using an inverse PCR approach. A single amino acid was found to act as a molecular switch: lettuce LCYe mutant H457L added only one epsilon-ring to lycopene, whereas the complementary Arabidopsis LCYe mutant, L448H, added two epsilon-rings. An R residue in this position also yields a bi-epsilon-cyclase for both the lettuce and Arabidopsis enzymes. Construction and analysis of chimera of related enzymes with differing catalytic activities provide an informative approach that may be of particular utility for studying membrane-associated enzymes that cannot easily be crystallized or modeled to existing crystal structures.

  7. One ring or two? Determination of ring number in carotenoids by lycopene ɛ-cyclases

    PubMed Central

    Cunningham, Francis X.; Gantt, Elisabeth

    2001-01-01

    Carotenoids in the photosynthetic membranes of plants typically contain two β-rings (e.g., β-carotene and zeaxanthin) or one ɛ- and one β-ring (e.g., lutein). Carotenoids with two ɛ-rings are uncommon. We reported earlier that the Arabidopsis thaliana lycopene ɛ-cyclase (LCYe) adds one ɛ-ring to the symmetrical linear substrate lycopene, whereas the structurally related lycopene β-cyclase (LCYb) adds two β-rings. Here we describe a cDNA encoding LCYe in romaine lettuce (Lactuca sativa var. romaine), one of the few plant species known to accumulate substantial quantities of a carotenoid with two ɛ-rings: lactucaxanthin. The product of the lettuce cDNA, similar in sequence to the Arabidopsis LCYe (77% amino acid identity), efficiently converted lycopene into the bicyclic ɛ-carotene in a heterologous Escherichia coli system. Regions of the lettuce and Arabidopsis ɛ-cyclases involved in the determination of ring number were mapped by analysis of chimeric ɛ-cyclases constructed by using an inverse PCR approach. A single amino acid was found to act as a molecular switch: lettuce LCYe mutant H457L added only one ɛ-ring to lycopene, whereas the complementary Arabidopsis LCYe mutant, L448H, added two ɛ-rings. An R residue in this position also yields a bi-ɛ-cyclase for both the lettuce and Arabidopsis enzymes. Construction and analysis of chimera of related enzymes with differing catalytic activities provide an informative approach that may be of particular utility for studying membrane-associated enzymes that cannot easily be crystallized or modeled to existing crystal structures. PMID:11226339

  8. Structural design and static analysis of a double-ring deployable truss for mesh antennas

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Guan, Fuling; Chen, Jianjun; Zheng, Yao

    2012-12-01

    This paper addresses the structural design, the deployment control design, the static analysis and the model testing of a new double-ring deployable truss that is intended for large mesh antennas. This deployable truss is a multi-DOF (degree-of-freedom), over-constrained mechanism. Two kinds of deployable basic elements were introduced, as well as a process to synthesise the structure of the deployable truss. The geometric equations were formulated to determine the length of each strut, including the effects of the joint size. A DOF evaluation showed that the mechanism requires two active cables and requires deployment control. An open-loop control system was designed to control the rotational velocities of two motors. The structural stiffness of the truss was assessed by static analysis that considered the effects of the constraint condition and the pre-stress of the passive cables. A 4.2-metre demonstration model of an antenna was designed and fabricated. The geometry and the deployment behaviour of the double-ring truss were validated by the experiments using this model.

  9. Predicted Structures of the Proton-Bound Membrane-Embedded Rotor Rings of the Saccharomyces cerevisiae and Escherichia coli ATP Synthases.

    PubMed

    Zhou, Wenchang; Leone, Vanessa; Krah, Alexander; Faraldo-Gómez, José D

    2017-04-20

    Recent years have witnessed a renewed interest in the ATP synthase as a drug target against human pathogens. Indeed, clinical, biochemical, and structural data indicate that hydrophobic inhibitors targeting the membrane-embedded proton-binding sites of the c-subunit ring could serve as last-resort antibiotics against multidrug resistant strains. However, because inhibition of the mitochondrial ATP synthase in humans is lethal, it is essential that these inhibitors be not only potent but also highly selective for the bacterial enzyme. To this end, a detailed understanding of the structure of this protein target is arguably instrumental. Here, we use computational methods to predict the atomic structures of the proton-binding sites in two prototypical c-rings: that of the ATP synthase from Saccharomyces cerevisiae, which is a model system for mitochondrial enzymes, and that from Escherichia coli, which can be pathogenic for humans. Our study reveals the structure of these binding sites loaded with protons and in the context of the membrane, that is, in the state that would mediate the recognition of a potential inhibitor. Both structures reflect a mode of proton coordination unlike those previously observed in other c-ring structures, whether experimental or modeled.

  10. A properly configured ring structure is critical for the function of the mitochondrial DNA recombination protein, Mgm101.

    PubMed

    Nardozzi, Jonathan D; Wang, Xiaowen; Mbantenkhu, MacMillan; Wilkens, Stephan; Chen, Xin Jie

    2012-10-26

    Mgm101 is a Rad52-type recombination protein of bacteriophage origin required for the repair and maintenance of mitochondrial DNA (mtDNA). It forms large oligomeric rings of ∼14-fold symmetry that catalyze the annealing of single-stranded DNAs in vitro. In this study, we investigated the structural elements that contribute to this distinctive higher order structural organization and examined its functional implications. A pair of vicinal cysteines, Cys-216 and Cys-217, was found to be essential for mtDNA maintenance. Mutations to the polar serine, the negatively charged aspartic and glutamic acids, and the hydrophobic amino acid alanine all destabilize mtDNA in vivo. The alanine mutants have an increased propensity of forming macroscopic filaments. In contrast, mutations to aspartic acid drastically destabilize the protein and result in unstructured aggregates with severely reduced DNA binding activity. Interestingly, the serine mutants partially disassemble the Mgm101 rings into smaller oligomers. In the case of the C216S mutant, a moderate increase in DNA binding activity was observed. By using small angle x-ray scattering analysis, we found that Mgm101 forms rings of ∼200 Å diameter in solution, consistent with the structure previously established by transmission electron microscopy. We also found that the C216A/C217A double mutant tends to form broken rings, which likely provide free ends for seeding the growth of the super-stable but functionally defective filaments. Taken together, our data underscore the importance of a delicately maintained ring structure critical for Mgm101 activity. We discuss a potential role of Cys-216 and Cys-217 in regulating Mgm101 function and the repair of damaged mtDNA under stress conditions.

  11. The fine structure of the Saturnian ring system

    NASA Technical Reports Server (NTRS)

    Houpis, H. L. F.; Mendis, D. A.

    1983-01-01

    A dust disk within a planetary magnetosphere constitutes a novel type of dust-ring current. Such an azimuthal current carrying dust disk is subject to the dusty plasma analog of the well known finite-resistivity 'tearing' mode instability in regular plasma current sheets, at long wavelengths. It is proposed that the presently observed fine ringlet of the Saturnian ring system is a relic of this process operating at cosmogonic times and breaking up the initial proto-ring (which may be regarded as an admixture of fine dust and plasma) into an ensemble of thin ringlets. It is shown that this instability develops at a rate that is many orders of magnitude faster than any other known instability, when the disk thickness reaches a value that is comparable to its present observed value.

  12. Voyager radio occultation by the Uranian rings: Structure, dynamics, and particle sizes. Ph.D. Thesis Final Technical Report

    NASA Technical Reports Server (NTRS)

    Gresh, Donna Leigh

    1990-01-01

    Diffraction of Voyager 2's 3.6 and 13 cm wavelength microwaves by the Uranian rings is removed through an inverse Fresnel transform filtering procedure that accommodates the significant eccentricity of the rings. Resulting 50 m resolution profiles at two observation longitudes: (1) reveal remarkably detailed and longitudinally varying structure, (2) provide eccentricity gradient profiles of Rings alpha, beta, and epsilon which bring into question current theoretical models for observed rigid precession, and (3) suggest that two possible unseen satellites may confine some of the very sharp edges observed via resonant interactions.

  13. Inorganic glass ceramic slip rings

    NASA Technical Reports Server (NTRS)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  14. Compact structure and non-Gaussian dynamics of ring polymer melts.

    PubMed

    Brás, Ana R; Goossen, Sebastian; Krutyeva, Margarita; Radulescu, Aurel; Farago, Bela; Allgaier, Jürgen; Pyckhout-Hintzen, Wim; Wischnewski, Andreas; Richter, Dieter

    2014-05-28

    We present a neutron scattering analysis of the structure and dynamics of PEO polymer rings with a molecular weight 2.5 times higher than the entanglement mass. The melt structure was found to be more compact than a Gaussian model would suggest. With increasing time the center of mass (c.o.m.) diffusion undergoes a transition from sub-diffusive to diffusive behavior. The transition time agrees well with the decorrelation time predicted by a mode coupling approach. As a novel feature well pronounced non-Gaussian behavior of the c.o.m. diffusion was found that shows surprising analogies to the cage effect known from glassy systems. Finally, the longest wavelength Rouse modes are suppressed possibly as a consequence of an onset of lattice animal features as hypothesized in theoretical approaches.

  15. Structure of the Z Ring-associated Protein, ZapD, Bound to the C-terminal Domain of the Tubulin-like Protein, FtsZ, Suggests Mechanism of Z Ring Stabilization through FtsZ Cross-linking.

    PubMed

    Schumacher, Maria A; Huang, Kuo-Hsiang; Zeng, Wenjie; Janakiraman, Anuradha

    2017-03-03

    Cell division in most bacteria is mediated by the tubulin-like FtsZ protein, which polymerizes in a GTP-dependent manner to form the cytokinetic Z ring. A diverse repertoire of FtsZ-binding proteins affects FtsZ localization and polymerization to ensure correct Z ring formation. Many of these proteins bind the C-terminal domain (CTD) of FtsZ, which serves as a hub for FtsZ regulation. FtsZ ring-associated proteins, ZapA-D (Zaps), are important FtsZ regulatory proteins that stabilize FtsZ assembly and enhance Z ring formation by increasing lateral assembly of FtsZ protofilaments, which then form the Z ring. There are no structures of a Zap protein bound to FtsZ; therefore, how these proteins affect FtsZ polymerization has been unclear. Recent data showed ZapD binds specifically to the FtsZ CTD. Thus, to obtain insight into the ZapD-CTD interaction and how it may mediate FtsZ protofilament assembly, we determined the Escherichia coli ZapD-FtsZ CTD structure to 2.67 Å resolution. The structure shows that the CTD docks within a hydrophobic cleft in the ZapD helical domain and adopts an unusual structure composed of two turns of helix separated by a proline kink. FtsZ CTD residue Phe-377 inserts into the ZapD pocket, anchoring the CTD in place and permitting hydrophobic contacts between FtsZ residues Ile-374, Pro-375, and Leu-378 with ZapD residues Leu-74, Trp-77, Leu-91, and Leu-174. The structural findings were supported by mutagenesis coupled with biochemical and in vivo studies. The combined data suggest that ZapD acts as a molecular cross-linking reagent between FtsZ protofilaments to enhance FtsZ assembly. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Alternative parallel ring protocols

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Foudriat, E. C.; Maly, Kurt J.; Kale, V.

    1990-01-01

    Communication protocols are know to influence the utilization and performance of communication network. The effect of two token ring protocols on a gigabit network with multiple ring structure is investigated. In the first protocol, a mode sends at most one message on receiving a token. In the second protocol, a mode sends all the waiting messages when a token is received. The behavior of these protocols is shown to be highly dependent on the number of rings as well as the load in the network.

  17. An evolving view of Saturn's dynamic rings.

    PubMed

    Cuzzi, J N; Burns, J A; Charnoz, S; Clark, R N; Colwell, J E; Dones, L; Esposito, L W; Filacchione, G; French, R G; Hedman, M M; Kempf, S; Marouf, E A; Murray, C D; Nicholson, P D; Porco, C C; Schmidt, J; Showalter, M R; Spilker, L J; Spitale, J N; Srama, R; Sremcević, M; Tiscareno, M S; Weiss, J

    2010-03-19

    We review our understanding of Saturn's rings after nearly 6 years of observations by the Cassini spacecraft. Saturn's rings are composed mostly of water ice but also contain an undetermined reddish contaminant. The rings exhibit a range of structure across many spatial scales; some of this involves the interplay of the fluid nature and the self-gravity of innumerable orbiting centimeter- to meter-sized particles, and the effects of several peripheral and embedded moonlets, but much remains unexplained. A few aspects of ring structure change on time scales as short as days. It remains unclear whether the vigorous evolutionary processes to which the rings are subject imply a much younger age than that of the solar system. Processes on view at Saturn have parallels in circumstellar disks.

  18. Optical fiber having wave-guiding rings

    DOEpatents

    Messerly, Michael J [Danville, CA; Dawson, Jay W [Livermore, CA; Beach, Raymond J [Livermore, CA; Barty, Christopher P. J. [Hayward, CA

    2011-03-15

    A waveguide includes a cladding region that has a refractive index that is substantially uniform and surrounds a wave-guiding region that has an average index that is close to the index of the cladding. The wave-guiding region also contains a thin ring or series of rings that have an index or indices that differ significantly from the index of the cladding. The ring or rings enable the structure to guide light.

  19. Insect-inspired wing actuation structures based on ring-type resonators

    NASA Astrophysics Data System (ADS)

    Bolsman, Caspar T.; Goosen, Johannes F. L.; van Keulen, Fred

    2008-03-01

    In this paper, we illustrate and study the opportunities of resonant ring type structures as wing actuation mechanisms for a flapping wing Micro Air Vehicle (MAV). Various design alternatives are presented and studied based on computational and physical models. Insects provide an excellent source of inspiration for the development of the wing actuation mechanisms for flapping wing MAVs. The insect thorax is a structure which in essence provides a mechanism to couple the wing muscles to the wings while offering weight reduction through application of resonance, using tailored elasticity. The resonant properties of the thorax are a very effective way to reducing the power expenditure of wing movement. The wing movement itself is fairly complex and is guided by a set of control muscles and thoracic structures which are present in proximity of the wing root. The development of flapping wing MAVs requires a move away from classical structures and actuators. The use of gears and rotational electric motors is hard to justify at the small scale. Resonant structures provide a large design freedom whilst also providing various options for actuation. The move away from deterministic mechanisms offers possibilities for mass reduction.

  20. Vibration characteristics of a steadily rotating slender ring

    NASA Technical Reports Server (NTRS)

    Lallman, F. J.

    1980-01-01

    Partial differential equations are derived to describe the structural vibrations of a uniform homogeneous ring which is very flexible because the radius is very large compared with the cross sectional dimensions. Elementary beam theory is used and small deflections are assumed in the derivation. Four sets of structural modes are examined: bending and compression modes in the plane of the ring; bending modes perpendicular to the plane of the ring; and twisting modes about the centroid of the ring cross section. Spatial and temporal characteristics of these modes, presented in terms of vibration frequencies and ratios between vibration amplitudes, are demonstrated in several figures. Given a sufficiently high rotational rate, the dynamics of the ring approach those of a vibrating string. In this case, the velocity of traveling wave in the material of the ring approaches in velocity of the material relative to inertial space, resulting in structural modes which are almost stationary in space.

  1. Ynamides in Ring Forming Transformations

    PubMed Central

    WANG, XIAO-NA; YEOM, HYUN-SUK; FANG, LI-CHAO; HE, SHUZHONG; MA, ZHI-XIONG; KEDROWSKI, BRANT L.; HSUNG, RICHARD P.

    2013-01-01

    Conspectus The ynamide functional group activates carbon-carbon triple bonds through an attached nitrogen atom that bears an electron-withdrawing group. As a result, the alkyne has both electrophilic and nucleophilic properties. Through the selection of the electron-withdrawing group attached to nitrogen chemists can modulate the electronic properties and reactivity of ynamides, making these groups versatile synthetic building blocks. The reactions of ynamides also lead directly to nitrogen-containing products, which provides access to important structural motifs found in natural products and molecules of medicinal interest. Therefore, researchers have invested increasing time and research in the chemistry of ynamides in recent years. This Account surveys and assesses new organic transformations involving ynamides developed in our laboratory and in others around the world. We showcase the synthetic power of ynamides for rapid assembly of complex molecular structures. Among the recent reports of ynamide transformations, ring-forming reactions provide a powerful tool for generating molecular complexity quickly. In addition to their synthetic utility, such reactions are mechanistically interesting. Therefore, we focus primarily on the cyclization chemistry of ynamides. This Account highlights ynamide reactions that are useful in the rapid synthesis of cyclic and polycyclic structural manifolds. We discuss the mechanisms active in the ring formations and describe representative examples that demonstrate the scope of these reactions and provide mechanistic insights. In this discussion we feature examples of ynamide reactions involving radical cyclizations, ring-closing metathesis, transition metal and non-transition metal mediated cyclizations, cycloaddition reactions, and rearrangements. The transformations presented rapidly introduce structural complexity and include nitrogen within, or in close proximity to, a newly formed ring (or rings). Thus, ynamides have emerged

  2. High-resolution imaging of Saturn's main rings during the Cassini Ring-Grazing Orbits and Grand Finale

    NASA Astrophysics Data System (ADS)

    Tiscareno, M. S.

    2017-12-01

    Cassini is ending its spectacular 13-year mission at Saturn with a two-part farewell, during which it has obtained the sharpest and highest-fidelity images ever taken of Saturn's rings. From December 2016 to April 2017, the spacecraft executed 20 near-polar orbits that passed just outside the outer edge of the main rings; these "Ring-Grazing Orbits" provided the mission's best viewing of the A and F rings and the outer B ring. From April to September 2017, the spacecraft is executing 22 near-polar orbits that pass between the innermost D ring and the planet's clouds; this "Grand Finale" provides the mission's best viewing of the C and D rings and the inner B ring. 1) Clumpy BeltsClumpy structure called "straw" was previously observed in parts of the main rings [Porco et al. 2005, Science]. New images show this structure with greater clarity. More surprisingly, new images reveal strong radial variations in the degree and character of clumpiness, which are probably an index for particle properties and interactions. Belts with different clumpiness characteristics are often adjacent to each other and not easily correlated with other ring characteristics. 2) PropellersA "propeller" is a local disturbance in the ring created by an embedded moon [Tiscareno et al. 2006, Nature; 2010, ApJL]. Cassini has observed two classes of propellers: small propellers that swarm in the "Propeller Belts" of the mid-A ring, and "Giant Propellers" whose individual orbits can be tracked in the outer A ring. Both are shown in unprecedented detail in new images. Targeted flybys of Giant Propellers were executed on both the lit and unlit sides of the ring (see figure), yielding enhanced ability to convert brightness to optical depth and surface density. 3) Impact Ejecta CloudsBeing a large and delicate system, Saturn's rings function as a detector of their planetary environment. Cassini images of impact ejecta clouds in the rings previously constrained the population of decimeter

  3. EXPERIMENTS WITH PLASMA RINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfven, H.; Lindberg, L.; Mitlid, P.

    1960-03-01

    The construction of a coaxial plasma gun is described. At its output end the gun is provided with a radial magnetic field, which is trapped by the plasma. The plasma from the gun is studied by photographic and magnetic methods. It is demonstrated that the gun produces magnetized plasma rings with the same basic structure as the rings obtained in toroidal pinch experiments. When the plasma rings are formed, the magnetic field lines from the gun break, a result which is of interest from a theoretical point of view. (auth)

  4. Chromatin Ring Formation at Plant Centromeres.

    PubMed

    Schubert, Veit; Ruban, Alevtina; Houben, Andreas

    2016-01-01

    We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution) was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants.

  5. Chromatin Ring Formation at Plant Centromeres

    PubMed Central

    Schubert, Veit; Ruban, Alevtina; Houben, Andreas

    2016-01-01

    We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution) was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants. PMID:26913037

  6. Saturn’s Ring Rain: Initial Estimates of Ring Mass Loss Rates

    NASA Astrophysics Data System (ADS)

    Moore, Luke; O'Donoghue, J.; Mueller-Wodarg, I.; Mendillo, M.

    2013-10-01

    We estimate rates of mass loss from Saturn’s rings based on ionospheric model reproductions of derived H3+ column densities. On 17 April 2011 over two hours of near-infrared spectral data were obtained of Saturn using the Near InfraRed Spectrograph (NIRSPEC) instrument on the 10-m Keck II telescope. The intensity of two bright H3+ rotational-vibrational emission lines was visible from nearly pole to pole, allowing low-latitude ionospheric emissions to be studied for the first time, and revealing significant latitudinal structure, with local extrema in one hemisphere being mirrored at magnetically conjugate latitudes in the opposite hemisphere. Even more striking, those minima and maxima mapped to latitudes of increased or increased density in Saturn’s rings, implying a direct ring-atmosphere connection in which charged water group particles from the rings are guided by magnetic field lines as they “rain” down upon the atmosphere. Water products act to quench the local ionosphere, and therefore modify the observed H3+ densities. Using the Saturn Thermosphere Ionosphere Model (STIM), a 3-D model of Saturn’s upper atmosphere, we derive the rates of water influx required from the rings in order to reproduce the observed H3+ column densities. As a unique pair of conjugate latitudes map to a specific radial distance in the ring plane, the derived water influxes can equivalently be described as rates of ring mass erosion as a function of radial distance in the ring plane, and therefore also allow for an improved estimate of the lifetime of Saturn’s rings.

  7. Serial imaging and structure-function correlates of high-density rings of fundus autofluorescence in retinitis pigmentosa.

    PubMed

    Robson, Anthony G; Tufail, Adnan; Fitzke, Fred; Bird, Alan C; Moore, Anthony T; Holder, Graham E; Webster, Andrew R

    2011-09-01

    To document the evolution and functional and structural significance of parafoveal rings of high-density fundus autofluorescence (AF) in patients with retinitis pigmentosa and preserved visual acuity. Fifty-two patients with nonsyndromic retinitis pigmentosa or Usher syndrome, who had a parafoveal ring of high-density AF and a visual acuity of 20/30 or better, were ascertained. All had international standard full-field electroretinography and pattern electroretinography. Autofluorescence imaging was repeated in 30 patients after periods of up to 9.3 years. Of the 52 patients, 35 underwent optical coherence tomography. Progressive constriction of the ring was detected in 17 patients. Ring radius reduced by up to 40% at a mean rate of between 0.8% and 15.8% per year. In 1 patient, a small ring was replaced by irregular AF; visual acuity deteriorated over the same period. There was a high correspondence between the lateral extent of the preserved optical coherence tomography inner segment/outer segment band and the diameter of the ring along the same optical coherence tomographic scan plane (slope, 0.9; r = 0.97; P < 0.005; n = 35) and between preserved inner segment/outer segment lamina and the pattern electroretinography P50 measure of macular function (R = 0.72; P < 0.005; n = 34). Rings of increased AF surround areas of preserved outer retina and preserved photopic function. Serial fundus AF may provide prognostic indicators for preservation of central acuity and potentially assist in the identification and evaluation of patients suitable for treatment aimed at preservation of remaining function.

  8. The Ring Structure of Wembo-Nyama (Eastern Kasai, R.D. Congo): A Possible Impact Crater in Central Africa

    NASA Astrophysics Data System (ADS)

    Monegato, G.; Massironi, M.; Martellato, E.

    2010-03-01

    The structure of Wembo-Nyama (Eastern Kasai, R.D. Congo) is a new ring structure found in Central Africa. We discuss the possibility of an impact origin, considering its geomorphological characteristics and the geology of the area.

  9. Macrozooplankton biomass in a warm-core Gulf Stream ring: Time series changes in size structure, taxonomic composition, and vertical distribution

    NASA Astrophysics Data System (ADS)

    Davis, Cabell S.; Wiebe, Peter H.

    1985-01-01

    Macrozooplankton size structure and taxonomic composition in warm-core ring 82B was examined from a time series (March, April, June) of ring center MOCNESS (1 m) samples. Size distributions of 15 major taxonomic groups were determined from length measurements digitized from silhouette photographs of the samples. Silhouette digitization allows rapid quantification of Zooplankton size structure and taxonomic composition. Length/weight regressions, determined for each taxon, were used to partition the biomass (displacement volumes) of each sample among the major taxonomic groups. Zooplankton taxonomic composition and size structure varied with depth and appeared to coincide with the hydrographic structure of the ring. In March and April, within the thermostad region of the ring, smaller herbivorous/omnivorous Zooplankton, including copepods, crustacean larvae, and euphausiids, were dominant, whereas below this region, larger carnivores, such as medusae, ctenophores, fish, and decapods, dominated. Copepods were generally dominant in most samples above 500 m. Total macrozooplankton abundance and biomass increased between March and April, primarily because of increases in herbivorous taxa, including copepods, crustacean larvae, and larvaceans. A marked increase in total macrozooplankton abundance and biomass between April and June was characterized by an equally dramatic shift from smaller herbivores (1.0-3.0 mm) in April to large herbivores (5.0-6.0 mm) and carnivores (>15 mm) in June. Species identifications made directly from the samples suggest that changes in trophic structure resulted from seeding type immigration and subsequent in situ population growth of Slope Water zooplankton species.

  10. High sensitivity plasmonic sensor using hybrid structure of graphene stripe combined with gold gap-ring

    NASA Astrophysics Data System (ADS)

    Du, Zhiyuan; Hu, Bin; Cyril, Planchon; Liu, Juan; Wang, Yongtian

    2017-10-01

    Local surface plasmonic resonance (LSPR) produced by metallic nano-structures is often sensitive to the refractive index of the surrounding media and can be applied for sensing. However, it often suffers from large line width caused by large plasmonic radiative damping, especially in the infrared (IR) frequencies, which reduces the sensitivity. Here we propose a hybrid structure consists of a graphene stripe and a gold gap-ring at short-IR frequencies (1-3 µm). Due to the low loss and high plasmonic confinement of graphene, LSPR line width of 6 nm is obtained. In addition, due to the strong coupling of the gold gap-ring with graphene stripe, the intensity of graphene LSPR is enhanced by 100 times. Simulation results show that the sensitivity of the sensor is ~1000 nm/RIU (refractive index unit) and the figure of merit (FoM) can reach up to 383.

  11. Use of Silica-Encapsulated Pseudomonas sp. Strain NCIB 9816-4 in Biodegradation of Novel Hydrocarbon Ring Structures Found in Hydraulic Fracturing Waters

    PubMed Central

    Aukema, Kelly G.; Kasinkas, Lisa; Aksan, Alptekin

    2014-01-01

    The most problematic hydrocarbons in hydraulic fracturing (fracking) wastewaters consist of fused, isolated, bridged, and spiro ring systems, and ring systems have been poorly studied with respect to biodegradation, prompting the testing here of six major ring structural subclasses using a well-characterized bacterium and a silica encapsulation system previously shown to enhance biodegradation. The direct biological oxygenation of spiro ring compounds was demonstrated here. These and other hydrocarbon ring compounds have previously been shown to be present in flow-back waters and waters produced from hydraulic fracturing operations. Pseudomonas sp. strain NCIB 9816-4, containing naphthalene dioxygenase, was selected for its broad substrate specificity, and it was demonstrated here to oxidize fundamental ring structures that are common in shale-derived waters but not previously investigated with this or related enzymes. Pseudomonas sp. NCIB 9816-4 was tested here in the presence of a silica encasement, a protocol that has previously been shown to protect bacteria against the extremes of salinity present in fracking wastewaters. These studies demonstrate the degradation of highly hydrophobic compounds by a silica-encapsulated model bacterium, demonstrate what it may not degrade, and contribute to knowledge of the full range of hydrocarbon ring compounds that can be oxidized using Pseudomonas sp. NCIB 9816-4. PMID:24907321

  12. Oxygen Abundances in the Rings of Polar-Ring Galaxies

    NASA Astrophysics Data System (ADS)

    Radtke, I. R.; Eskridge, P. B.; Pogge, R. W.

    2003-05-01

    Polar ring galaxies (PRGs) are typically early-type (S0 or E) galaxies surrounded by rings of gas, dust, and stars orbiting nearly perpendicular to the principle plane of the host galaxy (Whitmore et al. 1990 AJ 100 1489). Given that PRGs have two separate, perpendicular axes of rotation, it is clear on dynamical grounds that PRGs are the products of merger events between two galaxies, but are observed in a state where two distinct kinematic and morphological structures are still apparent. As such, they present a unique opportunity to study merger events in systems where the debris is not confused with material from the host. Our understanding of the relative importance of polar ring systems in the overall process of galaxy evolution is confounded by our lack of knowledge regarding the typical lifetimes and evolutionary histories of polar rings. A crucial factor for understanding the formation and evolution of PRGs is information regarding the elemental abundances of the ring material. Polar rings are typically rich in {\\protectH 2} regions. Optical spectroscopy of these {\\protectH 2} regions can tell us their density, temperature, and oxygen abundance. Our earlier work (Eskridge & Pogge 1997 ApJ 486 259) revealed roughly Solar oxygen abundances for {\\protectH 2} regions in the polar ring of NGC 2685. We have extended this project, and now have spectra for six PRGs. Analysis of the data for II Zw 73 and UGC 7576 reveal the polar rings of these galaxies to have {\\protectH 2} region oxygen abundances in the range 0.3 to 0.6 Solar, substantially less than found for NGC 2685. Abundances in this range are much easier to explain with conventional models of chemical enrichment and polar ring formation. We shall present results for our full sample. Taken as a whole, this sample will provide a clear foundation for the typical chemical enrichment patterns in polar rings, and thus provide a clearer understanding of the formation and evolution of these curious objects. We

  13. Simulating the Smallest Ring World of Chariklo

    NASA Astrophysics Data System (ADS)

    Michikoshi, Shugo; Kokubo, Eiichiro

    2017-03-01

    A ring system consisting of two dense narrow rings has been discovered around Centaur Chariklo. The existence of these rings around a small object poses various questions about their origin, stability, and lifetime. In order to understand the nature of Chariklo’s rings, we perform global N-body simulations of the self-gravitating collisional particle rings for the first time. We find that Chariklo should be denser than the ring material in order to avoid the rapid diffusion of the rings. If Chariklo is denser than the ring material, fine spiral structures called self-gravity wakes occur in the inner ring. These wakes accelerate the viscous spreading of the ring significantly and typically occur on timescales of about 100 {years} for m-sized ring particles, which is considerably shorter than the timescales suggested in previous studies. The existence of these narrow rings implies smaller ring particles or the existence of shepherding satellites.

  14. The Crossings of Saturn Ring Plane by the Earth in 1995: Ring Thickness

    NASA Astrophysics Data System (ADS)

    Poulet, François; Sicardy, Bruno; Dumas, Christophe; Jorda, Laurent; Tiphène, Didier

    2000-05-01

    The crossings of Saturn's ring plane by Earth were observed in the near infrared on May 22 and August 10, 1995, from the 2.2-m telescope of the University of Hawaii, the 2-m telescope at Pic du Midi, France, and with the Adonis adaptive optics camera at the 3.6-m telescope of the European Southern Observatory in Chile. Images from the Hubble Space Telescope, obtained in August 1995, are also reanalyzed. The radial brightness profiles of the rings indicate that the outer and usually faint F ring dominates the edge-on brightness of the system, thus hiding the vertical structure of the main rings within a few hours around the ring plane crossing. The photometric behaviors of the A, B, and C rings and of the Cassini Division are analyzed, using a radiative transfer code which includes the illuminations by the Sun and by the planet. The F ring is modeled as a physically thick ribbon of height H, composed of large particles embedded in dust of fractional optical depth f. The observed profiles, combined with previous results, can be explained if the F ring is both optically thick ( radial optical depth ˜0.20) and physically thick ( H=21±4 km). We suggest that this vertical distribution results from the interactions between ring particles and shepherding satellites and/or from gravitational stirring by large bodies. The dust particles dominate the F ring's photometric behavior even in backscattered light ( f>0.80). Constraints on the particle properties of the other rings are also derived.

  15. Saturn's Ring: Pre-Cassini Status and Mission Goals

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeff N.

    1999-01-01

    In November 1980, and again in August 1981, identical Voyager spacecraft flew through the Saturn system, changing forever the way we think about planetary rings. Although Saturn's rings had been the only known ring system for three centuries, a ring system around Uranus had been discovered by stellar occultations from Earth in 1977, and the nearly transparent ring of Jupiter was imaged by Voyager in 1979 (the presence of material there had been inferred from charged particle experiments on Pioneer 10 and 11 several years earlier). While Saturn had thus temporarily lost its uniqueness as having the only ring system, with Voyager it handily recaptured the role of having the most fascinating one. The Voyager breakthroughs included spiral density and bending waves such as cause galactic structure; ubiquitous fine-scale radial 'irregular' structure, with the appearance of record-grooves; regional and local variations in particle color; complex, azimuthally variable ring structure; empty gaps in the rings, some containing very regular, sharp-edged, elliptical rings and one containing both a small moonlet and incomplete arcs of dusty material; and shadowy 'spokes' that flicker across the main rings. One of the paradigm shifts of this period was the realization that many aspects of planetary rings, and even the ring systems themselves, could be 'recent' on geological timescales. These early results are reviewed and summarized in the Arizona Space Science series volumes 'Saturn'. (An excellent review of ring dynamics at a formative stage is by Goldreich and Tremaine.) From the mid 1980's to the time of this writing, progress has been steady, while at a less heady pace, and some of the novel ring properties revealed by Voyager 1 and 2 are beginning to be better understood. It is clearly impossible to cite, much less review, every advance over the last decade; however, below we summarize the main advances in understanding of Saturn's rings since the mid 1980's, in the context

  16. Study protocol: Audit and Best Practice for Chronic Disease Extension (ABCDE) Project.

    PubMed

    Bailie, Ross; Si, Damin; Connors, Christine; Weeramanthri, Tarun; Clark, Louise; Dowden, Michelle; O'Donohue, Lynette; Condon, John; Thompson, Sandra; Clelland, Nikki; Nagel, Tricia; Gardner, Karen; Brown, Alex

    2008-09-17

    A growing body of international literature points to the importance of a system approach to improve the quality of care in primary health care settings. Continuous Quality Improvement (CQI) concepts and techniques provide a theoretically coherent and practical way for primary care organisations to identify, address, and overcome the barriers to improvements. The Audit and Best Practice for Chronic Disease (ABCD) study, a CQI-based quality improvement project conducted in Australia's Northern Territory, has demonstrated significant improvements in primary care service systems, in the quality of clinical service delivery and in patient outcomes related to chronic illness care. The aims of the extension phase of this study are to examine factors that influence uptake and sustainability of this type of CQI activity in a variety of Indigenous primary health care organisations in Australia, and to assess the impact of collaborative CQI approaches on prevention and management of chronic illness and health outcomes in Indigenous communities. The study will be conducted in 40-50 Indigenous community health centres from 4 States/Territories (Northern Territory, Western Australia, New South Wales and Queensland) over a five year period. The project will adopt a participatory, quality improvement approach that features annual cycles of: 1) organisational system assessment and audits of clinical records; 2) feedback to and interpretation of results with participating health centre staff; 3) action planning and goal setting by health centre staff to achieve system changes; and 4) implementation of strategies for change. System assessment will be carried out using a System Assessment Tool and in-depth interviews of key informants. Clinical audit tools include two essential tools that focus on diabetes care audit and preventive service audit, and several optional tools focusing on audits of hypertension, heart disease, renal disease, primary mental health care and health promotion

  17. Study protocol: Audit and Best Practice for Chronic Disease Extension (ABCDE) Project

    PubMed Central

    Bailie, Ross; Si, Damin; Connors, Christine; Weeramanthri, Tarun; Clark, Louise; Dowden, Michelle; O'Donohue, Lynette; Condon, John; Thompson, Sandra; Clelland, Nikki; Nagel, Tricia; Gardner, Karen; Brown, Alex

    2008-01-01

    Background A growing body of international literature points to the importance of a system approach to improve the quality of care in primary health care settings. Continuous Quality Improvement (CQI) concepts and techniques provide a theoretically coherent and practical way for primary care organisations to identify, address, and overcome the barriers to improvements. The Audit and Best Practice for Chronic Disease (ABCD) study, a CQI-based quality improvement project conducted in Australia's Northern Territory, has demonstrated significant improvements in primary care service systems, in the quality of clinical service delivery and in patient outcomes related to chronic illness care. The aims of the extension phase of this study are to examine factors that influence uptake and sustainability of this type of CQI activity in a variety of Indigenous primary health care organisations in Australia, and to assess the impact of collaborative CQI approaches on prevention and management of chronic illness and health outcomes in Indigenous communities. Methods/design The study will be conducted in 40–50 Indigenous community health centres from 4 States/Territories (Northern Territory, Western Australia, New South Wales and Queensland) over a five year period. The project will adopt a participatory, quality improvement approach that features annual cycles of: 1) organisational system assessment and audits of clinical records; 2) feedback to and interpretation of results with participating health centre staff; 3) action planning and goal setting by health centre staff to achieve system changes; and 4) implementation of strategies for change. System assessment will be carried out using a System Assessment Tool and in-depth interviews of key informants. Clinical audit tools include two essential tools that focus on diabetes care audit and preventive service audit, and several optional tools focusing on audits of hypertension, heart disease, renal disease, primary mental

  18. The new wave-ring helical (WRH) slow-wave structure for traveling wave tube amplifiers

    NASA Astrophysics Data System (ADS)

    Panahi, Nasser; Saviz, S.; Ghorannevis, M.

    2017-12-01

    In this paper, the new slow-wave structure called wave-ring helix to enhance the power of the traveling wave tubes is introduced. In this new structure, without increasing the length and radius of the helix, the wave motion path can be increased to radiofrequency wave in phase with the electron beam. The results show that in the special frequency range the output power and gain are greater than conventional helix. In this paper, optimization results are presented in cold and hot tests on the new structure. The software CST is used in S-band frequency range.

  19. Electro-optical hybrid slip ring

    NASA Astrophysics Data System (ADS)

    Hong, En

    2005-11-01

    The slip ring is a rotary electrical interface, collector, swivel or rotary joint. It is a physical system that can perform continuous data transfer and data exchange between a stationary and a rotating structure. A slip ring is generally used to transfer data or power from an unrestrained, continuously rotating electro-mechanical system in real-time, thereby simplifying operations and eliminating damage-prone wires dangling from moving joints. Slip rings are widely used for testing, evaluating, developing and improving various technical equipment and facilities with rotating parts. They are widely used in industry, especially in manufacturing industries employing turbo machinery, as in aviation, shipbuilding, aerospace, defense, and in precise facilities having rotating parts such as medical Computerized Tomography (CT) and MRI scanners and so forth. Therefore, any improvement in slip ring technology can impact large markets. Research and development in this field will have broad prospects long into the future. The goal in developing the current slip ring technology is to improve and increase the reliability, stability, anti-interference, and high data fidelity between rotating and stationary structures. Up to now, there have been numerous approaches used for signal and data transfer utilizing a slip ring such as metal contacts, wires, radio transmission, and even liquid media. However, all suffer from drawbacks such as data transfer speed limitations, reliability, stability, electro-magnetic interference and durability. The purpose of the current research is to break through these basic limitations using an optical solution, thereby improving performance in current slip ring applications. This dissertation introduces a novel Electro-Optical Hybrid Slip Ring technology, which makes "through the air" digital-optical communication between stationary and rotating systems a reality with high data transfer speed, better reliability and low interference susceptibility

  20. Z ring as executor of bacterial cell division.

    PubMed

    Dajkovic, Alex; Lutkenhaus, Joe

    2006-01-01

    It has become apparent that bacteria possess ancestors of the major eukaryotic cytoskeletal proteins. FtsZ, the ancestral homologue of tubulin, assembles into a cytoskeletal structure associated with cell division, designated the Z ring. Formation of the Z ring represents a major point of both spatial and temporal regulation of cell division. Here we discuss findings concerning the structure and the formation of the ring as well as its spatial and temporal regulation.

  1. The Rings of Saturn

    NASA Astrophysics Data System (ADS)

    Cuzzi, J. N.; Filacchione, G.; Marouf, E. A.

    2018-03-01

    One could become an expert on Saturn's iconic rings pretty easily in the early 1970s, as very little was known about them beyond the distinction between the A, B, and C rings, and the Cassini Division or "gap" between rings A and B (Alexander, 1962; Bobrov, 1970). Water ice was discovered spectroscopically on the ring particle surfaces, and radar and microwave emission observations proved that the particles must be centimeters to meters in size, consisting primarily, not just superficially, of water ice (Pollack, 1975). While a 2:1 orbital resonance with Mimas had long been suspected of having something to do with the Cassini Division, computers of the time were unable to model the subtle dynamical effects that we now know to dominate ring structure. This innocent state of affairs was exploded by the Voyager 1 and 2 encounters in 1980 and 1981. Spectacular images revealed filigree structure and odd regional color variations, and exquisitely detailed radial profiles of fluctuating particle abundance were obtained from the first stellar and radio occultations, having resolution almost at the scale of single particles. Voyager-era understanding was reviewed by Cuzzi et al. (1984) and Esposito et al. (1984). While the Voyager data kept ring scientists busy for decades, planning which led to the monumentally successful NASA-ESA-ASI Cassini mission, which arrived in 2004, had been under way even before Voyager got to Saturn. A review of pre-Cassini knowledge of Saturn's Rings can be found in Orton et al. (2009). This chapter will build on recent topical and process-specific reviews that treat the gamut of ring phenomena and its underlying physics in considerable detail (Colwell et al., 2009; Cuzzi et al., 2009; Horányi et al., 2009; Schmidt et al., 2009; Esposito, 2010; Tiscareno, 2013b; Esposito, 2014). We will follow and extend the general organization of Cuzzi et al. (2010), the most recent general discussion of Saturn's rings. For brevity and the benefit of the

  2. A Ring Construction Using Finite Directed Graphs

    ERIC Educational Resources Information Center

    Bardzell, Michael

    2012-01-01

    In this paper we discuss an interesting class of noncommutative rings which can be constructed using finite directed graphs. This construction also creates a vector space. These structures provide undergraduate students connections between ring theory and graph theory and, among other things, allow them to see a ring unity element that looks quite…

  3. Uranus rings and two moons

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Voyager 2 has discovered two 'shepherd' satellites associated with the rings of Uranus. The two moons -- designated 1986U7 and 1986U8 -- are seen here on either side of the bright epsilon ring; all nine of the known Uranian rings are visible. The image was taken Jan. 21, 1986, at a distance of 4.1 million kilometers (2.5 million miles) and resolution of about 36 km (22 mi). The image was processed to enhance narrow features. The epsilon ring appears surrounded by a dark halo as a result of this processing; occasional blips seen on the ring are also artifacts. Lying inward from the epsilon ring are the delta, gamma and eta rings; then the beta and alpha rings; and finally the barely visible 4, 5 and 6 rings. The rings have been studied since their discovery in 1977, through observations of how they diminish the light of stars they pass in front of. This image is the first direct observation of all nine rings in reflected sunlight. They range in width from about 100 km (60 mi) at the widest part of the epsilon ring to only a few kilometers for most of the others. The discovery of the two ring moons 1986U7 and 1986U8 is a major advance in our understanding of the structure of the Uranian rings and is in good agreement with theoretical predictions of how these narrow rings are kept from spreading out. Based on likely surface brightness properties, the moons are of roughly 2O- and 3O-km diameter, respectively. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.

  4. Geology, structure, and statistics of multi-ring basins on Mars

    NASA Technical Reports Server (NTRS)

    Schultz, Richard A.; Frey, Herbert V.

    1990-01-01

    Available data on Martian multi-ring basins were compiled and evaluated using the new 1:15 million scale geologic maps of Mars and global topography was revised as base maps. Published center coordinates and ring diameters of Martian basins were plotted by computer and superimposed onto the base maps. In many cases basin centers or ring diameters or both had to be adjusted to achieve a better fit to the revised maps. It was also found that additional basins can explain subcircular topographic lows as well as map patterns of old Noachian materials, volcanic plains units, and channels in the Tharsis region.

  5. Beckmann rearrangement within the ring C of oleanolic acid lactone: Synthesis, structural study and reaction mechanism analysis

    NASA Astrophysics Data System (ADS)

    Froelich, Anna; Bednarczyk-Cwynar, Barbara; Zaprutko, Lucjusz; Gzella, Andrzej

    2017-05-01

    Synthesis, spectral and X-ray analysis of three compounds, i.e. 3β-acetoxy-12-hydroxyimino-18β-oleanan-28,13β-olide (substrate) and 3β-acetoxy-12-nitrile-12,13-seco-15(14 → 13)-abeoolean-14(27)-en-28,13β-olide and 3β-acetoxy-12-oxo-12a-aza-C-homoolean-13(18)-en-28-oic acid (Beckmann rearrangement reaction products) are described. Structural analysis revealed that the oxime group in the ring C in substrate molecule had an E-configuration. The nitrile product with retained lactone group was a result of major transformations within rings C and D of oleanane skeleton. In lactam product free carboxyl group and a double bond in ring D instead of lactone system were formed in Beckmann rearrangement reaction.

  6. Primary structure of the hemoglobin alpha-chain of rose-ringed parakeet (Psittacula krameri).

    PubMed

    Islam, A; Beg, O U; Persson, B; Zaidi, Z H; Jörnvall, H

    1988-10-01

    The structure of the hemoglobin alpha-chain of Rose-ringed Parakeet was determined by sequence degradations of the intact subunit, the CNBr fragments, and peptides obtained by digestion with staphylococcal Glu-specific protease and trypsin. Using this analysis, the complete alpha-chain structure of 21 avian species is known, permitting comparisons of the protein structure and of avian relationships. The structure exhibits differences from previously established avian alpha-chains at a total of 61 positions, five of which have residues unique to those of the parakeet (Ser-12, Gly-65, Ser-67, Ala-121, and Leu-134). The analysis defines hemoglobin variation within an additional avian order (Psittaciformes), demonstrates distant patterns for evaluation of relationships within other avian orders, and lends support to taxonomic conclusions from molecular data.

