Sample records for abcg1-mediated cholesterol efflux

  1. Effect of apoA-I Mutations in the Capacity of Reconstituted HDL to Promote ABCG1-Mediated Cholesterol Efflux.

    PubMed

    Daniil, Georgios; Zannis, Vassilis I; Chroni, Angeliki

    2013-01-01

    ATP binding cassette transporter G1 (ABCG1) mediates the cholesterol transport from cells to high-density lipoprotein (HDL), but the role of apolipoprotein A-I (apoA-I), the main protein constituent of HDL, in this process is not clear. To address this, we measured cholesterol efflux from HEK293 cells or J774 mouse macrophages overexpressing ABCG1 using as acceptors reconstituted HDL (rHDL) containing wild-type or various mutant apoA-I forms. It was found that ABCG1-mediated cholesterol efflux was severely reduced (by 89%) when using rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185-243)]. ABCG1-mediated cholesterol efflux was not affected or moderately decreased by rHDL containing amino-terminal deletion mutants and several mid-region deletion or point apoA-I mutants, and was restored to 69-99% of control by double deletion mutants apoA-I[Δ(1-41)Δ(185-243)] and apoA-I[Δ(1-59)Δ(185-243)]. These findings suggest that the central helices alone of apoA-I associated to rHDL can promote ABCG1-mediated cholesterol efflux. Further analysis showed that rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185-243)] only slightly reduced (by 22%) the ABCG1-mediated efflux of 7-ketocholesterol, indicating that depending on the sterol type, structural changes in rHDL-associated apoA-I affect differently the ABCG1-mediated efflux of cholesterol and 7-ketocholesterol. Overall, our findings demonstrate that rHDL-associated apoA-I structural changes affect the capacity of rHDL to accept cellular cholesterol by an ABCG1-mediated process. The structure-function relationship seen here between rHDL-associated apoA-I mutants and ABCG1-mediated cholesterol efflux closely resembles that seen before in lipid-free apoA-I mutants and ABCA1-dependent cholesterol efflux, suggesting that both processes depend on the same structural determinants of apoA-I.

  2. ATP binding cassette G1-dependent cholesterol efflux during inflammation.

    PubMed

    de Beer, Maria C; Ji, Ailing; Jahangiri, Anisa; Vaughan, Ashley M; de Beer, Frederick C; van der Westhuyzen, Deneys R; Webb, Nancy R

    2011-02-01

    ATP binding cassette transporter G1 (ABCG1) mediates the transport of cellular cholesterol to HDL, and it plays a key role in maintaining macrophage cholesterol homeostasis. During inflammation, HDL undergoes substantial remodeling, acquiring lipid changes and serum amyloid A (SAA) as a major apolipoprotein. In the current study, we investigated whether remodeling of HDL that occurs during acute inflammation impacts ABCG1-dependent efflux. Our data indicate that lipid free SAA acts similarly to apolipoprotein A-I (apoA-I) in mediating sequential efflux from ABCA1 and ABCG1. Compared with normal mouse HDL, acute phase (AP) mouse HDL containing SAA exhibited a modest but significant 17% increase in ABCG1-dependent efflux. Interestingly, AP HDL isolated from mice lacking SAA (SAAKO mice) was even more effective in promoting ABCG1 efflux. Hydrolysis with Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) significantly reduced the ability of AP HDL from SAAKO mice to serve as a substrate for ABCG1-mediated cholesterol transfer, indicating that phospholipid (PL) enrichment, and not the presence of SAA, is responsible for alterations in efflux. AP human HDL, which is not PL-enriched, was somewhat less effective in mediating ABCG1-dependent efflux compared with normal human HDL. Our data indicate that inflammatory remodeling of HDL impacts ABCG1-dependent efflux independent of SAA.

  3. ABCG1-mediated generation of extracellular cholesterol microdomains[S

    PubMed Central

    Freeman, Sebastian R.; Jin, Xueting; Anzinger, Joshua J.; Xu, Qing; Purushothaman, Sonya; Fessler, Michael B.; Addadi, Lia; Kruth, Howard S.

    2014-01-01

    Previous studies have demonstrated that the ATP-binding cassette transporters (ABC)A1 and ABCG1 function in many aspects of cholesterol efflux from macrophages. In this current study, we continued our investigation of extracellular cholesterol microdomains that form during enrichment of macrophages with cholesterol. Human monocyte-derived macrophages and mouse bone marrow-derived macrophages, differentiated with macrophage colony-stimulating factor (M-CSF) or granulocyte macrophage colony-stimulation factor (GM-CSF), were incubated with acetylated LDL (AcLDL) to allow for cholesterol enrichment and processing. We utilized an anti-cholesterol microdomain monoclonal antibody to reveal pools of unesterified cholesterol, which were found both in the extracellular matrix and associated with the cell surface, that we show function in reverse cholesterol transport. Coincubation of AcLDL with 50 μg/ml apoA-I eliminated all extracellular and cell surface-associated cholesterol microdomains, while coincubation with the same concentration of HDL only removed extracellular matrix-associated cholesterol microdomains. Only at an HDL concentration of 200 µg/ml did HDL eliminate the cholesterol microdomains that were cell-surface associated. The deposition of cholesterol microdomains was inhibited by probucol, but it was increased by the liver X receptor (LXR) agonist TO901317, which upregulates ABCA1 and ABCG1. Extracellular cholesterol microdomains did not develop when ABCG1-deficient mouse bone marrow-derived macrophages were enriched with cholesterol. Our findings show that generation of extracellular cholesterol microdomains is mediated by ABCG1 and that reverse cholesterol transport occurs not only at the cell surface but also within the extracellular space. PMID:24212237

  4. Effects of miR-33a-5P on ABCA1/G1-Mediated Cholesterol Efflux under Inflammatory Stress in THP-1 Macrophages

    PubMed Central

    Mao, Min; Lei, Han; Liu, Qing; Chen, Yaxi; Zhao, Lei; Li, Qing; Luo, Suxin; Zuo, Zhong; He, Quan; Huang, Wei; Zhang, Nan; Zhou, Chao; Ruan, Xiong Z.

    2014-01-01

    The present study is to investigate whether inflammatory cytokines inhibit ABCA1/ABCG1-mediated cholesterol efflux by regulating miR-33a-5P in THP-1 macrophages. We used interleukin-6 and tumor necrosis factor-alpha in the presence or absence of native low density lipoprotein (LDL) to stimulate THP-1 macrophages. THP-1 macrophages were infected by either control lentivirus vectors or lentivirus encoding miR-33a-5P or antisense miR-33a-5P. The effects of inflammatory cytokines, miR-33a-5P and antisense miR-33a-5P on intracellular lipids accumulation and intracellular cholesterol contents were assessed by oil red O staining and quantitative intracellular cholesterol assay. ApoA-I-mediated cholesterol efflux was examined using the fluorescent sterol (BODIPY-cholesterol). The gene and protein expressions of the molecules involved in cholesterol trafficking were examined using quantitative real-time polymerase chain reaction and Western blotting. Inflammatory cytokines or miR-33a-5P increased intracellular lipid accumulation and decreased apoA-I-mediated cholesterol efflux via decreasing the expression of ABCA1 and ABCG1 in the absence or presence of LDL in THP-1 macrophages. However, antisense miR-33a-5P reversed the effects of inflammatory cytokines on intracellular lipid accumulation, cholesterol efflux, and the expression of miR-33a-5P, ABCA1 and ABCG1 in the absence or presence of LDL in THP-1 macrophages. This study indicated that inflammatory cytokines inhibited ABCA1/ABCG1-mediated cholesterol efflux by up-regulating miR-33a-5P in THP-1 macrophages. PMID:25329888

  5. Effects of miR-33a-5P on ABCA1/G1-mediated cholesterol efflux under inflammatory stress in THP-1 macrophages.

    PubMed

    Mao, Min; Lei, Han; Liu, Qing; Chen, Yaxi; Zhao, Lei; Li, Qing; Luo, Suxin; Zuo, Zhong; He, Quan; Huang, Wei; Zhang, Nan; Zhou, Chao; Ruan, Xiong Z

    2014-01-01

    The present study is to investigate whether inflammatory cytokines inhibit ABCA1/ABCG1-mediated cholesterol efflux by regulating miR-33a-5P in THP-1 macrophages. We used interleukin-6 and tumor necrosis factor-alpha in the presence or absence of native low density lipoprotein (LDL) to stimulate THP-1 macrophages. THP-1 macrophages were infected by either control lentivirus vectors or lentivirus encoding miR-33a-5P or antisense miR-33a-5P. The effects of inflammatory cytokines, miR-33a-5P and antisense miR-33a-5P on intracellular lipids accumulation and intracellular cholesterol contents were assessed by oil red O staining and quantitative intracellular cholesterol assay. ApoA-I-mediated cholesterol efflux was examined using the fluorescent sterol (BODIPY-cholesterol). The gene and protein expressions of the molecules involved in cholesterol trafficking were examined using quantitative real-time polymerase chain reaction and Western blotting. Inflammatory cytokines or miR-33a-5P increased intracellular lipid accumulation and decreased apoA-I-mediated cholesterol efflux via decreasing the expression of ABCA1 and ABCG1 in the absence or presence of LDL in THP-1 macrophages. However, antisense miR-33a-5P reversed the effects of inflammatory cytokines on intracellular lipid accumulation, cholesterol efflux, and the expression of miR-33a-5P, ABCA1 and ABCG1 in the absence or presence of LDL in THP-1 macrophages. This study indicated that inflammatory cytokines inhibited ABCA1/ABCG1-mediated cholesterol efflux by up-regulating miR-33a-5P in THP-1 macrophages.

  6. Lactobacillus acidophilus K301 Inhibits Atherogenesis via Induction of 24 (S), 25-Epoxycholesterol-Mediated ABCA1 and ABCG1 Production and Cholesterol Efflux in Macrophages

    PubMed Central

    Kim, Hye Sun; Park, Woo Jung; Kim, Joo-Yun; Chung, Dae Kyun

    2016-01-01

    Lactobacillus acidophilus species are well-known probiotics with the beneficial activity of regulating cholesterol levels. In this study, we showed that L. acidophilus K301 reduced the level of cholesterol through reverse transport in macrophages. L. acidophilus K301 upregulated the mRNA and protein levels of genes such as ATP-binding cassette A1 (ABCA1) and ATP-binding cassette G1 (ABCG1) under the control of liver X receptor (LXR), resulting in increased apoA-I-dependent cholesterol efflux in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells. L. acidophilus K301 induced both ABCA1 and ABCG1 through the endogenous LXR agonist 24(S), 25-epoxcycholesterol, which is synthesized by intracellular cholesterol synthetic pathways. In vivo studies using L. acidophilus K301-treated ApoE-/- mice showed reduced accumulation of lipoproteins in the arterial lumen. The inhibitory effects of L. acidophilus K301 on accumulation of lipoprotein in atherosclerotic plaques were mediated by the induction of squalene reductase (SQLE) and oxidosqualene cyclase (OSC) and resulted in ABCA1-mediated cholesterol efflux. Taken together, our findings revealed that Lactobacillus acidophilus K301 regulates the expression of genes related to cholesterol reverse transport via the induction of endogenous LXR agonist, suggesting the therapeutic potential of Lactobacillus acidophilus K301 as an anti-atherosclerotic agent. PMID:27120199

  7. Lactobacillus acidophilus K301 Inhibits Atherogenesis via Induction of 24 (S), 25-Epoxycholesterol-Mediated ABCA1 and ABCG1 Production and Cholesterol Efflux in Macrophages.

    PubMed

    Hong, Yi-Fan; Kim, Hangeun; Kim, Hye Sun; Park, Woo Jung; Kim, Joo-Yun; Chung, Dae Kyun

    2016-01-01

    Lactobacillus acidophilus species are well-known probiotics with the beneficial activity of regulating cholesterol levels. In this study, we showed that L. acidophilus K301 reduced the level of cholesterol through reverse transport in macrophages. L. acidophilus K301 upregulated the mRNA and protein levels of genes such as ATP-binding cassette A1 (ABCA1) and ATP-binding cassette G1 (ABCG1) under the control of liver X receptor (LXR), resulting in increased apoA-I-dependent cholesterol efflux in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells. L. acidophilus K301 induced both ABCA1 and ABCG1 through the endogenous LXR agonist 24(S), 25-epoxcycholesterol, which is synthesized by intracellular cholesterol synthetic pathways. In vivo studies using L. acidophilus K301-treated ApoE-/- mice showed reduced accumulation of lipoproteins in the arterial lumen. The inhibitory effects of L. acidophilus K301 on accumulation of lipoprotein in atherosclerotic plaques were mediated by the induction of squalene reductase (SQLE) and oxidosqualene cyclase (OSC) and resulted in ABCA1-mediated cholesterol efflux. Taken together, our findings revealed that Lactobacillus acidophilus K301 regulates the expression of genes related to cholesterol reverse transport via the induction of endogenous LXR agonist, suggesting the therapeutic potential of Lactobacillus acidophilus K301 as an anti-atherosclerotic agent.

  8. Cellular Localization and Trafficking of the Human ABCG1 Transporter

    PubMed Central

    Neufeld, Edward B.; O’Brien, Katherine; Walts, Avram D.; Stonik, John A.; Demosky, Steven J.; Malide, Daniela; Combs, Christian A.; Remaley, Alan T.

    2014-01-01

    We have developed a suitable heterologous cell expression system to study the localization, trafficking, and site(s) of function of the human ABCG1 transporter. Increased plasma membrane (PM) and late endosomal (LE) cholesterol generated by ABCG1 was removed by lipoproteins and liposomes, but not apoA-I. Delivery of ABCG1 to the PM and LE was required for ABCG1-mediated cellular cholesterol efflux. ABCG1 LEs frequently contacted the PM, providing a collisional mechanism for transfer of ABCG1-mobilized cholesterol, similar to ABCG1-mediated PM cholesterol efflux to lipoproteins. ABCG1-mobilized LE cholesterol also trafficked to the PM by a non-vesicular pathway. Transfer of ABCG1-mobilized cholesterol from the cytoplasmic face of LEs to the PM and concomitant removal of cholesterol from the outer leaflet of the PM bilayer by extracellular acceptors suggests that ABCG1 mobilizes cholesterol on both sides of the lipid bilayer for removal by acceptors. ABCG1 increased uptake of HDL into LEs, consistent with a potential ABCG1-mediated cholesterol efflux pathway involving HDL resecretion. Thus, ABCG1 at the PM mobilizes PM cholesterol and ABCG1 in LE/LYS generates mobile pools of cholesterol that can traffic by both vesicular and non-vesicular pathways to the PM where it can also be transferred to extracellular acceptors with a lipid surface. PMID:25405320

  9. ABCA1, ABCG1, and ABCG4 are distributed to distinct membrane meso-domains and disturb detergent-resistant domains on the plasma membrane.

    PubMed

    Sano, Osamu; Ito, Shiho; Kato, Reiko; Shimizu, Yuji; Kobayashi, Aya; Kimura, Yasuhisa; Kioka, Noriyuki; Hanada, Kentaro; Ueda, Kazumitsu; Matsuo, Michinori

    2014-01-01

    ATP-binding cassette A1 (ABCA1), ABCG1, and ABCG4 are lipid transporters that mediate the efflux of cholesterol from cells. To analyze the characteristics of these lipid transporters, we examined and compared their distributions and lipid efflux activity on the plasma membrane. The efflux of cholesterol mediated by ABCA1 and ABCG1, but not ABCG4, was affected by a reduction of cellular sphingomyelin levels. Detergent solubility and gradient density ultracentrifugation assays indicated that ABCA1, ABCG1, and ABCG4 were distributed to domains that were solubilized by Triton X-100 and Brij 96, resistant to Triton X-100 and Brij 96, and solubilized by Triton X-100 but resistant to Brij 96, respectively. Furthermore, ABCG1, but not ABCG4, was colocalized with flotillin-1 on the plasma membrane. The amounts of cholesterol extracted by methyl-β-cyclodextrin were increased by ABCA1, ABCG1, or ABCG4, suggesting that cholesterol in non-raft domains was increased. Furthermore, ABCG1 and ABCG4 disturbed the localization of caveolin-1 to the detergent-resistant domains and the binding of cholera toxin subunit B to the plasma membrane. These results suggest that ABCA1, ABCG1, and ABCG4 are localized to distinct membrane meso-domains and disturb the meso-domain structures by reorganizing lipids on the plasma membrane; collectively, these observations may explain the different substrate profiles and lipid efflux roles of these transporters.

  10. ABCA1, ABCG1, and ABCG4 Are Distributed to Distinct Membrane Meso-Domains and Disturb Detergent-Resistant Domains on the Plasma Membrane

    PubMed Central

    Sano, Osamu; Ito, Shiho; Kato, Reiko; Shimizu, Yuji; Kobayashi, Aya; Kimura, Yasuhisa; Kioka, Noriyuki; Hanada, Kentaro; Ueda, Kazumitsu; Matsuo, Michinori

    2014-01-01

    ATP-binding cassette A1 (ABCA1), ABCG1, and ABCG4 are lipid transporters that mediate the efflux of cholesterol from cells. To analyze the characteristics of these lipid transporters, we examined and compared their distributions and lipid efflux activity on the plasma membrane. The efflux of cholesterol mediated by ABCA1 and ABCG1, but not ABCG4, was affected by a reduction of cellular sphingomyelin levels. Detergent solubility and gradient density ultracentrifugation assays indicated that ABCA1, ABCG1, and ABCG4 were distributed to domains that were solubilized by Triton X-100 and Brij 96, resistant to Triton X-100 and Brij 96, and solubilized by Triton X-100 but resistant to Brij 96, respectively. Furthermore, ABCG1, but not ABCG4, was colocalized with flotillin-1 on the plasma membrane. The amounts of cholesterol extracted by methyl-β-cyclodextrin were increased by ABCA1, ABCG1, or ABCG4, suggesting that cholesterol in non-raft domains was increased. Furthermore, ABCG1 and ABCG4 disturbed the localization of caveolin-1 to the detergent-resistant domains and the binding of cholera toxin subunit B to the plasma membrane. These results suggest that ABCA1, ABCG1, and ABCG4 are localized to distinct membrane meso-domains and disturb the meso-domain structures by reorganizing lipids on the plasma membrane; collectively, these observations may explain the different substrate profiles and lipid efflux roles of these transporters. PMID:25302608

  11. 13-hydroxy linoleic acid increases expression of the cholesterol transporters ABCA1, ABCG1 and SR-BI and stimulates apoA-I-dependent cholesterol efflux in RAW264.7 macrophages

    PubMed Central

    2011-01-01

    Background Synthetic activators of peroxisome proliferator-activated receptors (PPARs) stimulate cholesterol removal from macrophages through PPAR-dependent up-regulation of liver × receptor α (LXRα) and subsequent induction of cholesterol exporters such as ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type 1 (SR-BI). The present study aimed to test the hypothesis that the hydroxylated derivative of linoleic acid (LA), 13-HODE, which is a natural PPAR agonist, has similar effects in RAW264.7 macrophages. Methods RAW264.7 macrophages were treated without (control) or with LA or 13-HODE in the presence and absence of PPARα or PPARγ antagonists and determined protein levels of LXRα, ABCA1, ABCG1, SR-BI, PPARα and PPARγ and apolipoprotein A-I mediated lipid efflux. Results Treatment of RAW264.7 cells with 13-HODE increased PPAR-transactivation activity and protein concentrations of LXRα, ABCA1, ABCG1 and SR-BI when compared to control treatment (P < 0.05). In addition, 13-HODE enhanced cholesterol concentration in the medium but decreased cellular cholesterol concentration during incubation of cells with the extracellular lipid acceptor apolipoprotein A-I (P < 0.05). Pre-treatment of cells with a selective PPARα or PPARγ antagonist completely abolished the effects of 13-HODE on cholesterol efflux and protein levels of genes investigated. In contrast to 13-HODE, LA had no effect on either of these parameters compared to control cells. Conclusion 13-HODE induces cholesterol efflux from macrophages via the PPAR-LXRα-ABCA1/SR-BI-pathway. PMID:22129452

  12. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-γ/LXR-α signaling pathway.

    PubMed

    Xu, Xiaolin; Li, Qian; Pang, Liewen; Huang, Guoqian; Huang, Jiechun; Shi, Meng; Sun, Xiaotian; Wang, Yiqing

    2013-11-15

    Cholesterol efflux from macrophages is a critical mechanism to prevent the development of atherosclerosis. Here, we sought to investigate the effects of arctigenin, a bioactive component of Arctium lappa, on the cholesterol efflux in oxidized low-density lipoprotein (oxLDL)-loaded THP-1 macrophages. Our data showed that arctigenin significantly accelerated apolipoprotein A-I- and high-density lipoprotein-induced cholesterol efflux in both dose- and time-dependent manners. Moreover, arctigenin treatment enhanced the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, and apoE, all of which are key molecules in the initial step of cholesterol efflux, at both mRNA and protein levels. Arctigenin also caused a concentration-dependent elevation in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α). The arctigenin-mediated induction of ABCA1, ABCG1, and apoE was abolished by specific inhibition of PPAR-γ or LXR-α using small interfering RNA technology. Our results collectively indicate that arctigenin promotes cholesterol efflux in oxLDL-loaded THP-1 macrophages through upregulation of ABCA1, ABCG1 and apoE, which is dependent on the enhanced expression of PPAR-γ and LXR-α. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Localization of the Placental BCRP/ABCG2 Transporter to Lipid Rafts: Role for Cholesterol in Mediating Efflux Activity

    PubMed Central

    Szilagyi, John T.; Vetrano, Anna M.; Laskin, Jeffrey D.; Aleksunes, Lauren M.

    2017-01-01

    Introduction The breast cancer resistance protein (BCRP/ABCG2) is an efflux transporter in the placental barrier. By transporting chemicals from the fetal to the maternal circulation, BCRP limits fetal exposure to a range of drugs, toxicants, and endobiotics such as bile acids and hormones. The purpose of the present studies was to 1) determine whether BCRP localizes to highly-ordered, cholesterol-rich lipid raft microdomains in placenta microvillous membranes, and 2) determine the impact of cholesterol on BCRP-mediated placental transport in vitro. Methods BCRP expression was analyzed in lipid rafts isolated from placentas from healthy, term pregnancies and BeWo trophoblasts by density gradient ultracentrifugation. BeWo cells were also tested for their ability to efflux BCRP substrates after treatment with the cholesterol sequestrant methyl-β-cyclodextrin (MβCD, 5mM, 1 h) or the cholesterol synthesis inhibitor pravastatin (200μM, 48 h). Results and Discussion BCRP was found to co-localize with lipid raft proteins in detergent-resistant, lipid raft-containing fractions from placental microvillous membranes and BeWo cells. Treatment of BeWo cells with MβCD redistributed BCRP protein into higher density non-lipid raft fractions. Repletion of the cells with cholesterol restored BCRP localization to lipid raft-containing fractions. Treatment of BeWo cells with MβCD or pravastatin increased cellular retention of two BCRP substrates, the fluorescent dye Hoechst 33342 and the mycotoxin zearalenone. Repletion with cholesterol restored BCRP transporter activity. Taken together, these data demonstrate that cholesterol may play a critical role in the post-translational regulation of BCRP in placental lipid rafts. PMID:28623970

  14. Localization of the placental BCRP/ABCG2 transporter to lipid rafts: Role for cholesterol in mediating efflux activity.

    PubMed

    Szilagyi, John T; Vetrano, Anna M; Laskin, Jeffrey D; Aleksunes, Lauren M

    2017-07-01

    The breast cancer resistance protein (BCRP/ABCG2) is an efflux transporter in the placental barrier. By transporting chemicals from the fetal to the maternal circulation, BCRP limits fetal exposure to a range of drugs, toxicants, and endobiotics such as bile acids and hormones. The purpose of the present studies was to 1) determine whether BCRP localizes to highly-ordered, cholesterol-rich lipid raft microdomains in placenta microvillous membranes, and 2) determine the impact of cholesterol on BCRP-mediated placental transport in vitro. BCRP expression was analyzed in lipid rafts isolated from placentas from healthy, term pregnancies and BeWo trophoblasts by density gradient ultracentrifugation. BeWo cells were also tested for their ability to efflux BCRP substrates after treatment with the cholesterol sequestrant methyl-β-cyclodextrin (MβCD, 5 mM, 1 h) or the cholesterol synthesis inhibitor pravastatin (200 μM, 48 h). BCRP was found to co-localize with lipid raft proteins in detergent-resistant, lipid raft-containing fractions from placental microvillous membranes and BeWo cells. Treatment of BeWo cells with MβCD redistributed BCRP protein into higher density non-lipid raft fractions. Repletion of the cells with cholesterol restored BCRP localization to lipid raft-containing fractions. Treatment of BeWo cells with MβCD or pravastatin increased cellular retention of two BCRP substrates, the fluorescent dye Hoechst 33342 and the mycotoxin zearalenone. Repletion with cholesterol restored BCRP transporter activity. Taken together, these data demonstrate that cholesterol may play a critical role in the post-translational regulation of BCRP in placental lipid rafts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Cellular cholesterol regulates ubiquitination and degradation of the cholesterol export proteins ABCA1 and ABCG1.

    PubMed

    Hsieh, Victar; Kim, Mi-Jurng; Gelissen, Ingrid C; Brown, Andrew J; Sandoval, Cecilia; Hallab, Jeannette C; Kockx, Maaike; Traini, Mathew; Jessup, Wendy; Kritharides, Leonard

    2014-03-14

    The objective of this study was to examine the influence of cholesterol in post-translational control of ABCA1 and ABCG1 protein expression. Using CHO cell lines stably expressing human ABCA1 or ABCG1, we observed that the abundance of these proteins is increased by cell cholesterol loading. The response to increased cholesterol is rapid, is independent of transcription, and appears to be specific for these membrane proteins. The effect is mediated through cholesterol-dependent inhibition of transporter protein degradation. Cell cholesterol loading similarly regulates degradation of endogenously expressed ABCA1 and ABCG1 in human THP-1 macrophages. Turnover of ABCA1 and ABCG1 is strongly inhibited by proteasomal inhibitors and is unresponsive to inhibitors of lysosomal proteolysis. Furthermore, cell cholesterol loading inhibits ubiquitination of ABCA1 and ABCG1. Our findings provide evidence for a rapid, cholesterol-dependent, post-translational control of ABCA1 and ABCG1 protein levels, mediated through a specific and sterol-sensitive mechanism for suppression of transporter protein ubiquitination, which in turn decreases proteasomal degradation. This provides a mechanism for acute fine-tuning of cholesterol transporter activity in response to fluctuations in cell cholesterol levels, in addition to the longer term cholesterol-dependent transcriptional regulation of these genes.

  16. Cellular Cholesterol Regulates Ubiquitination and Degradation of the Cholesterol Export Proteins ABCA1 and ABCG1*

    PubMed Central

    Hsieh, Victar; Kim, Mi-Jurng; Gelissen, Ingrid C.; Brown, Andrew J.; Sandoval, Cecilia; Hallab, Jeannette C.; Kockx, Maaike; Traini, Mathew; Jessup, Wendy; Kritharides, Leonard

    2014-01-01

    The objective of this study was to examine the influence of cholesterol in post-translational control of ABCA1 and ABCG1 protein expression. Using CHO cell lines stably expressing human ABCA1 or ABCG1, we observed that the abundance of these proteins is increased by cell cholesterol loading. The response to increased cholesterol is rapid, is independent of transcription, and appears to be specific for these membrane proteins. The effect is mediated through cholesterol-dependent inhibition of transporter protein degradation. Cell cholesterol loading similarly regulates degradation of endogenously expressed ABCA1 and ABCG1 in human THP-1 macrophages. Turnover of ABCA1 and ABCG1 is strongly inhibited by proteasomal inhibitors and is unresponsive to inhibitors of lysosomal proteolysis. Furthermore, cell cholesterol loading inhibits ubiquitination of ABCA1 and ABCG1. Our findings provide evidence for a rapid, cholesterol-dependent, post-translational control of ABCA1 and ABCG1 protein levels, mediated through a specific and sterol-sensitive mechanism for suppression of transporter protein ubiquitination, which in turn decreases proteasomal degradation. This provides a mechanism for acute fine-tuning of cholesterol transporter activity in response to fluctuations in cell cholesterol levels, in addition to the longer term cholesterol-dependent transcriptional regulation of these genes. PMID:24500716

  17. Serum Opacity Factor Enhances HDL-Mediated Cholesterol Efflux, Esterification and Anti Inflammatory Effects

    PubMed Central

    Tchoua, Urbain; Rosales, Corina; Tang, Daming; Gillard, Baiba K.; Vaughan, Ashley; Lin, Hu Yu; Courtney, Harry S.

    2011-01-01

    Serum opacity factor (SOF) is a streptococcal protein that disrupts the structure of human high density lipoproteins (HDL) releasing lipid-free apo A-I while forming a large cholesteryl ester-rich particle and a small neo HDL. Given its low cholesterol and high phospholipid contents, we tested the hypotheses that neo HDL is a better substrate for cholesterol esterification via lecithin:cholesterol acyltransferase (LCAT), better than HDL as an acceptor of THP-1 macrophage cholesterol efflux, and improves reduction of oxidized LDL-induced production of inflammatory markers. We observed that both cholesterol efflux and esterification were improved by recombinant (r)SOF treatment of whole plasma and that the underlying cause of the improved cholesterol esterification in plasma and macrophage cholesterol efflux to rSOF-treated plasma was due to the rSOF-mediated conversion of HDL to neo HDL. Moreover, the reduction of secretion of TNF-α and IL-6 by THP-1 cells by neo HDL was twice that of HDL. Studies in BHK cells overexpressing cholesterol transporters showed that efflux to neo HDL occurred primarily via ABCA1 not ABCG1. Thus, rSOF improves two steps in reverse cholesterol transport with a concomitant reduction in the release of macrophage markers of inflammation. We conclude that rSOF catalyzes a novel reaction that might be developed as a new therapy that prevents or reverses atherosclerosis via improved reverse cholesterol transport. PMID:20972840

  18. Characterization of the Role of a Highly Conserved Sequence in ATP Binding Cassette Transporter G (ABCG) Family in ABCG1 Stability, Oligomerization, and Trafficking

    PubMed Central

    2013-01-01

    ATP-binding cassette transporter G1 (ABCG1) mediates cholesterol and oxysterol efflux onto lipidated lipoproteins and plays an important role in macrophage reverse cholesterol transport. Here, we identified a highly conserved sequence present in the five ABCG transporter family members. The conserved sequence is located between the nucleotide binding domain and the transmembrane domain and contains five amino acid residues from Asn at position 316 to Phe at position 320 in ABCG1 (NPADF). We found that cells expressing mutant ABCG1, in which Asn316, Pro317, Asp319, and Phe320 in the conserved sequence were replaced with Ala simultaneously, showed impaired cholesterol efflux activity compared with wild type ABCG1-expressing cells. A more detailed mutagenesis study revealed that mutation of Asn316 or Phe 320 to Ala significantly reduced cellular cholesterol and 7-ketocholesterol efflux conferred by ABCG1, whereas replacement of Pro317 or Asp319 with Ala had no detectable effect. To confirm the important role of Asn316 and Phe320, we mutated Asn316 to Asp (N316D) and Gln (N316Q), and Phe320 to Ile (F320I) and Tyr (F320Y). The mutant F320Y showed the same phenotype as wild type ABCG1. However, the efflux of cholesterol and 7-ketocholesterol was reduced in cells expressing ABCG1 mutant N316D, N316Q, or F320I compared with wild type ABCG1. Further, mutations N316Q and F320I impaired ABCG1 trafficking while having no marked effect on the stability and oligomerization of ABCG1. The mutant N316Q and F320I could not be transported to the cell surface efficiently. Instead, the mutant proteins were mainly localized intracellularly. Thus, these findings indicate that the two highly conserved amino acid residues, Asn and Phe, play an important role in ABCG1-dependent export of cellular cholesterol, mainly through the regulation of ABCG1 trafficking. PMID:24320932

  19. [Effect of ferulic acid on cholesterol efflux in macrophage foam cell formation and potential mechanism].

    PubMed

    Chen, Fu-xin; Wang, Lian-kai

    2015-02-01

    The formation of macrophage-derived foam cells is a typical feature of atherosclerosis (AS). Reverse cholesterol efflux (RCT) is one of important factors for the formation of macrophage foam cells. In this study, macrophage form cells were induced by oxidized low density lipoprotein (ox-LDL) and then treated with different concentrations of ferulic acid, so as to observe the effect of ferulic acid on the intracellular lipid metabolism in the ox-LDL-induced macrophage foam cell formation, the cholesterol efflux and the mRNA expression and protein levels of ATP binding cassette transporter A1 (ABCA1) and ATP binding cassette transporter G1 (ABCG1) that mediate cholesterol efflux, and discuss the potential mechanism of ferulic acid in resisting AS. According to the findings, compared with the control group, the ox-LDL-treated group showed significant increase in intracellular lipid content, especially for the cholesterol content; whereas the intracellular lipid accumulation markedly decreased, after the treatment with ferulic acid. The data also demonstrated that the mRNA and protein expressions of ABCA1 and ABCG1 significantly increased after macrophage foam cells were treated with different concentrations of ferulic acid. In summary, ferulic acid may show the anti-atherosclerosis effect by increasing the surface ABCA1 and ABCG1 expressions of macrophage form cells and promoting cholesterol efflux.

  20. Regulation of ATP-binding Cassette Transporters and Cholesterol Efflux by Glucose in Primary Human Monocytes and Murine Bone Marrow-derived Macrophages

    PubMed Central

    Spartano, N. L.; Lamon-Fava, S.; Matthan, N. R.; Ronxhi, J.; Greenberg, A. S.; Obin, M. S.; Lichtenstein, A. H.

    2014-01-01

    Purpose Individuals with type 2 diabetes mellitus are at increased risk of developing atherosclerosis. This may be partially attributable to suppression of macrophage ATP-binding cassette (ABC) transporter mediated cholesterol efflux by sustained elevated blood glucose concentrations. 2 models were used to assess this potential relationship: human monocytes/leukocytes and murine bone marrow-derived macrophages (BMDM). Methods 10 subjects (4 F/6 M, 50–85 years, BMI 25–35 kg/m2) underwent an oral glucose challenge. Baseline and 1- and 2-h post-challenge ABC-transporter mRNA expression was determined in monocytes, leukocytes and peripheral blood mononuclear cells (PBMC). In a separate study, murine-BMDM were exposed to 5 mmol/L D-glucose (control) or additional 20 mmol/L D-or L-glucose and 25 ug/mL oxidized low density lipoprotein (oxLDL). High density lipoprotein (HDL)-mediated cholesterol efflux and ABC-transporter (ABCA1 and ABCG1) expression were determined. Results Baseline ABCA1and ABCG1 expression was lower (> 50 %) in human monocytes and PBMC than leukocytes (p < 0.05). 1 h post-challenge leukocyte ABCA1 and ABCG1 expression increased by 37 % and 30 %, respectively (p < 0.05), and began to return to baseline thereafter. There was no significant change in monocyte ABC-transporter expression. In murine BMDM, higher glucose concentrations suppressed HDL-mediated cholesterol efflux (10 %; p < 0.01) without significantly affecting ABCA1 and ABCG1 expression. Data demonstrate that leukocytes are not a reliable indicator of monocyte ABC-transporter expression. Conclusions Human monocyte ABC-transporter gene expression was unresponsive to a glucose challenge. Correspondingly, in BMDM, hyperglycemia attenuated macrophage cholesterol efflux in the absence of altered ABC-transporter expression, suggesting that hyperglycemia, per se, suppresses cholesterol transporter activity. This glucose-related impairment in cholesterol efflux may potentially contribute to

  1. Cholesterol efflux is differentially regulated in neurons and astrocytes: implications for brain cholesterol homeostasis

    PubMed Central

    Chen, Jing; Zhang, Xiaolu; Kusumo, Handojo; Costa, Lucio G.; Guizzetti, Marina

    2012-01-01

    Disruption of cholesterol homeostasis in the central nervous system (CNS) has been associated with neurological, neurodegenerative, and neurodevelopmental disorders. The CNS is a closed system with regard to cholesterol homeostasis, as cholesterol-delivering lipoproteins from the periphery cannot pass the blood-brain-barrier and enter the brain. Different cell types in the brain have different functions in the regulation of cholesterol homeostasis, with astrocytes producing and releasing apolipoprotein E and lipoproteins, and neurons metabolizing cholesterol to 24(S)-hydroxycholesterol. We present evidence that astrocytes and neurons adopt different mechanisms also in regulating cholesterol efflux. We found that in astrocytes cholesterol efflux is induced by both lipid-free apolipoproteins and lipoproteins, while cholesterol removal from neurons is triggered only by lipoproteins. The main pathway by which apolipoproteins induce cholesterol efflux is through ABCA1. By upregulating ABCA1 levels and by inhibiting its activity and silencing its expression, we show that ABCA1 is involved in cholesterol efflux from astrocytes but not from neurons. Furthermore, our results suggest that ABCG1 is involved in cholesterol efflux to apolipoproteins and lipoproteins from astrocytes but not from neurons, while ABCG4, whose expression is much higher in neurons than astrocytes, is involved in cholesterol efflux from neurons but not astrocytes. These results indicate that different mechanisms regulate cholesterol efflux from neurons and astrocytes, reflecting the different roles that these cell types play in brain cholesterol homeostasis. These results are important in understanding cellular targets of therapeutic drugs under development for the treatments of conditions associated with altered cholesterol homeostasis in the CNS. PMID:23010475

  2. Cloning and functional expression of novel cholesterol transporters ABCG1 and ABCG4 in gonadotropin-releasing hormone neurons of the tilapia.

    PubMed

    Phang, Y L; Soga, T; Kitahashi, T; Parhar, I S

    2012-02-17

    In addition to reproduction, gonadotropin-releasing hormone (GnRH) has been postulated to control cholesterol metabolism via cholesterol transport, which is carried out partly by the members of ATP-binding cassette (ABC) transporters G1 (ABCG1) and G4 (ABCG4). However, there is yet to be evidence demonstrating the relationship between these transporters with reference to GnRH neurons. In the present study, we cloned two ABCG1 messenger RNA (mRNA) variants and one ABCG4 mRNA and examined their expression in the brain including GnRH neurons (GnRH1, GnRH2, and GnRH3) in the cichlid tilapia (Oreochromis niloticus). Comparison of nucleotide sequences of the tilapia ABCG1 and ABCG4 with that of other fish species showed that both of these genes are evolutionarily conserved among fishes. ABCG1 and ABCG4 were shown to have high mRNA expressions in the CNS, pituitary, and gonads. In the brain, real-time polymerase chain reaction (PCR) showed that ABCG4 mRNA was higher than ABCG1a in all brain regions including the olfactory bulb (ABCG1=13.34, ABCG4=6796.35; P<0.001), dorsal telencephalon (ABCG1=8.64, ABCG4=10149.13; P=0.001), optic tectum (ABCG1=22.12, ABCG4=13931.04; P<0.01), cerebellum (ABCG1=8.68, ABCG4=12382.90; P<0.01), and preoptic area-midbrain-hypothalamus (ABCG1=21.36, ABCG4=13255.41; P=0.001). Similarly, although ABCG1 mRNA level is much higher in the pituitary compared with the brain, it was still significantly lower compared with ABCG4 (ABCG1=337.73, ABCG4=1157.87; P=0.01). The differential pattern of expression of ABCG1 and ABCG4 in the brain versus pituitary suggests that the two transporters are regulated by different mechanisms. Furthermore, ABCG1 and ABCG4 mRNA expressions were found in all three types of laser-captured GnRH neurons with highly similar percentage of expressions, suggesting that cholesterol efflux from GnRH neurons may require heterodimerization of both ABCG1 and ABCG4. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Effect of vildagliptin and pravastatin combination on cholesterol efflux in adipocytes.

    PubMed

    Mostafa, Ahmed M; Hamdy, Nadia M; Abdel-Rahman, Sherif Z; El-Mesallamy, Hala O

    2016-07-01

    Many reports suggested that some statins are almost ineffective in reducing triglycerides or enhancing HDL-C plasma levels, although statin treatment was still efficacious in reducing LDL-C. In diabetic dyslipidemic patients, it may therefore be necessary to use a combination therapy with other drugs to achieve either LDL-C- and triglyceride-lowering or HDL-C-enhancing goals. Such ineffectiveness of statins can be attributed to their effect on the liver X receptor (LXR) which regulates the expression of the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. A decrease in the expression of these transporters eventually leads to decreased cholesterol efflux from peripheral tissues leading to low levels of HDL-C. Although manipulating the LXR pathway may complement the effects of statins, LXR synthetic ligands as T091317 have shown significant hypertriglyceridemic action which limits their use. We recently found that the antidiabetic drug vildagliptin stimulates LXR expression leading to increased ABCB1/ABCG1 expression which improves cholesterol efflux from adipocytes. Therefore, a combination of vildagliptin and statin may provide a solution without the hypertriglyceridemic action observed with LXR agonist. We hypothesize that a combination of vildagliptin and pravastatin will improve cholesterol efflux in adipocytes. Statin-treated 3T3-L1 adipocytes were treated with vildagliptin, and the expression of LXR-ABCA1/ABCG1 cascade and the cholesterol efflux were then determined. Our data indicate that a combination of vildagliptin and pravastatin significantly induces the expression of LXR-ABCA1/ABCG1 cascade and improves cholesterol efflux (P > 0.05) in adipocytes. Our data may explain, at least in part, the improvement in HDL-C levels observed in patients receiving both medications. © 2016 IUBMB Life, 68(7):535-543, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  4. Effect of sulfonylurea agents on reverse cholesterol transport in vitro and vivo.

    PubMed

    Terao, Yoshio; Ayaori, Makoto; Ogura, Masatsune; Yakushiji, Emi; Uto-Kondo, Harumi; Hisada, Tetsuya; Ozasa, Hideki; Takiguchi, Shunichi; Nakaya, Kazuhiro; Sasaki, Makoto; Komatsu, Tomohiro; Iizuka, Maki; Horii, Shunpei; Mochizuki, Seibu; Yoshimura, Michihiro; Ikewaki, Katsunori

    2011-01-01

    Reverse cholesterol transport (RCT) is a critical mechanism for the anti-atherogenic property of HDL. The inhibitory effect of the sulfonylurea agent (SUA) glibenclamide on ATP binding-cassette transporter (ABC) A1 may decrease HDL function but it remains unclear whether it attenuates RCT in vivo. We therefore investigated how the SUAs glibenclamide and glimepiride affected the functionality of ABCA1/ABCG1 and scavenger receptor class B type I (SR-BI) expression in macrophages in vitro and overall RCT in vivo. RAW264.7, HEK293 and BHK-21 cells were used for in vitro studies. To investigate RCT in vivo, 3H-cholesterol-labeled and acetyl LDL-loaded RAW264.7 cells were injected into mice. High dose (500µM) of glibenclamide inhibited ABCA1 function and apolipoprotein A-I (apoA-I)-mediated cholesterol efflux, and attenuated ABCA1 expression. Although glimepiride maintained apoA-I-mediated cholesterol efflux from RAW264.7 cells, like glibenclamide, it inhibited ABCA1-mediated cholesterol efflux from transfected HEK293 cells. Similarly, the SUAs inhibited SR-BI-mediated cholesterol efflux from transfected BHK-21 cells. High doses of SUAs increased ABCG1 expression in RAW264.7 cells, promoting HDL-mediated cholesterol efflux in an ABCG1-independent manner. Low doses (0.1-100 µM) of SUAs did not affect cholesterol efflux from macrophages despite dose-dependent increases in ABCA1/G1 expression. Furthermore, they did not change RCT or plasma lipid levels in mice. High doses of SUAs inhibited the functionality of ABCA1/SR-BI, but not ABCG1. At lower doses, they had no unfavorable effects on cholesterol efflux or overall RCT in vivo. These results indicate that SUAs do not have adverse effects on atherosclerosis contrary to previous findings for glibenclamide.

  5. Puerarin promotes ABCA1-mediated cholesterol efflux and decreases cellular lipid accumulation in THP-1 macrophages.

    PubMed

    Li, Cong-Hui; Gong, Duo; Chen, Ling-Yan; Zhang, Min; Xia, Xiao-Dan; Cheng, Hai-Peng; Huang, Chong; Zhao, Zhen-Wang; Zheng, Xi-Long; Tang, Xiao-Er; Tang, Chao-Ke

    2017-09-15

    It was reported that puerarin decreases the total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and increases high-density lipoprotein cholesterol (HDL-C) level, but the underlying mechanism is unclear. This study was designed to determine whether puerarin decreased lipid accumulation via up-regulation of ABCA1-mediated cholesterol efflux in THP-1 macrophage-derived foam cells. Our results showed that puerarin significantly promoted the expression of ATP-binding cassette transporter A1 (ABCA1) mRNA and protein via the AMP-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor gamma (PPARγ)-liver X receptor-alpha (LXR-α) pathway and decreased cellular lipid accumulation in human THP-1 macrophage-derived foam cells. The miR-7 directly targeted 3' untranslated region of STK11 (Serine/Threonine Kinase 11), which activated the AMPK pathway. Transfection with miR-7 mimic significantly reduced STK11 expression in puerarin-treated macrophages, decreased the phosphorylation of AMPK, down-regulated the expression of the PPARγ-LXR-α-ABCA1 expression. Additionally, treatment with miR-7 decreased cholesterol efflux and increased cholesterol levels in THP-1 macrophage-derived foam cells. Our study demonstrates that puerarin promotes ABCA1-mediated cholesterol efflux and decreases intracellular cholesterol levels through the pathway involving miR-7, STK11, and the AMPK-PPARγ-LXR-α-ABCA1 cascade. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY -cholesterol

    USDA-ARS?s Scientific Manuscript database

    Studies have shown a negative association between cellular cholesterol efflux and coronary artery disease (CAD). Standard protocol for quantifying cholesterol efflux involves labeling cells with [(3)H]cholesterol and measuring release of the labeled sterol. Using [(3)H]cholesterol is not ideal for...

  7. Melanocortin 1 Receptor Signaling Regulates Cholesterol Transport in Macrophages.

    PubMed

    Rinne, Petteri; Rami, Martina; Nuutinen, Salla; Santovito, Donato; van der Vorst, Emiel P C; Guillamat-Prats, Raquel; Lyytikäinen, Leo-Pekka; Raitoharju, Emma; Oksala, Niku; Ring, Larisa; Cai, Minying; Hruby, Victor J; Lehtimäki, Terho; Weber, Christian; Steffens, Sabine

    2017-07-04

    The melanocortin 1 receptor (MC1-R) is expressed by monocytes and macrophages, where it exerts anti-inflammatory actions on stimulation with its natural ligand α-melanocyte-stimulating hormone. The present study was designed to investigate the specific role of MC1-R in the context of atherosclerosis and possible regulatory pathways of MC1-R beyond anti-inflammation. Human and mouse atherosclerotic samples and primary mouse macrophages were used to study the regulatory functions of MC1-R. The impact of pharmacological MC1-R activation on atherosclerosis was assessed in apolipoprotein E-deficient mice. Characterization of human and mouse atherosclerotic plaques revealed that MC1-R expression localizes in lesional macrophages and is significantly associated with the ATP-binding cassette transporters ABCA1 and ABCG1, which are responsible for initiating reverse cholesterol transport. Using bone marrow-derived macrophages, we observed that α-melanocyte-stimulating hormone and selective MC1-R agonists similarly promoted cholesterol efflux, which is a counterregulatory mechanism against foam cell formation. Mechanistically, MC1-R activation upregulated the levels of ABCA1 and ABCG1. These effects were accompanied by a reduction in cell surface CD36 expression and in cholesterol uptake, further protecting macrophages from excessive lipid accumulation. Conversely, macrophages deficient in functional MC1-R displayed a phenotype with impaired efflux and enhanced uptake of cholesterol. Pharmacological targeting of MC1-R in atherosclerotic apolipoprotein E-deficient mice reduced plasma cholesterol levels and aortic CD36 expression and increased plaque ABCG1 expression and signs of plaque stability. Our findings identify a novel role for MC1-R in macrophage cholesterol transport. Activation of MC1-R confers protection against macrophage foam cell formation through a dual mechanism: It prevents cholesterol uptake while concomitantly promoting ABCA1- and ABCG1-mediated reverse

  8. The Hypocholesterolemic Effects of Eryngium carlinae F. Delaroche Are Mediated by the Involvement of the Intestinal Transporters ABCG5 and ABCG8

    PubMed Central

    De la O-Arciniega, Minarda; Naranjo-Rodríguez, Elia Brosla; Castro-Torres, Víctor Alberto; Domínguez-Ortíz, Miguel Ángel

    2017-01-01

    Hypercholesterolemia is a metabolic disorder characterized by a high concentration of cholesterol in the blood. Eryngium carlinae is a medicinal plant used to treat lipid diseases. The goal of this work was to evaluate, in a model of hypercholesterolemia in mice, the hypocholesterolemic effect of a hydroalcoholic extract of E. carlinae and its main metabolite, D-mannitol. Biochemical analyses of serum lipids and hepatic enzymes were performed by photocolorimetry. We performed histopathological studies of the liver and the expression of the intestinal cholesterol transporters Abcg5 and Abcg8 was determined by standard western blot method. Our results showed that hydroalcoholic extract at doses of 100 mg/kg and D-mannitol at doses of 10 mg/kg reduced the concentration of both total cholesterol and non-HDL cholesterol, without altering the concentration of HDL cholesterol and without damage to hepatocytes. Treatment with the extract increased Abcg8 intestinal transporter expression, while D-mannitol decreased the expression of the two Abcg5/Abcg8 transporters, compared with the hypercholesterolemic group. Considering that Abcg5/Abcg8 transporters perform cholesterol efflux, our results demonstrate that the lipid-lowering effect of the hydroalcoholic extract may be associated with the increase of Abcg8 expression, but the hypocholesterolemic effect of D-mannitol is independent of overexpression of these intestinal transporters and probably they have another mechanism of action. PMID:29387127

  9. Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis

    PubMed Central

    Murphy, Andrew J.; Bijl, Nora; Yvan-Charvet, Laurent; Welch, Carrie B.; Bhagwat, Neha; Reheman, Adili; Wang, Yiming; Shaw, James A.; Levine, Ross L.; Ni, Heyu; Tall, Alan R.; Wang, Nan

    2013-01-01

    Platelets play a key role in atherogenesis and its complications. Both hypercholesterolemia and increased platelet production promote athero-thrombosis; however, a potential link between altered cholesterol homeostasis and platelet production has not been explored. Transplantation of bone marrow (BM) deficient in ABCG4, a transporter of unknown function, into Ldlr−/− mice resulted in thrombocytosis, accelerated thrombosis and atherosclerosis. While not detected in lesions, Abcg4 was highly expressed in BM megakaryocyte progenitors (MkP). Abcg4−/− MkPs displayed defective cholesterol efflux to HDL, increased cell surface levels of thrombopoietin (TPO) receptor (c-MPL) and enhanced proliferation. This appeared to reflect disruption of the negative feedback regulation of c-MPL levels and signaling by E3 ligase c-CBL and cholesterol-sensing LYN kinase. HDL infusions reduced platelet counts in Ldlr−/− mice and in a mouse model of myeloproliferative neoplasm, in a completely ABCG4-dependent fashion. HDL infusions may offer a novel approach to reducing athero-thrombotic events associated with increased platelet production. PMID:23584088

  10. Apo AI/ABCA1-dependent and HDL3-mediated lipid efflux from compositionally distinct cholesterol-based microdomains.

    PubMed

    Drobnik, Wolfgang; Borsukova, Hana; Böttcher, Alfred; Pfeiffer, Alexandra; Liebisch, Gerhard; Schütz, Gerhard J; Schindler, Hansgeorg; Schmitz, Gerd

    2002-04-01

    We have investigated whether a raft heterogeneity exists in human monocyte-derived macrophages and fibroblasts and whether these microdomains are modulated by lipid efflux. Triton X-100 (Triton) or Lubrol WX (Lubrol) detergent-resistant membranes from cholesterol-loaded monocytes were associated with the following findings: (i) Lubrol-DRM contained most of the cellular cholesterol and at least 75% of Triton-detergent-resistant membranes. (ii) 'Lubrol rafts', defined by their solubility in Triton but insolubility in Lubrol, were enriched in unsaturated phosphatidylcholine and showed a lower cholesterol to choline-phospholipid ratio compared to Triton rafts. (iii) CD14 and CD55 were recovered in Triton- and Lubrol-detergent-resistant membranes, whereas CD11b was found exclusively in Triton DRM. ABCA1 implicated in apo AI-mediated lipid efflux and CDC42 were partially localized in Lubrol- but not in Triton-detergent-resistant membranes. (iv) Apo AI preferentially depleted cholesterol and choline-phospholipids from Lubrol rafts, whereas HDL3 additionally decreased the cholesterol content of Triton rafts. In fibroblasts, neither ABCA1 nor CDC42 was found in Lubrol rafts, and both apo AI and HDL3 reduced the lipid content in Lubrol- as well as in Triton-detergent-resistant membranes. In summary, we provide evidence for the existence of compositionally distinct membrane microdomains in human cells and their modulation by apo AI/ABCA1-dependent and HDL3-mediated lipid efflux.

  11. Pharmacologic Suppression of Hepcidin Increases Macrophage Cholesterol Efflux and Reduces Foam Cell Formation and Atherosclerosis

    PubMed Central

    Saeed, Omar; Otsuka, Fumiyuki; Polavarapu, Rohini; Karmali, Vinit; Weiss, Daiana; Davis, Talina; Rostad, Brad; Pachura, Kimberly; Adams, Lila; Elliott, John; Taylor, W. Robert; Narula, Jagat; Kolodgie, Frank; Virmani, Renu; Hong, Charles C.; Finn, Aloke V.

    2012-01-01

    Objectives We recently reported that lowering of macrophage free intracellular iron increases expression of cholesterol efflux transporters ABCA1 and ABCG1 by reducing generation of reactive oxygen species. In this study, we explore whether reducing macrophage intracellular iron levels via pharmacologic suppression of hepcidin can increase macrophage-specific expression of cholesterol efflux transporters and reduce atherosclerosis. Methods and Results To suppress hepcidin, increase expression of the iron exporter ferroportin (FPN), and reduce macrophage intracellular iron, we used a small molecule inhibitor of BMP signaling, LDN 193189 (LDN). LDN (10 mg/kg i.p. bid) was administered to mice and its effects on atherosclerosis, intracellular iron, oxidative stress, lipid efflux, and foam cell formation were measured in plaques and peritoneal macrophages. Long-term LDN administration to Apo E (-/-) mice increased ABCA1 immunoreactivity within intraplaque macrophages by 3.7-fold (n=8; p=0.03), reduced oil-red-o positive lipid area by 50% (n=8; p=0.02) and decreased total plaque area by 43% (n=8; p=0.001). LDN suppressed liver hepcidin transcription and increased macrophage FPN, lowering intracellular iron and hydrogen peroxide production. LDN treatment increased macrophage ABCA1 and ABCG1 expression, significantly raised cholesterol efflux to ApoA-1 and decreased foam cell formation. All preceding LDN-induced effects on cholesterol efflux were reversed by exogenous hepcidin administration, suggesting that modulation of intracellular iron levels within macrophages as the mechanism by which LDN triggers these effects. Conclusion These data suggest that pharmacologic manipulation of iron homeostasis may be a promising target to increase macrophage reverse cholesterol transport and limit atherosclerosis. PMID:22095982

  12. Piperine inhibits ABCA1 degradation and promotes cholesterol efflux from THP‐1‐derived macrophages

    PubMed Central

    Wang, Limei; Palme, Veronika; Rotter, Susanne; Schilcher, Nicole; Cukaj, Malsor; Wang, Dongdong; Ladurner, Angela; Heiss, Elke H.; Stangl, Herbert; Dirsch, Verena M.

    2016-01-01

    1 Scope Increased macrophage cholesterol efflux (ChE) is considered to have anti‐atherosclerotic effect counteracting cardiovascular disease. The principle pungent ingredient of the fruits of Piper nigrum, piperine, is identified in this study as a ChE inducer in THP‐1‐derived macrophages, and mechanisms underlying this effect are explored. 2 Methods and results Without affecting cell viability, piperine concentration‐dependently enhances ChE in THP‐1‐derived macrophages from 25 to 100 μM. The expression level of the key cholesterol transporter protein ATP‐binding cassette transporter A1 (ABCA1) is significantly upregulated by piperine, as revealed by western blot analyses. However, two other ChE‐mediating transporter proteins, ATP‐binding cassette transporter G1 (ABCG1) and scavenger receptor class B member 1 (SR‐B1), remain unaffected. Piperine exerts no influence on ABCA1 mRNA levels, but significantly inhibits the degradation of ABCA1, as evident by an increased half‐life of the protein in the presence of cycloheximide. Furthermore, it is found that piperine likely interferes with the calpain‐mediated ABCA1 degradation pathway and exhibits significant inhibition of calpain activity. 3 Conclusion Our findings suggest that piperine promotes ChE in THP‐1‐derived macrophages by upregulation of ABCA1, which might be mediated by inhibition of calpain activity. This novel bioactivity makes the dietary constituent piperine a good candidate to be further explored for therapeutic or preventive applications in the context of atherosclerosis. PMID:27862930

  13. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase.

    PubMed

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M; Brown, Robert J

    2014-09-05

    Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Activation of Liver X Receptor Decreases Atherosclerosis in Ldlr−/− mice in the Absence of ABCA1 and ABCG1 in Myeloid Cells

    PubMed Central

    Kappus, Mojdeh S.; Murphy, Andrew J.; Abramowicz, Sandra; Ntonga, Vusisizwe; Welch, Carrie L.; Tall, Alan R.; Westerterp, Marit

    2014-01-01

    Objective Liver X Receptor (LXR) activators decrease atherosclerosis in mice. LXR activators (1) directly up-regulate genes involved in reverse cholesterol transport (RCT) and (2) exert anti-inflammatory effects mediated by transrepression of NFκB target genes. We investigated whether myeloid cell deficiency of ATP-binding cassette transporters A1 and G1 (ABCA1/G1), principal targets of LXR that promote macrophage cholesterol efflux and initiate RCT, would abolish the beneficial effects of LXR activation on atherosclerosis. Approach and Results LXR activator T0901317 (T0) substantially reduced inflammatory gene expression in macrophages lacking ABCA1/G1. Ldlr−/− mice were transplanted with Abca1−/−Abcg1−/− or wild-type bone marrow (BM) and fed a Western-type diet (WTD) for 6 weeks with or without T0 supplementation. Abca1/g1 BM deficiency increased atherosclerotic lesion complexity and inflammatory cell infiltration into the adventitia and myocardium. T0 markedly decreased lesion area, complexity and inflammatory cell infiltration in the Abca1−/−Abcg1−/− BM transplanted mice. To investigate whether this was due to macrophage Abca1/g1 deficiency, Ldlr−/− mice were transplanted with LysmCreAbca1fl/flAbcg1fl/fl or Abca1fl/flAbcg1fl/fl BM and fed WTD with or without the more specific LXR agonist GW3965 for 12 weeks. GW3965 decreased lesion size in both groups and the decrease was more prominent in the LysmCreAbca1fl/flAbcg1fl/fl group. Conclusions The results suggest that anti-inflammatory effects of LXR activators are of key importance to their anti-atherosclerotic effects in vivo independent of cholesterol efflux pathways mediated by macrophage ABCA1/G1. This has implications for the development of LXR activators that lack adverse effects on lipogenic genes while maintaining the ability to trans-repress inflammatory genes. PMID:24311381

  15. Tangshen Formula Attenuates Diabetic Nephropathy by Promoting ABCA1-Mediated Renal Cholesterol Efflux in db/db Mice.

    PubMed

    Liu, Peng; Peng, Liang; Zhang, Haojun; Tang, Patrick Ming-Kuen; Zhao, Tingting; Yan, Meihua; Zhao, Hailing; Huang, Xiaoru; Lan, Huiyao; Li, Ping

    2018-01-01

    The commonly prescribed Tangshen Formula (TSF) is a traditional Chinese formulation that has been shown to reduce plasma lipid metabolism and proteinuria and improve the estimated glomerular filtration rate (eGFR) in patients with diabetic kidney disease. This study investigated the underlying mechanism whereby TSF regulates renal lipid accumulation and ameliorates diabetic renal injuries in spontaneous diabetic db/db mice and in vitro in sodium palmitate (PA)-stimulated and Abca1-SiRNA-transfected mouse tubular epithelial cells (mTECs). The results revealed that TSF treatment significantly ameliorated the renal injuries by lowering urinary albumin excretion and improving renal tissue injuries in diabetic (db/db) mice. Interestingly, the treatment with TSF also resulted in decreased cholesterol levels in the renal tissues of db/db mice, which was associated with increased expression of the peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), the Liver X receptors (LXR), and ATP-binding cassette subfamily A member 1 (ABCA1), suggesting that TSF might attenuate diabetic kidney injury via a mechanism associated with improving cholesterol efflux in the diabetic kidney. This was investigated in vitro in mTECs, and the results showed that TSF reduced the PA-stimulated cholesterol accumulation in mTECs. Mechanistically, the addition of TSF was capable of reversing PA-induced downregulation of PGC-1α, LXR, and ABCA1 expression and cholesterol accumulation in mTECs, suggesting that TSF might act the protection via the PGC-1α-LXR-ABCA1 pathway to improve the cholesterol efflux in the renal tissues of db/db mice. This was further confirmed by silencing ABCA1 to block the promotive effect of TSF on cholesterol efflux in vitro . In conclusion, TSF might ameliorate diabetic kidney injuries by promoting ABCA1-mediated renal cholesterol efflux.

  16. Clinically used selective estrogen receptor modulators affect different steps of macrophage-specific reverse cholesterol transport

    PubMed Central

    Fernández-Suárez, María E.; Escolà-Gil, Joan C.; Pastor, Oscar; Dávalos, Alberto; Blanco-Vaca, Francisco; Lasunción, Miguel A.; Martínez-Botas, Javier; Gómez-Coronado, Diego

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are widely prescribed drugs that alter cellular and whole-body cholesterol homeostasis. Here we evaluate the effect of SERMs on the macrophage-specific reverse cholesterol transport (M-RCT) pathway, which is mediated by HDL. Treatment of human and mouse macrophages with tamoxifen, raloxifene or toremifene induced the accumulation of cytoplasmic vesicles of acetyl-LDL-derived free cholesterol. The SERMs impaired cholesterol efflux to apolipoprotein A-I and HDL, and lowered ABCA1 and ABCG1 expression. These effects were not altered by the antiestrogen ICI 182,780 nor were they reproduced by 17β-estradiol. The treatment of mice with tamoxifen or raloxifene accelerated HDL-cholesteryl ester catabolism, thereby reducing HDL-cholesterol concentrations in serum. When [3H]cholesterol-loaded macrophages were injected into mice intraperitoneally, tamoxifen, but not raloxifene, decreased the [3H]cholesterol levels in serum, liver and feces. Both SERMs downregulated liver ABCG5 and ABCG8 protein expression, but tamoxifen reduced the capacity of HDL and plasma to promote macrophage cholesterol efflux to a greater extent than raloxifene. We conclude that SERMs interfere with intracellular cholesterol trafficking and efflux from macrophages. Tamoxifen, but not raloxifene, impair M-RCT in vivo. This effect is primarily attributable to the tamoxifen-mediated reduction of the capacity of HDL to promote cholesterol mobilization from macrophages. PMID:27601313

  17. Increased maternal and fetal cholesterol efflux capacity and placental CYP27A1 expression in preeclampsia.

    PubMed

    Mistry, Hiten D; Kurlak, Lesia O; Mansour, Yosef T; Zurkinden, Line; Mohaupt, Markus G; Escher, Geneviève

    2017-06-01

    Preeclampsia is a pregnancy-specific condition that leads to increased cardiovascular risk in later life. A decrease in cholesterol efflux capacity is linked to CVD. We hypothesized that in preeclampsia there would be a disruption of maternal/fetal plasma to efflux cholesterol, as well as differences in the concentrations of both placental sterol 27-hydroxylase (CYP27A1) and apoA1 binding protein (AIBP). Total, HDL-, and ABCA1-mediated cholesterol effluxes were performed with maternal and fetal plasma from women with preeclampsia and normotensive controls (both n = 17). apoA1 and apoE were quantified by chemiluminescence, and 27-hydroxycholesterol (27-OHC) by GC-MS. Immunohistochemistry was used to determine placental expression/localization of CYP27A1, AIBP, apoA1, apoE, and SRB1. Maternal and fetal total and HDL-mediated cholesterol efflux capacities were increased in preeclampsia (by 10-20%), but ABCA1-mediated efflux was decreased (by 20-35%; P < 0.05). Maternal and fetal apoE concentrations were higher in preeclampsia. Fetal plasma 27-OHC levels were decreased in preeclamptic samples ( P < 0.05). Placental protein expression of both CYP27A1 and AIBP were localized around fetal vessels and significantly increased in preeclampsia ( P = 0.04). Placental 27-OHC concentrations were also raised in preeclampsia ( P < 0.05). Increased HDL-mediated cholesterol efflux capacity and placental CYP27A1/27-OHC could be a rescue mechanism in preeclampsia, to remove cholesterol from cells to limit lipid peroxidation and increase placental angiogenesis. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  18. α-Synuclein Regulates Neuronal Cholesterol Efflux.

    PubMed

    Hsiao, Jen-Hsiang T; Halliday, Glenda M; Kim, Woojin Scott

    2017-10-19

    α-Synuclein is a neuronal protein that is at the center of focus in understanding the etiology of a group of neurodegenerative diseases called α-synucleinopathies, which includes Parkinson's disease (PD). Despite much research, the exact physiological function of α-synuclein is still unclear. α-Synuclein has similar biophysical properties as apolipoproteins and other lipid-binding proteins and has a high affinity for cholesterol. These properties suggest a possible role for α-synuclein as a lipid acceptor mediating cholesterol efflux (the process of removing cholesterol out of cells). To test this concept, we "loaded" SK-N-SH neuronal cells with fluorescently-labelled cholesterol, applied exogenous α-synuclein, and measured the amount of cholesterol removed from the cells using a classic cholesterol efflux assay. We found that α-synuclein potently stimulated cholesterol efflux. We found that the process was dose and time dependent, and was saturable at 1.0 µg/mL of α-synuclein. It was also dependent on the transporter protein ABCA1 located on the plasma membrane. We reveal for the first time a novel role of α-synuclein that underscores its importance in neuronal cholesterol regulation, and identify novel therapeutic targets for controlling cellular cholesterol levels.

  19. Bilirubin Decreases Macrophage Cholesterol Efflux and ATP-Binding Cassette Transporter A1 Protein Expression.

    PubMed

    Wang, Dongdong; Tosevska, Anela; Heiß, Elke H; Ladurner, Angela; Mölzer, Christine; Wallner, Marlies; Bulmer, Andrew; Wagner, Karl-Heinz; Dirsch, Verena M; Atanasov, Atanas G

    2017-04-28

    Mild but chronically elevated circulating unconjugated bilirubin is associated with reduced total and low-density lipoprotein cholesterol concentration, which is associated with reduced cardiovascular disease risk. We aimed to investigate whether unconjugated bilirubin influences macrophage cholesterol efflux, as a potential mechanism for the altered circulating lipoprotein concentrations observed in hyperbilirubinemic individuals. Cholesterol efflux from THP-1 macrophages was assessed using plasma obtained from normo- and hyperbilirubinemic (Gilbert syndrome) humans (n=60 per group) or (heterozygote/homozygote Gunn) rats (n=20 per group) as an acceptor. Hyperbilirubinemic plasma from patients with Gilbert syndrome and Gunn rats induced significantly reduced cholesterol efflux compared with normobilirubinemic plasma. Unconjugated bilirubin (3-17.1 μmol/L) exogenously added to plasma- or apolipoprotein A1-supplemented media also decreased macrophage cholesterol efflux in a concentration- and time-dependent manner. We also showed reduced protein expression of the ATP-binding cassette transporter A1 (ABCA1), a transmembrane cholesterol transporter involved in apolipoprotein A1-mediated cholesterol efflux, in THP-1 macrophages treated with unconjugated bilirubin and in peripheral blood mononuclear cells obtained from hyperbilirubinemic individuals. Furthermore, we demonstrated that bilirubin accelerates the degradation rate of the ABCA1 protein in THP-1 macrophages. Cholesterol efflux from THP-1 macrophages is decreased in the presence of plasma obtained from humans and rats with mild hyperbilirubinemia. A direct effect of unconjugated bilirubin on cholesterol efflux was demonstrated and is associated with decreased ABCA1 protein expression. These data improve our knowledge concerning bilirubin's impact on cholesterol transport and represent an important advancement in our understanding of bilirubin's role in cardiovascular disease. © 2017 The Authors. Published on

  20. Pathways by which reconstituted high-density lipoprotein mobilizes free cholesterol from whole body and from macrophages.

    PubMed

    Cuchel, Marina; Lund-Katz, Sissel; de la Llera-Moya, Margarita; Millar, John S; Chang, David; Fuki, Ilia; Rothblat, George H; Phillips, Michael C; Rader, Daniel J

    2010-03-01

    Reconstituted high-density lipoprotein (rHDL) is of interest as a potential novel therapy for atherosclerosis because of its ability to promote free cholesterol (FC) mobilization after intravenous administration. We performed studies to identify the underlying molecular mechanisms by which rHDL promote FC mobilization from whole body in vivo and macrophages in vitro. Wild-type (WT), SR-BI knockout (KO), ABCA1 KO, and ABCG1 KO mice received either rHDL or phosphate-buffered saline intravenously. Blood was drawn before and at several time points after injection for apolipoprotein A-I, phosphatidylcholine, and FC measurement. In WT mice, serum FC peaked at 20 minutes and rapidly returned toward baseline levels by 24 hours. Unexpectedly, ABCA1 KO and ABCG1 KO mice did not differ from WT mice regarding the kinetics of FC mobilization. In contrast, in SR-BI KO mice the increase in FC level at 20 minutes was only 10% of that in control mice (P<0.01). Bone marrow-derived macrophages from WT, SR-BI O, ABCA1 KO, and ABCG1 KO mice were incubated in vitro with rHDL and cholesterol efflux was determined. Efflux from SR-BI KO and ABCA1 KO macrophages was not different from WT macrophages. In contrast, efflux from ABCG1 KO macrophages was approximately 50% lower as compared with WT macrophages (P<0.001). The bulk mobilization of FC observed in circulation after rHDL administration is primarily mediated by SR-BI. However, cholesterol mobilization from macrophages to rHDL is primarily mediated by ABCG1.

  1. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux

    PubMed Central

    Vrins, Carlos L. J.; van der Velde, Astrid E.; van den Oever, Karin; Levels, Johannes H. M.; Huet, Stephane; Oude Elferink, Ronald P. J.; Kuipers, Folkert; Groen, Albert K.

    2009-01-01

    Peroxisome proliferator-activated receptor delta (PPARδ) is involved in regulation of energy homeostasis. Activation of PPARδ markedly increases fecal neutral sterol secretion, the last step in reverse cholesterol transport. This phenomenon can neither be explained by increased hepatobiliary cholesterol secretion, nor by reduced cholesterol absorption. To test the hypothesis that PPARδ activation leads to stimulation of transintestinal cholesterol efflux (TICE), we quantified it by intestine perfusions in FVB mice treated with PPARδ agonist GW610742. To exclude the effects on cholesterol absorption, mice were also treated with cholesterol absorption inhibitor ezetimibe or ezetimibe/GW610742. GW601742 treatment had little effect on plasma lipid levels but stimulated both fecal neutral sterol excretion (∼200%) and TICE (∼100%). GW610742 decreased intestinal Npc1l1 expression but had no effect on Abcg5/Abcg8. Interestingly, expression of Rab9 and LIMPII, encoding proteins involved in intracellular cholesterol trafficking, was increased upon PPARδ activation. Although treatment with ezetimibe alone had no effect on TICE, it reduced the effect of GW610742 on TICE. These data show that activation of PPARδ stimulates fecal cholesterol excretion in mice, primarily by the two-fold increase in TICE, indicating that this pathway provides an interesting target for the development of drugs aiming at the prevention of atherosclerosis. PMID:19439761

  2. Peptide mediators of cholesterol efflux

    DOEpatents

    Bielicki, John K.; Johansson, Jan

    2013-04-09

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  3. The E3 ubiquitin ligase, HECTD1, is involved in ABCA1-mediated cholesterol export from macrophages.

    PubMed

    Aleidi, Shereen M; Yang, Alryel; Sharpe, Laura J; Rao, Geetha; Cochran, Blake J; Rye, Kerry-Anne; Kockx, Maaike; Brown, Andrew J; Gelissen, Ingrid C

    2018-04-01

    The ABC lipid transporters, ABCA1 and ABCG1, are essential for maintaining lipid homeostasis in cells such as macrophages by exporting excess cholesterol to extracellular acceptors. These transporters are highly regulated at the post-translational level, including protein ubiquitination. Our aim was to investigate the role of the E3 ubiquitin ligase HECTD1, recently identified as associated with ABCG1, on ABCG1 and ABCA1 protein levels and cholesterol export function. Here, we show that HECTD1 protein is widely expressed in a range of human and murine primary cells and cell lines, including macrophages, neuronal cells and insulin secreting β-cells. siRNA knockdown of HECTD1 unexpectedly decreased overexpressed ABCG1 protein levels and cell growth, but increased native ABCA1 protein in CHO-K1 cells. Knockdown of HECTD1 in unloaded THP-1 macrophages did not affect ABCG1 but significantly increased ABCA1 protein levels, in wild-type as well as THP-1 cells that do not express ABCG1. Cholesterol export from macrophages to apoA-I over time was increased after knockdown of HECTD1, however these effects were not sustained in cholesterol-loaded cells. In conclusion, we have identified a new candidate, the E3 ubiquitin ligase HECTD1, that may be involved in the regulation of ABCA1-mediated cholesterol export from unloaded macrophages to apoA-I. The exact mechanism by which this ligase affects this pathway remains to be elucidated. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Retinoic Acid Isomers Up-Regulate ATP Binding Cassette A1 and G1 and Cholesterol Efflux in Rat Astrocytes: Implications for Their Therapeutic and Teratogenic Effects

    PubMed Central

    Chen, Jing; Costa, Lucio G.

    2011-01-01

    Recent studies suggest that retinoids may be effective in the treatment of Alzheimer's disease, although exposure to an excess of retinoids during gestation causes teratogenesis. Cholesterol is essential for brain development, but high levels of cholesterol have been associated with Alzheimer's disease. We hypothesized that retinoic acid may affect cholesterol homeostasis in rat astrocytes, which regulate cholesterol distribution in the brain, through the up-regulation of cholesterol transporters ATP binding cassette (Abc)a1 and Abcg1. Tretinoin, 13-cis retinoic acid (13-cis-RA), 9-cis-RA, and the selective retinoid X receptor (RXR) agonist methoprene significantly increased cholesterol efflux induced by cholesterol acceptors and protein levels of Abca1 by 2.3- (±0.25), 3.6- (±0.42), 4.1- (±0.5), and 1.75- (±0.43) fold, respectively, and Abcg1 by 2.1- (±0.26), 2.2- (±0.33), 2.5- (±0.23), and 2.2- (±0.21) fold, respectively. 13-cis-RA and 9-cis-RA also significantly increased mRNA levels of Abca1 (maximal induction 7.3 ± 0.42 and 2.7 ± 0.17, respectively) and Abcg1 (maximal induction 2.0 ± 0.18 and 1.8 ± 0.09, respectively), and the levels of membrane-bound Abca1 (2.5 ± 0.3 and 2.5 ± 0.40-fold increase, respectively), whereas they significantly decreased intracellular cholesterol content without affecting cholesterol synthesis. The effect of 9-cis-RA on cholesterol homeostasis in astrocytes can be ascribed to the activation of RXR, whereas the effects of 13-cis-RA and tretinoin were independent of either RXRs or retinoic acid receptors. These findings suggest that retinoids affect cholesterol homeostasis in astrocytes and that this effect may be involved in both their therapeutic and teratogenic actions. PMID:21628419

  5. Icotinib antagonizes ABCG2-mediated multidrug resistance, but not the pemetrexed resistance mediated by thymidylate synthase and ABCG2

    PubMed Central

    Shukla, Suneet; Zhang, Yun-Kai; Wang, Yi-Jun; Kathawala, Rishil J.; Robey, Robert W.; Zhang, Li; Yang, Dong-Hua; Talele, Tanaji T.; Bates, Susan E.; Ambudkar, Suresh V.; Chen, Zhe-Sheng

    2014-01-01

    ABCG2 is a potential biomarker causing multidrug resistance (MDR) in Non-Small Cell Lung Cancer (NSCLC). We conducted this study to investigate whether Icotinib, a small-molecule inhibitor of EGFR tyrosine kinase, could interact with ABCG2 transporter in NSCLC. Our results showed that Icotinib reversed ABCG2-mediated MDR by antagonizing the drug efflux function of ABCG2. Icotinib stimulated the ATPase activity in a concentration-dependent manner and inhibited the photolabeling of ABCG2 with [125I]-Iodoarylazidoprazosin, demonstrating that it interacts at the drug-binding pocket. Homology modeling predicted the binding conformation of Icotinib at Asn629 centroid-based grid of ABCG2. However, Icotinib at reversal concentration did not affect the expression levels of AKT and ABCG2. Furthermore, a combination of Icotinib and topotecan exhibited significant synergistic anticancer activity against NCI-H460/MX20 tumor xenografts. However, the inhibition of transport activity of ABCG2 was insufficient to overcome pemetrexed resistance in NCI-H460/MX20 cells, which was due to the co-upregulated thymidylate synthase (TS) and ABCG2 expression. This is the first report to show that the up-regulation of TS in ABCG2-overexpressing cell line NCI-H460/MX20 may play a role of resistance to pemetrexate. Our findings suggested different possible strategies of overcoming the resistance of topotecan and pemetrexed in the NSCLC patients. PMID:24980828

  6. Icotinib antagonizes ABCG2-mediated multidrug resistance, but not the pemetrexed resistance mediated by thymidylate synthase and ABCG2.

    PubMed

    Wang, De-Shen; Patel, Atish; Shukla, Suneet; Zhang, Yun-Kai; Wang, Yi-Jun; Kathawala, Rishil J; Robey, Robert W; Zhang, Li; Yang, Dong-Hua; Talele, Tanaji T; Bates, Susan E; Ambudkar, Suresh V; Xu, Rui-Hua; Chen, Zhe-Sheng

    2014-06-30

    ABCG2 is a potential biomarker causing multidrug resistance (MDR) in Non-Small Cell Lung Cancer (NSCLC). We conducted this study to investigate whether Icotinib, a small-molecule inhibitor of EGFR tyrosine kinase, could interact with ABCG2 transporter in NSCLC. Our results showed that Icotinib reversed ABCG2-mediated MDR by antagonizing the drug efflux function of ABCG2. Icotinib stimulated the ATPase activity in a concentration-dependent manner and inhibited the photolabeling of ABCG2 with [125I]-Iodoarylazidoprazosin, demonstrating that it interacts at the drug-binding pocket. Homology modeling predicted the binding conformation of Icotinib at Asn629 centroid-based grid of ABCG2. However, Icotinib at reversal concentration did not affect the expression levels of AKT and ABCG2. Furthermore, a combination of Icotinib and topotecan exhibited significant synergistic anticancer activity against NCI-H460/MX20 tumor xenografts. However, the inhibition of transport activity of ABCG2 was insufficient to overcome pemetrexed resistance in NCI-H460/MX20 cells, which was due to the co-upregulated thymidylate synthase (TS) and ABCG2 expression. This is the first report to show that the up-regulation of TS in ABCG2-overexpressing cell line NCI-H460/MX20 may play a role of resistance to pemetrexate. Our findings suggested different possible strategies of overcoming the resistance of topotecan and pemetrexed in the NSCLC patients.

  7. Karanjin interferes with ABCB1, ABCC1, and ABCG2.

    PubMed

    Michaelis, Martin; Rothweiler, Florian; Nerreter, Thomas; Sharifi, Mohsen; Ghafourian, Taravat; Cinatl, Jindrich

    2014-01-01

    The prominent ATP-binding cassette (ABC) transporters ABCB1, ABCC1, and ABCG2 are involved in substance transport across physiological barriers and therefore in drug absorption, distribution, and elimination. They also mediate multi-drug resistance in cancer cells. Different flavonoids are known to interfere with different ABC transporters. Here, the effect of the furanoflavonol karanjin, a potential drug with antiglycaemic, gastroprotective, antifungal, and antibacterial effects, was investigated on ABCB1, ABCC1, and ABCG2-mediated drug transport in comparison to the flavonoids apigenin, genistein, and naringenin. Cells expressing the relevant transporters (ABCB1: UKF-NB-3(ABCB1), UKF-NB-3(r)VCR¹⁰; ABCC1: G62, PC-3(r)VCR²⁰; ABCG2: UKF-NB-3(ABCG2)) were used in combination with specific fluorescent and cytotoxic ABC transporter substrates and ABC transporter inhibitors to study ABC transporter function. Moreover, the effects of the investigated flavonoids were determined on the ABC transporter ATPase activities. Karanjin interfered with drug efflux mediated by ABCB1, ABCC1, and ABCG2 and enhanced the ATPase activity of all three transporters. Moreover, karanjin exerted more pronounced effects than the control flavonoids apigenin, genistein, and naringenin on all three transporters. Most notably, karanjin interfered with ABCB1 at low concentrations being about 1 µM. Taken together, these findings should be taken into account during further consideration of karanjin as a potential drug for different therapeutic indications. The effects on ABCB1, ABCC1, and ABCG2 may affect the pharmacokinetics of co-administered drugs.

  8. Andrographolide Inhibits Oxidized LDL-Induced Cholesterol Accumulation and Foam Cell Formation in Macrophages.

    PubMed

    Lin, Hung-Chih; Lii, Chong-Kuei; Chen, Hui-Chun; Lin, Ai-Hsuan; Yang, Ya-Chen; Chen, Haw-Wen

    2018-01-01

    oxLDL is involved in the pathogenesis of atherosclerotic lesions through cholesterol accumulation in macrophage foam cells. Andrographolide, the bioactive component of Andrographis paniculata, possesses several biological activities such as anti-inflammatory, anti-oxidant, and anticancer functions. Scavenger receptors (SRs), including class A SR (SR-A) and CD36, are responsible for the internalization of oxLDL. In contrast, receptors for reverse cholesterol transport, including ABCA1 and ABCG1, mediate the efflux of cholesterol from macrophage foam cells. Transcription factor liver X receptor [Formula: see text] (LXR[Formula: see text] plays a key role in lipid metabolism and inflammation as well as in the regulation of ABCA1 and ABCG1 expression. Because of the contribution of inflammation to macrophage foam cell formation and the potent anti-inflammatory activity of andrographolide, we hypothesized that andrographolide might inhibit oxLDL-induced macrophage foam cell formation. The results showed that andrographolide reduced oxLDL-induced lipid accumulation in macrophage foam cells. Andrographolide decreased the mRNA and protein expression of CD36 by inducing the degradation of CD36 mRNA; however, andrographolide had no effect on SR-A expression. In contrast, andrographolide increased the mRNA and protein expression of ABCA1 and ABCG1, which were dependent on LXR[Formula: see text]. Andrographolide enhanced LXR[Formula: see text] nuclear translocation and DNA binding activity. Treatment with the LXR[Formula: see text] antagonist GGPP and transfection with LXR[Formula: see text] siRNA reversed the ability of andrographolide to stimulate ABCA1 and ABCG1 protein expression. In conclusion, inhibition of CD36-mediated oxLDL uptake and induction of ABCA1- and ABCG1-dependent cholesterol efflux are two working mechanisms by which andrographolide inhibits macrophage foam cell formation, which suggests that andrographolide could be a potential candidate to prevent

  9. β3-Adrenoceptor activation upregulates apolipoprotein A-I expression in HepG2 cells, which might further promote cholesterol efflux from macrophage foam cells.

    PubMed

    Gao, Xia-Qing; Li, Yan-Fang; Jiang, Zhi-Li

    2017-01-01

    The aim of this study was to explore the effects of β 3 -adrenoceptor (β 3 -AR) activation on HepG2 cells and its influence on cholesterol efflux from macrophage foam cells. HepG2 cells were cultured and treated with the β 3 -AR agonist, BRL37344, and antagonist, SR52390A, and the expression of apolipoprotein (Apo) A-I, ApoA-II, ApoB, and β 3 -AR in the supernatants and cells was determined. The expression of peroxisome proliferator-activated receptor (PPAR) γ and PPARα in the HepG2 cells was also assessed. Next, using the RAW264.7 macrophage foam cell model, we also assessed the influence of the HepG2 cell supernatants on lipid efflux. The cholesterol content of the foam cells was also measured, and the cholesterol efflux from the macrophages was examined by determining 3 H-labeled cholesterol levels. Expression of ATP-binding cassette transporter (ABC) A1 and ABCG1 of the macrophage foam cells was also assessed. β 3 -AR activation increased ApoA-I expression in both the HepG2 cells and the supernatants; PPARγ expression was upregulated, but PPARα expression was not. Treatment with GW9662 abolished the increased expression of ApoA-I induced by the β 3 -AR agonist. The HepG2 cell supernatants decreased the lipid accumulation and increased the cholesterol efflux from the macrophage foam cells. ABCA1 expression, but not ABCG1 expression, increased in the macrophage foam cells treated with BRL37344-treated HepG2 cell supernatants. Activation of β 3 -AR in HepG2 cells upregulates ApoA-I expression, which might further promote cholesterol efflux from macrophage foam cells. PPARγ might be required for the induction of ApoA-I expression.

  10. Alectinib (CH5424802) antagonizes ABCB1- and ABCG2-mediated multidrug resistance in vitro, in vivo and ex vivo.

    PubMed

    Yang, Ke; Chen, Yifan; To, Kenneth Kin Wah; Wang, Fang; Li, Delan; Chen, Likun; Fu, Liwu

    2017-03-17

    Alectinib, an inhibitor of anaplastic lymphoma kinase (ALK), was approved by the Food and Drug Administration (FDA) for the treatment of patients with ALK-positive non-small cell lung cancer (NSCLC). Here we investigated the reversal effect of alectinib on multidrug resistance (MDR) induced by ATP-binding cassette (ABC) transporters, which is the primary cause of chemotherapy failure. We provide the first evidence that alectinib increases the sensitivity of ABCB1- and ABCG2-overexpressing cells to chemotherapeutic agents in vitro and in vivo. Mechanistically, alectinib increased the intracellular accumulation of ABCB1/ABCG2 substrates such as doxorubicin (DOX) and Rhodamine 123 (Rho 123) by inhibiting the efflux function of the transporters in ABCB1- or ABCG2-overexpressing cells but not in their parental sensitive cells. Furthermore, alectinib stimulated ATPase activity and competed with substrates of ABCB1 or ABCG2 and competed with [125I] iodoarylazidoprazosin (IAAP) photolabeling bound to ABCB1 or ABCG2 but neither altered the expression and localization of ABCB1 or ABCG2 nor the phosphorylation levels of AKT and ERK. Alectinib also enhanced the cytotoxicity of DOX and the intracellular accumulation of Rho 123 in ABCB1-overexpressing primary leukemia cells. These findings suggest that alectinib combined with traditional chemotherapy may be beneficial to patients with ABCB1- or ABCG2-mediated MDR.

  11. Alectinib (CH5424802) antagonizes ABCB1- and ABCG2-mediated multidrug resistance in vitro, in vivo and ex vivo

    PubMed Central

    Yang, Ke; Chen, Yifan; To, Kenneth Kin Wah; Wang, Fang; Li, Delan; Chen, Likun; Fu, Liwu

    2017-01-01

    Alectinib, an inhibitor of anaplastic lymphoma kinase (ALK), was approved by the Food and Drug Administration (FDA) for the treatment of patients with ALK-positive non-small cell lung cancer (NSCLC). Here we investigated the reversal effect of alectinib on multidrug resistance (MDR) induced by ATP-binding cassette (ABC) transporters, which is the primary cause of chemotherapy failure. We provide the first evidence that alectinib increases the sensitivity of ABCB1- and ABCG2-overexpressing cells to chemotherapeutic agents in vitro and in vivo. Mechanistically, alectinib increased the intracellular accumulation of ABCB1/ABCG2 substrates such as doxorubicin (DOX) and Rhodamine 123 (Rho 123) by inhibiting the efflux function of the transporters in ABCB1- or ABCG2-overexpressing cells but not in their parental sensitive cells. Furthermore, alectinib stimulated ATPase activity and competed with substrates of ABCB1 or ABCG2 and competed with [125I] iodoarylazidoprazosin (IAAP) photolabeling bound to ABCB1 or ABCG2 but neither altered the expression and localization of ABCB1 or ABCG2 nor the phosphorylation levels of AKT and ERK. Alectinib also enhanced the cytotoxicity of DOX and the intracellular accumulation of Rho 123 in ABCB1-overexpressing primary leukemia cells. These findings suggest that alectinib combined with traditional chemotherapy may be beneficial to patients with ABCB1- or ABCG2-mediated MDR. PMID:28303028

  12. Cholesterol binding, efflux, and a PDZ-interacting domain of scavenger receptor–BI mediate HDL-initiated signaling

    PubMed Central

    Assanasen, Chatchawin; Mineo, Chieko; Seetharam, Divya; Yuhanna, Ivan S.; Marcel, Yves L.; Connelly, Margery A.; Williams, David L.; de la Llera-Moya, Margarita; Shaul, Philip W.; Silver, David L.

    2005-01-01

    The binding of HDL to scavenger receptor–BI (SR-BI) mediates cholesterol movement. HDL also induces multiple cellular signals, which in endothelium occur through SR-BI and converge to activate eNOS. To determine the molecular basis of a signaling event induced by HDL, we examined the proximal mechanisms in HDL activation of eNOS. In endothelial cells, HDL and methyl-β-cyclodextrin caused comparable eNOS activation, whereas cholesterol-loaded methyl-β-cyclodextrin had no effect. Phosphatidylcholine-loaded HDL caused greater stimulation than native HDL, and blocking antibody against SR-BI, which prevents cholesterol efflux, prevented eNOS activation. In a reconstitution model in COS-M6 cells, wild-type SR-BI mediated eNOS activation by both HDL and small unilamellar vesicles (SUVs), whereas the SR-BI mutant AVI, which is incapable of efflux to SUV, transmitted signal by only HDL. In addition, eNOS activation by methyl-β-cyclodextrin was SR-BI dependent. Studies of mutant and chimeric class B scavenger receptors revealed that the C-terminal cytoplasmic PDZ-interacting domain and the C-terminal transmembrane domains of SR-BI are both necessary for HDL signaling. Furthermore, we demonstrated direct binding of cholesterol to the C-terminal transmembrane domain using a photoactivated derivative of cholesterol. Thus, HDL signaling requires cholesterol binding and efflux and C-terminal domains of SR-BI, and SR-BI serves as a cholesterol sensor on the plasma membrane. PMID:15841181

  13. Potent and selective mediators of cholesterol efflux

    DOEpatents

    Bielicki, John K; Johansson, Jan

    2015-03-24

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  14. Chlorogenic acid protects against atherosclerosis in ApoE-/- mice and promotes cholesterol efflux from RAW264.7 macrophages.

    PubMed

    Wu, Chongming; Luan, Hong; Zhang, Xue; Wang, Shuai; Zhang, Xiaopo; Sun, Xiaobo; Guo, Peng

    2014-01-01

    Chlorogenic acid (CGA) is one of the most abundant polyphenols in the human diet and is suggested to be a potential antiatherosclerotic agent due to its proposed hypolipidemic, anti-inflammatory and antioxidative properties. The aim of this study was to evaluate the effect of CGA on atherosclerosis development in ApoE(-/-) mice and its potential mechanism. ApoE(-/-) mice were fed a cholesterol-rich diet without (control) or with CGA (200 and 400 mg/kg) or atorvastatin (4 mg/kg) for 12 weeks. During the study plasma lipid and inflammatory parameters were determined. Treatment with CGA (400 mg/kg) reduced atherosclerotic lesion area and vascular dilatation in the aortic root, comparable to atorvastatin. CGA (400 mg/kg) also significantly decreased plasma levels of total cholesterol, triglycerides and low-density lipoprotein-cholesterol as well as inflammatory markers. Supplementation with CGA or CGA metabolites-containing serum suppressed oxidized low-density lipoprotein (oxLDL)-induced lipid accumulation and stimulated cholesterol efflux from RAW264.7 cells. CGA significantly increased the mRNA levels of PPARγ, LXRα, ABCA1 and ABCG1 as well as the transcriptional activity of PPARγ. Cholesterol efflux assay showed that three major metabolites, caffeic, ferulic and gallic acids, significantly stimulated cholesterol efflux from RAW264.7 cells. These results suggest that CGA potently reduces atherosclerosis development in ApoE(-/-) mice and promotes cholesterol efflux from RAW264.7 macrophages. Caffeic, ferulic and gallic acids may be the potential active compounds accounting for the in vivo effect of CGA.

  15. IL-8 negatively regulates ABCA1 expression and cholesterol efflux via upregulating miR-183 in THP-1 macrophage-derived foam cells.

    PubMed

    Tang, Xiao-Er; Li, Heng; Chen, Ling-Yan; Xia, Xiao-Dan; Zhao, Zhen-Wang; Zheng, Xi-Long; Zhao, Guo-Jun; Tang, Chao-Ke

    2018-04-24

    Previous studies suggest that IL-8 has an important role in the regulation of cholesterol efflux, but whether miRNAs are involved in this process is still unknown. The purpose of this study is to explore whether IL-8 promotes cholesterol accumulation by enhancing miR-183 expression in macrophages and its underlying mechanism. Treatment of THP-1 macrophage-derived foam cells with IL-8 decreased ABCA1 expression and cholesterol efflux. Using bioinformatics analyses and dual-luciferase reporter assays, we found that miR-183 was highly conserved during evolution and directly inhibited ABCA1 protein and mRNA expression by targeting ABCA1 3'UTR. MiR-183 directly regulated endogenous ABCA1 expression levels. Furthermore, IL-8 enhanced the expression of miR-183 and decrease ABCA1 expression. Cholesterol transport assays confirmed that IL-8 dramatically inhibited apolipoprotein AI-mediated ABCA1-dependent cholesterol efflux by increasing miR-183 expression. In contrast, treatment with anti-IL-8 antibody reversed these effects. IL-8 enhances the expression of miR-183, which then inhibits ABCA1 expression and cholesterol efflux. Our studies suggest that the IL-8-miR-183-ABCA1 axis may play an intermediary role in the development of atherosclerosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Chlorogenic Acid Protects against Atherosclerosis in ApoE−/− Mice and Promotes Cholesterol Efflux from RAW264.7 Macrophages

    PubMed Central

    Wu, Chongming; Luan, Hong; Zhang, Xue; Wang, Shuai; Zhang, Xiaopo; Sun, Xiaobo; Guo, Peng

    2014-01-01

    Chlorogenic acid (CGA) is one of the most abundant polyphenols in the human diet and is suggested to be a potential antiatherosclerotic agent due to its proposed hypolipidemic, anti-inflammatory and antioxidative properties. The aim of this study was to evaluate the effect of CGA on atherosclerosis development in ApoE−/− mice and its potential mechanism. ApoE−/− mice were fed a cholesterol-rich diet without (control) or with CGA (200 and 400 mg/kg) or atorvastatin (4 mg/kg) for 12 weeks. During the study plasma lipid and inflammatory parameters were determined. Treatment with CGA (400 mg/kg) reduced atherosclerotic lesion area and vascular dilatation in the aortic root, comparable to atorvastatin. CGA (400 mg/kg) also significantly decreased plasma levels of total cholesterol, triglycerides and low-density lipoprotein-cholesterol as well as inflammatory markers. Supplementation with CGA or CGA metabolites-containing serum suppressed oxidized low-density lipoprotein (oxLDL)-induced lipid accumulation and stimulated cholesterol efflux from RAW264.7 cells. CGA significantly increased the mRNA levels of PPARγ, LXRα, ABCA1 and ABCG1 as well as the transcriptional activity of PPARγ. Cholesterol efflux assay showed that three major metabolites, caffeic, ferulic and gallic acids, significantly stimulated cholesterol efflux from RAW264.7 cells. These results suggest that CGA potently reduces atherosclerosis development in ApoE−/− mice and promotes cholesterol efflux from RAW264.7 macrophages. Caffeic, ferulic and gallic acids may be the potential active compounds accounting for the in vivo effect of CGA. PMID:25187964

  17. Association of Cholesterol Efflux Capacity With Clinical Features of Metabolic Syndrome: Relevance to Atherosclerosis.

    PubMed

    Gall, Julie; Frisdal, Eric; Bittar, Randa; Le Goff, Wilfried; Bruckert, Eric; Lesnik, Philippe; Guerin, Maryse; Giral, Philippe

    2016-11-23

    The contribution of high-density lipoprotein to cardiovascular benefit is closely linked to its role in the cellular cholesterol efflux process; however, various clinical and biochemical variables are known to modulate the overall cholesterol efflux process. The aim of this study was to evaluate the extent to which clinical and biological anomalies associated with the establishment of the metabolic syndrome modulate cholesterol efflux capacity and contribute to development of atherosclerosis. This study involved patients (n=1202) displaying atherogenic dyslipidemia in primary prevention who were referred to our prevention center. Among these patients, 25% presented at least 3 criteria of the metabolic syndrome, as defined by the National Cholesterol Education Program Adult Treatment Panel III. We measured the capacity of 40-fold diluted serum to mediate cholesterol efflux from cholesterol-loaded human THP-1 macrophages. Cholesterol efflux capacity was reduced progressively by 4% to 11% (P<0.0001) as a function of the increasing number of coexisting criteria for the metabolic syndrome from 1 to 5. This observation was primarily related to reductions in scavenger receptor class B member 1 and ATP binding cassette subfamily G member 1-dependent efflux. Multivariate analyses indicate that serum efflux capacity was significantly associated with established metabolic syndrome (odds ratio 0.45; 95% CI 0.28-0.72; P=0.009) independent of age, low-density lipoprotein cholesterol, status with regard to lipid-lowering therapy, smoking status, and alcohol consumption. Our study revealed that individual criteria of metabolic syndrome are closely related synergistically to cholesterol efflux capacity. In addition, established metabolic syndrome and cholesterol efflux capacity were independently associated with clinical features of atherosclerosis. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  18. Deficiency of ABCA1 and ABCG1 in Macrophages Increases Inflammation and Accelerates Atherosclerosis in Mice

    PubMed Central

    Westerterp, Marit; Murphy, Andrew J.; Wang, Mi; Pagler, Tamara A.; Vengrenyuk, Yuliya; Kappus, Mojdeh S.; Gorman, Darren J.; Nagareddy, Prabhakara R.; Zhu, Xuewei; Abramowicz, Sandra; Parks, John S.; Welch, Carrie; Fisher, Edward A.; Wang, Nan; Yvan-Charvet, Laurent; Tall, Alan R.

    2013-01-01

    Rationale Plasma HDL levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is due to the ability of HDL to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. Objective To assess the role of macrophage cholesterol efflux pathways in atherogenesis. Methods and Results We developed MAC-ABCDKO mice with efficient deletion of the ATP Binding Cassette Transporters A1 and G1 (ABCA1 and ABCG1) in macrophages but not in hematopoietic stem or progenitor populations. MAC-ABCDKO bone marrow (BM) was transplanted into Ldlr-/- recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared to controls. On the Western type diet (WTD), MAC-ABCDKO BM transplanted Ldlr-/- mice had disproportionate atherosclerosis, considering they also had lower VLDL/LDL cholesterol levels than controls. ABCA1/G1 deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, WTD-fed MAC-ABCDKO BM transplanted Ldlr-/- mice displayed monocytosis and neutrophilia in the absence of HSPC proliferation. Mechanistic studies revealed increased expression of M-CSF and G-CSF in splenic macrophage foam cells, driving BM monocyte and neutrophil production. Conclusion These studies 1) show that macrophage deficiency of ABCA1/G1 is pro-atherogenic likely by promoting plaque inflammation and 2) uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways. PMID:23572498

  19. Amphipathic Polyproline Peptides Stimulate Cholesterol Efflux by the ABCA1 Transporter

    PubMed Central

    Sviridov, D.O.; Drake, S.K.; Freeman, L.A.; Remaley, A.T.

    2016-01-01

    ApoA-I mimetics are short synthetic peptides that contain an amphipathic αα-helix and stimulate cholesterol efflux by the ABCA1 transporter in a detergent-like extraction mechanism. We investigated the use of amphipathic peptides with a polypro helix for stimulating cholesterol efflux by ABCA1. Polypro peptides were synthesized with modified prolines, containing either a hydrophobic phenol group (Prop) or a polar N-acetylgalactosamine (Prog) attached to the pyrrolidine ring and were designated as either PP-2, 3, 4, or 5, depending on the number of 3 amino acid repeat units (Prop - Prog - Prop). Based on molecular modeling, these peptides were predicted to be relatively rigid and to bind to a phospholipid bilayer. By CD spectroscopy, PP peptides formed a Type-II polypro helix in an aqueous solution. PP-2 was inactive in promoting cholesterol efflux, but peptides with more than 2 repeat units were active. PP-4 showed a similar Vmax as a much longer amphipathic α-αhelical peptide, containing 37 amino acids, but had a Km that was approximately 20-fold lower. PP peptides were specific in that they did not stimulate cholesterol efflux from cells not expressing ABCA1 and were also non-cytotoxic. Addition of PP-3, 4 and 5 to serum promoted the formation of smaller size HDL species (7 nM) and increased its capacity for ABCA1-dependent cholesterol efflux by approximately 20-35% (p<0.05). Because of their relatively small size and increased potency, amphipathic peptides with a polypro helix may represent an alternative structural motif for the development of apoA-I mimetic peptides. PMID:26879139

  20. Prenatal Ethanol Exposure Up-Regulates the Cholesterol Transporters ATP-Binding Cassette A1 and G1 and Reduces Cholesterol Levels in the Developing Rat Brain.

    PubMed

    Zhou, Chunyan; Chen, Jing; Zhang, Xiaolu; Costa, Lucio G; Guizzetti, Marina

    2014-11-01

    Cholesterol plays a pivotal role in many aspects of brain development; reduced cholesterol levels during brain development, as a consequence of genetic defects in cholesterol biosynthesis, leads to severe brain damage, including microcephaly and mental retardation, both of which are also hallmarks of the fetal alcohol syndrome. We had previously shown that ethanol up-regulates the levels of two cholesterol transporters, ABCA1 (ATP binding cassette-A1) and ABCG1, leading to increased cholesterol efflux and decreased cholesterol content in astrocytes in vitro. In the present study we investigated whether similar effects could be seen in vivo. Pregnant Sprague-Dawley rats were fed liquid diets containing 36% of the calories from ethanol from gestational day (GD) 6 to GD 21. A pair-fed control groups and an ad libitum control group were included in the study. ABCA1 and ABCG1 protein expression and cholesterol and phospholipid levels were measured in the neocortex of female and male fetuses at GD 21. Body weights were decreased in female fetuses as a consequence of ethanol treatments. ABCA1 and ABCG1 protein levels were increased, and cholesterol levels were decreased, in the neocortex of ethanol-exposed female, but not male, fetuses. Levels of phospholipids were unchanged. Control female fetuses fed ad libitum displayed an up-regulation of ABCA1 and a decrease in cholesterol content compared with pair-fed controls, suggesting that a compensatory up-regulation of cholesterol levels may occur during food restriction. Maternal ethanol consumption may affect fetal brain development by increasing cholesterol transporters' expression and reducing brain cholesterol levels. © The Author 2014. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  1. Interaction of mammary bovine ABCG2 with AFB1 and its metabolites and regulation by PCB 126 in a MDCKII in vitro model.

