Sample records for abductor hallucis muscle

  1. Effect of Vibram FiveFingers Minimalist Shoes on the Abductor Hallucis Muscle.

    PubMed

    Campitelli, Nicholas A; Spencer, Scott A; Bernhard, Kaitlyn; Heard, Kristen; Kidon, Alan

    2016-09-02

    This study investigated the effect of Vibram FiveFingers Bikila minimalist shoes on intrinsic foot musculature. We hypothesized that a gradual transition into minimalist shoes will increase the thickness of the abductor hallucis muscle. Forty-one individuals were divided into four groups: control (traditional shod) (n = 9), restricted walking in Vibram FiveFingers (n = 11), running in Vibram FiveFingers (n = 10), and unlimited walking in Vibram FiveFingers (n = 11). At baseline, 12 weeks, and 24 weeks, the thickness of the abductor hallucis muscle was determined using ultrasound. Statistical analysis was performed to determine the significance of differences in muscle thickness at the three different time points. The mean thickness of the abductor hallucis muscle at 24 weeks was significantly greater than that at baseline for the restricted walking (P = .005) and running (P < .001) groups. In the unlimited walking group, the mean thickness of the muscle at 12 weeks was significantly greater than that at baseline (P < .05) but not at 24 weeks. There were no significant differences in muscle thickness among the three time points for the control group (P = .432). This study demonstrated that wearing Vibram FiveFinger Bikila footwear over a controlled period of time, an unlimited amount of time, as well as transitioning runners over a 6-month period of time using the 10% philosophy for increasing mileage, significantly increases intrinsic muscle thickness of the abductor hallucis. The abductor hallucis muscle aids in support of the medial longitudinal arch, and an increase in this muscle thickness may help reduce running-related injuries thought to arise from arch weakness.

  2. The effects of gluteus maximus and abductor hallucis strengthening exercises for four weeks on navicular drop and lower extremity muscle activity during gait with flatfoot.

    PubMed

    Goo, Young-Mi; Kim, Tae-Ho; Lim, Jin-Yong

    2016-03-01

    [Purpose] The purpose of the present study is to examine the effects of abductor hallucis and gluteus maximus strengthening exercises on pronated feet. [Subjects and Methods] The present study was conducted with 18 adults without no history of surgery on the foot or ankle. One group performed both gluteus maximus strengthening exercises and abductor hallucis strengthening exercises, while the other group performed only abductor hallucis strengthening exercises five times per week for four weeks. [Results] The group that performed both gluteus maximus and abductor hallucis strengthening exercises showed smaller values in the height of navicular drop than the group that performed only abductor hallucis strengthening exercises. The muscle activity of the gluteus maximus and the vastus medialis increased during heel-strike in the group that added gluteus maximus exercises, and the muscle activity of the abductor hallucis significantly increased in both groups. [Conclusion] Given the results of the present study, it can be suggested that strengthening the gluteus maximus while also performing exercises to correct the pronated foot is an effective method for achieving normal gait.

  3. Discharge properties of abductor hallucis before, during, and after an isometric fatigue task.

    PubMed

    Kelly, Luke A; Racinais, Sebastien; Cresswell, Andrew G

    2013-08-01

    Abductor hallucis is the largest muscle in the arch of the human foot and comprises few motor units relative to its physiological cross-sectional area. It has been described as a postural muscle, aiding in the stabilization of the longitudinal arch during stance and gait. The purpose of this study was to describe the discharge properties of abductor hallucis motor units during ramp and hold isometric contractions, as well as its discharge characteristics during fatigue. Intramuscular electromyographic recordings from abductor hallucis were made in 5 subjects; from those recordings, 42 single motor units were decomposed. Data were recorded during isometric ramp contractions at 60% maximum voluntary contraction (MVC), performed before and after a submaximal isometric contraction to failure (mean force 41.3 ± 15.3% MVC, mean duration 233 ± 116 s). Motor unit recruitment thresholds ranged from 10.3 to 54.2% MVC. No significant difference was observed between recruitment and derecruitment thresholds or their respective discharge rates for both the initial and postfatigue ramp contractions (all P > 0.25). Recruitment threshold was positively correlated with recruitment discharge rate (r = 0.47, P < 0.03). All motor units attained similar peak discharge rates (14.0 ± 0.25 pulses/s) and were not correlated with recruitment threshold. Thirteen motor units could be followed during the isometric fatigue task, with a decline in discharge rate and increase in discharge rate variability occurring in the final 25% of the task (both P < 0.05). We have shown that abductor hallucis motor units discharge relatively slowly and are considerably resistant to fatigue. These characteristics may be effective for generating and sustaining the substantial level of force that is required to stabilize the longitudinal arch during weight bearing.

  4. Potential sites of compression of tibial nerve branches in foot: a cadaveric and imaging study.

    PubMed

    Ghosh, Sanjib Kumar; Raheja, Shashi; Tuli, Anita

    2013-09-01

    Hypertrophy of abductor hallucis muscle is one of the reported causes of compression of tibial nerve branches in foot, resulting in tarsal tunnel syndrome. In this study, we dissected the foot (including the sole) of 120 lower limbs in 60 human cadavers (45 males and 15 females), aged between 45 and 70 years to analyze the possible impact of abductor hallucis muscle in compression neuropathy of tibial nerve branches. We identified five areas in foot, where tibial nerve branches could be compressed by abductor hallucis. Our findings regarding three of these areas were substantiated by clinical evidence from ultrasonography of ankle and sole region, conducted in the affected foot of 120 patients (82 males and 38 females), aged between 42 and 75 years, who were referred for evaluation of pain and/or swelling in medial side of ankle joint with or without associated heel and/or sole pain. We also assessed whether estimation of parameters for the muscle size could identify patients at risk of having nerve compression due to abductor hallucis muscle hypertrophy. The interclass correlation coefficient for dorso-planter thickness of abductor hallucis muscle was 0.84 (95% CI, 0.63-0.92) and that of medio-lateral width was 0.78 (95% CI, 0.62-0.88) in the imaging study, suggesting both are reliable parameters of the muscle size. Receiver operating characteristic curve analysis showed, if ultrasonographic estimation of dorso-plantar thickness is >12.8 mm and medio-lateral width > 30.66 mm in patients with symptoms of nerve compression in foot, abductor hallucis muscle hypertrophy associated compression neuropathy may be suspected. Copyright © 2012 Wiley Periodicals, Inc.

  5. The anatomy of the hip abductor muscles.

    PubMed

    Flack, N A M S; Nicholson, H D; Woodley, S J

    2014-03-01

    The anatomy of the hip abductors has not been comprehensively examined, yet is important to understanding function and pathology in the gluteal region. For example, pathology of the hip abductor muscle-tendon complexes can cause greater trochanteric pain syndrome, and may be associated with gluteal atrophy and fatty infiltration. The purpose of this study was to investigate the detailed morphology of gluteus medius (GMed), gluteus minimus (GMin), and tensor fascia lata (TFL), and determine whether the muscles comprised anatomical compartments. The gluteal region from 12 cadavers was dissected and data collected on attachment sites, volume, fascicular and tendinous anatomy, and innervation. Three sites of GMed origin were identified (gluteal fossa, gluteal aponeurosis, and posteroinferior edge of the iliac crest) and the distal tendon had lateral and posterior parts. GMed was the largest in volume (27.6 ± 11.6 cm(3); GMin 14.1 ± 11.1 cm(3); TFL 1.8 ± 0.8 cm(3)). Fascicles of GMin originated from the gluteal fossa, inserting onto the deep surface of its distal tendon and the hip joint capsule. TFL was encapsulated in the fascia lata, having no bony attachment. Primary innervation patterns varied for GMed, with three or four branches supplying different regions of muscle. Distinct secondary nerve branches entered four regions of GMin; no differential innervation was observed for TFL. On the basis of architectural parameters and innervation, GMed, and GMin each comprise of four compartments but TFL is a homogenous muscle. It is anticipated that these data will be useful for future clinical and functional studies of the hip abductors. Copyright © 2013 Wiley Periodicals, Inc.

  6. Resisted side-stepping: the effect of posture on hip abductor muscle activation

    PubMed Central

    Berry, Justin W.; Lee, Theresa S.; Foley, Hanna D.; Lewis, Cara L.

    2016-01-01

    Study Design Controlled laboratory study, repeated-measures design. Objectives To compare hip abductor muscle activity and hip and knee joint kinematics in the moving limb to the stance limb during resisted side-stepping and also to determine if muscle activity was affected by the posture (upright standing versus squat) used to perform the exercise. Background Hip abductor weakness has been associated with a variety of lower extremity injuries. Resisted side-stepping is often used as an exercise to increase strength and endurance of the hip abductors. Exercise prescription would benefit from knowing the relative muscle activity level generated in each limb and for different postures during the side-stepping exercise. Methods Twenty-four healthy adults participated in this study. Kinematics and surface electromyographic (EMG) data from the gluteus maximus, gluteus medius, and tensor fascia lata (TFL) were collected as participants performed side-stepping with a resistive band around the ankle while maintaining each of 2 postures: 1) upright standing and 2) squat. Results Mean normalized EMG signal amplitude of the gluteus maximus, gluteus medius, and TFL was higher in the stance limb than the moving limb (P≤.001). Gluteal muscle activity was higher, while TFL muscle activity was lower, in the squat posture compared to the upright standing posture (P<.001). Hip abduction excursion was greater in the stance limb than in the moving limb (P<.001). Conclusions The 3 hip abductor muscles respond differently to the posture variations of side-stepping exercise in healthy individuals. When prescribing resisted side-stepping exercises, therapists should consider the differences in hip abductor activation across limbs and variations in trunk posture. PMID:26161629

  7. Influence of weak hip abductor muscles on joint contact forces during normal walking: probabilistic modeling analysis.

    PubMed

    Valente, Giordano; Taddei, Fulvia; Jonkers, Ilse

    2013-09-03

    The weakness of hip abductor muscles is related to lower-limb joint osteoarthritis, and joint overloading may increase the risk for disease progression. The relationship between muscle strength, structural joint deterioration and joint loading makes the latter an important parameter in the study of onset and follow-up of the disease. Since the relationship between hip abductor weakness and joint loading still remains an open question, the purpose of this study was to adopt a probabilistic modeling approach to give insights into how the weakness of hip abductor muscles, in the extent to which normal gait could be unaltered, affects ipsilateral joint contact forces. A generic musculoskeletal model was scaled to each healthy subject included in the study, and the maximum force-generating capacity of each hip abductor muscle in the model was perturbed to evaluate how all physiologically possible configurations of hip abductor weakness affected the joint contact forces during walking. In general, the muscular system was able to compensate for abductor weakness. The reduced force-generating capacity of the abductor muscles affected joint contact forces to a mild extent, with 50th percentile mean differences up to 0.5 BW (maximum 1.7 BW). There were greater increases in the peak knee joint loads than in loads at the hip or ankle. Gluteus medius, particularly the anterior compartment, was the abductor muscle with the most influence on hip and knee loads. Further studies should assess if these increases in joint loading may affect initiation and progression of osteoarthritis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Free Neurovascular Latissimus Dorsi Muscle Transplantation for Reconstruction of Hip Abductors.

    PubMed

    Barrera-Ochoa, Sergi; Collado-Delfa, Jose Manuel; Sallent, Andrea; Lluch, Alejandro; Velez, Roberto

    2017-09-01

    Resection of tumors affecting the hip abductors can cause significant decrease in muscle strength and may lead to abnormal gait and poor function. We present a case report showing full functional recovery after resection of a synovial sarcoma affecting the right gluteus medius and minimus muscles with reconstruction free neurovascular latissimus dorsi muscle transplantation. The latissimus dorsi muscle was harvested following standard technique and fixed to the ilium and the greater trochanter. Receptor vessels were end-to-end anastomosed to the subscapular vessels followed by an end-to-end epineural suture between the superior gluteal nerve and the thoracodorsal nerve. A year after surgery, there is no evidence of recurrent disease; electromyographic analysis shows complete reinnervation of the latissimus dorsi muscle flap, and the patient has achieved full functional recovery. Free functional latisimus dorsi transfer could be considered as a viable reconstruction technique after hip abductors resection in tumor surgery.

  9. Comparison of foot muscle morphology and foot kinematics between recreational runners with normal feet and with asymptomatic over-pronated feet.

    PubMed

    Zhang, Xianyi; Aeles, Jeroen; Vanwanseele, Benedicte

    2017-05-01

    Over-pronated feet are common in adults and are associated with lower limb injuries. Studying the foot muscle morphology and foot kinematic patterns is important for understanding the mechanism of over-pronation related injuries. The aim of this study is to compare the foot muscle morphology and foot inter-segmental kinematics between recreational runners with normal feet and those with asymptomatic over-pronated feet. A total of 26 recreational runners (17 had normal feet and 9 had over-pronated feet) participated in this study and their foot type was assessed using the 6-item Foot Posture Index. Selected foot muscles were scanned using an ultrasound device and the scanned images were processed to measure the thickness and cross-sectional area of the muscles. Muscles of interest include abductor hallucis, abductor digiti minimi, flexor digitorum brevis and longus, tibialis anterior and peroneus muscles. Foot kinematic data during walking was collected using a 3D motion capture system incorporating the Oxford Foot Model. The results show that individuals with over-pronated feet have larger size of abductor hallucis, flexor digitorum brevis and longus and smaller abductor digiti minimi than controls. Higher rearfoot peak eversion and forefoot peak supination during walking were observed in individuals with over-pronated feet. However, during gait the forefoot peak abduction was comparable. These findings indicate that in active asymptomatic individuals with over-pronated feet, the foot muscle morphology is adapted to increase control of the foot motion. The morphological characteristics of the foot muscles in asymptomatic individuals with over-pronated feet may affect their foot kinematics and benefit prevention from injuries. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Isokinetic imbalance of adductor-abductor hip muscles in professional soccer players with chronic adductor-related groin pain.

    PubMed

    Belhaj, K; Meftah, S; Mahir, L; Lmidmani, F; Elfatimi, A

    2016-11-01

    This study aims to compare the isokinetic profile of hip abductor and adductor muscle groups between soccer players suffering from chronic adductor-related groin pain (ARGP), soccer players without ARGP and healthy volunteers from general population. Study included 36 male professional soccer players, who were randomly selected and followed-up over two years. Of the 21 soccer players eligible to participate in the study, 9 players went on to develop chronic ARGP and 12 players did not. Ten healthy male volunteers were randomly selected from the general population as a control group. Comparison between the abductor and adductor muscle peak torques for players with and without chronic ARGP found a statistically significant difference on the dominant and non-dominant sides (p < .005), with the abductor muscle significantly stronger than the adductor muscle. In the group of healthy volunteers, the adductor muscle groups were significantly stronger than the abductor muscle groups on both dominant and non-dominant sides (p < .05). For the group of players who had developed chronic ARGP, abductor-adductor torque ratios were significantly higher on the affected side (p = .008). The adductor muscle strength was also significantly decreased on the affected side. This imbalance appears to be a risk factor for adductor-related groin injury. Therefore, restoring the correct relationship between these two agonist and antagonist hip muscles may be an important preventative measure that should be a primary concern of training and rehabilitation programmes.

  11. Hip Abductor Muscle Volume and Strength Differences Between Women With Chronic Hip Joint Pain and Asymptomatic Controls.

    PubMed

    Mastenbrook, Matthew J; Commean, Paul K; Hillen, Travis J; Salsich, Gretchen B; Meyer, Gretchen A; Mueller, Michael J; Clohisy, John C; Harris-Hayes, Marcie

    2017-12-01

    Study Design Secondary analysis, cross-sectional study. Background Chronic hip joint pain (CHJP) can lead to limitations in activity participation, but the musculoskeletal factors associated with the condition are relatively unknown. Understanding the factors associated with CHJP may help develop rehabilitation strategies to improve quality of life of individuals with long-term hip pain. Objectives To compare measures of hip abductor muscle volume and hip abductor muscle strength between women with CHJP and asymptomatic controls. Methods Thirty women, 15 with CHJP and 15 matched asymptomatic controls (age range, 18-40 years), participated in this study. Magnetic resonance imaging was used to determine the volume of the primary hip abductor muscles, consisting of the gluteus medius, gluteus minimus, a small portion of the gluteus maximus, and the tensor fascia latae, within a defined region of interest. Break tests were performed using a handheld dynamometer to assess hip abductor strength. During the strength test, the participant was positioned in sidelying with the involved hip in 15° of abduction. Independent-samples t tests were used to compare muscle volume and strength values between those with CHJP and asymptomatic controls. Results Compared to asymptomatic controls, women with CHJP demonstrated significantly increased gluteal muscle volume (228 ± 40 cm 3 versus 199 ± 29 cm 3 , P = .032), but decreased hip abductor strength (74.6 ± 16.8 Nm versus 93.6 ± 20.2 Nm, P = .009). There were no significant differences in tensor fascia lata muscle volume between the 2 groups (P = .640). Conclusion Women with CHJP appear to have larger gluteal muscle volume, but decreased hip abductor strength, compared to asymptomatic controls. J Orthop Sports Phys Ther 2017;47(12):923-930. Epub 9 Oct 2017. doi:10.2519/jospt.2017.7380.

  12. Intrinsic Foot Muscle Activation During Specific Exercises: A T2 Time Magnetic Resonance Imaging Study.

    PubMed

    Gooding, Thomas M; Feger, Mark A; Hart, Joseph M; Hertel, Jay

    2016-08-01

    The intrinsic foot muscles maintain the medial longitudinal arch and aid in force distribution and postural control during gait. Impaired intrinsic foot-muscle function has been linked to various foot conditions. Several rehabilitative exercises have been proposed to improve it; however, literature that identifies which individual muscles are activated during specific intrinsic foot-muscle exercises is lacking. To describe changes in activation of the intrinsic plantar foot muscles after 4 exercises as measured with T2 magnetic resonance imaging (MRI). Descriptive laboratory study. Research laboratory. Eight healthy National Collegiate Athletic Association Division I collegiate cross-country and track athletes (5 men and 3 women: age = 20 ± 0.93 years, height = 180.98 ± 10.84 cm, mass = 70.91 ± 7.82 kg). Participants underwent T2 MRI before and after each exercise. They completed 1 set of 40 repetitions of each exercise (short-foot exercise, toes spread out, first-toe extension, second- to fifth-toes extension). Percentage increases in muscle activation of the abductor hallucis, flexor digitorum brevis, abductor digiti minimi, quadratus plantae, flexor digiti minimi, adductor hallucis oblique, flexor hallucis brevis, and interossei and lumbricals (analyzed together) after each exercise were assessed using T2 MRI. All muscles showed increased activation after all exercises. The mean percentage increase in activation ranged from 16.7% to 34.9% for the short-foot exercise, 17.3% to 35.2% for toes spread out, 13.1% to 18.1% for first-toe extension, and 8.9% to 22.5% for second- to fifth-toes extension. All increases in activation had associated 95% confidence intervals that did not cross zero. Each of the 4 exercises was associated with increased activation in all of the plantar intrinsic foot muscles evaluated. These results may have clinical implications for the prescription of specific exercises to target individual intrinsic foot muscles.

  13. Testing the Hip Abductor Muscle Strength of Older Persons Using a Handheld Dynamometer.

    PubMed

    Awwad, Daniel H; Buckley, Jonathan D; Thomson, Rebecca L; O'Connor, Matthew; Carbone, Tania A; Chehade, Mellick J

    2017-09-01

    To investigate the reliability of a clinically applicable method of dynamometry to assess and monitor hip abductor muscle strength in older persons. Bilateral isometric hip abductor muscle strength measured with a handheld dynamometer, patients supine with the contralateral hip positioned directly against a wall for stabilization. Reliability determined by comparing intra-assessor and inter-assessor results and comparison to a criterion standard (stabilized dynamometer with patients in the standing position). UniSA Nutritional Physiology Research Centre. Twenty-one patients older than 65 years were recruited from the Royal Adelaide Hospital. Intraclass correlation coefficients (ICCs), bias, and limits of agreement calculated to determine reliability. Intra-assessor and inter-assessor ICCs were high (0.94 and 0.92-0.94, respectively). There was no intra-assessor bias and narrow limits of agreement (±2.4%). There was a small inter-assessor bias but narrow limits of agreement (0.6%-0.9% and ± 2.3%, respectively). There was a wide variation comparing results to the criterion standard (±5.0%-5.2% limits of agreement), highlighting problems attributed to difficulties that the test population had with the standing position used in the criterion standard test. Testing older persons' hip abductor muscle strength while in the supine position with optimal pelvic stabilization using a handheld dynamometer is highly reliable. While further studies must be done to assess patients with specific pathologies, this test has potential application to monitor and evaluate the effects of surgical interventions and/or rehabilitation protocols for a variety of conditions affecting hip abductor function such as hip fractures and arthritis.

  14. A review of the anatomy of the hip abductor muscles, gluteus medius, gluteus minimus, and tensor fascia lata.

    PubMed

    Flack, Natasha Amy May Sparks; Nicholson, Helen D; Woodley, Stephanie Jane

    2012-09-01

    The hip abductor muscles have the capability to contribute to numerous actions, including pelvic stabilization during gait, and abduction and rotation at the hip joint. To fully understand the role of these muscles, as well as their involvement in hip joint dysfunction, knowledge of their anatomical structure is essential. The clinical literature suggests anatomical diversity within these muscles, and that gluteus medius (GMed) and gluteus minimus (GMin), in particular, may be comprised of compartments. This systematic review of the English literature focuses on the gross anatomy of GMed, GMin, and tensor fascia lata (TFL) muscles. Although studies of this muscle group have generated useful descriptions, comparison of results is hindered by methodological limitations. Furthermore, there is no single comprehensive anatomical investigation of all three muscles. Several aspects of the morphology of attachment sites are unknown or unclear. There is little data on fascicle orientation, the interface between fascicles and tendons, and the specific patterning of the superior gluteal nerve. Consequently, the existence of anatomical compartmentalization within the hip abductor muscles is difficult to assess. Further research of the architecture and innervation of the hip abductor muscle group is required; a better understanding of the precise anatomy of these muscles should improve our understanding of their specific functions and their contribution to the pathogenesis of disorders affecting the hip joint. Copyright © 2011 Wiley Periodicals, Inc.

  15. Maximum toe flexor muscle strength and quantitative analysis of human plantar intrinsic and extrinsic muscles by a magnetic resonance imaging technique.

    PubMed

    Kurihara, Toshiyuki; Yamauchi, Junichiro; Otsuka, Mitsuo; Tottori, Nobuaki; Hashimoto, Takeshi; Isaka, Tadao

    2014-01-01

    The aims of this study were to investigate the relationships between the maximum isometric toe flexor muscle strength (TFS) and cross-sectional area (CSA) of the plantar intrinsic and extrinsic muscles and to identify the major determinant of maximum TFS among CSA of the plantar intrinsic and extrinsic muscles. Twenty six young healthy participants (14 men, 12 women; age, 20.4 ± 1.6 years) volunteered for the study. TFS was measured by a specific designed dynamometer, and CSA of plantar intrinsic and extrinsic muscles were measured using magnetic resonance imaging (MRI). To measure TFS, seated participants optimally gripped the bar with their toes and exerted maximum force on the dynamometer. For each participant, the highest force produced among three trials was used for further analysis. To measure CSA, serial T1-weighted images were acquired. TFS was significantly correlated with CSA of the plantar intrinsic and extrinsic muscles. Stepwise multiple linear regression analyses identified that the major determinant of TFS was CSA of medial parts of plantar intrinsic muscles (flexor hallucis brevis, flexor digitorum brevis, quadratus plantae, lumbricals and abductor hallucis). There was no significant difference between men and women in TFS/CSA. CSA of the plantar intrinsic and extrinsic muscles is one of important factors for determining the maximum TFS in humans.

  16. Non-Weight-Bearing and Weight-Bearing Ultrasonography of Select Foot Muscles in Young, Asymptomatic Participants: A Descriptive and Reliability Study.

    PubMed

    Battaglia, Patrick J; Mattox, Ross; Winchester, Brett; Kettner, Norman W

    The primary aim of this study was to determine the reliability of diagnostic ultrasound imaging for select intrinsic foot muscles using both non-weight-bearing and weight-bearing postures. Our secondary aim was to describe the change in muscle cross-sectional area (CSA) and dorsoplantar thickness when bearing weight. An ultrasound examination was performed with a linear ultrasound transducer operating between 9 and 12 MHz. Long-axis and short-axis ultrasound images of the abductor hallucis, flexor digitorum brevis, and quadratus plantae were obtained in both the non-weight-bearing and weight-bearing postures. Two examiners independently collected ultrasound images to allow for interexaminer and intraexaminer reliability calculation. The change in muscle CSA and dorsoplantar thickness when bearing weight was also studied. There were 26 participants (17 female) with a mean age of 25.5 ± 3.8 years and a mean body mass index of 28.0 ± 7.8 kg/m 2 . Inter-examiner reliability was excellent when measuring the muscles in short axis (intraclass correlation coefficient >0.75) and fair to good in long axis (intraclass correlation coefficient >0.4). Intraexaminer reliability was excellent for the abductor hallucis and flexor digitorum brevis and ranged from fair to good to excellent for the quadratus plantae. Bearing weight did not reduce interexaminer or intraexaminer reliability. All muscles exhibited a significant increase in CSA when bearing weight. This is the first report to describe weight-bearing diagnostic ultrasound of the intrinsic foot muscles. Ultrasound imaging is reliable when imaging these muscles bearing weight. Furthermore, muscle CSA increases in the weight-bearing posture. Copyright © 2016. Published by Elsevier Inc.

  17. Influence of mental practice on development of voluntary control of a novel motor acquisition task.

    PubMed

    Creelman, Jim

    2003-08-01

    The purpose of this investigation was to assess whether mental practice facilitates the development of voluntary control over the recruitment of the abductor hallucis muscle to produce isolated big toe abduction. A sample of convenience of 15 women and 20 men with a mean age of 28.8 yr. (SD=5.7) and healthy feet, who were unable voluntarily to abduct the big toe, were randomly assigned to one of three groups, a mental practice group, a physical practice group, and a group who performed a control movement during practice. Each subject received neuromuscular electrical stimulation to introduce the desired movement prior to each of five practice bouts over a single session lasting 2 hr. Big toe abduction active range of motion and surface electromyographic (EMG) output of the abductor hallucis and extensor digitorum brevis muscles were measured prior to the first practice bout and following each practice bout, yielding seven acquisition trials. Acquisition is defined as an improvement in both active range of motion and in the difference between the integrated EMG of the abductor hallucis and extensor digitorum brevis muscles during successive acquisition trials. Seven members of both the mental and physical practice groups and one member of the control group met the acquisition criteria. Chi-square analysis indicated the group difference was statistically significant, suggesting mental practice was effective for this task.

  18. Ultrasound evaluation of foot muscles and plantar fascia in pes planus.

    PubMed

    Angin, Salih; Crofts, Gillian; Mickle, Karen J; Nester, Christopher J

    2014-01-01

    Multiple intrinsic and extrinsic soft tissue structures that apply forces and support the medial longitudinal arch have been implicated in pes planus. These structures have common functions but their interaction in pes planus is not fully understood. The aim of this study was to compare the cross-sectional area (CSA) and thickness of the intrinsic and extrinsic foot muscles and plantar fascia thickness between normal and pes planus feet. Forty-nine adults with a normal foot posture and 49 individuals with pes planus feet were recruited from a university population. Images of the flexor digitorum longus (FDL), flexor hallucis longus (FHL), peroneus longus and brevis (PER), flexor hallucis brevis (FHB), flexor digitorum brevis (FDB) and abductor hallucis (AbH) muscles and the plantar fascia were obtained using a Venue 40 ultrasound system with a 5-13 MHz transducer. The CSA and thickness of AbH, FHB and PER muscles were significantly smaller (AbH -12.8% and -6.8%, FHB -8.9% and -7.6%, PER -14.7% and -10%), whilst FDL (28.3% and 15.2%) and FHL (24% and 9.8%) were significantly larger in the pes planus group. The middle (-10.6%) and anterior (-21.7%) portions of the plantar fascia were thinner in pes planus group. Greater CSA and thickness of the extrinsic muscles might reflect compensatory activity to support the MLA if the intrinsic foot muscle function has been compromised by altered foot structure. A thinner plantar fascia suggests reduced load bearing, and regional variations in structure and function in feet with pes planus. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Contributions of foot muscles and plantar fascia morphology to foot posture.

    PubMed

    Angin, Salih; Mickle, Karen J; Nester, Christopher J

    2018-03-01

    The plantar foot muscles and plantar fascia differ between different foot postures. However, how each individual plantar structure contribute to foot posture has not been explored. The purpose of this study was to investigate the associations between static foot posture and morphology of plantar foot muscles and plantar fascia and thus the contributions of these structures to static foot posture. A total of 111 participants were recruited, 43 were classified as having pes planus and 68 as having normal foot posture using Foot Posture Index assessment tool. Images from the flexor digitorum longus (FDL), flexor hallucis longus (FHL), peroneus longus and brevis (PER), flexor hallucis brevis (FHB), flexor digitorum brevis (FDB) and abductor hallucis (AbH) muscles, and the calcaneal (PF1), middle (PF2) and metatarsal (PF3) regions of the plantar fascia were obtained using a Venue 40 ultrasound system with a 5-13 MHz transducer. In order of decreasing contribution, PF3 > FHB > FHL > PER > FDB were all associated with FPI and able to explain 69% of the change in FPI scores. PF3 was the highest contributor explaining 52% of increases in FPI score. Decreased thickness was associated with increased FPI score. Smaller cross sectional area (CSA) in FHB and PER muscles explained 20% and 8% of increase in FPI score. Larger CSA of FDB and FHL muscles explained 4% and 14% increase in FPI score respectively. The medial plantar structures and the plantar fascia appear to be the major contributors to static foot posture. Elucidating the individual contribution of multiple muscles of the foot could provide insight about their role in the foot posture. Copyright © 2018. Published by Elsevier B.V.

  20. Ipsilateral hip abductor weakness after inversion ankle sprain.

    PubMed

    Friel, Karen; McLean, Nancy; Myers, Christine; Caceres, Maria

    2006-01-01

    Hip stability and strength are important for proper gait mechanics and foot position during heel strike. To determine the relationships between hip muscle strength and chronic ankle sprains and hip muscle strength and ankle range of motion. Ex post facto design with the uninvolved limb serving as the control. Laboratory. A total of 23 subjects with unilateral chronic ankle sprain were recruited. Subjects had at least 2 ipsilateral ankle sprains and were bearing full weight, with the most recent injury occurring at least 3 months earlier. They were not undergoing formal or informal rehabilitation at the time of the study. We obtained goniometric measurements for all planes of motion at the ankle. Handheld dynamometry was used to assess the strength of the hip abductor and hip extensor muscles in both limbs. Hip abductor muscle strength and plantar flexion were significantly less on the involved side than the uninvolved side (P < .001 in each case). Strength of the involved hip abductor and hip extensor muscles was significantly correlated (r = 0.539, P < .01). No significant difference was noted in hip extensor muscle strength between sides (P = .19). Our subjects with unilateral chronic ankle sprains had weaker hip abduction strength and less plantar-flexion range of motion on the involved sides. Clinicians should consider exercises to increase hip abduction strength when developing rehabilitation programs for patients with ankle sprains.

  1. Ipsilateral Hip Abductor Weakness After Inversion Ankle Sprain

    PubMed Central

    Friel, Karen; McLean, Nancy; Myers, Christine; Caceres, Maria

    2006-01-01

    Context: Hip stability and strength are important for proper gait mechanics and foot position during heel strike. Objective: To determine the relationships between hip muscle strength and chronic ankle sprains and hip muscle strength and ankle range of motion. Design: Ex post facto design with the uninvolved limb serving as the control. Setting: Laboratory. Patients or Other Participants: A total of 23 subjects with unilateral chronic ankle sprain were recruited. Subjects had at least 2 ipsilateral ankle sprains and were bearing full weight, with the most recent injury occurring at least 3 months earlier. They were not undergoing formal or informal rehabilitation at the time of the study. Main Outcome Measure(s): We obtained goniometric measurements for all planes of motion at the ankle. Handheld dynamometry was used to assess the strength of the hip abductor and hip extensor muscles in both limbs. Results: Hip abductor muscle strength and plantar flexion were significantly less on the involved side than the uninvolved side (P < .001 in each case). Strength of the involved hip abductor and hip extensor muscles was significantly correlated (r = 0.539, P < .01). No significant difference was noted in hip extensor muscle strength between sides (P = .19). Conclusions: Our subjects with unilateral chronic ankle sprains had weaker hip abduction strength and less plantar-flexion range of motion on the involved sides. Clinicians should consider exercises to increase hip abduction strength when developing rehabilitation programs for patients with ankle sprains. PMID:16619098

  2. Abductor pollicis longus: a case of mistaken identity.

    PubMed

    Elliott, B G

    1992-08-01

    Abductor pollicis longus, long regarded as a motor for the thumb, is anatomically and functionally a radial deviator of the wrist and should be so named. The abductor carpi is proposed. If the other radial deviators of the wrist are acting this tendon can be selectively utilized as a transfer without loss of function. Reflex spasm of this muscle probably plays an important role in the radial deviation deformity seen in the rheumatoid hand.