  7. A kinematic determination of the structure of the double ring planetary nebula NGC 2392, the Eskimo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'dell, C.R.; Weiner, L.D.; Chu, Yoyhua

    Slit spectra and existing velocity cube data have been used to determine the structure of the double ring PN NGC 2392. The inner shell is a stellar wind-sculpted prolate spheroid with a ratio of axes of 2:1 and the approaching end of the long axis pointed 20 deg from the line of sight in P.A. = 200 deg. The outer ring is caused by an outer disk with density dropping off with distance from the central star and with distance from its plane, which is the same as the equatorial band of high density in the inner shell. The outermore » disk contains a ring of higher density knots at a distance of 16 arcsec and is losing material through free expansion, forming an outer envelope of increasing velocity. Forbidden S II spectra are used to determine the densities in all of the major regions of the nebula. It is argued that the filamentary cores at the centers of the knots seen in the outer ring originate in the sublimation of bodies formed at the same time as the parent star. 26 refs.« less

  8. Axial strain and temperature sensing characteristics of the single-coreless-single mode fiber structure-based fiber ring laser

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-bo; Yin, Bin; Liang, Xiao; Bai, Yunlong; Tan, Zhongwei; Liu, Shuo; Li, Yang; Liu, Yan; Jian, Shuisheng

    2014-06-01

    This paper experimentally demonstrated a singlemode-coreless-singlemode (SCS) fiber structure-based fiber ring cavity laser for strain and temperature measurement. The basis of the sensing system is the multimodal interference occurs in coreless fiber, and the transmission spectrum is sensitive to the ambient perturbation. In this sensing system, the SCS fiber structure not only acts as the sensing head of the sensor but also the band-pass filter of the ring laser. Blue shift with strain sensitivity of ˜ -2 pm/μɛ ranging from 0 to 730 μɛ and red shift with temperature sensitivity of ˜ 11 pm/°C ranging from 5 to 75 °C have been achieved. Experimental results also show the proposal has great potential in using long-distance operation. The fiber ring laser sensing system has a optical signal to noise ratio (OSNR) more than 50 and 3 dB bandwidth less than 0.05 nm. The result shows that the coreless fiber has no improvement of the temperature and axial strain sensitivity. However, compared to the common singlemode-multimode-singlemode fiber structure sensors, the laser sensing system has the additional advantages of high OSNR, high intensity and narrow 3 dB bandwidth, and thus improves the accuracy.

  9. Physical studies of the planetary rings

    NASA Technical Reports Server (NTRS)

    Ip, W.-H.

    1980-01-01

    In this review paper, the physical properties of the Saturnian and Uranian rings as derived from ground-based observations are first discussed. Focus is then shifted to the study of the orbital dynamics of the ring particles. Numerical simulations of the evolutionary history of a system of colliding particles in differential rotation together with theoretical modeling of the inelastic collision processes are surveyed. In anticipation of the information returned from in situ measurements by space probes, interactions of the planetary rings with the interplanetary meteoroids and planetary magnetospheres are briefly considered. Finally, models of planetary ring origin are examined. In this connection, some recent work on the satellite resonant perturbation effects on the ring structure are also touched upon.

  10. Assembly of the MreB-associated cytoskeletal ring of Escherichia coli.

    PubMed

    Vats, Purva; Shih, Yu-Ling; Rothfield, Lawrence

    2009-04-01

    The Escherichia coli actin homologue MreB is part of a helical cytoskeletal structure that winds around the cell between the two poles. It has been shown that MreB redistributes during the cell cycle to form circumferential ring structures that flank the cytokinetic FtsZ ring and appear to be associated with division and segregation of the helical cytoskeleton. We show here that the MreB cytoskeletal ring also contains the MreC, MreD, Pbp2 and RodA proteins. Assembly of MreB, MreC, MreD and Pbp2 into the ring structure required the FtsZ ring but no other known components of the cell division machinery, whereas assembly of RodA into the cytoskeletal ring required one or more additional septasomal components. Strikingly, MreB, MreC, MreD and RodA were each able to independently assemble into the cytoskeletal ring and coiled cytoskeletal structures in the absence of any of the other ring components. This excludes the possibility that one or more of these proteins acts as a scaffold for incorporation of the other proteins into these structures. In contrast, incorporation of Pbp2 required the presence of MreC, which may provide a docking site for Pbp2 entry.

  11. The contraceptive vaginal ring, NuvaRing(®), a decade after its introduction.

    PubMed

    Roumen, Frans J M E; Mishell, Daniel R

    2012-12-01

    To review the clinical experience with the contraceptive vaginal ring (CVR, NuvaRing(®)) since its introduction over ten years ago. The literature was searched on efficacy, cycle control, safety, user preference and satisfaction of the CVR in comparison with combined oral contraceptives (COCs) and the patch, with special attention to recent developments. The ring has the same working mechanism and contraindications as COCs. Serum levels of steroids are steadier, whereas oestrogenic exposure is lower. Contraceptive efficacy is similar, as are metabolic changes. Cycle control is better, and compliance and continuation rates are equal or higher. Oestrogen-related adverse symptoms appear to be fewer, but reports on the incidence of venous thrombosis are conflicting. Expulsion of the ring is reported by 4% to 20% of women. Local adverse events are the main reason for discontinuation. Acceptability is as high as with COCs and, after structured counselling, the ring is preferred by many women to the pill or the patch. Efficacy of the CVR, and the metabolic changes and adverse events it elicits, are generally comparable to those of COCs, yet oestrogenic exposure is lower and cycle control superior. After counselling, the ring is preferred to the pill by many women.

  12. An evolving view of Saturn’s dynamic rings

    USGS Publications Warehouse

    Cuzzi, J.N.; Burns, J.A.; Charnoz, S.; Clark, Roger N.; Colwell, J.E.; Dones, L.; Esposito, L.W.; Filacchione, G.; French, R.G.; Hedman, M.M.; Kempf, S.; Marouf, E.A.; Murray, C.D.; Nicholson, P.D.; Porco, C.C.; Schmidt, J.; Showalter, M.R.; Spilker, L.J.; Spitale, J.; Srama, R.; Srem evi, M.; Tiscareno, M.S.; Weiss, J.

    2010-01-01

    We review our understanding of Saturn’s rings after nearly 6 years of observations by the Cassini spacecraft. Saturn’s rings are composed mostly of water ice but also contain an undetermined reddish contaminant. The rings exhibit a range of structure across many spatial scales; some of this involves the interplay of the fluid nature and the self-gravity of innumerable orbiting centimeter- to meter-sized particles, and the effects of several peripheral and embedded moonlets, but much remains unexplained. A few aspects of ring structure change on time scales as short as days. It remains unclear whether the vigorous evolutionary processes to which the rings are subject imply a much younger age than that of the solar system. Processes on view at Saturn have parallels in circumstellar disks.

  13. Model of the Human Eye Based on ABCD Matrix

    NASA Astrophysics Data System (ADS)

    González, G. Díaz; Castillo, M. David Iturbe

    2008-04-01

    At the moment several models of the human eye exist, nevertheless the gradient index models of the human lens (crystalline) have received little attention in optometry and vision sciences, although they consider how the refractive index and the refracting power can change with the accommodation. On the other hand, in study fields like ophthalmology and optometry, exist cases where there is a lack of information about the factors that influence the change of refractive power and therefore the focal length of the eye. By such reason, in this paper we present a model of the human eye based on the ABCD matrix in order to describe the propagation of light rays, that can be understood by professional people in optics, ophthalmology and optometry, and the dispersions of the different ocular mediums are taken into account,. The aim of the model is to obtain data about the refractive power of the eye under different considerations, such as: changes in wavelength, radius of curvature and thicknesses of the ocular mediums. We present results of simulations in Matlab of our model, assuming that the object is punctual and is placed to a certain distance of the eye, and considering at the beginning to the crystalline like a medium with fixed refractive index, and after like a gradient lens. By means of graphs, we show the total refractive power of the eye and its form and type of dependence with respect to variations in radius of curvature and thicknesses of the cornea and crystalline, as well as variations in the thickness of the previous and later cameras.

  14. Peak-ring structure and kinematics from a multi-disciplinary study of the Schrödinger impact basin

    PubMed Central

    Kring, David A.; Kramer, Georgiana Y.; Collins, Gareth S.; Potter, Ross W. K.; Chandnani, Mitali

    2016-01-01

    The Schrödinger basin on the lunar farside is ∼320 km in diameter and the best-preserved peak-ring basin of its size in the Earth–Moon system. Here we present spectral and photogeologic analyses of data from the Moon Mineralogy Mapper instrument on the Chandrayaan-1 spacecraft and the Lunar Reconnaissance Orbiter Camera (LROC) on the LRO spacecraft, which indicates the peak ring is composed of anorthositic, noritic and troctolitic lithologies that were juxtaposed by several cross-cutting faults during peak-ring formation. Hydrocode simulations indicate the lithologies were uplifted from depths up to 30 km, representing the crust of the lunar farside. Through combining geological and remote-sensing observations with numerical modelling, we show that a Displaced Structural Uplift model is best for peak rings, including that in the K–T Chicxulub impact crater on Earth. These results may help guide sample selection in lunar sample return missions that are being studied for the multi-agency International Space Exploration Coordination Group. PMID:27762265

  15. Self-Consistent Field Theory of Gaussian Ring Polymers

    NASA Astrophysics Data System (ADS)

    Kim, Jaeup; Yang, Yong-Biao; Lee, Won Bo

    2012-02-01

    Ring polymers, being free from chain ends, have fundamental importance in understanding the polymer statics and dynamics which are strongly influenced by the chain end effects. At a glance, their theoretical treatment may not seem particularly difficult, but the absence of chain ends and the topological constraints make the problem non-trivial, which results in limited success in the analytical or semi-analytical formulation of ring polymer theory. Here, I present a self-consistent field theory (SCFT) formalism of Gaussian (topologically unconstrained) ring polymers for the first time. The resulting static property of homogeneous and inhomogeneous ring polymers are compared with the random phase approximation (RPA) results. The critical point for ring homopolymer system is exactly the same as the linear polymer case, χN = 2, since a critical point does not depend on local structures of polymers. The critical point for ring diblock copolymer melts is χN 17.795, which is approximately 1.7 times of that of linear diblock copolymer melts, χN 10.495. The difference is due to the ring structure constraint.

  16. Application of combinatorial biocatalysis for a unique ring expansion of dihydroxymethylzearalenone.

    PubMed

    Rich, Joseph O; Budde, Cheryl L; McConeghey, Luke D; Cotterill, Ian C; Mozhaev, Vadim V; Singh, Sheo B; Goetz, Michael A; Zhao, Annie; Michels, Peter C; Khmelnitsky, Yuri L

    2009-06-01

    Combinatorial biocatalysis was applied to generate a diverse set of dihydroxymethylzearalenone analogs with modified ring structure. In one representative chemoenzymatic reaction sequence, dihydroxymethylzearalenone was first subjected to a unique enzyme-catalyzed oxidative ring opening reaction that creates two new carboxylic groups on the molecule. These groups served as reaction sites for further derivatization involving biocatalytic ring closure reactions with structurally diverse bifunctional reagents, including different diols and diamines. As a result, a library of cyclic bislactones and bislactams was created, with modified ring structures covering chemical space and structure activity relationships unattainable by conventional synthetic means.

  17. Cassini First Diametric Radio Occultation of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Marouf, E.; French, R.; Rappaport, N.; Kliore, A.; Flasar, M.; Nagy, A.; Ambrosini, R.; McGhee, C.; Schinder, P.; Anabtawi, A.; Barbinis, E.; Goltz, G.; Thomson, F.; Wong, K.

    2005-05-01

    We present preliminary results expected from the first planned Cassini radio occultation observation of Saturn's rings, to be conducted on May 3rd, 2005. The path of Cassini as seen from Earth (the occultation track) has been designed to cross the rings from the west to the east ansa almost diametrically, allowing for occultation of all major ring features at two widely separated longitudes (about 180 deg apart). The duration of the geometric occultation is about 1.5 hours on each side. During the occultation, Cassini transmits through the rings three coherent monochromatic radio signals of wavelength 0.94, 3.6, and 13 cm (Ka-, X-, and S-band respectively), a capability unique to Cassini. The perturbed signals received at the Earth are recorded at the NASA DSN complexes at Goldstone and Canberra. Both direct and forward-scattered components of the signal may be identified in spectrograms of the received signals. The time history of the extinction of the direct signal is expected to yield high-spatial-resolution optical depth and phase shift profiles of ring structure. The timing of the occultation was optimized to allow probing the rings when the ring-opening-angle B (the angle between the line-of-sight and the ring plane) is relatively large (B = 23 deg), hence maximizing chances of measuring for the first time the structure of the relatively optically thick Ring B. In a similar experiment by Voyager in 1980, excessive signal attenuation along the long path within the nearly closed rings (B = 5.9 deg) limited the utility of the observations in relatively thick ring regions, in particular the main Ring B. For the Cassini optimized occultation geometry, a large B, slow radial velocity along the occultation track, and much improved phase stability of the reference ultrastable oscillator (USO) on board Cassini combine to promise achievable radial resolution approaching 100 m over a good fraction of the rings. Measurement of the amplitude and phase of the diffracted

  18. Dynamic apical surface rings in superficial layer cells of koi Cyprinus carpio scale epidermis.

    PubMed

    DePasquale, J A

    2016-09-01

    This study examined the novel ring-shaped structures found in the apical surface of individual cells of the scale epidermis of koi Cyprinus carpio. These apical rings are highly dynamic structures with lifetimes ranging from a few to several minutes. While several ring forms were observed, the predominant ring morphology is circular or oval. Two distinct ring forms were identified and designated type I and type II. Type I rings have a well-defined outer border that encircles the surface microridges. Type II rings are smooth-surfaced, dinner-plate-like structures with membranous folds or compressed microridges in the centre. Type II rings appear less frequently than type I rings. Type I rings form spontaneously, arising from swollen or physically interrupted microridges but without initially perturbing the encircled microridges. After persisting for up to several minutes the ring closes in a centripetal movement to form a circular or irregular-shaped structure, the terminal disc. The terminal disc eventually disappears, leaving behind a submembranous vesicle-like structure, the terminal body. Type I rings can undergo multiple cycles of formation and closing. Recycling epidermal apical rings form through centrifugal expansion from the terminal disc followed by apparent contraction back to the disc structure, whereupon the cycle may repeat or cease. The findings demonstrate a novel skin surface structure in fishes and are discussed with respect to communication with the external aqueous environment. © 2016 The Fisheries Society of the British Isles.

  19. Structure reliability design and analysis of support ring for cylinder seal

    NASA Astrophysics Data System (ADS)

    Minmin, Zhao

    2017-09-01

    In this paper, the general reliability design process of the cross-sectional dimension of the support ring is introduced, which is used for the cylinder sealing. Then, taking a certain section shape support ring as an example, the every size parameters of section are determined from the view point of reliability design. Last, the static strength and reliability of the support ring are analyzed to verify the correctness of the reliability design result.

  20. Feline leukaemia. ABCD guidelines on prevention and management.

    PubMed

    Lutz, Hans; Addie, Diane; Belák, Sándor; Boucraut-Baralon, Corine; Egberink, Herman; Frymus, Tadeusz; Gruffydd-Jones, Tim; Hartmann, Katrin; Hosie, Margaret J; Lloret, Albert; Marsilio, Fulvio; Pennisi, Maria Grazia; Radford, Alan D; Thiry, Etienne; Truyen, Uwe; Horzinek, Marian C

    2009-07-01

    Feline leukaemia virus (FeLV) is a retrovirus that may induce depression of the immune system, anaemia and/or lymphoma. Over the past 25 years, the prevalence of FeLV infection has decreased considerably, thanks both to reliable tests for the identification of viraemic carriers and to effective vaccines. Transmission between cats occurs mainly through friendly contacts, but also through biting. In large groups of non-vaccinated cats, around 30-40% will develop persistent viraemia, 30-40% show transient viraemia and 20-30% seroconvert. Young kittens are especially susceptible to FeLV infection. The most common signs of persistent FeLV viraemia are immune suppression, anaemia and lymphoma. Less common signs are immune-mediated disease, chronic enteritis, reproductive disorders and peripheral neuropathies. Most persistently viraemic cats die within 2-3 years. In low-prevalence areas there may be a risk of false-positive results; a doubtful positive test result in a healthy cat should therefore be confirmed, preferably by PCR for provirus. Asymptomatic FeLV-positive cats should be retested. Supportive therapy and good nursing care are required. Secondary infections should be treated promptly. Cats infected with FeLV should remain indoors. Vaccination against common pathogens should be maintained. Inactivated vaccines are recommended. The virus does not survive for long outside the host. All cats with an uncertain FeLV status should be tested prior to vaccination. All healthy cats at potential risk of exposure should be vaccinated against FeLV. Kittens should be vaccinated at 8-9 weeks of age, with a second vaccination at 12 weeks, followed by a booster 1 year later. The ABCD suggests that, in cats older than 3-4 years of age, a booster every 2-3 years suffices, in view of the significantly lower susceptibility of older cats.

  1. Electronic properties of superlattices on quantum rings.

    PubMed

    da Costa, D R; Chaves, A; Ferreira, W P; Farias, G A; Ferreira, R

    2017-04-26

    We present a theoretical study of the one-electron states of a semiconductor-made quantum ring (QR) containing a series of piecewise-constant wells and barriers distributed along the ring circumference. The single quantum well and the superlattice cases are considered in detail. We also investigate how such confining potentials affect the Aharonov-Bohm like oscillations of the energy spectrum and current in the presence of a magnetic field. The model is simple enough so as to allow obtaining various analytical or quasi-analytical results. We show that the well-in-a-ring structure presents enhanced localization features, as well as specific geometrical resonances in its above-barrier spectrum. We stress that the superlattice-in-a-ring structure allows giving a physical meaning to the often used but usually artificial Born-von-Karman periodic conditions, and discuss in detail the formation of energy minibands and minigaps for the circumferential motion, as well as several properties of the superlattice eigenstates in the presence of the magnetic field. We obtain that the Aharonov-Bohm oscillations of below-barrier miniband states are reinforced, owing to the important tunnel coupling between neighbour wells of the superlattice, which permits the electron to move in the ring. Additionally, we analysis a superlattice-like structure made of a regular distribution of ionized impurities placed around the QR, a system that may implement the superlattice in a ring idea. Finally, we consider several random disorder models, in order to study roughness disorder and to tackle the robustness of some results against deviations from the ideally nanostructured ring system.

  2. Electronic properties of superlattices on quantum rings

    NASA Astrophysics Data System (ADS)

    da Costa, D. R.; Chaves, A.; Ferreira, W. P.; Farias, G. A.; Ferreira, R.

    2017-04-01

    We present a theoretical study of the one-electron states of a semiconductor-made quantum ring (QR) containing a series of piecewise-constant wells and barriers distributed along the ring circumference. The single quantum well and the superlattice cases are considered in detail. We also investigate how such confining potentials affect the Aharonov-Bohm like oscillations of the energy spectrum and current in the presence of a magnetic field. The model is simple enough so as to allow obtaining various analytical or quasi-analytical results. We show that the well-in-a-ring structure presents enhanced localization features, as well as specific geometrical resonances in its above-barrier spectrum. We stress that the superlattice-in-a-ring structure allows giving a physical meaning to the often used but usually artificial Born-von-Karman periodic conditions, and discuss in detail the formation of energy minibands and minigaps for the circumferential motion, as well as several properties of the superlattice eigenstates in the presence of the magnetic field. We obtain that the Aharonov-Bohm oscillations of below-barrier miniband states are reinforced, owing to the important tunnel coupling between neighbour wells of the superlattice, which permits the electron to move in the ring. Additionally, we analysis a superlattice-like structure made of a regular distribution of ionized impurities placed around the QR, a system that may implement the superlattice in a ring idea. Finally, we consider several random disorder models, in order to study roughness disorder and to tackle the robustness of some results against deviations from the ideally nanostructured ring system.

  3. Increase in cytosolic calcium maintains plasma membrane integrity through the formation of microtubule ring structure in apoptotic cervical cancer cells induced by trichosanthin.

    PubMed

    Wang, Ping; Xu, Shujun; Zhao, Kai; Xiao, Bingxiu; Guo, Junming

    2009-11-01

    This study investigates the role of dysregulated cytosolic free calcium ([Ca(2+)]c) homeostasis on microtubule (MT) ring structure in apoptotic cervical cancer (HeLa) cells induced by trichosanthin (TCS), a type I ribosome inactivating protein (RIP). The TCS-induced decrease in cell viability was significantly enhanced in combination with the specific calcium chelator, EGTA-AM. Sequestration of [Ca(2+)]c markedly disrupted the special MT ring structure. Furthermore, TCS tended to increase LDH release, whereas no significant differences were observed until 48 h of the treatment. In contrast, combined addition of EGTA-AM or colchicine (an inhibitor of tubulin polymerization) significantly reinforced LDH release. The data suggest that TCS-elevated [Ca(2+)]c maintains plasma membrane integrity via the formation of the MT ring structure in apoptotic HeLa cells.

  4. Galactic rings revisited - I. CVRHS classifications of 3962 ringed galaxies from the Galaxy Zoo 2 Database

    NASA Astrophysics Data System (ADS)

    Buta, Ronald J.

    2017-11-01

    Rings are important and characteristic features of disc-shaped galaxies. This paper is the first in a series that re-visits galactic rings with the goals of further understanding the nature of the features and for examining their role in the secular evolution of galaxy structure. The series begins with a new sample of 3962 galaxies drawn from the Galaxy Zoo 2 citizen science data base, selected because zoo volunteers recognized a ring-shaped pattern in the morphology as seen in Sloan Digital Sky Survey colour images. The galaxies are classified within the framework of the Comprehensive de Vaucouleurs revised Hubble-Sandage system. It is found that zoo volunteers cued on the same kinds of ring-like features that were recognized in the 1995 Catalogue of Southern Ringed Galaxies. This paper presents the full catalogue of morphological classifications, comparisons with other sources of classifications and some histograms designed mainly to highlight the content of the catalogue. The advantages of the sample are its large size and the generally good quality of the images; the main disadvantage is the low physical resolution that limits the detectability of linearly small rings such as nuclear rings. The catalogue includes mainly inner and outer disc rings and lenses. Cataclysmic (`encounter-driven') rings (such as ring and polar ring galaxies) are recognized in less than 1 per cent of the sample.

  5. User's guide to computer programs JET 5A and CIVM-JET 5B to calculate the large elastic-plastic dynamically-induced deformations of multilayer partial and/or complete structural rings

    NASA Technical Reports Server (NTRS)

    Wu, R. W. H.; Stagliano, T. R.; Witmer, E. A.; Spilker, R. L.

    1978-01-01

    These structural ring deflections lie essentially in one plane and, hence, are called two-dimensional (2-d). The structural rings may be complete or partial; the former may be regarded as representing a fragment containment ring while the latter may be viewed as a 2-d fragment-deflector structure. These two types of rings may be either free or supported in various ways (pinned-fixed, locally clamped, elastic-foundation supported, mounting-bracket supported, etc.). The initial geometry of each ring may be circular or arbitrarily curved; uniform-thickness or variable-thickness rings may be analyzed. Strain-hardening and strain-rate effects of initially-isotropic material are taken into account. An approximate analysis utilizing kinetic energy and momentum conservation relations is used to predict the after-impact velocities of each fragment and of the impact-affected region of the ring; this procedure is termed the collision-imparted velocity method (CIVM) and is used in the CIVM-JET 5 B program. This imparted-velocity information is used in conjunction with a finite-element structural response computation code to predict the transient, large-deflection, elastic-plastic responses of the ring. Similarly, the equations of motion of each fragment are solved in small steps in time. Provisions are made in the CIVM-JET 5B code to analyze structural ring response to impact attack by from 1 to 3 fragments, each with its own size, mass, translational velocity components, and rotational velocity. The effects of friction between each fragment and the impacted ring are included.

  6. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry

    2014-03-01

    Preface: a personal view of planetary rings; 1. Introduction: the allure of the ringed planets; 2. Studies of planetary rings 1610-2013; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Uranus' rings and moons; 13. Neptune's partial rings; 14. Jupiter's ring-moon system after Galileo and New Horizons; 15. Ring photometry; 16. Dusty rings; 17. Concluding remarks; Afterword; Glossary; References; Index.

  7. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe2O3@Carbon anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Sun, Yan-Hui; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-12-01

    Core-shell nano-ring α-Fe2O3@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe2O3 nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe2O3 (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe2O3 during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g-1 and retains 920/897 mAh g-1 after 200 cycles at 500 mA g-1 (0.5C). Even at 2000 mA g-1 (2C), the electrode delivers the initial capacities of 1400/900 mAh g-1, and still maintains 630/610 mAh g-1 after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe2O3@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe2O3 and facilitate the transportation of electrons and Li+ ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe2O3@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  8. The Nonbarred Double-Ringed Galaxy, PGC 1000714

    NASA Astrophysics Data System (ADS)

    Seigar, Marc; Mutlu Pakdil, Burcin; Mangedarage, Mithila; Treuthardt, Patrick M.

    2017-01-01

    Hoag-type galaxies are rare peculiar systems which bear strong resemblance to Hoag's Object with an elliptical-like core, a detached outer ring, and no signs of a bar or stellar disk. They represent extreme cases and help us understand the formation of galaxies in general by providing clues on formation mechanisms. The nature of outer rings in Hoag-type galaxies is still debated and may be related either to slow secular evolution, such as dissolution of a barlike structure or to environmental processes, such as galaxy-galaxy interactions or gas infall. Due to a fairly superficial resemblance to Hoag's Object, PGC 1000714 is a good target for detailed study of the peculiar structure of this type. We present the first photometric study of PGC 1000714 that has not yet been described in the literature. Our aim is to evaluate its structure and properties as well as understand the origin of outer rings in such galaxies. Surface photometry of the central body is performed using near-UV, BVRI and JHK images. Based on the photometric data, the nearly round central body follows a de Vaucouleurs profile almost all the way to the center. The detailed photometry reveals a reddish inner ring-shaped structure that shares the same center as the central body. However, no sign of a bar or stellar disk is detected. The outer ring appears as a bump in the surface brightness profile with a peak brightness of 25.8 mag/arcsec^{2} in the B-band and shows no sharp outer boundary. By reconstructing the observed SED for the central body and the rings, we recover the stellar population properties of the galaxy components. Our work suggests different formation histories for the inner and outer rings. We rule out the secular evolution model as being a formation mechanism for the outer ring. The colors of the outer ring are consistent with a feature that may have experienced a burst of star formation due to a possible recent accretion event. In addition, our work supports that the central body

  9. Saturn's Rings and Associated Ring Plasma Cavity: Evidence for Slow Ring Erosion

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Kurth, W. S.; Gurnett, D. A.; Persoon, A. M.; MacDowall, R. J.

    2017-01-01

    We re-examine the radio and plasma wave observations obtained during the Cassini Saturn orbit insertion period, as the spacecraft flew over the northern ring surface into a radial distance of 1.3 Rs (over the C-ring). Voyager era studies suggest the rings are a source of micro-meteoroid generated plasma and dust, with theorized peak impact-created plasma outflows over the densest portion of the rings (central B-ring). In sharp contrast, the Cassini Radio and Plasma Wave System (RPWS) observations identify the presence of a ring-plasma cavity located in the central portion of the B-ring, with little evidence of impact-related plasma. While previous Voyager era studies have predicted unstable ion orbits over the C- ring, leading to field-aligned plasma transport to Saturns ionosphere, the Cassini RPWS observations do not reveal evidence for such instability-created plasma fountains. Given the passive ring loss processes observed by Cassini, we find that the ring lifetimes should extend >10(exp 9) years, and that there is limited evidence for prompt destruction (loss in <100 Myrs).

  10. Saturn's rings and associated ring plasma cavity: Evidence for slow ring erosion

    NASA Astrophysics Data System (ADS)

    Farrell, W. M.; Kurth, W. S.; Gurnett, D. A.; Persoon, A. M.; MacDowall, R. J.

    2017-08-01

    We re-examine the radio and plasma wave observations obtained during the Cassini Saturn orbit insertion period, as the spacecraft flew over the northern ring surface into a radial distance of 1.3 Rs (over the C-ring). Voyager era studies suggest the rings are a source of micro-meteoroid generated plasma and dust, with theorized peak impact-created plasma outflows over the densest portion of the rings (central B-ring). In sharp contrast, the Cassini Radio and Plasma Wave System (RPWS) observations identify the presence of a ring-plasma cavity located in the central portion of the B-ring, with little evidence of impact-related plasma. While previous Voyager era studies have predicted unstable ion orbits over the C-ring, leading to field-aligned plasma transport to Saturn's ionosphere, the Cassini RPWS observations do not reveal evidence for such instability-created plasma 'fountains'. Given the passive ring loss processes observed by Cassini, we find that the ring lifetimes should extend >109 years, and that there is limited evidence for prompt destruction (loss in <100 Myrs).

  11. Fine Structure of Diffuse Scattering Rings in Al-Li-Cu Quasicrystal: A Comparative X-ray and Electron Diffraction Study

    NASA Astrophysics Data System (ADS)

    Donnadieu, P.; Dénoyer, F.

    1996-11-01

    A comparative X-ray and electron diffraction study has been performed on Al-Li-Cu icosahedral quasicrystal in order to investigate the diffuse scattering rings revealed by a previous work. Electron diffraction confirms the existence of rings but shows that the rings have a fine structure. The diffuse aspect on the X-ray diffraction patterns is then due to an averaging effect. Recent simulations based on the model of canonical cells related to the icosahedral packing give diffractions patterns in agreement with this fine structure effect. Nous comparons les diagrammes de diffraction des rayon-X et des électrons obtenus sur les mêmes échantillons du quasicristal icosaèdrique Al-Li-Cu. Notre but est d'étudier les anneaux de diffusion diffuse mis en évidence par un travail précédent. Les diagrammes de diffraction électronique confirment la présence des anneaux mais ils montrent aussi que ces anneaux possèdent une structure fine. L'aspect diffus des anneaux révélés par la diffraction des rayons X est dû à un effet de moyenne. Des simulations récentes basées sur la décomposition en cellules canoniques de l'empilement icosaédrique produisent des diagrammes de diffraction en accord avec ces effects de structure fine.

  12. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2011-07-01

    Preface; 1. Introduction: the allure of ringed planets; 2. Studies of planetary rings 1610-2004; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-Body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Neptune's partial rings; 13. Jupiter's ring-moon system after Galileo; 14. Ring photometry; 15. Dusty rings; 16. Cassini observations; 17. Summary: the big questions; Glossary; References; Index.

  13. Low-Temperature Molecular Layer Deposition Using Monofunctional Aromatic Precursors and Ozone-Based Ring-Opening Reactions.

    PubMed

    Svärd, Laura; Putkonen, Matti; Kenttä, Eija; Sajavaara, Timo; Krahl, Fabian; Karppinen, Maarit; Van de Kerckhove, Kevin; Detavernier, Christophe; Simell, Pekka

    2017-09-26

    Molecular layer deposition (MLD) is an increasingly used deposition technique for producing thin coatings consisting of purely organic or hybrid inorganic-organic materials. When organic materials are prepared, low deposition temperatures are often required to avoid decomposition, thus causing problems with low vapor pressure precursors. Monofunctional compounds have higher vapor pressures than traditional bi- or trifunctional MLD precursors, but do not offer the required functional groups for continuing the MLD growth in subsequent deposition cycles. In this study, we have used high vapor pressure monofunctional aromatic precursors in combination with ozone-triggered ring-opening reactions to achieve sustained sequential growth. MLD depositions were carried out by using three different aromatic precursors in an ABC sequence, namely with TMA + phenol + O 3 , TMA + 3-(trifluoromethyl)phenol + O 3 , and TMA + 2-fluoro-4-(trifluoromethyl)benzaldehyde + O 3 . Furthermore, the effect of hydrogen peroxide as a fourth step was evaluated for all studied processes resulting in a four-precursor ABCD sequence. According to the characterization results by ellipsometry, infrared spectroscopy, and X-ray reflectivity, self-limiting MLD processes could be obtained between 75 and 150 °C with each of the three aromatic precursors. In all cases, the GPC (growth per cycle) decreased with increasing temperature. In situ infrared spectroscopy indicated that ring-opening reactions occurred in each ABC sequence. Compositional analysis using time-of-flight elastic recoil detection indicated that fluorine could be incorporated into the film when 3-(trifluoromethyl)phenol and 2-fluoro-4-(trifluoromethyl)benzaldehyde were used as precursors.

  14. Further explorations of cosmogonic shadow effects in the Saturnian rings

    NASA Technical Reports Server (NTRS)

    Alfven, H.; Axnaes, I.; Brenning, N.; Lindqvist, P. A.

    1985-01-01

    The mass distribution in the Saturnian ring system is compared with predictions from the cosmogonic theory of Alfven and Arrhenius (1975) in which matter in the rings was once a magnetized plasma, with gravitation balanced by centrifugal force and by the magnetic field. As the plasma is neutralized, the magnetic force disappears and the matter can be shown to fall in to a distance 2/3 of the original. This supports the cosmogonic shadow effect, also demonstrated for the astroidal belt and in the large scale structure of the Saturnian ring system. The relevance of the comogonic shadow effect for parts of the finer structures of the Saturnian ring system is investigated. It is shown that many structures of the present ring system can be understood as shadows and antishadows of cosmogonic origin. These appear in the form of double rings centered around a position a factor 0.64 (slightly 2/3) closer to Saturn than the causing feature.

  15. Energy spectra of quantum rings.

    PubMed

    Fuhrer, A; Lüscher, S; Ihn, T; Heinzel, T; Ensslin, K; Wegscheider, W; Bichler, M

    2001-10-25

    Quantum mechanical experiments in ring geometries have long fascinated physicists. Open rings connected to leads, for example, allow the observation of the Aharonov-Bohm effect, one of the best examples of quantum mechanical phase coherence. The phase coherence of electrons travelling through a quantum dot embedded in one arm of an open ring has also been demonstrated. The energy spectra of closed rings have only recently been studied by optical spectroscopy. The prediction that they allow persistent current has been explored in various experiments. Here we report magnetotransport experiments on closed rings in the Coulomb blockade regime. Our experiments show that a microscopic understanding of energy levels, so far limited to few-electron quantum dots, can be extended to a many-electron system. A semiclassical interpretation of our results indicates that electron motion in the rings is governed by regular rather than chaotic motion, an unexplored regime in many-electron quantum dots. This opens a way to experiments where even more complex structures can be investigated at a quantum mechanical level.

  16. Classifying Saturn's F Ring Strands

    NASA Astrophysics Data System (ADS)

    Albers, Nicole; Sremcevic, M.; Esposito, L. W.; Colwell, J. E.

    2009-09-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) High Speed Photometer (HSP) has recorded more than 113 stellar occultations by Saturn's F ring providing measurements with ring plane resolutions of a few dozen meters and better. Inner and outer F ring strands have been seen throughout the Cassini mission where they revealed themselves as non-continuous, azimuthally and temporally highly variable structures. In the light of a more accurate orbit description of the F ring core we find evidence for a ring that becomes dynamically more active as the system approaches anti-apse alignment with Prometheus. This is consistent with the observed increased strand activity. A recent strand that morphologically resembles the core is the strongest seen to date and points to the intricate relation between core and strands indicating the strands' violent creation. Using more than 150 identifications of various strands, we trace their kinematics and infer dynamical timescales and photometric properties. Implications for the dynamical evolution of the F ring will be discussed. This research was supported by the Cassini Project.

  17. [Laser Induced Fluorescence Spectroscopic Analysis of Aromatics from One Ring to Four Rings].

    PubMed

    Zhang, Peng; Liu, Hai-feng; Yue, Zong-yu; Chen, Bei-ling; Yao, Ming-fa

    2015-06-01

    In order to distinguish small aromatics preferably, a Nd : YAG Laser was used to supply an excitation laser, which was adjusted to 0.085 J x cm(-2) at 266 nm. Benzene, toluene, naphthalene, phenanthrene, anthracene, pyrene and chrysene were used as the representative of different rings aromatics. The fluorescence emission spectra were researched for each aromatic hydrocarbon and mixtures by Laser induced fluorescence (LIF). Results showed that the rings number determined the fluorescence emission spectra, and the structure with same rings number did not affect the emission fluorescence spectrum ranges. This was due to the fact that the absorption efficiency difference at 266 nm resulted in that the fluorescence intensities of each aromatic hydrocarbon with same rings number were different and the fluorescence intensities difference were more apparently with aromatic ring number increasing. When the absorption efficiency was similar at 266 nm and the concentrations of each aromatic hydrocarbon were same, the fluorescence intensities were increased with aromatic ring number increasing. With aromatic ring number increasing, the fluorescence spectrum and emission peak wavelength were all red-shifted from ultraviolet to visible and the fluorescence spectrum range was also wider as the absorption efficiency was similar. The fluorescence emission spectra from one to four rings could be discriminated in the following wavelengths, 275 to 320 nm, 320 to 375 nm, 375 to 425 nm, 425 to 556 nm, respectively. It can be used for distinguish the type of the polycyclic aromatic hydrocarbons (PAHs) as it exists in single type. As PAHs are usually exist in a variety of different rings number at the same time, the results for each aromatic hydrocarbon may not apply to the aromatic hydrocarbon mixtures. For the aromatic hydrocarbon mixtures, results showed that the one- or two-ring PAHs in mixtures could not be detected by fluorescence as three- or four-ring PAHs existed in mixture

  18. Structure, stratigraphy, and eruption dynamics of a young tuff ring: Hanauma Bay, O'ahu, Hawai'i

    NASA Astrophysics Data System (ADS)

    Rottas, K. M.; Houghton, B. F.

    2012-09-01

    The Hanauma Bay-Koko Head complex is one of several young volcanic landforms along the Koko fissure, in southeastern O'ahu. The Hanauma Bay region of the complex comprises two nested tuff rings, inner and outer Hanauma Bay, and multiple smaller vents. The internal structure of the inner tuff ring, well exposed due to subsequent breaching by the ocean and wave erosion, indicates that it formed during a minimum of five distinct phases of deposition that produced five mappable units. Significant inward collapses generated major unconformities that separate the units exposed in the inner wall. The planes of failure are cut by narrow steep-walled, locally overhung channels and gullies, suggesting that the collapse events were each followed by short time breaks during which the deposits were eroded by rainfall runoff. Within each pyroclastic unit, there are many local slump scars and unconformities, suggesting that minor instability of the inner wall was a near-constant feature. From bedding sags and surge bed forms, it is apparent that the vent shifted at least twice during tuff ring growth. Ballistic blocks in the youngest unit indicate that the eruption overlapped in time with a separate eruption to the north, most likely to be that of the Kahauloa tuff ring 880 m away.

  19. Synthesis, insecticidal activity, and structure-activity relationship (SAR) of anthranilic diamides analogs containing oxadiazole rings.

    PubMed

    Li, Yuhao; Zhu, Hongjun; Chen, Kai; Liu, Rui; Khallaf, Abdalla; Zhang, Xiangning; Ni, Jueping

    2013-06-28

    A series of anthranilic diamides analogs (3–11, 16–24) containing 1,2,4- or 1,3,4-oxadiazole rings were synthesized and characterized by (1)H NMR, MS and elemental analyses. The structure of 3-bromo-N-(2-(3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl)-4-chloro-6-methylphenyl)-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide (18, CCDC-) was determined by X-ray diffraction crystallography. The insecticidal activities against Plutella xylostella and Spodoptera exigua were evaluated. The results showed that most of title compounds displayed good larvicidal activities against P. xylostella, especially compound 3-bromo-N-(4-chloro-2-methyl-6-(5-(methylthio)-1,3,4-oxadiazol-2-yl)phenyl)-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide (6), which displayed 71.43% activity against P. xylostella at 0.4 μg mL(-1) and 33.33% against S. exigua at 1 μg mL(-1). The structure-activity relationship showed that compounds decorated with a 1,3,4-oxadiazole were more potent than compounds decorated with a 1,2,4-oxadiazole, and different substituents attached to the oxadiazole ring also affected the insecticidal activity. This work provides some hints for further structure modification and the enhancement of insecticidal activity.

  20. Controllable continuous evolution of electronic states in a single quantum ring

    NASA Astrophysics Data System (ADS)

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk; Laroze, David

    2018-02-01

    An intense terahertz laser field is shown to have a profound effect on the electronic and optical properties of quantum rings where the isotropic and anisotropic quantum rings can now be treated on equal footing. We have demonstrated that in isotropic quantum rings the laser field creates unusual Aharonov-Bohm oscillations that are usually expected in anisotropic rings. Furthermore, we have shown that intense laser fields can restore the isotropic physical properties in anisotropic quantum rings. In principle, all types of anisotropies (structural, effective masses, defects, etc.) can evolve as in isotropic rings in our present approach. Most importantly, we have found a continuous evolution of the energy spectra and intraband optical characteristics of structurally anisotropic quantum rings to those of isotropic rings in a controlled manner with the help of a laser field.

  1. Katanin spiral and ring structures shed light on power stroke for microtubule severing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zehr, Elena; Szyk, Agnieszka; Piszczek, Grzegorz

    Microtubule-severing enzymes katanin, spastin and fidgetin are AAA ATPases critical for the biogenesis and maintenance of complex microtubule arrays in axons, spindles and cilia. Because of a lack of 3D structures, their mechanism has remained poorly understood. We report the first X-ray structure of the monomeric AAA katanin module and cryo-EM reconstructions of the hexamer in two conformations. These reveal an unexpected asymmetric arrangement of the AAA domains mediated by structural elements unique to severing enzymes and critical for their function. Our reconstructions show that katanin cycles between open spiral and closed ring conformations, depending on the ATP occupancy ofmore » a gating protomer that tenses or relaxes inter-protomer interfaces. Cycling of the hexamer between these conformations would provide the power stroke for microtubule severing.« less

  2. Erbium-doped fiber ring laser based on few-mode-singlemode-few-mode fiber structure for refractive index measurement

    NASA Astrophysics Data System (ADS)

    Liu, Jingxuan; Wang, Muguang; Liang, Xiao; Dong, Yue; Xiao, Han; Jian, Shuisheng

    2017-08-01

    A novel Erbium-doped fiber ring cavity laser sensor for refractive index (RI) measurement based on a special designed few-mode-singlemode-few-mode structure is proposed and experimentally demonstrated. The few-mode fiber is a home-made concentric ring core fiber (CRCF) which can only support two scalar modes. Thus a stable mode interference occurs which functions as a sensing head and band-pass filter to select the lasing wavelength simultaneously. A sensitivity of -45.429 nm/RIU is obtained in the range of 1.333-1.363. High optical signal to noise ratio (OSNR) of ∼45 dB and narrow 3-dB bandwidth of ∼0.1 nm indicate that the fiber ring laser sensing system has a high resolution and accuracy RI measurement.

  3. Investigation of podosome ring protein arrangement using localization microscopy images.

    PubMed

    Staszowska, Adela D; Fox-Roberts, Patrick; Foxall, Elizabeth; Jones, Gareth E; Cox, Susan

    2017-02-15

    Podosomes are adhesive structures formed on the plasma membrane abutting the extracellular matrix of macrophages, osteoclasts, and dendritic cells. They consist of an f-actin core and a ring structure composed of integrins and integrin-associated proteins. The podosome ring plays a major role in adhesion to the underlying extracellular matrix, but its detailed structure is poorly understood. Recently, it has become possible to study the nano-scale structure of podosome rings using localization microscopy. Unlike traditional microscopy images, localization microscopy images are reconstructed using discrete points, meaning that standard image analysis methods cannot be applied. Here, we present a pipeline for podosome identification, protein position calculation, and creating a podosome ring model for use with localization microscopy data. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Saturn's E, G, and F rings - Modulated by the plasma sheet?

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Gruen, E.; Johnson, T. V.

    1983-01-01

    Saturn's broad E ring, the narrow G ring, and the structured and apparently time-variable F ring(s) contain many micron and submicron-sized particles, which make up the 'visible' component. These rings (or ring systems) are in direct contact with magnetospheric plasma. Fluctuations in the plasma density and/or mean energy, due to magnetospheric and solar wind processes, may induce stochastic charge variations on the dust particles, which in turn lead to an orbit perturbation and spatial diffusion. In addition, Coulomb drag forces may be important, in particular for the E ring. The possibility that electromagnetic effects may play a role in determining the F ring structure and its possible time variations is critically examined. Sputtering of micron-sized dust particles in the E ring by magnetospheric ions yields lifetimes of 100 to 10,000 years. This effect as well as the plasma induced transport processes require an active source for the E ring, probably Enceladus.

  5. The Crystal Structure of the Ring-Hydroxylating Dioxygenase from Sphingomonas CHY-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakoncic,J.; Jouanneau, Y.; Meyer, C.

    The ring-hydroxylating dioxygenase (RHD) from Sphingomonas CHY-1 is remarkable due to its ability to initiate the oxidation of a wide range of polycyclic aromatic hydrocarbons (PAHs), including PAHs containing four- and five-fused rings, known pollutants for their toxic nature. Although the terminal oxygenase from CHY-1 exhibits limited sequence similarity with well characterized RHDs from the naphthalene dioxygenase family, the crystal structure determined to 1.85 {angstrom} by molecular replacement revealed the enzyme to share the same global {alpha}{sub 3}{beta}{sub 3} structural pattern. The catalytic domain distinguishes itself from other bacterial non-heme Rieske iron oxygenases by a substantially larger hydrophobic substrate bindingmore » pocket, the largest ever reported for this type of enzyme. While residues in the proximal region close to the mononuclear iron atom are conserved, the central region of the catalytic pocket is shaped mainly by the side chains of three amino acids, Phe350, Phe404 and Leu356, which contribute to the rather uniform trapezoidal shape of the pocket. Two flexible loops, LI and LII, exposed to the solvent seem to control the substrate access to the catalytic pocket and control the pocket length. Compared with other naphthalene dioxygenases residues Leu223 and Leu226, on loop LI, are moved towards the solvent, thus elongating the catalytic pocket by at least 2 {angstrom}. An 11 {angstrom} long water channel extends from the interface between the {alpha} and {beta} subunits to the catalytic site. The comparison of these structures with other known oxygenases suggests that the broad substrate specificity presented by the CHY-1 oxygenase is primarily due to the large size and particular topology of its catalytic pocket and provided the basis for the study of its reaction mechanism.« less

  6. Evidence of the layer structure formation of chitosan microtubes by the Liesegang ring mechanism

    NASA Astrophysics Data System (ADS)

    Babicheva, T. S.; Gegel, N. O.; Shipovskaya, A. B.

    2018-04-01

    In the work, an experiment was performed to simulate the process of chitosan microtube formation through the interphase polysalt -> polybase chemical reaction, on the one hand, and the formation of spatially separated structures under the conditions of reactive diffusion of one of the components, on the other hand. The formation of alternating dark and light bands or concentric rings of the chitosan polybase as a result of the polymer-analogous transformation is visualized by optical microscopy. The results obtained confirm our assumption that the layered structure of our chitosan microtubes is formed according to the Liesegang reaction mechanism.

  7. Fractal planetary rings: Energy inequalities and random field model

    NASA Astrophysics Data System (ADS)

    Malyarenko, Anatoliy; Ostoja-Starzewski, Martin

    2017-12-01

    This study is motivated by a recent observation, based on photographs from the Cassini mission, that Saturn’s rings have a fractal structure in radial direction. Accordingly, two questions are considered: (1) What Newtonian mechanics argument in support of such a fractal structure of planetary rings is possible? (2) What kinematics model of such fractal rings can be formulated? Both challenges are based on taking planetary rings’ spatial structure as being statistically stationary in time and statistically isotropic in space, but statistically nonstationary in space. An answer to the first challenge is given through an energy analysis of circular rings having a self-generated, noninteger-dimensional mass distribution [V. E. Tarasov, Int. J. Mod Phys. B 19, 4103 (2005)]. The second issue is approached by taking the random field of angular velocity vector of a rotating particle of the ring as a random section of a special vector bundle. Using the theory of group representations, we prove that such a field is completely determined by a sequence of continuous positive-definite matrix-valued functions defined on the Cartesian square F2 of the radial cross-section F of the rings, where F is a fat fractal.