    PubMed

    Manzini, L; Halwachs, S; Girolami, F; Badino, P; Honscha, W; Nebbia, C

    2017-12-01

    The ATP-binding cassette efflux transporter ABCG2 plays a key role in the mammary excretion of drugs and toxins in humans and animals. Aflatoxins (AF) are worldwide contaminants of food and feed commodities, while PCB 126 is a dioxin-like PCB which may contaminate milk and dairy products. Both compounds are known human carcinogens. The interactions between AF and bovine ABCG2 (bABCG2) as well as the effects of PCB 126 on its efflux activity have been investigated by means of the Hoechst H33342 transport assay in MDCKII cells stably expressing mammary bABCG2. Both AFB1 and its main milk metabolite AFM1 showed interaction with bABCG2 even at concentrations approaching the legal limits in feed and food commodities. Moreover, PCB 126 significantly enhanced bABCG2 functional activity. Specific inhibitors of either AhR (CH233191) or ABCG2 (Ko143) were able to reverse the PCB 126-induced increase in bABCG2 transport activity, showing the specific upregulation of the efflux protein by the AhR pathway. The incubation of PCB 126-pretreated cells with AFM1 was able to substantially reverse such effect, with still unknown mechanism(s). Overall, results from this study point to AFB1 and AFM1 as likely bABCG2 substrates. The PCB 126-dependent increased activity of the transporter could enhance the ABCG2-mediated excretion into dairy milk of chemicals (i.e., drugs and toxins) potentially harmful to neonates and consumers. © 2017 John Wiley & Sons Ltd.

  2. Suppression of ABCG2 mediated MDR in vitro and in vivo by a novel inhibitor of ABCG2 drug transport.

    PubMed

    Patel, Atish; Li, Tian-Wen; Anreddy, Nagaraju; Wang, De-Shen; Sodani, Kamlesh; Gadhia, Sanket; Kathawala, Rishil; Yang, Dong-Hua; Cheng, Changmei; Chen, Zhe-Sheng

    2017-07-01

    Cancer is a disease whose treatment is often limited due to the development of a phenomenon known as multidrug resistance (MDR). There is an immense demand for development of novel agents that can overcome the MDR in cancer. A group of transmembrane proteins called ATP-binding cassette transporters, present ubiquitously in the human body possesses a modular architecture, contributing immensely towards the development of MDR. An analysis of structural congeners among a group of compounds led to the discovery of CCTA-1523 that could selectively reverse ABCG2-mediated MDR in cancer cells in vitro and in vivo. CCTA-1523 (5μM) sensitized the ABCG2 overexpressing cancer cells and ABCG2 transfected cells to the substrate chemotherapeutic drugs. The reversal ability of CCTA-1523 was primarily due to the inhibition of the efflux function of ABCG2; also there was no change in the protein expression or the localization of the ABCG2 in the presence of CCTA-1523. The reversal effect of CCTA-1523 was reversible. Importantly, co-administration of CCTA-1523 restored the in vivo antitumor activity of doxorubicin in ABCG2 overexpressing tumor xenografts. Taken together, our findings indicate that CCTA-1523 is a potent, selective and reversible modulator of ABCG2 that may offer therapeutic promise for multidrug- resistant malignancies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaolin; Li, Qian; Pang, Liewen

    Highlights: •Arctigenin enhanced cholesterol efflux in oxLDL-loaded THP-1 macrophages. •The expression of ABCA1, ABCG1 and apoE was upregulated in arctigenin-treated cells. •Arctigenin promoted the expression of PPAR-γ and LXR-α. •Inhibition of PPAR-γ or LXR-α reversed arctigenin-mediated biological effects. •Arctigenin promotes cholesterol efflux via activation of PPAR-γ/LXR-α/ABCA1 pathway. -- Abstract: Cholesterol efflux from macrophages is a critical mechanism to prevent the development of atherosclerosis. Here, we sought to investigate the effects of arctigenin, a bioactive component of Arctium lappa, on the cholesterol efflux in oxidized low-density lipoprotein (oxLDL)-loaded THP-1 macrophages. Our data showed that arctigenin significantly accelerated apolipoprotein A-I- and high-densitymore » lipoprotein-induced cholesterol efflux in both dose- and time-dependent manners. Moreover, arctigenin treatment enhanced the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, and apoE, all of which are key molecules in the initial step of cholesterol efflux, at both mRNA and protein levels. Arctigenin also caused a concentration-dependent elevation in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α). The arctigenin-mediated induction of ABCA1, ABCG1, and apoE was abolished by specific inhibition of PPAR-γ or LXR-α using small interfering RNA technology. Our results collectively indicate that arctigenin promotes cholesterol efflux in oxLDL-loaded THP-1 macrophages through upregulation of ABCA1, ABCG1 and apoE, which is dependent on the enhanced expression of PPAR-γ and LXR-α.« less

  4. Abcb1a but not Abcg2 played a predominant role in limiting the brain distribution of Huperzine A in mice.

    PubMed

    Li, Jiajun; Yue, Mei; Zhou, Dandan; Wang, Meiyu; Zhang, Hongjian

    2017-09-01

    Huperzine A has been used for improving symptoms of Alzheimer's disease. Its cholinergic side effect is thought to be an exaggerated pharmacological outcome linked to its high brain or CNS concentrations. Although Huperzine A is brain penetrable, its interaction with efflux transporters (ABCB1 and ABCG2) has not been fully investigated. The aim of the present study was to characterize roles of ABCB1 and ABCG2 in the transmembrane transport of Huperzine A and identify a rate limiting step in its brain distribution. Data obtained from stably transfected MDCK II cells showed that Huperzine A is a substrate of ABCB1 but not ABCG2. ABCB1 inhibitors significantly inhibited ABCB1 mediated efflux of Huperzine A. In Abcb1a -/- mice, the brain to plasma concentration ratio of Huperzine A was significantly increased as compared to the wild type mice, while there were no obvious differences between the wild type and Abcg2 -/- mice. Taken together, the present study demonstrated that ABCB1 but not ABCG2 played a predominant role in the efflux of Huperzine A across BBB. The current finding is clinically relevant as changes in ABCB1 activity in the presence of ABCB1 inhibitors or genetic polymorphism may affect efficacy and safety of Huperzine A. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Decreased APOE-containing HDL subfractions and cholesterol efflux capacity of serum in mice lacking Pcsk9

    PubMed Central

    2013-01-01

    Background Studies in animals showed that PCSK9 is involved in HDL metabolism. We investigated the molecular mechanism by which PCSK9 regulates HDL cholesterol concentration and also whether Pcsk9 inactivation might affect cholesterol efflux capacity of serum and atherosclerotic fatty streak volume. Methods Mass spectrometry and western blot were used to analyze the level of apolipoprotein E (APOE) and A1 (APOA1). A mouse model overexpressing human LDLR was used to test the effect of high levels of liver LDLR on the concentration of HDL cholesterol and APOE-containing HDL subfractions. Pcsk9 knockout males lacking LDLR and APOE were used to test whether LDLR and APOE are necessary for PCSK9-mediated HDL cholesterol regulation. We also investigated the effects of Pcsk9 inactivation on cholesterol efflux capacity of serum using THP-1 and J774.A1 macrophage foam cells and atherosclerotic fatty streak volume in the aortic sinus of Pcsk9 knockout males fed an atherogenic diet. Results APOE and APOA1 were reduced in the same HDL subfractions of Pcsk9 knockout and human LDLR transgenic male mice. In Pcsk9/Ldlr double-knockout mice, HDL cholesterol concentration was lower than in Ldlr knockout mice and higher than in wild-type controls. In Pcsk9/Apoe double-knockout mice, HDL cholesterol concentration was similar to that of Apoe knockout males. In Pcsk9 knockout males, THP-1 macrophage cholesterol efflux capacity of serum was reduced and the fatty streak lesion volume was similar to wild-type controls. Conclusions In mice, LDLR and APOE are important factors for PCSK9-mediated HDL regulation. Our data suggest that, although LDLR plays a major role in PCSK9-mediated regulation of HDL cholesterol concentration, it is not the only mechanism and that, regardless of mechanism, APOE is essential. Pcsk9 inactivation decreases the HDL cholesterol concentration and cholesterol efflux capacity in serum, but does not increase atherosclerotic fatty streak volume. PMID:23883163

  6. Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine

    PubMed Central

    Nakano, Takanari; Inoue, Ikuo; Takenaka, Yasuhiro; Ono, Hiraku; Katayama, Shigehiro; Awata, Takuya; Murakoshi, Takayuki

    2016-01-01

    Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM)-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to modulate the flux

  7. Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine.

    PubMed

    Nakano, Takanari; Inoue, Ikuo; Takenaka, Yasuhiro; Ono, Hiraku; Katayama, Shigehiro; Awata, Takuya; Murakoshi, Takayuki

    2016-01-01

    Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM)-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to modulate the flux

  8. Structure-function relationships in reconstituted HDL: Focus on antioxidative activity and cholesterol efflux capacity.

    PubMed

    Cukier, Alexandre M O; Therond, Patrice; Didichenko, Svetlana A; Guillas, Isabelle; Chapman, M John; Wright, Samuel D; Kontush, Anatol

    2017-09-01

    High-density lipoprotein (HDL) contains multiple components that endow it with biological activities. Apolipoprotein A-I (apoA-I) and surface phospholipids contribute to these activities; however, structure-function relationships in HDL particles remain incompletely characterised. Reconstituted HDLs (rHDLs) were prepared from apoA-I and soy phosphatidylcholine (PC) at molar ratios of 1:50, 1:100 and 1:150. Oxidative status of apoA-I was varied using controlled oxidation of Met112 residue. HDL-mediated inactivation of PC hydroperoxides (PCOOH) derived from mildly pre-oxidized low-density lipoprotein (LDL) was evaluated by HPLC with chemiluminescent detection in HDL+LDL mixtures and re-isolated LDL. Cellular cholesterol efflux was characterised in RAW264.7 macrophages. rHDL inactivated LDL-derived PCOOH in a dose- and time-dependent manner. The capacity of rHDL to both inactivate PCOOH and efflux cholesterol via ATP-binding cassette transporter A1 (ABCA1) increased with increasing apoA-I/PC ratio proportionally to the apoA-I content in rHDL. Controlled oxidation of apoA-I Met112 gradually decreased PCOOH-inactivating capacity of rHDL but increased ABCA1-mediated cellular cholesterol efflux. Increasing apoA-I content in rHDL enhanced its antioxidative activity towards oxidized LDL and cholesterol efflux capacity via ABCA1, whereas oxidation of apoA-I Met112 decreased the antioxidative activity but increased the cholesterol efflux. These findings provide important considerations in the design of future HDL therapeutics. Non-standard abbreviations and acronyms: AAPH, 2,2'-azobis(-amidinopropane) dihydrochloride; ABCA1, ATP-binding cassette transporter A1; apoA-I, apolipoprotein A-I; BHT, butylated hydroxytoluene; CV, cardiovascular; EDTA, ethylenediaminetetraacetic acid; HDL-C, high-density lipoprotein cholesterol; LOOH, lipid hydroperoxides; Met(O), methionine sulfoxide; Met112, methionine 112 residue; Met86, methionine 86 residue; oxLDL, oxidized low

  9. Assessment of ABCG2-mediated transport of pesticides across the rabbit placenta barrier using a novel MDCKII in vitro model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halwachs, Sandra

    In humans, the ATP-binding cassette efflux transporter ABCG2 contributes to the fetoprotective barrier function of the placenta, potentially limiting the toxicity of transporter substrates to the fetus. During testing of chemicals including pesticides, developmental toxicity studies are performed in rabbit. Despite its toxicological relevance, ABCG2-mediated transport of pesticides in rabbit placenta has not been yet elucidated. We therefore generated polarized MDCK II cells expressing the ABCG2 transporter from rabbit placenta (rbABCG2) and evaluated interaction of the efflux transporter with selected insecticides, fungicides, and herbicides. The Hoechst H33342 accumulation assay indicated that 13 widely used pesticidal active substances including azoxystrobin, carbendazim,more » chlorpyrifos, chlormequat, diflufenican, dimethoate, dimethomorph, dithianon, ioxynil, methiocarb, propamocarb, rimsulfuron and toclofos-methyl may be rbABCG2 inhibitors and/or substrates. No such evidence was obtained for chlorpyrifos-methyl, epoxiconazole, glyphosate, imazalil and thiacloprid. Moreover, chlorpyrifos (CPF), dimethomorph, tolclofos-methyl and rimsulfuron showed concentration-dependent inhibition of H33342 excretion in rbABCG2-transduced MDCKII cells. To further evaluate the role of rbABCG2 in pesticide transport across the placenta barrier, we generated polarized MDCKII-rbABCG2 monolayers. Confocal microscopy confirmed correct localization of rbABCG2 protein in the apical plasma membrane. In transepithelial flux studies, we showed the time-dependent preferential basolateral to apical (B > A) directed transport of [{sup 14}C] CPF across polarized MDCKII-rbABCG2 monolayers which was significantly inhibited by the ABCG2 inhibitor fumitremorgin C (FTC). Using this novel in vitro cell culture model, we altogether showed functional secretory activity of the ABCG2 transporter from rabbit placenta and identified several pesticides like the insecticide CPF as potential rbABCG2

  10. LXR agonist treatment of blastic plasmacytoid dendritic cell neoplasm restores cholesterol efflux and triggers apoptosis

    PubMed Central

    Ceroi, Adam; Masson, David; Roggy, Anne; Roumier, Christophe; Chagué, Cécile; Gauthier, Thierry; Philippe, Laure; Lamarthée, Baptiste; Angelot-Delettre, Fanny; Bonnefoy, Francis; Perruche, Sylvain; Biichle, Sabeha; Preudhomme, Claude; Macintyre, Elisabeth; Lagrost, Laurent; Garnache-Ottou, Francine

    2016-01-01

    Blastic plasmacytoid dendritic cell (PDC) neoplasm (BPDCN) is an aggressive hematological malignancy with a poor prognosis that derives from PDCs. No consensus for optimal treatment modalities is available today and the full characterization of this leukemia is still emerging. We identified here a BPDCN-specific transcriptomic profile when compared with those of acute myeloid leukemia and T-acute lymphoblastic leukemia, as well as the transcriptomic signature of primary PDCs. This BPDCN gene signature identified a dysregulation of genes involved in cholesterol homeostasis, some of them being liver X receptor (LXR) target genes. LXR agonist treatment of primary BPDCN cells and BPDCN cell lines restored LXR target gene expression and increased cholesterol efflux via the upregulation of adenosine triphosphate–binding cassette (ABC) transporters, ABCA1 and ABCG1. LXR agonist treatment was responsible for limiting BPDCN cell proliferation and inducing intrinsic apoptotic cell death. LXR activation in BPDCN cells was shown to interfere with 3 signaling pathways associated with leukemic cell survival, namely: NF-κB activation, as well as Akt and STAT5 phosphorylation in response to the BPDCN growth/survival factor interleukin-3. These effects were increased by the stimulation of cholesterol efflux through a lipid acceptor, the apolipoprotein A1. In vivo experiments using a mouse model of BPDCN cell xenograft revealed a decrease of leukemic cell infiltration and BPDCN-induced cytopenia associated with increased survival after LXR agonist treatment. This demonstrates that cholesterol homeostasis is modified in BPDCN and can be normalized by treatment with LXR agonists which can be proposed as a new therapeutic approach. PMID:27702801

  11. Activation of GPR55 Receptors Exacerbates oxLDL-Induced Lipid Accumulation and Inflammatory Responses, while Reducing Cholesterol Efflux from Human Macrophages.

    PubMed

    Lanuti, Mirko; Talamonti, Emanuela; Maccarrone, Mauro; Chiurchiù, Valerio

    2015-01-01

    The G protein-coupled receptor GPR55 has been proposed as a new cannabinoid receptor associated with bone remodelling, nervous system excitability, vascular homeostasis as well as in several pathophysiological conditions including obesity and cancer. However, its physiological role and underlying mechanism remain unclear. In the present work, we demonstrate for the first time its presence in human macrophages and its increased expression in ox-LDL-induced foam cells. In addition, pharmacological activation of GPR55 by its selective agonist O-1602 increased CD36- and SRB-I-mediated lipid accumulation and blocked cholesterol efflux by downregulating ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, as well as enhanced cytokine- and pro-metalloprotease-9 (pro-MMP-9)-induced proinflammatory responses in foam cells. Treatment with cannabidiol, a selective antagonist of GPR55, counteracted these pro-atherogenic and proinflammatory O-1602-mediated effects. Our data suggest that GPR55 could play deleterious role in ox-LDL-induced foam cells and could be a novel pharmacological target to manage atherosclerosis and other related cardiovascular diseases.

  12. Activation of GPR55 Receptors Exacerbates oxLDL-Induced Lipid Accumulation and Inflammatory Responses, while Reducing Cholesterol Efflux from Human Macrophages

    PubMed Central

    Lanuti, Mirko; Talamonti, Emanuela; Maccarrone, Mauro; Chiurchiù, Valerio

    2015-01-01

    The G protein-coupled receptor GPR55 has been proposed as a new cannabinoid receptor associated with bone remodelling, nervous system excitability, vascular homeostasis as well as in several pathophysiological conditions including obesity and cancer. However, its physiological role and underlying mechanism remain unclear. In the present work, we demonstrate for the first time its presence in human macrophages and its increased expression in ox-LDL-induced foam cells. In addition, pharmacological activation of GPR55 by its selective agonist O-1602 increased CD36- and SRB-I-mediated lipid accumulation and blocked cholesterol efflux by downregulating ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, as well as enhanced cytokine- and pro-metalloprotease-9 (pro-MMP-9)-induced proinflammatory responses in foam cells. Treatment with cannabidiol, a selective antagonist of GPR55, counteracted these pro-atherogenic and proinflammatory O-1602-mediated effects. Our data suggest that GPR55 could play deleterious role in ox-LDL-induced foam cells and could be a novel pharmacological target to manage atherosclerosis and other related cardiovascular diseases. PMID:25970609

  13. Activation of liver X receptor decreases atherosclerosis in Ldlr⁻/⁻ mice in the absence of ATP-binding cassette transporters A1 and G1 in myeloid cells.

    PubMed

    Kappus, Mojdeh S; Murphy, Andrew J; Abramowicz, Sandra; Ntonga, Vusisizwe; Welch, Carrie L; Tall, Alan R; Westerterp, Marit

    2014-02-01

    Liver X receptor (LXR) activators decrease atherosclerosis in mice. LXR activators (1) directly upregulate genes involved in reverse cholesterol transport and (2) exert anti-inflammatory effects mediated by transrepression of nuclear factor-κB target genes. We investigated whether myeloid cell deficiency of ATP-binding cassette transporters A1 and G1 (ABCA1/G1), principal targets of LXR that promote macrophage cholesterol efflux and initiate reverse cholesterol transport, would abolish the beneficial effects of LXR activation on atherosclerosis. LXR activator T0901317 substantially reduced inflammatory gene expression in macrophages lacking ABCA1/G1. Ldlr(-/-) mice were transplanted with Abca1(-/-)Abcg1(-/-) or wild-type bone marrow (BM) and fed a Western-type diet for 6 weeks with or without T0901317 supplementation. Abca1/g1 BM deficiency increased atherosclerotic lesion complexity and inflammatory cell infiltration into the adventitia and myocardium. T0901317 markedly decreased lesion area, complexity, and inflammatory cell infiltration in the Abca1(-/-)Abcg1(-/-) BM-transplanted mice. To investigate whether this was because of macrophage Abca1/g1 deficiency, Ldlr(-/-) mice were transplanted with LysmCreAbca1(fl/fl)Abcg1(fl/fl) or Abca1(fl/fl)Abcg1(fl/fl) BM and fed Western-type diet with or without the more specific LXR agonist GW3965 for 12 weeks. GW3965 decreased lesion size in both groups, and the decrease was more prominent in the LysmCreAbca1(fl/fl)Abcg1(fl/fl) group. The results suggest that anti-inflammatory effects of LXR activators are of key importance to their antiatherosclerotic effects in vivo independent of cholesterol efflux pathways mediated by macrophage ABCA1/G1. This has implications for the development of LXR activators that lack adverse effects on lipogenic genes while maintaining the ability to transrepress inflammatory genes.

  14. Regulated efflux of photoreceptor outer segment-derived cholesterol by human RPE cells.

    PubMed

    Storti, Federica; Raphael, Gabriele; Griesser, Vera; Klee, Katrin; Drawnel, Faye; Willburger, Carolin; Scholz, Rebecca; Langmann, Thomas; von Eckardstein, Arnold; Fingerle, Jürgen; Grimm, Christian; Maugeais, Cyrille

    2017-12-01

    Genetic studies have linked age-related macular degeneration (AMD) to genes involved in high-density lipoprotein (HDL) metabolism, including ATP-binding cassette transporter A1 (ABCA1). The retinal pigment epithelium (RPE) handles large amounts of lipids, among others cholesterol, partially derived from internalized photoreceptor outer segments (OS) and lipids physiologically accumulate in the aging eye. To analyze the potential function of ABCA1 in the eye, we measured cholesterol efflux, the first step of HDL generation, in RPE cells. We show the expression of selected genes related to HDL metabolism in mouse and human eyecups as well as in ARPE-19 and human primary RPE cells. Immunofluorescence staining revealed localization of ABCA1 on both sides of polarized RPE cells. This was functionally confirmed by directional efflux to apolipoprotein AI (ApoA-I) of 3 H-labeled cholesterol given to the cells via serum or via OS. ABCA1 expression and activity was modulated using a liver-X-receptor (LXR) agonist and an ABCA1 neutralizing antibody, demonstrating that the efflux was ABCA1-dependent. We concluded that the ABCA1-mediated lipid efflux pathway, and hence HDL biosynthesis, is functional in RPE cells towards both the basal (choroidal) and apical (subretinal) space. Impaired activity of the pathway might cause age-related perturbations of lipid homeostasis in the outer retina and thus may contribute to disease development and/or progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. LXR agonist treatment of blastic plasmacytoid dendritic cell neoplasm restores cholesterol efflux and triggers apoptosis.

    PubMed

    Ceroi, Adam; Masson, David; Roggy, Anne; Roumier, Christophe; Chagué, Cécile; Gauthier, Thierry; Philippe, Laure; Lamarthée, Baptiste; Angelot-Delettre, Fanny; Bonnefoy, Francis; Perruche, Sylvain; Biichle, Sabeha; Preudhomme, Claude; Macintyre, Elisabeth; Lagrost, Laurent; Garnache-Ottou, Francine; Saas, Philippe

    2016-12-08

    Blastic plasmacytoid dendritic cell (PDC) neoplasm (BPDCN) is an aggressive hematological malignancy with a poor prognosis that derives from PDCs. No consensus for optimal treatment modalities is available today and the full characterization of this leukemia is still emerging. We identified here a BPDCN-specific transcriptomic profile when compared with those of acute myeloid leukemia and T-acute lymphoblastic leukemia, as well as the transcriptomic signature of primary PDCs. This BPDCN gene signature identified a dysregulation of genes involved in cholesterol homeostasis, some of them being liver X receptor (LXR) target genes. LXR agonist treatment of primary BPDCN cells and BPDCN cell lines restored LXR target gene expression and increased cholesterol efflux via the upregulation of adenosine triphosphate-binding cassette (ABC) transporters, ABCA1 and ABCG1. LXR agonist treatment was responsible for limiting BPDCN cell proliferation and inducing intrinsic apoptotic cell death. LXR activation in BPDCN cells was shown to interfere with 3 signaling pathways associated with leukemic cell survival, namely: NF-κB activation, as well as Akt and STAT5 phosphorylation in response to the BPDCN growth/survival factor interleukin-3. These effects were increased by the stimulation of cholesterol efflux through a lipid acceptor, the apolipoprotein A1. In vivo experiments using a mouse model of BPDCN cell xenograft revealed a decrease of leukemic cell infiltration and BPDCN-induced cytopenia associated with increased survival after LXR agonist treatment. This demonstrates that cholesterol homeostasis is modified in BPDCN and can be normalized by treatment with LXR agonists which can be proposed as a new therapeutic approach. © 2016 by The American Society of Hematology.

  16. Eicosapentaenoic acid membrane incorporation impairs ABCA1-dependent cholesterol efflux via a protein kinase A signaling pathway in primary human macrophages.

    PubMed

    Fournier, Natalie; Tardivel, Sylviane; Benoist, Jean-François; Vedie, Benoît; Rousseau-Ralliard, Delphine; Nowak, Maxime; Allaoui, Fatima; Paul, Jean-Louis

    2016-04-01

    A diet rich in n-3/n-6 polyunsaturated fatty acids (PUFAs) is cardioprotective. Dietary PUFAs affect the cellular phospholipids composition, which may influence the function of membrane proteins. We investigated the impact of the membrane incorporation of several PUFAs on ABCA1-mediated cholesterol efflux, a key antiatherogenic pathway. Arachidonic acid (AA) (C20:4 n-6) and docosahexaenoic acid (DHA) (C22:6 n-3) decreased or increased cholesterol efflux from J774 mouse macrophages, respectively, whereas they had no effect on efflux from human monocyte-derived macrophages (HMDM). Importantly, eicosapentaenoic acid (EPA) (C20:5 n-3) induced a dose-dependent reduction of ABCA1 functionality in both cellular models (-28% for 70μM of EPA in HMDM), without any alterations in ABCA1 expression. These results show that PUFA membrane incorporation does not have the same consequences on cholesterol efflux from mouse and human macrophages. The EPA-treated HMDM exhibited strong phospholipid composition changes, with high levels of both EPA and its elongation product docosapentaenoic acid (DPA) (C22:5 n-3), which is associated with a decreased level of AA. In HMDM, EPA reduced the ATPase activity of the membrane transporter. Moreover, the activation of adenylate cyclase by forskolin and the inhibition of cAMP phosphodiesterase by isobutylmethylxanthine restored ABCA1 cholesterol efflux in EPA-treated human macrophages. In conclusion, EPA membrane incorporation reduces ABCA1 functionality in mouse macrophages as well as in primary human macrophages and this effect seems to be PKA-dependent in human macrophages. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. From Evolution to Revolution: miRNAs as Pharmacological Targets for Modulating Cholesterol Efflux and Reverse Cholesterol Transport

    PubMed Central

    Dávalos, Alberto; Fernández-Hernando, Carlos

    2013-01-01

    There has been strong evolutionary pressure to ensure that an animal cell maintain levels of cholesterol within tight limits for normal function. Imbalances in cellular cholesterol levels are a major player in the development of different pathologies associated to dietary excess. Although epidemiological studies indicate that elevated levels of high-density lipoprotein (HDL)-cholesterol reduce the risk of cardiovascular disease, recent genetic evidence and pharmacological therapies to raise HDL levels do not support their beneficial effects. Cholesterol efflux as the first and probably the most important step in reverse cholesterol transport is an important biological process relevant to HDL function. Small non-coding RNAs (microRNAs), post-transcriptional control different aspects of cellular cholesterol homeostasis including cholesterol efflux. miRNA families miR-33, miR-758, miR-10b, miR-26 and miR-106b directly modulates cholesterol efflux by targeting the ATP-binding cassette transporter A1 (ABCA1). Pre-clinical studies with anti-miR therapies to inhibit some of these miRNAs have increased cellular cholesterol efflux, reverse cholesterol transport and reduce pathologies associated to dyslipidemia. Although miRNAs as therapy have benefits from existing antisense technology, different obstacles need to be solved before we incorporate such research into clinical care. Here we focus on the clinical potential of miRNAs as therapeutic target to increase cholesterol efflux and reverse cholesterol transport as a new alternative to ameliorate cholesterol-related pathologies. PMID:23435093

  18. Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury

    PubMed Central

    Pedigo, Christopher E.; Ducasa, Gloria Michelle; Leclercq, Farah; Sloan, Alexis; Hashmi, Tahreem; Molina-David, Judith; Ge, Mengyuan; Lassenius, Mariann I.; Groop, Per-Henrik; Kretzler, Matthias; Martini, Sebastian; Reich, Heather; Wahl, Patricia; Ghiggeri, GianMarco; Burke, George W.; Kretz, Oliver; Huber, Tobias B.; Mendez, Armando J.; Merscher, Sandra

    2016-01-01

    High levels of circulating TNF and its receptors, TNFR1 and TNFR2, predict the progression of diabetic kidney disease (DKD), but their contribution to organ damage in DKD remains largely unknown. Here, we investigated the function of local and systemic TNF in podocyte injury. We cultured human podocytes with sera collected from DKD patients, who displayed elevated TNF levels, and focal segmental glomerulosclerosis (FSGS) patients, whose TNF levels resembled those of healthy patients. Exogenous TNF administration or local TNF expression was equally sufficient to cause free cholesterol–dependent apoptosis in podocytes by acting through a dual mechanism that required a reduction in ATP-binding cassette transporter A1mediated (ABCA1-mediated) cholesterol efflux and reduced cholesterol esterification by sterol-O-acyltransferase 1 (SOAT1). TNF-induced albuminuria was aggravated in mice with podocyte-specific ABCA1 deficiency and was partially prevented by cholesterol depletion with cyclodextrin. TNF-stimulated free cholesterol–dependent apoptosis in podocytes was mediated by nuclear factor of activated T cells 1 (NFATc1). ABCA1 overexpression or cholesterol depletion was sufficient to reduce albuminuria in mice with podocyte-specific NFATc1 activation. Our data implicate an NFATc1/ABCA1-dependent mechanism in which local TNF is sufficient to cause free cholesterol–dependent podocyte injury irrespective of TNF, TNFR1, or TNFR2 serum levels. PMID:27482889

  19. LAL (Lysosomal Acid Lipase) Promotes Reverse Cholesterol Transport In Vitro and In Vivo.

    PubMed

    Bowden, Kristin L; Dubland, Joshua A; Chan, Teddy; Xu, You-Hai; Grabowski, Gregory A; Du, Hong; Francis, Gordon A

    2018-05-01

    To explore the role of LAL (lysosomal acid lipase) in macrophage cholesterol efflux and whole-body reverse cholesterol transport. Immortalized peritoneal macrophages from lal -/- mice showed reduced expression of ABCA1 (ATP-binding cassette transporter A1) and ABCG1 (ATP-binding cassette transporter G1), reduced production of the regulatory oxysterol 27-hydroxycholesterol, and impaired suppression of cholesterol synthesis on exposure to acetylated low-density lipoprotein when compared with lal +/+ macrophages. LAL-deficient mice also showed reduced hepatic ABCG5 (ATP-binding cassette transporter G5) and ABCG8 (ATP-binding cassette transporter G8) expression compared with lal +/+ mice. LAL-deficient macrophages loaded with [ 3 H]-cholesteryl oleate-labeled acetylated low-density lipoprotein showed impaired efflux of released [ 3 H]-cholesterol to apoA-I (apolipoprotein A-I), with normalization of [ 3 H]-cholesteryl ester levels and partial correction of ABCA1 expression and cholesterol efflux to apoA-I when treated with exogenous rhLAL (recombinant human LAL protein). LAL-deficient mice injected intraperitoneally with lal -/- macrophages cholesterol loaded and labeled in the same way exhibited only 1.55±0.35% total injected [ 3 H]-cholesterol counts appearing in the feces for 48 h (n=30), compared with 5.38±0.92% in lal +/+ mice injected with labeled lal +/+ macrophages (n=27), P <0.001. To mimic the therapeutic condition of delivery of supplemental LAL in vivo, injection of labeled lal -/- macrophages into lal +/+ mice resulted in a significant increase in reverse cholesterol transport (2.60±0.46% of 3 H-cholesterol counts in feces at 48 hours [n=19]; P <0.001 when compared with injection into lal -/- mice). These results indicate a critical role for LAL in promoting both macrophage and whole-body reverse cholesterol transport and the ability of supplemental LAL to be taken up and correct reverse cholesterol transport in vivo. © 2018 American Heart Association

  20. β-COP as a Component of Transport Vesicles for HDL Apolipoprotein-Mediated Cholesterol Exocytosis

    PubMed Central

    Ma, Weilie; Lin, Margarita; Ding, Hang; Lin, Guorong; Zhang, Zhizhen

    2016-01-01

    Objective HDL and its apolipoproteins protect against atherosclerotic disease partly by removing excess cholesterol from macrophage foam cells. But the underlying mechanisms of cholesterol clearance are still not well defined. We investigated roles of vesicle trafficking of coatomer β-COP in delivering cholesterol to the cell surface during apoA-1 and apoE-mediated lipid efflux from fibroblasts and THP-1 macrophages. Methods shRNA knockout, confocal and electron microscopy and biochemical analysis were used to investigate the roles of β-COP in apolipoprotein-mediated cholesterol efflux in fibroblasts and THP-1 macrophages. Results We showed that β-COP knockdown by lentiviral shRNA resulted in reduced apoA-1-mediated cholesterol efflux, while increased cholesterol accumulation and formation of larger vesicles were observed in THP-1 macrophages by laser scanning confocal microscopy. Immunogold electron microscopy showed that β-COP appeared on the membrane protrusion complexes and colocalized with apoA-1 or apoE during cholesterol efflux. This was associated with releasing heterogeneous sizes of small particles into the culture media of THP-1 macrophage. Western blotting also showed that apoA-1 promotes β-COP translocation to the cell membrane and secretion into culture media, in which a total of 17 proteins were identified by proteomics. Moreover, β-COP exclusively associated with human plasma HDL fractions. Conclusion ApoA-1 and apoE promoted transport vesicles consisting of β-COP and other candidate proteins to exocytose cholesterol, forming the protrusion complexes on cell surface, which were then released from the cell membrane as small particles to media. PMID:26986486

  1. Imatinib-mediated inactivation of Akt regulates ABCG2 function in head and neck squamous cell carcinoma.

    PubMed

    Chu, Theresa S; Chen, Jocelyn S; Lopez, Jay Patrick; Pardo, Francisco S; Aguilera, Joseph; Ongkeko, Weg M

    2008-09-01

    To investigate whether the mechanism for the reversal of ABCG2 (also known as ABCP, MXR, and BCRP)-mediated drug resistance by imatinib mesylate (Gleevec, STI571; Novartis Pharmaceuticals Corp, East Hanover, New Jersey) is caused by the downregulation of Akt kinase. The adenosine triphosphatase-binding cassette protein ABCG2 has been suggested to be involved in the resistance against various anticancer drugs. Recent studies show that imatinib reverses ABCG2-mediated drug resistance to topotecan hydrochloride and SN-38. In addition, we have previously reported that imatinib downregulates Akt kinase activity, which is elevated in head and neck squamous cell carcinoma. Flow cytometric analysis was used to determine the levels of drug or dye extrusion from the cells. We used Akt kinase inhibitors, transfection with short interfering RNA (siRNA) Akt, and the tyrosine kinase inhibitor imatinib to show that these treatments decreased the side population by 50% to 70% in Hoechst 33342 extrusion studies. Doxorubicin hydrochloride extrusion experiments also demonstrated 20% to 26% decrease in doxorubicin efflux on cells treated with imatinib, 1L6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, and transfection with siRNA Akt. With Western blot and immunofluorescence experiments, our data suggest that ABCG2 translocation is the mechanism by which imatinib and Akt regulate drug resistance. Clonogenic survival assays performed with imatinib-treated cells resulted in a dose-dependent decrease in cell survival compared with the control population. Our findings demonstrate that imatinib confers greater doxorubicin retention, presumably via inhibition of Akt, which regulates ABCG2 function.

  2. SIRT6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox-LDL condition.

    PubMed

    He, Jiangping; Zhang, Guangya; Pang, Qi; Yu, Cong; Xiong, Jie; Zhu, Jing; Chen, Fengling

    2017-05-01

    SIRT6 is a pivotal regulator of lipid metabolism. It is also closely connected to cardiovascular diseases, which are the main cause of death in diabetic patients. We observed a decrease in the expression of SIRT6 and key autophagy effectors (ATG5, LC3B, and LAMP1) in ox-LDL-induced foam cells, a special form of lipid-laden macrophages. In these cells, SIRT6 WT but not SIRT6 H133Y overexpression markedly reduced foam cell formation, as shown by Oil Red O staining, while inducing autophagy flux, as determined by both mRFP-GFP-LC3 labeling and transmission electron microscopy. Silencing the key autophagy initiation gene ATG5, reversed the autophagy-promoting effect of SIRT6 in ox-LDL-treated THP1 cells, as evidenced by an increase in foam cells. Cholesterol efflux assays indicated that SIRT6 overexpression in foam cells promoted cholesterol efflux, increased the levels of ABCA1 and ABCG1, and reduced miR-33 levels. By transfecting miR-33 into cells overexpressing SIRT6, we observed that reduced foam cell formation and autophagy flux induction were largely reversed. These data imply that SIRT6 plays an essential role in protecting against atherosclerosis by reducing foam cell formation through an autophagy-dependent pathway. © 2017 Federation of European Biochemical Societies.

  3. Overexpression and deletion of phospholipid transfer protein reduce HDL mass and cholesterol efflux capacity but not macrophage reverse cholesterol transport[S

    PubMed Central

    Kuwano, Takashi; Bi, Xin; Cipollari, Eleonora; Yasuda, Tomoyuki; Lagor, William R.; Szapary, Hannah J.; Tohyama, Junichiro; Millar, John S.; Billheimer, Jeffrey T.; Lyssenko, Nicholas N.; Rader, Daniel J.

    2017-01-01

    Phospholipid transfer protein (PLTP) may affect macrophage reverse cholesterol transport (mRCT) through its role in the metabolism of HDL. Ex vivo cholesterol efflux capacity and in vivo mRCT were assessed in PLTP deletion and PLTP overexpression mice. PLTP deletion mice had reduced HDL mass and cholesterol efflux capacity, but unchanged in vivo mRCT. To directly compare the effects of PLTP overexpression and deletion on mRCT, human PLTP was overexpressed in the liver of wild-type animals using an adeno-associated viral (AAV) vector, and control and PLTP deletion animals were injected with AAV-null. PLTP overexpression and deletion reduced plasma HDL mass and cholesterol efflux capacity. Both substantially decreased ABCA1-independent cholesterol efflux, whereas ABCA1-dependent cholesterol efflux remained the same or increased, even though preβ HDL levels were lower. Neither PLTP overexpression nor deletion affected excretion of macrophage-derived radiocholesterol in the in vivo mRCT assay. The ex vivo and in vivo assays were modified to gauge the rate of cholesterol efflux from macrophages to plasma. PLTP activity did not affect this metric. Thus, deviations in PLTP activity from the wild-type level reduce HDL mass and ex vivo cholesterol efflux capacity, but not the rate of macrophage cholesterol efflux to plasma or in vivo mRCT. PMID:28137768

  4. Hsp27 promotes ABCA1 expression and cholesterol efflux through the PI3K/PKCζ/Sp1 pathway in THP-1 macrophages.

    PubMed

    Kuang, Hai-Jun; Zhao, Guo-Jun; Chen, Wu-Jun; Zhang, Min; Zeng, Gao-Feng; Zheng, Xi-Long; Tang, Chao-Ke

    2017-09-05

    Heat shock protein 27 (Hsp27) is a putative biomarker and therapeutic target in atherosclerosis. This study was to explore the potential mechanisms underlying Hsp27 effects on ATP-binding cassette transporter A1 (ABCA1) expression and cellular cholesterol efflux. THP-1 macrophage-derived foam cells were infected with adenovirus to express wild-type Hsp27, hyper-phosphorylated Hsp27 mimic (3D Hsp27), antisense Hsp27 or hypo-phosphorylated Hsp27 mimic (3A Hsp27). Wild-type and 3D Hsp27 were found to up-regulate ABCA1 mRNA and protein expression and increase cholesterol efflux from cells. Expression of antisense or 3A Hsp27 suppressed the expression of ABCA1 and cholesterol efflux. Furthermore, over-expression of wild-type and 3D Hsp27 significantly increased the levels of phosphorylated specificity protein 1 (Sp1), protein kinase C ζ (PKCζ) and phosphatidylinositol 3-kinase (PI3K). In addition, the up-regulation of ABCA1 expression and cholesterol efflux induced by 3D Hsp27 was suppressed by inhibition of Sp1, PKCζ and PI3K with specific kinase inhibitors. Taken together, our results revealed that Hsp27 may up-regulate the expression of ABCA1 and promotes cholesterol efflux through activation of the PI3K/PKCζ/Sp1 signal pathway in THP-1 macrophage-derived foam cells. Our findings may partly explain the mechanisms underlying the anti-atherogenic effect of Hsp27. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effects of the lipid environment, cholesterol and bile acids on the function of the purified and reconstituted human ABCG2 protein.

    PubMed

    Telbisz, Ágnes; Özvegy-Laczka, Csilla; Hegedűs, Tamás; Váradi, András; Sarkadi, Balázs

    2013-03-01

    The human ABCG2 multidrug transporter actively extrudes a wide range of hydrophobic drugs and xenobiotics recognized by the transporter in the membrane phase. In order to examine the molecular nature of the transporter and its effects on the lipid environment, we have established an efficient protocol for the purification and reconstitution of the functional protein. We found that the drug-stimulated ATPase and the transport activity of ABCG2 are fully preserved by applying excess lipids and mild detergents during solubilization, whereas a detergent-induced dissociation of the ABCG2 dimer causes an irreversible inactivation. By using the purified and reconstituted protein we demonstrate that cholesterol is an essential activator, whereas bile acids are important modulators of ABCG2 activity. Both wild-type ABCG2 and its R482G mutant variant require cholesterol for full activity, although they exhibit different cholesterol sensitivities. Bile acids strongly decrease the basal ABCG2-ATPase activity both in the wild-type ABCG2 and in the mutant variant. These data reinforce the results for the modulatory effects of cholesterol and bile acids of ABCG2 investigated in a complex cell membrane environment. Moreover, these experiments open the possibility to perform functional and structural studies with a purified, reconstituted and highly active ABCG2 multidrug transporter.

  6. Resveratrol modulates ATPase activity of liposome-reconstituted ABCG1.

    PubMed

    de Athayde Moncorvo Collado, Alejandro; Corbalán, Natalia; Homolya, László; Morero, Roberto; Minahk, Carlos

    2013-08-02

    ABCG1 is a half-sized transporter with an unquestionable importance in cholesterol homeostasis. So far, its expression and thus its activity was suggested to be regulated at transcriptional level by LXR and PPAR agonists including polyphenols. However, it is unknown whether there are other mechanisms of up-regulation of ABCG1 activity. In the present work resveratrol was shown to induce a nearly twofold increase in ATPase activity of reconstituted ABCG1. Evidence is presented for the first time suggesting that resveratrol is able to activate ABCG1 activity by an alternative mechanism that involves an indirect interaction. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Proteomic analysis of HDL from inbred mouse strains implicates APOE associated with HDL in reduced cholesterol efflux capacity via the ABCA1 pathway[S

    PubMed Central

    Pamir, Nathalie; Hutchins, Patrick; Ronsein, Graziella; Vaisar, Tomas; Reardon, Catherine A.; Getz, Godfrey S.; Lusis, Aldons J.; Heinecke, Jay W.

    2016-01-01

    Cholesterol efflux capacity associates strongly and negatively with the incidence and prevalence of human CVD. We investigated the relationships of HDL’s size and protein cargo with its cholesterol efflux capacity using APOB-depleted serum and HDLs isolated from five inbred mouse strains with different susceptibilities to atherosclerosis. Like humans, mouse HDL carried >70 proteins linked to lipid metabolism, the acute-phase response, proteinase inhibition, and the immune system. HDL’s content of specific proteins strongly correlated with its size and cholesterol efflux capacity, suggesting that its protein cargo regulates its function. Cholesterol efflux capacity with macrophages strongly and positively correlated with retinol binding protein 4 (RBP4) and PLTP, but not APOA1. In contrast, ABCA1-specific cholesterol efflux correlated strongly with HDL’s content of APOA1, APOC3, and APOD, but not RBP4 and PLTP. Unexpectedly, APOE had a strong negative correlation with ABCA1-specific cholesterol efflux capacity. Moreover, the ABCA1-specific cholesterol efflux capacity of HDL isolated from APOE-deficient mice was significantly greater than that of HDL from wild-type mice. Our observations demonstrate that the HDL-associated APOE regulates HDL’s ABCA1-specific cholesterol efflux capacity. These findings may be clinically relevant because HDL’s APOE content associates with CVD risk and ABCA1 deficiency promotes unregulated cholesterol accumulation in human macrophages. PMID:26673204

  8. Acid sphingomyelinase-deficient macrophages have defective cholesterol trafficking and efflux.

    PubMed

    Leventhal, A R; Chen, W; Tall, A R; Tabas, I

    2001-11-30

    Cholesterol efflux from macrophage foam cells, a key step in reverse cholesterol transport, requires trafficking of cholesterol from intracellular sites to the plasma membrane. Sphingomyelin is a cholesterol-binding molecule that transiently exists with cholesterol in endosomes and lysosomes but is rapidly hydrolyzed by lysosomal sphingomyelinase (L-SMase), a product of the acid sphingomyelinase (ASM) gene. We therefore hypothesized that sphingomyelin hydrolysis by L-SMase enables cholesterol efflux by preventing cholesterol sequestration by sphingomyelin. Macrophages from wild-type and ASM knockout mice were incubated with [(3)H]cholesteryl ester-labeled acetyl-LDL and then exposed to apolipoprotein A-I or high density lipoprotein. In both cases, [(3)H]cholesterol efflux was decreased substantially in the ASM knockout macrophages. Similar results were shown for ASM knockout macrophages labeled long-term with [(3)H]cholesterol added directly to medium, but not for those labeled for a short period, suggesting defective efflux from intracellular stores but not from the plasma membrane. Cholesterol trafficking to acyl-coenzyme A:cholesterol acyltransferase (ACAT) was also defective in ASM knockout macrophages. Using filipin to probe cholesterol in macrophages incubated with acetyl-LDL, we found there was modest staining in the plasma membrane of wild-type macrophages but bright, perinuclear fluorescence in ASM knockout macrophages. Last, when wild-type macrophages were incubated with excess sphingomyelin to "saturate" L-SMase, [(3)H]cholesterol efflux was decreased. Thus, sphingomyelin accumulation due to L-SMase deficiency leads to defective cholesterol trafficking and efflux, which we propose is due to sequestration of cholesterol by sphingomyelin and possibly other mechanisms. This model may explain the low plasma high density lipoprotein found in ASM-deficient humans and may implicate L-SMase deficiency and/or sphingomyelin enrichment of lipoproteins as novel

  9. Polyphenol-rich black chokeberry (Aronia melanocarpa) extract regulates the expression of genes critical for intestinal cholesterol flux in Caco-2 cells.

    PubMed

    Kim, Bohkyung; Park, Youngki; Wegner, Casey J; Bolling, Bradley W; Lee, Jiyoung

    2013-09-01

    Black chokeberry (Aronia melanocarpa) is a rich source of polyphenols. The hypolipidemic effects of polyphenol-rich black chokeberry extract (CBE) have been reported, but underlying mechanisms have not been well characterized. We investigated the effect of CBE on the expression of genes involved in intestinal lipid metabolism. Caco-2 cells were incubated with 50 or 100 μg/ml of CBE for 24 h for quantitative realtime polymerase chain reaction analysis. Expression of genes for cholesterol synthesis (3-hydroxy-3-methylglutaryl coenzyme A reductase and sterol regulatory element binding protein 2), apical cholesterol uptake (Niemann-Pick C1 Like 1 and scavenger receptor class B Type 1) and basolateral cholesterol efflux [ATP-binding cassette transporter A1 (ABCA1)] was significantly decreased by CBE compared with control. Western blot analysis confirmed that CBE inhibited expression of these proteins. In contrast, CBE markedly induced mRNA and/or protein levels of ABCG5 and ABCG8 that mediate apical cholesterol efflux to the intestinal lumen. Furthermore, CBE significantly increased mRNA and protein levels of low-density lipoprotein (LDL) receptor, and cellular LDL uptake. Expression of genes involved in lipid metabolism and lipoprotein assembly, including sterol regulatory element-binding protein 1c, fatty acid synthase and acyl-CoA oxidase 1, was significantly decreased by CBE in a dose-dependent manner. Concomitantly, CBE significantly increased sirtuin 1, 3 and 5 mRNA levels, while it decreased SIRT-2. Our data suggest that hypolipidemic effects of CBE may be attributed, at least in part, to increased apical efflux of LDL-derived cholesterol and to decreased chylomicron formation in the intestine; and specific isoforms of SIRT may play an important role in this process. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. An LXR–NCOA5 gene regulatory complex directs inflammatory crosstalk-dependent repression of macrophage cholesterol efflux

    PubMed Central

    Gillespie, Mark A; Gold, Elizabeth S; Ramsey, Stephen A; Podolsky, Irina; Aderem, Alan; Ranish, Jeffrey A

    2015-01-01

    LXR–cofactor complexes activate the gene expression program responsible for cholesterol efflux in macrophages. Inflammation antagonizes this program, resulting in foam cell formation and atherosclerosis; however, the molecular mechanisms underlying this antagonism remain to be fully elucidated. We use promoter enrichment-quantitative mass spectrometry (PE-QMS) to characterize the composition of gene regulatory complexes assembled at the promoter of the lipid transporter Abca1 following downregulation of its expression. We identify a subset of proteins that show LXR ligand- and binding-dependent association with the Abca1 promoter and demonstrate they differentially control Abca1 expression. We determine that NCOA5 is linked to inflammatory Toll-like receptor (TLR) signaling and establish that NCOA5 functions as an LXR corepressor to attenuate Abca1 expression. Importantly, TLR3–LXR signal crosstalk promotes recruitment of NCOA5 to the Abca1 promoter together with loss of RNA polymerase II and reduced cholesterol efflux. Together, these data significantly expand our knowledge of regulatory inputs impinging on the Abca1 promoter and indicate a central role for NCOA5 in mediating crosstalk between pro-inflammatory and anti-inflammatory pathways that results in repression of macrophage cholesterol efflux. PMID:25755249

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halvorsen, Bente, E-mail: Bente.Halvorsen@rr-research.no; Institute of Clinical Medicine, University of Oslo, Oslo; K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo

    Highlights: • IL-10 promotes reverse cholesterol efflux from lipid loaded macrophages. • IL-10 increases the expression of ABCA-1 and ABCG-1. • IL-10 exhibits cross-talk with the nuclear receptor LXRα. - Abstract: Interleukin (IL)-10 is a prototypical anti-inflammatory cytokine that has been shown to attenuate atherosclerosis development. In addition to its anti-inflammatory properties, the anti-atherogenic effect of IL-10 has recently also been suggested to reflect a complex effect of IL-10 on lipid metabolism in macrophages. In the present study we examined the effects of IL-10 on cholesterol efflux mechanism in lipid-loaded THP-1 macrophages. Our main findings were: (i) IL-10 significantly enhancedmore » cholesterol efflux induced by fetal-calf serum, high-density lipoprotein (HDL){sub 2} and apolipoprotein A-1. (ii) The IL-10-mediated effects on cholesterol efflux were accompanied by an increased IL-10-mediated expression of the ATP-binding cassette transporters ABCA1 and ABCG1, that was further enhanced when the cells were co-activated with the liver X receptor (LXR)α agonist (22R)-hydroxycholesterol. (iii) The effect of LXRα activation on the IL-10-mediated effects on the ATP-binding cassette transporters seems to include enhancing effects on the IL-10 receptor 1 (IL10R1) expression and interaction with STAT-3 signaling. (iv) These enhancing effects on ABCA1 and ABCG1 was not seen when the cells were stimulated with the IL-10 family members IL-22 and IL-24. This study suggests that the anti-atherogenic properties of IL-10 may include enhancing effects on cholesterol efflux mechanism that involves cross-talk with LXRα activation.« less

  12. The naphthoquinones, vitamin K3 and its structural analog plumbagin, are substrates of the multidrug resistance-linked ABC drug transporter ABCG2

    PubMed Central

    Shukla, Suneet; Wu, Chung-Pu; Nandigama, Krishnamachary; Ambudkar, Suresh V.

    2008-01-01

    Vitamin K3 (Menadione; 2-methyl-1,4-naphthoquinone) is a structural precursor of vitamins K1 and K2 which are essential for blood clotting. The naturally occurring structural analog of this vitamin, plumbagin (5-hydroxy-menadione), is known to modulate cellular proliferation, apoptosis, carcinogenesis, and radioresistance. We, here, report that both vitamin K3 and plumbagin are substrates of the multidrug resistance-linked ATP binding cassette (ABC) drug transporter, ABCG2. Vitamin K3 and plumbagin specifically inhibited the ABCG2-mediated efflux of mitoxantrone, but did not have any effect on the ABCB1-mediated efflux of rhodamine 123. This inhibition of ABCG2 function was due to their interaction at the substrate-binding site(s). They inhibited the binding of [125I]-Iodoarylazidoprazosin (IAAP), a substrate of ABCG2, to this transporter in a concentration-dependent manner with IC50 values of 7.3 and 22.6 μM, respectively, but had no effect on the binding of this photoaffinity analog to ABCB1. Both compounds stimulated ABCG2-mediated ATP hydrolysis and also inhibited the mitoxantrone-stimulated ATPase activity of this transporter, but did not have any significant effect on the ATPase activity of ABCB1. In a cytotoxicity assay, ABCG2-expressing HEK cells were 2.8- and 2.3-fold resistant to plumbagin and vitamin K3, respectively, compared to the control cells, suggesting that they are substrates of this transporter. Collectively, these data demonstrate for the first time that vitamin K3 is a substrate of the ABCG2 transporter. Thus, ABCG2 may have a role in the regulation of vitamin K3 levels in the body. In addition, vitamin K3 and its structural derivative, plumbagin, could potentially be used to modulate ABCG2 function. PMID:18065489

  13. The naphthoquinones, vitamin K3 and its structural analogue plumbagin, are substrates of the multidrug resistance linked ATP binding cassette drug transporter ABCG2.

    PubMed

    Shukla, Suneet; Wu, Chung-Pu; Nandigama, Krishnamachary; Ambudkar, Suresh V

    2007-12-01

    Vitamin K3 (menadione; 2-methyl-1,4-naphthoquinone) is a structural precursor of vitamins K1 and K2, which are essential for blood clotting. The naturally occurring structural analogue of this vitamin, plumbagin (5-hydroxy-menadione), is known to modulate cellular proliferation, apoptosis, carcinogenesis, and radioresistance. We here report that both vitamin K3 and plumbagin are substrates of the multidrug resistance-linked ATP binding cassette drug transporter, ABCG2. Vitamin K3 and plumbagin specifically inhibited the ABCG2-mediated efflux of mitoxantrone but did not have any effect on the ABCB1-mediated efflux of rhodamine 123. This inhibition of ABCG2 function was due to their interaction at the substrate-binding site(s). Vitamin K3 and plumbagin inhibited the binding of [(125)I]iodoarylazidoprazosin, a substrate of ABCG2, to this transporter in a concentration-dependent manner with IC(50) values of 7.3 and 22.6 micromol/L, respectively, but had no effect on the binding of the photoaffinity analogue to ABCB1. Both compounds stimulated ABCG2-mediated ATP hydrolysis and also inhibited the mitoxantrone-stimulated ATPase activity of the ABCG2 transporter, but did not have any significant effect on the ATPase activity of ABCB1. In a cytotoxicity assay, ABCG2-expressing HEK cells were 2.8- and 2.3-fold resistant to plumbagin and vitamin K3, respectively, compared with the control cells, suggesting that they are substrates of this transporter. Collectively, these data show for the first time that vitamin K3 is a substrate of the ABCG2 transporter. Thus, ABCG2 may have a role in the regulation of vitamin K3 levels in the body. In addition, vitamin K3 and its structural derivative, plumbagin, could potentially be used to modulate ABCG2 function.

  14. Plasma cholesterol homeostasis, HDL remodeling and function during the acute phase reaction.

    PubMed

    Zimetti, Francesca; De Vuono, Stefano; Gomaraschi, Monica; Adorni, Maria Pia; Favari, Elda; Ronda, Nicoletta; Ricci, Maria Anastasia; Veglia, Fabrizio; Calabresi, Laura; Lupattelli, Graziana

    2017-10-01

    Acute phase reaction (APR) is a systemic inflammation triggered by several conditions associated with lipid profile alterations. We evaluated whether APR also associates with changes in cholesterol synthesis and absorption, HDL structure, composition, and cholesterol efflux capacity (CEC). We analyzed 59 subjects with APR related to infections, oncologic causes, or autoimmune diseases and 39 controls. We detected no difference in markers of cholesterol synthesis and absorption. Conversely, a significant reduction of LpA-I- and LpAI:AII-containing HDL (-28% and -44.8%, respectively) and of medium-sized HDL (-10.5%) occurred in APR. Total HDL CEC was impaired in APR subjects (-18%). Evaluating specific CEC pathways, we found significant reductions in CEC by aqueous diffusion and by the transporters scavenger receptor B-I and ABCG1 (-25.5, -41.1 and -30.4%, respectively). ABCA1-mediated CEC was not affected. Analyses adjusted for age and gender provided similar results. In addition, correcting for HDL-cholesterol (HDL-C) levels, the differences in aqueous diffusion total and ABCG1-CEC remained significant. APR subjects displayed higher levels of HDL serum amyloid A (+20-folds; P = 0.003). In conclusion, APR does not associate with cholesterol synthesis and absorption changes but with alterations of HDL composition and a marked impairment of HDL CEC, partly independent of HDL-C serum level reduction. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  15. Apolipoprotein A-1 (apoA-1) deposition in, and release from, the enterocyte brush border: a possible role in transintestinal cholesterol efflux (TICE)?

    PubMed

    Danielsen, E Michael; Hansen, Gert H; Rasmussen, Karina; Niels-Christiansen, Lise-Lotte; Frenzel, Franz

    2012-03-01

    Transintestinal cholesterol efflux (TICE) has been proposed to represent a non-hepatobiliary route of cholesterol secretion directly "from blood to gut" and to play a physiologically significant role in excretion of neutral sterols, but so far little is known about the proteins involved in the process. We have previously observed that apolipoprotein A-1 (apoA-1) synthesized by enterocytes of the small intestine is mainly secreted apically into the gut lumen during fasting where its assembly into chylomicrons and basolateral discharge is at a minimal level. In the present work we showed, both by immunomicroscopy and subcellular fractionation, that a fraction of the apically secreted apoA-1 in porcine small intestine was not released from the cell surface but instead deposited in the brush border. Cholesterol was detected in immunoisolated microvillar apoA-1, and it was partially associated with detergent resistant membranes (DRMs), indicative of localization in lipid raft microdomains. The apolipoprotein was not readily released from microvillar vesicles by high salt or by incubation with phosphatidylcholine-specific phospholipase C or trypsin, indicating a relatively firm attachment to the membrane bilayer. However, whole bile or taurocholate efficiently released apoA-1 at low concentrations that did not solubilize the transmembrane microvillar protein aminopeptidase N. Based on these findings and the well known role played by apoA-1 in extrahepatic cellular cholesterol removal and reverse cholesterol transport (RCT), we propose that brush border-deposited apoA-1 in the small intestine acts in TICE by mediating cholesterol efflux into the gut lumen. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Impact of heme oxygenase-1 on cholesterol synthesis, cholesterol efflux and oxysterol formation in cultured astroglia.

    PubMed

    Hascalovici, Jacob R; Song, Wei; Vaya, Jacob; Khatib, Soliman; Fuhrman, Bianca; Aviram, Michael; Schipper, Hyman M

    2009-01-01

    Up-regulation of heme oxygenase-1 (HO-1) and altered cholesterol (CH) metabolism are characteristic of Alzheimer-diseased neural tissues. The liver X receptor (LXR) is a molecular sensor of CH homeostasis. In the current study, we determined the effects of HO-1 over-expression and its byproducts iron (Fe(2+)), carbon monoxide (CO) and bilirubin on CH biosynthesis, CH efflux and oxysterol formation in cultured astroglia. HO-1/LXR interactions were also investigated in the context of CH efflux. hHO-1 over-expression for 3 days ( approximately 2-3-fold increase) resulted in a 30% increase in CH biosynthesis and a two-fold rise in CH efflux. Both effects were abrogated by the competitive HO inhibitor, tin mesoporphyrin. CO, released from administered CORM-3, significantly enhanced CH biosynthesis; a combination of CO and iron stimulated CH efflux. Free iron increased oxysterol formation three-fold. Co-treatment with LXR antagonists implicated LXR activation in the modulation of CH homeostasis by heme degradation products. In Alzheimer's disease and other neuropathological states, glial HO-1 induction may transduce ambient noxious stimuli (e.g. beta-amyloid) into altered patterns of glial CH homeostasis. As the latter may impact synaptic plasticity and neuronal repair, modulation of glial HO-1 expression (by pharmacological or other means) may confer neuroprotection in patients with degenerative brain disorders.

  17. Decreased cholesterol efflux capacity and atherogenic lipid profile in young women with PCOS.

    PubMed

    Roe, Andrea; Hillman, Jennifer; Butts, Samantha; Smith, Mathew; Rader, Daniel; Playford, Martin; Mehta, Nehal N; Dokras, Anuja

    2014-05-01

    Women with polycystic ovary syndrome (PCOS) have a high prevalence of cardiovascular disease (CVD) risk factors including dyslipidemia. Lipoproteins are heterogeneous, and measurement of serum lipids provides only the size of the pool and does not predict their function or composition. Recently, high-density lipoprotein cholesterol (HDL-C) function, as determined by cholesterol efflux capacity from macrophages, has been shown to be an independent predictor of subclinical CVD. The aim of the study was to comprehensively evaluate lipoprotein profile including lipid particle size and number and cholesterol efflux capacity in PCOS to better define CVD risk. A case control study was performed at an academic PCOS center. Women with PCOS (n = 124) and geographically matched controls (n = 67) were included in the study. The primary outcome was to measure HDL-C efflux capacity by an ex vivo system involving the incubation of macrophages with apolipoprotein (Apo) B-depleted serum from subjects, and the secondary outcome was to measure lipid particle size and number using nuclear magnetic resonance spectroscopy. Women with PCOS had significantly higher body mass index and blood pressure but similar HDL-C and low-density lipoprotein cholesterol levels compared to controls. The mean ApoA1 levels were lower, and the ApoB/ApoA1 ratio was higher in PCOS subjects compared to controls (P < .01). There were no differences in ApoB levels. Women with PCOS had an 7% decrease in normalized cholesterol efflux capacity compared to controls (P < .003). Cholesterol efflux capacity in PCOS correlated with body mass index, ApoA1, HDL-C, and the presence of metabolic syndrome. In a multivariable regression model, PCOS was significantly associated with diminished cholesterol efflux. PCOS was also associated with an atherogenic profile including an increase in large very low-density lipoprotein particles, very low-density lipoprotein (VLDL) size, and small low-density lipoprotein cholesterol

  18. Decreased Cholesterol Efflux Capacity and Atherogenic Lipid Profile in Young Women With PCOS

    PubMed Central

    Roe, Andrea; Hillman, Jennifer; Butts, Samantha; Smith, Mathew; Rader, Daniel; Playford, Martin; Mehta, Nehal N.

    2014-01-01

    Context: Women with polycystic ovary syndrome (PCOS) have a high prevalence of cardiovascular disease (CVD) risk factors including dyslipidemia. Lipoproteins are heterogeneous, and measurement of serum lipids provides only the size of the pool and does not predict their function or composition. Recently, high-density lipoprotein cholesterol (HDL-C) function, as determined by cholesterol efflux capacity from macrophages, has been shown to be an independent predictor of subclinical CVD. Objective: The aim of the study was to comprehensively evaluate lipoprotein profile including lipid particle size and number and cholesterol efflux capacity in PCOS to better define CVD risk. Design and Setting: A case control study was performed at an academic PCOS center. Patients: Women with PCOS (n = 124) and geographically matched controls (n = 67) were included in the study. Main Outcome Measures: The primary outcome was to measure HDL-C efflux capacity by an ex vivo system involving the incubation of macrophages with apolipoprotein (Apo) B-depleted serum from subjects, and the secondary outcome was to measure lipid particle size and number using nuclear magnetic resonance spectroscopy. Results: Women with PCOS had significantly higher body mass index and blood pressure but similar HDL-C and low-density lipoprotein cholesterol levels compared to controls. The mean ApoA1 levels were lower, and the ApoB/ApoA1 ratio was higher in PCOS subjects compared to controls (P < .01). There were no differences in ApoB levels. Women with PCOS had an 7% decrease in normalized cholesterol efflux capacity compared to controls (P < .003). Cholesterol efflux capacity in PCOS correlated with body mass index, ApoA1, HDL-C, and the presence of metabolic syndrome. In a multivariable regression model, PCOS was significantly associated with diminished cholesterol efflux. PCOS was also associated with an atherogenic profile including an increase in large very low-density lipoprotein particles, very low

  19. microRNA-212 promotes lipid accumulation and attenuates cholesterol efflux in THP-1 human macrophages by targeting SIRT1.

    PubMed

    Miao, Haiwei; Zeng, Honghui; Gong, Hui

    2018-02-15

    Macrophage foam cell formation is a key initiating event in the pathogenesis of atherosclerosis. This work was conducted to determine the role of microRNA (miR)-212 in the transformation of foam cells from macrophages. We examined the expression of miR-212 in atherosclerotic lesions in an apoE-deficient (apoE -/- ) mouse model. The effects of miR-212 overexpression and knockdown on lipid accumulation and cholesterol homeostasis in THP-1 macrophages after exposure to oxidized low-density lipoprotein (oxLDL). The mechanism underlying the activity of miR-212 was explored. It was found that miR-212 was downregulated in atherosclerotic lesions and macrophages from apoE -/- mice fed high-fat diet, compared to the equivalents from apoE -/- mice fed standard diet. Overexpression of miR-212 promoted lipid accumulation in oxLDL-treated THP-1 macrophages, whereas miR-212 depletion exerted an opposite effect. Macrophage cholesterol efflux to apolipoprotein A-I was significantly reduced by miR-212, which was accompanied by reduced ABCA1 expression. Mechanistically, miR-212 targeted sirtuin 1 (SIRT1) to repress the expression of ABCA1 in THP-1 macrophages. Rescue experiments confirmed that co-expression of SIRT1 attenuated lipid accumulation and restored cholesterol efflux in miR-212-overexpressing THP-1 macrophages. Collectively, miR-212 facilitates macrophage foam cell formation and suppresses ABCA1-dependent cholesterol efflux through downregulation of SIRT1. Targeting miR-212 may provide a potential therapeutic strategy for atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Localization of ABCG5 and ABCG8 proteins in human liver, gall bladder and intestine

    PubMed Central

    Klett, Eric L; Lee, Mi-Hye; Adams, David B; Chavin, Kenneth D; Patel, Shailendra B

    2004-01-01

    Background The molecular mechanisms that regulate the entry of dietary sterols into the body and their removal via hepatobiliary secretion are now beginning to be defined. These processes are specifically disrupted in the rare autosomal recessive disease, Sitosterolemia (MIM 210250). Mutations in either, but not both, of two genes ABCG5 or ABCG8, comprising the STSL locus, are now known to cause this disease and their protein products are proposed to function as heterodimers. Under normal circumstances cholesterol, but not non-cholesterol sterols, is preferentially absorbed from the diet. Additionally, any small amounts of non-cholesterol sterols that are absorbed are rapidly taken up by the liver and preferentially excreted into bile. Based upon the defects in sitosterolemia, ABCG5 and ABCG8 serve specifically to exclude non-cholesterol sterol entry at the intestinal level and are involved in sterol excretion at the hepatobiliary level. Methods Here we report the biochemical and immuno-localization of ABCG5 and ABCG8 in human liver, gallbladder and intestine using cell fractionation and immunohistochemical analyses. Results We raised peptide antibodies against ABCG5 and ABCG8 proteins. Using human liver samples, cell fractionation studies showed both proteins are found in membrane fractions, but they did not co-localize with caveolin-rafts, ER, Golgi or mitochondrial markers. Although their distribution in the sub-fractions was similar, they were not completely contiguous. Immunohistochemical analyses showed that while both proteins were readily detectable in the liver, ABCG5 was found predominately lining canalicular membranes, whereas ABCG8 was found in association with bile duct epithelia. At the cellular level, ABCG5 appeared to be apically expressed, whereas ABCG8 had a more diffuse expression pattern. Both ABCG5 and ABCG8 appeared to localize apically as shown by co-localization with MRP2. The distribution patterns of ABCG5 and ABCG8 in the gallbladder were

  1. Human ABCB1 (P-glycoprotein) and ABCG2 mediate resistance to BI 2536, a potent and selective inhibitor of Polo-like kinase 1.

    PubMed

    Wu, Chung-Pu; Hsiao, Sung-Han; Sim, Hong-May; Luo, Shi-Yu; Tuo, Wei-Cherng; Cheng, Hsing-Wen; Li, Yan-Qing; Huang, Yang-Hui; Ambudkar, Suresh V

    2013-10-01

    The overexpression of the serine/threonine specific Polo-like kinase 1 (Plk1) has been detected in various types of cancer, and thus has fast become an attractive therapeutic target for cancer therapy. BI 2536 is the first selective inhibitor of Plk1 that inhibits cancer cell proliferation by promoting G2/M cell cycle arrest at nanomolar concentrations. Unfortunately, alike most chemotherapeutic agents, the development of acquired resistance to BI 2536 is prone to present a significant therapeutic challenge. One of the most common mechanisms for acquired resistance in cancer chemotherapy is associated with the overexpression of ATP-binding cassette (ABC) transporters ABCB1, ABCC1 and ABCG2. Here, we discovered that overexpressing of either ABCB1 or ABCG2 is a novel mechanism of acquired resistance to BI 2536 in human cancer cells. Moreover, BI 2536 stimulates the ATPase activity of both ABCB1 and ABCG2 in a concentration-dependent manner, and inhibits the drug substrate transport mediated by these transporters. More significantly, the reduced chemosensitivity and BI 2536-mediated G2/M cell cycle arrest in cancer cells overexpressing either ABCB1 or ABCG2 can be significantly restored in the presence of selective inhibitor or other chemotherapeutic agents that also interact with ABCB1 and ABCG2, such as tyrosine kinase inhibitors nilotinib and lapatinib. Taken together, our findings indicate that in order to circumvent ABCB1 or ABCG2-mediated acquired resistance to BI 2536, a combined regimen of BI 2536 and inhibitors or clinically active drugs that potently inhibit the function of ABC drug transporters, should be considered as a potential treatment strategy in the clinic. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. The Pim kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by Pim-1-dependent and -independent mechanisms

    PubMed Central

    Natarajan, Karthika; Bhullar, Jasjeet; Shukla, Suneet; Burcu, Mehmet; Chen, Zhe-Sheng; Ambudkar, Suresh V.; Baer, Maria R.

    2013-01-01

    Overexpression of the ATP-binding cassette (ABC) drug efflux proteins P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on malignant cells is associated with inferior chemotherapy outcomes. Both, ABCB1 and ABCG2, are substrates of the serine/threonine kinase Pim-1; Pim-1 knockdown decreases their cell surface expression, but SGI-1776, the first clinically tested Pim inhibitor, was shown to reverse drug resistance by directly inhibiting ABCB1-mediated transport. We sought to characterize Pim-1-dependent and -independent effects of SGI-1776 on drug resistance. SGI-1776 at the Pim-1-inhibitory and non-cytotoxic concentration of 1 μM decreased the IC50s of the ABCG2 and ABCB1 substrate drugs in cytotoxicity assays in resistant cells, with no effect on the IC50 of non-substrate drug, nor in parental cells. SGI-1776 also increased apoptosis of cells overexpressing ABCG2 or ABCB1 exposed to substrate chemotherapy drugs and decreased their colony formation in the presence of substrate, but not non-substrate, drugs, with no effect on parental cells. SGI-1776 decreased ABCB1 and ABCG2 surface expression on K562/ABCB1 and K562/ABCG2 cells, respectively, with Pim-1 overexpression, but not HL60/VCR and 8226/MR20 cells, with lower-level Pim-1 expression. Finally, SGI-1776 inhibited uptake of ABCG2 and ABCB1 substrates in a concentration-dependent manner irrespective of Pim-1 expression, inhibited ABCB1 and ABCG2 photoaffinity labeling with the transport substrate [125I]iodoarylazidoprazosin ([125I]IAAP) and stimulated ABCB1 and ABCG2 ATPase activity. Thus SGI-1776 decreases cell surface expression of ABCB1 and ABCG2 and inhibits drug transport by Pim-1-dependent and -independent mechanisms, respectively. Decrease in ABCB1 and ABCG2 cell surface expression mediated by Pim-1 inhibition represents a novel mechanism of chemosensitization. PMID:23261525

  3. The Pim kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by Pim-1-dependent and -independent mechanisms.

    PubMed

    Natarajan, Karthika; Bhullar, Jasjeet; Shukla, Suneet; Burcu, Mehmet; Chen, Zhe-Sheng; Ambudkar, Suresh V; Baer, Maria R

    2013-02-15

    Overexpression of the ATP-binding cassette (ABC) drug efflux proteins P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on malignant cells is associated with inferior chemotherapy outcomes. Both, ABCB1 and ABCG2, are substrates of the serine/threonine kinase Pim-1; Pim-1 knockdown decreases their cell surface expression, but SGI-1776, the first clinically tested Pim inhibitor, was shown to reverse drug resistance by directly inhibiting ABCB1-mediated transport. We sought to characterize Pim-1-dependent and -independent effects of SGI-1776 on drug resistance. SGI-1776 at the Pim-1-inhibitory and non-cytotoxic concentration of 1 μM decreased the IC(50)s of the ABCG2 and ABCB1 substrate drugs in cytotoxicity assays in resistant cells, with no effect on the IC(50) of non-substrate drug, nor in parental cells. SGI-1776 also increased apoptosis of cells overexpressing ABCG2 or ABCB1 exposed to substrate chemotherapy drugs and decreased their colony formation in the presence of substrate, but not non-substrate, drugs, with no effect on parental cells. SGI-1776 decreased ABCB1 and ABCG2 surface expression on K562/ABCB1 and K562/ABCG2 cells, respectively, with Pim-1 overexpression, but not HL60/VCR and 8226/MR20 cells, with lower-level Pim-1 expression. Finally, SGI-1776 inhibited uptake of ABCG2 and ABCB1 substrates in a concentration-dependent manner irrespective of Pim-1 expression, inhibited ABCB1 and ABCG2 photoaffinity labeling with the transport substrate [(125)I]iodoarylazidoprazosin ([(125)I]IAAP) and stimulated ABCB1 and ABCG2 ATPase activity. Thus SGI-1776 decreases cell surface expression of ABCB1 and ABCG2 and inhibits drug transport by Pim-1-dependent and -independent mechanisms, respectively. Decrease in ABCB1 and ABCG2 cell surface expression mediated by Pim-1 inhibition represents a novel mechanism of chemosensitization. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Simvastatin promotes NPC1-mediated free cholesterol efflux from lysosomes through CYP7A1/LXRα signalling pathway in oxLDL-loaded macrophages.

    PubMed

    Xu, Xiaoyang; Zhang, Aolin; Halquist, Matthew S; Yuan, Xinxu; Henderson, Scott C; Dewey, William L; Li, Pin-Lan; Li, Ningjun; Zhang, Fan

    2017-02-01

    Statins, 3-hydroxyl-3-methylglutaryl coenzyme A reductase inhibitors, are the first-line medications prescribed for the prevention and treatment of coronary artery diseases. The efficacy of statins has been attributed not only to their systemic cholesterol-lowering actions but also to their pleiotropic effects that are unrelated to cholesterol reduction. These pleiotropic effects have been increasingly recognized as essential in statins therapy. This study was designed to investigate the pleiotropic actions of simvastatin, one of the most commonly prescribed statins, on macrophage cholesterol homeostasis with a focus on lysosomal free cholesterol egression. With simultaneous nile red and filipin staining, analysis of confocal/multi-photon imaging demonstrated that simvastatin markedly attenuated unesterified (free) cholesterol buildup in macrophages loaded with oxidized low-density lipoprotein but had little effect in reducing the sizes of cholesteryl ester-containing lipid droplets; the reduction in free cholesterol was mainly attributed to decreases in lysosome-compartmentalized cholesterol. Functionally, the egression of free cholesterol from lysosomes attenuated pro-inflammatory cytokine secretion. It was determined that the reduction of lysosomal free cholesterol buildup by simvastatin was due to the up-regulation of Niemann-Pick C1 (NPC1), a lysosomal residing cholesterol transporter. Moreover, the enhanced enzymatic production of 7-hydroxycholesterol by cytochrome P450 7A1 and the subsequent activation of liver X receptor α underscored the up-regulation of NPC1. These findings reveal a novel pleiotropic effect of simvastatin in affecting lysosomal cholesterol efflux in macrophages and the associated significance in the treatment of atherosclerosis. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. MicroRNA-20a/b regulates cholesterol efflux through post-transcriptional repression of ATP-binding cassette transporter A1.

    PubMed

    Liang, Bin; Wang, Xin; Song, Xiaosu; Bai, Rui; Yang, Huiyu; Yang, Zhiming; Xiao, Chuanshi; Bian, Yunfei

    2017-09-01

    ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in reverse cholesterol transport and exhibits anti-atherosclerosis effects. Some microRNAs (miRs) regulate ABCA1 expression, and recent studies have shown that miR-20a/b might play a critical role in atherosclerotic diseases. Here, we attempted to clarify the potential contribution of miR-20a/b in post-transcriptional regulation of ABCA1, cholesterol efflux, and atherosclerosis. We performed bioinformatics analysis and found that miR-20a/b was highly conserved and directly bound to ABCA1 mRNA with low binding free energy. Luciferase-reporter assay also confirmed that miR-20a/b significantly reduced luciferase activity associated with the ABCA1 3' untranslated region reporter construct. Additionally, miR-20a/b decreased ABCA1 expression, which, in turn, decreased cholesterol efflux and increased cholesterol content in THP-1 and RAW 264.7 macrophage-derived foam cells. In contrast, miR-20a/b inhibitors increased ABCA1 expression and cholesterol efflux, decreased cholesterol content, and inhibited foam-cell formation. Consistent with our in vitro results, miR-20a/b-treated ApoE -/- mice showed decreased ABCA1expression in the liver and reductions of reverse cholesterol transport in vivo. Furthermore, miR-20a/b regulated the formation of nascent high-density lipoprotein and promoted atherosclerotic development, whereas miR-20a/b knockdown attenuated atherosclerotic formation. miR-20 is a new miRNA capable of targeting ABCA1 and regulating ABCA1 expression. Therefore, miR-20 inhibition constitutes a new strategy for ABCA1-based treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice.

    PubMed

    Martel, Catherine; Li, Wenjun; Fulp, Brian; Platt, Andrew M; Gautier, Emmanuel L; Westerterp, Marit; Bittman, Robert; Tall, Alan R; Chen, Shu-Hsia; Thomas, Michael J; Kreisel, Daniel; Swartz, Melody A; Sorci-Thomas, Mary G; Randolph, Gwendalyn J

    2013-04-01

    Reverse cholesterol transport (RCT) refers to the mobilization of cholesterol on HDL particles (HDL-C) from extravascular tissues to plasma, ultimately for fecal excretion. Little is known about how HDL-C leaves peripheral tissues to reach plasma. We first used 2 models of disrupted lymphatic drainage from skin--1 surgical and the other genetic--to quantitatively track RCT following injection of [3H]-cholesterol-loaded macrophages upstream of blocked or absent lymphatic vessels. Macrophage RCT was markedly impaired in both models, even at sites with a leaky vasculature. Inhibited RCT was downstream of cholesterol efflux from macrophages, since macrophage efflux of a fluorescent cholesterol analog (BODIPY-cholesterol) was not altered by impaired lymphatic drainage. We next addressed whether RCT was mediated by lymphatic vessels from the aortic wall by loading the aortae of donor atherosclerotic Apoe-deficient mice with [2H]6-labeled cholesterol and surgically transplanting these aortae into recipient Apoe-deficient mice that were treated with anti-VEGFR3 antibody to block lymphatic regrowth or with control antibody to allow such regrowth. [2H]-Cholesterol was retained in aortae of anti-VEGFR3-treated mice. Thus, the lymphatic vessel route is critical for RCT from multiple tissues, including the aortic wall. These results suggest that supporting lymphatic transport function may facilitate cholesterol clearance in therapies aimed at reversing atherosclerosis.

  7. Transintestinal transport of the anti-inflammatory drug 4F and the modulation of transintestinal cholesterol efflux[S

    PubMed Central

    Meriwether, David; Sulaiman, Dawoud; Wagner, Alan; Grijalva, Victor; Kaji, Izumi; Williams, Kevin J.; Yu, Liqing; Fogelman, Spencer; Volpe, Carmen; Bensinger, Steven J.; Anantharamaiah, G. M.; Shechter, Ishaiahu; Fogelman, Alan M.; Reddy, Srinivasa T.

    2016-01-01

    The site and mechanism of action of the apoA-I mimetic peptide 4F are incompletely understood. Transintestinal cholesterol efflux (TICE) is a process involved in the clearance of excess cholesterol from the body. While TICE is responsible for at least 30% of the clearance of neutral sterols from the circulation into the intestinal lumen, few pharmacological agents have been identified that modulate this pathway. We show first that circulating 4F selectively targets the small intestine (SI) and that it is predominantly transported into the intestinal lumen. This transport of 4F into the SI lumen is transintestinal in nature, and it is modulated by TICE. We also show that circulating 4F increases reverse cholesterol transport from macrophages and cholesterol efflux from lipoproteins via the TICE pathway. We identify the cause of this modulation of TICE either as 4F being a cholesterol acceptor with respect to enterocytes, from which 4F enhances cholesterol efflux, or as 4F being an intestinal chaperone with respect to TICE. Our results assign a novel role for 4F as a modulator of the TICE pathway and suggest that the anti-inflammatory functions of 4F may be a partial consequence of the codependent intestinal transport of both 4F and cholesterol. PMID:27199144

  8. ABCA1, ABCG1 and SR-BI: hormonal regulation in primary rat hepatocytes and human cell lines

    PubMed Central

    Sporstøl, Marita; Mousavi, Seyed Ali; Eskild, Winnie; Roos, Norbert; Berg, Trond

    2007-01-01

    Background Scavenger receptor type B class I (SR-BI), ABC transporter A1 (ABCA1) -and G1 (ABCG1) all play important roles in the reverse cholesterol transport. Reverse cholesterol transport is a mechanism whereby the body can eliminate excess cholesterol. Here, the regulation of SR-BI, ABCA1, and ABCG1 by dexamethasone (a synthetic glucocorticoid) and insulin were studied in order to gain more insight into the role of these two hormones in the cholesterol metabolism. Results By use of real time RT-PCR and Western blotting we examined the expression of our target genes. The results show that SR-BI, ABCA1 and ABCG1 mRNA expression increased in response to dexamethasone while insulin treatment reduced the expression in primary rat hepatocytes. The stimulatory effect of dexamethasone was reduced by the addition of the anti-glucocorticoid mifepristone. In HepG2 cells and THP-1 macrophages, however, the effect of dexamethasone was absent or inhibitory with no significant change in the presence of mifepristone. The latter observation may be a result of the low protein expression of glucocorticoid receptor (GR) in these cell lines. Conclusion Our results illustrates that insulin and glucocorticoids, two hormones crucial in the carbohydrate metabolism, also play an important role in the regulation of genes central in reverse cholesterol transport. We found a marked difference in mRNA expression between the primary cells and the two established cell lines when studying the effect of dexamethasone which may result from the varying expression levels of GR. PMID:17241464

  9. ABCA1, ABCG1 and SR-BI: hormonal regulation in primary rat hepatocytes and human cell lines.

    PubMed

    Sporstøl, Marita; Mousavi, Seyed Ali; Eskild, Winnie; Roos, Norbert; Berg, Trond

    2007-01-22

    Scavenger receptor type B class I (SR-BI), ABC transporter A1 (ABCA1) -and G1 (ABCG1) all play important roles in the reverse cholesterol transport. Reverse cholesterol transport is a mechanism whereby the body can eliminate excess cholesterol. Here, the regulation of SR-BI, ABCA1, and ABCG1 by dexamethasone (a synthetic glucocorticoid) and insulin were studied in order to gain more insight into the role of these two hormones in the cholesterol metabolism. By use of real time RT-PCR and Western blotting we examined the expression of our target genes. The results show that SR-BI, ABCA1 and ABCG1 mRNA expression increased in response to dexamethasone while insulin treatment reduced the expression in primary rat hepatocytes. The stimulatory effect of dexamethasone was reduced by the addition of the anti-glucocorticoid mifepristone. In HepG2 cells and THP-1 macrophages, however, the effect of dexamethasone was absent or inhibitory with no significant change in the presence of mifepristone. The latter observation may be a result of the low protein expression of glucocorticoid receptor (GR) in these cell lines. Our results illustrates that insulin and glucocorticoids, two hormones crucial in the carbohydrate metabolism, also play an important role in the regulation of genes central in reverse cholesterol transport. We found a marked difference in mRNA expression between the primary cells and the two established cell lines when studying the effect of dexamethasone which may result from the varying expression levels of GR.

  10. Contrasting roles of the ABCG2 Q141K variant in prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobek, Kathryn M.; Cummings, Jessica L.; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA

    ABCG2 is a membrane transport protein that effluxes growth-promoting molecules, such as folates and dihydrotestosterone, as well as chemotherapeutic agents. Therefore it is important to determine how variants of ABCG2 affect the transporter function in order to determine whether modified treatment regimens may be necessary for patients harboring ABCG2 variants. Previous studies have demonstrated an association between the ABCG2 Q141K variant and overall survival after a prostate cancer diagnosis. We report here that in patients with recurrent prostate cancer, those who carry the ABCG2 Q141K variant had a significantly shorter time to PSA recurrence post-prostatectomy than patients homozygous for wild-typemore » ABCG2 (P=0.01). Transport studies showed that wild-type ABCG2 was able to efflux more folic acid than the Q141K variant (P<0.002), suggesting that retained tumoral folate contributes to the decreased time to PSA recurrence in the Q141K variant patients. In a seemingly conflicting study, it was previously reported that docetaxel-treated Q141K variant prostate cancer patients have a longer survival time. We found this may be due to less efficient docetaxel efflux in cells with the Q141K variant versus wild-type ABCG2. In human prostate cancer tissues, confocal microscopy revealed that all genotypes had a mixture of cytoplasmic and plasma membrane staining, with noticeably less staining in the two homozygous KK patients. In conclusion, the Q141K variant plays contrasting roles in prostate cancer: 1) by decreasing folate efflux, increased intracellular folate levels result in enhanced tumor cell proliferation and therefore time to recurrence decreases; and 2) in patients treated with docetaxel, by decreasing its efflux, intratumoral docetaxel levels and tumor cell drug sensitivity increase and therefore patient survival time increases. Taken together, these data suggest that a patient's ABCG2 genotype may be important when determining a personalized treatment

  11. Phytosterol and cholesterol precursor levels indicate increased cholesterol excretion and biosynthesis in gallstone disease.

    PubMed

    Krawczyk, Marcin; Lütjohann, Dieter; Schirin-Sokhan, Ramin; Villarroel, Luis; Nervi, Flavio; Pimentel, Fernando; Lammert, Frank; Miquel, Juan Francisco

    2012-05-01

    In hepatocytes and enterocytes sterol uptake and secretion is mediated by Niemann-Pick C1-like 1 (NPC1L1) and ATP-binding cassette (ABC)G5/8 proteins, respectively. Whereas serum levels of phytosterols represent surrogate markers for intestinal cholesterol absorption, cholesterol precursors reflect cholesterol biosynthesis. Here we compare serum and biliary sterol levels in ethnically different populations of patients with gallstone disease (GSD) and stone-free controls to identify differences in cholesterol transport and synthesis between these groups. In this case-control study four cohorts were analyzed: 112 German patients with GSD and 152 controls; two distinct Chilean ethnic groups: Hispanics (100 GSD, 100 controls), and Amerindians (20 GSD, 20 controls); additionally an 8-year follow-up of 70 Hispanics was performed. Serum sterols were measured by gas chromatography / mass spectrometry. Gallbladder bile sterol levels were analyzed in cholesterol GSD and controls. Common ABCG5/8 variants were genotyped. Comparison of serum sterols showed lower levels of phytosterols and higher levels of cholesterol precursors in GSD patients than in controls. The ratios of phytosterols to cholesterol precursors were lower in GSD patients, whereas biliary phytosterol and cholesterol concentrations were elevated as compared with controls. In the follow-up study, serum phytosterol levels were significantly lower even before GSD was detectable by ultrasound. An ethnic gradient in the ratios of phytosterols to cholesterol precursors was apparent (Germans > Hispanics > Amerindians). ABCG5/8 variants did not fully explain the sterol metabolic trait of GSD in any of the cohorts. Individuals predisposed to GSD display increased biliary output of cholesterol in the setting of relatively low intestinal cholesterol absorption, indicating enhanced whole-body sterol clearance. This metabolic trait precedes gallstone formation and is a feature of ethnic groups at higher risk of cholesterol

  12. Osimertinib (AZD9291) Enhanced the Efficacy of Chemotherapeutic Agents in ABCB1- and ABCG2-Overexpressing Cells In Vitro, In Vivo, and Ex Vivo.

    PubMed

    Chen, Zhen; Chen, Yifan; Xu, Meng; Chen, Likun; Zhang, Xu; To, Kenneth Kin Wah; Zhao, Hongyun; Wang, Fang; Xia, Zhongjun; Chen, Xiaoqin; Fu, Liwu

    2016-08-01

    The overexpression of ATP-binding cassette (ABC) transporters has been proved to be a major trigger for multidrug resistance (MDR) in certain types of cancer. In our study, we investigated whether osimertinib (AZD9291), a third-generation irreversible tyrosine kinase inhibitor of both activating EGFR mutations and resistance-associated T790M point mutation, could reverse MDR induced by ABCB1 and ABCG2 in vitro, in vivo, and ex vivo Our results showed that osimertinib significantly increased the sensitivity of ABCB1- and ABCG2-overexpressing cells to their substrate chemotherapeutic agents in vitro and in the model of ABCB1-overexpressing KBv200 cell xenograft in nude mice. Mechanistically, osimertinib increased the intracellular accumulations of doxorubicin (DOX) and Rhodamine 123 (Rho 123) by inhibiting the efflux function of the transporters in ABCB1- or ABCG2-overexpressing cells but not in their parental sensitive cells. Furthermore, osimertinib stimulated the ATPase activity of both ABCB1 and ABCG2 and competed with the [(125)I] iodoarylazidoprazosin photolabeling bound to ABCB1 or ABCG2, but did not alter the localization and expression of ABCB1 or ABCG2 in mRNA and protein levels nor the phosphorylations of EGFR, AKT, and ERK. Importantly, osimertinib also enhanced the cytotoxicity of DOX and intracellular accumulation of Rho 123 in ABCB1-overexpressing primary leukemia cells. Overall, these findings suggest osimertinib reverses ABCB1- and ABCG2-mediated MDR via inhibiting ABCB1 and ABCG2 from pumping out chemotherapeutic agents and provide possibility for cancer combinational therapy with osimertinib in the clinic. Mol Cancer Ther; 15(8); 1845-58. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. Repression of adenosine triphosphate-binding cassette transporter ABCG2 by estrogen increases intracellular glutathione in brain endothelial cells following ischemic reperfusion injury.

    PubMed

    Shin, Jin A; Jeong, Sae Im; Kim, Hye Won; Jang, Gyeonghui; Ryu, Dong-Ryeol; Ahn, Young-Ho; Choi, Ji Ha; Choi, Youn-Hee; Park, Eun-Mi

    2018-06-01

    The adenosine triphosphate-binding cassette efflux transporter ABCG2, which is located in the blood-brain barrier limits the entry of endogenous compounds and xenobiotics into the brain, and its expression and activity are regulated by estrogen. This study was aimed to define the role of ABCG2 in estrogen-mediated neuroprotection against ischemic injury. ABCG2 protein levels before and after ischemic stroke were increased in the brain of female mice by ovariectomy, which were reversed by estrogen replacement. In brain endothelial cell line bEnd.3, estrogen reduced the basal ABCG2 protein level and efflux activity and protected cells from ischemic injury without inducing ABCG2 expression. When bEnd.3 cells were transfected with ABCG2 small interfering RNA, ischemia-induced cell death was reduced, and the intracellular concentration of glutathione, an antioxidant that is transported by ABCG2, was increased. In addition, after ischemic stroke in ovariectomized mice, estrogen prevented the reduction of intracellular glutathione level in brain microvessels. These data suggested that the suppression of ABCG2 by estrogen is involved in neuroprotection against ischemic injury by increasing intracellular glutathione, and that the modulation of ABCG2 activity offers a therapeutic target for brain diseases in estrogen-deficient aged women. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Mutations of the central tyrosines of putative cholesterol recognition amino acid consensus (CRAC) sequences modify folding, activity, and sterol-sensing of the human ABCG2 multidrug transporter.

    PubMed

    Gál, Zita; Hegedüs, Csilla; Szakács, Gergely; Váradi, András; Sarkadi, Balázs; Özvegy-Laczka, Csilla

    2015-02-01

    Human ABCG2 is a plasma membrane glycoprotein causing multidrug resistance in cancer. Membrane cholesterol and bile acids are efficient regulators of ABCG2 function, while the molecular nature of the sterol-sensing sites has not been elucidated. The cholesterol recognition amino acid consensus (CRAC, L/V-(X)(1-5)-Y-(X)(1-5)-R/K) sequence is one of the conserved motifs involved in cholesterol binding in several proteins. We have identified five potential CRAC motifs in the transmembrane domain of the human ABCG2 protein. In order to define their roles in sterol-sensing, the central tyrosines of these CRACs (Y413, 459, 469, 570 and 645) were mutated to S or F and the mutants were expressed both in insect and mammalian cells. We found that mutation in Y459 prevented protein expression; the Y469S and Y645S mutants lost their activity; while the Y570S, Y469F, and Y645F mutants retained function as well as cholesterol and bile acid sensitivity. We found that in the case of the Y413S mutant, drug transport was efficient, while modulation of the ATPase activity by cholesterol and bile acids was significantly altered. We suggest that the Y413 residue within a putative CRAC motif has a role in sterol-sensing and the ATPase/drug transport coupling in the ABCG2 multidrug transporter. Copyright © 2014. Published by Elsevier B.V.

  15. Metabolism of exogenous fatty acids, fatty acid-mediated cholesterol efflux, PKA and PKC pathways in boar sperm acrosome reaction.

    PubMed

    Hossain, Md Sharoare; Afrose, Sadia; Sawada, Tomio; Hamano, Koh-Ichi; Tsujii, Hirotada

    2010-03-01

    For understanding the roles of fatty acids on the induction of acrosome reaction which occurs under association of cholesterol efflux and PKA or PKC pathways in boar spermatozoa, metabolic fate of alone and combined radiolabeled 14 C-oleic acid and 3 H-linoleic acid incorporated in the sperm was compared, and behavior of cholesterol and effects of PKA and PKC inhibitors upon fatty acid-induced acrosome reaction were examined. Semen was collected from a Duroc boar, and the metabolic activities of fatty acids in the spermatozoa were measured using radioactive compounds and thin layer chromatography. Cholesterol efflux was measured with a cholesterol determination assay kit. Participation of fatty acids on the AR through PKA and PKC pathways was evaluated using a specific inhibitor of these enzymes. Incorporation rate of 14 C-oleic acid into the sperm lipids was significantly higher than that of 3 H-linoleic acid ( P < 0.05). The oxidation of 14 C-oleic acid was higher in combined radiolabeling rather than in one. The highest amounts of 3 H-linoleic acid and 14 C-oleic acid were recovered mainly in the triglycerides and phospholipids fraction, and 14 C-oleic acid distribution was higher than the 3 H-linoleic acid in both labeled ( P < 0.05) sperm lipids. In the 3 H-linoleic and 14 C-oleic acid combined radiolabeling, the incorporation rate of the radioactive fatty acids in all the lipid fractions increased 15 times more than the alone radiolabeling. Boar sperm utilize oleic acid to generate energy for hyperactivation ( P < 0.05). Supplementation of arachidonic acid significantly increased ( P < 0.05) cholesterol efflux in sperm. When spermatozoa were incubated with PKA or PKC inhibitors, there was a significant reduction of arachidonic acid-induced acrosome reaction (AR) ( P < 0.05), and inhibition by PKA inhibitor is stronger than that by PKC inhibitor. Incorporation of unsaturated fatty acids, especially oleic acid, into triglycerides and phospholipids provides

  16. Comparison of chemotherapeutic drug resistance in cells transfected with canine ABCG2 or feline ABCG2.

    PubMed

    Lewis, R S; Fidel, J; Dassanayake, S; Court, M H; Burke, N S; Mealey, K L

    2017-06-01

    ABCG2 (ATP binding cassette subfamily G, member 2) mediates resistance to a variety of cytotoxic agents. Although human ABCG2 is well characterized, the function of canine ABCG2 has not been studied previously. Feline ABCG2 has an amino acid substitution in the adenosine triphosphate-binding domain that decreases its transport capacity relative to human ABCG2. Our goal was to compare canine ABCG2-mediated chemotherapeutic drug resistance to feline ABCG2-mediated chemotherapeutic drug resistance. HEK-293 cells stably transfected with plasmid containing canine ABCG2, feline ABCG2 or no ABCG2 were exposed to carboplatin, doxorubicin, mitoxantrone, toceranib or vincristine, and cell survival was subsequently determined. Canine ABCG2 conferred a greater degree of chemotherapy resistance than feline ABCG2 for mitoxantrone. Neither canine nor feline ABCG2 conferred resistance to doxorubicin, vincristine or toceranib. Canine, but not feline, ABCG2 conferred resistance to carboplatin, a drug that is not reported to be a substrate for ABCG2 in other species. © 2015 John Wiley & Sons Ltd.

  17. 7-ketocholesteryl-9-carboxynonanoate enhances ATP binding cassette transporter A1 expression mediated by PPARγ in THP-1 macrophages.

    PubMed

    Chi, Yan; Wang, Le; Liu, Yuanyuan; Ma, Yanhua; Wang, Renjun; Han, Xiaofei; Qiao, Hui; Lin, Jiabin; Matsuura, Eiji; Liu, Shuqian; Liu, Qingping

    2014-06-01

    ATP binding cassette transporter A1 (ABCA1) is a member of the ATP-binding cassette transporter family. It plays an essential role in mediating the efflux of excess cholesterol. It is known that peroxisome proliferator-activated receptor gamma (PPARγ) promoted ABCA1 expression. We previously found 7-ketocholesteryl-9-carboxynonanoate (oxLig-1) upregulated ABCA1 partially through CD36 mediated signals. In the present study, we intended to test if PPARγ signally is involved in the upregulation mediated by oxLig-1. First, we docked oxLig-1 and the ligand-binding domain (LBD) of PPARγ by using AutoDock 3.05 and subsequently confirmed the binding by ELISA assay. Western blotting analyses showed that oxLig-1 induces liver X receptor alpha (LXRα), PPARγ and consequently ABCA1 expression. Furthermore, oxLig-1 significantly enhanced ApoA-I-mediated cholesterol efflux. Pretreatment with an inhibitor for PPARγ (GW9662) or/and LXRα (GGPP) attenuated oxLig-1-induced ABCA1 expression. Under PPARγ knockdown by using PPARγ-shRNA, oxLig-1-induced ABCA1 expression and cholesterol efflux in THP-1 macrophages was blocked by 62% and 25% respectively. These observations suggest that oxLig-1 is a novel PPARγ agonist, promoting ApoA-I-mediated cholesterol efflux from THP-1 macrophages by increasing ABCA1 expression via induction of PPARγ. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. In vitro and in vivo modulation of ABCG2 by functionalized aurones and structurally related analogs

    PubMed Central

    Sim, Hong-May; Wu, Chung-Pu; Ambudkar, Suresh V.; Go, Mei-Lin

    2013-01-01

    Over-expression of ABCG2 is linked to multidrug resistance in cancer chemotherapy. We have previously shown that functionalized aurones effectively reduced the efflux of pheophorbide A (an ABCG2 substrate) from ABCG2 over-expressing MDA-MB-231/R (“R”) cells. In the present report, we investigated the functional relevance of this observation and the mechanisms by which it occurs. Aurones and related analogs were investigated for re-sensitization of R cells to mitoxantrone (MX, a chemotherapeutic substrate of ABCG2) in cell-based assays, accumulation of intracellular MX by cell cytometry, interaction with ABCG2 by biochemical assays and in vivo efficacy in MX resistant nude mice xenografts. We found that methoxylated aurones interacted directly with ABCG2 to inhibit efflux activity, possibly by competing for occupancy of one of the substrate binding sites on ABCG2. The present evidence suggests that they are not transported by ABCG2 although they stimulate ABCG2-ATPase activity. Alteration of ABCG2 protein expression was also discounted. One member was found to re-sensitize R cells to MX in both in vitro and in vivo settings. Our study identified methoxylated aurones as promising compounds associated with low toxicities and potent modulatory effects on the ABCG2 efflux protein. Thus, they warrant further scrutiny as lead templates for development as reversal agents of multidrug resistance. PMID:21855533

  19. Total HDL cholesterol efflux capacity in healthy children - Associations with adiposity and dietary intakes of mother and child.

    PubMed

    Khalil, H; Murrin, C; O'Reilly, M; Viljoen, K; Segurado, R; O'Brien, J; Somerville, R; McGillicuddy, F; Kelleher, C C

    2017-01-01

    High-density lipoprotein (HDL) cholesterol efflux capacity in adults may be a measure of the atheroprotective property of HDL. Little however, is known about HDL cholesterol efflux capacity in childhood. We aimed to investigate the relationship between HDL cholesterol efflux capacity and childhood anthropometrics in a longitudinal study. Seventy-five children (mean age = 9.4 ± 0.4 years) were followed from birth until the age of 9 years. HDL cholesterol efflux capacity was determined at age 9 by incubating serum-derived HDL-supernatants with 3 H-cholesterol labeled J774 macrophages and percentage efflux determined. Mothers provided dietary information by completing food frequency questionnaires in early pregnancy and then 5 years later on behalf of themselves and their children. Pearson's correlations and multiple regression analyses were conducted to confirm independent associations with HDL efflux. There was a negative correlation between HDL cholesterol efflux capacity and waist circumference at age 5 (r = -0.3, p = 0.01) and age 9 (r = -0.24, p = 0.04) and BMI at age 5 (r = -0.45, p = 0.01) and age 9 (r = -0.19, p = 0.1). Multiple regression analysis showed that BMI at age 5 remained significantly associated with reduced HDL cholesterol efflux capacity (r = -0.45, p < 0.001). HDL-C was negatively correlated with energy-adjusted fat intake (r = -0.24, p = 0.04) and positively correlated with energy-adjusted protein (r = 0.24, p = 0.04) and starch (r = 0.29, p = 0.01) intakes during pregnancy. HDL-C was not significantly correlated with children dietary intake at age 5. There were no significant correlations between maternal or children dietary intake and HDL cholesterol efflux capacity. This novel analysis shows that efflux capacity is negatively associated with adiposity in early childhood independent of HDL-C. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the

  20. Kinetic Analysis of Rhodamines Efflux Mediated by the Multidrug Resistance Protein (MRP1)

    PubMed Central

    Saengkhae, Chantarawan; Loetchutinat, Chatchanok; Garnier-Suillerot, Arlette

    2003-01-01

    Characterization of rhodamine 123 as functional assay for MDR has been primarily focused on P-glycoprotein-mediated MDR. Several studies have suggested that Rh123 is also a substrate for MRP1. However, no quantitative studies of the MRP1-mediated efflux of rhodamines have, up to now, been performed. Measurement of the kinetic characteristics of substrate transport is a powerful approach to enhancing our understanding of their function and mechanism. In the present study, we have used a continuous fluorescence assay with four rhodamine dyes (rhodamine 6G, tetramethylrosamine, tetramethylrhodamine ethyl ester, and tetramethylrhodamine methyl ester) to quantify drug transport by MRP1 in living GLC4/ADR cells. The formation of a substrate concentration gradient was observed. MRP1-mediated transport of rhodamine was glutathione-dependent. The kinetics parameter, ka = VM/km, was very similar for the four rhodamine analogs but ∼10-fold less than the values of the same parameter determined previously for the MRP1-mediated efflux of anthracycline. The findings presented here are the first to show quantitative information about the kinetics parameters for MRP1-mediated efflux of rhodamine dyes. PMID:12944313

  1. Oral and inhaled corticosteroids: Differences in P-glycoprotein (ABCB1) mediated efflux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, Andrew, E-mail: a.p.crowe@curtin.edu.au; Tan, Ai May

    There is concern that P-glycoprotein mediated efflux contributes to steroid resistance. Therefore, this study examined bidirectional corticosteroid transport and induction capabilities for P-glycoprotein (P-gp) to understand which of the systemic and inhaled corticosteroids interacted with P-gp to the greatest extent. Hydrocortisone, prednisolone, prednisone, methylprednisolone, and dexamethasone represented systemically active drugs, while fluticasone propionate, beclomethasone dipropionate, ciclesonide and budesonide represented inhaled corticosteroids. Aldosterone and fludrocortisone represented mineralocorticoids. All drugs were detected using individually optimised HPLC protocols. Transport studies were conducted through Caco-2 monolayers. Hydrocortisone and aldosterone had efflux ratios below 1.5, while prednisone showed a P-gp mediated efflux ratio of onlymore » 1.8 compared to its active drug, prednisolone, with an efflux ratio of 4.5. Dexamethasone and beclomethasone had efflux ratios of 2.1 and 3.3 respectively, while this increased to 5.1 for methylprednisolone. Fluticasone showed an efflux ratio of 2.3. Protein expression studies suggested that all of the inhaled corticosteroids were able to induce P-gp expression, from 1.6 to 2 times control levels. Most of the systemic corticosteroids had higher passive permeability (> 20 × 10{sup −6} cm/s) compared to the inhaled corticosteroids (> 5 × 10{sup −6} cm/s), except for budesonide, with permeability similar to the systemic corticosteroids. Inhaled corticosteroids are not transported by P-gp to the same extent as systemic corticosteroids. However, they are able to induce P-gp production. Thus, inhaled corticosteroids may have greater interactions with other P-gp substrates, but P-gp itself is less likely to influence resistance to the drugs. -- Highlights: ► Inhaled corticosteroids are only weak substrates for P-gp, including budesonide. ► Inhaled corticosteroid potent P-gp inducers especially

  2. Glutathione Transport Is a Unique Function of the ATP-binding Cassette Protein ABCG2*

    PubMed Central

    Brechbuhl, Heather M.; Gould, Neal; Kachadourian, Remy; Riekhof, Wayne R.; Voelker, Dennis R.; Day, Brian J.