  3. The Effects on Muscle Activation of Flatfoot during Gait According to the Velocity on an Ascending Slope.

    PubMed

    Lee, Chang-Ryeol; Kim, Myoung-Kwon

    2014-05-01

    [Purpose] This study determined the difference between flatfeet and normal feet in humans on an ascending slope using electromyography (EMG). [Subjects] This study was conducted on 30 adults having normal feet (n=15) and flatfeet (n=15), all of whom were 21 to 30 years old. [Methods] A treadmill (AC5000M, SCIFIT,) was used to analyze kinematic features during gait. These features were analyzed at slow, normal, and fast gait velocities on an ascending slope. A surface electromyogram (TeleMyo 2400T, Noraxon Co., USA) was used to measure muscle activity changes. [Results] The activities of most muscles in the subjects with flatfeet were significantly different from the muscle activities in the subjects with normal feet at different gait velocities on an ascending slope. There were significant differences in the vastus medialis and abductor hallucis muscles. [Conclusion] Because muscle activation of the vastus medialis in relation to stability of the lower extremity has a tendency to increase with an increase in gait velocity on an ascending slope, we hypothesized that higher impact transfer to the knee joints occurs in subjects with flatfeet due to the lack of a medial longitudinal arch and that the abductor halluces muscles, which provide dynamic stability to the medial longitudinal arches, do not activate well when they are needed in subjects with flatfeet.

  4. In vivo fascicle behavior of the flexor hallucis longus muscle at different walking speeds.

    PubMed

    Péter, A; Hegyi, A; Finni, T; Cronin, N J

    2017-12-01

    Ankle plantar flexor muscles support and propel the body in the stance phase of locomotion. Besides the triceps surae, flexor hallucis longus muscle (FHL) may also contribute to this role, but very few in vivo studies have examined FHL function during walking. Here, we investigated FHL fascicle behavior at different walking speeds. Ten healthy males walked overground at three different speeds while FHL fascicle length changes were recorded with ultrasound and muscle activity was recorded with surface electromyography (EMG). Fascicle length at heel strike at toe off and at peak EMG activity did not change with speed. Range of FHL fascicle length change (3.5-4.5 and 1.9-2.9 mm on average in stance and push-off phase, respectively), as well as minimum (53.5-54.9 and 53.8-55.7 mm) and maximum (58-58.4 and 56.8-57.7 mm) fascicle length did not change with speed in the stance or push-off phase. Mean fascicle velocity did not change in the stance phase, but increased significantly in the push-off phase between slow and fast walking speeds (P=.021). EMG activity increased significantly in both phases from slow to preferred and preferred to fast speed (P<.02 in all cases). FHL muscle fascicles worked near-isometrically during the whole stance phase (at least during slow walking) and operated at approximately the same length at different walking speeds. FHL and medial gastrocnemius (MG) have similar fiber length to muscle belly length ratios and, according to our results, also exhibit similar fascicle behavior at different walking speeds. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Evidence of isometric function of the flexor hallucis longus muscle in normal gait.

    PubMed

    Kirane, Y M; Michelson, J D; Sharkey, N A

    2008-01-01

    Studying mechanics of the muscles spanning multiple joints provides insights into intersegmental dynamics and movement coordination. Multiarticular muscles are thought to function at "near-isometric" lengths to transfer mechanical energy between the adjacent body segments. Flexor hallucis longus (FHL) is a multiarticular flexor of the great toe; however, its potential isometric function has received little attention. We used a robotic loading apparatus to investigate FHL mechanics during simulated walking in cadaver feet, and hypothesized that physiological force transmission across the foot can occur with isometric FHL function. The extrinsic foot tendons, stripped of the muscle fibers, were connected to computer-controlled linear actuators. The FHL activity was controlled using force-feedback (FC) based upon electromyographic data from healthy subjects, and subsequently, isometric positional feedback (PC), maintaining the FHL myotendinous junction stationary during simulated walking. Tendon forces and excursions were recorded, as were the strains within the first metatarsal. Forces in the metatarsal and metatarsophalangeal joint were derived from these strains. The FHL tendon excursion under FC was 6.57+/-3.13mm. The forces generated in the FHL tendon, metatarsal and metatarsophalangeal joint with the FHL under isometric PC were not significantly different in pattern from FC. These observations provide evidence that physiological forces could be generated along the great toe with isometric FHL function. A length servo mechanism such as the stretch reflex could likely control the isometric FHL function during in vivo locomotion; this could have interesting implications regarding the conditions of impaired stretch reflex such as spastic paresis and peripheral neuropathies.

  6. Intratester Reliability and Construct Validity of a Hip Abductor Eccentric Strength Test.

    PubMed

    Brindle, Richard A; Ebaugh, David; Milner, Clare E

    2018-06-06

    Side-lying hip abductor strength tests are commonly used to evaluate muscle strength. In a "break" test, the tester applies sufficient force to lower the limb to the table while the patient resists. The peak force is postulated to occur while the leg is lowering, thus representing the participant's eccentric muscle strength. However, it is unclear whether peak force occurs before or after the leg begins to lower. To determine intrarater reliability and construct validity of a hip abductor eccentric strength test. Intrarater reliability and construct validity study. Twenty healthy adults (26 [6] y; 1.66 [0.06] m; 62.2 [8.0] kg) made 2 visits to the laboratory at least 1 week apart. During the hip abductor eccentric strength test, a handheld dynamometer recorded peak force and time to peak force, and limb position was recorded via a motion capture system. Intrarater reliability was determined using intraclass correlation, SEM, and minimal detectable difference. Construct validity was assessed by determining if peak force occurred after the start of the lowering phase using a 1-sample t test. The hip abductor eccentric strength test had substantial intrarater reliability (intraclass correlation (3,3)  = .88; 95% confidence interval, .65-.95), SEM of 0.9 %BWh, and a minimal detectable difference of 2.5 %BWh. Construct validity was established as peak force occurred 2.1 (0.6) seconds (range: 0.7-3.7 s) after the start of the lowering phase of the test (P ≤ .001). The hip abductor eccentric strength test is a valid and reliable measure of eccentric muscle strength. This test may be used clinically to assess changes in eccentric muscle strength over time.

  7. Structure and function of the abductors in patients with hip osteoarthritis: Systematic review and meta-analysis.

    PubMed

    Marshall, Amelia Rose; Noronha, Marcos de; Zacharias, Anita; Kapakoulakis, Theo; Green, Rodney

    2016-04-27

    Hip osteoarthritis (OA) is a major cause of morbidity. Rehabilitation for this population focuses on strengthening the hip muscles, particularly the abductors, however the deficit in function of these muscles is unclear. To review the evidence for the differences in structure and function of hip abductors (gluteus medius and minimus and tensor fascia lata) in hip OA. A systematic review was conducted using MEDLINE, AMED, CINAHL and SportDISCUS, from the earliest date to September 2013. Studies that compared hip OA patients with controls, or the unaffected contralateral hip were included. Studies needed to report data on an outcome related to gross gluteal muscle function. An initial yield of 141 studies was reduced to 22 after application of inclusion/exclusion criteria. Meta-analysis confirmed greater hip abductor strength in the control group (standardized mean difference = SMD -0.93, 95%CI -1.70 to -0.16) and the unaffected limb (SMD -0.26, 95%CI -0.48 to -0.04). Meta-analyses showed no differences in muscle size either between groups or limbs. Few electromyography studies have been reported and meta-analysis was not possible. Hip abductor strength is reduced in OA patients when compared to healthy controls and to the unaffected limb. Data on muscle size and activity is limited.

  8. Changes in Knee Biomechanics After a Hip-Abductor Strengthening Protocol for Runners With Patellofemoral Pain Syndrome

    PubMed Central

    Ferber, Reed; Kendall, Karen D.; Farr, Lindsay

    2011-01-01

    Abstract Context: Very few authors have investigated the relationship between hip-abductor muscle strength and frontal-plane knee mechanics during running. Objective: To investigate this relationship using a 3-week hip-abductor muscle-strengthening program to identify changes in strength, pain, and biomechanics in runners with patellofemoral pain syndrome (PFPS). Design: Cohort study. Setting: University-based clinical research laboratory. Patients or Other Participants: Fifteen individuals (5 men, 10 women) with PFPS and 10 individuals without PFPS (4 men, 6 women) participated. Intervention(s): The patients with PFPS completed a 3-week hip-abductor strengthening protocol; control participants did not. Main Outcome Measure(s): The dependent variables of interest were maximal isometric hip-abductor muscle strength, 2-dimensional peak knee genu valgum angle, and stride-to-stride knee-joint variability. All measures were recorded at baseline and 3 weeks later. Between-groups differences were compared using repeated-measures analyses of variance. Results: At baseline, the PFPS group exhibited reduced strength, no difference in peak genu valgum angle, and increased stride-to-stride knee-joint variability compared with the control group. After the 3-week protocol, the PFPS group demonstrated increased strength, less pain, no change in peak genu valgum angle, and reduced stride-to-stride knee-joint variability compared with baseline. Conclusions: A 3-week hip-abductor muscle-strengthening protocol was effective in increasing muscle strength and decreasing pain and stride-to-stride knee-joint variability in individuals with PFPS. However, concomitant changes in peak knee genu valgum angle were not observed. PMID:21391799

  9. Intra- and Inter-Rater Reliability of the Rate of Force Development of Hip Abductor Muscles Measured by Hand-Held Dynamometer

    ERIC Educational Resources Information Center

    Takeda, Kazuya; Tanabe, Shigeo; Koyama, Soichiro; Nagai, Tomoko; Sakurai, Hiroaki; Kanada, Yoshikiyo; Shomoto, Koji

    2018-01-01

    The aim of this study was to clarify the intra- and inter-rater reliability of the rate of force development in hip abductor muscle force measurements using a hand-held dynamometer. Thirty healthy adults were separately assessed by two independent raters on two separate days. Rate of force development was calculated from the slope of the…

  10. Effect of experimentally reduced distal sensation on postural response to hip abductor/ankle evertor muscle vibration.

    PubMed

    Glasser, S; Collings, R; Paton, J; Marsden, J

    2015-07-01

    This study assessed whether postural responses induced by vibratory perturbations of the hip abductors and ankle evertors, were modified when distal tactile sensation was experimentally reduced through cooling. Sixteen healthy subjects were investigated pre and post cooling. Subjects stood with their eyes closed with a stance width of 4 cm. A 2s vibratory stimulus was applied to the left or right hip abductor or ankle evertor muscle. The order of the site and side of the stimulation was randomised. The postural response to hip abductor and ankle evertor vibration was recorded using 3D motion analysis (Codamotion, Leicestershire). Medio-lateral centre of pressure motion was simultaneously recorded during quiet standing via a force plate (Kistler, UK). Pre-cooling people responded to unilateral ankle vibration with an ipsilateral translation and tilt of the pelvis, and an ipsilateral tilt of the trunk. People responded to unilateral hip vibration with a contralateral translation and tilt of the pelvis, and an ipsilateral tilt of the trunk. Following an experimental reduction in distal tactile sensation there was a significant reduction in the amplitude of pelvic tilt in response to ankle vibration (F(6.2)=P<0.05) and a significant increase in amplitude of pelvic tilt in response to hip vibration (F(5.2)=P<0.05). This suggests that the sensitivity to artificial stimulation of hip proprioception increases with distal cooling, possibly indicating a change in the gain/weighting placed upon sensory information from the hips. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Bilateral Vocal Fold Medialization: A Treatment for Abductor Spasmodic Dysphonia.

    PubMed

    Dewan, Karuna; Berke, Gerald S

    2017-11-10

    Abductor spasmodic dysphonia, a difficult-to-treat laryngologic condition, is characterized by spasms causing the vocal folds to remain abducted despite efforts to adduct them during phonation. Traditional treatment for abductor spasmodic dysphonia-botulinum toxin injection into the posterior cricoarytenoid muscle-can be both technically challenging and uncomfortable. Due to the difficulty of needle placement, it is often unsuccessful. The purpose of this investigation is to present a previously undescribed treatment for abductor spasmodic dysphonia-bilateral vocal fold medialization. A retrospective case review of all cases of abductor spasmodic dysphonia treated in a tertiary care laryngology practice with bilateral vocal fold medialization over a 10-year period was performed. The Voice Handicap Index and the Voice-Related Quality of Life surveys were utilized to assess patient satisfaction with voice outcome. Six patients with abductor spasmodic dysphonia treated with bilateral vocal fold medialization were identified. Disease severity ranged from mild to severe. All six patients reported statistically significant improvement in nearly all Voice Handicap Index and Voice-Related Quality of Life parameters. They reported fewer voice breaks and greater ease of communication. Results were noted immediately and symptoms continue to be well controlled for many years following medialization. Bilateral vocal fold medialization is a safe and effective treatment for abductor spasmodic dysphonia. It is performed under local anesthesia and provides phonation improvement in the short and long term. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  12. [H reflex in patients with spastic quadriplegia].

    PubMed

    Miyama, Sahoko; Arimoto, Kiyoshi; Kimiya, Satoshi

    2009-01-01

    Hoffmann reflex (H reflex) is an electrically elicited spinal monosynaptic reflex. H reflex was examined in 18 patients with spastic quadriplegia who had perinatal or postnatal problems. H reflex was elicitable in 11 patients for the abductor pollicis brevis (61.1%), 10 for the abductor digiti minimi (55.6%) and 16 for the abductor hallucis (88.9%). Because the abductor pollicis brevis and the abductor digiti minimi do not exhibit H reflex in normal subjects, it was suggested that the excitability of alpha motor neurons innervating these muscles was increased. H reflex was not detected for the extensor digitorum brevis in any patients, indicating the difference in the excitability among alpha motor neurons. In some patients, H reflex did not disappear under supramaximal stimuli. We conclude that the mechanism of evolution of H reflex in patients with spastic quadriplegia is different from that in normal subjects.

  13. A randomised trial into the effect of an isolated hip abductor strengthening programme and a functional motor control programme on knee kinematics and hip muscle strength.

    PubMed

    Palmer, Kathryn; Hebron, Clair; Williams, Jonathan M

    2015-05-03

    Dynamic knee valgus and internal femoral rotation are proposed to be contributory risk factors for patellofemoral pain and anterior cruciate ligament injuries. Multimodal interventions including hip abductor strengthening or functional motor control programmes have a positive impact of pain, however their effect on knee kinematics and muscle strength is less clear. The aim of this study was to examine the effect of isolated hip abductor strengthening and a functional motor control exercise on knee kinematics and hip abductor strength. This prospective, randomised, repeated measures design included 29 asymptomatic volunteers presenting with increase knee valgus and femoral internal rotation. Participants completed either isolated hip abductor strengthening or a functional motor control exercise for 5 weeks. Knee kinematics were measured using inertial sensors during 2 functional activities and hip abductor strength measured using a load cell during isometric hip abduction. There were no significant differences in dynamic knee valgus and internal rotation following the isolated hip abductor or functional motor control intervention, and no significant differences between the groups for knee angles. Despite this, the actual magnitude of reduction in valgus was 10° and 5° for the functional motor control group and strengthening group respectively. The actual magnitude of reduction in internal rotation was 9° and 18° for the functional motor control group and strengthening group respectively. Therefore there was a tendency towards clinically significant improvements in knee kinematics in both exercise groups. A statistically significant improvement in hip abductor strength was evident for the functional motor control group (27% increase; p = 0.008) and strengthening group (35% increase; p = 0.009) with no significant difference between the groups being identified (p = 0.475). Isolated hip strengthening and functional motor control exercises resulted in

  14. The association of visually-assessed quality of movement during jump-landing with ankle dorsiflexion range-of-motion and hip abductor muscle strength among healthy female athletes.

    PubMed

    Rabin, Alon; Einstein, Ofira; Kozol, Zvi

    2018-05-01

    To explore the association between ankle dorsiflexion (DF) range of motion (ROM), and hip abductor muscle strength, to visually-assessed quality of movement during jump-landing. Cross-sectional. Gymnasium of participating teams. 37 female volleyball players. Quality of movement in the frontal-plane, sagittal-plane, and overall (both planes) was visually rated as "good/moderate" or "poor". Weight-bearing Ankle DF ROM and hip abductor muscle strength were compared between participants with differing quality of movement. Weight-bearing DF ROM on both sides was decreased among participants with "poor" sagittal-plane quality of movement (dominant side: 50.8° versus 43.6°, P = .02; non-dominant side: 54.6° versus 45.9°, P = .01), as well as among participants with an overall "poor" quality of movement (dominant side: 51.8° versus 44.0°, P < .01; non-dominant side: 56.5° versus 45.1°, P < .01). Weight-bearing ankle DF on the non-dominant side was decreased among participants with a "poor" frontal-plane quality of movement (53.9° versus 46.0°, P = .02). No differences in hip abductor muscle strength were noted between participants with differing quality of movement. Visual assessment of jump-landing can detect differences in quality of movement that are associated with ankle DF ROM. Clinicians observing a poor quality of movement may wish to assess ankle DF ROM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Ultrasound evaluation of intrinsic plantar muscles and fascia in hallux valgus

    PubMed Central

    Lobo, César Calvo; Marín, Alejandro Garrido; Sanz, David Rodríguez; López, Daniel López; López, Patricia Palomo; Morales, Carlos Romero; Corbalán, Irene Sanz

    2016-01-01

    Abstract A cross-sectional area (CSA) and thickness reduction of the abductor hallucis (AbH) is shown in subjects with hallux valgus (HV). To date, other soft-tissue structures have not been researched in relation with HV. The aim of this study was to compare the CSA and thickness of the intrinsic plantar muscles and fascia (PF) between feet with and without HV. Therefore, a cross-sectional and case-control study was performed using B-mode with an iU22 Philips ultrasound system and a 5 to 17-MHz transducer. The CSA and thickness were measured for the AbH, flexor digitorum brevis (FDB) and flexor hallucis brevis (FHB), and also the thickness for the anterior, middle, and posterior PF portions. A convenience sample of 40 feet, 20 with HV and 20 without HV, was recruited from a clinical and research center. A multivariate regression analysis using linear regression was performed to evaluate the ultrasound imaging measurements (α = 0.05). Consequently, statistically significant differences were observed between the groups (P < 0.05) for the AbH and FHB thickness, and CSA reduction, and also the plantar fascia thickness increase in favor of the HV group. On the contrary, the FDB thickness and CSA did not show statistically significant differences (P ≥ 0.05). In conclusion, the CSA and thickness of the AbH and FHB intrinsic plantar muscles are reduced, whereas the thickness of the anterior, middle, and posterior PF portions are increased, in subjects with HV compared with those without HV. PMID:27828846

  16. Effect of changes of femoral offset on abductor and joint reaction forces in total hip arthroplasty.

    PubMed

    Rüdiger, Hannes A; Guillemin, Maïka; Latypova, Adeliya; Terrier, Alexandre

    2017-11-01

    Anatomical reconstruction in total hip arthroplasty (THA) allows for physiological muscle function, good functional outcome and implant longevity. Quantitative data on the effect of a loss or gain of femoral offset (FO) are scarce. The aim of this study was to quantitatively describe the effect of FO changes on abductor moment arms, muscle and joint reactions forces. THA was virtually performed on 3D models built from preoperative CT scans of 15 patients undergoing THA. Virtual THA was performed with a perfectly anatomical reconstruction, a loss of 20% of FO (-FO), and a gain of 20% of FO (+FO). These models were combined with a generic musculoskeletal model (OpenSim) to predict moment arms, muscle and joint reaction forces during normal gait cycles. In average, with -FO reconstructions, muscle moment arms decreased, while muscle and hip forces increased significantly (p < 0.001). We observed the opposite with +FO reconstructions. Gluteus medius was more affected than gluteus minimus. -FO had more effect than +FO. A change of 20% of FO induced an average change 8% of abductor moment arms, 16% of their forces, and 6% of the joint reaction force. To our knowledge, this is the first report providing quantitative data on the effect of FO changes on muscle and joint forces during normal gait. A decrease of FO necessitates an increase of abductor muscle force to maintain normal gait, which in turn increases the joint reaction force. This effect underscores the importance of an accurate reconstruction of the femoral offset.

  17. The Effects of a Transition to Minimalist Shoe Running on Intrinsic Foot Muscle Size.

    PubMed

    Johnson, A W; Myrer, J W; Mitchell, U H; Hunter, I; Ridge, S T

    2016-02-01

    A proposed benefit of minimalist shoe running is an increase in intrinsic foot muscle strength. This study examined change in intrinsic foot muscle size in runners transitioning to Vibram FiveFingers™ minimalist shoes compared to a control group running in traditional running shoes. We compare pre-transition size between runners who developed bone marrow edema to those who did not. 37 runners were randomly assigned to the Vibram FiveFingers™ group (n=18) or control group (n=19). Runners' bone marrow edema and intrinsic foot muscle size were measured at baseline and after 10 weeks. Total running volume was maintained by all runners. A significant increase in abductor hallucis cross-sectional area of 10.6% occurred in the Vibram FiveFingers™ group compared to the control group (p=0.01). There was no significant change in any of the other muscles examined (p>0.05). 8 of the Vibram FiveFingers™ runners, and 1 control runner developed bone marrow edema. Those who developed bone marrow edema, primarily women, had significantly smaller size in all assessed muscles (p≤0.05). Size of intrinsic foot muscles appears to be important in safely transitioning to minimalist shoe running. Perhaps intrinsic foot muscle strengthening may benefit runners wanting to transition to minimalist shoes. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Ultrasound evaluation of intrinsic plantar muscles and fascia in hallux valgus: A case-control study.

    PubMed

    Lobo, César Calvo; Marín, Alejandro Garrido; Sanz, David Rodríguez; López, Daniel López; López, Patricia Palomo; Morales, Carlos Romero; Corbalán, Irene Sanz

    2016-11-01

    A cross-sectional area (CSA) and thickness reduction of the abductor hallucis (AbH) is shown in subjects with hallux valgus (HV). To date, other soft-tissue structures have not been researched in relation with HV. The aim of this study was to compare the CSA and thickness of the intrinsic plantar muscles and fascia (PF) between feet with and without HV. Therefore, a cross-sectional and case-control study was performed using B-mode with an iU22 Philips ultrasound system and a 5 to 17-MHz transducer. The CSA and thickness were measured for the AbH, flexor digitorum brevis (FDB) and flexor hallucis brevis (FHB), and also the thickness for the anterior, middle, and posterior PF portions. A convenience sample of 40 feet, 20 with HV and 20 without HV, was recruited from a clinical and research center. A multivariate regression analysis using linear regression was performed to evaluate the ultrasound imaging measurements (α = 0.05). Consequently, statistically significant differences were observed between the groups (P < 0.05) for the AbH and FHB thickness, and CSA reduction, and also the plantar fascia thickness increase in favor of the HV group. On the contrary, the FDB thickness and CSA did not show statistically significant differences (P ≥ 0.05). In conclusion, the CSA and thickness of the AbH and FHB intrinsic plantar muscles are reduced, whereas the thickness of the anterior, middle, and posterior PF portions are increased, in subjects with HV compared with those without HV.

  19. Hip abductor, trunk extensor and ankle plantar flexor endurance in females with and without patellofemoral pain.

    PubMed

    Van Cant, Joachim; Pitance, Laurent; Feipel, Véronique

    2017-01-01

    Previous studies have reported strength deficit in hip abduction, extension and external rotation in females with patellofemoral pain (PFP) when compared with healthy control; however, there is conflicting evidence for a decrease in hip muscle endurance. Therefore, it seems important to evaluate hip muscle endurance in females with PFP. Moreover, trunk extensor and ankle plantar flexor endurance have not yet been evaluate in females with PFP. To compare hip abductor, trunk extensor and ankle plantar flexor endurance between females with and without PFP. Twenty females with PFP (mean age, 21.1 years) and 76 healthy females (mean age, 20.5 years) were recruited. Subject performed three endurance clinical tests: (1) The hip abductor isometric endurance test, (2) The Sorensen test and (3) The heel rise test. Group differences were assessed using an independent t tests, or Mann-Whitney U tests for non-normally distributed data. Subjects with PFP exhibited significantly lower hip abductor, trunk extensor and ankle plantar flexor endurance than healthy controls. On average, subjects with PFP had deficits of 16% in hip abduction, 14% in trunk extension and 26% in ankle plantar flexion. Females with PFP exhibited diminished hip abductor, trunk extensor and ankle plantar flexor endurance compared to healthy controls.

  20. Oedema of the abductor digiti quinti muscle due to subacute denervation: report of two cases.

    PubMed

    Chimutengwende-Gordon, Mukai; O'Donnell, Paul; Cullen, Nicholas; Singh, Dishan

    2014-03-01

    The clinical presentation of abductor digiti quinti (ADQ) denervation is often non-specific. The diagnosis is generally clinical and may be easily missed. This case report of two patients describes the magnetic resonance imaging (MRI) finding of unilateral oedema and fatty infiltration isolated to the ADQ. A 36-year old woman who presented with laterally located left foot pain was initially diagnosed as having plantar fasciitis. An MRI scan arranged due to the unusual site of the pain showed increased signal intensity within the ADQ muscle on T1 and T2 images indicating fatty infiltration. Short tau inversion recovery (STIR) images showed hyperintensity of the ADQ indicating oedema. The MRI scan of a 45-year old man who presented with a three month history of left heel pain revealed similar findings. These MRI appearances indicate subacute denervation, which, when involving solely the ADQ muscle suggests entrapment of the first branch of the lateral plantar nerve. Consideration of this imaging finding when examining MRI scans of patients with non-specific heel pain has the potential to facilitate diagnosis. Copyright © 2013 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  1. EMG and force production of the flexor hallucis longus muscle in isometric plantarflexion and the push-off phase of walking.

    PubMed

    Péter, Annamária; Hegyi, András; Stenroth, Lauri; Finni, Taija; Cronin, Neil J

    2015-09-18

    Large forces are generated under the big toe in the push-off phase of walking. The largest flexor muscle of the big toe is the flexor hallucis longus (FHL), which likely contributes substantially to these forces. This study examined FHL function at different levels of isometric plantarflexion torque and in the push-off phase at different speeds of walking. FHL and calf muscle activity were measured with surface EMG and plantar pressure was recorded with pressure insoles. FHL activity was compared to the activity of the calf muscles. Force and impulse values were calculated under the big toe, and were compared to the entire pressed area of the insole to determine the relative contribution of big toe flexion forces to the ground reaction force. FHL activity increased with increasing plantarflexion torque level (F=2.8, P=0.024) and with increasing walking speed (F=11.608, P<0.001). No differences were observed in the relative contribution of the force under the big toe to the entire sole between different plantarflexion torque levels (F=0.836, P=0.529). On the contrary, in the push-off phase of walking, peak force under the big toe increased at a higher rate than force under the other areas of the plantar surface (F=3.801, P=0.018), implying a greater relative contribution to total force at faster speeds. Moreover, substantial differences were found between isometric plantarflexion and walking concerning FHL activity relative to that of the calf muscles, highlighting the task-dependant behaviour of FHL. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Myosin Binding Protein-C Slow Phosphorylation is Altered in Duchenne Dystrophy and Arthrogryposis Myopathy in Fast-Twitch Skeletal Muscles.

    PubMed

    Ackermann, Maegen A; Ward, Christopher W; Gurnett, Christina; Kontrogianni-Konstantopoulos, Aikaterini

    2015-08-19

    Myosin Binding Protein-C slow (sMyBP-C), encoded by MYBPC1, comprises a family of regulatory proteins of skeletal muscles that are phosphorylated by PKA and PKC. MYBPC1 missense mutations are linked to the development of Distal Arthrogryposis-1 (DA-1). Although structure-function details for this myopathy are evolving, function is undoubtedly driven by sequence variations and post-translational modifications in sMyBP-C. Herein, we examined the phosphorylation profile of sMyBP-C in mouse and human fast-twitch skeletal muscles. We used Flexor Digitorum Brevis (FDB) isolated from young (~2-months old) and old (~14-months old) wild type and mdx mice, and human Abductor Hallucis (AH) and gastrocnemious muscles carrying the DA-1 mutations. Our results indicate both constitutive and differential phosphorylation of sMyBP-C in aged and diseased muscles. We report a 7-35% reduction in the phosphorylation levels of select sites in old wild type and young or old mdx FDB mouse muscles, compared to young wild type tissue. Similarly, we observe a 30-70% decrease in the phosphorylation levels of all PKA and PKC phospho-sites in the DA-1 AH, but not gastrocnemius, muscle. Overall, our studies show that the phosphorylation pattern of sMyBP-C is differentially regulated in response to age and disease, suggesting that phosphorylation plays important roles in these processes.

  3. Reliability of measuring hip abductor strength following total knee arthroplasty using a hand-held dynamometer.

    PubMed

    Schache, Margaret B; McClelland, Jodie A; Webster, Kate E

    2016-01-01

    To investigate the test-retest reliability of measuring hip abductor strength in patients with total knee arthroplasty (TKA) using a hand-held dynamometer (HHD) with two different types of resistance: belt and manual resistance. Test-retest reliability of 30 subjects (17 female, 13 male, 71.9 ± 7.4 years old), 9.2 ± 2.7 days post TKA was measured using belt and therapist resistance. Retest reliability was calculated with intra-class coefficients (ICC3,1) and 95% confidence intervals (CI) for both the group average and the individual scores. A paired t-test assessed whether a difference existed between the belt and therapist methods of resistance. ICCs were 0.82 and 0.80 for the belt and therapist resisted methods, respectively. Hip abductor strength increases of 8 N (14%) for belt resisted and 14 N (17%) for therapist resisted measurements of the group average exceeded the 95% CI and may represent real change. For individuals, hip abductor strength increases of 33 N (72%) (belt resisted) and 57 N (79%) (therapist resisted) could be interpreted as real change. Hip abductor strength can be reliably measured using HHD in the clinical setting with the described protocol. Belt resistance demonstrated slightly higher test-retest reliability. Reliable measurement of hip abductor muscle strength in patients with TKA is important to ensure deficiencies are addressed in rehabilitation programs and function is maximized. Hip abductor strength can be reliably measured with a hand-held dynamometer in the clinical setting using manual or belt resistance.

  4. Comparative musculoskeletal anatomy of chameleon limbs, with implications for the evolution of arboreal locomotion in lizards and for teratology.

    PubMed

    Molnar, Julia L; Diaz, Raul E; Skorka, Tautis; Dagliyan, Grant; Diogo, Rui

    2017-09-01

    Chameleon species have recently been adopted as models for evo-devo and macroevolutionary processes. However, most anatomical and developmental studies of chameleons focus on the skeleton, and information about their soft tissues is scarce. Here, we provide a detailed morphological description based on contrast enhanced micro-CT scans and dissections of the adult phenotype of all the forelimb and hindlimb muscles of the Veiled Chameleon (Chamaeleo calyptratus) and compare these muscles with those of other chameleons and lizards. We found the appendicular muscle anatomy of chameleons to be surprisingly conservative considering the remarkable structural and functional modifications of the limb skeleton, particularly the distal limb regions. For instance, the zygodactyl autopodia of chameleons are unique among tetrapods, and the carpals and tarsals are highly modified in shape and number. However, most of the muscles usually present in the manus and pes of other lizards are present in the same configuration in chameleons. The most obvious muscular features related to the peculiar opposable autopodia of chameleons are: (1) presence of broad, V-shaped plantar and palmar aponeuroses, and absence of intermetacarpales and intermetatarsales, between the digits separated by the cleft in each autopod; (2) oblique orientation of the superficial short flexors originating from these aponeuroses, which may allow these muscles to act as powerful adductors of the "super-digits"; and (3) well-developed abductor digiti minimi muscles and abductor pollicis/hallucis brevis muscles, which may act as powerful abductors of the "super-digits." © 2017 Wiley Periodicals, Inc.

  5. Hip-Abductor Fatigue and Single-Leg Landing Mechanics in Women Athletes

    PubMed Central

    Patrek, Mary F.; Kernozek, Thomas W.; Willson, John D.; Wright, Glenn A.; Doberstein, Scott T.

    2011-01-01

    Abstract Context: Reduced hip-abductor strength and muscle activation may be associated with altered lower extremity mechanics, which are thought to increase the risk for anterior cruciate ligament injury. However, experimental evidence supporting this relationship is limited. Objective: To examine the changes in single-leg landing mechanics and gluteus medius recruitment that occur after a hip-abductor fatigue protocol. Design: Descriptive laboratory study. Patients or Other Participants: Twenty physically active women (age  =  21.0 ± 1.3 years). Intervention(s): Participants were tested before (prefatigue) and after (postfatigue) a hip-abductor fatigue protocol consisting of repetitive side-lying hip abduction. Main Outcome Measure(s): Outcome measures included sagittal-plane and frontal-plane hip and knee kinematics at initial contact and at 60 milliseconds after initial contact during 5 single-leg landings from a height of 40 cm. Peak hip and knee sagittal-plane and frontal-plane joint moments during this time interval were also analyzed. Measures of gluteus medius activation, including latency, peak amplitude, and integrated signal, were recorded. Results: A small (<1°) increase in hip-abduction angle at initial contact and a small (<1°) decrease in knee-abduction (valgus) angle at 60 milliseconds after contact were observed in the postfatigue landing condition. No other kinematic changes were noted for the knee or hip at initial contact or at 60 milliseconds after initial contact. Peak external knee-adduction moment decreased 27% and peak hip adduction moment decreased 24% during the postfatigue landing condition. Gluteus medius activation was delayed after the protocol, but no difference in peak or integrated signal was seen during the landing trials. Conclusions: Changes observed during single-leg landings after hip-abductor fatigue were not generally considered unfavorable to the integrity of the anterior cruciate ligament. Further work may be

  6. Quadriceps combined with hip abductor strengthening versus quadriceps strengthening in treating knee osteoarthritis: a study protocol for a randomized controlled trial.