  8. Two F Ring Views

    NASA Technical Reports Server (NTRS)

    2005-01-01

    These views, taken two hours apart, demonstrate the dramatic variability in the structure of Saturn's intriguing F ring.

    In the image at the left, ringlets in the F ring and Encke Gap display distinctive kinks, and there is a bright patch of material on the F ring's inner edge. Saturn's moon Janus (181 kilometers, or 113 miles across) is shown here, partly illuminated by reflected light from the planet.

    At the right, Prometheus (102 kilometers, or 63 miles across) orbits ahead of the radial striations in the F ring, called 'drapes' by scientists. The drapes appear to be caused by successive passes of Prometheus as it reaches the greatest distance (apoapse) in its orbit of Saturn. Also in this image, the outermost ringlet visible in the Encke Gap displays distinctive bright patches.

    These views were obtained from about three degrees below the ring plane.

    The images were taken in visible light with the Cassini spacecraft narrow-angle camera on June 29, 2005, when Cassini was about 1.5 million kilometers (900,000 miles) from Saturn. The image scale is about 9 kilometers (6 miles) per pixel.

  9. Minimum stiffness criteria for ring frame stiffeners of space launch vehicles

    NASA Astrophysics Data System (ADS)

    Friedrich, Linus; Schröder, Kai-Uwe

    2016-12-01

    Frame stringer-stiffened shell structures show high load carrying capacity in conjunction with low structural mass and are for this reason frequently used as primary structures of aerospace applications. Due to the great number of design variables, deriving suitable stiffening configurations is a demanding task and needs to be realized using efficient analysis methods. The structural design of ring frame stringer-stiffened shells can be subdivided into two steps. One, the design of a shell section between two ring frames. Two, the structural design of the ring frames such that a general instability mode is avoided. For sizing stringer-stiffened shell sections, several methods were recently developed, but existing ring frame sizing methods are mainly based on empirical relations or on smeared models. These methods do not mandatorily lead to reliable designs and in some cases the lightweight design potential of stiffened shell structures can thus not be exploited. In this paper, the explicit physical behaviour of ring frame stiffeners of space launch vehicles at the onset of panel instability is described using mechanical substitute models. Ring frame stiffeners of a stiffened shell structure are sized applying existing methods and the method suggested in this paper. To verify the suggested method and to demonstrate its potential, geometrically non-linear finite element analyses are performed using detailed finite element models.

  10. Reusable Solid Rocket Motor - V(RSRMV)Nozzle Forward Nose Ring Thermo-Structural Modeling

    NASA Technical Reports Server (NTRS)

    Clayton, J. Louie

    2012-01-01

    During the developmental static fire program for NASAs Reusable Solid Rocket Motor-V (RSRMV), an anomalous erosion condition appeared on the nozzle Carbon Cloth Phenolic nose ring that had not been observed in the space shuttle RSRM program. There were regions of augmented erosion located on the bottom of the forward nose ring (FNR) that measured nine tenths of an inch deeper than the surrounding material. Estimates of heating conditions for the RSRMV nozzle based on limited char and erosion data indicate that the total heat loading into the FNR, for the new five segment motor, is about 40-50% higher than the baseline shuttle RSRM nozzle FNR. Fault tree analysis of the augmented erosion condition has lead to a focus on a thermomechanical response of the material that is outside the existing experience base of shuttle CCP materials for this application. This paper provides a sensitivity study of the CCP material thermo-structural response subject to the design constraints and heating conditions unique to the RSRMV Forward Nose Ring application. Modeling techniques are based on 1-D thermal and porous media calculations where in-depth interlaminar loading conditions are calculated and compared to known capabilities at elevated temperatures. Parameters such as heat rate, in-depth pressures and temperature, degree of char, associated with initiation of the mechanical removal process are quantified and compared to a baseline thermo-chemical material removal mode. Conclusions regarding postulated material loss mechanisms are offered.

  11. Photonic crystal based 1-bit full-adder optical circuit by using ring resonators in a nonlinear structure

    NASA Astrophysics Data System (ADS)

    Alipour-Banaei, Hamed; Seif-Dargahi, Hamed

    2017-05-01

    In this paper we proposed a novel design for realizing all optical 1*bit full-adder based on photonic crystals. The proposed structure was realized by cascading two optical 1-bit half-adders. The final structure is consisted of eight optical waveguides and two nonlinear resonant rings, created inside rod type two dimensional photonic crystal with square lattice. The structure has ;X;, ;Y; and ;Z; as input and ;SUM; and ;CARRY; as output ports. The performance and functionality of the proposed structure was validated by means of finite difference time domain method.

  12. Dynamics of collision of a vortex ring and a planar surface

    NASA Astrophysics Data System (ADS)

    McErlean, Michael; Krane, Michael; Fontaine, Arnold

    2008-11-01

    The dynamics of the impact between a vortex ring and a planar surface is presented. The vortex rings, generated by piston injection of a slug of water into a quiescent water tank, collide with a surface oriented normally to the ring's direction of travel. The time evolution of both the force imparted to a planar surface and the wall pressure are presented. These are supplemented by DPIV measurements of the evolution of ring strength and structure, before and during impact. The relation between changes in ring structure during collision and the waveforms of impact force and wall pressure will be discussed.

  13. Gravitational resonance: Saturn's rings

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Perhaps no one thought much more would need to be known about Saturn's rings 100 or so years ago, when Daniel Kirkwood explained the various features. The main rings, within the three so-called Cassini divisions, were due to gravitational resonance conditions between small orbiting particles and the satellite Mimas. Now, after several spacecraft—especially Voyager—have shown the rings' close-up characteristics, there has been a great deal of activity in the planetary geophysics community to try to explain the origin of the numerous features of the rings of solar system bodies that were far beyond the resolution of telescopes in Kirkwood s day. A pretty good sample of that activity was reported recently by R.A. Kerr (Science, Oct. 8, 1982), who stated ‘Resonance theory still stands after the onslaught of spacecraft observations, but its new applications have yielded a greater variety of ring features than Kirkwood ever dreamed.’ One has only to have an inkling of the levels of gravitational mechanics to appreciate the complexities of the theories that have yielded resonance variations such as spiral density waves and bending waves in the past few years. As theories unfold, however, and are tested against Voyager's results, it has become evident that most of the actually observed ring structure of the major planets remains unexplained.

  14. Vortex formation in magnetic narrow rings

    NASA Astrophysics Data System (ADS)

    Bland, J. A. C.

    2002-03-01

    Underlying the current interest in magnetic elements is the possibility such systems provide both for the study of fundamental phenomena in magnetism (such as domain wall trapping and spin switching) and for technological applications, such as high density magnetic storage or magnetic random access memories (MRAM). One key issue is to control the magnetic switching precisely. To achieve this one needs first to have a well defined and reproducible remanent state, and second the switching process itself must be simple and reproducible. Among the many studied geometries, rings are shown to exhibit several advantages over other geometries, in that they show relatively simple stable magnetic states at remanence, with fast and simple magnetisation switching mechanisms. This is borne out of our systematic investigation of the magnetic properties of epitaxial and polycrystalline Co rings, where both the static, dynamic and transport properties have been studied. Magnetic measurements and micromagnetic simulations show that for appropriate ring structures a two step switching process occurs at high fields, indicating the existence of two different stable states. In addition to the vortex state, which occurs at intermediate fields, we have identified a new bi-domain state, which we term the `onion state', corresponding to opposite circulation of the magnetisation in each half of the ring. The magnetic elements were fabricated using a new technique based on the pre-patterning of Si ring structures and subsequent epitaxial growth of Cu/Co/Cu sandwich films on top of the Si elements. This technique has allowed the growth of epitaxial fcc Co(001) structures and in contrast to conventional lithographic methods, no damage to the magnetic layer structure is introduced by the patterning process [1,2]. We have studied the magnetic switching properties of arrays of narrow Co(100) epitaxial ring magnets, with outer diameters between 1 μm and 2 μm, varying inner diameters and varying

  15. Ring-Shaped Seismicity Structures in the Areas of Sarez and Nurek Water Reservoirs (Tajikistan): Lithosphere Adaptation to Additional Loading

    NASA Astrophysics Data System (ADS)

    Kopnichev, Yu. F.; Sokolova, I. N.

    2017-12-01

    Seismicity characteristics in the areas of Sarez Lake and the Nurek water reservoir are studied. Ring-shaped seismicity structures in two depth ranges (0-33 and 34-70 km) formed prior to the Pamir earthquake of December 7, 2015 ( M w = 7.2). Seismicity rings cross each other near the Usoi Dam, which formed after the strong earthquake in 1911 and led to the formation of Sarez Lake, and near the epicenter of the Pamir earthquake. In addition, three out of the four strongest events ( M ≥ 6.0) recorded in the Pamir region at depths of more than 70 km since 1950 have occurred near Sarez Lake. An aggregate of the data allows us to conclude that the Pamir earthquake, despite its very large energy, refers to events related to induced seismicity. Ring-shaped seismicity structures in two depth ranges also formed in the Nurek water reservoir area. It is supposed that the formation of ring-shaped structures is related to the self-organization processes of a geological system, which result in the ascent of deep-seated fluids. In this respect, the lithosphere is gradually adapting to the additional load related to the filling of the water reservoir. The difference between Nurek Dam (and many other hydroelectric power stations as well) and Usoi Dam is the permanent vibration in the former case due to water falling from a height of more than 200 m. Such an effect can lead to gradual stress dissipation, resulting in the occurrence of much weaker events when compared to the Pamir earthquake of December 7, 2015, in the areas of artificial water reservoirs.

  16. Liesegang Rings in Xanthogranulomatous Pyelonephritis: A Case Report

    PubMed Central

    Pegas, Karla Laís; Edelweiss, Maria Isabel; Cambruzzi, Eduardo; Zettler, Cláudio Galleano

    2010-01-01

    Liesegang rings are concentric noncellular lamellar structures, rarely seen in vivo, occurring as a consequence of the accumulation of insoluble products in a colloidal matrix. These characteristic structures are a rare phenomenon usually found in association with cystic or inflammatory lesions and may be mistaken for parasites. The authors examined Liesegang rings from an inflammatory kidney lesion identified previously as a tumoral lesion on computerized tomography. On microscopic evaluation, Liesegang rings can be mistaken for eggs and larvae of parasites, psammoma bodies and calcification. Special stains like PAS, Grocott, von Kossa and Masson's trichrome facilitate the diagnosis. PMID:21151725

  17. Structure, vibrational spectrum, and ring puckering barrier of cyclobutane.

    PubMed

    Blake, Thomas A; Xantheas, Sotiris S

    2006-09-07

    We present the results of high level ab initio calculations for the structure, harmonic and anharmonic spectroscopic constants, and ring puckering barrier of cyclobutane (C4H8) in an effort to establish the minimum theoretical requirements needed for their accurate description. We have found that accurate estimates for the barrier between the minimum (D(2d)) and transition state (D(4h)) configurations require both higher levels of electron correlation [MP4, CCSD(T)] and orbital basis sets of quadruple-zeta quality or larger. By performing CCSD(T) calculations with basis sets as large as cc-pV5Z, we were able to obtain, for the first time, a value for the puckering barrier that lies within 10 cm(-1) (or 2%) from experiment, whereas the best previously calculated values were in errors exceeding 40% of experiment. Our best estimate of 498 cm(-1) for the puckering barrier is within 10 cm(-1) of the experimental value proposed originally, but it lies approximately 50 cm(-1) higher than the revisited value, which was obtained more recently using different assumptions regarding the coupling between the various modes. It is therefore suggested that revisiting the analysis of the experimental data might be warranted. Our best computed values (at the CCSD(T)/aug-cc-pVTZ level of theory) for the equilibrium structural parameters of C4H8 are r(C-C) = 1.554 A, r(C-H(alpha)) = 1.093 A, r(C-H(beta)) = 1.091 A, phi(C-C-C) = 88.1 degrees , alpha(H(alpha)-C-H(beta)) = 109.15 degrees , and theta = 29.68 degrees for the puckering angle. We have found that the puckering angle theta is more sensitive to the level of electron correlation than to the size of the basis set for a given method. We furthermore present anharmonic calculations that are based on a second-order perturbative evaluation of rovibrational parameters and their effects on the vibrational spectra and average structure. We have found that the anharmonic calculations predict the experimentally measured fundamental band

  18. Basaltic ring structures of the Serra Geral Formation at the southern Triângulo Mineiro, Água Vermelha region, Brazil

    NASA Astrophysics Data System (ADS)

    Pacheco, Fernando Estevão Rodrigues Crincoli; Caxito, Fabricio de Andrade; Moraes, Lucia Castanheira de; Marangoni, Yara Regina; Santos, Roberto Paulo Zanon dos; Pedrosa-Soares, Antonio Carlos

    2018-04-01

    The Serra Geral Formation constitutes a continental magmatic province on the southern part of South America within the Paraná basin. Basaltic magmatism of the Serra Geral Formation occurred as extrusions at around 134.5 to 131.5 My ago. The formation is part of the Paraná-Etendeka large igneous province, spanning South America and southwestern Africa. The main extrusion mechanism was probably through fissures related to extensional regime during the breakup of Gondwana in the Cretaceous. Basaltic ring structures (BRS) with tens of meters of diameter, cropping out downstream of Grande river at Água Vermelha hydroelectric dam in southern Triângulo Mineiro region, enable the study of the mechanism of extrusion. The origin of the BRS has been subject to differing interpretations in the past, either collapsed lava flows or central conduits. Detailed geological mapping at 1:1000 scale, stratigraphic, petrographic and gravimetric analysis of the most well preserved of the BRS, with a 200 m diameter, has enabled the description of thirteen different basalt lava flows, along with single a central lava lake and a ring dyke structure. The central flow, interpreted as a preserved lava lake, comprises vesicle- and amygdale-rich basalt, spatter, ropy and degassing structures. The most basal of the thirteen lava flows has massive basalt containing geodes filled with quartz. Above, the lava flows show massive basalt with vertical columnar jointing where is possible to identify the top and bottom of each individual flow, with gentle dips towards the perimeter of the structure. A prominent ring dyke dipping towards the lava lake presents horizontal columnar jointing and cuts the basal and central flows. The gravimetric analysis shows a weak negative Bouguer anomaly on the center of the BRS. The proposed model describes the volcanism of the region in three main steps: (1) fissure flow occurs with lava input; (2) this lava cools and crystallizes cementing most of the fissures

  19. A C2HC zinc finger is essential for the RING-E2 interaction of the ubiquitin ligase RNF125

    PubMed Central

    Bijlmakers, Marie-José; Teixeira, João M. C.; Boer, Roeland; Mayzel, Maxim; Puig-Sàrries, Pilar; Karlsson, Göran; Coll, Miquel; Pons, Miquel; Crosas, Bernat

    2016-01-01

    The activity of RING ubiquitin ligases (E3s) depends on an interaction between the RING domain and ubiquitin conjugating enzymes (E2), but posttranslational events or additional structural elements, yet largely undefined, are frequently required to enhance or regulate activity. Here, we show for the ubiquitin ligase RNF125 that, in addition to the RING domain, a C2HC Zn finger (ZnF) is crucial for activity, and a short linker sequence (Li2120-128) enhances activity. The contribution of these regions was first shown with truncated proteins, and the essential role of the ZnF was confirmed with mutations at the Zn chelating Cys residues. Using NMR, we established that the C2HC ZnF/Li2120-128 region is crucial for binding of the RING domain to the E2 UbcH5a. The partial X-ray structure of RNF125 revealed the presence of extensive intramolecular interactions between the RING and C2HC ZnF. A mutation at one of the contact residues in the C2HC ZnF, a highly conserved M112, resulted in the loss of ubiquitin ligase activity. Thus, we identified the structural basis for an essential role of the C2HC ZnF and conclude that this domain stabilizes the RING domain, and is therefore required for binding of RNF125 to an E2. PMID:27411375

  20. Wind turbine ring/shroud drive system

    DOEpatents

    Blakemore, Ralph W.

    2005-10-04

    A wind turbine capable of driving multiple electric generators having a ring or shroud structure for reducing blade root bending moments, hub loads, blade fastener loads and pitch bearing loads. The shroud may further incorporate a ring gear for driving an electric generator. In one embodiment, the electric generator may be cantilevered from the nacelle such that the gear on the generator drive shaft is contacted by the ring gear of the shroud. The shroud also provides protection for the gearing and aids in preventing gear lubricant contamination.

  1. Particle sizes in Saturn's rings from UVIS stellar occultations 1. Variations with ring region

    NASA Astrophysics Data System (ADS)

    Colwell, J. E.; Esposito, L. W.; Cooney, J. H.

    2018-01-01

    The Cassini spacecraft's Ultraviolet Imaging Spectrograph (UVIS) includes a high speed photometer (HSP) that has observed stellar occultations by Saturn's rings with a radial resolution of ∼10 m. In the absence of intervening ring material, the time series of measurements by the HSP is described by Poisson statistics in which the variance equals the mean. The finite sizes of the ring particles occulting the star lead to a variance that is larger than the mean due to correlations in the blocking of photons due to finite particle size and due to random variations in the number of individual particles in each measurement area. This effect was first exploited by Showalter and Nicholson (1990) with the stellar occultation observed by Voyager 2. At a given optical depth, a larger excess variance corresponds to larger particles or clumps that results in greater variation of the signal from measurement to measurement. Here we present analysis of the excess variance in occultations observed by Cassini UVIS. We observe differences in the best-fitting particle size in different ring regions. The C ring plateaus show a distinctly smaller effective particle size, R, than the background C ring, while the background C ring itself shows a positive correlation between R and optical depth. The innermost 700 km of the B ring has a distribution of excess variance with optical depth that is consistent with the C ring ramp and C ring but not with the remainder of the B1 region. The Cassini Division, while similar to the C ring in spectral and structural properties, has different trends in effective particle size with optical depth. There are discrete jumps in R on either side of the Cassini Division ramp, while the C ring ramp shows a smooth transition in R from the C ring to the B ring. The A ring is dominated by self-gravity wakes whose shadow size depends on the occultation geometry. The spectral ;halo; regions around the strongest density waves in the A ring correspond to

  2. Moonlets wandering on a leash-ring

    NASA Astrophysics Data System (ADS)

    Winter, O. C.; Mourão, D. C.; Giuliatti Winter, S. M.; Spahn, F.; da Cruz, C.

    2007-09-01

    Since the Voyager flybys, embedded moonlets have been proposed to explain some of the surprising structures observed in Saturn's narrow F ring. Experiments conducted with the Cassini spacecraft support this suggestion. Images of the F ring show bright compact spots, and seven occultations of stars by the F ring, monitored by ultraviolet and infrared experiments, revealed nine events of high optical depth. These results point to a large number of such objects, but it is not clear whether they are solid moonlets or rather loose particle aggregates. Subsequent images suggested an irregular motion of these objects so that a determination of their orbits consistent with the F ring failed. Some of these features seem to cross the whole ring. Here we show that these observations are explained by chaos in the F ring driven mainly by the `shepherd' moons Prometheus and Pandora. It is characterized by a rather short Lyapunov time of about a few hundred orbital periods. Despite this chaotic diffusion, more than 93 per cent of the F-ring bodies remain confined within the F ring because of the shepherding, but also because of a weak radial mobility contrasted by an effective longitudinal diffusion. This chaotic stirring of all bodies involved prevents the formation of `propellers' typical of moonlets, but their frequent ring crossings explain the multiple radial `streaks' seen in the F ring. The related `thermal' motion causes more frequent collisions between all bodies which steadily replenish F-ring dust and allow for ongoing fragmentation and re-accretion processes (ring recycling).

  3. Fatigue Testing of Ring-Stiffened Traffic Signal Structures.

    DOT National Transportation Integrated Search

    2010-10-09

    Based on in-service inspection of poles with traditional designs, the inventory of Wyoming Department of Transportation ?WYDOT? exhibited approximately a one-third cracking rate. A ring-stiffened connection is presently used. Sixteen fatigue tests we...

  4. Double-stator electromagnetic pump having alignment ring and spine assembly

    DOEpatents

    Fanning, Alan Wayne; Olich, Eugene Ellsworth; Dahl, Leslie Roy; Patel, Mahadeo Ratilal

    1997-01-01

    A support structure for clamping the inner coils and inner lamination rings of an inner stator column of an electromagnetic induction pump to prevent damaging vibration. A spine assembly, including a base plate, a center post and a plurality of ribs, serves as the structural frame for the inner stator. Stacked alignment rings provide structure to the lamination rings and locate them concentrically around the spine assembly central axis. The alignment rings are made of a material having a high thermal expansion coefficient to compensate for the lower expansion of the lamination rings and, overall, provide an approximate match to the expansion of the inner flow duct. The net result is that the radial clamping provided by the duct around the stator iron is maintained (approximately) over a range of temperatures and operating conditions. Axial clamping of the inner stator structure is achieved via tie rods which run through grooves in the ribs and engage the base plate at the bottom of the inner stator and engage a clamping plate at the top. Slender tie rods and a flexible clamping plate are used to provide compliance in the axial clamping system to accommodate differential thermal growth (axially) between the tie rods and lamination ring elements without losing clamping force.

  5. Double-stator electromagnetic pump having alignment ring and spine assembly

    DOEpatents

    Fanning, A.W.; Olich, E.E.; Dahl, L.R.; Patel, M.R.

    1997-06-24

    A support structure for clamping the inner coils and inner lamination rings of an inner stator column of an electromagnetic induction pump to prevent damaging vibration is disclosed. A spine assembly, including a base plate, a center post and a plurality of ribs, serves as the structural frame for the inner stator. Stacked alignment rings provide structure to the lamination rings and locate them concentrically around the spine assembly central axis. The alignment rings are made of a material having a high thermal expansion coefficient to compensate for the lower expansion of the lamination rings and, overall, provide an approximate match to the expansion of the inner flow duct. The net result is that the radial clamping provided by the duct around the stator iron is maintained (approximately) over a range of temperatures and operating conditions. Axial clamping of the inner stator structure is achieved via tie rods which run through grooves in the ribs and engage the base plate at the bottom of the inner stator and engage a clamping plate at the top. Slender tie rods and a flexible clamping plate are used to provide compliance in the axial clamping system to accommodate differential thermal growth (axially) between the tie rods and lamination ring elements without losing clamping force. 12 figs.

  6. Peroxisomal ATP-binding cassette transporters form mainly tetramers

    PubMed Central

    Geillon, Flore; Gondcaille, Catherine; Raas, Quentin; Dias, Alexandre M. M.; Pecqueur, Delphine; Truntzer, Caroline; Lucchi, Géraldine; Ducoroy, Patrick; Falson, Pierre; Savary, Stéphane; Trompier, Doriane

    2017-01-01

    ABCD1 and its homolog ABCD2 are peroxisomal ATP-binding cassette (ABC) half-transporters of fatty acyl-CoAs with both distinct and overlapping substrate specificities. Although it is established that ABC half-transporters have at least to dimerize to generate a functional unit, functional equivalents of tetramers (i.e. dimers of full-length transporters) have also been reported. However, oligomerization of peroxisomal ABCD transporters is incompletely understood but is of potential significance because more complex oligomerization might lead to differences in substrate specificity. In this work, we have characterized the quaternary structure of the ABCD1 and ABCD2 proteins in the peroxisomal membrane. Using various biochemical approaches, we clearly demonstrate that both transporters exist as both homo- and heterotetramers, with a predominance of homotetramers. In addition to tetramers, some larger molecular ABCD assemblies were also found but represented only a minor fraction. By using quantitative co-immunoprecipitation assays coupled with tandem mass spectrometry, we identified potential binding partners of ABCD2 involved in polyunsaturated fatty-acid metabolism. Interestingly, we identified calcium ATPases as ABCD2-binding partners, suggesting a role of ABCD2 in calcium signaling. In conclusion, we have shown here that ABCD1 and its homolog ABCD2 exist mainly as homotetramers in the peroxisomal membrane. PMID:28258215

  7. Ring structure amino acids affect the suppressor activity of melon aphid-borne yellows virus P0 protein.

    PubMed

    Han, Yan-Hong; Xiang, Hai-Ying; Wang, Qian; Li, Yuan-Yuan; Wu, Wen-Qi; Han, Cheng-Gui; Li, Da-Wei; Yu, Jia-Lin

    2010-10-10

    Melon aphid-borne yellows virus (MABYV) is a newly identified polerovirus occurring in China. Here, we demonstrate that the MABYV encoded P0 (P0(MA)) protein is a strong suppressor of post-transcriptional gene silencing (PTGS) with activity comparable to tobacco etch virus (TEV) HC-Pro. In addition we have shown that the LP F-box motif present at the N-terminus of P0(MA) is required for suppressor activity. Detailed mutational analyses on P0(MA) revealed that changing the conserved Trp 212 with non-ring structured amino acids altered silencing suppressor functions. Ala substitutions at positions 12 and 211 for Phe had no effect on P0 suppression-activity, whereas Arg and Glu substitutions had greatly decreased suppressor activity. Furthermore, substitutions targeting Phe at position 30 also resulted in reduced P0 suppression-activity. Altogether, these results suggest that ring structured Trp/Phe residues in P0 have important roles in suppressor activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Report of the eRHIC Ring-Ring Working Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschenauer, E. C.; Berg, S.; Blaskiewicz, M.

    2015-10-13

    This report evaluates the ring-ring option for eRHIC as a lower risk alternative to the linac-ring option. The reduced risk goes along with a reduced initial luminosity performance. However, a luminosity upgrade path is kept open. This upgrade path consists of two branches, with the ultimate upgrade being either a ring-ring or a linac-ring scheme. The linac-ring upgrade could be almost identical to the proposed linac-ring scheme, which is based on an ERL in the RHIC tunnel. This linac-ring version has been studied in great detail over the past ten years, and its significant risks are known. On the othermore » hand, no detailed work on an ultimate performance ring-ring scenario has been performed yet, other than the development of a consistent parameter set. Pursuing the ring-ring upgrade path introduces high risks and requires significant design work that is beyond the scope of this report.« less

  9. The structure and stability of orbits in Hoag-like ring systems

    NASA Astrophysics Data System (ADS)

    Bannikova, Elena Yu

    2018-05-01

    Ring galaxies are amazing objects exemplified by the famous case of Hoag's Object. Here the mass of the central galaxy may be comparable to the mass of the ring, making it a difficult case to model mechanically. In a previous paper, it was shown that the outer potential of a torus (ring) can be represented with good accuracy by the potential of a massive circle with the same mass. This approach allows us to simplify the problem of the particle motion in the gravitational field of a torus associated with a central mass by replacing the torus with a massive circle. In such a system, there is a circle of unstable equilibrium that we call `Lagrangian circle' (LC). Stable circular orbits exist only in some region limited by the last possible circular orbit related to the disappearance of the extrema of the effective potential. We call this orbit `the outermost stable circular orbit' (OSCO) by analogy with the innermost stable circular orbit (ISCO) in the relativistic case of a black hole. Under these conditions, there is a region between OSCO and LC where the circular motion is not possible due to the competition between the gravitational forces by the central mass and the ring. As a result, a gap in the matter distribution can form in Hoag-like system with massive rings.

  10. Targeting Cullin–RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation

    PubMed Central

    Bulatov, Emil; Ciulli, Alessio

    2015-01-01

    In the last decade, the ubiquitin–proteasome system has emerged as a valid target for the development of novel therapeutics. E3 ubiquitin ligases are particularly attractive targets because they confer substrate specificity on the ubiquitin system. CRLs [Cullin–RING (really interesting new gene) E3 ubiquitin ligases] draw particular attention, being the largest family of E3s. The CRLs assemble into functional multisubunit complexes using a repertoire of substrate receptors, adaptors, Cullin scaffolds and RING-box proteins. Drug discovery targeting CRLs is growing in importance due to mounting evidence pointing to significant roles of these enzymes in diverse biological processes and human diseases, including cancer, where CRLs and their substrates often function as tumour suppressors or oncogenes. In the present review, we provide an account of the assembly and structure of CRL complexes, and outline the current state of the field in terms of available knowledge of small-molecule inhibitors and modulators of CRL activity. A comprehensive overview of the reported crystal structures of CRL subunits, components and full-size complexes, alone or with bound small molecules and substrate peptides, is included. This information is providing increasing opportunities to aid the rational structure-based design of chemical probes and potential small-molecule therapeutics targeting CRLs. PMID:25886174

  11. Structure of a Glomulin-RBX1-CUL1 Complex: Inhibition of a RING E3 Ligase through Masking of Its E2-Binding Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.

    2012-11-01

    The approximately 300 human cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1's RING domain, regulates the RBX1-CUL1-containing SCF{sup FBW7} complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains themore » basis for GLMN's selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation, whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition.« less

  12. Structure of a Glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface

    PubMed Central

    Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.; Hammel, Michal; Lambert, Lester J.; Waddell, M. Brett; Mittag, Tanja; DeCaprio, James A.; Schulman, Brenda A.

    2012-01-01

    Summary The ~300 human Cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1’s RING domain, regulates the RBX1-CUL1-containing SCFFBW7 complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN’s selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition. PMID:22748924

  13. Synthesis, crystal structure, and properties of new lead barium borate with B3O6 plane hexagonal rings

    NASA Astrophysics Data System (ADS)

    Zhao, Wenwu

    2017-08-01

    A new lead barium borate Ba8.02Pb0.98(B3O6)6 with B3O6 plane hexagonal rings was synthesized through spontaneous nucleation from a high-temperature solution utilizing PbO, H3BO3, and BaF2 as reagents. Its crystal structure was determined from single-crystal X-ray diffraction data and further characterized by FT-IR. It crystallizes in space group R32 and the crystallographic structure of Ba8.02Pb0.98(B3O6)6 can be described as a layer-like structure, there is stacking along the c-axis of B3O6 plane hexagonal rings with the Ba2 and Pb/Ba1 atoms alternately occupying sites between the B3O6 sheets. A comparison of the structures of Ba8.02Pb0.98(B3O6)6, PbBa2(B3O6)2 and α-BaB2O4 is presented. UV-Vis-NIR diffuse-reflectance spectrum indicates that the absorption edge of Ba8.02Pb0.98(B3O6)6 is about 399 nm.

  14. Evidence of Accretion in Saturn's F Ring (Invited)

    NASA Astrophysics Data System (ADS)

    Agnor, C. B.; Buerle, K.; Murray, C. D.; Evans, M. W.; Cooper, N. J.; Williams, G. W.

    2010-12-01

    Lying slightly outside the classical Roche radius and being strongly perturbed by the adjacent moons Prometheus and Pandora, Saturn's F ring represents a unique astrophysical laboratory for examining the processes of mass accretion and moonlet formation. Recent images from the Cassini spacecraft reveal optically thick clumps, capable of casting shadows, and associated structures in regions of the F ring following close passage by Prometheus. Here we examine the accretion environment of the F ring and Prometheus' role in moonlet formation and evolution. Using the observed structures adjacent to these clumps and dynamical arguments we estimate the masses of these clumps and find them comparable to that of ~10-20-km contiguous moonlets. Further, we show that Prometheus' perturbations on the F ring create regions of enhanced density and low relative velocity that may accelerate the accretion of clumps and moonlets.

  15. GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation

    NASA Astrophysics Data System (ADS)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-08-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (∼200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon

  16. GRAIL Gravity Observations of the Transition from Complex Crater to Peak-Ring Basin on the Moon: Implications for Crustal Structure and Impact Basin Formation

    NASA Technical Reports Server (NTRS)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-01-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles for free-air anomalies and Bouguer anomalies for peak-ring basins, proto-basins, and the largest complex craters. Complex craters and proto-basins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (approx. 200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the

  17. PREFACE: Special section on vortex rings Special section on vortex rings

    NASA Astrophysics Data System (ADS)

    Fukumoto, Yasuhide

    2009-10-01

    This special section of Fluid Dynamics Research includes five articles on vortex rings in both classical and quantum fluids. The leading scientists of the field describe the trends in and the state-of-the-art development of experiments, theories and numerical simulations of vortex rings. The year 2008 was the 150th anniversary of 'vortex motion' since Hermann von Helmholtz opened up this field. In 1858, Helmholtz published a paper in Crelle's Journal which put forward the concept of 'vorticity' and made the first analysis of vortex motion. Fluid mechanics before that was limited to irrotational motion. In the absence of vorticity, the motion of an incompressible homogeneous fluid is virtually equivalent to a rigid-body motion in the sense that the fluid motion is determined once the boundary configuration is specified. Helmholtz proved, among other things, that, without viscosity, a vortex line is frozen into the fluid. This Helmholtz's law immediately implies the preservation of knots and links of vortex lines and its implication is enormous. One of the major trends of fluid mechanics since the latter half of the 20th century is to clarify the topological meaning of Helmholtz's law and to exploit it to develop theoretical and numerical methods to find the solutions of the Euler equations and to develop experimental techniques to gain an insight into fluid motion. Vortex rings are prominent coherent structures in a variety of fluid motions from the microscopic scale, through human and mesoscale to astrophysical scales, and have attracted people's interest. The late professor Philip G Saffman (1981) emphasized the significance of studies on vortex rings. One particular motion exemplifies the whole range of problems of vortex motion and is also a commonly known phenomenon, namely the vortex ring or smoke ring. Vortex rings are easily produced by dropping drops of one liquid into another, or by puffing fluid out of a hole, or by exhaling smoke if one has the skill

  18. Integral Ring Carbon-Carbon Piston

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor)

    1999-01-01

    An improved structure for a reciprocating internal combustion engine or compressor piston fabricate from carbon-carbon composite materials is disclosed. An integral ring carbon-carbon composite piston, disclosed herein, reduces the need for piston rings and for small clearances by providing a small flexible, integral component around the piston that allows for variation in clearance due to manufacturing tolerances, distortion due to pressure and thermal loads, and variations in thermal expansion differences between the piston and cylinder liner.

  19. Cassini RADAR End of Mission Calibration and Preliminary Ring Results

    NASA Astrophysics Data System (ADS)

    West, R. D.; Janssen, M.; Zhang, Z.; Cuzzi, J. N.; Anderson, Y.; Hamilton, G.

    2017-12-01

    The Cassini mission is in the midst of its last year of observations. Part of the mission plan includes orbits that bring the spacecraft close to Saturn's rings prior to deorbiting into Saturn's atmosphere. First, a series of F-ring orbits crossed the ring plane just outside of the F-ring, and then a series of Proximal orbits crossed the ring plane inside of the D-ring - just above the cloud tops. The Cassini RADAR instrument collected active and passive data of the rings in 5 observations, of Saturn in one observation, and passive only data in an additional 4 observations. These observations provided a unique opportunity to obtain backscatter measurements and relatively high-resolution brightness temperature measurements from Saturn and the rings. Such measurements were never before possible from the spacecraft or the Earth due to high range. Before the F-ring orbits began, and again during the last rings scan, the radar collected calibration data to aid calibration of the rings measurements and to provide an updated timeline of the radar calibration over the whole mission. This presentation will cover preliminary processing results from the radar rings scans and from the calibration data sets. Ultimately, these ring scan measurements will provide a 1-D profile of backscatter obtained at 2.2 cm wavelength that will complement similar passive profiles obtained at optical, infrared, and microwave wavelengths. Such measurements will further constrain and inform models of the ring particle composition and structure, and the local vertical structure of the rings. This work is supported by the NASA Cassini Program at JPL - CalTech.

  20. Physics of planetary rings

    NASA Astrophysics Data System (ADS)

    Gorkavyi, N.

    2007-08-01

    It is difficult to enumerate all the surprises presented by the planetary rings. The Saturnian rings are stratified into thousands of ringlets and the Uranian rings are compressed into narrow streams, which for some reason or other differ from circular orbits like the wheel of an old bicycle. The edge of the rings is jagged and the rings themselves are pegged down under the gravitational pressure of the satellites, bending like a ship's wake. There are spiral waves, elliptical rings, strange interlacing of narrow ringlets, and to cap it all one has observed in the Neptunian ring system three dense, bright arcs - like bunches of sausages on a transparent string. For celestial mechanics this is a spectacle as unnatural as a bear's tooth in the necklace of the English queen. In the dynamics of planetary rings the physics of collective interaction was supplemented by taking collisions between particles into account. One was led to study a kinetic equation with a rather complex collision integral - because the collisions are inelastic - which later on made it possible, both by using the Chapman-Enskog method and by using the solution of the kinetic equation for a plasma in a magnetic field, to reduce it to a closed set of (hydrodynamical) moment equations [1]. The hydrodynamical instabilities lead to the growth of short-wavelength waves and large-scale structures of the Saturnian rings [1]. We have shown that the formation of the existing dense Uranian rings is connected with the capture of positively drifting ring particles in inner Lindblad resonances which arrest this drift [1]. After the formation of dense rings at the positions of satellite resonances the collective interaction between resonant particles is amplified and the rings can leave the resonance and drift away from the planet and the parent resonance. We can expect in the C ring an appreciable positive ballistic particle drift caused by the erosion of the B ring by micrometeorites. It is therefore natural

  1. Atmospheric, Ionospheric, and Energetic Radiation Environments of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Kollmann, P.; Sittler, E. C., Jr.; Johnson, R. E.; Sturner, S. J.

    2015-12-01

    Planetary magnetospheric and high-energy cosmic ray interactions with Saturn's rings were first explored in-situ during the Pioneer 11 flyby in 1979. The following Voyager flybys produced a wealth of new information on ring structure and mass, and on spatial structure of the radiation belts beyond the main rings. Next came the Cassini Orbiter flyover of the rings during Saturn Orbital Insertion in 2004 with the first in-situ measurements of the ring atmosphere and plasma ionosphere. Cassini has since fully explored the radiation belt and magnetospheric plasma region beyond the main rings, discovering how Enceladus acts as a source of water group neutrals and water ions for the ion plasma. But do the main rings also substantially contribute by UV photolysis to water group plasma (H+, O+, OH+, H2O+, H3O+, O2+) and neutrals inwards from Enceladus? More massive rings, than earlier inferred from Pioneer 11 and Voyager observations, would further contribute by bulk ring ice radiolysis from interactions of galactic cosmic ray particles. Products of these interactions include neutron-decay proton and electron injection into the radiation belts beyond the main rings. How does radiolysis from moon and ring sweeping of the radiation belt particles compare with direct gas and plasma sources from the main rings and Enceladus? Can the magnetospheric ion and electron populations reasonably be accounted for by the sum of the ring-neutron-decay and outer magnetospheric inputs? Pioneer 11 made the deepest radial penetration into the C-ring, next followed by Cassini SOI. What might Cassini's higher-inclination proximal orbits reveal about the atmospheric, ionospheric, and energetic radiation environments in the D-ring and the proximal gap region? Recent modeling predicts a lower-intensity innermost radiation belt extending from the gap to the inner D-ring. Other remaining questions include the lifetimes of narrow and diffuse dust rings with respect to plasma and energetic particle

  2. Biotransformation of two β-secretase inhibitors including ring opening and contraction of a pyrimidine ring.

    PubMed

    Lindgren, Anders; Eklund, Göran; Turek, Dominika; Malmquist, Jonas; Swahn, Britt-Marie; Holenz, Jörg; von Berg, Stefan; Karlström, Sofia; Bueters, Tjerk

    2013-05-01

    Recently, the discovery of the aminoisoindoles as potent and selective inhibitors of β-secretase was reported, including the close structural analogs compound (S)-1-pyridin-4-yl-4-fluoro-1-(3-(pyrimidin-5-yl)phenyl)-1H-isoindol-3-amine [(S)-25] and (S)-1-(2-(difluoromethyl)pyridin-4-yl)-4-fluoro-1-(3-(pyrimidin-5-yl)phenyl)-1H-isoindol-3-amine hemifumarate (AZD3839), the latter being recently progressed to the clinic. The biotransformation of (S)-25 was investigated in vitro and in vivo in rat, rabbit, and human and compared with AZD3839 to further understand the metabolic fate of these compounds. In vitro, CYP3A4 was the major responsible enzyme and metabolized both compounds to a large extent in the commonly shared pyridine and pyrimidine rings. The main proposed metabolic pathways in various in vitro systems were N-oxidation of the pyridine and/or pyrimidine ring and conversion to 4-pyrimidone and pyrimidine-2,4-dione. Both compounds were extensively metabolized, and more than 90% was excreted in feces after intravenous administration of radiolabeled compound to the rat. Here, the main pathways were N-oxidation of the pyridine and/or pyrimidine ring and a ring contraction of the pyrimidine ring into an imidazole ring. Ring-contracted metabolites accounted for 25% of the total metabolism in the rat for (S)-25, whereas the contribution was much smaller for AZD3839. This metabolic pathway was not foreseen on the basis of the obtained in vitro data. In conclusion, we discovered an unusual metabolic pathway of aryl-pyrimidine-containing compounds by a ring-opening reaction followed by elimination of a carbon atom and a ring closure to form an imidazole ring.

  3. The Dynamics of Dense Planetary Rings.

    NASA Astrophysics Data System (ADS)

    Mosqueira, Ignacio

    1995-01-01

    We study the dynamics of a two-mode narrow ring in the case that one of the modes dominates the overall ring perturbation. We use a simple two-streamline self -gravity model, including viscosity, and shepherd satellites. As might be expected, we find that n m = 1 mode appears to be a natural end state for the rings, inasmuch as the presence of a dominant eccentric mode inhibits the growth of other modes, but the reverse is not true. Why some rings exhibit other m values only remains unexplained. Using a modified N-body code to include periodic boundary conditions in a perturbed shear flow, we investigate the role of viscosity on the dynamics of perturbed rings with optical depth tau ~ 1. In particular, we are concerned with rings such that qe = a{de over da} ne 0, where a is the semi-major axis and e is the eccentricity. We confirm the possibility that, for a sufficiently perturbed ring, the angular momentum luminosity may reverse direction with respect to the unperturbed ring (Borderies et al. 1983a). We use observationally constrained parameters for the delta and epsilon Uranian rings, as well as the outer portion of Saturn's B ring. We find that understanding the effects of viscosity for the Uranian rings requires that both local and non-local transport terms be considered if the coefficient of restitution experimentally obtained by Bridges et al. (1984) is appropriate for ring particles. We also find evidence that the criterion for viscous overstability is satisfied in the case of high optical depth rings, as originally proposed by Borderies et al. (1985), making viscous overstability a leading candidate mechanism to explain the non-axisymmetric structure present in the outer portion of Saturn's B ring. To better understand our path-code results we extend a non-local and incompressible fluid model used by Borderies et al. (1985) for dense rings. We incorporate local and non-local transport terms as well as compressibility, while retaining the same number of

  4. Reconnaissance survey of the Duolun ring structure in Inner Mongolia: Not an impact structure

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoming; Kenkmann, Thomas; Xiao, Zhiyong; Sturm, Sebastian; Metzger, Nicolai; Yang, Yu; Weimer, Daniela; Krietsch, Hannes; Zhu, Meng-Hua

    2017-09-01

    The Duolun basin, which is located in Inner Mongolia, China, has been proposed to be an impact structure with an apparent rim diameter of about 70, or even 170 km. The designation as an impact structure was based on its nearly circular topography, consisting of an annular moat that surrounds an inner hummocky region, and the widespread occurrences of various igneous rocks, polymict breccias, and deformed crustal rocks. Critical shock metamorphic evidence is not available to support the impact hypothesis. We conducted two independent reconnaissance field surveys to this area and studied the lithology both within and outside of the ring structure. We collected samples from all lithologies that might contain evidence of shock metamorphism as suggested by their locations, especially those sharing similar appearances with impact breccias, suevites, impact melt rocks, and shatter cones. Field investigation, together with thin-section examination, discovered that the suspected impact melt rocks are actually Early Cretaceous and Late Jurassic lava flows and pyroclastic deposits of rhyolitic to trachytic compositions, and the interpreted impact glass is typical volcanic glass. Petrographic analyses of all the samples reveal no indications for shock metamorphic overprint. All these lines of evidence suggest that the Duolun basin was not formed through impact cratering. The structural deformation and spatial distribution pattern of the igneous rocks suggest that the Duolun basin is most likely a Jurassic-Cretaceous complex rhyolite caldera system that has been partly filled with sediments forming an annular basin, followed by resurgent doming of the central area.

  5. Stacking interactions of hydrogen-bridged rings – stronger than the stacking of benzene molecules.

    PubMed

    Blagojević, Jelena P; Zarić, Snežana D

    2015-08-21

    Analysis of crystal structures from the Cambridge Structural Database showed that 27% of all planar five-membered hydrogen-bridged rings, possessing only single bonds within the ring, form intermolecular stacking interactions. Interaction energy calculations show that interactions can be as strong as -4.9 kcal mol(-1), but dependent on ring structure.

  6. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.

    Planetary rings are the only nearby astrophysical disks and the only disks that have been investigated by spacecraft (especially the Cassini spacecraft orbiting Saturn). Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 10- 7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close range and in real time in planetary rings.We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The A, B, and C rings of Saturn, plus the Cassini Division, comprise our solar system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are found both at Uranus (where they comprise the main rings entirely) and at Saturn (where they are embedded in the broad disk) and are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally confined arcs at Neptune, Saturn, and Jupiter. Finally, every known ring system includes a substantial component of diffuse dusty rings.Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of

  7. The Phylogenetic Signature Underlying ATP Synthase c-Ring Compliance

    DOE PAGES

    Pandini, Alessandro; Kleinjung, Jens; Taylor, Willie R.; ...

    2015-09-01

    The proton-driven ATP synthase (F OF 1) is comprised of two rotary, stepping motors (F O and F 1) coupled by an elastic power transmission. The elastic compliance resides in the rotor module that includes the membrane-embedded FO c-ring. Proton transport by FO is firmly coupled to the rotation of the c-ring relative to other F O subunits (ab 2). It drives ATP synthesis. We used a computational method to investigate the contribution of the c-ring to the total elastic compliance. We performed principal component analysis of conformational ensembles built using distance constraints from the bovine mitochondrial c-ring x-ray structure.more » Angular rotary twist, the dominant ring motion, was estimated to show that the c-ring accounted in part for the measured compliance. Ring rotation was entrained to rotation of the external helix within each hairpin-shaped c-subunit in the ring. Ensembles of monomer and dimers extracted from complete c-rings showed that the coupling between collective ring and the individual subunit motions was independent of the size of the c-ring, which varies between organisms. Molecular determinants were identified by covariance analysis of residue coevolution and structural-alphabet-based local dynamics correlations. The residue coevolution gave a readout of subunit architecture. The dynamic couplings revealed that the hinge for both ring and subunit helix rotations was constructed from the proton-binding site and the adjacent glycine motif (IB-GGGG) in the midmembrane plane. IB-GGGG motifs were linked by long-range couplings across the ring, while intrasubunit couplings connected the motif to the conserved cytoplasmic loop and adjacent segments. The correlation with principal collective motions shows that the couplings underlie both ring rotary and bending motions. Noncontact couplings between IB-GGGG motifs matched the coevolution signal as well as contact couplings. The residue coevolution reflects the physiological importance of the

  8. The Phylogenetic Signature Underlying ATP Synthase c-Ring Compliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandini, Alessandro; Kleinjung, Jens; Taylor, Willie R.