    2010-01-01

    Glutathione (GSH) transport is vital for maintenance of intracellular and extracellular redox balance. Only a few human proteins have been identified as transporters of GSH, glutathione disulfide (GSSG) and/or GSH conjugates (GS-X). Human epithelial MDA1586, A549, H1975, H460, HN4, and H157 cell lines were exposed to 2′,5′-dihydroxychalcone, which induces a GSH efflux response. A real-time gene superarray for 84 proteins found in families that have a known role in GSH, GSSG, and/or GS-X transport was employed to help identify potential GSH transporters. ABCG2 was identified as the only gene in the array that closely corresponded with the magnitude of 2′,5′-dihydroxychalcone (2′,5′-DHC)-induced GSH efflux. The role of human ABCG2 as a novel GSH transporter was verified in a Saccharomyces cerevisiae galactose-inducible gene expression system. Yeast expressing human ABCG2 had 2.5-fold more extracellular GSH compared with those not expressing ABCG2. GSH efflux in ABCG2-expressing yeast was abolished by the ABCG2 substrate methotrexate (10 μm), indicating competitive inhibition. In contrast, 2′,5′-DHC treatment of ABCG2-expressing yeast increased extracellular GSH levels in a dose-dependent manner with a maximum 3.5-fold increase in GSH after 24 h. In addition, suppression of ABCG2 with short hairpin RNA or ABCG2 overexpression in human epithelial cells decreased or increased extracellular GSH levels, respectively. Our data indicate that ABCG2 is a novel GSH transporter. PMID:20332504

  3. Glutathione transport is a unique function of the ATP-binding cassette protein ABCG2.

    PubMed

    Brechbuhl, Heather M; Gould, Neal; Kachadourian, Remy; Riekhof, Wayne R; Voelker, Dennis R; Day, Brian J

    2010-05-28

    Glutathione (GSH) transport is vital for maintenance of intracellular and extracellular redox balance. Only a few human proteins have been identified as transporters of GSH, glutathione disulfide (GSSG) and/or GSH conjugates (GS-X). Human epithelial MDA1586, A549, H1975, H460, HN4, and H157 cell lines were exposed to 2',5'-dihydroxychalcone, which induces a GSH efflux response. A real-time gene superarray for 84 proteins found in families that have a known role in GSH, GSSG, and/or GS-X transport was employed to help identify potential GSH transporters. ABCG2 was identified as the only gene in the array that closely corresponded with the magnitude of 2',5'-dihydroxychalcone (2',5'-DHC)-induced GSH efflux. The role of human ABCG2 as a novel GSH transporter was verified in a Saccharomyces cerevisiae galactose-inducible gene expression system. Yeast expressing human ABCG2 had 2.5-fold more extracellular GSH compared with those not expressing ABCG2. GSH efflux in ABCG2-expressing yeast was abolished by the ABCG2 substrate methotrexate (10 microM), indicating competitive inhibition. In contrast, 2',5'-DHC treatment of ABCG2-expressing yeast increased extracellular GSH levels in a dose-dependent manner with a maximum 3.5-fold increase in GSH after 24 h. In addition, suppression of ABCG2 with short hairpin RNA or ABCG2 overexpression in human epithelial cells decreased or increased extracellular GSH levels, respectively. Our data indicate that ABCG2 is a novel GSH transporter.

  4. Inhibition of the NLRP3 inflammasome attenuates foam cell formation of THP-1 macrophages by suppressing ox-LDL uptake and promoting cholesterol efflux.

    PubMed

    Chen, Liang; Yao, Qiying; Xu, Siwei; Wang, Hongyan; Qu, Peng

    2018-01-01

    The NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome plays an important role in the development of atherosclerosis. The activated NLRP3 inflammasome has been reported to promote macrophage foam cell formation, but not all studies have obtained the same result, and how NLRP3 inflammasome is involved in the formation of foam cells remains elusive. We used selective NLRP3 inflammasome inhibitors and NLRP3-deficient THP-1 cells to assess the effect of NLRP3 inflammasome inhibition on macrophage foam cell formation, oxidized low-density lipoprotein (ox-LDL) uptake, esterification, and cholesterol efflux, as well as the expression of associated proteins. Inhibition of the NLRP3 inflammasome attenuated foam cell formation, diminished ox-LDL uptake, and promoted cholesterol efflux from THP-1 macrophages. Moreover, it downregulated CD36, acyl coenzyme A: cholesterol acyltransferase-1 and neutral cholesterol ester hydrolase expression; upregulated ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI) expression; but had no effect on the expression of scavenger receptor class A and ATP-binding cassette transporter G1. Collectively, our findings show that inhibition of the NLRP3 inflammasome decreases foam cell formation of THP-1 macrophages via suppression of ox-LDL uptake and enhancement of cholesterol efflux, which may be due to downregulation of CD36 expression and upregulation of ABCA1 and SR-BI expression, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. microRNA-150 inhibits the formation of macrophage foam cells through targeting adiponectin receptor 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jing; Zhang, Suhua, E-mail: drsuhuangzhang@qq.com

    Transformation of macrophages into foam cells plays a critical role in the pathogenesis of atherosclerosis. The aim of this study was to determine the expression and biological roles of microRNA (miR)-150 in the formation of macrophage foam cells and to identify its functional target(s). Exposure to 50 μg/ml oxidized low-density lipoprotein (oxLDL) led to a significant upregulation of miR-150 in THP-1 macrophages. Overexpression of miR-150 inhibited oxLDL-induced lipid accumulation in THP-1 macrophages, while knockdown of miR-150 enhanced lipid accumulation. apoA-I- and HDL-mediated cholesterol efflux was increased by 66% and 43%, respectively, in miR-150-overexpressing macrophages relative to control cells. In contrast, downregulationmore » of miR-150 significantly reduced cholesterol efflux from oxLDL-laden macrophages. Bioinformatic analysis and luciferase reporter assay revealed adiponectin receptor 2 (AdipoR2) as a direct target of miR-150. Small interfering RNA-mediated downregulation of AdipoR2 phenocopied the effects of miR-150 overexpression, reducing lipid accumulation and facilitating cholesterol efflux in oxLDL-treated THP-1 macrophages. Knockdown of AdipoR2 induced the expression of proliferator-activated receptor gamma (PPARγ), liver X receptor alpha (LXRα), ABCA1, and ABCG1. Moreover, pharmacological inhibition of PPARγ or LXRα impaired AdipoR2 silencing-induced upregulation of ABCA1 and ABCG1. Taken together, our results indicate that miR-150 can attenuate oxLDL-induced lipid accumulation in macrophages via promotion of cholesterol efflux. The suppressive effects of miR-150 on macrophage foam cell formation are mediated through targeting of AdipoR2. Delivery of miR-150 may represent a potential approach to prevent macrophage foam cell formation in atherosclerosis. -- Highlights: •miR-150 inhibits macrophage foam cell formation. •miR-150 accelerates cholesterol efflux from oxLDL-laden macrophages. •miR-150 suppresses macrophage foam

  6. Localization and role of NPC1L1 in cholesterol absorption in human intestine.

    PubMed

    Sané, Alain Théophile; Sinnett, Daniel; Delvin, Edgard; Bendayan, Moise; Marcil, Valérie; Ménard, Daniel; Beaulieu, Jean-François; Levy, Emile

    2006-10-01

    Recent studies have documented the presence of Niemann-Pick C1-Like 1 (NPC1L1) in the small intestine and its capacity to transport cholesterol in mice and rats. The current investigation was undertaken to explore the localization and function of NPC1L1 in human enterocytes. Cell fractionation experiments revealed an NPC1L1 association with apical membrane of the enterocyte in human jejunum. Signal was also detected in lysosomes, endosomes, and mitochondria. Confirmation of cellular NPC1L1 distribution was obtained by immunocytochemistry. Knockdown of NPC1L1 caused a decline in the ability of Caco-2 cells to capture micellar [(14)C]free cholesterol. Furthermore, this NPC1L1 suppression resulted in increased and decreased mRNA levels and activity of HMG-CoA reductase, the rate-limiting step in cholesterol synthesis, and of ACAT, the key enzyme in cholesterol esterification, respectively. An increase was also noted in the transcriptional factor sterol-regulatory element binding protein that modulates cholesterol homeostasis. Efforts were devoted to define the impact of NPC1L1 knockdown on other mediators of cholesterol uptake. RT-PCR evidence is presented to show the significant decrease in the levels of scavenger receptor class B type I (SR-BI) with no changes in ABCA1, ABCG5, and cluster determinant 36 in NPC1L1-deficient Caco-2 cells. Together, our data suggest that NPC1L1 contributes to intestinal cholesterol homeostasis and possibly cooperates with SR-BI to mediate cholesterol absorption in humans.

  7. Regulation of ATP-binding cassette transporters and cholesterol efflux by glucose in primary human monocytes and murine bone marrow-derived macrophages

    USDA-ARS?s Scientific Manuscript database

    Individuals with type 2 diabetes mellitus are at increased risk of developing atherosclerosis. This may be partially attributable to suppression of macrophage ATP-binding cassette (ABC) transporter mediated cholesterol efflux by sustained elevated blood glucose concentrations. Two models were used...

  8. Blueberry anthocyanins at doses of 0.5 and 1 % lowered plasma cholesterol by increasing fecal excretion of acidic and neutral sterols in hamsters fed a cholesterol-enriched diet.

    PubMed

    Liang, Yintong; Chen, Jingnan; Zuo, Yuanyuan; Ma, Ka Ying; Jiang, Yue; Huang, Yu; Chen, Zhen-Yu

    2013-04-01

    The present study investigated the underlying mechanism associated with the hypocholesterolemic activity of blueberry anthocyanins by examining its effect on fecal sterol excretion and gene expression of major receptors, enzymes, and transporters involved in cholesterol metabolism. Hamsters were divided into three groups and fed a 0.1 % cholesterol diet containing 0 % (CTL), 0.5 % (BL), and 1.0 % (BH) blueberry anthocyanins, respectively, for six weeks. Plasma total cholesterol (TC), triacylglycerols (TAG), and non-high-density lipoproteins cholesterol (non-HDL-C) were measured using the enzymatic kits, and the gene expression of transporters, enzymes, and receptors involved in cholesterol absorption and metabolism was quantified using the quantitative PCR. GC analysis was used to quantify hepatic cholesterol and fecal acidic and neutral sterols. Dietary supplementation of 0.5 and 1.0 % blueberry anthocyanins for 6 weeks decreased plasma TC concentration by 6-12 % in a dose-dependent manner. This was accompanied by increasing the excretion of fecal neutral and acidic sterols by 22-29 % and 41-74 %, respectively. Real-time PCR analyses demonstrated that incorporation of blueberry anthocyanins into diet down-regulated the genes of NPC1L1, ACAT-2, MTP, and ABCG 8. In addition, blueberry anthocyanins were also able to down-regulate the gene expression of hepatic HMG-CoA reductase. The cholesterol-lowering activity of blueberry anthocyanins was most likely mediated by enhancing the excretion of sterols accompanied with down-regulation on gene expression of intestinal NPC1L1, ACAT-2, MTP, and ABCG 8.

  9. Peptides having reduced toxicity that stimulate cholesterol efflux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bielicki, John K.; Johansson, Jan; Danho, Waleed

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABCA1 that parallels that of full-length apolipoproteins. Further, the peptides of the invention have little or no toxicity when administered at therapeutic and higher doses. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  10. Interaction of BDE-47 and its Hydroxylated Metabolite 6-OH-BDE-47 with the Human ABC Efflux Transporters P-gp and BCRP: Considerations for Human Exposure and Risk Assessment

    EPA Science Inventory

    ATP binding cassette (ABC) transporters, including P-glycoprotein (P-gp; also known as MDR1, ABCB1) and breast cancer resistance protein (BCRP; also known as ABCG2), are membrane-bound proteins that mediate the cellular efflux of xenobiotics as an important defense against chemic...

  11. Neopterin negatively regulates expression of ABCA1 and ABCG1 by the LXRα signaling pathway in THP-1 macrophage-derived foam cells.

    PubMed

    Yan, Jin-quan; Tan, Chun-zhi; Wu, Jin-hua; Zhang, Dong-cui; Chen, Ji-ling; Zeng, Bin-yuan; Jiang, Yu-ping; Nie, Jin; Liu, Wei; Liu, Qin; Dai, Hao

    2013-07-01

    To investigate the effects of neopterin on ABCA1 expression and cholesterol efflux in human THP-1 macrophage-derived foam cells, and to explore the role of the liver X receptor alpha (LXRα) involved. In the present study, THP-1 cells were pre-incubated with ox-LDL to become foam cells. The protein and mRNA expression were examined by Western blot assays and real-time quantitative PCR, respectively. Liquid scintillation counting and high performance liquid chromatography assays were used to test cellular cholesterol efflux and cholesterol content. Neopterin decreased ABCA1 expression and cholesterol efflux in a time- and concentration-dependent manner in THP-1 macrophage-derived foam cells, and the LXRα siRNA can reverse the inhibitory effects induced by neopterin. Neoterin has a negative regulation on ABCA1 expression via the LXRα signaling pathway, which suggests the aggravated effects of neopterin on atherosclerosis.

  12. Enzastaurin inhibits ABCB1-mediated drug efflux independently of effects on protein kinase C signalling and the cellular p53 status.

    PubMed

    Michaelis, Martin; Rothweiler, Florian; Löschmann, Nadine; Sharifi, Mohsen; Ghafourian, Taravat; Cinatl, Jindrich

    2015-07-10

    The PKCβ inhibitor enzastaurin was tested in parental neuroblastoma and rhabdomyosarcoma cell lines, their vincristine-resistant sub-lines, primary neuroblastoma cells, ABCB1-transduced, ABCG2-transduced, and p53-depleted cells. Enzastaurin IC50s ranged from 3.3 to 9.5 μM in cell lines and primary cells independently of the ABCB1, ABCG2, or p53 status. Enzastaurin 0.3125 μM interfered with ABCB1-mediated drug transport. PKCα and PKCβ may phosphorylate and activate ABCB1 under the control of p53. However, enzastaurin exerted similar effects on ABCB1 in the presence or absence of functional p53. Also, enzastaurin inhibited PKC signalling only in concentrations ≥ 1.25 μM. The investigated cell lines did not express PKCβ. PKCα depletion reduced PKC signalling but did not affect ABCB1 activity. Intracellular levels of the fluorescent ABCB1 substrate rhodamine 123 rapidly decreased after wash-out of extracellular enzastaurin, and enzastaurin induced ABCB1 ATPase activity resembling the ABCB1 substrate verapamil. Computational docking experiments detected a direct interaction of enzastaurin and ABCB1. These data suggest that enzastaurin directly interferes with ABCB1 function. Enzastaurin further inhibited ABCG2-mediated drug transport but by a different mechanism since it reduced ABCG2 ATPase activity. These findings are important for the further development of therapies combining enzastaurin with ABC transporter substrates.

  13. PEG-lipid micelles enable cholesterol efflux in Niemann-Pick Type C1 disease-based lysosomal storage disorder

    PubMed Central

    Brown, Anna; Patel, Siddharth; Ward, Carl; Lorenz, Anna; Ortiz, Mauren; DuRoss, Allison; Wieghardt, Fabian; Esch, Amanda; Otten, Elsje G.; Heiser, Laura M.; Korolchuk, Viktor I.; Sun, Conroy; Sarkar, Sovan; Sahay, Gaurav

    2016-01-01

    2-Hydroxy-propyl-β-cyclodextrin (HPβCD), a cholesterol scavenger, is currently undergoing Phase 2b/3 clinical trial for treatment of Niemann Pick Type C-1 (NPC1), a fatal neurodegenerative disorder that stems from abnormal cholesterol accumulation in the endo/lysosomes. Unfortunately, the extremely high doses of HPβCD required to prevent progressive neurodegeneration exacerbates ototoxicity, pulmonary toxicity and autophagy-based cellular defects. We present unexpected evidence that a poly (ethylene glycol) (PEG)-lipid conjugate enables cholesterol clearance from endo/lysosomes of Npc1 mutant (Npc1−/−) cells. Herein, we show that distearyl-phosphatidylethanolamine-PEG (DSPE-PEG), which forms 12-nm micelles above the critical micelle concentration, accumulates heavily inside cholesterol-rich late endosomes in Npc1−/− cells. This potentially results in cholesterol solubilization and leakage from lysosomes. High-throughput screening revealed that DSPE-PEG, in combination with HPβCD, acts synergistically to efflux cholesterol without significantly aggravating autophagy defects. These well-known excipients can be used as admixtures to treat NPC1 disorder. Increasing PEG chain lengths from 350 Da-30 kDa in DSPE-PEG micelles, or increasing DSPE-PEG content in an array of liposomes packaged with HPβCD, improved cholesterol egress, while Pluronic block copolymers capable of micelle formation showed slight effects at high concentrations. We postulate that PEG-lipid based nanocarriers can serve as bioactive drug delivery systems for effective treatment of lysosomal storage disorders. PMID:27572704

  14. PEG-lipid micelles enable cholesterol efflux in Niemann-Pick Type C1 disease-based lysosomal storage disorder

    NASA Astrophysics Data System (ADS)

    Brown, Anna; Patel, Siddharth; Ward, Carl; Lorenz, Anna; Ortiz, Mauren; Duross, Allison; Wieghardt, Fabian; Esch, Amanda; Otten, Elsje G.; Heiser, Laura M.; Korolchuk, Viktor I.; Sun, Conroy; Sarkar, Sovan; Sahay, Gaurav

    2016-08-01

    2-Hydroxy-propyl-β-cyclodextrin (HPβCD), a cholesterol scavenger, is currently undergoing Phase 2b/3 clinical trial for treatment of Niemann Pick Type C-1 (NPC1), a fatal neurodegenerative disorder that stems from abnormal cholesterol accumulation in the endo/lysosomes. Unfortunately, the extremely high doses of HPβCD required to prevent progressive neurodegeneration exacerbates ototoxicity, pulmonary toxicity and autophagy-based cellular defects. We present unexpected evidence that a poly (ethylene glycol) (PEG)-lipid conjugate enables cholesterol clearance from endo/lysosomes of Npc1 mutant (Npc1-/-) cells. Herein, we show that distearyl-phosphatidylethanolamine-PEG (DSPE-PEG), which forms 12-nm micelles above the critical micelle concentration, accumulates heavily inside cholesterol-rich late endosomes in Npc1-/- cells. This potentially results in cholesterol solubilization and leakage from lysosomes. High-throughput screening revealed that DSPE-PEG, in combination with HPβCD, acts synergistically to efflux cholesterol without significantly aggravating autophagy defects. These well-known excipients can be used as admixtures to treat NPC1 disorder. Increasing PEG chain lengths from 350 Da-30 kDa in DSPE-PEG micelles, or increasing DSPE-PEG content in an array of liposomes packaged with HPβCD, improved cholesterol egress, while Pluronic block copolymers capable of micelle formation showed slight effects at high concentrations. We postulate that PEG-lipid based nanocarriers can serve as bioactive drug delivery systems for effective treatment of lysosomal storage disorders.

  15. The Full-Size ABCG Transporters Nb-ABCG1 and Nb-ABCG2 Function in Pre- and Postinvasion Defense against Phytophthora infestans in Nicotiana benthamiana

    PubMed Central

    Shibata, Yusuke; Ojika, Makoto; Sugiyama, Akifumi; Yazaki, Kazufumi; Jones, David A.; Kawakita, Kazuhito

    2016-01-01

    The sesquiterpenoid capsidiol is the major phytoalexin produced by Nicotiana and Capsicum species. Capsidiol is produced in plant tissues attacked by pathogens and plays a major role in postinvasion defense by inhibiting pathogen growth. Using virus-induced gene silencing-based screening, we identified two Nicotiana benthamiana (wild tobacco) genes encoding functionally redundant full-size ABCG (PDR-type) transporters, Nb-ABCG1/PDR1 and Nb-ABCG2/PDR2, which are essential for resistance to the potato late blight pathogen Phytophthora infestans. Silencing of Nb-ABCG1/2 compromised secretion of capsidiol, revealing Nb-ABCG1/2 as probable exporters of capsidiol. Accumulation of plasma membrane-localized Nb-ABCG1 and Nb-ABCG2 was observed at the site of pathogen penetration. Silencing of EAS (encoding 5-epi-aristolochene synthase), a gene for capsidiol biosynthesis, reduced resistance to P. infestans, but penetration by P. infestans was not affected. By contrast, Nb-ABCG1/2-silenced plants showed reduced penetration defense, indicating that Nb-ABCG1/2 are involved in preinvasion defense against P. infestans. Plastidic GGPPS1 (geranylgeranyl diphosphate synthase) was also found to be required for preinvasion defense, thereby suggesting that plastid-produced diterpene(s) are the antimicrobial compounds active in preinvasion defense. These findings suggest that N. benthamiana ABCG1/2 are involved in the export of both antimicrobial diterpene(s) for preinvasion defense and capsidiol for postinvasion defense against P. infestans. PMID:27102667

  16. Inclusion of Almonds in a Cholesterol-Lowering Diet Improves Plasma HDL Subspecies and Cholesterol Efflux to Serum in Normal-Weight Individuals with Elevated LDL Cholesterol.

    PubMed

    Berryman, Claire E; Fleming, Jennifer A; Kris-Etherton, Penny M

    2017-08-01

    Background : Almonds may increase circulating HDL cholesterol when substituted for a high-carbohydrate snack in an isocaloric diet, yet little is known about the effects on HDL biology and function. Objective: The objective was to determine whether incorporating 43 g almonds/d in a cholesterol-lowering diet would improve HDL subspecies and function, which were secondary study outcomes. Methods: In a randomized, 2-period, crossover, controlled-feeding study, a diet with 43 g almonds/d (percentage of total energy: 51% carbohydrate, 16% protein, and 32% total and 8% saturated fat) was compared with a similar diet with an isocaloric muffin substitution (58% carbohydrate, 15% protein, and 26% total and 8% saturated fat) in men and women with elevated LDL cholesterol. Plasma HDL subspecies and cholesterol efflux from J774 macrophages to human serum were measured at baseline and after each diet period. Diet effects were examined in all participants ( n = 48) and in normal-weight (body mass index: <25; n = 14) and overweight or obese (≥25; n = 34) participants by using linear mixed models. Results: The almond diet, compared with the control diet, increased α-1 HDL [mean ± SEM: 26.7 ± 1.5 compared with 24.3 ± 1.3 mg apolipoprotein A-I (apoA-I)/dL; P = 0.001]. In normal-weight participants, the almond diet, relative to the control diet, increased α-1 HDL (33.7 ± 3.2 compared with 28.4 ± 2.6 mg apoA-I/dL), the α-1 to pre-β-1 ratio [geometric mean (95% CI): 4.3 (3.3, 5.7) compared with 3.1 (2.4, 4.0)], and non-ATP-binding cassette transporter A1 cholesterol efflux (8.3% ± 0.4% compared with 7.8% ± 0.3%) and decreased pre-β-2 (3.8 ± 0.4 compared with 4.6 ± 0.4 mg apoA-I/dL) and α-3 (23.5 ± 0.9 compared with 26.9 ± 1.1 mg apoA-I/dL) HDL ( P < 0.05). No diet effects were observed in the overweight or obese group. Conclusions: Substituting almonds for a carbohydrate-rich snack within a lower-saturated-fat diet may be a simple strategy to maintain a favorable

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Anna D.; Malur, Anagha; Barna, Barbara P.

    Peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) is a nuclear transcription factor involved in lipid metabolism that is constitutively expressed in the alveolar macrophages of healthy individuals. PPAR{gamma} has recently been implicated in the catabolism of surfactant by alveolar macrophages, specifically the cholesterol component of surfactant while the mechanism remains unclear. Studies from other tissue macrophages have shown that PPAR{gamma} regulates cholesterol influx, efflux, and metabolism. PPAR{gamma} promotes cholesterol efflux through the liver X receptor-alpha (LXR{alpha}) and ATP-binding cassette G1 (ABCG1). We have recently shown that macrophage-specific PPAR{gamma} knockout (PPAR{gamma} KO) mice accumulate cholesterol-laden alveolar macrophages that exhibit decreased expression of LXR{alpha} andmore » ABCG1 and reduced cholesterol efflux. We hypothesized that in addition to the dysregulation of these cholesterol efflux genes, the expression of genes involved in cholesterol synthesis and influx was also dysregulated and that replacement of PPAR{gamma} would restore regulation of these genes. To investigate this hypothesis, we have utilized a Lentivirus expression system (Lenti-PPAR{gamma}) to restore PPAR{gamma} expression in the alveolar macrophages of PPAR{gamma} KO mice. Our results show that the alveolar macrophages of PPAR{gamma} KO mice have decreased expression of key cholesterol synthesis genes and increased expression of cholesterol receptors CD36 and scavenger receptor A-I (SRA-I). The replacement of PPAR{gamma} (1) induced transcription of LXR{alpha} and ABCG1; (2) corrected suppressed expression of cholesterol synthesis genes; and (3) enhanced the expression of scavenger receptors CD36. These results suggest that PPAR{gamma} regulates cholesterol metabolism in alveolar macrophages.« less

  18. Synthetic Analogs of Curcumin Modulate the Function of Multidrug Resistance-Linked ATP-Binding Cassette Transporter ABCG2.

    PubMed

    Murakami, Megumi; Ohnuma, Shinobu; Fukuda, Michihiro; Chufan, Eduardo E; Kudoh, Katsuyoshi; Kanehara, Keigo; Sugisawa, Norihiko; Ishida, Masaharu; Naitoh, Takeshi; Shibata, Hiroyuki; Iwabuchi, Yoshiharu; Ambudkar, Suresh V; Unno, Michiaki

    2017-11-01

    Multidrug resistance (MDR) caused by the overexpression of ATP-binding cassette (ABC) transporters in cancer cells is a major obstacle in cancer chemotherapy. Previous studies have shown that curcumin, a natural product and a dietary constituent of turmeric, inhibits the function of MDR-related ABC transporters, including ABCB1, ABCC1, and especially ABCG2. However, the limited bioavailability of curcumin prevents its use for modulation of the function of these transporters in the clinical setting. In this study, we investigated the effects of 24 synthetic curcumin analogs with increased bioavailability on the transport function of ABCG2. The screening of the 24 synthetic analogs by means of flow cytometry revealed that four of the curcumin analogs (GO-Y030, GO-Y078, GO-Y168, and GO-Y172) significantly inhibited the efflux of the ABCG2 substrates, mitoxantrone and pheophorbide A, from ABCG2-overexpressing K562/breast cancer resistance protein (BCRP) cells. Biochemical analyses showed that GO-Y030, GO-Y078, and GO-Y172 stimulated the ATPase activity of ABCG2 at nanomolar concentrations and inhibited the photolabeling of ABCG2 with iodoarylazidoprazosin, suggesting that these analogs interact with the substrate-binding sites of ABCG2. In addition, when used in cytotoxicity assays, GO-Y030 and GO-Y078 were found to improve the sensitivity of the anticancer drug, SN-38, in K562/BCRP cells. Taken together, these results suggest that nontoxic synthetic curcumin analogs with increased bioavailability, especially GO-Y030 and GO-Y078, inhibit the function of ABCG2 by directly interacting at the substrate-binding site. These synthetic curcumin analogs could therefore be developed as potent modulators to overcome ABCG2-mediated MDR in cancer cells. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malur, Anagha; Huizar, Isham; Wells, Greg

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. Black-Right-Pointing-Pointer Up-regulation of ABCG1 improves lung function. Black-Right-Pointing-Pointer Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) and the PPAR{gamma}-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF), an upregulator of PPAR{gamma}. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO)more » mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPAR{gamma} plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPAR{gamma} or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as

  20. ABCG2/BCRP interaction with the sea grass Thalassia testudinum.

    PubMed

    Miguel, Verónica; Otero, Jon A; Barrera, Borja; Rodeiro, Idania; Prieto, Julio G; Merino, Gracia; Álvarez, Ana I

    2015-12-01

    The aqueous ethanolic extract from leaves of the marine plant Thalassia testudinum has shown antioxidant, cytoprotective, and neuroprotective properties. The chemical composition of this extract, rich in polyphenols, could interfere with active transport of drugs out of the cell and circumvent the phenomenon of multidrug resistance (MDR). The extract can act as an MDR modulator through its interaction with efflux transporters. The ABCG2/BCRP has been shown to confer MDR acting in tumor cells. To evaluate the interaction of ABCG2/BCRP with the extract, studies in cells overexpressing human BCRP transporter and its murine ortholog Bcrp1 were performed. T. testudinum extract could be included as MDR modulator, as interaction with ABCG2/BCRP has been shown through flow cytometry and MTT assays. The cells overexpressing ABCG2/BCRP in the presence of the extract (25-150 μg/mL) decreased the survival rates of the anti-tumoral mitoxantrone. Our results support its inclusion as a possible MDR modulator against tumor cells that overexpress ABCG2/BCRP.

  1. Uncaria alkaloids reverse ABCB1-mediated cancer multidrug resistance

    PubMed Central

    Huang, Bao-Yuan; Zeng, Yu; Li, Ying-Jie; Huang, Xiao-Jun; Hu, Nan; Yao, Nan; Chen, Min-Feng; Yang, Zai-Gang; Chen, Zhe-Sheng; Zhang, Dong-Mei; Zeng, Chang-Qing

    2017-01-01

    The overexpression of ATP-binding cassette (ABC) transporters is the main cause of cancer multidrug resistance (MDR), which leads to chemotherapy failure. Uncaria alkaloids are the major active components isolated from uncaria, which is a common Chinese herbal medicine. In this study, the MDR-reversal activities of uncaria alkaloids, including rhynchophylline, isorhynchophylline, corynoxeine, isocorynoxeine (Icory), hirsutine and hirsuteine, were screened; they all exhibited potent reversal efficacy when combined with doxorubicin. Among them, Icory significantly sensitized ABCB1-overexpressing HepG2/ADM and MCF-7/ADR cells to vincristine, doxorubicin and paclitaxel, but not to the non-ABCB1 substrate cisplatin. Noteworthy, Icory selectively reversed ABCB1-overexpressing MDR cancer cells but not ABCC1- or ABCG2-mediated MDR. Further mechanistic study revealed that Icory increased the intracellular accumulation of doxorubicin in ABCB1-overexpressing cells by blocking the efflux function of ABCB1. Instead of inhibiting ABCB1 expression and localization, Icory acts as a substrate of the ABCB1 transporter by competitively binding to substrate binding sites. Collectively, these results indicated that Icory reversed ABCB1-mediated MDR by suppressing its efflux function, and it would be beneficial to increase the efficacy of these types of uncaria alkaloids and develop them to be selective ABCB1-mediated MDR-reversal agents. PMID:28534954

  2. Substrate affinity of photosensitizers derived from chlorophyll-a: The ABCG2 transporter affects the phototoxic response of side population stem cell-like cancer cells to photodynamic therapy

    PubMed Central

    Morgan, Janet; Jackson, Jennifer D.; Zheng, Xiang; Pandey, Suresh K.; Pandey, Ravindra K.

    2010-01-01

    responsible for initiating tumor regrowth. We examined the relevance of the SP to PDT resistance with ABCG2 substrates in vitro and in vivo in the murine mammary tumor 4T1. We show for the first time in vivo that the substrate PS HPPH (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a) but not the non-substrate PS HPPH-Gal (a galactose conjugate of HPPH) selectively preserved the SP which was primarily responsible for regrowth in vitro. The SP could be targeted by addition of imatinib mesylate, a tyrosine kinase inhibitor which inhibits the ATPase activity of ABCG2, and prevents efflux of substrates. A PDT resistant SP may be responsible for recurrences observed both pre-clinically and clinically. To prevent ABCG2 mediated resistance, choosing non-substrate PS or administering an ABCG2 inhibitor alongside a substrate PS might be advantageous when treating ABCG2 expressing tumors with PDT. PMID:20684544

  3. Monocytes from HIV+ individuals show impaired cholesterol efflux and increased foam cell formation after transendothelial migration

    PubMed Central

    MAISA, Anna; HEARPS, Anna C.; ANGELOVICH, Thomas A.; PEREIRA, Candida F.; ZHOU, Jingling; SHI, Margaret D.Y.; PALMER, Clovis S.; MULLER, William A.; CROWE, Suzanne M.; JAWOROWSKI, Anthony

    2016-01-01

    Design HIV+ individuals have an increased risk of atherosclerosis and cardiovascular disease which is independent of antiretroviral therapy and traditional risk factors. Monocytes play a central role in the development of atherosclerosis, and HIV-related chronic inflammation and monocyte activation may contribute to increased atherosclerosis, but the mechanisms are unknown. Methods Using an in vitro model of atherosclerotic plaque formation, we measured the transendothelial migration of purified monocytes from age-matched HIV+ and uninfected donors and examined their differentiation into foam cells. Cholesterol efflux and the expression of cholesterol metabolism genes were also assessed. Results Monocytes from HIV+ individuals showed increased foam cell formation compared to controls (18.9% vs 0% respectively, p=0.004) and serum from virologically suppressed HIV+ individuals potentiated foam cell formation by monocytes from both uninfected and HIV+ donors. Plasma TNF levels were increased in HIV+ vs control donors (5.9 vs 3.5 pg/ml, p=0.02) and foam cell formation was inhibited by blocking antibodies to TNF receptors, suggesting a direct effect on monocyte differentiation to foam cells. Monocytes from virologically suppressed HIV+ donors showed impaired cholesterol efflux and decreased expression of key genes regulating cholesterol metabolism, including the cholesterol transporter ABCA1 (p=0.02). Conclusions Monocytes from HIV+ individuals show impaired cholesterol efflux and are primed for foam cell formation following trans-endothelial migration. Factors present in HIV+ serum, including elevated TNF levels, further enhance foam cell formation. The pro-atherogenic phenotype of monocytes persists in virologically suppressed HIV+ individuals and may contribute mechanistically to increased atherosclerosis in this population. PMID:26244384

  4. Xanthohumol, a hop-derived prenylated flavonoid, promotes macrophage reverse cholesterol transport.

    PubMed

    Hirata, Hiroshi; Uto-Kondo, Harumi; Ogura, Masatsune; Ayaori, Makoto; Shiotani, Kazusa; Ota, Ami; Tsuchiya, Youichi; Ikewaki, Katsunori

    2017-09-01

    Xanthohumol, a prominent prenyl flavonoid from the hop plant (Humulus lupulus L.), is suggested to be antiatherogenic since it reportedly increases high-density lipoprotein (HDL) cholesterol levels. It is not clear whether xanthohumol promotes reverse cholesterol transport (RCT), the most important antiatherogenic property of HDL; therefore, we investigated the effects of xanthohumol on macrophage-to-feces RCT using a hamster model as a CETP-expressing species. In vivo RCT experiments showed that xanthohumol significantly increased fecal appearance of the tracer derived from intraperitoneally injected [ 3 H]-cholesterol-labeled macrophages. Ex vivo experiments were then employed to investigate the detailed mechanism by which xanthohumol enhanced RCT. Cholesterol efflux capacity from macrophages was 1.5-fold higher in xanthohumol-fed hamsters compared with the control group. In addition, protein expression and lecithin-cholesterol acyltransferase activity in the HDL fraction were significantly higher in xanthohumol-fed hamsters compared with the control, suggesting that xanthohumol promoted HDL maturation. Hepatic transcript analysis revealed that xanthohumol increased mRNA expression of abcg8 and cyp7a1. In addition, protein expressions of liver X receptor α and bile pump export protein were increased in the liver by xanthohumol administration when compared with the control, implying that it stimulated bile acid synthesis and cholesterol excretion to feces. In conclusion, our data demonstrate that xanthohumol improves RCT in vivo through cholesterol efflux from macrophages and excretion to feces, leading to antiatherosclerosis effects. It remains to be elucidated whether enhancement of RCT by xanthohumol could prove valuable in humans. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Omega 3 Fatty Acids Promote Macrophage Reverse Cholesterol Transport in Hamster Fed High Fat Diet

    PubMed Central

    Kasbi Chadli, Fatima; Nazih, Hassane; Krempf, Michel; Nguyen, Patrick; Ouguerram, Khadija

    2013-01-01

    The aim of this study was to investigate macrophage reverse cholesterol transport (RCT) in hamster, a CETP-expressing species, fed omega 3 fatty acids (ω3PUFA) supplemented high fat diet (HFD). Three groups of hamsters (n = 6/group) were studied for 20 weeks: 1) control diet: Control, 2) HFD group: HF and 3) HFD group supplemented with ω3PUFA (EPA and DHA): HFω3. In vivo macrophage-to-feces RCT was assessed after an intraperitoneal injection of 3H-cholesterol-labelled hamster primary macrophages. Compared to Control, HF presented significant (p<0.05) increase in body weight, plasma TG (p<0.01) and cholesterol (p<0.001) with an increase in VLDL TG and in VLDL and LDL cholesterol (p<0.001). Compared to HF, HFω3 presented significant decrease in body weight. HFω3 showed less plasma TG (p<0.001) and cholesterol (p<0.001) related to a decrease in VLDL TG and HDL cholesterol respectively and higher LCAT activity (p<0.05) compared to HF. HFω3 showed a higher fecal bile acid excretion (p<0.05) compared to Control and HF groups and higher fecal cholesterol excretion (p<0.05) compared to HF. This increase was related to higher gene expression of ABCG5, ABCA1 and SR-B1 in HFω3 compared to Control and HF groups (<0.05) and in ABCG1 and CYP7A1 compared to HF group (p<0.05). A higher plasma efflux capacity was also measured in HFω3 using 3H- cholesterol labeled Fu5AH cells. In conclusion, EPA and DHA supplementation improved macrophage to feces reverse cholesterol transport in hamster fed HFD. This change was related to the higher cholesterol and fecal bile acids excretion and to the activation of major genes involved in RCT. PMID:23613796

  6. Constitutive androstane receptor upregulates Abcb1 and Abcg2 at the blood-brain barrier after CITCO activation.

    PubMed

    Lemmen, Julia; Tozakidis, Iasson E P; Bele, Prachee; Galla, Hans-Joachim

    2013-03-21

    ATP-driven efflux transporters are considered to be the major hurdle in the treatment of central nervous system (CNS) diseases. Abcb1 (P-glycoprotein) and Abcg2 (breast cancer resistance protein/brain multidrug resistance protein) belong to the best known ABC-transporters. These ABC-transporters limit the permeability of the blood-brain barrier and protect the brain against toxic compounds in the blood but on the other hand they also reduce the efficacy of CNS pharmacotherapy. Even after 40 years of extensive research, the regulatory mechanisms of these efflux transporters are still not completely understood. To unravel the efflux transporter regulation, we analyzed the effect of the nuclear receptor CAR (constitutive androstane receptor) on the expression of Abcb1 and Abcg2 in primary cultures of porcine brain capillary endothelial cells (PBCEC). CAR is a xenobiotic-activated transcription factor, which is, like the other important nuclear receptor pregnane X receptor (PXR), highly expressed in barrier tissue and known to be a positive regulator of ABC-transporters. We demonstrate that activation of porcine CAR by the human CAR (hCAR) ligand CITCO (6-(4-chlorophenyl)-imidazo[2,1-b]thiazole-5-carbaldehyde) leads to an up-regulation of both transporters, whereas the mouse-specific CAR ligand TCPOBOP (1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene) had no effect on transporter expression. The stimulation of PBCEC with CITCO caused a significant up-regulation of both efflux-transporters on RNA-level, protein level and transport level. Furthermore the additional application of a CAR inhibitor significantly decreased the transporter expression to control niveau. In conclusion our data prove CAR activation only by the human ligand CITCO leading to an increased ABC-transporter expression and transport activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Effect of drug efflux transporters on placental transport of antiretroviral agent abacavir.

    PubMed

    Neumanova, Zuzana; Cerveny, Lukas; Greenwood, Susan L; Ceckova, Martina; Staud, Frantisek

    2015-11-01

    Abacavir is as a frequent part of combination antiretroviral therapy used in pregnant women. The aim of this study was to investigate, using in vitro, in situ and ex vivo experimental approaches, whether the transplacental pharmacokinetics of abacavir is affected by ATP-binding cassette (ABC) efflux transporters functionally expressed in the placenta: P-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2), multidrug resistance-associated protein 2 (ABCC2) and multidrug resistance-associated protein 5 (ABCC5). In vitro transport assays revealed that abacavir is a substrate of human ABCB1 and ABCG2 transporters but not of ABCC2 or ABCC5. In addition, in situ experiments using dually perfused rat term placenta confirmed interactions of abacavir with placental Abcb1/Abcg2. In contrast, uptake studies in human placental villous fragments did not reveal any interaction of abacavir with efflux transporters suggesting a large contribution of passive diffusion and/or influx mechanisms to net transplacental abacavir transfer. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. ABCG2-overexpressing S1-M1-80 cell xenografts in nude mice keep original biochemistry and cell biological properties.

    PubMed

    Wang, Fang; Liang, Yong-Ju; Wu, Xing-Ping; Su, Xiao-Dong; Fu, Li-Wu

    2012-03-01

    S1-M1-80 cells, derived from human colon carcinoma S1 cells, are mitoxantrone-selected ABCG2-overexpressing cells and are widely used in in vitro studies of multidrug resistance(MDR). In this study, S1-M1-80 cell xenografts were established to investigate whether the MDR phenotype and cell biological properties were maintained in vivo. Our results showed that the proliferation, cell cycle, and ABCG2 expression level in S1-M1-80 cells were similar to those in cells isolated from S1-M1-80 cell xenografts (named xS1-M1-80 cells). Consistently, xS1-M1-80 cells exhibited high levels of resistance to ABCG2 substrates such as mitoxantrone and topotecan, but remained sensitive to the non-ABCG2 substrate cisplatin. Furthermore, the specific ABCG2 inhibitor Ko143 potently sensitized xS1-M1-80 cells to mitoxantrone and topotecan. These results suggest that S1-M1-80 cell xenografts in nude mice retain their original cytological characteristics at 9 weeks. Thus, this model could serve as a good system for further investigation of ABCG2-mediated MDR.

  9. 6-Gingerol Regulates Hepatic Cholesterol Metabolism by Up-regulation of LDLR and Cholesterol Efflux-Related Genes in HepG2 Cells.

    PubMed

    Li, Xiao; Guo, Jingting; Liang, Ning; Jiang, Xinwei; Song, Yuan; Ou, Shiyi; Hu, Yunfeng; Jiao, Rui; Bai, Weibin

    2018-01-01

    Gingerols, the pungent ingredients in ginger, are reported to possess a cholesterol-lowering activity. However, the underlying mechanism remains unclear. The present study was to investigate how 6-gingerol (6-GN), the most abundant gingerol in fresh ginger, regulates hepatic cholesterol metabolism. HepG2 cells were incubated with various concentrations of 6-GN ranging from 50 to 200 μM for 24 h. Results showed that both cellular total cholesterol and free cholesterol decreased in a dose-dependent manner. Besides, 6-GN ranging from 100 to 200 μM increased the LDLR protein and uptake of fluorescent-labeled LDL. Moreover, the mRNA and protein expressions of cholesterol metabolism-related genes were also examined. It was found that 6-GN regulated cholesterol metabolism via up-regulation of LDLR through activation of SREBP2 as well as up-regulation of cholesterol efflux-related genes LXRα and ABCA1.

  10. Future therapeutic targets for the treatment and prevention of cholesterol gallstones.

    PubMed

    Castro-Torres, Ibrahim Guillermo; de Jesús Cárdenas-Vázquez, René; Velázquez-González, Claudia; Ventura-Martínez, Rosa; De la O-Arciniega, Minarda; Naranjo-Rodríguez, Elia Brosla; Martínez-Vázquez, Mariano

    2015-10-15

    The formation of cholesterol gallstones involves very complex imbalances, such as alterations in the secretion of biliary lipids (which involves the ABCG5, ABCG8, ABCB4 and ABCB11 transporters), biochemical and immunological reactions in the gallbladder that produce biliary sludge (mucins), physicochemical changes in the structure of cholesterol (crystallization), alterations in gallbladder motility, changes in the intestinal absorption of cholesterol (ABCG5/8 transporters and Niemann-Pick C1L1 protein) and alterations in small intestine motility. Some of these proteins have been studied at the clinical and experimental levels, but more research is required. In this review, we discuss the results of studies on some molecules involved in the pathophysiology of gallstones that may be future therapeutic targets to prevent the development of this disease, and possible sites for treatment based mainly on the absorption of intestinal cholesterol (Niemann-Pick C1L1 and ABCG5/8 proteins). Copyright © 2015. Published by Elsevier B.V.

  11. Decreased OxLDL uptake and cholesterol efflux in THP1 cells elicited by cortisol and by cortisone through 11β-hydroxysteroid dehydrogenase type 1.

    PubMed

    Ledda, Angelo; González, Marina; Gulfo, José; Díaz Ludovico, Ivo; Ramella, Nahuel; Toledo, Juan; Garda, Horacio; Grasa, Mar; Esteve, Montserrat

    2016-07-01

    Data about glucocorticoids role in the development of atherosclerosis are controversial showing different effects in human than in experimental animal models. Atherosclerosis is the result of a chronic inflammatory response to an injured endothelium where an uncontrolled uptake of OxLDL by macrophages triggers the development of foam cells, the main component of fatty streaks in atherosclerotic plaque. There are few data about the direct effect of glucocorticoids in macrophages of atherosclerotic plaque. The aim of the study was to elucidate the role of glucocorticoids in the development of foam cells in atherosclerosis initiation. For this purpose we used THP1 cells differentiated to macrophages with phorbol esters and incubated with OxLDL alone or with cortisol or cortisone. THP1 cells were also incubated with cortisone plus an inhibitor of 11β-hydroxysteroid dehydrogenase 1 (11βHSD1) activity to determine the role of this enzyme on glucocorticoid action in this process. Ours results showed that cortisol and cortisone decreased significantly the inflammation promoted by OxLDL, and also diminished the expression of genes involved in influx and efflux of cholesterol resulting in a reduced lipid accumulation. Likewise cortisol and cortisone decreased 11βHSD1 expression in THP1 cells. The presence of the inhibitor of 11βHSD1 abolished all the effects elicited by cortisone. Our results indicate a direct effect of glucocorticoids on macrophages braking atherosclerosis initiation, reducing pro-inflammatory markers and OxLDL uptake and cholesterol re-esterification, but also inhibiting cholesterol output. These effects appear to be mediated, at least in part, by 11βHSD1 activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Differential regulation of ATP binding cassette protein A1 expression and ApoA-I lipidation by Niemann-Pick type C1 in murine hepatocytes and macrophages.

    PubMed

    Wang, Ming-Dong; Franklin, Vivian; Sundaram, Meenakshi; Kiss, Robert S; Ho, Kenneth; Gallant, Michel; Marcel, Yves L

    2007-08-03

    Niemann-Pick type C1 (Npc1) protein inactivation results in lipid accumulation in late endosomes and lysosomes, leading to a defect of ATP binding cassette protein A1 (Abca1)-mediated lipid efflux to apolipoprotein A-I (apoA-I) in macrophages and fibroblasts. However, the role of Npc1 in Abca1-mediated lipid efflux to apoA-I in hepatocytes, the major cells contributing to HDL formation, is still unknown. Here we show that, whereas lipid efflux to apoA-I in Npc1-null macrophages is impaired, the lipidation of endogenously synthesized apoA-I by low density lipoprotein-derived cholesterol or de novo synthesized cholesterol or phospholipids in Npc1-null hepatocytes is significantly increased by about 1-, 3-, and 8-fold, respectively. The increased cholesterol efflux reflects a major increase of Abca1 protein in Npc1-null hepatocytes, which contrasts with the decrease observed in Npc1-null macrophages. The increased Abca1 expression is largely post-transcriptional, because Abca1 mRNA is only slightly increased and Lxr alpha mRNA is not changed, and Lxr alpha target genes are reduced. This differs from the regulation of Abcg1 expression, which is up-regulated at both mRNA and protein levels in Npc1-null cells. Abca1 protein translation rate is higher in Npc1-null hepatocytes, compared with wild type hepatocytes as measured by [(35)S]methionine incorporation, whereas there is no difference for the degradation of newly synthesized Abca1 in these two types of hepatocytes. Cathepsin D, which we recently identified as a positive modulator of Abca1, is markedly increased at both mRNA and protein levels by Npc1 inactivation in hepatocytes but not in macrophages. Consistent with this, inhibition of cathepsin D with pepstatin A reduced the Abca1 protein level in both Npc1-inactivated and WT hepatocytes. Therefore, Abca1 expression is specifically regulated in hepatocytes, where Npc1 activity modulates cathepsin D expression and Abca1 protein translation rate.

  13. Endothelial ATP-binding cassette G1 in mouse endothelium protects against hemodynamic-induced atherosclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Shanshan; Department of Pediatrics, Baodi District People’s Hospital of Tianjin City, Tianjin, 301800; Wang, Jiaxing

    Activated vascular endothelium inflammation under persistent hyperlipidemia is the initial step of atherogenesis. ATP-binding cassette G1 (ABCG1) is a crucial factor maintaining sterol and lipid homeostasis by transporting cholesterol efflux to high-density lipoprotein. In this study, we investigated the protective effects of ABCG1 in endothelial inflammation activation during early-stage atherogenesis in mice and the underlying mechanisms. Endothelial cell (EC)-specific ABCG1 transgenic (EC-ABCG1-Tg) mice were generated and cross-bred with low-density lipoprotein receptor–deficient (Ldlr{sup −/−}) mice. After a 4-week Western-type diet, the mice were sacrificed for assessing atherosclerosis. Human umbilical vein ECs were treated with different flows, and ABCG1 was adenovirally overexpressedmore » to investigate the mechanism in vitro. Compared with Ldlr{sup −/−} mouse aortas, EC-ABCG1-Tg/Ldlr{sup −/−} aortas showed decreased early-stage lesions. Furthermore, the lesion area in the EC-ABCG1-Tg/Ldlr{sup −/−} mouse aortic arch but not thoracic aorta was significantly reduced, which suggests a protective role of ABCG1 under atheroprone flow. In vitro, overexpression of ABCG1 attenuated EC activation caused by oscillatory shear stress. Overexpression of ABCG1 blunted cholesterol-activated ECs in vitro. In exploring the mechanisms of ABCG1 attenuating endothelial inflammation, we found that ABCG1 inhibited oscillatory flow-activated nuclear factor kappa B and NLRP3 inflammasome in ECs. ABCG1 may play a protective role in early-stage atherosclerosis by reducing endothelial activation induced by oscillatory shear stress via suppressing the inflammatory response. - Highlights: • EC-ABCG1-Tg mice in a Ldlr{sup −/−} background showed decreased atherosclerosis. • Overexpression of ABCG1 in ECs decreased OSS-induced EC activation. • NLRP3 and NF-κB might be an underlying mechanism of ABCG1 protective role.« less

  14. Glucagon-like peptide-1 contributes to increases ABCA1 expression by downregulating miR-758 to regulate cholesterol homeostasis.

    PubMed

    Yao, Yue; Li, Qiang; Gao, Ping; Wang, Wei; Chen, Lili; Zhang, Jinchao; Xu, Yi

    2018-03-04

    Abnormal regulation of lipid metabolism is associated with type 2 diabetes mellitus (T2DM). GLP-1 as a new treatment for T2DM, has unique effects in modulating cholesterol homeostasis. However, the mechanism of this effect is largely missing. The aim of this study was to determine the effects of GLP-1 on cholesterol-induced lipotoxicity in hepatocytes and examine the underlying mechanisms. The cell viability was determined, and caspase-3 was used to detect the effects of GLP-1 on cholesterol-induced apoptosis. The alterations of miR-758 and ATP-binding cassette transporter A1 (ABCA1) resulting from cholesterol incubation or GLP-1 were detected by qRT-PCR and Western blot assays. Overexpression of miR-758 abrogated the GLP-1-mediated ABCA1 expression, and conversely, down-regulation of miR-758 aggravated GLP-1's action and revealed significant promotion effects. BODIPY-Cholesterol efflux assay revealed that treatment with miR-758 inhibitor significantly enhanced ABCA1-dependent cholesterol efflux, resulting in reduced total cholesterol. Furthermore, Oil red O staining and cholesterol measurement were used to detect lipid accumulation. As a result, cholesterol significantly attenuated cell viability, promoted cell apoptosis, and facilitated lipid accumulation, and these effects were reversed by GLP-1. This study provides evidence that, in HepG2 cells, GLP-1 may affect cholesterol homeostasis by regulating the expression of miR-758 and ABCA1. These data can inform the development of biomarkers for miR-758, and potentially other drugs, on the key pathways of lipid metabolism. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Inhibition of mitogen-activated protein kinase Erk1/2 promotes protein degradation of ATP binding cassette transporters A1 and G1 in CHO and HuH7 cells.

    PubMed

    Mulay, Vishwaroop; Wood, Peta; Manetsch, Melanie; Darabi, Masoud; Cairns, Rose; Hoque, Monira; Chan, Karen Cecilia; Reverter, Meritxell; Alvarez-Guaita, Anna; Rye, Kerry-Anne; Rentero, Carles; Heeren, Joerg; Enrich, Carlos; Grewal, Thomas

    2013-01-01

    Signal transduction modulates expression and activity of cholesterol transporters. We recently demonstrated that the Ras/mitogen-activated protein kinase (MAPK) signaling cascade regulates protein stability of Scavenger Receptor BI (SR-BI) through Proliferator Activator Receptor (PPARα) -dependent degradation pathways. In addition, MAPK (Mek/Erk 1/2) inhibition has been shown to influence liver X receptor (LXR) -inducible ATP Binding Cassette (ABC) transporter ABCA1 expression in macrophages. Here we investigated if Ras/MAPK signaling could alter expression and activity of ABCA1 and ABCG1 in steroidogenic and hepatic cell lines. We demonstrate that in Chinese Hamster Ovary (CHO) cells and human hepatic HuH7 cells, extracellular signal-regulated kinase 1/2 (Erk1/2) inhibition reduces PPARα-inducible ABCA1 protein levels, while ectopic expression of constitutively active H-Ras, K-Ras and MAPK/Erk kinase 1 (Mek1) increases ABCA1 protein expression, respectively. Furthermore, Mek1/2 inhibitors reduce ABCG1 protein levels in ABCG1 overexpressing CHO cells (CHO-ABCG1) and human embryonic kidney 293 (HEK293) cells treated with LXR agonist. This correlates with Mek1/2 inhibition reducing ABCG1 cell surface expression and decreasing cholesterol efflux onto High Density Lipoproteins (HDL). Real Time reverse transcriptase polymerase chain reaction (RT-PCR) and protein turnover studies reveal that Mek1/2 inhibitors do not target transcriptional regulation of ABCA1 and ABCG1, but promote ABCA1 and ABCG1 protein degradation in HuH7 and CHO cells, respectively. In line with published data from mouse macrophages, blocking Mek1/2 activity upregulates ABCA1 and ABCG1 protein levels in human THP1 macrophages, indicating opposite roles for the Ras/MAPK pathway in the regulation of ABC transporter activity in macrophages compared to steroidogenic and hepatic cell types. In summary, this study suggests that Ras/MAPK signaling modulates PPARα- and LXR-dependent protein degradation

  16. miR-758-5p regulates cholesterol uptake via targeting the CD36 3'UTR.

    PubMed

    Li, Bi-Rong; Xia, Lin-Qin; Liu, Jing; Liao, Lin-Ling; Zhang, Yang; Deng, Min; Zhong, Hui-Juan; Feng, Ting-Ting; He, Ping-Ping; Ouyang, Xin-Ping

    2017-12-09

    miR-758-3p plays an important role via regulting ABCA1-mediated cholesterol efflux in atherosclerosis. However, the mechanism of miR-758-5p in cholesterol metabolism is still unclear. Here, we revealed that miR-758-5p decreased total cholesterol accumulation in THP-1 macrophage derived foam cells through markedly reducing cholesterol uptake, and no effect on the cholesterol efflux. Interestingly, computational analysis suggests that CD36 may be a target gene of miR-758-5p. Our study further demonstrated that miR-758-5p decreased CD36 expression at both protein and mRNA levels via targeting the CD36 3'UTR in THP-1 macrophage derived foam cells. The present present study concluded that miR-758-5p decreases lipid accumulation of foam cell via regulating CD36-mediated the cholesterol uptake. Therefore, targeting miR-758-5p may offer a promising strategy to treat atherosclerotic vascular disease. Copyright © 2017. Published by Elsevier Inc.

  17. ABCG5/G8 gene is associated with hypercholesterolemias without mutation in candidate genes and noncholesterol sterols.

    PubMed

    Lamiquiz-Moneo, Itziar; Baila-Rueda, Lucía; Bea, Ana M; Mateo-Gallego, Rocío; Pérez-Calahorra, Sofía; Marco-Benedí, Victoria; Martín-Navarro, Antonio; Ros, Emilio; Cofán, Montserrat; Rodríguez-Rey, José Carlos; Pocovi, Miguel; Cenarro, Ana; Civeira, Fernando

    Approximately 20% to 40% of clinically defined familial hypercholesterolemia (FH) cases do not show a causative mutation in candidate genes (mutation-negative FH), and some of them may have a polygenic origin. The aim of this work was to study the prevalence of ABCG5/G8 genetic variants in mutation-negative FH, as defects in these genes relate to intestinal hyperabsorption of cholesterol and thus ABCG5/G8 variants could explain in part the mechanism of hypercholesterolemia. We sequenced the ABCG5/G8 genes in 214 mutation-negative FH and 97 controls. Surrogate markers of cholesterol absorption (5α-cholestanol, β-sitosterol, campesterol, stigmasterol, and sitostanol) were quantified by high-performance liquid chromatography-tandem mass spectrometry in both studied groups. We found 8 mutation-negative FH patients (3.73%) with a pathogenic mutation in ABCG5/G8 genes. We observed significantly higher concentration of surrogate markers of cholesterol absorption in mutation-negative FH than in controls. In addition, we found significantly higher concentrations of cholesterol absorption markers in mutation-negative FH with ABCG5/G8 defects than in mutation-negative, ABCG5/G8-negative FH. A gene score reflecting the number of common single nucleotide variants associated with hypercholesterolemia was significantly higher in cases than in controls (P = .032). Subjects with a gene score above the mean had significantly higher 5α-cholestanol and stigmasterol than those with a lower gene score. Mutation-negative FH subjects accumulate an excess of rare and common gene variations in ABCG5/G8 genes. This variation is associated with increased intestinal absorption of cholesterol, as determined by surrogate makers, suggesting that these loci contribute to hypercholesterolemia by enhancing intestinal cholesterol absorption. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  18. Identification of residues in ABCG2 affecting protein trafficking and drug transport, using co-evolutionary analysis of ABCG sequences.

    PubMed

    Haider, Ameena J; Cox, Megan H; Jones, Natalie; Goode, Alice J; Bridge, Katherine S; Wong, Kelvin; Briggs, Deborah; Kerr, Ian D

    2015-07-17

    ABCG2 is an ABC (ATP-binding cassette) transporter with a physiological role in urate transport in the kidney and is also implicated in multi-drug efflux from a number of organs in the body. The trafficking of the protein and the mechanism by which it recognizes and transports diverse drugs are important areas of research. In the current study, we have made a series of single amino acid mutations in ABCG2 on the basis of sequence analysis. Mutant isoforms were characterized for cell surface expression and function. One mutant (I573A) showed disrupted glycosylation and reduced trafficking kinetics. In contrast with many ABC transporter folding mutations which appear to be 'rescued' by chemical chaperones or low temperature incubation, the I573A mutation was not enriched at the cell surface by either treatment, with the majority of the protein being retained in the endoplasmic reticulum (ER). Two other mutations (P485A and M549A) showed distinct effects on transport of ABCG2 substrates reinforcing the role of TM helix 3 in drug recognition and transport and indicating the presence of intracellular coupling regions in ABCG2. © 2015 Authors.

  19. Importance of cholesterol in dopamine transporter function

    PubMed Central

    Jones, Kymry T.; Zhen, Juan; Reith, Maarten E.A.

    2012-01-01

    The conformation and function of the dopamine transporter (DAT) can be affected by manipulating membrane cholesterol, yet there is no agreement as to the impact of cholesterol on the activity of lipid-raft localized DATs compared to non-raft DATs. Given the paucity of information regarding the impact of cholesterol on substrate efflux by the DAT, this study explores its influence on the kinetics of DAT-mediated DA efflux induced by dextroamphetamine, as measured by rotating disk electrode voltammetry (RDEV). Treatment with methyl-β-cyclodextrin (mβCD), which effectively depletes total membrane cholesterol- uniformly affecting cholesterol-DAT interactions in both raft and non-raft membrane domains- reduced both DA uptake and efflux rate. In contrast, disruption of raft localized DAT by cholesterol chelation with nystatin had no effect, arguing against a vital role for raft-localized DAT in substrate uptake or efflux. Supra-normal repletion of cholesterol depleted cells with the analogue desmosterol, a non-raft promoting sterol, was as effective as cholesterol itself in restoring transport rates. Further studies with Zn2+ and the conformationally-biased W84L DAT mutant supported the idea that cholesterol is important for maintaining the outward-facing DAT with normal rates of conformational interconversions. Collectively, these results point to a role for direct cholesterol-DAT interactions in regulating DAT function. PMID:22957537

  20. Efflux-Mediated Resistance to Tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1

    PubMed Central

    Dean, Charles R.; Visalli, Melissa A.; Projan, Steven J.; Sum, Phaik-Eng; Bradford, Patricia A.

    2003-01-01

    Pseudomonas aeruginosa strains are less susceptible to tigecycline (previously GAR-936; MIC, 8 μg/ml) than many other bacteria (P. J. Petersen, N. V. Jacobus, W. J. Weiss, P. E. Sum, and R. T. Testa, Antimicrob. Agents Chemother. 43:738-744, 1999). To elucidate the mechanism of resistance to tigecycline, P. aeruginosa PAO1 strains defective in the MexAB-OprM and/or MexXY (OprM) efflux pumps were tested for susceptibility to tigecycline. Increased susceptibility to tigecycline (MIC, 0.5 to 1 μg/ml) was specifically associated with loss of MexXY. Transcription of mexX and mexY was also responsive to exposure of cells to tigecycline. To test for the emergence of compensatory efflux pumps in the absence of MexXY-OprM, mutants lacking MexXY-OprM were plated on medium containing tigecycline at 4 or 6 μg/ml. Resistant mutants were readily recovered, and these also had decreased susceptibility to several other antibiotics, suggesting efflux pump recruitment. One representative carbenicillin-resistant strain overexpressed OprM, the outer membrane channel component of the MexAB-OprM efflux pump. The mexAB-oprM repressor gene, mexR, from this strain contained a 15-bp in-frame deletion. Two representative chloramphenicol-resistant strains showed expression of an outer membrane protein slightly larger than OprM. The mexCD-OprJ repressor gene, nfxB, from these mutants contained a 327-bp in-frame deletion and an IS element insertion, respectively. Together, these data indicated drug efflux mediated by MexCD-OprJ. The MICs of the narrower-spectrum semisynthetic tetracyclines doxycycline and minocycline increased more substantially than did those of tigecycline and other glycylcyclines against the MexAB-OprM- and MexCD-OprJ-overexpressing mutant strains. This suggests that glycylcyclines, although they are subject to efflux from P. aeruginosa, are generally inferior substrates for P. aeruginosa efflux pumps than are narrower-spectrum tetracyclines. PMID:12604529

  1. Impact of a high-cholesterol diet on expression levels of Niemann-Pick C1-like 1 and intestinal transporters in rats and mice.

    PubMed

    Kawase, Atsushi; Araki, Yasuha; Ueda, Yukiko; Nakazaki, Sayaka; Iwaki, Masahiro

    2016-08-01

    Niemann-Pick C1-like 1 (NPC1L1), ATP-binding cassette (ABC)G5, and ABCG8 are all involved in intestinal cholesterol absorption. It is unclear whether a high-cholesterol (HC) diet affects the expression of these transporters in rats and mice as well as humans. We examined the effects of an HC diet on their expression in small intestine and the differences between rats and mice in the responsive of this expression to an HC diet. In addition to these transporters, alterations in six representative drug and nutrient transporters (multidrug resistance-associated protein, breast cancer resistance protein, peptide transporter, sodium-glucose linked transporter, glucose transporter, and L-type amino acid transporter) and transcriptional factors such as hepatocyte nuclear factor (HNF)4α, sterol regulatory element-binding protein (SREBP)2, and liver X receptor (LXR)α were determined. In rats and mice fed an HC diet for 7 days, the mRNA and protein levels of NPC1L1 in the small intestine were determined by real-time reverse transcription polymerase chain reaction and western blotting, respectively. The mRNA levels of ABCG5 and ABCG8, six representative transporters, and transcriptional factors such as HNF4α, SREBP2, and LXR were examined. Significant decreases in the expression levels of NPC1L1 were observed in mice, but not rats, fed the HC diet. The mRNA levels of ABCG5 and ABCG8 were significantly increased in HC rats but not in mice. Only minor changes in the mRNA levels of the other transporters were seen in HC rats and mice. Decreased mRNA levels of HNF4α and SREBP2 in mice could be involved in the reduction in NPC1L1 expression observed upon the introduction of an HC diet. These results indicate that the effects of an HC diet on the expression levels of NPC1L1, ABCG5, and ABCG8 differ between mice and rats.

  2. High brain distribution of a new central nervous system drug candidate despite its P-glycoprotein-mediated efflux at the mouse blood-brain barrier.

    PubMed

    Taccola, Camille; Cartot-Cotton, Sylvaine; Valente, Delphine; Barneoud, Pascal; Aubert, Catherine; Boutet, Valérie; Gallen, Fabienne; Lochus, Murielle; Nicolic, Sophie; Dodacki, Agnès; Smirnova, Maria; Cisternino, Salvatore; Declèves, Xavier; Bourasset, Fanchon

    2018-05-30

    Efficacy of drugs aimed at treating central nervous system (CNS) disorders rely partly on their ability to cross the cerebral endothelium, also called the blood-brain barrier (BBB), which constitutes the main interface modulating exchanges of compounds between the brain and blood. In this work, we used both, conventional pharmacokinetics (PK) approach and in situ brain perfusion technique to study the blood and brain PK of PKRinh, an inhibitor of the double-stranded RNA-dependent protein kinase (PKR) activation, in mice. PKRinh showed a supra dose-proportional blood exposure that was not observed in the brain, and a brain to blood AUC ratio of unbound drug smaller than 1 at all tested doses. These data suggested the implication of an active efflux at the BBB. Using in situ brain perfusion technique, we showed that PKRinh has a very high brain uptake clearance which saturates with increasing concentrations. Fitting the data to a Michaelis-Menten equation revealed that PKRinh transport through the BBB is composed of a passive unsaturable flux and an active saturable protein-mediated efflux with a k m of ≅ 3 μM. We were able to show that the ATP-binding cassette (ABC) transporter P-gp (Abcb1), but not Bcrp (Abcg2), was involved in the brain to blood efflux of PKRinh. At the circulating PKRinh concentrations of this study, the P-gp was not saturated, in accordance with the linear brain PKRinh PK. Finally, PKRinh had high brain uptake clearance (14 μl/g/s) despite it is a good P-gp substrate (P-gp Efflux ratio ≅ 3.6), and reached similar values than the cerebral blood flow reference, diazepam, in P-gp saturation conditions. With its very unique brain transport properties, PKRinh improves our knowledge about P-gp-mediated efflux across the BBB for the development of new CNS directed drugs. Copyright © 2018. Published by Elsevier B.V.

  3. Overcoming Multidrug Resistance via Photodestruction of ABCG2-Rich Extracellular Vesicles Sequestering Photosensitive Chemotherapeutics

    PubMed Central

    Goler-Baron, Vicky; Assaraf, Yehuda G.

    2012-01-01

    Multidrug resistance (MDR) remains a dominant impediment to curative cancer chemotherapy. Efflux transporters of the ATP-binding cassette (ABC) superfamily including ABCG2, ABCB1 and ABCC1 mediate MDR to multiple structurally and functionally distinct antitumor agents. Recently we identified a novel mechanism of MDR in which ABCG2-rich extracellular vesicles (EVs) form in between attached neighbor breast cancer cells and highly concentrate various chemotherapeutics in an ABCG2-dependent manner, thereby sequestering them away from their intracellular targets. Hence, development of novel strategies to overcome MDR modalities is a major goal of cancer research. Towards this end, we here developed a novel approach to selectively target and kill MDR cancer cells. We show that illumination of EVs that accumulated photosensitive cytotoxic drugs including imidazoacridinones (IAs) and topotecan resulted in intravesicular formation of reactive oxygen species (ROS) and severe damage to the EVs membrane that is shared by EVs-forming cells, thereby leading to tumor cell lysis and the overcoming of MDR. Furthermore, consistent with the weak base nature of IAs, MDR cells that are devoid of EVs but contained an increased number of lysosomes, highly accumulated IAs in lysosomes and upon photosensitization were efficiently killed via ROS-dependent lysosomal rupture. Combining targeted lysis of IAs-loaded EVs and lysosomes elicited a synergistic cytotoxic effect resulting in MDR reversal. In contrast, topotecan, a bona fide transport substrate of ABCG2, accumulated exclusively in EVs of MDR cells but was neither detected in lysosomes of normal breast epithelial cells nor in non-MDR breast cancer cells. This exclusive accumulation in EVs enhanced the selectivity of the cytotoxic effect exerted by photodynamic therapy to MDR cells without harming normal cells. Moreover, lysosomal alkalinization with bafilomycin A1 abrogated lysosomal accumulation of IAs, consequently preventing

  4. Evidence That Chromium Modulates Cellular Cholesterol Homeostasis and ABCA1 Functionality Impaired By Hyperinsulinemia

    PubMed Central

    Sealls, Whitney; Penque, Brent A.; Elmendorf, Jeffrey S.

    2011-01-01

    Objective Trivalent chromium (Cr3+) is an essential micronutrient. Findings since the 1950s suggest that Cr3+ might benefit cholesterol homeostasis. Here we present mechanistic evidence in support of this role of Cr3+. Method and Results High-density lipoprotein cholesterol generation in 3T3-L1 adipocytes, rendered ineffective by hyperinsulinemia, known to accompany disorders of lipid metabolism was corrected by Cr3+. Mechanistically, Cr3+ reversed hyperinsulinemia-induced cellular cholesterol accrual and associated defects in cholesterol transporter ABCA1 trafficking and apolipoprotein A1-mediated cholesterol efflux. Moreover, direct activation of AMP-activated protein kinase (AMPK), known to be activated by Cr3+, and/or inhibition of hexosamine biosynthesis pathway (HBP) activity, known to be elevated by hyperinsulinemia, mimics Cr3+ action. Conclusion These findings suggest a mechanism of Cr3+ action that fits with long-standing claims of its role in cholesterol homeostasis. Furthermore, these data implicate a mechanistic basis for the coexistence of dyslipidemia with hyperinsulinemia. PMID:21311039

  5. Effects of Astaxanthin on Reverse Cholesterol Transport and Atherosclerosis in Mice

    PubMed Central

    Zou, Tang-Bin; Zhu, Shan-Shan; Luo, Fei; Li, Wei-Qiao

    2017-01-01

    High plasma level of HDL-cholesterol (HDL-C) has been consistently associated with a decreased risk of atherosclerosis (AS); thus, HDL-C is considered to be an antiatherogenic lipoprotein. The development of novel therapies to enhance the atheroprotective properties of HDL may have the possibility of further reducing the residual AS risk. Reverse cholesterol transport (RCT) is believed to be a primary atheroprotective activity of HDL, which has been shown to promote the efflux of excess cholesterol from macrophage-derived foam cells via ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), and scavenger receptor class B type I (SR-BI) and then transport it back to the liver for excretion into bile and eventually into the feces. In the current study, we investigated the effects of astaxanthin on RCT and AS progression in mice. The results showed that short- and long-term supplementation of astaxanthin promote RCT in C57BL/6J and ApoE−/− mice, respectively. Moreover, astaxanthin can relieve the plaque area of the aortic sinus and aortic cholesterol in mice. These findings suggest that astaxanthin is beneficial for boosting RCT and preventing the development of AS. PMID:29226138

  6. The sensitivity of glioma cells to pyropheophorbide-αmethyl ester-mediated photodynamic therapy is enhanced by inhibiting ABCG2.

    PubMed

    Pan, Li; Lin, Haidan; Tian, Si; Bai, Dingqun; Kong, Yuhan; Yu, Lehua

    2017-09-01

    To study the mechanisms of human glioblastoma cell resistance to methyl ester pyropheophorbide-a-mediated photodynamic therapy (MPPa-PDT) and the relationship between the cells and adenosine triphosphate-binding cassette superfamily G member 2 (ABCG2). The sensitivity of four human glioma cell lines (U87, A172, SHG-44, and U251) to MPPa-PDT was detected with a CCK-8 assay. Cell apoptosis, intracellular MPPa, and singlet oxygen were tested with flow cytometry. The mRNA and protein expression of ATP-binding cassette transporters (ABCG2, MRP1, and MDR1) were detected by PCR and Western blot, respectively. Both the sensitivity to MPPa-PDT and intracellular MPPa in A172 were the lowest among the four cell lines, while expression of ABCG2 mRNA and protein in A172 were the highest. The intracellular MPPa and ROS in A172 receiving MPPa-PDT significantly increased after using the ABCG2 inhibitor fumitremorgin C (FTC). Both cell viability and apoptosis in A172 cells undergoing MPPa-PDT were significantly improved with FTC. ABCG2 plays a significant role in the resistance of A172 to MPPa-PDT. Lasers Surg. Med. 49:719-726, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. ABCG2-mediated suppression of chlorin e6 accumulation and photodynamic therapy efficiency in glioblastoma cell lines can be reversed by KO143.

    PubMed

    Abdel Gaber, Sara A; Müller, Patricia; Zimmermann, Wolfgang; Hüttenberger, Dirk; Wittig, Rainer; Abdel Kader, Mahmoud H; Stepp, Herbert

    2018-01-01

    Photodynamic therapy (PDT) of malignant brain tumors is a promising adjunct to standard treatment, especially if tumor stem cells thought to be responsible for tumor progression and therapy resistance were also susceptible to this kind of treatment. However, some photosensitizers have been reported to be substrates of ABCG2, one of the membrane transporters mediating resistance to chemotherapy. Here we investigate, whether inhibition of ABCG2 can restore sensitivity to photosensitizer chlorin e6-mediated PDT. Accumulation of chlorin e6 in wild type U87 and doxycycline-inducible U251 glioblastoma cells with or without induction of ABCG2 expression or ABCG2 inhibition by KO143 was analyzed using flow cytometry. In U251 cells, ABCG2 was inducible by doxycycline after stable transfection with a tet-on expression plasmid. Tumor sphere cultivation under low attachment conditions was used to enrich for cells with stem cell-like properties. PDT was done on monolayer cell cultures by irradiation with laser light at 665nm. Elevated levels of ABCG2 in U87 cells grown as tumor spheres or in U251 cells after ABCG2 induction led to a 6-fold lower accumulation of chlorin e6 and the light dose needed to reduce cell viability by 50% (LD50) was 2.5 to 4-fold higher. Both accumulation and PDT response can be restored by KO143, an efficient non-toxic inhibitor of ABCG2. Glioblastoma stem cells might escape phototoxic destruction by ABCG2-mediated reduction of photosensitizer accumulation. Inhibition of ABCG2 during photosensitizer accumulation and irradiation promises to restore full susceptibility of this crucial tumor cell population to photodynamic treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Cholesterol Accumulation in Dendritic Cells Links the Inflammasome to Acquired Immunity.

    PubMed

    Westerterp, Marit; Gautier, Emmanuel L; Ganda, Anjali; Molusky, Matthew M; Wang, Wei; Fotakis, Panagiotis; Wang, Nan; Randolph, Gwendalyn J; D'Agati, Vivette D; Yvan-Charvet, Laurent; Tall, Alan R

    2017-06-06

    Autoimmune diseases such as systemic lupus erythematosus (SLE) are associated with increased cardiovascular disease and reduced plasma high-density lipoprotein (HDL) levels. HDL mediates cholesterol efflux from immune cells via the ATP binding cassette transporters A1 and G1 (ABCA1/G1). The significance of impaired cholesterol efflux pathways in autoimmunity is unknown. We observed that Abca1/g1-deficient mice develop enlarged lymph nodes (LNs) and glomerulonephritis suggestive of SLE. This lupus-like phenotype was recapitulated in mice with knockouts of Abca1/g1 in dendritic cells (DCs), but not in macrophages or T cells. DC-Abca1/g1 deficiency increased LN and splenic CD11b + DCs, which displayed cholesterol accumulation and inflammasome activation, increased cell surface levels of the granulocyte macrophage-colony stimulating factor receptor, and enhanced inflammatory cytokine secretion. Consequently, DC-Abca1/g1 deficiency enhanced T cell activation and T h 1 and T h 17 cell polarization. Nlrp3 inflammasome deficiency diminished the enlarged LNs and enhanced T h 1 cell polarization. These findings identify an essential role of DC cholesterol efflux pathways in maintaining immune tolerance. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Black pepper and piperine reduce cholesterol uptake and enhance translocation of cholesterol transporter proteins.

    PubMed

    Duangjai, Acharaporn; Ingkaninan, Kornkanok; Praputbut, Sakonwun; Limpeanchob, Nanteetip

    2013-04-01

    Black pepper (Piper nigrum L.) lowers blood lipids in vivo and inhibits cholesterol uptake in vitro, and piperine may mediate these effects. To test this, the present study aimed to compare actions of black pepper extract and piperine on (1) cholesterol uptake and efflux in Caco-2 cells, (2) the membrane/cytosol distribution of cholesterol transport proteins in these cells, and (3) the physicochemical properties of cholesterol micelles. Piperine or black pepper extract (containing the same amount of piperine) dose-dependently reduced cholesterol uptake into Caco-2 cells in a similar manner. Both preparations reduced the membrane levels of NPC1L1 and SR-BI proteins but not their overall cellular expression. Micellar cholesterol solubility of lipid micelles was unaffected except by 1 mg/mL concentration of black pepper extract. These data suggest that piperine is the active compound in black pepper and reduces cholesterol uptake by internalizing the cholesterol transporter proteins.

  10. Longitudinal Changes in Cholesterol Efflux Capacities in Patients With Coronary Artery Disease Undergoing Lifestyle Modification Therapy.

    PubMed

    Boyer, Marjorie; Lévesque, Valérie; Poirier, Paul; Marette, André; Mitchell, Patricia L; Mora, Samia; Mathieu, Patrick; Després, Jean-Pierre; Larose, Éric; Arsenault, Benoit J

    2018-06-01

    Our objective was to identify the determinants of high-density lipoprotein cholesterol efflux capacity (HDL-CEC) changes in patients with coronary artery disease who participated in a lifestyle modification program aimed at increasing physical activity levels and improving diet quality. A total of 86 men with coronary artery disease aged between 35 and 80 years participated in a 1-year lifestyle modification program that aimed to achieve a minimum of 150 minutes of aerobic physical activity weekly and improve diet quality. HDL-CECs were measured before and after the 1-year intervention using 3 H-cholesterol-labeled J774 and HepG2 cells. Visceral, subcutaneous, and cardiac adipose tissue levels were assessed before and after the intervention using magnetic resonance imaging. Lipoprotein particle size and concentrations were measured by proton nuclear magnetic resonance spectroscopy and a complete lipoprotein-lipid profile was obtained. At baseline, the best correlate of HDL-CECs were apolipoprotein AI ( R 2 =0.35, P <0.0001) and high-density lipoprotein cholesterol ( R 2 =0.21, P <0.0001) for J774-HDL-CECs and HepG2-HDL-CECs, respectively. Baseline and longitudinal changes in HDL-CECs were associated with several lipoprotein size and concentration indices, although high-density lipoprotein cholesterol was the best predictor of longitudinal changes in J774-HDL-CECs ( R 2 =0.18, P =0.002) and apolipoprotein AI was found to be the best predictor of longitudinal changes in HepG2 cholesterol efflux capacities ( R 2 =0.21, P =0.002). Results of this study suggest that increases in high-density lipoprotein cholesterol and apolipoprotein AI levels typically observed in patients with coronary artery disease undergoing healthy lifestyle modification therapy may be indicative of higher plasma concentrations of functional high-density lipoprotein particles. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  11. Rice Stomatal Closure Requires Guard Cell Plasma Membrane ATP-Binding Cassette Transporter RCN1/OsABCG5.

    PubMed

    Matsuda, Shuichi; Takano, Sho; Sato, Moeko; Furukawa, Kaoru; Nagasawa, Hidetaka; Yoshikawa, Shoko; Kasuga, Jun; Tokuji, Yoshihiko; Yazaki, Kazufumi; Nakazono, Mikio; Takamure, Itsuro; Kato, Kiyoaki

    2016-03-07

    Water stress is one of the major environmental stresses that affect agricultural production worldwide. Water loss from plants occurs primarily through stomatal pores. Here, we report that an Oryza sativa half-size ATP-binding cassette (ABC) subfamily G protein, RCN1/OsABCG5, is involved in stomatal closure mediated by phytohormone abscisic acid (ABA) accumulation in guard cells. We found that the GFP-RCN1/OsABCG5-fusion protein was localized at the plasma membrane in guard cells. The percentage of guard cell pairs containing both ABA and GFP-RCN1/OsABCG5 increased after exogenous ABA treatment, whereas they were co-localized in guard cell pairs regardless of whether exogenous ABA was applied. ABA application resulted in a smaller increase in the percentage of guard cell pairs containing ABA in rcn1 mutant (A684P) and RCN1-RNAi than in wild-type plants. Furthermore, polyethylene glycol (drought stress)-inducible ABA accumulation in guard cells did not occur in rcn1 mutants. Stomata closure mediated by exogenous ABA application was strongly reduced in rcn1 mutants. Finally, rcn1 mutant plants had more rapid water loss from detached leaves than the wild-type plants. These results indicate that in response to drought stress, RCN1/OsABCG5 is involved in accumulation of ABA in guard cells, which is indispensable for stomatal closure. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  12. AST1306, a potent EGFR inhibitor, antagonizes ATP-binding cassette subfamily G member 2-mediated multidrug resistance.

    PubMed

    Zhang, Hui; Wang, Yi-Jun; Zhang, Yun-Kai; Wang, De-Shen; Kathawala, Rishil J; Patel, Atish; Talele, Tanaji T; Chen, Zhe-Sheng; Fu, Li-Wu

    2014-08-01

    AST1306, an inhibitor of EGFR and ErbB2, is currently in phase I of clinical trials. We evaluated the effect of AST306 on the reversal of multidrug resistance (MDR) induced by ATP-binding cassette (ABC) transporters. We found that AST1306 significantly sensitized the ABC subfamily G member 2 (ABCG2)-overexpressing cells to ABCG2 substrate chemotherapeutics. AST1306 significantly increased intracellular accumulation of [(3)H]-mitoxantrone in ABCG2-overexpressing cells by blocking ABCG2 efflux function. Moreover, AST1306 stimulated the ATPase activity of ABCG2. Homology modeling predicted the binding conformation of AST1306 to be within the transmembrane region of ABCG2. In conclusion, AST1306 could notably reverse ABCG2-mediated MDR. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Cholesterol efflux capacity is an independent predictor of all-cause and cardiovascular mortality in patients with coronary artery disease: A prospective cohort study.

    PubMed

    Liu, Chaoqun; Zhang, Yuan; Ding, Ding; Li, Xinrui; Yang, Yunou; Li, Qing; Zheng, Yuanzhu; Wang, Dongliang; Ling, Wenhua

    2016-06-01

    Although diminished cholesterol efflux capacity is positively related with prevalent coronary artery disease, its prognostic value for incident cardiovascular events remains a topic of debate. This work aims to investigate the association between cholesterol efflux capacity and all-cause and cardiovascular mortality in patients with coronary artery disease. We measured cholesterol efflux capacity at baseline in 1737 patients with coronary artery disease from the Guangdong Coronary Artery Disease Cohort. During 6645 person-years of follow-up, 166 deaths were registered, 122 of which were caused by cardiovascular diseases. After multivariate adjustment for factors related to cardiovascular diseases, the hazard ratios of cholesterol efflux capacity in the fourth quartile compared with those in the bottom quartile were 0.24 (95% confidence intervals 0.13-0.44) for all-cause mortality (P < 0.001), and 0.17 (95% confidence intervals 0.08-0.39) for cardiovascular mortality (P < 0.001). Adding cholesterol efflux capacity to a model containing traditional cardiovascular risk factors significantly increases its discriminatory power and predictive ability for all-cause (area under receiver operating characteristic curve 0.79 versus 0.76, P = 0.001; net reclassification improvement 14.5%, P = 0.001; integrated discrimination improvement 0.016, P < 0.001) and cardiovascular (area under receiver operating characteristic curve 0.81 versus 0.78, P = 0.001; net reclassification improvement 18.4%, P < 0.001; integrated discrimination improvement 0.015, P < 0.001) death, respectively. Cholesterol efflux capacity may serve as an independent measure for predicting all-cause and cardiovascular mortality in patients with coronary artery disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Spontaneous remodeling of HDL particles at acidic pH enhances their capacity to induce cholesterol efflux from human macrophage foam cells[S

    PubMed Central

    Nguyen, Su Duy; Öörni, Katariina; Lee-Rueckert, Miriam; Pihlajamaa, Tero; Metso, Jari; Jauhiainen, Matti; Kovanen, Petri T.

    2012-01-01

    HDL particles may enter atherosclerotic lesions having an acidic intimal fluid. Therefore, we investigated whether acidic pH would affect their structural and functional properties. For this purpose, HDL2 and HDL3 subfractions were incubated for various periods of time at different pH values ranging from 5.5 to 7.5, after which their protein and lipid compositions, size, structure, and cholesterol efflux capacity were analyzed. Incubation of either subfraction at acidic pH induced unfolding of apolipoproteins, which was followed by release of lipid-poor apoA-I and ensuing fusion of the HDL particles. The acidic pH-modified HDL particles exhibited an enhanced ability to promote cholesterol efflux from cholesterol-laden primary human macrophages. Importantly, treatment of the acidic pH-modified HDL with the mast cell-derived protease chymase completely depleted the newly generated lipid-poor apoA-I, and prevented the acidic pH-dependent increase in cholesterol efflux. The above-found pH-dependent structural and functional changes were stronger in HDL3 than in HDL2. Spontaneous acidic pH-induced remodeling of mature spherical HDL particles increases HDL-induced cholesterol efflux from macrophage foam cells, and therefore may have atheroprotective effects. PMID:22855736

  15. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins

    NASA Astrophysics Data System (ADS)

    Zhang, Kewei; Novak, Ondrej; Wei, Zhaoyang; Gou, Mingyue; Zhang, Xuebin; Yu, Yong; Yang, Huijun; Cai, Yuanheng; Strnad, Miroslav; Liu, Chang-Jun

    2014-02-01

    Cytokinins are a major group of phytohormones regulating plant growth, development and stress responses. However, in contrast to the well-defined polar transport of auxins, the molecular basis of cytokinin transport is poorly understood. Here we show that an ATP-binding cassette transporter in Arabidopsis, AtABCG14, is essential for the acropetal (root to shoot) translocation of the root-synthesized cytokinins. AtABCG14 is expressed primarily in the pericycle and stelar cells of roots. Knocking out AtABCG14 strongly impairs the translocation of trans-zeatin (tZ)-type cytokinins from roots to shoots, thereby affecting the plant’s growth and development. AtABCG14 localizes to the plasma membrane of transformed cells. In planta feeding of C14 or C13-labelled tZ suggests that it acts as an efflux pump and its presence in the cells directly correlates with the transport of the fed cytokinin. Therefore, AtABCG14 is a transporter likely involved in the long-distance translocation of cytokinins in planta.

  16. Deficiency of ATP-binding cassette transporters A1 and G1 in macrophages increases inflammation and accelerates atherosclerosis in mice.

    PubMed

    Westerterp, Marit; Murphy, Andrew J; Wang, Mi; Pagler, Tamara A; Vengrenyuk, Yuliya; Kappus, Mojdeh S; Gorman, Darren J; Nagareddy, Prabhakara R; Zhu, Xuewei; Abramowicz, Sandra; Parks, John S; Welch, Carrie; Fisher, Edward A; Wang, Nan; Yvan-Charvet, Laurent; Tall, Alan R

    2013-05-24

    Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. To assess the role of macrophage cholesterol efflux pathways in atherogenesis. We developed mice with efficient deletion of the ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) in macrophages (MAC-ABC(DKO) mice) but not in hematopoietic stem or progenitor populations. MAC-ABC(DKO) bone marrow (BM) was transplanted into Ldlr(-/-) recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared with controls. On the Western-type diet, MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice had disproportionate atherosclerosis, considering they also had lower very low-density lipoprotein/low-density lipoprotein cholesterol levels than controls. ABCA1/G1-deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, Western-type diet-fed MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice displayed monocytosis and neutrophilia in the absence of hematopoietic stem and multipotential progenitor cells proliferation. Mechanistic studies revealed increased expressions of machrophage colony stimulating factor and granulocyte colony stimulating factor in splenic macrophage foam cells, driving BM monocyte and neutrophil production. These studies show that macrophage deficiency of ABCA1/G1 is proatherogenic likely by promoting plaque inflammation and uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways.

  17. Cholesterol Efflux Capacity, High-Density Lipoprotein Particle Number, and Incident Cardiovascular Events: An Analysis From the JUPITER Trial (Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin).

    PubMed

    Khera, Amit V; Demler, Olga V; Adelman, Steven J; Collins, Heidi L; Glynn, Robert J; Ridker, Paul M; Rader, Daniel J; Mora, Samia

    2017-06-20

    Recent failures of drugs that raised high-density lipoprotein (HDL) cholesterol levels to reduce cardiovascular events in clinical trials have led to increased interest in alternative indices of HDL quality, such as cholesterol efflux capacity, and HDL quantity, such as HDL particle number. However, no studies have directly compared these metrics in a contemporary population that includes potent statin therapy and low low-density lipoprotein cholesterol. HDL cholesterol levels, apolipoprotein A-I, cholesterol efflux capacity, and HDL particle number were assessed at baseline and 12 months in a nested case-control study of the JUPITER trial (Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin), a randomized primary prevention trial that compared rosuvastatin treatment to placebo in individuals with normal low-density lipoprotein cholesterol but increased C-reactive protein levels. In total, 314 cases of incident cardiovascular disease (CVD) (myocardial infarction, unstable angina, arterial revascularization, stroke, or cardiovascular death) were compared to age- and gender-matched controls. Conditional logistic regression models adjusting for risk factors evaluated associations between HDL-related biomarkers and incident CVD. Cholesterol efflux capacity was moderately correlated with HDL cholesterol, apolipoprotein A-I, and HDL particle number (Spearman r = 0.39, 0.48, and 0.39 respectively; P <0.001). Baseline HDL particle number was inversely associated with incident CVD (adjusted odds ratio per SD increment [OR/SD], 0.69; 95% confidence interval [CI], 0.56-0.86; P <0.001), whereas no significant association was found for baseline cholesterol efflux capacity (OR/SD, 0.89; 95% CI, 0.72-1.10; P =0.28), HDL cholesterol (OR/SD, 0.82; 95% CI, 0.66-1.02; P =0.08), or apolipoprotein A-I (OR/SD, 0.83; 95% CI, 0.67-1.03; P =0.08). Twelve months of rosuvastatin (20 mg/day) did not change cholesterol efflux capacity (average

  18. Overexpression of ATP-Binding Cassette Transporter ABCG2 as a Potential Mechanism of Acquired Resistance to Vemurafenib in BRAF(V600E) Mutant Cancer Cells

    PubMed Central

    Wu, Chung-Pu; Sim, Hong-May; Huang, Yang-Hui; Liu, Yen-Chen; Hsiao, Sung-Han; Cheng, Hsing-Wen; Li, Yan-Qing; Ambudkar, Suresh V.; Hsu, Sheng-Chieh

    2012-01-01

    Melanoma is the most serious type of skin cancer with a high potential for metastasis and very low survival rates. The discovery of constitutive activation of the BRAF kinase caused by activating BRAF(V600E) kinase mutation in most melanoma patients led to the discovery of the first potent BRAF(V600E) signaling inhibitor, vemurafenib. Vemurafenib was effective in treating advanced melanoma patients and was proposed for the treatment of other BRAF(V600E) mutant cancers as well. Unfortunately, the success of vemurafenib was hampered by the rapid development of acquired resistance in different types of BRAF(V600E) mutant cancer cells. It becomes important to identify and evaluate all of the potential mechanisms of cellular resistance to vemurafenib. In this study, we characterized the interactions of vemurafenib with three major ATP-binding cassette (ABC) transporters, ABCB1, ABCC1 and ABCG2. We found that vemurafenib stimulated the ATPase activity and potently inhibited drug efflux mediated by ABCB1 and ABCG2. Vemurafenib also restored drug sensitivity in ABCG2-overexpressing cells. Moreover, we revealed that in the presence of functional ABCG2, BRAF kinase inhibition by vemurafenib is reduced in BRAF(V600E) mutant A375 cells. Taken together, our findings indicate that ABCG2 confers resistance to vemurafenib in A375 cells, suggesting involvement of this transporter in acquired resistance to vemurafenib. Thus, combination chemotherapy targeting multiple pathways could be an effective therapeutic strategy to overcome acquired resistance to vemurafenib for cancers harboring the BRAF(V600E) mutation. PMID:23153455

  19. Modulating drug resistance by targeting BCRP/ABCG2 using retrovirus-mediated RNA interference.

    PubMed

    Xie, Ni; Mou, Lisha; Yuan, Jianhui; Liu, Wenlan; Deng, Tingting; Li, Zigang; Jing, Yi; Jin, Yi; Hu, Zhangli

    2014-01-01

    The BCRP/ABCG2 transporter, which mediates drug resistance in many types of cells, depends on energy provided by ATP hydrolysis. Here, a retrovirus encoding a shRNA targeting the ATP-binding domain of this protein was used to screen for highly efficient agents that could reverse drug resistance and improve cell sensitivity to drugs, thus laying the foundation for further studies and applications. To target the ATP-binding domain of BCRP/ABCG2, pLenti6/BCRPsi shRNA recombinant retroviruses, with 20 bp target sequences starting from the 270th, 745th and 939th bps of the 6th exon, were constructed and packaged. The pLenti6/BCRPsi retroviruses (V-BCRPi) that conferred significant knockdown effects were screened using a drug-sensitivity experiment and flow cytometry. The human choriocarcinoma cell line JAR, which highly expresses endogenous BCRP/ABCG2, was injected under the dorsal skin of a hairless mouse to initiate a JAR cytoma. After injecting V-BCRPi-infected JAR tumor cells into the dorsal skin of hairless mice, BCRP/ABCG2 expression in the tumor tissue was determined using immunohistochemistry, fluorescent quantitative RT-PCR and Western blot analyses. After intraperitoneal injection of BCRP/ABCG2-tolerant 5-FU, the tumor volume, weight change, and apoptosis rate of the tumor tissue were determined using in situ hybridization. V-BCRPi increased the sensitivity of the tumor histiocytes to 5-FU and improved the cell apoptosis-promoting effects of 5-FU in the tumor. The goal of the in vivo and in vitro studies was to screen for an RNA interference recombinant retrovirus capable of stably targeting the ATP-binding domain of BCRP/ABCG2 (V-BCRPi) to inhibit its function. A new method to improve the chemo-sensitivity of breast cancer and other tumor cells was discovered, and this method could be used for gene therapy and functional studies of malignant tumors.

  20. Extra-Renal Elimination of Uric Acid via Intestinal Efflux Transporter BCRP/ABCG2

    PubMed Central

    Hosomi, Atsushi; Nakanishi, Takeo; Fujita, Takuya; Tamai, Ikumi

    2012-01-01

    Urinary excretion accounts for two-thirds of total elimination of uric acid and the remainder is excreted in feces. However, the mechanism of extra-renal elimination is poorly understood. In the present study, we aimed to clarify the mechanism and the extent of elimination of uric acid through liver and intestine using oxonate-treated rats and Caco-2 cells as a model of human intestinal epithelium. In oxonate-treated rats, significant amounts of externally administered and endogenous uric acid were recovered in the intestinal lumen, while biliary excretion was minimal. Accordingly, direct intestinal secretion was thought to be a substantial contributor to extra-renal elimination of uric acid. Since human efflux transporter BCRP/ABCG2 accepts uric acid as a substrate and genetic polymorphism causing a decrease of BCRP activity is known to be associated with hyperuricemia and gout, the contribution of rBcrp to intestinal secretion was examined. rBcrp was confirmed to transport uric acid in a membrane vesicle study, and intestinal regional differences of expression of rBcrp mRNA were well correlated with uric acid secretory activity into the intestinal lumen. Bcrp1 knockout mice exhibited significantly decreased intestinal secretion and an increased plasma concentration of uric acid. Furthermore, a Bcrp inhibitor, elacridar, caused a decrease of intestinal secretion of uric acid. In Caco-2 cells, uric acid showed a polarized flux from the basolateral to apical side, and this flux was almost abolished in the presence of elacridar. These results demonstrate that BCRP contributes at least in part to the intestinal excretion of uric acid as extra-renal elimination pathway in humans and rats. PMID:22348008

  1. Efflux-Mediated Drug Resistance in Bacteria: an Update

    PubMed Central

    Li, Xian-Zhi; Nikaido, Hiroshi

    2010-01-01

    Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome although they can also be plasmid-encoded. A previous article (Li X-Z and Nikaido H, Drugs, 2004; 64[2]: 159–204) had provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past five years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria. PMID:19678712

  2. V1-receptor mediated GSH efflux by vasopressin from rat hepatocytes.

    PubMed

    Sato, C; Liu, J H; Uchihara, M; Izumi, N; Yauchi, T; Sakaj, Y; Asahina, Y; Fukuma, T; Takano, T; Marumo, F

    1992-01-01

    Vasopression increases sinusoidal efflux of GSH in the perfused rat liver. The mechanism of this effect was studied in the perfused rat liver and in isolated rat hepatocytes. Vasopressin stimulated GSH efflux in both systems and a V1-receptor antagonist (OPC-21268) significantly inhibited the effect of vasopressin suggesting that vasopressin stimulates GSH efflux from rat hepatocytes via V1-receptor.

  3. [ROLE OF SLC2A9 AND ABCG2 GENE POLYMORPHISMS IN ORIGIN OF HYPERURICEMIA AND GOUT].

    PubMed

    Fadieieva, A; Prystupa, L; Pogorelova, O; Kirichenko, N; Dudchenko, I

    2016-03-01

    The polymorphisms V253I, Q126X, Q141K of SLC2A9 and ABCG2 genes were characterized. GCA и GTC haplotypes of Q126X and Q141K variants can be predictors of gout. The relationship of these polymorphisms with hyperuricaemia according to gender, metabolic syndrome components, with the response to allopurinol was analyzed. It has been established that Q141K polymorphism can directly modulate BCRP-mediated allopurinol and oxypurinol efflux, the K allele is associated with a lower reduction in serum uric acid in response to allopurinol treatment.

  4. LXR-dependent regulation of macrophage-specific reverse cholesterol transport is impaired in a model of genetic diabesity.

    PubMed

    Errico, Teresa L; Méndez-Lara, Karen Alejandra; Santos, David; Cabrerizo, Núria; Baila-Rueda, Lucía; Metso, Jari; Cenarro, Ana; Pardina, Eva; Lecube, Albert; Jauhiainen, Matti; Peinado-Onsurbe, Julia; Escolà-Gil, Joan Carles; Blanco-Vaca, Francisco; Julve, Josep

    2017-08-01

    Diabesity and fatty liver have been associated with low levels of high-density lipoprotein cholesterol, and thus could impair macrophage-specific reverse cholesterol transport (m-RCT). Liver X receptor (LXR) plays a critical role in m-RCT. Abcg5/g8 sterol transporters, which are involved in cholesterol trafficking into bile, as well as other LXR targets, could be compromised in the livers of obese individuals. We aimed to determine m-RCT dynamics in a mouse model of diabesity, the db/db mice. These obese mice displayed a significant retention of macrophage-derived cholesterol in the liver and reduced fecal cholesterol elimination compared with nonobese mice. This was associated with a significant downregulation of the hepatic LXR targets, including Abcg5/g8. Pharmacologic induction of LXR promoted the delivery of total tracer output into feces in db/db mice, partly due to increased liver and small intestine Abcg5/Abcg8 gene expression. Notably, a favorable upregulation of the hepatic levels of ABCG5/G8 and NR1H3 was also observed postoperatively in morbidly obese patients, suggesting a similar LXR impairment in these patients. In conclusion, our data show that downregulation of the LXR axis impairs cholesterol transfer from macrophages to feces in db/db mice, whereas the induction of the LXR axis partly restores impaired m-RCT by elevating the liver and small intestine expressions of Abcg5/g8. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Stimulation of accumbal GABAA receptors inhibits delta2-, but not delta1-, opioid receptor-mediated dopamine efflux in the nucleus accumbens of freely moving rats.