    PubMed

    Xie, Yujie; Zhang, Chi; Jiang, Wei; Huang, Juan; Xu, Lili; Pang, Guoyin; Tang, Haiyan; Chen, Ruyan; Yu, Jihua; Guo, Shengmin; Xu, Fangyuan; Wang, Jianxiong

    2018-05-15

    Lower limb strengthening, especially the quadriceps training, is of much necessity for patients with knee osteoarthritis (KOA). Previous studies suggest that strengthening of the hip muscles, especially the hip abductor, can potentially relieve the KOA-associated symptoms. Nevertheless, the effects of quadriceps combined with hip abductor strengthening remain unclear. Therefore, the current randomized controlled trial is designed aiming to observe whether quadriceps in combination with hip abductor strengthening can better improve the function and reduce pain in KOA patients than quadriceps training alone. A total of 80 subjects with symptomatic KOA will be recruited from the communities and hospital outpatient, and will be randomly assigned to the experiment group (Quadriceps-plus-hip-abductor-strengthening) or the control group (Quadriceps-strengthening). Specifically, participants in the experiment group will complete 4 exercises to train the quadriceps and hip abductor twice a day for 6 weeks at home, while those in the control group will only perform 2 exercises to strengthen the quadriceps. Besides, all patients will also receive usual care management, including health education and physical agent therapy when necessary. Knee pain will be measured using the Visual Analogue Scale (VAS) at baseline, in every week during the course of treatment, as well as 8 and 12 weeks after randomization. Furthermore, knee function will be measured using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scale, and the quality of life will be measured using the MOS Item Short-form Health Survey (SF-36). In this study, several simple tests will be applied to assess the objective function. All the assessments except for VAS will be carried out at baseline, and in the 6th, 8th and 12th weeks respectively. Our findings will provide more evidence for the effects of hip abductor strengthening on relieving pain and improving function in KOA patients. Hip

  7. Anatomic relationship of the proximal nail matrix to the extensor hallucis longus tendon insertion.

    PubMed

    Palomo López, P; Becerro de Bengoa Vallejo, R; López López, D; Prados Frutos, J C; Alfonso Murillo González, J; Losa Iglesias, M E

    2015-10-01

    The purpose of this study was to delineate the relationship of the terminal extensor hallucis longus tendon insertion to the proximal limit of the nail matrix of the great toe. Fifty fresh-frozen human cadaver great toes with no evidence of trauma (average age, 62.5 years; 29 males and 21 females) were used for this study. Under 25X magnification, the proximal limit of the nail matrix and the terminal bony insertion of the extensor hallucis longus tendons were identified. The distance from the terminal tendon insertion to the nail matrix was ascertained using precision calipers, an optical microscope, and autocad(®) software for windows. Twenty-five great toes were placed in a neutral formalin solution and further analysed by histological longitudinal-sections. The specimens were stained with haematoxylin and eosin and examined microscopically to determine the presence of the extensor hallucis longus tendon along the dorsal aspect of the distal phalanx of each great toe. The main result we found in great toes was that the extensor tendon is between the matrix and the phalanx and extends dorsally to the distal aspect of the distal phalanx in all, 100%, specimens. The nail matrix of the great toe is not attached to the periosteum of the dorsal aspect of the base of the distal phalanx as is the case for fingers, because the extensor hallucis tendon is plantar or directly underneath the nail matrix and the tendon is dorsal to the bone. We have found that the extensor tendon is between the matrix and the phalanx and extends dorsally to the distal aspect of the distal phalanx. The nail matrix of the great toe is not attached to the periosteum of the dorsal aspect of the base of distal phalanx as is the case in fingers, because the extensor hallucis tendon is plantar or directly underneath the nail matrix and the tendon is dorsal to the bone. Our anatomic study demonstrates that the proximal limit of the matrix and nail bed of the human great toe are dorsal and

  8. Multivariate analysis of variations in intrinsic foot musculature among hominoids.

    PubMed

    Oishi, Motoharu; Ogihara, Naomichi; Shimizu, Daisuke; Kikuchi, Yasuhiro; Endo, Hideki; Une, Yumi; Soeta, Satoshi; Amasaki, Hajime; Ichihara, Nobutsune

    2018-05-01

    Comparative analysis of the foot muscle architecture among extant great apes is important for understanding the evolution of the human foot and, hence, human habitual bipedal walking. However, to our knowledge, there is no previous report of a quantitative comparison of hominoid intrinsic foot muscle dimensions. In the present study, we quantitatively compared muscle dimensions of the hominoid foot by means of multivariate analysis. The foot muscle mass and physiological cross-sectional area (PCSA) of five chimpanzees, one bonobo, two gorillas, and six orangutans were obtained by our own dissections, and those of humans were taken from published accounts. The muscle mass and PCSA were respectively divided by the total mass and total PCSA of the intrinsic muscles of the entire foot for normalization. Variations in muscle architecture among human and extant great apes were quantified based on principal component analysis. Our results demonstrated that the muscle architecture of the orangutan was the most distinctive, having a larger first dorsal interosseous muscle and smaller abductor hallucis brevis muscle. On the other hand, the gorilla was found to be unique in having a larger abductor digiti minimi muscle. Humans were distinguished from extant great apes by a larger quadratus plantae muscle. The chimpanzee and the bonobo appeared to have very similar muscle architecture, with an intermediate position between the human and the orangutan. These differences (or similarities) in architecture of the intrinsic foot muscles among humans and great apes correspond well to the differences in phylogeny, positional behavior, and locomotion. © 2018 Anatomical Society.

  9. Reference values of hip abductor torque among youth athletes: Influence of age, sex and sports.

    PubMed

    Bittencourt, Natália Franco Netto; Santos, Thiago Ribeiro Teles; Gonçalves, Gabriela Gomes Pavan; Coelho, Amanda Priscila; Gomes, Bárbara Gonçalves Braz de Magalhães; Mendonça, Luciana De Michelis; Fonseca, Sérgio Teixeira

    2016-09-01

    (1) To determine the reference values of hip abductor torque in youth athletes; (2) To investigate the influence of sex, age and sports on hip abductors torque. Cross-sectional. Sports clubs. 301 volleyball, basketball and futsal athletes between 10 and 19 years of age. Mean value of three maximal isometric hip abductor torques, evaluated using a hand-held dynamometer. The mean values of maximal isometric hip abductor torque ranged from 1.03 to 1.50 Nm/kg. The dominant hip abductor torque values were greater in 15-19 years old (1.41 ± 0.27 Nm/kg) than in 10-14 years old (1.12 ± 0.31 Nm/kg). In addition, the hip abductor torque values were smaller in basketball players (1.15 ± 0.31 Nm/kg) than futsal (1.34 ± 0.37 Nm/kg) and volleyball players (1.28 ± 0.25 Nm/kg). The comparison of hip abductor torque between futsal and volleyball players revealed no difference. The hip abductor torque values were greater in male volleyball athletes (1.28 ± 0.25 Nm/kg) than female volleyball athletes (1.13 ± 0.22 Nm/kg). This study established reference values for maximal isometric hip abductor torque in youth volleyball, basketball and futsal athletes. In addition, the results demonstrated that sex, age and sports influenced hip abductor torque. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Congenital hypertrophy of multiple intrinsic muscles of the foot.

    PubMed

    Shiraishi, Tomohiro; Park, Susam; Niu, Atushi; Hasegawa, Hiromi

    2014-12-01

    Congenital hypertrophy of a single intrinsic muscle of the foot is rare, and as far as we know, only six cases have been reported. We describe a case of congenital anomaly that showed hypertrophy of multiple intrinsic muscles of the foot; the affected muscles were all the intrinsic muscles of the foot except the extensor digitorum brevis or extensor hallucis. Other tissues such as adipose tissue, nervous tissue, or osseous tissue showed no abnormalities. To reduce the volume of the foot we removed parts of the enlarged muscles.

  11. Hip abductor function and lower extremity landing kinematics: sex differences.

    PubMed

    Jacobs, Cale A; Uhl, Timothy L; Mattacola, Carl G; Shapiro, Robert; Rayens, William S

    2007-01-01

    Rapid deceleration during sporting activities, such as landing from a jump, has been identified as a common mechanism of acute knee injury. Research into the role of potential sex differences in hip abductor function with lower extremity kinematics when landing from a jump is limited. To evaluate sex differences in hip abductor function in relation to lower extremity landing kinematics. 2 x 2 mixed-model factorial design using a between-subjects factor (sex) and a repeated factor (test). University laboratory. A sample of convenience consisting of 30 healthy adults (15 women, 15 men) with no history of lower extremity surgery and no lower extremity injuries within 6 months of testing. Landing kinematics were assessed as subjects performed 3 pre-exercise landing trials that required them to hop from 2 legs and land on a single leg. Isometric peak torque (PT) of the hip abductors was measured, followed by an endurance test during which subjects maintained 50% of their PT to the limits of endurance. After a 15-minute rest period, subjects completed a 30-second bout of isometric hip abduction, from which we calculated the percentage of endurance capacity (%E). Immediately after exercise, subjects completed 3 postexercise landing trials. PT, %E, and peak joint displacement (PJD) of the hip and knee in all 3 planes of motion. Women demonstrated lower PT values (5.8 +/- 1.2% normalized to body weight and height) than did their male counterparts (7.2 +/- 1.5% normalized to body weight and height, P = .009). However, no sex differences were seen in %E. Women also demonstrated larger knee valgus PJD (7.26 degrees +/- 6.61 degrees) than did men (3.29 degrees +/- 3.54 degrees, P = .04). Women's PT was moderately correlated with hip flexion, adduction, and knee valgus PJD; however, PT did not significantly correlate with men's landing kinematics. Regardless of sex, hip flexion (P = .002) and hip adduction (P = .001) were significantly increased following the 30-second bout of

  12. Relationship between lower extremity isometric muscle strength and standing balance in patients with multiple sclerosis.

    PubMed

    Citaker, Seyit; Guclu-Gunduz, Arzu; Yazici, Gokhan; Bayraktar, Deniz; Nazliel, Bijen; Irkec, Ceyla

    2013-01-01

    Muscle strength and standing balance decrease in patients with Multiple Sclerosis (MS). The aim of the present study was to investigate the relationship between the lower extremity isometric muscle strength and standing balance in patients with MS. Forty-seven patients with MS and 10 healthy volunteers were included. Neurological disability level was assessed using Expanded Disability Status Scale (EDSS). Isometric strength of seven lower extremity muscles (hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor) was assessed using hand-held dynamometer. Duration of static one-leg standing balance was measured using digital chronometer. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength, and duration of one-leg standing balance were decreased in patients with MS when compared with controls (p < 0.05). All assessed lower extremity isometric muscle strength and EDSS level was related duration of one-leg standing balance in patients with MS. All assessed lower extremity isometric muscle strength (except ankle dorsal flexor) was related with EDSS. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength decreases in ambulatory MS patients. Lower extremity muscle weakness and neurological disability level are related with imbalance in MS population. Hip and knee region muscles weakness increases the neurological disability level. For the better balance and decrease neurological disability level whole lower extremity muscle strengthening should be included in rehabilitation programs.

  13. The Effect of Paired Muscle Stimulation on Preparation for Movement.

    PubMed

    Brownjohn, Philip W; Blakemore, Rebekah L; Fox, Jonathan A; Shemmell, Jonathan

    2018-06-07

    Paired muscle stimulation is used clinically to facilitate the performance of motor tasks for individuals with motor dysfunction. However, the optimal temporal relationship between stimuli for enhancing movement remains unknown. We hypothesized that synchronous, muscle stimulation would increase the extent to which stimulated muscles are concurrently prepared for movement. We validated a measure of muscle-specific changes in corticomotor excitability prior to movement. We used this measure to examine the preparation of the first dorsal interosseous (FDI), abductor digiti minimi (ADM), abductor pollicis brevis (APB) muscles prior to voluntary muscle contractions before and after paired muscle stimulation at four interstimulus intervals (0, 5, 10, and 75 ms). Paired muscle stimulation increased premovement excitability in the stimulated FDI, but not in the ADM muscle. Interstimulus interval was not a significant factor in determining efficacy of the protocol. Paired stimulation, therefore, did not result in a functional association being formed between the stimulated muscles. Somatosensory potentials evoked by the muscle stimuli were small compared to those commonly elicited by stimulation of peripheral nerves, suggesting that the lack of functional association formation between muscles may be due to the small magnitude of afferent volleys from the stimulated muscles, particularly the ADM, reaching the cortex.

  14. Magnetic lumbosacral motor root stimulation with a flat, large round coil.

    PubMed

    Matsumoto, Hideyuki; Octaviana, Fitri; Hanajima, Ritsuko; Terao, Yasuo; Yugeta, Akihiro; Hamada, Masashi; Inomata-Terada, Satomi; Nakatani-Enomoto, Setsu; Tsuji, Shoji; Ugawa, Yoshikazu

    2009-04-01

    The aim of this paper is to develop a reliable method for supramaximal magnetic spinal motor root stimulation (MRS) for lower limb muscles using a specially devised coil. For this study, 42 healthy subjects were recruited. A 20-cm diameter coil designated as a Magnetic Augmented Translumbosacral Stimulation (MATS) coil was used. Compound muscle action potentials (CMAPs) were recorded from the abductor hallucis muscle. Their CMAPs were compared with those obtained by MRS using a conventional round or double coil and with those obtained using high-voltage electrical stimulation. The MATS coil evoked CMAPs to supramaximal stimulation in 80 of 84 muscles, although round and double coils elicited supramaximal CMAPs in only 15 and 18 of 84 muscles, respectively. The CMAP size to the MATS coil stimulation was the same as that to high-voltage electrical motor root stimulation. MATS coil achieved supramaximal stimulation of the lumbosacral spinal nerves. The CMAPs to supramaximal stimulation are necessary for measurement of the amplitude and area for the detection of conduction blocks. The MATS coil stimulation of lumbosacral motor roots is a reliable method for measuring the CMAP size from lower limb muscles in spinal motor root stimulation.

  15. Anatomical Study of the Neurovascular in Flexor Hallucis Longus Tendon Transfers.

    PubMed

    Mao, Haijiao; Dong, Wenwei; Shi, Zengyuan; Yin, Weigang; Xu, Dachuan; Wapner, Keith L

    2017-10-27

    The transfer of the flexor hallucis longus tendon or flexor digitorum longus tendon is frequently used for the treatment of posterior tibial tendon insufficiency or chronic Achilles tendinopathy. According to several anatomical studies, harvesting the flexor hallucis longus (FHL) tendon may cause nerve injury. Sixty-eight embalmed feet were dissected and anatomically classified to define the relationship between Henry's knot and the plantar nerves. Two different configurations were identified. In Pattern 1, which was observed in 64 specimens (94.1%), the distance between the medial plantar nerve and Henry's knot was 5.96 mm (range, 3.34 to 7.84, SD = 1.12). In Pattern 2, which was observed in 4 specimens (5.9%), there was no distance between the medial plantar nerve (MPN) and Henry's knot. No statistically significant difference was observed according to gender or side (p > 0.05). A retraction was performed to harvest the FHL through the posteromedial hindfoot incision using a single minimally invasive technique, and the medial and lateral plantar nerve lesions were scrupulously assessed. In conclusion, medial and lateral plantar nerve injuries did not occur more frequently, even after performing a single minimally invasive incision to harvest the FHL tendon, due to the large distance between the FHL tendon and the medial and lateral plantar nerves.

  16. Quantitative Muscle Ultrasonography in Carpal Tunnel Syndrome.

    PubMed

    Lee, Hyewon; Jee, Sungju; Park, Soo Ho; Ahn, Seung-Chan; Im, Juneho; Sohn, Min Kyun

    2016-12-01

    To assess the reliability of quantitative muscle ultrasonography (US) in healthy subjects and to evaluate the correlation between quantitative muscle US findings and electrodiagnostic study results in patients with carpal tunnel syndrome (CTS). The clinical significance of quantitative muscle US in CTS was also assessed. Twenty patients with CTS and 20 age-matched healthy volunteers were recruited. All control and CTS subjects underwent a bilateral median and ulnar nerve conduction study (NCS) and quantitative muscle US. Transverse US images of the abductor pollicis brevis (APB) and abductor digiti minimi (ADM) were obtained to measure muscle cross-sectional area (CSA), thickness, and echo intensity (EI). EI was determined using computer-assisted, grayscale analysis. Inter-rater and intra-rater reliability for quantitative muscle US in control subjects, and differences in muscle thickness, CSA, and EI between the CTS patient and control groups were analyzed. Relationships between quantitative US parameters and electrodiagnostic study results were evaluated. Quantitative muscle US had high inter-rater and intra-rater reliability in the control group. Muscle thickness and CSA were significantly decreased, and EI was significantly increased in the APB of the CTS group (all p<0.05). EI demonstrated a significant positive correlation with latency of the median motor and sensory NCS in CTS patients (p<0.05). These findings suggest that quantitative muscle US parameters may be useful for detecting muscle changes in CTS. Further study involving patients with other neuromuscular diseases is needed to evaluate peripheral muscle change using quantitative muscle US.

  17. Anatomical feasibility study of flexor hallucis longus transfer in treatment of Achilles tendon and posteromedial portal of ankle arthroscopy.

    PubMed

    Mao, Haijiao; Wang, Linger; Dong, Wenwei; Liu, Zhenxin; Yin, Weigang; Xu, Dachuan; Wapner, Keith L

    2018-04-16

    The aim of this study was to evaluate the occurrence of anatomical variations of the musculotendinous junction of the flexor hallucis longus (FHL) muscle, the relationship between FHL tendon or muscle and the tibial neurovascular bundle at the level of the posterior ankle joint in human cadavers. Seventy embalmed feet from 20 male and 15 female cadavers, the cadavers' mean age was 65.4 (range from 14 to 82) years, were dissected and anatomically classified to observe FHL muscle morphology define the relationship between FHL tendon or muscle and the tibial neurovascular bundle. The distance between the musculotendinous junction and the relationship between FHL tendon or muscle and the tibial neurovascular bundle was determined. Three morphology types of FHL muscle were identified: a long lateral and shorter medial muscle belly, which was observed in 63 specimens (90%); equal length medial and lateral muscle bellies, this variant was only observed in five specimens (7.1%); one lateral and no medial muscle belly, which was observed in two specimens (2.9%). No statistically significant difference was observed according to gender or side (p > 0.05). Two patterns were identified and described between FHL tendon or muscle and the tibial neurovascular bundle. Pattern 1, the distance between the neurovascular bundle and FHL tendon was 3.46 mm (range 2.34-8.84, SD = 2.12) which was observed in 66 specimens (94.3%); Pattern 2, there was no distance which was observed in four specimens (5.7%). Knowing FHL muscle morphology, variations provide new important insights into secure planning and execution of a FHL transfer for Achilles tendon defect as well as for the interpretation of ultrasound and magnetic resonance images. With posterior arthroscopic for the treatment of various ankle pathologies, posteromedial portal may be introduced into the posterior aspect of the ankle without gross injury to the tibial neurovascular structures because of the gap between the

  18. The influence of hip abductor muscle performance on dynamic postural stability in females with patellofemoral pain.

    PubMed

    Lee, Szu-Ping; Souza, Richard B; Powers, Christopher M

    2012-07-01

    Hip abductors play an important role in maintaining trunk and pelvis stability during unipedal tasks. The purpose of the study was to compare postural stability between individuals with patellofemoral pain (PFP) and pain-free controls. A secondary purpose was to evaluate the effect of a hip stabilizing brace on postural stability. Twenty females with PFP (27.3±6.3 years) and 19 controls (26.1±4.5 years) participated. Each subject performed a unipedal step-down balance task with the stance leg on a force platform from which center of pressure (COP) excursion was recorded. Quantitative COP excursion patterns (mean and peak displacements) were used as measures of postural stability. For subjects with PFP, postural stability also was quantified following the application of a hip stabilizing brace. Hip abductor strength was significantly lower in PFP group compared to the control group (1.39±0.4 vs. 1.62±0.26 N/kg-BW, p=0.046). Peak and mean medial-lateral COP displacements during the balance task were greater in the PFP group (39.8±6.7 vs. 24.3±3.8 mm, p<0.001; 24.7±16.3 vs. 13.5±4.4 mm, p=0.005). Application of the hip stabilizing brace reduced the peak and mean COP displacement (39.8±6.7 vs. 24.7±4.7 mm, p<0.001; 24.7±16.3 vs. 16.8±15.1 mm, p=0.02). Our results demonstrate that females with PFP exhibit impaired medial-lateral postural stability when compared to control subjects. Application of a hip stabilizing brace significantly improved stability to a level comparable to the controls. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. The Efficacy of Intraoperative Neurophysiological Monitoring Using Transcranial Electrically Stimulated Muscle-evoked Potentials (TcE-MsEPs) for Predicting Postoperative Segmental Upper Extremity Motor Paresis After Cervical Laminoplasty.

    PubMed

    Fujiwara, Yasushi; Manabe, Hideki; Izumi, Bunichiro; Tanaka, Hiroyuki; Kawai, Kazumi; Tanaka, Nobuhiro

    2016-05-01

    Prospective study. To investigate the efficacy of transcranial electrically stimulated muscle-evoked potentials (TcE-MsEPs) for predicting postoperative segmental upper extremity palsy following cervical laminoplasty. Postoperative segmental upper extremity palsy, especially in the deltoid and biceps (so-called C5 palsy), is the most common complication following cervical laminoplasty. Some papers have reported that postoperative C5 palsy cannot be predicted by TcE-MsEPs, although others have reported that it can be predicted. This study included 160 consecutive cases that underwent open-door laminoplasty, and TcE-MsEP monitoring was performed in the biceps brachii, triceps brachii, abductor digiti minimi, tibialis anterior, and abductor hallucis. A >50% decrease in the wave amplitude was defined as an alarm point. According to the monitoring alarm, interventions were performed, which include steroid administration, foraminotomies, etc. Postoperative deltoid and biceps palsy occurred in 5 cases. Among the 155 cases without segmental upper extremity palsy, there were no monitoring alarms. Among the 5 deltoid and biceps palsy cases, 3 had significant wave amplitude decreases in the biceps during surgery, and palsy occurred when the patients awoke from anesthesia (acute type). In the other 2 cases in which the palsy occurred 2 days after the operation (delayed type), there were no significant wave decreases. In all of the cases, the palsy was completely resolved within 6 months. The majority of C5 palsies have been reported to occur several days after surgery, but some of them have been reported to occur immediately after surgery. Our results demonstrated that TcE-MsEPs can predict the acute type, whereas the delayed type cannot be predicted. A >50% wave amplitude decrease in the biceps is useful to predict acute-type segmental upper extremity palsy. Further examination about the interventions for monitoring alarm will be essential for preventing palsy.

  20. Influence of Hip Abductor Strength on Functional Outcomes Before and After Total Knee Arthroplasty: Post Hoc Analysis of a Randomized Controlled Trial.

    PubMed

    Loyd, Brian J; Jennings, Jason M; Judd, Dana L; Kim, Raymond H; Wolfe, Pamela; Dennis, Douglas A; Stevens-Lapsley, Jennifer E

    2017-09-01

    Total knee arthroplasty (TKA) is associated with declines in hip abductor (HA) muscle strength; however, a longitudinal analysis demonstrating the influence of TKA on trajectories of HA strength change has not been conducted. The purpose of this study was to quantify changes in HA strength from pre-TKA through 3 months post-TKA and to characterize the relationship between HA strength changes and physical performance. This study is a post hoc analysis of a randomized controlled trial. Data from 162 participants (89 women, mean age = 63 y) were used for analysis. Data were collected by masked assessors preoperatively and at 1 and 3 months following surgery. Outcomes included: Timed "Up and Go" test (TUG), Stair Climbing Test (SCT), Six-Minute Walk Test (6MWT), and walking speed. Paired t tests were used for between- and within-limb comparisons of HA strength. Multivariable regression was used to determine contributions of independent variables, HA and knee extensor strength, to the dependent variables of TUG, SCT, 6MWT, and walking speed at each time point. Hip abductor strength was significantly lower in the surgical limb pre-TKA (mean = 0.015; 95% CI = 0.010-0.020), 1 month post-TKA (0.028; 0.023-0.034), and 3 months post-TKA (0.02; 0.014-0.025) compared with the nonsurgical limb. Hip abductor strength declined from pre-TKA to 1 month post-TKA (18%), but not at the 3-month time point (0%). Hip abductor strength independently contributed to performance-based outcomes pre-TKA; however, this contribution was not observed post-TKA. The post hoc analysis prevents examining all outcomes likely to be influenced by HA strength. Surgical limb HA strength is impaired prior to TKA, and worsens following surgery. Furthermore, HA strength contributes to performance-based outcomes, supporting the hypothesis that HA strength influences functional recovery. © 2017 American Physical Therapy Association

  1. Isometric muscle strength and mobility capacity in children with cerebral palsy.

    PubMed

    Dallmeijer, Annet J; Rameckers, Eugene A; Houdijk, Han; de Groot, Sonja; Scholtes, Vanessa A; Becher, Jules G

    2017-01-01

    To determine the relationship between isometric leg muscle strength and mobility capacity in children with cerebral palsy (CP) compared to typically developing (TD) peers. Participants were 62 children with CP (6-13 years), able to walk with (n = 10) or without (n = 52) walking aids, and 47 TD children. Isometric muscle strength of five muscle groups of the leg was measured using hand-held dynamometry. Mobility capacity was assessed with the 1-min walk, the 10-m walk, sit-to-stand, lateral-step-up and timed-stair tests. Isometric strength of children with CP was reduced to 36-82% of TD. When adjusted for age and height, the percentage of variance in mobility capacity that was explained by isometric strength of the leg muscles was 21-24% (walking speed), 25% (sit-to-stand), 28% (lateral-step-up) and 35% (timed-stair) in children with CP. Hip abductors and knee flexors had the largest contribution to the explained variance, while knee extensors showed the weakest correlation. Weak or no associations were found between strength and mobility capacity in TD children. Isometric strength, especially hip abductor and knee flexor strength, is moderately related to mobility capacity in children with CP, but not in TD children. To what extent training of these muscle groups will lead to better mobility capacity needs further study. Implications for Rehabilitation Strength training in children with cerebral palsy (CP) may be targeted more specifically at hip abductors and knee flexors. The moderate associations imply that large improvements in mobility capacity may not be expected when strength increases.

  2. Hip Abductor Strengthening Improves Physical Function Following Total Knee Replacement: One-Year Follow-Up of a Randomized Pilot Study.

    PubMed

    Harikesavan, Karvannan; Chakravarty, Raj D; Maiya, Arun G; Hegde, Sanjay P; Y Shivanna, Shivakumar

    2017-01-01

    Total knee replacement (TKR) is the commonest surgical procedure for patients with severe pain and impaired physical function following end stage knee osteoarthritis. The hip abductors are well renowned in stabilization of the trunk and hip during walking, maintaining the lower limb position, and transferring the forces from the lower limbs to the pelvis. To assess the efficacy of hip abductor strengthening exercise on functional outcome using performance based outcome measures following total knee replacement. An observer blinded randomized pilot trial design was conducted at Manipal hospital, Bangalore, India. Participants designated for elective TKR were randomized to experimental group hip abductor strengthening along with standard rehabilitation (n=10) or control group standard rehabilitation alone (n=10). Participants followed for one year to assess physical function using performance based outcomes, such as timed up and go test, single leg stance test, six minute walk test, knee extensor strength and hip abductor strength. Eighteen participants with a mean age of 63.1 ± 5.5 years (8 Males and 10 Females) completed the study. Improvement in hip abduction strength, single leg stand test was superior in hip abductor strengthening group at 3 months and 1 year when compared to standard rehabilitation alone. Hip abductor strengthening showed superior improvements in single leg stance test and six minute walk test. Hip abductor strengthening exercises has the potential to improve physical function following total knee replacement.

  3. Changes in hip abductor moment 3 or more years after femoral derotation osteotomy among individuals with cerebral palsy.

    PubMed

    Boyer, Elizabeth R; Novacheck, Tom F; Schwartz, Michael H

    2017-09-01

    To examine the effect of femoral derotation osteotomy (FDO) on dimensionless hip abductor moment during gait in children with cerebral palsy. We retrospectively analyzed data from independent ambulators within our database. Postoperative visits 1 year (short-term) and at least 3 years (mid-term) were analyzed. We estimated the coronal plane hip abductor moment arm based on musculoskeletal modeling that accounted for anteversion and hip rotation. There were 140 individuals with a short-term analysis (77 males, 63 females; age at surgery 9y 11mo [range 4y 5mo-17y 5mo]) and 29 with mid-term analysis (15 males, 14 females; age at surgery 8y 7mo [range 4y 5mo-13y 1mo]). At short-term, anteversion and internal hip rotation decreased 35° and 13° respectively, which increased median (IQR) moment arms from 20 (23) per cent below normal to 2 (12) per cent above normal. Dimensionless mean hip abductor moment remained unchanged at short-term. Mid-term anteversion did not change but hip rotation increased 8° and hip abductor moment increased to 0.040 (0.029). There was no change in pelvic and trunk obliquity, although hip abductor strength increased and walking velocity decreased at mid-term. The unexpected lack of improvement in hip abductor moment from pre- to short-term may be caused by gait compensations that unload the hip. The increase in hip abductor moment beyond 3 years postoperatively underscores the benefits of an FDO into adolescence for independent ambulating individuals with cerebral palsy. © 2017 Mac Keith Press.

  4. Shoes alter the spring-like function of the human foot during running

    PubMed Central

    Kelly, Luke A.; Lichtwark, Glen A.; Farris, Dominic J.; Cresswell, Andrew

    2016-01-01

    The capacity to store and return energy in legs and feet that behave like springs is crucial to human running economy. Recent comparisons of shod and barefoot running have led to suggestions that modern running shoes may actually impede leg and foot-spring function by reducing the contributions from the leg and foot musculature. Here we examined the effect of running shoes on foot longitudinal arch (LA) motion and activation of the intrinsic foot muscles. Participants ran on a force-instrumented treadmill with and without running shoes. We recorded foot kinematics and muscle activation of the intrinsic foot muscles using intramuscular electromyography. In contrast to previous assertions, we observed an increase in both the peak (flexor digitorum brevis +60%) and total stance muscle activation (flexor digitorum brevis +70% and abductor hallucis +53%) of the intrinsic foot muscles when running with shoes. Increased intrinsic muscle activation corresponded with a reduction in LA compression (−25%). We confirm that running shoes do indeed influence the mechanical function of the foot. However, our findings suggest that these mechanical adjustments are likely to have occurred as a result of increased neuromuscular output, rather than impaired control as previously speculated. We propose a theoretical model for foot–shoe interaction to explain these novel findings. PMID:27307512

  5. Shoes alter the spring-like function of the human foot during running.

    PubMed

    Kelly, Luke A; Lichtwark, Glen A; Farris, Dominic J; Cresswell, Andrew

    2016-06-01

    The capacity to store and return energy in legs and feet that behave like springs is crucial to human running economy. Recent comparisons of shod and barefoot running have led to suggestions that modern running shoes may actually impede leg and foot-spring function by reducing the contributions from the leg and foot musculature. Here we examined the effect of running shoes on foot longitudinal arch (LA) motion and activation of the intrinsic foot muscles. Participants ran on a force-instrumented treadmill with and without running shoes. We recorded foot kinematics and muscle activation of the intrinsic foot muscles using intramuscular electromyography. In contrast to previous assertions, we observed an increase in both the peak (flexor digitorum brevis +60%) and total stance muscle activation (flexor digitorum brevis +70% and abductor hallucis +53%) of the intrinsic foot muscles when running with shoes. Increased intrinsic muscle activation corresponded with a reduction in LA compression (-25%). We confirm that running shoes do indeed influence the mechanical function of the foot. However, our findings suggest that these mechanical adjustments are likely to have occurred as a result of increased neuromuscular output, rather than impaired control as previously speculated. We propose a theoretical model for foot-shoe interaction to explain these novel findings. © 2016 The Author(s).

  6. ASSOCIATION OF ISOMETRIC STRENGTH OF HIP AND KNEE MUSCLES WITH INJURY RISK IN HIGH SCHOOL CROSS COUNTRY RUNNERS.

    PubMed

    Luedke, Lace E; Heiderscheit, Bryan C; Williams, D S Blaise; Rauh, Mitchell J

    2015-11-01

    High school cross country runners have a high incidence of overuse injuries, particularly to the knee and shin. As lower extremity strength is modifiable, identification of strength attributes that contribute to anterior knee pain (AKP) and shin injuries may influence prevention and management of these injuries. To determine if a relationship existed between isometric hip abductor, knee extensor and flexor strength and the incidence of AKP and shin injury in high school cross country runners. Sixty-eight high school cross country runners (47 girls, 21 boys) participated in the study. Isometric strength tests of hip abductors, knee extensors and flexors were performed with a handheld dynamometer. Runners were prospectively followed during the 2014 interscholastic cross country season for occurrences of AKP and shin injury. Bivariate logistic regression was used to examine risk relationships between strength values and occurrence of AKP and shin injury. During the season, three (4.4%) runners experienced AKP and 13 (19.1%) runners incurred a shin injury. Runners in the tertiles indicating weakest hip abductor (chi-square = 6.140; p=0.046), knee extensor (chi-square = 6.562; p=0.038), and knee flexor (chi-square = 6.140; p=0.046) muscle strength had a significantly higher incidence of AKP. Hip and knee muscle strength was not significantly associated with shin injury. High school cross country runners with weaker hip abductor, knee extensor and flexor muscle strength had a higher incidence of AKP. Increasing hip and knee muscle strength may reduce the likelihood of AKP in high school cross country runners. 2b.

  7. Hip Abductor Strengthening Improves Physical Function Following Total Knee Replacement: One-Year Follow-Up of a Randomized Pilot Study

    PubMed Central

    Harikesavan, Karvannan; Chakravarty, Raj D.; Maiya, Arun G; Hegde, Sanjay P.; Y. Shivanna, Shivakumar

    2017-01-01

    Background: Total knee replacement (TKR) is the commonest surgical procedure for patients with severe pain and impaired physical function following end stage knee osteoarthritis. The hip abductors are well renowned in stabilization of the trunk and hip during walking, maintaining the lower limb position, and transferring the forces from the lower limbs to the pelvis. Objective: To assess the efficacy of hip abductor strengthening exercise on functional outcome using performance based outcome measures following total knee replacement. Methods: An observer blinded randomized pilot trial design was conducted at Manipal hospital, Bangalore, India. Participants designated for elective TKR were randomized to experimental group hip abductor strengthening along with standard rehabilitation (n=10) or control group standard rehabilitation alone (n=10). Participants followed for one year to assess physical function using performance based outcomes, such as timed up and go test, single leg stance test, six minute walk test, knee extensor strength and hip abductor strength. Result: Eighteen participants with a mean age of 63.1 ± 5.5 years (8 Males and 10 Females) completed the study. Improvement in hip abduction strength, single leg stand test was superior in hip abductor strengthening group at 3 months and 1 year when compared to standard rehabilitation alone. Conclusion: Hip abductor strengthening showed superior improvements in single leg stance test and six minute walk test. Hip abductor strengthening exercises has the potential to improve physical function following total knee replacement. PMID:28567148

  8. [Reconstruction of chronic Achilles tendon rupture with flexor hallucis longus tendon harvested using a minimally invasive technique].