    The proton-driven ATP synthase (F OF 1) is comprised of two rotary, stepping motors (F O and F 1) coupled by an elastic power transmission. The elastic compliance resides in the rotor module that includes the membrane-embedded FO c-ring. Proton transport by FO is firmly coupled to the rotation of the c-ring relative to other F O subunits (ab 2). It drives ATP synthesis. We used a computational method to investigate the contribution of the c-ring to the total elastic compliance. We performed principal component analysis of conformational ensembles built using distance constraints from the bovine mitochondrial c-ring x-ray structure.more » Angular rotary twist, the dominant ring motion, was estimated to show that the c-ring accounted in part for the measured compliance. Ring rotation was entrained to rotation of the external helix within each hairpin-shaped c-subunit in the ring. Ensembles of monomer and dimers extracted from complete c-rings showed that the coupling between collective ring and the individual subunit motions was independent of the size of the c-ring, which varies between organisms. Molecular determinants were identified by covariance analysis of residue coevolution and structural-alphabet-based local dynamics correlations. The residue coevolution gave a readout of subunit architecture. The dynamic couplings revealed that the hinge for both ring and subunit helix rotations was constructed from the proton-binding site and the adjacent glycine motif (IB-GGGG) in the midmembrane plane. IB-GGGG motifs were linked by long-range couplings across the ring, while intrasubunit couplings connected the motif to the conserved cytoplasmic loop and adjacent segments. The correlation with principal collective motions shows that the couplings underlie both ring rotary and bending motions. Noncontact couplings between IB-GGGG motifs matched the coevolution signal as well as contact couplings. The residue coevolution reflects the physiological importance of the

  9. The narrow rings of Jupiter, Saturn and Uranus

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.; Murray, C. D.; Sinclair, A. T.

    1980-01-01

    The origin of the newly discovered narrow ring systems around Jupiter, Saturn and Uranus is considered. It is pointed out that both the Uranian and Jovian ring systems have mean orbital radii of 1.8 planetary radii and lie within the Roche zones of their respective planets, and it is suggested that the Jovian ring is the product of the disintegration of a satellite that entered the Roche zone, and that large numbers of small particles are now in horseshoe orbits about the Lagrangian equilibrium points of the remnant chunks. Analysis of the path of a ring particle in a horseshoe orbit is shown to result in ring structures in agreement with those observed for the circular rings of Jupiter and the highly eccentric ring of Uranus. The stability of these ring systems is then considered, and it is suggested that the F ring of Saturn, which lies outside the Roche zone, represents primordial matter not yet accreted by small satellites just inside the Mimas first-order resonances.

  10. Space-charge-sustained microbunch structure in the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Cousineau, S.; Danilov, V.; Holmes, J.; Macek, R.

    2004-09-01

    We present experimental data from the Los Alamos Proton Storage Ring (PSR) showing long-lived linac microbunch structure during beam storage with no rf bunching. Analysis of the experimental data and particle-in-cell simulations of the experiments indicate that space charge, coupled with energy spread effects, is responsible for the sustained microbunch structure. The simulated longitudinal phase space of the beam reveals a well-defined separatrix in the phase space between linac microbunches, with particles executing unbounded motion outside of the separatrix. We show that the longitudinal phase space of the beam was near steady state during the PSR experiments, such that the separatrix persisted for long periods of time. Our simulations indicate that the steady state is very sensitive to the experimental conditions. Finally, we solve the steady-state problem in an analytic, self-consistent fashion for a set of periodic longitudinal space-charge potentials.

  11. Stellar Occultations by Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Nicholson, Philip; Hedman, Matthew; French, Richard G.; Ansty, Todd

    2018-04-01

    On 15 September 2017 the Cassini mission came to an end when the spacecraft made a controlled entry into the planet's atmosphere. Over the preceding 13 years the Visual and Infrared Mapping Spectrometer (VIMS) instrument successfully observed over 170 stellar occultations by Saturn's rings, greatly increasing the available data set for high-resolution studies of the rings' structure and dynamics. Ring opening angles, B_\\ast ranged from 1.06° to 74.18°, while spacecraft ranges varied from 220,000 to 3,014,000 km. The effective radial resolution of the data is determined by a combination of Fresnel diffraction, stellar diameter and sampling rate, but is typically 150-300~m. We will briefly review the overall data set, before looking at examples of dynamical studies carried out with it over the past decade. These include modeling the geometry of self-gravity wakes in the A and B rings, evidence for viscous over-stability in the inner A ring, studies of eccentric, inclined and more complex orbital perturbations on the edges of isolated ringlets and narrow gaps, identification of density and bending waves in the C ring driven by both internal oscillations and gravity anomalies in Saturn, and the first reliable estimates of surface mass density in the central B ring.{\\bf References:} French \\etal\\ (2016a, 2016b, 2017), Hedman \\etal\\ (2007, 2010, 2014), Hedman \\& Nicholson (2013, 2014, 2016), Nicholson \\& Hedman (2010, 2016), Nicholson \\etal\\ (2014a, 2014b).

  12. A Novel CMOS Multi-band THz Detector with Embedded Ring Antenna

    NASA Astrophysics Data System (ADS)

    Xu, Lei-jun; Guan, Jia-ning; Bai, Xue; Li, Qin; Mao, Han-ping

    2017-10-01

    To overcome the large chip area occupation for the traditional terahertz multi-frequency detector by using the antenna elements in a different frequency, a novel structure for a multi-frequency detector is proposed and studied. Based on the ring antenna detector, an embedded multi-ring antenna with multi-port is proposed for the multi-frequency detector. A single-ring and dual-ring detectors are analyzed and designed in 0.18 μ m CMOS. For the single-ring detector, the best responsivity and NEP is 701 V/W and 261 pW/Hz0.5 at the frequency of 290 GHz. For the dual-ring detector, the best responsivity is 367 V/W and 297 V/W, NEP is 578 pW/Hz0.5 and 713pW/Hz0.5, at the frequency of 600 GHz and 806 GHz, respectively. This embedded multi-ring detector has a simple structure which can be expanded easily in a compact size.

  13. Effect of boundary conditions on magnetocapacitance effect in a ring-type magnetoelectric structure

    NASA Astrophysics Data System (ADS)

    Zhang, Juanjuan

    2017-12-01

    By considering the nonlinear magneto-elastic coupling relationships of magnetostrictive materials, an analytical model is proposed. The resonance frequencies can be accurately predicted by this theoretical model, and they are in good agreement with experimental data. Subsequently, the magnetocapacitance effect in a ring-type magnetoelectric (ME) structure with different boundary conditions is investigated, and it is found that various mechanical boundaries, the frequency, the magnetic field, the geometric size, and the interface bonding significantly affect the capacitance of the ME structure. Further, additional resonance frequencies can be predicted by considering appropriate imperfect interface bonding. Finally, the influence of an external force on the capacitance is studied. The result shows that an external force on the boundary changes the capacitance, but has only a weak influence on the resonance frequency.

  14. Outward-dipping ring-fault structure at rabaul caldera as shown by earthquake locations.

    PubMed

    Mori, J; McKee, C

    1987-01-09

    The locations of a large number of earthquakes recorded at Rabaul caldera in Papua New Guinea from late 1983 to mid-1985 have produced a picture of this active caldera's structural boundary. The earthquake epicenters form an elliptical annulus about 10 kilometers long by 4 kilometers wide, centered in the southern part of the Rabaul volcanic complex. A set of events with well-constrained depth determinations shows a ring-fault structure that extends from the surface to a depth of about 4 kilometers and slopes steeply outward from the center of the caldera. This is the first geophysical data set that clearly outlines the orientation of an active caldera's bounding faults. This orientation, however, conflicts with the configuration of many other calderas and is not in keeping with currently preferred models of caldera formation.

  15. Iterative image-domain ring artifact removal in cone-beam CT

    NASA Astrophysics Data System (ADS)

    Liang, Xiaokun; Zhang, Zhicheng; Niu, Tianye; Yu, Shaode; Wu, Shibin; Li, Zhicheng; Zhang, Huailing; Xie, Yaoqin

    2017-07-01

    Ring artifacts in cone beam computed tomography (CBCT) images are caused by pixel gain variations using flat-panel detectors, and may lead to structured non-uniformities and deterioration of image quality. The purpose of this study is to propose a method of general ring artifact removal in CBCT images. This method is based on the polar coordinate system, where the ring artifacts manifest as stripe artifacts. Using relative total variation, the CBCT images are first smoothed to generate template images with fewer image details and ring artifacts. By subtracting the template images from the CBCT images, residual images with image details and ring artifacts are generated. As the ring artifact manifests as a stripe artifact in a polar coordinate system, the artifact image can be extracted by mean value from the residual image; the image details are generated by subtracting the artifact image from the residual image. Finally, the image details are compensated to the template image to generate the corrected images. The proposed framework is iterated until the differences in the extracted ring artifacts are minimized. We use a 3D Shepp-Logan phantom, Catphan©504 phantom, uniform acrylic cylinder, and images from a head patient to evaluate the proposed method. In the experiments using simulated data, the spatial uniformity is increased by 1.68 times and the structural similarity index is increased from 87.12% to 95.50% using the proposed method. In the experiment using clinical data, our method shows high efficiency in ring artifact removal while preserving the image structure and detail. The iterative approach we propose for ring artifact removal in cone-beam CT is practical and attractive for CBCT guided radiation therapy.

  16. Dirac electrons in quantum rings

    NASA Astrophysics Data System (ADS)

    Gioia, L.; Zülicke, U.; Governale, M.; Winkler, R.

    2018-05-01

    We consider quantum rings realized in materials where the dynamics of charge carriers mimics that of two-dimensional (2D) Dirac electrons. A general theoretical description of the ring-subband structure is developed that applies to a range of currently available 2D systems, including graphene, transition-metal dichalcogenides, and narrow-gap semiconductor quantum wells. We employ the scattering-matrix approach to calculate the electronic two-terminal conductance through the ring and investigate how it is affected by Dirac-electron interference. The interplay of pseudospin chirality and hard-wall confinement is found to distinctly affect the geometric phase that is experimentally accessible in mesoscopic-conductance measurements. We derive an effective Hamiltonian for the azimuthal motion of charge carriers in the ring that yields deeper insight into the physical origin of the observed transport effects, including the unique behavior exhibited by the lowest ring subband in the normal and topological (i.e., band-inverted) regimes. Our paper provides a unified approach to characterizing confined Dirac electrons, which can be used to explore the design of valley- and spintronic devices based on quantum interference and the confinement-tunable geometric phase.

  17. Persistent pattern speeds in Saturn's D ring

    NASA Astrophysics Data System (ADS)

    Chancia, Robert; Hedman, Matthew M.

    2016-05-01

    Saturn's D ring is the innermost part of Saturn's ring system. Due to its close proximity to the planet, it is sensitive to perturbing forces caused by asymmetries in Saturn's interior and magnetic field. Using high-phase-angle images obtained by the Imaging Science Subsystem (ISS) over the course of the entire Cassini mission we investigate the region between 71000-73000 km from Saturn's center. Previous studies have shown that this region contains azimuthal brightness variations generated by periodic perturbing forces with frequencies close to Saturn's rotation rate (nearly twice the local orbital period). These structures are not due to a single resonance, but instead involve a complex network of patterns drifting past one another over time. Some of these could be caused by asymmetries in Saturn's magnetosphere, which have rotation rates that have been observed to change over the course of the Cassini mission. However, some patterns may be generated by perturbations from long-lived gravitational anomalies inside the planet that move at speeds comparable to Saturn's winds. By comparing observations taken over several years we can distinguish the patterns caused by each phenomenon. We identify multiple structures with nearly constant pattern speeds that would appear to be due to persistent structures inside the planet. Strangely, the rotation rates required to produce these D ring structures are different from those responsible for generating waves in the C ring (where the local orbital rate is roughly 3/2 Saturn's rotation rate).

  18. Accretion in Saturn's F Ring

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Esposito, L. W.; Stewart, G.

    2012-12-01

    Saturn's F ring is the solar system's principal natural laboratory for direct observation of accretion and disruption processes. The ring resides in the Roche zone, where tidal disruption competes with self-gravity, which allows us to observe the lifecycle of moonlets. Just as nearby moons create structure at the B ring edge (Esposito et al. 2012) and the Keeler gap (Murray 2007), the F ring "shepherding" moons Prometheus and Pandora stir up ring material and create observably changing structures on timescales of days to decades. In fact, Beurle et al (2010) show that Prometheus makes it possible for "distended, yet gravitationally coherent clumps" to form in the F ring, and Barbara and Esposito (2002) predicted a population of ~1 km bodies in the ring. In addition to the observations over the last three decades, the Cassini Ultraviolet Imaging Spectrograph (UVIS) has detected 27 statistically significant features in 101 occultations by Saturn's F ring since July 2004. Seventeen of those 27 features are associated with clumps of ring material. Two features are opaque in occultation, which makes them candidates for solid objects, which we refer to as Moonlets. The 15 other features partially block stellar signal for 22 m to just over 3.7 km along the radial expanse of the occultation. Upon visual inspection of the occultation profile, these features resemble Icicles, thus we will refer to them as such here. The density enhancements responsible for such signal attenuations are likely due to transient clumping of material, evidence that aggregations of material are ubiquitous in the F ring. Our lengthy observing campaign reveals that Icicles are likely transient clumps, while Moonlets are possible solid objects. Optical depth is an indicator of clumping because more-densely aggregated material blocks more light; therefore, it is natural to imagine moonlets as later evolutionary stage of icicle, when looser clumps of material compact to form a feature that appears

  19. Visible near-infrared light scattering of single silver split-ring structure made by nanosphere lithography.

    PubMed

    Okamoto, Toshihiro; Fukuta, Tetsuya; Sato, Shuji; Haraguchi, Masanobu; Fukui, Masuo

    2011-04-11

    We succeeded in making a silver split-ring (SR) structure of approximately 130 nm in diameter on a glass substrate using a nanosphere lithography technique. The light scattering spectrum in visible near-infrared region of a single, isolated SR was measured using a microscope spectroscopy optical system. The electromagnetic field enhancement spectrum and distribution of the SR structure were simulated by the finite-difference time-domain method, and the excitation modes were clarified. The long wavelength peak in the light scattering spectra corresponded to a fundamental LC resonance mode excited by an incident electric field. It was shown that a single SR structure fabricated as abovementioned can operate as a resonator and generate a magnetic dipole. © 2011 Optical Society of America

  20. Ripple Ring Basins on Ganymede and Callisto

    NASA Technical Reports Server (NTRS)

    Croft, S. K.

    1985-01-01

    The unusual morphology of the Valhalla multiple or ripple-ring basin in Callisto was totally unexpected in light of the morphologies of large impact structures on the terrestrial planets. Two other ripple-ring basins (RRB's), Asgard and a smaller structure near the crater Adlinda are also described. Several additional RRB's were found on Callisto, an example of which is shown. A previously unrecognized RRB on Ganymede was also found. An image and geologic sketch map of this RRB are shown. Morphometric and positional data for all known RRB's are given.

  1. Vascular ring complicates accidental button battery ingestion.

    PubMed

    Mercer, Ronald W; Schwartz, Matthew C; Stephany, Joshua; Donnelly, Lane F; Franciosi, James P; Epelman, Monica

    2015-01-01

    Button battery ingestion can lead to dangerous complications, including vasculoesophageal fistula formation. The presence of a vascular ring may complicate battery ingestion if the battery lodges at the level of the ring and its important vascular structures. We report a 4-year-old boy with trisomy 21 who was diagnosed with a vascular ring at the time of button battery ingestion and died 9 days after presentation due to massive upper gastrointestinal bleeding from esophageal erosion and vasculoesophageal fistula formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Density Waves in Saturn's Rings from Cassini Radio Occultations

    NASA Astrophysics Data System (ADS)

    French, R. G.; Rappaport, N. J.; Marouf, E. A.; McGhee, C. A.

    2005-12-01

    The Cassini Radio Science Team conducted a set of optimized diametric occultations by Saturn and its rings from May to September 2005, providing 11 separate probes of Saturn's ionosphere and atmosphere, and 12 optical depth profiles of the complete ring system. Each event was observed by the stations of the Deep Space Net (DSN) at three radio frequencies (S, X, Ka bands, with corresponding wavelengths of ? = 13, 3.6, and 0.9 cm). Very accurate pointing by the spacecraft and ground antennas resulted in stable baseline signal levels, and the relatively large ring opening angle (B=19-25°) permitted us to probe even quite dense ring regions with excellent SNR. The RSS occultation technique enables us to recover very fine detailed radial structure by correcting for diffraction effects. Multiple occultation chords, covering a variety of ring longitudes and ring opening angles, reveal the structure of the rings in remarkable detail, including density and bending waves, satellite wakes, and subtle variations at the 100-m radius scale. Janus and Epimetheus are responsible for a particularly rich set of density waves, and their coorbital interactions result in a complex interplay of time-variable ring structure over the 8-year libration period of the two satellites. We compare the first-order 2:1, 4:3, 5:4, and 6:5 coorbital density waves from multiple occultation chords to linear density wave models based on a dynamical model of the orbital exchange between the moons. From the observed dispersion relation of the wave crests, we infer the surface mass density and eccentricity gradient of particle streamlines, and match the detailed shapes of the wave crests using a non-linear analysis. Second-order coorbital features are also evident, and there are even hints of third-order density waves in the high SNR radio occultation data.

  3. Centrohexaindane: six benzene rings mutually fixed in three dimensions - solid-state structure and six-fold nitration.

    PubMed

    Kuck, Dietmar; Linke, Jens; Teichmann, Lisa Christin; Barth, Dieter; Tellenbröker, Jörg; Gestmann, Detlef; Neumann, Beate; Stammler, Hans-Georg; Bögge, Hartmut

    2016-04-28

    The solid-state molecular structure of centrohexaindane (), a unique hydrocarbon comprising six benzene rings clamped to each other in three dimensions around a neopentane core, and the molecular packing in crystals of ·CHCl3 are reported. The molecular Td-symmetry and the Cartesian orientation of the six indane wings of in the solid state have been confirmed. The course and limitation of electrophilic aromatic substitution of are demonstrated for the case of nitration. Based on nitration experiments of a lower congener of , tribenzotriquinacene , the six-fold nitrofunctionalisation of has been achieved in excellent yield, giving four constitutional isomers, two nonsymmetrical ( and ) and two C3-symmetrical ones ( and ), all of which contain one single nitro group in each of the six benzene rings. The relative yields of the four isomers (∼3 : 1 : 1 : 3) point to a random electrophilic attack of the electrophiles at the twelve formally equivalent outer positions of the aromatic periphery of , suggesting electronic independence of its six aromatic π-electron systems. In turn, the pronounced conformational rigidity of the centrohexacyclic framework of enables the unequivocal structural identification of the isomeric hexanitrocentrohexaindanes by (1)H NMR spectroscopy.

  4. The Cation-Responsive Protein NhaR of Escherichia coli Activates pgaABCD Transcription, Required for Production of the Biofilm Adhesin Poly-β-1,6-N-Acetyl-d-Glucosamine▿

    PubMed Central

    Goller, Carlos; Wang, Xin; Itoh, Yoshikane; Romeo, Tony

    2006-01-01

    The pgaABCD operon of Escherichia coli is required for production of the biofilm adhesin poly-β-1,6-N-acetyl-d-glucosamine (PGA). We establish here that NhaR, a DNA-binding protein of the LysR family of transcriptional regulators, activates transcription of this operon. Disruption of the nhaR gene decreased biofilm formation without affecting planktonic growth. PGA production was undetectable in an nhaR mutant strain. Expression of a pgaA′-′lacZ translational fusion was induced by NaCl and alkaline pH, but not by CaCl2 or sucrose, in an nhaR-dependent fashion. Primer extension and quantitative real-time reverse transcription-PCR analyses further revealed that NhaR affects the steady-state level of pga mRNA. A purified recombinant NhaR protein bound specifically and with high affinity within the pgaABCD promoter region; one apparent binding site overlaps the −35 element, and a second site lies immediately upstream of the first. This protein was necessary and sufficient for activation of in vitro transcription from the pgaA promoter. These results define a novel mechanism for regulation of biofilm formation in response to environmental conditions and suggest an expanded role for NhaR in promoting bacterial survival. PMID:16997959

  5. Arcs and Clumps in the Uranian Lambda Ring

    NASA Technical Reports Server (NTRS)

    Showalter, Mark R.

    1995-01-01

    Careful reprocessing of the Voyager images reveals that the Uranian lambda ring has marked longitudinal variations in brightness comparable in magnitude to those in Saturn's F ring and Neptune's Adams ring. The ring's variations show a dominant five-cycle (72-degree) periodicity, although additional structure down to scales of about 0.5 degree is also present. The ring's shape is defined by a small overall eccentricity plus a six-cycle (60-degree) sinusoidal variation of radial amplitude around 4 kilometers. Both of these properties can be explained by the resonant perturbations of a moon at a semimajor axis of 56,479 kilometers, but no known moon orbits at this location. Unfortunately, the mass required suggests that such a body should have been imaged by Voyager.

  6. Integrally Closed Rings

    NASA Astrophysics Data System (ADS)

    Tuganbaev, A. A.

    1982-04-01

    This paper studies integrally closed rings. It is shown that a semiprime integrally closed Goldie ring is the direct product of a semisimple artinian ring and a finite number of integrally closed invariant domains that are classically integrally closed in their (division) rings of fractions. It is shown also that an integrally closed ring has a classical ring of fractions and is classically integrally closed in it.Next, integrally closed noetherian rings are considered. It is shown that an integrally closed noetherian ring all of whose nonzero prime ideals are maximal is either a quasi-Frobenius ring or a hereditary invariant domain.Finally, those noetherian rings all of whose factor rings are invariant are described, and the connection between integrally closed rings and distributive rings is examined.Bibliography: 13 titles.

  7. Computer program: Jet 3 to calculate the large elastic plastic dynamically induced deformations of free and restrained, partial and/or complete structural rings

    NASA Technical Reports Server (NTRS)

    Wu, R. W.; Witmer, E. A.

    1972-01-01

    A user-oriented FORTRAN 4 computer program, called JET 3, is presented. The JET 3 program, which employs the spatial finite-element and timewise finite-difference method, can be used to predict the large two-dimensional elastic-plastic transient Kirchhoff-type deformations of a complete or partial structural ring, with various support conditions and restraints, subjected to a variety of initial velocity distributions and externally-applied transient forcing functions. The geometric shapes of the structural ring can be circular or arbitrarily curved and with variable thickness. Strain-hardening and strain-rate effects of the material are taken into account.

  8. Assembly of silver nanowire ring induced by liquid droplet

    NASA Astrophysics Data System (ADS)

    Seong, Baekhoon; Park, Hyun Sung; Chae, Ilkyeong; Lee, Hyungdong; Wang, Xiaofeng; Jang, Hyung-Seok; Jung, Jaehyuck; Lee, Changgu; Lin, Liwei; Byun, Doyoung

    2017-11-01

    Several forces in the liquid droplet drive the nanomaterials to naturally form an assembled structure. During evaporation of a liquid droplet, nanomaterials can move to the rim of the droplet by convective flow and capillary flow, due to the difference in temperature between the top and contact line of the droplet. Here, we demonstrate a new, simple and scalable technology for the fabrication of ring-shaped Ag NWs by a spraying method. We experimentally identify the compressive force of the droplet driven by surface tension as the key mechanism for the self-assembly of ring structures. We investigated the progress of ring shape formation of Ag NWs according to the droplet size with theoretically calculated optimal conditions. As such, this self-assembly technique of making ring-shaped structures from Ag NWs could be applied to other nanomaterials. This work was supported by the New & Renewable Energy R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korea government Ministry of Trade, Industry and Energy. (No. 20163010071630).

  9. Interaction of Vortex Rings and Steady Jets with Permeable Screens of Varied Porosity

    NASA Astrophysics Data System (ADS)

    Musta, Mustafa

    2013-11-01

    Vortex ring and steady jet interaction with a porous matrix formed from several parallel, transparent permeable screens with the same grid geometry for open area ratios (φ) 49.5% - 83.8% was studied previously using digital particle image velocimetry (DPIV) at jet Reynolds number (Re) of 1000-3000. Vortex ring results showed that unlike the experiments with thin screens, a transmitted vortex ring, which has a similar diameter to the primary one, wasn't formed. Instead a centerline vortex ring like structure formed and its diameter, circulation, and dissipation time decreased as φ decreased. However, for the case of screens φ = 55.7% with large screen spacing, reformation of large scale weak vortex rings was observed downstream of the first screen. The present work experimentally investigates the interaction of vortex rings and steady jets with screens of decreasing φ (83.8%-49.5%) in the flow direction. A piston type vortex ring generator was used and measurements were made using DPIV. The vortex ring results show that the size and circulation of the vortex ring like flow structure was changed based on the screen φ within the permeable screen matrix. Similarly, steady jet flow structure and the local turbulent kinetic energy was changed based on the local screen φ.

  10. Compositional Evolution of Saturn's Rings Due to Meteoroid Bombardment

    NASA Technical Reports Server (NTRS)

    Cuzzi, J.; Estrada, P.; Young, Richard E. (Technical Monitor)

    1997-01-01

    In this paper we address the question of compositional evolution in planetary ring systems subsequent to meteoroid bombardment. The huge surface area to mass ratio of planetary rings ensures that this is an important process, even with current uncertainties on the meteoroid flux. We develop a new model which includes both direct deposition of extrinsic meteoritic "pollutants", and ballistic transport of the increasingly polluted ring material as impact ejecta. Our study includes detailed radiative transfer modeling of ring particle spectral reflectivities based on refractive indices of realistic constituents. Voyager data have shown that the lower optical depth regions in Saturn's rings (the C ring and Cassini Division) have darker and less red particles than the optically thicken A and B rings. These coupled structural-compositional groupings have never been explained; we present and explore the hypothesis that global scale color and compositional differences in the main rings of Saturn arise naturally from extrinsic meteoroid bombardment of a ring system which was initially composed primarily, but not entirely, of water ice. We find that the regional color and albedo differences can be understood if all ring material was initially identical (primarily water ice, based on other data, but colored by tiny amounts of intrinsic reddish, plausibly organic, absorber) and then evolved entirely by addition and mixing of extrinsic, nearly neutrally colored. plausibly carbonaceous material. We further demonstrate that the detailed radial profile of color across the abrupt B ring - C ring boundary can.constrain key unknown parameters in the model. Using new alternates of parameter values, we estimate the duration of the exposure to extrinsic meteoroid flux of this part of the rings, at least, to be on the order of 10(exp 8) years. This conclusion is easily extended by inference to the Cassini Division and its surroundings as well. This geologically young "age" is compatible

  11. Non-Linear Dynamics of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.

    2015-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw', as observed ny Cassini cameras. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn's rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. This confirms the triple architecture of ring particles: a broad size distribution of particles; these aggregate into temporary rubble piles; coated by a regolith of dust. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from

  12. Water impact test of aft skirt end ring, and mid ring segments of the Space Shuttle Solid Rocket Booster

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The results of water impact loads tests using aft skirt end ring, and mid ring segments of the Space Shuttle Solid Rocket Booster (SRB) are examined. Dynamic structural response data is developed and an evaluation of the model in various configurations is presented. Impact velocities are determined for the SRB with the larger main chute system. Various failure modes are also investigated.

  13. A Novel Phenanthrene Dioxygenase from Nocardioides sp. Strain KP7: Expression in Escherichia coli

    PubMed Central

    Saito, Atsushi; Iwabuchi, Tokuro; Harayama, Shigeaki

    2000-01-01

    Nocardioides sp. strain KP7 grows on phenanthrene but not on naphthalene. This organism degrades phenanthrene via 1-hydroxy-2-naphthoate, o-phthalate, and protocatechuate. The genes responsible for the degradation of phenanthrene to o-phthalate (phd) were found by Southern hybridization to reside on the chromosome. A 10.6-kb DNA fragment containing eight phd genes was cloned and sequenced. The phdA, phdB, phdC, and phdD genes, which encode the α and β subunits of the oxygenase component, a ferredoxin, and a ferredoxin reductase, respectively, of phenanthrene dioxygenase were identified. The gene cluster, phdAB, was located 8.3 kb downstream of the previously characterized phdK gene, which encodes 2-carboxybenzaldehyde dehydrogenase. The phdCD gene cluster was located 2.9 kb downstream of the phdB gene. PhdA and PhdB exhibited moderate (less than 60%) sequence identity to the α and β subunits of other ring-hydroxylating dioxygenases. The PhdC sequence showed features of a [3Fe-4S] or [4Fe-4S] type of ferredoxin, not of the [2Fe-2S] type of ferredoxin that has been found in most of the reported ring-hydroxylating dioxygenases. PhdD also showed moderate (less than 40%) sequence identity to known reductases. The phdABCD genes were expressed poorly in Escherichia coli, even when placed under the control of strong promoters. The introduction of a Shine-Dalgarno sequence upstream of each initiation codon of the phdABCD genes improved their expression in E. coli. E. coli cells carrying phdBCD or phdACD exhibited no phenanthrene-degrading activity, and those carrying phdABD or phdABC exhibited phenanthrene-degrading activity which was significantly less than that in cells carrying the phdABCD genes. It was thus concluded that all of the phdABCD genes are necessary for the efficient expression of phenanthrene-degrading activity. The genetic organization of the phd genes, the phylogenetically diverged positions of these genes, and an unusual type of ferredoxin component

  14. The Case for Massive and Ancient Rings of Saturn

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2016-10-01

    Analysis of Voyager and Pioneer 11 results give a mass for Saturn's rings, M = 5 x 10-8 Msat. This is about the mass of Saturn's small moon Mimas. This has been interpreted as a lower limit to the ring mass (Esposito et al 1983), since the thickest parts of the rings were not penetrated by the stellar occultstion, and this calculation assumes an unvarying particle size throughout the rings. Because the rings are constantly bombarded by micrometeroids, their current composition of nearly pure water ice implies such low mass rings must have formed recently. The case is particularly strong for Saturn's A ring, where the data are the best, implying the A ring is less than 10% of the age of the Saturn (Esposito 1986). Cassini results compound this problem. UVIS spectra are consistent with either young rings or rings about 10x as massive as the Voyager estimate (Elliott and Esposito (2011). CDA confirms the impacting mass flux is similar to that assumed for the pollution calculations (Kempf etal 2015). VIMS analysis of density wave signatures in the B ring gives a value of about 1/3 the Voyager value (Hedmann etal 2016). This VIMS result implies the rings are even younger! The problem is that young rings are very unlikely to be formed recently, meaning that we live in a very special epoch, following some unlikely recent origin… like disruption of a medium sized moon or capture of the fragments of a disrupted comet (Charnoz etal 2009).To take the VIMS results at face value, Saturn's low mass rings must be very young. The optically thick B ring must be made of small, porous or fractal particles. An alternative is that we accept the higher mass interpretation of the Pioneer 11 results (Esposito etal 2008) using the granola bar model of Colwell etal 2007. This would imply that the density wave structure seen by VIMS is not sensing all the mass in the rings, where structure near strong resonances is dominted by temporary aggregates, and where non-linear effects cause the

  15. Rings Research in the Next Decade

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.; Albers, N.; Brahic, A.; Brooks, S. M.; Burns, J. A.; Chavez, C.; Colwell, J. E.; Cuzzi, J. N.; de Pater, I.; Dones, L.; Durisen, R. H.; Filacchione, G.; Giuliatti Winter, S. M.; Gordon, M. K.; Graps, A.; Hamilton, D. P.; Hedman, M. M.; Horanyi, M.; Kempf, S.; Krueger, H.; Lewis, M. C.; Lissauer, J. J.; Murray, C. D.; Nicholson, P. D.; Olkin, C. B.; Pappalardo, R. T.; Salo, H.; Schmidt, J.; Showalter, M. R.; Spahn, F.; Spilker, L. J.; Srama, R.; Sremcevic, M.; Stewart, G. R.; Yanamandra-Fisher, P.

    2009-12-01

    The study of planetary ring systems is a key component of planetary science for several reasons: 1) The evolution and current states of planets and their satellites are affected in many ways by rings, while 2) conversely, properties of planets and moons and other solar system populations are revealed by their effects on rings; 3) highly structured and apparently delicate ring systems may be bellwethers, constraining various theories of the origin and evolution of their entire planetary system; and finally, 4) planetary rings provide an easily observable analogue to other astrophysical disk systems, enabling real "ground truth” results applicable to disks much more remote in space and/or time, including proto-planetary disks, circum-stellar disks, and even galaxies. Significant advances have been made in rings science in the past decade. The highest-priority rings research recommendations of the last Planetary Science Decadal Survey were to operate and extend the Cassini orbiter mission at Saturn; this has been done with tremendous success, accounting for much of the progress made on key science questions, as we will describe. Important progress in understanding the rings of Saturn and other planets has also come from Earth-based observational and theoretical work, again as prioritized by the last Decadal Survey. However, much important work remains to be done. At Saturn, the Cassini Solstice Mission must be brought to a successful completion. Priority should also be placed on sending spacecraft to Neptune and/or Uranus, now unvisited for more than 20 years. At Jupiter and Pluto, opportunities afforded by visiting spacecraft capable of studying rings should be exploited. On Earth, the need for continued research and analysis remains strong, including in-depth analysis of rings data already obtained, numerical and theoretical modeling work, laboratory analysis of materials and processes analogous to those found in the outer solar system, and continued Earth

  16. Scattering rings in optically anisotropic porous silicon

    NASA Astrophysics Data System (ADS)

    Oton, C. J.; Gaburro, Z.; Ghulinyan, M.; Pancheri, L.; Bettotti, P.; Negro, L. Dal; Pavesi, L.

    2002-12-01

    We report the observation of strongly anisotropic scattering of laser light at oblique incidence on a (100)-oriented porous silicon layer. The scattered light forms cones tangent to the incident and reflected beams. The conical pattern is caused by scattering on the vertical walls of pores, which are straight along the layer thickness. The light cone defines structured light rings onto a screen normal to the cone axis. We explain the various structures by optical anisotropy of porous silicon. For the sample under analysis, we directly measure from the ring patterns a value of Δn/nord=8% of positive birefringence.

  17. Unique spin-polarized transmission effects in a QD ring structure

    NASA Astrophysics Data System (ADS)

    Hedin, Eric; Joe, Yong

    2010-10-01

    Spintronics is an emerging field in which the spin of the electron is used for switching purposes and to communicate information. In order to obtain spin-polarized electron transmission, the Zeeman effect is employed to produce spin-split energy states in quantum dots which are embedded in the arms of a mesoscopic Aharonov-Bohm (AB) ring heterostructure. The Zeeman splitting of the QD energy levels can be induced by a parallel magnetic field, or by a perpendicular field which also produces AB-effects. The combination of these effects on the transmission resonances of the structure is studied analytically and several parameter regimes are identified which produce a high degree of spin-polarized output. Contour and line plots of the weighted spin polarization as a function of electron energy and magnetic field are presented to visualize the degree of spin-polarization. Taking advantage of these unique parameter regimes shows the potential promise of such devices for producing spin-polarized currents.

  18. "Propellers" in Saturns Rings? The missing Link?

    NASA Astrophysics Data System (ADS)

    Spahn, F.; Salo, H.; Schmidt, J.; Seiss, M.; Sremcevic, M.

    To date it is not clear how planetary rings have formed. Have they either accreted cogenetically with their central planet and its satellite system or has a catastrophic disruption of a parent body (satellite, comet) created these magnificent cosmic structures? Based upon dynamical arguments the former scenario would ab initio exclude the existence of boulders larger than a few 10 meters in diameter because they cannot stand the planet's tides and collisions. Consequently, if there were such moonlets with sizes between 50 meters up to few kilometers in diameter in the rings a strong argument pro the hypothesis of a "violent birth" of these cosmic disks would have been found! In order to improve or even enable the detectability of such moonlets, we have modeled structures created by such larger ring boulders. We derived a hydrodynamical model describing the combination of counteracting processes of gravitational scattering and nonlinear viscous diffusion. A formation of a "propeller-shaped" structure (Spahn & Sremcevic; A&A 358 (2000), 368) interfered with density wakes have been obtained which scale in radial direction with the Hill radius and azimuthally with the ratio of mass to viscosity of the ring material (Sremcevic et al.; MNRAS 337 (2002), 1139). The formation of the "propellers" flanked by density wakes have been confirmed by numerical particle simulations (Seiss et al. GRL 32 (2005)). These results have been used to search for small embedded satellites in Saturn's rings in the Cassini imaging data (ISS). Two kilometer sized moonlets have already been detected in Saturn's A ring - Pan and Daphnis - which both show all essential density features and scalings. However, these two isolated,large ring-boulders cannot serve yet as a proof for an extended size-distribution which is expected to result from a catastrophic disruption of an icy satellite. The detection of four "Propellers" pointing to moonlets of ca. 40 - 120 metres in size by Tiscareno et al

  19. Earth Rings for Planetary Environment Control

    NASA Astrophysics Data System (ADS)

    Pearson, Jerome; Oldson, John; Levin, Eugene; Carroll, Joseph

    2002-01-01

    For most of its past, large parts of the Earth have experienced subtropical climates, with high sea levels and no polar icecaps. This warmer environment was punctuated 570, 280, and 3 million years ago with periods of glaciation that covered temperate regions with thick ice for millions of years. At the end of the current ice age, a warmer climate could flood coastal cities, even without human-caused global warming. In addition, asteroids bombard the Earth periodically, with impacts large enough to destroy most life on Earth, and the sun is warming inexorably. This paper proposes a concept to solve these problems simultaneously, by creating an artificial planetary ring about the Earth to shade it. Past proposals for space climate control have depended on gigantic engineering structures launched from Earth and placed in Earth orbit or at the Earth-Sun L1 libration point, requiring fabrication, large launch masses and expense, constant control, and repair. Our solution is to begin by using lunar material, and then mine and remove Earth-orbit-crossing asteroids and discard the tailings into Earth orbit, to form a broad, flat ring like those of Saturn. This solution is evaluated and compared with other alternatives. Such ring systems can persist for thousands of years, and can be maintained by shepherding satellites or by continual replenishment from new asteroids to replace the edges of the ring lost by diffusion. An Earth ring at R = 1.3-1.83 RE would shade only the equatorial regions, moderating climate extremes, and could reverse a century of global warming. It could also absorb particles from the radiation belts, making trips to high Earth orbit and GEO safer for humans and for electronics. It would also light the night many times as bright as the full moon. A preliminary design of the ring is developed, including its location, mass, composition, stability, and timescale required. A one-dimensional climate model is used to evaluate the Earth ring performance

  20. A photonic crystal ring resonator formed by SOI nano-rods.

    PubMed

    Chiu, Wei-Yu; Huang, Tai-Wei; Wu, Yen-Hsiang; Chan, Yi-Jen; Hou, Chia-Hunag; Chien, Huang Ta; Chen, Chii-Chang

    2007-11-12

    The design, fabrication and measurement of a silicon-on-insulator (SOI) two-dimensional photonic crystal ring resonator are demonstrated in this study. The structure of the photonic crystal is comprised of silicon nano-rods arranged in a hexagonal lattice on an SOI wafer. The photonic crystal ring resonator allows for the simultaneous separation of light at wavelengths of 1.31 and 1.55mum. The device is fabricated by e-beam lithography. The measurement results confirm that a 1.31mum/1.55mum wavelength ring resonator filter with a nano-rod photonic crystal structure can be realized.

  1. Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle

    PubMed Central

    Mosadeghi, Ruzbeh; Reichermeier, Kurt M; Winkler, Martin; Schreiber, Anne; Reitsma, Justin M; Zhang, Yaru; Stengel, Florian; Cao, Junyue; Kim, Minsoo; Sweredoski, Michael J; Hess, Sonja; Leitner, Alexander; Aebersold, Ruedi; Peter, Matthias; Deshaies, Raymond J; Enchev, Radoslav I

    2016-01-01

    The COP9-Signalosome (CSN) regulates cullin–RING ubiquitin ligase (CRL) activity and assembly by cleaving Nedd8 from cullins. Free CSN is autoinhibited, and it remains unclear how it becomes activated. We combine structural and kinetic analyses to identify mechanisms that contribute to CSN activation and Nedd8 deconjugation. Both CSN and neddylated substrate undergo large conformational changes upon binding, with important roles played by the N-terminal domains of Csn2 and Csn4 and the RING domain of Rbx1 in enabling formation of a high affinity, fully active complex. The RING domain is crucial for deneddylation, and works in part through conformational changes involving insert-2 of Csn6. Nedd8 deconjugation and re-engagement of the active site zinc by the autoinhibitory Csn5 glutamate-104 diminish affinity for Cul1/Rbx1 by ~100-fold, resulting in its rapid ejection from the active site. Together, these mechanisms enable a dynamic deneddylation-disassembly cycle that promotes rapid remodeling of the cellular CRL network. DOI: http://dx.doi.org/10.7554/eLife.12102.001 PMID:27031283

  2. Mechanical evaluation of aluminum alloy ring fixator.

    PubMed

    Tosborvorn, Somboon; Cheechareon, Sukrom; Ruttanuchun, Kittiput; Sirivedin, Suparerk; Rhienumporn, Chaitawat

    2006-11-01

    To test the homemade ring fixator as a tool for correction of bony deformity. The authors developed an aluminum alloy ring fixator and tested it to find out the accuracy of manufacturing and strength of the ring systems under axial load with the Roundness Testing Machine and Lloyd Universal Testing Machine. The mean diameter of the twenty five-drill holes was 6.5843872 +/- 0.0521594 mm (mean +/- SD). Distance between particular drill holes, which reflected the precision of drilling, had a high accuracy with standard deviation from 0.1138 to 0.1870 mm. The roundness of the rings was 0.2421376 +/- 0.12437977 mm (mean +/- SD). The system structure had minimal permanent deformity at breaking point, mean yield strength of the system was 4786.9 +/- 14.353 N (mean +/- SD). This was caused by the failure of the wire. Mean stiffness of the system was 127 N./mm. The aluminum alloy ring fixator was strong enough and well tolerated for clinical usage

  3. Rings from Close Encounters

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    the centaur internal structure, its spin, and the distance of closest approach of the centaur to the giant planet. Blue and red represent icy and silicate material, respectively. [Hyodo et al. 2016]The outcomes of the close encounters are diverse, depending strongly on the internal structure and spin of the minor planet and the geometry of the encounter. But the team finds that, in many scenarios, the centaur is only partially destroyed by tidal forces from the giant as it passes close by.In these cases the icy mantle and even some of the centaurs core can be ripped away and scattered, becoming gravitationally bound to the largest remaining clump of the core. The particles travel in highly eccentric orbits, gradually damping as they collide with each other and forming a disk around the remaining core. Further dynamical evolution of this disk could easily shape the rings that we observe today around Chariklo and Chiron.If Hyodo and collaborators scenario is correct, then Chariklo and Chiron are differentiated bodies with dense silicate cores, and their rings are either pure water ice, or a mixture of water ice and a small amount of silicate. Future observations of these minor planets will help to test this model and observations of other centaurs may discover yet more ring systems hiding in our solar system!BonusCheck out this awesomeanimation from ESO showing an artists impression of thering system around Chariklo! [ESO/L. Calada/M. Kornmesser]CitationRyuki Hyodo et al 2016 ApJ 828 L8. doi:10.3847/2041-8205/828/1/L8

  4. The RING 2.0 web server for high quality residue interaction networks.

    PubMed

    Piovesan, Damiano; Minervini, Giovanni; Tosatto, Silvio C E

    2016-07-08

    Residue interaction networks (RINs) are an alternative way of representing protein structures where nodes are residues and arcs physico-chemical interactions. RINs have been extensively and successfully used for analysing mutation effects, protein folding, domain-domain communication and catalytic activity. Here we present RING 2.0, a new version of the RING software for the identification of covalent and non-covalent bonds in protein structures, including π-π stacking and π-cation interactions. RING 2.0 is extremely fast and generates both intra and inter-chain interactions including solvent and ligand atoms. The generated networks are very accurate and reliable thanks to a complex empirical re-parameterization of distance thresholds performed on the entire Protein Data Bank. By default, RING output is generated with optimal parameters but the web server provides an exhaustive interface to customize the calculation. The network can be visualized directly in the browser or in Cytoscape. Alternatively, the RING-Viz script for Pymol allows visualizing the interactions at atomic level in the structure. The web server and RING-Viz, together with an extensive help and tutorial, are available from URL: http://protein.bio.unipd.it/ring. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Boroxol rings from diffraction data on vitreous boron trioxide.

    PubMed

    Soper, Alan K

    2011-09-14

    There has been a considerable debate about the nature of the short range atomic order in vitreous B(2)O(3). Some authorities state that it is not possible to build a model of glassy boron oxide of the correct density containing a large number of six-membered rings which also fits experimental diffraction data, but recent computer simulations appear to overrule that view. To discover which view is correct I use empirical potential structure refinement (EPSR) on existing neutron and x-ray diffraction data to build two models of vitreous B(2)O(3). One of these consists only of single boron and oxygen atoms arranged in a network to reproduce the diffraction data as closely as possible. This model has less than 10% of boron atoms in boroxol rings. The second model is made up of an equimolar mixture of B(3)O(3) hexagonal ring 'molecules' and BO(3) triangular molecules, with no free boron or oxygen atoms. This second model therefore has 75% of the boron atoms in boroxol rings. It is found that both models give closely similar diffraction patterns, suggesting that the diffraction data in this case are not sensitive to the number of boroxol rings present in the structure. This reinforces recent Raman, ab initio, and NMR claims that the percentage of boroxol rings in this material may be as high as 75%. The findings of this study probably explain why some interpretations based on different simulation techniques only find a small fraction of boroxol rings. The results also highlight the power of EPSR for the extraction of accurate atomistic representations of amorphous structures, provided adequate additional, non-scattering data (such as Raman and NMR in this case) are available.