    PubMed

    Aono, Yuri; Kiguchi, Yuri; Watanabe, Yuriko; Waddington, John L; Saigusa, Tadashi

    2017-11-15

    The nucleus accumbens contains delta-opioid receptors that may reduce inhibitory neurotransmission. Reduction in GABA A receptor-mediated inhibition of accumbal dopamine release due to delta-opioid receptor activation should be suppressed by stimulating accumbal GABA A receptors. As delta-opioid receptors are divided into delta2- and delta1-opioid receptors, we analysed the effects of the GABA A receptor agonist muscimol on delta2- and delta1-opioid receptor-mediated accumbal dopamine efflux in freely moving rats using in vivo microdialysis. Drugs were administered intracerebrally through the dialysis probe. Doses of compounds indicate total amount administered (mol) during 25-50min infusions. The delta2-opioid receptor agonist deltorphin II (25.0nmol)- and delta1-opioid receptor agonist DPDPE (5.0nmol)-induced increases in dopamine efflux were inhibited by the delta2-opioid receptor antagonist naltriben (1.5nmol) and the delta1-opioid receptor antagonist BNTX (150.0pmol), respectively. Muscimol (250.0pmol) inhibited deltorphin II (25.0nmol)-induced dopamine efflux. The GABA A receptor antagonist bicuculline (50.0pmol), which failed to affect deltorphin II (25.0nmol)-induced dopamine efflux, counteracted the inhibitory effect of muscimol on deltorphin II-induced dopamine efflux. Neither muscimol (250.0pmol) nor bicuculline (50.0 and 500.0pmol) altered DPDPE (5.0nmol)-induced dopamine efflux. The present results show that reduction in accumbal GABA A receptor-mediated inhibition of dopaminergic activity is necessary to produce delta2-opioid receptor-induced increase in accumbal dopamine efflux. This study indicates that activation of delta2- but not delta1-opioid receptors on the cell bodies and/or terminals of accumbal GABAergic interneurons inhibits GABA release and, accordingly, decreases GABA A receptor-mediated inhibition of dopaminergic terminals, resulting in enhanced accumbal dopamine efflux. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Atorvastatin induces bile acid-synthetic enzyme Cyp7a1 by suppressing FXR signaling in both liver and intestine in mice[S

    PubMed Central

    Fu, Zidong Donna; Cui, Julia Yue; Klaassen, Curtis D.

    2014-01-01

    Statins are effective cholesterol-lowering drugs to treat CVDs. Bile acids (BAs), the end products of cholesterol metabolism in the liver, are important nutrient and energy regulators. The present study aims to investigate how statins affect BA homeostasis in the enterohepatic circulation. Male C57BL/6 mice were treated with atorvastatin (100 mg/kg/day po) for 1 week, followed by BA profiling by ultra-performance LC-MS/MS. Atorvastatin decreased BA pool size, mainly due to less BA in the intestine. Surprisingly, atorvastatin did not alter total BAs in the serum or liver. Atorvastatin increased the ratio of 12α-OH/non12α-OH BAs. Atorvastatin increased the mRNAs of the BA-synthetic enzymes cholesterol 7α-hydroxylase (Cyp7a1) (over 10-fold) and cytochrome P450 27a1, the BA uptake transporters Na+/taurocholate cotransporting polypeptide and organic anion transporting polypeptide 1b2, and the efflux transporter multidrug resistance-associated protein 2 in the liver. Noticeably, atorvastatin suppressed the expression of BA nuclear receptor farnesoid X receptor (FXR) target genes, namely small heterodimer partner (liver) and fibroblast growth factor 15 (ileum). Furthermore, atorvastatin increased the mRNAs of the organic cation uptake transporter 1 and cholesterol efflux transporters Abcg5 and Abcg8 in the liver. The increased expression of BA-synthetic enzymes and BA transporters appear to be a compensatory response to maintain BA homeostasis after atorvastatin treatment. The Cyp7a1 induction by atorvastatin appears to be due to suppressed FXR signaling in both the liver and intestine. PMID:25278499

  7. Helical synthetic peptides that stimulate cellular cholesterol efflux

    DOEpatents

    Bielicki, John K.; Natarajan, Pradeep

    2010-04-06

    The present invention provides peptides comprising at least one amphipathic alpha helix and having an cholesterol mediating activity and a ABCA stabilization activity. The invention further provides methods of using such peptides.

  8. Serum cholesterol acceptor capacity in intrauterine growth restricted fetuses.

    PubMed

    Pecks, Ulrich; Rath, Werner; Bauerschlag, Dirk O; Maass, Nicolai; Orlikowsky, Thorsten; Mohaupt, Markus G; Escher, Geneviève

    2017-10-26

    Intrauterine growth restriction (IUGR) is an independent risk factor for the development of cardiovascular diseases later in life. The mechanisms whereby slowed intrauterine growth confers vascular risk are not clearly established. In general, a disturbed cholesterol efflux has been linked to atherosclerosis. The capacity of serum to accept cholesterol has been repeatedly evaluated in clinical studies by the use of macrophage-based cholesterol efflux assays and, if disturbed, precedes atherosclerotic diseases years before the clinical diagnosis. We now hypothesized that circulating cholesterol acceptors in IUGR sera specifically interfere with cholesterol transport mechanisms leading to diminished cholesterol efflux. RAW264.7 cells were used to determine efflux of [3H]-cholesterol in response to [umbilical cord serum (IUGR), n=20; controls (CTRL), n=20]. Cholesterol efflux was lower in IUGR as compared to controls [controls: mean 7.7% fractional [3H]-cholesterol efflux, standard deviation (SD)=0.98; IUGR: mean 6.3%, SD=0.79; P<0.0001]. Values strongly correlated to HDL (ρ=0.655, P<0.0001) and apoE (ρ=0.510, P=0.0008), and mildly to apoA1 (ρ=0.3926, P=0.0122) concentrations. Reduced cholesterol efflux in IUGR could account for the enhanced risk of developing cardiovascular diseases later in life.

  9. Inhibition of soluble epoxide hydrolase in mice promotes reverse cholesterol transport and regression of atherosclerosis.

    PubMed

    Shen, Li; Peng, Hongchun; Peng, Ran; Fan, Qingsong; Zhao, Shuiping; Xu, Danyan; Morisseau, Christophe; Chiamvimonvat, Nipavan; Hammock, Bruce D

    2015-04-01

    Adipose tissue is the body largest free cholesterol reservoir and abundantly expresses ATP binding cassette transporter A1 (ABCA1), which maintains plasma high-density lipoprotein (HDL) levels. HDLs have a protective role in atherosclerosis by mediating reverse cholesterol transport (RCT). Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition has various beneficial effects on cardiovascular disease. The sEH is highly expressed in adipocytes, and it converts epoxyeicosatrienoic acids (EETs) into less bioactive dihydroxyeicosatrienoic acids. We previously showed that increasing EETs levels with a sEH inhibitor (sEHI) (t-AUCB) resulted in elevated ABCA1 expression and promoted ABCA1-mediated cholesterol efflux from 3T3-L1 adipocytes. The present study investigates the impacts of t-AUCB in mice deficient for the low density lipoprotein (LDL) receptor (Ldlr(-/-) mice) with established atherosclerotic plaques. The sEH inhibitor delivered in vivo for 4 weeks decreased the activity of sEH in adipose tissue, enhanced ABCA1 expression and cholesterol efflux from adipose depots, and consequently increased HDL levels. Furthermore, t-AUCB enhanced RCT to the plasma, liver, bile and feces. It also showed the reduction of plasma LDL-C levels. Consistently, t-AUCB-treated mice showed reductions in the size of atherosclerotic plaques. These studies establish that raising adipose ABCA1 expression, cholesterol efflux, and plasma HDL levels with t-AUCB treatment promotes RCT, decreasing LDL-C and atherosclerosis regression, suggesting that sEH inhibition may be a promising strategy to treat atherosclerotic vascular disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. HDL cholesterol transport during inflammation.

    PubMed

    van der Westhuyzen, Deneys R; de Beer, Frederick C; Webb, Nancy R

    2007-04-01

    The aim of this article is to review recent advances made towards understanding how inflammation and acute phase proteins, particularly serum amyloid A and group IIa secretory phospholipase A2, may alter reverse cholesterol transport by HDL during inflammation and the acute phase response. Findings suggest that the decreased apoA-I content and markedly increased serum amyloid A content in HDL during the acute phase response result from reciprocal and coordinate transcriptional regulation of these proteins as well as HDL remodeling by group IIa secretory phospholipase A2. Serum amyloid A functions efficiently in a lipid-free or lipid-poor form to promote cholesterol efflux by ATP binding cassette protein ABCA1, evidently by functioning directly as an acceptor for cholesterol efflux as well as by increasing the availability of cellular free cholesterol. Serum amyloid A increases the ability of acute phase HDL to serve as an acceptor for SR-BI-dependent cellular cholesterol efflux. Altered remodeling of HDL by group IIa secretory phospholipase A2 in concert with cholesterol ester transfer protein may contribute to the generation of lipid-poor apoA-I and serum amyloid A acceptors for cholesterol efflux. Current data support a model for the acute phase response in which serum amyloid A and sPLA2-IIa, present at sites of inflammation and tissue damage, play a protective role by enhancing cellular cholesterol efflux, thereby promoting the removal of excess cholesterol from macrophages.

  11. Impact of a 1-year lifestyle modification program on cholesterol efflux capacities in men with abdominal obesity and dyslipidemia.

    PubMed

    Boyer, Marjorie; Mitchell, Patricia L; Poirier, Dr Paul; Alméras, Natalie; Tremblay, Angelo; Bergeron, Jean; Despres, Jean-Pierre; Arsenault, Benoit J

    2018-06-05

    Cholesterol efflux capacities (CECs) are negatively associated with cardiovascular disease risk, irrespective of plasma high-density lipoprotein (HDL) cholesterol levels. Whether interventions targeting lifestyle improve HDL-CECs is unknown. Our objective was to determine whether improving dietary quality and increasing physical activity levels improves HDL-CECs in abdominally obese men with dyslipidemia. Our study sample included men (488.5 years) with an elevated waist circumference ({greater than or equal to}90 cm) associated with dyslipidemia (triglycerides {greater than or equal to}1.69 and/or HDL cholesterol <1.03 mmol/l); 113 men completed a 1-year intervention, consisting of a healthy eating and physical activity/exercise program and 32 were included in a control group. An oral lipid tolerance test (OLTT) was performed in a subsample of 28 men who completed the intervention and blood was collected every 2 hours during 8 hours. HDL-CECs were measured using 3 H cholesterol labeled J774 macrophages and HepG2 hepatocytes. The lifestyle modification program led to an overall improvement in the cardiometabolic risk profile, increases in J774-HDL-CEC by 14.1% (+0.881.09%, p<0.0001), HepG2-HDL-CEC by 3.4% (+0.170.75%, p=0.01), HDL-C and apolipoprotein A-1 levels (13.5%, p<0.0001 and 14.9%, p<0.0001, respectively). J774-HDL-CECs and HepG2-HDL-CECs did not change in the control group. The best predictor for changes in HDL-CEC was Apo A1 level. The lifestyle modification program also improved HDL-CECs response in postprandial lipemia during an OLTT. HDL-CEC did not change during the OLTT. Our results suggest that increasing physical activity levels and improving diet quality can have a positive impact on both HDL quantity and quality in abdominally obese men with dyslipidemia.

  12. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes.

    PubMed

    Storey, Stephen M; McIntosh, Avery L; Huang, Huan; Landrock, Kerstin K; Martin, Gregory G; Landrock, Danilo; Payne, H Ross; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2012-04-15

    A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in <1 min and initial rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2

  13. Release of cellular cholesterol: molecular mechanism for cholesterol homeostasis in cells and in the body.

    PubMed

    Yokoyama, S

    2000-12-15

    Most mammalian somatic cells are unable to catabolize cholesterol and therefore need to export it in order to maintain sterol homeostasis. This mechanism may also function to reduce excessively accumulated cholesterol, which would thereby contribute to prevention or cure of the initial stage of atherosclerotic vascular lesion. High-density lipoprotein (HDL) has been believed to play a main role in this reaction based on epidemiological evidence and in vitro experimental data. At least two independent mechanisms are identified for this reaction. One is non-specific diffusion-mediated cholesterol 'efflux' from cell surface. Cholesterol molecules desorbed from cells can be trapped by various extracellular acceptors including various lipoproteins and albumin, and extracellular cholesterol esterification mainly on HDL may provide a driving force for the net removal of cell cholesterol by maintaining a cholesterol gradient between lipoprotein surface and cell membrane. The other is apolipoprotein-mediated process to generate new HDL by removing cellular phospholipid and cholesterol. The reaction is initiated by the interaction of lipid-free or lipid-poor helical apolipoproteins with cellular surface resulting in assembly of HDL particles with cellular phospholipid and incorporation of cellular cholesterol into the HDL being formed. Thus, HDL has dual functions as an active cholesterol acceptor in the diffusion-mediated pathway and as an apolipoprotein carrier for the HDL assembly reaction. The impairment of the apolipoprotein-mediated reaction was found in Tangier disease and other familial HDL deficiencies to strongly suggest that this is a main mechanism to produce plasma HDL. The causative mutations for this defect was identified in ATP binding cassette transporter protein A1, as a significant step for further understanding of the reaction and cholesterol homeostasis.

  14. Lysosomal regulation of cholesterol homeostasis in tuberous sclerosis complex is mediated via NPC1 and LDL-R.

    PubMed

    Filippakis, Harilaos; Alesi, Nicola; Ogorek, Barbara; Nijmeh, Julie; Khabibullin, Damir; Gutierrez, Catherine; Valvezan, Alexander J; Cunningham, James; Priolo, Carmen; Henske, Elizabeth P

    2017-06-13

    Tuberous sclerosis complex (TSC) is a multisystem disease associated with hyperactive mTORC1. The impact of TSC1/2 deficiency on lysosome-mediated processes is not fully understood. We report here that inhibition of lysosomal function using chloroquine (CQ) upregulates cholesterol homeostasis genes in TSC2-deficient cells. This TSC2-dependent transcriptional signature is associated with increased accumulation and intracellular levels of both total cholesterol and cholesterol esters. Unexpectedly, engaging this CQ-induced cholesterol uptake pathway together with inhibition of de novo cholesterol synthesis allows survival of TSC2-deficient, but not TSC2-expressing cells. The underlying mechanism of TSC2-deficient cell survival is dependent on exogenous cholesterol uptake via LDL-R, and endosomal trafficking mediated by Vps34. Simultaneous inhibition of lysosomal and endosomal trafficking inhibits uptake of esterified cholesterol and cell growth in TSC2-deficient, but not TSC2-expressing cells, highlighting the TSC-dependent lysosome-mediated regulation of cholesterol homeostasis and pointing toward the translational potential of these pathways for the therapy of TSC.

  15. Hepatic Oval Cells Have the Side Population Phenotype Defined by Expression of ATP-Binding Cassette Transporter ABCG2/BCRP1

    PubMed Central

    Shimano, Koichi; Satake, Makoto; Okaya, Atsuhito; Kitanaka, Junichi; Kitanaka, Nobue; Takemura, Motohiko; Sakagami, Masafumi; Terada, Nobuyuki; Tsujimura, Tohru

    2003-01-01

    Organ-specific stem cells can be identified by the side population (SP) phenotype, which is defined by the property to effectively exclude the Hoechst 33342 dye. The ATP-binding cassette transporter ABCG2/BCRP1 mediates the SP phenotype. Because hepatic oval cells possess several characteristics of stem cells, we examined whether they have the SP phenotype using the 2-acetylaminofluorene/partial hepatectomy (PH) model. Fluorescence-activated cell sorting analysis showed that a population of non-parenchymal cells containing oval cells, prepared on day 7 after PH, carried a significant number of SP cells, whereas that of non-parenchymal cells without oval cells, prepared on day 0 after PH, did not. Northern blot analysis using total liver RNA obtained on various days after PH showed that the expression of ABCG2/BCRP1 mRNA increased after PH, reaching the highest level on day 7, and then gradually decreased. This pattern of changes in the ABCG2/BCRP1 mRNA level was well correlated to that in the number of oval cells. Furthermore, in situ hybridization revealed that oval cells were the sites of expression of ABCG2/BCRP1 mRNA. These results indicate that oval cells have the SP phenotype defined by expression of ABCG2/BCRP1, suggesting that oval cells may represent stem cells in the liver. PMID:12819005

  16. Apatinib (YN968D1) reverses multidrug resistance by inhibiting the efflux function of multiple ATP-binding cassette transporters

    PubMed Central

    Mi, Yan-jun; Liang, Yong-ju; Huang, Hong-bing; Zhao, Hong-yun; Wu, Chung-Pu; Wang, Fang; Tao, Li-yang; Zhang, Chuan-zhao; Dai, Chun-Ling; Tiwari, Amit K.; Ma, Xiao-xu; Wah To, Kenneth Kin; Ambudkar, Suresh V.; Chen, Zhe-Sheng; Fu, Li-wu

    2010-01-01

    Apatinib, a small-molecule multi-targeted tyrosine kinase inhibitor, is in phase III clinical trial for treatment of patients with non-small cell lung cancer and gastric cancer in China. In this study, we determined the effect of apatinib on the interaction of specific antineoplastic compounds with P-glycoprotein (P-gp, ABCB1), multidrug resistance protein 1 (MRP1, ABCC1) and breast cancer resistance protein (BCRP, ABCG2). Our results showed that apatinib significantly enhanced the cytotoxicity of ABCB1 or ABCG2 substrate drugs in KBv200, MCF-7/adr and HEK293/ABCB1 cells overexpressing ABCB1 and S1-M1-80, MCF-7/FLV1000 and HEK293/ABCG2-R2 cells overexpressing ABCG2 (wild-type). In contrast, apatinib did not alter the cytotoxicity of specific substrates in the parental cells and cells overexpressing ABCC1. Apatinib significantly increased the intracellular accumulation of rhodamine 123 and doxorubicin in the multidrug resistance (MDR) cells. Furthermore, apatinib significantly inhibited the photolabeling of both ABCB1 and ABCG2 with [125I]-iodoarylazidoprazosin in a concentration-dependent fashion. The ATPase activity of both ABCB1 and ABCG2 was significantly increased by apatinib. However, apatinib, at a concentration the produced a reversal of MDRl, did not significantly alter the expression of the ABCB1 or ABCG2 protein or mRNA levels or the phosphorylation of AKT and ERK1/2. Importantly, apatinib significantly enhanced the effect of paclitaxel against the ABCB1 resistant KBv200 cancer cell xenografts in nude mice. In conclusion, apatinib reverses ABCB1- and ABCG2-mediated MDR by inhibiting their transport function, but not by blocking AKT or ERK1/2 pathway or downregulating ABCB1 or ABCG2 expression. Apatinib may be useful in circumventing MDR to other conventional antineoplastic drugs. PMID:20876799

  17. Plasma membrane dynamics and tetrameric organisation of ABCG2 transporters in mammalian cells revealed by single particle imaging techniques.

    PubMed

    Wong, Kelvin; Briddon, Stephen J; Holliday, Nicholas D; Kerr, Ian D

    2016-01-01

    ABCG2 is one of three human ATP binding cassette (ABC) transporters involved in the export from cells of a chemically and structurally diverse range of compounds. This multidrug efflux capability, together with a broad tissue distribution in the body, means that ABCG2 exerts a range of effects on normal physiology such as kidney urate transport, as well as contributing towards the pharmacokinetic profiles of many exogenous drugs. The primary sequence of ABCG2 contains only half the number of domains required for a functioning ABC transporter and so it must oligomerise in order to function, yet its oligomeric state in intact cell membranes remains uncharacterized. We have analysed ABCG2 in living cell membranes using a combination of fluorescence correlation spectroscopy, photon counting histogram analysis, and stepwise photobleaching to demonstrate a predominantly tetrameric structure for ABCG2 in the presence or absence of transport substrates. These results provide the essential basis for exploring pharmacological manipulation of oligomeric state as a strategy to modulate ABCG2 activity in future selective therapeutics. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Efflux-mediated antimicrobial resistance.

    PubMed

    Poole, Keith

    2005-07-01

    Antibiotic resistance continues to plague antimicrobial chemotherapy of infectious disease. And while true biocide resistance is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are common and the history of antibiotic resistance should not be ignored in the development and use of biocidal agents. Efflux mechanisms of resistance, both drug specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials, with some accommodating both antibiotics and biocides. This latter raises the spectre (as yet generally unrealized) of biocide selection of multiple antibiotic-resistant organisms. Multidrug efflux mechanisms are broadly conserved in bacteria, are almost invariably chromosome-encoded and their expression in many instances results from mutations in regulatory genes. In contrast, drug-specific efflux mechanisms are generally encoded by plasmids and/or other mobile genetic elements (transposons, integrons) that carry additional resistance genes, and so their ready acquisition is compounded by their association with multidrug resistance. While there is some support for the latter efflux systems arising from efflux determinants of self-protection in antibiotic-producing Streptomyces spp. and, thus, intended as drug exporters, increasingly, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, appear not to be intended as drug exporters but as exporters with, perhaps, a variety of other roles in bacterial cells. Still, given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents, for example, less impacted by efflux and in targeting efflux directly with efflux inhibitors.

  19. Anthocyanins inhibit high-glucose-induced cholesterol accumulation and inflammation by activating LXRα pathway in HK-2 cells

    PubMed Central

    Du, Chunyang; Shi, Yonghong; Ren, Yunzhuo; Wu, Haijiang; Yao, Fang; Wei, Jinying; Wu, Ming; Hou, Yanjuan; Duan, Huijun

    2015-01-01

    The dysregulation of cholesterol metabolism and inflammation plays a significant role in the progression of diabetic nephropathy (DN). Anthocyanins are polyphenols widely distributed in food and exert various biological effects including antioxidative, anti-inflammatory, and antihyperlipidemic effects. However, it remains unclear whether anthocyanins are associated with DN, and the mechanisms involved in the reciprocal regulation of inflammation and cholesterol efflux are yet to be elucidated. In this study, we evaluated the regulation of cholesterol metabolism and the anti-inflammatory effects exerted by anthocyanins (cyanidin-3-O-β-glucoside chloride [C3G] or cyanidin chloride [Cy]) and investigated the underlying molecular mechanism of action using high-glucose (HG)-stimulated HK-2 cells. We found that anthocyanins enhanced cholesterol efflux and ABCA1 expression markedly in HK-2 cells. In addition, they increased peroxisome proliferator-activated receptor alpha (PPARα) and liver X receptor alpha (LXRα) expression and decreased the HG-induced expression of the proinflammatory cytokines intercellular adhesion molecule-1 (ICAM1), monocyte chemoattractant protein-1 (MCP1), and transforming growth factor-β1 (TGFβ1), as well as NFκB activation. Incubation with the PPARα-specific inhibitor GW6471 and LXRα shRNA attenuated the anthocyanin-mediated promotion of ABCA1 expression and cholesterol efflux, suggesting that anthocyanins activated PPARα-LXRα-ABCA1-dependent cholesterol efflux in HK-2 cells. Moreover, the knockout of LXRα abrogated the anti-inflammatory effect of anthocyanins, whereas the PPARα antagonist GW6471 does not have this effect. Further investigations revealed that LXRα might interfere with anthocyanin-induced decreased ICAM1, MCP1, and TGFβ1 expression by reducing the nuclear translocation of NFκB. Collectively, these findings suggest that blocking cholesterol deposition and inhibiting the LXRα pathway-induced inflammatory response

  20. NPC1L1 and Cholesterol Transport

    PubMed Central

    Betters, Jenna L.; Yu, Liqing

    2010-01-01

    The polytopic transmembrane protein, Niemann-Pick C1-Like 1 (NPC1L1), is enriched in the apical membrane of small intestine absorptive enterocytes where it mediates extracellular sterol transport across the brush border membrane. It is essential for intestinal sterol absorption and is the molecular target of ezetimibe, a potent cholesterol absorption inhibitor that lowers blood cholesterol in humans. NPC1L1 is also highly expressed in human liver. The hepatic function of NPC1L1 may be to limit excessive biliary cholesterol loss. NPC1L1-dependent sterol uptake seems to be a clathrin-mediated endocytic process and is regulated by cellular cholesterol content. Recently, NPC1L1 inhibition has been shown to have beneficial effects on components of the metabolic syndrome, such as obesity, insulin resistance, fatty liver, in addition to atherosclerosis. PMID:20307540

  1. Antibody validation and scoring guidelines for ABCG2 immunohistochemical staining in formalin-fixed paraffin-embedded colon cancer tissue

    PubMed Central

    Cederbye, Camilla Natasha; Palshof, Jesper Andreas; Hansen, Tine Plato; Duun-Henriksen, Anne Katrine; Linnemann, Dorte; Stenvang, Jan; Nielsen, Dorte Lisbet; Brünner, Nils; Viuff, Birgitte Martine

    2016-01-01

    Overexpression of the ATP-dependent drug efflux pump ABCG2 is a major molecular mechanism of multidrug resistance in cancer and might be a predictive biomarker for drug response. Contradictory results have been reported for immunohistochemical studies of ABCG2 protein expression in colorectal cancer (CRC), probably because of the use of different antibodies and scoring approaches. In this study, we systematically studied six commercially available anti-ABCG2 antibodies, using cell lines with up-regulation of ABCG2, and selected one antibody for validation in CRC tissue. Furthermore, we established scoring guidelines for ABCG2 expression based on the clinically used guidelines for HER2 immunohistochemistry assessment in gastric cancer. The guidelines provide a semi-quantitative measure of the basolateral membrane staining of ABCG2 and disregard the apical membrane staining and the cytoplasmic signal. Intra-tumor heterogeneity in ABCG2 immunoreactivity was observed; however, statistical analyses of tissue microarrays (TMAs) and the corresponding whole sections from primary tumors of 57 metastatic CRC patients revealed a strong positive correlation between maximum TMA scores and whole sections, especially when more than one core was used. In conclusion, here, we provide validated results to guide future studies on the associations between ABCG2 immunoreactivity in tumor cells and the benefits of chemotherapeutic treatment in patients with CRC. PMID:27257141

  2. Induction of hepatic ABC transporter expression is part of the PPARalpha-mediated fasting response in the mouse.

    PubMed

    Kok, Tineke; Wolters, Henk; Bloks, Vincent W; Havinga, Rick; Jansen, Peter L M; Staels, Bart; Kuipers, Folkert

    2003-01-01

    Fatty acids are natural ligands of the peroxisome proliferator-activated receptor alpha (PPARalpha). Synthetic ligands of this nuclear receptor, i.e., fibrates, induce the hepatic expression of the multidrug resistance 2 gene (Mdr2), encoding the canalicular phospholipid translocator, and affect hepatobiliary lipid transport. We tested whether fasting-associated fatty acid release from adipose tissues alters hepatic transporter expression and bile formation in a PPARalpha-dependent manner. A 24-hour fasting/48-hour refeeding schedule was used in wild-type and Pparalpha((-/-)) mice. Expression of genes involved in the control of bile formation was determined and related to secretion rates of biliary components. Expression of Pparalpha, farnesoid X receptor, and liver X receptor alpha genes encoding nuclear receptors that control hepatic bile salt and sterol metabolism was induced on fasting in wild-type mice only. The expression of Mdr2 was 5-fold increased in fasted wild-type mice and increased only marginally in Pparalpha((-/-)) mice, and it normalized on refeeding. Mdr2 protein levels and maximal biliary phospholipid secretion rates were clearly increased in fasted wild-type mice. Hepatic expression of the liver X receptor target genes ATP binding cassette transporter a1 (Abca1), Abcg5, and Abcg8, implicated in hepatobiliary cholesterol transport, was induced in fasted wild-type mice only. However, the maximal biliary cholesterol secretion rate was reduced by approximately 50%. Induction of Mdr2 expression and function is part of the PPARalpha-mediated fasting response in mice. Fasting also induces expression of the putative hepatobiliary cholesterol transport genes Abca1, Abcg5, and Abcg8, but, nonetheless, maximal biliary cholesterol excretion is decreased after fasting.

  3. The expression of cholesterol metabolism genes in monocytes from HIV-infected subjects suggests intracellular cholesterol accumulation.

    PubMed

    Feeney, Eoin R; McAuley, Nuala; O'Halloran, Jane A; Rock, Clare; Low, Justin; Satchell, Claudette S; Lambert, John S; Sheehan, Gerald J; Mallon, Patrick W G

    2013-02-15

    Human immunodeficiency virus (HIV) infection is associated with increased cardiovascular risk and reduced high-density lipoprotein cholesterol (HDL-c). In vitro, HIV impairs monocyte-macrophage cholesterol efflux, a major determinant of circulating HDL-c, by increasing ABCA1 degradation, with compensatory upregulation of ABCA1 messenger RNA (mRNA). We examined expression of genes involved in cholesterol uptake, metabolism, and efflux in monocytes from 22 HIV-positive subjects on antiretroviral therapy (ART-Treated), 30 untreated HIV-positive subjects (ART-Naive), and 22 HIV-negative controls (HIV-Neg). HDL-c was lower and expression of ABCA1 mRNA was higher in ART-Naive subjects than in both ART-Treated and HIV-Neg subjects (both P < .01), with HDL-c inversely correlated with HIV RNA (ρ = -0.52; P < .01). Expression of genes involved in cholesterol uptake (LDLR, CD36), synthesis (HMGCR), and regulation (SREBP2, LXRA) was significantly lower in both ART-Treated and ART-Naive subjects than in HIV-Neg controls. In vivo, increased monocyte ABCA1 expression in untreated HIV-infected patients and normalization of ABCA1 expression with virological suppression by ART supports direct HIV-induced impairment of cholesterol efflux previously demonstrated in vitro. However, decreased expression of cholesterol sensing, uptake, and synthesis genes in both untreated and treated HIV infection suggests that both HIV and ART affect monocyte cholesterol metabolism in a pattern consistent with accumulation of intramonocyte cholesterol.

  4. Impact of hormonal contraception and weight loss on high-density lipoprotein cholesterol efflux and lipoprotein particles in women with polycystic ovary syndrome.

    PubMed

    Dokras, Anuja; Playford, Martin; Kris-Etherton, Penny M; Kunselman, Allen R; Stetter, Christy M; Williams, Nancy I; Gnatuk, Carol L; Estes, Stephanie J; Sarwer, David B; Allison, Kelly C; Coutifaris, Christos; Mehta, Nehal; Legro, Richard S

    2017-05-01

    To study the effects of oral contraceptive pills (OCP), the first-line treatment for PCOS, on high-density lipoprotein cholesterol (HDL-C) function (reverse cholesterol efflux capacity) and lipoprotein particles measured using nuclear magnetic resonance spectroscopy in obese women. Secondary analysis of a randomized controlled trial (OWL-PCOS) of OCP or Lifestyle (intensive Lifestyle modification) or Combined (OCP + Lifestyle) treatment groups for 16 weeks. Eighty-seven overweight/obese women with PCOS at two academic centres. Change in HDL-C efflux capacity and lipoprotein particles. High-density lipoprotein cholesterol efflux capacity increased significantly at 16 weeks in the OCP group [0·11; 95% confidence interval (CI) 0·03, 0·18, P = 0·008] but not in the Lifestyle (P = 0·39) or Combined group (P = 0·18). After adjusting for HDL-C and TG levels, there was significant mean change in efflux in the Combined group (0·09; 95% CI 0·01, 0·15; P = 0·01). Change in HDL-C efflux correlated inversely with change in serum testosterone (r s = -0·21; P = 0·05). In contrast, OCP use induced an atherogenic low-density lipoprotein cholesterol (LDL-C) profile with increase in small (P = 0·006) and large LDL-particles (P = 0·002). Change in small LDL-particles correlated with change in serum testosterone (r s = -0·31, P = 0·009) and insulin sensitivity index (ISI; r s = -0·31, P = 0·02). Both Lifestyle and Combined groups did not show significant changes in the atherogenic LDL particles. Oral contraceptive pills use is associated with improved HDL-C function and a concomitant atherogenic LDL-C profile. Combination of a Lifestyle program with OCP use improved HDL-C function and mitigated adverse effects of OCP on lipoproteins. Our study provides evidence for use of OCP in overweight/obese women with PCOS when combined with Lifestyle changes. © 2017 John Wiley & Sons Ltd.

  5. Melanocortin 1 Receptor Deficiency Promotes Atherosclerosis in Apolipoprotein E-/- Mice.

    PubMed

    Rinne, Petteri; Kadiri, James J; Velasco-Delgado, Mauricio; Nuutinen, Salla; Viitala, Miro; Hollmén, Maija; Rami, Martina; Savontaus, Eriika; Steffens, Sabine

    2018-02-01

    The MC1-R (melanocortin 1 receptor) is expressed by monocytes and macrophages where it mediates anti-inflammatory actions. MC1-R also protects against macrophage foam cell formation primarily by promoting cholesterol efflux through the ABCA1 (ATP-binding cassette transporter subfamily A member 1) and ABCG1 (ATP-binding cassette transporter subfamily G member 1). In this study, we aimed to investigate whether global deficiency in MC1-R signaling affects the development of atherosclerosis. Apoe -/- (apolipoprotein E deficient) mice were crossed with recessive yellow (Mc1r e/e ) mice carrying dysfunctional MC1-R and fed a high-fat diet to induce atherosclerosis. Apoe -/- Mc1r e/e mice developed significantly larger atherosclerotic lesions in the aortic sinus and in the whole aorta compared with Apoe -/- controls. In terms of plaque composition, MC1-R deficiency was associated with less collagen and smooth muscle cells and increased necrotic core, indicative of more vulnerable lesions. These changes were accompanied by reduced Abca1 and Abcg1 expression in the aorta. Furthermore, Apoe -/- Mc1r e/e mice showed a defect in bile acid metabolism that aggravated high-fat diet-induced hypercholesterolemia and hepatic lipid accumulation. Flow cytometric analysis of leukocyte profile revealed that dysfunctional MC1-R enhanced arterial accumulation of classical Ly6C high monocytes and macrophages, effects that were evident in mice fed a normal chow diet but not under high-fat diet conditions. In support of enhanced arterial recruitment of Ly6C high monocytes, these cells had increased expression of L-selectin and P-selectin glycoprotein ligand 1. The present study highlights the importance of MC1-R in the development of atherosclerosis. Deficiency in MC1-R signaling exacerbates atherosclerosis by disturbing cholesterol handling and by increasing arterial monocyte accumulation. © 2017 The Authors.

  6. The multidrug transporter ABCG2 (BCRP) is inhibited by plant-derived cannabinoids.

    PubMed

    Holland, M L; Lau, D T T; Allen, J D; Arnold, J C

    2007-11-01

    Cannabinoids are used therapeutically for the palliation of the adverse side effects associated with cancer chemotherapy. However, cannabinoids also inhibit both the activity and expression of the multidrug transporter, P-glycoprotein in vitro. Here we address the interaction of cannabinol (CBN), cannabidiol (CBD) and delta 9-tetrahydrocannabinol (THC) with the related multidrug transporter, ABCG2. Cannabinoid inhibition of Abcg2/ABCG2 was assessed using flow cytometric analysis of substrate accumulation and ATPase activity assays. The cytotoxicity and chemosensitization by cannabinoids was determined with cell viability assays. Expression of cannabinoid and vanilloid receptors was assessed using reverse transcriptase polymerase chain reaction, and cannabinoid modulation of ABCG2 expression was examined using immunoblotting. CBN, CBD and THC increased the intracellular accumulation of the Abcg2/ABCG2 substrate, mitoxantrone, in an over-expressing cell line. The THC metabolite, (-)-11-nor-9-carboxy-delta 9-THC was much less potent. The plant cannabinoids inhibited both basal and substrate stimulated ATPase activity of human ABCG2. Cannabinoid cytotoxicity occurred in the absence of known cannabinoid cell surface receptors, and only at concentrations higher than those required for Abcg2/ABCG2 inhibition. Sub-toxic concentrations of the cannabinoids resensitized the overexpressing cell line to the cytotoxic effect of Abcg2/ABCG2 substrates, mitoxantrone and topotecan. This occurred in the absence of any effect on ABCG2 expression. Cannabinoids are novel Abcg2/ABCG2 inhibitors, reversing the Abcg2-mediated multidrug-resistant phenotype in vitro. This finding may have implications for the co-administration of cannabinoids with pharmaceuticals that are ABCG2 substrates.

  7. Differences in the expression of endogenous efflux transporters in MDR1-transfected versus wildtype cell lines affect P-glycoprotein mediated drug transport

    PubMed Central

    Kuteykin-Teplyakov, Konstantin; Luna-Tortós, Carlos; Ambroziak, Kamila; Löscher, Wolfgang

    2010-01-01

    Background and purpose: P-glycoprotein (Pgp) efflux assays are widely used to identify Pgp substrates. The kidney cell lines Madin-Darby canine kidney (MDCK)-II and LLC-PK1, transfected with human MDR1 (ABCB1) are used to provide recombinant models of drug transport. Endogenous transporters in these cells may contribute to the activities of recombinant transporters, so that drug transport in MDR1-transfected cells is often corrected for the transport obtained in parental (wildtype) cells. However, expression of endogenous transporters may vary between transfected and wildtype cells, so that this correction may cause erroneous data. Here, we have measured the expression of endogenous efflux transporters in transfected and wildtype MDCK-II or LLC cells and the consequences for Pgp-mediated drug transport. Experimental approach: Using quantitative real-time RT-PCR, we determined the expression of endogenous Mdr1 mRNA and other efflux transporters in wildtype and MDR1-transfected MDCK-II and LLC cells. Transcellular transport was measured with the test substrate vinblastine. Key results: In MDR1-transfected MDCK cells, expression of endogenous (canine) Mdr1 and Mrp2 (Abcc2) mRNA was markedly lower than in wildtype cells, whereas MDR1-transfected LLC cells exhibited comparable Mdr1 but strikingly higher Mrp2 mRNA levels than wildtype cells. As a consequence, transport of vinblastine by human Pgp in efflux experiments was markedly underestimated when transport in MDR1-transfected MDCK cells was corrected for transport obtained in wildtype cells. This problem did not occur in LLC cells. Conclusions and implications: Differences in the expression of endogenous efflux transporters between transfected and wildtype MDCK cells provide a potential bias for in vitro studies on Pgp-mediated drug transport. PMID:20590635

  8. ABCG2 is a direct transcriptional target of hedgehog signaling and involved in stroma-induced drug tolerance in diffuse large B-cell lymphoma.

    PubMed

    Singh, R R; Kunkalla, K; Qu, C; Schlette, E; Neelapu, S S; Samaniego, F; Vega, F

    2011-12-08

    Successful treatment of diffuse large B-cell lymphoma (DLBCL) is frequently hindered by the development of resistance to conventional chemotherapy resulting in disease relapse and high mortality. High expression of antiapoptotic and/or drug transporter proteins induced by oncogenic signaling pathways has been implicated in the development of chemoresistance in cancer. Previously, our studies showed that high expression of adenosine triphosphate-binding cassette drug transporter ABCG2 in DLBCL correlated inversely with disease- and failure-free survival. In this study, we have implicated activated hedgehog (Hh) signaling pathway as a key factor behind high ABCG2 expression in DLBCL through direct upregulation of ABCG2 gene transcription. We have identified a single binding site for GLI transcription factors in the ABCG2 promoter and established its functionality using luciferase reporter, site-directed mutagenesis and chromatin-immunoprecipitation assays. Furthermore, in DLBCL tumor samples, significantly high ABCG2 and GLI1 levels were found in DLBCL tumors with lymph node involvement in comparison with DLBCL tumor cells collected from pleural and/or peritoneal effusions. This suggests a role for the stromal microenvironment in maintaining high levels of ABCG2 and GLI1. Accordingly, in vitro co-culture of DLBCL cells with HS-5 stromal cells increased ABCG2 mRNA and protein levels by paracrine activation of Hh signaling. In addition to ABCG2, co-culture of DLBCL cells with HS-5 cells also resulted in increase expression of the antiapoptotic proteins BCL2, BCL-xL and BCL2A1 and in induced chemotolerance to doxorubicin and methotrexate, drugs routinely used for the treatment of DLBCL. Similarly, activation of Hh signaling in DLBCL cell lines with recombinant Shh N-terminal peptide resulted in increased expression of BCL2 and ABCG2 associated with increased chemotolerance. Finally, functional inhibition of ABCG2 drug efflux activity with fumitremorgin C or inhibition

  9. The multidrug transporter ABCG2 (BCRP) is inhibited by plant-derived cannabinoids

    PubMed Central

    Holland, M L; Lau, D T T; Allen, J D; Arnold, J C

    2007-01-01

    Background and purpose: Cannabinoids are used therapeutically for the palliation of the adverse side effects associated with cancer chemotherapy. However, cannabinoids also inhibit both the activity and expression of the multidrug transporter, P-glycoprotein in vitro. Here we address the interaction of cannabinol (CBN), cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) with the related multidrug transporter, ABCG2. Experimental approach: Cannabinoid inhibition of Abcg2/ABCG2 was assessed using flow cytometric analysis of substrate accumulation and ATPase activity assays. The cytotoxicity and chemosensitization by cannabinoids was determined with cell viability assays. Expression of cannabinoid and vanilloid receptors was assessed using reverse transcriptase polymerase chain reaction, and cannabinoid modulation of ABCG2 expression was examined using immunoblotting. Key results: CBN, CBD and THC increased the intracellular accumulation of the Abcg2/ABCG2 substrate, mitoxantrone, in an over-expressing cell line. The THC metabolite, (−)-11-nor-9-carboxy-Δ9-THC was much less potent. The plant cannabinoids inhibited both basal and substrate stimulated ATPase activity of human ABCG2. Cannabinoid cytotoxicity occurred in the absence of known cannabinoid cell surface receptors, and only at concentrations higher than those required for Abcg2/ABCG2 inhibition. Sub-toxic concentrations of the cannabinoids resensitized the overexpressing cell line to the cytotoxic effect of Abcg2/ABCG2 substrates, mitoxantrone and topotecan. This occurred in the absence of any effect on ABCG2 expression. Conclusions and implications: Cannabinoids are novel Abcg2/ABCG2 inhibitors, reversing the Abcg2-mediated multidrug-resistant phenotype in vitro. This finding may have implications for the co-administration of cannabinoids with pharmaceuticals that are ABCG2 substrates. PMID:17906686

  10. Cholesterol trafficking and raft-like membrane domain composition mediate scavenger receptor class B type 1-dependent lipid sensing in intestinal epithelial cells.

    PubMed

    Morel, Etienne; Ghezzal, Sara; Lucchi, Géraldine; Truntzer, Caroline; Pais de Barros, Jean-Paul; Simon-Plas, Françoise; Demignot, Sylvie; Mineo, Chieko; Shaul, Philip W; Leturque, Armelle; Rousset, Monique; Carrière, Véronique

    2018-02-01

    Scavenger receptor Class B type 1 (SR-B1) is a lipid transporter and sensor. In intestinal epithelial cells, SR-B1-dependent lipid sensing is associated with SR-B1 recruitment in raft-like/ detergent-resistant membrane domains and interaction of its C-terminal transmembrane domain with plasma membrane cholesterol. To clarify the initiating events occurring during lipid sensing by SR-B1, we analyzed cholesterol trafficking and raft-like domain composition in intestinal epithelial cells expressing wild-type SR-B1 or the mutated form SR-B1-Q445A, defective in membrane cholesterol binding and signal initiation. These features of SR-B1 were found to influence both apical cholesterol efflux and intracellular cholesterol trafficking from plasma membrane to lipid droplets, and the lipid composition of raft-like domains. Lipidomic analysis revealed likely participation of d18:0/16:0 sphingomyelin and 16:0/0:0 lysophosphatidylethanolamine in lipid sensing by SR-B1. Proteomic analysis identified proteins, whose abundance changed in raft-like domains during lipid sensing, and these included molecules linked to lipid raft dynamics and signal transduction. These findings provide new insights into the role of SR-B1 in cellular cholesterol homeostasis and suggest molecular links between SR-B1-dependent lipid sensing and cell cholesterol and lipid droplet dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Multixenobiotic resistance in Mytilus edulis: Molecular and functional characterization of an ABCG2- type transporter in hemocytes and gills.

    PubMed

    Ben Cheikh, Yosra; Xuereb, Benoit; Boulangé-Lecomte, Céline; Le Foll, Frank

    2018-02-01

    Among the cellular protection arsenal, ABC transporters play an important role in xenobiotic efflux in marine organisms. Two pumps belonging to B and C subfamily has been identified in Mytilus edulis. In this study, we investigated the presence of the third major subtype ABCG2/BCRP protein in mussel tissues. Transcript was expressed in hemocytes and with higher level in gills. Molecular characterization revealed that mussel ABCG2 transporter shares the sequence and organizational structure with mammalian and molluscan orthologs. Overall identity of the predicted amino acid sequence with corresponding homologs from other organisms was between 49% and 98%. Moreover, protein efflux activity was demonstrated using a combination of fluorescent allocrites and specific inhibitors. The accumulation of bodipy prazosin and pheophorbide A was heterogeneous in gills and hemocytes. Most of the used blockers enhanced probe accumulation at different levels, most significantly for bodipy prazosin. Moreover, Mrp classical blocker MK571 showed a polyspecificity. In conclusion, our data demonstrate that several ABC transporters contribute to MXR phenotype in the blue mussel including ABCG2 that forms an active pump in hemocytes and gills. Efforts are needed to distinguish between the different members and to explore their single function and specificity towards allocrites and chemosensitizers. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. ABCG5 gene responses to treadmill running with or without administration of Pistachio atlantica in female rats

    PubMed Central

    Ghanbari-Niaki, Abbass; Zare-Kookandeh, Navabeh; Zare-Kookandeh, Asghar

    2014-01-01

    Objective(s): ABC transporters comprise a large family of transmembrane proteins that use the energy provided by ATP hydrolysis to translocate a variety of substrates across biological membranes. All members of the human ABCG subfamily, except for ABCG2, are cholesterol-transporter. The aim of this study was to determine the liver, the small intestine and kidney ABCG5 relative gene expression in response to treadmill-running training in female rats. Materials and Methods: Twenty Wistar rats (6-8 weeks old and 125-135 g weight) were used. Animals were randomly assigned to saline-control (SC), saline-training (ST), and Baneh-control (BC), and Baneh-training (BT) groups. Training groups did the exercise on a motor-driven treadmill at 25 m/min (0% grade) for 60 min/day for eight weeks (5 days/week). Rats were fed orally, with Baneh extraction and saline for six weeks. The two-way ANOVA was employed for statistical analysis. ABCG5 relative gene expression was detected by Real-time PCR method. Results: The current findings indicate that the Baneh-treated tissues had significantly lower levels of ABCG5 gene expression in the liver, small intestine, and kidneys (P< 0.001, P< 0.003, P< 0.001, respectively), when compared with saline-treated tissues. However, a higher level of gene expression was observed in exercise groups. A lower level of HDL-c but not triglyceride (TG) and total cholesterol (TC) levels were found in Baneh-treated animals at rest. Conclusion: Exercise training increases ABCG5 relative gene expression in the liver, small intestine and kidney tissues; therefore exercise training may adjust the reduction of ABCG5 relative gene expression in Baneh-training group. PMID:24847418

  13. Reduced Plasma HDL Cholesterol in Hyperthyroid Mice Coincides with Decreased Hepatic ABCA1 Expression

    PubMed Central

    TANCEVSKI, IVAN; WEHINGER, ANDREAS; DEMETZ, EGON; ELLER, PHILIPP; DUWENSEE, KRISTINA; HUBER, JULIA; HOCHEGGER, KATHRIN; SCHGOER, WILFRIED; FIEVET, CATHERINE; STELLAARD, FRANS; RUDLING, MATS; PATSCH, JOSEF R.; RITSCH, ANDREAS

    2010-01-01

    The aim of the study was to investigate the influence of severe hyperthyroidism on plasma high-density lipoprotein cholesterol (HDL-C). Recently, it was shown in mice that increasing doses of triiodothyronine (T3) upregulate hepatic expression of scavenger receptor-BI (SR-BI), resulting in increased clearance of plasma HDL-C. Here we show that severe hyperthyroidism in mice did not affect hepatic expression of SR-BI, but reduced hepatic expression of ATP-binding cassette transporter 1 (ABCA1), accompanied by a 40%-reduction of HDL-C. Sterol content of bile, liver and feces was markedly increased, accompanied by upregulation of hepatic CYP7A1, and ATP-binding cassette half-transporter ABCG5, which is known to promote biliary sterol secretion upon dimerization with ABCG8. Both control and hyperthyroid mice exerted identical plasma clearance of intravenously injected [3H] HDL-C, supporting the view that severe hyperthyroidism does not affect HDL-C clearance, but rather its formation via hepatic ABCA1. PMID:18388200

  14. Overexpression of AtABCG25 enhances the abscisic acid signal in guard cells and improves plant water use efficiency.

    PubMed

    Kuromori, Takashi; Fujita, Miki; Urano, Kaoru; Tanabata, Takanari; Sugimoto, Eriko; Shinozaki, Kazuo

    2016-10-01

    In addition to improving drought tolerance, improvement of water use efficiency is a major challenge in plant physiology. Due to their trade-off relationships, it is generally considered that achieving stress tolerance is incompatible with maintaining stable growth. Abscisic acid (ABA) is a key phytohormone that regulates the balance between intrinsic growth and environmental responses. Previously, we identified AtABCG25 as a cell-membrane ABA transporter that export ABA from the inside to the outside of cells. AtABCG25-overexpressing plants showed a lower transpiration phenotype without any growth retardation. Here, we dissected this useful trait using precise phenotyping approaches. AtABCG25 overexpression stimulated a local ABA response in guard cells. Furthermore, AtABCG25 overexpression enhanced drought tolerance, probably resulting from maintenance of water contents over the common threshold for survival after drought stress treatment. Finally, we observed enhanced water use efficiency by overexpression of AtABCG25, in addition to drought tolerance. These results were consistent with the function of AtABCG25 as an ABA efflux transporter. This unique trait may be generally useful for improving the water use efficiency and drought tolerance of plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Novel Apo E-Derived ABCA1 Agonist Peptide (CS-6253) Promotes Reverse Cholesterol Transport and Induces Formation of preβ-1 HDL In Vitro

    PubMed Central

    Hafiane, Anouar; Bielicki, John K.; Johansson, Jan O.; Genest, Jacques

    2015-01-01

    Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from the carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These mechanisms are

  16. Novel apo E-derived ABCA1 agonist peptide (CS-6253) promotes reverse cholesterol transport and induces formation of preβ-1 HDL in vitro

    DOE PAGES

    Hafiane, Anouar; Bielicki, John K.; Johansson, Jan O.; ...

    2015-07-24

    Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from themore » carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These mechanisms are

  17. Abcg2 expression marks tissue-specific stem cells in multiple organs in a mouse progeny tracking model.

    PubMed

    Fatima, Soghra; Zhou, Sheng; Sorrentino, Brian P

    2012-02-01

    The side population phenotype is associated with the Hoechst dye efflux activity of the Abcg2 transporter and identifies hematopoietic stem cells (HSCs) in the bone marrow. This association suggests the direct use of Abcg2 expression to identify adult stem cells in various other organs. We have generated a lineage tracing mouse model based on an allele that coexpresses both Abcg2 and a CreERT2 expression cassette. By crossing these mice with lox-STOP-lox reporter lines (LacZ or YFP), cells that express Abcg2 and their progeny were identified following treatment with tamoxifen (Tam). In the liver and kidney, in which mature cells express Abcg2, reporter gene expression verified the expected physiologic expression pattern of the recombinant allele. Long-term marking of HSCs was seen in multiple peripheral blood lineages from adult mice, demonstrating that Abcg2(+) bone marrow HSCs contribute to steady-state hematopoiesis. Stem cell tracing patterns were seen in the small intestine and in seminiferous tubules in the testis 20 months after Tam treatment, proving that stem cells from these organs express Abcg2. Interstitial cells from skeletal and cardiac muscle were labeled, and some cells were costained with endothelial markers, raising the possibility that these cells may function in the repair response to muscle injury. Altogether, these studies prove that Abcg2 is a stem cell marker for blood, small intestine, testicular germ cells, and possibly for injured skeletal and/or cardiac muscle and provide a new model for studying stem cell activity that does not require transplant-based assays. Copyright © 2011 AlphaMed Press.

  18. Genetic and Dietary Regulation of Glyburide Efflux by the Human Placental Breast Cancer Resistance Protein Transporter.

    PubMed

    Bircsak, Kristin M; Gupta, Vivek; Yuen, Poi Yu Sofia; Gorczyca, Ludwik; Weinberger, Barry I; Vetrano, Anna M; Aleksunes, Lauren M

    2016-04-01

    Glyburide is frequently used to treat gestational diabetes owing to its low fetal accumulation resulting from placental efflux by the breast cancer resistance protein (BCRP)/ABCG2 transporter. Here we sought to determine how exposure to the dietary phytoestrogen genistein and expression of a loss-of-function polymorphism in the ABCG2 gene (C421A) impacted the transport of glyburide by BCRP using stably transfected human embryonic kidney 293 (HEK) cells, human placental choriocarcinoma BeWo cells, and human placental explants. Genistein competitively inhibited the BCRP-mediated transport of (3)H-glyburide in both wild-type (WT) and C421A-BCRP HEK-expressing cells, with greater accumulation of (3)H-glyburide in cells expressing the C421A variant. In BeWo cells, exposure to genistein for 60 minutes increased the accumulation of (3)H-glyburide 30%-70% at concentrations relevant to dietary exposure (IC50 ∼180 nM). Continuous exposure of BeWo cells to genistein for 48 hours reduced the expression of BCRP mRNA and protein by up to 40%, which impaired BCRP transport activity. Pharmacologic antagonism of the estrogen receptor attenuated the genistein-mediated downregulation of BCRP expression, suggesting that phytoestrogens may reduce BCRP levels through this hormone receptor pathway in BeWo cells. Interestingly, genistein treatment for 48 hours did not alter BCRP protein expression in explants dissected from healthy term placentas. These data suggest that whereas genistein can act as a competitive inhibitor of BCRP-mediated transport, its ability to downregulate placental BCRP expression may only occur in choriocarcinoma cells. Overall, this research provides important mechanistic data regarding how the environment (dietary genistein) and a frequent genetic variant (ABCG2, C421A) may alter the maternal-fetal disposition of glyburide. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Genetic and Dietary Regulation of Glyburide Efflux by the Human Placental Breast Cancer Resistance Protein Transporter

    PubMed Central

    Bircsak, Kristin M.; Gupta, Vivek; Yuen, Poi Yu Sofia; Gorczyca, Ludwik; Weinberger, Barry I.; Vetrano, Anna M.

    2016-01-01

    Glyburide is frequently used to treat gestational diabetes owing to its low fetal accumulation resulting from placental efflux by the breast cancer resistance protein (BCRP)/ABCG2 transporter. Here we sought to determine how exposure to the dietary phytoestrogen genistein and expression of a loss-of-function polymorphism in the ABCG2 gene (C421A) impacted the transport of glyburide by BCRP using stably transfected human embryonic kidney 293 (HEK) cells, human placental choriocarcinoma BeWo cells, and human placental explants. Genistein competitively inhibited the BCRP-mediated transport of 3H-glyburide in both wild-type (WT) and C421A-BCRP HEK-expressing cells, with greater accumulation of 3H-glyburide in cells expressing the C421A variant. In BeWo cells, exposure to genistein for 60 minutes increased the accumulation of 3H-glyburide 30%–70% at concentrations relevant to dietary exposure (IC50 ∼180 nM). Continuous exposure of BeWo cells to genistein for 48 hours reduced the expression of BCRP mRNA and protein by up to 40%, which impaired BCRP transport activity. Pharmacologic antagonism of the estrogen receptor attenuated the genistein-mediated downregulation of BCRP expression, suggesting that phytoestrogens may reduce BCRP levels through this hormone receptor pathway in BeWo cells. Interestingly, genistein treatment for 48 hours did not alter BCRP protein expression in explants dissected from healthy term placentas. These data suggest that whereas genistein can act as a competitive inhibitor of BCRP-mediated transport, its ability to downregulate placental BCRP expression may only occur in choriocarcinoma cells. Overall, this research provides important mechanistic data regarding how the environment (dietary genistein) and a frequent genetic variant (ABCG2, C421A) may alter the maternal-fetal disposition of glyburide. PMID:26850786

  20. Prolonged Caloric Restriction in Obese Patients With Type 2 Diabetes Mellitus Decreases Plasma CETP and Increases Apolipoprotein AI Levels Without Improving the Cholesterol Efflux Properties of HDL

    PubMed Central

    Wang, Yanan; Snel, Marieke; Jonker, Jacqueline T.; Hammer, Sebastiaan; Lamb, Hildo J.; de Roos, Albert; Meinders, A. Edo; Pijl, Hanno; Romijn, Johannes A.; Smit, Johannes W.A.; Jazet, Ingrid M.; Rensen, Patrick C.N.

    2011-01-01

    OBJECTIVE Using a mouse model for human-like lipoprotein metabolism, we observed previously that reduction of the hepatic triglyceride (TG) content resulted in a decrease in plasma cholesteryl ester transfer protein (CETP) and an increase in HDL levels. The aim of the current study was to investigate the effects of prolonged caloric restriction in obese patients with type 2 diabetes mellitus, resulting in a major reduction in hepatic TG content, on plasma CETP and HDL levels. RESEARCH DESIGN AND METHODS We studied 27 obese (BMI: 37.2 ± 0.9 kg/m2) insulin-dependent patients with type 2 diabetes mellitus (14 men and 13 women, aged 55 ± 2 years) who received a 16-week very low calorie diet (VLCD). At baseline and after a 16-week VLCD, plasma lipids, lipoproteins, and CETP were measured. Furthermore, functionality of HDL with respect to inducing cholesterol efflux from human monocyte cells (THP-1) was determined. RESULTS A 16-week VLCD markedly decreased plasma CETP concentration (−18%; P < 0.01) and increased plasma apolipoprotein (apo)AI levels (+16%; P < 0.05), without significantly affecting plasma HDL-cholesterol and HDL-phospholipids. Although a VLCD results in HDL that is less lipidated, the functionality of HDL with respect to inducing cholesterol efflux in vitro was unchanged. CONCLUSIONS The marked decrease in hepatic TG content induced by a 16-week VLCD is accompanied by a decrease in plasma CETP concentration and an increase in apoAI levels, without improving the cholesterol efflux properties of HDL in vitro. PMID:21994427

  1. Structural Insights into the Niemann-Pick C1 (NPC1)-Mediated Cholesterol Transfer and Ebola Infection.

    PubMed

    Gong, Xin; Qian, Hongwu; Zhou, Xinhui; Wu, Jianping; Wan, Tao; Cao, Pingping; Huang, Weiyun; Zhao, Xin; Wang, Xudong; Wang, Peiyi; Shi, Yi; Gao, George F; Zhou, Qiang; Yan, Nieng

    2016-06-02

    Niemann-Pick disease type C (NPC) is associated with mutations in NPC1 and NPC2, whose gene products are key players in the endosomal/lysosomal egress of low-density lipoprotein-derived cholesterol. NPC1 is also the intracellular receptor for Ebola virus (EBOV). Here, we present a 4.4 Å structure of full-length human NPC1 and a low-resolution reconstruction of NPC1 in complex with the cleaved glycoprotein (GPcl) of EBOV, both determined by single-particle electron cryomicroscopy. NPC1 contains 13 transmembrane segments (TMs) and three distinct lumenal domains A (also designated NTD), C, and I. TMs 2-13 exhibit a typical resistance-nodulation-cell division fold, among which TMs 3-7 constitute the sterol-sensing domain conserved in several proteins involved in cholesterol metabolism and signaling. A trimeric EBOV-GPcl binds to one NPC1 monomer through the domain C. Our structural and biochemical characterizations provide an important framework for mechanistic understanding of NPC1-mediated intracellular cholesterol trafficking and Ebola virus infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. ABCA1 in adipocytes regulates adipose tissue lipid content, glucose tolerance, and insulin sensitivity.

    PubMed

    de Haan, Willeke; Bhattacharjee, Alpana; Ruddle, Piers; Kang, Martin H; Hayden, Michael R

    2014-03-01

    Adipose tissue contains one of the largest reservoirs of cholesterol in the body. Adipocyte dysfunction in obesity is associated with intracellular cholesterol accumulation, and alterations in cholesterol homeostasis have been shown to alter glucose metabolism in cultured adipocytes. ABCA1 plays a major role in cholesterol efflux, suggesting a role for ABCA1 in maintaining cholesterol homeostasis in the adipocyte. However, the impact of adipocyte ABCA1 on adipose tissue function and glucose metabolism is unknown. Our aim was to determine the impact of adipocyte ABCA1 on adipocyte lipid metabolism, body weight, and glucose metabolism in vivo. To address this, we used mice lacking ABCA1 specifically in adipocytes (ABCA1(-ad/-ad)). When fed a high-fat, high-cholesterol diet, ABCA1(-ad/-ad) mice showed increased cholesterol and triglyceride stores in adipose tissue, developed enlarged fat pads, and had increased body weight. Associated with these phenotypic changes, we observed significant changes in the expression of genes involved in cholesterol and glucose homeostasis, including ldlr, abcg1, glut-4, adiponectin, and leptin. ABCA1(-ad/-ad) mice also demonstrated impaired glucose tolerance, lower insulin sensitivity, and decreased insulin secretion. We conclude that ABCA1 in adipocytes influences adipocyte lipid metabolism, body weight, and whole-body glucose homeostasis.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M.

    Highlights: • Lipoprotein hydrolysis products were produced by lipoprotein lipase. • Hydrolysis products lowers expression of macrophage cholesterol transporters. • Hydrolysis products reduces expression of select nuclear receptors. • Fatty acid products lowers cholesterol transporters and select nuclear receptors. • Fatty acid products reduces cholesterol efflux from macrophages. - Abstract: Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To testmore » this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL.« less

  4. CC-Chemokine Ligand 2 (CCL2) Suppresses High Density Lipoprotein (HDL) Internalization and Cholesterol Efflux via CC-Chemokine Receptor 2 (CCR2) Induction and p42/44 Mitogen-activated Protein Kinase (MAPK) Activation in Human Endothelial Cells *

    PubMed Central

    Sun, Run-Lu; Huang, Can-Xia; Bao, Jin-Lan; Jiang, Jie-Yu; Zhang, Bo; Zhou, Shu-Xian; Cai, Wei-Bin; Wang, Hong; Wang, Jing-Feng; Zhang, Yu-Ling

    2016-01-01

    High density lipoprotein (HDL) has been proposed to be internalized and to promote reverse cholesterol transport in endothelial cells (ECs). However, the mechanism underlying these processes has not been studied. In this study, we aim to characterize HDL internalization and cholesterol efflux in ECs and regulatory mechanisms. We found mature HDL particles were reduced in patients with coronary artery disease (CAD), which was associated with an increase in CC-chemokine ligand 2 (CCL2). In cultured primary human coronary artery endothelial cells and human umbilical vein endothelial cells, we determined that CCL2 suppressed the binding (4 °C) and association (37 °C) of HDL to/with ECs and HDL cellular internalization. Furthermore, CCL2 inhibited [3H]cholesterol efflux to HDL/apoA1 in ECs. We further found that CCL2 induced CC-chemokine receptor 2 (CCR2) expression and siRNA-CCR2 reversed CCL2 suppression on HDL binding, association, internalization, and on cholesterol efflux in ECs. Moreover, CCL2 induced p42/44 mitogen-activated protein kinase (MAPK) phosphorylation via CCR2, and p42/44 MAPK inhibition reversed the suppression of CCL2 on HDL metabolism in ECs. Our study suggests that CCL2 was elevated in CAD patients. CCL2 suppressed HDL internalization and cholesterol efflux via CCR2 induction and p42/44 MAPK activation in ECs. CCL2 induction may contribute to impair HDL function and form atherosclerosis in CAD. PMID:27458015

  5. Effects of Rosuvastatin on the expression of the genes involved in cholesterol metabolism in rats: adaptive responses by extrahepatic tissues.

    PubMed

    Ahmadi, Yasin; Haghjoo, Amir Ghorbani; Dastmalchi, Siavoush; Nemati, Mahboob; Bargahi, Nasrin

    2018-06-30

    Statins mostly target the liver; therefore, increase in the synthesis of cholesterol by extra-hepatic tissues and then transferring this cholesterol to the liver can be regarded as adaptive responses by these tissues. In addition to cholesterol, these adaptive responses can increase isoprenoid units as the byproducts of the cholesterol biosynthesis pathway; isoprenoids play a key role in regulating cell signaling pathways and cancer development. Thus, there is a primary need for in vivo investigation of the effects of statins on the cholesterol metabolism in the extra-hepatic tissues. Eighteen male Sprague-Dawley rats were randomly divided into control (n = 9) and treatment (n = 9) groups. The treatment group was orally given 10 mg/kg/day of Rosuvastatin for 6 weeks. Then, serum lipid profile, expression levels of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), ABCA1, ABCG1 and ApoA1, and activity of HMGCR were measured in the liver, intestine and adipose tissues. Rosuvastatin significantly reduced total cholesterol and LDL-C. The expression levels of ABCA1, ABCG1, and ApoA1 in the liver and HMGCR in both liver and intestine were significantly increased in the Rosuvastatin treated-group. However, in the intestine, there were no significant differences in the expression levels of ABCA1 and ABCG1 between the study groups. Rosuvastatin had no effect on the adipose tissue. The HMGCR activity was significantly increased in the liver and intestine of the Rosuvastatin-treated group. In spite of the adipose tissue, the intestine efficiently responses to the reduced levels of cholesterol and increases its cholesterogenesis capacity. However, adipose tissue seems to play a small role in correcting cholesterol deficiency during the course of statin therapy. Copyright © 2018. Published by Elsevier B.V.

  6. δ-Tocopherol Reduces Lipid Accumulation in Niemann-Pick Type C1 and Wolman Cholesterol Storage Disorders*

    PubMed Central

    Xu, Miao; Liu, Ke; Swaroop, Manju; Porter, Forbes D.; Sidhu, Rohini; Finkes, Sally; Ory, Daniel S.; Marugan, Juan J.; Xiao, Jingbo; Southall, Noel; Pavan, William J.; Davidson, Cristin; Walkley, Steven U.; Remaley, Alan T.; Baxa, Ulrich; Sun, Wei; McKew, John C.; Austin, Christopher P.; Zheng, Wei

    2012-01-01

    Niemann-Pick disease type C (NPC) and Wolman disease are two members of a family of storage disorders caused by mutations of genes encoding lysosomal proteins. Deficiency in function of either the NPC1 or NPC2 protein in NPC disease or lysosomal acid lipase in Wolman disease results in defective cellular cholesterol trafficking. Lysosomal accumulation of cholesterol and enlarged lysosomes are shared phenotypic characteristics of both NPC and Wolman cells. Utilizing a phenotypic screen of an approved drug collection, we found that δ-tocopherol effectively reduced lysosomal cholesterol accumulation, decreased lysosomal volume, increased cholesterol efflux, and alleviated pathological phenotypes in both NPC1 and Wolman fibroblasts. Reduction of these abnormalities may be mediated by a δ-tocopherol-induced intracellular Ca2+ response and subsequent enhancement of lysosomal exocytosis. Consistent with a general mechanism for reduction of lysosomal lipid accumulation, we also found that δ-tocopherol reduces pathological phenotypes in patient fibroblasts from other lysosomal storage diseases, including NPC2, Batten (ceroid lipofuscinosis, neuronal 2, CLN2), Fabry, Farber, Niemann-Pick disease type A, Sanfilippo type B (mucopolysaccharidosis type IIIB, MPSIIIB), and Tay-Sachs. Our data suggest that regulated exocytosis may represent a potential therapeutic target for reduction of lysosomal storage in this class of diseases. PMID:23035117

  7. Chlordecone altered hepatic disposition of [14C]cholesterol and plasma cholesterol distribution but not SR-BI or ABCG8 proteins in livers of C57BL/6 mice.

    PubMed

    Lee, Junga; Scheri, Richard C; Curtis, Lawrence R

    2008-06-15

    Organochlorine (OC) insecticides continue to occur in tissues of humans and wildlife throughout the world although they were banned in the United States a few decades ago. Low doses of the OC insecticide chlordecone (CD) alter hepatic disposition of lipophilic xenobiotics and perturb lipid homeostasis in rainbow trout, mice and rats. CD pretreatment altered tissue and hepatic subcellular distribution of exogenous [(14)C]cholesterol (CH) equivalents 4 and 16 h after a bolus intraperitoneal (ip) injection of 5 ml corn oil/kg that contained 10 mg CH/kg. CD pretreatment altered tissue distribution of exogenously administered [(14)C]CH by decreased hepatic and renal accumulation, and increased biliary excretion up to 300%. Biliary excretion of polar [(14)C]CH metabolites was not altered by CD. CD pretreatment decreased subcellular distribution of [(14)C]CH equivalents in hepatic cytosol and microsomes and lipoprotein-rich fraction-to-homogenate ratio. CD pretreatment increased the ratio of [(14)C]CH equivalents in high density lipoprotein (HDL) to that in plasma and reduced [(14)C]CH equivalents in the non-HDL fraction 4 h after a bolus lipid dose. CD pretreatment increased plasma non-HDL total CH by 80% 4 h after a bolus lipid dose. Scavenger receptor class B type I (SR-BI) and ATP-binding cassette transporter G8 (ABCG8) proteins were quantified by western blotting in hepatic membranes from control and CD treated mice. Liver membrane contents of SR-BI and ABCG8 proteins were unchanged by CD pretreatment. The data demonstrated that a single dose of CD altered CH homeostasis and lipoprotein metabolism.

  8. Efflux pump-mediated benzalkonium chloride resistance in Listeria monocytogenes isolated from retail food.

    PubMed

    Jiang, Xiaobing; Yu, Tao; Liang, Yu; Ji, Shengdong; Guo, Xiaowei; Ma, Jianmin; Zhou, Lijun

    2016-01-18

    In this study, efflux pump-mediated benzalkonium chloride (BC) resistance, including plasmid-encoded (Qac protein family and BcrABC) and chromosome-borne efflux pumps, was investigated in Listeria monocytogenes from retail food in China. Among the 59 L. monocytogenes strains, 13 (22.0%) strains were resistant to BC. The PCR results showed that bcrABC was harbored by 2 of 13 BC resistant strains. However, none of the qac genes were detected among the 59 strains. The bcrABC was absent in both of the plasmid cured strains, indicating that this BC resistance determinant was plasmid-encoded in the two bcrABC-positive strains. In the presence of reserpine, most of the bcrABC-negative strains had decreases in the MICs of BC, suggesting the existence of other efflux pumps and their role in BC resistance. After exposed to reserpine, the reduction in BC MICs was observed in the two cured strains, indicating that efflux pumps located on chromosome was also involved in BC resistance. Our findings suggest that food products may act as reservoirs for BC resistant isolates of L. monocytogenes and plasmid- and chromosome-encoded efflux pumps could mediate the BC resistance of L. monocytogenes, which is especially relevant to the adaption of this organism in food-related environments with frequent BC use. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Reduction of VLDL secretion decreases cholesterol excretion in niemann-pick C1-like 1 hepatic transgenic mice.

    PubMed

    Marshall, Stephanie M; Kelley, Kathryn L; Davis, Matthew A; Wilson, Martha D; McDaniel, Allison L; Lee, Richard G; Crooke, Rosanne M; Graham, Mark J; Rudel, Lawrence L; Brown, J Mark; Temel, Ryan E

    2014-01-01

    An effective way to reduce LDL cholesterol, the primary risk factor of atherosclerotic cardiovascular disease, is to increase cholesterol excretion from the body. Our group and others have recently found that cholesterol excretion can be facilitated by both hepatobiliary and transintestinal pathways. However, the lipoprotein that moves cholesterol through the plasma to the small intestine for transintestinal cholesterol efflux (TICE) is unknown. To test the hypothesis that hepatic very low-density lipoproteins (VLDL) support TICE, antisense oligonucleotides (ASO) were used to knockdown hepatic expression of microsomal triglyceride transfer protein (MTP), which is necessary for VLDL assembly. While maintained on a high cholesterol diet, Niemann-Pick C1-like 1 hepatic transgenic (L1Tg) mice, which predominantly excrete cholesterol via TICE, and wild type (WT) littermates were treated with control ASO or MTP ASO. In both WT and L1Tg mice, MTP ASO decreased VLDL triglyceride (TG) and cholesterol secretion. Regardless of treatment, L1Tg mice had reduced biliary cholesterol compared to WT mice. However, only L1Tg mice treated with MTP ASO had reduced fecal cholesterol excretion. Based upon these findings, we conclude that VLDL or a byproduct such as LDL can move cholesterol from the liver to the small intestine for TICE.

  10. A new HDL mimetic peptide that stimulates cellular cholesterol efflux with high efficiency greatly reduces atherosclerosis in mice

    PubMed Central

    Bielicki, John K.; Zhang, Haiyan; Cortez, Yuan; Zheng, Ying; Narayanaswami, Vasanthy; Patel, Arti; Johansson, Jan; Azhar, Salman

    2010-01-01

    Here, we report the creation of a single-helix peptide (ATI-5261) that stimulates cellular cholesterol efflux with Km molar efficiency approximating native apolipoproteins. Anti-atherosclerosis activity of ATI-5261 was evaluated in LDLR−/− and apolipoprotein (apo)E−/− mice ∼5–7 months of age, following 13–18 weeks on a high-fat Western diet (HFWD). Treatment of fat-fed LDLR−/− mice with daily intraperitoneal injections of ATI-5261 (30 mg/kg) for 6 weeks reduced atherosclerosis by 30%, as judged by lesion area covering the aorta (7.9 ± 2 vs.11.3 ± 2.5% control, P = 0.011) and lipid-content of aortic sinus plaque (25 ± 5.8 vs. 33 ± 4.9% control, P = 0.014). In apoE−/− mice, the peptide administered 30 mg/kg ip on alternate days for 6 weeks reduced atherosclerosis by ∼45% (lesion area = 15 ± 7 vs. 25 ± 8% control, P = 0.00016; plaque lipid-content = 20 ± 6 vs. 32 ± 8% control, P < 0.0001). Similar reductions in atherosclerosis were achieved using ATI-5261:POPC complexes. Single intraperitoneal injection of ATI-5261 increased reverse cholesterol transport from macrophage foam-cells to feces over 24–48 h. In summary, relatively short-term treatment of mice with the potent cholesterol efflux peptide ATI-5261 reduced substantial atherosclerosis. This was achieved using an L-amino acid peptide, in the presence of severe hypercholesterolemia/HFWD, and did not require daily injections or formulation with phospholipids when administered via intraperitoneal injection. PMID:20075422

  11. CC-Chemokine Ligand 2 (CCL2) Suppresses High Density Lipoprotein (HDL) Internalization and Cholesterol Efflux via CC-Chemokine Receptor 2 (CCR2) Induction and p42/44 Mitogen-activated Protein Kinase (MAPK) Activation in Human Endothelial Cells.

    PubMed

    Sun, Run-Lu; Huang, Can-Xia; Bao, Jin-Lan; Jiang, Jie-Yu; Zhang, Bo; Zhou, Shu-Xian; Cai, Wei-Bin; Wang, Hong; Wang, Jing-Feng; Zhang, Yu-Ling

    2016-09-09

    High density lipoprotein (HDL) has been proposed to be internalized and to promote reverse cholesterol transport in endothelial cells (ECs). However, the mechanism underlying these processes has not been studied. In this study, we aim to characterize HDL internalization and cholesterol efflux in ECs and regulatory mechanisms. We found mature HDL particles were reduced in patients with coronary artery disease (CAD), which was associated with an increase in CC-chemokine ligand 2 (CCL2). In cultured primary human coronary artery endothelial cells and human umbilical vein endothelial cells, we determined that CCL2 suppressed the binding (4 °C) and association (37 °C) of HDL to/with ECs and HDL cellular internalization. Furthermore, CCL2 inhibited [(3)H]cholesterol efflux to HDL/apoA1 in ECs. We further found that CCL2 induced CC-chemokine receptor 2 (CCR2) expression and siRNA-CCR2 reversed CCL2 suppression on HDL binding, association, internalization, and on cholesterol efflux in ECs. Moreover, CCL2 induced p42/44 mitogen-activated protein kinase (MAPK) phosphorylation via CCR2, and p42/44 MAPK inhibition reversed the suppression of CCL2 on HDL metabolism in ECs. Our study suggests that CCL2 was elevated in CAD patients. CCL2 suppressed HDL internalization and cholesterol efflux via CCR2 induction and p42/44 MAPK activation in ECs. CCL2 induction may contribute to impair HDL function and form atherosclerosis in CAD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Masitinib antagonizes ATP-binding cassette subfamily G member 2-mediated multidrug resistance

    PubMed Central

    KATHAWALA, RISHIL J.; CHEN, JUN-JIANG; ZHANG, YUN-KAI; WANG, YI-JUN; PATEL, ATISH; WANG, DE-SHEN; TALELE, TANAJI T.; ASHBY, CHARLES R.; CHEN, ZHE-SHENG

    2014-01-01

    In this in vitro study, we determined whether masitinib could reverse multidrug resistance (MDR) in cells overexpressing the ATP binding cassette subfamily G member 2 (ABCG2) transporter. Masitinib (1.25 and 2.5 μM) significantly decreases the resistance to mitoxantrone (MX), SN38 and doxorubicin in HEK293 and H460 cells overexpressing the ABCG2 transporter. In addition, masitinib (2.5 μM) significantly increased the intracellular accumulation of [3H]-MX, a substrate for ABCG2, by inhibiting the function of ABCG2 and significantly decreased the efflux of [3H]-MX. However, masitinib (2.5 μM) did not significantly alter the expression of the ABCG2 protein. In addition, a docking model suggested that masitinib binds within the transmembrane region of a homology-modeled human ABCG2 transporter. Overall, our in vitro findings suggest that masitinib reverses MDR to various anti-neoplastic drugs in HEK293 and H460 cells overexpressing ABCG2 by inhibiting their transport activity as opposed to altering their levels of expression. PMID:24626598

  13. Jump into a New Fold—A Homology Based Model for the ABCG2/BCRP Multidrug Transporter

    PubMed Central

    László, Laura; Sarkadi, Balázs

    2016-01-01

    ABCG2/BCRP is a membrane protein, involved in xenobiotic and endobiotic transport in key pharmacological barriers and drug metabolizing organs, in the protection of stem cells, and in multidrug resistance of cancer. Pharmacogenetic studies implicated the role of ABCG2 in response to widely used medicines and anticancer agents, as well as in gout. Its Q141K variant exhibits decreased functional expression thus increased drug accumulation and decreased urate secretion. Still, there has been no reliable molecular model available for this protein, as the published structures of other ABC transporters could not be properly fitted to the ABCG2 topology and experimental data. The recently published high resolution structure of a close homologue, the ABCG5-ABCG8 heterodimer, revealed a new ABC transporter fold, unique for ABCG proteins. Here we present a structural model of the ABCG2 homodimer based on this fold and detail the experimental results supporting this model. In order to describe the effect of mutations on structure and dynamics, and characterize substrate recognition and cholesterol regulation we performed molecular dynamics simulations using full length ABCG2 protein embedded in a membrane bilayer and in silico docking simulations. Our results show that in the Q141K variant the introduced positive charge diminishes the interaction between the nucleotide binding and transmembrane domains and the R482G variation alters the orientation of transmembrane helices. Moreover, the R482 position, which plays a role the substrate specificity of the transporter, is located in one of the substrate binding pockets identified by the in silico docking calculations. In summary, the ABCG2 model and in silico simulations presented here may have significant impact on understanding drug distribution and toxicity, as well as drug development against cancer chemotherapy resistance or gout. PMID:27741279

  14. Chlordecone Altered Hepatic Disposition of [14C]Cholesterol and Plasma Cholesterol Distribution but not SR-BI or ABCG8 Proteins in Livers of C57BL/6 Mice

    PubMed Central

    Lee, Junga; Scheri, Richard C.; Curtis, Lawrence R.

    2011-01-01

    Organochlorine (OC) insecticides continue to occur in tissues of humans and wildlife throughout the world although they were banned in the United States a few decades ago. Low doses of the OC insecticide chlordecone (CD) alter hepatic disposition of lipophilic xenobiotics and perturb lipid homeostasis in rainbow trout, mice and rats. CD pretreatment altered tissue and hepatic subcellular distribution of exogenous [14C]cholesterol (CH) equivalents 4 and 16 h after a bolus intraperitoneal (ip) injection of 5 ml corn oil/kg that contained 10 mg CH/kg. CD pretreatment altered tissue distribution of exogenously administered [14C]CH by decreased hepatic and renal accumulation, and increased biliary excretion up to 300%. Biliary excretion of polar [14C]CH metabolites was not altered by CD. CD pretreatment decreased subcellular distribution of [14C]CH equivalents in hepatic cytosol and microsomes and lipoprotein-rich fraction-to-homogenate ratio. CD pretreatment increased the ratio of [14C]CH equivalents in high density lipoprotein (HDL) to that in plasma and reduced [14C]CH equivalents in the non-HDL fraction 4 h after a bolus lipid dose. CD pretreatment increased plasma non-HDL total CH by 80% 4 h after a bolus lipid dose. Scavenger receptor class B type I (SR-BI) and ATPbinding cassette transporter G8 (ABCG8) proteins were quantified by western blotting in hepatic membranes from control and CD treated mice. Liver membrane contents of SR-BI and ABCG8 proteins were unchanged by CD pretreatment. The data demonstrated that a single dose of CD altered CH homeostasis and lipoprotein metabolism. PMID:18387646

  15. ABCA1 in adipocytes regulates adipose tissue lipid content, glucose tolerance, and insulin sensitivity[S

    PubMed Central

    de Haan, Willeke; Bhattacharjee, Alpana; Ruddle, Piers; Kang, Martin H.; Hayden, Michael R.

    2014-01-01

    Adipose tissue contains one of the largest reservoirs of cholesterol in the body. Adipocyte dysfunction in obesity is associated with intracellular cholesterol accumulation, and alterations in cholesterol homeostasis have been shown to alter glucose metabolism in cultured adipocytes. ABCA1 plays a major role in cholesterol efflux, suggesting a role for ABCA1 in maintaining cholesterol homeostasis in the adipocyte. However, the impact of adipocyte ABCA1 on adipose tissue function and glucose metabolism is unknown. Our aim was to determine the impact of adipocyte ABCA1 on adipocyte lipid metabolism, body weight, and glucose metabolism in vivo. To address this, we used mice lacking ABCA1 specifically in adipocytes (ABCA1−ad/−ad). When fed a high-fat, high-cholesterol diet, ABCA1−ad/−ad mice showed increased cholesterol and triglyceride stores in adipose tissue, developed enlarged fat pads, and had increased body weight. Associated with these phenotypic changes, we observed significant changes in the expression of genes involved in cholesterol and glucose homeostasis, including ldlr, abcg1, glut-4, adiponectin, and leptin. ABCA1−ad/−ad mice also demonstrated impaired glucose tolerance, lower insulin sensitivity, and decreased insulin secretion. We conclude that ABCA1 in adipocytes influences adipocyte lipid metabolism, body weight, and whole-body glucose homeostasis. PMID:24443560

  16. Disruption of astrocyte-neuron cholesterol cross talk affects neuronal function in Huntington's disease.

    PubMed

    Valenza, M; Marullo, M; Di Paolo, E; Cesana, E; Zuccato, C; Biella, G; Cattaneo, E

    2015-04-01

    In the adult brain, neurons require local cholesterol production, which is supplied by astrocytes through apoE-containing lipoproteins. In Huntington's disease (HD), such cholesterol biosynthesis in the brain is severely reduced. Here we show that this defect, occurring in astrocytes, is detrimental for HD neurons. Astrocytes bearing the huntingtin protein containing increasing CAG repeats secreted less apoE-lipoprotein-bound cholesterol in the medium. Conditioned media from HD astrocytes and lipoprotein-depleted conditioned media from wild-type (wt) astrocytes were equally detrimental in a neurite outgrowth assay and did not support synaptic activity in HD neurons, compared with conditions of cholesterol supplementation or conditioned media from wt astrocytes. Molecular perturbation of cholesterol biosynthesis and efflux in astrocytes caused similarly altered astrocyte-neuron cross talk, whereas enhancement of glial SREBP2 and ABCA1 function reversed the aspects of neuronal dysfunction in HD. These findings indicate that astrocyte-mediated cholesterol homeostasis could be a potential therapeutic target to ameliorate neuronal dysfunction in HD.

  17. Euterpe oleracea Mart.-Derived Polyphenols Protect Mice from Diet-Induced Obesity and Fatty Liver by Regulating Hepatic Lipogenesis and Cholesterol Excretion.

    PubMed

    de Oliveira, Paola Raquel B; da Costa, Cristiane A; de Bem, Graziele F; Cordeiro, Viviane S C; Santos, Izabelle B; de Carvalho, Lenize C R M; da Conceição, Ellen Paula S; Lisboa, Patrícia Cristina; Ognibene, Dayane T; Sousa, Pergentino José C; Martins, Gabriel R; da Silva, Antônio Jorge R; de Moura, Roberto S; Resende, Angela C

    2015-01-01

    The aim of this study was to investigate the effect of a polyphenol-rich Açaí seed extract (ASE, 300 mg/kg-1d-1) on adiposity and hepatic steatosis in mice that were fed a high-fat (HF) diet and its underlying mechanisms based on hepatic lipid metabolism and oxidative stress. Four groups were studied: C57BL/6 mice that were fed with standard diet (10% fat, Control), 10% fat + ASE (ASE), 60% fat (HF), and 60% fat + ASE (HF + ASE) for 12 weeks. We evaluated the food intake, body weight gain, serum glucose and lipid profile, hepatic cholesterol and triacyglycerol (TG), hepatic expression of pAMPK, lipogenic proteins (SREBP-1c, pACC, ACC, HMG-CoA reductase) and cholesterol excretion transporters, ABCG5 and ABCG8. We also evaluated the steatosis in liver sections and oxidative stress. ASE reduced body weight gain, food intake, glucose levels, accumulation of cholesterol and TG in the liver, which was associated with a reduction of hepatic steatosis. The increased expressions of SREBP-1c and HMG-CoA reductase and reduced expressions of pAMPK and pACC/ACC in HF group were antagonized by ASE. The ABCG5 and ABCG8 transporters expressions were increased by the extract. The antioxidant effect of ASE was demonstrated in liver of HF mice by restoration of SOD, CAT and GPx activities and reduction of the increased levels of malondialdehyde and protein carbonylation. In conclusion, ASE substantially reduced the obesity and hepatic steatosis induced by HF diet by reducing lipogenesis, increasing cholesterol excretion and improving oxidative stress in the liver, providing a nutritional resource for prevention of obesity-related adiposity and hepatic steatosis.

  18. Euterpe oleracea Mart.-Derived Polyphenols Protect Mice from Diet-Induced Obesity and Fatty Liver by Regulating Hepatic Lipogenesis and Cholesterol Excretion

    PubMed Central

    de Bem, Graziele F.; Cordeiro, Viviane S. C.; Santos, Izabelle B.; de Carvalho, Lenize C. R. M.; da Conceição, Ellen Paula S.; Lisboa, Patrícia Cristina; Ognibene, Dayane T.; Sousa, Pergentino José C.; Martins, Gabriel R.; da Silva, Antônio Jorge R.; de Moura, Roberto S.; Resende, Angela C.

    2015-01-01

    The aim of this study was to investigate the effect of a polyphenol-rich Açaí seed extract (ASE, 300 mg/kg-1d-1) on adiposity and hepatic steatosis in mice that were fed a high-fat (HF) diet and its underlying mechanisms based on hepatic lipid metabolism and oxidative stress. Four groups were studied: C57BL/6 mice that were fed with standard diet (10% fat, Control), 10% fat + ASE (ASE), 60% fat (HF), and 60% fat + ASE (HF + ASE) for 12 weeks. We evaluated the food intake, body weight gain, serum glucose and lipid profile, hepatic cholesterol and triacyglycerol (TG), hepatic expression of pAMPK, lipogenic proteins (SREBP-1c, pACC, ACC, HMG-CoA reductase) and cholesterol excretion transporters, ABCG5 and ABCG8. We also evaluated the steatosis in liver sections and oxidative stress. ASE reduced body weight gain, food intake, glucose levels, accumulation of cholesterol and TG in the liver, which was associated with a reduction of hepatic steatosis. The increased expressions of SREBP-1c and HMG-CoA reductase and reduced expressions of pAMPK and pACC/ACC in HF group were antagonized by ASE. The ABCG5 and ABCG8 transporters expressions were increased by the extract. The antioxidant effect of ASE was demonstrated in liver of HF mice by restoration of SOD, CAT and GPx activities and reduction of the increased levels of malondialdehyde and protein carbonylation. In conclusion, ASE substantially reduced the obesity and hepatic steatosis induced by HF diet by reducing lipogenesis, increasing cholesterol excretion and improving oxidative stress in the liver, providing a nutritional resource for prevention of obesity-related adiposity and hepatic steatosis. PMID:26630290

  19. Remnant cholesterol, low-density lipoprotein cholesterol, and blood pressure as mediators from obesity to ischemic heart disease.

    PubMed

    Varbo, Anette; Benn, Marianne; Smith, George Davey; Timpson, Nicholas J; Tybjaerg-Hansen, Anne; Nordestgaard, Børge G

    2015-02-13

    Obesity leads to increased ischemic heart disease (IHD) risk, but the risk is thought to be mediated through intermediate variables and may not be caused by increased weight per se. To test the hypothesis that the increased IHD risk because of obesity is mediated through lipoproteins, blood pressure, glucose, and C-reactive protein. Approximately 90 000 participants from Copenhagen were included in a Mendelian randomization design with mediation analyses. Associations were examined using conventional measurements of body mass index and intermediate variables and using genetic variants associated with these. During ≤22 years of follow-up 13 945 participants developed IHD. The increased IHD risk caused by obesity was partly mediated through elevated levels of nonfasting remnant cholesterol and low-density lipoprotein cholesterol, through elevated blood pressure, and possibly also through elevated nonfasting glucose levels; however, reduced high-density lipoprotein cholesterol and elevated C-reactive protein levels were not mediators in genetic analyses. The 3 intermediate variables that explained the highest excess risk of IHD from genetically determined obesity were low-density lipoprotein cholesterol with 8%, systolic blood pressure with 7%, and remnant cholesterol with 7% excess risk of IHD. Corresponding observational excess risks using conventional body mass index were 21%, 11%, and 20%, respectively. The increased IHD risk because of obesity was partly mediated through elevated levels of nonfasting remnant and low-density lipoprotein cholesterol and through elevated blood pressure. Our results suggest that there may be benefit to gain by reducing levels of these risk factors in obese individuals not able to achieve sustained weight loss. © 2014 American Heart Association, Inc.

  20. APOC3 Loss-of-Function Mutations, Remnant Cholesterol, Low-Density Lipoprotein Cholesterol, and Cardiovascular Risk: Mediation- and Meta-Analyses of 137 895 Individuals.

    PubMed

    Wulff, Anders B; Nordestgaard, Børge G; Tybjærg-Hansen, Anne

    2018-03-01

    Loss-of-function mutations in APOC3 associate with low remnant cholesterol levels and low risk of ischemic vascular disease (IVD). Because some studies show an additional association with low levels of low-density lipoprotein cholesterol (LDL-C), low LDL-C may explain the low risk of IVD in APOC3 loss-of-function heterozygotes. We tested to what extent the low risk of IVD in APOC3 loss-of-function heterozygotes is mediated by low plasma remnant cholesterol and LDL-C. In APOC3 loss-of-function heterozygotes versus noncarriers, we first determined remnant cholesterol and LDL-C levels in meta-analyses of 137 895 individuals. Second, we determined whether the association with LDL-C was masked by lipid-lowering therapy. Finally, using mediation analysis, we determined the fraction of the low risk of IVD and ischemic heart disease mediated by remnant cholesterol and LDL-C. In meta-analyses, remnant cholesterol was 43% lower (95% confidence interval, 40%-47%), and LDL-C was 4% lower (1%-6%) in loss-of-function heterozygotes (n=776) versus noncarriers. In the general population, LDL-C was 3% lower in loss-of-function heterozygotes versus noncarriers, 4% lower when correcting for lipid-lowering therapy, and 3% lower in untreated individuals ( P values, 0.06-0.008). Remnant cholesterol mediated 37% of the observed 41% lower risk of IVD and 54% of the observed 36% lower risk of ischemic heart disease; corresponding values mediated by LDL-C were 1% and 2%. The low risk of IVD observed in APOC3 loss-of-function heterozygotes is mainly mediated by the associated low remnant cholesterol and not by low LDL-C. Furthermore, the contribution of LDL-C to IVD risk was not masked by lipid-lowering therapy. This suggests APOC3 and remnant cholesterol as important new targets for reducing cardiovascular risk. © 2018 American Heart Association, Inc.

  1. The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria

    PubMed Central

    Plésiat, Patrick

    2015-01-01

    SUMMARY The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps. PMID:25788514

  2. The Role of Arabidopsis ABCG9 and ABCG31 ATP Binding Cassette Transporters in Pollen Fitness and the Deposition of Steryl Glycosides on the Pollen Coat[W

    PubMed Central

    Choi, Hyunju; Ohyama, Kiyoshi; Kim, Yu-Young; Jin, Jun-Young; Lee, Saet Buyl; Yamaoka, Yasuyo; Muranaka, Toshiya; Suh, Mi Chung; Fujioka, Shozo; Lee, Youngsook

    2014-01-01

    The pollen coat protects pollen grains from harmful environmental stresses such as drought and cold. Many compounds in the pollen coat are synthesized in the tapetum. However, the pathway by which they are transferred to the pollen surface remains obscure. We found that two Arabidopsis thaliana ATP binding cassette transporters, ABCG9 and ABCG31, were highly expressed in the tapetum and are involved in pollen coat deposition. Upon exposure to dry air, many abcg9 abcg31 pollen grains shriveled up and collapsed, and this phenotype was restored by complementation with ABCG9pro:GFP:ABCG9. GFP-tagged ABCG9 or ABCG31 localized to the plasma membrane. Electron microscopy revealed that the mutant pollen coat resembled the immature coat of the wild type, which contained many electron-lucent structures. Steryl glycosides were reduced to about half of wild-type levels in the abcg9 abcg31 pollen, but no differences in free sterols or steryl esters were observed. A mutant deficient in steryl glycoside biosynthesis, ugt80A2 ugt80B1, exhibited a similar phenotype. Together, these results indicate that steryl glycosides are critical for pollen fitness, by supporting pollen coat maturation, and that ABCG9 and ABCG31 contribute to the accumulation of this sterol on the surface of pollen. PMID:24474628

  3. Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux.

    PubMed

    Ligaba, Ayalew; Maron, Lyza; Shaff, Jon; Kochian, Leon; Piñeros, Miguel

    2012-07-01

    Root efflux of organic acid anions underlies a major mechanism of plant aluminium (Al) tolerance on acid soils. This efflux is mediated by transporters of the Al-activated malate transporter (ALMT) or the multi-drug and toxin extrusion (MATE) families. ZmALMT2 was previously suggested to be involved in Al tolerance based on joint association-linkage mapping for maize Al tolerance. In the current study, we functionally characterized ZmALMT2 by heterologously expressing it in Xenopus laevis oocytes and transgenic Arabidopsis. In oocytes, ZmALMT2 mediated an Al-independent electrogenic transport product of organic and inorganic anion efflux. Ectopic overexpression of ZmALMT2 in an Al-hypersensitive Arabidopsis KO/KD line lacking the Al tolerance genes, AtALMT1 and AtMATE, resulted in Al-independent constitutive root malate efflux which partially restored the Al tolerance phenotype. The lack of correlation between ZmALMT2 expression and Al tolerance (e.g., expression not localized to the root tip, not up-regulated by Al, and higher in sensitive versus tolerance maize lines) also led us to question ZmALMT2's role in Al tolerance. The functional properties of the ZmALMT2 transporter presented here, along with the gene expression data, suggest that ZmALMT2 is not involved in maize Al tolerance but, rather, may play a role in mineral nutrient acquisition and transport. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  4. Cyanidin-3-O-β-glucoside inhibits lipopolysaccharide-induced inflammatory response in mouse mastitis model

    PubMed Central

    Fu, Yunhe; Wei, Zhengkai; Zhou, Ershun; Zhang, Naisheng; Yang, Zhengtao

    2014-01-01

    Cyanidin-3-O-β-glucoside (C3G) (CAS number 7084-24-4), a typical anthocyanin pigment that exists in the human diet, has been reported to have anti-inflammatory properties. However, the effect of C3G on lipopolysaccharide (LPS)-induced mastitis and the molecular mechanisms have not been investigated. In this study, we detected the protective effects of C3G on a LPS-induced mouse mastitis model and investigated the molecular mechanisms in LPS-stimulated mouse mammary epithelial cells (MMECs). Our results showed that C3G could attenuate mammary histopathologic changes and myeloperoxidase activity, and inhibit TNF-α, interleukin (IL)-1β, and IL-6 production caused by LPS. Meanwhile, C3G dose-dependently inhibited TNF-α and IL-6 in LPS-stimulated MMECs. C3G suppressed LPS-induced nuclear factor-κB (NF-κB) and interferon regulatory factor 3 (IRF3) activation. Furthermore, C3G disrupted the formation of lipid rafts by depleting cholesterol. Moreover, C3G activated liver X receptor (LXR)-ABCG1-dependent cholesterol efflux. Knockdown of LXRα abrogated the anti-inflammatory effects of C3G. In conclusion, C3G has a protective effect on LPS-induced mastitis. The promising anti-inflammatory mechanisms of C3G are associated with upregulation of the LXRα-ABCG1 pathway which result in disrupting lipid rafts by depleting cholesterol, thereby suppressing toll-like receptor 4-mediated NF-κB and IRF3 signaling pathways induced by LPS. PMID:24752550

  5. [The Prevalence of Metallo-β-Lactamases and Efflux-Mediated Mechanisms in Carbapenem Nonsusceptible Nosocomial Pseudomonas aeruginosa Isolated in Moscow in 2012-2015].

    PubMed

    2015-01-01

    Pseudomonas aeruginosa, the major nosocomial opportunistic pathogen, is an important cause of infectious morbidity and mortality among immunocompromised patients. To establish the role of metallo-β-lactamases (MBL) and efflux-mediated mechanisms in confer- ring carbapenem resistance in nosocomial isolates of P. aeruginosa. We analyzed carbapenem nonsusceptible nosocomial P. aeruginosa isolates obtained from pediatric and adult patients at three hospitals in Moscow in 2012-2015. Carbapenem susceptibility was assessed using the E-test. In addition, minimal inhibitory concentrations (MICs) of meropenem were tested by the broth microdilution method. The presence of MBL was determined using the ED TA-mediated suppression test. Efflux-dependent resistance was measured using an assay based on MIC modification by an ionophore carbonyl cyanide 3-chlorophenyl hydrazine (CCCP). A total of 54 carbapenem nonsusceptible P. aeruginosa isolates was examined. The presence of an MBL was detected in 37 (69%) isolates, 29 (54%) isolates had efflux-mediated resistance. In 10 (19%) isolates neither MBL nor efflux activity was found. Five out of 6 isolates (83%) with highly active efflux were MBL-positive. Among isolates with low efflux activity, 74% (17/23) possessed MBL, whereas in isolates with no efflux the rate of MBL-positivity was 60% (15/25). The prevalence of MBL- and efflux-mediated carbapenem resistance in nosocomial P. aeruginosa is high. Moreover, our results reveal that several resistance mechanisms may combine at the isolate level. These data may contribute to the development of novel strategies in combating carbapenem resistance.

  6. Breast cancer resistance protein (BCRP)-mediated glyburide transport: effect of the C421A/Q141K BCRP single-nucleotide polymorphism.

    PubMed

    Pollex, Erika K; Anger, Gregory; Hutson, Janine; Koren, Gideon; Piquette-Miller, Micheline

    2010-05-01

    The antidiabetic agent glyburide (glibenclamide) is frequently used for the treatment of type II diabetes and is increasingly being used for the treatment of gestational diabetes. Evidence suggests that breast cancer resistance protein/ATP-binding cassette, subfamily G, member 2 (ABCG2) expressed in the placenta protects the fetus against the accumulation of glyburide. A number of studies have investigated the significance of several single-nucleotide polymorphisms (SNPs) in the ABCG2 gene. Associations between the Q141K (C421A) SNP and ABCG2 protein expression, membrane surface translocation, efflux activity, or ATPase activity have been shown. Therefore, alterations in glyburide transport across the placenta, resulting in increased fetal glyburide exposure, may be seen in individuals carrying the C421A allele. The purpose of this study is to investigate whether the Q141K SNP causes alterations in ABCG2-mediated glyburide transport. Glyburide accumulation assays were carried out with stably transfected human embryonic kidney (HEK)-293 cells expressing wild-type ABCG2 (Arg482) and polymorphic ABCG2 (Q141K). Glyburide kinetic parameters were determined for comparison of wild-type and SNP ABCG2 activity by simultaneously fitting data for ABCG2-expressing cells (saturable transport) and empty vector-expressing cells (nonsaturable transport) by nonlinear regression analysis. The apparent K(t) and V(max) values for the transfected HEK-293 cells expressing the polymorphic variant (Q141K) of ABCG2 were significantly higher than those values determined for the wild-type ABCG2-expressing cells (p < 0.05). Our results indicate that the Q141K variant of ABCG2 may have the potential to alter the placental pharmacokinetics of glyburide used in pregnancy.

  7. Alcohol consumption stimulates early steps in reverse cholesterol transport.

    PubMed

    van der Gaag, M S; van Tol, A; Vermunt, S H; Scheek, L M; Schaafsma, G; Hendriks, H F

    2001-12-01

    Alcohol consumption is associated with increased HDL cholesterol levels, which may indicate stimulated reverse cholesterol transport. The mechanism is, however, not known. The aim of this study was to evaluate the effects of alcohol consumption on the first two steps of the reverse cholesterol pathway: cellular cholesterol efflux and plasma cholesterol esterification. Eleven healthy middle-aged men consumed four glasses (40 g of alcohol) of red wine, beer, spirits (Dutch gin), or carbonated mineral water (control) daily with evening dinner, for 3 weeks, according to a 4 x 4 Latin square design. After 3 weeks of alcohol consumption the plasma ex vivo cholesterol efflux capacity, measured with Fu5AH cells, was raised by 6.2% (P < 0.0001) and did not differ between the alcoholic beverages. Plasma cholesterol esterification was increased by 10.8% after alcohol (P = 0.008). Changes were statistically significant after beer and spirits, but not after red wine consumption (P = 0.16). HDL lipids changed after alcohol consumption; HDL total cholesterol, HDL cholesteryl ester, HDL free cholesterol, HDL phospholipids and plasma apolipoprotein A-I all increased (P < 0.01). In conclusion, alcohol consumption stimulates cellular cholesterol efflux and its esterification in plasma. These effects were mostly independent of the kind of alcoholic beverage

  8. Atheroprotective effects of methotrexate on reverse cholesterol transport proteins and foam cell transformation in human THP-1 monocyte/macrophages.

    PubMed

    Reiss, Allison B; Carsons, Steven E; Anwar, Kamran; Rao, Soumya; Edelman, Sari D; Zhang, Hongwei; Fernandez, Patricia; Cronstein, Bruce N; Chan, Edwin S L

    2008-12-01

    To determine whether methotrexate (MTX) can overcome the atherogenic effects of cyclooxygenase 2 (COX-2) inhibitors and interferon-gamma (IFNgamma), both of which suppress cholesterol efflux protein and promote foam cell transformation in human THP-1 monocyte/macrophages. Message and protein levels of the reverse cholesterol transport proteins cholesterol 27-hydroxylase and ATP-binding cassette transporter A1 (ABCA1) in THP-1 cells were evaluated by real-time polymerase chain reaction and immunoblot, respectively. Expression was evaluated in cells incubated in the presence or absence of the COX-2 inhibitor NS398 or IFNgamma, with and without MTX. Foam cell transformation of lipid-laden THP-1 macrophages was detected with oil red O staining and light microscopy. MTX increased 27-hydroxylase message and completely blocked NS398-induced down-regulation of 27-hydroxylase (mean +/- SEM 112.8 +/- 13.1% for NS398 plus MTX versus 71.1 +/- 4.3% for NS398 alone; P < 0.01). MTX also negated COX-2 inhibitor-mediated down-regulation of ABCA1. The ability of MTX to reverse inhibitory effects on 27-hydroxylase and ABCA1 was blocked by the adenosine A2A receptor-specific antagonist ZM241385. MTX also prevented NS398 and IFNgamma from increasing transformation of lipid-laden THP-1 macrophages into foam cells. This study provides evidence supporting the notion of an atheroprotective effect of MTX. Through adenosine A2A receptor activation, MTX promotes reverse cholesterol transport and limits foam cell formation in THP-1 macrophages. This is the first reported evidence that any commonly used medication can increase expression of antiatherogenic reverse cholesterol transport proteins and can counteract the effects of COX-2 inhibition. Our results suggest that one mechanism by which MTX protects against cardiovascular disease in rheumatoid arthritis patients is through facilitation of cholesterol outflow from cells of the artery wall.