    PubMed

    Miao, Xudong; Wu, Yongping; Tao, Huimin; Yang, Disheng

    2011-07-01

    To evaluate the effectiveness of flexor hallucis longus tendon harvested using a minimally invasive technique in reconstruction of chronic Achilles tendon rupture. Between July 2006 and December 2009, 22 patients (22 feet) with chronic Achilles tendon rupture were treated, including 16 males and 6 females with a median age of 48 years (range, 28-65 years). The disease duration was 27-1,025 days (median, 51 days). Twenty-one patients had hooflike movement's history and 1 patient had no obvious inducement. The result of Thompson test was positive in 22 cases. The score was 53.04 +/- 6.75 according to American Orthopedic Foot and Ankle Society (AOFAS) ankle and hindfoot score system. MRI indicated that the gap of the chronic Achilles tendon rupture was 4.2-8.0 cm. A 3 cm-long incision was made vertically in the plantar aspect of the midfoot and a 1 cm-long transverse incision was made in a plantar flexor crease at the base of the great toe to harvest flexor hallucis longus tendon. The flexor hallucis longus tendon was 10.5-13.5 cm longer from tuber calcanei to the end of the Achilles tendon, and then the tendon was fixed to the tuber calcanei using interface screws or anchor nail after they were woven to form reflexed 3-bundle and sutured. Wound healed by first intention in all patients and no early complication occurred. Twenty-two patients were followed up 12-42 months (mean, 16.7 months). At 12 months after operation, The AOFAS ankle and hindfoot score was 92.98 +/- 5.72, showing significant difference when compared with that before operation (t= -40.903, P=0.000). The results were excellent in 18 cases, good in 2 cases, and fair in 2 cases with an excellent and good rate of 90.9%. No sural nerve injury, posterior tibial nerve injury, plantar painful scar, medial plantar nerve injury, and lateral plantar nerve injury occurred. Chronic Achilles tendon rupture reconstruction with flexor hallucis longus tendon harvested using a minimally invasive technique offers a

  9. Muscle strength and areal bone mineral density at the hip in women: a cross-sectional study.

    PubMed

    Pasco, Julie A; Holloway, Kara L; Brennan-Olsen, Sharon L; Moloney, David J; Kotowicz, Mark A

    2015-05-24

    Muscle strengthening exercises are promoted for building and maintaining a healthy skeleton. We aimed to investigate the relationship between muscle strength and areal bone mineral density (BMD) at the hip in women aged 26-97 years. This cross-sectional study utilises data from 863 women assessed for the Geelong Osteoporosis Study. Measures of hip flexor and abductor strength were made using a hand-held dynamometer (Nicholas Manual Muscle Tester). The maximal measure from three trials on each leg was used for analyses. BMD was measured at the hip using dual energy x-ray absorptiometry (DXA; Lunar DPX-L). Total lean mass, body fat mass and appendicular lean mass were determined from whole body DXA scans. Linear regression techniques were used with muscle strength as the independent variable and BMD as the dependent variable. Models were adjusted for age and indices of body composition. Measures of age-adjusted hip flexor strength and hip abductor strength were positively associated with total hip BMD. For each standard deviation (SD) increase in hip flexor strength, the increase in mean total hip BMD (SD) was 10.4 % (p = 0.009). A similar pattern was observed for hip abductor strength, with an increase in mean total hip BMD of 22.8 % (p = 0.025). All associations between hip muscle strength and total hip BMD were independent of height, but were nullified after adjusting for appendicular lean mass or total lean mass. There was a positive association observed between muscle strength and BMD at the hip. However, this association was explained by measures of lean mass.

  10. Higher success rate with transcranial electrical stimulation of motor-evoked potentials using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery.

    PubMed

    Shigematsu, Hideki; Kawaguchi, Masahiko; Hayashi, Hironobu; Takatani, Tsunenori; Iwata, Eiichiro; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Tanaka, Yuu; Tanaka, Yasuhito

    2017-10-01

    During spine surgery, the spinal cord is electrophysiologically monitored via transcranial electrical stimulation of motor-evoked potentials (TES-MEPs) to prevent injury. Transcranial electrical stimulation of motor-evoked potential involves the use of either constant-current or constant-voltage stimulation; however, there are few comparative data available regarding their ability to adequately elicit compound motor action potentials. We hypothesized that the success rates of TES-MEP recordings would be similar between constant-current and constant-voltage stimulations in patients undergoing spine surgery. The objective of this study was to compare the success rates of TES-MEP recordings between constant-current and constant-voltage stimulation. This is a prospective, within-subject study. Data from 100 patients undergoing spinal surgery at the cervical, thoracic, or lumbar level were analyzed. The success rates of the TES-MEP recordings from each muscle were examined. Transcranial electrical stimulation with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions (international "10-20" system) was applied to each patient. Compound muscle action potentials were bilaterally recorded from the abductor pollicis brevis (APB), deltoid (Del), abductor hallucis (AH), tibialis anterior (TA), gastrocnemius (GC), and quadriceps (Quad) muscles. The success rates of the TES-MEP recordings from the right Del, right APB, bilateral Quad, right TA, right GC, and bilateral AH muscles were significantly higher using constant-voltage stimulation than those using constant-current stimulation. The overall success rates with constant-voltage and constant-current stimulations were 86.3% and 68.8%, respectively (risk ratio 1.25 [95% confidence interval: 1.20-1.31]). The success rates of TES-MEP recordings were higher using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Copyright © 2017

  11. Effects of Plyometric Training on Muscle-Activation Strategies and Performance in Female Athletes

    PubMed Central

    Swanik, Kathleen A.; Swanik, C. Buz; Straub, Stephen J.

    2004-01-01

    Objective: To evaluate the effects of plyometric training on muscle-activation strategies and performance of the lower extremity during jumping exercises. Subjects: Twenty healthy National Collegiate Athletic Association Division I female athletes. Design and Setting: A pretest and posttest control group design was used. Experimental subjects performed plyometric exercises 2 times per week for 6 weeks. Measurements: We used surface electromyography to assess preparatory and reactive activity of the vastus medialis and vastus lateralis, medial and lateral hamstrings, and hip abductors and adductors. Vertical jump height and sprint speed were assessed with the VERTEC and infrared timing devices, respectively. Results: Multivariate analyses of variance revealed significant (P < .05) increases in firing of adductor muscles during the preparatory phase, with significant interactions for area, mean, and peak. A Tukey honestly significant difference post hoc analysis revealed significant increases in preparatory adductor area, mean, and peak for experimental group. A significant (P = .037) increase in preparatory adductor-to-abductor muscle coactivation in the experimental group was identified, as well as a trend (P = .053) toward reactive quadriceps-to- hamstring muscle coactivation in the experimental group. Pearson correlation coefficients revealed significant between-groups adaptations in muscle activity patterns pretest to posttest. Although not significant, experimental and control subjects had average increases of 5.8% and 2.0% in vertical jump height, respectively. Conclusions: The increased preparatory adductor activity and abductor-to-adductor coactivation represent preprogrammed motor strategies learned during the plyometric training. These data strongly support the role of hip-musculature activation strategies for dynamic restraint and control of lower extremity alignment at ground contact. Plyometric exercises should be incorporated into the training regimens

  12. Quantitative muscle ultrasound is useful for evaluating secondary axonal degeneration in chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Hokkoku, Keiichi; Matsukura, Kiyoshi; Uchida, Yudai; Kuwabara, Midori; Furukawa, Yuichi; Tsukamoto, Hiroshi; Hatanaka, Yuki; Sonoo, Masahiro

    2017-10-01

    In chronic inflammatory demyelinating polyneuropathy (CIDP), exclusion of secondary axonal degeneration is challenging with conventional methods such as nerve conduction study (NCS), needle electromyography, and nerve biopsy. Increased echo intensity (EI) and decreased muscle thickness (MT) identified on muscle ultrasound (MUS) examination represent muscle denervation due to axonal degeneration in neurogenic disorders, suggesting MUS as a new tool to detect secondary axonal degeneration in patients with CIDP. EI and MT of abductor pollicis brevis, abductor digiti minimi, and first dorsal interosseous muscles were measured in 16 CIDP patients. Raw values were converted into z -scores using data from 60 normal controls (NCs). Six of 45 muscles showed abnormally high EI and low MT, suggesting denervation following secondary axonal degeneration. These six muscles belonged to two patients with long disease history, unresponsiveness to treatment, and long interval from onset to initial therapy. There were no significant differences in EI and MT ( p  = .23 and .67, respectively) between the CIDP and NC groups, although NCS results revealed obvious demyelinating abnormalities in all CIDP patients, suggesting the fact that muscle structures will be preserved, and EI and MT will not change unless secondary axonal degeneration occurs in CIDP. MUS is a promising tool for evaluating secondary axonal degeneration in patients with CIDP.

  13. Sex differences in the branching position of the nerve to the abductor digiti minimi muscle: an anatomical study of cadavers.

    PubMed

    Mizuno, Daisuke; Naito, Munekazu; Hayashi, Shogo; Ohmichi, Yusuke; Ohmichi, Mika; Nakano, Takashi

    2015-01-01

    The nerve to the abductor digiti minimi muscle (ADMM nerve) is the first branch of the lateral plantar nerve or originates directly from the posterior tibial nerve. Damage to the ADMM nerve is a cause of heel pain and eventually results in ADMM atrophy. It is known that ADMM atrophy occurs more often in females than in males, and the reason remains unclear. This study aimed to explore sex differences in the branching pattern, position, and angle of the ADMM nerve. Forty-two cadavers (20 males, 22 females) were dissected at Aichi Medical University between 2011 and 2015. Cases of foot deformity or atrophy were excluded and 67 ft (30 male, 37 female) were examined to assess the branching pattern, position, and angle of the ADMM nerve. The branching positions of the ADMM nerve were superior to the malleolar-calcaneal axis (MCA) in 37 ft (55 %), on the MCA in 10 ft (15 %), and inferior to the MCA in 20 ft (30 %). There was no case among male feet in which the ADMM nerve branched inferior to the MCA, whereas this pattern was observed in 19 of 37 female feet (51 %). The branching position of the ADMM nerve was significantly closer to the MCA in female feet than in male feet. There were no significant sex differences in the branching pattern and angle of the ADMM nerve. The ADMM nerve sometimes branches off inferior to the MCA in females, but not in males. This difference may be the reason for the more frequent occurrence of ADMM atrophy in females than in males.

  14. Effects of augmented trunk stabilization with external compression support on shoulder and scapular muscle activity and maximum strength during isometric shoulder abduction.

    PubMed

    Jang, Hyun-jeong; Kim, Suhn-yeop; Oh, Duck-won

    2015-04-01

    The aim of the present study was to investigate the effects of augmented trunk stabilization with external compression support (ECS) on the electromyography (EMG) activity of shoulder and scapular muscles and shoulder abductor strength during isometric shoulder abduction. Twenty-six women volunteered for the study. Surface EMG was used to monitor the activity of the upper trapezius (UT), lower trapezius (LT), serratus anterior (SA), and middle deltoid (MD), and shoulder abductor strength was measured using a dynamometer during three experimental conditions: (1) no external support (condition-1), (2) pelvic support (condition-2), and (3) pelvic and thoracic supports (condition-3) in an active therapeutic movement device. EMG activities were significantly lower for UT and higher for MD during condition 3 than during condition 1 (p < 0.05). The MD/UT ratio was significantly higher during condition 3 than during conditions 1 and 2, and higher during condition 2 than during condition 1 (p < 0.05). Shoulder abductor strength was significantly higher during condition 3 than during condition 1 (p < 0.05). These findings suggest that augmented trunk stabilization with the ECS may be advantageous with regard to reducing the compensatory muscle effort of the UT during isometric shoulder abduction and increasing shoulder abductor strength. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Inter-Tester Reliability and Precision of Manual Muscle Testing and Hand-Held Dynamometry in Lower Limb Muscles of Children with Spina Bifida

    ERIC Educational Resources Information Center

    Mahony, Kate; Hunt, Adrienne; Daley, Deborah; Sims, Susan; Adams, Roger

    2009-01-01

    Reliability and measurement precision of manual muscle testing (MMT) and hand-held dynamometry (HHD) were compared for children with spina bifida. Strength measures were obtained of the hip flexors, hip abductors, and knee extensors of 20 children (10 males, 10 females; mean age 9 years 10 months; range: 5 to 15 years) by two experienced physical…

  16. Influence of muscle groups' activation on proximal femoral growth tendency.

    PubMed

    Yadav, Priti; Shefelbine, Sandra J; Pontén, Eva; Gutierrez-Farewik, Elena M

    2017-12-01

    Muscle and joint contact force influence stresses at the proximal growth plate of the femur and thus bone growth, affecting the neck shaft angle (NSA) and femoral anteversion (FA). This study aims to illustrate how different muscle groups' activation during gait affects NSA and FA development in able-bodied children. Subject-specific femur models were developed for three able-bodied children (ages 6, 7, and 11 years) using magnetic resonance images. Contributions of different muscle groups-hip flexors, hip extensors, hip adductors, hip abductors, and knee extensors-to overall hip contact force were computed. Specific growth rate for the growth plate was computed, and the growth was simulated in the principal stress direction at each element in the growth front. The predicted growth indicated decreased NSA and FA (of about [Formula: see text] over a four-month period) for able-bodied children. Hip abductors contributed the most, and hip adductors, the least, to growth rate. All muscles groups contributed to a decrease in predicted NSA ([Formula: see text]0.01[Formula: see text]-0.04[Formula: see text] and FA ([Formula: see text]0.004[Formula: see text]-[Formula: see text]), except hip extensors and hip adductors, which showed a tendency to increase the FA ([Formula: see text]0.004[Formula: see text]-[Formula: see text]). Understanding influences of different muscle groups on long bone growth tendency can help in treatment planning for growing children with affected gait.

  17. [A special soft tissue procedure for treatment of hallux valgus].

    PubMed

    Waizy, H; Stukenborg-Colsman, C; Abbara-Czardybon, M; Emmerich, J; Windhagen, H; Frank, D

    2011-02-01

    Maintaining the corrected position of the first metatasophalangeal axis. Reducing postoperative stiffness by forgoing a medial capsular shift. Hallux valgus deformities or recurrent hallux valgus deformities. Existing osteoarthritis, joint stiffness, large bone defects, osteonecrosis. General medical contraindications to surgical interventions and anesthesiological procedures. Operation under regional anesthesia (foot block) or general anesthesia. Tourniquet. Longitudinal skin incision medial over the pseudexostosis of the first metatarsal bone. Preparing the tendon of the Musculus abductor hallucis. Detaching the tendon from the capsule. Incision of the joint capsule with protection of the extensor hallucis longus tendon and the dorsal neurovascular bundle in an L-wise manner. Osteotomy of the first metatarsal bone. Lax sutures of the capsule in correct position and reattachment of the Musculus abductor hallucis tendon shifted toward distal and dorsal, regarding the rotation of the hallux. Postoperative elevation of the operated foot. Analgesia with nonsteroidal antiinflammatory drugs. Postoperative weight-bearing according to the osteotomy. Passive mobilization of the metatarsophalangeal joint. Dressing for 4 weeks postoperatively in the corrected position. Radiologic control after 6 weeks. Hallux valgus orthosis at night and a toe spreader for a further 6 weeks. A total of 30 isolated hallux valgus deformities with a mean preoperative intermetatarsal (IMA) angle of 12.9° (range 11-15°) were operated with a chevron osteotomy. The mean follow-up was 14.4 (range 8-17) months. The mean dorsiflexion at the last follow-up was 44° (range 20-60°). Only 2 patients had a dorsiflexion <40°. The mean reduction of the IM angle was 5.6° (range 3-7°). One patient required wound revision. There was no infection or avascular necrosis of the metatarsal head observed in the patients. At follow-up, 20 (67%) patients were completely satisfied, 9 (30%) satisfied, and 1 (3

  18. Fibrillation potentials, positive sharp waves and fasciculation in the intrinsic muscles of the foot in healthy subjects.

    PubMed Central

    Falck, B; Alaranta, H

    1983-01-01

    The extensor digitorum brevis and abductor digiti minimi muscles were examined bilaterally with electromyography in 53 healthy subjects. In 72% of the subjects either fibrillation potentials, positive sharp waves or fasciculation was seen in at least one muscle examined. These slight, usually symmetric neuropathic signs are believed to be associated with normal aging and to some extent also with external trauma to the nerves and muscles in the distal parts of the foot. PMID:6886709

  19. Knee joint contact mechanics during downhill gait and its relationship with varus/valgus motion and muscle strength in patients with knee osteoarthritis.

    PubMed

    Farrokhi, Shawn; Voycheck, Carrie A; Gustafson, Jonathan A; Fitzgerald, G Kelley; Tashman, Scott

    2016-01-01

    The objective of this exploratory study was to evaluate tibiofemoral joint contact point excursions and velocities during downhill gait and assess the relationship between tibiofemoral joint contact mechanics with frontal-plane knee joint motion and lower extremity muscle weakness in patients with knee osteoarthritis (OA). Dynamic stereo X-ray was used to quantify tibiofemoral joint contact mechanics and frontal-plane motion during the loading response phase of downhill gait in 11 patients with knee OA and 11 control volunteers. Quantitative testing of the quadriceps and the hip abductor muscles was also performed. Patients with knee OA demonstrated larger medial/lateral joint contact point excursions (p < 0.02) and greater heel-strike joint contact point velocities (p < 0.05) for the medial and lateral compartments compared to the control group. The peak medial/lateral joint contact point velocity of the medial compartment was also greater for patients with knee OA compared to their control counterparts (p = 0.02). Additionally, patients with knee OA demonstrated significantly increased frontal-plane varus motion excursions (p < 0.01) and greater quadriceps and hip abductor muscle weakness (p = 0.03). In general, increased joint contact point excursions and velocities in patients with knee OA were linearly associated with greater frontal-plane varus motion excursions (p < 0.04) but not with quadriceps or hip abductor strength. Altered contact mechanics in patients with knee OA may be related to compromised frontal-plane joint stability but not with deficits in muscle strength.

  20. Automatic assessment of volume asymmetries applied to hip abductor muscles in patients with hip arthroplasty

    NASA Astrophysics Data System (ADS)

    Klemt, Christian; Modat, Marc; Pichat, Jonas; Cardoso, M. J.; Henckel, Joahnn; Hart, Alister; Ourselin, Sebastien

    2015-03-01

    Metal-on-metal (MoM) hip arthroplasties have been utilised over the last 15 years to restore hip function for 1.5 million patients worldwide. Althoug widely used, this hip arthroplasty releases metal wear debris which lead to muscle atrophy. The degree of muscle wastage differs across patients ranging from mild to severe. The longterm outcomes for patients with MoM hip arthroplasty are reduced for increasing degrees of muscle atrophy, highlighting the need to automatically segment pathological muscles. The automated segmentation of pathological soft tissues is challenging as these lack distinct boundaries and morphologically differ across subjects. As a result, there is no method reported in the literature which has been successfully applied to automatically segment pathological muscles. We propose the first automated framework to delineate severely atrophied muscles by applying a novel automated segmentation propagation framework to patients with MoM hip arthroplasty. The proposed algorithm was used to automatically quantify muscle wastage in these patients.

  1. Endoscopic-assisted Repair of Neglected Rupture or Rerupture After Primary Repair of Extensor Hallucis Longus Tendon.

    PubMed

    Lui, Tun Hing; Chang, Joseph Jeremy; Maffulli, Nicola

    2016-03-01

    Rerupture of the extensor hallucis longus tendon after primary repair and neglected rupture of the tendon poses surgical challenges to orthopedic surgeons. Open exploration and repair of the tendon ends usually requires large incision and extensive dissection. This may induce scarring and adhesion around the repaired tendon. Endoscopic-assisted repair has the advantage of minimally invasive surgery including less soft tissue trauma and scar formation and better cosmetic result. The use of Krackow locking suture and preservation of the extensor retinacula allow early mobilization of the great toe.

  2. Knee Joint Contact Mechanics during Downhill Gait and its Relationship with Varus/Valgus Motion and Muscle Strength in Patients with Knee Osteoarthritis

    PubMed Central

    Farrokhi, Shawn; Voycheck, Carrie A.; Gustafson, Jonathan A.; Fitzgerald, G. Kelley; Tashman, Scott

    2015-01-01

    Objective The objective of this exploratory study was to evaluate tibiofemoral joint contact point excursions and velocities during downhill gait and assess the relationship between tibiofemoral joint contact mechanics with frontal-plane knee joint motion and lower extremity muscle weakness in patients with knee osteoarthritis (OA). Methods Dynamic stereo X-ray was used to quantify tibiofemoral joint contact mechanics and frontal-plane motion during the loading response phase of downhill gait in 11 patients with knee OA and 11 control volunteers. Quantitative testing of the quadriceps and the hip abductor muscles was also performed. Group differences in contact mechanics and frontal-plane motion excursions were compared using analysis of covariance with adjustments for body mass index. Differences in strength were compared using independent sample t-tests. Additionally, linear associations between contact mechanics with frontal-plane knee motion and muscle strength were evaluated using Pearson's correlation coefficients. Results Patients with knee OA demonstrated larger medial/lateral joint contact point excursions (p<0.02) and greater heel-strike joint contact point velocities (p<0.05) for the medial and lateral compartments compared to the control group. The peak medial/lateral joint contact point velocity of the medial compartment was also greater for patients with knee OA compared to their control counterparts (p=0.02). Additionally, patients with knee OA demonstrated significantly increased frontal-plane varus motion excursions (p<0.01) and greater quadriceps and hip abductor muscle weakness (p=0.03). In general, increased joint contact point excursions and velocities in patients with knee OA were linearly associated with greater frontal-plane varus motion excursions (p<0.04) but not with quadriceps or hip abductor strength. Conclusion Altered contact mechanics in patients with knee OA may be related to compromised frontal-plane joint stability but not with

  3. Differential effect of muscle vibration on intracortical inhibitory circuits in humans

    PubMed Central

    Rosenkranz, Karin; Rothwell, John C

    2003-01-01

    Low amplitude muscle vibration (0.5 ms; 80 Hz; duration 1.5 s) was applied in turn to each of three different intrinsic hand muscles (first dorsal interosseus, FDI; abductor pollicis brevis, APB; and abductor digiti minimi, ADM) in order to test its effect on the EMG responses evoked by transcranial magnetic stimulation (TMS). Recordings were also taken from flexor and extensor carpi radialis (FCR and ECR, respectively). We evaluated the amplitude of motor evoked potentials (MEPs) produced by a single TMS pulse, short interval intracortical inhibition and facilitation (SICI and ICF) and long interval intracortical inhibition (LICI). TMS pulses were applied 1 s after the start of vibration with subjects relaxed throughout. Vibration increased the amplitude of MEPs evoked in the vibrated muscle (162 ± 6 % of MEP with no vibration; mean ± s.e.m.), but suppressed MEPs in the two non-vibrated hand muscles (72 ± 9 %). Compared with no vibration (test response reduced to 51 ± 5 % of control), there was less SICI in the vibrated muscle (test response reduced to 92 ± 28 % of control) and more in the non-vibrated hand muscles (test response reduced to 27 ± 5 % of control). The opposite occurred for LICI: compared with the no vibration condition (test response reduced to 33 ± 6 % control), there was more LICI in the vibrated muscle (test response reduced to 17 ± 3 % control) than in the non-vibrated hand muscles (test response reduced to 80 ± 11 % control) even when the intensity of the test stimulus was adjusted to compensate for the changes in baseline MEP. There was no effect on ICF. Cutaneous stimulation of the index finger (80 Hz, 1.5 s duration, twice sensory threshold) had no consistent differential effect on any of the parameters. We conclude that vibratory input from muscle can differentially modulate excitability in motor cortical circuits. PMID:12821723

  4. Muscle imaging findings in GNE myopathy.

    PubMed

    Tasca, Giorgio; Ricci, Enzo; Monforte, Mauro; Laschena, Francesco; Ottaviani, Pierfrancesco; Rodolico, Carmelo; Barca, Emanuele; Silvestri, Gabriella; Iannaccone, Elisabetta; Mirabella, Massimiliano; Broccolini, Aldobrando

    2012-07-01

    GNE myopathy (MIM 600737) is an autosomal recessive muscle disease caused by mutations in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene. Besides the typical phenotype, characterized by the initial involvement of the distal leg muscles that eventually spreads proximally with sparing of the quadriceps, uncommon presentations with a non-canonical clinical phenotype, unusual muscle biopsy findings or both are increasingly recognized. The aim of our study was to characterize the imaging pattern of pelvic and lower limb muscles in GNE myopathy, thus providing additional diagnostic clues useful in the identification of patients with atypical features. We retrospectively evaluated muscle MRI and CT scans of a cohort of 13 patients heterogeneous for GNE mutations and degree of clinical severity. We found that severe involvement of the biceps femoris short head and, to a lesser extent, of the gluteus minimus, tibialis anterior, extensor hallucis and digitorum longus, soleus and gastrocnemius medialis was consistently present even in patients with early or atypical disease. The vastus lateralis, not the entire quadriceps, was the only muscle spared in advanced stages, while the rectus femoris, vastus intermedius and medialis showed variable signs of fatty replacement. Younger patients showed hyperintensities on T2-weighted sequences in muscles with a normal or, more often, abnormal T1-weighted signal. Our results define a pattern of muscle involvement that appears peculiar to GNE myopathy. Although these findings need to be further validated in a larger cohort, we believe that the recognition of this pattern may be instrumental in the initial clinical assessment of patients with possible GNE myopathy.

  5. Magnetic stimulation of the cauda equina in the spinal canal with a flat, large round coil.

    PubMed

    Matsumoto, Hideyuki; Octaviana, Fitri; Terao, Yasuo; Hanajima, Ritsuko; Yugeta, Akihiro; Hamada, Masashi; Inomata-Terada, Satomi; Nakatani-Enomoto, Setsu; Tsuji, Shoji; Ugawa, Yoshikazu

    2009-09-15

    Magnetic round coil stimulation over the spinal enlargement activates the spinal nerves at the neuro-foramina level. However, activation of the cauda equina in the spinal canal has never been described in the literature. This study, for which 40 healthy subjects were recruited, activated the cauda equina using a round 20-cm-diameter coil designated as a Magnetic Augmented Translumbosacral Stimulation (MATS) coil. Magnetic stimulation placing the edge of the coil over the L1 and L3 spinous processes elicited compound muscle action potentials (CMAPs) from the abductor hallucis muscle. The CMAPs were compared with those elicited through high-voltage electrical stimulation. The CMAP latencies to L1 level MATS coil stimulation were not significantly different from those evoked by electrical stimulation at the same level. The CMAP latencies to L3 level MATS coil stimulation were varied in each subject. In fact, the L1 level MATS coil stimulation is considered to activate the cauda equina at the root exit site from the conus medullaris; the L3 level MATS coil stimulation activates some mid-part of the cauda equina or the distal cauda equina by spreading current. The MATS coil facilitates evaluation of spinal nerve conduction in the cauda equina.

  6. Hip muscle strength is decreased in middle-aged recreational male athletes with midportion Achilles tendinopathy: A cross-sectional study.

    PubMed

    Habets, B; Smits, H W; Backx, F J G; van Cingel, R E H; Huisstede, B M A

    2017-05-01

    Investigating differences in hip muscle strength between athletes with Achilles tendinopathy (AT) and asymptomatic controls. Cross-sectional case-control study. Sports medical center. Twelve recreational male athletes with mid-portion AT and twelve matched asymptomatic controls. Isometric strength of the hip abductors, external rotators, and extensors was measured using a handheld dynamometer. Functional hip muscle performance was evaluated with the single-leg squat. The Victorian Institute of Sport Assessment-Achilles (VISA-A) questionnaire was completed to determine clinical severity of symptoms. Compared to controls, participants with AT demonstrated 28.9% less isometric hip abduction strength (p = 0.012), 34.2% less hip external rotation strength (p = 0.010), and 28.3% less hip extension strength (p = 0.034) in the injured limb. Similar differences were found for the non-injured limb (26.7-41.8%; p < 0.03). No significant differences were found in functional hip muscle performance between the injured and non-injured limb or between the groups, and no significant correlation was found between hip muscle strength and VISA-A scores. Recreational male athletes with chronic mid-portion AT demonstrated bilateral weakness of hip abductors, external rotators, and extensors compared to their asymptomatic counterparts. These findings suggest that hip muscle strength may be important in the assessment and rehabilitation of those with AT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Muscle strength and fatigue in newly diagnosed patients with myasthenia gravis.

    PubMed

    Vinge, Lotte; Andersen, Henning

    2016-10-01

    Dynamometry is increasingly used as an objective measurement of muscle strength in neurological diseases. No study has applied dynamometry in untreated newly diagnosed patients with myasthenia gravis (MG). Isometric muscle strength at the shoulder, knee, and ankle was determined in 21 MG patients before and after initial anti-myasthenic treatment. Isometric strength was compared with MG evaluation scales. Muscle strength was reduced for knee extensors and shoulder abductors but normal for ankle extensors. Isometric muscle strength did not correlate significantly with manual muscle testing (MG Composite). Dynamometry revealed improved muscle strength of up to 50% (median 17%; range -1.8-49.8) despite no change in the MG Composite score. Dynamometry appears to be a more sensitive method of identifying changes in limb strength than MG evaluation scales. This supports the use of dynamometry in MG patients, especially for evaluation of the effect of anti-myasthenic treatment. Muscle Nerve 54: 709-714, 2016. © 2016 Wiley Periodicals, Inc.

  8. Median and ulnar muscle and sensory evoked potentials.

    PubMed

    Felsenthal, G

    1978-08-01

    The medical literature was reviewed to find suggested clinical applications of the study of the amplitude of evoked muscle action potentials (MAP) and sensory action potentials (SAP). In addition, the literature was reviewed to ascertain the normal amplitude and duration of the evoked MAP and SAP as well as the factors affecting the amplitude: age, sex, temperature, ischemia. The present study determined the normal amplitude and duration of the median and ulnar MAP and SAP in fifty normal subjects. The amplitude of evoked muscle or sensory action potentials depends on multiple factors. Increased skin resistance, capacitance, and impedance at the surface of the recording electrode diminishes the amplitude. Similarly, increased distance from the source of the action potential diminishes its amplitude. Increased interelectrode distance increases the amplitude of the bipolarly recorded sensory action potential until a certain interelectrode distance is exceeded and the diphasic response becomes tri- or tetraphasic. Artifact or poor technique may reduce the potential difference between the recording electrodes or obscure the late positive phase of the action potential and thus diminish the peak to peak amplitude measurement. Intraindividual comparison indicated a marked difference of amplitude in opposite hands. The range of the MAP of the abductor pollicis brevis in one hand was 40.0--100% of the response in the opposite hand. For the abductor digiti minimi, the MAP was 58.5--100% of the response of the opposite hand. The median and ulnar SAP was between 50--100% of the opposite SAP. Consequent to these findings the effect of hand dominance on the amplitude of median and ulnar evoked muscle and sensory action potentials was studied in 41 right handed volunteers. The amplitudes of the median muscle action potential (p less than 0.02) and the median and ulnar sensory action potentials (p less than 0.001) were significantly less in the dominant hand. There was no

  9. Clinical Implications for Muscle Strength Differences in Women of Different Age and Racial Groups: The WIN Study.

    PubMed

    Trudelle-Jackson, Elaine; Ferro, Emerenciana; Morrow, James R

    2011-01-01

    BACKGROUND: Reduction in muscle strength is strongly associated with functional decline in women, and women with lower quadriceps strength adjusted for body weight are more likely to develop knee osteoarthritis. OBJECTIVE: To compare body weight--adjusted strength among women of different age/racial groups. STUDY DESIGN: Cross-sectional study of muscle strength in 918 women aged 20--83 (M ± SD = 52 ± 13). METHODS: An orthopedic examination was conducted including measurement of handgrip and lower extremity strength (hip abductors/external rotators, knee flexors/extensors). Data were grouped into young (20--39 years, n = 139), middle (40--54 years, n = 300), and older (55+ years, n = 424) ages for white (n = 699) and African American (AA) (n = 164) women. Means and standard deviations for strength adjusted for body weight were calculated for each age and racial group and compared using 2-way multivariate analysis of variance and post hoc tests. RESULTS: No significant age-by-race interaction (P = .092) but significant main effects for age and race (P < .001). Pairwise comparisons revealed significant differences in knee extensor and flexor strength between all age groups. For grip and hip external rotator strength, significant differences were found between the middle and older groups. Differences in hip abductor strength were found between the young and middle-aged groups. AA women had lower strength than white women in all muscle groups (P < .05) except hip external rotators. CONCLUSIONS: Strength decreased with age in all muscle groups but magnitude of decrease varied by muscle. Strengthening programs should target different muscles, depending on a woman's age and race.