  6. Integrated interpretation of geophysical data of the Paleozoic structure in the northwestern part of the Siljan Ring impact crater, central Sweden

    NASA Astrophysics Data System (ADS)

    Muhamad, Harbe; Juhlin, Christopher; Malehmir, Alireza; Sopher, Daniel

    2018-01-01

    The Siljan Ring impact structure is the largest known impact structure in Europe and is Late Devonian in age. It contains a central uplift that is about 20-30 km in diameter and is surrounded by a ring-shaped depression. The Siljan area is one of the few areas in Sweden where the Paleozoic sequence has not been completely eroded, making it an important location for investigation of the geological and tectonic history of Baltica during the Paleozoic. The Paleozoic strata in this area also provide insight into the complex deformation processes associated with the impact. In this study we focus on the northwestern part of the Siljan Ring, close to the town of Orsa, with the main objective of characterizing the subsurface Paleozoic succession and uppermost Precambrian crystalline rocks along a series of seismic reflection profiles, some of which have not previously been published. We combine these seismic data with gravity and magnetic data and seismic traveltime tomography results to produce an integrated interpretation of the subsurface in the area. Our interpretation shows that the Paleozoic sequence in this area is of a relatively constant thickness, with a total thickness typically between 300 and 500 m. Faulting appears to be predominantly extensional, which we interpret to have occurred during the modification stage of the impact. Furthermore, based on the geophysical data in this area, we interpret that the impact related deformation to differ in magnitude and style from other parts of the Siljan Ring.

  7. Modification of planetary atmospheres by material from the rings

    NASA Technical Reports Server (NTRS)

    Atreya, S. K.

    1984-01-01

    The modification of the atmospheres and ionospheres of ringed planets by the injection of ionized and neutral material from the rings is discussed, on the basis of Pioneer and Voyager observations. It is shown that although no direct evidence exists for the injection of material from the rings into the atmosphere, such an interaction could account for the observed thermal structure and ionospheric properties of Jupiter, Saturn, Uranus, and the Jovian satellite Io.

  8. Saturn Ring Data Analysis and Thermal Modeling

    NASA Technical Reports Server (NTRS)

    Dobson, Coleman

    2011-01-01

    CIRS, VIMS, UVIS, and ISS (Cassini's Composite Infrared Specrtometer, Visual and Infrared Mapping Spectrometer, Ultra Violet Imaging Spectrometer and Imaging Science Subsystem, respectively), have each operated in a multidimensional observation space and have acquired scans of the lit and unlit rings at multiple phase angles. To better understand physical and dynamical ring particle parametric dependence, we co-registered profiles from these three instruments, taken at a wide range of wavelengths, from ultraviolet through the thermal infrared, to associate changes in ring particle temperature with changes in observed brightness, specifically with albedos inferred by ISS, UVIS and VIMS. We work in a parameter space where the solar elevation range is constrained to 12 deg - 14 deg and the chosen radial region is the B3 region of the B ring; this region is the most optically thick region in Saturn's rings. From this compilation of multiple wavelength data, we construct and fit phase curves and color ratios using independent dynamical thermal models for ring structure and overplot Saturn, Saturn ring, and Solar spectra. Analysis of phase curve construction and color ratios reveals thermal emission to fall within the extrema of the ISS bandwidth and a geometrical dependence of reddening on phase angle, respectively. Analysis of spectra reveals Cassini CIRS Saturn spectra dominate Cassini CIRS B3 Ring Spectra from 19 to 1000 microns, while Earth-based B Ring Spectrum dominates Earth-based Saturn Spectrum from 0.4 to 4 microns. From our fits we test out dynamical thermal models; from the phase curves we derive ring albedos and non-lambertian properties of the ring particle surfaces; and from the color ratios we examine multiple scattering within the regolith of ring particles.

  9. Primary structure of the hemoglobin beta-chain of rose-ringed parakeet (Psittacula krameri).

    PubMed

    Islam, A; Persson, B; Zaidi, Z H; Jörnvall, H

    1989-08-01

    The primary structure of Rose-ringed Parakeet hemoglobin beta-chain was established, completing the analysis of this hemoglobin. Comparison with other avian beta-chains show variations smaller than those for the corresponding alpha-chains. There are 11 amino acid exchanges in relationship to the only other characterized psittaciform beta-chain, and a total of 35 positions are affected by differences among all avian beta-chains analyzed (versus 61 for the alpha-chains). At three positions, the Psittacula beta-chain has residues unique to this species. Three alpha 1 beta 1 contacts are modified, by substitutions at positions beta 51, beta 116, and beta 125.

  10. Low Optical Depth Features in Saturn's Rings: The Occultation of GSC5249-01240 by Saturn and Its Rings

    NASA Astrophysics Data System (ADS)

    Bosh, A. S.; Olkin, C. B.

    1996-06-01

    On 21 November 1995, Saturn and its rings occulted the star GSC5249-01240 (Bosh & McDonald 1992, Astron. J. 103, 983). Although the star is relatively faint (V = 11.9), other circumstances conspired to make this an excellent event: (i) the normally-bright rings were dark because the sun was crossing through the ring plane, reducing the amount of ring contribution to the background noise and therefore increasing the observed S/N, (ii) the ring opening angle was small (B ~ 3deg ), enhancing detection of low-optical-depth material, and (iii) the low sky-plane velocity allowed longer integration times without loss of spatial resolution. Thus this occultation was particularly well-suited to produce high S/N detections of low-tau ring material. We observed this atmosphere and ring occultation with the Faint Object Spectrograph (FOS) on the Hubble Space Telescope. Using the FOS in its high-speed mode, we sampled the starlight with the G650L grating, recording the stellar signal as a function of both wavelength and time. For the initial analysis of these data, the spectral information was sacrificed by binning all wavelengths together; this in turn increased the detected S/N. We performed a geometric solution for the event, using the known locations of circular ring features as fiducials (Elliot et al., Astron. J. 106, 2544). The scattered light from Saturn and the rings was modelled and subtracted from the light curves to obtain line-of-sight optical depth as a function of ring-plane radius. With these processed data we have made the first occultation detection of Saturn's innermost and very tenuous D ring. We find a line-of-sight optical depth for the thickest part of this ring of tau_ {obs} ~ 0.02. The location and morphology of this feature will be discussed. Comparison of the observed structure will be made with the previous Voyager imaging detection of this ring (Smith et al. 1981, Science 212, 163; Marley & Porco 1993, Icarus 106, 508).

  11. Planetary rings as relics of plasma pre-rings

    NASA Astrophysics Data System (ADS)

    Rabinovich, B. I.

    2007-02-01

    A possibility is discussed that the rings of large planets observed in the modern epoch are relics of some pre-rings consisting of magnetized plasma (according to a hypothesis by H. Alfven). The solution to a model problem published in [36, 37] is used. Its main result is a mechanism of stratification of an evolutionally mature plasma pre-ring into a large number of narrow elite rings separated by anti-rings (gaps). Another result is the theoretical substantiation of the presence in the near-planetary space of a region of existence and stability (in what follows it is referred to as ES-region) of plasma rings. The data obtained in the course of the Voyager, Galileo, and Cassini missions are used below for verification of the model on which the solutions presented in [36, 37] are based.

  12. Calculation and Specification of the Multiple Chirality Displayed by Sugar Pyranoid Ring Structures.

    ERIC Educational Resources Information Center

    Shallenberger, Robert S.; And Others

    1981-01-01

    Describes a method, using simple algebraic notation, for calculating the nature of the salient features of a sugar pyranoid ring, the steric disposition of substituents about the reference, and the anomeric carbon atoms contained within the ring. (CS)

  13. Rings in Evolved Stars: Fingerprints of Their Mass-Loss History

    NASA Astrophysics Data System (ADS)

    Ramos-Larios, Gerardo; Santamaria, Edgar; Sabin, Laurence; Guerrero, Martin; Marquez-Lugo, Alejandro

    2015-08-01

    The majority of intermediate mass evolved stars i.e. asymptotic giant branch (AGB) stars, post-AGB and pre-planetary nebulae (PPN) are well known for been characterized by external structures such as knots, arcs, ansae, jets, haloes, shells and even annular enhancements in intensity -features which are commonly referred to as rings. These are well described either as spherical bubbles of periodic isotropic nuclear mass pulsations (Balick, Wilson & Hajian 2001) or projections of spherical shells onto the plane of the sky by Kwok (2001).These interesting structures are part of the AGB wind, suggesting that this wind comes in a series of semi periodic lapses, indicating that the outflow has quasi-periodic oscillations.After an extensive analysis in the Hubble Space Telescope (HST) archives we found new ring-like structures in several evolved stars. Following the image analysis procedure described by Corradi et al. (2004), and using unsharp masking techniques it was possible to enhance the ring structures, and to obtain an effective removal of the underlying halo emission.Our new findings will help first to constrain the physical processes responsible for the rings creation and then to better understand the mass loss activity in these evolved stars.

  14. Propeller Churns the A Ring

    NASA Image and Video Library

    2010-07-08

    This image is part of a set of images obtained by NASA Cassini spacecraft showing a propeller-shaped structure created by a hidden, embedded moon moving through one of Saturn rings. An animation is available at the Photojournal.

  15. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Gordon, M. K.; Araki, S.; Black, G. J.; Bosh, A. S.; Brahic, A.; Brooks, S. M.; Charnoz, S.; Colwell, J. E.; Cuzzi, J. N.; Dones, L.; Durisen, R. H.; Esposito, L. W.; Ferrari, C.; Festou, M.; French, R. G.; Giuliatti-Winter, S. M.; Graps, A. L.; Hamilton, D. P.; Horanyi, M.; Karjalainen, R. M.; Krivov, A. V.; Krueger, H.; Larson, S. M.; Levison, H. F.; Lewis, M. C.; Lissauer, J. J.; Murray, C. D.; Namouni, F.; Nicholson, P. D.; Olkin, C. B.; Poulet, F.; Rappaport, N. J.; Salo, H. J.; Schmidt, J.; Showalter, M. R.; Spahn, F.; Spilker, L. J.; Srama, R.; Stewart, G. R.; Yanamandra-Fisher, P.

    2002-08-01

    The past two decades have witnessed dramatic changes in our view and understanding of planetary rings. We now know that each of the giant planets in the Solar System possesses a complex and unique ring system. Recent studies have identified complex gravitational interactions between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto, or collisions between, parent bodies. Yet, as far as we have come, our understanding is far from complete. The fundamental questions confronting ring scientists at the beginning of the twenty-first century are those regarding the origin, age and evolution of the various ring systems, in the broadest context. Understanding the origin and age requires us to know the current ring properties, and to understand the dominant evolutionary processes and how they influence ring properties. Here we discuss a prioritized list of the key questions, the answers to which would provide the greatest improvement in our understanding of planetary rings. We then outline the initiatives, missions, and other supporting activities needed to address those questions, and recommend priorities for the coming decade in planetary ring science.

  16. Secondary Structures in a Freeze-Dried Lignite Humic Acid Fraction Caused by Hydrogen-Bonding of Acidic Protons with Aromatic Rings.

    PubMed

    Cao, Xiaoyan; Drosos, Marios; Leenheer, Jerry A; Mao, Jingdong

    2016-02-16

    A lignite humic acid (HA) was separated from inorganic and non-HA impurities (i.e., aluminosilicates, metals) and fractionated by a combination of dialysis and XAD-8 resin. Fractionation revealed a more homogeneous structure of lignite HA. New and more specific structural information on the main lignite HA fraction is obtained by solid-state nuclear magnetic resonance (NMR) spectroscopy. Quantitative (13)C multiple cross-polarization (multiCP) NMR indicated oxidized phenyl propane structures derived from lignin. MultiCP experiments, conducted on potassium HA salts titrated to pH 10 and pH 12, revealed shifts consistent with carboxylate and phenolate formation, but structural changes associated with enolate formation from aromatic beta keto acids were not detected. Two-dimensional (1)H-(13)C heteronuclear correlation (2D HETCOR) NMR indicated aryl-aliphatic ketones, aliphatic and aromatic carboxyl groups, phenol, and methoxy phenyl ethers. Acidic protons from carboxyl groups in both the lignite HA fraction and a synthetic HA-like polycondensate were found to be hydrogen-bonded with electron-rich aromatic rings. Our results coupled with published infrared spectra provide evidence for the preferential hydrogen bonding of acidic hydrogens with electron-rich aromatic rings rather than adjacent carbonyl groups. These hydrogen-bonding interactions likely result from stereochemical arrangements in primary structures and folding.

  17. The structures and electronic properties of zigzag silicene nanoribbons with periodically embedded with four- and eight-membered rings

    NASA Astrophysics Data System (ADS)

    Tan, Guiping; Lu, Junzhe; Zhu, Hengjiang; Li, Fangfang; Ma, Miaomiao; Wang, Xiaoning

    2018-07-01

    Using density functional theory (DFT), we have studied the structure of a zigzag silicene nanoribbons (SiNRs) with periodically embedded with four- and eight-membered rings, and studied their electronic properties by calculating its band structures and density of states (DOS). The results showed that the zigzag SiNRs have a sp2 hybridization, in addition, the band gap gradually decreased with the increase of the width by layer, and gradually changed from semiconductor properties to metal properties. The existence of vacancy defects increased the band gap and energies, but their positions could not change the structure and the electronic properties.

  18. The Vibration Ring. Phase 1; [Seedling Fund

    NASA Technical Reports Server (NTRS)

    Asnani, Vivake M.; Krantz, Timothy L.; Delap, Damon C.; Stringer, David B.

    2014-01-01

    The vibration ring was conceived as a driveline damping device to prevent structure-borne noise in machines. It has the appearance of a metal ring, and can be installed between any two driveline components like an ordinary mechanical spacer. Damping is achieved using a ring-shaped piezoelectric stack that is poled in the axial direction and connected to an electrical shunt circuit. Surrounding the stack is a metal structure, called the compression cage, which squeezes the stack along its poled axis when excited by radial driveline forces. The stack in turn generates electrical energy, which is either dissipated or harvested using the shunt circuit. Removing energy from the system creates a net damping effect. The vibration ring is much stiffer than traditional damping devices, which allows it to be used in a driveline without disrupting normal operation. In phase 1 of this NASA Seedling Fund project, a combination of design and analysis was used to examine the feasibility of this concept. Several designs were evaluated using solid modeling, finite element analysis, and by creating prototype hardware. Then an analytical model representing the coupled electromechanical response was formulated in closed form. The model was exercised parametrically to examine the stiffness and loss factor spectra of the vibration ring, as well as simulate its damping effect in the context of a simplified driveline model. The results of this work showed that this is a viable mechanism for driveline damping, and provided several lessons for continued development.

  19. High-strain slide-ring shape-memory polycaprolactone-based polyurethane.

    PubMed

    Wu, Ruiqing; Lai, Jingjuan; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin

    2018-06-06

    To enable shape-memory polymer networks to achieve recoverable high deformability with a simultaneous high shape-fixity ratio and shape-recovery ratio, novel semi-crystalline slide-ring shape-memory polycaprolactone-based polyurethane (SR-SMPCLU) with movable net-points constructed by a topologically interlocked slide-ring structure was designed and fabricated. The SR-SMPCLU not only exhibited good shape fixity, almost complete shape recovery, and a fast shape-recovery speed, it also showed an outstanding recoverable high-strain capacity with 95.83% Rr under a deformation strain of 1410% due to the pulley effect of the topological slide-ring structure. Furthermore, the SR-SMPCLU system maintained excellent shape-memory performance with increasing the training cycle numbers at 45% and even 280% deformation strain. The effects of the slide-ring cross-linker content, deformation strain, and successive shape-memory cycles on the shape-memory performance were investigated. A possible mechanism for the shape-memory effect of the SR-SMPCLU system is proposed.

  20. Planetary astronomy: Rings, satellites, and asteroids

    NASA Technical Reports Server (NTRS)

    Greenberg, Richard

    1988-01-01

    Studies of planetary rings focus on the dynamical processes that govern astronomically observable ring properties and structure. These investigations thus help reveal properties of the rings as well as probe the gravity fields of the planets. Satellite studies involve interpretation of orbital motion to extract information regarding the gravity fields of the outer planets and the physical properties of the satellites themselves. Asteroid lightcurve work is designed to investigate the large-scale shapes of the asteroids, as well as to reveal anomalous features such as major topography, possible satellites, or albedo variations. Work on the nature of viscous transport in planetary rings, emphasizing the role of individual particles' physical properties, has yielded a method for estimating both angular momentum and mass transport given an optical-thickness gradient. This result offers the prospect of ringlet instability, which may explain the square-profile ringlets in Saturn's C Ring. Thermal and reflected lightcurves of 532 Herculina have been interpreted to show that albedo variations cannot be the primary cause of variations. A lightcurve simulation has been developed to model complex asteroidal figures. Bamberga was observed during the December occultation as part of the joint LPL-Lowell program.

  1. Similar Ring Structures on Mars and Tibetan Plateau confirm recent tectonism on Martian Northern polar region

    NASA Astrophysics Data System (ADS)

    Anglés, A.; Li, Y. L.

    2017-10-01

    The polar regions of Mars feature layered deposits, some of which exist as enclosed zoning structures. These deposits raised strong interest since their discovery and still remain one of the most controversial features on Mars. Zoning structures that are enclosed only appear in the Northern polar region, where the disappearance of water bodies may have left behind huge deposits of evaporate salts. The origin of the layered deposits has been widely debated. Here we propose that the enclosed nature of the zoning structures indicates the result of recent tectonism. We compared similar structures at an analogue site located in the western Qaidam Basin of Tibetan Plateau, a unique tectonic setting with abundant saline deposits. The enclosed structures, which we term Ring Structures, in both the analogue site and in the Northern polar region of Mars, were formed by uplift induced pressurization and buoyancy of salts as the result of recent tectonic activity.

  2. Voyager Saturnian ring measurements and the early history of the solar system

    NASA Technical Reports Server (NTRS)

    Alfven, H.; Axnaes, I.; Brenning, N.; Lindquist, P. A.

    1985-01-01

    The mass distribution in the Saturnian ring system is investigated and compared with predictions from plasma cosmogony. According to this theory, the matter in the rings was once a magnetized plasma, in which gravitation is balanced by the centrifugal and electromagnetic forces. As the plasma is neutralized, the electromagnetic forces disappear and the matter falls in to 2/3 of the original saturnocentric distance. This causes the cosmogonic shadow effect, demonstrated for the large scale structure of the Saturnian ring system. It is shown that many structures of the present ring system can be understood as shadows and antishadows of cosmogonic origin. These appear in the form of double rings centered around a position a factor 0.64 (slightly 2/3) closer to Saturn than the causing feature. Voyager data agree with an accuracy 1%.

  3. New type of chimera structures in a ring of bistable FitzHugh-Nagumo oscillators with nonlocal interaction

    NASA Astrophysics Data System (ADS)

    Shepelev, I. A.; Vadivasova, T. E.; Bukh, A. V.; Strelkova, G. I.; Anishchenko, V. S.

    2017-04-01

    We study the spatiotemporal dynamics of a ring of nonlocally coupled FitzHugh-Nagumo oscillators in the bistable regime. A new type of chimera patterns has been found in the noise-free network and when isolated elements do not oscillate. The region of existence of these structures has been explored when the coupling range and the coupling strength between the network elements are varied.

  4. HYPERAUTOFLUORESCENT RING IN AUTOIMMUNE RETINOPATHY

    PubMed Central

    LIMA, LUIZ H.; GREENBERG, JONATHAN P.; GREENSTEIN, VIVIENNE C.; SMITH, R. THEODORE; SALLUM, JULIANA M. F.; THIRKILL, CHARLES; YANNUZZI, LAWRENCE A.; TSANG, STEPHEN H.

    2015-01-01

    Purpose To report the presence of a hyperautofluorescent ring and corresponding spectral-domain optical coherence tomography (SD-OCT) features seen in patients with autoimmune retinopathy. Methods All eyes were evaluated by funduscopic examination, full-fleld electroretinography, fundus autofluorescence, and SD-OCT. Further confirmation of the diagnosis was obtained with immunoblot and immunohistochemistry testing of the patient’s serum. Humphrey visual fields and microperimetry were also performed. Results Funduscopic examination showed atrophic retinal pigment epithelium (RPE) associated with retinal artery narrowing but without pigment deposits. The scotopic and photopic full-field electroretinograms were nondetectable in three patients and showed a cone–rod pattern of dysfunction in one patient. Fundus autofluorescence revealed a hyperautofluorescent ring in the parafoveal region, and the corresponding SD-OCT demonstrated loss of the photoreceptor inner segment–outer segment junction with thinning of the outer nuclear layer from the region of the hyperautofluorescent ring toward the retinal periphery. The retinal layers were generally intact within the hyperautofluorescent ring, although the inner segment–outer segment junction was disrupted, and the outer nuclear layer and photoreceptor outer segment layer were thinned. Conclusion This case series revealed the structure of the hyperautofluorescent ring in autoimmune retinopathy using SD-OCT. Fundus autofluorescence and SD-OCT may aid in the diagnosis of autoimmune retinopathy and may serve as a tool to monitor its progression. PMID:22218149

  5. Saturn's Rings, the Yarkovsky Effects, and the Ring of Fire

    NASA Technical Reports Server (NTRS)

    Rubincam, David

    2004-01-01

    Saturn's icy ring particles, with their low thermal conductivity, are almost ideal for the operation of the Yarkovsky effects. The dimensions of Saturn's A and B rings may be determined by a near balancing of the seasonal Yarkovsky effect with the Yarkovsky- Schach effect. The two effects, which are photon thrust due to temperature gradients, may confine the A and B rings to within their observed dimensions. The C ring may be sparsely populated with icy particles because Yarkovsky drag has pulled them into Saturn, leaving the more slowly orbitally decaying rocky particles. Icy ring particles ejected from the B ring and passing through the C ring, as well as some of the slower rocky particles, should fall on Saturn's equator, where they may create a luminous "Ring of Fire" around Saturn's equator. This predicted Ring of Fire may be visible to Cassini's camera. Curiously, the speed of outwards Yarkovsky orbital evolution appears to peak near the Cassini Division. The connection between the two is not clear. D. Nesvorny has speculated that the resonance at the outer edge of the B ring may impede particles from evolving via Yarkovsky across the Division. If supply from the B ring is largely cut off, then Yarkovsky may push icy particles outward, away from the inner edge of the A ring, leaving only the rocky ones in the Division. The above scenarios depend delicately on the properties of the icy particles.

  6. Hardy Objects in Saturn F Ring

    NASA Image and Video Library

    2017-02-24

    As NASA's Cassini spacecraft continues its weekly ring-grazing orbits, diving just past the outside of Saturn F ring, it is tracking several small, persistent objects there. These images show two such objects that Cassini originally detected in spring 2016, as the spacecraft transitioned from more equatorial orbits to orbits at increasingly high inclination about the planet's equator. Imaging team members studying these objects gave them the informal designations F16QA (right image) and F16QB (left image). The researchers have observed that objects such as these occasionally crash through the F ring's bright core, producing spectacular collisional structures.While these objects may be mostly loose agglomerations of tiny ring particles, scientists suspect that small, fairly solid bodies lurk within each object, given that they have survived several collisions with the ring since their discovery. The faint retinue of dust around them is likely the result of the most recent collision each underwent before these images were obtained. The researchers think these objects originally form as loose clumps in the F ring core as a result of perturbations triggered by Saturn's moon Prometheus. . If they survive subsequent encounters with Prometheus, their orbits can evolve, eventually leading to core-crossing clumps that produce spectacular features, even though they collide with the ring at low speeds. The images were obtained using the Cassini spacecraft narrow-angle camera on Feb. 5, 2017, at a distance of 610,000 miles (982,000 kilometers, left image) and 556,000 miles (894,000 kilometers, right image) from the F ring. Image scale is about 4 miles (6 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21432

  7. The addition of E (Empowerment and Economics) to the ABCD algorithm in diabetes care.

    PubMed

    Khazrai, Yeganeh Manon; Buzzetti, Raffaella; Del Prato, Stefano; Cahn, Avivit; Raz, Itamar; Pozzilli, Paolo

    2015-01-01

    The ABCD (Age, Body weight, Complications, Duration of disease) algorithm was proposed as a simple and practical tool to manage patients with type 2 diabetes. Diabetes treatment, as for all chronic diseases, relies on patients' ability to cope with daily problems concerning the management of their disease in accordance with medical recommendations. Thus, it is important that patients learn to manage and cope with their disease and gain greater control over actions and decisions affecting their health. Healthcare professionals should aim to encourage and increase patients' perception about their ability to take informed decisions about disease management and to improve patient self-esteem and feeling of self-efficacy to become agents of their own health. E for Empowerment is therefore an additional factor to take into account in the management of patients with type 2 diabetes. E stands also for Economics to be considered in diabetes care. Attention should be paid to public health policies as well as to the physician faced with the dilemma of delivering the best possible care within the problem of limited resources. The financial impact of the new treatment modalities for diabetes represents an issue that needs to be addressed at multiple strata both globally and nationally. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Self-assembly of InAs ring complexes on InP substrates by droplet epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noda, T.; Mano, T.; Jo, M.

    We report the self-assembly of InAs ring complexes on InP (100) substrates by droplet epitaxy. Single-ring, ring-disk complex, and concentric double-ring structures were formed by controlling the As beam flux and substrate temperature. A clear photoluminescence signal was detected in a sample where InAs rings were embedded in InGaAs.

  9. Voyager Observations of the Color of Saturn's Ring

    NASA Technical Reports Server (NTRS)

    Estrada, Paul R.; Cuzzi, Jeffrey N.; Morrison, David (Technical Monitor)

    1994-01-01

    Previously unreduced high resolution Voyager 2 images of Saturn's main rings are used to generate reflectivity (I/F) profiles as a function of radius. Ratios of profiles taken from green, violet, orange, and UV filter images are then produced. The I/F ratios are diagnostic of composition, and provide us with information on the rings' present state of compositional evolution. The rings are extremely reddish in color which suggests that they could not be pure water ice. The most likely candidates for the non-icy components are silicates and organics. The sources of these pollutants are of extreme importance in determining the compositional history of the rings. The radial profiles of ring color ratio exhibit several very interesting properties: (a) broad-scale, fairly smooth, color variations which are only weakly correlated with underlying ring structure (optical depth variations) across the outer C ring and inner B ring as well as the Cassini division region. These variations are probably consistent with ballistic transport; (b) fine-scale, noise-Like (but unquestionably real) color variations across at least the outer two-thirds of the B ring. Not only the "redness" but the spectral shape varies. These variations are currently unexplained. Groundbased spectroscopic observations should be pursued to study the implied compositional heterogeneities on at least the larger scales. This data set will be used for modeling of the color and composition of the main rings using ballistic transport and radiative transfer theories.

  10. A new pattern in Saturn's D ring created in late 2011

    NASA Astrophysics Data System (ADS)

    Hedman, M. M.; Showalter, M. R.

    2016-11-01

    Images obtained by the Cassini spacecraft between 2012 and 2015 reveal a periodic brightness variation in a region of Saturn's D ring that previously appeared to be rather featureless. Furthermore, the intensity and radial wavenumber of this pattern have decreased steadily with time since it was first observed. Based on analogies with similar structures elsewhere in the D ring, we propose that this structure was created by some event that disturbed the orbital motions of the ring particles, giving them finite orbital eccentricities and initially aligned pericenters. Differential orbital precession then transformed this structure into a spiral pattern in the ring's optical depth that became increasingly tightly wound over time. The observed trends in the pattern's radial wavenumber are roughly consistent with this basic model, and also indicate that the ring-disturbing event occurred in early December 2011. Similar events in 1979 may have generated the periodic patterns seen in this same region by the Voyager spacecraft. The 2011 event could have been caused by debris striking the rings, or by a disturbance in the planet's electromagnetic environment. The rapid reduction in the intensity of the brightness variations over the course of just a few years indicates that some process is either damping orbital eccentricities in this region or causing the orbital pericenters of particles with the same semi-major axis to become misaligned.

  11. Dynamics of satellites, asteroids, and rings

    NASA Technical Reports Server (NTRS)

    Dermott, Stanley F.

    1987-01-01

    Work is reported on: (1) the shapes and the internal structures of satellites; (2) the tidal heating of Miranda; (3) the dynamics of arc-like rings; and (4) the structure of the zodiacal cloud that was revealed by the Infrared Astronomy Satellite. Significant progress was made in determining the shape and internal structure of Mimas and in understanding the dynamical evolution of Miranda's orbit.

  12. Linking heterometallic rings for quantum information processing and amusement.

    PubMed

    Timco, Grigore A; Faust, Thomas B; Tuna, Floriana; Winpenny, Richard E P

    2011-06-01

    Linking polymetallic cages can be a method for creating new structures and new properties. In this tutorial review we use heterometallic anti-ferromagnetically coupled rings (AF-rings) as exemplars for three approaches that can be used to link cage compounds. The first of three routes involves an ion-pair interaction supported by hydrogen-bonding interactions, which allows the synthesis of hybrid rotaxanes among other materials. The second route involves functionalising the exterior of the AF-ring so that it will act as a Lewis base; complexes involving coordination of pyridine to bridging monometallic and dimetallic fragments are discussed. The third route involves creating a vacancy on one site of the AF-ring, and then using the ring as a Lewis acid. Di-imine ligands can then be used to link the AF-rings into dimers. A brief discussion of the physical properties of these systems is also included.

  13. Straw in the B Ring Edge

    NASA Image and Video Library

    2017-01-30

    This image shows a region in Saturn's outer B ring. NASA's Cassini spacecraft viewed this area at a level of detail twice as high as it had ever been observed before. The view here is of the outer edge of the B ring, at left, which is perturbed by the most powerful gravitational resonance in the rings: the "2:1 resonance" with the icy moon Mimas. This means that, for every single orbit of Mimas, the ring particles at this specific distance from Saturn orbit the planet twice. This results in a regular tugging force that perturbs the particles in this location. A lot of structure is visible in the zone near the edge on the left. This is likely due to some combination of the gravity of embedded objects too small to see, or temporary clumping triggered by the action of the resonance itself. Scientists informally refer to this type of structure as "straw." This image was taken using a fairly long exposure, causing the embedded clumps to smear into streaks as they moved in their orbits. Later Cassini orbits will bring shorter exposures of the same region, which will give researchers a better idea of what these clumps look like. But in this case, the smearing does help provide a clearer idea of how the clumps are moving. This image is a lightly processed version, with minimal enhancement; this version preserves all original details present in the image. Another other version (Figure 1) has been processed to remove the small bright blemishes due to cosmic rays and charged particle radiation near the planet -- a more aesthetically pleasing image, but with a slight softening of the finest details. The image was taken in visible light with the Cassini spacecraft wide-angle camera on Dec. 18, 2016. The view was obtained at a distance of approximately 32,000 miles (52,000 kilometers) from the rings and looks toward the unilluminated side of the rings. Image scale is about a quarter-mile (360 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21057

  14. Cassini Radio Occultations of Saturn's Rings: Scattered Signal and Particle Sizes

    NASA Astrophysics Data System (ADS)

    Thomson, F.; Wong, K.; Marouf, E.; French, R.; Rappaport, N.; McGhee, C.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Johnston, D.; Rochblatt, D.

    2005-08-01

    Eight Cassini radio occultations of Saturn's rings were conducted from May 3 to September 5, 2005. During any given occultation, Cassini transmits Ka-, X-, and S-band sinusoidal signals (0.94, 3.6, and 13 cm-wavelength) through the rings. Spectral analysis of the perturbed signals received at stations of the Deep Space Network (DSN) reveals two distinct signal components. The first is the direct signal, a narrowband component representing the incident sinusoid emerging from the rings reduced in amplitude and changed in phase. The second is the scattered signal, a broadband component, representing near-forward scattering by ring particles. After reconstruction to remove diffraction effects, time history of the direct signal yields profiles of ring structure at resolution approaching ˜50 m. Of primary concern here is the broadband component. For the first time ever, clearly detectable scattered signals were observed at all three (Ka/X/S) bands. A single X/S radio occultation by Voyager 1 in 1980 detected scattered signal at X-band only, primarily because of the small ring opening angle B=5.9o at the time, compared with 19.1 ≤ B ≤ 23.6o for Cassini. Time histories of the observed spectra (spectrograms) and their dependence on wavelength provide important information about physical ring properties, including abundance of meter-size particles, particle crowding, clustering, spatial anisotropy, vertical ring profile and thickness. Cassini occultation orbits were optimized to map scattering by individual ring features into nearly non-overlapping spectral bands, allowing unambiguous identification of the contribution of ring features to the computed spectrograms. We present Ka/X/S spectrograms over the full extent of the ring system and relate their behavior to observed ring structure. The spectrograms imply presence of meters-size particles throughout the ring system. Preliminary results regarding the particle size distribution and vertical ring profile of selected

  15. The Case for Massive and Ancient Rings of Saturn

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2016-04-01

    etal 2007. This would imply that the density wave structure seen by VIMS is not sensing all the mass in the rings, where structure near strong resonances is dominted by temporary aggregates, and where non-linear effects cause the parti-cles to jam (Lewis and Stewart 2009). The density waves may be seeing the mass density in the gaps be-tween self-gravity wakes, whose optical depth is roughly contant and considerably lower than the total B ring opacity (Colwell etal 2007). These massive rings would be consistent with the origin model of Canup (2011) where a Titan-sized diffferntiated moon was disrupted early in Saturn's formation.

  16. Concentration of small ring structures in vitreous silica from a first-principles analysis of the Raman spectrum.

    PubMed

    Umari, P; Gonze, Xavier; Pasquarello, Alfredo

    2003-01-17

    Using a first-principles approach, we calculate Raman spectra for a model structure of vitreous silica. We develop a perturbational method for calculating the dielectric tensor in an ultrasoft pseudopotential scheme and obtain Raman coupling tensors by finite differences with respect to atomic displacements. For frequencies below 1000 cm(-1), the parallel-polarized Raman spectrum of vitreous silica is dominated by oxygen bending motions, showing a strong sensitivity to the intermediate range structure. By modeling the Raman coupling, we derive estimates for the concentrations of three- and four-membered rings from the experimental intensities of the Raman defect lines.

  17. Asymmetric dipolar ring

    DOEpatents

    Prosandeev, Sergey A.; Ponomareva, Inna V.; Kornev, Igor A.; Bellaiche, Laurent M.

    2010-11-16

    A device having a dipolar ring surrounding an interior region that is disposed asymmetrically on the ring. The dipolar ring generates a toroidal moment switchable between at least two stable states by a homogeneous field applied to the dipolar ring in the plane of the ring. The ring may be made of ferroelectric or magnetic material. In the former case, the homogeneous field is an electric field and in the latter case, the homogeneous field is a magnetic field.

  18. Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler

    DOEpatents

    Kuklo, Thomas C.

    1999-01-01

    A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings.

  19. Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler

    DOEpatents

    Kuklo, T.C.

    1999-07-20

    A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings. 2 figs.

  20. Non-Linear Dynamics of Saturn’s Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2015-11-01

    Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects

  1. Radial widths, optical depths, and eccentricities of the Uranian rings

    NASA Technical Reports Server (NTRS)

    Nicholson, P. D.; Matthews, K.; Goldreich, P.

    1982-01-01

    Observations of the stellar occultation by the Uranian rings of 15/16 August 1980 are used to estimate radial widths and normal optical depths for segments of rings 6, 5, 4, alpha, beta, eta, gamma, and delta. Synthetic occultation profiles are generated to match the observed light curves. A review of published data confirms the existence of width-radius relations for rings alpha and beta, and indicates that the optical depths of these two rings vary inversely with their radial widths. Masses are obtained for rings alpha and beta, on the assumption that differential precession is prevented by their self-gravity. A quantitative comparison of seven epsilon-ring occultation profiles obtained over a period of 3.4 yr reveals a consistent structure, which may reflect the presence of unresolved gaps and subrings.

  2. Does Saturn have rings outside 10 R(s)?

    NASA Technical Reports Server (NTRS)

    Cheng, A. F.; Lanzerotti, L. J.; Maclennan, C. G.

    1985-01-01

    Voyager ion and electron data in the energy range 30-1000 keV as measured by the Low Energy Charged Particle experiment are reviewed to check suggestions based on star occultation data that there are additional tenuous rings of Saturn beyond 10 Saturn radii from that planet. In the Voyager data, there is no convincing evidence for such ring matter. Features in the charged particle fluxes in the regions in question are more readily explained by temporal variations and/or spatial structure unrelated to ring matter, such as the mantle on the dayside and/or detached plasma sheets.

  3. Saturn's Rings, the Yarkovsky Effects, and the Ring of Fire

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry

    2004-01-01

    The dimensions of Saturn's A and B rings may be determined by the seasonal Yarkovsky effect and the Yarkovsky-Schach effect; the two effects confine the rings between approximately 1.68 and approximately 2.23 Saturn radii, in reasonable agreement with the observed values of 1.525 and 2.267. The C ring may be sparsely populated because its particles are transients on their way to Saturn; the infall may create a luminous Ring of Fire around Saturn's equator. The ring system may be young: in the past heat flow from Saturn's interior much above its present value would not permit rings to exist.

  4. Saturn's largest ring.

    PubMed

    Verbiscer, Anne J; Skrutskie, Michael F; Hamilton, Douglas P

    2009-10-22

    Most planetary rings in the Solar System lie within a few radii of their host body, because at these distances gravitational accelerations inhibit satellite formation. The best known exceptions are Jupiter's gossamer rings and Saturn's E ring, broad sheets of dust that extend outward until they fade from view at five to ten planetary radii. Source satellites continuously supply the dust, which is subsequently lost in collisions or by radial transport. Here we report that Saturn has an enormous ring associated with its outer moon Phoebe, extending from at least 128R(S) to 207R(S) (Saturn's radius R(S) is 60,330 km). The ring's vertical thickness of 40R(S) matches the range of vertical motion of Phoebe along its orbit. Dynamical considerations argue that these ring particles span the Saturnian system from the main rings to the edges of interplanetary space. The ring's normal optical depth of approximately 2 x 10(-8) is comparable to that of Jupiter's faintest gossamer ring, although its particle number density is several hundred times smaller. Repeated impacts on Phoebe, from both interplanetary and circumplanetary particle populations, probably keep the ring populated with material. Ring particles smaller than centimetres in size slowly migrate inward and many of them ultimately strike the dark leading face of Iapetus.

  5. A new 3D nickel(II) framework composed of large rings: Ionothermal synthesis and crystal structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Ling; Choi, Eun-Young; Kwon, Young-Uk

    2008-11-15

    Ionothermal reaction between Ni{sup 2+} and 1,3,5-benzentricarboxylic acid (H{sub 3}BTC) with [AMI]Cl (AMI=1-amyl-3-methylimidazolium) as the reaction medium produced a novel 3D mixed-ligand metal-organic framework [AMI][Ni{sub 3}(BTC){sub 2}(OAc)(MI){sub 3}] (1) (MI=1-methylimidazole) with [AMI]{sup +} incorporated in the framework. The framework is formed by connecting 2D planes, made up of 32- and 48-membered rings, through 1D chains composed of 32-membered rings. The two BTC{sup 3-} ligands in 1 show the same connectivity mode with two bidentate and one {mu}{sub 2} bridging carboxylic groups. This is a new connectivity mode to the already existing 17 in the Ni-BTC system. The role of MImore » and [AMI]Cl in the structure formation is discussed. - Graphical Abstract: A novel 3D framework [AMI][Ni{sub 3}(BTC){sub 2}(OAc)(MI){sub 3}] is obtained in ionothermal system with [AMI]{sup +} incorporating in the cavities as structure directing template and BTC{sup 3-} showing a new coordination fashion. The 3D framework is constructed by 2D layers linked with 1D double chains. The title compound has the middle thermal stability at ca. 280 deg. C.« less

  6. Meteoroidal Impacts, Plasma, Fine Structure of Ringlets and Spokes on Saturn's Ring B

    NASA Technical Reports Server (NTRS)

    Cook, A. F.; Hunt, G. E.; Barrey, R.

    1985-01-01

    The role of bombardment of the rings by the dominant size of meteoroids is examined. Also considered are the circumstances which explain the observed presence of spokes on both the illuminated and unilluminated faces of the ring; leading-trailing asymmetry in the behavior of the spokes, and the forward tilt in the spokes.

  7. Axisymmetric Density Waves in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Hedman, Matthew; Nicholson, Philip

    2018-04-01

    Density waves in Saturn's rings are typically tightly wrapped spiral patterns generated by resonances with either Saturn's moons or structures inside the planet. However, between the Barnard and Bessel Gaps in the Cassini Division (i.e. between 120,240 and 120,300 km), there are density variations that appear to form an axisymmetric density wave, which consists of concentric regions of varying density that propagate radially through the rings. Such a wave requires some process that forces ring particles at all longitudes to pass through pericenter at the same time, and so cannot be generated by satellite resonances. Instead this particular wave appears to be excited by interference between a nearby satellite resonance and normal mode oscillations on the inner edge of the Barnard Gap. Similar axisymmetric waves may exist within the Dawes ringlet and the outermost part of the B ring, which are also just interior to resonantly confined edges that exhibit a large number of normal modes. These waves may therefore provide new insights into how resonant perturbations near an edge can propagate through a disk of material.

  8. Propellers in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Sremcevic, M.; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2013-12-01

    Theoretical studies and simulations have demonstrated the effects caused by objects embedded in planetary rings. Even if the objects are too small to be directly observed, each creates a much larger gravitational imprint on the surrounding ring material. These strongly depend on the mass of the object and range from "S" like propeller-shaped structures for about 100m-sized icy bodies to the opening of circumferential gaps as in the case of the embedded moons Pan and Daphnis and their corresponding Encke and Keeler Gaps. Since the beginning of the Cassini mission many of these smaller objects (~<500m in size) have been indirectly identified in Saturn's A ring through their propeller signature in the images. Furthermore, recent Cassini observations indicate the possible existence of objects embedded even in Saturn's B and C ring. In this paper we present evidence for the existence of propellers in Saturn's B ring by combining data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. We show evidence that B ring seems to harbor two distinct populations of propellers: "big" propellers covering tens of degrees in azimuth situated in the densest part of B ring, and "small" propellers in less dense inner B ring that are similar in size and shape to known A ring propellers. The population of "big" propellers is exemplified with a single object which is observed for 5 years of Cassini data. The object is seen as a very elongated bright stripe (40 degrees wide) in unlit Cassini images, and dark stripe in lit geometries. In total we report observing the feature in images at 18 different epochs between 2005 and 2010. In UVIS occultations we observe this feature as an optical depth depletion in 14 out of 93 occultation cuts at corrotating longitudes compatible with imaging data. Combining the available Cassini data we infer that the object is a partial gap located at r=112,921km embedded in the high optical depth region of the B

  9. Application of combinatorial biocatalysis for a unique ring expansion of dihydroxymethylzearalenone

    USDA-ARS?s Scientific Manuscript database

    Combinatorial biocatalysis was applied to generate a diverse set of dihydroxymethylzearalenone derivatives with modified ring structure. In one chemoenzymatic reaction sequence, dihydroxymethylzearalenone was first subjected to a unique enzyme-catalyzed oxidative ring opening reaction that creates ...

  10. CH/π interactions in metal-porphyrin complexes with pyrrole and chelate rings as hydrogen acceptors.

    PubMed

    Medaković, Vesna B; Bogdanović, Goran A; Milčić, Miloš K; Janjić, Goran V; Zarić, Snežana D

    2012-12-01

    CH/π interactions in metal porphyrinato complexes were studied by analyzing data in crystal structures from the Cambridge Structural Database (CSD) and by quantum chemical calculations. The analysis of the data in the CSD shows that both five-membered pyrrole and six-membered chelate rings form CH/π interactions. The interactions occur more frequently with five-membered rings. The analysis of distances in crystal structures and calculated energies show stronger interactions with six-membered chelate rings, indicating that a larger number of interactions with five-membered rings are not the consequence of stronger interactions, but better accessibility of five-membered pyrrole rings. The calculated energies of the interactions with positions in six-membered rings are -2.09 to -2.83 kcal/mol, while the energies with five-membered rings are -2.05 to -2.26 kcal/mol. The results reveal that stronger interactions of six-membered rings are the consequence of stronger electrostatic interactions. Substituents on the porphyrin ring significantly strengthen the interactions. Substituents on the six-membered ring strengthen the interaction energy by about 20%. The results show that CH/π interactions play an important role in molecular recognition of metalloporphyrins. The significant influence of the substituents on interaction energies can be very important for the design of model systems in bioinorganic chemistry. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Targeted flyby images of propellers in Saturn's A ring

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.; Baker, Emily J.; the Cassini ISS Team

    2017-06-01

    As part of its two-part end-of-mission maneuvers, the Cassini has targeted three "propeller moons" for close-range flybys, obtaining images that greatly improve on all previous images in terms of resolution and detailed structure. Propeller moons are ~1 km in size and are embedded in the disk of Saturn's A ring (Tiscareno et al. 2010, ApJL). Unlike the moons Pan and Daphnis, propeller moons have insufficient mass to carve out a fully circumferential gap; instead, we see a propeller-shaped disturbance around the moon (which itself is unseen) as the moon's attempted gap is filled back in, due to the dynamical viscosity of the ring particles.The Cassini Imaging Science Subsystem (ISS) has obtained images of the propeller moon "Santos-Dumont" on both the lit and unlit sides of the rings, and of "Earhart" on the lit side. As of this writing, a final targeted flyby of "Bleriot" on the unlit side of the rings has yet to take place. The resolution of these images is at least 3x to 4x better than those of nearly all previous propeller images, and at least 2x better than those of a small handful of the best previous propeller images.We will present maps of of the propeller structures, with enhanced ability to convert brightness to optical depth and surface density due to information from both the lit and unlit sides of the rings. The images contain more complex structure than is predicted by simple models, which we will describe, and for which we will comment on likely explanations. The central moonlet of each propeller (which has never been seen) should be a couple of pixels across, but we cannot confirm whether they are seen in these images or whether they are obscured by stirred-up ring material.

  12. A field investigation of the basaltic ring structures of the Channeled Scabland and the relevance to Mars

    USGS Publications Warehouse

    Kestay, Laszlo P.; Jaeger, Windy L.

    2015-01-01

    The basaltic ring structure (BRS) is a class of peculiar features only reported in the Channeled Scabland of eastern Washington State. They have been suggested to be good analogs, however, for some circular features on Mars. BRSs are found where Pleistocene floods scoured the Columbia River Basin, stripping off the uppermost part of the Miocene Columbia River Basalt Group and exposing structures that were previously embedded in the lava. The “Odessa Craters,” near Odessa, WA, are 50–500-m-wide BRSs that are comprised of discontinuous, concentric outcrops of subvertically-jointed basalt and autointrusive dikes. Detailed field investigation of the Odessa Craters in planform and a cross-sectional exposure of a similar structure above Banks Lake, WA, lead us to propose that BRSs formed by concurrent phreatovolcanism and lava flow inflation. In this model, phreatovolcanic (a.k.a., “rootless”) cones formed on a relatively thin, active lava flow; the lava flow inflated around the cones, locally inverting topography; tensile stresses caused concentric fracturing of the lava crust; lava from within the molten interior of the flow exploited the fractures and buried the phreatovolcanic cones; and subsequent erosive floods excavated the structures. Another population of BRSs near Tokio Station, WA, consists of single-ringed, raised-rimmed structures that are smaller and more randomly distributed than the Odessa Craters. We find evidence for a phreatovolcanic component to the origin as well, and hypothesize that they are either flood-eroded phreatovolcanic cones or Odessa Crater-like BRSs. This work indicates that BRSs are not good analogs to the features on Mars because the martian features are found on the uneroded surfaces. Despite this, the now superseded concepts for BRS formation are useful for understanding the formation of the martian features.