  9. The ABCG transporter PEC1/ABCG32 is required for the formation of the developing leaf cuticle in Arabidopsis.

    PubMed

    Fabre, Guillaume; Garroum, Imène; Mazurek, Sylwester; Daraspe, Jean; Mucciolo, Antonio; Sankar, Martial; Humbel, Bruno M; Nawrath, Christiane

    2016-01-01

    The cuticle is an essential diffusion barrier on aerial surfaces of land plants whose structural component is the polyester cutin. The PERMEABLE CUTICLE1/ABCG32 (PEC1) transporter is involved in plant cuticle formation in Arabidopsis. The gpat6 pec1 and gpat4 gapt8 pec1 double and triple mutants are characterized. Their PEC1-specific contributions to aliphatic cutin composition and cuticle formation during plant development are revealed by gas chromatography/mass spectrometry and Fourier-transform infrared spectroscopy. The composition of cutin changes during rosette leaf expansion in Arabidopsis. C16:0 monomers are in higher abundance in expanding than in fully expanded leaves. The atypical cutin monomer C18:2 dicarboxylic acid is more prominent in fully expanded leaves. Findings point to differences in the regulation of several pathways of cutin precursor synthesis. PEC1 plays an essential role during expansion of the rosette leaf cuticle. The reduction of C16 monomers in the pec1 mutant during leaf expansion is unlikely to cause permeability of the leaf cuticle because the gpat6 mutant with even fewer C16:0 monomers forms a functional rosette leaf cuticle at all stages of development. PEC1/ABCG32 transport activity affects cutin composition and cuticle structure in a specific and non-redundant fashion. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. How cells handle cholesterol.

    PubMed

    Simons, K; Ikonen, E

    2000-12-01

    Cholesterol plays an indispensable role in regulating the properties of cell membranes in mammalian cells. Recent advances suggest that cholesterol exerts many of its actions mainly by maintaining sphingolipid rafts in a functional state. How rafts contribute to cholesterol metabolism and transport in the cell is still an open issue. It has long been known that cellular cholesterol levels are precisely controlled by biosynthesis, efflux from cells, and influx of lipoprotein cholesterol into cells. The regulation of cholesterol homeostasis is now receiving a new focus, and this changed perspective may throw light on diseases caused by cholesterol excess, the prime example being atherosclerosis.

  11. The tumor suppressor TERE1 (UBIAD1) prenyltransferase regulates the elevated cholesterol phenotype in castration resistant prostate cancer by controlling a program of ligand dependent SXR target genes

    PubMed Central

    Fredericks, William J.; Sepulveda, Jorge; Lal, Priti; Tomaszewski, John E.; Lin, Ming-Fong; McGarvey, Terry; Rauscher, Frank J; Malkowicz, S. Bruce

    2013-01-01

    Castrate-Resistant Prostate Cancer (CRPC) is characterized by persistent androgen receptor-driven tumor growth in the apparent absence of systemic androgens. Current evidence suggests that CRPC cells can produce their own androgens from endogenous sterol precursors that act in an intracrine manner to stimulate tumor growth. The mechanisms by which CRPC cells become steroidogenic during tumor progression are not well defined. Herein we describe a novel link between the elevated cholesterol phenotype of CRPC and the TERE1 tumor suppressor protein, a prenyltransferase that synthesizes vitamin K-2, which is a potent endogenous ligand for the SXR nuclear hormone receptor. We show that 50% of primary and metastatic prostate cancer specimens exhibit a loss of TERE1 expression and we establish a correlation between TERE1 expression and cholesterol in the LnCaP-C81 steroidogenic cell model of the CRPC. LnCaP-C81 cells also lack TERE1 protein, and show elevated cholesterol synthetic rates, higher steady state levels of cholesterol, and increased expression of enzymes in the de novo cholesterol biosynthetic pathways than the non-steroidogenic prostate cancer cells. C81 cells also show decreased expression of the SXR nuclear hormone receptor and a panel of directly regulated SXR target genes that govern cholesterol efflux and steroid catabolism. Thus, a combination of increased synthesis, along with decreased efflux and catabolism likely underlies the CRPC phenotype: SXR might coordinately regulate this phenotype. Moreover, TERE1 controls synthesis of vitamin K-2, which is a potent endogenous ligand for SXR activation, strongly suggesting a link between TERE1 levels, K-2 synthesis and SXR target gene regulation. We demonstrate that following ectopic TERE1 expression or induction of endogenous TERE1, the elevated cholesterol levels in C81 cells are reduced. Moreover, reconstitution of TERE1 expression in C81 cells reactivates SXR and switches on a suite of SXR target genes that

  12. Molecular simulation of the effect of cholesterol on lipid-mediated protein-protein interactions.

    PubMed

    de Meyer, Frédérick J-M; Rodgers, Jocelyn M; Willems, Thomas F; Smit, Berend

    2010-12-01

    Experiments and molecular simulations have shown that the hydrophobic mismatch between proteins and membranes contributes significantly to lipid-mediated protein-protein interactions. In this article, we discuss the effect of cholesterol on lipid-mediated protein-protein interactions as function of hydrophobic mismatch, protein diameter and protein cluster size, lipid tail length, and temperature. To do so, we study a mesoscopic model of a hydrated bilayer containing lipids and cholesterol in which proteins are embedded, with a hybrid dissipative particle dynamics-Monte Carlo method. We propose a mechanism by which cholesterol affects protein interactions: protein-induced, cholesterol-enriched, or cholesterol-depleted lipid shells surrounding the proteins affect the lipid-mediated protein-protein interactions. Our calculations of the potential of mean force between proteins and protein clusters show that the addition of cholesterol dramatically reduces repulsive lipid-mediated interactions between proteins (protein clusters) with positive mismatch, but does not affect attractive interactions between proteins with negative mismatch. Cholesterol has only a modest effect on the repulsive interactions between proteins with different mismatch. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Determinants of HDL Cholesterol Efflux Capacity after Virgin Olive Oil Ingestion: Interrelationships with Fluidity of HDL Monolayer.

    PubMed

    Fernández-Castillejo, Sara; Rubió, Laura; Hernáez, Álvaro; Catalán, Úrsula; Pedret, Anna; Valls, Rosa-M; Mosele, Juana I; Covas, Maria-Isabel; Remaley, Alan T; Castañer, Olga; Motilva, Maria-José; Solá, Rosa

    2017-12-01

    Cholesterol efflux capacity of HDL (CEC) is inversely associated with cardiovascular risk. HDL composition, fluidity, oxidation, and size are related with CEC. We aimed to assess which HDL parameters were CEC determinants after virgin olive oil (VOO) ingestion. Post-hoc analyses from the VOHF study, a crossover intervention with three types of VOO. We assessed the relationship of 3-week changes in HDL-related variables after intervention periods with independence of the type of VOO. After univariate analyses, mixed linear models were fitted with variables related with CEC and fluidity. Fluidity and Apolipoprotein (Apo)A-I content in HDL was directly associated, and HDL oxidative status inversely, with CEC. A reduction in free cholesterol, an increase in triglycerides in HDL, and a decrease in small HDL particle number or an increase in HDL mean size, were associated to HDL fluidity. HDL fluidity, ApoA-I concentration, and oxidative status are major determinants for CEC after VOO. The impact on CEC of changes in free cholesterol and triglycerides in HDL, and those of small HDL or HDL mean size, could be mechanistically linked through HDL fluidity. Our work points out novel therapeutic targets to improve HDL functionality in humans through nutritional or pharmacological interventions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Shaikh M., E-mail: rmizanoor@hotmail.com; Choudhury, Mahua; Janssen, Rachel C.

    Highlights: Black-Right-Pointing-Pointer LXR agonist activation increases liver TG accumulation by increasing lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta}{sup -/-} mouse prevents LXR activation-mediated induction of hepatic lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta} deletion increases mitochondrial transport chain function. Black-Right-Pointing-Pointer Beneficial effects of LXR activation on liver cholesterol metabolism did not change. Black-Right-Pointing-Pointer C/EBP{beta} inhibition might have important therapeutic potential. -- Abstract: Drugs designed specifically to activate liver X receptors (LXRs) have beneficial effects on lowering cholesterol metabolism and inflammation but unfortunately lead to severe hepatic steatosis. The transcription factor CCAAT/enhancer binding protein beta (C/EBP{beta}) is an important regulator of liver gene expression but little is known aboutmore » its involvement in LXR-based steatosis and cholesterol metabolism. The present study investigated the role of C/EBP{beta} expression in LXR agonist (T0901317)-mediated alteration of hepatic triglyceride (TG) and lipogenesis in mice. C/EBP{beta} deletion in mice prevented LXR agonist-mediated induction of lipogenic gene expression in liver in conjunction with significant reduction of liver TG accumulation. Surprisingly, C/EBP{beta}{sup -/-} mice showed a major increase in liver mitochondrial electron chain function compared to WT mice. Furthermore, LXR activation in C/EBP{beta}{sup -/-} mice increased the expression of liver ATP-binding cassette transporter ABCG1, a gene implicated in cholesterol efflux and reducing blood levels of total and LDL-cholesterol. Together, these findings establish a central role for C/EBP{beta} in the LXR-mediated steatosis and mitochondrial function, without impairing the influence of LXR activation on lowering LDL and increasing HDL-cholesterol. Inactivation of C/EBP{beta} might therefore be an important therapeutic strategy to

  15. Lower Squalene Epoxidase and Higher Scavenger Receptor Class B Type 1 Protein Levels Are Involved in Reduced Serum Cholesterol Levels in Stroke-Prone Spontaneously Hypertensive Rats.

    PubMed

    Michihara, Akihiro; Mido, Mayuko; Matsuoka, Hiroshi; Mizutani, Yurika

    2015-01-01

    A lower serum cholesterol level was recently shown to be one of the causes of stroke in an epidemiological study. Spontaneously hypertensive rats stroke-prone (SHRSP) have lower serum cholesterol levels than normotensive Wistar-Kyoto rats (WKY). To elucidate the mechanisms responsible for the lower serum cholesterol levels in SHRSP, we determined whether the amounts of cholesterol biosynthetic enzymes or the receptor and transporter involved in cholesterol uptake and efflux in the liver were altered in SHRSP. When the mRNA levels of seven cholesterol biosynthetic enzymes were measured using real-time polymerase chain reaction (PCR), farnesyl pyrophosphate synthase and squalene epoxidase (SQE) levels in the liver of SHRSP were significantly lower than those in WKY. SQE protein levels were significantly reduced in tissues other than the brain of SHRSP. No significant differences were observed in low-density lipoprotein (LDL) receptor (uptake of serum LDL-cholesterol) or ATP-binding cassette transporter A1 (efflux of cholesterol from the liver/formation of high-density lipoprotein (HDL)) protein levels in the liver and testis between SHRSP and WKY, whereas scavenger receptor class B type 1 (SRB1: uptake of serum HDL-cholesterol) protein levels were higher in the livers of SHRSP. These results indicated that the lower protein levels of SQE and higher protein levels of SRB1 in the liver were involved in the reduced serum cholesterol levels in SHRSP.

  16. Interaction of high density lipoprotein particles with membranes containing cholesterol.

    PubMed

    Sanchez, Susana A; Tricerri, Maria A; Gratton, Enrico

    2007-08-01

    In this study, free cholesterol (FC) efflux mediated by human HDL was investigated using fluorescence methodologies. The accessibility of FC to HDL may depend on whether it is located in regions rich in unsaturated phospholipids or in domains containing high levels of FC and sphingomyelin, known as "lipid rafts." Laurdan generalized polarization and two-photon microscopy were used to quantify FC removal from different pools in the bilayer of giant unilamellar vesicles (GUVs). GUVs made of POPC and FC were observed after incubation with reconstituted particles containing apolipoprotein A-I and POPC [78A diameter reconstituted high density lipoprotein (rHDL)]. Fluorescence correlation spectroscopy data show an increase in rHDL size during the incubation period. GUVs made of two "raft-like" mixtures [DOPC/DPPC/FC (1:1:1) and POPC/SPM/FC (6:1:1)] were used to model liquid-ordered/liquid-disordered phase coexistence. Through these experiments, we conclude that rHDL preferentially removes cholesterol from the more fluid phases. These data, and their extrapolation to in vivo systems, show the significant role that phase separation plays in the regulation of cholesterol homeostasis.

  17. Development of mediator-type biosensor to wirelessly monitor whole cholesterol concentration in fish.

    PubMed

    Takase, Mai; Murata, Masataka; Hibi, Kyoko; Huifeng, Ren; Endo, Hideaki

    2014-04-01

    We developed a wireless monitoring system to monitor fish condition by tracking the change in whole cholesterol concentration. The whole cholesterol concentration of fish is a source of steroid hormones or indicator of immunity level, which makes its detection important for tracking physiological condition of fish. Wireless monitoring system comprises of mediator-type biosensor and wireless transmission device. Biosensor is implantable to fish body, and transmission device is so light, in that fish is allowed to swim freely during monitoring. Cholesterol esterase and oxidase were fixated on to the detection site of biosensor and used to detect the whole cholesterol concentration. However, cholesterol oxidase incorporates oxidation-reduction reaction of oxygen for detection, which concentration fluctuates easily due to change in environmental condition. Meanwhile, mediator-type biosensor enables monitoring of whole cholesterol concentration by using mediator to substitute that oxidation-reduction reaction of oxygen. Characteristic of fabricated mediator-type biosensor was tested. The sensor output current of mediator-type biosensor remained stable compared to output current of non-mediator-type biosensor under fluctuating oxygen concentration of 0-8 ppm, which implied that this sensor is less affected by change in dissolved oxygen concentration. That biosensor was then implanted into fish for wireless monitoring. As a result, approximately 48 h of real-time monitoring was successful.

  18. Constitutive mRNA expression and protein activity levels of nine ABC efflux transporters in seven permanent cell lines derived from different tissues of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Fischer, Stephan; Loncar, Jovica; Zaja, Roko; Schnell, Sabine; Schirmer, Kristin; Smital, Tvrtko; Luckenbach, Till

    2011-01-25

    Permanent fish cell lines have become common model systems for determining ecotoxicological effects of pollutants. For these cell lines little is known on the cellular active transport mechanisms that control the amount of a compound entering the cell, such as the MXR (multixenobiotic resistance) system mediated by ATP binding cassette (ABC) transport proteins. Therefore, for toxic evaluation of chemicals with those cells information on MXR is important. We here present data on constitutive mRNA expression and protein activity levels of a series of ABC efflux transporters in seven permanent cell lines derived from liver (RTL-W1; R1) and liver hepatoma (RTH-149), gill (RTgill-W1), gonad (RTG-2), gut (RTgutGC) and brain (RTbrain) of rainbow trout (Oncorhynchus mykiss). In addition to known transporters abcb1 (designated here abcb1a), abcb11, abcc1-3, abcc5 and abcg2, we quantified expression levels of a newly identified abcb1 isoform (abcb1b) and abcc4, previously unknown in trout. Quantitative real time PCR (qPCR) indicated that mRNA of the examined ABC transporters was constitutively expressed in all cell lines. Transporter mRNA expression patterns were similar in all cell lines, with expression levels of abcc transporters being 80 to over 1000 fold higher than for abcg2, abcb1a/b and abcb11 (abcc1-5>abcg2>abcb1a/b, 11). Transporter activity in the cell lines was determined by measuring uptake of transporter type specific fluorescent substrates in the presence of activity inhibitors. The combination of the ABCB1 and ABCC transporter substrate calcein-AM with inhibitors cyclosporine A, PSC833 and MK571 resulted in a concentration-dependent fluorescence increase of up to 3-fold, whereas reversin 205 caused a slight, but not concentration-dependent fluorescence increase. Accumulation of the dyes Hoechst 33342 and 2',7'-dichlorodihydrofluorescein diacetate was basically unchanged in the presence of Ko134 and taurocholate, respectively, indicating low Abcg2 and Abcb11

  19. MicroRNA-19b promotes macrophage cholesterol accumulation and aortic atherosclerosis by targeting ATP-binding cassette transporter A1.

    PubMed

    Lv, Yun-Cheng; Tang, Yan-Yan; Peng, Juan; Zhao, Guo-Jun; Yang, Jing; Yao, Feng; Ouyang, Xin-Ping; He, Ping-Ping; Xie, Wei; Tan, Yu-Lin; Zhang, Min; Liu, Dan; Tang, Deng-Pei; Cayabyab, Francisco S; Zheng, Xi-Long; Zhang, Da-Wei; Tian, Guo-Ping; Tang, Chao-Ke

    2014-09-01

    Macrophage accumulation of cholesterol leads to foam cell formation which is a major pathological event of atherosclerosis. Recent studies have shown that microRNA (miR)-19b might play an important role in cholesterol metabolism and atherosclerotic diseases. Here, we have identified miR-19b binding to the 3'UTR of ATP-binding cassette transporter A1 (ABCA1) transporters, and further determined the potential roles of this novel interaction in atherogenesis. To investigate the molecular mechanisms involved in a miR-19b promotion of macrophage cholesterol accumulation and the development of aortic atherosclerosis. We performed bioinformatics analysis using online websites, and found that miR-19b was highly conserved during evolution and directly bound to ABCA1 mRNA with very low binding free energy. Luciferase reporter assay confirmed that miR-19b bound to 3110-3116 sites within ABCA1 3'UTR. MiR-19b directly regulated the expression levels of endogenous ABCA1 in foam cells derived from human THP-1 macrophages and mouse peritoneal macrophages (MPMs) as determined by qRT-PCR and western blot. Cholesterol transport assays revealed that miR-19b dramatically suppressed apolipoprotein AI-mediated ABCA1-dependent cholesterol efflux, resulting in the increased levels of total cholesterol (TC), free cholesterol (FC) and cholesterol ester (CE) as revealed by HPLC. The excretion of (3)H-cholesterol originating from cholesterol-laden MPMs into feces was decreased in mice overexpressing miR-19b. Finally, we evaluated the proatherosclerotic role of miR-19b in apolipoprotein E deficient (apoE(-/-)) mice. Treatment with miR-19b precursor reduced plasma high-density lipoprotein (HDL) levels, but increased plasma low-density lipoprotein (LDL) levels. Consistently, miR-19b precursor treatment increased aortic plaque size and lipid content, but reduced collagen content and ABCA1 expression. In contrast, treatment with the inhibitory miR-19b antisense oligonucleotides (ASO) prevented or

  20. NRF1 Is an ER Membrane Sensor that Is Central to Cholesterol Homeostasis.

    PubMed

    Widenmaier, Scott B; Snyder, Nicole A; Nguyen, Truc B; Arduini, Alessandro; Lee, Grace Y; Arruda, Ana Paula; Saksi, Jani; Bartelt, Alexander; Hotamisligil, Gökhan S

    2017-11-16

    Cholesterol is a critical nutrient requiring tight constraint in the endoplasmic reticulum (ER) due to its uniquely challenging biophysical properties. While the mechanisms by which the ER defends against cholesterol insufficiency are well described, it remains unclear how the ER senses and effectively defends against cholesterol excess. Here, we identify the ER-bound transcription factor nuclear factor erythroid 2 related factor-1, Nrf1/Nfe2L1, as a critical mediator of this process. We show that Nrf1 directly binds to and specifically senses cholesterol in the ER through a defined domain and that cholesterol regulates Nrf1 turnover, processing, localization, and activity. In Nrf1 deficiency, in vivo cholesterol challenges induce massive hepatic cholesterol accumulation and damage, which is rescued by replacing Nrf1 exogenously. This Nrf1-mediated mechanism involves the suppression of CD36-driven inflammatory signaling and derepression of liver X receptor activity. These findings reveal Nrf1 as a guardian of cholesterol homeostasis and a core component of adaptive responses to excess cellular cholesterol. Copyright © 2017. Published by Elsevier Inc.

  1. Effects of tomato and soy germ on lipid bioaccumulation and atherosclerosis in ApoE−/− mice

    PubMed Central

    Smith, Brendon W.; Miller, Rita J.; Wilund, Kenneth R.; O’Brien, William D.; Erdman, John W.

    2015-01-01

    Dietary patterns with cardiovascular benefits have been recommended, but the relative contributions of individual foods and food components, alone or in combination, remain undefined. Male ApoE−/− mice were fed either a purified AIN-93G control diet, a Western diet, or a Western diet with 10% tomato powder (TP), 2% soy germ (SG), or the combination, for four weeks (n=10 per group). Plasma total cholesterol and triglycerides were measured with enzymatic colorimetric kits, and serum amyloid A (SAA) was measured by ELISA. Liver lipids were extracted with chloroform:methanol, and triglycerides, free and esterified cholesterol measured with enzymatic colorimetric kits. Expression of Cyp27a1, Cyp7a1, Abcg5, and Abcg8 in the liver was determined by quantitative polymerase chain reaction. Sections of the aortic root and aorta were cut and stained with H&E to assess extent of atherosclerotic lesions. Western diet-fed animals had greater liver and adipose weights, plasma cholesterol and SAA, hepatic lipids, and atherosclerosis than AIN-93G animals. TP and SG did not decrease atherosclerosis as measured by H&E-stained sections of the aortic root, aortic arch and descending aorta. The TP diets further increased plasma cholesterol, but also led to increased expression of the Abcg5/8 transporters involved in cholesterol efflux. Addition of SG alone to the Western diet attenuated Western-diet-induced increases in plasma cholesterol, liver lipids and gonadal adipose weight. The results of this study do not support the use of either TP or SG for reduction of atherosclerosis, but suggest some beneficial effects of SG on lipid metabolism in this model of cardiovascular disease. PMID:26173004

  2. Efflux-mediated resistance identified among norfloxacin resistant clinical strains of group B Streptococcus from South Korea

    PubMed Central

    Dang, Trang Nguyen Doan; Srinivasan, Usha; Britt, Zachary; Marrs, Carl F.; Zhang, Lixin; Ki, Moran; Foxman, Betsy

    2014-01-01

    OBJECTIVES: Group B Streptococcus (GBS), a common bowel commensal, is a major cause of neonatal sepsis and an emerging cause of infection in immune-compromised adult populations. Fluoroquinolones are used to treat GBS infections in those allergic to beta-lactams, but GBS are increasingly resistant to fluoroquinolones. Fluoroquinolone resistance has been previously attributed to quinolone resistance determining regions (QRDRs) mutations. We demonstrate that some of fluoroquinolone resistance is due to efflux-mediated resistance. METHODS: We tested 20 GBS strains resistant only to norfloxacin with no mutations in the QRDRs, for the efflux phenotype using norfloxacin and ethidium bromide as substrates in the presence of the efflux inhibitor reserpine. Also tested were 68 GBS strains resistant only to norfloxacin not screened for QRDRs, and 58 GBS strains resistant to ciprofloxacin, levofloxacin or moxifloxacin. Isolates were randomly selected from 221 pregnant women (35-37 weeks of gestation) asymptomatically carrying GBS, and 838 patients with GBS infection identified in South Korea between 2006 and 2008. The VITEK II automatic system (Biomerieux, Durham, NC, USA) was used to determine fluoroquinolone resistance. RESULTS: The reserpine associated efflux phenotype was found in more than half of GBS strains resistant only to norfloxacin with no QRDR mutations, and half where QRDR mutations were unknown. No evidence of the efflux phenotype was detected in GBS strains that were resistant to moxifloxacin or levofloxacin or both. The reserpine sensitive efflux phenotype resulted in moderate increases in norfloxacin minimum inhibitory concentration (average=3.6 fold, range=>1-16 fold). CONCLUSIONS: A substantial portion of GBS strains resistant to norfloxacin have an efflux phenotype. PMID:25322878

  3. Reusable and Mediator-Free Cholesterol Biosensor Based on Cholesterol Oxidase Immobilized onto TGA-SAM Modified Smart Bio-Chips

    PubMed Central

    Rahman, Mohammed M.

    2014-01-01

    A reusable and mediator-free cholesterol biosensor based on cholesterol oxidase (ChOx) was fabricated based on self-assembled monolayer (SAM) of thioglycolic acid (TGA) (covalent enzyme immobilization by dropping method) using bio-chips. Cholesterol was detected with modified bio-chip (Gold/Thioglycolic-acid/Cholesterol-oxidase i.e., Au/TGA/ChOx) by reliable cyclic voltammetric (CV) technique at room conditions. The Au/TGA/ChOx modified bio-chip sensor demonstrates good linearity (1.0 nM to 1.0 mM; R = 0.9935), low-detection limit (∼0.42 nM, SNR∼3), and higher sensitivity (∼74.3 µAµM−1cm−2), lowest-small sample volume (50.0 μL), good stability, and reproducibility. To the best of our knowledge, this is the first statement with a very high sensitivity, low-detection limit, and low-sample volumes are required for cholesterol biosensor using Au/TGA/ChOx-chips assembly. The result of this facile approach was investigated for the biomedical applications for real samples at room conditions with significant assembly (Au/TGA/ChOx) towards the development of selected cholesterol biosensors, which can offer analytical access to a large group of enzymes for wide range of biomedical applications in health-care fields. PMID:24949733

  4. Inhibition by islet-activating protein, pertussis toxin, of P2-purinergic receptor-mediated iodide efflux and phosphoinositide turnover in FRTL-5 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okajima, F.; Sho, K.; Kondo, Y.

    1988-08-01

    Exposure of FRTL-5 thyroid cells to ATP (1 microM to 1 mM) resulted in the stimulation of I- efflux in association with the induction of inositol trisphosphate production and intracellular Ca2+ mobilization. Nonhydrolyzable ATP derivatives, ADP and GTP, were also as effective in magnitude as ATP, whereas neither AMP nor adenosine exerted significant effect on I- efflux, suggesting a P2-purinergic receptor-mediated activation of I- efflux. Treatment of the cells with the islet-activating protein (IAP) pertussis toxin, which ADP-ribosylated a 41,000 mol wt membrane protein, effectively suppressed the phosphoinositide response to ATP in addition to ATP-dependent I- efflux at agonist concentrationsmore » below 10 microM. In contrast, the I- efflux stimulated by TSH, A23187, or phorbol myristate acetate was insusceptible to IAP. The IAP substrate, probably GTP-binding protein, is hence proposed to mediate the activation of P2-purinergic receptor-linked phospholipase-C in FRTL-5 cells. However, the responses to ATP, its nonhydrolyzable derivatives, or ADP at the higher agonist concentrations, especially above 100 microM, were only partially inhibited by IAP, even though the IAP substrate was totally ADP ribosylated by the toxin. The responses to GTP in the whole concentration range tested were not influenced by IAP treatment. Thus, signals arising from the P2-receptor might be transduced to phospholipase-C by two different pathways, i.e. IAP-sensitive and insensitive ones, and result in the stimulation of I- efflux.« less

  5. Regulation of reverse cholesterol transport - a comprehensive appraisal of available animal studies

    PubMed Central

    2012-01-01

    Plasma levels of high density lipoprotein (HDL) cholesterol are strongly inversely correlated to the risk of atherosclerotic cardiovascular disease. A major recognized functional property of HDL particles is to elicit cholesterol efflux and consequently mediate reverse cholesterol transport (RCT). The recent introduction of a surrogate method aiming at determining specifically RCT from the macrophage compartment has facilitated research on the different components and pathways relevant for RCT. The current review provides a comprehensive overview of studies carried out on macrophage-specific RCT including a quick reference guide of available data. Knowledge and insights gained on the regulation of the RCT pathway are summarized. A discussion of methodological issues as well as of the respective relevance of specific pathways for RCT is also included. PMID:22458435

  6. The Inhibitor Ko143 Is Not Specific for ABCG2.

    PubMed

    Weidner, Lora D; Zoghbi, Sami S; Lu, Shuiyu; Shukla, Suneet; Ambudkar, Suresh V; Pike, Victor W; Mulder, Jan; Gottesman, Michael M; Innis, Robert B; Hall, Matthew D

    2015-09-01

    Imaging ATP-binding cassette (ABC) transporter activity in vivo with positron emission tomography requires both a substrate and a transporter inhibitor. However, for ABCG2, there is no inhibitor proven to be specific to that transporter alone at the blood-brain barrier. Ko143 [[(3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino[1',2':1,6]pyrido[3,4- b]indole-3-propanoic acid 1,1-dimethylethyl ester], a nontoxic analog of fungal toxin fumitremorgin C, is a potent inhibitor of ABCG2, although its specificity in mouse and human systems is unclear. This study examined the selectivity of Ko143 using human embryonic kidney cell lines transfected with ABCG2, ABCB1, or ABCC1 in several in vitro assays. The stability of Ko143 in rat plasma was measured using high performance liquid chromatography. Our results show that, in addition to being a potent inhibitor of ABCG2, at higher concentrations (≥1 μM) Ko143 also has an effect on the transport activity of both ABCB1 and ABCC1. Furthermore, Ko143 was found to be unstable in rat plasma. These findings indicate that Ko143 lacks specificity for ABCG2 and this should be taken into consideration when using Ko143 for both in vitro and in vivo experiments. U.S. Government work not protected by U.S. copyright.

  7. High-level tetracycline resistance mediated by efflux pumps Tet(A) and Tet(A)-1 with two start codons.

    PubMed

    Wang, Weixia; Guo, Qinglan; Xu, Xiaogang; Sheng, Zi-ke; Ye, Xinyu; Wang, Minggui

    2014-11-01

    Efflux is the most common mechanism of tetracycline resistance. Class A tetracycline efflux pumps, which often have high prevalence in Enterobacteriaceae, are encoded by tet(A) and tet(A)-1 genes. These genes have two potential start codons, GTG and ATG, located upstream of the genes. The purpose of this study was to determine the start codon(s) of the class A tetracycline resistance (tet) determinants tet(A) and tet(A)-1, and the tetracycline resistance level they mediated. Conjugation, transformation and cloning experiments were performed and the genetic environment of tet(A)-1 was analysed. The start codons in class A tet determinants were investigated by site-directed mutagenesis of ATG and GTG, the putative translation initiation codons. High-level tetracycline resistance was transferred from the clinical strain of Klebsiella pneumoniae 10-148 containing tet(A)-1 plasmid pHS27 to Escherichia coli J53 by conjugation. The transformants harbouring recombinant plasmids that carried tet(A) or tet(A)-1 exhibited tetracycline MICs of 256-512 µg ml(-1), with or without tetR(A). Once the ATG was mutated to a non-start codon, the tetracycline MICs were not changed, while the tetracycline MICs decreased from 512 to 64 µg ml(-1) following GTG mutation, and to ≤4 µg ml(-1) following mutation of both GTG and ATG. It was presumed that class A tet determinants had two start codons, which are the primary start codon GTG and secondary start codon ATG. Accordingly, two putative promoters were predicted. In conclusion, class A tet determinants can confer high-level tetracycline resistance and have two start codons. © 2014 The Authors.

  8. Static pressure accelerates ox-LDL-induced cholesterol accumulation via SREBP-1-mediated caveolin-1 downregulation in cultured vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Di-xian, E-mail: luodixian_2@163.com; Institute of Pharmacy and Pharmacology, College of Science and Technology, University of South China, Hengyang 421001, Hunan; First People's Hospital of Chenzhou City, Chenzhou 423000, Hunan

    Research highlights: {yields} Vertical static pressure accelerates ox-LDL-induced cholesterol accumulation in cultured vascular smooth muscle cells. {yields} Static pressure induces SREBP-1 activation. {yields} Static pressure downregulates the expressions of caveolin-1 by activating SREBP-1. {yields} Static pressure also downregulates the transcription of ABCA1 by activating SREBP-1. {yields} Static pressure increases ox-LDL-induced cholesterol accumulation by SREBP-1-mediated caveolin-1 downregulation in vascular smooth muscle cells cultured in vitro. -- Abstract: Objective: To investigate the effect of static pressure on cholesterol accumulation in vascular smooth muscle cells (VSMCs) and its mechanism. Methods: Rat-derived VSMC cell line A10 treated with 50 mg/L ox-LDL and different staticmore » pressures (0, 60, 90, 120, 150, 180 mm Hg) in a custom-made pressure incubator for 48 h. Intracellular lipid droplets and lipid levels were assayed by oil red O staining and HPLC; The mRNA levels of caveolin-1 and ABCA1, the protein levels of caveolin-1 SREBP-1 and mature SREBP-1 were respectively detected by RT-PCR or western blot. ALLN, an inhibitor of SREBP metabolism, was used to elevate SREBP-1 protein level in VSMCs treated with static pressure. Results: Static pressures significantly not only increase intracellular lipid droplets in VSMCs, but also elevate cellular lipid content in a pressure-dependent manner. Intracellular free cholesterol (FC), cholesterol ester (CE), total cholesterol (TC) were respectively increased from 60.5 {+-} 2.8 mg/g, 31.8 {+-} 0.7 mg/g, 92.3 {+-} 2.1 mg/g at atmosphere pressure (ATM, 0 mm Hg) to 150.8 {+-} 9.4 mg/g, 235.9 {+-} 3.0 mg/g, 386.7 {+-} 6.4 mg/g at 180 mm Hg. At the same time, static pressures decrease the mRNA and protein levels of caveolin-1, and induce the activation and nuclear translocation of SREBP-1. ALLN increases the protein level of mature SREBP-1 and decreases caveolin-1 expression, so that cellular lipid levels

  9. Fomiroid A, a Novel Compound from the Mushroom Fomitopsis nigra, Inhibits NPC1L1-Mediated Cholesterol Uptake via a Mode of Action Distinct from That of Ezetimibe

    PubMed Central

    Chiba, Tomohiro; Sakurada, Tsuyoshi; Watanabe, Rie; Yamaguchi, Kohji; Kimura, Yasuhisa; Kioka, Noriyuki; Kawagishi, Hirokazu; Matsuo, Michinori; Ueda, Kazumitsu

    2014-01-01

    Hypercholesterolemia is one of the key risk factors for coronary heart disease, a major cause of death in developed countries. Suppression of NPC1L1-mediated dietary and biliary cholesterol absorption is predicted to be one of the most effective ways to reduce the risk of hypercholesterolemia. In a screen for natural products that inhibit ezetimibe glucuronide binding to NPC1L1, we found a novel compound, fomiroid A, in extracts of the mushroom Fomitopsis nigra. Fomiroid A is a lanosterone derivative with molecular formula C30H48O3. Fomiroid A inhibited ezetimibe glucuronide binding to NPC1L1, and dose-dependently prevented NPC1L1-mediated cholesterol uptake and formation of esterified cholesterol in NPC1L1-expressing Caco2 cells. Fomiroid A exhibited a pharmacological chaperone activity that corrected trafficking defects of the L1072T/L1168I mutant of NPC1L1. Because ezetimibe does not have such an activity, the binding site and mode of action of fomiroid A are likely to be distinct from those of ezetimibe. PMID:25551765

  10. Gastrin regulates ABCG2 to promote the migration, invasion and side populations in pancreatic cancer cells via activation of NF-κB signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Juan; Xin, Beibei; Wang, Hui

    Gastrin is absent in most normal adult pancreatic tissues but is highly expressed in pancreatic cancer tissues. Although Gastrin expression was reported to be associated with tumor proliferation in human pancreatic cancer, studies on the relationship between Gastrin and tumor metastasis in pancreatic cancer are rare. In this study, we performed an analysis to determine the effects of Gastrin on modulating the side populations, cell proportion and tumor cell metastatic potential and invasion activity and explored its mechanisms in pancreatic cancer. We indicated that Gastrin and ABCG2 were widely expressed in pancreatic cancer cell lines and overexpressed in cancer tissues.more » Gastrin induced ABCG2 expression, and this effect was mediated by NF-κB activation. Gastrin regulated the SP proportion of BxPC-3 cells via modulating ABCG2 expression. Through the regulation of the functions of NF-κB/ABCG2, Gastrin functionally promoted the migration and invasion in pancreatic cancer cell. The present study indicated that Gastrin induced ABCG2 expression by activating NF-κB and thereby modulated the SP proportion, tumor cell metastatic potential and invasion activity in pancreatic cancer. Gastrin could serve as an effective therapeutic target for the metastasis of pancreatic cancer. - Highlights: • Gastrin induces ABCG2 expression mediated by NF-κB activation. • Gastrin regulates NF-κB's function that binds to the ABCG2 promoter in BxPC-3 cells. • Gastrin promotes the SP proportion in BxPC-3 cells by modulating ABCG2 expression via activation of NF-κB molecule. • Gastrin induces an increase in migration and invasion potential in pancreatic cancer cell by regulating NF-κB/ABCG2 signaling.« less

  11. ABCA1 and biogenesis of HDL.

    PubMed

    Yokoyama, Shinji

    2006-02-01

    Mammalian somatic cells do not catabolize cholesterol and therefore export it for sterol homeostasis at cell and whole body levels. This mechanism may reduce intracellularly accumulated excess cholesterol, and thereby would contribute to the prevention or cure of the initial stage of atherosclerotic vascular lesion. High-density lipoprotein (HDL) plays a central role in this reaction by removing cholesterol from cells and transporting it to the liver, the major cholesterol catabolic site. Two independent mechanisms have been identified for cellular cholesterol release. The first is non-specific diffusion-mediated cholesterol "efflux" from the cell surface, in which cholesterol is trapped by various extracellular acceptors including lipoproteins. Extracellular cholesterol esterification of HDL provides a driving force for the net removal of cell cholesterol by this pathway, and some cellular factors may enhance this reaction. The other mechanism is an apolipoprotein-mediated process to generate new HDL particles by removing cellular phospholipid and cholesterol. This reaction is mediated by a membrane protein ATP-binding cassette transporter A1 (ABCA1), and lipid-free or lipid-poor helical apolipoproteins recruit cellular phospholipid and cholesterol to assemble HDL particles. The reaction is composed of two elements: the assembly of HDL particles with phospholipid by apolipoprotein, and cholesterol enrichment in HDL. ABCA1 is essential for the former step and the latter requires further intracellular events. ABCA1 is a rate-limiting factor of HDL assembly and is regulated by transcriptional and post-transcriptional factors. Post-transcriptional regulation of ABCA1 involves modulation of its calpain-mediated degradation.

  12. A conserved degron containing an amphipathic helix regulates the cholesterol-mediated turnover of human squalene monooxygenase, a rate-limiting enzyme in cholesterol synthesis.

    PubMed

    Chua, Ngee Kiat; Howe, Vicky; Jatana, Nidhi; Thukral, Lipi; Brown, Andrew J

    2017-12-08

    Cholesterol biosynthesis in the endoplasmic reticulum (ER) is tightly controlled by multiple mechanisms to regulate cellular cholesterol levels. Squalene monooxygenase (SM) is the second rate-limiting enzyme in cholesterol biosynthesis and is regulated both transcriptionally and post-translationally. SM undergoes cholesterol-dependent proteasomal degradation when cholesterol is in excess. The first 100 amino acids of SM (designated SM N100) are necessary for this degradative process and represent the shortest cholesterol-regulated degron identified to date. However, the fundamental intrinsic characteristics of this degron remain unknown. In this study, we performed a series of deletions, point mutations, and domain swaps to identify a 12-residue region (residues Gln-62-Leu-73), required for SM cholesterol-mediated turnover. Molecular dynamics and circular dichroism revealed an amphipathic helix within this 12-residue region. Moreover, 70% of the variation in cholesterol regulation was dependent on the hydrophobicity of this region. Of note, the earliest known Doa10 yeast degron, Deg1, also contains an amphipathic helix and exhibits 42% amino acid similarity with SM N100. Mutating SM residues Phe-35/Ser-37/Leu-65/Ile-69 into alanine, based on the key residues in Deg1, blunted SM cholesterol-mediated turnover. Taken together, our results support a model whereby the amphipathic helix in SM N100 attaches reversibly to the ER membrane depending on cholesterol levels; with excess, the helix is ejected and unravels, exposing a hydrophobic patch, which then serves as a degradation signal. Our findings shed new light on the regulation of a key cholesterol synthesis enzyme, highlighting the conservation of critical degron features from yeast to humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Co-treatment with grapefruit juice inhibits while chronic administration activates intestinal P-glycoprotein-mediated drug efflux.

    PubMed

    Panchagnula, R; Bansal, T; Varma, M V S; Kaul, C L

    2005-12-01

    P-Glycoprotein (P-gp) mediated efflux is recognized as a significant biochemical barrier affecting oral absorption for a number of drugs. Various conflicting reports have been published regarding the effects of grapefruit juice (GFJ) on P-gp-mediated drug efflux, in which GFJ has been shown both to inhibit and activate it. Hence, the present study adopted a two-way approach, involving both co-treatment and chronic administration. Bi-directional transport of paclitaxel (PCL) was carried out in the absence and presence of GFJ extract, in rat everted ileum sac. Further, the effect of chronic administration of GFJ to rats was characterized by permeability studies with indinavir (INDI). Co-treatment of GFJ extract at 100% concentration reduced the asymmetric transport of PCL (efflux ratio = 20.8) by increasing absorptive (A --> B) transport by 921% and reducing secretory (B --> A) transport by 41%. Further, GFJ showed a concentration dependent effect on PCL permeability. Imipramine, a passive permeability marker with absorptive permeability of 15.33 +/- 4.26 x 10(-6) cm/s showed no asymmetric transport and also no significant (P < 0.05) change in permeability in the presence of GFJ. Chronic administration of GFJ resulted in a significant decrease in absorptive transport of indinavir, which was even greater than that produced by rifampicin pretreatment. No change in permeability of propranolol, a passive permeability marker, was observed. Further, the decrease in absorptive transport of INDI was reversed by the P-gp inhibitor verapamil. In conclusion, GFJ extract inhibited P-gp-mediated efflux in co-treatment, whereas chronic administration led to increased levels of P-gp expression, thus having a profound effect on intestinal absorption and GFJ-drug interactions in vivo.

  14. A novel compound inhibits rHDL assembly and blocks nascent HDL biogenesis downstream of apoAI binding to ABCA1 expressing cells

    PubMed Central

    Lyssenko, Nicholas N.; Brubaker, Gregory; Smith, Bradley D.; Smith, Jonathan D.

    2011-01-01

    Objective Nascent high-density lipoprotein (HDL) particles form from cellular lipids and extracellular lipid-free apolipoprotein AI (apoAI) in a process mediated by ATP-binding cassette transporter A1 (ABCA1). We have sought out compounds that inhibit nascent HDL biogenesis without affecting ABCA1 activity. Methods and Results Reconstituted HDL (rHDL) formation and cellular cholesterol efflux assays were used to show that two compounds that bond via hydrogen with phospholipids inhibit rHDL and nascent HDL production. In rHDL formation assays, the inhibitory effect of compound 1 (methyl 3α-acetoxy-7α,12α-di[(phenylaminocarbonyl)amino]-5β-cholan-24-oate), the more active of the two, depended on its ability to associate with phospholipids. In cell assays, compound 1 suppressed ABCA1-mediated cholesterol efflux to apoAI, the 18A peptide, and taurocholate with high specificity, without affecting ABCA1-independent cellular cholesterol efflux to HDL and endocytosis of acetylated low-density lipoprotein (AcLDL) and transferrin. Furthermore, compound 1 did not affect ABCA1 activity adversely, as ABCA1-mediated shedding of microparticles proceeded unabated and apoAI binding to ABCA1-expressing cells increased in its presence. Conclusions The inhibitory effects of compound 1 support a three-step model of nascent HDL biogenesis: plasma membrane remodeling by ABCA1, apoAI binding to ABCA1, and lipoprotein particle assembly. The compound inhibits the final step, causing accumulation of apoAI in ABCA1-expressing cells. PMID:21836073

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Dan, E-mail: y.dan@lacdr.leidenuniv.nl; Meurs, Illiana; Ohigashi, Megumi

    Objectives: To determine the role of macrophage ATP-binding cassette transporter A5 (ABCA5) in cellular cholesterol homeostasis and atherosclerotic lesion development. Methods and results: Chimeras with dysfunctional macrophage ABCA5 (ABCA5{sup -M/-M}) were generated by transplantation of bone marrow from ABCA5 knockout (ABCA5{sup -/-}) mice into irradiated LDLr{sup -/-} mice. In vitro, bone marrow-derived macrophages from ABCA5{sup -M/-M} chimeras exhibited a 29% (P < 0.001) decrease in cholesterol efflux to HDL, whereas a 21% (P = 0.07) increase in cholesterol efflux to apoA-I was observed. Interestingly, expression of ABCA1, but not ABCG1, was up-regulated in absence of functional ABCA5 in macrophages. Tomore » induce atherosclerosis, the transplanted LDLr{sup -/-} mice were fed a high-cholesterol Western-type diet (WTD) for 6, 10, or 18 weeks, allowing analysis of effects on initial as well as advanced lesion development. Atherosclerosis development was not affected in male ABCA5{sup -M/-M} chimeras after 6, 10, and 18 weeks WTD feeding. However, female ABCA5{sup -M/-M} chimeras did develop significantly (P < 0.05) larger aortic root lesions as compared with female controls after 6 and 10 weeks WTD feeding. Conclusions: ABCA5 influences macrophage cholesterol efflux, and selective disruption of ABCA5 in macrophages leads to increased atherosclerotic lesion development in female LDLr{sup -/-} mice.« less

  16. Methotrexate in Atherogenesis and Cholesterol Metabolism

    PubMed Central

    Coomes, Eric; Chan, Edwin S. L.; Reiss, Allison B.

    2011-01-01

    Methotrexate is a disease-modifying antirheumatic drug commonly used to treat inflammatory conditions such as rheumatoid arthritis which itself is linked to increased cardiovascular risk. Treatments that target inflammation may also impact the cardiovascular system. While methotrexate improves cardiovascular risk, inhibition of the cyclooxygenase (COX)-2 enzyme promotes atherosclerosis. These opposing cardiovascular influences may arise from differing effects on the expression of proteins involved in cholesterol homeostasis. These proteins, ATP-binding cassette transporter (ABC) A1 and cholesterol 27-hydroxylase, facilitate cellular cholesterol efflux and defend against cholesterol overload. Methotrexate upregulates expression of cholesterol 27-hydroxylase and ABCA1 via adenosine release, while COX-2 inhibition downregulates these proteins. Adenosine, acting through the A2A and A3 receptors, may upregulate proteins involved in reverse cholesterol transport by cAMP-PKA-CREB activation and STAT inhibition, respectively. Elucidating underlying cardiovascular mechanisms of these drugs provides a framework for developing novel cardioprotective anti-inflammatory medications, such as selective A2A receptor agonists. PMID:21490773

  17. Emotional eating as a mediator between anxiety and cholesterol in population with overweight and hypertension.

    PubMed

    Mensorio, Marinna S; Cebolla, Ausiàs; Lisón, Juan Francisco; Rodilla, Enrique; Palomar, Gonzalo; Miragall, Marta; Baños, Rosa Maria

    2017-09-01

    Although the relationship between cholesterol and mood states (especially anxiety) has been well studied, few researches have included the role of eating styles in this relationship. This study explored the associations among eating styles, negative emotional symptoms, and levels of cholesterol (and other medical variables) in a population with hypertension and overweight or obesity, analyzing the possible mediation mechanisms involved. A cross-sectional study was conducted in 68 adults with hypertension and overweight/obesity, and stepwise multiple regression analysis and mediation analyses were carried out to test the hypothesis that eating styles mediate the relationship between negative emotional symptoms and cholesterol. Several significant correlations among age, anthropometric, medical, and psychological variables (eating styles and negative emotional symptoms) were found. There was a significant indirect effect of anxiety on total cholesterol and LDL cholesterol through emotional eating. Results suggest that emotional eating has a relevant role in the rise in total and LDL cholesterol, acting as a mediator in the relationship between anxiety and cholesterol. This finding could have important implications, since it introduces a new variable in the relationship between emotions and cholesterol and, therefore, changes the way of understanding this relationship, and of treating high cholesterol in a hypertensive sample.

  18. Montelukast is a potent and durable inhibitor of multidrug resistance protein 2 (MRP2)-mediated efflux of taxol and saquinavir

    PubMed Central

    Roy, Upal; Chakravarty, Geetika; Honer Zu Bentrup, Kerstin; Mondal, Debasis

    2009-01-01

    The ATP binding cassette (ABC)-transporters are energy dependent efflux pumps which regulate the pharmacokinetics of both anti-cancer chemotherapeutic agents, e.g. taxol, and of HIV-1 protease inhibitors (HPIs), e.g. saquinavir. Increased expression of several ABC-transporters, especially P-gp and MRP2, are observed in multidrug resistant (MDR) tumor cells and on HIV-1 infected lymphocytes. In addition, due to their apical expression on vascular endothelial barriers, both P-gp and MRP2 are of crucial importance towards dictating drug access into sequestered tissues. However, although a number of P-gp inhibitors are currently in clinical trials, possible inhibitors of MRP2 are not being thoroughly investigated. The experimental leukotriene receptor antagonist (LTRA), MK-571 is known to be a potent inhibitor of MRP transporters. Using the MRP2 over-expressing cell line, MDCKII-MRP2, we evaluated whether the clinically approved LTRAs, e.g. montelukast (Singulair™) and zafirlukast (Accolate™), can similarly suppress MRP2-mediated efflux. We compared the efficacy of increasing concentrations (20-100 μM) of MK-571, montelukast, and zafirlukast, in suppressing the efflux of calcein-AM, a fluorescent MRP substrate, and the radiolabeled [3H-] drugs, taxol and saquinavir. Montelukast was the most potent inhibitor (p<0.01) of MRP2-mediated efflux of all three substrates. Montelukast also increased (p<0.01) the duration of intracellular retention of both taxol and saquinavir. More than 50% of the drugs were retained in cells even after 90 mins post removal of montelukast from the medium. Our findings implicate that montelukast, a relatively safe anti-asthmatic agent, may be used as an adjunct therapy to suppress the efflux of taxol and saquinavir from MRP2 overexpressing cells. PMID:19952419

  19. Targeting efflux pumps to overcome antifungal drug resistance

    PubMed Central

    Holmes, Ann R; Cardno, Tony S; Strouse, J Jacob; Ivnitski-Steele, Irena; Keniya, Mikhail V; Lackovic, Kurt; Monk, Brian C; Sklar, Larry A; Cannon, Richard D

    2016-01-01

    Resistance to antifungal drugs is an increasingly significant clinical problem. The most common antifungal resistance encountered is efflux pump-mediated resistance of Candida species to azole drugs. One approach to overcome this resistance is to inhibit the pumps and chemosensitize resistant strains to azole drugs. Drug discovery targeting fungal efflux pumps could thus result in the development of azole-enhancing combination therapy. Heterologous expression of fungal efflux pumps in Saccharomyces cerevisiae provides a versatile system for screening for pump inhibitors. Fungal efflux pumps transport a range of xenobiotics including fluorescent compounds. This enables the use of fluorescence-based detection, as well as growth inhibition assays, in screens to discover compounds targeting efflux-mediated antifungal drug resistance. A variety of medium- and high-throughput screens have been used to identify a number of chemical entities that inhibit fungal efflux pumps. PMID:27463566

  20. Alginic acid cell entrapment: a novel method for measuring in vivo macrophage cholesterol homeostasis

    PubMed Central

    Sontag, Timothy J.; Chellan, Bijoy; Bhanvadia, Clarissa V.; Getz, Godfrey S.; Reardon, Catherine A.

    2015-01-01

    Macrophage conversion to atherosclerotic foam cells is partly due to the balance of uptake and efflux of cholesterol. Cholesterol efflux from cells by HDL and its apoproteins for subsequent hepatic elimination is known as reverse cholesterol transport. Numerous methods have been developed to measure in vivo macrophage cholesterol efflux. Most methods do not allow for macrophage recovery for analysis of changes in cellular cholesterol status. We describe a novel method for measuring cellular cholesterol balance using the in vivo entrapment of macrophages in alginate, which retains incorporated cells while being permeable to lipoproteins. Recipient mice were injected subcutaneously with CaCl2 forming a bubble into which a macrophage/alginate suspension was injected, entrapping the macrophages. Cells were recovered after 24 h. Cellular free and esterified cholesterol mass were determined enzymatically and normalized to cellular protein. Both normal and cholesterol loaded macrophages undergo measureable changes in cell cholesterol when injected into WT and apoA-I-, LDL-receptor-, or apoE-deficient mice. Cellular cholesterol balance is dependent on initial cellular cholesterol status, macrophage cholesterol transporter expression, and apolipoprotein deficiency. Alginate entrapment allows for the in vivo measurement of macrophage cholesterol homeostasis and is a novel platform for investigating the role of genetics and therapeutic interventions in atherogenesis. PMID:25465389

  1. Atheroprotective Effects of Methotrexate on Reverse Cholesterol Transport Proteins and Foam Cell Transformation in THP-1 Human Monocytes/Macrophages

    PubMed Central

    Reiss, Allison B.; Carsons, Steven E.; Anwar, Kamran; Rao, Soumya; Edelman, Sari D.; Zhang, Hongwei; Fernandez, Patricia; Cronstein, Bruce N.; Chan, Edwin S.L.

    2008-01-01

    OBJECTIVE: To determine whether MTX can overcome the atherogenic effect of COX-2 inhibitors and IFN-γ, both of which suppress cholesterol efflux protein levels and promote foam cell transformation in THP-1 human monocytes/macrophages. METHODS: Message and protein level of the reverse cholesterol transport (RCT) proteins cholesterol 27-hydroxylase and ABCA1 in THP-1 cells were evaluated by real-time polymerase chain reaction and immunoblot, respectively. Expression was evaluated in cells incubated in the presence or absence of the COX-2 inhibitor NS398 or IFN-γ with/without MTX. Foam cell transformation of lipid-loaded THP-1 macrophages was detected with oil red O staining and light microscopy. RESULTS: MTX increased 27-hydroxylase message and completely blocked NS398-induced downregulation of 27-hydroxylase (112.8±13.1% for NS398+MTX versus 71.1±4.3% for NS398 alone, with untreated as 100%, n=3, p<0.01). MTX also negated COX-2 inhibitor-mediated downregulation of ABCA1. Reversal of inhibitory effects on 27-hydroxylase and ABCA1 in the presence of MTX were blocked by the adenosine A2A receptor-specific antagonist ZM-241385. MTX also prevented NS398 and IFN-γ from increasing transformation of lipid-loaded THP-1 macrophages into foam cells. CONCLUSIONS: This study provides evidence supporting the atheroprotective effect of MTX. Through adenosine A2A receptor activation, MTX promotes RCT and limits foam cell formation in THP-1 macrophages. This is the first evidence that any commonly used medication can increase expression of anti-atherogenic RCT proteins and can counteract the effects of COX-2 inhibition. Our results suggest that one mechanism by which MTX protects against cardiovascular mortality in RA patients is through facilitation of cholesterol outflow from cells of the artery wall. PMID:19035488

  2. Association of ABCB1 and ABCG2 single nucleotide polymorphisms with clinical findings and response to chemotherapy treatments in Kurdish patients with breast cancer.

    PubMed

    Ghafouri, Houshiyar; Ghaderi, Bayazid; Amini, Sabrieh; Nikkhoo, Bahram; Abdi, Mohammad; Hoseini, Abdolhakim

    2016-06-01

    The possible interaction between gene polymorphisms and risk of cancer progression is very interesting. Polymorphisms in multi-drug resistance genes have an important role in response to anti-cancer drugs. The present study was aimed to evaluate the possible effects of ABCB1 C3435T and ABCG2 C421A single nucleotide polymorphisms on clinical and pathological outcomes of Kurdish patients with breast cancer. One hundred breast cancer patients and 200 healthy controls were enrolled in this case-control study. Clinical and pathological findings of all individuals were reported, and immunohistochemistry staining was used to assess the tissue expression of specific breast cancer proteins. The ABCB1 C3435T and ABCG2 C421 genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP). The distribution of different genotypes between patient and control groups was only significant for ABCG2 C421A. A allele of ABCG2 C421A polymorphisms were significantly higher in patients than in controls. Patients with AA genotype of ABCG2 C421A were at higher risk of progressing breast cancer. Patients with A allele of ABCG2 had complete response to chemotherapeutic agents. There was no statistically significant association between ABCB1 C3435T and ABCG2 C421A polymorphisms and tissue expression of ER, PR, Her2/neu, and Ki67. The ABCB1 C3435T has no correlation with clinical findings and treatment with chemotherapy drugs. The A allele of ABCG2 C421A may be a risk factor for progression of breast cancer in Kurdish patients. In addition, breast cancer patients with C allele of this polymorphism have weaker response to treatments with anthracyclines and Paclitaxol.

  3. The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier

    NASA Technical Reports Server (NTRS)

    Chen, R.; Hilson, P.; Sedbrook, J.; Rosen, E.; Caspar, T.; Masson, P. H.

    1998-01-01

    Auxins are plant hormones that mediate many aspects of plant growth and development. In higher plants, auxins are polarly transported from sites of synthesis in the shoot apex to their sites of action in the basal regions of shoots and in roots. Polar auxin transport is an important aspect of auxin functions and is mediated by cellular influx and efflux carriers. Little is known about the molecular identity of its regulatory component, the efflux carrier [Estelle, M. (1996) Current Biol. 6, 1589-1591]. Here we show that mutations in the Arabidopsis thaliana AGRAVITROPIC 1 (AGR1) gene involved in root gravitropism confer increased root-growth sensitivity to auxin and decreased sensitivity to ethylene and an auxin transport inhibitor, and cause retention of exogenously added auxin in root tip cells. We used positional cloning to show that AGR1 encodes a putative transmembrane protein whose amino acid sequence shares homologies with bacterial transporters. When expressed in Saccharomyces cerevisiae, AGR1 promotes an increased efflux of radiolabeled IAA from the cells and confers increased resistance to fluoro-IAA, a toxic IAA-derived compound. AGR1 transcripts were localized to the root distal elongation zone, a region undergoing a curvature response upon gravistimulation. We have identified several AGR1-related genes in Arabidopsis, suggesting a global role of this gene family in the control of auxin-regulated growth and developmental processes.

  4. FABP4-mediated homocysteine-induced cholesterol accumulation in THP-1 monocyte-derived macrophages and the potential epigenetic mechanism.

    PubMed

    Jiang, Yideng; Ma, Shengchao; Zhang, Huiping; Yang, Xiaoling; Lu, Guan Jun; Zhang, Hui; He, Yangyang; Kong, Fanqi; Yang, Anning; Xu, Hua; Zhang, Minghao; Jiao, Yun; Li, Guizhong; Cao, Jun; Jia, Yuexia; Jin, Shaoju; Wei, Jun; Shi, Yingkang

    2016-07-01

    Hyperhomocysteinemia (HHcy) is an independent risk factor for the development of atherosclerosis (AS), according to overwhelming number of clinical and epidemiological studies. However, the underlying pathogenic molecular mechanisms by which HHcy promotes AS remain to be fully elucidated. Fatty acid binding protein 4 (FABP4) has been shown to be important in macrophage cholesterol trafficking. The objective of the present study was to determine whether homocysteine (Hcy) accelerates AS through regulating FABP4, and then mediates cholesterol accumulation in macrophages. Hcy concentrations of 0, 50, 100, 200 and 500 µM, and 100 µM Hcy+30 µM vitamin B12 (VB12)+30 µM folic acid (FA) were respectively added to cultured THP‑1 monocyte‑derived macrophages for 24 h. The levels of FABP4, which acts as a key factor connecting cellular lipid accumulation to inflammation, were determined using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blot analyses in the macrophages. The present study used a nested touchdown methylation‑specific PCR assay to detect the DNA methylation status of the FABP4 promoter region. In addition, the FABP4 gene fragment was inserted into the cloning vector, pcDNA3.1‑EGFP, to construct the recombinant plasmid, pcDNA3.1‑EGFP/FABP4, which was identified using restriction endonuclease digestion analysis and DNA sequencing. The pcDNA3.1‑EGFP/FABP4 expression plasmid was transfected into THP‑1 monocyte‑derived macrophages, mediated by liposome reagent, following which the expression levels of FABP4 were detected using RT‑qPCR and western blot analyses. The present study also determined the intracellular accumulation of total cholesterol in the macrophages. The results indicated that Hcy decreased the levels of FABP4 promoter methylation, but increased the mRNA and protein expression levels of FABP4 in the macrophages, compared with the control group (0 µM Hcy). However, no dose

  5. Type I diabetes mellitus decreases in vivo macrophage-to-feces reverse cholesterol transport despite increased biliary sterol secretion in mice

    PubMed Central

    Freark de Boer, Jan; Annema, Wijtske; Schreurs, Marijke; van der Veen, Jelske N.; van der Giet, Markus; Nijstad, Niels; Kuipers, Folkert; Tietge, Uwe J. F.

    2012-01-01

    Type I diabetes mellitus (T1DM) increases atherosclerotic cardiovascular disease; however, the underlying pathophysiology is still incompletely understood. We investigated whether experimental T1DM impacts HDL-mediated reverse cholesterol transport (RCT). C57BL/6J mice with alloxan-induced T1DM had higher plasma cholesterol levels (P < 0.05), particularly within HDL, and increased hepatic cholesterol content (P < 0.001). T1DM resulted in increased bile flow (2.1-fold; P < 0.05) and biliary secretion of bile acids (BA, 10.5-fold; P < 0.001), phospholipids (4.5-fold; P < 0.001), and cholesterol (5.5-fold; P < 0.05). Hepatic cholesterol synthesis was unaltered, whereas BA synthesis was increased in T1DM (P < 0.001). Mass fecal BA output was significantly higher in T1DM mice (1.5-fold; P < 0.05), fecal neutral sterol excretion did not change due to increased intestinal cholesterol absorption (2.1-fold; P < 0.05). Overall in vivo macrophage-to-feces RCT, using [3H]cholesterol-loaded primary mouse macrophage foam cells, was 20% lower in T1DM (P < 0.05), mainly due to reduced tracer excretion within BA (P < 0.05). In vitro experiments revealed unchanged cholesterol efflux toward T1DM HDL, whereas scavenger receptor class BI-mediated selective uptake from T1DM HDL was lower in vitro and in vivo (HDL kinetic experiments) (P < 0.05), conceivably due to increased glycation of HDL-associated proteins (+65%, P < 0.01). In summary, despite higher mass biliary sterol secretion T1DM impairs macrophage-to-feces RCT, mainly by decreasing hepatic selective uptake, a mechanism conceivably contributing to increased cardiovascular disease in T1DM. PMID:22180634

  6. Drug Tolerance in Replicating Mycobacteria Mediated by a Macrophage-Induced Efflux Mechanism

    PubMed Central

    Adams, Kristin N.; Takaki, Kevin; Connolly, Lynn E.; Wiedenhoft, Heather; Winglee, Kathryn; Humbert, Olivier; Edelstein, Paul H.; Cosma, Christine L.; Ramakrishnan, Lalita

    2011-01-01

    SUMMARY Treatment of tuberculosis, a complex granulomatous disease, requires long-term multidrug therapy to overcome tolerance, an epigenetic drug resistance that is widely attributed to nonreplicating bacterial subpopulations. Here, we deploy Mycobacterium marinum-infected zebrafish larvae for in vivo characterization of antitubercular drug activity and tolerance. We describe the existence of multi-drug tolerant organisms that arise within days of infection, are enriched in the replicating intracellular population, and are amplified and disseminated by the tuberculous granuloma. Bacterial efflux pumps that are required for intracellular growth mediate this macrophage-induced tolerance. This newly discovered tolerant population also develops when Mycobacterium tuberculosis infects cultured macrophages, suggesting that it contributes to the burden of drug tolerance in human tuberculosis. Efflux pump inhibitors like verapamil reduce this tolerance. Thus, the addition of this currently approved drug, or more specific inhibitors, to standard antitubercular therapy may shorten the duration of curative treatment. PMID:21376383

  7. Correlation between clinical response to sorafenib in hepatocellular carcinoma treatment and polymorphisms of P-glycoprotein (ABCB1) and of breast cancer resistance protein (ABCG2): monocentric study.

    PubMed

    Tandia, Mahamadou; Mhiri, Asma; Paule, Bernard; Saffroy, Raphaël; Cailliez, Valérie; Noé, Gaëlle; Farinotti, Robert; Bonhomme-Faivre, Laurence

    2017-04-01

    We studied the relation between the polymorphism of P-glycoprotein (P-gp) and of breast cancer resistance protein (BCRP), encoded by ABCB1 and ABCG2 genes, respectively, and the pharmacokinetic variability and clinical response during the treatment with sorafenib of hepatocellular carcinoma. At the Paul Brousse Hospital in Villejuif, France, 47 consecutive patients with advanced HCC treated with a single agent sorafenib, were enrolled. Sorafenib exposure was measured by its plasma concentration 3 h after oral administration of 400 mg (bid) by liquid chromatography. All enrolled patients were genotyped for ABCB1 (rs2032582; rs1045642) and ABCG2 (rs2231137; rs2231142; rs2622604) by blood genomic DNA extraction and Mass ARRAY genotyping. The clinical response was evaluated after 3months of treatment according to the RECIST criteria. Significant associations between sorafenib exposure and the studied polymorphisms were observed for ABCB1 3435C>T, ABCG2 34G>A, ABCG2 1143C>T and ABCG2 421C>A, but not for ABCB1 2677G>TA SNP. In heterozygous patients for ABCB1 3435 C>T, ABCG2 34 G>A and ABCG2 1143 C>T polymorphisms were significantly associated with the lowest sorafenib plasma levels. Those patients presented a tendency to have the best clinical evolution. Heterozygous forms of the studied polymorphisms could be associated with a better therapeutic response.

  8. Ligand Promiscuity between the Efflux Pumps Human P-Glycoprotein and S. aureus NorA.

    PubMed

    Brincat, Jean Pierre; Broccatelli, Fabio; Sabatini, Stefano; Frosini, Maria; Neri, Annalisa; Kaatz, Glenn W; Cruciani, Gabriele; Carosati, Emanuele

    2012-03-08

    Thirty-two diverse compounds were evaluated for their ability to inhibit both Pgp-mediated efflux in mouse T-lymphoma L5178 MDR1 and NorA-mediated efflux in S. aureus SA-1199B. Only four compounds were strong inhibitors of both efflux pumps. Three compounds were found to inhibit Pgp exclusively and strongly, while seven compounds inhibited only NorA. These results demonstrate that Pgp and NorA inhibitors do not necessarily overlap, opening the way to safer therapeutic use of effective NorA inhibitors.

  9. Role of Abcg2 During Mouse Embroyonic Stem Cell Diffferentiation

    EPA Science Inventory

    Role of Abcg2 During Mouse Embryonic Stem Cell Differentiation. Abcg2 is a multidrug resistance ATP-binding cassette (ABC) transporter whose activity may be considered a hallmark of stem cell plasticity. The role of Abcg2 during early embryogenesis, however, is unclear. Studies...

  10. Dietary fish oil regulates gene expression of cholesterol and bile acid transporters in mice.

    PubMed

    Kamisako, Toshinori; Tanaka, Yuji; Ikeda, Takanori; Yamamoto, Kazuo; Ogawa, Hiroshi

    2012-03-01

      Fish oil rich in n-3 polyunsaturated fatty acids is known to affect hepatic lipid metabolism. Several studies have demonstrated that fish oil may affect the bile acid metabolism as well as lipid metabolism, whereas only scarce data are available. The aim of this study was to investigate the effect of fish oil on the gene expression of the transporters and enzymes related to bile acid as well as lipid metabolism in the liver and small intestine.   Seven-week old male C57BL/6 mice were fed diets enriched in 10% soybean oil or 10% fish oil for 4 weeks. After 4 weeks, blood, liver and small intestine were obtained.   Hepatic mRNA expression of lipids (Abcg5/8, multidrug resistance gene product 2) and bile acids transporters (bile salt export pump, multidrug resistance associated protein 2 and 3, organic solute transporter α) was induced in fish oil-fed mice. Hepatic Cyp8b1, Cyp27a1 and bile acid CoA : amino acid N-acyltransferase were increased in fish oil-fed mice compared with soybean-oil fed mice. Besides, intestinal cholesterol (Abcg5/8) and bile acid transporters (multidrug resistance associated protein 2 and organic solute transporter α) were induced in fish oil-fed mice.   Fish oil induced the expression of cholesterol and bile acid transporters not only in liver but in intestine. The upregulation of Abcg5/g8 by fish oil is caused by an increase in cellular 27-HOC through Cyp27a1 induction. The hepatic induction of bile acid synthesis through Cyp27a1 may upregulate expression of bile acid transporters in both organs. © 2012 The Japan Society of Hepatology.

  11. CFTR mediates noradrenaline-induced ATP efflux from DRG neurons.

    PubMed

    Kanno, Takeshi; Nishizaki, Tomoyuki

    2011-09-24

    In our earlier study, noradrenaline (NA) stimulated ATP release from dorsal root ganglion (DRG) neurons as mediated via β(3) adrenoceptors linked to G(s) protein involving protein kinase A (PKA) activation, to cause allodynia. The present study was conducted to understand how ATP is released from DRG neurons. In an outside-out patch-clamp configuration from acutely dissociated rat DRG neurons, single-channel currents, sensitive to the P2X receptor inhibitor PPADS, were evoked by approaching the patch-electrode tip close to a neuron, indicating that ATP is released from DRG neurons, to activate P2X receptor. NA increased the frequency of the single-channel events, but such NA effect was not found for DRG neurons transfected with the siRNA to silence the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In the immunocytochemical study using acutely dissociated rat DRG cells, CFTR was expressed in neurons alone, but not satellite cells, fibroblasts, or Schwann cells. It is concluded from these results that CFTR mediates NA-induced ATP efflux from DRG neurons as an ATP channel.

  12. Myeloid-specific genetic ablation of ATP-binding cassette transporter ABCA1 is protective against cancer

    PubMed Central

    Zamanian-Daryoush, Maryam; Lindner, Daniel J.; DiDonato, Joseph A.; Wagner, Matthew; Buffa, Jennifer; Rayman, Patricia; Parks, John S.; Westerterp, Marit; Tall, Alan R.; Hazen, Stanley L.

    2017-01-01

    Increased circulating levels of apolipoprotein A-I (apoA-I), the major protein of high-density lipoprotein (HDL), by genetic manipulation or infusion, protects against melanoma growth and metastasis. Herein, we explored potential roles in melanoma tumorigenesis for host scavenger receptor class B, type 1 (SR-B1), and ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1), all mediators of apoA-I and HDL sterol and lipid transport function. In a syngeneic murine melanoma tumor model, B16F10, mice with global deletion of SR-B1 expression exhibited increased plasma HDL cholesterol (HDLc) levels and decreased tumor volume, indicating host SR-B1 does not directly contribute to HDL-associated anti-tumor activity. In mice with myeloid-specific loss of ABCA1 (Abca1−M/−M; A1−M/−M), tumor growth was inhibited by ∼4.8-fold relative to wild type (WT) animals. Abcg1−M/−M (G1−M/−M) animals were also protected by 2.5-fold relative to WT, with no further inhibition of tumor growth in Abca1/Abcg1 myeloid-specific double knockout animals (DKO). Analyses of tumor-infiltrating immune cells revealed a correlation between tumor protection and decreased presence of the immune suppressive myeloid-derived suppressor cell (MDSC) subsets, Ly-6G+Ly-6CLo and Ly-6GnegLy-6CHi cells. The growth of the syngeneic MB49 murine bladder cancer cells was also inhibited in A1−M/−M mice. Collectively, our studies provide further evidence for an immune modulatory role for cholesterol homeostasis pathways in cancer. PMID:29069761

  13. Regulation of neuronal APL-1 expression by cholesterol starvation.

    PubMed

    Wiese, Mary; Antebi, Adam; Zheng, Hui

    2012-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of β-amyloid plaques composed primarily of the amyloid-β peptide, a cleavage product of amyloid precursor protein (APP). While mutations in APP lead to the development of Familial Alzheimer's Disease (FAD), sporadic AD has only one clear genetic modifier: the ε4 allele of the apolipoprotein E (ApoE) gene. Cholesterol starvation in Caenorhabditis elegans leads to molting and arrest phenotypes similar to loss-of-function mutants of the APP ortholog, apl-1 (amyloid precursor-like protein 1), and lrp-1 (lipoprotein receptor-related protein 1), suggesting a potential interaction between apl-1 and cholesterol metabolism. Previously, we found that RNAi knock-down of apl-1 leads to aldicarb hypersensitivity, indicating a defect in synaptic function. Here we find the same defect is recapitulated during lrp-1 knock-down and by cholesterol starvation. A cholesterol-free diet or loss of lrp-1 directly affects APL-1 levels as both lead to loss of APL-1::GFP fluorescence in neurons. However, loss of cholesterol does not affect global transcription or protein levels as seen by qPCR and Western blot. Our results show that cholesterol and lrp-1 are involved in the regulation of synaptic transmission, similar to apl-1. Both are able to modulate APL-1 protein levels in neurons, however cholesterol changes do not affect global apl-1 transcription or APL-1 protein indicating the changes are specific to neurons. Thus, regulation of synaptic transmission and molting by LRP-1 and cholesterol may be mediated by their ability to control APL-1 neuronal protein expression.

  14. Functional characterization of rainbow trout (Oncorhynchus mykiss) Abcg2a (Bcrp) transporter.

    PubMed

    Zaja, Roko; Popović, Marta; Lončar, Jovica; Smital, Tvrtko

    2016-12-01

    ABCG2 (BCRP - breast cancer resistance protein) belongs to the ATP-binding cassette (ABC) superfamily. It plays an important role in the disposition and elimination of xeno- and endobiotics and/or their metabolites in mammals. Likewise, the protective role of ABC transporters, including Abcg2, has been reported for aquatic organisms. In our previous study we have cloned the full gene sequence of rainbow trout (Oncorhynchus mykiss) Abcg2a and showed its high expression in liver and primary hepatocytes. Based on those insights, the main goal of this study was to perform a detailed functional characterization of trout Abcg2a using insect ovary cells (Spodoptera frugiperda, Sf9) as a heterologous expression system. Membrane vesicles preparations from Sf9 cells were used for the ATPase assay determinations and basic biochemical properties of fish Abcg2a versus human ABCG2 have been compared. A series of 39 physiologically and/or environmentally relevant substances was then tested on interaction with trout Abcg2a and human ABCG2. Correlation analysis reveals highly similar pattern of activation and inhibition. Significant activation of trout Abcg2a ATPase was observed for prazosin, doxorubicine, sildenafil, furosemid, propranolol, fenofibrate and pheophorbide. Pesticides showed either a weak activation (malathione) or strong (endosulfan) to weak (chlorpyrifos, fenoxycarb, DDE) inhibition of trout Abcg2a ATPase while the highest activation was obtained for benzo(a)pyrene, curcumine and testosterone. In conclusion, data from this study offer the first characterization of fish Abcg2a, reveal potent interactors among physiologically or environmentally relevant substances and point to similarities regarding strengths and interactor preferences between human ABCG2 and fish Abcg2a. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Assembly of high density lipoprotein by the ABCA1/apolipoprotein pathway.

    PubMed

    Yokoyama, Shinji

    2005-06-01

    Mammalian somatic cells do not catabolize cholesterol and therefore need to export it for sterol homeostasis at the levels of cells and whole bodies. This mechanism may reduce intracellularly accumulated cholesterol in excess, and thereby would contribute to the prevention or cure of the initial stage of atherosclerotic vascular lesions. HDL is thought to play a main role in this reaction on the basis of epidemiological evidence and in-vitro experimental data. Two independent mechanisms have been identified for this reaction. One is non-specific diffusion-mediated cholesterol 'efflux' from the cell surface, and cholesterol is trapped by various extracellular acceptors including lipoproteins. Extracellular cholesterol esterification on HDL provides a driving force for the net removal of cell cholesterol, and some cellular factors may enhance this reaction. The other mechanism is an apolipoprotein-mediated process to generate HDL by removing cellular phospholipid and cholesterol. This reaction is mediated by a membrane protein ABCA1, and lipid-free or lipid-poor helical apolipoproteins recruit cellular phospholipid and cholesterol to assemble HDL particles. The reaction is composed of two elements: the assembly of HDL particles with phospholipid by apolipoprotein, and cholesterol enrichment in HDL. ABCA1 is essential for the former step, and the latter step requires further intracellular events. ABCA1 is a rate-limiting factor of HDL assembly and is regulated by transcriptional factors and posttranscriptional factors. Posttranscriptional regulation of ABCA1 involves the modulation of its calpain-mediated degradation.

  16. Quantitative Assessment of the Impact of Fluorine Substitution on P-Glycoprotein (P-gp) Mediated Efflux, Permeability, Lipophilicity, and Metabolic Stability.

    PubMed

    Pettersson, Martin; Hou, Xinjun; Kuhn, Max; Wager, Travis T; Kauffman, Gregory W; Verhoest, Patrick R

    2016-06-09

    Strategic replacement of one or more hydrogen atoms with fluorine atom(s) is a common tactic to improve potency at a given target and/or to modulate parameters such as metabolic stability and pKa. Molecular weight (MW) is a key parameter in design, and incorporation of fluorine is associated with a disproportionate increase in MW considering the van der Waals radius of fluorine versus hydrogen. Herein we examine a large compound data set to understand the effect of introducing fluorine on the risk of encountering P-glycoprotein mediated efflux (as measured by MDR efflux ratio), passive permeability, lipophilicity, and metabolic stability. Statistical modeling of the MDR ER data demonstrated that an increase in MW as a result of introducing fluorine atoms does not lead to higher risk of P-gp mediated efflux. Fluorine-corrected molecular weight (MWFC), where the molecular weight of fluorine has been subtracted, was found to be a more relevant descriptor.

  17. The structure of the human ABC transporter ABCG2 reveals a novel mechanism for drug extrusion.

    PubMed

    Khunweeraphong, Narakorn; Stockner, Thomas; Kuchler, Karl

    2017-10-23

    The human ABC transporter ABCG2 (Breast Cancer Resistance Protein, BCRP) is implicated in anticancer resistance, in detoxification across barriers and linked to gout. Here, we generate a novel atomic model of ABCG2 using the crystal structure of ABCG5/G8. Extensive mutagenesis verifies the structure, disclosing hitherto unrecognized essential residues and domains in the homodimeric ABCG2 transporter. The elbow helix, the first intracellular loop (ICL1) and the nucleotide-binding domain (NBD) constitute pivotal elements of the architecture building the transmission interface that borders a central cavity which acts as a drug trap. The transmission interface is stabilized by salt-bridge interactions between the elbow helix and ICL1, as well as within ICL1, which is essential to control the conformational switch of ABCG2 to the outward-open drug-releasing conformation. Importantly, we propose that ICL1 operates like a molecular spring that holds the NBD dimer close to the membrane, thereby enabling efficient coupling of ATP hydrolysis during the catalytic cycle. These novel mechanistic data open new opportunities to therapeutically target ABCG2 in the context of related diseases.

  18. Impact of ABCB1, ABCG2, and CYP3A5 polymorphisms on plasma trough concentrations of apixaban in Japanese patients with atrial fibrillation.

    PubMed

    Ueshima, Satoshi; Hira, Daiki; Fujii, Ryo; Kimura, Yuuma; Tomitsuka, Chiho; Yamane, Takuya; Tabuchi, Yohei; Ozawa, Tomoya; Itoh, Hideki; Horie, Minoru; Terada, Tomohiro; Katsura, Toshiya

    2017-09-01

    During anticoagulant therapy, major bleeding is one of the most severe adverse effects. This study aimed to evaluate the relationships between ABCB1, ABCG2, and CYP3A5 polymorphisms and plasma trough concentrations of apixaban, a direct inhibitor of coagulation factor X. A total of 70 plasma concentrations of apixaban from 44 Japanese patients with atrial fibrillation were analyzed. In these analyses, the plasma trough concentration/dose (C/D) ratio of apixaban was used as a pharmacokinetic index and all data were stratified according to the presence of ABCB1 (ABCB1 1236C>T, 2677G>T/A, and 3435C>T), ABCG2 (ABCG2 421C>A), and CYP3A5 (CYP3A5*3) polymorphisms. Influences of various clinical laboratory parameters (age, serum creatinine, estimated glomerular filtration rate, aspartate amino transferase, and alanine amino transferase) on the plasma trough C/D ratio of apixaban were included in analyses. Although no ABCB1 polymorphisms affected the plasma trough C/D ratio of apixaban, the plasma trough C/D ratio of apixaban was significantly higher in patients with the ABCG2 421A/A genotype than in patients with the ABCG2 421C/C genotype (P<0.01). The plasma trough C/D ratio of apixaban in patients with CYP3A5*1/*3 or *3/*3 genotypes was also significantly higher than that in patients with the CYP3A5*1/*1 genotype (P<0.05). Furthermore, the plasma trough C/D ratio of apixaban decreased with increased estimated glomerular filtration rate. These results indicate that ABCG2 421A/A and CYP3A5*3 genotypes and renal function are considered potential factors affecting trough concentrations of apixaban.

  19. Ezetimibe-sensitive cholesterol uptake by NPC1L1 protein does not require endocytosis

    PubMed Central

    Johnson, Tory A.; Pfeffer, Suzanne R.

    2016-01-01

    Human NPC1L1 protein mediates cholesterol absorption in the intestine and liver and is the target of the drug ezetimibe, which is used to treat hypercholesterolemia. Previous studies concluded that NPC1L1-GFP protein trafficking is regulated by cholesterol binding and that ezetimibe blocks NPC1L1-GFP function by inhibiting its endocytosis. We used cell surface biotinylation to monitor NPC1L1-GFP endocytosis and show that ezetimibe does not alter the rate of NPC1L1-GFP endocytosis in cultured rat hepatocytes grown under normal growth conditions. As expected, NPC1L1-GFP endocytosis depends in part on C-terminal, cytoplasmically oriented sequences, but endocytosis does not require cholesterol binding to NPC1L1’s N-terminal domain. In addition, two small- molecule inhibitors of general (and NPC1L1-GFP) endocytosis failed to inhibit the ezetimibe-sensitive uptake of [3H]cholesterol from taurocholate micelles. These experiments demonstrate that cholesterol uptake by NPC1L1 does not require endocytosis; moreover, ezetimibe interferes with NPC1L1’s cholesterol adsorption activity without blocking NPC1L1 internalization in RH7777 cells. PMID:27075173

  20. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα, β/δ, and γ

    PubMed Central

    Li, Andrew C.; Binder, Christoph J.; Gutierrez, Alejandra; Brown, Kathleen K.; Plotkin, Christine R.; Pattison, Jennifer W.; Valledor, Annabel F.; Davis, Roger A.; Willson, Timothy M.; Witztum, Joseph L.; Palinski, Wulf; Glass, Christopher K.

    2004-01-01

    PPARα, β/δ, and γ regulate genes involved in the control of lipid metabolism and inflammation and are expressed in all major cell types of atherosclerotic lesions. In vitro studies have suggested that PPARs exert antiatherogenic effects by inhibiting the expression of proinflammatory genes and enhancing cholesterol efflux via activation of the liver X receptor–ABCA1 (LXR-ABCA1) pathway. To investigate the potential importance of these activities in vivo, we performed a systematic analysis of the effects of PPARα, β, and γ agonists on foam-cell formation and atherosclerosis in male LDL receptor–deficient (LDLR–/–) mice. Like the PPARγ agonist, a PPARα-specific agonist strongly inhibited atherosclerosis, whereas a PPARβ-specific agonist failed to inhibit lesion formation. In concert with their effects on atherosclerosis, PPARα and PPARγ agonists, but not the PPARβ agonist, inhibited the formation of macrophage foam cells in the peritoneal cavity. Unexpectedly, PPARα and PPARγ agonists inhibited foam-cell formation in vivo through distinct ABCA1-independent pathways. While inhibition of foam-cell formation by PPARα required LXRs, activation of PPARγ reduced cholesterol esterification, induced expression of ABCG1, and stimulated HDL-dependent cholesterol efflux in an LXR-independent manner. In concert, these findings reveal receptor-specific mechanisms by which PPARs influence macrophage cholesterol homeostasis. In the future, these mechanisms may be exploited pharmacologically to inhibit the development of atherosclerosis. PMID:15578089

  1. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    PubMed Central

    Andersen, Vibeke; Svenningsen, Katrine; Knudsen, Lina Almind; Hansen, Axel Kornerup; Holmskov, Uffe; Stensballe, Allan; Vogel, Ulla

    2015-01-01

    AIM: To evaluate ATP-binding cassette (ABC) transporters in colonic pathophysiology as they had recently been related to colorectal cancer (CRC) development. METHODS: Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1/Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function. RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes in relation to colitis was suggested by the animal studies. The finding that colitis was preceded by altered gut bacterial composition suggests that deletion of Abcb1 leads to fundamental changes of host-microbiota interaction. Also, high fat diet increases the frequency and severity of colitis in specific pathogen-free Abcb1 KO mice. The Abcb1 KO mice might thus serve as a model in which diet/environmental factors and microbes may be controlled and investigated in relation to intestinal inflammation. Potential molecular mechanisms include defective transport of inflammatory mediators and/or phospholipid translocation from one side to the other of the cell membrane lipid bilayer by ABC transporters affecting inflammatory response and/or function of tight junctions, phagocytosis and vesicle trafficking. Also, diet and microbes give rise to molecules which are potential substrates for the ABC transporters and which may additionally affect ABC transporter function through nuclear receptors and transcriptional regulation. Another critical role of ABCB1 was suggested by the finding that

  2. Inhibition of PRMT3 activity selectively impairs LXR-driven transcription of hepatic lipogenic genes in vivo.

    PubMed

    Nahon, Joya E; Groeneveldt, Christianne; Geerling, Janine J; Van Eck, Miranda; Hoekstra, Menno

    2018-05-18

    Agonists for the liver X receptor (LXR) are considered promising therapeutic moieties in cholesterol-driven diseases by promoting cellular cholesterol efflux pathways. However, current clinical application of these agents is hampered by the concomitant LXR-induced activation of a lipogenic transcriptional network, leading to hepatic steatosis. Recent studies have suggested that protein arginine methyltransferase 3 (PRMT3) may act as a selective co-activator of LXR activity. Here we verified the hypothesis that PRMT3 inhibition selectively disrupts the ability of LXR to stimulate lipogenesis, while maintaining the capacity of LXR to modulate macrophage cholesterol homeostasis. A combination of the LXR agonist T0901317 and palm oil was administered to C57BL/6 mice to maximally stimulate LXR and PRMT3 activity. PRMT3 activity was inhibited using the allosteric inhibitor SGC707. Treatment with the PRMT3 inhibitor SGC707 did not negatively influence the T0901317/palm oil induced upregulation of the cholesterol efflux genes ABCA1 and ABCG1 in peritoneal cells. In contrast, SGC707 treatment was associated with a significant decrease in the hepatic expression of the lipogenic gene FAS (-64%). A similar trend was observed for SCD1 and ACC expression (-43%; -56%) This obstruction of lipogenic gene transcription coincided with a significant 2.3-fold decrease in liver triglyceride content as compared to the T0901317 and palm oil treated control group. We have shown that inhibition of PRMT3 activity by SGC707 treatment selectively impairs LXR-driven transcription of hepatic lipogenic genes, while the positive effect of LXR stimulation on macrophage cholesterol efflux pathways is maintained. This article is protected by copyright. All rights reserved.

  3. Molecular Imaging of ABCB1 and ABCG2 Inhibition at the Human Blood-Brain Barrier Using Elacridar and 11C-Erlotinib PET.

    PubMed

    Verheijen, Remy B; Yaqub, Maqsood; Sawicki, Emilia; van Tellingen, Olaf; Lammertsma, Adriaan A; Nuijen, Bastiaan; Schellens, Jan H M; Beijnen, Jos H; Huitema, Alwin D R; Hendrikse, N Harry; Steeghs, Neeltje

    2018-06-01

    Transporters such as ABCB1 and ABCG2 limit the exposure of several anticancer drugs to the brain, leading to suboptimal treatment in the central nervous system. The purpose of this study was to investigate the effects of the ABCB1 and ABCG2 inhibitor elacridar on brain uptake using 11 C-erlotinib PET. Methods: Elacridar and cold erlotinib were administered orally to wild-type (WT) and Abcb1a/b;Abcg2 knockout mice. In addition, brain uptake was measured using 11 C-erlotinib imaging and ex vivo scintillation counting in knockout and WT mice. Six patients with advanced solid tumors underwent 11 C-erlotinib PET scans before and after a 1,000-mg dose of elacridar. 11 C-erlotinib brain uptake was quantified by pharmacokinetic modeling using volume of distribution (V T ) as the outcome parameter. In addition, 15 O-H 2 O scans to measure cerebral blood flow were acquired before each 11 C-erlotinib scan. Results: Brain uptake of 11 C-erlotinib was 2.6-fold higher in Abcb1a/b;Abcg2 knockout mice than in WT mice, measured as percentage injected dose per gram of tissue ( P = 0.01). In WT mice, the addition of elacridar (at systemic plasma concentrations of ≥200 ng/mL) resulted in an increased brain concentration of erlotinib, without affecting erlotinib plasma concentration. In patients, the V T of 11 C-erlotinib did not increase after intake of elacridar (0.213 ± 0.12 vs. 0.205 ± 0.07, P = 0.91). 15 O-H 2 O PET showed no significant changes in cerebral blood flow. Elacridar exposure in patients was 401 ± 154 ng/mL. No increase in V T with increased elacridar plasma exposure was found over the 271-619 ng/mL range. Conclusion: When Abcb1 and Abcg2 were disrupted in mice, brain uptake of 11 C-erlotinib increased both at a tracer dose and at a pharmacologic dose. In patients, brain uptake of 11 C-erlotinib was not higher after administration of elacridar. The more pronounced role that ABCG2 appears to play at the human blood-brain barrier and the lower potency of elacridar

  4. Breast cancer resistance protein (ABCG2) and drug disposition: intestinal expression, polymorphisms and sulfasalazine as an in vivo probe

    PubMed Central

    Urquhart, Bradley L.; Ware, Joseph A.; Tirona, Rommel G.; Ho, Richard H.; Leake, Brenda F.; Schwarz, Ute I.; Zaher, Hani; Palandra, Joe; Gregor, Jamie C.; Dresser, George K.; Kim, Richard B.

    2014-01-01

    Breast cancer resistance protein (BCRP) is an efflux transporter expressed in tissues that act as barriers to drug entry. Given that single nucleotide polymorphisms (SNPs) in the ABCG2 gene encoding BCRP are common, the possibility exists that these genetic variants may be a determinant of interindividual variability in drug response. The objective of this study is to confirm the human BCRP-mediated transport of sulfasalazine in vitro, evaluate interindividual variation in BCRP expression in human intestine and to determine the role of ABCG2 SNPs to drug disposition in healthy patients using sulfasalazine as a novel in vivo probe. To evaluate these objectives, pinch biopsies were obtained from 18 patients undergoing esophagogastro–duodenoscopy or colonoscopy for determination of BCRP expression in relation to genotype. Wild-type and variant BCRP were expressed in a heterologous expression system to evaluate the effect of SNPs on cell-surface trafficking. A total of 17 healthy individuals participated in a clinical investigation to determine the effect of BCRP SNPs on sulfasalazine pharmacokinetics. In vitro, the cell surface protein expression of the common BCRP 421 C>A variant was reduced in comparison with the wild-type control. Intestinal biopsy samples revealed that BCRP protein and mRNA expression did not significantly differ between patients with 34GG/421CC versus patients with 34GG/421CA genotypes. Remarkably, in subjects with 34GG/421CA genotype, sulfasalazine area under the concentration-time curve was 2.4-fold greater compared with 34GG/421CC subjects (P<0.05). This study links commonly occurring SNPs in BCRP with significantly increased oral sulfasalazine plasma exposure in humans. Accordingly, sulfasalazine may prove to have utility as in vivo probe for assessing the clinical impact of BCRP for the disposition and efficacy of drugs. PMID:18408567

  5. Association of genotypes and haplotypes of multi-drug transporter genes ABCB1 and ABCG2 with clinical response to imatinib mesylate in chronic myeloid leukemia patients.

    PubMed

    Au, Anthony; Aziz Baba, Abdul; Goh, Ai Sim; Wahid Fadilah, S Abdul; Teh, Alan; Rosline, Hassan; Ankathil, Ravindran

    2014-04-01

    The introduction and success of imatinib mesylate (IM) has become a paradigm shift in chronic myeloid leukemia (CML) treatment. However, the high efficacy of IM has been hampered by the issue of clinical resistance that might due to pharmacogenetic variability. In the current study, the contribution of three common single nucleotide polymorphisms (SNPs) of ABCB1 (T1236C, G2677T/A and C3435T) and two SNPs of ABCG2 (G34A and C421A) genes in mediating resistance and/or good response among 215 CML patients on IM therapy were investigated. Among these patients, the frequency distribution of ABCG2 421 CC, CA and AA genotypes were significantly different between IM good response and resistant groups (P=0.01). Resistance was significantly associated with patients who had homozygous ABCB1 1236 CC genotype with OR 2.79 (95%CI: 1.217-6.374, P=0.01). For ABCB1 G2677T/A polymorphism, a better complete cytogenetic remission was observed for patients with variant TT/AT/AA genotype, compared to other genotype groups (OR=0.48, 95%CI: 0.239-0.957, P=0.03). Haplotype analysis revealed that ABCB1 haplotypes (C1236G2677C3435) was statistically linked to higher risk to IM resistance (25.8% vs. 17.4%, P=0.04), while ABCG2 diplotype A34A421 was significantly correlated with IM good response (9.1% vs. 3.9%, P=0.03). In addition, genotypic variant in ABCG2 421C>A was associated with a major molecular response (MMR) (OR=2.20, 95%CI: 1.273-3.811, P=0.004), whereas ABCB1 2677G>T/A variant was associated with a significantly lower molecular response (OR=0.49, 95%CI: 0.248-0.974, P=0.04). However, there was no significant correlation of these SNPs with IM intolerance and IM induced hepatotoxicity. Our results suggest the usefulness of genotyping of these single nucleotide polymorphisms in predicting IM response among CML patients. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. ABCA1 agonist peptides for the treatment of disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bielicki, John K.

    Purpose of review The review summarizes information pertaining to the preclinical development of new apolipoprotein (apo) E mimetic peptides that stimulate cellular cholesterol efflux. Recent findings Small α-helical peptides based on the C-terminal domain of apoE have been developed for therapeutic applications. These peptides stimulate cellular cholesterol efflux via the ATP-binding cassette transporter A1 (ABCA1) with high potency, like native apolipoproteins on a molar basis. This potent activity has been related to the unique ability of these peptides to maintain α-helix structure upon dilution. Recent structure-activity studies improving the safety features of these mimetic peptides have greatly improved their potentialmore » for clinical use. Structural features of the class A α-helix motif that induce muscle toxicity and hypertriglyceridemia have been identified. These may have implications for the design of other HDL mimetic peptides. Summary ABCA1 is an integral membrane protein that plays a central role in biology. Its principal function is to mediate the efflux of cholesterol and phospholipid from cells to extracellular apo, preventing a build-up of excess cholesterol in membranes. This process generates HDL particles that perform a variety of functions to protect against disease. A number of these functions can be viewed as directly or indirectly supporting ABCA1 activity, thus constituting a positive feedback system to optimize cellular lipid efflux responses and disease prevention. Consequently, therapeutic approaches that mimic the activities of apos may prove highly effective to combat disease. One such approach involves the use of peptides. The broad biological relevance of ABCA1 suggests these apo mimetic peptides may be useful for the treatment of a number of diseases, such as atherosclerosis, diabetes, and Alzheimer's disease.« less

  7. ABCA1 agonist peptides for the treatment of disease

    DOE PAGES

    Bielicki, John K.

    2016-02-01

    Purpose of review The review summarizes information pertaining to the preclinical development of new apolipoprotein (apo) E mimetic peptides that stimulate cellular cholesterol efflux. Recent findings Small α-helical peptides based on the C-terminal domain of apoE have been developed for therapeutic applications. These peptides stimulate cellular cholesterol efflux via the ATP-binding cassette transporter A1 (ABCA1) with high potency, like native apolipoproteins on a molar basis. This potent activity has been related to the unique ability of these peptides to maintain α-helix structure upon dilution. Recent structure-activity studies improving the safety features of these mimetic peptides have greatly improved their potentialmore » for clinical use. Structural features of the class A α-helix motif that induce muscle toxicity and hypertriglyceridemia have been identified. These may have implications for the design of other HDL mimetic peptides. Summary ABCA1 is an integral membrane protein that plays a central role in biology. Its principal function is to mediate the efflux of cholesterol and phospholipid from cells to extracellular apo, preventing a build-up of excess cholesterol in membranes. This process generates HDL particles that perform a variety of functions to protect against disease. A number of these functions can be viewed as directly or indirectly supporting ABCA1 activity, thus constituting a positive feedback system to optimize cellular lipid efflux responses and disease prevention. Consequently, therapeutic approaches that mimic the activities of apos may prove highly effective to combat disease. One such approach involves the use of peptides. The broad biological relevance of ABCA1 suggests these apo mimetic peptides may be useful for the treatment of a number of diseases, such as atherosclerosis, diabetes, and Alzheimer's disease.« less

  8. Effect of levofloxacin, pazufloxacin, enrofloxacin, and meloxicam on the immunolocalization of ABCG-2 transporter protein in rabbit retina.

    PubMed

    Khan, Adil Mehraj; Rampal, Satyavan; Sood, Naresh Kumar

    2018-03-01

    Adenosine triphosphate-binding cassette (ABC) sub-family G member-2 (ABCG-2) is a transporter protein, implicated for multi-drug efflux from tissues. This study evaluated the effect of fluoroquinolones; levofloxacin, pazufloxacin and enrofloxacin, and non-steroidal anti-inflammatory drug, meloxicam; on the immunolocalization of ABCG-2 transporter protein of rabbit retinas. Thirty-two male rabbits were randomly divided in to eight groups. Control group was gavaged, 2% benzyl alcohol in 5% dextrose since these chemicals are excipients of the drug preparations used in the treatment groups of this study. Four groups were exclusively gavaged, levofloxacin hemihydrate (10 mg/kg body weight b.i.d 12 h), pazufloxacin mesylate (10 mg/kg body weight b.i.d 12 h), enrofloxacin (20 mg/kg body weight o.d.), and meloxicam (0.2 mg/kg body weight o.d.), respectively. Three other groups were co-gavaged meloxicam with above fluoroquinolones, respectively. These drugs were administered for 21 days. ABCG-2 immunolocalization was mild in the retinas of control and levofloxacin-alone-treated groups. The immunolocalization intensity was significantly higher in meloxicam-alone-treated group when compared to control and levofloxacin-alone-treated groups. Immunolocalization of this transporter increased in the levofloxacin-meloxicam co-treated group when compared to the levofloxacin-alone-treated group. Highest immunolocalization was observed in the enrofloxacin-meloxicam co-treated group although the immunolocalization of all treatment groups, except the levofloxacin-alone-treated group, was significantly higher than the control and levofloxacin-alone-treated groups.

  9. Effects of L-arabinose efflux on λ Red recombination-mediated gene knockout in multiple-antimicrobial-resistant Salmonella enterica serovar Choleraesuis.

    PubMed

    Liao, Shi-Wei; Lee, Jen-Jie; Ptak, Christopher P; Wu, Ying-Chen; Hsuan, Shih-Ling; Kuo, Chih-Jung; Chen, Ter-Hsin

    2018-03-01

    In this study, six swine-derived multiple-antimicrobial-resistant (MAR) strains of Salmonella Choleraesuis (S. Choleraesuis) were demonstrated to possess higher efflux pump activity than the wild-type (WT). L-Arabinose, a common inducer for gene expression, modulated S. Choleraesuis efflux pump activity in a dose-dependent manner. At low L-arabinose concentrations, increasing L-arabinose led to a corresponding increase in fluorophore efflux, while at higher L-arabinose concentrations, increasing L-arabinose decreased fluorophore efflux activity. The WT S. Choleraesuis that lacks TolC (ΔtolC), an efflux protein associated with bacterial antibiotic resistance and virulence, was demonstrated to possess a significantly reduced ability to extrude L-arabinose. Further, due to the rapid export of L-arabinose, an efficient method for recombination-mediated gene knockout, the L-arabinose-inducible bacteriophage λ Red recombinase system, has a reduced recombination frequency (~ 12.5%) in clinically isolated MAR Salmonella strains. An increased recombination frequency (up to 60%) can be achieved using a higher concentration of L-arabinose (fivefold) for genetic manipulation and functional analysis for MAR Salmonella using the λ Red system. The study suggests that L-arabinose serves not only as an inducer of the TolC-dependent efflux system but also acts as a competitive substrate of the efflux system. In addition, understanding the TolC-dependent efflux of L-arabinose should facilitate the optimization of L-arabinose induction in strains with high efflux activity.

  10. Population-specific association between ABCG2 variants and tophaceous disease in people with gout.

    PubMed

    He, Wendy; Phipps-Green, Amanda; Stamp, Lisa K; Merriman, Tony R; Dalbeth, Nicola

    2017-03-07

    Tophi contribute to musculoskeletal disability, joint damage and poor health-related quality of life in people with gout. The aim of this study was to examine the role of SLC2A9 and ABCG2 variants in tophaceous disease in people with gout. Participants (n = 1778) with gout fulfilling the 1977 American Rheumatism Association (ARA) classification criteria, who were recruited from primary and secondary care, attended a detailed study visit. The presence of palpable tophi was recorded. SLC2A9 rs11942223, ABCG2 rs2231142 and ABCG2 rs10011796 were genotyped. Data were analysed according to tophus status. Compared to participants without tophi, those with tophi were older, had longer disease duration and higher serum creatinine, and were more likely to be of Māori or Pacific (Polynesian) ancestry. SLC2A9 rs11942223 was not associated with tophi. However, the risk alleles for both ABCG2 single nucleotide polymorphisms (SNPs) were present more frequently in those with tophi (OR (95% CI) 1.24 (1.02-1.51) for rs2231142 and 1.33 (1.01-1.74) for rs10011796, p < 0.05 for both). The effect of rs2231142 was limited to participants of Māori or Pacific ancestry (OR 1.50 (1.14-1.99), p = 0.004), with a significant effect observed in those of Western Polynesian ancestry only (OR 1.71 (1.07-2.72), p = 0.017). The rs10011796 risk allele was strongly associated with tophi in the Western Polynesian group (OR 3.76 (1.61-8.77), p = 0.002), but not in the Eastern Polynesian group (OR 0.87 (0.52-1.46), p = 0.60) nor in the non-Polynesian group (OR 1.16 (0.81-1.66), p = 0.32). The ABCG2 associations persisted in the Western Polynesian group after adjusting for serum urate, creatinine, and disease duration, and when including both ABCG2 variants in the regression models. Variation in ABCG2 function may play a role in the development of tophaceous disease in some populations with high prevalence of severe gout.

  11. CYP46A1 inhibition, brain cholesterol accumulation and neurodegeneration pave the way for Alzheimer's disease.

    PubMed

    Djelti, Fathia; Braudeau, Jerome; Hudry, Eloise; Dhenain, Marc; Varin, Jennifer; Bièche, Ivan; Marquer, Catherine; Chali, Farah; Ayciriex, Sophie; Auzeil, Nicolas; Alves, Sandro; Langui, Dominique; Potier, Marie-Claude; Laprevote, Olivier; Vidaud, Michel; Duyckaerts, Charles; Miles, Richard; Aubourg, Patrick; Cartier, Nathalie

    2015-08-01

    Abnormalities in neuronal cholesterol homeostasis have been suspected or observed in several neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and Huntington's disease. However, it has not been demonstrated whether an increased abundance of cholesterol in neurons in vivo contributes to neurodegeneration. To address this issue, we used RNA interference methodology to inhibit the expression of cholesterol 24-hydroxylase, encoded by the Cyp46a1 gene, in the hippocampus of normal mice. Cholesterol 24-hydroxylase controls cholesterol efflux from the brain and thereby plays a major role in regulating brain cholesterol homeostasis. We used an adeno-associated virus vector encoding short hairpin RNA directed against the mouse Cyp46a1 mRNA to decrease the expression of the Cyp46a1 gene in hippocampal neurons of normal mice. This increased the cholesterol concentration in neurons, followed by cognitive deficits and hippocampal atrophy due to apoptotic neuronal death. Prior to neuronal death, the recruitment of the amyloid protein precursor to lipid rafts was enhanced leading to the production of β-C-terminal fragment and amyloid-β peptides. Abnormal phosphorylation of tau and endoplasmic reticulum stress were also observed. In the APP23 mouse model of Alzheimer's disease, the abundance of amyloid-β peptides increased following inhibition of Cyp46a1 expression, and neuronal death was more widespread than in normal mice. Altogether, these results suggest that increased amounts of neuronal cholesterol within the brain may contribute to inducing and/or aggravating Alzheimer's disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Functional non-synonymous variants of ABCG2 and gout risk.