  10. Non-invasive assessment of muscle stiffness in patients with Duchenne muscular dystrophy.

    PubMed

    Lacourpaille, Lilian; Hug, François; Guével, Arnaud; Péréon, Yann; Magot, Armelle; Hogrel, Jean-Yves; Nordez, Antoine

    2015-02-01

    Assessment of muscle mechanical properties may provide clinically valuable information for follow-up of patients with Duchenne muscular dystrophy (DMD) through the course of their disease. In this study we aimed to assess the effect of DMD on stiffness of relaxed muscles using elastography (supersonic shear imaging). Fourteen DMD patients and 13 control subjects were studied. Six muscles were measured at 2 muscle lengths (shortened and stretched): gastrocnemius medialis (GM); tibialis anterior (TA); vastus lateralis (VL); biceps brachii (BB); triceps brachii (TB); and abductor digiti minimi (ADM). Stiffness was significantly higher in DMD patients compared with controls for all the muscles (main effect for population, P < 0.033 in all cases), except for ADM. The effect size was small (d = 0.33 for ADM at both muscle lengths) to large (d = 0.86 for BB/stretched). Supersonic shear imaging is a sensitive non-invasive technique to assess the increase in muscle stiffness associated with DMD. © 2014 Wiley Periodicals, Inc.

  11. The efficacy of modified direct lateral versus posterior approach on gait function and hip muscle strength after primary total hip arthroplasty at 12months follow-up. An explorative randomised controlled trial.

    PubMed

    Rosenlund, Signe; Broeng, Leif; Overgaard, Søren; Jensen, Carsten; Holsgaard-Larsen, Anders

    2016-11-01

    The lateral and the posterior approach are the most commonly used procedures for total hip arthroplasty. Due to the detachment of the hip abductors, lateral approach is claimed to cause reduced hip muscle strength and altered gait pattern. However, this has not been investigated in a randomised controlled trial. The aim was to compare the efficacy of total hip arthroplasty performed by lateral or posterior approach on gait function and hip muscle strength up to 12months post-operatively. We hypothesised that posterior approach would be superior to lateral approach. Forty-seven patients with primary hip osteoarthritis were randomised to total hip arthroplasty with either posterior or lateral approach and evaluated pre-operatively, 3 and 12months post-operatively using 3-dimensional gait analyses as objective measures of gait function, including Gait Deviation Index, temporo-spatial parameters and range of motion. Isometric maximal hip muscle strength in abduction, flexion and extension was also tested. Post-operatively, no between-group difference in gait function was observed. However, both hip abductor and flexor muscle strength improved more in the posterior approach group: -0.20(Nm/kg)[95%CI:-0.4 to 0.0] and -0.20(Nm/kg)[95%CI:-0.4 to 0.0], respectively. Contrary to our first hypothesis, the overall gait function in the posterior approach group did not improve more than in the lateral approach group. However, in agreement with our second hypothesis, patients in the posterior approach group improved more in hip abductor and flexor muscle strength at 12months. Further investigation of the effect of reduced maximal hip muscle strength on functional capacity is needed. ClinicalTrials.gov. No.: NCT01616667. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. An unexpected target of spinal direct current stimulation: Interhemispheric connectivity in humans.

    PubMed

    Bocci, Tommaso; Caleo, Matteo; Vannini, Beatrice; Vergari, Maurizio; Cogiamanian, Filippo; Rossi, Simone; Priori, Alberto; Sartucci, Ferdinando

    2015-10-30

    Transcutaneous spinal Direct Current Stimulation (tsDCS) is a noninvasive technique based on the application of weak electrical currents over spinal cord. We studied the effects of tsDCS on interhemispheric motor connectivity and visual processing by evaluating changes in ipsilateral Silent Period (iSP), Transcallosal Conduction Time (TCT) and hemifield Visual Evoked Potentials (hVEPs), before (T0) and at a different intervals following sham, anodal and cathodal tsDCS (T9-T11 level, 2.0 mA, 20'). Motor Evoked Potentials (MEPs) were recorded from abductor pollicis brevis (APB), abductor hallucis (AH) and deltoid muscles. hVEPs were recorded bilaterally by reversal of a horizontal square wave grating with the display positioned in the right hemifield. Anodal tsDCS increased TCT (p < 0.001) and the interhemispheric delay for both the main VEP components (N1: p = 0.0003; P1: p < 0.0001), dampening at the same time iSP duration (APB: p < 0.0001; AH: p = 0.0005; deltoid: p < 0.0001), while cathodal stimulation elicited opposite effects (p < 0.0001). tsDCS modulates interhemispheric processing in a polarity-specific manner, with anodal stimulation leading to a functional disconnection between hemispheres. tsDCS would be a new promising therapeutic tool in managing a number of human diseases characterized by an impaired interhemispheric balance, or an early rehabilitation strategy in patients with acute brain lesions, when other non-invasive brain stimulation techniques (NIBS) are not indicated due to safety concerns. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Eccentric contractions disrupt FKBP12 content in mouse skeletal muscle

    PubMed Central

    Baumann, Cory W.; Rogers, Russell G.; Gahlot, Nidhi; Ingalls, Christopher P.

    2014-01-01

    Abstract Strength deficits associated with eccentric contraction‐induced muscle injury stem, in part, from impaired voltage‐gated sarcoplasmic reticulum (SR) Ca2+ release. FKBP12 is a 12‐kD immunophilin known to bind to the SR Ca2+ release channel (ryanodine receptor, RyR1) and plays an important role in excitation‐contraction coupling. To assess the effects of eccentric contractions on FKBP12 content, we measured anterior crural muscle (tibialis anterior [TA], extensor digitorum longus [EDL], extensor hallucis longus muscles) strength and FKBP12 content in pellet and supernatant fractions after centrifugation via immunoblotting from mice before and after a single bout of either 150 eccentric or concentric contractions. There were no changes in peak isometric torque or FKBP12 content in TA muscles after concentric contractions. However, FKBP12 content was reduced in the pelleted fraction immediately after eccentric contractions, and increased in the soluble protein fraction 3 day after injury induction. FKBP12 content was correlated (P = 0.025; R2= 0.38) to strength deficits immediately after injury induction. In summary, eccentric contraction‐induced muscle injury is associated with significant alterations in FKBP12 content after injury, and is correlated with changes in peak isometric torque. PMID:25347864

  14. Primary Motor Cortex Representation of Handgrip Muscles in Patients with Leprosy

    PubMed Central

    Rangel, Maria Luíza Sales; Sanchez, Tiago Arruda; Moreira, Filipe Azaline; Hoefle, Sebastian; Souto, Inaiacy Bittencourt; da Cunha, Antônio José Ledo Alves

    2015-01-01

    Background Leprosy is an endemic infectious disease caused by Mycobacterium leprae that predominantly attacks the skin and peripheral nerves, leading to progressive impairment of motor, sensory and autonomic function. Little is known about how this peripheral neuropathy affects corticospinal excitability of handgrip muscles. Our purpose was to explore the motor cortex organization after progressive peripheral nerve injury and upper-limb dysfunction induced by leprosy using noninvasive transcranial magnetic stimulation (TMS). Methods In a cross-sectional study design, we mapped bilaterally in the primary motor cortex (M1) the representations of the hand flexor digitorum superficialis (FDS), as well as of the intrinsic hand muscles abductor pollicis brevis (APB), first dorsal interosseous (FDI) and abductor digiti minimi (ADM). All participants underwent clinical assessment, handgrip dynamometry and motor and sensory nerve conduction exams 30 days before mapping. Wilcoxon signed rank and Mann-Whitney tests were performed with an alpha-value of p<0.05. Findings Dynamometry performance of the patients’ most affected hand (MAH), was worse than that of the less affected hand (LAH) and of healthy controls participants (p = 0.031), confirming handgrip impairment. Motor threshold (MT) of the FDS muscle was higher in both hemispheres in patients as compared to controls, and lower in the hemisphere contralateral to the MAH when compared to that of the LAH. Moreover, motor evoked potential (MEP) amplitudes collected in the FDS of the MAH were higher in comparison to those of controls. Strikingly, MEPs in the intrinsic hand muscle FDI had lower amplitudes in the hemisphere contralateral to MAH as compared to those of the LAH and the control group. Taken together, these results are suggestive of a more robust representation of an extrinsic hand flexor and impaired intrinsic hand muscle function in the hemisphere contralateral to the MAH due to leprosy. Conclusion Decreased

  15. The phylogeny of the red panda (Ailurus fulgens): evidence from the hindlimb

    PubMed Central

    Fisher, Rebecca E; Adrian, Brent; Elrod, Clay; Hicks, Michelle

    2008-01-01

    The red panda (Ailurus fulgens) is an endangered carnivore living in the temperate forests of the Himalayas and southern China. The phylogeny of the red panda has been the subject of much debate. Morphological and molecular studies have supported a wide range of possible relationships, including close ties to procyonids, ursids, mustelids, and mephitids. This study provides additional morphological data, including muscle maps, for Ailurus. The hindlimbs of four cadavers from the National Zoological Park were dissected. Red pandas retain a number of muscles lost in other carnivore groups, including muscles and tendons related to their robust and weight-bearing hallux. Three features, including a single-bellied m. sartorius, a proximal insertion for m. abductor digiti V, and an absent m. articularis coxae, are found in all terrestrial arctoids, including Ailurus. In addition, red pandas are similar to ursids and canids in lacking a caudal belly of m. semitendinosus, while they resemble procyonids and mustelids in the degree of fusion observed between mm. gluteus medius and piriformis. Furthermore, Ailurus and procyonids are characterized by numerous subdivisions within the adductor compartment, while red pandas and raccoons share a variable m. semimembranosus, composed of one, two, or three bellies. Lastly, a deep plantar muscle inserting onto the metatarsophalangeal joint of the hallux is described for Ailurus. This muscle has not been previously described and is given the name m. flexor hallucis profundus. Additional dissections of the forelimb and axial musculature of red pandas may shed further light on the phylogeny of this species. In addition, the muscle maps presented here offer a valuable resource for interpreting the functional anatomy of fossil ailurids. PMID:19014366

  16. The phylogeny of the red panda (Ailurus fulgens): evidence from the hindlimb.

    PubMed

    Fisher, Rebecca E; Adrian, Brent; Elrod, Clay; Hicks, Michelle

    2008-11-01

    The red panda (Ailurus fulgens) is an endangered carnivore living in the temperate forests of the Himalayas and southern China. The phylogeny of the red panda has been the subject of much debate. Morphological and molecular studies have supported a wide range of possible relationships, including close ties to procyonids, ursids, mustelids, and mephitids. This study provides additional morphological data, including muscle maps, for Ailurus. The hindlimbs of four cadavers from the National Zoological Park were dissected. Red pandas retain a number of muscles lost in other carnivore groups, including muscles and tendons related to their robust and weight-bearing hallux. Three features, including a single-bellied m. sartorius, a proximal insertion for m. abductor digiti V, and an absent m. articularis coxae, are found in all terrestrial arctoids, including Ailurus. In addition, red pandas are similar to ursids and canids in lacking a caudal belly of m. semitendinosus, while they resemble procyonids and mustelids in the degree of fusion observed between mm. gluteus medius and piriformis. Furthermore, Ailurus and procyonids are characterized by numerous subdivisions within the adductor compartment, while red pandas and raccoons share a variable m. semimembranosus, composed of one, two, or three bellies. Lastly, a deep plantar muscle inserting onto the metatarsophalangeal joint of the hallux is described for Ailurus. This muscle has not been previously described and is given the name m. flexor hallucis profundus. Additional dissections of the forelimb and axial musculature of red pandas may shed further light on the phylogeny of this species. In addition, the muscle maps presented here offer a valuable resource for interpreting the functional anatomy of fossil ailurids.

  17. Muscle fiber types composition and type identified endplate morphology of forepaw intrinsic muscles in the rat.

    PubMed

    Pan, Feng; Mi, Jing-Yi; Zhang, Yan; Pan, Xiao-Yun; Rui, Yong-Jun

    2016-06-01

    The failure to accept reinnervation is considered to be one of the reasons for the poor motor functional recovery of intrinsic hand muscles (IHMs) after nerve injury. Rat could be a suitable model to be used in simulating motor function recovery of the IHMs after nerve injury as to the similarities in function and anatomy of the muscles between human and rat. However, few studies have reported the muscle fiber types composition and endplate morphologic characteristics of intrinsic forepaw muscles (IFMs) in the rat. In this study, the myosin heavy chain isoforms and acetylcholine receptors were stained by immunofluorescence to show the muscle fiber types composition and endplates on type-identified fibers of the lumbrical muscles (LMs), interosseus muscles (IMs), abductor digiti minimi (AM) and flexor pollicis brevis (FM) in rat forepaw. The majority of IFMs fibers were labeled positively for fast-switch fiber. However, the IMs were composed of only slow-switch fiber. With the exception of the IMs, the other IFMs had a part of hybrid fibers. Two-dimensional morphological characteristics of endplates on I and IIa muscle fiber had no significant differences among the IFMs. The LMs is the most suitable IFMs of rat to stimulate reinnervation of the IHMs after nerve injury. Gaining greater insight into the muscle fiber types composition and endplate morphology in the IFMs of rat may help understand the pathological and functional changes of IFMs in rat model stimulating reinnervation of IHMs after peripheral nerve injury.

  18. Effect of acute fatigue of the hip abductors on control of balance in young and older women.

    PubMed

    Bellew, James W; Panwitz, Beth L; Peterson, Laura; Brock, Mary C; Olson, Katie E; Staples, William H

    2009-07-01

    To examine the effects of acute fatigue of the hip abductors on the control of balance in young and older women. Pretest-posttest. University research laboratory. Healthy young women (n=20; age, 23.0+/-1.5y; height, 166.52+/-4.5 cm; mass, 65.33+/-10.5 kg) and community-dwelling older women (n=20; age, 71.65+/-7.2y; height, 162.31+/-3.8 cm; mass, 71.16+/-11.6 kg) without a fall history. Measurements of control of single-limb balance before and after fatiguing the hip abductors of the dominant leg. Performance on 3 clinical assessments of control of balance: the modified Functional Reach Test in the forward, left, and right directions; the Lower-Extremity Reach Test in forward and lateral directions; and the Single-Limb Stance Time Test (SLSTT). Although the younger subjects showed a significantly greater control of balance than the older women in most tests, control of balance after acute fatigue failed to show a significant decline in either age group. The only exception to this was the SLSTT in the younger women in whom a significant 26% decline was noted (P<.05). Acute fatigue of the hip abductors did not result in a decreased control of balance in healthy young or older women without fall history. Despite considerable changes in movement strategies used to complete the postfatigue tests of balance, quantitative measures of balance did not decrease.

  19. The influence of changes in trunk and pelvic posture during single leg standing on hip and thigh muscle activation in a pain free population.

    PubMed

    Prior, Simon; Mitchell, Tim; Whiteley, Rod; O'Sullivan, Peter; Williams, Benjamin K; Racinais, Sebastien; Farooq, Abdulaziz

    2014-03-27

    Thigh muscle injuries commonly occur during single leg loading tasks and patterns of muscle activation are thought to contribute to these injuries. The influence trunk and pelvis posture has on hip and thigh muscle activation during single leg stance is unknown and was investigated in a pain free population to determine if changes in body posture result in consistent patterns of changes in muscle activation. Hip and thigh muscle activation patterns were compared in 22 asymptomatic, male subjects (20-45 years old) in paired functionally relevant single leg standing test postures: Anterior vs. Posterior Trunk Sway; Anterior vs. Posterior Pelvic Rotation; Left vs. Right Trunk Shift; and Pelvic Drop vs. Raise. Surface EMG was collected from eight hip and thigh muscles calculating Root Mean Square. EMG was normalized to an "upright standing" reference posture. Repeated measures ANOVA was performed along with associated F tests to determine if there were significant differences in muscle activation between paired test postures. In right leg stance, Anterior Trunk Sway (compared to Posterior Sway) increased activity in posterior sagittal plane muscles, with a concurrent deactivation of anterior sagittal plane muscles (p: 0.016 - <0.001). Lateral hip abductor muscles increased activation during Left Trunk Shift (compared to Right) (p :≤ 0.001). Lateral Pelvic Drop (compared to Raise) decreased activity in hip abductors and increased hamstring, adductor longus and vastus lateralis activity (p: 0.037 - <0.001). Changes in both trunk and pelvic posture during single leg stance generally resulted in large, predictable changes in hip and thigh muscle activation in asymptomatic young males. Changes in trunk position in the sagittal plane and pelvis position in the frontal plane had the greatest effect on muscle activation. Investigation of these activation patterns in clinical populations such as hip and thigh muscle injuries may provide important insights into injury

  20. Effects of wide step walking on swing phase hip muscle forces and spatio-temporal gait parameters.

    PubMed

    Bajelan, Soheil; Nagano, Hanatsu; Sparrow, Tony; Begg, Rezaul K

    2017-07-01

    Human walking can be viewed essentially as a continuum of anterior balance loss followed by a step that re-stabilizes balance. To secure balance an extended base of support can be assistive but healthy young adults tend to walk with relatively narrower steps compared to vulnerable populations (e.g. older adults and patients). It was, therefore, hypothesized that wide step walking may enhance dynamic balance at the cost of disturbed optimum coupling of muscle functions, leading to additional muscle work and associated reduction of gait economy. Young healthy adults may select relatively narrow steps for a more efficient gait. The current study focused on the effects of wide step walking on hip abductor and adductor muscles and spatio-temporal gait parameters. To this end, lower body kinematic data and ground reaction forces were obtained using an Optotrak motion capture system and AMTI force plates, respectively, while AnyBody software was employed for muscle force simulation. A single step of four healthy young male adults was captured during preferred walking and wide step walking. Based on preferred walking data, two parallel lines were drawn on the walkway to indicate 50% larger step width and participants targeted the lines with their heels as they walked. In addition to step width that defined walking conditions, other spatio-temporal gait parameters including step length, double support time and single support time were obtained. Average hip muscle forces during swing were modeled. Results showed that in wide step walking step length increased, Gluteus Minimus muscles were more active while Gracilis and Adductor Longus revealed considerably reduced forces. In conclusion, greater use of abductors and loss of adductor forces were found in wide step walking. Further validation is needed in future studies involving older adults and other pathological populations.

  1. Development of a portable anchored dynamometer for collection of maximal voluntary isometric contractions in biomechanics research on dancers.

    PubMed

    Krasnow, Donna; Ambegaonkar, Jatin P; Stecyk, Shane; Wilmerding, M Virginia; Wyon, Matthew; Koutedakis, Yiannis

    2011-12-01

    Surface electromyography (sEMG) has been used in dance medicine research since the 1970s, but normalization procedures are not consistently employed in the field. The purpose of this project was to develop a portable anchored dynamometer (PAD) specifically for dance-related research. Due to the limited studies in the dance research literature using normalization procedures for sEMG data, a review of the procedures used in the exercise science literature was conducted. A portable anchored dynamometer was then developed and tested with dancers, using methods validated in previous literature. We collected sEMG maximum voluntary isometric contractions (MVIC, mV) from 10 female dancers (mean age 31.0 ± 15 yrs, mean height 163 ± 7.6 cm, mean weight 57.6 ± 6.9 kg, and 17.0 ± 13.9 yrs of training in ballet and/or modern dance) over three trials (5 sec each) for eight muscles bilaterally (quadriceps, tibialis anterior, abductor hallucis, gastrocnemius, hamstrings, gluteus maximus, erector spinae, and rectus abdominus). Consistency of data and feedback from dancers suggest that this dance-specific portable anchored dynamometer is effective for future sEMG studies in dance research.

  2. Pattern Differences of Small Hand Muscle Atrophy in Amyotrophic Lateral Sclerosis and Mimic Disorders.

    PubMed

    Fang, Jia; Liu, Ming-Sheng; Guan, Yu-Zhou; Du, Hua; Li, Ben-Hong; Cui, Bo; Ding, Qing-Yun; Cui, Li-Ying

    2016-04-05

    Amyotrophic lateral sclerosis (ALS) and some mimic disorders, such as distal-type cervical spondylotic amyotrophy (CSA), Hirayama disease (HD), and spinobulbar muscular atrophy (SBMA) may present with intrinsic hand muscle atrophy. This study aimed to investigate different patterns of small hand muscle involvement in ALS and some mimic disorders. We compared the abductor digiti minimi/abductor pollicis brevis (ADM/APB) compound muscle action potential (CMAP) ratios between 200 ALS patients, 95 patients with distal-type CSA, 88 HD patients, 43 SBMA patients, and 150 normal controls. The ADM/APB CMAP amplitude ratio was significantly higher in the ALS patients (P < 0.001) than that in the normal controls. The ADM/APB CMAP amplitude ratio was significantly reduced in the patients with distal-type CSA (P < 0.001) and the HD patients (P < 0.001) compared with that in the normal controls. The patients with distal-type CSA had significantly lower APB CMAP amplitude than the HD patients (P = 0.004). The ADM/APB CMAP amplitude ratio was significantly lower in the HD patients (P < 0.001) than that in the patients with distal-type CSA. The ADM/APB CMAP amplitude ratio of the SBMA patients was similar to that of the normal controls (P = 0.862). An absent APB CMAP and an abnormally high ADM/APB CMAP amplitude ratio (≥4.5) were observed exclusively in the ALS patients. The different patterns of small hand muscle atrophy between the ALS patients and the patients with mimic disorders presumably reflect distinct pathophysiological mechanisms underlying different disorders, and may aid in distinguishing between ALS and mimic disorders.

  3. Expression of interleukin-15 and inflammatory cytokines in skeletal muscles of STZ-induced diabetic rats: effect of resistance exercise training.

    PubMed

    Molanouri Shamsi, M; Hassan, Z H; Gharakhanlou, R; Quinn, L S; Azadmanesh, K; Baghersad, L; Isanejad, A; Mahdavi, M

    2014-05-01

    Skeletal muscle atrophy is associated with type-1 diabetes. Skeletal muscle is the source of pro- and anti-inflammatory cytokines that can mediate muscle hypertrophy and atrophy, while resistance exercise can modulate both muscle mass and muscle cytokine expression. This study determined the effects of a 5-week resistance exercise training regimen on the expression of muscle cytokines in healthy and streptozotocin-induced diabetic rats, with special emphasis on interleukin-15 (IL-15), a muscle-derived cytokine proposed to be involved in muscle hypertrophy or responses to stress. Induction of diabetes reduced muscle weight in both the fast flexor hallucis longus (FHL) and slow soleus muscles, while resistance training preserved FHL muscle weight in diabetic rats. IL-15 protein content was increased by training in both FHL and soleus muscles, as well as serum, in normal and diabetic rats. With regard to proinflammatory cytokines, muscle IL-6 levels were increased in diabetic rats, while training decreased muscle IL-6 levels in diabetic rats; training had no effect on FHL muscle IL-6 levels in healthy rats. Also, tumor necrosis factor-alpha (TNF-α) and IL-1β levels were increased by diabetes, but not changed by training. In conclusion, we found that in diabetic rats, resistance training increased muscle and serum IL-15 levels, decreased muscle IL-6 levels, and preserved FHL muscle mass.

  4. [Degenerative rupture of the hip abductors. Missed diagnosis with therapy-resistant trochanteric pain of the hips and positive Trendelenburg sign in elderly patients].

    PubMed

    Aepli-Schneider, N; Treumann, T; Müller, U; Schmid, L

    2012-01-01

    The cases of four elderly patients with persistent trochanteric pain and tears of the gluteus medius and/or gluteus minimus tendons detected in magnetic resonance imaging (MRI) are presented. There was no history of local trauma in any patient but three patients had a positive Trendelenburg sign. Magnetic resonance imaging showed either an obvious discontinuity of the affected tendon or an increased T2 signal above, or less specifically lateral to the greater trochanter. The presence of an elongated tendon on MRI is most likely indicative of a partial rupture of the tendon. Pain and local tenderness over the lateral aspect of the hip in clinical examination is commonly attributed to trochanteric bursitis or trochanteric pain syndrome. Partial or complete tears of the gluteus medius and/or gluteus minimus tendons are thought to represent an unusual finding. However, the true incidence and the clinical significance of hip abductor degeneration and rupture remain to be determined. More studies are needed to examine the prevalence of ruptures in asymptomatic patients, to evaluate the subsequent risk for developing osteoarthritis of the hip (caused by impaired protective reflexes originating from proprioceptive nerve endings in muscle spindles) and to determine the risk for falls related to weakness of hip abduction. Furthermore, no data exist regarding the success rate of conservative treatment. Tears of the gluteus medius and minimus tendons in the elderly population are likely to be a more common cause of pain in the greater trochanteric region than previously thought. In patients who do not respond to conservative treatment, weakness of hip abduction (positive Trendelenburg sign) and new limping should point to the possibility of hip abductor ruptures. The most useful examination technique for diagnosis is MRI.

  5. Short-term effects of hip abductors and lateral rotators strengthening in females with patellofemoral pain syndrome: a randomized controlled clinical trial.

    PubMed

    Fukuda, Thiago Yukio; Rossetto, Flavio Marcondes; Magalhães, Eduardo; Bryk, Flavio Fernandes; Lucareli, Paulo Roberto Garcia; de Almeida Aparecida Carvalho, Nilza

    2010-11-01

    Randomized clinical trial. To investigate the influence of strengthening the hip abductor and lateral rotator musculature on pain and function of females with patellofemoral pain syndrome (PFPS). Hip muscle weakness in women athletes has been the focus of many recent studies and is suggested as an important impairment to address in the conservative treatment of women with PFPS. However, it is still not well established if strengthening these muscles is associated with clinical improvement in pain and function in sedentary females with PFPS. Seventy females (average±SD age, 25±07 years), with a diagnosis of unilateral PFPS, were distributed randomly into 3 groups: 22 females in the knee exercise group, who received a conventional treatment that emphasized stretching and strengthening of the knee musculature; 23 females in the knee and hip exercise group, who performed exercises to strengthen the hip abductors and external rotators in addition to the same exercises performed by those in the knee exercise group; and of the 25 females who did not receive any treatment. The females of the nontreatment group (control) were instructed to maintain their normal daily activities. An 11-point numerical pain rating scale (NPRS) was used to assess pain during stair ascent and descent. The lower extremity functional scale (LEFS) and the anterior knee pain scale (AKPS) were used to assess function. The single-limb single hop test was also used as a functional outcome to measure preintervention and 4-week postintervention function. The 3 groups were homogeneous prior to treatment in respect to demographic, pain, and functional scales data. Both the knee exercise and the knee and hip exercise groups showed significant improvement in the LEFS, the AKPS, and the NPRS, when compared to the control group (P<.05 and P<.001, respectively). But, when we considered minimal clinically important differences, only the knee and hip exercise group demonstrated mean improvements in AKPS and

  6. Anatomical characteristics of the flexor digitorum accessorius longus muscle and their relevance to tarsal tunnel syndrome a systematic review.

    PubMed

    Deleu, Paul-André; Bevernage, Bernhard Devos; Birch, Ivan; Maldague, Pierre; Gombault, Vincent; Leemrijse, Thibaut

    2015-07-01

    Clinical and cadaver studies have reported that supernumerary muscles could be the etiology of a variety of pathologic disorders, such as posterior impingement syndrome, tarsal tunnel syndrome (TTS), and flexor hallucis longus tenosynovitis. We describe a unique variant of the flexor digitorum accessorius longus (FDAL) muscle as an apparent cause of TTS, functioning as an independent flexor of the second toe, which has not been described in the literature. In addition to this case report, a systematic review was performed of TTS caused by the FDAL muscle. A targeted search of PubMed, the Cochrane Library, the Cumulative Index to Nursing and Allied Health Literature, and Web of Science identified full-text papers that fulfilled the inclusion and exclusion criteria. Twenty-nine papers were identified for inclusion in the systematic review: 12 clinical papers of TTS caused by the FDAL muscle and 17 cadaver-based papers. Clinicians often do not include the FDAL muscle in the differential diagnosis of TTS. This literature review suggests that the FDAL is an important muscle in terms of its functional and clinical significance. Knowledge of this muscle, its anatomical location and variations, and its magnetic resonance imaging characteristics may help clinicians make an accurate differential diagnosis.

  7. Muscle shear elastic modulus is linearly related to muscle torque over the entire range of isometric contraction intensity.

    PubMed

    Ateş, Filiz; Hug, François; Bouillard, Killian; Jubeau, Marc; Frappart, Thomas; Couade, Mathieu; Bercoff, Jeremy; Nordez, Antoine

    2015-08-01

    Muscle shear elastic modulus is linearly related to muscle torque during low-level contractions (<60% of Maximal Voluntary Contraction, MVC). This measurement can therefore be used to estimate changes in individual muscle force. However, it is not known if this relationship remains valid for higher intensities. The aim of this study was to determine: (i) the relationship between muscle shear elastic modulus and muscle torque over the entire range of isometric contraction and (ii) the influence of the size of the region of interest (ROI) used to average the shear modulus value. Ten healthy males performed two incremental isometric little finger abductions. The joint torque produced by Abductor Digiti Minimi was considered as an index of muscle torque and elastic modulus. A high coefficient of determination (R(2)) (range: 0.86-0.98) indicated that the relationship between elastic modulus and torque can be accurately modeled by a linear regression over the entire range (0% to 100% of MVC). The changes in shear elastic modulus as a function of torque were highly repeatable. Lower R(2) values (0.89±0.13 for 1/16 of ROI) and significantly increased absolute errors were observed when the shear elastic modulus was averaged over smaller ROI, half, 1/4 and 1/16 of the full ROI) than the full ROI (mean size: 1.18±0.24cm(2)). It suggests that the ROI should be as large as possible for accurate measurement of muscle shear modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Motor fatigability in persons with multiple sclerosis: Relation between different upper limb muscles, and with fatigue and the perceived use of the arm in daily life.

    PubMed

    Severijns, Deborah; Van Geel, Fanny; Feys, Peter

    2018-01-01

    Motor fatigability is increasingly acknowledged in persons with MS (pwMS). It is unknown whether fatigability is generalized across upper limb muscles and relates to fatigue and perceived difficulties in upper limb use. This observational case-controlled study included twenty PwMS (median EDSS = 3, range 1.5-6.5) and twenty healthy controls who performed 30″ sustained maximal muscle contractions for index finger abduction, hand grip, elbow flexion and shoulder abduction. A static fatigue index (SFI) was calculated to assess motor fatigability for each muscle group. PwMS completed the Fatigue Severity Scale (FSS) and Modified Fatigue Index Scale (MFIS), to quantify severity and perceived impact of fatigue and the Manual Ability Measure (MAM-36) reflecting perceived difficulty in using the upper limbs. Comparisons between groups and muscles was made by t-tests. Associations between outcomes were calculated with correlation coefficients. Fatigue was highest in pwMS. PwMS showed preserved muscle strength and a greater motor fatigability in elbow flexors compared to healthy controls. SFI of elbow flexors and shoulder abductors were associated, and contributed to FSS and MFIS. SFI of elbow flexors and finger abductors predicted half of the variation in MAM-36. Increased motor fatigability was only present in elbow flexors of PwMS, indicating that expression of motor fatigability is not generalized. Fatigability was associated with perceived fatigue (impact) and daily life upper limb use. Results are preliminary given the small sample size with predominantly persons with mild MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Posterior Cricoarytenoid Muscle Dynamics in Canines and Humans

    PubMed Central

    Chhetri, Dinesh K.; Neubauer, Juergen; Sofer, Elazar

    2015-01-01

    Objective The posterior cricoarytenoid (PCA) muscle is the sole abductor of the glottis and serves important functions during respiration, phonation, cough, and sniff. The present study examines vocal fold abduction dynamics during PCA muscle activation. Study Design Basic science study using an in vivo canine model and human subjects. Methods In four canines and five healthy humans vocal fold abduction time was measured using high speed video recording. In the canines, PCA muscle activation was achieved using graded stimulation of the PCA nerve branch. The human subjects performed coughing and sniffing tasks. High speed video and audio signals were concurrently recorded. Results In the canines the vocal fold moved posteriorly, laterally, and superiorly during abduction. Average time to reach 10%, 50% and 90% abduction was 23, 50, and 100 ms with low stimulation, 24, 58, and 129 ms with medium stimulation, and 21, 49, and 117 ms with high level stimulation. In the humans, 100% abduction times for coughing and sniffing tasks were 79 and 193 ms, respectively. Conclusion The PCA abduction times in canines are within the range in humans. The results also further support the notion that PCA muscles are fully active during cough. Level of Evidence N/A (Animal studies and basic research) PMID:24781959

  10. Intramuscular Electrical Stimulation for Muscle Activation of the Tibialis Anterior After Surgical Repair: A Case Report.

    PubMed

    Hollis, Sharon; McClure, Philip

    2017-12-01

    Background Loss of voluntary activation of musculature can result in muscle weakness. External neuromuscular stimulation can be utilized to improve voluntary activation but is often poorly tolerated because of pain associated with required stimulus level. Intramuscular electrical stimulation requires much lower voltage and may be better tolerated, and therefore more effective at restoring voluntary muscle activation. Case Description A 71-year-old man sustained a rupture of the distal attachment of the tibialis anterior tendon. Thirty-two weeks after surgical repair, there was no palpable or visible tension development in the muscle belly or tendon. Dorsiflexion was dependent on toe extensors. Electrical stimulation applied via a dry needling placement in the muscle belly was utilized to induce an isometric contraction. Outcomes Five sessions of intramuscular electrical stimulation were delivered. By day 4 (second visit), the patient was able to dorsiflex without prominent use of the extensor hallucis longus. By day 6 (third visit), active-range-of-motion dorsiflexion with toes flexed increased 20° (-10° to 10°). Eighteen days after the initial treatment, the patient walked without his previous high-step gait pattern, and the tibialis anterior muscle test improved to withstanding moderate resistance (manual muscle test score, 4/5). Discussion The rapid change in muscle function observed suggests that intramuscular electrical stimulation may facilitate voluntary muscle activation. Level of Evidence Therapy, level 5. J Orthop Sports Phys Ther 2017;47(12):965-969. Epub 15 Oct 2017. doi:10.2519/jospt.2017.7368.