  13. Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis

    NASA Astrophysics Data System (ADS)

    Datta, Abhishek; Elwassif, Maged; Battaglia, Fortunato; Bikson, Marom

    2008-06-01

    We calculated the electric fields induced in the brain during transcranial current stimulation (TCS) using a finite-element concentric spheres human head model. A range of disc electrode configurations were simulated: (1) distant-bipolar; (2) adjacent-bipolar; (3) tripolar; and three ring designs, (4) belt, (5) concentric ring, and (6) double concentric ring. We compared the focality of each configuration targeting cortical structures oriented normal to the surface ('surface-radial' and 'cross-section radial'), cortical structures oriented along the brain surface ('surface-tangential' and 'cross-section tangential') and non-oriented cortical surface structures ('surface-magnitude' and 'cross-section magnitude'). For surface-radial fields, we further considered the 'polarity' of modulation (e.g. superficial cortical neuron soma hyper/depolarizing). The distant-bipolar configuration, which is comparable with commonly used TCS protocols, resulted in diffuse (un-focal) modulation with bi-directional radial modulation under each electrode and tangential modulation between electrodes. Increasing the proximity of the two electrodes (adjacent-bipolar electrode configuration) increased focality, at the cost of more surface current. At similar electrode distances, the tripolar-electrodes configuration produced comparable peak focality, but reduced radial bi-directionality. The concentric-ring configuration resulted in the highest spatial focality and uni-directional radial modulation, at the expense of increased total surface current. Changing ring dimensions, or use of two concentric rings, allow titration of this balance. The concentric-ring design may thus provide an optimized configuration for targeted modulation of superficial cortical neurons.

  14. Uranus Tenth Ring

    NASA Image and Video Library

    1996-01-29

    On Jan. 23, 1986, NASA Voyager 2 discovered a tenth ring orbiting Uranus. The tenth ring is about midway between the bright, outermost epsilon ring and the next ring down, called delta. http://photojournal.jpl.nasa.gov/catalog/PIA00035

  15. The Evolution of Saturn's Rings Under the Influence of the Edgeworth-Kuiper Belt Micrometeoroid Flux: Tightening the Constraints on Ring Age

    NASA Astrophysics Data System (ADS)

    Estrada, Paul R.; Durisen, Richard H.; Cuzzi, Jeffrey N.

    2016-10-01

    Results of the Cassini Dust Analyzer (CDA) experiment indicate that the determined range of the micrometeoroid flux at infinity for Saturn (Altobelli et al., 2015) may be comparable to the nominal value of the incident, flat-plate and one-sided meteoroid flux value currently adopted for use in ballistic transport applications and models (e.g., Estrada et al., 2015). Moreover, the source of the micrometeoroid flux has been localized to the Edgeworth-Kuiper Belt (EKB) and is not cometary in origin as previously assumed. Apart from suggesting an altogether different composition for the ring pollutant, a major consequence of these new measurements is that the EKB flux is much more gravitationally focused than the cometary case because it is isotropic in the planet rather than the heliocentric frame. Thus, the lower velocities at infinity that characterize the EKB flux can increase the impact flux on the rings by a factor of ˜25. This means that even for the lower bound of the range of the newly measured flux, the amount of material hitting the rings may be considerably higher and thus the process of micrometeoroid bombardment and ballistic transport is likely even more influential in the rings' structural and compositional evolution over time. Here, we calculate the new EKB ejecta distribution using the model of Cuzzi and Durisen (1990) and compare this with the nominal cometary one, and then demonstrate using new simulations the consequences of the EKB flux on the evolution of ring composition and structure. The constraining of the micrometeoroid flux represents a very important step in being able to associate an absolute age for the rings. We argue that the new EKB flux poses a serious problem for "primordial" or "old" ring origin scenarios and favors more a scenario in which the rings, at least the way we see them today, cannot be much older than a few 100 Myrs.

  16. Calcium sensitive ring-like oligomers formed by synaptotagmin

    PubMed Central

    Wang, Jing; Bello, Oscar; Auclair, Sarah M.; Wang, Jing; Coleman, Jeff; Pincet, Frederic; Krishnakumar, Shyam S.; Sindelar, Charles V.; Rothman, James E.

    2014-01-01

    The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT’s cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18–43 nm, corresponding to 11–26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant, these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble N-ethylmaleimide–sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded. PMID:25201968

  17. Jupiter Ring Halo

    NASA Image and Video Library

    1998-03-26

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age. Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. A faint mist of particles can be seen above and below the main rings; this vertically extended, toroidal "halo" is unusual in planetary rings, and is probably caused by electromagnetic forces which can push small grains out of the ring plane. Halo material is present across this entire image, implying that it reaches more than 27,000 km above the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. In order to accentuate faint features in the image, different brightnesses are shown through color, with the brightest being

  18. Discovery of B ring propellers in Cassini UVIS and ISS

    NASA Astrophysics Data System (ADS)

    Sremcevic, M.; Stewart, G.; Albers, N.; Esposito, L. W.

    2011-12-01

    One of the successes of the planetary ring theory has been the theoretical prediction of gravitational signatures of bodies embedded in the rings, and their subsequent detection in Cassini data. Bodies within the rings perturb the nearby ring material, and the orbital shear forms a two-armed structure -- dubbed a ``propeller'' -- which is centered at the embedded body. Although direct evidence of the present body or moonlet is still lacking, the observations of their propeller signatures has proved as an indispensable method to extend our knowledge about ring structure and dynamics. So far, propellers have been successfully detected within Saturn's A ring in two populations: a group of small and numerous propellers interior to the Encke gap forming belts, and by far less numerous but larger propellers exterior to Pan's orbit. Although there have been hints of propellers present within the B ring, or even C ring, their detection is less certain (e.g. neither has a single propeller been seen twice, nor has the ubiquitous two armed structure been observed). In this paper we present evidence for the existence of propellers in Saturn's B ring by combining data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. A single object is observed for 5 years of Cassini data. The object is seen as a very elongated bright stripe (40 degrees wide) in unlit Cassini images, and dark stripe in lit geometries. In total we report observing the feature in images at 18 different epochs between 2005 and 2010. In UVIS occultations we observe the feature as an optical depth depletion in 14 out of 93 occultation cuts at corrotating longitudes compatible with imaging data. Combining the available Cassini data we infer that the object is a partial gap located at a=112,921km embedded in the high optical depth region of the B ring. The gap moves at Kepler speed appropriate for its radial location. Radial offsets of the gap locations in UVIS

  19. Birth Control Ring

    MedlinePlus

    ... Safe Videos for Educators Search English Español Birth Control Ring KidsHealth / For Teens / Birth Control Ring What's in this article? What Is It? ... Anillo vaginal anticonceptivo What Is It? The birth control ring is a soft, flexible, doughnut-shaped ring ...

  20. The formation of peak rings in large impact craters.

    PubMed

    Morgan, Joanna V; Gulick, Sean P S; Bralower, Timothy; Chenot, Elise; Christeson, Gail; Claeys, Philippe; Cockell, Charles; Collins, Gareth S; Coolen, Marco J L; Ferrière, Ludovic; Gebhardt, Catalina; Goto, Kazuhisa; Jones, Heather; Kring, David A; Le Ber, Erwan; Lofi, Johanna; Long, Xiao; Lowery, Christopher; Mellett, Claire; Ocampo-Torres, Rubén; Osinski, Gordon R; Perez-Cruz, Ligia; Pickersgill, Annemarie; Poelchau, Michael; Rae, Auriol; Rasmussen, Cornelia; Rebolledo-Vieyra, Mario; Riller, Ulrich; Sato, Honami; Schmitt, Douglas R; Smit, Jan; Tikoo, Sonia; Tomioka, Naotaka; Urrutia-Fucugauchi, Jaime; Whalen, Michael; Wittmann, Axel; Yamaguchi, Kosei E; Zylberman, William

    2016-11-18

    Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust. Copyright © 2016, American Association for the Advancement of Science.

  1. A close look at Saturn's rings with Cassini VIMS

    USGS Publications Warehouse

    Nicholson, P.D.; Hedman, M.M.; Clark, R.N.; Showalter, M.R.; Cruikshank, D.P.; Cuzzi, J.N.; Filacchione, G.; Capaccioni, F.; Cerroni, P.; Hansen, G.B.; Sicardy, B.; Drossart, P.; Brown, R.H.; Buratti, B.J.; Baines, K.H.; Coradini, A.

    2008-01-01

    Soon after the Cassini-Huygens spacecraft entered orbit about Saturn on 1 July 2004, its Visual and Infrared Mapping Spectrometer obtained two continuous spectral scans across the rings, covering the wavelength range 0.35-5.1 ??m, at a spatial resolution of 15-25 km. The first scan covers the outer C and inner B rings, while the second covers the Cassini Division and the entire A ring. Comparisons of the VIMS radial reflectance profile at 1.08 ??m with similar profiles at a wavelength of 0.45 ??m assembled from Voyager images show very little change in ring structure over the intervening 24 years, with the exception of a few features already known to be noncircular. A model for single-scattering by a classical, many-particle-thick slab of material with normal optical depths derived from the Voyager photopolarimeter stellar occultation is found to provide an excellent fit to the observed VIMS reflectance profiles for the C ring and Cassini Division, and an acceptable fit for the inner B ring. The A ring deviates significantly from such a model, consistent with previous suggestions that this region may be closer to a monolayer. An additional complication here is the azimuthally-variable average optical depth associated with "self-gravity wakes" in this region and the fact that much of the A ring may be a mixture of almost opaque wakes and relatively transparent interwake zones. Consistently with previous studies, we find that the near-infrared spectra of all main ring regions are dominated by water ice, with a typical regolith grain radius of 5-20 ??m, while the steep decrease in visual reflectance shortward of 0.6 ??m is suggestive of an organic contaminant, perhaps tholin-like. Although no materials other than H2O ice have been identified with any certainty in the VIMS spectra of the rings, significant radial variations are seen in the strength of the water-ice absorption bands. Across the boundary between the C and B rings, over a radial range of ???7000 km, the

  2. Why Do Simple Molecules with "Isolated" Phenyl Rings Emit Visible Light?

    PubMed

    Zhang, Haoke; Zheng, Xiaoyan; Xie, Ni; He, Zikai; Liu, Junkai; Leung, Nelson L C; Niu, Yingli; Huang, Xuhui; Wong, Kam Sing; Kwok, Ryan T K; Sung, Herman H Y; Williams, Ian D; Qin, Anjun; Lam, Jacky W Y; Tang, Ben Zhong

    2017-11-15

    π-Bonds connected with aromatic rings were generally believed as the standard structures for constructing highly efficient fluorophores. Materials without these typical structures, however, exhibited only low fluorescence quantum yields and emitted in the ultraviolet spectral region. In this work, three molecules, namely bis(2,4,5-trimethylphenyl)methane, 1,1,2,2-tetrakis(2,4,5-trimethylphenyl)ethane, and 1,1,2,2-tetraphenylethane, with nonconjugated structures and isolated phenyl rings were synthesized and their photophysical properties were systematically investigated. Interestingly, the emission spectra of these three molecules could be well extended to 600 nm with high solid-state quantum yields of up to 70%. Experimental and theoretical analyses proved that intramolecular through-space conjugation between the "isolated" phenyl rings played an important role for this abnormal phenomenon.

  3. Olive tree-ring problematic dating: a comparative analysis on Santorini (Greece).

    PubMed

    Cherubini, Paolo; Humbel, Turi; Beeckman, Hans; Gärtner, Holger; Mannes, David; Pearson, Charlotte; Schoch, Werner; Tognetti, Roberto; Lev-Yadun, Simcha

    2013-01-01

    Olive trees are a classic component of Mediterranean environments and some of them are known historically to be very old. In order to evaluate the possibility to use olive tree-rings for dendrochronology, we examined by various methods the reliability of olive tree-rings identification. Dendrochronological analyses of olive trees growing on the Aegean island Santorini (Greece) show that the determination of the number of tree-rings is impossible because of intra-annual wood density fluctuations, variability in tree-ring boundary structure, and restriction of its cambial activity to shifting sectors of the circumference, causing the tree-ring sequences along radii of the same cross section to differ.

  4. Olive Tree-Ring Problematic Dating: A Comparative Analysis on Santorini (Greece)

    PubMed Central

    Cherubini, Paolo; Humbel, Turi; Beeckman, Hans; Gärtner, Holger; Mannes, David; Pearson, Charlotte; Schoch, Werner; Tognetti, Roberto; Lev-Yadun, Simcha

    2013-01-01

    Olive trees are a classic component of Mediterranean environments and some of them are known historically to be very old. In order to evaluate the possibility to use olive tree-rings for dendrochronology, we examined by various methods the reliability of olive tree-rings identification. Dendrochronological analyses of olive trees growing on the Aegean island Santorini (Greece) show that the determination of the number of tree-rings is impossible because of intra-annual wood density fluctuations, variability in tree-ring boundary structure, and restriction of its cambial activity to shifting sectors of the circumference, causing the tree-ring sequences along radii of the same cross section to differ. PMID:23382949

  5. High-Accuracy Ring Laser Gyroscopes: Earth Rotation Rate and Relativistic Effects

    NASA Astrophysics Data System (ADS)

    Beverini, N.; Di Virgilio, A.; Belfi, J.; Ortolan, A.; Schreiber, K. U.; Gebauer, A.; Klügel, T.

    2016-06-01

    The Gross Ring G is a square ring laser gyroscope, built as a monolithic Zerodur structure with 4 m length on all sides. It has demonstrated that a large ring laser provides a sensitivity high enough to measure the rotational rate of the Earth with a high precision of ΔΩE < 10-8. It is possible to show that further improvement in accuracy could allow the observation of the metric frame dragging, produced by the Earth rotating mass (Lense-Thirring effect), as predicted by General Relativity. Furthermore, it can provide a local measurement of the Earth rotational rate with a sensitivity near to that provided by the international system IERS. The GINGER project is intending to take this level of sensitivity further and to improve the accuracy and the long-term stability. A monolithic structure similar to the G ring laser is not available for GINGER. Therefore the preliminary goal is the demonstration of the feasibility of a larger gyroscope structure, where the mechanical stability is obtained through an active control of the geometry. A prototype moderate size gyroscope (GP-2) has been set up in Pisa in order to test this active control of the ring geometry, while a second structure (GINGERino) has been installed inside the Gran Sasso underground laboratory in order to investigate the properties of a deep underground laboratory in view of an installation of a future GINGER apparatus. The preliminary data on these two latter instruments are presented.

  6. The Christiansen Effect in Saturn's narrow dusty rings and the spectral identification of clumps in the F ring

    USGS Publications Warehouse

    Hedman, M.M.; Nicholson, P.D.; Showalter, M.R.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Baines, K.; Sotin, Christophe

    2011-01-01

    Stellar occultations by Saturn's rings observed with the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft reveal that dusty features such as the F ring and the ringlets in the Encke and the Laplace Gaps have distinctive infrared transmission spectra. These spectra show a narrow optical depth minimum at wavelengths around 2.87??m. This minimum is likely due to the Christiansen Effect, a reduction in the extinction of small particles when their (complex) refractive index is close to that of the surrounding medium. Simple Mie-scattering models demonstrate that the strength of this opacity dip is sensitive to the size distribution of particles between 1 and 100??m across. Furthermore, the spatial resolution of the occultation data is sufficient to reveal variations in the transmission spectra within and among these rings. In both the Encke Gap ringlets and F ring, the opacity dip weakens with increasing local optical depth, which is consistent with the larger particles being concentrated near the cores of these rings. The Encke Gap ringlets also show systematically weaker opacity dips than the F ring and Laplace Gap ringlet, implying that the former has a smaller fraction of grains less than ~30??m across. However, the strength of the opacity dip varies most dramatically within the F ring; certain compact regions of enhanced optical depth lack an opacity dip and therefore appear to have a greatly reduced fraction of grains in the few-micron size range. Such spectrally-identifiable structures probably represent a subset of the compact optically-thick clumps observed by other Cassini instruments. These variations in the ring's particle size distribution can provide new insights into the processes of grain aggregation, disruption and transport within dusty rings. For example, the unusual spectral properties of the F-ring clumps could perhaps be ascribed to small grains adhering onto the surface of larger particles in regions of anomalously

  7. One last look from the dark side: Cassini's final views of Saturn's rings from with the planet's shadow

    NASA Astrophysics Data System (ADS)

    Hedman, Matthew M.; Burns, Joseph A.; Nicholson, Philip D.; Tiscareno, Matthew S.; Evans, Michael W.; Baker, Emily

    2017-10-01

    Around the start of Cassini's Grand Finale, the spacecraft passed a dozen times through Saturn's shadow, enabling its cameras and spectrometers to observe the ring system at extremely high phase angles. These opportunities yielded the best combination of signal-to-noise and resolution for many parts of Saturn's fainter dusty rings, and allowed the main rings to be viewed from previously inaccessible lighting geometries. We will highlight some of the surprising features found in the data obtained by Cassini's Imaging Science Subsystem (ISS) and Visual and Infrared Mapping Spectrometer (VIMS) during these time periods, and discuss what they might be able to tell us about the structure and dynamics of Saturn's various ring systems. For example, ISS captured global views of the entire ring system that reveal previously unseen structures in dust-filled regions like the D ring and the zone between Saturn's F and G rings, as well as novel fine-scale structures in the core of the E ring near Enceladus' orbit. These structures provide new insights into the forces that sculpt these tenuous rings. ISS and VIMS also detected an unexpected brightening and highly unusual spectra of the main rings at extremely high phase angles. These data may provide novel information about the distribution of small grains and particles in these denser rings.

  8. A measuring tool for tree-rings analysis

    NASA Astrophysics Data System (ADS)

    Shumilov, Oleg; Kanatjev, Alexander; Kasatkina, Elena

    2013-04-01

    A special tool has been created for the annual tree-ring widths measurement and analysis. It consists of professional scanner, computer system and software. This created complex in many aspects does not yield the similar systems (LINTAB, WinDENDRO), but in comparison to manual measurement systems, it offers a number of advantages: productivity gain, possibility of archiving the results of the measurements at any stage of the processing, operator comfort. It has been developed a new software, allowing processing of samples of different types (cores, saw cuts), including those which is difficult to process, having got a complex wood structure (inhomogeneity of growing in different directions, missed, light and false rings etc.). This software can analyze pictures made with optical scanners, analog or digital cameras. The complex software program was created on programming language C++, being compatible with modern operating systems like Windows X. Annual ring widths are measured along paths traced interactively. These paths can have any orientation and can be created so that ring widths are measured perpendicular to ring boundaries. A graphic of ring-widths in function of the year is displayed on a screen during the analysis and it can be used for visual and numerical cross-dating and comparison with other series or master-chronologies. Ring widths are saved to the text files in a special format, and those files are converted to the format accepted for data conservation in the International Tree-Ring Data Bank. The created complex is universal in application that will allow its use for decision of the different problems in biology and ecology. With help of this complex it has been reconstructed a long-term juniper (1328-2004) and pine (1445-2005) tree-ring chronologies on the base of samples collected at Kola Peninsula (northwestern Russia).

  9. ABCD classification system: a novel classification for subaxial cervical spine injuries.

    PubMed

    Shousha, Mootaz

    2014-04-20

    The classification system was derived through a retrospective analysis of 73 consecutive cases of subaxial cervical spine injury as well as thorough literature review. To define a new classification system for subaxial cervical spine injuries. There exist several methods to classify subaxial cervical spine injuries but no single system has emerged as clearly superior to the others. On the basis of a 2-column anatomical model, the first part of the proposed classification is an anatomical description of the injury. It delivers the information whether the injury is bony, ligamentous, or a combined one. The first 4 alphabetical letters have been used for simplicity. Each column is represented by an alphabetical letter from A to D. Each letter has a radiological meaning (A = Absent injury, B = Bony lesion, C = Combined bony and ligamentous, D = Disc or ligamentous injury).The second part of the classification is represented by 3 modifiers. These are the neurological status of the patient (N), the degree of spinal canal stenosis (S), and the degree of instability (I). For simplicity, each modifier was graded in an ascending pattern of severity from zero to 2. The last part is optional and denotes which radiological examination has been used to define the injury type. The new ABCD classification was applicable for all patients. The most common type was anterior ligamentous and posterior combined injury "DC" (37.9%), followed by "DD" injury in 12% of the cases. Through this work a new classification for cervical spine injuries is proposed. The aim is to establish criteria for a common language in description of cervical injuries aiming for simplification, especially for junior residents. Each letter and each sign has a meaning to deliver the largest amount of information. Both the radiological as well as the clinical data are represented in this scheme. However, further evaluation of this classification is needed. 3.

  10. Jupiter's ring

    NASA Technical Reports Server (NTRS)

    1979-01-01

    First evidence of a ring around the planet Jupiter is seen in this photograph taken by Voyager 1 on March 4, 1979. The multiple exposure of the extremely thin faint ring appears as a broad light band crossing the center of the picture. The edge of the ring is 1,212,000 km from the spacecraft and 57,000 km from the visible cloud deck of Jupiter. The background stars look like broken hair pins because of spacecraft motion during the 11 minute 12 second exposure. The wavy motion of the star trails is due to the ultra-slow natural oscillation of the spacecraft (with a period of 78 seconds). The black dots are geometric calibration points in the camera. The ring thickness is estimated to be 30 km or less. The photograph was part of a sequence planned to search for such rings in Jupiter's equatorial plane. The ring has been invisible from Earth because of its thinness and its transparency when viewed at any angle except straight on. JPL manages and controls the Voyager Project for NASA's Office of Space Science.

  11. On the Green's function of the partially diffusion-controlled reversible ABCD reaction for radiation chemistry codes

    NASA Astrophysics Data System (ADS)

    Plante, Ianik; Devroye, Luc

    2015-09-01

    Several computer codes simulating chemical reactions in particles systems are based on the Green's functions of the diffusion equation (GFDE). Indeed, many types of chemical systems have been simulated using the exact GFDE, which has also become the gold standard for validating other theoretical models. In this work, a simulation algorithm is presented to sample the interparticle distance for partially diffusion-controlled reversible ABCD reaction. This algorithm is considered exact for 2-particles systems, is faster than conventional look-up tables and uses only a few kilobytes of memory. The simulation results obtained with this method are compared with those obtained with the independent reaction times (IRT) method. This work is part of our effort in developing models to understand the role of chemical reactions in the radiation effects on cells and tissues and may eventually be included in event-based models of space radiation risks. However, as many reactions are of this type in biological systems, this algorithm might play a pivotal role in future simulation programs not only in radiation chemistry, but also in the simulation of biochemical networks in time and space as well.

  12. Dust Charging in Saturn's Rings: Observations and Theory

    NASA Astrophysics Data System (ADS)

    Horanyi, M.

    2008-12-01

    Saturn's rings show a variety of dusty plasma processes. The electrostatic charging and subsequent orbital dynamics of small grains can establish their size and spatial distributions, for example. Simultaneously, dust can alter the composition, density and temperature of the plasma surrounding it. The dynamics of charged dust particles can be surprisingly complex and fundamentally different from the well understood limits of gravitationally dominated motions of neutral particles or the adiabatic motion of electrons and ions in electromagnetic fields that dominate gravity. This talk will focus on recent Cassini observations at Saturn that are best explained by theories describing the effects of the magnetospheric fields and plasmas on the rings. As our best examples, we will discuss the physics describing the large-scale structure of the E-ring, and the formation of 'spokes' over the dense rings of Saturn.

  13. High-Throughput Synthesis and Structure of Zeolite ZSM-43 with Two-Directional 8-Ring Channels.

    PubMed

    Willhammar, Tom; Su, Jie; Yun, Yifeng; Zou, Xiaodong; Afeworki, Mobae; Weston, Simon C; Vroman, Hilda B; Lonergan, William W; Strohmaier, Karl G

    2017-08-07

    The aluminosilicate zeolite ZSM-43 (where ZSM = Zeolite Socony Mobil) was first synthesized more than 3 decades ago, but its chemical structure remained unsolved because of its poor crystallinity and small crystal size. Here we present optimization of the ZSM-43 synthesis using a high-throughput approach and subsequent structure determination by the combination of electron crystallographic methods and powder X-ray diffraction. The synthesis required the use of a combination of both inorganic (Cs + and K + ) and organic (choline) structure-directing agents. High-throughput synthesis enabled a screening of the synthesis conditions, which made it possible to optimize the synthesis, despite its complexity, in order to obtain a material with significantly improved crystallinity. When both rotation electron diffraction and high-resolution transmission electron microscopy imaging techniques are applied, the structure of ZSM-43 could be determined. The structure of ZSM-43 is a new zeolite framework type and possesses a unique two-dimensional channel system limited by 8-ring channels. ZSM-43 is stable upon calcination, and sorption measurements show that the material is suitable for adsorption of carbon dioxide as well as methane.

  14. Ring-diameter Ratios for Multi-ring Basins Average 2.0(0.5)D

    NASA Technical Reports Server (NTRS)

    Pike, R. J.; Spudis, P. D.

    1985-01-01

    The spacing of the concentric rings of planetary impact basins was studied. It is shown that a radial increment of x (sup 0.5) D, where x is about 2.0 and D = ring diameter, separates both (1) adjacent least-squares groups of rings and arcs of multi-ring basins on Mars, Mercury, and the Moon; and (2) adjacent rings of individual basins on the three planets. Statistics for ratios of ring diameters are presented, the first and most-applied parameter of ring spacing. It is found that ratios excluding rings flanking the main ring also have a mean spacing increment of about 2.0. Ratios including such rings, as for the least-squares groups, and (1) above, have a larger increment, averaging 2.1. The F-test indicates, that these spacings of basin ring locations, and mode of ring formation are controlled by the mechanics of the impact event itself, rather than by crustal properties.

  15. Sonographic imaging of fetal tympanic rings.

    PubMed

    Leibovitz, Z; Egenburg, S; Bronshtein, M; Shapiro, I; Tepper, R; Malinger, G; Ohel, G

    2013-11-01

    To examine the feasibility of ultrasonographic imaging of fetal tympanic rings. This was an observational cohort study of 80 healthy fetuses in low-risk pregnancies, divided into four gestational-age subgroups (12, 16, 23 and 32 weeks), each comprising 20 consecutive fetuses. Tympanic ring visualization was achieved by two-dimensional and three-dimensional (3D) sonography. A standard algorithm for tympanic ring examination was constructed using 3D multiplanar reconstruction. The volume acquisition plane was directed to the inferolateral aspect of the fetal temporal bone. Transvaginal scans were carried out in the 12-week and 16-week subgroups, and transabdominal scans in the 23-week and 32-week subgroups. Study parameters included the inferomedial inclination angle (IMIA) of the tympanic ring relative to the vertical skull axis, the anteromedial inclination angle (AMIA) of the tympanic ring relative to the anteroposterior skull axis and the longest (LTRD) and shortest (STRD) tympanic ring diameter, the latter measured perpendicular to the LTRD. The feasibility of tympanic ring demonstration was assessed in each gestational-age subgroup. Tympanic rings appeared as round-oval, thin, echogenic structures in a plane tangential to the inferolateral surface of the fetal skull below the inferior border of the squamous part of the temporal bone. Higher demonstration rates were achieved in the 16-week and 23-week subgroups (90% and 80%, respectively) than in the others. LTRD and STRD each showed a linear correlation with gestational age (r = 0.96 for both measurements; P < 0.01). Mean IMIA ranged from 41.0 to 60.4° and mean AMIA from 17.3 to 23.4° across the different gestational-age subgroups. The malleal manubrium was observed only in examinations in the second half of pregnancy, appearing as a bright echo within the upper area of the tympanic ring in 56% (9/16) and 82% (9/11) of cases with tympanic ring imaging appropriate for measurement of the study

  16. MEMS tunable optical filter based on multi-ring resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dessalegn, Hailu, E-mail: hailudessalegn@yahoo.com, E-mail: tsrinu@ece.iisc.ernet.in; Srinivas, T., E-mail: hailudessalegn@yahoo.com, E-mail: tsrinu@ece.iisc.ernet.in

    We propose a novel MEMS tunable optical filter with a flat-top pass band based on multi-ring resonator in an electrostatically actuated microcantilever for communication application. The filter is basically structured on a microcantilever beam and built in optical integrated ring resonator which is placed in one end of the beam to gain maximum stress on the resonator. Thus, when a DC voltage is applied, the beam will bend, that induces a stress and strain in the ring, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift, providing the tenabilitymore » as high as 0.68nm/μN and it is capable of tuning up to 1.7nm.« less

  17. Friction melt distribution in a multi-ring impact basin.

    PubMed

    Spray, J G; Thompson, L M

    1995-01-12

    It is generally accepted that multi-ring basins are the consequence of very large impacts, but the mechanism by which they form is still a matter of contention. Most of what is currently known about multi-ring basins is based on remote studies of the Moon and, to a lesser extent, Mars and Mercury. But at least two multi-ring impact basins have been recognized on Earth--the Sudbury (Canada) and Vredefort (South Africa) impact structures--providing an opportunity to study their properties directly. Here we describe the distribution of friction melt (pseudotachylyte) in the floor of the Sudbury impact basin. Although the veins and dykes of pseudotachylyte decrease in both thickness and frequency of occurrence towards the basin periphery, the greatest volumes of friction melt appear to define four rings around the central impact melt sheet. Field evidence indicates that the rings originated as zones of large displacement, which facilitated localized frictional melting of the basin floor during the modification (collapse) stage of the cratering process. By analogy, we argue that the rings of other multi-ring impact basins are also likely to be the remnants of such large-displacement fault zones.

  18. Micro-photoluminescence of GaAs/AlGaAs triple concentric quantum rings.

    PubMed

    Abbarchi, Marco; Cavigli, Lucia; Somaschini, Claudio; Bietti, Sergio; Gurioli, Massimo; Vinattieri, Anna; Sanguinetti, Stefano

    2011-10-31

    A systematic optical study, including micro, ensemble and time resolved photoluminescence of GaAs/AlGaAs triple concentric quantum rings, self-assembled via droplet epitaxy, is presented. Clear emission from localized states belonging to the ring structures is reported. The triple rings show a fast decay dynamics, around 40 ps, which is expected to be useful for ultrafast optical switching applications.

  19. Enhanced spin wave propagation in magnonic rings by bias field modulation

    NASA Astrophysics Data System (ADS)

    Venkat, G.; Venkateswarlu, D.; Joshi, R. S.; Franchin, M.; Fangohr, H.; Anil Kumar, P. S.; Prabhakar, A.

    2018-05-01

    We simulate the spin wave (SW) dynamics in ring structures and obtain the ω - k dispersion relations corresponding to the output waveguide. Different bias field configurations affect the transfer of SW power from one arm of the structure to the other arm. To this end, we show that circular or radial bias fields are more suitable for energy transfer across the ring than the conventional horizontal bias field Hx. The SW dispersion shows that modes excited, when the bias field is along the ring radius, are almost 10 dB higher in power when compared to the modal power in the case of Hx. This is also corroborated by the SW energy density in the receiving stub.

  20. Nanoscale architecture of the Schizosaccharomyces pombe contractile ring.

    PubMed

    McDonald, Nathan A; Lind, Abigail L; Smith, Sarah E; Li, Rong; Gould, Kathleen L

    2017-09-15

    The contractile ring is a complex molecular apparatus which physically divides many eukaryotic cells. Despite knowledge of its protein composition, the molecular architecture of the ring is not known. Here we have applied super-resolution microscopy and FRET to determine the nanoscale spatial organization of Schizosaccharomyces pombe contractile ring components relative to the plasma membrane. Similar to other membrane-tethered actin structures, we find proteins localize in specific layers relative to the membrane. The most membrane-proximal layer (0-80 nm) is composed of membrane-binding scaffolds, formin, and the tail of the essential myosin-II. An intermediate layer (80-160 nm) consists of a network of cytokinesis accessory proteins as well as multiple signaling components which influence cell division. Farthest from the membrane (160-350 nm) we find F-actin, the motor domains of myosins, and a major F-actin crosslinker. Circumferentially within the ring, multiple proteins proximal to the membrane form clusters of different sizes, while components farther from the membrane are uniformly distributed. This comprehensive organizational map provides a framework for understanding contractile ring function.

  1. Nanoscale architecture of the Schizosaccharomyces pombe contractile ring

    PubMed Central

    McDonald, Nathan A; Lind, Abigail L; Smith, Sarah E; Li, Rong

    2017-01-01

    The contractile ring is a complex molecular apparatus which physically divides many eukaryotic cells. Despite knowledge of its protein composition, the molecular architecture of the ring is not known. Here we have applied super-resolution microscopy and FRET to determine the nanoscale spatial organization of Schizosaccharomyces pombe contractile ring components relative to the plasma membrane. Similar to other membrane-tethered actin structures, we find proteins localize in specific layers relative to the membrane. The most membrane-proximal layer (0–80 nm) is composed of membrane-binding scaffolds, formin, and the tail of the essential myosin-II. An intermediate layer (80–160 nm) consists of a network of cytokinesis accessory proteins as well as multiple signaling components which influence cell division. Farthest from the membrane (160–350 nm) we find F-actin, the motor domains of myosins, and a major F-actin crosslinker. Circumferentially within the ring, multiple proteins proximal to the membrane form clusters of different sizes, while components farther from the membrane are uniformly distributed. This comprehensive organizational map provides a framework for understanding contractile ring function. PMID:28914606

  2. Jupiter's Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow.

    A faint mist of particles can be seen above and below the main rings; this vertically extended, toroidal 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces which can push small grains out of the ring plane. Halo material is present across this entire image, implying that it reaches more than 27,000 km above the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. In order to accentuate faint features in the image, different brightnesses are shown through color, with the brightest

  3. Saturn Ring

    NASA Image and Video Library

    2007-12-12

    Like Earth, Saturn has an invisible ring of energetic ions trapped in its magnetic field. This feature is known as a "ring current." This ring current has been imaged with a special camera on Cassini sensitive to energetic neutral atoms. This is a false color map of the intensity of the energetic neutral atoms emitted from the ring current through a processed called charged exchange. In this process a trapped energetic ion steals and electron from cold gas atoms and becomes neutral and escapes the magnetic field. The Cassini Magnetospheric Imaging Instrument's ion and neutral camera records the intensity of the escaping particles, which provides a map of the ring current. In this image, the colors represent the intensity of the neutral emission, which is a reflection of the trapped ions. This "ring" is much farther from Saturn (roughly five times farther) than Saturn's famous icy rings. Red in the image represents the higher intensity of the particles, while blue is less intense. Saturn's ring current had not been mapped before on a global scale, only "snippets" or areas were mapped previously but not in this detail. This instrument allows scientists to produce movies (see PIA10083) that show how this ring changes over time. These movies reveal a dynamic system, which is usually not as uniform as depicted in this image. The ring current is doughnut shaped but in some instances it appears as if someone took a bite out of it. This image was obtained on March 19, 2007, at a latitude of about 54.5 degrees and radial distance 1.5 million kilometres (920,000 miles). Saturn is at the center, and the dotted circles represent the orbits of the moon's Rhea and Titan. The Z axis points parallel to Saturn's spin axis, the X axis points roughly sunward in the sun-spin axis plane, and the Y axis completes the system, pointing roughly toward dusk. The ion and neutral camera's field of view is marked by the white line and accounts for the cut-off of the image on the left. The

  4. Jupiter Ring

    NASA Image and Video Library

    2000-03-23

    First evidence of a ring around the planet Jupiter is seen in this photograph taken by Voyager 1 on March 4, 1979. The multiple exposure of the extremely thin faint ring appears as a broad light band crossing the center of the picture. The edge of the ring is 1,212,000 km from the spacecraft and 57,000 km from the visible cloud deck of Jupiter. The background stars look like broken hair pins because of spacecraft motion during the 11 minute 12 second exposure. The wavy motion of the star trails is due to the ultra-slow natural oscillation of the spacecraft (with a period of 78 seconds). The black dots are geometric calibration points in the camera. The ring thickness is estimated to be 30 km or less. The photograph was part of a sequence planned to search for such rings in Jupiter's equatorial plane. The ring has been invisible from Earth because of its thinness and its transparency when viewed at any angle except straight on. JPL manages and controls the Voyager Project for NASA's Office of Space Science. http://photojournal.jpl.nasa.gov/catalog/PIA02251

  5. Moisture Management Behaviour of Knitted Fabric from Structurally Modified Ring and Vortex Spun Yarn

    NASA Astrophysics Data System (ADS)

    Sharma, Navendu; Kumar, Pawan; Bhatia, Dinesh; Sinha, Sujit Kumar

    2016-10-01

    The acceptability of a new product is decided by its performance, level of improvement in quality and economy of production. The basic aim of generating micro pores in a textile structure is to provide better thermo-physiological comfort by enhancing the breathability and hence improving moisture management behaviour. In the present study, an attempt has been made to create a relatively more open structure through removal of a component. A comparative assessment with a homogeneous and parent yarn was also made. Yarns of two linear densities, each from ring and vortex spinning systems were produced using 100 % polyester and 80:20 polyester/cotton blend. The modified yarn was produced by removing a component, viz; cotton, by treatment with sulphuric acid from the blended yarn. The knitted fabric from modified yarn was found to show significant improvement in air permeability, water vapour permeability and total absorbency while the wicking characteristic was found to decline.

  6. Model of myosin node aggregation into a contractile ring: the effect of local alignment

    NASA Astrophysics Data System (ADS)

    Ojkic, Nikola; Wu, Jian-Qiu; Vavylonis, Dimitrios

    2011-09-01

    Actomyosin bundles frequently form through aggregation of membrane-bound myosin clusters. One such example is the formation of the contractile ring in fission yeast from a broad band of cortical nodes. Nodes are macromolecular complexes containing several dozens of myosin-II molecules and a few formin dimers. The condensation of a broad band of nodes into the contractile ring has been previously described by a search, capture, pull and release (SCPR) model. In SCPR, a random search process mediated by actin filaments nucleated by formins leads to transient actomyosin connections among nodes that pull one another into a ring. The SCPR model reproduces the transport of nodes over long distances and predicts observed clump-formation instabilities in mutants. However, the model does not generate transient linear elements and meshwork structures as observed in some wild-type and mutant cells during ring assembly. As a minimal model of node alignment, we added short-range aligning forces to the SCPR model representing currently unresolved mechanisms that may involve structural components, cross-linking and bundling proteins. We studied the effect of the local node alignment mechanism on ring formation numerically. We varied the new parameters and found viable rings for a realistic range of values. Morphologically, transient structures that form during ring assembly resemble those observed in experiments with wild-type and cdc25-22 cells. Our work supports a hierarchical process of ring self-organization involving components drawn together from distant parts of the cell followed by progressive stabilization.

  7. Effects of polycyclic aromatic hydrocarbons on microbial community structure and PAH ring hydroxylating dioxygenase gene abundance in soil.

    PubMed

    Sawulski, Przemyslaw; Clipson, Nicholas; Doyle, Evelyn

    2014-11-01

    Development of successful bioremediation strategies for environments contaminated with recalcitrant pollutants requires in-depth knowledge of the microorganisms and microbial processes involved in degradation. The response of soil microbial communities to three polycyclic aromatic hydrocarbons, phenanthrene (3-ring), fluoranthene (4-ring) and benzo(a)pyrene (5-ring), was examined. Profiles of bacterial, archaeal and fungal communities were generated using molecular fingerprinting techniques (TRFLP, ARISA) and multivariate statistical tools were employed to interpret the effect of PAHs on community dynamics and composition. The extent and rate of PAH removal was directly related to the chemical structure, with the 5-ring PAH benzo(a)pyrene degraded more slowly than phenathrene or fluoranthene. Bacterial, archaeal and fungal communities were all significantly affected by PAH amendment, time and their interaction. Based on analysis of clone libraries, Actinobacteria appeared to dominate in fluoranthene amended soil, although they also represented a significant portion of the diversity in phenanthrene amended and unamended soils. In addition there appeared to be more γ-Proteobacteria and less Bacteroidetes in soil amended with either PAH compared to the control. The soil bacterial community clearly possessed the potential to degrade PAHs as evidenced by the abundance of PAH ring hydroxylating (PAH-RHDα) genes from both gram negative (GN) and gram positive (GP) bacteria in PAH-amended and control soils. Although the dioxygenase gene from GP bacteria was less abundant in soil than the gene associated with GN bacteria, significant (p < 0.001) increases in the abundance of the GP PAH-RHDα gene were observed during phenanthrene and fluoranthene degradation, whereas there was no significant difference in the abundance of the GN PAH-RHDα gene during the course of the experiment. Few studies to-date have examined the effect of pollutants on more than one microbial

  8. Unraveling the strands of Saturn's F ring

    USGS Publications Warehouse

    Murray, C.D.; Gordon, M.K.; Giuliatti, Winter S.M.

    1997-01-01

    Several high-resolution Voyager 2 images of Saturn's F ring show that it is composed of at least four separate, non-intersecting strands extending ~45?? in longitude. Voyager 1 images show that the two brightest strands appear to intersect, giving rise to a "braided" morphology. From a study of all available Voyager images the detectable radial structure is cataloged and reviewed. Previous indications that there is fine material interior to the orbit of the F ring are confirmed. Evidence is presented that a model of four strands with comparable eccentricities and nearly aligned perichrones is consistent with all the Voyager observations. The observed perichrone offset of the two brightest strands suggests a minimum radial separation of ~20 km, which implies intersection of these strands when their finite radial widths are taken into account. The longitude range of such an intersection includes that observed in the Voyager 1 "braid" images. The proximity of these two strands at some longitudes may account for the apparent differences in the ring between the Voyager encounters, as well as provide a source for the short-lived features detected in the Hubble Space Telescope images of the F ring. There is no evidence that the locations of the individual strands are determined by resonant perturbations with known satellites. It is proposed that the radial structure is formed by the localized action of small satellites orbiting within the strand region. ?? 1997 Academic Press.

  9. The Effects of Forming Parameters on Conical Ring Rolling Process

    PubMed Central

    Meng, Wen; Zhao, Guoqun; Guan, Yanjin

    2014-01-01

    The plastic penetration condition and biting-in condition of a radial conical ring rolling process with a closed die structure on the top and bottom of driven roll, simplified as RCRRCDS, were established. The reasonable value range of mandrel feed rate in rolling process was deduced. A coupled thermomechanical 3D FE model of RCRRCDS process was established. The changing laws of equivalent plastic strain (PEEQ) and temperature distributions with rolling time were investigated. The effects of ring's outer radius growth rate and rolls sizes on the uniformities of PEEQ and temperature distributions, average rolling force, and average rolling moment were studied. The results indicate that the PEEQ at the inner layer and outer layer of rolled ring are larger than that at the middle layer of ring; the temperatures at the “obtuse angle zone” of ring's cross-section are higher than those at “acute angle zone”; the temperature at the central part of ring is higher than that at the middle part of ring's outer surfaces. As the ring's outer radius growth rate increases at its reasonable value ranges, the uniformities of PEEQ and temperature distributions increase. Finally, the optimal values of the ring's outer radius growth rate and rolls sizes were obtained. PMID:25202716

  10. Nitrile O-ring Cracking: A Case of Vacuum Flange O-ring Failures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dees, Craig

    2016-07-01

    A review of recent nitrile O-ring failures in ISO-KF vacuum flange connections in glovebox applications is presented. An investigation of a single “isolated” o-ring failure leads to the discovery of cracked nitrile o-rings in a glovebox atmospheric control unit. The initial cause of the o-ring failure is attributed to ozone degradation. However, additional investigation reveals nitrile o-ring cracking on multiple gloveboxes and general purpose piping, roughly 85% of the nitrile o-rings removed for inspection show evidence of visible cracking after being in service for 18 months or less. The results of material testing and ambient air testing is presented, elevatedmore » ozone levels are not found. The contributing factors of o-ring failure, including nitrile air sensitivity, inadequate storage practices, and poor installation techniques, are discussed. A discussion of nitrile o-ring material properties, the benefits and limitations, and alternate materials are discussed. Considerations for o-ring material selection, purchasing, storage, and installation are presented in the context of lessons learned from the nitrile o-ring cracking investigation. This paper can be presented in 20 minutes and does not require special accommodations or special audio visual devices.« less

  11. DC-Powered Jumping Ring

    NASA Astrophysics Data System (ADS)

    Jeffery, Rondo N.; Amiri, Farhang

    2016-02-01

    The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant differences from the AC case. In particular, the ring does not fly off the core but rises a short distance and then falls back. If the ring jumps high enough, the rising and the falling motion of the ring does not follow simple vertical motion of a projectile. This indicates that there are additional forces on the ring in each part of its motion. Four possible stages of the motion of the ring with DC are identified, which result from the ring current changing directions during the jump in response to a changing magnetic flux through the moving ring.

  12. Radio and optical observations of 0218+357 - The smallest Einstein ring?

    NASA Technical Reports Server (NTRS)

    O'Dea, Christopher P.; Baum, Stefi A.; Stanghellini, Carlo; Dey, Arjun; Van Breugel, Wil; Deustua, Susana; Smith, Eric P.

    1992-01-01

    VLA radio observations and optical imaging and spectroscopy of the Einstein radio ring 0218+357 are presented. The ring is detected at 22.4 GHz and shows a basically similar structure at 5, 15, and 22.4 GHz. The B component has varied and was about 15 percent brighter in the 8.4 GHz data than in the data of Patnaik et al. (1992). The ring is highly polarized. A weak jetlike feature extending out roughly 2 arcsec to the southeast of component A is detected at 6 cm. The source has amorphous radio structure extending out to about 11 arcsec from the core. For an adopted redshift of 0.68, the extended radio emission is very powerful. The optical spectrum is rather red and shows no strong features. A redshift of about 0.68 is obtained. The identification is a faint compact m(r) about 20 galaxy which extends to about 4.5 arcsec (about 27 kpc). As much as 50 percent of the total light may be due to a central AGN. The observed double core and ring may be produced by an off-center radio core with extended radio structure.

  13. Towards an Understanding of Thermal Throughput across Saturn's Rings with Cassini CIRS

    NASA Astrophysics Data System (ADS)

    Brooks, S. M.; Spilker, L. J.