    PubMed

    Stiburkova, Blanka; Pavelcova, Katerina; Zavada, Jakub; Petru, Lenka; Simek, Pavel; Cepek, Pavel; Pavlikova, Marketa; Matsuo, Hirotaka; Merriman, Tony R; Pavelka, Karel

    2017-11-01

    Common dysfunctional variants of ATP binding cassette subfamily G member 2 (Junior blood group) (ABCG2), a high-capacity urate transporter gene, that result in decreased urate excretion are major causes of hyperuricemia and gout. In the present study, our objective was to determine the frequency and effect on gout of common and rare non-synonymous and other functional allelic variants in the ABCG2 gene. The main cohort recruited from the Czech Republic consisted of 145 gout patients; 115 normouricaemic controls were used for comparison. We amplified, directly sequenced and analysed 15 ABCG2 exons. The associations between genetic variants and clinical phenotype were analysed using the t-test, Fisher's exact test and a logistic and linear regression approach. Data from a New Zealand Polynesian sample set and the UK Biobank were included for the p.V12M analysis. In the ABCG2 gene, 18 intronic (one dysfunctional splicing) and 11 exonic variants were detected: 9 were non-synonymous (2 common, 7 rare including 1 novel), namely p.V12M, p.Q141K, p.R147W, p.T153M, p.F373C, p.T434M, p.S476P, p.D620N and p.K360del. The p.Q141K (rs2231142) variant had a significantly higher minor allele frequency (0.23) in the gout patients compared with the European-origin population (0.09) and was significantly more common among gout patients than among normouricaemic controls (odds ratio = 3.26, P < 0.0001). Patients with non-synonymous allelic variants had an earlier onset of gout (42 vs 48 years, P = 0.0143) and a greater likelihood of a familial history of gout (41% vs 27%, odds ratio = 1.96, P = 0.053). In a meta-analysis p.V12M exerted a protective effect from gout (P < 0.0001). Genetic variants of ABCG2, common and rare, increased the risk of gout. Non-synonymous allelic variants of ABCG2 had a significant effect on earlier onset of gout and the presence of a familial gout history. ABCG2 should thus be considered a common and significant risk factor for gout. © The Author 2017

  13. Endocytosis of ABCG2 drug transporter caused by binding of 5D3 antibody: trafficking mechanisms and intracellular fate.

    PubMed

    Studzian, Maciej; Bartosz, Grzegorz; Pulaski, Lukasz

    2015-08-01

    ABCG2, a metabolite and xenobiotic transporter located at the plasma membrane (predominantly in barrier tissues and progenitor cells), undergoes a direct progressive endocytosis process from plasma membrane to intracellular compartments upon binding of 5D3 monoclonal antibody. This antibody is specific to an external epitope on the protein molecule and locks it in a discrete conformation within its activity cycle, presumably providing a structural trigger for the observed internalization phenomenon. Using routine and novel assays, we show that ABCG2 is endocytosed by a mixed mechanism: partially via a rapid, clathrin-dependent pathway and partially in a cholesterol-dependent, caveolin-independent manner. While the internalization process is entirely dynamin-dependent and converges initially at the early endosome, subsequent intracellular fate of ABCG2 is again twofold: endocytosis leads to only partial lysosomal degradation, while a significant fraction of the protein is retained in a post-endosomal compartment with the possibility of at least partial recycling back to the cell surface. This externally triggered, conformation-related trafficking pathway may serve as a general regulatory paradigm for membrane transporters, and its discovery was made possible thanks to consistent application of quantitative methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Genetic modification of haematopoietic cells for combined resistance to podophyllotoxins, other agents covered by MDR1-mediated efflux activity and nitrosoureas.

    PubMed

    Baum, C; Peinert, S; Carpinteiro, A; Eckert, H G; Fairbairn, L J

    2000-05-01

    Genetic transfer and expression of drug-resistance functions into haematopoietic stem and progenitor cells is a promising means to overcome both the acute and longterm side-effects of cytotoxic drugs in bone marrow. Here, we describe a functional analysis of a retroviral vector that co-expresses human cDNAs for multidrug resistance 1/P-glycoprotein (MDR1) and a double mutant of O(6)-alkylguanine-alkyltransferase (hATPA/GA) to high levels. The hATPA/GA protein contains two amino acid substitutions that render it resistant to compounds such as O(6)-benzylguanine that inhibit the wild-type protein which is often overexpressed in resistant tumour cells. Evidence for simultaneous drug resistance of genetically modified primary murine progenitor cells to colchicine or the podophyllotoxin etoposide, both covered by MDR1-mediated efflux activity, and the nitrosourea BCNU, which is counteracted by hATPA/GA, is presented using in vitro colony assays.

  15. Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport.

    PubMed

    Shao, Baohai; Bergt, Constanze; Fu, Xiaoyun; Green, Pattie; Voss, John C; Oda, Michael N; Oram, John F; Heinecke, Jay W

    2005-02-18

    High density lipoprotein (HDL) isolated from human atherosclerotic lesions and the blood of patients with established coronary artery disease contains elevated levels of 3-nitrotyrosine and 3-chlorotyrosine. Myeloperoxidase (MPO) is the only known source of 3-chlorotyrosine in humans, indicating that MPO oxidizes HDL in vivo. In the current studies, we used tandem mass spectrometry to identify the major sites of tyrosine oxidation when lipid-free apolipoprotein A-I (apoA-I), the major protein of HDL, was exposed to MPO or peroxynitrite (ONOO(-)). Tyrosine 192 was the predominant site of both nitration and chlorination by MPO and was also the major site of nitration by ONOO(-). Electron paramagnetic spin resonance studies of spin-labeled apoA-I revealed that residue 192 was located in an unusually hydrophilic environment. Moreover, the environment of residue 192 became much more hydrophobic when apoA-I was incorporated into discoidal HDL, and Tyr(192) of HDL-associated apoA-I was a poor substrate for nitration by both myeloperoxidase and ONOO(-), suggesting that solvent accessibility accounted in part for the reactivity of Tyr(192). The ability of lipid-free apoA-I to facilitate ATP-binding cassette transporter A1 cholesterol transport was greatly reduced after chlorination by MPO. Loss of activity occurred in concert with chlorination of Tyr(192). Both ONOO(-) and MPO nitrated Tyr(192) in high yield, but unlike chlorination, nitration minimally affected the ability of apoA-I to promote cholesterol efflux from cells. Our results indicate that Tyr(192) is the predominant site of nitration and chlorination when MPO or ONOO(-) oxidizes lipid-free apoA-I but that only chlorination markedly reduces the cholesterol efflux activity of apoA-I. This impaired biological activity of chlorinated apoA-I suggests that MPO-mediated oxidation of HDL might contribute to the link between inflammation and cardiovascular disease.

  16. Extensive sphingolipid depletion does not affect lipid raft integrity or lipid raft localization and efflux function of the ABC transporter MRP1.

    PubMed

    Klappe, Karin; Dijkhuis, Anne-Jan; Hummel, Ina; van Dam, Annie; Ivanova, Pavlina T; Milne, Stephen B; Myers, David S; Brown, H Alex; Permentier, Hjalmar; Kok, Jan W

    2010-09-15

    We show that highly efficient depletion of sphingolipids in two different cell lines does not abrogate the ability to isolate Lubrol-based DRMs (detergent-resistant membranes) or detergent-free lipid rafts from these cells. Compared with control, DRM/detergent-free lipid raft fractions contain equal amounts of protein, cholesterol and phospholipid, whereas the classical DRM/lipid raft markers Src, caveolin-1 and flotillin display the same gradient distribution. DRMs/detergent-free lipid rafts themselves are severely depleted of sphingolipids. The fatty acid profile of the remaining sphingolipids as well as that of the glycerophospholipids shows several differences compared with control, most prominently an increase in highly saturated C(16) species. The glycerophospholipid headgroup composition is unchanged in sphingolipid-depleted cells and cell-derived detergent-free lipid rafts. Sphingolipid depletion does not alter the localization of MRP1 (multidrug-resistance-related protein 1) in DRMs/detergent-free lipid rafts or MRP1-mediated efflux of carboxyfluorescein. We conclude that extensive sphingolipid depletion does not affect lipid raft integrity in two cell lines and does not affect the function of the lipid-raft-associated protein MRP1.

  17. Extensive sphingolipid depletion does not affect lipid raft integrity or lipid raft localization and efflux function of the ABC transporter MRP1

    PubMed Central

    Klappe, Karin; Dijkhuis, Anne-Jan; Hummel, Ina; vanDam, Annie; Ivanova, Pavlina T.; Milne, Stephen B.; Myers, David S.; Brown, H. Alex; Permentier, Hjalmar; Kok, Jan W.

    2013-01-01

    We show that highly efficient depletion of sphingolipids in two different cell lines does not abrogate the ability to isolate Lubrol-based DRMs (detergent-resistant membranes) or detergent-free lipid rafts from these cells. Compared with control, DRM/detergent-free lipid raft fractions contain equal amounts of protein, cholesterol and phospholipid, whereas the classical DRM/lipid raft markers Src, caveolin-1 and flotillin display the same gradient distribution. DRMs/detergent-free lipid rafts themselves are severely depleted of sphingolipids. The fatty acid profile of the remaining sphingolipids as well as that of the glycerophospholipids shows several differences compared with control, most prominently an increase in highly saturated C16 species. The glycerophospholipid headgroup composition is unchanged in sphingolipid-depleted cells and cell-derived detergent-free lipid rafts. Sphingolipid depletion does not alter the localization of MRP1 (multidrug-resistance-related protein 1) in DRMs/detergent-free lipid rafts or MRP1-mediated efflux of carboxyfluorescein. We conclude that extensive sphingolipid depletion does not affect lipid raft integrity in two cell lines and does not affect the function of the lipid-raft-associated protein MRP1. PMID:20604746

  18. Tissue expression pattern of ABCG transporter indicates functional roles in reproduction of Toxocara canis.

    PubMed

    Luo, Yong-Li; Ma, Guang-Xu; Luo, Yong-Fang; Kuang, Ce-Yan; Jiang, Ai-Yun; Li, Guo-Qing; Zhou, Rong-Qiong

    2018-03-01

    Toxocara canis is a zoonotic parasite with worldwide distribution. ATP-binding cassette (ABC) transporters are integral membrane proteins which involve in a range of biological processes in various organisms. In present study, the full-length coding sequence of abcg-5 gene of T. canis (Tc-abcg-5) was cloned and characterized. A 633 aa polypeptide containing two conserved Walker A and Walker B motifs was predicted from a continuous 1902 nt open reading frame. Quantitative real-time PCR was employed to determine the transcriptional levels of Tc-abcg-5 gene in adult male and female worms, which indicated high mRNA level of Tc-abcg-5 in the reproductive tract of adult female T. canis. Tc-abcg-5 was expressed to produce rabbit polyclonal antiserum against recombinant TcABCG5. Indirect-fluorescence immunohistochemical assays were carried out to detect the tissue distribution of TcABCG5, which showed predominant distribution of TcABCG5 in the uterus (especially in the germ cells) of adult female T. canis. Tissue transcription and expression pattern of Tc-abcg-5 indicated that Tc-abcg-5 might play essential roles in the reproduction of this parasitic nematode.

  19. ABCG2 Polymorphism rs2231142 and hypothyroidism in metastatic renal cell carcinoma patients treated with sunitinib.

    PubMed

    Werbrouck, Emilie; Bastin, Julie; Lambrechts, Diether; Verbiest, Annelies; Van Brussel, Thomas; Lerut, Evelyne; Machiels, Jean-Pascal; Verschaeve, Vincent; Richard, Vincent; Debruyne, Philip R; Decallonne, Brigitte; Schöffski, Patrick; Bechter, Oliver; Wolter, Pascal; Beuselinck, Benoit

    2018-05-23

    Background and aim Vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs) cause significant adverse events including thyroid dysfunction, mainly hypothyroidism, in a considerable proportion of patients. In a series of metastatic renal cell carcinoma (mRCC) patients treated with sunitinib, we aimed to study the correlation between hypothyroidism and single nucleotide polymorphisms (SNPs) in genes involved in sunitinib pharmacokinetics and pharmacodynamics. Patients and methods We included 79 mRCC patients who started sunitinib between November 2005 and March 2016. Serum thyroid function markers were collected at start and during sunitinib therapy. Germ-line DNA genotyping for 16 SNPs in 8 candidate genes was performed. Endpoints were time to increase in thyroid stimulating hormone (TSH) and time to decrease in T4 or free T4 (FT4) on day 1 and day 28 of each sunitinib cycle. Results Patients with the ABCG2 rs2231142 CC-genotype had a significantly longer time-to-TSH-increase on day 1 (11 vs. 5 cycles; p = 0.0011), and time-to-T4/FT4-decrease on day 1 (not reached vs. 10 cycles; p = 0.013) and day 28 (28 vs. 7 cycles; p = 0.03) compared to CA-carriers. Patients with the CYP3A5 rs776746 GG-genotype had a significantly longer time-to-TSH-increase at day 1 compared to GA-patients: 11 vs. 5 cycles (p = 0.0071). Significant associations were also found between PDGFRA rs35597368 and rs1800812 and time-to-TSH-increase at day 28. Conclusion Polymorphism rs2231142 in the efflux pump ABCG2 is associated with hypothyroidism in mRCC patients treated with sunitinib.

  20. Caveolin, sterol carrier protein-2, membrane cholesterol-rich microdomains and intracellular cholesterol trafficking.

    PubMed

    Schroeder, Friedhelm; Huang, Huan; McIntosh, Avery L; Atshaves, Barbara P; Martin, Gregory G; Kier, Ann B

    2010-01-01

    While the existence of membrane lateral microdomains has been known for over 30 years, interest in these structures accelerated in the past decade due to the discovery that cholesterol-rich microdomains serve important biological functions. It is increasingly appreciated that cholesterol-rich microdomains in the plasma membranes of eukaryotic cells represent an organizing nexus for multiple cellular proteins involved in transmembrane nutrient uptake (cholesterol, fatty acid, glucose, etc.), cell-signaling, immune recognition, pathogen entry, and many other roles. Despite these advances, however, relatively little is known regarding the organization of cholesterol itself in these plasma membrane microdomains. Although a variety of non-sterol markers indicate the presence of microdomains in the plasma membranes of living cells, none of these studies have demonstrated that cholesterol is enriched in these microdomains in living cells. Further, the role of cholesterol-rich membrane microdomains as targets for intracellular cholesterol trafficking proteins such as sterol carrier protein-2 (SCP-2) that facilitate cholesterol uptake and transcellular transport for targeting storage (cholesterol esters) or efflux is only beginning to be understood. Herein, we summarize the background as well as recent progress in this field that has advanced our understanding of these issues.

  1. Fullerene inhibits benzo(a)pyrene Efflux from Cyprinus carpio hepatocytes by affecting cell membrane fluidity and P-glycoprotein expression.

    PubMed

    Chen, Qiqing; Hu, Xialin; Wang, Rui; Yuan, Jin; Yin, Daqiang

    2016-05-01

    P-Glycoprotein (P-gp) can protect cells by pumping out toxic compounds, and has been found widely expressed in fish tissues. Here, we illustrate the P-gp efflux ability for benzo(a)pyrene (BaP) in the hepatocytes of common carp (Cyprinus carpio) after exposing to fullerene aqueous suspension (nC60). The results revealed that nC60 increased the membrane fluidity by decreasing the ratio of saturated to unsaturated fatty acids, and increased the cholesterol contents. These findings, combined with 10-38% and 70-75% down-regulation of P-gp mRNA and protein respectively, suggested that nC60 caused inhibition on P-gp efflux transport system. Therefore, we further investigated the cellular efflux ability for BaP. Results showed unequivocally that nC60 is a potent P-gp inhibitor. The retaining BaP amounts after efflux were elevated by 1.7-2.8 fold during the 10 day exposure. Meanwhile, 5mg/L humic acid (one of the important fractions of natural organic matter, which is ubiquitous in aquatic environment) alleviated the nC60 damage to hepatocytes in terms of oxidative damage, cholesterol increment, and P-gp content reduction; and finally attenuated the suppressed P-gp efflux ability. Collectively, this study provides the first evidence of nC60 toxicity to P-gp functionality in fish and illustrates the possible mechanism of the suppressed P-gp efflux ability for BaP. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Organochloride pesticides induced hepatic ABCG5/G8 expression and lipogenesis in Chinese patients with gallstone disease

    PubMed Central

    Ji, Guixiang; Xu, Cheng; Sun, Haidong; Liu, Qian; Hu, Hai; Gu, Aihua; Jiang, Zhao-Yan

    2016-01-01

    Background Organochlorine pesticides (OCPs) are one kind of persistent organic pollutants. Although they are reported to be associated with metabolic disorders, the underlying mechanism is unclear. We explored the association of OCPs with gallstone disease and its influence on hepatic lipid metabolism. Materials and Methods OCPs levels in omentum adipose tissues from patients with and without gallstone disease between 2008 and 2011 were measured by GC-MS. Differences of gene expression involved in hepatic lipid metabolism and hepatic lipids content were compared in liver biopsies between groups with high and low level of OCPs. Using HepG2 cell lines, the influence on hepatic lipid metabolism by individual OCP was evaluated in vitro. Results In all patients who were from non-occupational population, there were high levels of β-hexachlorocyclohexane (β-HCH) and p',p'-dichloroethylene (p',p'-DDE) accumulated in adipose tissues. Both β-HCH and p', p'-DDE levels were significantly higher in adipose tissues from patients with gallstone disease (294.3± 313.5 and 2222± 2279 ng/g of lipid) than gallstone-free controls (282.7± 449.0 and 2025±2664 ng/g of lipid, P< 0.01) and they were strongly related with gallstone disease (P for trend = 0.0004 and 0.0138). Furthermore, higher OCPs in adipose tissue led to increase in the expression of hepatic cholesterol transporters ABCG5 and G8 (+34% and +27%, P< 0.01) and higher cholesterol saturation index in gallbladder bile, and induced hepatic fatty acids synthesis, which was further confirmed in HepG2 cells. Conclusion OCPs might enhance hepatic secretion of cholesterol into bile via ABCG5/G8 which promoting gallstone disease as well as lipogenesis. PMID:27203212

  3. Rethinking reverse cholesterol transport and dysfunctional high-density lipoproteins.

    PubMed

    Gillard, Baiba K; Rosales, Corina; Xu, Bingqing; Gotto, Antonio M; Pownall, Henry J

    2018-04-12

    Human plasma high-density lipoprotein cholesterol concentrations are a negative risk factor for atherosclerosis-linked cardiovascular disease. Pharmacological attempts to reduce atherosclerotic cardiovascular disease by increasing plasma high-density lipoprotein cholesterol have been disappointing so that recent research has shifted from HDL quantity to HDL quality, that is, functional vs dysfunctional HDL. HDL has varying degrees of dysfunction reflected in impaired reverse cholesterol transport (RCT). In the context of atheroprotection, RCT occurs by 2 mechanisms: one is the well-known trans-hepatic pathway comprising macrophage free cholesterol (FC) efflux, which produces early forms of FC-rich nascent HDL (nHDL). Lecithin:cholesterol acyltransferase converts HDL-FC to HDL-cholesteryl ester while converting nHDL from a disc to a mature spherical HDL, which transfers its cholesteryl ester to the hepatic HDL receptor, scavenger receptor B1 for uptake, conversion to bile salts, or transfer to the intestine for excretion. Although widely cited, current evidence suggests that this is a minor pathway and that most HDL-FC and nHDL-FC rapidly transfer directly to the liver independent of lecithin:cholesterol acyltransferase activity. A small fraction of plasma HDL-FC enters the trans-intestinal efflux pathway comprising direct FC transfer to the intestine. SR-B1 -/- mice, which have impaired trans-hepatic FC transport, are characterized by high plasma levels of a dysfunctional FC-rich HDL that increases plasma FC bioavailability in a way that produces whole-body hypercholesterolemia and multiple pathologies. The design of future therapeutic strategies to improve RCT will have to be formulated in the context of these dual RCT mechanisms and the role of FC bioavailability. Copyright © 2018 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  4. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana.

    PubMed

    Zádníková, Petra; Petrásek, Jan; Marhavy, Peter; Raz, Vered; Vandenbussche, Filip; Ding, Zhaojun; Schwarzerová, Katerina; Morita, Miyo T; Tasaka, Masao; Hejátko, Jan; Van Der Straeten, Dominique; Friml, Jirí; Benková, Eva

    2010-02-01

    The apical hook of dark-grown Arabidopsis seedlings is a simple structure that develops soon after germination to protect the meristem tissues during emergence through the soil and that opens upon exposure to light. Differential growth at the apical hook proceeds in three sequential steps that are regulated by multiple hormones, principally auxin and ethylene. We show that the progress of the apical hook through these developmental phases depends on the dynamic, asymmetric distribution of auxin, which is regulated by auxin efflux carriers of the PIN family. Several PIN proteins exhibited specific, partially overlapping spatial and temporal expression patterns, and their subcellular localization suggested auxin fluxes during hook development. Genetic manipulation of individual PIN activities interfered with different stages of hook development, implying that specific combinations of PIN genes are required for progress of the apical hook through the developmental phases. Furthermore, ethylene might modulate apical hook development by prolonging the formation phase and strongly suppressing the maintenance phase. This ethylene effect is in part mediated by regulation of PIN-dependent auxin efflux and auxin signaling.

  5. Identification of Inhibitors of ABCG2 by a Bioluminescence Imaging-based High-throughput Assay

    PubMed Central

    Zhang, Yimao; Byun, Youngjoo; Ren, Yunzhao R.; Liu, Jun O.; Laterra, John; Pomper, Martin G.

    2009-01-01

    ABCG2 is a member of the ATP-binding cassette (ABC) family of transporters, the overexpression of which is associated with tumor resistance to a variety of chemotherapeutic agents. Accordingly, combining ABCG2 inhibitor(s) with chemotherapy has the potential to improve treatment outcome. To search for clinically useful ABCG2 inhibitors, a bioluminescence imaging (BLI)-based assay was developed to allow high-throughput compound screening. This assay exploits our finding that D-luciferin, the substrate of firefly luciferase (fLuc), is a specific substrate of ABCG2, and ABCG2 inhibitors block the export of D-luciferin and enhance bioluminescence signal by increasing intracellular D-luciferin concentrations. HEK293 cells, engineered to express ABCG2 and fLuc, were used to screen the Hopkins Drug Library that includes drugs approved by the US Food and Drug Administration (FDA) as well as drug candidates that have entered phase II clinical trials. Forty seven compounds demonstrated BLI enhancement, a measure of anti-ABCG2 activity, of five-fold or greater, the majority of which were not previously known as ABCG2 inhibitors. The assay was validated by its identification of known ABCG2 inhibitors and by confirming previously unknown ABCG2 inhibitors using established in vitro assays (e.g. mitoxantrone resensitization and BODIPY-prazosin assays). Glafenine, a potent new inhibitor, also inhibited ABCG2 activity in vivo. The BLI-based assay is an efficient method to identify new inhibitors of ABCG2. As they were derived from an FDA-approved compound library, many of the inhibitors uncovered in this study are ready for clinical testing. PMID:19567678

  6. Mechanisms of Alcohol Induced Effects on Cellular Cholesterol Dynamics

    DTIC Science & Technology

    2004-09-01

    intracellular heavy drinking (25 and 50 maM) significantly inhibited trafficking of cholesterol [26]. SCP-2 decreases the half- cholesterol efflux...at least 5-6 drinks contain more cholesterol as com- brane and other structures [10]. Chronic ethanol con- pared to moderate drinkers. Therefore...tetramer BODIPY TR ceramide, N-((4-(4,4-difluoro-5-(2-thienyl)-4- bora -3a,4a- (28), and such structural differences could alter the behavior of diaza-s

  7. Individual bile acids have differential effects on bile acid signaling in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Peizhen, E-mail: songacad@gmail.com; Rockwell, Cheryl E., E-mail: rockwelc@msu.edu; Cui, Julia Yue, E-mail: juliacui@uw.edu

    2015-02-15

    Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In themore » liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and

  8. Kimchi methanol extract and the kimchi active compound, 3'-(4'-hydroxyl-3',5'-dimethoxyphenyl)propionic acid, downregulate CD36 in THP-1 macrophages stimulated by oxLDL.

    PubMed

    Yun, Ye-Rang; Kim, Hyun-Ju; Song, Yeong-Ok

    2014-08-01

    Macrophage foam cell formation by oxidized low-density lipoprotein (oxLDL) is a key step in the progression of atherosclerosis, which is involved in cholesterol influx and efflux in macrophages mediated by related proteins such as peroxisome proliferator-activated receptor γ (PPARγ), CD36, PPARα, liver-X receptor α (LXRα), and ATP-binding cassette transporter A1 (ABCA1). The aim of this study was to investigate the beneficial effects of kimchi methanol extract (KME) and a kimchi active compound, 3-(4'-hydroxyl-3',5'-dimethoxyphenyl)propionic acid (HDMPPA) on cholesterol flux in THP-1-derived macrophages treated with oxLDL. The effects of KME and HDMPPA on cell viability and lipid peroxidation were determined. Furthermore, the protein expression of PPARγ, CD36, PPARα, LXRα, and ABCA1 was examined. OxLDL strongly induced cell death and lipid peroxidation in THP-1-derived macrophages. However, KME and HDMPPA significantly improved cell viability and inhibited lipid peroxidation induced by oxLDL in THP-1-derived macrophages (P<.05). Moreover, KME and HDMPPA suppressed CD36 and PPARγ expressions, both of which participate in cholesterol influx. In contrast, KME and HDMPPA augmented LXRα, PPARα, and ABCA1 expression, which are associated with cholesterol efflux. Consequently, KME and HDMPPA suppressed lipid accumulation. These results indicate that KME and HDMPPA may inhibit lipid accumulation, in part, by regulating cholesterol influx- and efflux-related proteins. These findings will thus be useful for future prevention strategies against atherosclerosis.

  9. Cholesterol transfer at endosomal-organelle membrane contact sites.

    PubMed

    Ridgway, Neale D; Zhao, Kexin

    2018-06-01

    Cholesterol is delivered to the limiting membrane of late endosomes by Niemann-Pick Type C1 and C2 proteins. This review summarizes recent evidence that cholesterol transfer from endosomes to the endoplasmic reticulum and other organelles is mediated by lipid-binding proteins that localize to membrane contact sites (MCS). LDL-cholesterol in the late endosomal/lysosomes is exported to the plasma membrane, where most cholesterol resides, and the endoplasmic reticulum, which harbors the regulatory complexes and enzymes that control the synthesis and esterification of cholesterol. A major advance in dissecting these cholesterol transport pathways was identification of frequent and dynamic MCS between endosomes and the endoplasmic reticulum, peroxisomes and plasma membrane. Positioned at these MCS are members of the oxysterol-binding protein (OSBP) and steroidogenic acute regulatory protein-related lipid-transfer family of lipid transfer proteins that bridge the opposing membranes and directly or indirectly mediate cholesterol transfer. OSBP-related protein 1L (ORP1L), ORP5 and ORP6 mediate cholesterol transfer to the endoplasmic reticulum that regulates cholesterol homeostasis. ORP1L and STARD3 also move cholesterol from the endoplasmic reticulum-to-late endosomal/lysosomes under low-cholesterol conditions to facilitate intraluminal vesicle formation. Cholesterol transport also occurs at MCS with peroxisomes and possibly the plasma membrane. Frequent contacts between organelles and the endo-lysosomal vesicles are sites for bidirectional transfer of cholesterol.

  10. Lycopene reduces cholesterol absorption through the downregulation of Niemann-Pick C1-like 1 in Caco-2 cells.

    PubMed

    Zou, Jun; Feng, Dan

    2015-11-01

    Elevated blood cholesterol is an important risk factor associated with atherosclerosis and coronary heart disease. Tomato lycopene has been found to have a hypocholesterolemic effect, and the effect was considered to be related to inhibition of cholesterol synthesis. However, since plasma cholesterol levels are also influenced by the absorption of cholesterol in the gut, the present study is to investigate whether lycopene affects cholesterol absorption in the intestinal Caco-2 cells. The Caco-2 cells were pretreated with lycopene at different concentrations for 24 h and then incubated with radioactive micellar cholesterol for 2 h. The absorption of radioactive cholesterol was quantified by liquid scintillation. The expression of Niemann-Pick C1-like 1 (NPC1L1) and liver X receptor α (LXRα) was analyzed by Western blot and qPCR. We found that lycopene dose dependently inhibited cholesterol absorption and the expression of NPC1L1 protein and NPC1L1 mRNA. The inhibitory effects of lycopene on cholesterol absorption and NPC1L1 expression could be prevented by blockade of the LXRα pathway. This study provides the first evidence that lycopene inhibits cholesterol absorption in the intestinal cells and this inhibitory effect of lycopene is mediated, at least in part, by LXRα-NPC1L1 signaling pathway. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ezetimibe-sensitive cholesterol uptake by NPC1L1 protein does not require endocytosis.

    PubMed

    Johnson, Tory A; Pfeffer, Suzanne R

    2016-06-01

    Human NPC1L1 protein mediates cholesterol absorption in the intestine and liver and is the target of the drug ezetimibe, which is used to treat hypercholesterolemia. Previous studies concluded that NPC1L1-GFP protein trafficking is regulated by cholesterol binding and that ezetimibe blocks NPC1L1-GFP function by inhibiting its endocytosis. We used cell surface biotinylation to monitor NPC1L1-GFP endocytosis and show that ezetimibe does not alter the rate of NPC1L1-GFP endocytosis in cultured rat hepatocytes grown under normal growth conditions. As expected, NPC1L1-GFP endocytosis depends in part on C-terminal, cytoplasmically oriented sequences, but endocytosis does not require cholesterol binding to NPC1L1's N-terminal domain. In addition, two small- molecule inhibitors of general (and NPC1L1-GFP) endocytosis failed to inhibit the ezetimibe-sensitive uptake of [(3)H]cholesterol from taurocholate micelles. These experiments demonstrate that cholesterol uptake by NPC1L1 does not require endocytosis; moreover, ezetimibe interferes with NPC1L1's cholesterol adsorption activity without blocking NPC1L1 internalization in RH7777 cells. © 2016 Johnson and Pfeffer. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. The hypocholesterolemic activity of açaí (Euterpe oleracea Mart.) is mediated by the enhanced expression of the ATP-binding cassette, subfamily G transporters 5 and 8 and low-density lipoprotein receptor genes in the rat.

    PubMed

    de Souza, Melina Oliveira; Souza E Silva, Lorena; de Brito Magalhães, Cíntia Lopes; de Figueiredo, Bianca Barros; Costa, Daniela Caldeira; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia

    2012-12-01

    Previous studies have demonstrated that the ingestion of açaí pulp can improve serum lipid profile in various animal models; therefore, we hypothesized that açaí pulp (Euterpe oleracea Mart.) may modulate the expression of the genes involved in cholesterol homeostasis in the liver and increase fecal excretion, thus reducing serum cholesterol. To test this hypothesis, we analyzed the expression of 7α-hydroxylase and ATP-binding cassette, subfamily G transporters (ABCG5 and ABCG8), which are genes involved with the secretion of cholesterol in the rat. We also evaluated the expression of sterol regulatory element-binding protein 2, 3-hydroxy-3-methylglutaryl CoA reductase, low-density lipoprotein receptor (LDL-R), and apolipoprotein B100, which are involved in cholesterol biosynthesis. Female Fischer rats were divided into 4 groups: the C group, which was fed a standard AIN-93 M diet; the CA group, which was fed a standard diet supplemented with 2% açaí pulp; the H group, which was fed a hypercholesterolemic diet (25% soy oil and 1% cholesterol); and the HA group, which was fed a hypercholesterolemic diet supplemented with 2% açaí pulp. At the end of the experimental period, the rats were euthanized, and their blood and livers were collected. The HA group exhibited a significant decrease in serum total cholesterol, low-density lipoprotein cholesterol, and atherogenic index and also had increased high-density lipoprotein cholesterol and cholesterol excretion in feces compared with the H group. In addition, the expression of the LDL-R, ABCG5, and ABCG8 genes was significantly increased by the presence of açaí pulp. These results suggest that açaí pulp promotes a hypocholesterolemic effect in a rat model of dietary-induced hypercholesterolemia through an increase in the expression of ATP-binding cassette, subfamily G transporters, and LDL-R genes. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Glutathione Efflux and Cell Death

    PubMed Central

    2012-01-01

    Abstract Significance: Glutathione (GSH) depletion is a central signaling event that regulates the activation of cell death pathways. GSH depletion is often taken as a marker of oxidative stress and thus, as a consequence of its antioxidant properties scavenging reactive species of both oxygen and nitrogen (ROS/RNS). Recent Advances: There is increasing evidence demonstrating that GSH loss is an active phenomenon regulating the redox signaling events modulating cell death activation and progression. Critical Issues: In this work, we review the role of GSH depletion by its efflux, as an important event regulating alterations in the cellular redox balance during cell death independent from oxidative stress and ROS/RNS formation. We discuss the mechanisms involved in GSH efflux during cell death progression and the redox signaling events by which GSH depletion regulates the activation of the cell death machinery. Future Directions: The evidence summarized here clearly places GSH transport as a central mechanism mediating redox signaling during cell death progression. Future studies should be directed toward identifying the molecular identity of GSH transporters mediating GSH extrusion during cell death, and addressing the lack of sensitive approaches to quantify GSH efflux. Antioxid. Redox Signal. 17, 1694–1713. PMID:22656858

  14. The PerR-Regulated P1B-4-Type ATPase (PmtA) Acts as a Ferrous Iron Efflux Pump in Streptococcus pyogenes.

    PubMed

    Turner, Andrew G; Ong, Cheryl-Lynn Y; Djoko, Karrera Y; West, Nicholas P; Davies, Mark R; McEwan, Alastair G; Walker, Mark J

    2017-06-01

    Streptococcus pyogenes (group A Streptococcus [GAS]) is an obligate human pathogen responsible for a broad spectrum of human disease. GAS has a requirement for metal homeostasis within the human host and, as such, tightly modulates metal uptake and efflux during infection. Metal acquisition systems are required to combat metal sequestration by the host, while metal efflux systems are essential to protect against metal overload poisoning. Here, we investigated the function of PmtA ( P erR-regulated m etal t ransporter A ), a P 1B-4 -type ATPase efflux pump, in invasive GAS M1T1 strain 5448. We reveal that PmtA functions as a ferrous iron [Fe(II)] efflux system. In the presence of high Fe(II) concentrations, the 5448Δ pmtA deletion mutant exhibited diminished growth and accumulated 5-fold-higher levels of intracellular Fe(II) than did the wild type and the complemented mutant. The 5448Δ pmtA deletion mutant also showed enhanced susceptibility to killing by the Fe-dependent antibiotic streptonigrin as well as increased sensitivity to hydrogen peroxide and superoxide. We suggest that the PerR-mediated control of Fe(II) efflux by PmtA is important for bacterial defense against oxidative stress. PmtA represents an exemplar for an Fe(II) efflux system in a host-adapted Gram-positive bacterial pathogen. Copyright © 2017 American Society for Microbiology.

  15. A new fluorescent dye accumulation assay for parallel measurements of the ABCG2, ABCB1 and ABCC1 multidrug transporter functions.

    PubMed

    Szabó, Edit; Türk, Dóra; Telbisz, Ágnes; Kucsma, Nóra; Horváth, Tamás; Szakács, Gergely; Homolya, László; Sarkadi, Balázs; Várady, György

    2018-01-01

    ABC multidrug transporters are key players in cancer multidrug resistance and in general xenobiotic elimination, thus their functional assays provide important tools for research and diagnostic applications. In this study we have examined the potential interactions of three key human ABC multidrug transporters with PhenGreen diacetate (PGD), a cell permeable fluorescent metal ion indicator. The non-fluorescent, hydrophobic PGD rapidly enters the cells and, after cleavage by cellular esterases, in the absence of quenching metal ions, PhenGreen (PG) becomes highly fluorescent. We found that in cells expressing functional ABCG2, ABCB1, or ABCC1 transporters, cellular PG fluorescence is strongly reduced. This fluorescence signal in the presence of specific transporter inhibitors is increased to the fluorescence levels in the control cells. Thus the PG accumulation assay is a new, unique tool for the parallel determination of the function of the ABCG2, ABCB1, and ABCC1 multidrug transporters. Since PG has very low cellular toxicity, the PG accumulation assay also allows the selection, separation and culturing of selected cell populations expressing either of these transporters.

  16. The combination of ezetimibe and ursodiol promotes fecal sterol excretion and reveals a G5G8-independent pathway for cholesterol elimination[S

    PubMed Central

    Wang, Yuhuan; Liu, Xiaoxi; Pijut, Sonja S.; Li, Jianing; Horn, Jamie; Bradford, Emily M.; Leggas, Markos; Barrett, Terrence A.; Graf, Gregory A.

    2015-01-01

    Previous studies suggest an interdependent relationship between liver and intestine for cholesterol elimination from the body. We hypothesized that a combination of ursodiol (Urso) and ezetimibe (EZ) could increase biliary secretion and reduce cholesterol reabsorption, respectively, to promote cholesterol excretion. Treatment with Urso increased hepatic ABCG5 ABCG8 (G5G8) protein and both biliary and fecal sterols in a dose-dependent manner. To determine whether the drug combination (Urso-EZ) further increased cholesterol excretion, mice were treated with Urso alone or in combination with two doses of EZ. EZ produced an additive and dose-dependent increase in fecal neutral sterol (FNS) elimination in the presence of Urso. Finally, we sequentially treated wide-type and G5G8-deficient mice with Urso and Urso-EZ to determine the extent to which these effects were G5G8 dependent. Although biliary and FNS were invariably lower in G5G8 KO mice, the relative increase in FNS following treatment with Urso alone or the Urso-EZ combination was not affected by genotype. In conclusion, Urso increases G5G8, biliary cholesterol secretion, and FNS and acts additively with EZ to promote fecal sterol excretion. However, the stimulatory effect of these agents was not G5G8 dependent. PMID:25635125

  17. Association between ABCG1 polymorphism rs1893590 and high-density lipoprotein (HDL) in an asymptomatic Brazilian population.

    PubMed

    Zago, V H S; Scherrer, D Z; Parra, E S; Panzoldo, N B; Alexandre, F; Nakandakare, E R; Quintão, E C R; de Faria, E C

    2015-03-01

    ATP binding cassette transporter G1 (ABCG1) promotes lipidation of nascent high-density lipoprotein (HDL) particles, acting as an intracellular transporter. SNP rs1893590 (c.-204A > C) of ABCG1 gene has been previously studied and reported as functional over plasma HDL-C and lipoprotein lipase activity. This study aimed to investigate the relationships of SNP rs1893590 with plasma lipids and lipoproteins in a large Brazilian population. Were selected 654 asymptomatic and normolipidemic volunteers from both genders. Clinical and anthropometrical data were taken and blood samples were drawn after 12 h fasting. Plasma lipids and lipoproteins, as well as HDL particle size and volume were determined. Genomic DNA was isolated for SNP rs1893590 detection by TaqMan(®) OpenArray(®) Real-Time PCR Plataform (Applied Biosystems). Mann-Whitney U, Chi square and two-way ANOVA were the used statistical tests. No significant differences were found in the comparison analyses between the allele groups for all studied parameters. Conversely, significant interactions were observed between SNP and age over plasma HDL-C, were volunteers under 60 years with AA genotype had increased HDL-C (p = 0.048). Similar results were observed in the group with body mass index (BMI) < 25 kg/m(2), where volunteers with AA genotype had higher HDL-C levels (p = 0.0034), plus an increased HDL particle size (p = 0.01). These findings indicate that SNP rs1893590 of ABCG1 has a significant impact over HDL-C under asymptomatic clinical conditions in an age and BMI dependent way.

  18. Restoring Mitochondrial Function: A Small Molecule-mediated Approach to Enhance Glucose Stimulated Insulin Secretion in Cholesterol Accumulated Pancreatic beta cells

    NASA Astrophysics Data System (ADS)

    Asalla, Suman; Girada, Shravan Babu; Kuna, Ramya S.; Chowdhury, Debabrata; Kandagatla, Bhaskar; Oruganti, Srinivas; Bhadra, Utpal; Bhadra, Manika Pal; Kalivendi, Shasi Vardhan; Rao, Swetha Pavani; Row, Anupama; Ibrahim, A.; Ghosh, Partha Pratim; Mitra, Prasenjit

    2016-06-01

    Dyslipidemia, particularly the elevated serum cholesterol levels, aggravate the pathophysiology of type 2 diabetes. In the present study we explored the relationship between fasting blood sugar and serum lipid parameters in human volunteers which revealed a significant linear effect of serum cholesterol on fasting blood glucose. Short term feeding of cholesterol enriched diet to rodent model resulted in elevated serum cholesterol levels, cholesterol accumulation in pancreatic islets and hyperinsulinemia with modest increase in plasma glucose level. To explore the mechanism, we treated cultured BRIN-BD11 pancreatic beta cells with soluble cholesterol. Our data shows that cholesterol treatment of cultured pancreatic beta cells enhances total cellular cholesterol. While one hour cholesterol exposure enhances insulin exocytosis, overnight cholesterol accumulation in cultured pancreatic beta cells affects cellular respiration, and inhibits Glucose stimulated insulin secretion. We further report that (E)-4-Chloro-2-(1-(2-(2,4,6-trichlorophenyl) hydrazono) ethyl) phenol (small molecule M1) prevents the cholesterol mediated blunting of cellular respiration and potentiates Glucose stimulated insulin secretion which was abolished in pancreatic beta cells on cholesterol accumulation.

  19. Restoring Mitochondrial Function: A Small Molecule-mediated Approach to Enhance Glucose Stimulated Insulin Secretion in Cholesterol Accumulated Pancreatic beta cells

    PubMed Central

    Asalla, Suman; Girada, Shravan Babu; Kuna, Ramya S.; Chowdhury, Debabrata; Kandagatla, Bhaskar; Oruganti, Srinivas; Bhadra, Utpal; Bhadra, Manika Pal; Kalivendi, Shasi Vardhan; Rao, Swetha Pavani; Row, Anupama; Ibrahim, A; Ghosh, Partha Pratim; Mitra, Prasenjit

    2016-01-01

    Dyslipidemia, particularly the elevated serum cholesterol levels, aggravate the pathophysiology of type 2 diabetes. In the present study we explored the relationship between fasting blood sugar and serum lipid parameters in human volunteers which revealed a significant linear effect of serum cholesterol on fasting blood glucose. Short term feeding of cholesterol enriched diet to rodent model resulted in elevated serum cholesterol levels, cholesterol accumulation in pancreatic islets and hyperinsulinemia with modest increase in plasma glucose level. To explore the mechanism, we treated cultured BRIN-BD11 pancreatic beta cells with soluble cholesterol. Our data shows that cholesterol treatment of cultured pancreatic beta cells enhances total cellular cholesterol. While one hour cholesterol exposure enhances insulin exocytosis, overnight cholesterol accumulation in cultured pancreatic beta cells affects cellular respiration, and inhibits Glucose stimulated insulin secretion. We further report that (E)-4-Chloro-2-(1-(2-(2,4,6-trichlorophenyl) hydrazono) ethyl) phenol (small molecule M1) prevents the cholesterol mediated blunting of cellular respiration and potentiates Glucose stimulated insulin secretion which was abolished in pancreatic beta cells on cholesterol accumulation. PMID:27282931

  20. The Bladder Tumor Suppressor Protein TERE1 (UBIAD1)Modulates Cell Cholesterol: Implications for Tumor Progression

    PubMed Central

    McGarvey, Terry; Wang, Huiyi; Lal, Priti; Puthiyaveettil, Raghunath; Tomaszewski, John; Sepulveda, Jorge; Labelle, Ed; Weiss, Jayne S.; Nickerson, Michael L.; Kruth, Howard S.; Brandt, Wolfgang; Wessjohann, Ludger A.; Malkowicz, S. Bruce

    2011-01-01

    Convergent evidence implicates the TERE1 protein in human bladder tumor progression and lipid metabolism. Previously, reduced TERE1 expression was found in invasive urologic cancers and inhibited cell growth upon re-expression. A role in lipid metabolism was suggested by TERE1 binding to APOE, a cholesterol carrier, and to TBL2, a candidate protein in triglyceride disorders. Natural TERE1 mutations associate with Schnyder's corneal dystrophy, characterized by lipid accumulation. TERE1 catalyzes menaquinone synthesis, known to affect cholesterol homeostasis. To explore this relationship, we altered TERE1 and TBL2 dosage via ectopic expression and interfering RNA and measured cholesterol by Amplex red. Protein interactions of wild-type and mutant TERE1 with GST-APOE were evaluated by binding assays and molecular modeling. We conducted a bladder tumor microarray TERE1 expression analysis and assayed tumorigenicity of J82 cells ectopically expressing TERE1. TERE1 expression was reduced in a third of invasive specimens. Ectopic TERE1 expression in J82 bladder cancer cells dramatically inhibited nude mouse tumorigenesis. TERE1 and TBL2 proteins inversely modulated cellular cholesterol in HEK293 and bladder cancer cells from 20% to 50%. TERE1 point mutations affected APOE interactions, and resulted in cholesterol levels that differed from wild type. Elevated tumor cell cholesterol is known to affect apoptosis and growth signaling; thus, loss of TERE1 in invasive bladder cancer may represent a defect in menaquinone-mediated cholesterol homeostasis that contributes to progression. PMID:21740188

  1. ATP-binding cassette (ABC) proteins in aquatic invertebrates: Evolutionary significance and application in marine ecotoxicology.

    PubMed

    Jeong, Chang-Bum; Kim, Hui-Su; Kang, Hye-Min; Lee, Jae-Seong

    2017-04-01

    The ATP-binding cassette (ABC) protein superfamily is known to play a fundamental role in biological processes and is highly conserved across animal taxa. The ABC proteins function as active transporters for multiple substrates across the cellular membrane by ATP hydrolysis. As this superfamily is derived from a common ancestor, ABC genes have evolved via lineage-specific duplications through the process of adaptation. In this review, we summarized information about the ABC gene families in aquatic invertebrates, considering their evolution and putative functions in defense mechanisms. Phylogenetic analysis was conducted to examine the evolutionary significance of ABC gene families in aquatic invertebrates. Particularly, a massive expansion of multixenobiotic resistance (MXR)-mediated efflux transporters was identified in the absence of the ABCG2 (BCRP) gene in Ecdysozoa and Platyzoa, suggesting that a loss of Abcg2 gene occurred sporadically in these species during divergence of Protostome to Lophotrochozoa. Furthermore, in aquatic invertebrates, the ecotoxicological significance of MXR is discussed while considering the role of MXR-mediated efflux transporters in response to various environmental pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Clathrin-Mediated Auxin Efflux and Maxima Regulate Hypocotyl Hook Formation and Light-Stimulated Hook Opening in Arabidopsis.

    PubMed

    Yu, Qinqin; Zhang, Ying; Wang, Juan; Yan, Xu; Wang, Chao; Xu, Jian; Pan, Jianwei

    2016-01-04

    The establishment of auxin maxima by PIN-FORMED 3 (PIN3)- and AUXIN RESISTANT 1/LIKE AUX1 (LAX) 3 (AUX1/LAX3)-mediated auxin transport is essential for hook formation in Arabidopsis hypocotyls. Until now, however, the underlying regulatory mechanism has remained poorly understood. Here, we show that loss of function of clathrin light chain CLC2 and CLC3 genes enhanced auxin maxima and thereby hook curvature, alleviated the inhibitory effect of auxin overproduction on auxin maxima and hook curvature, and delayed blue light-stimulated auxin maxima reduction and hook opening. Moreover, pharmacological experiments revealed that auxin maxima formation and hook curvature in clc2 clc3 were sensitive to auxin efflux inhibitors 1-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid but not to the auxin influx inhibitor 1-naphthoxyacetic acid. Live-cell imaging analysis further uncovered that loss of CLC2 and CLC3 function impaired PIN3 endocytosis and promoted its lateralization in the cortical cells but did not affect AUX1 localization. Taken together, these results suggest that clathrin regulates auxin maxima and thereby hook formation through modulating PIN3 localization and auxin efflux, providing a novel mechanism that integrates developmental signals and environmental cues to regulate plant skotomorphogenesis and photomorphogenesis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  3. ABCG2 in peptic ulcer: gene expression and mutation analysis.

    PubMed

    Salagacka-Kubiak, Aleksandra; Żebrowska, Marta; Wosiak, Agnieszka; Balcerczak, Mariusz; Mirowski, Marek; Balcerczak, Ewa

    2016-08-01

    The aim of this study was to evaluate the participation of polymorphism at position C421A and mRNA expression of the ABCG2 gene in the development of peptic ulcers, which is a very common and severe disease. ABCG2, encoded by the ABCG2 gene, has been found inter alia in the gastrointestinal tract, where it plays a protective role eliminating xenobiotics from cells into the extracellular environment. The materials for the study were biopsies of gastric mucosa taken during a routine endoscopy. For genotyping by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) at position C421A, DNA was isolated from 201 samples, while for the mRNA expression level by real-time PCR, RNA was isolated from 60 patients. The control group of healthy individuals consisted of 97 blood donors. The dominant genotype in the group of peptic ulcer patients and healthy individuals was homozygous CC. No statistically significant differences between healthy individuals and the whole group of peptic ulcer patients and, likewise, between the subgroups of peptic ulcer patients (infected and uninfected with Helicobacter pylori) were found. ABCG2 expression relative to GAPDH expression was found in 38 of the 60 gastric mucosa samples. The expression level of the gene varies greatly among cases. The statistically significant differences between the intensity (p = 0.0375) of H. pylori infection and ABCG2 gene expression have been shown. It was observed that the more intense the infection, the higher the level of ABCG2 expression.

  4. RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa).

    PubMed

    Shiono, Katsuhiro; Ando, Miho; Nishiuchi, Shunsaku; Takahashi, Hirokazu; Watanabe, Kohtaro; Nakamura, Motoaki; Matsuo, Yuichi; Yasuno, Naoko; Yamanouchi, Utako; Fujimoto, Masaru; Takanashi, Hideki; Ranathunge, Kosala; Franke, Rochus B; Shitan, Nobukazu; Nishizawa, Naoko K; Takamure, Itsuro; Yano, Masahiro; Tsutsumi, Nobuhiro; Schreiber, Lukas; Yazaki, Kazufumi; Nakazono, Mikio; Kato, Kiyoaki

    2014-10-01

    Suberin is a complex polymer composed of aliphatic and phenolic compounds. It is a constituent of apoplastic plant interfaces. In many plant species, including rice (Oryza sativa), the hypodermis in the outer part of roots forms a suberized cell wall (the Casparian strip and/or suberin lamellae), which inhibits the flow of water and ions and protects against pathogens. To date, there is no genetic evidence that suberin forms an apoplastic transport barrier in the hypodermis. We discovered that a rice reduced culm number1 (rcn1) mutant could not develop roots longer than 100 mm in waterlogged soil. The mutated gene encoded an ATP-binding cassette (ABC) transporter named RCN1/OsABCG5. RCN1/OsABCG5 gene expression in the wild type was increased in most hypodermal and some endodermal roots cells under stagnant deoxygenated conditions. A GFP-RCN1/OsABCG5 fusion protein localized at the plasma membrane of the wild type. Under stagnant deoxygenated conditions, well suberized hypodermis developed in wild types but not in rcn1 mutants. Under stagnant deoxygenated conditions, apoplastic tracers (periodic acid and berberine) were blocked at the hypodermis in the wild type but not in rcn1, indicating that the apoplastic barrier in the mutant was impaired. The amount of the major aliphatic suberin monomers originating from C(28) and C(30) fatty acids or ω-OH fatty acids was much lower in rcn1 than in the wild type. These findings suggest that RCN1/OsABCG5 has a role in the suberization of the hypodermis of rice roots, which contributes to formation of the apoplastic barrier. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  5. DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future type 2 diabetes risk.

    PubMed

    Dayeh, Tasnim; Tuomi, Tiinamaija; Almgren, Peter; Perfilyev, Alexander; Jansson, Per-Anders; de Mello, Vanessa D; Pihlajamäki, Jussi; Vaag, Allan; Groop, Leif; Nilsson, Emma; Ling, Charlotte

    2016-07-02

    Identification of subjects with a high risk of developing type 2 diabetes (T2D) is fundamental for prevention of the disease. Consequently, it is essential to search for new biomarkers that can improve the prediction of T2D. The aim of this study was to examine whether 5 DNA methylation loci in blood DNA (ABCG1, PHOSPHO1, SOCS3, SREBF1, and TXNIP), recently reported to be associated with T2D, might predict future T2D in subjects from the Botnia prospective study. We also tested if these CpG sites exhibit altered DNA methylation in human pancreatic islets, liver, adipose tissue, and skeletal muscle from diabetic vs. non-diabetic subjects. DNA methylation at the ABCG1 locus cg06500161 in blood DNA was associated with an increased risk for future T2D (OR = 1.09, 95% CI = 1.02-1.16, P-value = 0.007, Q-value = 0.018), while DNA methylation at the PHOSPHO1 locus cg02650017 in blood DNA was associated with a decreased risk for future T2D (OR = 0.85, 95% CI = 0.75-0.95, P-value = 0.006, Q-value = 0.018) after adjustment for age, gender, fasting glucose, and family relation. Furthermore, the level of DNA methylation at the ABCG1 locus cg06500161 in blood DNA correlated positively with BMI, HbA1c, fasting insulin, and triglyceride levels, and was increased in adipose tissue and blood from the diabetic twin among monozygotic twin pairs discordant for T2D. DNA methylation at the PHOSPHO1 locus cg02650017 in blood correlated positively with HDL levels, and was decreased in skeletal muscle from diabetic vs. non-diabetic monozygotic twins. DNA methylation of cg18181703 (SOCS3), cg11024682 (SREBF1), and cg19693031 (TXNIP) was not associated with future T2D risk in subjects from the Botnia prospective study.

  6. Triazoles inhibit cholesterol export from lysosomes by binding to NPC1.

    PubMed

    Trinh, Michael N; Lu, Feiran; Li, Xiaochun; Das, Akash; Liang, Qiren; De Brabander, Jef K; Brown, Michael S; Goldstein, Joseph L

    2017-01-03

    Niemann-Pick C1 (NPC1), a membrane protein of lysosomes, is required for the export of cholesterol derived from receptor-mediated endocytosis of LDL. Lysosomal cholesterol export is reportedly inhibited by itraconazole, a triazole that is used as an antifungal drug [Xu et al. (2010) Proc Natl Acad Sci USA 107:4764-4769]. Here we show that posaconazole, another triazole, also blocks cholesterol export from lysosomes. We prepared P-X, a photoactivatable cross-linking derivative of posaconazole. P-X cross-linked to NPC1 when added to intact cells. Cross-linking was inhibited by itraconazole but not by ketoconazole, an imidazole that does not block cholesterol export. Cross-linking of P-X was also blocked by U18666A, a compound that has been shown to bind to NPC1 and inhibit cholesterol export. P-X also cross-linked to purified NPC1 that was incorporated into lipid bilayer nanodiscs. In this in vitro system, cross-linking of P-X was inhibited by itraconazole, but not by U18666A. P-X cross-linking was not prevented by deletion of the N-terminal domain of NPC1, which contains the initial binding site for cholesterol. In contrast, P-X cross-linking was reduced when NPC1 contained a point mutation (P691S) in its putative sterol-sensing domain. We hypothesize that the sterol-sensing domain has a binding site that can accommodate structurally different ligands.

  7. Effect of proinflammatory cytokine IL-6 on efflux transport of rebamipide in Caco-2 cells.

    PubMed

    Miyake, Masateru; Nakai, Daisuke

    2017-09-01

    1. Effect of IL-6, a pro-inflammatory cytokine, on efflux transport of rebamipide, an antiulcer drug, was investigated in Caco-2 cells. 2. Rebamipide had a greater basal-to-apical than apical-to-basal transport rate. Efflux transport of rebamipide was inhibited by cyclosporine A, a P-gp inhibitor, and probenecid, which is a general MRP inhibitor, but not by Ko143, a BCRP inhibitor. 3. By the addition of IL-6, mannitol transport was slightly increased in a concentration-dependent manner in both directions of absorption and efflux. The addition of IL-6 did not change efflux transport of rebamipide even though efflux transport of digoxin, a typical substrate of P-gp, was significantly decreased by the addition of IL-6, indicating decrease of the function of P-gp. 4. Therefore, it was suggested that increase of MRP(s)-mediated transport compensates for the decrease of P-gp mediated transport of rebamipide. These findings suggested that rebamipide absorption is unlikely to be changed in IBD patients.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Jianmei; Department of Endocrinology, The First Hospital of Zibo, 4# E Mei Shan Dong Road, Zibo 255200; Li, Bo, E-mail: libosubmit@163.com

    Objectives: Cholesterol efflux has been thought to be the main and basic mechanism by which free cholesterol is transferred from extra hepatic cells to the liver or intestine for excretion. Salvianolic acid B (Sal B) has been widely used for the prevention and treatment of atherosclerotic diseases. Here, we sought to investigate the effects of Sal B on the cholesterol efflux in THP-1 macrophages. Methods: After PMA-stimulated THP-1 cells were exposed to 50 mg/L of oxLDL and [{sup 3}H] cholesterol (1.0 μCi/mL) for another 24 h, the effect of Sal B on cholesterol efflux was evaluated in the presence of apoA-1, HDL{sub 2}more » or HDL{sub 3}. The expression of ATP binding cassette transporter A1 (ABCA1), peroxisome proliferator-activated receptor-gamma (PPAR-γ), and liver X receptor-alpha (LXRα) was detected both at protein and mRNA levels in THP-1 cells after the stimulation of Sal B. Meanwhile, specific inhibition of PPAR-γ and LXRα were performed to investigate the mechanism. Results: The results showed that Sal B significantly accelerated apoA-I- and HDL-mediated cholesterol efflux in both dose- and time-dependent manners. Meanwhile, Sal B treatment also enhanced the expression of ABCA1 at both mRNA and protein levels. Then the data demonstrated that Sal B increased the expression of PPAR-γ and LXRα. And the application of specific agonists and inhibitors of further confirmed that Sal exert the function through PPAR-γ and LXRα. Conclusion: These results demonstrate that Sal B promotes cholesterol efflux in THP-1 macrophages through ABCA1/PPAR-γ/LXRα pathway. - Highlights: • Sal B promotes the expression of ABCA1. • Sal B promotes cholesterol efflux in macrophages. • Sal B promotes the expression of ABCA1 and cholesterol efflux through PPAR-γ/LXRα signaling pathway.« less

  9. Kinetic Modeling of ABCG2 Transporter Heterogeneity: A Quantitative, Single-Cell Analysis of the Side Population Assay

    PubMed Central

    Prasanphanich, Adam F.; White, Douglas E.; Gran, Margaret A.

    2016-01-01

    The side population (SP) assay, a technique used in cancer and stem cell research, assesses the activity of ABC transporters on Hoechst staining in the presence and absence of transporter inhibition, identifying SP and non-SP cell (NSP) subpopulations by differential staining intensity. The interpretation of the assay is complicated because the transporter-mediated mechanisms fail to account for cell-to-cell variability within a population or adequately control the direct role of transporter activity on staining intensity. We hypothesized that differences in dye kinetics at the single-cell level, such as ABCG2 transporter-mediated efflux and DNA binding, are responsible for the differential cell staining that demarcates SP/NSP identity. We report changes in A549 phenotype during time in culture and with TGFβ treatment that correlate with SP size. Clonal expansion of individually sorted cells re-established both SP and NSPs, indicating that SP membership is dynamic. To assess the validity of a purely kinetics-based interpretation of SP/NSP identity, we developed a computational approach that simulated cell staining within a heterogeneous cell population; this exercise allowed for the direct inference of the role of transporter activity and inhibition on cell staining. Our simulated SP assay yielded appropriate SP responses for kinetic scenarios in which high transporter activity existed in a portion of the cells and little differential staining occurred in the majority of the population. With our approach for single-cell analysis, we observed SP and NSP cells at both ends of a transporter activity continuum, demonstrating that features of transporter activity as well as DNA content are determinants of SP/NSP identity. PMID:27851764

  10. Mung bean decreases plasma cholesterol by up-regulation of CYP7A1.

    PubMed

    Yao, Yang; Hao, Liu; Shi, Zhenxing; Wang, Lixia; Cheng, Xuzhen; Wang, Suhua; Ren, Guixing

    2014-06-01

    Our results affirmed that supplementation of 1 or 2% mung bean could decrease plasma total cholesterol and triacylglycerol level. Mung bean increased mRNA 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase. Most importantly, mung bean increased not only the protein level of cholesterol-7α-hydroxylase (CYP7A1) but also mRNA CYP7A1. It was concluded that the hypocholesterolemic activity of mung bean was most probable mediated by enhancement of bile acid excretion and up-regulation of CYP7A1.

  11. Ombuin-3-O-β-D-glucopyranoside from Gynostemma pentaphyllum is a dual agonistic ligand of peroxisome proliferator-activated receptors α and δ/β

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malek, Mastura Abd; Hoang, Minh-Hien; Jia, Yaoyao

    Highlights: ► Ombuin-3-O-β-D-glucopyranoside is a dual ligand for PPARα and δ/β. ► Ombuin-3-O-β-D-glucopyranoside reduces cellular lipid levels in multiple cell types. ► Cells stimulated with ombuine up-regulated target genes in cholesterol efflux. ► Cells stimulated with ombuine regulated target fatty acid β-oxidation and synthesis. ► Ombuin-3-O-β-D-glucopyranoside could ameliorate hyperlipidemia and hepatic steatosis. -- Abstract: We demonstrated that ombuin-3-O-β-D-glucopyranoside (ombuine), a flavonoid from Gynostemma pentaphyllum, is a dual agonist for peroxisome proliferator-activated receptors (PPARs) α and δ/β. Using surface plasmon resonance (SPR), time-resolved fluorescence resonance energy transfer (FRET) analyses, and reporter gene assays, we showed that ombuine bound directly to PPARαmore » and δ/β but not to PPARγ or liver X receptors (LXRs). Cultured HepG2 hepatocytes stimulated with ombuine significantly reduced intracellular concentrations of triglyceride and cholesterol and downregulated the expression of lipogenic genes, including sterol regulatory element binding protein-1c (SREBP1c) and stearoyl-CoA desaturase-1 (SCD-1), with activation of PPARα and δ/β. Activation of LXRs by ombuine was confirmed by reporter gene assays, however, SPR and cell-based FRET assays showed no direct binding of ombuine to either of the LXRs suggesting LXR activation by ombuine may be operated via PPARα stimulation. Ombuine-stimulated macrophages showed significantly induced transcription of ATP binding cassette cholesterol transporter A1 (ABCA1) and G1 (ABCG1), the key genes in reverse cholesterol transport, which led to reduced cellular cholesterol concentrations. These results suggest that ombuine is a dual PPAR ligand for PPARα and δ/β with the ability to decrease lipid concentrations by reducing lipogenic gene expression in hepatocytes and inducing genes involved in cholesterol efflux in macrophages.« less

  12. Bisphenol A promotes cholesterol absorption in Caco-2 cells by up-regulation of NPC1L1 expression.

    PubMed

    Feng, Dan; Zou, Jun; Zhang, Shanshan; Li, Xuechun; Li, Peiyang; Lu, Minqi

    2017-01-06

    Bisphenol A (BPA), an commonly exposed environmental chemicals in humans, has been shown to have a hypercholesterolemic effect with molecular mechanism not clear. Since intestinal cholesterol absorption plays a major role in maintaining total body cholesterol homeostasis, the present study is to investigate whether BPA affects cholesterol absorption in the intestinal Caco-2 cells. The Caco-2 cells were pretreated with BPA at different concentrations for 24 h and then incubated with radioactive micellar cholesterol for 2 h. The absorption of radioactive cholesterol was quantified by liquid scintillation. The expression of Niemann-Pick C1-like 1 (NPC1L1) and sterol regulatory element binding protein-2 (SREBP-2) was analyzed by Western blot and qPCR. We found that confluent Caco-2 cells expressed NPC1L1, and the absorption of cholesterol in the cells was inhibited by ezetimibe, a specific inhibitor of NPC1L1. We then pretreated the cells with 0.1-10 nM BPA for 24 h and found that BPA at 1 and 10 nM doses promoted cholesterol absorption. In addition, we found that the BPA-induced promotion of cholesterol absorption was associated with significant increase in the levels of NPC1L1 protein and NPC1L1 mRNA. Moreover, the stimulatory effects of BPA on cholesterol absorption and NPC1L1 expression could be prevented by blockade of the SREBP-2 pathway. This study provides the first evidence that BPA promotes cholesterol absorption in the intestinal cells and the stimulatory effect of BPA is mediated, at least in part, by SREBP-2-NPC1L1 signaling pathway.

  13. P-glycoprotein (MDR1/ABCB1) restricts brain accumulation and Cytochrome P450-3A (CYP3A) limits oral availability of the novel ALK/ROS1 inhibitor lorlatinib.

    PubMed

    Li, Wenlong; Sparidans, Rolf W; Wang, Yaogeng; Lebre, Maria C; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H

    2018-05-09

    Lorlatinib (PF-06463922) is a promising oral anaplastic lymphoma kinase (ALK) and ROS1 inhibitor currently in Phase III clinical trials for treatment of non-small cell lung cancer (NSCLC) containing an ALK rearrangement. With therapy-resistant brain metastases a major concern in NSCLC, lorlatinib was designed to have high membrane and blood-brain barrier permeability. We investigated the roles of the multidrug efflux transporters ABCB1 and ABCG2, and the multispecific drug-metabolizing enzyme CYP3A in plasma pharmacokinetics and tissue distribution of lorlatinib using genetically modified mouse strains. In vitro, human ABCB1 and mouse Abcg2 modestly transported lorlatinib. Following oral lorlatinib administration (at 10 mg/kg), brain accumulation of lorlatinib, while relatively high in wild-type mice, was still 4-fold increased in Abcb1a/1b -/- and Abcb1a/1b;Abcg2 -/- mice, but not in single Abcg2 -/- mice. Lorlatinib plasma levels were not altered. Oral coadministration of the ABCB1/ABCG2 inhibitor elacridar increased the brain accumulation of lorlatinib in wild-type mice 4-fold, i.e. to the same level as in Abcb1a/1b;Abcg2 -/- mice, without altering plasma exposure. Similar results were obtained for lorlatinib testis accumulation. In Cyp3a -/- mice, the plasma exposure of lorlatinib was increased 1.3-fold, but was then 2-fold reduced upon transgenic over-expression of human CYP3A4 in liver and intestine, whereas relative tissue distribution of lorlatinib remained unaltered. Our data indicate that lorlatinib brain accumulation is substantially limited by P-glycoprotein in the blood-brain barrier, but this can be effectively reversed by elacridar coadministration. Moreover, oral availability of lorlatinib is markedly restricted by CYP3A4 activity. These insights may be used in optimizing the therapeutic application of lorlatinib. This article is protected by copyright. All rights reserved. © 2018 UICC.

  14. Functional rescue of mutant ABCA1 proteins by sodium 4-phenylbutyrate.

    PubMed

    Sorrenson, Brie; Suetani, Rachel J; Williams, Michael J A; Bickley, Vivienne M; George, Peter M; Jones, Gregory T; McCormick, Sally P A

    2013-01-01

    Mutations in the ATP-binding cassette transporter A1 (ABCA1) are a major cause of decreased HDL cholesterol (HDL-C), which infers an increased risk of cardiovascular disease (CVD). Many ABCA1 mutants show impaired localization to the plasma membrane. The aim of this study was to investigate whether the chemical chaperone, sodium 4-phenylbutyrate (4-PBA) could improve cellular localization and function of ABCA1 mutants. Nine different ABCA1 mutants (p.A594T, p.I659V, p.R1068H, p.T1512M, p.Y1767D, p.N1800H, p.R2004K, p.A2028V, p.Q2239N) expressed in HEK293 cells, displaying different degrees of mislocalization to the plasma membrane and discrete impacts on cholesterol efflux, were subject to treatment with 4-PBA. Treatment restored localization to the plasma membrane and increased cholesterol efflux function for the majority of mutants. Treatment with 4-PBA also increased ABCA1 protein expression in all transfected cell lines. In fibroblast cells obtained from low HDL-C subjects expressing two of the ABCA1 mutants (p.R1068H and p.N1800H), 4-PBA increased cholesterol efflux without any increase in ABCA1 expression. Our study is the first to investigate the effect of the chemical chaperone, 4-PBA on ABCA1 and shows that it is capable of restoring plasma membrane localization and enhancing the cholesterol efflux function of mutant ABCA1s both in vitro and ex vivo. These results suggest 4-PBA may warrant further investigation as a potential therapy for increasing cholesterol efflux and HDL-C levels.

  15. Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole.

    PubMed

    Ahmad, Aijaz; Khan, Amber; Manzoor, Nikhat

    2013-01-23

    Thymol (THY) and carvacrol (CARV), the principal chemical components of thyme oil have long been known for their wide use in medicine due to antimicrobial and disinfectant properties. This study, however, draws attention to a possible synergistic antifungal effect of these monoterpenes with azole antimycotic-fluconazole. Resistance to azoles in Candida albicans involves over-expression of efflux-pump genes MDR1, CDR1, CDR2 or mutations and over-expression of target gene ERG11. The inhibition of drug efflux pumps is considered a feasible strategy to overcome clinical antifungal resistance. To put forward this approach, we investigated the combination effects of these monoterpenes and FLC against 38 clinically obtained FLC-sensitive, and eleven FLC-resistant Candida isolates. Synergism was observed with combinations of THY-FLC and CARV-FLC evaluated by checkerboard microdilution method and nature of the interactions was calculated by FICI. In addition, antifungal activity was assessed using agar-diffusion and time-kill curves. The drug efflux activity was determined using two dyes, Rhodamine6G (R6G) and fluorescent Hoechst 33342. No significant differences were observed in dye uptakes between FLC-susceptible and resistant isolates, incubated in glucose free buffer. However, a significantly higher efflux was recorded in FLC-resistant isolates when glucose was added. Both monoterpenes inhibited efflux by 70-90%, showing their high potency to block drug transporter pumps. Significant differences, in the expression levels of CDR1 and MDR1, induced by monoterpenes revealed reversal of FLC-resistance. The selectively fungicidal characteristics and ability to restore FLC susceptibility in resistant isolates signify a promising candidature of THY and CARV as antifungal agents in combinational treatments for candidiasis. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. A novel trigger for cholesterol-dependent smooth muscle contraction mediated by the sphingosylphosphorylcholine-Rho-kinase pathway in the rat basilar artery: a mechanistic role for lipid rafts.

    PubMed

    Shirao, Satoshi; Yoneda, Hiroshi; Shinoyama, Mizuya; Sugimoto, Kazutaka; Koizumi, Hiroyasu; Ishihara, Hideyuki; Oka, Fumiaki; Sadahiro, Hirokazu; Nomura, Sadahiro; Fujii, Masami; Tamechika, Masakatsu; Kagawa, Yoshiteru; Owada, Yuji; Suzuki, Michiyasu

    2015-05-01

    Hyperlipidemia is a risk factor for abnormal cerebrovascular events. Rafts are cholesterol-enriched membrane microdomains that influence signal transduction. We previously showed that Rho-kinase-mediated Ca(2+) sensitization of vascular smooth muscle (VSM) induced by sphingosylphosphorylcholine (SPC) has a pivotal role in cerebral vasospasm. The goals of the study were to show SPC-Rho-kinase-mediated VSM contraction in vivo and to link this effect to cholesterol and rafts. The SPC-induced VSM contraction measured using a cranial window model was reversed by Y-27632, a Rho-kinase inhibitor, in rats fed a control diet. The extent of SPC-induced contraction correlated with serum total cholesterol. Total cholesterol levels in the internal carotid artery (ICA) were significantly higher in rats fed a cholesterol diet compared with a control diet or a β-cyclodextrin diet, which depletes VSM cholesterol. Western blotting and real-time PCR revealed increases in flotillin-1, a raft marker, and flotillin-1 mRNA in the ICA in rats fed a cholesterol diet, but not in rats fed the β-cyclodextrin diet. Depletion of cholesterol decreased rafts in VSM cells, and prevention of an increase in cholesterol by β-cyclodextrin inhibited SPC-induced contraction in a cranial window model. These results indicate that cholesterol potentiates SPC-Rho-kinase-mediated contractions of importance in cerebral vasospasm and are compatible with a role for rafts in this process.

  17. ABCG2 transporter inhibitor restores the sensitivity of triple negative breast cancer cells to aminolevulinic acid-mediated photodynamic therapy.

    PubMed

    Palasuberniam, Pratheeba; Yang, Xue; Kraus, Daniel; Jones, Patrick; Myers, Kenneth A; Chen, Bin

    2015-08-18

    Photosensitizer protoporphyrin IX (PpIX) fluorescence, intracellular localization and cell response to photodynamic therapy (PDT) were analyzed in MCF10A normal breast epithelial cells and a panel of human breast cancer cells including estrogen receptor (ER) positive, human epidermal growth factor receptor 2 (HER2) positive and triple negative breast cancer (TNBC) cells after treatment with PpIX precursor aminolevulinic acid (ALA). Although PpIX fluorescence was heterogeneous in different cells, TNBC cells showed significantly lower PpIX level than MCF10A and ER- or HER2-positive cells. PpIX fluorescence in TNBC cells also had much less mitochondrial localization than other cells. There was an inverse correlation between PpIX fluorescence and cell viability after PDT. Breast cancer cells with the highest PpIX fluorescence were the most sensitive to ALA-PDT and TNBC cells with the lowest PpIX level were resistant to PDT. Treatment of TNBC cells with ABCG2 transporter inhibitor Ko143 significantly increased ALA-PpIX fluorescence, enhanced PpIX mitochondrial accumulation and sensitized cancer cells to ALA-PDT. Ko143 treatment had little effect on PpIX production and ALA-PDT in normal and ER- or HER2-positive cells. These results demonstrate that enhanced ABCG2 activity renders TNBC cell resistance to ALA-PDT and inhibiting ABCG2 transporter is a promising approach for targeting TNBC with ALA-based modality.

  18. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis.

    PubMed

    Marí, Montserrat; Caballero, Francisco; Colell, Anna; Morales, Albert; Caballeria, Juan; Fernandez, Anna; Enrich, Carlos; Fernandez-Checa, José C; García-Ruiz, Carmen

    2006-09-01

    The etiology of progression from steatosis to steatohepatitis (SH) remains unknown. Using nutritional and genetic models of hepatic steatosis, we show that free cholesterol (FC) loading, but not free fatty acids or triglycerides, sensitizes to TNF- and Fas-induced SH. FC distribution in endoplasmic reticulum (ER) and plasma membrane did not cause ER stress or alter TNF signaling. Rather, mitochondrial FC loading accounted for the hepatocellular sensitivity to TNF due to mitochondrial glutathione (mGSH) depletion. Selective mGSH depletion in primary hepatocytes recapitulated the susceptibility to TNF and Fas seen in FC-loaded hepatocytes; its repletion rescued FC-loaded livers from TNF-mediated SH. Moreover, hepatocytes from mice lacking NPC1, a late endosomal cholesterol trafficking protein, or from obese ob/ob mice, exhibited mitochondrial FC accumulation, mGSH depletion, and susceptibility to TNF. Thus, we propose a critical role for mitochondrial FC loading in precipitating SH, by sensitizing hepatocytes to TNF and Fas through mGSH depletion.

  19. Leucine supplementation via drinking water reduces atherosclerotic lesions in apoE null mice

    PubMed Central

    Zhao, Yang; Dai, Xiao-yan; Zhou, Zhou; Zhao, Ge-xin; Wang, Xian; Xu, Ming-jiang

    2016-01-01

    Aim: Recent evidence suggests that the essential amino acid leucine may be involved in systemic cholesterol metabolism. In this study, we investigated the effects of leucine supplementation on the development of atherosclerosis in apoE null mice. Methods: ApoE null mice were fed with chow supplemented with leucine (1.5% w/v) in drinking water for 8 week. Aortic atherosclerotic lesions were examined using Oil Red O staining. Plasma lipoprotein-cholesterol levels were measured with fast protein liquid chromatography. Hepatic gene expression was detected using real-time PCR and Western blot analyses. Results: Leucine supplementation resulted in 57.6% reduction of aortic atherosclerotic lesion area in apoE null mice, accompanied by 41.2% decrease of serum LDL-C levels and 40.2% increase of serum HDL-C levels. The body weight, food intake and blood glucose level were not affected by leucine supplementation. Furthermore, leucine supplementation increased the expression of Abcg5 and Abcg8 (that were involved in hepatic cholesterol efflux) by 1.28- and 0.86-fold, respectively, and significantly increased their protein levels. Leucine supplementation also increased the expression of Srebf1, Scd1 and Pgc1b (that were involved in hepatic triglyceride metabolism) by 3.73-, 1.35- and 1.71-fold, respectively. Consequently, leucine supplementation resulted in 51.77% reduction of liver cholesterol content and 2.2-fold increase of liver triglyceride content. Additionally, leucine supplementation did not affect the serum levels of IL-6, IFN-γ, TNF-α, IL-10 and IL-12, but markedly decreased the serum level of MCP-1. Conclusion: Leucine supplementation effectively attenuates atherosclerosis in apoE null mice by improving the plasma lipid profile and reducing systemic inflammation. PMID:26687933

  20. Effects of Dietary Flavonoids on Reverse Cholesterol Transport, HDL Metabolism, and HDL Function12

    PubMed Central

    Millar, Courtney L; Duclos, Quinn

    2017-01-01

    Strong experimental evidence confirms that HDL directly alleviates atherosclerosis. HDL particles display diverse atheroprotective functions in reverse cholesterol transport (RCT), antioxidant, anti-inflammatory, and antiapoptotic processes. In certain inflammatory disease states, however, HDL particles may become dysfunctional and proatherogenic. Flavonoids show the potential to improve HDL function through their well-documented effects on cellular antioxidant status and inflammation. The aim of this review is to summarize the basic science and clinical research examining the effects of dietary flavonoids on RCT and HDL function. Based on preclinical studies that used cell culture and rodent models, it appears that many flavonoids (e.g., anthocyanidins, flavonols, and flavone subclasses) influence RCT and HDL function beyond simple HDL cholesterol concentration by regulating cellular cholesterol efflux from macrophages and hepatic paraoxonase 1 expression and activity. In clinical studies, dietary anthocyanin intake is associated with beneficial changes in serum biomarkers related to HDL function in a variety of human populations (e.g., in those who are hyperlipidemic, hypertensive, or diabetic), including increased HDL cholesterol concentration, as well as HDL antioxidant and cholesterol efflux capacities. However, clinical research on HDL functionality is lacking for some flavonoid subclasses (e.g., flavanols, flavones, flavanones, and isoflavones). Although there has been a tremendous effort to develop HDL-targeted drug therapies, more research is warranted on how the intake of foods or specific nutrients affects HDL function. PMID:28298268

  1. The inhibitory effect of black soybean on hepatic cholesterol accumulation in high cholesterol and high fat diet-induced non-alcoholic fatty liver disease.

    PubMed

    Jung, Ji-Hye; Kim, Hyun-Sook

    2013-10-01

    Non-alcoholic fatty liver disease (NAFLD) is defined as excess of fat in the liver. We investigated the effects of black soybean on the cholesterol metabolism and insulin resistance of mice fed high cholesterol/fat diets. Mice were randomly allocated into four groups that were fed different diets: the normal cholesterol/fat diet; high cholesterol/fat diets (HCD); and HCD with 1%, and 4% black soybean powder (1B-HCD, and 4B-HCD). Liver total cholesterol and triglyceride concentrations were significantly lower in the black soybean-supplemented groups than that in the HCD group. PCR revealed significantly lower hepatic SREBP2 and HMG-CoA reductase mRNA levels of black soybean-supplemented mice. Real-time PCR revealed significantly higher hepatic ABCA1 mRNA level of black soybean-supplemented mice, which may increase cholesterol efflux. Liver bile acids concentration was significantly high in the 4B-HCD group. Black soybean stimulated secretion of adiponectin, activation of pAMPK, and eliminated free fatty acids in the liver. Black soybean supplementation decreased MDA and nitrate level. The activities of SOD, catalase, and GPx were restored by black soybean supplementation. Our data strongly indicate that black soybean influences the balance between oxidative and antioxidative stress. We suggest that black soybean improves cholesterol metabolism, insulin resistance, and alleviates oxidative damage in NAFLD. Published by Elsevier Ltd.

  2. Inhibition of Ebola virus glycoprotein-mediated cytotoxicity by targeting its transmembrane domain and cholesterol.

    PubMed

    Hacke, Moritz; Björkholm, Patrik; Hellwig, Andrea; Himmels, Patricia; Ruiz de Almodóvar, Carmen; Brügger, Britta; Wieland, Felix; Ernst, Andreas M

    2015-07-09

    The high pathogenicity of the Ebola virus reflects multiple concurrent processes on infection. Among other important determinants, Ebola fusogenic glycoprotein (GP) has been associated with the detachment of infected cells and eventually leads to vascular leakage and haemorrhagic fever. Here we report that the membrane-anchored GP is sufficient to induce the detachment of adherent cells. The results show that the detachment induced through either full-length GP1,2 or the subunit GP2 depends on cholesterol and the structure of the transmembrane domain. These data reveal a novel molecular mechanism in which GP regulates Ebola virus assembly and suggest that cholesterol-reducing agents could be useful as therapeutics to counteract GP-mediated cell detachment.

  3. ABCG8 polymorphisms and renal disease in type 2 diabetic patients.

    PubMed

    Nicolas, Anthony; Fatima, Sehrish; Lamri, Amel; Bellili-Muñoz, Naima; Halimi, Jean-Michel; Saulnier, Pierre-Jean; Hadjadj, Samy; Velho, Gilberto; Marre, Michel; Roussel, Ronan; Fumeron, Frédéric

    2015-06-01

    Sterols, bile acids and their receptors have been involved in diabetic nephropathy. The ATP-binding cassette transporters G5 and G8 (ABCG5 and ABCG8) play an important role in intestinal sterol absorption and bile acid secretion. The aim of our study was to assess the associations between two ABCG8 coding polymorphisms, T400K and D19H, and the incidence of renal events in type 2 diabetic subjects. Participants were the 3137 French type 2 diabetic subjects with micro- or macro-albuminuria from the genetic substudy of the DIABHYCAR trial. The mean duration of follow-up was 4years. Renal events were defined as a doubling of serum creatinine concentration or end-stage renal disease at follow-up. We then used a second population (DIAB2NEPHROGENE) of 2140 type 2 diabetic patients for the purpose of validation. In DIABHYCAR, the 400K allele was significantly associated with a higher risk of incident renal events in a multiple adjusted model (HR: 1.75 [95% CI 1.20-2.56], P=0.003). This association was still significant after further adjustments for baseline values of estimated glomerular filtration rate and urinary albumin excretion. In the validation population, the 400K allele was associated with the prevalence of end-stage renal disease (OR=2.01 [95% CI 1.15-3.54], P=0.015). No significant association was found between the D19H polymorphism and the risk of diabetic nephropathy. A polymorphism of the sterol transporter ABCG8 has been associated with the prevalence of end-stage renal disease and with the incidence of new renal events in type 2 diabetic patients. Copyright © 2015. Published by Elsevier Inc.

  4. C1q/TNF-related protein 9 inhibits the cholesterol-induced Vascular smooth muscle cell phenotype switch and cell dysfunction by activating AMP-dependent kinase.

    PubMed

    Liu, Qi; Zhang, Hui; Lin, Jiale; Zhang, Ruoxi; Chen, Shuyuan; Liu, Wei; Sun, Meng; Du, Wenjuan; Hou, Jingbo; Yu, Bo

    2017-11-01

    Vascular smooth muscle cells (VSMCs) switch to macrophage-like cells after cholesterol loading, and this change may play an important role in the progression of atherosclerosis. C1q/TNF-related protein 9 (CTRP9) is a recently discovered adipokine that has been shown to have beneficial effects on glucose metabolism and vascular function, particularly in regard to cardiovascular disease. The question of whether CTRP9 can protect VSMCs from cholesterol damage has not been addressed. In this study, the impact of CTRP9 on cholesterol-damaged VSMCs was observed. Our data show that in cholesterol-treated VSMCs, CTRP9 significantly reversed the cholesterol-induced increases in pro-inflammatory factor secretion, monocyte adhesion, cholesterol uptake and expression of the macrophage marker CD68. Meanwhile, CTRP9 prevented the cholesterol-induced activation of the TLR4-MyD88-p65 pathway and upregulated the expression of proteins important for cholesterol efflux. Mechanistically, as siRNA-induced selective gene ablation of AMPKα1 abolished these effects of CTRP9, we concluded that CTRP9 achieves these protective effects in VSMCs through the AMP-dependent kinase (AMPK) pathway. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. Inhibition of Efflux Transporter-Mediated Fungicide Resistance in Pyrenophora tritici-repentis by a Derivative of 4′-Hydroxyflavone and Enhancement of Fungicide Activity

    PubMed Central

    Reimann, Sven; Deising, Holger B.

    2005-01-01

    Populations of the causal agent of wheat tan spot, Pyrenophora tritici-repentis, that are collected from fields frequently treated with reduced fungicide concentrations have reduced sensitivity to strobilurin fungicides and azole fungicides (C14-demethylase inhibitors). Energy-dependent efflux transporter activity can be induced under field conditions and after in vitro application of sublethal amounts of fungicides. Efflux transporters can mediate cross-resistance to a number of fungicides that belong to different chemical classes and have different modes of action. Resistant isolates can grow on substrata amended with fungicides and can infect plants treated with fungicides at levels above recommended field concentrations. We identified the hydroxyflavone derivative 2-(4-ethoxy-phenyl)-chromen-4-one as a potent inhibitor of energy-dependent fungicide efflux transporters in P. tritici-repentis. Application of this compound in combination with fungicides shifted fungicide-resistant P. tritici-repentis isolates back to normal sensitivity levels and prevented infection of wheat leaves. These results highlight the role of energy-dependent efflux transporters in fungicide resistance and could enable a novel disease management strategy based on the inhibition of fungicide efflux to be developed. PMID:15933029

  6. Chromium picolinate positively influences the glucose transporter system via affecting cholesterol homeostasis in adipocytes cultured under hyperglycemic diabetic conditions

    PubMed Central

    Pattar, Guruprasad R.; Tackett, Lixuan; Liu, Ping; Elmendorf, Jeffrey S.

    2008-01-01

    Since trivalent chromium (Cr3+) enhances glucose metabolism, interest in the use of Cr3+as a therapy for type 2 diabetes has grown in the mainstream medical community. Moreover, accumulating evidence suggests that Cr3+ may also benefit cardiovascular disease (CVD) and atypical depression. We have found that cholesterol, a lipid implicated in both CVD and neurodegenerative disorders, also influences cellular glucose uptake. A recent study in our laboratory shows that exposure of 3T3-L1 adipocytes to chromium picolinate (CrPic, 10 nM) induces a loss of plasma membrane cholesterol. Concomitantly, accumulation of intracellularly sequestered glucose transporter GLUT4 at the plasma membrane was dependent on the CrPic-induced cholesterol loss. Since CrPic supplementation has the greatest benefit on glucose metabolism in hyperglycemic insulin-resistant individuals, we asked here if the CrPic effect on cells was glucose-dependent. We found that GLUT4 redistribution in cells treated with CrPic occurs only in cells cultured under high glucose (25 mM) conditions that resemble the diabetic-state, and not in cells cultured under non-diabetic (5.5 mM glucose) conditions. Examination of the effect of CrPic on proteins involved in cholesterol homeostasis revealed that the activity of sterol regulatory element-binding protein (SREBP), a membrane-bound transcription factor ultimately responsible for controlling cellular cholesterol balance, was upregulated by CrPic. In addition, ABCA1, a major player in mediating cholesterol efflux was decreased, consistent with SREBP transcriptional repression of the ABCA1 gene. Although the exact mechanism of Cr3+-induced cholesterol loss remains to be determined, these cellular responses highlight a novel and significant effect of chromium on cholesterol homeostasis. Furthermore, these findings provide an important clue to our understanding of how chromium supplementation might benefit hypercholesterolemia-associated disorders. PMID:16870493

  7. Chromium picolinate positively influences the glucose transporter system via affecting cholesterol homeostasis in adipocytes cultured under hyperglycemic diabetic conditions.

    PubMed

    Pattar, Guruprasad R; Tackett, Lixuan; Liu, Ping; Elmendorf, Jeffrey S

    2006-11-07

    Since trivalent chromium (Cr(3+)) enhances glucose metabolism, interest in the use of Cr(3+)as a therapy for type 2 diabetes has grown in the mainstream medical community. Moreover, accumulating evidence suggests that Cr(3+) may also benefit cardiovascular disease (CVD) and atypical depression. We have found that cholesterol, a lipid implicated in both CVD and neurodegenerative disorders, also influences cellular glucose uptake. A recent study in our laboratory shows that exposure of 3T3-L1 adipocytes to chromium picolinate (CrPic, 10 nM) induces a loss of plasma membrane cholesterol. Concomitantly, accumulation of intracellularly sequestered glucose transporter GLUT4 at the plasma membrane was dependent on the CrPic-induced cholesterol loss. Since CrPic supplementation has the greatest benefit on glucose metabolism in hyperglycemic insulin-resistant individuals, we asked here if the CrPic effect on cells was glucose-dependent. We found that GLUT4 redistribution in cells treated with CrPic occurs only in cells cultured under high glucose (25 mM) conditions that resemble the diabetic-state, and not in cells cultured under non-diabetic (5.5 mM glucose) conditions. Examination of the effect of CrPic on proteins involved in cholesterol homeostasis revealed that the activity of sterol regulatory element-binding protein (SREBP), a membrane-bound transcription factor ultimately responsible for controlling cellular cholesterol balance, was upregulated by CrPic. In addition, ABCA1, a major player in mediating cholesterol efflux was decreased, consistent with SREBP transcriptional repression of the ABCA1 gene. Although the exact mechanism of Cr(3+)-induced cholesterol loss remains to be determined, these cellular responses highlight a novel and significant effect of chromium on cholesterol homeostasis. Furthermore, these findings provide an important clue to our understanding of how chromium supplementation might benefit hypercholesterolemia-associated disorders.

  8. Enhancement of the Effect of Methyl Pyropheophorbide-a-Mediated Photodynamic Therapy was Achieved by Increasing ROS through Inhibition of Nrf2-HO-1 or Nrf2-ABCG2 Signaling.

    PubMed

    Tian, Si; Yong, Min; Zhu, Jiang; Zhang, Li; Pan, Li; Chen, Qing; Li, Kai-Ting; Kong, Yu-Han; Jiang, Yuan; Yu, Ting-He; Yu, Le-Hua; Bai, Ding-Qun

    2017-01-01

    Emerging evidence indicates that the transcription factor nuclear factor-E2-related factor 2 (Nrf2) plays an essential role in cellular defense against oxidative stress; its activation has been related to cytoprotection. Here, we investigated the role of Nrf2 in improving the efficacy of methyl pyropheophorbide-amediated photodynamic therapy (Mppa-PDT) via the downregulation of Nrf2. Human ovarian cancer A2780 cells and SKOV3 cells were treated with Mppa-PDT and siRNA transfection was performed to inhibit Nrf2. After treated with siRNA and Mppa-PDT, the cell viability was examined with CCK-8 assay; cell apoptosis was detected tested by flow cytometry with Annexin V-FITC/PI; the celluar reactive oxygen species (ROS) and mitochondrial membrane potential were measured with DCFHDA and JC-1 staining; expression of protein was assessed by western blot analysis. We found that Nrf2 translocated from the cytoplasm to the nucleus in vitro and in vivo, and the expression of Nrf2 and P-Nrf2 increased through a possible mechanism regulated by mitogen-activated protein kinase (MAPK) after Mppa-PDT treatment. Furthermore, cytotoxicity and apoptosis induced by Mppa-PDT increased after Nrf2down-regulation. Nrf2 down -regulation increased reactive oxygen species (ROS) levels by attenuating antioxidants or pumping Mppa out of cells,which resulted from the inhibition of Nrf2-HO-1 or Nrf2- ABCG2 signaling. In addition, SKOV3 cells exhibited increased resistance to Mppa-PDT, and the expression levels of P-Nrf2 and ABCG2 were higher in SKOV3 cells than in A2780 cells, suggesting that Nrf2-ABCG2 signaling might be involved in the intrinsic resistanceto Mppa-PDT. These results provided evidence that Nrf2 down-regulation can enhance the effect of Mppa-PDT. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. ATP-Binding Cassette Efflux Transporters in Human Placenta

    PubMed Central

    Ni, Zhanglin; Mao, Qingcheng

    2010-01-01

    Pregnant women are often complicated with diseases including viral or bacterial infections, epilepsy, hypertension, or pregnancy-induced conditions such as depression and gestational diabetes that require treatment with medication. In addition, substance abuse during pregnancy remains a major public health problem. Many drugs used by pregnant women are off label without the necessary dose, efficacy, and safety data required for rational dosing regimens of these drugs. Thus, a major concern arising from the widespread use of drugs by pregnant women is the transfer of drugs across the placental barrier, leading to potential toxicity to the developing fetus. Knowledge regarding the ATP-binding cassette (ABC) efflux transporters, which play an important role in drug transfer across the placental barrier, is absolutely critical for optimizing the therapeutic strategy to treat the mother while protecting the fetus during pregnancy. Such transporters include P-glycoprotein (P-gp, gene symbol ABCB1), the breast cancer resistance protein (BCRP, gene symbol ABCG2), and the multidrug resistance proteins (MRPs, gene symbol ABCCs). In this review, we summarize the current knowledge with respect to developmental expression and regulation, membrane localization, functional significance, and genetic polymorphisms of these ABC transporters in the placenta and their relevance to fetal drug exposure and toxicity. PMID:21118087

  10. Metabolic Interactions of Purine Derivatives with Human ABC Transporter ABCG2: Genetic Testing to Assess Gout Risk.

    PubMed

    Ishikawa, Toshihisa; Aw, Wanping; Kaneko, Kiyoko

    2013-11-04

    In mammals, excess purine nucleosides are removed from the body by breakdown in the liver and excretion from the kidneys. Uric acid is the end product of purine metabolism in humans. Two-thirds of uric acid in the human body is normally excreted through the kidney, whereas one-third undergoes uricolysis (decomposition of uric acid) in the gut. Elevated serum uric acid levels result in gout and could be a risk factor for cardiovascular disease and diabetes. Recent studies have shown that human ATP-binding cassette transporter ABCG2 plays a role of renal excretion of uric acid. Two non-synonymous single nucleotide polymorphisms (SNPs), i.e., 421C>A (major) and 376C>T (minor), in the ABCG2 gene result in impaired transport activity, owing to ubiquitination-mediated proteosomal degradation and truncation of ABCG2, respectively. These genetic polymorphisms are associated with hyperuricemia and gout. Allele frequencies of those SNPs are significantly higher in Asian populations than they are in African and Caucasian populations. A rapid and isothermal genotyping method has been developed to detect the SNP 421C>A, where one drop of peripheral blood is sufficient for the detection. Development of simple genotyping methods would serve to improve prevention and early therapeutic intervention for high-risk individuals in personalized healthcare.

  11. Effects of isoflavone-containing soya protein on ex vivo cholesterol efflux, vascular function and blood markers of CVD risk in adults with moderately elevated blood pressure: a dose-response randomised controlled trial.

    PubMed

    Richter, Chesney K; Skulas-Ray, Ann C; Fleming, Jennifer A; Link, Christina J; Mukherjea, Ratna; Krul, Elaine S; Kris-Etherton, Penny M

    2017-05-01

    Emerging CVD risk factors (e.g. HDL function and central haemodynamics) may account for residual CVD risk experienced by individuals who meet LDL-cholesterol and blood pressure (BP) targets. Recent evidence suggests that these emerging risk factors can be modified by polyphenol-rich interventions such as soya, but additional research is needed. This study was designed to investigate the effects of an isoflavone-containing soya protein isolate (delivering 25 and 50 g/d soya protein) on HDL function (i.e. ex vivo cholesterol efflux), macrovascular function and blood markers of CVD risk. Middle-aged adults (n 20; mean age=51·6 (sem 6·6) years) with moderately elevated brachial BP (mean systolic BP=129 (sem 9) mmHg; mean diastolic BP=82·5 (sem 8·4) mmHg) consumed 0 (control), 25 and 50 g/d soya protein in a randomised cross-over design. Soya and control powders were consumed for 6 weeks each with a 2-week compliance break between treatment periods. Blood samples and vascular function measures were obtained at baseline and following each supplementation period. Supplementation with 50 g/d soya protein significantly reduced brachial diastolic BP (-2·3 mmHg) compared with 25 g/d soya protein (Tukey-adjusted P=0·03) but not the control. Soya supplementation did not improve ex vivo cholesterol efflux, macrovascular function or other blood markers of CVD risk compared with the carbohydrate-matched control. Additional research is needed to clarify whether effects on these CVD risk factors depend on the relative health of participants and/or equol producing capacity.

  12. Cholesterol Metabolism in CKD

    PubMed Central

    Reiss, Allison B.; Voloshyna, Iryna; DeLeon, Joshua; Miyawaki, Nobuyuki; Mattana, Joseph

    2015-01-01

    Patients with chronic kidney disease (CKD) have a substantial risk of developing coronary artery disease. Traditional cardiovascular disease (CVD) risk factors such as hypertension and hyperlipidemia do not adequately explain the high prevalence of CVD in CKD. Both CVD and CKD are inflammatory states and inflammation adversely impacts lipid balance. Dyslipidemia in CKD is characterized by elevated triglycerides and high density lipoprotein that is both decreased and dysfunctional. This dysfunctional high density lipoprotein becomes pro-inflammatory and loses its atheroprotective ability to promote cholesterol efflux from cells, including lipid-overloaded macrophages in the arterial wall. Elevated triglycerides result primarily from defective clearance. The weak association between low density lipoprotein cholesterol level and coronary risk in CKD has led to controversy over the usefulness of statin therapy. This review examines disrupted cholesterol transport in CKD, presenting both clinical and pre-clinical evidence of the impact of the uremic environment on vascular lipid accumulation. Preventative and treatment strategies are explored. PMID:26337134

  13. Therapeutic Role of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells

    DTIC Science & Technology

    2014-10-01

    G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human...1, OCT3/4, Hedgehog (Hh), Wnt/β-catenin, Notch signaling, Hox gene family, PTEN/Akt pathway, efflux transporters such as ABCG markers of self...105-111 (2001). 50. Liu, S., et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer

  14. Hypericin-mediated sonodynamic therapy induces autophagy and decreases lipids in THP-1 macrophage by promoting ROS-dependent nuclear translocation of TFEB.

    PubMed

    Li, Xuesong; Zhang, Xin; Zheng, Longbin; Kou, Jiayuan; Zhong, Zhaoyu; Jiang, Yueqing; Wang, Wei; Dong, Zengxiang; Liu, Zhongni; Han, Xiaobo; Li, Jing; Tian, Ye; Zhao, Yajun; Yang, Liming

    2016-12-22

    Lipid catabolism disorder is the primary cause of atherosclerosis. Transcription factor EB (TFEB) prevents atherosclerosis by activating macrophage autophagy to promote lipid degradation. Hypericin-mediated sonodynamic therapy (HY-SDT) has been proved non-invasively inducing THP-1-derived macrophage apoptosis; however, it is unknown whether macrophage autophagy could be triggered by HY-SDT to influence cellular lipid catabolism via regulating TFEB. Here, we report that HY-SDT resulted in the time-dependent THP-1-derived macrophage autophagy activation through AMPK/AKT/mTOR pathway. Besides, TFEB nuclear translocation in macrophage was triggered by HY-SDT to promote autophagy activation and lysosome regeneration which enhanced lipid degradation in response to atherogenic lipid stressors. Moreover, following HY-SDT, the ABCA1 expression level was increased to promote lipid efflux in macrophage, and the expression levels of CD36 and SR-A were decreased to inhibit lipid uptake, both of which were prevented by TFEB knockdown. These results indicated that TFEB nuclear translocation activated by HY-SDT was not only the key regulator of autophagy activation and lysosome regeneration in macrophage to promote lipolysis, but also had a crucial role in reverse cholesterol transporters to decrease lipid uptake and increase lipid efflux. Reactive oxygen species (ROS) were adequately generated in macrophage by HY-SDT. Further, ROS scavenger N-acetyl-l-cysteine abolished HY-SDT-induced TFEB nuclear translocation and autophagy activation, implying that ROS were the primary upstream factors responsible for these effects during HY-SDT. In summary, our data indicate that HY-SDT decreases lipid content in macrophage by promoting ROS-dependent nuclear translocation of TFEB to influence consequent autophagy activation and cholesterol transporters. Thus, HY-SDT may be beneficial for atherosclerosis via TFEB regulation to ameliorate lipid overload in atherosclerotic plaques.

  15. Terminalia arjuna prevents Interleukin-18-induced atherosclerosis via modulation of NF-κB/PPAR-γ-mediated pathway in Apo E-/- mice.

    PubMed

    Bhat, Owais Mohammad; Kumar, P Uday; Rao, K Rajender; Ahmad, Ashfaq; Dhawan, Veena

    2018-04-01

    Terminalia arjuna is a medicinal plant well known as a cardiotonic in Ayurvedic system of medicine. We hypothesized that aqueous stem bark extract of T. arjuna (TAE) may inhibit IL-18-induced atherosclerosis via NF-κB/PPAR-γ-mediated pathway in Apo E-/- mice. 12-week-old, male Apo E-/- mice divided into four groups (n = 6/group) fed with normal chow-diet were employed: GP I: phosphate buffer saline (PBS) (2 month); GP II: rIL-18 (1 month) followed by PBS (1 month); GP III: rIL-18 (1 month) followed by TAE (1 month); GP IV: rIL-18 (1 month) followed by atorvastatin (1 month). IL-18 treatment induced a significant increase (p < 0.001) in pro-inflammatory marker (IL-18) (170 ± 9.16 vs. 1178.66 ± 8.08, pg/ml), and downregulated cholesterol efflux gene (PPAR-γ) by ~0.6-fold vs. 1.00 in IL-18-treated mice as compared to the control animals, respectively. TAE treatment to both groups caused a significant reduction in IL-18 to 281.66 ± 9.60 vs. 1178.66 ± 8.08 (pg/ml), upregulated cholesterol efflux gene by ~1.5- vs. 0.6-fold in TAE-treated group, decreased atherogenic lipids, and percentage atherosclerotic lesion area, demonstrating comparable effects with atorvastatin. Our data demonstrate that TAE protects against IL-18-induced atherosclerosis via NF-κB/PPAR-γ-mediated pathway.

  16. Supplementation of hydroxypropyl methylcellulose into yeast leavened all-whole grain barley bread potentiates cholesterol-lowering effect.