  11. Motor cortex evaluation by nTMS after surgery of central region tumors: a feasibility study.

    PubMed

    Forster, Marie-Thérèse; Senft, Christian; Hattingen, Elke; Lorei, Mario; Seifert, Volker; Szelényi, Andrea

    2012-08-01

    Largely discussed during the past decade, motor cortex reorganization in brain tumor surgery has been investigated only by few studies. We therefore aimed to investigate cortical motor representation after resection of perirolandic WHO grade II and III gliomas using navigated transcranial magnetic stimulation (nTMS). Five patients were examined before neurosurgery and after a follow-up period of 17.7 ± 6.8 months. As a control, five healthy age-matched subjects were equally studied by nTMS in two sessions spaced 12.6 (range 2-35) days apart. Resting motor thresholds (RMT), hotspots and centers of gravity (CoG) were identified for the first dorsal interosseous (FDI), abductor pollicis brevis (APB), extensor digitorum (EXT), tibialis anterior (TA) and abductor hallucis (AH) muscles. Euclidian distances, coefficients of variance and intraclass correlation coefficients (ICC) were calculated. Healthy subjects showed moderate to excellent reliability measurement of RMT (ICC = 0.69-0.94). Average displacement of CoGs across sessions was 0.68 ± 0.34 cm in the dominant and 0.76 ± 0.38 cm in the non-dominant hemisphere; hotspots moved 0.87 ± 0.51 cm and 0.83 ± 0.45 cm, respectively. In one patient these parameters differed significantly from the control group (p < 0.05 for both CoGs and hotspots). Overall, all patients' CoGs moved 1.12 ± 0.93 cm, and hotspots were 1.06 ± 0.7 cm apart. In both patients and healthy subjects, movement of assessed parameters was more important along the X- than the Y-axis. nTMS allows evaluating cortical reorganization after brain tumor surgery. It may contribute to the understanding of neurofunctional dynamics, thus influencing therapeutic strategy.

  12. Hip and ankle range of motion and hip muscle strength in young female ballet dancersand controls

    PubMed Central

    Bennell, K.; Khan, K. M.; Matthews, B.; De Gruyter, M.; Cook, E.; Holzer, K.; Wark, J. D.

    1999-01-01

    OBJECTIVES: To compare the hip and ankle range of motion and hip muscle strength in 8-11 year old novice female ballet dancers and controls. METHODS: Subjects were 77 dancers and 49 controls (mean (SD) age 9.6 (0.8) and 9.6 (0.7) years respectively). Supine right active hip external rotation (ER) and internal rotation (IR) were measured using an inclinometer. A turnout protractor was used to assess standing active turnout range. The measure of ER achieved from below the hip during turnout (non-hip ER) was calculated by subtracting hip ER range from turnout range, and hip ER:IR was derived by dividing ER range by IR range. Range of right weight bearing ankle dorsiflexion was measured in a standing lunge using two methods: the distance from the foot to the wall (in centimetres) and the angle of the shank to the vertical via an inclinometer (in degrees). Right calf muscle range was measured in weight bearing using an inclinometer. A manual muscle tester was used to assess right isometric hip flexor, internal rotator, external rotator, abductor, and adductor strength. RESULTS: Dancers had less ER (p<0.05) and IR (p<0.01) range than controls but greater ER:IR (p<0.01). Although there was no difference in turnout between groups, the dancers had greater non-hip ER. Dancers had greater range of ankle dorsiflexion than controls, measured in both centimetres (p<0.01) and degrees (p<0.05), but similar calf muscle range. After controlling for body weight, controls had stronger hip muscles than dancers except for hip abductor strength which was similar. Regression analyses disclosed a moderate relation between turnout and hip ER (r = 0.40). There were no significant correlations between range of motion and training years and weekly training hours. CONCLUSIONS: Longitudinal follow up will assist in determining whether or not hip and ankle range in young dancers is genetically fixed and unable to be improved with further balletic training. 


 PMID:10522638

  13. Experimental muscle pain increases variability of neural drive to muscle and decreases motor unit coherence in tremor frequency band.

    PubMed

    Yavuz, Utku Ş; Negro, Francesco; Falla, Deborah; Farina, Dario

    2015-08-01

    It has been observed that muscle pain influences force variability and low-frequency (<3 Hz) oscillations in the neural drive to muscle. In this study, we aimed to investigate the effect of experimental muscle pain on the neural control of muscle force at higher frequency bands, associated with afferent feedback (alpha band, 5-13 Hz) and with descending cortical input (beta band, 15-30 Hz). Single-motor unit activity was recorded, in two separate experimental sessions, from the abductor digiti minimi (ADM) and tibialis anterior (TA) muscles with intramuscular wire electrodes, during isometric abductions of the fifth finger at 10% of maximal force [maximum voluntary contraction (MVC)] and ankle dorsiflexions at 25% MVC. The contractions were repeated under three conditions: no pain (baseline) and after intramuscular injection of isotonic (0.9%, control) and hypertonic (5.8%, painful) saline. The results showed an increase of the relative power of both the force signal and the neural drive at the tremor frequency band (alpha, 5-13 Hz) between the baseline and hypertonic (painful) conditions for both muscles (P < 0.05) but no effect on the beta band. Additionally, the strength of motor unit coherence was lower (P < 0.05) in the hypertonic condition in the alpha band for both muscles and in the beta band for the ADM. These results indicate that experimental muscle pain increases the amplitude of the tremor oscillations because of an increased variability of the neural control (common synaptic input) in the tremor band. Moreover, the concomitant decrease in coherence suggests an increase in independent input in the tremor band due to pain. Copyright © 2015 the American Physiological Society.

  14. Does hip joint positioning affect maximal voluntary contraction in the gluteus maximus, gluteus medius, tensor fasciae latae and sartorius muscles?

    PubMed

    Bernard, J; Beldame, J; Van Driessche, S; Brunel, H; Poirier, T; Guiffault, P; Matsoukis, J; Billuart, F

    2017-11-01

    Minimally invasive total hip arthroplasty (THA) is presumed to provide functional and clinical benefits, whereas in fact the literature reveals that gait and posturographic parameters following THA do not recover values found in the general population. There is a significant disturbance of postural sway in THA patients, regardless of the surgical approach, although with some differences between approaches compared to controls: the anterior and anterolateral minimally invasive approaches seem to be more disruptive of postural parameters than the posterior approach. Electromyographic (EMG) study of the hip muscles involved in surgery [gluteus maximus (GMax), gluteus medius (GMed), tensor fasciae latae (TFL), and sartorius (S)] could shed light, the relevant literature involves discordant methodologies. We developed a methodology to assess EMG activity during maximal voluntary contraction (MVC) of the GMax, GMed, TFL and sartorius muscles as a reference for normalization. A prospective study aimed to assess whether hip joint positioning and the learning curve on an MVC test affect the EMG signal during a maximal voluntary contraction. Hip positioning and the learning curve on an MVC test affect EMG signal during MVC of GMax, GMed, TFL and S. Thirty young asymptomatic subjects participated in the study. Each performed 8 hip muscle MVCs in various joint positions recorded with surface EMG sensors. Each MVC was performed 3 times in 1 week, with the same schedule every day, controlling for activity levels in the preceding 24h. EMG activity during MVC was expressed as a ratio of EMG activity during unipedal stance. Non-parametric tests were applied. Statistical analysis showed no difference according to hip position for abductors or flexors in assessing EMG signal during MVC over the 3 sessions. Hip abductors showed no difference between abduction in lateral decubitus with hip straight versus hip flexed: GMax (19.8±13.7 vs. 14.5±7.8, P=0.78), GMed (13.4±9.0 vs. 9.9±6

  15. [Open repair of gluteus medius and minimus tendons tears with double-row technique : Clinical and radiological results].

    PubMed

    Schröder, J H; Geßlein, M; Schütz, M; Perka, C; Krüger, D

    2018-03-01

    Operative refixation is a new therapeutic option in cases of failed conservative treatment for trochanteric pain syndrome (TPS) and lesions of the hip abductors in magnetic resonance imaging (MRI). Evaluation of the clinical and radiological results after open gluteus medius and minimus tendon reconstruction with a double-row technique was carried out. Patients with failed conservative treatment for TPS and confirmed lesions of the hip abductors in MRI were treated by open hip abductor tendon reconstruction with a double-row technique. The patients were evaluated preoperatively and postoperatively (minimum follow-up 12 months) using the modified Harris hip score (mHHS) and a subjective score (subjective hip value, SHV). Preoperative and postoperative MRI evaluation included measurement of hip abductor muscle diameter and cross-sectional area as well as fatty degeneration. In this study 12 consecutive cases of open reconstruction of the hip abductor tendons were included. There was a significant improvement in the mHHS. In one case the patient showed an atraumatic rupture in the proximal anchor row. The MRI showed a significant improvement in muscle diameter and cross-sectional area for the gluteus medius muscle of the affected and the contralateral side, while the degree of fatty degeneration did not improve. The fatty degeneration showed a significant correlation with the postoperative results in the mHHS and the SHV. Operative reconstruction of lesions in the hip abductor tendons is a therapy option with significant improvement of patient satisfaction and functional scores as well as muscle diameter and cross-sectional area for the gluteus medius. The degree of fatty degeneration and possible differential diagnoses need to be taken into consideration.

  16. Bilateral anterior tarsal tunnel syndrome variant secondary to extensor hallucis brevis muscle hypertrophy in a ballet dancer: a case report.

    PubMed

    Tennant, Joshua N; Rungprai, Chamnanni; Phisitkul, Phinit

    2014-12-01

    We present a case of bilateral anterior tarsal tunnel syndrome secondary EHB hypertrophy in a dancer, with successful treatment with bilateral EHB muscle excisions for decompression. The bilateral presentation of this case with the treatment of EHB muscle excision is the first of its type reported in the literature. Copyright © 2014 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  17. The Influence of Foot-Strike Technique on the Neuromechanical Function of the Foot.

    PubMed

    Kelly, Luke A; Farris, Dominic J; Lichtwark, Glen A; Cresswell, Andrew G

    2018-01-01

    The aim of this study was to investigate the influence of foot-strike technique on longitudinal arch mechanics and intrinsic foot muscle function during running. Thirteen healthy participants ran barefoot on a force-instrumented treadmill at 2.8 ms with a forefoot (FFS) and rearfoot (RFS; habitual) running technique, whereas kinetic, kinematic, and electromyographic data from the intrinsic foot muscles were collected simultaneously. The longitudinal arch was modeled as a single "midfoot" joint representing motion of the rearfoot (calcaneus) relative to the forefoot (metatarsals). An inverse dynamic analysis was performed to estimate joint moments generated about the midfoot, as well as mechanical work and power. The midfoot was more plantar flexed (higher arch) at foot contact when running with a forefoot running technique (RFS 0.2 ± 1.8 vs FFS 6.9 ± 3.0°, effect size (ES) = 2.7); however, there was no difference in peak midfoot dorsiflexion in stance (RFS -11.6 ± 3.0 vs FFS -11.4 ± 3.4°, ES = 0.63). When running with a forefoot technique, participants generated greater moments about the midfoot (27% increase, ES = 1.1) and performed more negative work (240% increase, ES = 2.2) and positive work (42% increase, ES = 1.1) about the midfoot. Average stance-phase muscle activation was greater for flexor digitorum brevis (20% increase, ES = 0.56) and abductor hallucis (17% increase, ES = 0.63) when running with a forefoot technique. Forefoot running increases loading about the longitudinal arch and also increases the mechanical work performed by the intrinsic foot muscles. These findings have substantial implications in terms of injury prevention and management for runners who transition from a rearfoot to a forefoot running technique.

  18. Muscle contributions to the acceleration of the whole body centre of mass during recovery from forward loss of balance by stepping in young and older adults.

    PubMed

    Graham, David F; Carty, Christopher P; Lloyd, David G; Barrett, Rod S

    2017-01-01

    The purpose of this study was to determine the muscular contributions to the acceleration of the whole body centre of mass (COM) of older compared to younger adults that were able to recover from forward loss of balance with a single step. Forward loss of balance was achieved by releasing participants (14 older adults and 6 younger adults) from a static whole-body forward lean angle of approximately 18 degrees. 10 older adults and 6 younger adults were able to recover with a single step and included in subsequent analysis. A scalable anatomical model consisting of 36 degrees-of-freedom was used to compute kinematics and joint moments from motion capture and force plate data. Forces for 92 muscle actuators were computed using Static Optimisation and Induced Acceleration Analysis was used to compute individual muscle contributions to the three-dimensional acceleration of the whole body COM. There were no significant differences between older and younger adults in step length, step time, 3D COM accelerations or muscle contributions to 3D COM accelerations. The stance and stepping leg Gastrocnemius and Soleus muscles were primarily responsible for the vertical acceleration experienced by the COM. The Gastrocnemius and Soleus from the stance side leg together with bilateral Hamstrings accelerated the COM forwards throughout balance recovery while the Vasti and Soleus of the stepping side leg provided the majority of braking accelerations following foot contact. The Hip Abductor muscles provided the greatest contribution to medial-lateral accelerations of the COM. Deficits in the neuromuscular control of the Gastrocnemius, Soleus, Vasti and Hip Abductors in particular could adversely influence balance recovery and may be important targets in interventions to improve balance recovery performance.

  19. Arthroscopic treatment of tenosynovitis of the flexor hallucis longus tendon.

    PubMed

    Corte-Real, Nuno Manuel; Moreira, Rodrigo Manuel; Guerra-Pinto, Francisco

    2012-12-01

    Tenosynovitis of the flexor hallucis longus (FHL) tendon is a condition typically found in ballet dancers and sometimes in soccer players and is related to chronic overuse. A traumatic cause for this situation, such as an ankle sprain, is considered rare. In case of failure of conservative treatment, the tendon can be surgically released, which is usually done through an open procedure. This article presents the results of an arthroscopic release of the FHL. Twenty-seven patients underwent surgery for FHL tenosynovitis over a period of 18 months. The mean age of the patients was 34 years. All patients related the onset of the condition with an ankle sprain. Eighteen patients were on worker's compensation and five had sport-related accidents. None of the patients was a professional athlete or a ballet dancer. The mean follow-up was 32 months. The outcome was measured with a satisfaction questionnaire and with the American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot scoring system. The mean postoperative AOFAS score was 89 with 70% excellent or good results. Mean satisfaction rate was 4 (range, 0 to 5); 89% of the patients would undergo the procedure again. Twenty-two patients (81%) returned to the same level of activity in work and sports. A complication rate of 18% (five patients) and reoperation rate of 4% (one patient) were found. Arthroscopic release of the FHL tendon was a valid procedure. It was a minimally invasive surgery that allowed good visualization of the involved structures and yielded good results. This condition can be related to trauma and is not an exclusive disease of ballet dancers or overuse.

  20. The Influence of Hip Abductor Weakness on Frontal Plane Motion of the Trunk and Pelvis in Patients with Cerebral Palsy

    ERIC Educational Resources Information Center

    Krautwurst, Britta K.; Wolf, Sebastian I.; Heitzmann, Daniel W. W.; Gantz, Simone; Braatz, Frank; Dreher, Thomas

    2013-01-01

    Trendelenburg walking pattern is a common finding in various disorders, including cerebral palsy (CP), where it is seen in children and adults. Clinically, this deviation is viewed as a consequence of hip abductor weakness resulting in pelvic obliquity. Trunk lean to the ipsilateral side is a common compensatory mechanism to counteract pelvic…

  1. Abductor Digiti Minimi Flap for Vascularized Coverage in the Surgical Management of Complex Regional Pain Syndrome Following Carpal Tunnel Release.

    PubMed

    Cheung, Kevin; Klausmeyer, Melissa A; Jupiter, Jesse B

    2017-11-01

    The development of Complex Regional Pain Syndrome (CRPS) represents a potentially devastating complication following carpal tunnel release. In the presence of a suspected incomplete release of the transverse carpal ligament or direct injury to the median nerve, neurolysis as well as nerve coverage to prevent recurrent scar has been shown to be effective. Retrospective chart review and telephone interview was conducted for patients who underwent abductor digiti minimi flap coverage and neurolysis of the median nerve for CRPS following carpal tunnel release. Fourteen wrists in 12 patients were reviewed. Mean patient age was 64 years (range, 49-83 years), and the mean follow-up was 44 months. Carpal tunnel outcome instrument scores were 47.4 ± 6.8 preoperatively and 27.1 ± 10.6 at follow-up ( P < .001). Quick Disabilities of the Arm, Shoulder, and Hand (QuickDASH) scores at follow-up were 29.4 ± 26. No significant postoperative complications were identified. The abductor digiti minimi flap is a reliable option with minimal donor site morbidity. It provides predictable coverage when treating CRPS following carpal tunnel syndrome.

  2. Dynamical Coordination of Hand Intrinsic Muscles for Precision Grip in Diabetes Mellitus.

    PubMed

    Li, Ke; Wei, Na; Cheng, Mei; Hou, Xingguo; Song, Jun

    2018-03-12

    This study investigated the effects of diabetes mellitus (DM) on dynamical coordination of hand intrinsic muscles during precision grip. Precision grip was tested using a custom designed apparatus with stable and unstable loads, during which the surface electromyographic (sEMG) signals of the abductor pollicis brevis (APB) and first dorsal interosseous (FDI) were recorded simultaneously. Recurrence quantification analysis (RQA) was applied to quantify the dynamical structure of sEMG signals of the APB and FDI; and cross recurrence quantification analysis (CRQA) was used to assess the intermuscular coupling between the two intrinsic muscles. This study revealed that the DM altered the dynamical structure of muscle activation for the FDI and the dynamical intermuscular coordination between the APB and FDI during precision grip. A reinforced feedforward mechanism that compensates the loss of sensory feedbacks in DM may be responsible for the stronger intermuscular coupling between the APB and FDI muscles. Sensory deficits in DM remarkably decreased the capacity of online motor adjustment based on sensory feedback, rendering a lower adaptability to the uncertainty of environment. This study shed light on inherent dynamical properties underlying the intrinsic muscle activation and intermuscular coordination for precision grip and the effects of DM on hand sensorimotor function.

  3. A comparison of respiratory and peripheral muscle strength, functional exercise capacity, activities of daily living and physical fitness in patients with cystic fibrosis and healthy subjects.

    PubMed

    Arikan, Hulya; Yatar, İlker; Calik-Kutukcu, Ebru; Aribas, Zeynep; Saglam, Melda; Vardar-Yagli, Naciye; Savci, Sema; Inal-Ince, Deniz; Ozcelik, Ugur; Kiper, Nural

    2015-01-01

    There are limited reports that compare muscle strength, functional exercise capacity, activities of daily living (ADL) and parameters of physical fitness of cystic fibrosis (CF) patients with healthy peers in the literature. The purpose of this study was to assess and compare respiratory and peripheral muscle strength, functional exercise capacity, ADL and physical fitness in patients with CF and healthy subjects. Nineteen patients with CF (mean forced expiratory volume in one second-FEV1: 86.56±18.36%) and 20 healthy subjects were included in this study. Respiratory (maximal inspiratory pressure-MIP and maximal expiratory pressure-MEP) and peripheral muscle strength (quadriceps, shoulder abductors and hand grip strength) were evaluated. Functional exercise capacity was determined with 6min walk test (6MWT). ADL was assessed with Glittre ADL test and physical fitness was assessed with Munich fitness test (MFT). There were not any statistically significant difference in MIP, %MIP, MEP and %MEP values between two groups (p>0.05). %Peripheral muscle strength (% quadriceps and shoulder abductors strength), 6MWT distance and %6MWT distance were significantly lower in patients with CF than those of healthy subjects (p<0.05). Glittre ADL-test time was significantly longer in patients with CF than healthy subjects (p<0.05). According to Munich fitness test, the number of bouncing a ball, hanging score, distance of standing vertical jumping and standing vertical jumping score were significantly lower in patients with CF than those of healthy subjects (p<0.05). Peripheral muscle strength, functional exercise capacity, ADL performance and speed, coordination, endurance and power components of physical fitness are adversely affected in mild-severe patients with CF compared to healthy peers. Evaluations must be done in comprehensive manner in patients with CF with all stages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Muscle contributions to the acceleration of the whole body centre of mass during recovery from forward loss of balance by stepping in young and older adults

    PubMed Central

    Graham, David F.; Carty, Christopher P.; Lloyd, David G.

    2017-01-01

    The purpose of this study was to determine the muscular contributions to the acceleration of the whole body centre of mass (COM) of older compared to younger adults that were able to recover from forward loss of balance with a single step. Forward loss of balance was achieved by releasing participants (14 older adults and 6 younger adults) from a static whole-body forward lean angle of approximately 18 degrees. 10 older adults and 6 younger adults were able to recover with a single step and included in subsequent analysis. A scalable anatomical model consisting of 36 degrees-of-freedom was used to compute kinematics and joint moments from motion capture and force plate data. Forces for 92 muscle actuators were computed using Static Optimisation and Induced Acceleration Analysis was used to compute individual muscle contributions to the three-dimensional acceleration of the whole body COM. There were no significant differences between older and younger adults in step length, step time, 3D COM accelerations or muscle contributions to 3D COM accelerations. The stance and stepping leg Gastrocnemius and Soleus muscles were primarily responsible for the vertical acceleration experienced by the COM. The Gastrocnemius and Soleus from the stance side leg together with bilateral Hamstrings accelerated the COM forwards throughout balance recovery while the Vasti and Soleus of the stepping side leg provided the majority of braking accelerations following foot contact. The Hip Abductor muscles provided the greatest contribution to medial-lateral accelerations of the COM. Deficits in the neuromuscular control of the Gastrocnemius, Soleus, Vasti and Hip Abductors in particular could adversely influence balance recovery and may be important targets in interventions to improve balance recovery performance. PMID:29069097

  5. Fast and singular muscle responses initiate the startle response of Pantodon buchholzi (Osteoglossomorpha).

    PubMed

    Starosciak, A K; Kalola, R P; Perkins, K P; Riley, J A; Saidel, W M

    2008-01-01

    The startle response of Pantodon buchholzi, the African butterfly fish, is a complete or incomplete ballistic jump resulting from abduction of the pectoral fins. This study analyzed the neuromuscular basis for such a jump by recording in vivo electromyograms (emgs) from the muscles of abduction, the muscularis abductor superficialis (MAS) and the muscularis abductor profundus (MAP). The motor neurons innervating the MAS muscle were localized by retrograde transport of biocytin. The latency between stimulus and the evoked emg in the MAS was less than 5 ms; the latency of the MAP was about 6.5 ms. A single emg was recorded per jump. High speed video demonstrated that onset of a startle movement began within 10 ms of the onset of fin abduction. The emg associated with this movement is short (<2 ms) and followed by a variably-shaped, slower and smaller potential of 10-30 ms duration. The brief period between stimulus and startle response of Pantodon suggests a Mauthner neuron-related response, only with the behavior occurring in the vertical plane. The MAS may act only in a startle response, whereas the MAP might have a role in other behaviors. Elicited jumping habituates after a single trial. Electrophysiological evidence is presented indicating that the innervating motor neurons are suppressed for seconds following a stimulus. The neurons innervating the MAS are located at the medullary-spinal cord junction and possess an average radius of approximately 17.9 mum. These fish have been historically described as 'fresh water' flying fish. As a single emg occurs per startle response, repetitive pectoral activity generating flying cannot be supported. Pantodon 'flight' is ballistic. Copyright 2007 S. Karger AG, Basel.

  6. Muscle force distribution of the lower limbs during walking in diabetic individuals with and without polyneuropathy.

    PubMed

    Gomes, Aline A; Ackermann, Marko; Ferreira, Jean P; Orselli, Maria Isabel V; Sacco, Isabel C N

    2017-11-09

    Muscle force estimation could advance the comprehension of the neuromuscular strategies that diabetic patients adopt to preserve walking ability, which guarantees their independence as they deal with their neural and muscular impairments due to diabetes and neuropathy. In this study, the lower limb's muscle force distribution during gait was estimated and compared in diabetic patients with and without polyneuropathy. Thirty individuals were evaluated in a cross-sectional study, equally divided among controls (CG) and diabetic patients with (DNG) and without (DG) polyneuropathy. The acquired ground reaction forces and kinematic data were used as input variables for a scaled musculoskeletal model in the OpenSim software. The maximum isometric force of the ankle extensors and flexors was reduced in the model of DNG by 30% and 20%, respectively. The muscle force was calculated using static optimization, and peak forces were compared among groups (flexors and extensors of hip, knee, and ankle; ankle evertors; and hip abductors) using MANOVAs, followed by univariate ANOVAs and Newman-Keuls post-hoc tests (p < 0.05). From the middle to late stance phase, DG showed a lower soleus muscle peak force compared to the CG (p=0.024) and the DNG showed lower forces in the gastrocnemius medialis compared to the DG (p=0.037). At the terminal swing phase, the semitendinosus and semimembranosus peak forces showed lower values in the DG compared to the CG and DNG. At the late stance, the DNG showed a higher peak force in the biceps short head, semimembranosus, and semitendinosus compared to the CG and DG. Peak forces of ankle (flexors, extensors, and evertors), knee (flexors and extensors), and hip abductors distinguished DNG from DG, and both of those from CG. Both diabetic groups showed alterations in the force production of the ankle extensors with reductions in the forces of soleus (DG) and gastrocnemius medialis (DNG) seen in both diabetic groups, but only DNG showed an increase

  7. Surface Electromyographic Examination of Poststroke Neuromuscular Changes in Proximal and Distal Muscles Using Clustering Index Analysis

    PubMed Central

    Tang, Weidi; Zhang, Xu; Tang, Xiao; Cao, Shuai; Gao, Xiaoping; Chen, Xiang

    2018-01-01

    Whether stroke-induced paretic muscle changes vary across different distal and proximal muscles remains unclear. The objective of this study was to compare paretic muscle changes between a relatively proximal muscle (the biceps brachii muscle) and two distal muscles (the first dorsal interosseous muscle and the abductor pollicis brevis muscle) following hemisphere stroke using clustering index (CI) analysis of surface electromyograms (EMGs). For each muscle, surface EMG signals were recorded from the paretic and contralateral sides of 12 stroke subjects versus the dominant side of eight control subjects during isometric muscle contractions to measure the consequence of graded levels of contraction (from a mild level to the maximal voluntary contraction). Across all examined muscles, it was found that partial paretic muscles had abnormally higher or lower CI values than those of the healthy control muscles, which exhibited a significantly larger variance in the CI via a series of homogeneity of variance tests (p < 0.05). This finding indicated that both neurogenic and myopathic changes were likely to take place in paretic muscles. When examining two distal muscles of individual stroke subjects, relatively consistent CI abnormalities (toward neuropathy or myopathy) were observed. By contrast, consistency in CI abnormalities were not found when comparing proximal and distal muscles, indicating differences in motor unit alternation between the proximal and distal muscles on the paretic sides of stroke survivors. Furthermore, CI abnormalities were also observed for all three muscles on the contralateral side. Our findings help elucidate the pathological mechanisms underlying stroke sequels, which might prove useful in developing improved stroke rehabilitation protocols. PMID:29379465

  8. Leg muscle volume during 30-day 6-degree head-down bed rest with isotonic and isokinetic exercise training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Lee, P. L.; Ellis, S.; Selzer, R. H.; Ortendahl, D. A.

    1994-01-01

    Magnetic resonance imaging (MRI) was used to compare the effect of two modes of lower-extremity exercise training on the mass (volume) of posterior leg group (PLG) muscles (soleus, flexor hallucis longus, tibialis posterior, lateral and medial gastrocnemius, and flexor digitorum longus) on 19 men (ages 32-42 years) subjected to intense dynamic-isotonic (ITE, cycle ergometer, number of subjects (N) = 7), isokinetic (IKE, torque egrometer, N = 7), and no exercise (NOE, N = 5) training for 60 min/day during head-down bed rest (HDBR). Total volume of the PLG muscles decreased (p less than 0.05) similarly: ITE = 4.3 +/- SE 1.6%, IKE = 7.7 +/- 1.6%, and NOE = 6.3 +/- 0.8%; combined volume (N = 19) loss was 6.1 +/- 0.9%. Ranges of volume changes were 2.6% to -9.0% (ITE), -2.1% to -14.9% (IKE), and -3.4% to -8/1% (NOE). Correlation coefficients (r) of muscle volume versus thickness measured with ultrasonography were: ITE r + 0.79 (p less than 0.05), IKE r = 0.27 (not significant (NS)), and NOE r = 0.63 (NS). Leg-muscle volume and thickness were highly correlated (r = 0.79) when plasma volume was maintained during HDBR with ITE. Thus, neither intensive lower extremity ITE nor IKE training influence the normal non-exercised posterior leg muscle atrophy during HDBR. The relationship of muscle volume and thickness may depend on the mode of exercise training associated with the maintenance of plasma volume.

  9. The effect of low back pain on trunk muscle size/function and hip strength in elite football (soccer) players.

    PubMed

    Hides, Julie A; Oostenbroek, Tim; Franettovich Smith, Melinda M; Mendis, M Dilani

    2016-12-01

    Low back pain (LBP) is a common problem in football (soccer) players. The effect of LBP on the trunk and hip muscles in this group is unknown. The relationship between LBP and trunk muscle size and function in football players across the preseason was examined. A secondary aim was to assess hip muscle strength. Twenty-five elite soccer players participated in the study, with assessments conducted on 23 players at both the start and end of the preseason. LBP was assessed with questionnaires and ultrasound imaging was used to assess size and function of trunk muscles at the start and end of preseason. Dynamometry was used to assess hip muscle strength at the start of the preseason. At the start of the preseason, 28% of players reported the presence of LBP and this was associated with reduced size of the multifidus, increased contraction of the transversus abdominis and multifidus muscles. LBP decreased across the preseason, and size of the multifidus muscle improved over the preseason. Ability to contract the abdominal and multifidus muscles did not alter across the preseason. Asymmetry in hip adductor and abductor muscle strength was found between players with and without LBP. Identifying modifiable factors in players with LBP may allow development of more targeted preseason rehabilitation programmes.

  10. Test-Retest Reliability of Innovated Strength Tests for Hip Muscles

    PubMed Central

    Meyer, Christophe; Corten, Kristoff; Wesseling, Mariska; Peers, Koen; Simon, Jean-Pierre; Jonkers, Ilse; Desloovere, Kaat

    2013-01-01

    The burden of hip muscles weakness and its relation to other impairments has been well documented. It is therefore a pre-requisite to have a reliable method for clinical assessment of hip muscles function allowing the design and implementation of a proper strengthening program. Motor-driven dynamometry has been widely accepted as the gold-standard for lower limb muscle strength assessment but is mainly related to the knee joint. Studies focusing on the hip joint are less exhaustive and somewhat discrepant with regard to optimal participants position, consequently influencing outcome measures. Thus, we aimed to develop a standardized test setup for the assessment of hip muscles strength, i.e. flexors/extensors and abductors/adductors, with improved participant stability and to define its psychometric characteristics. Eighteen participants performed unilateral isokinetic and isometric contractions of the hip muscles in the sagittal and coronal plane at two separate occasions. Peak torque and normalized peak torque were measured for each contraction. Relative and absolute measures of reliability were calculated using the intraclass correlation coefficient and standard error of measurement, respectively. Results from this study revealed higher levels of between-day reliability of isokinetic/isometric hip abduction/flexion peak torque compared to existing literature. The least reliable measures were found for hip extension and adduction, which could be explained by a less efficient stabilization technique. Our study additionally provided a first set of reference normalized data which can be used in future research. PMID:24260550

  11. Comparative functional anatomy of hindlimb muscles and bones with reference to aquatic adaptation of the sea otter.

    PubMed

    Mori, Kent; Suzuki, Satoshi; Koyabu, Daisuke; Kimura, Junpei; Han, Sung-Yong; Endo, Hideki

    2015-05-01

    Although the sea otter (Enhydra lutris) is a complete aquatic species, spending its entire life in the ocean, it has been considered morphologically to be a semi-aquatic animal. This study aimed to clarify the unique hindlimb morphology and functional adaptations of E. lutris in comparison to other Mustelidae species. We compared muscle mass and bone measurements of five Mustelidae species: the sea otter, Eurasian river otter (Lutra lutra), American mink (Neovison vison), Japanese weasel (Mustela itatsi) and Siberian weasel (M. sibirica). In comparison with the other 4 species, E. lutris possessed significantly larger gluteus, popliteus and peroneus muscles, but smaller adductor and ischiopubic muscles. The popliteus muscle may act as a medial rotator of the crus, and the peroneus muscle may act as an abductor of the fifth toe and/or the pronator of the foot. The bundles of the gluteus superficialis muscle of E. lutris were fused with those of the tensor fasciae latae muscle and gluteofemoralis muscles, and they may play a role in femur abduction. These results suggest that E. lutris uses the abducted femur, medially rotated crus, eversion of the ankle and abducted fifth digit or extended interdigital web as a powerful propulsion generator. Therefore, we conclude that E. lutris is a complete aquatic animal, possessing differences in the proportions of the hindlimb muscles compared with those in other semi-aquatic and terrestrial mustelids.