    2015-12-01

    One of the more striking aspects of Saturn's main ring system is its aspect ratio. It spans over 270,000 km from ansa to ansa, yet its thickness normal to the ring plane is less than a million times its breadth. Hence, studies of the rings' structure focus mostly on radial and azimuthal features. But in the thermal infrared the vertical thickness of the main rings is clearly manifest in the measured temperature differences between that face of the rings exposed to direct solar illumination (the lit face) and the opposite (unlit) face derived from observations with Cassini's Composite Infrared Spectrometer (CIRS). Ferrari et al. (2013) and Pilorz et al. (2015) have recently published insightful and thorough analyses of the thermal throughput across the optically thick B ring. The ultimate goal of this work is to understand these lit/unlit temperature differentials and their variation with radius and optical depth across the entire ring system. As previous work has shown (Spilker et al., 2006), the thermal flux from Saturn's rings observed by CIRS is a function of observing geometry. To control for these variations, we designed paired observations of the lit and unlit rings where observing variables such as the emission, phase and local hour angles were kept as similar as possible to facilitate direct comparison between the lit and unlit observations. Constraining the amount of thermal energy exchange between the lit and unlit sides of the rings will allow us to learn about the main rings' structure and dynamics in this third dimension. This presentation is a progress report on our analysis of such observations and our plans for future work. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2015 California Institute of Technology. Government sponsorship acknowledged.

  14. Saturn's F-Ring

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This narrow-angle camera image of Saturn's F Ring was taken through the Clear filter while at a distance of 6.9 million km from Saturn on 8 November 1980. The brightness variations of this tightly-constrained ring shown here indicate that the ring is less uniform in makeup than the larger rings. JPL managed the Voyager Project for NASA's Office of Space Science

  15. Mechanical deformation of carbon nanotube nano-rings on flat substrate

    NASA Astrophysics Data System (ADS)

    Zheng, Meng; Ke, Changhong

    2011-04-01

    We present a numerical analysis of the mechanical deformation of carbon nanotube (CNT) nano-rings on flat graphite substrates, which is motivated by our recent experimental findings on the elastic deformation of CNT nano-rings. Our analysis considers a perfectly circular CNT ring formed by bending a straight individual or bundled single-walled nanotube to connect its two ends. The seamless CNT ring is placed vertically on a flat graphite substrate and its respective deformation curvatures under zero external force, compressive, and tensile forces are determined using a continuum model based on nonlinear elastica theory. Our results show that the van der Waals interaction between the CNT ring and the substrate has profound effects on the deformation of the CNT ring, and that the interfacial binding interaction between the CNT ring and the substrate is strongly modulated by the ring deformation. Our results demonstrate that the CNT ring in force-free conditions has a flat ring segment in contact with the substrate if the ring radius R ≥√EI/2Wvdw , in which EI is the flexural rigidity of the nanotube and Wvdw is the per-unit-length van der Waals energy between the flat ring segment and the substrate. Our results reveal that the load-deformation profiles of the CNT ring under tensile loadings exhibit bifurcation behavior, which is ascribed to its van der Waals interaction with the substrate and is dependent on its relaxed conformation on the substrate. Our work suggests that CNT nano-rings are promising for a number of applications, such as ultrasensitive force sensors and stretchable and flexible structural components in nanoscale mechanical and electromechanical systems.

  16. Micro-photoluminescence of GaAs/AlGaAs triple concentric quantum rings

    PubMed Central

    2011-01-01

    A systematic optical study, including micro, ensemble and time resolved photoluminescence of GaAs/AlGaAs triple concentric quantum rings, self-assembled via droplet epitaxy, is presented. Clear emission from localized states belonging to the ring structures is reported. The triple rings show a fast decay dynamics, around 40 ps, which is expected to be useful for ultrafast optical switching applications. PMID:22039893

  17. The Dynamical History of Chariklo and Its Rings

    NASA Astrophysics Data System (ADS)

    Wood, Jeremy; Horner, Jonti; Hinse, Tobias C.; Marsden, Stephen C.

    2017-06-01

    Chariklo is the only small solar system body confirmed to have rings. Given the instability of its orbit, the presence of rings is surprising, and their origin remains poorly understood. In this work, we study the dynamical history of the Chariklo system by integrating almost 36,000 Chariklo clones backward in time for 1 Gyr under the influence of the Sun and the four giant planets. By recording all close encounters between the clones and planets, we investigate the likelihood that Chariklo’s rings could have survived since its capture to the Centaur population. Our results reveal that Chariklo’s orbit occupies a region of stable chaos, resulting in its orbit being marginally more stable than those of the other Centaurs. Despite this, we find that it was most likely captured to the Centaur population within the last 20 Myr, and that its orbital evolution has been continually punctuated by regular close encounters with the giant planets. The great majority (>99%) of those encounters within 1 Hill radius of the planet have only a small effect on the rings. We conclude that close encounters with giant planets have not had a significant effect on the ring structure. Encounters within the Roche limit of the giant planets are rare, making ring creation through tidal disruption unlikely.

  18. The Dynamical History of Chariklo and Its Rings

    NASA Astrophysics Data System (ADS)

    Wood, Jeremy R.; Horner, Jonti; Hinse, Tobias; Marsden, Stephen

    2017-10-01

    Chariklo is the only small Solar system body confirmed to have rings. Given the instability of its orbit, the presence of rings is surprising, and their origin remains poorly understood. In this work, we study the dynamical history of the Chariklo system by integrating almost 36,000 Chariklo clones backwards in time for one Gyr under the influence of the Sun and the four giant planets. By recording all close encounters between the clones and planets, we investigate the likelihood that Chariklo's rings could have survived since its capture to the Centaur population. Our results reveal that Chariklo's orbit occupies a region of stable chaos, resulting in its orbit being marginally more stable than those of the other Centaurs. Despite this, we find that it was most likely captured to the Centaur population within the last 20 Myr, and that its orbital evolution has been continually punctuated by regular close encounters with the giant planets. The great majority (> 99%) of those encounters within one Hill radius of the planet have only a small effect on the rings. We conclude that close encounters with giant planets have not had a significant effect on the ring structure. Encounters within the Roche limit of the giant planets are rare, making ring creation through tidal disruption unlikely.

  19. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Nicholson, P. D.

    2001-11-01

    A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the

  20. Exact wave functions of two-electron quantum rings.

    PubMed

    Loos, Pierre-François; Gill, Peter M W

    2012-02-24

    We demonstrate that the Schrödinger equation for two electrons on a ring, which is the usual paradigm to model quantum rings, is solvable in closed form for particular values of the radius. We show that both polynomial and irrational solutions can be found for any value of the angular momentum and that the singlet and triplet manifolds, which are degenerate, have distinct geometric phases. We also study the nodal structure associated with these two-electron states.

  1. Passive Vibration Control of Airborne Equipment using a Circular Steel Ring

    NASA Technical Reports Server (NTRS)

    Ellison, Joseph; Ahmadi, Goodarz; Kehoe, Mike

    1997-01-01

    Vibration isolation is needed to protect avionics equipment from adverse aircraft vibration environments. Passive isolation is the simplest means to achieve this goal. The system used here consists of a circular steel ring with a lump mass on top and exposed to base excitation. Sinusoidal and filtered zero-mean Gaussian white noise are used to excite the structure and the acceleration response spectra at the top of the ring are computed. An experiment is performed to identify the natural frequencies and modal damping of the circular ring. Comparison is made between the analytical and experimental results and good agreement is observed. The ring response is also evaluated with a concentrated mass attached to the top of the ring. The effectiveness of the ring in isolating the equipment from base excitation is studied. The acceleration response spectra of a single degree of freedom system attached to the top of the ring are evaluated and the results are compared with those exposed directly to the base excitation. It is shown that a properly designed ring could effectively protect the avionics from possible damaging excitation levels.

  2. NICMOS FINDS A GOLDEN RING AT THE HEART OF A GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The revived Near Infrared Camera and Multi-Object Spectrometer (NICMOS) aboard NASA's Hubble Space Telescope has pierced the dusty disk of the 'edge-on' galaxy NGC 4013 and peered all the way to the galactic core. To the surprise of astronomers, NICMOS found a brilliant band-like structure, that may be a ring of newly formed stars [yellow band in middle photo] seen edge-on. In the visible-light view of the galaxy [top photo], the star-forming ring cannot be seen because it is embedded in dust. The most prominent feature in the visible-light image -- taken by the Wide Field and Planetary Camera 2 (WFPC2) -- is the thin, dark band of gas and dust, which is about 500 light-years thick. NICMOS enables the Hubble telescope to see in near-infrared wavelengths of light, so that it can penetrate the dust that obscures the inner hub of the galaxy. The ring-like structure spied by NICMOS encircles the core and is about 720 light-years wide, which is the typical size of most star-forming rings found in disk galaxies. The small ring is churning out stars at a torrid pace. The Milky Way Galaxy, for example, is more than 10,000 times larger than the ring. If the Milky Way produced stars at the same rate, it would be making 1,000 times more stars a year. The human eye cannot see infrared light, so colors have been assigned to correspond with near-infrared wavelengths. The blue light represents shorter near-infrared wavelengths and the red light corresponds to longer wavelengths. The ring-like structure is seen more clearly in the photo at bottom. This picture, taken with a filter sensitive to hydrogen, shows the glow of stars and gas. Astronomers used this information to calculate the rate of star formation in the ring-like structure. The extremely bright star near the center of each picture is a nearby foreground star belonging to our own Milky Way. Rings of developing stars are common in barred spiral galaxies, which have 'bars' of stars and gas slicing across their disks. The

  3. Behavioral Mapless Navigation Using Rings

    NASA Technical Reports Server (NTRS)

    Monroe, Randall P.; Miller, Samuel A.; Bradley, Arthur T.

    2012-01-01

    This paper presents work on the development and implementation of a novel approach to robotic navigation. In this system, map-building and localization for obstacle avoidance are discarded in favor of moment-by-moment behavioral processing of the sonar sensor data. To accomplish this, we developed a network of behaviors that communicate through the passing of rings, data structures that are similar in form to the sonar data itself and express the decisions of each behavior. Through the use of these rings, behaviors can moderate each other, conflicting impulses can be mediated, and designers can easily connect modules to create complex emergent navigational techniques. We discuss the development of a number of these modules and their successful use as a navigation system in the Trinity omnidirectional robot.

  4. Interaction of a vortex ring and a bubble

    NASA Astrophysics Data System (ADS)

    Jha, Narsing K.; Govardhan, Raghuraman N.

    2014-11-01

    Micro-bubble injection in to boundary layers is one possible method for reducing frictional drag of ships. Although this has been studied for some time, the physical mechanisms responsible for drag reduction using microbubbles in turbulent boundary layers is not yet fully understood. Previous studies suggest that bubble-vortical structure interaction seems to be one of the important physical mechanisms for frictional drag reduction using microbubbles. In the present work, we study a simplification of this problem, namely, the interaction of a single vortical structure, in particular a vortex ring, with a single bubble for better understanding of the physics. The vortex ring is generated using a piston-cylinder arrangement and the bubble is generated by connecting a capillary to an air pump. The bubble dynamics is directly visualized using a high speed camera, while the vorticity modification is measured using time resolved PIV. The results show that significant deformations can occur of both the bubble and the vortex ring. Effect of different non-dimensional parameters on the interaction will be presented in the meeting.

  5. The Ring Sculptor

    NASA Image and Video Library

    2006-09-08

    Prometheus zooms across the Cassini spacecraft field of view, attended by faint streamers and deep gores in the F ring. This movie sequence of five images shows the F ring shepherd moon shaping the ring inner edge

  6. Periodicity of the density wake past a vortex ring in a stratified liquid

    NASA Astrophysics Data System (ADS)

    Prokhorov, V.

    2009-04-01

    Spatial coherent structure of the density wake past a vortex ring moving horizontally in viscid stratified liquid is experimentally revealed. It follows from analysis that repetition period of the structure is determined by rotation radial frequency (or mean vorticity) of the vortex core and toward speed of the vortex ring. The wake formation of the ring is considered in respect to vorticity shedding which produces velocity disturbances in ambient medium. In case of stratified liquid velocity fluctuations, in their turn, cause density field distortion. This process is superimposed by vortex core oscillations, and, in result, vorticity shedding will be not monotonous but modulated at some frequency. So, the density wake is periodically structured, and the spatial period is defined by intrinsic frequency of the core and forward speed of the ring. To support analysis, experiments were conducted in which vortex rings excited by spring-piston generator were observed with high-sensitive Schlieren instrument and computer-controlled camera. Experimental tank was filled with salt-stratified water of constant buoyancy period, vortex ring velocities range from 3 to 16 cm/s. Spatial period is derived from schlieren image using two independent methods, both 2D spectral analysis and geometry calculations of the vortex core. Spatial periods and vortex intrinsic frequencies calculated by both algorithms are in good agreement; they vary in power lows depending on vortex speed

  7. Fields and Plasma Structures Around ``Shining'' Black Holes: Solitary Rings and Tri-dimensional Topologies

    NASA Astrophysics Data System (ADS)

    Coppi, B.

    2012-03-01

    Field and plasma configurations that can be the distinguishing feature of and surround ``shining'' black holes have been identified. Considering the observation of the Quasi Periodic Oscillations that can be associated with inhomogeneous rotating plasmas, tri-dimensional rotating configurations have been looked for and found under special conditions. One is that these configurations are radially localized, such as narrow plasma ring pairs. Another is that the rotation frequency is nearly constant over the rings. Only axisymmetric local configurations consisting of solitary plasma rings or periodic sequences of rings are found when the gradient of the rotation frequency is (locally) significant. Assuming that the plasma pressure is scalar the problem is reduced to the solution of two coupled non-linear differential equations. One, the ``Master Equation'' [1], relates the magnetic surface function to the plasma rotation frequency that is connected to the gravity field. The other, the Vertical Equilibrium Equation, relates the plasma pressure gradient to both the Lorentz force and to the plasma density profile through the gravitational force.[4pt] [1] B. Coppi, Phys. Plasmas 18, 032901 (2011).

  8. The Electromechanical Behavior of a Micro-Ring Driven by Traveling Electrostatic Force

    PubMed Central

    Ye, Xiuqian; Chen, Yibao; Chen, Da-Chih; Huang, Kuo-Yi; Hu, Yuh-Chung

    2012-01-01

    There is no literature mentioning the electromechanical behavior of micro structures driven by traveling electrostatic forces. This article is thus the first to present the dynamics and stabilities of a micro-ring subjected to a traveling electrostatic force. The traveling electrostatic force may be induced by sequentially actuated electrodes which are arranged around the flexible micro-ring. The analysis is based on a linearized distributed model considering the electromechanical coupling effects between electrostatic force and structure. The micro-ring will resonate when the traveling speeds of the electrostatic force approach some critical speeds. The critical speeds are equal to the ratio of the natural frequencies to the wave number of the correlative natural mode of the ring. Apart from resonance, the ring may be unstable at some unstable traveling speeds. The unstable regions appear not only near the critical speeds, but also near some fractions of some critical speeds differences. Furthermore the unstable regions expand with increasing driving voltage. This article may lead to a new research branch on electrostatic-driven micro devices. PMID:22438705

  9. Structure design and motion simulation of the pin-cycloid gear planetary reducer with ring-plate-type

    NASA Astrophysics Data System (ADS)

    Duan, Hongjie; Li, Lijun; Tao, Junyi

    2017-06-01

    The pin-cycloid gear planetary reducer with ring-plate-type is a new type of reducers. It has high transmission ratio range and high efficiency. In this paper the working principle of pin-cycloid gear planetary reducer is discussed, and the structure of the reducer is designed. Especially for the complexity and the difficulty in modelling of the cycloid gear tooth profile, the parametric design module of cycloid gear is developed to solve the cycloid gear modelling problem through the second development of Solid Works. At last, the speed schemes of the input shaft and output shaft of the reducer are obtained by the motion simulation. Through the analysis of the simulation curves, the rationality of the structure design is proved, which provides a theoretical basis for the design and manufacture of the reducer.

  10. Mechanisms of ring chromosome formation, ring instability and clinical consequences.

    PubMed

    Guilherme, Roberta S; Meloni, Vera F Ayres; Kim, Chong A; Pellegrino, Renata; Takeno, Sylvia S; Spinner, Nancy B; Conlin, Laura K; Christofolini, Denise M; Kulikowski, Leslie D; Melaragno, Maria I

    2011-12-21

    The breakpoints and mechanisms of ring chromosome formation were studied and mapped in 14 patients. Several techniques were performed such as genome-wide array, MLPA (Multiplex Ligation-Dependent Probe Amplification) and FISH (Fluorescent in situ Hybridization). The ring chromosomes of patients I to XIV were determined to be, respectively: r(3)(p26.1q29), r(4)(p16.3q35.2), r(10)(p15.3q26.2), r(10)(p15.3q26.13), r(13)(p13q31.1), r(13)(p13q34), r(14)(p13q32.33), r(15)(p13q26.2), r(18)(p11.32q22.2), r(18)(p11.32q21.33), r(18)(p11.21q23), r(22)(p13q13.33), r(22)(p13q13.2), and r(22)(p13q13.2). These rings were found to have been formed by different mechanisms, such as: breaks in both chromosome arms followed by end-to-end reunion (patients IV, VIII, IX, XI, XIII and XIV); a break in one chromosome arm followed by fusion with the subtelomeric region of the other (patients I and II); a break in one chromosome arm followed by fusion with the opposite telomeric region (patients III and X); fusion of two subtelomeric regions (patient VII); and telomere-telomere fusion (patient XII). Thus, the r(14) and one r(22) can be considered complete rings, since there was no loss of relevant genetic material. Two patients (V and VI) with r(13) showed duplication along with terminal deletion of 13q, one of them proved to be inverted, a mechanism known as inv-dup-del. Ring instability was detected by ring loss and secondary aberrations in all but three patients, who presented stable ring chromosomes (II, XIII and XIV). We concluded that the clinical phenotype of patients with ring chromosomes may be related with different factors, including gene haploinsufficiency, gene duplications and ring instability. Epigenetic factors due to the circular architecture of ring chromosomes must also be considered, since even complete ring chromosomes can result in phenotypic alterations, as observed in our patients with complete r(14) and r(22).

  11. The varieties of symmetric stellar rings and radial caustics in galaxy disks

    NASA Technical Reports Server (NTRS)

    Struck-Marcell, Curtis; Lotan, Pnina

    1990-01-01

    Numerical, restricted three-body and analytic calculations are used to study the formation and propagation of cylindrically symmetric stellar ring waves in galaxy disks. It is shown that such waves can evolve in a variety of ways, depending on the amplitude of the perturbation and the potential of the target galaxy. Rings can thicken as they propagate outward, remain at a nearly constant width, or be pinched off at large radii. Multiple, closely spaced rings can result from a low-amplitude collision, while an outer ring can appear well-separated from overlapping inner rings or an apparent lens structure in halo-dominated potentials. All the single-encounter rings consist of paired fold caustics. The simple, impulsive, kinematic oscillation equations appear to provide a remarkably accurate model of the numerical simulations. Simple analytic approximations to these equations permit very good estimates of oscillation periods and amplitudes, the evolution of ring widths, and ring birth and propagation characteristics.

  12. Robust gap repair in the contractile ring ensures timely completion of cytokinesis

    PubMed Central

    Maiato, Helder; Pinto, Inês Mendes; Rubinstein, Boris

    2016-01-01

    Cytokinesis in animal cells requires the constriction of an actomyosin contractile ring, whose architecture and mechanism remain poorly understood. We use laser microsurgery to explore the biophysical properties of constricting rings in Caenorhabditis elegans embryos. Laser cutting causes rings to snap open. However, instead of disintegrating, ring topology recovers and constriction proceeds. In response to severing, a finite gap forms and is repaired by recruitment of new material in an actin polymerization–dependent manner. An open ring is able to constrict, and rings repair from successive cuts. After gap repair, an increase in constriction velocity allows cytokinesis to complete at the same time as controls. Our analysis demonstrates that tension in the ring increases while net cortical tension at the site of ingression decreases throughout constriction and suggests that cytokinesis is accomplished by contractile modules that assemble and contract autonomously, enabling local repair of the actomyosin network. Consequently, cytokinesis is a highly robust process impervious to discontinuities in contractile ring structure. PMID:27974482

  13. Dust-Corrected Star Formation Rates in Galaxies with Outer Rings

    NASA Astrophysics Data System (ADS)

    Kostiuk, I.; Silchenko, O.

    2018-03-01

    The star formation rates SFR, as well as the SFR surface densities ΣSFR and absolute stellar magnitudes MAB, are determined and corrected for interinsic dust absorption for 34 disk galaxies of early morphological types with an outer ring structure and ultraviolet emission from the ring. These characteristic are determined for the outer ring structures and for the galaxies as a whole. Data from the space telescopes GALEX (in the NUV and FUV ultraviolet ranges) and WISE (in the W4 22 μm infrared band) are used. The average relative deviation in the corrected SFR and ΣSFR derived from the NUV and FUV bands is only 19.0%, so their averaged values are used for statistical consideration. The relations between the dust-corrected SFR characteristics, UV colours, the galaxy morphological type, absolute magnitude are illustrated.

  14. Numerical investigation of a vortex ring impinging on a coaxial aperture

    NASA Astrophysics Data System (ADS)

    Hu, Jiacheng; Peterson, Sean D.

    2017-11-01

    Recent advancements in smart materials have sparked an interest in the development of small scale fluidic energy harvesters for powering distributed applications in aquatic environments, where coherent vortex structures are prevalent. Thus, it is crucial to investigate the interaction of viscous vortices in the proximity of a thin plate (a common harvester configuration). Hence, the present study systematically examines the interaction of a vortex ring impinging on an infinitesimally thin wall with a coaxially aligned annular aperture. The rigid aperture serves as an axisymmetric counterpart of the thin plate, and the vortex ring represents a typical coherent vortex structure. The results indicate that the vortex dynamics can be categorized into two regimes based on the aperture to ring radius ratio (Rr). The rebound regime (Rr < 0.9) exhibits the classical unsteady boundary layer interaction in a vortex ring-wall collision. The vortex ring is able to slip past the aperture when Rr >= 0.9 , and an increase in the vortex ring impulse is observed for 1.0 <= Rr <= 1.3 due to fluid entrainment. Furthermore, pressure loadings are also compared to elucidate an optimal energy harvesting strategy in vortex impact configurations. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN-05778) and Alexander Graham Bell Canada Graduate Scholarship (CGS-D).

  15. Long-Lived Pure Electron Plasma in Ring Trap-1

    NASA Astrophysics Data System (ADS)

    Saitoh, Haruhiko; Yoshida, Zensho; Morikawa, Junji; Watanabe, Sho; Yano, Yoshihisa; Suzuki, Junko

    The Ring Trap-1 (RT-1) experiment succeeded in producing a long-lived (of the order 102 s), stable, non-neutral (pure electron) plasma. Electrons are confined by a magnetospheric dipole field. To eliminate a loss channel of the plasmas caused by support structures, a superconducting coil was magnetically levitated. This coil levitation drastically improved the confinement properties of the electron plasma compared to previous Prototype-Ring Trap (Proto-RT) experiments.

  16. Electric Characteristic Enhancement of an AZO/Si Schottky Barrier Diode with Hydrogen Plasma Surface Treatment and AlxOx Guard Ring Structure

    PubMed Central

    Li, Chien-Yu; Cheng, Min-Yu; Houng, Mau-Phon; Yang, Cheng-Fu; Liu, Jing

    2018-01-01

    In this study, the design and fabrication of AZO/n-Si Schottky barrier diodes (SBDs) with hydrogen plasma treatment on silicon surface and AlxOx guard ring were presented. The Si surface exhibited less interface defects after the cleaning process following with 30 w of H2 plasma treatment that improved the switching properties of the following formed SBDs. The rapid thermal annealing experiment also held at 400 °C to enhance the breakdown voltage of SBDs. The edge effect of the SBDs was also suppressed with the AlxOx guard ring structure deposited by the atomic layer deposition (ALD) at the side of the SBDs. Experimental results show that the reverse leakage current was reduced and the breakdown voltage increased with an addition of the AlxOx guard ring. The diode and fabrication technology developed in the study were applicable to the realization of SBDs with a high breakdown voltage (>200 V), a low reverse leakage current density (≤72 μA/mm2@100 V), and a Schottky barrier height of 1.074 eV. PMID:29316726

  17. Electric Characteristic Enhancement of an AZO/Si Schottky Barrier Diode with Hydrogen Plasma Surface Treatment and AlxOx Guard Ring Structure.

    PubMed

    Li, Chien-Yu; Cheng, Min-Yu; Houng, Mau-Phon; Yang, Cheng-Fu; Liu, Jing

    2018-01-08

    In this study, the design and fabrication of AZO/n-Si Schottky barrier diodes (SBDs) with hydrogen plasma treatment on silicon surface and Al x O x guard ring were presented. The Si surface exhibited less interface defects after the cleaning process following with 30 w of H₂ plasma treatment that improved the switching properties of the following formed SBDs. The rapid thermal annealing experiment also held at 400 °C to enhance the breakdown voltage of SBDs. The edge effect of the SBDs was also suppressed with the Al x O x guard ring structure deposited by the atomic layer deposition (ALD) at the side of the SBDs. Experimental results show that the reverse leakage current was reduced and the breakdown voltage increased with an addition of the Al x O x guard ring. The diode and fabrication technology developed in the study were applicable to the realization of SBDs with a high breakdown voltage (>200 V), a low reverse leakage current density (≤72 μA/mm²@100 V), and a Schottky barrier height of 1.074 eV.

  18. Nonblocking Clos networks of multiple ROADM rings for mega data centers.

    PubMed

    Zhao, Li; Ye, Tong; Hu, Weisheng

    2015-11-02

    Optical networks have been introduced to meet the bandwidth requirement of mega data centers (DC). Most existing approaches are neither scalable to face the massive growth of DCs, nor contention-free enough to provide full bisection bandwidth. To solve this problem, we propose two symmetric network structures: ring-MEMS-ring (RMR) network and MEMS-ring-MEMS (MRM) network based on classical Clos theory. New strategies are introduced to overcome the additional wavelength constraints that did not exist in the traditional Clos network. Two structures that followed the strategies can enable high scalability and nonblocking property simultaneously. The one-to-one correspondence of the RMR and MRM structures to a Clos is verified and the nonblocking conditions are given along with the routing algorithms. Compared to a typical folded-Clos network, both structures are more readily scalable to future mega data centers with 51200 racks while reducing number of long cables significantly. We show that the MRM network is more cost-effective than the RMR network, since the MRM network does not need tunable lasers to achieve nonblocking routing.

  19. 200 MW S-band traveling wave resonant ring development at IHEP

    NASA Astrophysics Data System (ADS)

    Zhou, Zu-Sheng; Chi, Yun-Long; Git, Meng-Ping; Pei, Guo-Xi

    2010-03-01

    The resonant-ring is a traveling wave circuit, which is used to produce high peak power with comparatively smaller stored energy. The application to be considered is its use as a high power simulator mainly for testing the klystron ceramic output window, as well as for high power microwave transmission devices. This paper describes the principle of a resonant ring and introduces the structure and property of the newly constructed traveling wave resonant ring at IHEP. Our goal is to produce a 200 MW class resonant ring at 2.856 GHz with a pulse length of 2 μs and repetition rate of 25 Hz. The installation, commissioning and testing of the ring have been completed and a peak power of 200 MW at 3 μs has been achieved. The conditioning results show that all the parameters of the resonant ring reach the design goals.

  20. Saddle-shaped mitral valve annuloplasty rings experience lower forces compared with flat rings.

    PubMed

    Jensen, Morten O; Jensen, Henrik; Smerup, Morten; Levine, Robert A; Yoganathan, Ajit P; Nygaard, Hans; Hasenkam, J Michael; Nielsen, Sten L

    2008-09-30

    New insight into the 3D dynamic behavior of the mitral valve has prompted a reevaluation of annuloplasty ring designs. Force balance analysis indicates correlation between annulus forces and stresses in leaflets and chords. Improving this stress distribution can intuitively enhance the durability of mitral valve repair. We tested the hypothesis that saddle-shaped annuloplasty rings have superior uniform systolic force distribution compared with a nonuniform force distribution in flat annuloplasty rings. Sixteen 80-kg pigs had a flat (n=8) or saddle-shaped (n=8) mitral annuloplasty ring implanted. Mitral annulus 3D dynamic geometry was obtained with sonomicrometry before ring insertion. Strain gauges mounted on dedicated D-shaped rigid flat and saddle-shaped annuloplasty rings provided the intraoperative force distribution perpendicular to the annular plane. Average systolic annular height to commissural width ratio before ring implantation was 14.0%+/-1.6%. After flat and saddle shaped ring implantation, the annulus was fixed in the diastolic (9.0%+/-1.0%) and systolic (14.3%+/-1.3%) configuration, respectively (P<0.01). Force accumulation was seen from the anterior (0.72N+/-0.14N) and commissural annular segments (average 1.38N+/-0.27N) of the flat rings. In these segments, the difference between the 2 types of rings was statistically significant (P<0.05). The saddle-shaped annuloplasty rings did not experience forces statistically significantly larger than zero in any annular segments. Saddle-shaped annuloplasty rings provide superior uniform annular force distribution compared to flat rings and appear to represent a configuration that minimizes out-of-plane forces that could potentially be transmitted to leaflets and chords. This may have important implications for annuloplasty ring selections.

  1. Spontaneous actin dynamics in contractile rings

    NASA Astrophysics Data System (ADS)

    Kruse, Karsten; Wollrab, Viktoria; Thiagarajan, Raghavan; Wald, Anne; Riveline, Daniel

    Networks of polymerizing actin filaments are known to be capable to self-organize into a variety of structures. For example, spontaneous actin polymerization waves have been observed in living cells in a number of circumstances, notably, in crawling neutrophils and slime molds. During later stages of cell division, they can also spontaneously form a contractile ring that will eventually cleave the cell into two daughter cells. We present a framework for describing networks of polymerizing actin filaments, where assembly is regulated by various proteins. It can also include the effects of molecular motors. We show that the molecular processes driven by these proteins can generate various structures that have been observed in contractile rings of fission yeast and mammalian cells. We discuss a possible functional role of each of these patterns. The work was supported by Agence Nationale de la Recherche, France, (ANR-10-LABX-0030-INRT) and by Deutsche Forschungsgemeinschaft through SFB1027.

  2. Structures of actin-bound Wiskott-Aldrich syndrome protein homology 2 (WH2) domains of Spire and the implication for filament nucleation.

    PubMed

    Ducka, Anna M; Joel, Peteranne; Popowicz, Grzegorz M; Trybus, Kathleen M; Schleicher, Michael; Noegel, Angelika A; Huber, Robert; Holak, Tad A; Sitar, Tomasz

    2010-06-29

    Three classes of proteins are known to nucleate new filaments: the Arp2/3 complex, formins, and the third group of proteins that contain ca. 25 amino acid long actin-binding Wiskott-Aldrich syndrome protein homology 2 domains, called the WH2 repeats. Crystal structures of the complexes between the actin-binding WH2 repeats of the Spire protein and actin were determined for the Spire single WH2 domain D, the double (SpirCD), triple (SpirBCD), quadruple (SpirABCD) domains, and an artificial Spire WH2 construct comprising three identical D repeats (SpirDDD). SpirCD represents the minimal functional core of Spire that can nucleate actin filaments. Packing in the crystals of the actin complexes with SpirCD, SpirBCD, SpirABCD, and SpirDDD shows the presence of two types of assemblies, "side-to-side" and "straight-longitudinal," which can serve as actin filament nuclei. The principal feature of these structures is their loose, open conformations, in which the sides of actins that normally constitute the inner interface core of a filament are flipped inside out. These Spire structures are distant from those seen in the filamentous nuclei of Arp2/3, formins, and in the F-actin filament.

  3. Structures of actin-bound Wiskott-Aldrich syndrome protein homology 2 (WH2) domains of Spire and the implication for filament nucleation

    PubMed Central

    Ducka, Anna M.; Joel, Peteranne; Popowicz, Grzegorz M.; Trybus, Kathleen M.; Schleicher, Michael; Noegel, Angelika A.; Huber, Robert; Holak, Tad A.; Sitar, Tomasz

    2010-01-01

    Three classes of proteins are known to nucleate new filaments: the Arp2/3 complex, formins, and the third group of proteins that contain ca. 25 amino acid long actin-binding Wiskott-Aldrich syndrome protein homology 2 domains, called the WH2 repeats. Crystal structures of the complexes between the actin-binding WH2 repeats of the Spire protein and actin were determined for the Spire single WH2 domain D, the double (SpirCD), triple (SpirBCD), quadruple (SpirABCD) domains, and an artificial Spire WH2 construct comprising three identical D repeats (SpirDDD). SpirCD represents the minimal functional core of Spire that can nucleate actin filaments. Packing in the crystals of the actin complexes with SpirCD, SpirBCD, SpirABCD, and SpirDDD shows the presence of two types of assemblies, “side-to-side” and “straight-longitudinal,” which can serve as actin filament nuclei. The principal feature of these structures is their loose, open conformations, in which the sides of actins that normally constitute the inner interface core of a filament are flipped inside out. These Spire structures are distant from those seen in the filamentous nuclei of Arp2/3, formins, and in the F-actin filament. PMID:20538977

  4. COMPARATIVE STUDY OF THREE FUNDAMENTAL ORGANIC COMPOUNDS OF CHAIN STRUCTURE OF THREE RINGS An approach based in the molecular descriptors of the DFT (Density Functional Theory)

    NASA Astrophysics Data System (ADS)

    Leon, Neira B. Oscar; Fabio, Mejía Elio; Elizabeth, y. Rincón B.

    2008-04-01

    The organic molecules of a chain structure containing phenyl, oxazole and oxadiazole rings are used in different combinations as active media for tunable lasers. From this viewpoint, we focused in the theoretical study of organic compounds of three rings, which have similar optical properties (fluorescence and laser properties). The main goal of this study is to compare the electronic structure through the analysis of molecular global descriptors defined in the DFT framework of2-[2-X-phenyl]-5-phenyl-1,3-Oxazole, 2-[2-X-phenyl]-5-phenyl-1,3,4-Oxadiazole, and 2-[2-X-phenyl]-5-phenyl-furane with X = H, F and Cl. The basis set used was 6-31G+(d).

  5. Design, synthesis and biological evaluation of paclitaxel-mimics possessing only the oxetane D-ring and side chain structures.

    PubMed

    Chen, Xing-Xiu; Gao, Feng; Wang, Qi; Huang, Xing; Wang, Dan

    2014-01-01

    Two spiro paclitaxel-mimics consisting only of an oxetane D-ring and a C-13 side chain were designed and synthesized on the basis of analysis of structure-activity relationships (SAR) of paclitaxel. In vitro microtubule-stabilizing and antiproliferative assays indicated a moderate weaker activity of the mimics than paclitaxel, but which still represented the first example of simplified paclitaxel analogues with significant anti-tumor biological activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Quantum Dynamics Scattering Study of AB+CDE Reactions: A Seven Dimensional Treatment for the H2+C2H Reaction

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou

    2003-01-01

    A time-dependent wave-packet approach is presented for the quantum dynamics study of the AB+CDE reaction system for zero total angular momentum. A seven-degree-of-freedom calculation is employed to study the chemical reaction of H2+C2H yields H + C2H2 by treating C2H as a linear molecule. Initial state selected reaction probabilities are presented for various initial ro-vibrational states. This study shows that vibrational excitation of H2 enhances the reaction probability, whereas the excitation of C2H has only a small effect on the reactivity. An integral cross section is also reported for the initial ground states of H2 and C2H. The theoretical and experimental results agree with each other very well when the calculated seven dimensional results are adjusted to account for the lower transition state barrier heights found in recent ab initio calculations.

  7. Influence of chain topology on polymer crystallization: poly(ethylene oxide) (PEO) rings vs. linear chains.

    PubMed

    Zardalidis, George; Mars, Julian; Allgaier, Jürgen; Mezger, Markus; Richter, Dieter; Floudas, George

    2016-10-04

    The absence of entanglements, the more compact structure and the faster diffusion in melts of cyclic poly(ethylene oxide) (PEO) chains have consequences on their crystallization behavior at the lamellar and spherulitic length scales. Rings with molecular weight below the entanglement molecular weight (M < M e ), attain the equilibrium configuration composed from twice-folded chains with a lamellar periodicity that is half of the corresponding linear chains. Rings with M > M e undergo distinct step-like conformational changes to a crystalline lamellar with the equilibrium configuration. Rings melt from this configuration in the absence of crystal thickening in sharp contrast to linear chains. In general, rings more easily attain their extended equilibrium configuration due to strained segments and the absence of entanglements. In addition, rings have a higher equilibrium melting temperature. At the level of the spherulitic superstructure, growth rates are much faster for rings reflecting the faster diffusion and more compact structure. With respect to the segmental dynamics in their semi-crystalline state, ring PEOs with a steepness index of ∼34 form some of the "strongest" glasses.

  8. Topological insulator behavior of WS{sub 2} monolayer with square-octagon ring structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Ashok, E-mail: ashok@cup.ac.in; Pandey, Ravindra; Ahluwalia, P. K.

    We report electronic behavior of an allotrope of monolayer WS{sub 2} with a square octagon ring structure, refereed to as (so-WS{sub 2}) within state-of-the-art density functional theory (DFT) calculations. The WS{sub 2} monolayer shows semi-metallic characteristics with Dirac-cone like features around Γ. Unlike p-orbital’s Dirac-cone in graphene, the Dirac-cone in the so-WS{sub 2} monolayer originates from the d-electrons of the W atom in the lattice. Most interestingly, the spin-orbit interaction associated with d-electrons induce a finite band-gap that results into the metal-semiconductor transition and topological insulator-like behavior in the so-WS{sub 2} monolayer. These characteristics suggest the so-WS{sub 2} monolayer tomore » be a promising candidate for the next-generation electronic and spintronics devices.« less

  9. Vascular ring

    MedlinePlus

    ... with aberrant subclavian and left ligamentum ateriosus; Congenital heart defect - vascular ring; Birth defect heart - vascular ring ... accounts for less than 1% of all congenital heart problems. The condition occurs as often in males ...

  10. Stable forming conditions and geometrical expansion of L-shape rings in ring rolling process

    NASA Astrophysics Data System (ADS)

    Quagliato, Luca; Berti, Guido A.; Kim, Dongwook; Kim, Naksoo

    2018-05-01

    Based on previous research results concerning the radial-axial ring rolling process of flat rings, this paper details an innovative approach for the determination of the stable forming conditions to successfully simulate the radial ring rolling process of L-shape profiled rings. In addition to that, an analytical model for the estimation of the geometrical expansion of L-shape rings from its initial flat ring preform is proposed and validated by comparing its results with those of numerical simulations. By utilizing the proposed approach, steady forming conditions could be achieved, granting a uniform expansion of the ring throughout the process for all of the six tested cases of rings having the final outer diameter of the flange ranging from 545mm and 1440mm. The validation of the proposed approach allowed concluding that the geometrical expansion of the ring, as estimated by the proposed analytical model, is in good agreement with the results of the numerical simulation, with a maximum error of 2.18%, in the estimation of the ring wall diameter, 1.42% of the ring flange diameter and 1.87% for the estimation of the inner diameter of the ring, respectively.

  11. 49 CFR 179.400-9 - Stiffening rings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-9 Stiffening rings... section. The outer flange of the closed section, if not a steel structural shape, is subject to the same...

  12. 49 CFR 179.400-9 - Stiffening rings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-9 Stiffening rings... section. The outer flange of the closed section, if not a steel structural shape, is subject to the same...

  13. 49 CFR 179.400-9 - Stiffening rings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-9 Stiffening rings... section. The outer flange of the closed section, if not a steel structural shape, is subject to the same...

  14. The Dynamical History of Chariklo and Its Rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Jeremy; Horner, Jonti; Marsden, Stephen C.

    Chariklo is the only small solar system body confirmed to have rings. Given the instability of its orbit, the presence of rings is surprising, and their origin remains poorly understood. In this work, we study the dynamical history of the Chariklo system by integrating almost 36,000 Chariklo clones backward in time for 1 Gyr under the influence of the Sun and the four giant planets. By recording all close encounters between the clones and planets, we investigate the likelihood that Chariklo’s rings could have survived since its capture to the Centaur population. Our results reveal that Chariklo’s orbit occupies amore » region of stable chaos, resulting in its orbit being marginally more stable than those of the other Centaurs. Despite this, we find that it was most likely captured to the Centaur population within the last 20 Myr, and that its orbital evolution has been continually punctuated by regular close encounters with the giant planets. The great majority (>99%) of those encounters within 1 Hill radius of the planet have only a small effect on the rings. We conclude that close encounters with giant planets have not had a significant effect on the ring structure. Encounters within the Roche limit of the giant planets are rare, making ring creation through tidal disruption unlikely.« less

  15. Exploring the ring current of carbon nanotubes by first-principles calculations.

    PubMed

    Ren, Pengju; Zheng, Anmin; Xiao, Jianping; Pan, Xiulian; Bao, Xinhe

    2015-02-01

    Ring current is a fundamental concept to understand the nuclear magnetic resonance (NMR) properties and aromaticity for conjugated systems, such as carbon nanotubes (CNTs). Employing the recently developed gauge including projector augmented wave (GIPAW) method, we studied the ring currents of CNTs systematically and visualized their distribution. The ring current patterns are determined by the semiconducting or metallic properties of CNTs. The discrepancy is mainly caused by the axial component of external magnetic fields, whereas the radial component induced ring currents are almost independent of the electronic structures of CNTs, where the intensities of the ring currents are linearly related to the diameters of the CNTs. Although the ring currents induced by the radial component are more intense than those by the axial component, only the latter determines the overall NMR responses and aromaticity of the CNTs as well. Furthermore, the semiconducting CNTs are more aromatic than their metallic counterparts due to the existence of delocalized ring currents on the semiconducting CNTs. These fundamental features are of vital importance for the development of CNT-based nanoelectronics and applications in magnetic fields.

  16. Exploring the ring current of carbon nanotubes by first-principles calculations

    PubMed Central

    Ren, Pengju; Zheng, Anmin; Xiao, Jianping; Pan, Xiulian

    2015-01-01

    Ring current is a fundamental concept to understand the nuclear magnetic resonance (NMR) properties and aromaticity for conjugated systems, such as carbon nanotubes (CNTs). Employing the recently developed gauge including projector augmented wave (GIPAW) method, we studied the ring currents of CNTs systematically and visualized their distribution. The ring current patterns are determined by the semiconducting or metallic properties of CNTs. The discrepancy is mainly caused by the axial component of external magnetic fields, whereas the radial component induced ring currents are almost independent of the electronic structures of CNTs, where the intensities of the ring currents are linearly related to the diameters of the CNTs. Although the ring currents induced by the radial component are more intense than those by the axial component, only the latter determines the overall NMR responses and aromaticity of the CNTs as well. Furthermore, the semiconducting CNTs are more aromatic than their metallic counterparts due to the existence of delocalized ring currents on the semiconducting CNTs. These fundamental features are of vital importance for the development of CNT-based nanoelectronics and applications in magnetic fields. PMID:29560175

  17. The Enceladus Ring

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] The Enceladus Ring (labeled)

    This excellent view of the faint E ring -- a ring feature now known to be created by Enceladus -- also shows two of Saturn's small moons that orbit within the ring, among a field of stars in the background.

    The E ring extends from three to eight Saturn radii -- about 180,000 kilometers (118,000 miles) to 482,000 kilometers (300,000 miles). Its full extent is not visible in this view.

    Calypso (22 kilometers, or 14 miles across) and Helene (32 kilometers, or 20 miles across) orbit within the E ring's expanse. Helene skirts the outer parts of the E ring, but here it is projected in front of a region deeper within the ring.

    Calypso and Helene are trojan satellites, or moons that orbit 60 degrees in front or behind a larger moon. Calypso is a Tethys trojan and Helene is a trojan of Dione.

    An interesting feature of note in this image is the double-banded appearance of the E-ring, which is created because the ring is somewhat fainter in the ringplane than it is 500-1,000 kilometers (300-600 miles) above and below the ringplane. This appearance implies that the particles in this part of the ring have nonzero inclinations (a similar affect is seen in Jupiter's gossamer ring). An object with a nonzero inclination does not orbit exactly at Saturn's ringplane. Instead, its orbit takes it above and below the ringplane. Scientists are not entirely sure why the particles should have such inclinations, but they are fairly certain that the reason involves Enceladus.

    One possible explanation is that all the E ring particles come from the plume of icy material that is shooting due south out of the moon's pole. This means all of the particles are created with a certain velocity out of the ringplane, and then they orbit above and below that plane.