    PubMed

    Kim, Hyunsook; Turowski, Maciej; Anderson, W H Kerr; Young, Scott A; Kim, Yookyung; Yokoyama, Wallace

    2011-07-27

    We investigated in Syrian Golden hamsters the biological impact and its underlying mechanism of single whole grain breads supplemented with 2-3% hydroxypropyl methylcellulose (HPMC), a semisynthetic viscous soluble dietary fiber (SDF) as a substitute for gluten. Hamsters were fed high-fat diets supplemented with 48-65% (w/w) differently ground, freeze-dried single grain breads including whole grain wheat, barley, barley supplemented with HPMC, debranned oat, and oat supplemented with HPMC which were compared to a diet containing microcrystalline cellulose (control). All single grain breads significantly lowered plasma LDL-cholesterol concentrations compared to the control. Enrichment with HPMC further lowered plasma and hepatic cholesterol concentrations. Despite the reduced molecular weight of naturally occurring soluble (1--->3),(1--->4)-β-d-glucan (β-glucan) caused by the bread-making process, whole grain barley breads downregulated hepatic expression of CYP7A1 and HMG-CoAR genes that are responsible for bile acid and cholesterol synthesis, suggesting a possible role of bioactive compounds such as short-chain fatty acids and phenolic compounds from barley bread. Barley bread enriched with HPMC downregulated expression of ABCG5 gene. Taken together, it appears that distinctive modulation of synthesis and excretion of hepatic cholesterol and bile acid contributes to the cholesterol-lowering properties of whole grain barley breads and breads enriched with HPMC. These data suggests that alternative whole grain breads supplemented with HPMC may provide consumers with a staple food that can assist in cholesterol management.

  17. Induction of Efflux-Mediated Macrolide Resistance in Streptococcus pneumoniae ▿

    PubMed Central

    Chancey, Scott T.; Zhou, Xiaoliu; Zähner, Dorothea; Stephens, David S.

    2011-01-01

    The antimicrobial efflux system encoded by the operon mef(E)-mel on the mobile genetic element MEGA in Streptococcus pneumoniae and other Gram-positive bacteria is inducible by macrolide antibiotics and antimicrobial peptides. Induction may affect the clinical response to the use of macrolides. We developed mef(E) reporter constructs and a disk diffusion induction and resistance assay to determine the kinetics and basis of mef(E)-mel induction. Induction occurred rapidly, with a >15-fold increase in transcription within 1 h of exposure to subinhibitory concentrations of erythromycin. A spectrum of environmental conditions, including competence and nonmacrolide antibiotics with distinct cellular targets, did not induce mef(E). Using 16 different structurally defined macrolides, induction was correlated with the amino sugar attached to C-5 of the macrolide lactone ring, not with the size (e.g., 14-, 15- or 16-member) of the ring or with the presence of the neutral sugar cladinose at C-3. Macrolides with a monosaccharide attached to C-5, known to block exit of the nascent peptide from the ribosome after the incorporation of up to eight amino acids, induced mef(E) expression. Macrolides with a C-5 disaccharide, which extends the macrolide into the ribosomal exit tunnel, disrupting peptidyl transferase activity, did not induce it. The induction of mef(E) did not require macrolide efflux, but the affinity of macrolides for the ribosome determined the availability for efflux and pneumococcal susceptibility. The induction of mef(E)-mel expression by inducing macrolides appears to be based on specific interactions of the macrolide C-5 saccharide with the ribosome that alleviate transcriptional attenuation of mef(E)-mel. PMID:21537010

  18. Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH.

    PubMed

    Caballero, Francisco; Fernández, Anna; De Lacy, Antonio M; Fernández-Checa, Jose C; Caballería, Juan; García-Ruiz, Carmen

    2009-04-01

    Non-alcoholic fatty liver disease (NAFLD) pathogenesis remains unknown. Due to the emerging role of free cholesterol (FC) in NAFLD, our aim was to examine the correlation between FC accumulation in patients with NAFLD and the expression of enzymes that regulate cholesterol homeostasis. Filipin staining, indicative of FC accumulation, and real-time PCR analyses were performed in 31 NAFLD patients and in seven controls. All NASH patients (n=14) and 4 out of 17 patients with steatosis exhibited filipin staining compared to controls (0 out of 7 subjects with normal liver histology and BMI). Sterol regulatory element-binding protein-2 (SREBP-2) mRNA levels were 7- and 3-fold higher in NASH and steatosis patients, respectively, compared to controls. Since hydroxymethylglutaryl-CoA (HMG-CoA) reductase is the key enzyme in cholesterol synthesis and transcriptionally controlled by SREBP-2 we measured its mRNA levels, being 3- to 4-fold higher in NAFLD compared to controls, without any difference between NASH and steatosis patients. Fatty acid synthase (FAS) and SREBP-1c expression were not significantly induced in NAFLD, while ATP-binding cassette sub-family G member 1 (ABCG1), a transporter involved in cholesterol egress, and acyl-CoA-cholesterol acyltransferase mRNA levels were modestly increased (1.5- to 2.5-fold, p<0.05), regardless of fibrosis. Interestingly, mRNA levels of steroidogenic acute regulatory protein (StAR), a mitochondrial-cholesterol transporting polypeptide, increased 7- and 15-fold in steatosis and NASH patients, respectively, compared to controls. FC increases in NASH and correlates with SREBP-2 induction. Moreover, StAR overexpression in NASH suggests that mitochondrial FC may be a player in disease progression and a novel target for intervention.

  19. Dietary rose hip exerts antiatherosclerotic effects and increases nitric oxide-mediated dilation in ApoE-null mice.

    PubMed

    Cavalera, Michele; Axling, Ulrika; Rippe, Catarina; Swärd, Karl; Holm, Cecilia

    2017-06-01

    Atherosclerosis is a disease in which atheromatous plaques develop inside arteries, leading to reduced or obstructed blood flow that in turn may cause stroke and heart attack. Rose hip is the fruit of plants of the genus Rosa, belonging to the Rosaceae family, and it is rich in antioxidants with high amounts of ascorbic acid and phenolic compounds. Several studies have shown that fruits, seeds and roots of these plants exert antidiabetic, antiobesity and cholesterol-lowering effects in rodents as well as humans. The aim of this study was to elucidate the mechanisms by which rose hip lowers plasma cholesterol and to evaluate its effects on atherosclerotic plaque formation. ApoE-null mice were fed either an HFD (CTR) or HFD with rose hip supplementation (RH) for 24 weeks. At the end of the study, we found that blood pressure and atherosclerotic plaques, together with oxidized LDL, total cholesterol and fibrinogen levels were markedly reduced in the RH group. Fecal cholesterol content, liver expression of Ldlr and selected reverse cholesterol transport (RCT) genes such as Abca1, Abcg1 and Scarb1 were significantly increased upon RH feeding. In the aorta, the scavenger receptor Cd36 and the proinflammatory Il1β genes were markedly down-regulated compared to the CTR mice. Finally, we found that RH increased nitric oxide-mediated dilation of the caudal artery. Taken together, these results suggest that rose hip is a suitable dietary supplement for preventing atherosclerotic plaques formation by modulating systemic blood pressure and the expression of RCT and inflammatory genes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Model of OSBP-Mediated Cholesterol Supply to Aichi Virus RNA Replication Sites Involving Protein-Protein Interactions among Viral Proteins, ACBD3, OSBP, VAP-A/B, and SAC1.

    PubMed

    Ishikawa-Sasaki, Kumiko; Nagashima, Shigeo; Taniguchi, Koki; Sasaki, Jun

    2018-04-15

    Positive-strand RNA viruses, including picornaviruses, utilize cellular machinery for genome replication. Previously, we reported that each of the 2B, 2BC, 2C, 3A, and 3AB proteins of Aichi virus (AiV), a picornavirus, forms a complex with the Golgi apparatus protein ACBD3 and phosphatidylinositol 4-kinase IIIβ (PI4KB) at viral RNA replication sites (replication organelles [ROs]), enhancing PI4KB-dependent phosphatidylinositol 4-phosphate (PI4P) production. Here, we demonstrate AiV hijacking of the cellular cholesterol transport system involving oxysterol-binding protein (OSBP), a PI4P-binding cholesterol transfer protein. AiV RNA replication was inhibited by silencing cellular proteins known to be components of this pathway, OSBP, the ER membrane proteins VAPA and VAPB (VAP-A/B), the PI4P-phosphatase SAC1, and PI-transfer protein β. OSBP, VAP-A/B, and SAC1 were present at RNA replication sites. We also found various previously unknown interactions among the AiV proteins (2B, 2BC, 2C, 3A, and 3AB), ACBD3, OSBP, VAP-A/B, and SAC1, and the interactions were suggested to be involved in recruiting the component proteins to AiV ROs. Importantly, the OSBP-2B interaction enabled PI4P-independent recruitment of OSBP to AiV ROs, indicating preferential recruitment of OSBP among PI4P-binding proteins. Protein-protein interaction-based OSBP recruitment has not been reported for other picornaviruses. Cholesterol was accumulated at AiV ROs, and inhibition of OSBP-mediated cholesterol transfer impaired cholesterol accumulation and AiV RNA replication. Electron microscopy showed that AiV-induced vesicle-like structures were close to ER membranes. Altogether, we conclude that AiV directly recruits the cholesterol transport machinery through protein-protein interactions, resulting in formation of membrane contact sites between the ER and AiV ROs and cholesterol supply to the ROs. IMPORTANCE Positive-strand RNA viruses utilize host pathways to modulate the lipid composition of

  1. Purification and ATPase activity of human ABCA1.

    PubMed

    Takahashi, Kei; Kimura, Yasuhisa; Kioka, Noriyuki; Matsuo, Michinori; Ueda, Kazumitsu

    2006-04-21

    ATP-binding cassette protein A1 (ABCA1) plays a major role in cholesterol homeostasis and high density lipoprotein metabolism. Apolipoprotein A-I binds to ABCA1 and cellular cholesterol and phospholipids, mainly phosphatidylcholine, are loaded onto apoA-I to form pre-beta high density lipoprotein (HDL). It is proposed that ABCA1 translocates phospholipids and cholesterol directly or indirectly to form pre-beta HDL. To explore the mechanism of ABCA1-mediated pre-beta HDL formation, we expressed human ABCA1 in insect Sf9 cells and purified it. Trypsin limited-digestion of purified ABCA1 in the detergent-soluble form suggested that it retained conformation similar to ABCA1 expressed in the membranes of human fibroblast WI-38 cells. Purified ABCA1 showed robust ATPase activity when reconstituted in liposomes made of synthetic phosphatidylcholine. ABCA1 showed lower ATPase activity when reconstituted in liposomes containing phosphatidylserine, phosphatidylethanolamine, or phosphatidylglycerol and also showed weak specificity in acyl chain species. ATPase activity was reduced by the addition of cholesterol and decreased by 25% in the presence of 20% cholesterol. Beta-sitosterol and campesterol showed similar inhibitory effects but stigmasterol did not, suggesting structure-specific interaction between ABCA1 and sterols. Glibenclamide suppressed ABCA1 ATPase, suggesting that it inhibits apoA-I-dependent cellular cholesterol efflux by suppressing ABCA1 ATPase activity. These results suggest that the ATPase activity of ABCA1 is stimulated preferentially by phospholipids with choline head groups, phosphatidylcholine and sphingomyelin. This study with purified human ABCA1 provides the first biochemical basis of the mechanism for HDL formation mediated by ABCA1.

  2. Detection and functional characterization of Pgp1 (ABCB1) and MRP3 (ABCC3) efflux transporters in the PLHC-1 fish hepatoma cell line.

    PubMed

    Zaja, Roko; Klobucar, Roberta Sauerborn; Smital, Tvrtko

    2007-03-30

    The PLHC-1 hepatoma cell line derived from topminnow (Poeciliopsis lucida) is one of the most frequently used fish cell lines in aquatic ecotoxicology. These cells have been well characterized regarding the presence of phase I and phase II enzymes involved in the metabolism of xenobiotics. However, the presence of the ABC transport proteins possibly involved in the MultiXenobiotic Resistance (MXR) mechanism as phase III of cellular detoxification has never been described in the PLHC-1 cells. The main goal of this study was the detection and functional characterization of toxicologically relevant xenobiotic efflux transporters from ABCB and ABCC subfamily in the PLHC-1 cells. Using specific primer pairs two PCR products 1769 and 1023bp in length were successfully cloned and sequenced. Subsequent multiple alignment and phylogenetic analysis showed that these sequences share a high degree of homology with the P-glycoprotein (Pgp1; ABCB1) and the MRP3 (ABCC3). Functional experiments with fluorescent model substrates and specific inhibitors were used to verify that transport activities of Pgp- and MRP-related proteins are indeed present in PLHC-1 cells. Accumulation or efflux/retention rates of rhodamine 123, calcein-AM or monochlorbimane were time- and concentration-dependent. Cyclosporine A, MK571, verapamil, reversine 205, indomethacine and probenecid were used as specific inhibitors of Pgp1 and/or MRPs transport activities, resulting in a dose dependent inhibition of related transport activities in PLHC-1 cells. Similar to mammalian systems, the obtained IC(50) values were in the lower micromolar range. Taken together these data demonstrate that: (1) the PLHC-1 cells do express a functional MXR mechanism mediated by toxicologically relevant ABC efflux transporters; and (2) the presence of all three critical phases of cellular detoxification additionally affirms the PLHC-1 cells as a reliable in vitro model in aquatic toxicology.

  3. MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis

    PubMed Central

    Meiler, Svenja; Baumer, Yvonne; Toulmin, Emma; Seng, Kosal; Boisvert, William A.

    2014-01-01

    Objective Macrophage foam cell formation is a key feature of atherosclerosis. Recent studies have shown that specific microRNAs (miRs) are regulated in modified low-density lipoprotein (LDL)- treated macrophages, which can affect the cellular cholesterol homeostasis. Undertaking a genome-wide screen of microRNAs regulated in primary macrophages by modified LDL, miR-302a emerged as a potential candidate that may play a key role in macrophage cholesterol homeostasis. Approach and Results The objective of this study was to assess the involvement of miR-302a in macrophage lipid homeostasis and if it can influence circulating lipid levels and atherosclerotic development when it is inhibited in a murine atherosclerosis model. We found that transfection of primary macrophages with either miR-302a or anti-miR-302a regulated the expression of ATP-binding cassette (ABC) transporter ABCA1 mRNA and protein. Luciferase reporter assays showed that miR-302a repressed the 3′UTR activity of mouse Abca1 by 48% and human ABCA1 by 45%. Additionally, transfection of murine macrophages with miR-302a attenuated cholesterol efflux to apolipoprotein A-1 (apoA-1) by 38%. Long-term in vivo administration of anti-miR-302a to mice with LDL receptor deficiency (Ldlr−/−) fed an atherogenic diet led to an increase in ABCA1 in the liver and aorta as well as an increase in circulating plasma HDL levels by 35% compared with that of control mice. The anti-miR-302a-treated mice also displayed reduced atherosclerotic plaque size by approximately 25% as well as a more stable plaque morphology with reduced signs of inflammation. Conclusions These studies identify miR-302a as a novel modulator of cholesterol efflux and a potential therapeutic target for suppressing atherosclerosis. PMID:25524771

  4. MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis.

    PubMed

    Meiler, Svenja; Baumer, Yvonne; Toulmin, Emma; Seng, Kosal; Boisvert, William A

    2015-02-01

    Macrophage foam cell formation is a key feature of atherosclerosis. Recent studies have shown that specific microRNAs (miRs) are regulated in modified low-density lipoprotein-treated macrophages, which can affect the cellular cholesterol homeostasis. Undertaking a genome-wide screen of miRs regulated in primary macrophages by modified low-density lipoprotein, miR-302a emerged as a potential candidate that may play a key role in macrophage cholesterol homeostasis. The objective of this study was to assess the involvement of miR-302a in macrophage lipid homeostasis and if it can influence circulating lipid levels and atherosclerotic development when it is inhibited in a murine atherosclerosis model. We found that transfection of primary macrophages with either miR-302a or anti-miR-302a regulated the expression of ATP-binding cassette (ABC) transporter ABCA1 mRNA and protein. Luciferase reporter assays showed that miR-302a repressed the 3' untranslated regions (UTR) activity of mouse Abca1 by 48% and human ABCA1 by 45%. In addition, transfection of murine macrophages with miR-302a attenuated cholesterol efflux to apolipoprotein A-1 (apoA-1) by 38%. Long-term in vivo administration of anti-miR-302a to mice with low-density lipoprotein receptor deficiency (Ldlr(-/-)) fed an atherogenic diet led to an increase in ABCA1 in the liver and aorta as well as an increase in circulating plasma high-density lipoprotein levels by 35% compared with that of control mice. The anti-miR-302a-treated mice also displayed reduced atherosclerotic plaque size by ≈25% and a more stable plaque morphology with reduced signs of inflammation. These studies identify miR-302a as a novel modulator of cholesterol efflux and a potential therapeutic target for suppressing atherosclerosis. © 2014 American Heart Association, Inc.

  5. Increased plasma cholesterol esterification by LCAT reduces diet-induced atherosclerosis in SR-BI knockout mice[S

    PubMed Central

    Thacker, Seth G.; Rousset, Xavier; Esmail, Safiya; Zarzour, Abdalrahman; Jin, Xueting; Collins, Heidi L.; Sampson, Maureen; Stonik, John; Demosky, Stephen; Malide, Daniela A.; Freeman, Lita; Vaisman, Boris L.; Kruth, Howard S.; Adelman, Steven J.; Remaley, Alan T.

    2015-01-01

    LCAT, a plasma enzyme that esterifies cholesterol, has been proposed to play an antiatherogenic role, but animal and epidemiologic studies have yielded conflicting results. To gain insight into LCAT and the role of free cholesterol (FC) in atherosclerosis, we examined the effect of LCAT over- and underexpression in diet-induced atherosclerosis in scavenger receptor class B member I-deficient [Scarab(−/−)] mice, which have a secondary defect in cholesterol esterification. Scarab(−/−)×LCAT-null [Lcat(−/−)] mice had a decrease in HDL-cholesterol and a high plasma ratio of FC/total cholesterol (TC) (0.88 ± 0.033) and a marked increase in VLDL-cholesterol (VLDL-C) on a high-fat diet. Scarab(−/−)×LCAT-transgenic (Tg) mice had lower levels of VLDL-C and a normal plasma FC/TC ratio (0.28 ± 0.005). Plasma from Scarab(−/−)×LCAT-Tg mice also showed an increase in cholesterol esterification during in vitro cholesterol efflux, but increased esterification did not appear to affect the overall rate of cholesterol efflux or hepatic uptake of cholesterol. Scarab(−/−)×LCAT-Tg mice also displayed a 51% decrease in aortic sinus atherosclerosis compared with Scarab(−/−) mice (P < 0.05). In summary, we demonstrate that increased cholesterol esterification by LCAT is atheroprotective, most likely through its ability to increase HDL levels and decrease pro-atherogenic apoB-containing lipoprotein particles. PMID:25964513

  6. Changes to cholesterol trafficking in macrophages by Leishmania parasites infection.

    PubMed

    Semini, Geo; Paape, Daniel; Paterou, Athina; Schroeder, Juliane; Barrios-Llerena, Martin; Aebischer, Toni

    2017-08-01

    Leishmania spp. are protozoan parasites that are transmitted by sandfly vectors during blood sucking to vertebrate hosts and cause a spectrum of diseases called leishmaniases. It has been demonstrated that host cholesterol plays an important role during Leishmania infection. Nevertheless, little is known about the intracellular distribution of this lipid early after internalization of the parasite. Here, pulse-chase experiments with radiolabeled cholesteryl esterified to fatty acids bound to low-density lipoproteins indicated that retention of this source of cholesterol is increased in parasite-containing subcellular fractions, while uptake is unaffected. This is correlated with a reduction or absence of detectable NPC1 (Niemann-Pick disease, type C1), a protein responsible for cholesterol efflux from endocytic compartments, in the Leishmania mexicana habitat and infected cells. Filipin staining revealed a halo around parasites within parasitophorous vacuoles (PV) likely representing free cholesterol accumulation. Labeling of host cell membranous cholesterol by fluorescent cholesterol species before infection revealed that this pool is also trafficked to the PV but becomes incorporated into the parasites' membranes and seems not to contribute to the halo detected by filipin. This cholesterol sequestration happened early after infection and was functionally significant as it correlated with the upregulation of mRNA-encoding proteins required for cholesterol biosynthesis. Thus, sequestration of cholesterol by Leishmania amastigotes early after infection provides a basis to understand perturbation of cholesterol-dependent processes in macrophages that were shown previously by others to be necessary for their proper function in innate and adaptive immune responses. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. High Cholesterol Obviates a Prolonged Hemifusion Intermediate in Fast SNARE-Mediated Membrane Fusion

    PubMed Central

    Kreutzberger, Alex J.B.; Kiessling, Volker; Tamm, Lukas K.

    2015-01-01

    Cholesterol is essential for exocytosis in secretory cells, but the exact molecular mechanism by which it facilitates exocytosis is largely unknown. Distinguishing contributions from the lateral organization and dynamics of membrane proteins to vesicle docking and fusion and the promotion of fusion pores by negative intrinsic spontaneous curvature and other mechanical effects of cholesterol have been elusive. To shed more light on this process, we examined the effect of cholesterol on SNARE-mediated membrane fusion in a single-vesicle assay that is capable of resolving docking and elementary steps of fusion with millisecond time resolution. The effect of cholesterol on fusion pore formation between synaptobrevin-2 (VAMP-2)-containing proteoliposomes and acceptor t-SNARE complex-containing planar supported bilayers was examined using both membrane and content fluorescent markers. This approach revealed that increasing cholesterol in either the t-SNARE or the v-SNARE membrane favors a mechanism of direct fusion pore opening, whereas low cholesterol favors a mechanism leading to a long-lived (>5 s) hemifusion state. The amount of cholesterol in the target membrane had no significant effect on docking of synaptobrevin vesicles. Comparative studies with α-tocopherol (vitamin E) show that the negative intrinsic spontaneous curvature of cholesterol and its presumed promotion of a very short-lived (<50 ms) lipid stalk intermediate is the main factor that favors rapid fusion pore opening at high cholesterol. This study also shows that this single-vesicle fusion assay can distinguish between hemifusion and full fusion with only a single lipid dye, thereby freeing up a fluorescence channel for the simultaneous measurement of another parameter in fast time-resolved fusion assays. PMID:26200867

  8. CRISPR/Cas9-Mediated Gene Editing in Human iPSC-Derived Macrophage Reveals Lysosomal Acid Lipase Function in Human Macrophages-Brief Report.

    PubMed

    Zhang, Hanrui; Shi, Jianting; Hachet, Melanie A; Xue, Chenyi; Bauer, Robert C; Jiang, Hongfeng; Li, Wenjun; Tohyama, Junichiro; Millar, John; Billheimer, Jeffrey; Phillips, Michael C; Razani, Babak; Rader, Daniel J; Reilly, Muredach P

    2017-11-01

    To gain mechanistic insights into the role of LIPA (lipase A), the gene encoding LAL (lysosomal acid lipase) protein, in human macrophages. We used CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) technology to knock out LIPA in human induced pluripotent stem cells and then differentiate to macrophage (human-induced pluripotent stem cells-derived macrophage [IPSDM]) to explore the human macrophage LIPA loss-of-function phenotypes. LIPA was abundantly expressed in monocyte-derived macrophages and was markedly induced on IPSDM differentiation to comparable levels as in human monocyte-derived macrophage. IPSDM with knockout of LIPA ( LIPA -/- ) had barely detectable LAL enzymatic activity. Control and LIPA -/- IPSDM were loaded with [ 3 H]-cholesteryl oleate-labeled AcLDL (acetylated low-density lipoprotein) followed by efflux to apolipoprotein A-I. Efflux of liberated [ 3 H]-cholesterol to apolipoprotein A-I was abolished in LIPA -/- IPSDM, indicating deficiency in LAL-mediated lysosomal cholesteryl ester hydrolysis. In cells loaded with [ 3 H]-cholesterol-labeled AcLDL, [ 3 H]-cholesterol efflux was, however, not different between control and LIPA -/- IPSDM. ABCA1 (ATP-binding cassette, subfamily A, member 1) expression was upregulated by AcLDL loading but to a similar extent between control and LIPA -/- IPSDM. In nonlipid loaded state, LIPA -/- IPSDM had high levels of cholesteryl ester mass compared with minute amounts in control IPSDM. Yet, with AcLDL loading, overall cholesteryl ester mass was increased to similar levels in both control and LIPA -/- IPSDM. LIPA -/- did not impact lysosomal apolipoprotein-B degradation or expression of IL1B , IL6 , and CCL5. CONCLUSIONS: LIPA -/- IPSDM reveals macrophage-specific hallmarks of LIPA deficiency. CRISPR/Cas9 and IPSDM provide important tools to study human macrophage biology and more broadly for future studies of disease-associated LIPA genetic variation in human

  9. Non-Cholesterol Sterol Levels Predict Hyperglycemia and Conversion to Type 2 Diabetes in Finnish Men

    PubMed Central

    Cederberg, Henna; Gylling, Helena; Miettinen, Tatu A.; Paananen, Jussi; Vangipurapu, Jagadish; Pihlajamäki, Jussi; Kuulasmaa, Teemu; Stančáková, Alena; Smith, Ulf; Kuusisto, Johanna; Laakso, Markku

    2013-01-01

    We investigated the levels of non-cholesterol sterols as predictors for the development of hyperglycemia (an increase in the glucose area under the curve in an oral glucose tolerance test) and incident type 2 diabetes in a 5-year follow-up study of a population-based cohort of Finnish men (METSIM Study, N = 1,050) having non-cholesterol sterols measured at baseline. Additionally we determined the association of 538,265 single nucleotide polymorphisms (SNP) with non-cholesterol sterol levels in a cross-sectional cohort of non-diabetic offspring of type 2 diabetes (the Kuopio cohort of the EUGENE2 Study, N = 273). We found that in a cross-sectional METSIM Study the levels of sterols indicating cholesterol absorption were reduced as a function of increasing fasting glucose levels, whereas the levels of sterols indicating cholesterol synthesis were increased as a function of increasing 2-hour glucose levels. A cholesterol synthesis marker desmosterol significantly predicted an increase, and two absorption markers (campesterol and avenasterol) a decrease in the risk of hyperglycemia and incident type 2 diabetes in a 5-year follow-up of the METSIM cohort, mainly attributable to insulin sensitivity. A SNP of ABCG8 was associated with fasting plasma glucose levels in a cross-sectional study but did not predict hyperglycemia or incident type 2 diabetes. In conclusion, the levels of some, but not all non-cholesterol sterols are markers of the worsening of hyperglycemia and type 2 diabetes. PMID:23840693

  10. Hydroxypropyl-sulfobutyl-β-cyclodextrin improves the oral bioavailability of edaravone by modulating drug efflux pump of enterocytes.

    PubMed

    Rong, Wen-Ting; Lu, Ya-Peng; Tao, Qing; Guo, Miao; Lu, Yu; Ren, Yong; Yu, Shu-Qin

    2014-02-01

    The objective of the study was to evaluate the effect of hydroxypropyl-sulfobutyl-β-cyclodextrin (HP-SBE-βCD) on the bioavailability and intestinal absorption of edaravone, and identify its mechanism of action. We devised HP-SBE-βCD as a carrier and modulator of P-glycoprotein (Pgp) efflux pump, and edaravone as a model drug, and prepared edaravone/HP-SBE-βCD inclusion complex. HP-SBE-βCD improved the water solubility and enhanced the bioavailability of edaravone by 10.3-fold in rats. Then, in situ single-pass intestinal perfusion showed that HP-SBE-βCD had an effect of improving the permeability and inhibiting the efflux of edaravone. Furthermore, the effects of HP-SBE-βCD on Pgp were achieved through interfering with the lipid raft and depleting the cholesterol of enterocytes membrane. From the results, we presented the novel mechanisms. First, edaravone/HP-SBE-βCD had a lower release from the inclusion compound to protect edaravone from the low pH of the stomach. Then, HP-SBE-βCD modulated the membrane microenvironment of intestinal absorption epithelial cells. At last, the result was that HP-SBE-βCD enhanced the absorption of edaravone by interfering with Pgp. In conclusion, HP-SBE-βCD improves the bioavailability of drug not only because of its enhancing water solubility of the drug, but also because it modulates the Pgp-mediated efflux from enterocytes. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Cholesterol negatively regulates IL-9-producing CD8+ T cell differentiation and antitumor activity.

    PubMed

    Ma, Xingzhe; Bi, Enguang; Huang, Chunjian; Lu, Yong; Xue, Gang; Guo, Xing; Wang, Aibo; Yang, Maojie; Qian, Jianfei; Dong, Chen; Yi, Qing

    2018-05-09

    CD8 + T cells can be polarized into IL-9-secreting (Tc9) cells. We previously showed that adoptive therapy using tumor-specific Tc9 cells generated stronger antitumor responses in mouse melanoma than classical Tc1 cells. To understand why Tc9 cells exert stronger antitumor responses, we used gene profiling to compare Tc9 and Tc1 cells. Tc9 cells expressed different levels of cholesterol synthesis and efflux genes and possessed significantly lower cholesterol content than Tc1 cells. Unique to Tc9, but not other CD8 + or CD4 + T cell subsets, manipulating cholesterol content in polarizing Tc9 cells significantly affected IL-9 expression and Tc9 differentiation and antitumor response in vivo. Mechanistic studies showed that IL-9 was indispensable for Tc9 cell persistence and antitumor effects, and cholesterol or its derivatives inhibited IL-9 expression by activating liver X receptors (LXRs), leading to LXR Sumoylation and reduced p65 binding to Il9 promoter. Our study identifies cholesterol as a critical regulator of Tc9 cell differentiation and function. © 2018 Ma et al.

  12. Ventral tegmental ionotropic glutamate receptor stimulation of nucleus accumbens tonic dopamine efflux blunts hindbrain-evoked phasic neurotransmission: implications for dopamine dysregulation disorders.

    PubMed

    Tye, S J; Miller, A D; Blaha, C D

    2013-11-12

    Activation of glutamate receptors within the ventral tegmental area (VTA) stimulates extrasynaptic (basal) dopamine release in terminal regions, including the nucleus accumbens (NAc). Hindbrain inputs from the laterodorsal tegmental nucleus (LDT) are critical for elicitation of phasic VTA dopamine cell activity and consequent transient dopamine release. This study investigated the role of VTA ionotropic glutamate receptor (iGluR) stimulation on both basal and LDT electrical stimulation-evoked dopamine efflux in the NAc using in vivo chronoamperometry and fixed potential amperometry in combination with stearate-graphite paste and carbon fiber electrodes, respectively. Intra-VTA infusion of the iGluR agonists (±)-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA; 1 μg/μl) or N-methyl-d-aspartic acid (NMDA; 2 μg/μl) enhanced basal NAc dopamine efflux. This iGluR-mediated potentiation of basal dopamine efflux was paralleled by an attenuation of LDT-evoked transient NAc dopamine efflux, suggesting that excitation of basal activity effectively inhibited the capacity of hindbrain afferents to elicit transient dopamine efflux. In line with this, post-NMDA infusion of the dopamine D2 autoreceptor (D2R) agonist quinpirole (1 μg/μl; intra-VTA) partially recovered NMDA-mediated attenuation of LDT-evoked NAc dopamine, while concurrently attenuating NMDA-mediated potentiation of basal dopamine efflux. Post-NMDA infusion of quinpirole (1 μg/μl) alone attenuated basal and LDT-evoked dopamine efflux. Taken together, these data reveal that hyperstimulation of basal dopamine transmission can stunt hindbrain burst-like stimulation-evoked dopamine efflux. Inhibitory autoreceptor mechanisms within the VTA help to partially recover the magnitude of phasic dopamine efflux, highlighting the importance of both iGluRs and D2 autoreceptors in maintaining the functional balance of tonic and phasic dopamine neurotransmission. Dysregulation of this balance may have important

  13. Pharmacokinetic Assessment of Cooperative Efflux of the Multitargeted Kinase Inhibitor Ponatinib Across the Blood-Brain Barrier.

    PubMed

    Laramy, Janice K; Kim, Minjee; Parrish, Karen E; Sarkaria, Jann N; Elmquist, William F

    2018-05-01

    A compartmental blood-brain barrier (BBB) model describing drug transport across the BBB was implemented to evaluate the influence of efflux transporters on the rate and extent of the multikinase inhibitor ponatinib penetration across the BBB. In vivo pharmacokinetic studies in wild-type and transporter knockout mice showed that two major BBB efflux transporters, P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp), cooperate to modulate the brain exposure of ponatinib. The total and unbound (free) brain-to-plasma ratios were approximately 15-fold higher in the triple knockout mice lacking both P-gp and Bcrp [ Mdr1a/b(-/-)Bcrp1(-/-) ] compared with the wild-type mice. The triple knockout mice had a greater than an additive increase in the brain exposure of ponatinib when compared with single knockout mice [ Bcrp1(-/-) or Mdr1a/b(-/-) ], suggesting functional compensation of transporter-mediated drug efflux. Based on the BBB model characterizing the observed brain and plasma concentration-time profiles, the brain exit rate constant and clearance out of the brain were approximately 15-fold higher in the wild-type compared with Mdr1a/b(-/-)Bcrp1(-/-) mice, resulting in a significant increase in the mean transit time (the average time spent by ponatinib in the brain in a single passage) in the absence of efflux transporters (P-gp and Bcrp). This study characterized transporter-mediated drug efflux from the brain, a process that reduces the duration and extent of ponatinib exposure in the brain and has critical implications for the use of targeted drug delivery for brain tumors. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Niemann-pick type C1 (NPC1) overexpression alters cellular cholesterol homeostasis.

    PubMed

    Millard, E E; Srivastava, K; Traub, L M; Schaffer, J E; Ory, D S

    2000-12-08

    The Niemann-Pick type C1 (NPC1) protein is a key participant in intracellular trafficking of low density lipoprotein cholesterol, but its role in regulation of sterol homeostasis is not well understood. To characterize further the function of NPC1, we generated stable Chinese hamster ovary (CHO) cell lines overexpressing the human NPC1 protein (CHO/NPC1). NPC1 overexpression increases the rate of trafficking of low density lipoprotein cholesterol to the endoplasmic reticulum and the rate of delivery of endosomal cholesterol to the plasma membrane (PM). CHO/NPC1 cells exhibit a 1.5-fold increase in total cellular cholesterol and up to a 2.9-fold increase in PM cholesterol. This increase in PM cholesterol is closely paralleled by a 3-fold increase in de novo cholesterol synthesis. Inhibition of cholesterol synthesis results in marked redistribution of PM cholesterol to intracellular sites, suggesting an unsuspected role for NPC1 in internalization of PM cholesterol. Despite elevated total cellular cholesterol, CHO/NPC1 cells exhibit increased cholesterol synthesis, which may be attributable to both resistance to oxysterol suppression of sterol-regulated gene expression and to reduced endoplasmic reticulum cholesterol levels under basal conditions. Taken together, these studies provide important new insights into the role of NPC1 in the determination of the levels and distribution of cellular cholesterol.

  15. A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport

    PubMed Central

    Oliver, William R.; Shenk, Jennifer L.; Snaith, Mike R.; Russell, Caroline S.; Plunket, Kelli D.; Bodkin, Noni L.; Lewis, Michael C.; Winegar, Deborah A.; Sznaidman, Marcos L.; Lambert, Millard H.; Xu, H. Eric; Sternbach, Daniel D.; Kliewer, Steven A.; Hansen, Barbara C.; Willson, Timothy M.

    2001-01-01

    The peroxisome proliferator-activated receptors (PPARs) are dietary lipid sensors that regulate fatty acid and carbohydrate metabolism. The hypolipidemic effects of the fibrate drugs and the antidiabetic effects of the glitazone drugs in humans are due to activation of the α (NR1C1) and γ (NR1C3) subtypes, respectively. By contrast, the therapeutic potential of the δ (NR1C2) subtype is unknown, due in part to the lack of selective ligands. We have used combinatorial chemistry and structure-based drug design to develop a potent and subtype-selective PPARδ agonist, GW501516. In macrophages, fibroblasts, and intestinal cells, GW501516 increases expression of the reverse cholesterol transporter ATP-binding cassette A1 and induces apolipoprotein A1-specific cholesterol efflux. When dosed to insulin-resistant middle-aged obese rhesus monkeys, GW501516 causes a dramatic dose-dependent rise in serum high density lipoprotein cholesterol while lowering the levels of small-dense low density lipoprotein, fasting triglycerides, and fasting insulin. Our results suggest that PPARδ agonists may be effective drugs to increase reverse cholesterol transport and decrease cardiovascular disease associated with the metabolic syndrome X. PMID:11309497

  16. microRNAs and HDL life cycle.

    PubMed

    Canfrán-Duque, Alberto; Ramírez, Cristina M; Goedeke, Leigh; Lin, Chin-Sheng; Fernández-Hernando, Carlos

    2014-08-01

    miRNAs have emerged as important regulators of lipoprotein metabolism. Work over the past few years has demonstrated that miRNAs control the expression of most of the genes associated with high-density lipoprotein (HDL) metabolism, including the ATP transporters, ABCA1 and ABCG1, and the scavenger receptor SRB1. These findings strongly suggest that miRNAs regulate HDL biogenesis, cellular cholesterol efflux, and HDL cholesterol (HDL-C) uptake in the liver, thereby controlling all of the steps of reverse cholesterol transport. Recent work in animal models has demonstrated that manipulating miRNA levels including miR-33 can increase circulating HDL-C. Importantly, antagonizing miR-33 in vivo enhances the regression and reduces the progression of atherosclerosis. These findings support the idea of developing miRNA inhibitors for the treatment of dyslipidaemia and related cardiovascular disorders such as atherosclerosis. This review article focuses on how HDL metabolism is regulated by miRNAs and how antagonizing miRNA expression could be a potential therapy for treating cardiometabolic diseases. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  17. GLI1-mediated regulation of side population is responsible for drug resistance in gastric cancer

    PubMed Central

    Yu, Beiqin; Gu, Dongsheng; Zhang, Xiaoli; Li, Jianfang; Liu, Bingya; Xie, Jingwu

    2017-01-01

    Gastric cancer is the third leading cause of cancer-related mortality worldwide. Chemotherapy is frequently used for gastric cancer treatment. Most patients with advanced gastric cancer eventually succumb to the disease despite some patients responded initially to chemotherapy. Thus, identifying molecular mechanisms responsible for cancer relapse following chemotherapy will help design new ways to treat gastric cancer. In this study, we revealed that the residual cancer cells following treatment with chemotherapeutic reagent cisplatin have elevated expression of hedgehog target genes GLI1, GLI2 and PTCH1, suggestive of hedgehog signaling activation. We showed that GLI1 knockdown sensitized gastric cancer cells to CDDP whereas ectopic GLI1 expression decreased the sensitivity. Further analyses indicate elevated GLI1 expression is associated with an increase in tumor sphere formation, side population and cell surface markers for putative cancer stem cells. We have evidence to support that GLI1 is critical for maintenance of putative cancer stem cells through direct regulation of ABCG2. In fact, GLI1 protein was shown to be associated with the promoter fragment of ABCG2 through a Gli-binding consensus site in gastric cancer cells. Disruption of ABCG2 function, through ectopic expression of an ABCG2 dominant negative construct or a specific ABCG2 inhibitor, increased drug sensitivity of cancer cells both in culture and in mice. The relevance of our studies to gastric cancer patient care is reflected by our discovery that high ABCG2 expression was associated with poor survival in the gastric cancer patients who underwent chemotherapy. Taken together, we have identified a molecular mechanism by which gastric cancer cells gain chemotherapy resistance. PMID:28404967

  18. Functional polymorphisms of the ABCG2 gene are associated with gout disease in the Chinese Han male population.

    PubMed

    Zhou, Danqiu; Liu, Yunqing; Zhang, Xinju; Gu, Xiaoye; Wang, Hua; Luo, Xinhua; Zhang, Jin; Zou, Hejian; Guan, Ming

    2014-05-22

    Gout is a common type of arthritis that is characterized by hyperuricemia, tophi and joint inflammation. Genetic variations in the ABCG2 gene have been reported to influence serum uric acid levels and to participate in the pathogenesis of gout, but no further data have been reported in the Han Chinese population. Peripheral blood DNA was isolated from 352 male patients with gout and 350 gout-free normal male controls. High-resolution melting analysis and Sanger sequencing were performed to identify the genetic polymorphisms V12M, Q141K and Q126X in the ABCG2 gene. Genotype and haplotype analyses were utilized to determine the disease odds ratios (ORs). A prediction model for gout risk using ABCG2 protein function was established based on the genotype combination of Q126X and Q141K. For Q141K, the A allele frequency was 49.6% in the gout patients and 30.9% in the controls (OR 2.20, 95% confidence interval (CI): 1.77-2.74, p=8.99×10⁻¹³). Regarding Q126X, the T allele frequency was 4.7% in the gout patients and 1.7% in the controls (OR 2.91, 95% CI: 1.49-5.68, p=1.57×10⁻³). The A allele frequency for V12M was lower (18.3%) in the gout patients than in the controls (29%) (OR 0.55, 95% CI 0.43-0.71, p=2.55×10⁻⁶). In the order of V12M, Q126X and Q141K, the GCA and GTC haplotypes indicated increased disease risk (OR=2.30 and 2.71, respectively). Patients with mild to severe ABCG2 dysfunction accounted for 78.4% of gout cases. The ABCG2 126X and 141K alleles are associated with an increased risk of gout, whereas 12M has a protective effect on gout susceptibility in the Han Chinese population. ABCG2 dysfunction can be used to evaluate gout risk.

  19. Blockade of cholesterol absorption by ezetimibe reveals a complex homeostatic network in enterocytes[S

    PubMed Central

    Engelking, Luke J.; McFarlane, Matthew R.; Li, Christina K.; Liang, Guosheng

    2012-01-01

    Enterocyte cholesterol homeostasis reflects aggregated rates of sterol synthesis, efflux, and uptake from plasma and gut lumen. Cholesterol synthesis and LDL uptake are coordinately regulated by sterol regulatory element-binding proteins (SREBP), whereas sterol efflux is regulated by liver X receptors (LXR). How these processes are coordinately regulated in enterocytes, the site of cholesterol absorption, is not well understood. Here, we treat mice with ezetimibe to investigate the effect of blocking cholesterol absorption on intestinal SREBPs, LXRs, and their effectors. Ezetimibe increased nuclear SREBP-2 8-fold. HMG-CoA reductase (HMGR) and LDL receptor (LDLR) mRNA levels increased less than 3-fold, whereas their protein levels increased 30- and 10-fold, respectively. Expression of inducible degrader of LDLR (IDOL), an LXR-regulated gene that degrades LDLRs, was reduced 50% by ezetimibe. Coadministration of ezetimibe with the LXR agonist T0901317 abolished the reduction in IDOL and prevented the increase in LDLR protein. Ezetimibe-stimulated LDLR expression was independent of proprotein convertase subtilisin/kexin type 9 (PSCK9), a protein that degrades LDLRs. To maintain cholesterol homeostasis in the face of ezetimibe, enterocytes boost LDL uptake by increasing LDLR number, and they boost sterol synthesis by increasing HMGR and other cholesterologenic genes. These studies reveal a hitherto undescribed homeostatic network in enterocytes triggered by blockade of cholesterol absorption. PMID:22523394

  20. Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Staphylococcus aureus

    PubMed Central

    2011-01-01

    Background Antimicrobial resistance mediated by efflux systems is still poorly characterized in Staphylococcus aureus, despite the description of several efflux pumps (EPs) for this bacterium. In this work we used several methodologies to characterize the efflux activity of 52 S. aureus isolates resistant to ciprofloxacin collected in a hospital in Lisbon, Portugal, in order to understand the role played by these systems in the resistance to fluoroquinolones. Results Augmented efflux activity was detected in 12 out of 52 isolates and correlated with increased resistance to fluoroquinolones. Addition of efflux inhibitors did not result in the full reversion of the fluoroquinolone resistance phenotype, yet it implied a significant decrease in the resistance levels, regardless of the type(s) of mutation(s) found in the quinolone-resistance determining region of grlA and gyrA genes, which accounted for the remaining resistance that was not efflux-mediated. Expression analysis of the genes coding for the main efflux pumps revealed increased expression only in the presence of inducing agents. Moreover, it showed that not only different substrates can trigger expression of different EP genes, but also that the same substrate can promote a variable response, according to its concentration. We also found isolates belonging to the same clonal type that showed different responses towards drug exposure, thus evidencing that highly related clinical isolates may diverge in the efflux-mediated response to noxious agents. The data gathered by real-time fluorometric and RT-qPCR assays suggest that S. aureus clinical isolates may be primed to efflux antimicrobial compounds. Conclusions The results obtained in this work do not exclude the importance of mutations in resistance to fluoroquinolones in S. aureus, yet they underline the contribution of efflux systems for the emergence of high-level resistance. All together, the results presented in this study show the potential role

  1. Impact of Perturbed Pancreatic β-Cell Cholesterol Homeostasis on Adipose Tissue and Skeletal Muscle Metabolism

    PubMed Central

    Cochran, Blake J.; Hou, Liming; Manavalan, Anil Paul Chirackal; Moore, Benjamin M.; Tabet, Fatiha; Sultana, Afroza; Cuesta Torres, Luisa; Tang, Shudi; Shrestha, Sudichhya; Senanayake, Praween; Patel, Mili; Ryder, William J.; Bongers, Andre; Maraninchi, Marie; Wasinger, Valerie C.; Westerterp, Marit; Tall, Alan R.; Barter, Philip J.

    2016-01-01

    Elevated pancreatic β-cell cholesterol levels impair insulin secretion and reduce plasma insulin levels. This study establishes that low plasma insulin levels have a detrimental effect on two major insulin target tissues: adipose tissue and skeletal muscle. Mice with increased β-cell cholesterol levels were generated by conditional deletion of the ATP-binding cassette transporters, ABCA1 and ABCG1, in β-cells (β-DKO mice). Insulin secretion was impaired in these mice under basal and high-glucose conditions, and glucose disposal was shifted from skeletal muscle to adipose tissue. The β-DKO mice also had increased body fat and adipose tissue macrophage content, elevated plasma interleukin-6 and MCP-1 levels, and decreased skeletal muscle mass. They were not, however, insulin resistant. The adipose tissue expansion and reduced skeletal muscle mass, but not the systemic inflammation or increased adipose tissue macrophage content, were reversed when plasma insulin levels were normalized by insulin supplementation. These studies identify a mechanism by which perturbation of β-cell cholesterol homeostasis and impaired insulin secretion increase adiposity, reduce skeletal muscle mass, and cause systemic inflammation. They further identify β-cell dysfunction as a potential therapeutic target in people at increased risk of developing type 2 diabetes. PMID:27702832

  2. Effect of Lactobacillus acidophilus NS1 on plasma cholesterol levels in diet-induced obese mice.

    PubMed

    Song, M; Park, S; Lee, H; Min, B; Jung, S; Park, S; Kim, E; Oh, S

    2015-03-01

    We investigated the probiotic properties of Lactobacillus acidophilus NS1, such as acid resistance, bile tolerance, adherence to HT-29 cells, and cholesterol assimilation activity. In an animal study, 7-wk-old male C57BL/6 mice were fed a normal diet, a high-fat diet (HFD), or an HFD with L. acidophilus NS1 (ca. 1.0×10(8) cfu/mL) for 10 wk. Total cholesterol and low-density lipoprotein (LDL) cholesterol levels were significantly lower in mice fed an HFD with L. acidophilus NS1 than in those fed an HFD only, whereas high-density lipoprotein cholesterol levels were similar between these 2 groups. To understand the mechanism of the cholesterol-lowering effect of L. acidophilus NS1 on the HFD-mediated increase in plasma cholesterol levels, we determined mRNA levels of genes involved in cholesterol homeostasis in the liver. Expression of sterol regulatory element-binding protein 2 (Srebp2) and LDL receptor (Ldlr) in the liver was dramatically reduced in mice fed a HFD compared with those fed a normal diet. When L. acidophilus NS1 was administered orally to HFD-fed mice, an HFD-induced suppression of Srebp2 and Ldlr expression in the liver was abolished. These results suggest that the oral administration of L. acidophilus NS1 to mice fed an HFD increased the expression of Srebp2 and Ldlr in the liver, which was inhibited by high fat intake, thus leading to a decrease in plasma cholesterol levels. Lactobacillus acidophilus NS1 could be a useful probiotic microorganism for cholesterol-lowering dairy products and the improvement of hyperlipidemia and hepatic lipid metabolism. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. The metabolism of plant sterols is disturbed in postmenopausal women with coronary artery disease.

    PubMed

    Gylling, Helena; Hallikainen, Maarit; Rajaratnam, Radhakrishnan A; Simonen, Piia; Pihlajamäki, Jussi; Laakso, Markku; Miettinen, Tatu A

    2009-03-01

    In postmenopausal coronary artery disease (CAD) women, serum plant sterols are elevated. Thus, we investigated further whether serum plant sterols reflect absolute cholesterol metabolism in CAD as in other populations and whether the ABCG5 and ABCG8 genes, associated with plant sterol metabolism, were related to the risk of CAD. In free-living postmenopausal women with (n = 47) and without (n = 62) CAD, serum noncholesterol sterols including plant sterols were analyzed with gas-liquid chromatography, cholesterol absorption with peroral isotopes, absolute cholesterol synthesis with sterol balance technique, and bile acid synthesis with quantitating fecal bile acids. In CAD women, serum plant sterol ratios to cholesterol were 21% to 26% (P < .05) higher than in controls despite similar cholesterol absorption efficiency. Absolute cholesterol and bile acid synthesis were reduced. Only in controls were serum plant sterols related to cholesterol absorption (eg, sitosterol; in controls: r = 0.533, P < .001; in CAD: r = 0.296, P = not significant). However, even in CAD women, serum lathosterol (relative synthesis marker) and lathosterol-cholestanol (relative synthesis-absorption marker) were related to absolute synthesis and absorption percentage (P range from .05 to <.001) similarly to controls. Frequencies of the common polymorphisms of ABCG5 and ABCG8 genes did not differ between coronary and control women. In conclusion, plant sterol metabolism is disturbed in CAD women; so serum plant sterols only tended to reflect absolute cholesterol absorption. Other relative markers of cholesterol metabolism were related to the absolute ones in both groups. ABCG5 and ABCG8 genes were not associated with the risk of CAD.

  4. Acute sterol o-acyltransferase 2 (SOAT2) knockdown rapidly mobilizes hepatic cholesterol for fecal excretion.

    PubMed

    Marshall, Stephanie M; Gromovsky, Anthony D; Kelley, Kathryn L; Davis, Matthew A; Wilson, Martha D; Lee, Richard G; Crooke, Rosanne M; Graham, Mark J; Rudel, Lawrence L; Brown, J Mark; Temel, Ryan E

    2014-01-01

    The primary risk factor for atherosclerotic cardiovascular disease is LDL cholesterol, which can be reduced by increasing cholesterol excretion from the body. Fecal cholesterol excretion can be driven by a hepatobiliary as well as a non-biliary pathway known as transintestinal cholesterol efflux (TICE). We previously showed that chronic knockdown of the hepatic cholesterol esterifying enzyme sterol O-acyltransferase 2 (SOAT2) increased fecal cholesterol loss via TICE. To elucidate the initial events that stimulate TICE, C57Bl/6 mice were fed a high cholesterol diet to induce hepatic cholesterol accumulation and were then treated for 1 or 2 weeks with an antisense oligonucleotide targeting SOAT2. Within 2 weeks of hepatic SOAT2 knockdown (SOAT2HKD), the concentration of cholesteryl ester in the liver was reduced by 70% without a reciprocal increase in hepatic free cholesterol. The rapid mobilization of hepatic cholesterol stores resulted in a ∼ 2-fold increase in fecal neutral sterol loss but no change in biliary cholesterol concentration. Acute SOAT2HKD increased plasma cholesterol carried primarily in lipoproteins enriched in apoB and apoE. Collectively, our data suggest that acutely reducing SOAT2 causes hepatic cholesterol to be swiftly mobilized and packaged onto nascent lipoproteins that feed cholesterol into the TICE pathway for fecal excretion.

  5. PPAR-α, a lipid-sensing transcription factor, regulates blood–brain barrier efflux transporter expression

    PubMed Central

    More, Vijay R; Campos, Christopher R; Evans, Rebecca A; Oliver, Keith D; Chan, Gary NY; Miller, David S

    2016-01-01

    Lipid sensor peroxisome proliferator-activated receptor alpha (PPAR-α) is the master regulator of lipid metabolism. Dietary release of endogenous free fatty acids, fibrates, and certain persistent environmental pollutants, e.g. perfluoroalkyl fire-fighting foam components, are peroxisome proliferator-activated receptor alpha ligands. Here, we define a role for peroxisome proliferator-activated receptor alpha in regulating the expression of three ATP-driven drug efflux transporters at the rat and mouse blood–brain barriers: P-glycoprotein (Abcb1), breast cancer resistance protein (Bcrp/Abcg2), and multidrug resistance-associated protein 2 (Mrp2/Abcc2). Exposing isolated rat brain capillaries to linoleic acid, clofibrate, or PKAs increased the transport activity and protein expression of the three ABC transporters. These effects were blocked by the PPAR-α antagonist, GW6471. Dosing rats with 20 mg/kg or 200 mg/kg of clofibrate decreased the brain accumulation of the P-glycoprotein substrate, verapamil, by 50% (in situ brain perfusion; effects blocked by GW6471) and increased P-glycoprotein expression and activity in capillaries ex vivo. Fasting C57Bl/6 wild-type mice for 24 h increased both serum lipids and brain capillary P-glycoprotein transport activity. Fasting did not alter P-glycoprotein activity in PPAR-α knockout mice. These results indicate that hyperlipidemia, lipid-lowering fibrates and exposure to certain fire-fighting foam components activate blood–brain barrier peroxisome proliferator-activated receptor alpha, increase drug efflux transporter expression and reduce drug delivery to the brain. PMID:27193034

  6. Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile.

    PubMed

    Wang, Jing; Bie, Jinghua; Ghosh, Shobha

    2016-09-01

    While HDL-associated unesterified or free cholesterol (FC) is thought to be rapidly secreted into the bile, the fate of HDL-associated cholesteryl esters (HDL-CEs) that represent >80% of HDL-cholesterol, is only beginning to be understood. In the present study, we examined the hypothesis that intracellular cholesterol transport proteins [sterol carrier protein 2 (SCP2) and fatty acid binding protein-1 (FABP1)] not only facilitate CE hydrolase-mediated hydrolysis of HDL-CEs, but also enhance elimination of cholesterol into bile. Adenovirus-mediated overexpression of FABP1 or SCP2 in primary hepatocytes significantly increased hydrolysis of HDL-[(3)H]CE, reduced resecretion of HDL-CE-derived FC as nascent HDL, and increased its secretion as bile acids. Consistently, the flux of [(3)H]cholesterol from HDL-[(3)H]CE to biliary bile acids was increased by overexpression of SCP2 or FABP1 in vivo and reduced in SCP2(-/-) mice. Increased flux of HDL-[(3)H]CE to biliary FC was noted with FABP1 overexpression and in SCP2(-/-) mice that have increased FABP1 expression. Lack of a significant decrease in the flux of HDL-[(3)H]CE to biliary FC or bile acids in FABP1(-/-) mice indicates the likely compensation of its function by an as yet unidentified mechanism. Taken together, these studies demonstrate that FABP1 and SCP2 facilitate the preferential movement of HDL-CEs to bile for final elimination. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  7. Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile

    PubMed Central

    Wang, Jing; Bie, Jinghua; Ghosh, Shobha

    2016-01-01

    While HDL-associated unesterified or free cholesterol (FC) is thought to be rapidly secreted into the bile, the fate of HDL-associated cholesteryl esters (HDL-CEs) that represent >80% of HDL-cholesterol, is only beginning to be understood. In the present study, we examined the hypothesis that intracellular cholesterol transport proteins [sterol carrier protein 2 (SCP2) and fatty acid binding protein-1 (FABP1)] not only facilitate CE hydrolase-mediated hydrolysis of HDL-CEs, but also enhance elimination of cholesterol into bile. Adenovirus-mediated overexpression of FABP1 or SCP2 in primary hepatocytes significantly increased hydrolysis of HDL-[3H]CE, reduced resecretion of HDL-CE-derived FC as nascent HDL, and increased its secretion as bile acids. Consistently, the flux of [3H]cholesterol from HDL-[3H]CE to biliary bile acids was increased by overexpression of SCP2 or FABP1 in vivo and reduced in SCP2−/− mice. Increased flux of HDL-[3H]CE to biliary FC was noted with FABP1 overexpression and in SCP2−/− mice that have increased FABP1 expression. Lack of a significant decrease in the flux of HDL-[3H]CE to biliary FC or bile acids in FABP1−/− mice indicates the likely compensation of its function by an as yet unidentified mechanism. Taken together, these studies demonstrate that FABP1 and SCP2 facilitate the preferential movement of HDL-CEs to bile for final elimination. PMID:27381048

  8. ABC Transporter Genes and Risk of Type 2 Diabetes

    PubMed Central

    Schou, Jesper; Tybjærg-Hansen, Anne; Møller, Holger J.; Nordestgaard, Børge G.; Frikke-Schmidt, Ruth

    2012-01-01

    OBJECTIVE Alterations of pancreatic β-cell cholesterol content may contribute to β-cell dysfunction. Two important determinants of intracellular cholesterol content are the ATP-binding cassette (ABC) transporters A1 (ABCA1) and -G1 (ABCG1). Whether genetic variation in ABCA1 and ABCG1 predicts risk of type 2 diabetes in the general population is unknown. RESEARCH DESIGN AND METHODS We tested whether genetic variation in the promoter and coding regions of ABCA1 and ABCG1 predicted risk of type 2 diabetes in the general population. Twenty-seven variants, identified by previous resequencing of both genes, were genotyped in the Copenhagen City Heart Study (CCHS) (n = 10,185). Two loss-of-function mutations (ABCA1 N1800H and ABCG1 g.-376C>T) (n = 322) and a common variant (ABCG1 g.-530A>G) were further genotyped in the Copenhagen General Population Study (CGPS) (n = 30,415). RESULTS Only one of the variants examined, ABCG1 g.-530A>G, predicted a decreased risk of type 2 diabetes in the CCHS (P for trend = 0.05). Furthermore, when validated in the CGPS or in the CCHS and CGPS combined (n = 40,600), neither the two loss-of-function mutations (ABCA1 N1800H, ABCG1 g.-376C>T) nor ABCG1 g.-530A>G were associated with type 2 diabetes (P values >0.57 and >0.30, respectively). CONCLUSIONS Genetic variations in ABCA1 and ABCG1 were not associated with increased risk of type 2 diabetes in the general population. These data were obtained in general population samples harboring the largest number of heterozygotes for loss-of-function mutations in ABCA1 and ABCG1. PMID:23139370

  9. Effect of cholesterol depletion on the pore dilation of TRPV1.

    PubMed

    Jansson, Erik T; Trkulja, Carolina L; Ahemaiti, Aikeremu; Millingen, Maria; Jeffries, Gavin Dm; Jardemark, Kent; Orwar, Owe

    2013-01-02

    The TRPV1 ion channel is expressed in nociceptors, where pharmacological modulation of its function may offer a means of alleviating pain and neurogenic inflammation processes in the human body. The aim of this study was to investigate the effects of cholesterol depletion of the cell on ion-permeability of the TRPV1 ion channel. The ion-permeability properties of TRPV1 were assessed using whole-cell patch-clamp and YO-PRO uptake rate studies on a Chinese hamster ovary (CHO) cell line expressing this ion channel. Prolonged capsaicin-induced activation of TRPV1 with N-methyl-D-glucamine (NMDG) as the sole extracellular cation, generated a biphasic current which included an initial outward current followed by an inward current. Similarly, prolonged proton-activation (pH 5.5) of TRPV1 under hypocalcemic conditions also generated a biphasic current including a fast initial current peak followed by a larger second one. Patch-clamp recordings of reversal potentials of TRPV1 revealed an increase of the ion-permeability for NMDG during prolonged activation of this ion channel under hypocalcemic conditions. Our findings show that cholesterol depletion inhibited both the second current, and the increase in ion-permeability of the TRPV1 channel, resulting from sustained agonist-activation with capsaicin and protons (pH 5.5). These results were confirmed with YO-PRO uptake rate studies using laser scanning confocal microscopy, where cholesterol depletion was found to decrease TRPV1 mediated uptake rates of YO-PRO. Hence, these results propose a novel mechanism by which cellular cholesterol depletion modulates the function of TRPV1, which may constitute a novel approach for treatment of neurogenic pain.

  10. Use of a combined effect model approach for discriminating between ABCB1- and ABCC1-type efflux activities in native bivalve gill tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faria, Melissa; CESAM & Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro; Pavlichenko, Vasiliy

    Aquatic organisms, such as bivalves, employ ATP binding cassette (ABC) transporters for efflux of potentially toxic chemicals. Anthropogenic water contaminants can, as chemosensitizers, disrupt efflux transporter function enabling other, putatively toxic compounds to enter the organism. Applying rapid amplification of cDNA ends (RACE) PCR we identified complete cDNAs encoding ABCB1- and ABCC1-type transporter homologs from zebra mussel providing the molecular basis for expression of both transporter types in zebra mussel gills. Further, efflux activities of both transporter types in gills were indicated with dye accumulation assays where efflux of the dye calcein-am was sensitive to both ABCB1- (reversin 205, verapamil)more » and ABCC1- (MK571) type specific inhibitors. The assumption that different inhibitors targeted different efflux pump types was confirmed when comparing measured effects of binary inhibitor compound mixtures in dye accumulation assays with predictions from mixture effect models. Effects by the MK571/reversin 205 mixture corresponded better with independent action, whereas reversin 205/verapamil joint effects were better predicted by the concentration addition model indicating different and equal targets, respectively. The binary mixture approach was further applied to identify the efflux pump type targeted by environmentally relevant chemosensitizing compounds. Pentachlorophenol and musk ketone, which were selected after a pre-screen of twelve compounds that previously had been identified as chemosensitizers, showed mixture effects that corresponded better with concentration addition when combined with reversine 205 but with independent action predictions when combined with MK571 indicating targeting of an ABCB1-type efflux pump by these compounds. - Highlights: • Sequences and function of ABC efflux transporters in bivalve gills were explored. • Full length Dreissena polymorpha abcb1 and abcc1 cDNA sequences were identified. • A

  11. A Caveolin Dominant Negative Mutant Associates with Lipid Bodies and Induces Intracellular Cholesterol Imbalance

    PubMed Central

    Pol, Albert; Luetterforst, Robert; Lindsay, Margaret; Heino, Sanna; Ikonen, Elina; Parton, Robert G.

    2001-01-01

    Recent studies have indicated a role for caveolin in regulating cholesterol-dependent signaling events. In the present study we have analyzed the role of caveolins in intracellular cholesterol cycling using a dominant negative caveolin mutant. The mutant caveolin protein, cav-3DGV, specifically associates with the membrane surrounding large lipid droplets. These structures contain neutral lipids, and are accessed by caveolin 1–3 upon overexpression. Fluorescence, electron, and video microscopy observations are consistent with formation of the membrane-enclosed lipid rich structures by maturation of subdomains of the ER. The caveolin mutant causes the intracellular accumulation of free cholesterol (FC) in late endosomes, a decrease in surface cholesterol and a decrease in cholesterol efflux and synthesis. The amphiphile U18666A acts synergistically with cavDGV to increase intracellular accumulation of FC. Incubation of cells with oleic acid induces a significant accumulation of full-length caveolins in the enlarged lipid droplets. We conclude that caveolin can associate with the membrane surrounding lipid droplets and is a key component involved in intracellular cholesterol balance and lipid transport in fibroblasts. PMID:11238460

  12. Mechanistic kinetic modeling generates system-independent P-glycoprotein mediated transport elementary rate constants for inhibition and, in combination with 3D SIM microscopy, elucidates the importance of microvilli morphology on P-glycoprotein mediated efflux activity.

    PubMed

    Ellens, Harma; Meng, Zhou; Le Marchand, Sylvain J; Bentz, Joe

    2018-06-01

    In vitro transporter kinetics are typically analyzed by steady-state Michaelis-Menten approximations. However, no clear evidence exists that these approximations, applied to multiple transporters in biological membranes, yield system-independent mechanistic parameters needed for reliable in vivo hypothesis generation and testing. Areas covered: The classical mass action model has been developed for P-glycoprotein (P-gp) mediated transport across confluent polarized cell monolayers. Numerical integration of the mass action equations for transport using a stable global optimization program yields fitted elementary rate constants that are system-independent. The efflux active P-gp was defined by the rate at which P-gp delivers drugs to the apical chamber, since as much as 90% of drugs effluxed by P-gp partition back into nearby microvilli prior to reaching the apical chamber. The efflux active P-gp concentration was 10-fold smaller than the total expressed P-gp for Caco-2 cells, due to their microvilli membrane morphology. The mechanistic insights from this analysis are readily extrapolated to P-gp mediated transport in vivo. Expert opinion: In vitro system-independent elementary rate constants for transporters are essential for the generation and validation of robust mechanistic PBPK models. Our modeling approach and programs have broad application potential. They can be used for any drug transporter with minor adaptations.

  13. Evaluation of ABCG2 and p63 expression in canine cornea and cultivated corneal epithelial cells.

    PubMed

    Morita, Maresuke; Fujita, Naoki; Takahashi, Ayaka; Nam, Eun Ryel; Yui, Sho; Chung, Cheng Shu; Kawahara, Naoya; Lin, Hsing Yi; Tsuzuki, Keiko; Nakagawa, Takayuki; Nishimura, Ryohei

    2015-01-01

    To examine the expressions of ABCG2 and p63 in canine corneal epithelia and to evaluate their significance in corneal regeneration. Canine corneal and limbal epithelial cells were obtained from five healthy beagle dogs. We analyzed the morphological properties of cultivated limbal and corneal epithelial cells. We compared the expressions of ABCG2 and p63 in the limbus and central cornea by immunohistochemistry and real-time quantitative PCR. We analyzed the expression of these markers in cultivated cells by immunocytochemistry and real-time quantitative PCR. The limbal epithelial cells were smaller and proliferated more rapidly than the corneal epithelial cells in primary cultures. The corneal cells failed to be subcultured, whereas the limbal cells could be subcultured with increasing cell size. ABCG2 was localized in the basal layer of the limbal epithelium, and p63 was widely detected in the entire corneal epithelia. ABCG2 expression was significantly higher, and p63 was slightly higher in the limbus compared with the central cornea. ABCG2 was detected only in limbal cells in primary culture, not in corneal cells or passaged limbal cells. p63 was detected in both limbal and corneal cells and decreased gradually in the limbal cells with the cell passages. ABCG2 was localized in canine limbal epithelial cells, and p63 was widely expressed in canine corneal epithelia. ABCG2 and p63 could prove to be useful markers in dogs for putative corneal epithelial stem cells and for corneal epithelial cell proliferation, respectively. © 2014 American College of Veterinary Ophthalmologists.

  14. ATP-binding cassette transporters in reproduction: a new frontier

    PubMed Central

    Bloise, E.; Ortiga-Carvalho, T.M.; Reis, F.M.; Lye, S.J.; Gibb, W.; Matthews, S.G.

    2016-01-01

    breast cancer-related protein, the multidrug resistance proteins 1 through 5 and the cholesterol transporters ABCA1 and ABCG1. CONCLUSIONS The ABC transporters have various roles across multiple reproductive tissues. Knowledge of efflux direction, tissue distribution, substrate specificity and regulation of the ABC transporters in the placenta and other reproductive tissues is rapidly expanding. This will allow better understanding of the disposition of specific substrates within reproductive tissues, and facilitate development of novel treatments for reproductive disorders as well as improved approaches to protecting the developing fetus. PMID:26545808

  15. Striatal norepinephrine efflux in l-DOPA-induced dyskinesia.

    PubMed

    Ostock, Corinne Y; Bhide, Nirmal; Goldenberg, Adam A; George, Jessica A; Bishop, Christopher

    2018-03-01

    l-DOPA remains the primary treatment for Parkinson's disease (PD). Unfortunately, its therapeutic benefits are compromised by the development of abnormal involuntary movements (AIMs) known as l-DOPA-induced dyskinesia (LID). The norepinephrine (NE) system originating in the locus coeruleus is profoundly affected in PD and known to influence dopamine (DA) signaling. However, the effect of noradrenergic loss on l-DOPA-induced striatal monoamine efflux and Parkinsonian motor behavior remains controversial and is frequently overlooked in traditional animal models of LID. Thus, the current study sought to determine whether degeneration of the DA and/or NE system(s) altered l-DOPA-induced striatal monoamine efflux in hemiparkinsonian rats with additional NE loss induced by the potent NE-toxin α DA beta hydroxylase (DBH)-saporin. Sham-, DA-, NE-, and dual DA + NE-lesioned rats were treated with l-DOPA (6 mg/kg, s.c.) for 2 weeks. Thereafter, l-DOPA-mediated striatal monoamine efflux was measured with in vivo microdialysis, and concurrent AIMs testing occurred to determine responsiveness to l-DOPA. Noradrenergic lesions exacerbated parkinsonian motor deficits but did not significantly alter LID expression or corresponding l-DOPA-induced striatal monoamine efflux. Interestingly, l-DOPA-induced striatal NE efflux rather than DA efflux, corresponded more closely with dyskinesia severity. Moreover, marked reductions in striatal NE tissue concentration did not appear to impact l-DOPA-induced striatal NE efflux. The current study implicates l-DOPA-induced striatal NE as an important factor in LID expression and demonstrates the importance of developing treatment strategies that co-modulate the NE and DA systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Defective cholesterol clearance limits remyelination in the aged central nervous system.

    PubMed

    Cantuti-Castelvetri, Ludovico; Fitzner, Dirk; Bosch-Queralt, Mar; Weil, Marie-Theres; Su, Minhui; Sen, Paromita; Ruhwedel, Torben; Mitkovski, Miso; Trendelenburg, George; Lütjohann, Dieter; Möbius, Wiebke; Simons, Mikael

    2018-02-09

    Age-associated decline in regeneration capacity limits the restoration of nervous system functionality after injury. In a model for demyelination, we found that old mice fail to resolve the inflammatory response initiated after myelin damage. Aged phagocytes accumulated excessive amounts of myelin debris, which triggered cholesterol crystal formation and phagolysosomal membrane rupture and stimulated inflammasomes. Myelin debris clearance required cholesterol transporters, including apolipoprotein E. Stimulation of reverse cholesterol transport was sufficient to restore the capacity of old mice to remyelinate lesioned tissue. Thus, cholesterol-rich myelin debris can overwhelm the efflux capacity of phagocytes, resulting in a phase transition of cholesterol into crystals and thereby inducing a maladaptive immune response that impedes tissue regeneration. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Functional Polymorphisms of the ABCG2 Gene Are Associated with Gout Disease in the Chinese Han Male Population

    PubMed Central

    Zhou, Danqiu; Liu, Yunqing; Zhang, Xinju; Gu, Xiaoye; Wang, Hua; Luo, Xinhua; Zhang, Jin; Zou, Hejian; Guan, Ming

    2014-01-01

    Background Gout is a common type of arthritis that is characterized by hyperuricemia, tophi and joint inflammation. Genetic variations in the ABCG2 gene have been reported to influence serum uric acid levels and to participate in the pathogenesis of gout, but no further data have been reported in the Han Chinese population. Methods Peripheral blood DNA was isolated from 352 male patients with gout and 350 gout-free normal male controls. High-resolution melting analysis and Sanger sequencing were performed to identify the genetic polymorphisms V12M, Q141K and Q126X in the ABCG2 gene. Genotype and haplotype analyses were utilized to determine the disease odds ratios (ORs). A prediction model for gout risk using ABCG2 protein function was established based on the genotype combination of Q126X and Q141K. Results For Q141K, the A allele frequency was 49.6% in the gout patients and 30.9% in the controls (OR 2.20, 95% confidence interval (CI): 1.77–2.74, p = 8.99 × 10−13). Regarding Q126X, the T allele frequency was 4.7% in the gout patients and 1.7% in the controls (OR 2.91, 95% CI: 1.49–5.68, p = 1.57 × 10−3). The A allele frequency for V12M was lower (18.3%) in the gout patients than in the controls (29%) (OR 0.55, 95% CI 0.43–0.71, p = 2.55 × 10−6). In the order of V12M, Q126X and Q141K, the GCA and GTC haplotypes indicated increased disease risk (OR = 2.30 and 2.71, respectively). Patients with mild to severe ABCG2 dysfunction accounted for 78.4% of gout cases. Conclusion The ABCG2 126X and 141K alleles are associated with an increased risk of gout, whereas 12M has a protective effect on gout susceptibility in the Han Chinese population. ABCG2 dysfunction can be used to evaluate gout risk. PMID:24857923

  18. Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force.

    PubMed

    Carpaneto, Armando; Geiger, Dietmar; Bamberg, Ernst; Sauer, Norbert; Fromm, Jörg; Hedrich, Rainer

    2005-06-03

    The phloem network is as essential for plants as the vascular system is for humans. This network, assembled by nucleus- and vacuole-free interconnected living cells, represents a long distance transport pathway for nutrients and information. According to the Münch hypothesis, osmolytes such as sucrose generate the hydrostatic pressure that drives nutrient and water flow between the source and the sink phloem (Münch, E. (1930) Die Stoffbewegungen in der Pflanze, Gustav Fischer, Jena, Germany). Although proton-coupled sucrose carriers have been localized to the sieve tube and the companion cell plasma membrane of both source and sink tissues, knowledge of the molecular representatives and the mechanism of the sucrose phloem efflux is still scant. We expressed ZmSUT1, a maize sucrose/proton symporter, in Xenopus oocytes and studied the transport characteristics of the carrier by electrophysiological methods. Using the patch clamp techniques in the giant inside-out patch mode, we altered the chemical and electrochemical gradient across the sucrose carrier and analyzed the currents generated by the proton flux. Thereby we could show that ZmSUT1 is capable of mediating both the sucrose uptake into the phloem in mature leaves (source) as well as the desorption of sugar from the phloem vessels into heterotrophic tissues (sink). As predicted from a perfect molecular machine, the ZmSUT1-mediated sucrose-coupled proton current was reversible and depended on the direction of the sucrose and pH gradient as well as the membrane potential across the transporter.

  19. The Arabidopsis DSO/ABCG11 transporter affects cutin metabolism in reproductive organs and suberin in roots.

    PubMed

    Panikashvili, David; Shi, Jian Xin; Bocobza, Samuel; Franke, Rochus Benni; Schreiber, Lukas; Aharoni, Asaph

    2010-05-01

    Apart from its significance in the protection against stress conditions, the cuticular cover is essential for proper development of the diverse surface structures formed on aerial plant organs. This layer mainly consists of a cutin matrix, embedded and overlaid with cuticular waxes. Following their biosynthesis in epidermal cells, cutin and waxes were suggested to be exported across the plasma membrane by ABCG-type transporters such as DSO/ABCG11 to the cell wall and further to extracellular matrix. Here, additional aspects of DSO/ABCG11 function were investigated, predominantly in reproductive organs, which were not revealed in the previous reports. This was facilitated by the generation of a transgenic DSO/ABCG11 silenced line (dso-4) that displayed relatively subtle morphological and chemical phenotypes. These included altered petal and silique morphology, fusion of seeds, and changes in levels of cutin monomers in flowers and siliques. The dso-4 phenotypes corresponded to the strong DSO/ABCG11 gene expression in the embryo epidermis as well as in the endosperm tissues of the developing seeds. Moreover, the DSO/ABCG11 protein displayed polar localization in the embryo protoderm. Transcriptome analysis of the dso-4 mutant leaves and stems showed that reduced DSO/ABCG11 activity suppressed the expression of a large number of cuticle-associated genes, implying that export of cuticular lipids from the plasma membrane is a rate-limiting step in cuticle metabolism. Surprisingly, root suberin composition of dso-4 was altered, as well as root expression of two suberin biosynthetic genes. Taken together, this study provides new insights into cutin and suberin metabolism and their role in reproductive organs and roots development.

  20. Efflux of drugs and solutes from brain: the interactive roles of diffusional transcapillary transport, bulk flow and capillary transporters.

    PubMed

    Groothuis, Dennis R; Vavra, Michael W; Schlageter, Kurt E; Kang, Eric W-Y; Itskovich, Andrea C; Hertzler, Shannon; Allen, Cathleen V; Lipton, Howard L

    2007-01-01

    We examined the roles of diffusion, convection and capillary transporters in solute removal from extracellular space (ECS) of the brain. Radiolabeled solutes (eight with passive distribution and four with capillary or cell transporters) were injected into the brains of rats (n=497) and multiple-time point experiments measured the amount remaining in brain as a function of time. For passively distributed compounds, there was a relationship between lipid:water solubility and total brain efflux:diffusional efflux, which dominated when k(p), the transcapillary efflux rate constant, was >10(0) h(-1); when 10(-1)1) both diffusion and convection contributed, and when k(p)<10(-3) h(-1), convective efflux dominated. Para-aminohippuric acid (PAH) experiments (n=112) showed that PAH entered the brain passively, but had efflux transporters. The total efflux rate constant, k(eff), was the sum of a passive component (k(p)=0.0018 h(-1)), a convective component (k(csf)=0.2 h(-1)), and a variable, concentration-dependent component (k(x)=0 to 0.45 h(-1)). Compounds with cell membrane transporters had longer clearance half times as did an oligonucleotide, which interacted with cell surface receptors. Manipulation of physiologic state (n=35) did not affect efflux, but sucrose efflux half time was longer with pentobarbital anesthesia (24 h) than with no anesthesia or ketamine-xylazine anesthesia (2 to 3 h). These results show that solute clearance from normal brain ECS may involve multiple physiologic pathways, may be affected by anesthesia, and suggests that convection-mediated efflux may be manipulated to increase or decrease drug clearance from brain.

  1. Genetic Variations at ABCG5/G8 Genes Modulate Plasma Lipids Concentrations in Patients with Familial Hypercholesterolemia

    PubMed Central

    Garcia-Rios, A; Perez-Martinez, P; Fuentes, F; Mata, P; Lopez-Miranda, J; Alonso, R; Rodriguez, F; Garcia-Olid, A; Ruano, J; Ordovas, JM; Perez-Jimenez, F

    2010-01-01

    Objective To investigate the association of four common single nucleotide polymorphisms (SNPs) at ABCG5 (i7892A>G, i18429C>T, Gln604GluC>G, i11836G>A) and five at ABCG8 (5U145T>G, Tyr54CysA>G, Asp19HisG>C, i14222T>C, and Thr400LysG>T) with plasma lipids concentrations and to explore the interaction between those SNPs and smoking in patients with FH. Methods and Results ABCG5/G8 SNPs were genotyped in 500 subjects with genetic diagnosis of FH. Carriers of the minor A allele at the ABCG5_i11836G>A SNP displayed significantly higher HDL-C concentrations (P=0.023) than G/G subjects. In addition, carriers of the minor G allele at the ABCG5_Gln604GluC>G SNP had significantly lower VLDL-C (P=0.011) and lower TG (P=0.017) concentrations than homozygous C/C. Interestingly, a significant gene-smoking interaction was found, in which carriers of the minor alleles at ABCG5 (i7892A>G, i18429C>T, i11836G>A) SNPs displayed significantly lower HDL-C, higher TC and higher TG respectively, only in smokers. On the other hand, non-smokers carriers of the minor alleles at ABCG5 (i18429C>T and Gln604GluC>G) SNPs had significantly lower TG concentrations (P=0.012 and P=0.035) compared with homozygous for the major allele. Conclusions Our data support the notion that ABCG5/G8 genetic variants modulate plasma lipids concentrations in patients with FH and confirm that this effect could be influenced by smoking. Therefore, these results suggest that gene-environmental interactions can affect the clinical phenotype of FH. PMID:20172523

  2. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1.

    PubMed

    Carette, Jan E; Raaben, Matthijs; Wong, Anthony C; Herbert, Andrew S; Obernosterer, Gregor; Mulherkar, Nirupama; Kuehne, Ana I; Kranzusch, Philip J; Griffin, April M; Ruthel, Gordon; Dal Cin, Paola; Dye, John M; Whelan, Sean P; Chandran, Kartik; Brummelkamp, Thijn R

    2011-08-24

    Infections by the Ebola and Marburg filoviruses cause a rapidly fatal haemorrhagic fever in humans for which no approved antivirals are available. Filovirus entry is mediated by the viral spike glycoprotein (GP), which attaches viral particles to the cell surface, delivers them to endosomes and catalyses fusion between viral and endosomal membranes. Additional host factors in the endosomal compartment are probably required for viral membrane fusion; however, despite considerable efforts, these critical host factors have defied molecular identification. Here we describe a genome-wide haploid genetic screen in human cells to identify host factors required for Ebola virus entry. Our screen uncovered 67 mutations disrupting all six members of the homotypic fusion and vacuole protein-sorting (HOPS) multisubunit tethering complex, which is involved in the fusion of endosomes to lysosomes, and 39 independent mutations that disrupt the endo/lysosomal cholesterol transporter protein Niemann-Pick C1 (NPC1). Cells defective for the HOPS complex or NPC1 function, including primary fibroblasts derived from human Niemann-Pick type C1 disease patients, are resistant to infection by Ebola virus and Marburg virus, but remain fully susceptible to a suite of unrelated viruses. We show that membrane fusion mediated by filovirus glycoproteins and viral escape from the vesicular compartment require the NPC1 protein, independent of its known function in cholesterol transport. Our findings uncover unique features of the entry pathway used by filoviruses and indicate potential antiviral strategies to combat these deadly agents.

  3. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation.

    PubMed

    Tang, Tiantian; Lang, Xueting; Xu, Congfei; Wang, Xiaqiong; Gong, Tao; Yang, Yanqing; Cui, Jun; Bai, Li; Wang, Jun; Jiang, Wei; Zhou, Rongbin

    2017-08-04

    The NLRP3 inflammasome can sense different pathogens or danger signals, and has been reported to be involved in the development of many human diseases. Potassium efflux and mitochondrial damage are both reported to mediate NLRP3 inflammasome activation, but the underlying, orchestrating signaling events are still unclear. Here we show that chloride intracellular channels (CLIC) act downstream of the potassium efflux-mitochondrial reactive oxygen species (ROS) axis to promote NLRP3 inflammasome activation. NLRP3 agonists induce potassium efflux, which causes mitochondrial damage and ROS production. Mitochondrial ROS then induces the translocation of CLICs to the plasma membrane for the induction of chloride efflux to promote NEK7-NLRP3 interaction, inflammasome assembly, caspase-1 activation, and IL-1β secretion. Thus, our results identify CLICs-dependent chloride efflux as an essential and proximal upstream event for NLRP3 activation.The NLRP3 inflammasome is key to the regulation of innate immunity against pathogens or stress, but the underlying signaling regulation is still unclear. Here the authors show that chloride intracellular channels (CLIC) interface between mitochondria stress and inflammasome activation to modulate inflammatory responses.

  4. Silymarin Constituents Enhance ABCA1 Expression in THP-1 Macrophages

    PubMed Central

    Wang, Limei; Rotter, Susanne; Ladurner, Angela; Heiss, Elke H.; Oberlies, Nicholas H.; Dirsch, Verena M.; Atanasov, Atanas G.

    2016-01-01

    Silymarin is a hepatoprotective mixture of flavonolignans and flavonoids extracted from the seeds of milk thistle (Silybum marianum L. Gaertn). This study investigates the effect of major bioactive constituents from silymarin, silybin A, silybin B, isosilybin A, isosilybin B, silydianin, silychristin, isosilychristin, and taxifolin, on the expression of ABCA1, an important cholesterol efflux transporter, in THP-1-derived macrophages. Four of the studied compounds, isosilybin A, silybin B, silychristin and isosilychristin, were found to significantly induce ABCA1 protein expression without affecting cell viability. Moreover, isosilybin A, a partial PPARγ agonist, was found to promote cholesterol efflux from THP-1 macrophages in a concentration-dependent manner. These findings first show ABCA1 protein up-regulating activity of active constituents of silymarin and provide new avenues for their further study in the context of cardiovascular disease. PMID:26729088

  5. Silymarin Constituents Enhance ABCA1 Expression in THP-1 Macrophages.

    PubMed

    Wang, Limei; Rotter, Susanne; Ladurner, Angela; Heiss, Elke H; Oberlies, Nicholas H; Dirsch, Verena M; Atanasov, Atanas G

    2015-12-31

    Silymarin is a hepatoprotective mixture of flavonolignans and flavonoids extracted from the seeds of milk thistle (Silybum marianum L. Gaertn). This study investigates the effect of major bioactive constituents from silymarin, silybin A, silybin B, isosilybin A, isosilybin B, silydianin, silychristin, isosilychristin, and taxifolin, on the expression of ABCA1, an important cholesterol efflux transporter, in THP-1-derived macrophages. Four of the studied compounds, isosilybin A, silybin B, silychristin and isosilychristin, were found to significantly induce ABCA1 protein expression without affecting cell viability. Moreover, isosilybin A, a partial PPARγ agonist, was found to promote cholesterol efflux from THP-1 macrophages in a concentration-dependent manner. These findings first show ABCA1 protein up-regulating activity of active constituents of silymarin and provide new avenues for their further study in the context of cardiovascular disease.

  6. In Vitro Screening of Environmental Chemicals Identifies Zearalenone as a Novel Substrate of the Placental BCRP/ABCG2 Transporter

    PubMed Central

    Xiao, Jingcheng; Wang, Qi; Bircsak, Kristin M.; Wen, Xia; Aleksunes, Lauren M.

    2015-01-01

    The BCRP (ABCG2) transporter is responsible for the efflux of chemicals from the placenta to the maternal circulation. Inhibition of BCRP activity could enhance exposure of offspring to environmental chemicals leading to altered reproductive, endocrine, and metabolic development. The purpose of this study was to characterize environmental chemicals as potential substrates and inhibitors of the human placental BCRP transporter. The interaction of BCRP with a panel of environmental chemicals was assessed using the ATPase and inverted plasma membrane vesicle assays as well as a cell-based fluorescent substrate competition assay. Human HEK cells transfected with wild-type BCRP or the Q141K genetic variant, as well as BeWo placental cells that endogenously express BCRP were used to further test inhibitor and substrate interactions. To varying degrees, the eleven chemicals inhibited BCRP activity in activated ATPase membranes and inverted membrane vesicles. Further, genistein, zearalenone, and tributyltin increased the retention of the fluorescent BCRP substrate, Hoechst 33342, between 50–100% in BeWo cells. Additional experiments characterized the mycotoxin and environmental estrogen, zearalenone, as a novel substrate and inhibitor of BCRP in WT-BCRP and BeWo cells. Interestingly, the BCRP genetic variant Q141K exhibited reduced efflux of zearalenone compared to the wild-type protein. Taken together, screening assays and direct quantification experiments identified zearalenone as a novel human BCRP substrate. Additional in vivo studies are needed to directly determine whether placental BCRP prevents fetal exposure to zearalenone. PMID:26052432

  7. Novel gene-by-environment interactions: APOB and NPC1L1 variants affect the relationship between dietary and total plasma cholesterol[S

    PubMed Central

    Kim, Daniel S.; Burt, Amber A.; Ranchalis, Jane E.; Jarvik, Ella R.; Rosenthal, Elisabeth A.; Hatsukami, Thomas S.; Furlong, Clement E.; Jarvik, Gail P.

    2013-01-01

    Cardiovascular disease (CVD) is the leading cause of death in developed countries. Plasma cholesterol level is a key risk factor in CVD pathogenesis. Genetic and dietary variation both influence plasma cholesterol; however, little is known about dietary interactions with genetic variants influencing the absorption and transport of dietary cholesterol. We sought to determine whether gut expressed variants predicting plasma cholesterol differentially affected the relationship between dietary and plasma cholesterol levels in 1,128 subjects (772/356 in the discovery/replication cohorts, respectively). Four single nucleotide polymorphisms (SNPs) within three genes (APOB, CETP, and NPC1L1) were significantly associated with plasma cholesterol in the discovery cohort. These were subsequently evaluated for gene-by-environment (GxE) interactions with dietary cholesterol for the prediction of plasma cholesterol, with significant findings tested for replication. Novel GxE interactions were identified and replicated for two variants: rs1042034, an APOB Ser4338Asn missense SNP and rs2072183 (in males only), a synonymous NPC1L1 SNP in linkage disequilibrium with SNPs 5′ of NPC1L1. This study identifies the presence of novel GxE and gender interactions implying that differential gut absorption is the basis for the variant associations with plasma cholesterol. These GxE interactions may account for part of the “missing heritability” not accounted for by genetic associations. PMID:23482652

  8. P-glycoprotein mediated efflux in Caco-2 cell monolayers: the influence of herbals on digoxin transport.

    PubMed

    Oga, Enoche F; Sekine, Shuichi; Shitara, Yoshihisa; Horie, Toshiharu

    2012-12-18

    Several herbal medicines are concomitantly used with conventional medicines with a resultant increase in the recognition of herb-drug interactions. The phytomedicines Vernonia amygdalina Delile (VA), family Asteraceae; Azadiractha indica A. Juss (NL), family Meliaceae; Morinda lucida Benth (MLB), family Rubiaceae; Cymbopogon citratus Stapf (LG), family Poaceae; Curcuma longa L. (CUR), family Zingiberaceae; Carica papaya L. (CP), family Caricaceae and Tapinanthus sessilifolius Blume (ML), family Loranthaceae are used in African traditional medicine for the treatment of malaria. They are also used in several regions world over in managing other ailments like cancer and diabetes. This study investigated their interaction with digoxin (DIG) with a view to predict the potential of P-glycoprotein (p-gp) mediated drug-herb interactions occurring with p-gp substrate drugs. To assess p-gp mediated transport and inhibition, bidirectional transport studies were carried out on Caco-2 cell monolayers using digoxin (DIG) as a model p-gp substrate. Cell functionality was demonstrated using the determinations of transepithelial electric resistance (TEER), cell cytotoxicity testing utilizing the MTT assay as well as the inclusion of inhibition controls. Under the conditions of this study, extracts of ML, VA and CP showed significant inhibition to (3)H-Digoxin basolateral-to-apical (B-A) transport at 0.02-20mg/mL; the concentrations examined. Their apical-to-basolateral (A-B) transport was further investigated. Increases in the mean A-B transport and significant decreases in the B-A transport and efflux ratio values were observed. The apparent permeability coefficient and efflux ratio were computed providing an estimate of drug absorption. The findings show that extracts of ML, VA and CP significantly inhibit p-gp in vitro and interactions with conventional p-gp substrate drugs are likely to occur on co-administration which may result in altered therapeutic outcomes. Copyright

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing-Min, E-mail: wjm730222@163.com; Wang, Dong, E-mail: 8888dd@163.com; Tan, Yu-Yan, E-mail: tyytyz@sina.com

    Highlights: • Cholesterosis is a metabolic disease characterized by excessive lipid droplets. • Lipid droplet efflux is mediated by the ABCA1 transporter. • 22(R)-hydroxycholesterol can activate LXRα and up-regulate ABCA1. • Pioglitazone up-regulates ABCA1 in a PPARγ–LXRα–ABCA1-dependent manner. • 22(R)-hydroxycholesterol and pioglitazone synergistically decrease lipid droplets. - Abstract: Cholesterosis is a disease of cholesterol metabolism characterized by the presence of excessive lipid droplets in the cytoplasm. These lipid droplets are mainly composed of cholesterol esters derived from free cholesterol. The removal of excess cholesterol from gallbladder epithelial cells (GBECs) is very important for the maintenance of intracellular cholesterol homeostasis andmore » the preservation of gallbladder function. Several lines of evidence have indicated that the activation of either peroxisome proliferator-activated receptor gamma (PPARγ) or liver X receptor α (LXRα) relates to cholesterol efflux. While pioglitazone can regulate the activation of PPARγ, 22(R)-hydroxycholesterol can activate LXRα and is a metabolic intermediate in the biosynthesis of steroid hormones. However, the effect of 22(R)-hydroxycholesterol in combination with pioglitazone on cholesterosis of the gallbladder is unclear. GBECs were treated with pioglitazone, 22(R)-hydroxycholesterol or PPARγ siRNA followed by Western blot analysis for ATP-binding cassette transporter A1 (ABCA1), PPARγ and LXRα. Cholesterol efflux to apoA-I was determined, and Oil Red O staining was performed to monitor variations in lipid levels in treated GBECs. Our data showed that 22(R)-hydroxycholesterol can modestly up-regulate LXRα while simultaneously increasing ABCA1 by 56%. The combination of 22(R)-hydroxycholesterol and pioglitazone resulted in a 3.64-fold increase in ABCA1 expression and a high rate of cholesterol efflux. Oil Red O staining showed an obvious reduction in the lipid

  10. Emodin As an Effective Agent in Targeting Cancer Stem-Like Side Population Cells of Gallbladder Carcinoma

    PubMed Central

    Li, Xin-xing; Dong, Ying; Wang, Wei; Wang, Hao-lu; Chen, Yu-ying; Shi, Gui-ying; Yi, Jing

    2013-01-01

    Side population (SP) cells are previously identified from bone marrow based on their capacity to efflux of the fluorescent dye Hoechst 33342. Recent studies demonstrate that SP cells isolated from various cancer cell lines and primary tumors possess stem-cell-like properties. Thus, targeting tumor SP cells may provide new strategies for treatment in clinic. We previously showed that 1,3,8-trihydroxy-6-methylanthraquinone (emodin), a reactive oxygen species (ROS) generator, enhanced sensitivity of gallbladder cancer SGC-996 cells to cisplatin (CDDP) via generation of ROS and downregulation of multidrug-resistance-associated protein 1 (MRP1). To determine whether emodin also acts effectively on cancer stem cells of gallbladder carcinoma, we use SP cells as a model of cancer stem-cell-like cells. Here, we found that emodin, via ROS-related mechanism and suppressing the function of ATP-binding cassette super-family G member (ABCG2), which is known to be associated with Hoechst dye efflux activity of SP cells, not only reduced the ratio, inhibited clone formation, and eliminated sphere formation of SP cells effectively, but also promoted obviously the intracellular accumulation of doxorubicin, the main substrate of the efflux pump ABCG2. In addition, emodin could sensitize CDDP, via inhibition of expression of ABCG2, to overcome chemoresistance of SP cells. Importantly, similar to the experiment in vitro, emodin/CDDP co-treatment in vivo suppressed the tumor growth derived from SP cells through downregulating ABCG2 expression. Our results suggest that emodin is an effective agent targeting cancer stem-like SP cells of gallbladder carcinoma, either alone or acts as a chemotherapy enhancer. PMID:22974371

  11. An Arg-Gly-Asp peptide stimulates Ca2+ efflux from osteoclast precursors through a novel mechanism

    NASA Technical Reports Server (NTRS)

    Yamakawa, K.; Duncan, R.; Hruska, K. A.

    1994-01-01

    We examined the effect of a peptide containing the Arg-Gly-Asp (RGD) sequence on 45Ca2+ efflux from osteoclast precursors. 45Ca(2+)-loaded osteoclast precursors were treated with GRGDSP (170 microM) for 10 min after 30 min of basal perfusion with a bicarbonate-containing buffer. GRGDSP significantly increased fractional efflux of Ca2+ from treated cells compared with vehicle-treated cells (P < 0.01) or cells treated with up to 200 micrograms/ml of a control peptide containing GRGESP. The effect of RGD was sustained for 15 min after the peptide was removed from the perfusate, but control levels of Ca2+ efflux returned by 1 h. The Ca2+ efflux effect of GRGDSP was most likely due to activation of the plasma membrane Ca(2+)-adenosinetriphosphatase (Ca(2+)-ATPase) pump, as indicated by its inhibition with vanadate and a calmodulin antagonist, N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide, and the absence of an effect of Na+/Ca2+ exchange inhibition. An inhibitor of cyclic nucleotide-dependent protein kinases, N-[2-(methylamino)ethyl]-5-isoquinoline-sulfonamide (0.1 mM), failed to inhibit GRGDSP-stimulated Ca2+ efflux. However, genistein and herbimycin A, inhibitors of protein-tyrosine kinases, blocked Ca2+ efflux stimulated by GRGDSP. The results indicate that RGD sequences of matrix proteins may stimulate Ca2+ efflux from osteoclasts through activation of protein-tyrosine kinases and suggest that GRGDSP-stimulated Ca2+ efflux is mediated via the plasma membrane Ca(2+)-ATPase.

  12. Synthesis and Evaluation of Vitamin D Receptor-Mediated Activities of Cholesterol and Vitamin D Metabolites

    PubMed Central

    Teske, Kelly A.; Bogart, Jonathan W.; Sanchez, Luis M.; Yu, Olivia B.; Preston, Joshua V.; Cook, James M.; Silvaggi, Nicholas R.; Bikle, Daniel D.; Arnold, Leggy A.

    2016-01-01

    A systematic study with phase 1 and phase 2 metabolites of cholesterol and vitamin D was conducted to determine whether their biological activity is mediated by the vitamin D receptor (VDR). The investigation necessitated the development of novel synthetic routes for lithocholic acid (LCA) glucuronides (Gluc). Biochemical and cell-based assays were used to demonstrate that hydroxylated LCA analogs were not able to bind VDR. This excludes VDR from mediating their biological and pharmacological activities. Among the synthesized LCA conjugates a novel VDR agonist was identified. LCA Gluc II increased the expression of CYP24A1 in DU145 cancer cells especially in the presence of the endogenous VDR ligand 1,25(OH)2D3. Furthermore, the methyl ester of LCA was identified as novel VDR antagonist. For the first time, we showed that calcitroic acid, the assumed inactive final metabolite of vitamin D, was able to activate VDR-mediated transcription to a higher magnitude than bile acid LCA. Due to a higher metabolic stability in comparison to vitamin D, a very low toxicity, and high concentration in bile and intestine, calcitroic acid is likely to be an important mediator of the protective vitamin D properties against colon cancer. PMID:26774929

  13. Molecular genetic basis for fluoroquinolone-induced retinal degeneration in cats.

    PubMed

    Ramirez, Christina J; Minch, Jonathan D; Gay, John M; Lahmers, Sunshine M; Guerra, Dan J; Haldorson, Gary J; Schneider, Terri; Mealey, Katrina L

    2011-02-01

    Distribution of fluoroquinolones to the retina is normally restricted by ABCG2 at the blood-retinal barrier. As the cat develops a species-specific adverse reaction to photoreactive fluoroquinolones, our goal was to investigate ABCG2 as a candidate gene for fluoroquinolone-induced retinal degeneration and blindness in cats. Feline ABCG2 was sequenced and the consensus amino acid sequence was compared with that of 10 other mammalian species. Expression of ABCG2 in feline retina was assessed by immunoblot. cDNA constructs for feline and human ABCG2 were constructed in a pcDNA3 expression vector and expressed in HEK-293 cells, and ABCG2 expression was analyzed by western blot and immunofluorescence. Mitoxantrone and BODIPY-prazosin efflux measured by flow cytometry and a phototoxicity assay were used to assess feline and human ABCG2 function. Four feline-specific (compared with 10 other mammalian species) amino acid changes in conserved regions of ABCG2 were identified. Expression of ABCG2 on plasma membranes was confirmed in feline retina and in cells transfected with human and feline ABCG2, although some intracellular expression of feline ABCG2 was detected by immunofluorescence. Function of feline ABCG2, compared with human ABCG2, was found to be deficient as determined by flow cytometric measurement of mitoxantrone and BODIPY-prazosin efflux and enrofloxacin-induced phototoxicity assays. Feline-specific amino acid changes in ABCG2 cause a functional defect of the transport protein in cats. This functional defect may be owing, in part, to defective cellular localization of feline ABCG2. Regardless, dysfunction of ABCG2 at the blood-retinal barrier likely results in accumulation of photoreactive fluoroquinolones in feline retina. Exposure of the retina to light would then generate reactive oxygen species that would cause the characteristic retinal degeneration and blindness documented in some cats receiving high doses of some fluoroquinolones. Pharmacological

  14. Flavonoids and saponins extracted from black bean (Phaseolus vulgaris L.) seed coats modulate lipid metabolism and biliary cholesterol secretion in C57BL/6 mice.

    PubMed

    Chavez-Santoscoy, Rocio A; Gutierrez-Uribe, Janet A; Granados, Omar; Torre-Villalvazo, Ivan; Serna-Saldivar, Sergio O; Torres, Nimbe; Palacios-González, Berenice; Tovar, Armando R

    2014-09-28

    Black bean (Phaseolus vulgaris L.) seed coats are a rich source of natural compounds with potential beneficial effects on human health. Beans exert hypolipidaemic activity; however, this effect has not been attributed to any particular component, and the underlying mechanisms of action and protein targets remain unknown. The aim of the present study was to identify and quantify primary saponins and flavonoids extracted from black bean seed coats, and to study their effects on lipid metabolism in primary rat hepatocytes and C57BL/6 mice. The methanol extract of black bean seed coats, characterised by a HPLC system with a UV-visible detector and an evaporative light-scattering detector and HPLC-time-of-flight/MS, contained quercetin 3-O-glucoside and soyasaponin Af as the primary flavonoid and saponin, respectively. The extract significantly reduced the expression of SREBP1c, FAS and HMGCR, and stimulated the expression of the reverse cholesterol transporters ABCG5/ABCG8 and CYP7A1 in the liver. In addition, there was an increase in the expression of hepatic PPAR-α. Consequently, there was a decrease in hepatic lipid depots and a significant increase in bile acid secretion. Furthermore, the ingestion of this extract modulated the proportion of lipids that was used as a substrate for energy generation. Thus, the results suggest that the extract of black bean seed coats may decrease hepatic lipogenesis and stimulate cholesterol excretion, in part, via bile acid synthesis.

  15. C-peptide inhibitors of Ebola virus glycoprotein-mediated cell entry: effects of conjugation to cholesterol and side chain-side chain crosslinking.

    PubMed

    Higgins, Chelsea D; Koellhoffer, Jayne F; Chandran, Kartik; Lai, Jonathan R

    2013-10-01

    We previously described potent inhibition of Ebola virus entry by a 'C-peptide' based on the GP2 C-heptad repeat region (CHR) targeted to endosomes ('Tat-Ebo'). Here, we report the synthesis and evaluation of C-peptides conjugated to cholesterol, and Tat-Ebo analogs containing covalent side chain-side chain crosslinks to promote α-helical conformation. We found that the cholesterol-conjugated C-peptides were potent inhibitors of Ebola virus glycoprotein (GP)-mediated cell entry (~10(3)-fold reduction in infection at 40 μM). However, this mechanism of inhibition is somewhat non-specific because the cholesterol-conjugated peptides also inhibited cell entry mediated by vesicular stomatitis virus glycoprotein G. One side chain-side chain crosslinked peptide had moderately higher activity than the parent compound Tat-Ebo. Circular dichroism revealed that the cholesterol-conjugated peptides unexpectedly formed a strong α-helical conformation that was independent of concentration. Side chain-side chain crosslinking enhanced α-helical stability of the Tat-Ebo variants, but only at neutral pH. These result provide insight into mechanisms of C-peptide inhibiton of Ebola virus GP-mediated cell entry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Deficiency in the Lipid Exporter ABCA1 Impairs Retrograde Sterol Movement and Disrupts Sterol Sensing at the Endoplasmic Reticulum*♦

    PubMed Central

    Yamauchi, Yoshio; Iwamoto, Noriyuki; Rogers, Maximillian A.; Abe-Dohmae, Sumiko; Fujimoto, Toyoshi; Chang, Catherine C. Y.; Ishigami, Masato; Kishimoto, Takuma; Kobayashi, Toshihide; Ueda, Kazumitsu; Furukawa, Koichi; Chang, Ta-Yuan; Yokoyama, Shinji

    2015-01-01

    Cellular cholesterol homeostasis involves sterol sensing at the endoplasmic reticulum (ER) and sterol export from the plasma membrane (PM). Sterol sensing at the ER requires efficient sterol delivery from the PM; however, the macromolecules that facilitate retrograde sterol transport at the PM have not been identified. ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol and phospholipid export to apolipoprotein A-I for the assembly of high density lipoprotein (HDL). Mutations in ABCA1 cause Tangier disease, a familial HDL deficiency. Several lines of clinical and experimental evidence suggest a second function of ABCA1 in cellular cholesterol homeostasis in addition to mediating cholesterol efflux. Here, we report the unexpected finding that ABCA1 also plays a key role in facilitating retrograde sterol transport from the PM to the ER for sterol sensing. Deficiency in ABCA1 delays sterol esterification at the ER and activates the SREBP-2 cleavage pathway. The intrinsic ATPase activity in ABCA1 is required to facilitate retrograde sterol transport. ABCA1 deficiency causes alternation of PM composition and hampers a clathrin-independent endocytic activity that is required for ER sterol sensing. Our finding identifies ABCA1 as a key macromolecule facilitating bidirectional sterol movement at the PM and shows that ABCA1 controls retrograde sterol transport by modulating a certain clathrin-independent endocytic process. PMID:26198636

  17. Cholesterol 7α-hydroxylase protects the liver from inflammation and fibrosis by maintaining cholesterol homeostasis[S

    PubMed Central

    Liu, Hailiang; Pathak, Preeti; Boehme, Shannon; Chiang, John Y. L.