  12. Comparative functional anatomy of hindlimb muscles and bones with reference to aquatic adaptation of the sea otter

    PubMed Central

    MORI, Kent; SUZUKI, Satoshi; KOYABU, Daisuke; KIMURA, Junpei; HAN, Sung-Yong; ENDO, Hideki

    2015-01-01

    Although the sea otter (Enhydra lutris) is a complete aquatic species, spending its entire life in the ocean, it has been considered morphologically to be a semi-aquatic animal. This study aimed to clarify the unique hindlimb morphology and functional adaptations of E. lutris in comparison to other Mustelidae species. We compared muscle mass and bone measurements of five Mustelidae species: the sea otter, Eurasian river otter (Lutra lutra), American mink (Neovison vison), Japanese weasel (Mustela itatsi) and Siberian weasel (M. sibirica). In comparison with the other 4 species, E. lutris possessed significantly larger gluteus, popliteus and peroneus muscles, but smaller adductor and ischiopubic muscles. The popliteus muscle may act as a medial rotator of the crus, and the peroneus muscle may act as an abductor of the fifth toe and/or the pronator of the foot. The bundles of the gluteus superficialis muscle of E. lutris were fused with those of the tensor fasciae latae muscle and gluteofemoralis muscles, and they may play a role in femur abduction. These results suggest that E. lutris uses the abducted femur, medially rotated crus, eversion of the ankle and abducted fifth digit or extended interdigital web as a powerful propulsion generator. Therefore, we conclude that E. lutris is a complete aquatic animal, possessing differences in the proportions of the hindlimb muscles compared with those in other semi-aquatic and terrestrial mustelids. PMID:25715875

  13. Cardiopulmonary fitness and muscle strength in patients with osteogenesis imperfecta type I.

    PubMed

    Takken, Tim; Terlingen, Heike C; Helders, Paul J M; Pruijs, Hans; Van der Ent, Cornelis K; Engelbert, Raoul H H

    2004-12-01

    To evaluate cardiopulmonary function, muscle strength, and cardiopulmonary fitness (VO 2 peak) in patients with osteogenesis imperfecta (OI). In 17 patients with OI type I (mean age 13.3 +/- 3.9 years) cardiopulmonary function was assessed at rest using spirometry, plethysmography, electrocardiography, and echocardiography. Exercise capacity was measured using a maximal exercise test on a bicycle ergometer and an expired gas analysis system. Muscle strength in shoulder abductors, hip flexors, ankle dorsal flexor, and grip strength were measured. All results were compared with reference values. Cardiopulmonary function at rest was within normal ranges, but when it was compared with normal height for age and sex, vital capacities were reduced. Mean absolute and relative VO 2 peak were respectively -1.17 (+/- 0.67) and -1.41 (+/- 1.52) standard deviations lower compared with reference values ( P < .01). Muscle strength also was significantly reduced in patients with OI, ranging from -1.24 +/- 1.40 to -2.88 +/- 2.67 standard deviations lower compared with reference values. In patients with OI type I, no pulmonary or cardiac abnormalities at rest were found. The exercise tolerance and muscle strength were significantly reduced in patients with OI, which might account for their increased levels of fatigue during activities of daily living.

  14. The Gait Deviation Index Is Associated with Hip Muscle Strength and Patient-Reported Outcome in Patients with Severe Hip Osteoarthritis-A Cross-Sectional Study.

    PubMed

    Rosenlund, Signe; Holsgaard-Larsen, Anders; Overgaard, Søren; Jensen, Carsten

    2016-01-01

    The Gait Deviation Index summarizes overall gait 'quality', based on kinematic data from a 3-dimensional gait analysis. However, it is unknown which clinical outcomes may affect the Gait Deviation Index in patients with primary hip osteoarthritis. The aim of this study was to investigate associations between Gait Deviation Index as a measure of gait 'quality' and hip muscle strength and between Gait Deviation Index and patient-reported outcomes in patients with primary hip osteoarthritis. Forty-seven patients (34 males), aged 61.1 ± 6.7 years, with BMI 27.3 ± 3.4 (kg/m2) and with severe primary hip osteoarthritis underwent 3-dimensional gait analysis. Mean Gait Deviation Index, pain after walking and maximal isometric hip muscle strength (flexor, extensor, and abductor) were recorded. All patients completed the 'Physical Function Short-form of the Hip disability and Osteoarthritis Outcome Score (HOOS-Physical Function) and the Hip disability and Osteoarthritis Outcome Score subscales for pain (HOOS-Pain) and quality-of-life (HOOS-QOL). Mean Gait Deviation Index was positively associated with hip abduction strength (p<0.01, r = 0.40), hip flexion strength (p = 0.01, r = 0.37), HOOS-Physical Function (p<0.01, r = 0.41) HOOS-QOL (p<0.01, r = 0.41), and negatively associated with HOOS-Pain after walking (p<0.01, r = -0.45). Adjusting the analysis for walking speed did not affect the association. Patients with the strongest hip abductor and hip flexor muscles had the best gait 'quality'. Furthermore, patients with higher physical function, quality of life scores and lower pain levels demonstrated better gait 'quality'. These findings indicate that interventions aimed at improving hip muscle strength and pain management may to a moderate degree improve the overall gait 'quality' in patients with primary hip OA.

  15. The Gait Deviation Index Is Associated with Hip Muscle Strength and Patient-Reported Outcome in Patients with Severe Hip Osteoarthritis—A Cross-Sectional Study

    PubMed Central

    Rosenlund, Signe; Holsgaard-Larsen, Anders; Overgaard, Søren; Jensen, Carsten

    2016-01-01

    Background The Gait Deviation Index summarizes overall gait ‘quality’, based on kinematic data from a 3-dimensional gait analysis. However, it is unknown which clinical outcomes may affect the Gait Deviation Index in patients with primary hip osteoarthritis. The aim of this study was to investigate associations between Gait Deviation Index as a measure of gait ‘quality’ and hip muscle strength and between Gait Deviation Index and patient-reported outcomes in patients with primary hip osteoarthritis. Method Forty-seven patients (34 males), aged 61.1 ± 6.7 years, with BMI 27.3 ± 3.4 (kg/m2) and with severe primary hip osteoarthritis underwent 3-dimensional gait analysis. Mean Gait Deviation Index, pain after walking and maximal isometric hip muscle strength (flexor, extensor, and abductor) were recorded. All patients completed the ‘Physical Function Short-form of the Hip disability and Osteoarthritis Outcome Score (HOOS-Physical Function) and the Hip disability and Osteoarthritis Outcome Score subscales for pain (HOOS-Pain) and quality-of-life (HOOS-QOL). Results Mean Gait Deviation Index was positively associated with hip abduction strength (p<0.01, r = 0.40), hip flexion strength (p = 0.01, r = 0.37), HOOS-Physical Function (p<0.01, r = 0.41) HOOS-QOL (p<0.01, r = 0.41), and negatively associated with HOOS-Pain after walking (p<0.01, r = -0.45). Adjusting the analysis for walking speed did not affect the association. Conclusion Patients with the strongest hip abductor and hip flexor muscles had the best gait ‘quality’. Furthermore, patients with higher physical function, quality of life scores and lower pain levels demonstrated better gait ‘quality’. These findings indicate that interventions aimed at improving hip muscle strength and pain management may to a moderate degree improve the overall gait ‘quality’ in patients with primary hip OA. PMID:27065007

  16. Influence of modified muscle morphology and activity pattern on the results of musculoskeletal system modelling in cerebral palsy patient.

    PubMed

    Ogrodnik, Justyna; Piszczatowski, Szczepan

    2017-01-01

    The aim of the present study was to evaluate the influence of modified morphological parameters of the muscle model and excitation pattern on the results of musculoskeletal system numerical simulation in a cerebral palsy patient. The modelling of the musculoskeletal system was performed in the AnyBody Modelling System. The standard model (MoCap) was subjected to modifications consisting of changes in morphological parameters and excitation patterns of selected muscles. The research was conducted with the use of data of a 14-year-old cerebral palsy patient. A reduction of morphological parameters (variant MI) caused a decrease in the value of active force generated by the muscle with changed geometry, and as a consequence the changes in active force generated by other muscles. A simulation of the abnormal excitation pattern (variant MII) resulted in the muscle's additional activity during its lengthening. The simultaneous modification of the muscle morphology and excitation pattern (variant MIII) points to the interdependence of both types of muscle model changes. A significant increase in the value of the reaction force in the hip joint was observed as a consequence of modification of the hip abductor activity. The morphological parameters and the excitation pattern of modelled muscles have a significant influence on the results of numerical simulation of the musculoskeletal system functioning.

  17. Which is the best predictor of excessive hip internal rotation in women with patellofemoral pain: Rearfoot eversion or hip muscle strength? Exploring subgroups.

    PubMed

    Ferreira, Amanda Schenatto; de Oliveira Silva, Danilo; Briani, Ronaldo Valdir; Ferrari, Deisi; Aragão, Fernando Amâncio; Pazzinatto, Marcella Ferraz; de Azevedo, Fábio Mícolis

    2018-03-26

    Patellofemoral pain (PFP) has been linked to increased patellofemoral joint stress as a result of excessive hip internal rotation. Lower hip strength and/or excessive rearfoot eversion have been used to explain such altered movement pattern; however, it is unknown which one is the best predictor of excessive hip internal rotation. To investigate if peak rearfoot eversion and/or peak concentric hip abductor strength can predict peak hip internal rotation during stair ascent in women with PFP. This cross-sectional study included thirty-seven women with PFP which underwent three-dimensional kinematic analysis during stair ascent and hip abductor strength analysis in an isokinetic dynamometer. A forced entry linear regression model analysis was carried out to determine which independent variables present the best capability to predict the hip internal rotation. Peak concentric hip abductor strength significantly predicted peak hip internal rotation during stair ascent (R 2  = 0.27, p = 0.001). Peak rearfoot eversion did not predict peak hip internal rotation during stair ascent (R 2  < 0.01, p = 0.62). A Post-hoc analysis was conducted to explore if a subgroup with excessive rearfoot eversion would predict hip internal rotation. Based on a previous reported cut-off point, 48.6% of the participants were classified as excessive rearfoot eversion. For the subgroup with excessive rearfoot eversion, peak concentric hip abductor strength and peak rearfoot eversion significantly predicted peak hip internal rotation during stair ascent (R 2  = 0.26, p = 0.02; R 2  = 0.42, p = 0.003, respectively). For non-excessive rearfoot eversion subgroup, peak concentric hip abductor strength significantly predicted peak hip internal rotation during stair ascent (R 2  = 0.53; p < 0.001); and peak rearfoot eversion did not (R 2  = 0.01; p = 0.65). Findings indicate that hip muscle strength seems to be related with hip internal rotation in all

  18. [Rupture of the tendon of the tibialis anterior muscle : Etiology, clinical symptoms and treatment].

    PubMed

    Waizy, H; Bouillon, B; Stukenborg-Colsman, C; Yao, D; Ettinger, S; Claassen, L; Plaass, C; Danniilidis, K; Arbab, D

    2017-12-01

    Ruptures of the tendon of the tibialis anterior muscle tend to occur in the context of degenerative impairments. This mainly affects the distal avascular portion of the tendon. Owing to the good compensation through the extensor hallucis longus and extensor digitorum muscles, diagnosis is often delayed. In addition to the clinical examination, magnetic resonance inaging (MRI) diagnostics are of particular importance, although damage or rupture of the tendon can also be demonstrated sonographically. Therapeutic measures include conservative or operative measures, depending on the clinical symptoms. Conservative stabilization of the ankle can be achieved by avoiding plantar flexion using a peroneal orthosis or an ankle-foot orthosis. Subsequent problems, such as metatarsalgia or overloading of the medial foot edge can be addressed by insoles or a corresponding shoe adjustment. An operative procedure is indicated when there is corresponding suffering due to pressure and functional impairment. The direct end-to-end reconstruction of the tendon is only rarely possible in cases of delayed diagnosis due to the degenerative situation and the retraction of the tendon stumps. Depending on the defect size and the tendon quality, various operative techniques, such as rotationplasty, free transplants or tendon transfer can be used.

  19. Muscular activity and torque of the foot dorsiflexor muscles during decremental isometric test: A cross-sectional study.

    PubMed

    Ruiz-Muñoz, Maria; González-Sánchez, Manuel; Martín-Martín, Jaime; Cuesta-Vargas, Antonio I

    2017-06-01

    To analyse the torque variation level that could be explained by the muscle activation (EMG) amplitude of the three major foot dorsiflexor muscles (tibialis anterior (TA), extensor digitorum longus (EDL), extensor hallucis longus (EHL)) during isometric foot dorsiflexion at different intensities. In a cross-sectional study, forty-one subjects performed foot dorsiflexion at 100%, 75%, 50% and 25% of maximal voluntary contractions (MVC) with the hip and knee flexed 90° and the ankle in neutral position (90° between leg and foot). Three foot dorsiflexions were performed for each intensity. Outcome variables were: maximum (100% MVC) and relative torque (75%, 50%, 25% MVC), maximum and relative EMG amplitude. A linear regression analysis was calculated for each intensity of the isometric foot dorsiflexion. The degree of torque variation (dependent variable) from the independent variables explain (EMG amplitude of the three major foot dorsiflexor muscles) the increases when the foot dorsiflexion intensity is increased, with values of R 2 that range from 0.194 (during 25% MVC) to 0.753 (during 100% MVC). The reliability of the outcome variables was excellent. The EMG amplitude of the three main foot dorsiflexors exhibited more variance in the dependent variable (torque) when foot dorsiflexion intensity increases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Musculoskeletal anatomy of the pelvic fin of Polypterus: implications for phylogenetic distribution and homology of pre- and postaxial pelvic appendicular muscles.

    PubMed

    Molnar, Julia L; Johnston, Peter S; Esteve-Altava, Borja; Diogo, Rui

    2017-04-01

    As a member of the most basal clade of extant ray-finned fishes (actinopterygians) and of one of the most basal clades of osteichthyans (bony fishes + tetrapods), Polypterus can provide insights into the ancestral anatomy of both ray-finned and lobe-finned fishes, including those that gave rise to tetrapods. The pectoral fin of Polypterus has been well described but, surprisingly, neither the bones nor the muscles of the pelvic fin are well known. We stained and dissected the pelvic fin of Polypterus senegalus and Polypterus delhezi to offer a detailed description of its musculoskeletal anatomy. In addition to the previously described adductor and abductor muscles, we found preaxial and postaxial muscles similar to those in the pectoral fin of members of this genus. The presence of pre- and postaxial muscles in both the pectoral and pelvic fins of Polypterus, combined with recent descriptions of similar muscles in the lobe-finned fishes Latimeria and Neoceratodus, suggests that they were present in the most recent common ancestor of bony fishes. These results have crucial implications for the evolution of appendicular muscles in both fish and tetrapods. © 2016 Anatomical Society.

  1. Treatment of osteoarthritis of the first carpometacarpal joint by resection-suspension-interposition arthoplasty using the split abductor pollicis longus tendon.

    PubMed

    Harenberg, P S; Jakubietz, M G; Jakubietz, R G; Schmidt, K; Meffert, R H

    2013-02-01

    Reduction of pain and gain of functionality in symptomatic osteoarthritis of the first carpometacarpal joint. Idiopathic, rheumatic, or posttraumatic osteoarthritis of the first carpometacarpal joint. RELATIVE CONTRAINDICATIONS: Poor general condition, poor condition of the hand's soft tissue/skin, chronic regional pain syndrome, current or recent infections of the hand, heavy manual labor (decision on a by-case basis). Supine position, hand pronated or slightly tilted. Upper arm tourniquet (Esmarch's method). Loupe magnification. Incision over the first extensor compartment. Exposure and incision of the thumb's basal joint. Resection of the trapezium. Exposure of the abductor pollicis longus (APL) tendon. Longitudinal split of the tendon harvesting the distally based ulnar part of the tendon. The split APL tendon is wrapped around the flexor carpi radialis (FCR) muscle tendon, suturing it to the tendon and back to itself. The rest of the split APL tendon is placed into the gap between the scaphoid and the first metacarpal bone, which is followed by wound closure. Plaster cast (thumb abduction splint) for 4 weeks. Stable commercially available wrist brace for at least 2 more weeks. There were no significant differences between the FCR arthroplasty (Epping's method) and the APL arthroplasty (Wulle's technique) regarding pain (visual analog scale), disability/usability (DASH score), or range of motion. Patients who had undergone APL arthroplasty showed significantly better grip and pinch strength. Furthermore, the operating time was significantly shorter and scars were significantly smaller in APL arthroplasty.

  2. Electrical Stimulation Frequency and Skeletal Muscle Characteristics: Effects on Force and Fatigue.

    PubMed

    Vromans, Maria; Faghri, Pouran

    2017-12-05

    This investigation aimed to determine the force and muscle surface electromyography (EMG) responses to different frequencies of electrical stimulation (ES) in two groups of muscles with different size and fiber composition (fast- and slow-twitch fiber proportions) during a fatigue-inducing protocol. Progression towards fatigue was evaluated in the abductor pollicis brevis (APB) and vastus lateralis (VL) when activated by ES at three frequencies (10, 35, and 50Hz). Ten healthy adults (mean age: 23.2 ± 3.0 years) were recruited; participants signed an IRB approved consent form prior to participation. Protocols were developed to 1) identify initial ES current intensity required to generate the 25% maximal voluntary contraction (MVC) at each ES frequency and 2) evaluate changes in force and EMG activity during ES-induced contraction at each frequency while progressing towards fatigue. For both muscles, stimulation at 10Hz required higher current intensity of ES to generate the initial force. There was a significant decline in force in response to ES-induced fatigue for all frequencies and for both muscles (p<0.05). However, the EMG response was not consistent between muscles. During the progression towards fatigue, the APB displayed an initial drop in force followed by an increase in EMG activity and the VL displayed a decrease in EMG activity for all frequencies. Overall, it appeared that there were some significant interactions between muscle size and fiber composition during progression towards fatigue for different ES frequencies. It could be postulated that muscle characteristics (size and fiber composition) should be considered when evaluating progression towards fatigue as EMG and force responses are not consistent between muscles.

  3. Muscle stiffness of posterior lower leg in runners with a history of medial tibial stress syndrome.

    PubMed

    Saeki, J; Nakamura, M; Nakao, S; Fujita, K; Yanase, K; Ichihashi, N

    2018-01-01

    Previous history of medial tibial stress syndrome (MTSS) is a risk factor for MTSS relapse, which suggests that there might be some physical factors that are related to MTSS development in runners with a history of MTSS. The relationship between MTSS and muscle stiffness can be assessed in a cross-sectional study that measures muscle stiffness in subjects with a history of MTSS, who do not have pain at the time of measurement, and in those without a history of MTSS. The purpose of this study was to compare the shear elastic modulus, which is an index of muscle stiffness, of all posterior lower leg muscles of subjects with a history of MTSS and those with no history and investigate which muscles could be related to MTSS. Twenty-four male collegiate runners (age, 20.0±1.7 years; height, 172.7±4.8 cm; weight, 57.3±3.7 kg) participated in this study; 14 had a history of MTSS, and 10 did not. The shear elastic moduli of the lateral gastrocnemius, medial gastrocnemius, soleus, peroneus longus, peroneus brevis, flexor hallucis longus, flexor digitorum longus, and tibialis posterior were measured using shear wave elastography. The shear elastic moduli of the flexor digitorum longus and tibialis posterior were significantly higher in subjects with a history of MTSS than in those with no history. However, there was no significant difference in the shear elastic moduli of other muscles. The results of this study suggest that flexor digitorum longus and tibialis posterior stiffness could be related to MTSS. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Fatigue Responses in Various Muscle Groups in Well-Trained Competitive Male Players after a Simulated Soccer Game

    PubMed Central

    Fransson, Dan; Vigh-Larsen, Jeppe Foged; Fatouros, Ioannis G.; Krustrup, Peter; Mohr, Magni

    2018-01-01

    Abstract We examined the degree of post-game fatigue and the recovery pattern in various leg and upper-body muscle groups after a simulated soccer game. Well-trained competitive male soccer players (n = 12) participated in the study. The players completed the Copenhagen Soccer Test, a 2 x 45 min simulated soccer protocol, following baseline measures of maximal voluntary contractions of multiple muscle groups and systemic markers of muscle damage and inflammation at 0, 24 and 48 h into recovery. All muscle groups had a strength decrement (p ≤ 0.05) at 0 h post-match with knee flexors (14 ± 3%) and hip abductors (6 ± 1%) demonstrating the largest and smallest impairment. However, 24 h into recovery all individual muscles had recovered. When pooled in specific muscle groups, the trunk muscles and knee joint muscles presented the largest decline 0 h post-match, 11 ± 2% for both, with the performance decrement still persistent (4 ± 1%, p ≤ 0.05) for trunk muscles 24 h into recovery. Large inter-player variations were observed in game-induced fatigue and recovery patterns in the various muscle groups. Markers of muscle damage and inflammation peaked 0 h post-match (myoglobin) and 24 h into recovery (creatine kinase), respectively, but thereafter returned to baseline. Intermittent test performance correlated with creatine kinase activity 24 h after the Copenhagen Soccer Test (r = -0.70; p = 0.02). In conclusion, post-game fatigue is evident in multiple muscle groups with knee flexors showing the greatest performance decrement. Fatigue and recovery patterns vary markedly between muscle groups and players, yet trunk muscles display the slowest recovery. PMID:29599862

  5. Fatigue Responses in Various Muscle Groups in Well-Trained Competitive Male Players after a Simulated Soccer Game.

    PubMed

    Fransson, Dan; Vigh-Larsen, Jeppe Foged; Fatouros, Ioannis G; Krustrup, Peter; Mohr, Magni

    2018-03-01

    We examined the degree of post-game fatigue and the recovery pattern in various leg and upper-body muscle groups after a simulated soccer game. Well-trained competitive male soccer players (n = 12) participated in the study. The players completed the Copenhagen Soccer Test, a 2 x 45 min simulated soccer protocol, following baseline measures of maximal voluntary contractions of multiple muscle groups and systemic markers of muscle damage and inflammation at 0, 24 and 48 h into recovery. All muscle groups had a strength decrement ( p ≤ 0.05) at 0 h post-match with knee flexors (14 ± 3%) and hip abductors (6 ± 1%) demonstrating the largest and smallest impairment. However, 24 h into recovery all individual muscles had recovered. When pooled in specific muscle groups, the trunk muscles and knee joint muscles presented the largest decline 0 h post-match, 11 ± 2% for both, with the performance decrement still persistent (4 ± 1%, p ≤ 0.05) for trunk muscles 24 h into recovery. Large inter-player variations were observed in game-induced fatigue and recovery patterns in the various muscle groups. Markers of muscle damage and inflammation peaked 0 h post-match (myoglobin) and 24 h into recovery (creatine kinase), respectively, but thereafter returned to baseline. Intermittent test performance correlated with creatine kinase activity 24 h after the Copenhagen Soccer Test (r = -0.70; p = 0.02). In conclusion, post-game fatigue is evident in multiple muscle groups with knee flexors showing the greatest performance decrement. Fatigue and recovery patterns vary markedly between muscle groups and players, yet trunk muscles display the slowest recovery.

  6. Z-plasty of the flexor hallucis longus tendon at tarsal tunnel for checkrein deformity.

    PubMed

    Lee, Jae Hoon; Kim, Young Jun; Baek, Jong Hun; Kim, Dong Hee

    2016-12-01

    To review the outcome of Z-plasty of the flexor hallucis longus (FHL) tendon at the tarsal tunnel for checkrein deformity in 8 patients. Records of 6 males and 2 females aged 14 to 67 (mean, 39.5) years who underwent Z-plasty (lengthening) of the FHL tendon at the tarsal tunnel for checkrein deformity in the first and second toes by a single surgeon were reviewed. All patients had undergone 3 months of conservative treatment. The mean time from injury to surgical treatment was 8.4 (range, 5-12) months. All patients had associated injuries including distal tibiofibular fracture (n=6), distal fibular fracture (n=1), and crush injury aroundthe ankle (n=1); they were treated with intramedullary nailing (n=6), long leg splinting (n=1), and short leg splinting (n=1). After a mean follow-up of 3.4 (range, 1-7) years, the FHL tendon was lengthened by a mean of 1.7 (range, 1.6-1.8) cm, and the mean American Orthopedic Foot and Ankle Society hallux score increased from 59 (range, 52-67) to 89 (range, 80-90). No patient had recurrence, nerve injury, or tarsal tunnel syndrome, although one patient had sensory disturbance of the posterior tibial nerve in the forefoot, which resolved spontaneously at week 2. Z-plasty of the FHL tendon at the tarsal tunnel is a viable option for correction of checkrein deformity.

  7. Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds.

    PubMed

    Fox, Melanie D; Delp, Scott L

    2010-05-28

    Stiff-knee gait is a common walking problem in cerebral palsy characterized by insufficient knee flexion during swing. To identify factors that may limit knee flexion in swing, it is necessary to understand how unimpaired subjects successfully coordinate muscles and passive dynamics (gravity and velocity-related forces) to accelerate the knee into flexion during double support, a critical phase just prior to swing that establishes the conditions for achieving sufficient knee flexion during swing. It is also necessary to understand how contributions to swing initiation change with walking speed, since patients with stiff-knee gait often walk slowly. We analyzed muscle-driven dynamic simulations of eight unimpaired subjects walking at four speeds to quantify the contributions of muscles, gravity, and velocity-related forces (i.e. Coriolis and centrifugal forces) to preswing knee flexion acceleration during double support at each speed. Analysis of the simulations revealed contributions from muscles and passive dynamics varied systematically with walking speed. Preswing knee flexion acceleration was achieved primarily by hip flexor muscles on the preswing leg with assistance from biceps femoris short head. Hip flexors on the preswing leg were primarily responsible for the increase in preswing knee flexion acceleration during double support with faster walking speed. The hip extensors and abductors on the contralateral leg and velocity-related forces opposed preswing knee flexion acceleration during double support. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds

    PubMed Central

    Fox, Melanie D.; Delp, Scott L.

    2010-01-01

    Stiff-knee gait is a common walking problem in cerebral palsy characterized by insufficient knee flexion during swing. To identify factors that may limit knee flexion in swing, it is necessary to understand how unimpaired subjects successfully coordinate muscles and passive dynamics (gravity and velocity-related forces) to accelerate the knee into flexion during double support, a critical phase just prior to swing that establishes the conditions for achieving sufficient knee flexion during swing. It is also necessary to understand how contributions to swing initiation change with walking speed, since patients with stiff-knee gait often walk slowly. We analyzed muscle-driven dynamic simulations of eight unimpaired subjects walking at four speeds to quantify the contributions of muscles, gravity, and velocity-related forces (i.e. Coriolis and centrifugal forces) to preswing knee flexion acceleration during double support at each speed. Analysis of the simulations revealed contributions from muscles and passive dynamics varied systematically with walking speed. Preswing knee flexion acceleration was achieved primarily by hip flexor muscles on the preswing leg with assistance from biceps femoris short head. Hip flexors on the preswing leg were primarily responsible for the increase in preswing knee flexion acceleration during double support with faster walking speed. The hip extensors and abductors on the contralateral leg and velocity-related forces opposed preswing knee flexion acceleration during double support. PMID:20236644

  9. Acoustic myography as an indicator of force during sustained contractions of a small hand muscle.

    PubMed

    Goldenberg, M S; Yack, H J; Cerny, F J; Burton, H W

    1991-01-01

    To test the hypothesis that muscle sound amplitudes would remain constant during sustained submaximal isometric contractions, we recorded acoustic myograms from the abductor digiti minimi muscle in 12 subjects at 15, 25, 50, and 75% of a maximum voluntary contraction (MVC). Muscle sounds were detected with an omni-directional electret microphone encased in closed-cell foam and attached to the skin over the muscle. Acoustic amplitudes from the middle and end of the sustained contractions were compared with the amplitudes from the beginning of contractions to determine whether acoustic amplitudes varied in magnitude as force remained constant. Physiological tremor was eliminated from the acoustic signal by use of a Fourier truncation at 14 Hz. The amplitudes of the acoustic signal at a contraction intensity of 75% MVC remained constant, reflecting force production over time. At 50% MVC, the root-mean-square amplitude decreased from the beginning to the end of the contraction (P less than 0.05). Acoustic amplitudes increased over time at 15 and 25% MVC and were significantly higher at the end of the contractions than at the beginning (P less than 0.05). Alterations in the acoustic amplitude, which reflect changes in the lateral vibrations of the muscle, may be indicative of the different recruitment strategies used to maintain force during sustained isometric contractions.

  10. An electromyographic study of muscle relaxants in man.

    PubMed

    Suzuki, H; Kanayama, T; Nakagawa, H; Yazaki, S; Shiratsuchi, T

    1975-05-01

    Supramaximal paired stimuli were applied to the ulnar nerve, and the amplitude of the muscle action potential evoked in the abductor digiti minimi by the second member of the stimulus pair (test response) was compared with that evoked by the first component (conditioning response). The interval between the two components of the stimulus pair (the pair interval) was increased stepwise from 7 to 100 msec and a curve (recovery curve) was obtained by relating the changes in pair interval to the difference in amplitude of the test and conditioning responses. Alterations of the recovery curve (RC) during partial paralysis by muscle relaxants were investigated in healthy adult patients under the lightest plane of general anaesthesia. The control curve obtained in 32 subjects before the administration of a muscle relaxant drug was characterized by slight depressions at very short intervals of paired stimuli, followed by a slight potentiation at 20-100 msec. With non-depolarizing relaxants, RC altered to the characteristic pattern of potentiation at very short intervals of stimuli, followed by a notable depression at longer intervals. In depolarizing blocks with small doses of suxamethonium, the depression of RC at short intervals in the control was enhanced and the pattern of RC was different from that of non-depolarizing agents. When desensitization blocks were instigated by the i.v. administration of suxamethonium, the RC patterns were similar to those of competitive agents.

  11. Accommodation: The role of the external muscles of the eye: A consideration of refractive errors in relation to extraocular malfunction.

    PubMed

    Hargrave, B K

    2014-11-01

    Speculation as to optical malfunction has led to dissatisfaction with the theory that the lens is the sole agent in accommodation and to the suggestion that other parts of the eye are also conjointly involved. Around half-a-century ago, Robert Brooks Simpkins suggested that the mechanical features of the human eye were precisely such as to allow for a lengthening of the globe when the eye accommodated. Simpkins was not an optical man but his theory is both imaginative and comprehensive and deserves consideration. It is submitted here that accommodation is in fact a twofold process, and that although involving the lens, is achieved primarily by means of a give - and - take interplay between adducting and abducting external muscles, whereby an elongation of the eyeball is brought about by a stretching of the delicate elastic fibres immediately behind the cornea. The three muscles responsible for convergence (superior, internal and inferior recti) all pull from in front backwards, while of the three abductors (external rectus and the two obliques) the obliques pull from behind forwards, allowing for an easy elongation as the eye turns inwards and a return to its original length as the abducting muscles regain their former tension, returning the eye to distance vision. In refractive errors, the altered length of the eyeball disturbs the harmonious give - and - take relationship between adductors and abductors. Such stresses are likely to be perpetuated and the error exacerbated. Speculation is not directed towards a search for a possible cause of the muscular imbalance, since none is suspected. Muscles not used rapidly lose tone, as evidenced after removal of a limb from plaster. Early attention to the need for restorative exercise is essential and results usually impressive. If flexibility of the external muscles of the eyes is essential for continuing good sight, presbyopia can be avoided and with it the supposed necessity of glasses in middle life. Early attention

  12. The effects of smartphone use on upper extremity muscle activity and pain threshold

    PubMed Central

    Lee, Minkyung; Hong, Yunkyung; Lee, Seunghoon; Won, Jinyoung; Yang, Jinjun; Park, Sookyoung; Chang, Kyu-Tae; Hong, Yonggeun

    2015-01-01

    [Purpose] The purpose of this study was to determine whether muscle activity and pressure-induced pain in the upper extremities are affected by smartphone use, and to compare the effects of phone handling with one hand and with both hands. [Subjects] The study subjects were asymptomatic women 20–22 years of age. [Methods] The subjects sat in a chair with their feet on the floor and the elbow flexed, holding a smartphone positioned on the thigh. Subsequently, the subjects typed the Korean anthem for 3 min, one-handed or with both hands. Each subject repeated the task three times, with a 5-min rest period between tasks to minimize fatigue. Electromyography (EMG) was used to record the muscle activity of the upper trapezius (UT), extensor pollicis longus (EPL), and abductor pollicis (AP) during phone operation. We also used a dolorimeter to measure the pressure-induced pain threshold in the UT. [Results] We observed higher muscle activity in the UT, AP, and EPL in one-handed smartphone use than in its two-handed use. The pressure-induced pain threshold of the UT was lower after use of the smartphone, especially after one-handed use. [Conclusion] Our results show that smartphone operation with one hand caused greater UT pain and induced increased upper extremity muscle activity. PMID:26180311

  13. Muscle strength, gait, and balance in 20 patients with hip osteoarthritis followed for 2 years after THA

    PubMed Central

    Dalén, Nils; Berg, Hans E

    2010-01-01

    Background Patients with hip osteoarthritis (OA) have muscular weakness, impaired balance, and limp. Deficits in the different limb muscles and their recovery courses are largely unknown, however. We hypothesized that there is persisting muscular weakness in lower limb muscles and an impaired balance and gait 2 years after THA. Patients and methods 20 elderly patients with unilateral OA were assessed before, and 6 and 24 months after surgery for maximal voluntary isometric strength of hip and knee muscles and by gait analysis, postural stability, and clinical scores (HHS, SF-36, EuroQoL). Results Hip muscles showed a remaining 6% weakness compared to the contralateral healthy limb 2 years after THA. Preoperatively and 6 months postoperatively, that deficit was 18% and 12%, respectively. Knee extensors fully recovered a preoperative 27% deficit after 2 years. Gait analysis demonstrated a shorter single stance phase for the OA limb compared to healthy limb preoperatively, that had already recovered at the 6-month follow-up. Balance of two-foot standing showed improvement in both sagittal and lateral sway after operation. All clinical scores improved. Interpretation Muscle strength data demonstrated a slow but full recovery of muscles acting about the knee, but there was still a deficit in hip muscle strength 2 years after THA. Gait and balance recovered after the operation. To accelerate improvement in muscular strength after THA, postoperative training should probably be more intense and target hip abductors. PMID:20367414

  14. Nociception at the diabetic foot, an uncharted territory

    PubMed Central

    Chantelau, Ernst A

    2015-01-01

    The diabetic foot is characterised by painless foot ulceration and/or arthropathy; it is a typical complication of painless diabetic neuropathy. Neuropathy depletes the foot skin of intraepidermal nerve fibre endings of the afferent A-delta and C-fibres, which are mostly nociceptors and excitable by noxious stimuli only. However, some of them are cold or warm receptors whose functions in diabetic neuropathy have frequently been reported. Hence, it is well established by quantitative sensory testing that thermal detection thresholds at the foot skin increase during the course of painless diabetic neuropathy. Pain perception (nociception), by contrast, has rarely been studied. Recent pilot studies of pinprick pain at plantar digital skinfolds showed that the perception threshold was always above the upper limit of measurement of 512 mN (equivalent to 51.2 g) at the diabetic foot. However, deep pressure pain perception threshold at musculus abductor hallucis was beyond 1400 kPa (equivalent to 14 kg; limit of measurement) only in every fifth case. These discrepancies of pain perception between forefoot and hindfoot, and between skin and muscle, demand further study. Measuring nociception at the feet in diabetes opens promising clinical perspectives. A critical nociception threshold may be quantified (probably corresponding to a critical number of intraepidermal nerve fibre endings), beyond which the individual risk of a diabetic foot rises appreciably. Staging of diabetic neuropathy according to nociception thresholds at the feet is highly desirable as guidance to an individualised injury prevention strategy. PMID:25897350

  15. Beneficial effects of footbaths in controlling spasticity after stroke

    NASA Astrophysics Data System (ADS)

    Matsumoto, Shuji; Shimodozono, Megumi; Etoh, Seiji; Shimozono, Yurika; Tanaka, Nobuyuki; Kawahira, Kazumi

    2010-07-01

    Footbaths are considered to provide beneficial thermal therapy for post-stroke patients with spasticity, but their anti-spastic effects have not been investigated comprehensively. The present study aimed to evaluate alterations in motor-neuron excitability using F-wave parameters in post-stroke patients with spastic hemiplegia. Subjects’ legs below the knee joint were immersed in water at 41°C and F-wave recordings were made over the abductor hallucis muscle before, immediately after, and 30 min after thermal treatment. Antidromic stimulation was performed on the tibial nerve at the ankle. Measurements included F-wave amplitude, F-wave/M-response ratio, changes in modified Ashworth scale (MAS), body temperature and surface-skin temperature. The mean values of both F-wave parameters were higher on the affected side before footbath treatment. In post-stroke patients, the mean values of F-wave parameters were significantly reduced after footbath treatment ( P < 0.01). The anti-spastic effects of footbath treatment were indicated by decreased F-wave parameters, in parallel with decreases in MAS. Body temperature was significantly increased both immediately after, and 30 min following footbath treatment in both groups, which appeared to play an important role in decreased spasticity. Surface-skin temperature increased immediately after footbath treatment in both groups and returned to baseline 30 min later. These findings demonstrate that the use of footbaths is an effective nonpharmacological anti-spastic treatment that might facilitate stroke rehabilitation.