    Another possible explanation is that Enceladus produces particles with a range of speeds, but the moon gravitationally

  18. Surface roughness of Saturn's rings and ring particles inferred from thermal phase curves

    NASA Astrophysics Data System (ADS)

    Morishima, Ryuji; Turner, Neal J.; Spilker, Linda

    2017-10-01

    We analyze thermal phase curves of all the main rings of Saturn (the A, B, C rings, and the Cassini division) measured by both the far-IR and mid-IR detectors of the Cassini Composite InfraRed Spectrometer (CIRS). All the rings show temperature increases toward zero phase angle, known as an opposition effect or thermal beaming. For the C ring and Cassini division, which have low optical depths, intra-particle shadowing is considered the dominant mechanism causing the effect. On the other hand, the phase curves of the optically thick B and A rings steepen significantly with decreasing absolute solar elevation angle from 21° to 14°, suggesting inter-particle shadowing plays an important role in these rings. We employ an analytic roughness model to estimate the degrees of surface roughness of the rings or ring particles. For optically thin rings, an isolated particle covered by spherical segment craters is employed while for the thick rings we approximate a packed particle layer as a slab covered by craters. The particles in the thin rings are found to have generally rough surfaces, except in the middle C ring. Across the C ring, the optical depth correlates with the degree of surface roughness. This may indicate that surface roughness comes mainly from particle clumping, while individual particles have rather smooth surfaces. For the optically thick rings, the surface roughness of the particle layer is found to be moderate. The modeled phase curves of optically thick rings are shallow if the phase angle change is primarily due to change of observer azimuthal angle. On the other hand, the phase curves are steep if the phase angle change is due to change of observer elevation angle, as inter-particle shadows become visible at higher observer elevation. In addition, the area of shadowed facets increases with decreasing solar elevation angle. These combined effects explain the large seasonal change of the phase curve steepness observed for the thick rings. The degrees

  19. Surface roughness of Saturn's rings and ring particles inferred from thermal phase curves

    NASA Astrophysics Data System (ADS)

    Morishima, Ryuji; Turner, Neal; Spilker, Linda

    2017-10-01

    We analyze thermal phase curves of all the main rings of Saturn (the A, B, C rings, and the Cassini division) measured by both the far-IR and mid-IR detectors of the Cassini Composite InfraRed Spectrometer (CIRS). All the rings show temperature increases toward zero phase angle, known as an opposition effect or thermal beaming. For the C ring and Cassini division, which have low optical depths, intra-particle shadowing is considered the dominant mechanism causing the effect. On the other hand, the phase curves of the optically thick B and A rings steepen significantly with decreasing absolute solar elevation angle from 21° to 14°, suggesting inter-particle shadowing plays an important role in these rings. We employ an analytic roughness model to estimate the degrees of surface roughness of the rings or ring particles. For optically thin rings, an isolated particle covered by spherical segment craters is employed while for the thick rings we approximate a packed particle layer as a slab covered by craters. The particles in the thin rings are found to have generally rough surfaces, except in the middle C ring. Across the C ring, the optical depth correlates with the degree of surface roughness. This may indicate that surface roughness comes mainly from particle clumping, while individual particles have rather smooth surfaces. For the optically thick rings, the surface roughness of the particle layer is found to be moderate. The modeled phase curves of optically thick rings are shallow if the phase angle change is primarily due to change of observer azimuthal angle. On the other hand, the phase curves are steep if the phase angle change is due to change of observer elevation angle, as inter-particle shadows become visible at higher observer elevation. In addition, the area of shadowed facets increases with decreasing solar elevation angle. These combined effects explain the large seasonal change of the phase curve steepness observed for the thick rings. The degrees

  20. Structural and Functional Basis for an EBNA1 Hexameric Ring in Epstein-Barr Virus Episome Maintenance.

    PubMed

    Deakyne, Julianna S; Malecka, Kimberly A; Messick, Troy E; Lieberman, Paul M

    2017-10-01

    Epstein-Barr virus (EBV) establishes a stable latent infection that can persist for the life of the host. EBNA1 is required for the replication, maintenance, and segregation of the latent episome, but the structural features of EBNA1 that confer each of these functions are not completely understood. Here, we have solved the X-ray crystal structure of an EBNA1 DNA-binding domain (DBD) and discovered a novel hexameric ring oligomeric form. The oligomeric interface pivoted around residue T585 as a joint that links and stabilizes higher-order EBNA1 complexes. Substitution mutations around the interface destabilized higher-order complex formation and altered the cooperative DNA-binding properties of EBNA1. Mutations had both positive and negative effects on EBNA1-dependent DNA replication and episome maintenance with OriP. We found that one naturally occurring polymorphism in the oligomer interface (T585P) had greater cooperative DNA binding in vitro , minor defects in DNA replication, and pronounced defects in episome maintenance. The T585P mutant was compromised for binding to OriP in vivo as well as for assembling the origin recognition complex subunit 2 (ORC2) and trimethylated histone 3 lysine 4 (H3K4me3) at OriP. The T585P mutant was also compromised for forming stable subnuclear foci in living cells. These findings reveal a novel oligomeric structure of EBNA1 with an interface subject to naturally occurring polymorphisms that modulate EBNA1 functional properties. We propose that EBNA1 dimers can assemble into higher-order oligomeric structures important for diverse functions of EBNA1. IMPORTANCE Epstein-Barr virus is a human gammaherpesvirus that is causally associated with various cancers. Carcinogenic properties are linked to the ability of the virus to persist in the latent form for the lifetime of the host. EBNA1 is a sequence-specific DNA-binding protein that is consistently expressed in EBV tumors and is the only viral protein required to maintain the viral

  1. Liesegang rings in renal cyst fluid.

    PubMed

    Katz, L B; Ehya, H

    1990-01-01

    Peculiar ring-like structures identified as Liesegang rings (LRs) were found in renal cyst fluid from three patients with benign renal cysts. They ranged in size from 5 to 820 mu. Most had a double-layer outer wall with equally spaced radial cross-striations and an amorphous central nidus. Special stains were performed in one case, and the results are discussed. Reports of LRs in cystic or inflamed tissues have recently appeared in the literature. Some LRs have been mistaken for eggs or mature components of the giant kidney worm, Dioctophyma renale. We propose that cytologic assessment of renal cyst fluid in conjunction with histologic examination decreases the likelihood of misdiagnosis of LRs.

  2. Intra-annual variability of anatomical structure and δ13C values within tree rings of spruce and pine in alpine, temperate and boreal Europe

    PubMed Central

    Vaganov, Eugene A.; Skomarkova, Marina V.; Knohl, Alexander; Brand, Willi A.; Roscher, Christiane

    2009-01-01

    Tree-ring width, wood density, anatomical structure and 13C/12C ratios expressed as δ13C-values of whole wood of Picea abies were investigated for trees growing in closed canopy forest stands. Samples were collected from the alpine Renon site in North Italy, the lowland Hainich site in Central Germany and the boreal Flakaliden site in North Sweden. In addition, Pinus cembra was studied at the alpine site and Pinus sylvestris at the boreal site. The density profiles of tree rings were measured using the DENDRO-2003 densitometer, δ13C was measured using high-resolution laser-ablation-combustion-gas chromatography-infra-red mass spectrometry and anatomical characteristics of tree rings (tracheid diameter, cell-wall thickness, cell-wall area and cell-lumen area) were measured using an image analyzer. Based on long-term statistics, climatic variables, such as temperature, precipitation, solar radiation and vapor pressure deficit, explained <20% of the variation in tree-ring width and wood density over consecutive years, while 29–58% of the variation in tree-ring width were explained by autocorrelation between tree rings. An intensive study of tree rings between 1999 and 2003 revealed that tree ring width and δ13C-values of whole wood were significantly correlated with length of the growing season, net radiation and vapor pressure deficit. The δ13C-values were not correlated with precipitation or temperature. A highly significant correlation was also found between δ13C of the early wood of one year and the late wood of the previous year, indicating a carry-over effect of the growing conditions of the previous season on current wood production. This latter effect may explain the high autocorrelation of long-term tree-ring statistics. The pattern, however, was complex, showing stepwise decreases as well as stepwise increases in the δ13C between late wood and early wood. The results are interpreted in the context of the biochemistry of wood formation and its linkage

  3. Dusty D Ring

    NASA Image and Video Library

    2014-02-24

    Saturn D ring is easy to overlook since it trapped between the brighter C ring and the planet itself. In this view from NASA Cassini spacecraft, all that can be seen of the D ring is the faint and narrow arc as it stretches from top right of the ima

  4. Ring World

    NASA Image and Video Library

    2007-03-01

    Our robotic emissary, flying high above Saturn, captured this view of an alien copper-colored ring world. The overexposed planet has deliberately been removed to show the unlit rings alone, seen from an elevation of 60 degrees

  5. Multi-scale analysis and characterization of the ITER pre-compression rings

    NASA Astrophysics Data System (ADS)

    Foussat, A.; Park, B.; Rajainmaki, H.

    2014-01-01

    The toroidal field (TF) system of ITER Tokamak composed of 18 "D" shaped Toroidal Field (TF) coils during an operating scenario experiences out-of-plane forces caused by the interaction between the 68kA operating TF current and the poloidal magnetic fields. In order to keep the induced static and cyclic stress range in the intercoil shear keys between coils cases within the ITER allowable limits [1], centripetal preload is introduced by means of S2 fiber-glass/epoxy composite pre-compression rings (PCRs). Those PCRs consist in two sets of three rings, each 5 m in diameter and 337 × 288 mm in cross-section, and are installed at the top and bottom regions to apply a total resultant preload of 70 MN per TF coil equivalent to about 400 MPa hoop stress. Recent developments of composites in the aerospace industry have accelerated the use of advanced composites as primary structural materials. The PCRs represent one of the most challenging composite applications of large dimensions and highly stressed structures operating at 4 K over a long term life. Efficient design of those pre-compression composite structures requires a detailed understanding of both the failure behavior of the structure and the fracture behavior of the material. Due to the inherent difficulties to carry out real scale testing campaign, there is a need to develop simulation tools to predict the multiple complex failure mechanisms in pre-compression rings. A framework contract was placed by ITER Organization with SENER Ingenieria y Sistemas SA to develop multi-scale models representative of the composite structure of the Pre-compression rings based on experimental material data. The predictive modeling based on ABAQUS FEM provides the opportunity both to understand better how PCR composites behave in operating conditions and to support the development of materials by the supplier with enhanced performance to withstand the machine design lifetime of 30,000 cycles. The multi-scale stress analysis has

  6. Constriction model of actomyosin ring for cytokinesis by fission yeast using a two-state sliding filament mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Yong-Woon; Mascagni, Michael, E-mail: Mascagni@fsu.edu

    2014-09-28

    We developed a model describing the structure and contractile mechanism of the actomyosin ring in fission yeast, Schizosaccharomyces pombe. The proposed ring includes actin, myosin, and α-actinin, and is organized into a structure similar to that of muscle sarcomeres. This structure justifies the use of the sliding-filament mechanism developed by Huxley and Hill, but it is probably less organized relative to that of muscle sarcomeres. Ring contraction tension was generated via the same fundamental mechanism used to generate muscle tension, but some physicochemical parameters were adjusted to be consistent with the proposed ring structure. Simulations allowed an estimate of ringmore » constriction tension that reproduced the observed ring constriction velocity using a physiologically possible, self-consistent set of parameters. Proposed molecular-level properties responsible for the thousand-fold slower constriction velocity of the ring relative to that of muscle sarcomeres include fewer myosin molecules involved, a less organized contractile configuration, a low α-actinin concentration, and a high resistance membrane tension. Ring constriction velocity is demonstrated as an exponential function of time despite a near linear appearance. We proposed a hypothesis to explain why excess myosin heads inhibit constriction velocity rather than enhance it. The model revealed how myosin concentration and elastic resistance tension are balanced during cytokinesis in S. pombe.« less

  7. Ring King

    NASA Image and Video Library

    2014-08-18

    Saturn reigns supreme, encircled by its retinue of rings. Although all four giant planets have ring systems, Saturn's is by far the most massive and impressive. Scientists are trying to understand why by studying how the rings have formed and how they have evolved over time. Also seen in this image is Saturn's famous north polar vortex and hexagon. This view looks toward the sunlit side of the rings from about 37 degrees above the ringplane. The image was taken with the Cassini spacecraft wide-angle camera on May 4, 2014 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 752 nanometers. The view was acquired at a distance of approximately 2 million miles (3 million kilometers) from Saturn. Image scale is 110 miles (180 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18278

  8. Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov. G. V.; Gamayunov, K. V.; Jordanova, V. K.; Six, N. Frank (Technical Monitor)

    2002-01-01

    A new ring current global model has been developed that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall conductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms.

  9. Expanding Actin Rings Zipper the Mouse Embryo for Blastocyst Formation.

    PubMed

    Zenker, Jennifer; White, Melanie D; Gasnier, Maxime; Alvarez, Yanina D; Lim, Hui Yi Grace; Bissiere, Stephanie; Biro, Maté; Plachta, Nicolas

    2018-04-19

    Transformation from morula to blastocyst is a defining event of preimplantation embryo development. During this transition, the embryo must establish a paracellular permeability barrier to enable expansion of the blastocyst cavity. Here, using live imaging of mouse embryos, we reveal an actin-zippering mechanism driving this embryo sealing. Preceding blastocyst stage, a cortical F-actin ring assembles at the apical pole of the embryo's outer cells. The ring structure forms when cortical actin flows encounter a network of polar microtubules that exclude F-actin. Unlike stereotypical actin rings, the actin rings of the mouse embryo are not contractile, but instead, they expand to the cell-cell junctions. Here, they couple to the junctions by recruiting and stabilizing adherens and tight junction components. Coupling of the actin rings triggers localized myosin II accumulation, and it initiates a tension-dependent zippering mechanism along the junctions that is required to seal the embryo for blastocyst formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Discovery of multi-ring basins - Gestalt perception in planetary science

    NASA Technical Reports Server (NTRS)

    Hartmann, W. K.

    1981-01-01

    Early selenographers resolved individual structural components of multi-ring basin systems but missed the underlying large-scale multi-ring basin patterns. The recognition of multi-ring basins as a general class of planetary features can be divided into five steps. Gilbert (1893) took a first step in recognizing radial 'sculpture' around the Imbrium basin system. Several writers through the 1940's rediscovered the radial sculpture and extended this concept by describing concentric rings around several circular maria. Some reminiscences are given about the fourth step - discovery of the Orientale basin and other basin systems by rectified lunar photography at the University of Arizona in 1961-62. Multi-ring basins remained a lunar phenomenon until the fifth step - discovery of similar systems of features on other planets, such as Mars (1972), Mercury (1974), and possibly Callisto and Ganymede (1979). This sequence is an example of gestalt recognition whose implications for scientific research are discussed.

  11. Interactions between vortex tubes and magnetic-flux rings at high kinetic and magnetic Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Kivotides, Demosthenes

    2018-03-01

    The interactions between vortex tubes and magnetic-flux rings in incompressible magnetohydrodynamics are investigated at high kinetic and magnetic Reynolds numbers, and over a wide range of the interaction parameter. The latter is a measure of the turnover time of the large-scale fluid motions in units of the magnetic damping time, or of the strength of the Lorentz force in units of the inertial force. The small interaction parameter results, which are related to kinematic turbulent dynamo studies, indicate the evolution of magnetic rings into flattened spirals wrapped around the vortex tubes. This process is also observed at intermediate interaction parameter values, only now the Lorentz force creates new vortical structures at the magnetic spiral edges, which have a striking solenoid vortex-line structure, and endow the flattened magnetic-spiral surfaces with a curvature. At high interaction parameter values, the decisive physical factor is Lorentz force effects. The latter create two (adjacent to the magnetic ring) vortex rings that reconnect with the vortex tube by forming an intriguing, serpentinelike, vortex-line structure, and generate, in turn, two new magnetic rings, adjacent to the initial one. In this regime, the morphologies of the vorticity and magnetic field structures are similar. The effects of these structures on kinetic and magnetic energy spectra, as well as on the direction of energy transfer between flow and magnetic fields, are also indicated.

  12. Ab Initio Path Integral Molecular Dynamics Study of the Nuclear Quantum Effect on Out-of-Plane Ring Deformation of Hydrogen Maleate Anion.

    PubMed

    Kawashima, Yukio; Tachikawa, Masanori

    2014-01-14

    Ab initio path integral molecular dynamics (PIMD) simulation was performed to understand the nuclear quantum effect on the out-of-plane ring deformation of hydrogen maleate anion and investigate the existence of a stable structure with ring deformation, which was suggested in experimental observation (Fillaux et al., Chem. Phys. 1999, 120, 387-403). The isotope effect and the temperature effect are studied as well. We first investigated the nuclear quantum effect on the proton transfer. In static calculation and classical ab initio molecular dynamics simulations, the proton in the hydrogen bond is localized to either oxygen atom. On the other hand, the proton is located at the center of two oxygen atoms in quantum ab initio PIMD simulations. The nuclear quantum effect washes out the barrier of proton transfer. We next examined the nuclear quantum effect on the motion of hydrogen maleate anion. Principal component analysis revealed that the out-of-plane ring bending modes have dominant contribution to the entire molecular motion. In quantum ab initio PIMD simulations, structures with ring deformation were the global minimum for the deuterated isotope at 300 K. We analyzed the out-of-plane ring bending mode further and found that there are three minima along a ring distortion mode. We successfully found a stable structure with ring deformation of hydrogen maleate for the first time, to our knowledge, using theoretical calculation. The structures with ring deformation found in quantum simulation of the deuterated isotope allowed the proton transfer to occur more frequently than the planar structure. Static ab initio electronic structure calculation found that the structures with ring deformation have very small proton transfer barrier compared to the planar structure. We suggest that the "proton transfer driven" mechanism is the origin of stabilization for the structure with out-of-plane ring deformation.

  13. O-Ring-Testing Fixture

    NASA Technical Reports Server (NTRS)

    Turner, James E.; Mccluney, D. Scott

    1991-01-01

    Fixture tests O-rings for sealing ability under dynamic conditions after extended periods of compression. Hydraulic cylinder moves plug in housing. Taper of 15 degrees on plug and cavity of housing ensures that gap created between O-ring under test and wall of cavity. Secondary O-rings above and below test ring maintain pressure applied to test ring. Evaluates effects of variety of parameters, including temperature, pressure, rate of pressurization, rate and magnitude of radial gap movement, and pretest compression time.

  14. Nardo Ring, Italy

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Nardo Ring is a striking visual feature from space, and astronauts have photographed it several times. The Ring is a race car test track; it is 12.5 kilometers long and steeply banked to reduce the amount of active steering needed by drivers. The Nardo Ring lies in a remote area on the heel of Italy's 'boot,' 50 kilometers east of the naval port of Taranto. The Ring encompasses a number of active (green) and fallow (brown to dark brown) agricultural fields. In this zone of intensive agriculture, farmers gain access to their fields through the Ring via a series of underpasses. Winding features within the southern section of the Ring appear to be smaller, unused race tracks.

    The image covers an area of 18.8 x 16.4 km, was acquired on August 17. 2007, and is located at 49.3 degrees north latitude, 17.8 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  15. Cassini RSS occultation observations of density waves in Saturn's rings

    NASA Astrophysics Data System (ADS)

    McGhee, C. A.; French, R. G.; Marouf, E. A.; Rappaport, N. J.; Schinder, P. J.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Johnston, D.; Rochblatt, D.

    2005-08-01

    On May 3, 2005, the first of a series of eight nearly diametric occultations by Saturn's rings and atmosphere took place, observed by the Cassini Radio Science (RSS) team. Simultaneous high SNR measurements at the Deep Space Network (DSN) at S, X, and Ka bands (λ = 13, 3.6, and 0.9 cm) have provided a remarkably detailed look at the radial structure and particle scattering behavior of the rings. By virtue of the relatively large ring opening angle (B=-23.6o), the slant path optical depth of the rings was much lower than during the Voyager epoch (B=5.9o), making it possible to detect many density waves and other ring features in the Cassini RSS data that were lost in the noise in the Voyager RSS experiment. Ultimately, diffraction correction of the ring optical depth profiles will yield radial resolution as small as tens of meters for the highest SNR data. At Ka band, the Fresnel scale is only 1--1.5 km, and thus even without diffraction correction, the ring profiles show a stunning array of density waves. The A ring is replete with dozens of Pandora and Prometheus inner Lindblad resonance features, and the Janus 2:1 density wave in the B ring is revealed with exceptional clarity for the first time at radio wavelengths. Weaker waves are abundant as well, and multiple occultation chords sample a variety of wave phases. We estimate the surface mass density of the rings from linear density wave models of the weaker waves. For stronger waves, non-linear models are required, providing more accurate estimates of the wave dispersion relation, the ring surface mass density, and the angular momentum exchange between the rings and satellite. We thank the DSN staff for their superb support of these complex observations.

  16. Macroscopic anatomy of the great vessels and structures associated with the heart of the ringed seal (Pusa hispida).

    PubMed

    Smodlaka, H; Henry, R W; Reed, R B

    2009-06-01

    The ringed seal [Pusa (Phoca) hispida], as well as other seals, exhibits unique anatomical properties when compared to its terrestrial counterparts. In the ringed seal, the most conspicuous marine adaptation is the aortic bulb. This large dilatation of the ascending aorta is comparable to that found in other seal species and marine mammals. The branches of the ascending aorta (brachiocephalic trunk, left common carotid artery and left subclavian artery) are similar to those of higher primates and man. The peculiarities of the venous system are: three pulmonary veins, a pericardial venous plexus, a caval sphincter, a hepatic sinus with paired caudal vena cavae and a large extradural venous plexus. Generally, three common pulmonary veins (right, left and caudal) empty into the left atrium. The pericardial venous plexus lies deep to the mediastinal pericardial pleura (pleura pericardica) on the auricular (ventral) surface of the heart. The caval sphincter surrounds the caudal vena cava as it passes through the diaphragm. Caudal to the diaphragm, the vena cava is dilated (the hepatic sinus), and near the cranial extremity of the kidneys, it becomes biphid. The azygos vein is formed from the union of the right and left azygos veins at the level of the 5th thoracic vertebra. Cardiovascular physiological studies show some of these anatomical variations, especially of the venous system and the ascending aorta, to be modifications for diving. This investigation documents the large blood vessels associated with the heart and related structures in the ringed seal.

  17. Design Issues of the Pre-Compression Rings of Iter

    NASA Astrophysics Data System (ADS)

    Knaster, J.; Baker, W.; Bettinali, L.; Jong, C.; Mallick, K.; Nardi, C.; Rajainmaki, H.; Rossi, P.; Semeraro, L.

    2010-04-01

    The pre-compression system is the keystone of ITER. A centripetal force of ˜30 MN will be applied at cryogenic conditions on top and bottom of each TF coil. It will prevent the `breathing effect' caused by the bursting forces occurring during plasma operation that would affect the machine design life of 30000 cycles. Different alternatives have been studied throughout the years. There are two major design requirements limiting the engineering possibilities: 1) the limited available space and 2) the need to hamper eddy currents flowing in the structures. Six unidirectionally wound glass-fibre composite rings (˜5 m diameter and ˜300 mm cross section) are the final design choice. The rings will withstand the maximum hoop stresses <500 MPa at room temperature conditions. Although retightening or replacing the pre-compression rings in case of malfunctioning is possible, they have to sustain the load during the entire 20 years of machine operation. The present paper summarizes the pre-compression ring R&D carried out during several years. In particular, we will address the composite choice and mechanical characterization, assessment of creep or stress relaxation phenomena, sub-sized rings testing and the optimal ring fabrication processes that have led to the present final design.

  18. Deep drilling at the Siljan Ring impact structure: oxygen-isotope geochemistry of granite

    USGS Publications Warehouse

    Komor, S.C.; Valley, J.W.

    1990-01-01

    The Siljan Ring is a 362-Ma-old impact structure formed in 1700-Ma-old I-type granites. A 6.8-km-deep borehole provides a vertical profile through granites and isolated horizontal diabase sills. Fluid-inclusion thermometry, and oxygen-isotope compositions of vein quartz, granite, diabase, impact melt, and pseudotachylite, reveal a complex history of fluid activity in the Siljan Ring, much of which can be related to the meteorite impact. In granites from the deep borehole, ??18O values of matrix quartz increase with depth from near 8.0 at the surface to 9.5??? at 5760 m depth. In contrast, feldspar ??18O values decrease with depth from near 10 at the surface to 7.1??? at 5760 m, forming a pattern opposite to the one defined by quartz isotopic compositions. Values of ??18O for surface granites outside the impact structure are distinct from those in near-surface samples from the deep borehole. In the deep borehole, feldspar coloration varies from brick-red at the surface to white at 5760 m, and the abundances of crack-healing calcite and other secondary minerals decrease over the same interval. Superimposed on the overall decrease in alteration intensity with depth are localized fracture zones at 4662, 5415, and 6044 m depth that contain altered granites, and which provided pathways for deep penetration of surface water. The antithetic variation of quartz and feldspar ??18O values, which can be correlated with mineralogical evidence of alteration, provides evidence for interaction between rocks and impact-heated fluids (100-300?? C) in the upper 2 km of the pluton. Penetration of water to depths below 2 km was restricted by a general decrease in impact-fracturing with depth, and by a 60-m-thick diabase sill at 1500 m depth that may have been an aquitard. At depths below 4 km in the pluton, where water/rock ratios were low, oxygen isotopic compositions preserve evidence for limited high-temperature (>500?? C) exchange between alkali feldspar and fluids. The high

  19. Saturn B Ring, Finer Than Ever

    NASA Image and Video Library

    2017-01-30

    This image shows a region in Saturn's outer B ring. NASA's Cassini spacecraft viewed this area at a level of detail twice as high as it had ever been observed before. And from this view, it is clear that there are still finer details to uncover. Researchers have yet to determine what generated the rich structure seen in this view, but they hope detailed images like this will help them unravel the mystery. In order to preserve the finest details, this image has not been processed to remove the many small bright blemishes, which are created by cosmic rays and charged particle radiation near the planet. The image was taken in visible light with the Cassini spacecraft wide-angle camera on Dec. 18, 2016. The view was obtained at a distance of approximately 32,000 miles (51,000 kilometers) from the rings, and looks toward the unilluminated side of the rings. Image scale is about a quarter-mile (360 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21058

  20. Electrostatic forces in planetary rings

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.; Shan, Linhua; Havnes, O.

    1988-01-01

    The average charge on a particle in a particle-plasma cloud, the plasma potential inside the cloud, and the Coulomb force acting on the particle are calculated. The net repulsive electrostatic force on a particle depends on the plasma density, temperature, density of particles, particle size, and the gradient of the particle density. In a uniformly dense ring the electrostatic repulsion is zero. It is also shown that the electrostatic force acts like a pressure force, that even a collisionless ring can be stable against gravitational collapse, and that a finite ring thickness does not necessarily imply a finite velocity dispersion. A simple criterion for the importance of electrostatic forces in planetary rings is derived which involves the calculation of the vertical ring thickness which would result if only electrostatic repulsion were responsible for the finite ring thickness. Electrostatic forces are entirely negligible in the main rings of Saturn and the E and G rings. They may also be negligible in the F ring. However, the Uranian rings and Jupiter's ring seem to be very much influenced by electrostatic repulsion. In fact, electrostatic forces could support a Jovian ring which is an order of magnitude more dense than observed.

  1. Stirling engine piston ring

    DOEpatents

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  2. Thermoelastic damping effect of the micro-ring resonator with irregular mass and stiffness

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hwan; Kim, Ji-Hwan

    2016-05-01

    Fundamentally, vibration characteristic is a main factor for the stability of structures. In this regard, the irregularity of mass and stiffness distributions for the structure have been an interesting issue for many years. Recently, the Micro Electro Mechanical Systems (MEMS) are developed for various applications such as gyro sensors. In the present work, in-plane vibration of micro-ring structure with multiple finite-sized imperfections is investigated. Then, the unbalance of the structure is represented using Heaviside Step Function for the inextensional modeling of the ring. Also, thermoelastic damping (TED) due to internal friction is studied based on Fourier's one-dimensional heat conduction equation using Laplace Transform. To obtain the quality-factors (Q-factors) for imperfect micro-ring, analytical solutions are calculated from governing equations of motion with TED. And then, the natural frequencies and the Q-factors are observed to separate into lower and higher modes. Additionally, the vibration mode shapes are presented, and the frequency trimming concept due to attached imperfections is investigated.

  3. How does the blue-ringed octopus (Hapalochlaena lunulata) flash its blue rings?

    PubMed

    Mäthger, Lydia M; Bell, George R R; Kuzirian, Alan M; Allen, Justine J; Hanlon, Roger T

    2012-11-01

    The blue-ringed octopus (Hapalochlaena lunulata), one of the world's most venomous animals, has long captivated and endangered a large audience: children playing at the beach, divers turning over rocks, and biologists researching neurotoxins. These small animals spend much of their time in hiding, showing effective camouflage patterns. When disturbed, the octopus will flash around 60 iridescent blue rings and, when strongly harassed, bite and deliver a neurotoxin that can kill a human. Here, we describe the flashing mechanism and optical properties of these rings. The rings contain physiologically inert multilayer reflectors, arranged to reflect blue-green light in a broad viewing direction. Dark pigmented chromatophores are found beneath and around each ring to enhance contrast. No chromatophores are above the ring; this is unusual for cephalopods, which typically use chromatophores to cover or spectrally modify iridescence. The fast flashes are achieved using muscles under direct neural control. The ring is hidden by contraction of muscles above the iridophores; relaxation of these muscles and contraction of muscles outside the ring expose the iridescence. This mechanism of producing iridescent signals has not previously been reported in cephalopods and we suggest that it is an exceptionally effective way to create a fast and conspicuous warning display.

  4. Thermodynamic Presynthetic Considerations for Ring-Opening Polymerization

    PubMed Central

    2016-01-01

    The need for polymers for high-end applications, coupled with the desire to mimic nature’s macromolecular machinery fuels the development of innovative synthetic strategies every year. The recently acquired macromolecular-synthetic tools increase the precision and enable the synthesis of polymers with high control and low dispersity. However, regardless of the specificity, the polymerization behavior is highly dependent on the monomeric structure. This is particularly true for the ring-opening polymerization of lactones, in which the ring size and degree of substitution highly influence the polymer formation properties. In other words, there are two important factors to contemplate when considering the particular polymerization behavior of a specific monomer: catalytic specificity and thermodynamic equilibrium behavior. This perspective focuses on the latter and undertakes a holistic approach among the different lactones with regard to the equilibrium thermodynamic polymerization behavior and its relation to polymer synthesis. This is summarized in a monomeric overview diagram that acts as a presynthetic directional cursor for synthesizing highly specific macromolecules; the means by which monomer equilibrium conversion relates to starting temperature, concentration, ring size, degree of substitution, and its implications for polymerization behavior are discussed. These discussions emphasize the importance of considering not only the catalytic system but also the monomer size and structure relations to thermodynamic equilibrium behavior. The thermodynamic equilibrium behavior relation with a monomer structure offers an additional layer of complexity to our molecular toolbox and, if it is harnessed accordingly, enables a powerful route to both monomer formation and intentional macromolecular design. PMID:26795940

  5. Thermodynamic Presynthetic Considerations for Ring-Opening Polymerization.

    PubMed

    Olsén, Peter; Odelius, Karin; Albertsson, Ann-Christine

    2016-03-14

    The need for polymers for high-end applications, coupled with the desire to mimic nature's macromolecular machinery fuels the development of innovative synthetic strategies every year. The recently acquired macromolecular-synthetic tools increase the precision and enable the synthesis of polymers with high control and low dispersity. However, regardless of the specificity, the polymerization behavior is highly dependent on the monomeric structure. This is particularly true for the ring-opening polymerization of lactones, in which the ring size and degree of substitution highly influence the polymer formation properties. In other words, there are two important factors to contemplate when considering the particular polymerization behavior of a specific monomer: catalytic specificity and thermodynamic equilibrium behavior. This perspective focuses on the latter and undertakes a holistic approach among the different lactones with regard to the equilibrium thermodynamic polymerization behavior and its relation to polymer synthesis. This is summarized in a monomeric overview diagram that acts as a presynthetic directional cursor for synthesizing highly specific macromolecules; the means by which monomer equilibrium conversion relates to starting temperature, concentration, ring size, degree of substitution, and its implications for polymerization behavior are discussed. These discussions emphasize the importance of considering not only the catalytic system but also the monomer size and structure relations to thermodynamic equilibrium behavior. The thermodynamic equilibrium behavior relation with a monomer structure offers an additional layer of complexity to our molecular toolbox and, if it is harnessed accordingly, enables a powerful route to both monomer formation and intentional macromolecular design.

  6. Luminescent Rings

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This view shows the unlit face of Saturn's rings, visible via scattered and transmitted light. In these views, dark regions represent gaps and areas of higher particle densities, while brighter regions are filled with less dense concentrations of ring particles.

    The dim right side of the image contains nearly the entire C ring. The brighter region in the middle is the inner B ring, while the darkest part represents the dense outer B Ring. The Cassini Division and the innermost part of the A ring are at the upper-left.

    Saturn's shadow carves a dark triangle out of the lower right corner of this image.

    The image was taken in visible light with the Cassini spacecraft wide-angle camera on June 8, 2005, at a distance of approximately 433,000 kilometers (269,000 miles) from Saturn. The image scale is 22 kilometers (14 miles) per pixel.

    The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

    For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org .

  7. A Photo-Favorskii Ring Contraction Reaction: The Effect of Ring Size

    PubMed Central

    Kammath, Viju Balachandran; Šolomek, Tomáš; Ngoy, Bokolombe Pitchou; Heger, Dominik; Klán, Petr; Rubina, Marina; Givens, Richard S.

    2012-01-01

    The effect of ring size on the photo-Favorskii induced ring-contraction reaction of the hydroxybenzocycloalkanonyl acetate and mesylate esters (7a–d, 8a–c) has provided new insight into the mechanism of the rearrangement. By monotonically decreasing the ring size in these cyclic derivatives, the increasing ring strain imposed on the formation of the elusive bicyclic spirocyclopropanone 20 results in a divergence away from rearrangement and toward solvolysis. Cycloalkanones of seven or eight carbons undergo a highly efficient photo-Favorskii rearrangement with ring contraction paralleling the photochemistry of p-hydroxyphenacyl esters. In contrast, the five-carbon ring does not rearrange but is diverted to the photosolvolysis channel avoiding the increased strain energy that would accompany the formation of the spirobicyclic ketone, the “Favorskii intermediate 20”. The six-carbon analogue demonstrates the bifurcation in reaction channels, yielding a solvent-sensitive mixture of both. Employing a combination of time-resolved absorption measurements, quantum yield determinations, isotopic labeling, and solvent variation studies coupled with theoretical treatment, a more comprehensive mechanistic description of the rearrangement has emerged. PMID:22686289

  8. Formation of Ultrarelativistic Electron Rings from a Laser-Wakefield Accelerator.

    PubMed

    Pollock, B B; Tsung, F S; Albert, F; Shaw, J L; Clayton, C E; Davidson, A; Lemos, N; Marsh, K A; Pak, A; Ralph, J E; Mori, W B; Joshi, C

    2015-07-31

    Ultrarelativistic-energy electron ring structures have been observed from laser-wakefield acceleration experiments in the blowout regime. These electron rings had 170-280 MeV energies with 5%-25% energy spread and ∼10  pC of charge and were observed over a range of plasma densities and compositions. Three-dimensional particle-in-cell simulations show that laser intensity enhancement in the wake leads to sheath splitting and the formation of a hollow toroidal pocket in the electron density around the wake behind the first wake period. If the laser propagates over a distance greater than the ideal dephasing length, some of the dephasing electrons in the second period can become trapped within the pocket and form an ultrarelativistic electron ring that propagates in free space over a meter-scale distance upon exiting the plasma. Such a structure acts as a relativistic potential well, which has applications for accelerating positively charged particles such as positrons.

  9. Interaction of vortex ring with a stratified finite thickness interface

    NASA Astrophysics Data System (ADS)

    Advaith, S.; Manu, K. V.; Tinaikar, Aashay; Chetia, Utpal Kumar; Basu, Saptarshi

    2017-09-01

    This work experimentally investigates the dynamics of interaction between a propagating vortex ring and density stratified interface of finite thickness. The flow evolution has been quantified using a high speed shadowgraph technique and particle image velocimetry. The spatial and temporal behaviours of the vortex in the near and far field of the interface and the plume structure formed due to buoyancy are investigated systematically by varying the vortex strength (Reynolds number, Re) and the degree of stratification (Atwood number, At). Maximum penetration length (Lpmax) of the vortex ring through the interface is measured over a range of Reynolds (1350 ≤ Re ≤ 4600) and Richardson (0.1 ≤ Ri ≤ 4) numbers. It is found that for low Froude number values, the maximum penetration length varies linearly with the Froude number as in the study of Orlandi et al. ["Vortex rings descending in a stratified fluid," Phys. Fluids 10, 2819-2827 (1998)]. However, for high Reynolds and Richardson numbers (Ri), anomalous behaviour in maximum penetration is observed. The Lpmax value is used to characterize the vortex-interface interactions into non-penetrative, partially-penetrative, and extensively penetrative regimes. Flow visualization revealed the occurrence of short-wavelength instability of a plume structure, particularly in a partially penetrative regime. Fluid motion exhibits chaotic behaviour in an extensively penetrative regime. Detailed analyses of plume structure propagation are performed by measuring the plume length and plume rise. Appropriate scaling for the plume length and plume rise is derived, which allows universal collapse of the data for different flow conditions. Some information concerning the instability of the plume structure and decay of the vortex ring is obtained using proper orthogonal decomposition.

  10. The TubR-centromere complex adopts a double-ring segrosome structure in Type III partition systems.

    PubMed

    Martín-García, Bárbara; Martín-González, Alejandro; Carrasco, Carolina; Hernández-Arriaga, Ana M; Ruíz-Quero, Rubén; Díaz-Orejas, Ramón; Aicart-Ramos, Clara; Moreno-Herrero, Fernando; Oliva, María A

    2018-05-14

    In prokaryotes, the centromere is a specialized segment of DNA that promotes the assembly of the segrosome upon binding of the Centromere Binding Protein (CBP). The segrosome structure exposes a specific surface for the interaction of the CBP with the motor protein that mediates DNA movement during cell division. Additionally, the CBP usually controls the transcriptional regulation of the segregation system as a cell cycle checkpoint. Correct segrosome functioning is therefore indispensable for accurate DNA segregation. Here, we combine biochemical reconstruction and structural and biophysical analysis to bring light to the architecture of the segrosome complex in Type III partition systems. We present the particular features of the centromere site, tubC, of the model system encoded in Clostridium botulinum prophage c-st. We find that the split centromere site contains two different iterons involved in the binding and spreading of the CBP, TubR. The resulting nucleoprotein complex consists of a novel double-ring structure that covers part of the predicted promoter. Single molecule data provides a mechanism for the formation of the segrosome structure based on DNA bending and unwinding upon TubR binding.

  11. Propellant grain dynamics in aft attach ring of shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1979-01-01

    An analytical technique for implementing simultaneously the temperature, dynamic strain, real modulus, and frequency properties of solid propellant in an unsymmetrical vibrating ring mode is presented. All dynamic parameters and sources are defined for a free vibrating ring-grain structure with initial displacement and related to a forced vibrating system to determine the change in real modulus. Propellant test data application is discussed. The technique was developed to determine the aft attach ring stiffness of the shuttle booster at lift-off.

  12. Dynamics of the Uranian Rings

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.

    1984-01-01

    Some of the problems of the shepherding satellite model of Goldreich ant tremaine are discussed. The following topics are studied: (1) optical depths of the all the observed narrow rings; (2) satellite and ring separation timescales; (3) ring edge sharpness; (4) shock formation in narrow rings; (5) the existence of small satellites near the Uranian rings; and (6) the apse and node alignments of the eccentric and inclined rings.

  13. The T-Reflection and the deep crustal structure of the Vøring Margin offshore Mid-Norway

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M. M.; Faleide, J. I.; Planke, S.; Gernigon, L.; Zastrozhnov, D.; Shephard, G. E.; Myklebust, R.

    2017-12-01

    Volcanic passive margins are characterized by massive occurrence of mafic extrusive and intrusive rocks, before and during plate breakup, playing major role in determining the evolution pattern and the deep structure of magma-rich margins. Deep seismic reflection data frequently provide imaging of strong continuous reflections in the middle/lower crust. In this context, we have completed a detailed 2D seismic interpretation of the deep crustal structure of the Vøring volcanic margin, offshore mid-Norway, where high-quality seismic data allow the identification of high-amplitude reflections, locally referred to as the T-Reflection (TR). Using the dense seismic grid we have mapped the top of the TR in order to compare it with filtered Bouguer gravity anomalies and seismic refraction data. The TR is identified between 7 and 10 s. Sometimes it consists of one single smooth reflection. However, it is frequently associated with a set of rough multiple reflections displaying discontinuous segments with varying geometries, amplitude and contact relationships. The TR seems to be connected to deep sill networks and locally located at the continuation of basement high structures or terminates over fractures and faults. The spatial correlation between the filtered positive Bouguer gravity anomalies and the TR indicates that the latter represents a high impedance boundary contrast associated with a high-density/velocity body. Within an uncertainty of ± 2.5 km, the depth of the mapped TR is found to correspond to the depth of the top of the Lower Crustal Body (LCB), characterized by high P-wave velocities (>7 km/s), in 50% of the outer Vøring Margin areas, whereas different depths between the TR and the top LCB are estimated for the remaining areas. We present a tectonic scenario, where a large part of the deep structure could be composed of preserved upper continental basement and middle to lower crustal lenses of inherited and intruded high-grade metamorphic rocks. Deep

  14. Hybrid plasmonic waveguide-assisted Metal–Insulator–Metal ring resonator for refractive index sensing

    NASA Astrophysics Data System (ADS)

    Butt, M. A.; Khonina, S. N.; Kazanskiy, N. L.

    2018-05-01

    A highly sensitive refractive index sensor based on an integrated hybrid plasmonic waveguide (HPWG) and a Metal-Insulator-Metal (M-I-M) micro-ring resonator is presented. In our design, there are two slot-waveguide-based micro-rings that encircle a gold disc. The outer slot WG is formed by the combination of Silicon-Air-Gold ring and the inner slot-waveguide is formed by Gold ring-Air-Gold disc. The slot-waveguide rings provide an interaction length sufficient to accumulate a detectable wavelength shift. The transmission spectrum and electric field distribution of this sensor structure are simulated using Finite Element Method (FEM). The sensitivity of this micro-ring resonator is achieved at 800 nm/RIU which is about six times higher than that of the conventional Si ring with the same geometry. Our proposed sensor design has a potential to find further applications in biomedical science and nano-photonic circuits.

  15. On the Squeezing of the North Brazil Current Rings Through the Lesser Antilles as Observed From Satellite Data

    NASA Astrophysics Data System (ADS)

    Bulgakov, S. N.; Cruz Gomez, R. C.

    2007-05-01

    The North Brazil Current Rings (NBCR) penetration into the Caribbean Sea is being investigated employing a merged altimeter-derived sea height anomaly (TOPEX/Poseidon, Jason-1 and ERS-1,2), the ocean surface color data (SeaWiFS) and Global Drifter Program information. Four strategies are being applied to process the data: (1) calculations of Okubo-Weiss parameter for NBCR identification, (2) longitude-time plots (also known as Hovmöller diagrams), (3) two-dimensional Radon transforms and (4) two-dimensional Fourier transforms. A twofold NBCR structure has been detected in the region under investigation. The results have shown that NBC rings mainly propagate into the Caribbean Sea along two principal pathways (near 12ºN and 17ºN) in the ring translation corridor. Thus, rings following the southern pathway in the fall-winter period can enter through very shallow southern straits as non-coherent structures. A different behavior is observed near the northern pathway (near 17ºN), where NBC rings are thought to have a coherent structure during their squeezing into the eastern Caribbean, i.e. conserving the principal characteristics of the incident rings. We attribute this difference in the rings' behavior to the vertical scales of the rings and to the bottom topography features in the vicinity of the Lesser Antilles.

  16. Near Infrared Photometry of the Jovian Ring and Adrastea

    NASA Astrophysics Data System (ADS)

    Meier, Roland; Smith, Bradford A.; Owen, Tobias C.; Becklin, E. E.; Terrile, Richard J.

    1999-10-01

    backscattered light at visible wavelengths, except that we could not resolve any fine structures. The halo above and below the ring plane with a peak brightness near the inner edge of the ring appears to have a blue color compared to the main ring, but due to the low surface brightness of the halo the statistical significance of this color trend is only marginal. Such a color trend would be consistent with a dust population dominated by particles smaller than those in the main ring.

  17. Formation of moon induced gaps in dense planetary rings

    NASA Astrophysics Data System (ADS)

    Grätz, F.; Seiß, M.; Spahn, F.

    2017-09-01

    Recent works have shown that bodies embedded in planetary rings create S-shaped density modula- tions called propellers if their mass deceeds a certain threshold or cause a gap around the entire circumference of the disc if the embedded bodies mass exceeds it. Two counteracting physical processes govern the dynamics and determine what structure is created: The gravitational disturber excerts a torque on nearby disc particles, sweeping them away from itself on both sides thus depleting the discs density and forming a gap. Diffusive spreading of the disc material due to collisions counteracts the gravitational scattering and has the tendency to fill the gap. We develop a nonlinear diffusion model that accounts for those two counteracting processes and describes the azimutally averaged surface density profile an embedded moon creates in planetary rings. The gaps width depends on the moons mass, its radial position and the rings viscosity allowing us to estimate the rings viscosity in the vicinity of the Encke and Keeler gap in Saturns A-Ring and compare it to previous measurements. We show that for the Keeler gap the time derivative of the semi-major axis as derived by Goldreich and Tremaine 1980 is underestimated yielding an underestimated viscosity for the ring. We therefore derive a corrected expression for said time derivative by fitting the solutions of Hill's equations for an ensemble of test particles. Furthermore we estimate the masses for potentionally unseen moonlets in the C-Ring and Cassini division.

  18. FIBER AND INTEGRATED OPTICS: Integrated optical passive ring resonator for optical gyroscopes

    NASA Astrophysics Data System (ADS)

    Baĭborodin, Yu V.; Dyadin, S. S.; Lyadenko, A. F.; Mashchenko, A. I.; Ul'yanov, I. A.; Fatin, Yu L.

    1992-02-01

    A passive ring resonator based on channel waveguides, formed in a K8 glass substrate by diffusion ion exchange in molten potassium nitrate, was made and investigated. The waveguide structure of the resonator included a ring waveguide as well as two Y-type couplers, whose symmetric arms were coupled to the ring waveguide, whereas homogeneous arms were coupled to an external laser and a photodetector. The coupling of the external devices to the channel waveguides was implemented by prisms and butt (end face) contacts. The transfer function of the ring resonator was determined experimentally in order to illustrate its resonant properties and sharpness. Estimates were obtained of the ultimate sensitivity of an optical gyroscope utilizing a ring resonator with the properties described above and ways of improving this sensitivity were analyzed.

  19. Tiny Mimas, Huge Rings

    NASA Image and Video Library

    2016-11-28

    Saturn's icy moon Mimas is dwarfed by the planet's enormous rings. Because Mimas (near lower left) appears tiny by comparison, it might seem that the rings would be far more massive, but this is not the case. Scientists think the rings are no more than a few times as massive as Mimas, or perhaps just a fraction of Mimas' mass. Cassini is expected to determine the mass of Saturn's rings to within just a few hundredths of Mimas' mass as the mission winds down by tracking radio signals from the spacecraft as it flies close to the rings. The rings, which are made of small, icy particles spread over a vast area, are extremely thin -- generally no thicker than the height of a house. Thus, despite their giant proportions, the rings contain a surprisingly small amount of material. Mimas is 246 miles (396 kilometers) wide. This view looks toward the sunlit side of the rings from about 6 degrees above the ring plane. The image was taken in red light with the Cassini spacecraft wide-angle camera on July 21, 2016. The view was obtained at a distance of approximately 564,000 miles (907,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 31 degrees. Image scale is 34 miles (54 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20509

  20. Mechanical seal having a single-piece, perforated mating ring

    DOEpatents

    Khonsari, Michael M [Baton Rouge, LA; Somanchi, Anoop K [Fremont, CA

    2007-08-07

    A mechanical seal (e.g., single mechanical seals, double mechanical seals, tandem mechanical seals, bellows, pusher mechanical seals, and all types of rotating and reciprocating machines) with reduced contact surface temperature, reduced contact surface wear, or increased life span. The mechanical seal comprises a rotating ring and a single-piece, perforated mating ring, which improves heat transfer by controllably channeling coolant flow through the single-piece mating ring such that the coolant is in substantially uniform thermal contact with a substantial portion of the interior surface area of the seal face, while maintaining the structural integrity of the mechanical seal and minimizing the potential for coolant flow interruptions to the seal face caused by debris or contaminants (e.g., small solids and trash) in the coolant.