    2016-01-01

    Cholesterol 7α-hydroxylase (CYP7A1) plays a critical role in control of bile acid and cholesterol homeostasis. Bile acids activate farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5) to regulate lipid, glucose, and energy metabolism. However, the role of bile acids in hepatic inflammation and fibrosis remains unclear. In this study, we showed that adenovirus-mediated overexpression of Cyp7a1 ameliorated lipopolysaccharide (LPS)-induced inflammatory cell infiltration and pro-inflammatory cytokine production in WT and TGR5-deficient (Tgr5−/−) mice, but not in FXR-deficient (Fxr−/−) mice, suggesting that bile acid signaling through FXR protects against hepatic inflammation. Nuclear factor κ light-chain enhancer of activated B cells (NF-κB)-luciferase reporter assay showed that FXR agonists significantly inhibited TNF-α-induced NF-κB activity. Furthermore, chromatin immunoprecipitation and mammalian two-hybrid assays showed that ligand-activated FXR interacted with NF-κB and blocked recruitment of steroid receptor coactivator-1 to cytokine promoter and resulted in inhibition of NF-κB activity. Methionine/choline-deficient (MCD) diet increased hepatic inflammation, free cholesterol, oxidative stress, apoptosis, and fibrosis in CYP7A1-deficient (Cyp7a1−/−) mice compared with WT mice. Remarkably, adenovirus-mediated overexpression of Cyp7a1 effectively reduced hepatic free cholesterol and oxidative stress and reversed hepatic inflammation and fibrosis in MCD diet-fed Cyp7a1−/− mice. Current studies suggest that increased Cyp7a1 expression and bile acid synthesis ameliorate hepatic inflammation through activation of FXR, whereas reduced bile acid synthesis aggravates MCD diet-induced hepatic inflammation and fibrosis. Maintaining bile acid and cholesterol homeostasis is important for protecting against liver injury and nonalcoholic fatty liver disease. PMID:27534992

  18. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice

    PubMed Central

    Schonewille, Marleen; Freark de Boer, Jan; Mele, Laura; Wolters, Henk; Bloks, Vincent W.; Wolters, Justina C.; Kuivenhoven, Jan A.; Tietge, Uwe J. F.; Brufau, Gemma; Groen, Albert K.

    2016-01-01

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we investigated the effects on cholesterol metabolism in mice in detail. Surprisingly, direct measurement of whole body cholesterol synthesis revealed that cholesterol synthesis was robustly increased in statin-treated mice. Measurement of organ-specific cholesterol synthesis demonstrated that the liver is predominantly responsible for the increase in cholesterol synthesis. Excess synthesized cholesterol did not accumulate in the plasma, as plasma cholesterol decreased. However, statin treatment led to an increase in cholesterol removal via the feces. Interestingly, enhanced cholesterol excretion in response to rosuvastatin and lovastatin treatment was mainly mediated via biliary cholesterol secretion, whereas atorvastatin mainly stimulated cholesterol removal via the transintestinal cholesterol excretion pathway. Moreover, we show that plasma cholesterol precursor levels do not reflect cholesterol synthesis rates during statin treatment in mice. In conclusion, cholesterol synthesis is paradoxically increased upon statin treatment in mice. However, statins potently stimulate the excretion of cholesterol from the body, which sheds new light on possible mechanisms underlying the cholesterol-lowering effects of statins. PMID:27313057

  19. The phytoestrogen genistein enhances multidrug resistance in breast cancer cell lines by translational regulation of ABC transporters.

    PubMed

    Rigalli, Juan Pablo; Tocchetti, Guillermo Nicolás; Arana, Maite Rocío; Villanueva, Silvina Stella Maris; Catania, Viviana Alicia; Theile, Dirk; Ruiz, María Laura; Weiss, Johanna

    2016-06-28

    Breast cancer is the most frequent malignancy in women. Multidrug resistance due to overexpression of ABC drug transporters is a common cause of chemotherapy failure and disease recurrence. Genistein (GNT) is a phytoestrogen present in soybeans and hormone supplements. We investigated the effect of GNT on the expression and function of ABC transporters in MCF-7 and MDA-MB-231 breast cancer cell lines. Results demonstrated an induction at the protein level of ABCC1 and ABCG2 and of ABCC1 in MCF-7 and MDA-MB-231, respectively. MCF-7 cells showed a concomitant increase in doxorubicin and mitoxantrone efflux and resistance, dependent on ABCG2 activity. ABCC1 induction by GNT in MDA-MB-231 cells modified neither drug efflux nor chemoresistance due to simultaneous acute inhibition of the transporter activity by GNT. All inductions took place at the translational level, as no increment in mRNA was observed and protein increase was prevented by cycloheximide. miR-181a, already demonstrated to inhibit ABCG2 translation, was down-regulated by GNT, explaining translational induction. Effects were independent of classical estrogen receptors. Results suggest potential nutrient-drug interactions that could threaten chemotherapy efficacy, especially in ABCG2-expressing tumors treated with substrates of this transporter. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Amyloid precursor protein controls cholesterol turnover needed for neuronal activity

    PubMed Central

    Pierrot, Nathalie; Tyteca, Donatienne; D'auria, Ludovic; Dewachter, Ilse; Gailly, Philippe; Hendrickx, Aurélie; Tasiaux, Bernadette; Haylani, Laetitia El; Muls, Nathalie; N'Kuli, Francisca; Laquerrière, Annie; Demoulin, Jean-Baptiste; Campion, Dominique; Brion, Jean-Pierre; Courtoy, Pierre J; Kienlen-Campard, Pascal; Octave, Jean-Noël

    2013-01-01

    Perturbation of lipid metabolism favours progression of Alzheimer disease, in which processing of Amyloid Precursor Protein (APP) has important implications. APP cleavage is tightly regulated by cholesterol and APP fragments regulate lipid homeostasis. Here, we investigated whether up or down regulation of full-length APP expression affected neuronal lipid metabolism. Expression of APP decreased HMG-CoA reductase (HMGCR)-mediated cholesterol biosynthesis and SREBP mRNA levels, while its down regulation had opposite effects. APP and SREBP1 co-immunoprecipitated and co-localized in the Golgi. This interaction prevented Site-2 protease-mediated processing of SREBP1, leading to inhibition of transcription of its target genes. A GXXXG motif in APP sequence was critical for regulation of HMGCR expression. In astrocytes, APP and SREBP1 did not interact nor did APP affect cholesterol biosynthesis. Neuronal expression of APP decreased both HMGCR and cholesterol 24-hydroxylase mRNA levels and consequently cholesterol turnover, leading to inhibition of neuronal activity, which was rescued by geranylgeraniol, generated in the mevalonate pathway, in both APP expressing and mevastatin treated neurons. We conclude that APP controls cholesterol turnover needed for neuronal activity. PMID:23554170

  1. Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters.

    PubMed

    Liu, Su; Jiang, Wei; Wu, Bing; Yu, Jing; Yu, Haiyan; Zhang, Xu-Xiang; Torres-Duarte, Cristina; Cherr, Gary N

    2016-01-01

    Low levels of graphene and graphene oxide (GO) are considered to be environmentally safe. In this study, we analyzed the potential effects of graphene and GO at relatively low concentrations on cellular xenobiotic defense system mediated by efflux transporters. The results showed that graphene (<0.5 μg/mL) and GO (<20 μg/mL) did not decrease cell viability, generate reactive oxygen species, or disrupt mitochondrial function. However, graphene and GO at the nontoxic concentrations could increase calcein-AM (CAM, an indicator of membrane ATP-binding cassette (ABC) transporter) activity) accumulation, indicating inhibition of ABC transporters' efflux capabilities. This inhibition was observed even at 0.005 μg/mL graphene and 0.05 μg/mL GO, which are 100 times and 400 times lower than their lowest toxic concentration from cytotoxicity experiments, respectively. The inhibition of ABC transporters significantly increased the toxicity of paraquat and arsenic, known substrates of ABC transporters. The inhibition of ABC transporters was found to be based on graphene and GO damaging the plasma membrane structure and fluidity, thus altering functions of transmembrane ABC transporters. This study demonstrates that low levels of graphene and GO are not environmentally safe since they can significantly make cell more susceptible to other xenobiotics, and this chemosensitizing activity should be considered in the risk assessment of graphene and GO.

  2. Hypocholesterolemic Properties and Prebiotic Effects of Mexican Ganoderma lucidum in C57BL/6 Mice.

    PubMed

    Meneses, María E; Martínez-Carrera, Daniel; Torres, Nimbe; Sánchez-Tapia, Mónica; Aguilar-López, Miriam; Morales, Porfirio; Sobal, Mercedes; Bernabé, Teodoro; Escudero, Helios; Granados-Portillo, Omar; Tovar, Armando R

    2016-01-01

    Edible and medicinal mushrooms contain bioactive compounds with promising effects on several cardiovascular risk biomarkers. However, strains of Ganoderma lucidum of Mexican origin have not yet been studied. Standardized extracts of G. lucidum (Gl) were given to C57BL/6 mice fed a high-cholesterol diet compared with the drug simvastatin. The effects of the extracts on serum biochemical parameters, liver lipid content, cholesterol metabolism, and the composition of gut microbiota were assessed. Acetylsalicylic acid (10 mM) added to the cultivation substrate modulated properties of Gl extracts obtained from mature basidiomata. Compared to the high-cholesterol diet group, the consumption of Gl extracts significantly reduced total serum cholesterol (by 19.2% to 27.1%), LDL-C (by 4.5% to 35.1%), triglyceride concentration (by 16.3% to 46.6%), hepatic cholesterol (by 28.7% to 52%) and hepatic triglycerides (by 43.8% to 56.6%). These effects were associated with a significant reduction in the expression of lipogenic genes (Hmgcr, Srebp1c, Fasn, and Acaca) and genes involved in reverse cholesterol transport (Abcg5 and Abcg8), as well as an increase in Ldlr gene expression in the liver. No significant changes were observed in the gene expression of Srebp2, Abca1 or Cyp7a1. In several cases, Gl-1 or Gl-2 extracts showed better effects on lipid metabolism than the drug simvastatin. A proposed mechanism of action for the reduction in cholesterol levels is mediated by α-glucans and β-glucans from Gl, which promoted decreased absorption of cholesterol in the gut, as well as greater excretion of fecal bile acids and cholesterol. The prebiotic effects of Gl-1 and Gl-2 extracts modulated the composition of gut microbiota and produced an increase in the Lactobacillaceae family and Lactobacillus genus level compared to the control group, high-cholesterol diet group and group supplemented with simvastatin. Mexican genetic resources of Gl represent a new source of bioactive compounds

  3. Hypocholesterolemic Properties and Prebiotic Effects of Mexican Ganoderma lucidum in C57BL/6 Mice

    PubMed Central

    Meneses, María E.; Martínez-Carrera, Daniel; Torres, Nimbe; Sánchez-Tapia, Mónica; Aguilar-López, Miriam; Morales, Porfirio; Sobal, Mercedes; Bernabé, Teodoro; Escudero, Helios; Granados-Portillo, Omar; Tovar, Armando R.

    2016-01-01

    Edible and medicinal mushrooms contain bioactive compounds with promising effects on several cardiovascular risk biomarkers. However, strains of Ganoderma lucidum of Mexican origin have not yet been studied. Standardized extracts of G. lucidum (Gl) were given to C57BL/6 mice fed a high-cholesterol diet compared with the drug simvastatin. The effects of the extracts on serum biochemical parameters, liver lipid content, cholesterol metabolism, and the composition of gut microbiota were assessed. Acetylsalicylic acid (10 mM) added to the cultivation substrate modulated properties of Gl extracts obtained from mature basidiomata. Compared to the high-cholesterol diet group, the consumption of Gl extracts significantly reduced total serum cholesterol (by 19.2% to 27.1%), LDL-C (by 4.5% to 35.1%), triglyceride concentration (by 16.3% to 46.6%), hepatic cholesterol (by 28.7% to 52%) and hepatic triglycerides (by 43.8% to 56.6%). These effects were associated with a significant reduction in the expression of lipogenic genes (Hmgcr, Srebp1c, Fasn, and Acaca) and genes involved in reverse cholesterol transport (Abcg5 and Abcg8), as well as an increase in Ldlr gene expression in the liver. No significant changes were observed in the gene expression of Srebp2, Abca1 or Cyp7a1. In several cases, Gl-1 or Gl-2 extracts showed better effects on lipid metabolism than the drug simvastatin. A proposed mechanism of action for the reduction in cholesterol levels is mediated by α-glucans and β-glucans from Gl, which promoted decreased absorption of cholesterol in the gut, as well as greater excretion of fecal bile acids and cholesterol. The prebiotic effects of Gl-1 and Gl-2 extracts modulated the composition of gut microbiota and produced an increase in the Lactobacillaceae family and Lactobacillus genus level compared to the control group, high-cholesterol diet group and group supplemented with simvastatin. Mexican genetic resources of Gl represent a new source of bioactive compounds

  4. ABCG-like transporter of Trypanosoma cruzi involved in benznidazole resistance: gene polymorphisms disclose inter-strain intragenic recombination in hybrid isolates.

    PubMed

    Franco, Jaques; Ferreira, Renata C; Ienne, Susan; Zingales, Bianca

    2015-04-01

    Benznidazole (BZ) is one of the two drugs for Chagas disease treatment. In a previous study we showed that the Trypanosoma cruzi ABCG-like transporter gene, named TcABCG1, is over-expressed in parasite strains naturally resistant to BZ and that the gene of TcI BZ-resistant strains exhibited several single nucleotide polymorphisms (SNPs) as compared to the gene of CL Brener BZ-susceptible strain. Here we report the sequence of TcABCG1 gene of fourteen T. cruzi strains, with diverse degrees of BZ sensitivity and belonging to different discrete typing units (DTUs) and Tcbat group. Although DTU-specific SNPs and amino acid changes were identified, no direct correlation with BZ-resistance phenotype was found. Thus, it is plausible that the transporter abundance is a determinant factor for drug resistance, as pointed out above. Sequence data were used for Bayesian phylogenies and network genealogy analysis. The network showed a high degree of reticulation suggesting genetic exchange between the parasites. TcI and TcII clades were clearly separated. Tcbat sequences were close to TcI. A fourth clade clustered TcABCG1 haplotypes of TcV, TcVI and TcIII strains, with closer proximity to TcI. Analysis of the recombination patterns indicated that hybrid strains contain haplotypes that are mosaics most likely derived by intragenic recombination of parental sequences. The data confirm that TcII and TcIII as the parentals of TcV and TcVI DTUs. Since genetic fingerprint of TcI was found in TcIII, we sustain the previously proposed "Two Hybridization model" for the origin of hybrid strains. Among the twenty best BLASTP hits in databases, orthologues of TcABCG1 transporter were found in Leishmania spp. and African trypanosomes, though their function remains undescribed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Lack of efflux mediated quinolone resistance in Salmonella enterica serovars Typhi and Paratyphi A

    PubMed Central

    Baucheron, Sylvie; Monchaux, Isabelle; Le Hello, Simon; Weill, François-Xavier; Cloeckaert, Axel

    2014-01-01

    Salmonella enterica serovars Typhi and Paratyphi A isolates from human patients in France displaying different levels of resistance to quinolones or fluoroquinolones were studied for resistance mechanisms to these antimicrobial agents. All resistant isolates carried either single or multiple target gene mutations (i.e., in gyrA, gyrB, or parC) correlating with the resistance levels observed. Active efflux, through upregulation of multipartite efflux systems, has also been previously reported as contributing mechanism for other serovars. Therefore, we investigated also the occurrence of non-target gene mutations in regulatory regions affecting efflux pump expression. However, no mutation was detected in these regions in both Typhi and Paratyphi isolates of this study. Besides, no overexpression of the major efflux systems was observed for these isolates. Nevertheless, a large deletion of 2334 bp was identified in the acrS-acrE region of all S. Typhi strains but which did not affect the resistance phenotype. As being specific to S. Typhi, this deletion could be used for specific molecular detection purposes. In conclusion, the different levels of quinolone or FQ resistance in both S. Typhi and S. Paratyphi A seem to rely only on target modifications. PMID:24478769

  6. Role of UGT1A1*6, UGT1A1*28 and ABCG2 c.421C>A polymorphisms in irinotecan-induced neutropenia in Asian cancer patients.

    PubMed

    Jada, Srinivasa Rao; Lim, Robert; Wong, Chiung Ing; Shu, Xiaochen; Lee, Soo Chin; Zhou, Qingyu; Goh, Boon Cher; Chowbay, Balram

    2007-09-01

    The objectives of the present study were (i) to study the pharmacogenetics of UGT1A1*6, UGT1A1*28 and ABCG2 c.421C>A in three distinct healthy Asian populations (Chinese, Malays and Indians), and (ii) to investigate the polygenic influence of these polymorphic variants in irinotecan-induced neutropenia in Asian cancer patients. Pharmacokinetic and pharmacogenetic analyses were done after administration of irinotecan as a 90-min intravenous infusion of 375 mg/m(2) once every 3 weeks (n = 45). Genotypic-phenotypic correlates showed a non-significant influence of UGT1A1*28 and ABCG2 c.421C>A polymorphisms on the pharmacokinetics of SN-38 (P > 0.05), as well as severity of neutropenia (P > 0.05). Significantly higher exposure levels to SN-38 (P = 0.018), lower relative extent of glucuronidation (REG; P = 0.006) and higher biliary index (BI; P = 0.003) were found in cancer patients homozygous for the UGT1A1*6 allele compared with patients harboring the reference genotype. The mean absolute neutrophil count (ANC) was 85% lower and the prevalence of grade 4 neutropenia (ANC < or = 500/microL) was 27% in patients homozygous for UGT1A1*6 compared with the reference group. Furthermore, the presence of the UGT1A1*6 allele was associated with an approximately 3-fold increased risk of developing severe grade 4 neutropenia compared with patients harboring the reference genotype. These exploratory findings suggest that homozygosity for UGT1A1*6 allele may be associated with altered SN-38 disposition and may increase the risk of severe neutropenia in Asian cancer patients, particularly in the Chinese cancer patients who comprised 80% (n = 36) of the patient population in the present study.

  7. Population-genetic analysis of HvABCG31 promoter sequence in wild barley (Hordeum vulgare ssp. spontaneum)

    PubMed Central

    2012-01-01

    Background The cuticle is an important adaptive structure whose origin played a crucial role in the transition of plants from aqueous to terrestrial conditions. HvABCG31/Eibi1 is an ABCG transporter gene, involved in cuticle formation that was recently identified in wild barley (Hordeum vulgare ssp. spontaneum). To study the genetic variation of HvABCG31 in different habitats, its 2 kb promoter region was sequenced from 112 wild barley accessions collected from five natural populations from southern and northern Israel. The sites included three mesic and two xeric habitats, and differed in annual rainfall, soil type, and soil water capacity. Results Phylogenetic analysis of the aligned HvABCG31 promoter sequences clustered the majority of accessions (69 out of 71) from the three northern mesic populations into one cluster, while all 21 accessions from the Dead Sea area, a xeric southern population, and two isolated accessions (one from a xeric population at Mitzpe Ramon and one from the xeric ‘African Slope’ of “Evolution Canyon”) formed the second cluster. The southern arid populations included six haplotypes, but they differed from the consensus sequence at a large number of positions, while the northern mesic populations included 15 haplotypes that were, on average, more similar to the consensus sequence. Most of the haplotypes (20 of 22) were unique to a population. Interestingly, higher genetic variation occurred within populations (54.2%) than among populations (45.8%). Analysis of the promoter region detected a large number of transcription factor binding sites: 121–128 and 121–134 sites in the two southern arid populations, and 123–128,125–128, and 123–125 sites in the three northern mesic populations. Three types of TFBSs were significantly enriched: those related to GA (gibberellin), Dof (DNA binding with one finger), and light. Conclusions Drought stress and adaptive natural selection may have been important determinants in the observed

  8. Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis.

    PubMed

    Stoeck, Ina Karen; Lee, Ji-Young; Tabata, Keisuke; Romero-Brey, Inés; Paul, David; Schult, Philipp; Lohmann, Volker; Kaderali, Lars; Bartenschlager, Ralf

    2018-01-01

    Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality. IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell

  9. Cloning and expression of a novel lysophospholipase which structurally resembles lecithin cholesterol acyltransferase.

    PubMed

    Taniyama, Y; Shibata, S; Kita, S; Horikoshi, K; Fuse, H; Shirafuji, H; Sumino, Y; Fujino, M

    1999-04-02

    Lecithin cholesterol acyltransferase (LCAT) is the key enzyme in the esterification of plasma cholesterol and in the reverse cholesterol transport on high-density lipoprotein (HDL). We have found a novel LCAT-related gene among differentially expressed cDNA fragments between two types of foam cells derived from THP-1 cells, which are different in cholesterol efflux ability, using a subtractive PCR technique. The deduced 412-amino-acid sequence has 49% amino acid sequence similarity with human LCAT. In contrast to the liver-specific expression of LCAT, mRNA expression of the gene was observed mainly in peripheral tissues including kidney, placenta, pancreas, testis, spleen, heart, and skeletal muscle. The protein exists in human plasma and is probably associated with HDL. Moreover, we discovered that the recombinant protein hydrolyzed lysophosphatidylcholine (lysoPC), a proatherogenic lipid, to glycerophosphorylcholine and a free fatty acid. We have therefore named this novel enzyme LCAT-like lysophospholipase (LLPL), through which a new catabolic pathway for lysoPC on lipoproteins could be elucidated. Copyright 1999 Academic Press.

  10. Inhibition of P-Glycoprotein Mediated Efflux in Caco-2 Cells by Phytic Acid.

    PubMed

    Li, Lujia; Fu, Qingxue; Xia, Mengxin; Xin, Lei; Shen, Hongyi; Li, Guowen; Ji, Guang; Meng, Qianchao; Xie, Yan

    2018-01-31

    Phytic acid (IP6) is a natural phosphorylated inositol, which is abundantly present in most cereal grains and seeds. This study investigated the effects of IP6 regulation on P-glycoprotein (P-gp) and its potential mechanisms using in situ and in vitro models. The effective permeability of the typical P-gp substrate rhodamine 123 (R123) in colon was significantly increased from (1.69 ± 0.22) × 10 -5 cm/s in the control group to (3.39 ± 0.417) × 10 -5 cm/s (p < 0.01) in the 3.5 mM IP6 group. Additionally, IP6 can concentration-dependently decrease the R123 efflux ratio in both Caco-2 and MDCK II-MDR1 cell monolayers and increase intracellular R123 accumulation in Caco-2 cells. Furthermore, IP6 noncompetitively inhibited P-gp by impacting R123 efflux kinetics. The noncompetitive inhibition of P-gp by IP6 was likely due to decreases in P-gp ATPase activity and P-gp molecular conformational changes induced by IP6. In summary, IP6 is a promising P-gp inhibitor candidate.

  11. Rice SPX-Major Facility Superfamily3, a Vacuolar Phosphate Efflux Transporter, Is Involved in Maintaining Phosphate Homeostasis in Rice1[OPEN

    PubMed Central

    Ying, Yinghui; Wang, Shoudong; Secco, David; Liu, Yu; Whelan, James; Tyerman, Stephen D.; Shou, Huixia

    2015-01-01

    To maintain a stable cytosol phosphate (Pi) concentration, plant cells store Pi in their vacuoles. When the Pi concentration in the cytosol decreases, Pi is exported from the vacuole into the cytosol. This export is mediated by Pi transporters on the tonoplast. In this study, we demonstrate that SYG1, PHO81, and XPR1 (SPX)-Major Facility Superfamily (MFS) proteins have a similar structure with yeast (Saccharomyces cerevisiae) low-affinity Pi transporters Phosphatase87 (PHO87), PHO90, and PHO91. OsSPX-MFS1, OsSPX-MFS2, and OsSPX-MFS3 all localized on the tonoplast of rice (Oryza sativa) protoplasts, even in the absence of the SPX domain. At high external Pi concentration, OsSPX-MFS3 could partially complement the yeast mutant strain EY917 under pH 5.5, which lacks all five Pi transporters present in yeast. In oocytes, OsSPX-MFS3 was shown to facilitate Pi influx or efflux depending on the external pH and Pi concentrations. In contrast to tonoplast localization in plants cells, OsSPX-MFS3 was localized to the plasma membrane when expressed in both yeast and oocytes. Overexpression of OsSPX-MFS3 results in decreased Pi concentration in the vacuole of rice tissues. We conclude that OsSPX-MFS3 is a low-affinity Pi transporter that mediates Pi efflux from the vacuole into cytosol and is coupled to proton movement. PMID:26424157

  12. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice.

    PubMed

    Schonewille, Marleen; de Boer, Jan Freark; Mele, Laura; Wolters, Henk; Bloks, Vincent W; Wolters, Justina C; Kuivenhoven, Jan A; Tietge, Uwe J F; Brufau, Gemma; Groen, Albert K

    2016-08-01

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we investigated the effects on cholesterol metabolism in mice in detail. Surprisingly, direct measurement of whole body cholesterol synthesis revealed that cholesterol synthesis was robustly increased in statin-treated mice. Measurement of organ-specific cholesterol synthesis demonstrated that the liver is predominantly responsible for the increase in cholesterol synthesis. Excess synthesized cholesterol did not accumulate in the plasma, as plasma cholesterol decreased. However, statin treatment led to an increase in cholesterol removal via the feces. Interestingly, enhanced cholesterol excretion in response to rosuvastatin and lovastatin treatment was mainly mediated via biliary cholesterol secretion, whereas atorvastatin mainly stimulated cholesterol removal via the transintestinal cholesterol excretion pathway. Moreover, we show that plasma cholesterol precursor levels do not reflect cholesterol synthesis rates during statin treatment in mice. In conclusion, cholesterol synthesis is paradoxically increased upon statin treatment in mice. However, statins potently stimulate the excretion of cholesterol from the body, which sheds new light on possible mechanisms underlying the cholesterol-lowering effects of statins. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  13. Sodium efflux from voltage clamped squid giant axons.

    PubMed Central

    Landowne, D

    1977-01-01

    1. The efflux of radioactive sodium was measured from squid axons during simultaneous voltage clamp experiments such that it was possible to determine the efflux of sodium associated with a measured voltage clamp current. 2. The extra efflux of sodium associated with voltage clamp pulses increased linearly with the magnitude of the depolarization above 40 mV. A 100 mV pulse of sufficient duration to produce all of the sodium current increased the rate constant of efflux by about 10(-6). 3. Application of 100 nM tetrodotoxin eliminated the sodium current and the extra efflux of radioactive sodium. 4. Cooling the axon increased the extra efflux/voltage clamp pulse slightly with a Q10 of 1/1-1. On the same axons cooling increased the integral of the sodium current with a Q10 of 1/1-4. 5. Replacing external sodium with Tris, dextrose or Mg-mannitol reduced the extra efflux of sodium by about 50%. The inward sodium current was replaced with an outward current as expected. 6. Replacing external sodium with lithium also reduced the extra efflux by about 50% but the currents seen in lithium were slightly larger than those in sodium. 7. The effect of replacing external sodium was not voltage dependent. Cooling reduced the effect so that there was less reduction of efflux on switching to Tris ASW in the cold than in the warm. 8. The extra efflux of sodium into sodium-free ASW is approximately the same as the integral of the sodium current. Adding external sodium produces a deviation from the independence principle such that there is more exchange of sodium than predicted. Such a deviation from prediction was noted by Hodgkin & Huxley (1952c). 9. Using the equations of Hodgkin & Huxley (1952c) modified to include the deviation from independence reported in this paper and its temperature dependence, one can predict the temperature dependence of the sodium efflux associated with action potentials and obtain much better agreement than is possibly without these phenomena. 10

  14. Early steps in steroidogenesis: intracellular cholesterol trafficking

    PubMed Central

    Miller, Walter L.; Bose, Himangshu S.

    2011-01-01

    Steroid hormones are made from cholesterol, primarily derived from lipoproteins that enter cells via receptor-mediated endocytosis. In endo-lysosomes, cholesterol is released from cholesterol esters by lysosomal acid lipase (LAL; disordered in Wolman disease) and exported via Niemann-Pick type C (NPC) proteins (disordered in NPC disease). These diseases are characterized by accumulated cholesterol and cholesterol esters in most cell types. Mechanisms for trans-cytoplasmic cholesterol transport, membrane insertion, and retrieval from membranes are less clear. Cholesterol esters and “free” cholesterol are enzymatically interconverted in lipid droplets. Cholesterol transport to the cholesterol-poor outer mitochondrial membrane (OMM) appears to involve cholesterol transport proteins. Cytochrome P450scc (CYP11A1) then initiates steroidogenesis by converting cholesterol to pregnenolone on the inner mitochondrial membrane (IMM). Acute steroidogenic responses are regulated by cholesterol delivery from OMM to IMM, triggered by the steroidogenic acute regulatory protein (StAR). Chronic steroidogenic capacity is determined by CYP11A1 gene transcription. StAR mutations cause congenital lipoid adrenal hyperplasia, with absent steroidogenesis, potentially lethal salt loss, and 46,XY sex reversal. StAR mutations initially destroy most, but not all steroidogenesis; low levels of StAR-independent steroidogenesis are lost later due to cellular damage, explaining the clinical findings. Rare P450scc mutations cause a similar syndrome. This review addresses these early steps in steroid biosynthesis. PMID:21976778

  15. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems.

    PubMed

    Hassan, Karl A; Liu, Qi; Henderson, Peter J F; Paulsen, Ian T

    2015-02-10

    Multidrug efflux systems are a major cause of resistance to antimicrobials in bacteria, including those pathogenic to humans, animals, and plants. These proteins are ubiquitous in these pathogens, and five families of bacterial multidrug efflux systems have been identified to date. By using transcriptomic and biochemical analyses, we recently identified the novel AceI (Acinetobacter chlorhexidine efflux) protein from Acinetobacter baumannii that conferred resistance to the biocide chlorhexidine, via an active efflux mechanism. Proteins homologous to AceI are encoded in the genomes of many other bacterial species and are particularly prominent within proteobacterial lineages. In this study, we expressed 23 homologs of AceI and examined their resistance and/or transport profiles. MIC analyses demonstrated that, like AceI, many of the homologs conferred resistance to chlorhexidine. Many of the AceI homologs conferred resistance to additional biocides, including benzalkonium, dequalinium, proflavine, and acriflavine. We conducted fluorimetric transport assays using the AceI homolog from Vibrio parahaemolyticus and confirmed that resistance to both proflavine and acriflavine was mediated by an active efflux mechanism. These results show that this group of AceI homologs represent a new family of bacterial multidrug efflux pumps, which we have designated the proteobacterial antimicrobial compound efflux (PACE) family of transport proteins. Bacterial multidrug efflux pumps are an important class of resistance determinants that can be found in every bacterial genome sequenced to date. These transport proteins have important protective functions for the bacterial cell but are a significant problem in the clinical setting, since a single efflux system can mediate resistance to many structurally and mechanistically diverse antibiotics and biocides. In this study, we demonstrate that proteins related to the Acinetobacter baumannii AceI transporter are a new class of multidrug

  16. Agaricus brasiliensis (sun mushroom) affects the expression of genes related to cholesterol homeostasis.

    PubMed

    de Miranda, Aline Mayrink; Rossoni Júnior, Joamyr Victor; Souza E Silva, Lorena; Dos Santos, Rinaldo Cardoso; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia

    2017-06-01

    The sun mushroom (Agaricus brasiliensis) is considered a major source of bioactive compounds with potential health benefits. Mushrooms typically act as lipid-lowering agents; however, little is known about the mechanisms of action of A. brasiliensis in biological systems. This study aimed to determine the underlying mechanism involved in the cholesterol-lowering effect of A. brasiliensis through the assessment of fecal and serum lipid profiles in addition to gene expression analysis of specific transcription factors, enzymes, and transporters involved in cholesterol homeostasis. Twenty-four albino Fischer rats approximately 90 days old, with an average weight of 205 g, were divided into four groups of 6 each and fed a standard AIN-93 M diet (C), hypercholesterolemic diet (H), hypercholesterolemic diet +1 % A. brasiliensis (HAb), or hypercholesterolemic diet +0.008 % simvastatin (HS) for 6 weeks. Simvastatin was used as a positive control, as it is a typical drug prescribed for lipid disorders. Subsequently, blood, liver, and feces samples were collected for lipid profile and quantitative real-time polymerase chain reaction gene expression analyses. Diet supplementation with A. brasiliensis significantly improved serum lipid profiles, comparable to the effect observed for simvastatin. In addition, A. brasiliensis dietary supplementation markedly promoted fecal cholesterol excretion. Increased expression of 7α-hydroxylase (CYP7A1), ATP-binding cassette subfamily G-transporters (ABCG5/G8), and low-density lipoprotein receptor (LDLR) was observed following A. brasiliensis administration. Our results suggest that consumption of A. brasiliensis improves the serum lipid profile in hypercholesterolemic rats by modulating the expression of key genes involved in hepatic cholesterol metabolism.

  17. Hxt-carrier-mediated glucose efflux upon exposure of Saccharomyces cerevisiae to excess maltose.

    PubMed

    Jansen, Mickel L A; De Winde, Johannes H; Pronk, Jack T

    2002-09-01

    When wild-type Saccharomyces cerevisiae strains pregrown in maltose-limited chemostat cultures were exposed to excess maltose, release of glucose into the external medium was observed. Control experiments confirmed that glucose release was not caused by cell lysis or extracellular maltose hydrolysis. To test the hypothesis that glucose efflux involved plasma membrane glucose transporters, experiments were performed with an S. cerevisiae strain in which all members of the hexose transporter (HXT) gene family had been eliminated and with an isogenic reference strain. Glucose efflux was virtually eliminated in the hexose-transport-deficient strain. This constitutes experimental proof that Hxt transporters facilitate export of glucose from S. cerevisiae cells. After exposure of the hexose-transport-deficient strain to excess maltose, an increase in the intracellular glucose level was observed, while the concentrations of glucose 6-phosphate and ATP remained relatively low. These results demonstrate that glucose efflux can occur as a result of uncoordinated expression of the initial steps of maltose metabolism and the subsequent reactions in glucose dissimilation. This is a relevant phenomenon for selection of maltose-constitutive strains for baking and brewing.

  18. Interaction of the EGFR inhibitors gefitinib, vandetanib, pelitinib and neratinib with the ABCG2 multidrug transporter: implications for the emergence and reversal of cancer drug resistance.

    PubMed

    Hegedüs, Csilla; Truta-Feles, Krisztina; Antalffy, Géza; Várady, György; Német, Katalin; Ozvegy-Laczka, Csilla; Kéri, György; Orfi, László; Szakács, Gergely; Settleman, Jeffrey; Váradi, András; Sarkadi, Balázs

    2012-08-01

    Human ABCG2 is a plasma membrane glycoprotein that provides physiological protection against xenobiotics. ABCG2 also significantly influences biodistribution of drugs through pharmacological tissue barriers and confers multidrug resistance to cancer cells. Moreover, ABCG2 is the molecular determinant of the side population that is characteristically enriched in normal and cancer stem cells. Numerous tumors depend on unregulated EGFR signaling, thus inhibition of this receptor by small molecular weight inhibitors such as gefitinib, and the novel second generation agents vandetanib, pelitinib and neratinib, is a promising therapeutic option. In the present study, we provide detailed biochemical characterization regarding the interaction of these EGFR inhibitors with ABCG2. We show that ABCG2 confers resistance to gefitinib and pelitinib, whereas the intracellular action of vandetanib and neratinib is unaltered by the presence of the transporter. At higher concentrations, however, all these EGFR inhibitors inhibit ABCG2 function, thereby promoting accumulation of ABCG2 substrate drugs. We also report enhanced expression of ABCG2 in gefitinib-resistant non-small cell lung cancer cells, suggesting potential clinical relevance of ABCG2 in acquired drug resistance. Since ABCG2 has important impact on both the pharmacological properties and anti-cancer efficiencies of drugs, our results regarding the novel EGFR inhibitors should provide useful information about their therapeutic applicability against ABCG2-expressing cancer cells depending on EGFR signaling. In addition, the finding that these EGFR inhibitors efficiently block ABCG2 function may help to design novel drug-combination therapeutic strategies. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. GPER signalling in both cancer-associated fibroblasts and breast cancer cells mediates a feedforward IL1β/IL1R1 response

    PubMed Central

    De Marco, Paola; Lappano, Rosamaria; Francesco, Ernestina Marianna De; Cirillo, Francesca; Pupo, Marco; Avino, Silvia; Vivacqua, Adele; Abonante, Sergio; Picard, Didier; Maggiolini, Marcello

    2016-01-01

    Cancer-associated fibroblasts (CAFs) contribute to the malignant aggressiveness through secreted factors like IL1β, which may drive pro-tumorigenic inflammatory phenotypes mainly acting via the cognate receptor named IL1R1. Here, we demonstrate that signalling mediated by the G protein estrogen receptor (GPER) triggers IL1β and IL1R1 expression in CAFs and breast cancer cells, respectively. Thereby, ligand-activation of GPER generates a feedforward loop coupling IL1β induction by CAFs to IL1R1 expression by cancer cells, promoting the up-regulation of IL1β/IL1R1 target genes such as PTGES, COX2, RAGE and ABCG2. This regulatory interaction between the two cell types induces migration and invasive features in breast cancer cells including fibroblastoid cytoarchitecture and F-actin reorganization. A better understanding of the mechanisms involved in the regulation of pro-inflammatory cytokines by GPER-integrated estrogen signals may be useful to target these stroma-cancer interactions. PMID:27072893

  20. Inhibition mechanism of P-glycoprotein mediated efflux by mPEG-PLA and influence of PLA chain length on P-glycoprotein inhibition activity.

    PubMed

    Li, Wenjing; Li, Xinru; Gao, Yajie; Zhou, Yanxia; Ma, Shujin; Zhao, Yong; Li, Jinwen; Liu, Yan; Wang, Xinglin; Yin, Dongdong

    2014-01-06

    The present study aimed to investigate the effect of monomethoxy poly(ethylene glycol)-block-poly(D,L-lactic acid) (mPEG-PLA) on the activity of P-glycoprotein (P-gp) in Caco-2 cells and further unravel the relationship between PLA chain length in mPEG-PLA and influence on P-gp efflux and the action mechanism. The transport results of rhodamine 123 (R123) across Caco-2 cell monolayers suggested that mPEG-PLA unimers were responsible for its P-gp inhibitory effect. Furthermore, transport studies of R123 revealed that the inhibitory potential of P-gp efflux by mPEG-PLA analogues was strongly correlated with their structural features and showed that the hydrophilic mPEG-PLA copolymers with an intermediate PLA chain length and 10.20 of hydrophilic-lipophilic balance were more effective at inhibiting P-gp efflux in Caco-2 cells. The fluorescence polarization measurement results ruled out the plasma membrane fluidization as a contributor for inhibition of P-gp by mPEG-PLA. Concurrently, mPEG-PLA inhibited neither basal P-gp ATPase (ATP is adenosine triphosphate) activity nor substrate stimulated P-gp ATPase activity, suggesting that mPEG-PLA seemed not to be a substrate of P-gp and a competitive inhibitor. No evident alteration in P-gp surface level was detected by flow cytometry upon exposure of the cells to mPEG-PLA. The depletion of intracellular ATP, which was likely to be a result of partial inhibition of cellular metabolism, was directly correlated with inhibitory potential for P-gp mediated efflux by mPEG-PLA analogues. Hence, intracellular ATP-depletion appeared to be possible explanation to the inhibition mechanism of P-gp by mPEG-PLA. Taken together, the establishment of a relationship between PLA chain length and impact on P-gp efflux activity and interpretation of action mechanism of mPEG-PLA on P-gp are of fundamental importance and will facilitate future development of mPEG-PLA in the drug delivery area.

  1. Wild Lonicera caerulea berry polyphenol extract reduces cholesterol accumulation and enhances antioxidant capacity in vitro and in vivo.

    PubMed

    Liu, Suwen; You, Lu; Zhao, Yuhua; Chang, Xuedong

    2018-05-01

    The hypocholesterolemic effect of Lonicera caerulea berry extract rich in polyphenols (LCBP) on high cholesterol-induced hypercholesterolemia and lipoprotein metabolite changes was examined in Caco-2 cells and rats. Cyanidin-3-glucoside, catechin, and chlorogenic acid are the major phenolic components of LCBP. The cholesterol-reducing effect and antioxidant capacity of these components were compared in Caco-2 cells. LCBP (80 μg/mL) and cyanidin-3-glucoside, catechin, and chlorogenic acid (50 μM) were found to be effective (p < 0.05). Rats were fed a high cholesterol diet (HCD) with or without LCBP supplementation (75, 150, and 300 mg/kg body weight intragastrically once daily) for 12 weeks. Compared with the HCD control group, LCBP supplementation at 150 and 300 mg/kg decreased the levels of TC, TG, and LDL-C, but increased that of HDL-C. LCBP treatment promoted greater neutral and acidic sterol excretion (p < 0.05) and improved the antioxidant capacity of the colon tissue, colon contents, and blood. Moreover, trimethylamine N-oxide (TMAO) levels were decreased in serum (p < 0.05). NPC1L1, ACAT2, and MTP mRNA and protein expression were reduced and ABCG5/8 expression was increased (p < 0.05) after LCBP treatment. Our results suggest that LCBP could be used as a functional food for the prevention and treatment of diseases related to excessive cholesterol accumulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein modulates ABCA1 trafficking and function

    PubMed Central

    Lin, Sisi; Zhou, Chun; Neufeld, Edward; Wang, Yu-Hua; Xu, Suo-Wen; Lu, Liang; Wang, Ying; Liu, Zhi-Ping; Li, Dong; Li, Cuixian; Chen, Shaorui; Le, Kang; Huang, Heqing; Liu, Peiqing; Moss, Joel; Vaughan, Martha; Shen, Xiaoyan

    2013-01-01

    Objective Cell surface localization and intracellular trafficking of ATP-binding cassette transporter A-1 (ABCA1) are essential for its function. However, regulation of these activities is still largely unknown. Brefeldin A (BFA), a uncompetitive inhibitor of brefeldin A-inhibited guanine nucleotide-exchange proteins (BIGs), disturbs the intracellular distribution of ABCA1, and thus inhibits cholesterol efflux. This study aimed to define the possible roles of BIGs in regulating ABCA1 trafficking and cholesterol efflux, and further to explore the potential mechanism. Methods and Results By vesicle immunoprecipitation, we found that BIG1 was associated with ABCA1 in vesicles preparation from rat liver. BIG1 depletion reduced surface ABCA1 on HepG2 cells and inhibited by 60% cholesterol release. In contrast, BIG1 over-expression increased surface ABCA1 and cholesterol secretion. With partial restoration of BIG1 through over-expression in BIG1-depleted cells, surface ABCA1 was also restored. Biotinylation and glutathione cleavage revealed that BIG1 siRNA dramatically decreased the internalization and recycling of ABCA1. This novel function of BIG1 was dependent on the guanine nucleotide-exchange activity and achieved through activation of ADP-ribosylation factor 1 (ARF1). Conclusions BIG1, through its ability to activate ARF1, regulates cell surface levels and function of ABCA1, indicating a transcription-independent mechanism for controlling ABCA1 action. PMID:23220274

  3. Intake of grape procyanidins during gestation and lactation impairs reverse cholesterol transport and increases atherogenic risk indexes in adult offspring.

    PubMed

    Del Bas, Josep Maria; Crescenti, Anna; Arola-Arnal, Anna; Oms-Oliu, Gemma; Arola, Lluís; Caimari, Antoni

    2015-12-01

    Cardiovascular disease (CVD) is one of the most prevalent noncommunicable diseases in humans. Different studies have identified dietary procyanidins as bioactive compounds with beneficial properties against CVD by improving lipid homeostasis, among other mechanisms. The aim of this work was to assess whether grape seed procyanidin consumption at a physiological dose during the perinatal period could influence the CVD risk of the offspring. Wistar rat dams were treated with a grape seed procyanidin extract (GSPE; 25mg/kg of body weight per day) or vehicle during gestation and lactation. The adult male offspring of GSPE-treated dams presented decreased high-density lipoprotein cholesterol (HDL-C) levels, increased total cholesterol-to-HDL-C ratios and an exacerbated fasting triglyceride-to-HDL-C ratios (atherogenic index of plasma) compared to the control group. Impaired reverse cholesterol transport (RCT) was evidenced by the accumulation of cholesterol in skeletal muscle and by decreased fecal excretion of cholesterol and bile acids, which was consistent with the observed mRNA down-regulation of the rate-limiting enzyme in the hepatic bile acid synthesis pathway Cyp7A1. Conversely, GSPE programming also resulted in up-regulated gene expression of different key components of the RCT process, such as hepatic Npc1, Abcg1, Abca1, Lxra, Srebp2, Lcat, Scarb1 and Pltp, and the repression of microRNA miR-33a expression, a key negative controller of hepatic RCT at the gene expression level. Our results show that maternal intake of grape procyanidins during the perinatal period impacts different components of the RCT process, resulting in increased CVD risk in the adult offspring. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Mapping Atheroprotective Functions and Related Proteins/Lipoproteins in Size Fractionated Human Plasma.

    PubMed

    Swertfeger, Debi K; Li, Hailong; Rebholz, Sandra; Zhu, Xiaoting; Shah, Amy S; Davidson, W Sean; Lu, Long J

    2017-04-01

    HDL has been shown to possess a variety of cardio-protective functions, including removal of excess cholesterol from the periphery, and inhibition of lipoprotein oxidation. It has been proposed that various HDL subparticles exist, each with distinct protein and lipid compositions, which may be responsible for HDL's many functions. We hypothesized that HDL functions will co-migrate with the operational lipoprotein subspecies when separated by gel filtration chromatography. Plasma from 10 healthy male donors was fractionated and the protein composition of the phospholipid containing fractions was analyzed by mass spectrometry (MS). Each fraction was evaluated for its proteomic content as well as its ability to promote cholesterol efflux and protect low density lipoprotein (LDL) from free radical oxidation. For each function, several peaks of activity were identified across the plasma size gradient. Neither cholesterol efflux or LDL antioxidation activity correlated strongly with any single protein across the fractions. However, we identified multiple proteins that had strong correlations (r values >0.7, p < 0.01) with individual peaks of activity. These proteins fell into diverse functional categories, including those traditionally associated with lipid metabolism, as well as alternative complement cascade, innate immunity and clotting cascades and immunoglobulins. Additionally, the phospholipid and cholesterol concentration of the fractions correlated strongly with cholesterol efflux ( r = 0.95 and 0.82 respectively), whereas the total protein content of the fractions correlated best with antioxidant activity across all fractions ( r = 0.746). Furthermore, two previously postulated subspecies (apoA-I, apoA-II and apoC-1; as well as apoA-I, apoC-I and apoJ) were found to have strong correlations with both cholesterol efflux and antioxidation activity. Up till now, very little has been known about how lipoprotein composition mediates functions like cholesterol efflux

  5. Mapping Atheroprotective Functions and Related Proteins/Lipoproteins in Size Fractionated Human Plasma *

    PubMed Central

    Swertfeger, Debi K.; Li, Hailong; Rebholz, Sandra; Zhu, Xiaoting; Shah, Amy S.; Davidson, W. Sean; Lu, Long J.

    2017-01-01

    HDL has been shown to possess a variety of cardio-protective functions, including removal of excess cholesterol from the periphery, and inhibition of lipoprotein oxidation. It has been proposed that various HDL subparticles exist, each with distinct protein and lipid compositions, which may be responsible for HDL's many functions. We hypothesized that HDL functions will co-migrate with the operational lipoprotein subspecies when separated by gel filtration chromatography. Plasma from 10 healthy male donors was fractionated and the protein composition of the phospholipid containing fractions was analyzed by mass spectrometry (MS). Each fraction was evaluated for its proteomic content as well as its ability to promote cholesterol efflux and protect low density lipoprotein (LDL) from free radical oxidation. For each function, several peaks of activity were identified across the plasma size gradient. Neither cholesterol efflux or LDL antioxidation activity correlated strongly with any single protein across the fractions. However, we identified multiple proteins that had strong correlations (r values >0.7, p < 0.01) with individual peaks of activity. These proteins fell into diverse functional categories, including those traditionally associated with lipid metabolism, as well as alternative complement cascade, innate immunity and clotting cascades and immunoglobulins. Additionally, the phospholipid and cholesterol concentration of the fractions correlated strongly with cholesterol efflux (r = 0.95 and 0.82 respectively), whereas the total protein content of the fractions correlated best with antioxidant activity across all fractions (r = 0.746). Furthermore, two previously postulated subspecies (apoA-I, apoA-II and apoC-1; as well as apoA-I, apoC-I and apoJ) were found to have strong correlations with both cholesterol efflux and antioxidation activity. Up till now, very little has been known about how lipoprotein composition mediates functions like cholesterol efflux

  6. Genome-Wide Identification and Expression Profiling of ATP-Binding Cassette (ABC) Transporter Gene Family in Pineapple (Ananas comosus (L.) Merr.) Reveal the Role of AcABCG38 in Pollen Development

    PubMed Central

    Chen, Piaojuan; Li, Yi; Zhao, Lihua; Hou, Zhimin; Yan, Maokai; Hu, Bingyan; Liu, Yanhui; Azam, Syed Muhammad; Zhang, Ziyan; Rahman, Zia ur; Liu, Liping; Qin, Yuan

    2017-01-01

    Pineapple (Ananas comosus L.) cultivation commonly relies on asexual reproduction which is easily impeded by many factors in agriculture production. Sexual reproduction might be a novel approach to improve the pineapple planting. However, genes controlling pineapple sexual reproduction are still remain elusive. In different organisms a conserved superfamily proteins known as ATP binding cassette (ABC) participate in various biological processes. Whereas, till today the ABC gene family has not been identified in pineapple. Here 100 ABC genes were identified in the pineapple genome and grouped into eight subfamilies (5 ABCAs, 20 ABCBs, 16 ABCCs, 2 ABCDs, one ABCEs, 5 ABCFs, 42 ABCGs and 9 ABCIs). Gene expression profiling revealed the dynamic expression pattern of ABC gene family in various tissues and different developmental stages. AcABCA5, AcABCB6, AcABCC4, AcABCC7, AcABCC9, AcABCG26, AcABCG38 and AcABCG42 exhibited preferential expression in ovule and stamen. Over-expression of AcABCG38 in the Arabidopsis double mutant abcg1-2abcg16-2 partially restored its pollen abortion defects, indicating that AcABCG38 plays important roles in pollen development. Our study on ABC gene family in pineapple provides useful information for developing sexual pineapple plantation which could be utilized to improve pineapple agricultural production. PMID:29312399

  7. Genome-Wide Identification and Expression Profiling of ATP-Binding Cassette (ABC) Transporter Gene Family in Pineapple (Ananas comosus (L.) Merr.) Reveal the Role of AcABCG38 in Pollen Development.

    PubMed

    Chen, Piaojuan; Li, Yi; Zhao, Lihua; Hou, Zhimin; Yan, Maokai; Hu, Bingyan; Liu, Yanhui; Azam, Syed Muhammad; Zhang, Ziyan; Rahman, Zia Ur; Liu, Liping; Qin, Yuan

    2017-01-01

    Pineapple ( Ananas comosus L .) cultivation commonly relies on asexual reproduction which is easily impeded by many factors in agriculture production. Sexual reproduction might be a novel approach to improve the pineapple planting. However, genes controlling pineapple sexual reproduction are still remain elusive. In different organisms a conserved superfamily proteins known as ATP binding cassette (ABC) participate in various biological processes. Whereas, till today the ABC gene family has not been identified in pineapple. Here 100 ABC genes were identified in the pineapple genome and grouped into eight subfamilies (5 ABCAs , 20 ABCB s, 16 ABCCs , 2 ABCDs , one ABCEs , 5 ABCFs , 42 ABCGs and 9 ABCIs ). Gene expression profiling revealed the dynamic expression pattern of ABC gene family in various tissues and different developmental stages. AcABCA5, AcABCB6, AcABCC4 , AcABCC7 , AcABCC9 , AcABCG26 , AcABCG38 and AcABCG42 exhibited preferential expression in ovule and stamen. Over-expression of AcABCG38 in the Arabidopsis double mutant abcg1-2abcg16-2 partially restored its pollen abortion defects, indicating that AcABCG38 plays important roles in pollen development. Our study on ABC gene family in pineapple provides useful information for developing sexual pineapple plantation which could be utilized to improve pineapple agricultural production.

  8. Trust your gut: galvanizing nutritional interest in intestinal cholesterol metabolism for protection against cardiovascular diseases.

    PubMed

    Wegner, Casey J; Kim, Bohkyung; Lee, Jiyoung

    2013-01-16

    Recent studies have demonstrated that the intestine is a key target organ for overall health and longevity. Complementing these studies is the discovery of the trans-intestinal cholesterol efflux pathway and the emerging role of the intestine in reverse cholesterol transport. The surfacing dynamics of the regulation of cholesterol metabolism in the intestine provides an attractive platform for intestine-specific nutritional intervention strategies to lower blood cholesterol levels for protection against cardiovascular diseases. Notably, there is mounting evidence that stimulation of pathways associated with calorie restriction may have a large effect on the regulation of cholesterol removal by the intestine. However, intestinal energy metabolism, specifically the idiosyncrasies surrounding intestinal responses to energy deprivation, is poorly understood. The goal of this paper is to review recent insights into cholesterol regulation by the intestine and to discuss the potential for positive regulation of intestine-driven cholesterol removal through the nutritional induction of pathways associated with calorie restriction.

  9. Trust Your Gut: Galvanizing Nutritional Interest in Intestinal Cholesterol Metabolism for Protection against Cardiovascular Diseases

    PubMed Central

    Wegner, Casey J.; Kim, Bohkyung; Lee, Jiyoung

    2013-01-01

    Recent studies have demonstrated that the intestine is a key target organ for overall health and longevity. Complementing these studies is the discovery of the trans-intestinal cholesterol efflux pathway and the emerging role of the intestine in reverse cholesterol transport. The surfacing dynamics of the regulation of cholesterol metabolism in the intestine provides an attractive platform for intestine-specific nutritional intervention strategies to lower blood cholesterol levels for protection against cardiovascular diseases. Notably, there is mounting evidence that stimulation of pathways associated with calorie restriction may have a large effect on the regulation of cholesterol removal by the intestine. However, intestinal energy metabolism, specifically the idiosyncrasies surrounding intestinal responses to energy deprivation, is poorly understood. The goal of this paper is to review recent insights into cholesterol regulation by the intestine and to discuss the potential for positive regulation of intestine-driven cholesterol removal through the nutritional induction of pathways associated with calorie restriction. PMID:23325147

  10. ROLE OF ATP BINDING CASSETTE SUB-FAMILY MEMBER 2 (ABCG2) IN MOUSE EMBRYONIC STEM CELL DEVELOPMENT.

    EPA Science Inventory

    ATP binding cassette sub-family member 2 (ABCG2), is a member of the ABC transporter superfamily and a principal xenobiotic transporter. ABCG2 is also highly expressed in certain stem cell populations where it is thought to be related to stem cell plasticity, although the role o...

  11. Soya protein stimulates bile acid excretion by the liver and intestine through direct and indirect pathways influenced by the presence of dietary cholesterol.

    PubMed

    Arellano-Martínez, Gloria Leticia; Granados, Omar; Palacios-González, Berenice; Torres, Nimbe; Medina-Vera, Isabel; Tovar, Armando R

    2014-06-28

    Several studies using different animal models have demonstrated that the consumption of soya protein (SP) reduces serum cholesterol concentrations by increasing the excretion of bile acids (BA). However, the mechanism by which SP enhances BA excretion is not fully understood. Therefore, the aim of the present study was to determine whether the consumption of SP regulates the expression of key enzymes involved in hepatic BA synthesis and the transporters involved in reverse cholesterol transport (RCT) via fibroblast growth factor 15 (FGF15) and/or small heterodimer protein (SHP) in rats. To achieve this aim, four groups of rats were fed experimental diets containing 20 % casein (C) or SP with or without the addition of 0·2 % cholesterol and the expression of hepatic genes involved in BA synthesis and the ileal and hepatic RCT was measured. Rats fed the SP diet had higher concentrations of ileal FGF15 and hepatic FGF15 receptor (FGFR4) and increased expression of SHP and liver receptor homolog 1 (LRH1) than those fed the C diet; as a result, the excretion of faecal BA was greater. The addition of cholesterol to the diet repressed the protein abundance of FGF15 and FGFR4; however, SP increased the expression of SHP and LRH1 to a lesser extent. Nonetheless, the expression of ABCG5/8 was increased in the intestine of rats fed the SP diet, and the effect was enhanced by the addition of cholesterol to the diet. In conclusion, SP in the presence of cholesterol increases BA synthesis via the repressions of FGF15 and SHP and accelerates BA excretion to prevent cholesterol overload in the enterocytes by increasing RCT.

  12. Hxt-Carrier-Mediated Glucose Efflux upon Exposure of Saccharomyces cerevisiae to Excess Maltose

    PubMed Central

    Jansen, Mickel L. A.; De Winde, Johannes H.; Pronk, Jack T.

    2002-01-01

    When wild-type Saccharomyces cerevisiae strains pregrown in maltose-limited chemostat cultures were exposed to excess maltose, release of glucose into the external medium was observed. Control experiments confirmed that glucose release was not caused by cell lysis or extracellular maltose hydrolysis. To test the hypothesis that glucose efflux involved plasma membrane glucose transporters, experiments were performed with an S. cerevisiae strain in which all members of the hexose transporter (HXT) gene family had been eliminated and with an isogenic reference strain. Glucose efflux was virtually eliminated in the hexose-transport-deficient strain. This constitutes experimental proof that Hxt transporters facilitate export of glucose from S. cerevisiae cells. After exposure of the hexose-transport-deficient strain to excess maltose, an increase in the intracellular glucose level was observed, while the concentrations of glucose 6-phosphate and ATP remained relatively low. These results demonstrate that glucose efflux can occur as a result of uncoordinated expression of the initial steps of maltose metabolism and the subsequent reactions in glucose dissimilation. This is a relevant phenomenon for selection of maltose-constitutive strains for baking and brewing. PMID:12200274

  13. A simplified protocol employing elacridar in rodents: a screening model in drug discovery to assess P-gp mediated efflux at the blood brain barrier.

    PubMed

    Kallem, Rajareddy; Kulkarni, Chetan P; Patel, Dakshay; Thakur, Megha; Sinz, Michael; Singh, Sheelendra P; Mahammad, S Shahe; Mandlekar, Sandhya

    2012-06-01

    In the present study we have developed a simple, time, and cost effective in vivo rodent protocol to screen the susceptibility of a test compound for P-glycoprotein (P-gp) mediated efflux at the blood brain barrier (BBB) during early drug discovery. We used known P-gp substrates as test compounds (quinidine, digoxin, and talinolol) and elacridar (GF120918) as a chemical inhibitor to establish the model. The studies were carried out in both mice and rats. Elacridar was dosed intravenously at 5 mg/kg, 0.5 h prior to probe substrate administration. Plasma and brain samples were collected and analyzed using UPLC-MS/MS. In the presence of elacridar, the ratio of brain to plasma area under the curve (B/P) in mouse increased 2, 4, and 38-fold, respectively, for talinolol, digoxin, and quinidine; whereas in rat, a 70-fold increase was observed for quinidine. Atenolol, a non P-gp substrate, exhibited poor brain penetration in the presence or absence of elacridar in both species (B/P ratio ~ 0.1). Elacridar had no significant effect on the systemic clearance of digoxin or quinidine; however, a trend towards increasing volume of distribution and half life was observed. Our results support the utility of elacridar in evaluation of the influence of P-gp mediated efflux on drug distribution to the brain. Our protocol employing a single intravenous dose of elacridar and test compound provides a cost effective alternative to expensive P-gp knockout mice models during early drug discovery.

  14. Physiological characterisation of the efflux pump system of antibiotic-susceptible and multidrug-resistant Enterobacter aerogenes.

    PubMed

    Martins, A; Spengler, G; Martins, M; Rodrigues, L; Viveiros, M; Davin-Regli, A; Chevalier, J; Couto, I; Pagès, J M; Amaral, L

    2010-10-01

    Enterobacter aerogenes predominates amongst Enterobacteriaceae species that are increasingly reported as producers of extended-spectrum beta-lactamases. Although this mechanism of resistance to beta-lactams is important, other mechanisms bestowing a multidrug-resistant (MDR) phenotype in this species are now well documented. Amongst these mechanisms is the overexpression of efflux pumps that extrude structurally unrelated antibiotics prior to their reaching their targets. Interestingly, although knowledge of the genetic background behind efflux pumps is rapidly advancing, few studies assess the physiological nature of the overall efflux pump system of this, or for that matter any other, bacterium. The study reported here evaluates physiologically the efflux pump system of an E. aerogenes ATCC reference as well as two strains whose MDR phenotypes are mediated by overexpressed efflux pumps. The activities of the efflux pumps in these strains are modulated by pH and glucose, although the effects of the latter are essentially restricted to pH 8, suggesting the presence of two general efflux pump systems, i.e. proton-motive force-dependent and ABC transporter types, respectively. Copyright 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  15. The xenoestrogens, bisphenol A and para-nonylphenol, decrease the expression of the ABCG2 transporter protein in human term placental explant cultures.

    PubMed

    Sieppi, E; Vähäkangas, K; Rautio, A; Ietta, F; Paulesu, L; Myllynen, P

    2016-07-05

    Many endogenous and xenobiotic compounds are substrates and regulators of human placental ABC transporters. ABCG2 is protecting fetus against foreign chemicals. Environmental xenoestrogens, like bisphenol A (BPA) and p-nonylphenol (p-NP), mimic natural estrogens and can affect hormonal systems. Effects of BPA, p-NP, DES (diethylstilbestrol) and estradiol (E2), on ABCG2 expression were studied using human first trimester and term placental explants. Role of estrogen receptors (ER) in the effects of chemicals was studied by ER antagonist. Term placenta expressed less ABCG2 protein. In term placentas BPA (p < 0.05), p-NP (p < 0.01) and E2 (p < 0.05) decreased the ABCG2 protein expression after 48 h exposure while after 24 h exposure, only E2 decreased the expression (p < 0.05). The chemicals did not affect ABCG2 in first trimester placentas. The ER antagonist affected differently the responses of chemicals. In conclusion, environmental xenoestrogens downregulate placental ABCG2 protein expression depending on gestational age. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Substrate Efflux Propensity Is the Key Determinant of Ca2+-independent Phospholipase A-β (iPLAβ)-mediated Glycerophospholipid Hydrolysis*

    PubMed Central

    Batchu, Krishna Chaithanya; Hokynar, Kati; Jeltsch, Michael; Mattonet, Kenny; Somerharju, Pentti

    2015-01-01

    The A-type phospholipases (PLAs) are key players in glycerophospholipid (GPL) homeostasis and in mammalian cells; Ca2+-independent PLA-β (iPLAβ) in particular has been implicated in this essential process. However, the regulation of this enzyme, which is necessary to avoid futile competition between synthesis and degradation, is not understood. Recently, we provided evidence that the efflux of the substrate molecules from the bilayer is the rate-limiting step in the hydrolysis of GPLs by some secretory (nonhomeostatic) PLAs. To study whether this is the case with iPLAβ as well, a mass spectrometric assay was employed to determine the rate of hydrolysis of multiple saturated and unsaturated GPL species in parallel using micelles or vesicle bilayers as the macrosubstrate. With micelles, the hydrolysis decreased with increasing acyl chain length independent of unsaturation, and modest discrimination between acyl positional isomers was observed, presumably due to the differences in the structure of the sn-1 and sn-2 acyl-binding sites of the protein. In striking contrast, no significant discrimination between positional isomers was observed with bilayers, and the rate of hydrolysis decreased with the acyl chain length logarithmically and far more than with micelles. These data provide compelling evidence that efflux of the substrate molecule from the bilayer, which also decreases monotonously with acyl chain length, is the rate-determining step in iPLAβ-mediated hydrolysis of GPLs in membranes. This finding is intriguing as it may help to understand how homeostatic PLAs are regulated and how degradation and biosynthesis are coordinated. PMID:25713085

  17. Candida albicans Swi/Snf and Mediator Complexes Differentially Regulate Mrr1-Induced MDR1 Expression and Fluconazole Resistance.

    PubMed

    Liu, Zhongle; Myers, Lawrence C

    2017-11-01

    Long-term azole treatment of patients with chronic Candida albicans infections can lead to drug resistance. Gain-of-function (GOF) mutations in the transcription factor Mrr1 and the consequent transcriptional activation of MDR1 , a drug efflux coding gene, is a common pathway by which this human fungal pathogen acquires fluconazole resistance. This work elucidates the previously unknown downstream transcription mechanisms utilized by hyperactive Mrr1. We identified the Swi/Snf chromatin remodeling complex as a key coactivator for Mrr1, which is required to maintain basal and induced open chromatin, and Mrr1 occupancy, at the MDR1 promoter. Deletion of snf2 , the catalytic subunit of Swi/Snf, largely abrogates the increases in MDR1 expression and fluconazole MIC observed in MRR1 GOF mutant strains. Mediator positively and negatively regulates key Mrr1 target promoters. Deletion of the Mediator tail module med3 subunit reduces, but does not eliminate, the increased MDR1 expression and fluconazole MIC conferred by MRR1 GOF mutations. Eliminating the kinase activity of the Mediator Ssn3 subunit suppresses the decreased MDR1 expression and fluconazole MIC of the snf2 null mutation in MRR1 GOF strains. Ssn3 deletion also suppresses MDR1 promoter histone displacement defects in snf2 null mutants. The combination of this work with studies on other hyperactive zinc cluster transcription factors that confer azole resistance in fungal pathogens reveals a complex picture where the induction of drug efflux pump expression requires the coordination of multiple coactivators. The observed variations in transcription factor and target promoter dependence of this process may make the search for azole sensitivity-restoring small molecules more complicated. Copyright © 2017 American Society for Microbiology.

  18. Vitamin D replacement ameliorates serum lipoprotein functions, adipokine profile and subclinical atherosclerosis in pre-menopausal women.

    PubMed

    Greco, D; Kocyigit, D; Adorni, M P; Marchi, C; Ronda, N; Bernini, F; Gurses, K M; Canpinar, H; Guc, D; Oguz, S H; Gurlek, A; Strazzella, A; Simonelli, S; Tokgozoglu, L; Zimetti, F

    2018-05-12

    Low vitamin D (vitD) has been linked to increased cardiovascular (CV) risk, but the effects of vitD supplementation are not clarified. We evaluated the impact of vitD normalization on HDL cholesterol efflux capacity (CEC), which inversely correlates with CV risk, the proatherogenic serum cholesterol loading capacity (CLC), adipokine profile and subclinical atherosclerosis. Healthy premenopausal women with vitD deficiency (n = 31) underwent supplementation. Subclinical atherosclerosis was evaluated by flow-mediated dilation (FMD), pulse wave velocity (PWV) and augmentation index (AIx), measured with standard techniques. HDL CEC and serum CLC were measured by a radioisotopic and fluorimetric assay, respectively. Malondialdehyde (MDA) in HDL was quantified by the TBARS assay. Pre-β HDL was assessed by 2D-electrophoresis. Serum adipokines were measured by ELISA. VitD replacement restored normal levels of serum 25-hydroxyvitamin D (25OHD) and significantly improved FMD (+4%; p < 0.001), PWV (-4.1%: p < 0.001) and AIx (-16.1%; p < 0.001). Total CEC was significantly improved (+19.5%; p = 0.003), with a specific increase in the ABCA1-mediated CEC (+70.8%; p < 0.001). HDL-MDA slightly but significantly decreased (-9.6%; p = 0.027), while no difference was detected in pre-β HDL. No change was observed in aqueous diffusion nor in the ABCG1-mediated CEC. Serum CLC was significantly reduced (-13.3%; p = 0.026). Levels of adiponectin were increased (+50.6%; p < 0.0001) and resistin levels were decreased (-24.3%; p < 0.0001). After vitD replacement, an inverse relationship was found linking the ABCA1-mediated CEC with pre-β HDL (r 2  = 0.346; p < 0.001) and resistin (r 2  = 0.220; p = 0.009). Our data support vitD supplementation for CV risk prevention. Copyright © 2018 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and

  19. DS-8201a, a new HER2-targeting antibody-drug conjugate incorporating a novel DNA topoisomerase I inhibitor, overcomes HER2-positive gastric cancer T-DM1 resistance.

    PubMed

    Takegawa, Naoki; Nonagase, Yoshikane; Yonesaka, Kimio; Sakai, Kazuko; Maenishi, Osamu; Ogitani, Yusuke; Tamura, Takao; Nishio, Kazuto; Nakagawa, Kazuhiko; Tsurutani, Junji

    2017-10-15

    Anti-HER2 therapies are beneficial for patients with HER2-positive breast or gastric cancer. T-DM1 is a HER2-targeting antibody-drug conjugate (ADC) comprising the antibody trastuzumab, a linker, and the tubulin inhibitor DM1. Although effective in treating advanced breast cancer, all patients eventually develop T-DM1 resistance. DS-8201a is a new ADC incorporating an anti-HER2 antibody, a newly developed, enzymatically cleavable peptide linker, and a novel, potent, exatecan-derivative topoisomerase I inhibitor (DXd). DS-8201a has a drug-to-antibody-ratio (DAR) of 8, which is higher than that of T-DM1 (3.5). Owing to these unique characteristics and unlike T-DM1, DS-8201a is effective against cancers with low-HER2 expression. In the present work, T-DM1-resistant cells (N87-TDMR), established using the HER2-positive gastric cancer line NCI-N87 and continuous T-DM1 exposure, were shown to be susceptible to DS-8201a. The ATP-binding cassette (ABC) transporters ABCC2 and ABCG2 were upregulated in N87-TDMR cells, but HER2 overexpression was retained. Furthermore, inhibition of ABCC2 and ABCG2 by MK571 restored T-DM1 sensitivity. Therefore, resistance to T-DM1 is caused by efflux of its payload DM1, due to aberrant expression of ABC transporters. In contrast to DM1, DXd payload of DS-8201a inhibited the growth of N87-TDMR cells in vitro. This suggests that either DXd may be a poor substrate of ABCC2 and ABCG2 in comparison to DM1, or the high DAR of DS-8201a relative to T-DM1 compensates for increased efflux. Notably, N87-TDMR xenograft tumor growth was prevented by DS-8201a. In conclusion, the efficacy of DS-8201a as a treatment for patients with T-DM1-resistant breast or gastric cancer merits investigation. © 2017 UICC.

  20. Characterization of Zebrafish Abcc4 as an Efflux Transporter of Organochlorine Pesticides

    PubMed Central

    Lu, Xing; Long, Yong; Lin, Li; Sun, Rongze; Zhong, Shan; Cui, Zongbin

    2014-01-01

    DDT and lindane are highly toxic organochlorine pesticides and posing adverse effects on the environment and public health due to their frequent usage in developing countries. ABCC4/MRP4 is an organic anion transporter that mediates cellular efflux of a wide range of exogenous and endogenous compounds such as cyclic nucleotides and anti-cancer drugs; however, it remains unclear whether ABCC4 and its orthologs function in the detoxification of organochlorine pesticides. Here, we demonstrated the roles of zebrafish Abcc4 in cellular efflux of DDT and lindane. Zebrafish abcc4 was maternally expressed in the oocytes and its transcripts were detected in the lens, pancreas, gills, liver, intestine and bladder of developing embryos and in adult tissues examined. DDT and lindane were able to induce the expression of abcc4 gene and overexpression of Abcc4 significantly decreased the cytotoxicity and accumulation of DDT and lindane in LLC-PK1 cells and developing embryos. In contrast, overexpression of an Abcc4-G1188D mutant abolished its transporter function without effects on its substrate binding activity, and sensitized LLC-PK1 cells and developing embryos to toxic pesticides. Moreover, glutathione (GSH) was involved in the efflux of cellular pesticides and ATPase activity in developing embryos can be induced by DDT or lindane. Thus, zebrafish Abcc4 plays crucial roles in cellular efflux of organochlorine pesticides and can be used a potential molecular marker for the monitor of DDT and lindane contamination in the aquatic environment. PMID:25478949

  1. TWISTED DWARF1 Mediates the Action of Auxin Transport Inhibitors on Actin Cytoskeleton Dynamics

    PubMed Central

    Bailly, Aurelien; Zwiewka, Marta; Sovero, Valpuri; Ge, Pei; Aryal, Bibek; Hao, Pengchao; Linnert, Miriam; Burgardt, Noelia Inés; Lücke, Christian; Weiwad, Matthias; Michel, Max; Weiergräber, Oliver H.; Pollmann, Stephan; Azzarello, Elisa; Fukao, Yoichiro; Hoffmann, Céline; Wedlich-Söldner, Roland

    2016-01-01

    Plant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxin-actin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear. Using NMR, we map the NPA binding surface on the Arabidopsis thaliana ABCB chaperone TWISTED DWARF1 (TWD1). We identify ACTIN7 as a relevant, although likely indirect, TWD1 interactor, and show TWD1-dependent regulation of actin filament organization and dynamics and that TWD1 is required for NPA-mediated actin cytoskeleton remodeling. The TWD1-ACTIN7 axis controls plasma membrane presence of efflux transporters, and as a consequence act7 and twd1 share developmental and physiological phenotypes indicative of defects in auxin transport. These can be phenocopied by NPA treatment or by chemical actin (de)stabilization. We provide evidence that TWD1 determines downstream locations of auxin efflux transporters by adjusting actin filament debundling and dynamizing processes and mediating NPA action on the latter. This function appears to be evolutionary conserved since TWD1 expression in budding yeast alters actin polarization and cell polarity and provides NPA sensitivity. PMID:27053424

  2. Diosgenin inhibits atherosclerosis via suppressing the MiR-19b-induced downregulation of ATP-binding cassette transporter A1.

    PubMed

    Lv, Yun-cheng; Yang, Jing; Yao, Feng; Xie, Wei; Tang, Yan-yan; Ouyang, Xin-ping; He, Ping-ping; Tan, Yu-lin; Li, Liang; Zhang, Min; Liu, Dan; Cayabyab, Francisco S; Zheng, Xi-Long; Tang, Chao-ke

    2015-05-01

    Diosgenin (Dgn), a structural analogue of cholesterol, has been reported to have the hypolipidemic and antiatherogenic properties, but the underlying mechanisms are not fully understood. Given the key roles of macrophages in cholesterol metabolism and atherogenesis, it is critical to investigate macrophage cholesterol efflux and development of atherosclerotic lesion after Dgn treatment. This study was designed to evaluate the potential effects of Dgn on macrophage cholesterol metabolism and the development of aortic atherosclerosis, and to explore its underlying mechanisms. Dgn significantly up-regulated the expression of ATP-binding cassette transporter A1 (ABCA1) protein, but didn't affect liver X receptor α levels in foam cells derived from human THP-1 macrophages and mouse peritoneal macrophages (MPMs) as determined by western blotting. The miR-19b levels were markedly down-regulated in Dgn-treated THP-1 macrophages/MPM-derived foam cells. Cholesterol transport assays revealed that treatment with Dgn alone or together with miR-19b inhibitor notably enhanced ABCA1-dependent cholesterol efflux, resulting in the reduced levels of total cholesterol, free cholesterol and cholesterol ester as determined by high-performance liquid chromatography. The fecal 3H-sterol originating from cholesterol-laden MPMs was increased in apolipoprotein E knockout mice treated with Dgn or both Dgn and antagomiR-19b. Treatment with Dgn alone or together with antagomiR-19b elevated plasma high-density lipoprotein levels, but reduced plasma low-density lipoprotein levels. Accordingly, aortic lipid deposition and plaque area were reduced, and collagen content and ABCA1 expression were increased in mice treated with Dgn alone or together with antagomiR-19b. However, miR-19b overexpression abrogated the lipid-lowering and atheroprotective effects induced by Dgn. The present study demonstrates that Dgn enhances ABCA1-dependent cholesterol efflux and inhibits aortic atherosclerosis

  3. Suppression of asymmetric acid efflux and gravitropism in maize roots treated with auxin transport inhibitors of sodium orthovanadate

    NASA Technical Reports Server (NTRS)

    Mulkey, T. J.; Evans, M. L.

    1982-01-01

    In gravitropically stimulated roots of maize (Zea mays L., hybrid WF9 x 38MS), there is more acid efflux on the rapidly growing upper side than on the slowly growing lower side. In light of the Cholodny/Went hypothesis of gravitropism which states that gravitropic curvature results from lateral redistribution of auxin, the effects of auxin transport inhibitors on the development of acid efflux asymmetry and curvature in gravistimulated roots were examined. All the transport inhibitors tested prevented both gravitropism and the development of asymmetric acid efflux in gravistimulated roots. The results indicate that auxin redistribution may cause the asymmetry of acid efflux, a finding consistent with the Cholodny/Went hypothesis of gravitropism. As further evidence that auxin-induced acid efflux asymmetry may mediate gravitropic curvature, sodium orthovanadate, an inhibitor of auxin-induced H+ efflux was found to prevent both gravitropism and the development of asymmetric acid efflux in gravistimulated roots.

  4. The ABC transporter ABCG29 is involved in H2O2 tolerance and biocontrol traits in the fungus Clonostachys rosea.

    PubMed

    Dubey, Mukesh; Jensen, Dan Funck; Karlsson, Magnus

    2016-04-01

    For successful biocontrol interactions, biological control organisms must tolerate toxic metabolites produced by themselves or plant pathogens during mycoparasitic/antagonistic interactions, by host plant during colonization of the plant, and xenobiotics present in the environment. ATP-binding cassette (ABC) transporters can play a significant role in tolerance of toxic compounds by mediating active transport across the cellular membrane. This paper reports on functional characterization of an ABC transporter ABCG29 in the biocontrol fungus Clonostachys rosea strain IK726. Gene expression analysis showed induced expression of abcG29 during exposure to the Fusarium spp. mycotoxin zearalenone (ZEA) and the fungicides Cantus, Chipco Green and Apron. Expression of abcG29 in C. rosea was significantly higher during C. rosea-C. rosea (Cr-Cr) interaction or in exposure to C. rosea culture filtrate for 2 h, compared to interaction with Fusarium graminearum or 2 h exposure to F. graminearum culture filtrate. In contrast with gene expression data, ΔabcG29 strains did not display reduced tolerance towards ZEA, fungicides or chemical agents known for inducing oxidative, cell wall or osmotic stress, compared to C. rosea WT. The exception was a significant reduction in tolerance to H2O2 (10 mM) in ΔabcG29 strains when conidia were used as an inoculum. The antagonistic ability of ΔabcG29 strains towards F. graminearum, Fusarium oxysporum or Botrytis cinerea in dual plate assays were not different compared with WT. However, in biocontrol assays ΔabcG29 strains displayed reduced ability to protect Arabidopsis thaliana leaves from B. cinerea, and barley seedling from F. graminearum as measured by an A. thaliana detached leaf assay and a barley foot rot disease assay, respectively. These data show that the ABCG29 is dispensable for ZEA and fungicides tolerance, and antagonism but not H2O2 tolerance and biocontrol effects in C. rosea.

  5. A simple and sensitive enzymatic method for cholesterol quantification in macrophages and foam cells

    PubMed Central

    Robinet, Peggy; Wang, Zeneng; Hazen, Stanley L.; Smith, Jonathan D.

    2010-01-01

    A precise and sensitive method for measuring cellular free and esterified cholesterol is required in order to perform studies of macrophage cholesterol loading, metabolism, storage, and efflux. Until now, the use of an enzymatic cholesterol assay, commonly used for aqueous phase plasma cholesterol assays, has not been optimized for use with solid phase samples such as cells, due to inefficient solubilization of total cholesterol in enzyme compatible solvents. We present an efficient solubilization protocol compatible with an enzymatic cholesterol assay that does not require chemical saponification or chromatographic separation. Another issue with enzyme compatible solvents is the presence of endogenous peroxides that interfere with the enzymatic cholesterol assay. We overcame this obstacle by pretreatment of the reaction solution with the enzyme catalase, which consumed endogenous peroxides resulting in reduced background and increased sensitivity in our method. Finally, we demonstrated that this method for cholesterol quantification in macrophages yields results that are comparable to those measured by stable isotope dilution gas chromatography with mass spectrometry detection. In conclusion, we describe a sensitive, simple, and high-throughput enzymatic method to quantify cholesterol in complex matrices such as cells. PMID:20688754

  6. An efflux pump (MexAB-OprM) of Pseudomonas aeruginosa is associated with antibacterial activity of Epigallocatechin-3-gallate (EGCG).

    PubMed

    Kanagaratnam, Rashmi; Sheikh, Rida; Alharbi, Fahad; Kwon, Dong H

    2017-12-01

    Pseudomonas aeruginosa is a notorious multidrug resistant nosocomial pathogen. An efflux pump (MexAB-OprM) is the main contributor to the multidrug resistance in clinical isolates of P. aeruginosa. Epigallocatechin-3-gallate (EGCG), a polyphenolic compound extracted from green tea, exhibits antibacterial activity. It is unclear that molecular details of the antibacterial activity of EGCG, EGCG-effect on antibiotic susceptibility, and clinical relevance of EGCG in bacteria. This study aimed to determine the roles of the efflux pump and an efflux pump inhibitor (phenylalanine-arginine β-naphthylamide; PAβN) in the antibacterial activity of EGCG and the EGCG-effect on antibiotic susceptibility. Twenty-two multidrug resistant clinical isolates of P. aeruginosa and a wild type P. aeruginosa PAO1 were used to determine antibacterial activity of EGCG and EGCG-effect on antibiotic susceptibility. An efflux pump (MexAB-OPrM) mutant strain, its complemented strain carrying an intact mexAB-oprM, and their parental strain were used to determine roles of MexAB-OprM in the antibacterial activity of EGCG and EGCG-mediated antibiotic susceptibility. PAβN was also used to evaluate EGCG as a possible efflux pump inhibitor. EGCG inhibited cellular growth and killed 100% of cells at 64-512 µg/ml and at 256-1024 µg/ml, respectively, in all tested 22 clinical isolates including the wild type strain. A subinhibitory concentration of EGCG significantly enhanced susceptibility to antibiotics, unexceptionally to chloramphenicol and tetracyclines (≥4-fold) of the clinical isolates. Both the antibacterial activity of EGCG and the EGCG-mediated antibiotic susceptibility were enhanced more in the efflux pump mutant strain (mexB::Gm) than the parental strain, suggesting additionally accumulated-EGCG produced the more antibacterial activity in the mutant strain. EGCG was synergistically interacted with PAβN with enhancing susceptibility to all tested antibiotics (up to >500-fold) at

  7. Comparative effects of auxin and abscisic acid on growth, hydrogen ion efflux and gravitropism in primary roots of maize

    NASA Technical Reports Server (NTRS)

    Evans, M. L.; Mulkey, T. J.

    1984-01-01

    In order to test the idea that auxin action on root growth may be mediated by H(+) movement, the correlation of auxin action on growth and H(+) movement in roots was examined along with changes in H(+) efflux patterns associated with the asymmetric growth which occurs during gravitropism. The effects of indoleacetic acid (IAA) and abscisic acid (AbA) on growth, H(+) secretion, and gravitropism in roots were compared. Results show a close correlation existent between H(+) efflux and growth in maize roots. In intact roots there is strong H(+) efflux from the elongation zone. Growth-promoting concentrations of IAA stimulate H(+) efflux. During gravitropism the H(+) efflux from the elongation zone becomes asymmetric; the evidence indicates that auxin redistribution contributes to the development of acid efflux asymmetry. That AbA stimulates root growth is reflected in its ability to stimulate H(+) efflux from apical root segments.

  8. Chronic administration of phenytoin induces efflux transporter overexpression in rats.

    PubMed

    Alvariza, Silvana; Fagiolino, Pietro; Vázquez, Marta; Feria-Romero, Iris; Orozco-Suárez, Sandra

    2014-12-01

    Efflux transporters overexpression has been proposed as one of the responsible mechanism for refractory epilepsy by preventing access of the antiepileptic drug to the brain. In this work we investigated whether phenytoin (PHT), could induce efflux transporters overexpression, at different biological barriers and to evaluate the implication it could have on its pharmacokinetics and therapeutic/toxic response. Forty-two adult females Sprague Dawley divided in five groups were treated with oral doses of 25, 50 and 75mg/kg/6h of PHT for 3 days and two additionally groups were treated with intraperitoneal (ip) doses of 25mg/kg/6h or 100mg/kg/24h. At day 4 PHT plasma concentrations were measured and, obtained several organs, brain, parotid gland, liver and duodenum in which were analyzed for the Pgp expression. At day 4 PHT plasma concentrations were measured and several tissues: brain, parotid gland, liver and duodenum were obtained in order to analyze Pgp expression. In order to evaluate the oral bioavailability of PHT, two groups were administered with oral or intraperitoneal doses of 100mg/kg and plasma level were measured. An induction of the expression of efflux transporter mediated by phenytoin in a concentration-and-time dependent manner was found when increasing oral and ip doses of phenytoin, One week after the interruption of ip treatment a basal expression of transporters was recovered. Overexpression of efflux transporters can be mediated by inducer agents like PHT in a local-concentration dependent manner, and it is reversible once the substance is removed from the body. The recovery of basal Pgp expression could allow the design of dosing schedules that optimize anticonvulsant therapy. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  9. Association of ABCA1 with syntaxin 13 and flotillin-1 and enhanced phagocytosis in tangier cells.

    PubMed

    Bared, Salim Maa; Buechler, Christa; Boettcher, Alfred; Dayoub, Rania; Sigruener, Alexander; Grandl, Margot; Rudolph, Christian; Dada, Ashraf; Schmitz, Gerd

    2004-12-01

    The ATP-binding cassette transporter A1 (ABCA1) facilitates the cellular release of cholesterol and choline-phospholipids to apolipoprotein A-I (apoA-I) and several studies indicate that vesicular transport is associated with ABCA1 function. Syntaxins play a major role in vesicular fusion and have also been demonstrated to interact with members of the ABC-transporter family. Therefore, we focused on the identification of syntaxins that directly interact with ABCA1. The expression of syntaxins and ABCA1 in cultured human monocytes during M-CSF differentiation and cholesterol loading was investigated and syntaxins 3, 6, and 13 were found induced in foam cells together with ABCA1. Immunoprecipitation experiments revealed a direct association of syntaxin 13 and full-length ABCA1, whereas syntaxin 3 and 6 failed to interact with ABCA1. The colocalization of ABCA1 and syntaxin 13 was also shown by immunofluorescence microscopy. Silencing of syntaxin 13 by small interfering RNA (siRNA) led to reduced ABCA1 protein levels and hence to a significant decrease in apoA-I-dependent choline-phospholipid efflux. ABCA1 is localized in Lubrol WX-insoluble raft microdomains in macrophages and syntaxin 13 and flotillin-1 were also detected in these detergent resistant microdomains along with ABCA1. Syntaxin 13, flotillin-1, and ABCA1 were identified as phagosomal proteins, indicating the involvement of the phagosomal compartment in ABCA1-mediated lipid efflux. In addition, the uptake of latex phagobeads by fibroblasts with mutated ABCA1 was enhanced when compared with control cells and the recombinant expression of functional ABCA1 normalized the phagocytosis rate in Tangier fibroblasts. It is concluded that ABCA1 forms a complex with syntaxin 13 and flotillin-1, residing at the plasma membrane and in phagosomes that are partially located in raft microdomains.

  10. Association of ABCA1 with Syntaxin 13 and Flotillin-1 and Enhanced Phagocytosis in Tangier Cells

    PubMed Central

    Bared, Salim Maa; Buechler, Christa; Boettcher, Alfred; Dayoub, Rania; Sigruener, Alexander; Grandl, Margot; Rudolph, Christian; Dada, Ashraf; Schmitz, Gerd

    2004-01-01

    The ATP-binding cassette transporter A1 (ABCA1) facilitates the cellular release of cholesterol and choline-phospholipids to apolipoprotein A-I (apoA-I) and several studies indicate that vesicular transport is associated with ABCA1 function. Syntaxins play a major role in vesicular fusion and have also been demonstrated to interact with members of the ABC-transporter family. Therefore, we focused on the identification of syntaxins that directly interact with ABCA1. The expression of syntaxins and ABCA1 in cultured human monocytes during M-CSF differentiation and cholesterol loading was investigated and syntaxins 3, 6, and 13 were found induced in foam cells together with ABCA1. Immunoprecipitation experiments revealed a direct association of syntaxin 13 and full-length ABCA1, whereas syntaxin 3 and 6 failed to interact with ABCA1. The colocalization of ABCA1 and syntaxin 13 was also shown by immunofluorescence microscopy. Silencing of syntaxin 13 by small interfering RNA (siRNA) led to reduced ABCA1 protein levels and hence to a significant decrease in apoA-I–dependent choline-phospholipid efflux. ABCA1 is localized in Lubrol WX–insoluble raft microdomains in macrophages and syntaxin 13 and flotillin-1 were also detected in these detergent resistant microdomains along with ABCA1. Syntaxin 13, flotillin-1, and ABCA1 were identified as phagosomal proteins, indicating the involvement of the phagosomal compartment in ABCA1-mediated lipid efflux. In addition, the uptake of latex phagobeads by fibroblasts with mutated ABCA1 was enhanced when compared with control cells and the recombinant expression of functional ABCA1 normalized the phagocytosis rate in Tangier fibroblasts. It is concluded that ABCA1 forms a complex with syntaxin 13 and flotillin-1, residing at the plasma membrane and in phagosomes that are partially located in raft microdomains. PMID:15469992

  11. Evidence of progenitor cells in the adult human cochlea: sphere formation and identification of ABCG2.

    PubMed

    Massucci-Bissoli, Milene; Lezirovitz, Karina; Oiticica, Jeanne; Bento, Ricardo Ferreira

    2017-11-01

    The aim of this study was to search for evidence of stem or progenitor cells in the adult human cochlea by testing for sphere formation capacity and the presence of the stem cell marker ABCG2. Cochleas removed from patients undergoing vestibular schwannoma resection (n=2) and from brain-dead organ donors (n=4) were dissociated for either flow cytometry analysis for the stem cell marker ABCG2 or a sphere formation assay that is widely used to test the sphere-forming capacity of cells from mouse inner ear tissue. Spheres were identified after 2-5 days in vitro, and the stem cell marker ABCG2 was detected using flow cytometric analysis after cochlear dissociation. Evidence suggests that there may be progenitor cells in the adult human cochlea, although further studies are required.

  12. Timescale dependence of environmental controls on methane efflux from Poyang Hu, China

    NASA Astrophysics Data System (ADS)

    Liu, Lixiang; Xu, Ming; Li, Renqiang; Shao, Rui

    2017-04-01

    Lakes are an important natural source of CH4 to the atmosphere. However, the multi-seasonal CH4 efflux from lakes has been rarely studied. In this study, the CH4 efflux from Poyang Hu, the largest freshwater lake in China, was measured monthly over a 4-year period by using the floating-chamber technique. The mean annual CH4 efflux throughout the 4 years was 0.54 mmol m-2 day-1, ranging from 0.47 to 0.60 mmol m-2 day-1. The CH4 efflux had a high seasonal variation with an average summer (June to August) efflux of 1.34 mmol m-2 day-1 and winter (December to February) efflux of merely 0.18 mmol m-2 day-1. The efflux showed no apparent diel pattern, although most of the peak effluxes appeared in the late morning, from 10:00 to 12:00 CST (GMT + 8). Multivariate stepwise regression on a seasonal scale showed that environmental factors, such as sediment temperature, sediment total nitrogen content, dissolved oxygen, and total phosphorus content in the water, mainly regulated the CH4 efflux. However, the CH4 efflux only showed a strong positive linear correlation with wind speed within 1 day on a bihourly scale in the multivariate regression analyses but almost no correlation with wind speed on diurnal and seasonal scales.

  13. Single particle tracking with sterol modulation reveals the cholesterol-mediated diffusion properties of integrin receptors.

    PubMed

    Arora, Neha; Syed, Aleem; Sander, Suzanne; Smith, Emily A

    2014-10-07

    A combination of sterol modulation with cyclodextrins plus fluorescence microscopy revealed a biophysical mechanism behind cholesterol's influence on the diffusion of a ubiquitous class of receptors called integrins. The heterogeneous diffusion of integrins bound to ligand-coated quantum dots was measured using single particle tracking (SPT), and the ensemble changes in integrin diffusion were measured by fluorescence recovery after photobleaching (FRAP). A 25 ± 1% reduction of membrane cholesterol resulted in three significant changes to the diffusion of ligand-bound αPS2CβPS integrins as measured by SPT. There was a 23% increase in ligand-bound mobile integrins; there was a statistically significant increase in the average diffusion coefficient inside zones of confined diffusion, and histograms of confined integrin trajectories showed an increased frequency in the range of 0.1-1 μm(2) s(-1) and a decreased frequency in the 0.001-0.1 μm(2) s(-1) range. No statistical change was measured in the duration of confinement nor the size of confined zones. Restoring the cholesterol-depleted cells with exogenous cholesterol or exogenous epicholesterol resulted in similar diffusion properties. Epicholesterol differs from cholesterol in the orientation of a single hydroxyl group. The ability of epicholesterol to substitute for cholesterol suggests a biophysical mechanism for cholesterol's effect on integrin diffusion. Influences of bilayer thickness, viscosity and organization are discussed as possible explanations for the measured changes in integrin diffusion when the membrane cholesterol concentration is reduced.

  14. [Association of ABCG2 gene C421A polymorphism and susceptibility of primary gout in Han Chinese males].

    PubMed

    Li, Fa-gui; Chu, Yi; Meng, Dong-mei; Tong, Ya-wen

    2011-12-01

    To assess the association between a C421A single nucleotide polymorphism (SNP) in exon 5 of ATP-binding cassette, sub-family G (WHITE), member 2 (ABCG2) gene and susceptibility of primary gout in Han Chinese males. For 200 male patients with primary gout and 235 controls, the genotype of C421A locus was analyzed by PCR and direct sequencing. Blood glucose, uric acid, total cholesterol, triglycerides, creatinine and urea nitrogen was measured by an automatic biochemical analyzer. Compared with the controls, there was a higher frequency for AA genotype and A allele of the rs2231142 SNP in gout patients (22.5% vs. 8.5% by genotype; 44.9% vs. 32.3% by allele). The association with gout reached significance (chi-square =15.91, P< 0.001, crude OR=3.02, 95% CI:1.36-4.90 and OR (adjusted by age)=1.80, 95% CI: 1.32-2.45 by dominant mode; chi-square=6.82, P=0.009, OR=1.67, 95% CI: 1.54-2.27 by recessive mode). Blood glucose, uric acid, triglycerides, creatinine and urea nitrogen levels in gout patients were significantly higher than those of controls (P< 0.001). The C421A SNP, in particular AA phenotype, may be associated with susceptibility of primary gout in Han Chinese males.

  15. Allicin induces the upregulation of ABCA1 expression via PPARγ/LXRα signaling in THP-1 macrophage-derived foam cells

    PubMed Central

    Lin, Xiao-Long; Hu, Hui-Jun; Liu, Yuan-Bo; Hu, Xue-Mei; Fan, Xiao-Juan; Zou, Wei-Wen; Pan, Yong-Quan; Zhou, Wen-Quan; Peng, Min-Wen; Gu, Cai-Hong

    2017-01-01

    Allicin is considered anti-atherosclerotic due to its antioxidant and anti-inflammatory effects, which makes it an important drug for the prevention and treatment of atherosclerosis. However, the effects of allicin on foam cells are unclear. Thus, in this study, we examined the effects of allicin on lipid accumulation via peroxisome proliferator-activated receptor γ (PPARγ)/liver X receptor α (LXRα) in THP-1 macrophage-derived foam cells. THP-1 cells were exposed to 100 nM phorbol myristate acetate (PMA) for 24 h, and then to oxydized low-density lipoprotein (ox-LDL; 50 mg/ml) to induce foam cell formation. The results of Oil Red O staining and high-performance liquid chromatography (HPLC) revealed showed that pre-treatment of the foam cells with allicin decreased total cholesterol, free cholesterol (FC) and cholesterol ester levels in cells, and also decreased lipid accumulation. Moreover, allicin upregulated ATP binding cassette transporter A1 (ABCA1) expression and promoted cholesterol efflux. However, these effects were significantly abolished by transfection with siRNA targeting ABCA1. Furthermore, PPARγ/LXRα signaling was activated by allicin treatment. The allicin-induced upregulation of ABCA1 expression was also abolished by PPARγ inhibitor (GW9662) and siRNA or LXRα siRNA co-treatment. Overall, our data demonstrate that the allicin-induced upregulation of ABCA1 promotes cholesterol efflux and reduces lipid accumulation via PPARγ/LXRα signaling in THP-1 macrophage-derived foam cells. PMID:28440421

  16. Optimized efflux assay for the NorA multidrug efflux pump in Staphylococcus aureus.

    PubMed

    Zimmermann, Saskia; Tuchscherr, Lorena; Rödel, Jürgen; Löffler, Bettina; Bohnert, Jürgen A

    2017-11-01

    Real-time fluorescent efflux assays are commonly used for measuring the efflux of bacterial pumps. Here we describe an optimized protocol for the NorA efflux pump in S. aureus using DiOC 3 instead of ethidium bromide. Glucose and sodium formate were tested as energy carriers. This novel method is fast and reproducible. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Efflux pumps as antimicrobial resistance mechanisms.

    PubMed

    Poole, Keith

    2007-01-01

    Antibiotic resistance continues to hamper antimicrobial chemotherapy of infectious disease, and while biocide resistance outside of the laboratory is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are not uncommon. Efflux mechanisms, both drug-specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials in important human pathogens. Multidrug efflux mechanisms are generally chromosome-encoded, with their expression typically resultant from mutations in regulatory genes, while drug-specific efflux mechanisms are encoded by mobile genetic elements whose acquisition is sufficient for resistance. While it has been suggested that drug-specific efflux systems originated from efflux determinants of self-protection in antibiotic-producing Actinomycetes, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, are appreciated as having an intended housekeeping function unrelated to drug export and resistance. Thus, it will be important to elucidate the intended natural function of these efflux mechanisms in order, for example, to anticipate environmental conditions or circumstances that might promote their expression and, so, compromise antimicrobial chemotherapy. Given the clinical significance of antimicrobial exporters, it is clear that efflux must be considered in formulating strategies for treatment of drug-resistant infections, both in the development of new agents, for example, less impacted by efflux or in targeting efflux directly with efflux inhibitors.

  18. Role of Breast Cancer Resistance Protein (BCRP/ABCG2) in Cancer Drug Resistance

    PubMed Central

    Natarajan, Karthika; Xie, Yi; Baer, Maria R.; Ross, Douglas D.

    2012-01-01

    Since cloning of the ATP-binding cassette (ABC) family member breast cancer resistance protein (BCRP/ABCG2) and its characterization as a multidrug resistance efflux transporter in 1998, BCRP has been the subject of more than two thousand scholarly articles. In normal tissues, BCRP functions as a defense mechanism against toxins and xenobiotics, with expression in the gut, bile canaliculi, placenta, blood-testis and blood-brain barriers facilitating excretion and limiting absorption of potentially toxic substrate molecules, including many cancer chemotherapeutic drugs. BCRP also plays a key role in heme and folate homeostasis, which may help normal cells survive under conditions of hypoxia. BCRP expression appears to be a characteristic of certain normal tissue stem cells termed “side population cells,” which are identified on flow cytometric analysis by their ability to exclude Hoechst 33342, a BCRP substrate fluorescent dye. Hence, BCRP expression may contribute to the natural resistance and longevity of these normal stem cells. Malignant tissues can exploit the properties of BCRP to survive hypoxia and to evade exposure to chemotherapeutic drugs. Evidence is mounting that many cancers display subpopulations of stem cells that are responsible for tumor self-renewal. Such stem cells frequently manifest the “side population” phenotype characterized by expression of BCRP and other ABC transporters. Along with other factors, these transporters may contribute to the inherent resistance of these neoplasms and their failure to be cured. PMID:22248732

  19. The effects of the putative potassium channel activator WAY-120,491 on 86Rb efflux from the rabbit aorta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lodge, N.J.; Cohen, R.B.; Havens, C.N.

    1991-02-01

    WAY-120,491 ((-)-(3S-trans)-2-(3,4-dihydro-3-hydroxy-2,2-dimethyl-6-(trifluoromet hox y)- 2H-1-benzopyran-4-yl)-2,3-dihydro-1H-isoindol-1-one) is a novel antihypertensive agent. We have investigated the effects of this compound on contractile force and 86Rb efflux, using the rabbit aorta, in order to assess its K channel activator properties. K channel blockers and ionic conditions thought to modulate specific K channel types have been used to provide insight into the K channel(s) affected by this compound. WAY-120,491 evoked relaxation of precontracted rabbit aortic rings and increased the rate of 86Rb efflux from strips of rabbit aorta; both effects occurring in a concentration-dependent manner. The WAY-120,491 (1 microM)-induced 86Rb efflux was inhibited bymore » tetraethylammonium (IC50 = 0.38 mM), indicating that the increased efflux was mediated by K channels. Glyburide completely blocked the WAY-120,491 (1 microM)-evoked 86Rb efflux with 50% block occurring at a concentration of 0.48 microM. Glyburide also antagonized the WAY-120,491-induced relaxation of aortic rings. Omission of Ca from the solution bathing the aorta did not inhibit the WAY-120,491 induced 86Rb efflux but rather caused an augmentation of the response. It is concluded that WAY-120,491 may be classified as a K channel opener. Furthermore, the K channel upon which WAY-120,491 acts exhibits some characteristics normally associated with the ATP regulated K channel although the involvement of other K channel types has not been ruled out.« less

  20. The Impairment of Macrophage-to-Feces Reverse Cholesterol Transport during Inflammation Does Not Depend on Serum Amyloid A

    PubMed Central

    de Beer, Maria C.; Wroblewski, Joanne M.; Noffsinger, Victoria P.; Meyer, Jason M.; van der Westhuyzen, Deneys R.

    2013-01-01

    Studies suggest that inflammation impairs reverse cholesterol transport (RCT). We investigated whether serum amyloid A (SAA) contributes to this impairment using an established macrophage-to-feces RCT model. Wild-type (WT) mice and mice deficient in SAA1.1 and SAA2.1 (SAAKO) were injected intraperitoneally with 3H-cholesterol-labeled J774 macrophages 4 hr after administration of LPS or buffered saline. 3H-cholesterol in plasma 4 hr after macrophage injection was significantly reduced in both WT and SAAKO mice injected with LPS, but this was not associated with a reduced capacity of serum from LPS-injected mice to promote macrophage cholesterol efflux in vitro. Hepatic accumulation of 3H-cholesterol was unaltered in either WT or SAAKO mice by LPS treatment. Radioactivity present in bile and feces of LPS-injected WT mice 24 hr after macrophage injection was reduced by 36% (P < 0.05) and 80% (P < 0.001), respectively. In contrast, in SAAKO mice, LPS did not significantly reduce macrophage-derived 3H-cholesterol in bile, and fecal excretion was reduced by only 45% (P < 0.05). Injection of cholesterol-loaded allogeneic J774 cells, but not syngeneic bone-marrow-derived macrophages, transiently induced SAA in C57BL/6 mice. Our study confirms reports that acute inflammation impairs steps in the RCT pathway and establishes that SAA plays only a minor role in this impairment. PMID:23431457