  16. Muscle-tendon glucose uptake in Achilles tendon rupture and tendinopathy before and after eccentric rehabilitation: Comparative case reports.

    PubMed

    Masood, Tahir; Kalliokoski, Kari; Bojsen-Møller, Jens; Finni, Taija

    2016-09-01

    Achilles tendon rupture (ATR) is the most common tendon rupture injury. The consequences of ATR on metabolic activity of the Achilles tendon and ankle plantarflexors are unknown. Furthermore, the effects of eccentric rehabilitation on metabolic activity patterns of Achilles tendon and ankle plantarflexors in ATR patients have not been reported thus far. We present a case study demonstrating glucose uptake (GU) in the Achilles tendon, the triceps surae, and the flexor hallucis longus of a post-surgical ATR patient before and after a 5-month eccentric rehabilitation. At baseline, three months post-surgery, all muscles and Achilles tendon displayed much higher GU in the ATR patient compared to a healthy individual despite lower plantarflexion force. After the rehabilitation, plantarflexion force increased in the operated leg while muscle GU was considerably reduced. The triceps surae muscles showed similar values to the healthy control. When compared to the healthy or a matched patient with Achilles tendon pain after 12 weeks of rehabilitation, Achilles tendon GU levels of ATR patient remained greater after the rehabilitation. Past studies have shown a shift in the metabolic fuel utilization towards glycolysis due to immobilization. Further research, combined with immuno-histological investigation, is needed to fully understand the mechanism behind excessive glucose uptake in ATR cases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Associations among pain catastrophizing, muscle strength, and physical performance after total knee and hip arthroplasty

    PubMed Central

    Hayashi, Kazuhiro; Kako, Masato; Suzuki, Kentaro; Hattori, Keiko; Fukuyasu, Saori; Sato, Koji; Kadono, Izumi; Sakai, Tadahiro; Hasegawa, Yukiharu; Nishida, Yoshihiro

    2017-01-01

    AIM To investigate whether reductions in pain catastrophizing associated with physical performance in the early period after total knee arthroplasty (TKA) or total hip arthroplasty (THA). METHODS The study group of 46 participants underwent TKA or THA. The participants were evaluated within 7 d before the operation and at 14 d afterwards. Physical performance was measured by the Timed Up and Go (TUG) test, and 10-m gait time was measured at comfortable and maximum speeds. They rated their knee or hip pain using a visual analog scale (VAS) for daily life activities. Psychological characteristics were measured by the Pain Catastrophizing Scale (PCS). Physical characteristics were measured by isometric muscle strength of knee extensors and hip abductors on the operated side. The variables of percent changes between pre- and post-operation were calculated by dividing post-operation score by pre-operation score. RESULTS Postoperative VAS and PCS were better than preoperative for both TKA and THA. Postoperative physical performance and muscle strength were poorer than preoperative for both TKA and THA. The percent change in physical performance showed no correlation with preoperative variables. In TKA patients, the percent change of PCS showed correlation with percent change of TUG (P = 0.016), 10-m gait time at comfortable speeds (P = 0.003), and 10-m gait time at maximum speeds (P = 0.042). The percent change of muscle strength showed partial correlation with physical performances. The percent change of VAS showed no correlation with physical performances. On the other hand, in THA patients, the percent change of hip abductor strength showed correlation with percent change of TUG (P = 0.047), 10-m gait time at comfortable speeds (P = 0.001), and 10-m gait time at maximum speeds (P = 0.021). The percent change of knee extensor strength showed partial correlation with physical performances. The percent change of VAS and PCS showed no correlation with physical

  18. 17-(allylamino)-17-demethoxygeldanamycin drives Hsp70 expression but fails to improve morphological or functional recovery in injured skeletal muscle.

    PubMed

    Baumann, Cory W; Otis, Jeffrey S

    2015-12-01

    The stress inducible 70 kDa heat shock protein (Hsp70) is instrumental to efficient morphological and functional recovery following skeletal muscle injury because of its roles in protein quality control and molecular signalling. Therefore, in attempt to improve recovery, Hsp70 expression was increased with 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) prior to and following an intramuscular injection of barium chloride (BaCl2) into the tibialis anterior (TA) of healthy young mice. To assess recovery, regenerating fibre cross-sectional area (CSA) of the TA and in vivo peak isometric torque produced by the anterior crural muscles (TA, extensor digitorum longus and extensor hallucis muscles) were analyzed for up to 3 weeks after the injury. Because treatment of 17-AAG and Hsp70 are known to influence inflammatory and myogenic signalling, tumor necrosis factor-α (TNF-α) and myogenin content were also assessed. This study reports that 17-AAG was effective at up-regulating Hsp70 expression, increasing content fivefold in the uninjured muscle. However, this significant increase in Hsp70 content did not enhance morphological or functional recovery following the injury, as the return of regenerating fibre CSA and in vivo peak isometric torque did not differ compared to that of the injured muscle from the vehicle treated mice. Treatment with 17-AAG also altered TNF-α and myogenin content, increasing both to a greater extent after the injury. Together, these findings demonstrate that although 17-AAG may alter molecular makers of regeneration, it does not improve recovery following BaCl2-induced skeletal muscle injury in healthy young mice. © 2015 Wiley Publishing Asia Pty Ltd.

  19. Low-frequency oscillations of the neural drive to the muscle are increased with experimental muscle pain

    PubMed Central

    Negro, Francesco; Gizzi, Leonardo; Falla, Deborah

    2012-01-01

    We investigated the influence of nociceptive stimulation on the accuracy of task execution and motor unit spike trains during low-force isometric contractions. Muscle pain was induced by infusion of hypertonic saline into the abductor digiti minimi muscle of 11 healthy men. Intramuscular EMG signals were recorded from the same muscle during four isometric contractions of 60-s duration at 10% of the maximal force [maximal voluntary contraction (MVC)] performed before injection (baseline), after injection of isotonic (control) or hypertonic saline (pain), and 15 min after pain was no longer reported. Each contraction was preceded by three 3-s ramp contractions from 0% to 10% MVC. The low-frequency oscillations of motor unit spike trains were analyzed by the first principal component of the low-pass filtered spike trains [first common component (FCC)], which represents the effective neural drive to the muscle. Pain decreased the accuracy of task performance [coefficient of variation (CoV) for force: baseline, 2.8 ± 1.8%, pain, 3.9 ± 1.8%; P < 0.05] and reduced motor unit discharge rates [11.6 ± 2.3 pulses per second (pps) vs. 10.7 ± 1.7 pps; P < 0.05]. Motor unit recruitment thresholds (2.2 ± 1.2% MVC vs. 2.4 ± 1.6% MVC), interspike interval variability (18.4 ± 4.9% vs. 19.1 ± 5.4%), strength of motor unit short-term synchronization [common input strength (CIS) 1.02 ± 0.44 vs. 0.83 ± 0.22], and strength of common drive (0.47 ± 0.08 vs. 0.47 ± 0.06) did not change across conditions. The FCC signal was correlated with force (R = 0.45 ± 0.06), and the CoV for FCC increased in the painful condition (5.69 ± 1.29% vs. 7.83 ± 2.61%; P < 0.05). These results indicate that nociceptive stimulation increased the low-frequency variability in synaptic input to motoneurons. PMID:22049336

  20. Extrapulmonary features of bronchiectasis: muscle function, exercise capacity, fatigue, and health status.

    PubMed

    Ozalp, Ozge; Inal-Ince, Deniz; Calik, Ebru; Vardar-Yagli, Naciye; Saglam, Melda; Savci, Sema; Arikan, Hulya; Bosnak-Guclu, Meral; Coplu, Lutfi

    2012-06-11

    There are limited number of studies investigating extrapulmonary manifestations of bronchiectasis. The purpose of this study was to compare peripheral muscle function, exercise capacity, fatigue, and health status between patients with bronchiectasis and healthy subjects in order to provide documented differences in these characteristics for individuals with and without bronchiectasis. Twenty patients with bronchiectasis (43.5 ± 14.1 years) and 20 healthy subjects (43.0 ± 10.9 years) participated in the study. Pulmonary function, respiratory muscle strength (maximal expiratory pressure - MIP - and maximal expiratory pressure - MEP), and dyspnea perception using the Modified Medical Research Council Dyspnea Scale (MMRC) were determined. A six-minute walk test (6MWT) was performed. Quadriceps muscle, shoulder abductor, and hand grip strength (QMS, SAS, and HGS, respectively) using a hand held dynamometer and peripheral muscle endurance by a squat test were measured. Fatigue perception and health status were determined using the Fatigue Severity Scale (FSS) and the Leicester Cough Questionnaire (LCQ), respectively. Number of squats, 6MWT distance, and LCQ scores as well as lung function testing values and respiratory muscle strength were significantly lower and MMRC and FSS scores were significantly higher in patients with bronchiectasis than those of healthy subjects (p < 0.05). In bronchiectasis patients, QMS was significantly associated with HGS, MIP and MEP (p < 0.05). The 6MWT distance was significantly correlated to LCQ psychological score (p < 0.05). The FSS score was significantly associated with LCQ physical and total and MMRC scores (p < 0.05). The LCQ psychological score was significantly associated with MEP and 6MWT distance (p < 0.05). Peripheral muscle endurance, exercise capacity, fatigue and health status were adversely affected by the presence of bronchiectasis. Fatigue was associated with dyspnea and health status

  1. The relationship between preoperative needle electromyography findings and muscle power restoration after surgery in severe carpal tunnel syndrome patients.

    PubMed

    Hara, Yuki; Nishiura, Yasumasa; Ochiai, Naoyuki; Murai, Shinji; Yamazaki, Masashi

    2017-05-01

    Needle electromyography provides essential information about the functional aspects of the muscle. But little attention has been given in the literature to needle electromyography examinations in carpal tunnel syndrome. We examined the relationship between preoperative needle electromyography findings and functional recovery of the abductor pollicis brevis (APB) muscle in severe carpal tunnel syndrome patients. The subjects of this study were 49 patients, 58 hands, who fit the following 5 criteria: (1) idiopathic carpal tunnel syndrome; (2) pre-op MMT grade of the APB muscle was M0 or M1; (3) APB-CMAP (compound muscle action potential) was not evoked in a median nerve conduction study; (4) needle electromyography of the APB muscle had been done; (5) underwent carpal tunnel release only. The patients were divided into two groups according to the results of pre-op needle electromyography: voluntary motor unit potential of the APB muscle was evoked [MUP(+) group]or not [MUP(-) group]. We evaluated APB muscle strength at one year after surgery, and patient satisfaction and functional evaluations (CTSI-FS) at more than one year after. The APB muscle recovery rate to M3 or higher was 100% in the MUP(+) group, and 57% in the MUP(-) group. Patient satisfaction was also high and functional recovery was sufficient in the MUP(+) group. No patients requested a second opponensplasty. Our findings suggest that post-op restoration of thumb function relates to whether or not the MUP ofthe APB muscle is evoked. Single-stage opponensplasty may be unnecessary if the MUP of the APB muscle is; evoked. Needle electromyography is therefore useful in consideration for opponensplasty. Level Ⅲ, case-control study. Copyright © 2017. Published by Elsevier B.V.

  2. Presence and Absence of Muscle Contraction Elicited by Peripheral Nerve Electrical Stimulation Differentially Modulate Primary Motor Cortex Excitability.

    PubMed

    Sasaki, Ryoki; Kotan, Shinichi; Nakagawa, Masaki; Miyaguchi, Shota; Kojima, Sho; Saito, Kei; Inukai, Yasuto; Onishi, Hideaki

    2017-01-01

    Modulation of cortical excitability by sensory inputs is a critical component of sensorimotor integration. Sensory afferents, including muscle and joint afferents, to somatosensory cortex (S1) modulate primary motor cortex (M1) excitability, but the effects of muscle and joint afferents specifically activated by muscle contraction are unknown. We compared motor evoked potentials (MEPs) following median nerve stimulation (MNS) above and below the contraction threshold based on the persistence of M-waves. Peripheral nerve electrical stimulation (PES) conditions, including right MNS at the wrist at 110% motor threshold (MT; 110% MNS condition), right MNS at the index finger (sensory digit nerve stimulation [DNS]) with stimulus intensity approximately 110% MNS (DNS condition), and right MNS at the wrist at 90% MT (90% MNS condition) were applied. PES was administered in a 4 s ON and 6 s OFF cycle for 20 min at 30 Hz. In Experiment 1 ( n = 15), MEPs were recorded from the right abductor pollicis brevis (APB) before (baseline) and after PES. In Experiment 2 ( n = 15), M- and F-waves were recorded from the right APB. Stimulation at 110% MNS at the wrist evoking muscle contraction increased MEP amplitudes after PES compared with those at baseline, whereas DNS at the index finger and 90% MNS at the wrist not evoking muscle contraction decreased MEP amplitudes after PES. M- and F-waves, which reflect spinal cord or muscular and neuromuscular junctions, did not change following PES. These results suggest that muscle contraction and concomitant muscle/joint afferent inputs specifically enhance M1 excitability.

  3. Presence and Absence of Muscle Contraction Elicited by Peripheral Nerve Electrical Stimulation Differentially Modulate Primary Motor Cortex Excitability

    PubMed Central

    Sasaki, Ryoki; Kotan, Shinichi; Nakagawa, Masaki; Miyaguchi, Shota; Kojima, Sho; Saito, Kei; Inukai, Yasuto; Onishi, Hideaki

    2017-01-01

    Modulation of cortical excitability by sensory inputs is a critical component of sensorimotor integration. Sensory afferents, including muscle and joint afferents, to somatosensory cortex (S1) modulate primary motor cortex (M1) excitability, but the effects of muscle and joint afferents specifically activated by muscle contraction are unknown. We compared motor evoked potentials (MEPs) following median nerve stimulation (MNS) above and below the contraction threshold based on the persistence of M-waves. Peripheral nerve electrical stimulation (PES) conditions, including right MNS at the wrist at 110% motor threshold (MT; 110% MNS condition), right MNS at the index finger (sensory digit nerve stimulation [DNS]) with stimulus intensity approximately 110% MNS (DNS condition), and right MNS at the wrist at 90% MT (90% MNS condition) were applied. PES was administered in a 4 s ON and 6 s OFF cycle for 20 min at 30 Hz. In Experiment 1 (n = 15), MEPs were recorded from the right abductor pollicis brevis (APB) before (baseline) and after PES. In Experiment 2 (n = 15), M- and F-waves were recorded from the right APB. Stimulation at 110% MNS at the wrist evoking muscle contraction increased MEP amplitudes after PES compared with those at baseline, whereas DNS at the index finger and 90% MNS at the wrist not evoking muscle contraction decreased MEP amplitudes after PES. M- and F-waves, which reflect spinal cord or muscular and neuromuscular junctions, did not change following PES. These results suggest that muscle contraction and concomitant muscle/joint afferent inputs specifically enhance M1 excitability. PMID:28392766

  4. [Hemispheric transcranial electrical stimulation: clinical results].

    PubMed

    Pastor Gómez, Jesús; Perla-Perla, Patricia; Pulido-Rivas, Paloma; Sola, Rafael G

    2010-07-16

    Transcranial electrical stimulation (TES) is a technique widely used in intraoperative neurophysiological monitoring. However, there are theoretical limitations to their use in supratentorial surgery. To test the usefulness of hemispheric TES (C3/C4-Cz) in supratentorial surgery. Hemispheric TES was conducted in a group of 15 patients operated on supratentorial region with possible compromise of the inner capsule. In all cases orbicularis oris, extensor digitorum, abductor of V finger, anterior tibialis and abductor hallucis brevis contralateral to stimulation were recorded. We used trains of 4-6 pulses of 50 micro-seconds at 500 Hz. The intensity of the movements induced by hemispheric TES did not interfere with the microsurgical dissection. We have used 78.5 +/- 11.2 trains per patient, with the voltage of 235 +/- 21 V and the equivalent current 370 +/- 37 mA. Stimulation resulted in response in facial region in 80% of cases, 100% in arm/hand and 66.7% in leg/foot. In eight patients, there was no change in latency and/or amplitude during resection. In six patients we observed retardation, decreased amplitude or both in any of the region studied. In these patients no neurologic injury was observed. In one patient a sharp decrease and complete absence of motor response was observed. In this case there was a post-surgical neurologic injury. The hemispheric TES have high sensitivity and specificity monitoring the inner capsule in supratentorial neurosurgery.

  5. An ergonomics study of thumb movements on smartphone touch screen.

    PubMed

    Xiong, Jinghong; Muraki, Satoshi

    2014-01-01

    This study investigated the relationships between thumb muscle activity and thumb operating tasks on a smartphone touch screen with one-hand posture. Six muscles in the right thumb and forearm were targeted in this study, namely adductor pollicis, flexor pollicis brevis, abductor pollicis brevis (APB), abductor pollicis longus, first dorsal interosseous (FDI) and extensor digitorum. The performance measures showed that the thumb developed fatigue rapidly when tapping on smaller buttons (diameter: 9 mm compared with 3 mm), and moved more slowly in flexion-extension than in adduction-abduction orientation. Meanwhile, the electromyography and perceived exertion values of FDI significantly increased in small button and flexion-extension tasks, while those of APB were greater in the adduction-abduction task. This study reveals that muscle effort among thumb muscles on a touch screen smartphone varies according to the task, and suggests that the use of small touch buttons should be minimised for better thumb performance.

  6. Effects of 12-wk eccentric calf muscle training on muscle-tendon glucose uptake and SEMG in patients with chronic Achilles tendon pain.

    PubMed

    Masood, Tahir; Kalliokoski, Kari; Magnusson, S Peter; Bojsen-Møller, Jens; Finni, Taija

    2014-07-15

    High-load eccentric exercises have been a key component in the conservative management of chronic Achilles tendinopathy. This study investigated the effects of a 12-wk progressive, home-based eccentric rehabilitation program on ankle plantar flexors' glucose uptake (GU) and myoelectric activity and Achilles tendon GU. A longitudinal study design with control (n = 10) and patient (n = 10) groups was used. Surface electromyography (SEMG) from four ankle plantar flexors and GU from the same muscles and the Achilles tendon were measured during submaximal intermittent isometric plantar flexion task. The results indicated that the symptomatic leg was weaker (P < 0.05) than the asymptomatic leg at baseline, but improved (P < 0.001) with eccentric rehabilitation. Additionally, the rehabilitation resulted in greater GU in both soleus (P < 0.01) and lateral gastrocnemius (P < 0.001) in the symptomatic leg, while the asymptomatic leg displayed higher uptake for medial gastrocnemius and flexor hallucis longus (P < 0.05). While both patient legs had higher tendon GU than the controls (P < 0.05), there was no rehabilitation effect on the tendon GU. Concerning SEMG, at baseline, soleus showed more relative activity in the symptomatic leg compared with both the asymptomatic and control legs (P < 0.05), probably reflecting an effort to compensate for the decreased force potential. The rehabilitation resulted in greater SEMG activity in the lateral gastrocnemius (P < 0.01) of the symptomatic leg with no other within- or between-group differences. Eccentric rehabilitation was effective in decreasing subjective severity of Achilles tendinopathy. It also resulted in redistribution of relative electrical activity, but not metabolic activity, within the triceps surae muscle. Copyright © 2014 the American Physiological Society.

  7. Does the addition of hip strengthening exercises improve outcomes following total knee arthroplasty? A study protocol for a randomized trial.

    PubMed

    Schache, Margaret B; McClelland, Jodie A; Webster, Kate E

    2016-06-13

    Total knee arthroplasty (TKA) is effective in reducing pain and improving function for end-stage knee osteoarthritis. However, muscle weakness and functional limitations persist despite assistance from post-operative rehabilitation programs that traditionally focus on quadriceps strengthening and range of movement exercises. Hip abductor muscle weakness is evident in knee osteoarthritis and hip muscle strengthening reduces knee pain in this group. Following TKA, people with weak hip abductor strength perform more poorly on measures of physical function. However, very little is known of the effectiveness of including hip abductor strengthening exercises in post-operative rehabilitation. The aim of this trial is to compare the effects of targeted hip abductor strengthening to those of traditional care in a TKA rehabilitation program on muscle strength, patient reported outcomes and functional performance measures. This protocol describes a single-blinded randomized controlled trial, where 104 participants referred for inpatient rehabilitation following TKA will be recruited. Participants will be randomized using computer-generated numbers to one of two groups: usual care or usual care with additional hip strengthening exercises. Participants will attend physiotherapy daily during their inpatient length of stay, and will then attend between six and eight physiotherapy sessions as an outpatient. Primary outcomes are isometric hip abductor strength and the Knee Injury and Osteoarthritis Outcome Score (KOOS). Secondary outcomes are stair climb test, 6 min walk test, timed up and go, 40 m fast-paced walk test, 30 second chair stand test, isometric quadriceps strength, Lower Extremity Functional Scale (LEFS) and SF-12. Outcome measures will be recorded at baseline (admission to inpatient rehabilitation), and then 3 weeks, 6 weeks and 6 months post admission to rehabilitation. The findings of this study will determine whether the addition of targeted hip strengthening

  8. Partially irreversible paresis of the deep peroneal nerve caused by osteocartilaginous exostosis of the fibula without affecting the tibialis anterior muscle.

    PubMed

    Paprottka, Felix Julian; Machens, Hans-Günther; Lohmeyer, Jörn Andreas

    2012-08-01

    Dysfunction of the lower limb's muscles can cause severe impairment and immobilisation of the patient. As one of the leg's major motor and sensory nerves, the deep peroneal nerve (synonym: deep fibular nerve) plays a very important role in muscle innervation in the lower extremities. We report the case of a 19-year-old female patient, who suffered from a brace-like exostosis 6-cm underneath her left fibular head causing a partially irreversible paresis of her deep peroneal nerve. This nerve damage resulted in complete atrophy of her extensor digitorum longus and extensor hallucis longus muscle, and in painful sensory disturbance at her left shin and first web space. The tibialis anterior muscle stayed intact because its motor branch left the deep peroneal nerve proximal to the nerve lesion. Diagnosis was first verified 6 years after the onset of symptoms by a magnetic resonance imaging (MRI) scan of her complete left lower leg. Subsequently, the patient was operated on in our clinic, where a neurolysis was performed and the 4-cm-long osteocartilaginous exostosis was removed. Paralysis was already irreversible but sensibility returned completely after neurolysis. The presented case shows that an osteocartilaginous exostosis can be the cause for partial deep peroneal nerve paresis. If this disorder is diagnosed at an early stage, nerve damage is reversible. Typical for an exostosis is its first appearance during the juvenile growth phase. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Electromiography comparison of distal and proximal lower limb muscle activity patterns during external perturbation in subjects with and without functional ankle instability.

    PubMed

    Kazemi, Khadijeh; Arab, Amir Massoud; Abdollahi, Iraj; López-López, Daniel; Calvo-Lobo, César

    2017-10-01

    Ankle sprain is one of the most common injuries among athletes and the general population. Most ankle injuries commonly affect the lateral ligament complex. Changes in postural sway and hip abductor muscle strength may be generated after inversion ankle sprain. Therefore, the consequences of ankle injury may affect proximal structures of the lower limb. The aim is to describe and compare the activity patterns of distal and proximal lower limb muscles following external perturbation in individuals with and without functional ankle instability. The sample consisted of 16 women with functional ankle instability and 18 healthy women were recruited to participate in this research. The external perturbation via body jacket using surface electromyography, amplitude and onset of muscle activity of gluteus maximums, gluteus medius, tibialis anterior, and peroneus longus was recorded and analyzed during external perturbation. There were differences between the onset of muscles activity due to perturbation direction in the two groups (healthy and functional ankle instability). In the healthy group, there were statistically significant differences in amplitude of proximal muscle activity with distal muscle activity during front perturbation with eyes open and closed. In the functional ankle instability group; there were statistically significant differences in amplitude of proximal muscle activity with distal muscle activity during perturbation of the front and back with eyes open. There were statistically significant differences in the onset of muscle activity and amplitude of muscle activity, with-in and between groups (P<0.05). Therefore, in the presence of functional ankle instability, activation patterns of the lower limb proximal muscles may be altered. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Relationships between eccentric hip isokinetic torque and functional performance.

    PubMed

    Baldon, Rodrigo de Marche; Lobato D, Ferreira Moreira; Carvalho, Lívia Pinheiro; Wun P, Yan Lam; Presotti, Cátia Valéria; Serrão, Fábio Viadanna

    2012-02-01

    Recently, attention in sports has been given to eccentric hip-muscle function, both in preventing musculoskeletal injuries and improving performance. To determine the key isokinetic variables of eccentric hip torque that predict the functional performance of women in the single-leg triple long jump (TLJ) and the timed 6-m single-leg hop (TH). Within-subject correlational study. Musculoskeletal laboratory. 32 healthy women age 18-25 y. The participants performed 2 sets of 5 eccentric hip-abductor/adductor and lateral/medial-rotator isokinetic contractions (30°/s) and 3 attempts in the TLJ and TH. The independent variables were the eccentric hip-abductor and -adductor and medial- and lateral-rotator isokinetic peak torque, normalized according to body mass (Nm/kg). The dependent variables were the longest distance achieved in the TLJ normalized according to body height and the shortest time spent during the execution of the TH. The forward-stepwise-regression analysis showed that the combination of the eccentric hip lateral-rotator and -abductor isokinetic peak torque provided the most efficient estimate of both functional tests, explaining 65% of the TLJ variance (P < .001) and 55% of the TH variance (P < .001). Higher values for eccentric hip lateral-rotator and hip-abductor torques reflected better performance. Thus, the eccentric action of these muscles should be considered in the development of physical training programs that aim to increase functional performance.

  11. Anatomy of the pectoral and forelimb muscles of wildtype and green fluorescent protein-transgenic axolotls and comparison with other tetrapods including humans: a basis for regenerative, evolutionary and developmental studies

    PubMed Central

    Diogo, R; Tanaka, E M

    2012-01-01

    stated in the literature, A. mexicanum has a muscle coracoradialis that has both a well developed proximal fleshy belly and a distal long and thin tendon, supporting the idea that this muscle very likely corresponds to at least part of the amniote biceps brachii. Our observations also: (i) confirmed that the flexores digitorum minimi, interphalangeus digiti 3, pronator quadratus and palmaris profundus 1 are present as distinct muscles in A. mexicanum, supporting the idea that the latter muscle does not correspond to the pronator accessorius of reptiles; (ii) confirmed that the so-called extensor antebrachii radialis is present as a distinct muscle in this species and, importantly, indicated that this muscle corresponds to the supinator of other tetrapods; (iii) showed that, contrary to some other urodeles, including some other Ambystoma species, there is no distinct muscle epitrochleoanconeus in A. mexicanum and; (iv) showed that the ulnar and radial bundles of the abductor et extensor digiti 1 correspond to the abductor pollicis longus and extensor pollicis longus of other tetrapods, respectively. PMID:22957800

  12. Anatomy of the pectoral and forelimb muscles of wildtype and green fluorescent protein-transgenic axolotls and comparison with other tetrapods including humans: a basis for regenerative, evolutionary and developmental studies.

    PubMed

    Diogo, R; Tanaka, E M

    2012-12-01

    stated in the literature, A. mexicanum has a muscle coracoradialis that has both a well developed proximal fleshy belly and a distal long and thin tendon, supporting the idea that this muscle very likely corresponds to at least part of the amniote biceps brachii. Our observations also: (i) confirmed that the flexores digitorum minimi, interphalangeus digiti 3, pronator quadratus and palmaris profundus 1 are present as distinct muscles in A. mexicanum, supporting the idea that the latter muscle does not correspond to the pronator accessorius of reptiles; (ii) confirmed that the so-called extensor antebrachii radialis is present as a distinct muscle in this species and, importantly, indicated that this muscle corresponds to the supinator of other tetrapods; (iii) showed that, contrary to some other urodeles, including some other Ambystoma species, there is no distinct muscle epitrochleoanconeus in A. mexicanum and; (iv) showed that the ulnar and radial bundles of the abductor et extensor digiti 1 correspond to the abductor pollicis longus and extensor pollicis longus of other tetrapods, respectively. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  13. Clinical findings and electrodiagnostic testing in 108 consecutive cases of lumbosacral radiculopathy due to herniated disc.

    PubMed

    Mondelli, M; Aretini, A; Arrigucci, U; Ginanneschi, F; Greco, G; Sicurelli, F

    2013-10-01

    This prospective study aim to examine whether clinical findings and electrodiagnostic testing (EDX) in patients with lumbosacral monoradiculopathy due to herniated disc (HD) differ as a function of root involvement level (L5 vs. S1) and HD zone (paramedian vs. intraforaminal). All patients with L4, L5 or S1 monoradiculopathy were prospectively enrolled at four electromyography (EMG) labs over a 2-year period. The diagnosis was based on a congruence between patient history and MRI evidence of HD. We compared the sensitivities of clinical findings and EDX with respect to both root involvement level and HD zone. Multivariate logistic regression was performed in order to verify the association between abnormal EMG, clinical, and neuroradiological findings. One hundred and eight patients (mean age 47.7 years, 55% men) were consecutively enrolled. Sensory loss in the painful dermatome was the most frequent finding at physical examination (56% of cases). EMG was abnormal in at least one muscle supplied by femoral and sciatic nerves in 45 cases (42%). Inclusion of paraspinal muscles increased sensitivity to only 49% and that of proximal muscles was useless. Motor and sensory neurography was seldom abnormal. The most frequent motor neurographic abnormalities were a delay of F-wave minimum latency and decrease in the compound muscle action potential amplitude from extensor digitorum brevis and abductor hallucis in L5 and S1 radiculopathies, respectively. Sensory neurography was usually normal, the amplitude of sensory nerve action potential was seldom reduced when HD injured dorsal root ganglion or postganglionic root fibres. Multivariate logistic regression analysis showed that EMG abnormalities could be predicted by myotomal muscular weakness, abnormal deep reflexes, and paraesthesiae. The only clinical and electrophysiological differences with respect to root involvement level concerned deep reflexes and motor neurography of deep peroneal and tibial nerves. Only some EDX

  14. Effects of squat lift training and free weight muscle training on maximum lifting load and isolinetic peak torque of young adults without impairments.

    PubMed

    Yeung, S S; Ng, G Y

    2000-06-01

    Manual lifting is a frequent cause of back injury, and there is no evidence as to which training mode can provide the best training effect for lifting performance and muscle force. The purpose of this study was to examine the effects of a squat lift training and a free weight muscle training program on the maximum lifting load and isokinetic peak torque in subjects without known neuromuscular or musculoskeletal impairments. Thirty-six adults (20 male, 16 female) without known neuromuscular or musculoskeletal impairments participated. The subjects' mean age was 21.25 years (SD=1.16, range=20-24). Subjects were divided into 3 groups. Subjects in group 1 (n=12) performed squat lift training. Subjects in group 2 (n=12) participated in free weight resistance training of their shoulder abductors, elbow flexors, knee extensors and trunk extensors. Subjects in group 3 (n=12) served as controls. The maximum lifting load and isokinetic peak torques of the trunk extensors, knee extensors, elbow flexors, and shoulder abductors of each subject were measured before and after the study. Training was conducted on alternate days for 4 weeks, with an initial load of 80% of each subject's maximum capacity and with the load increased by 5% weekly. All groups were comparable for all measured variables before the study. After 4 weeks, subjects in groups 1 and 2 demonstrated more improvement in maximum lifting load and isokinetic peak torque of the back extensors compared with the subjects in group 3, but the 2 training groups were not different. The findings demonstrate that both squat lift and free weight resistance training are equally effective in improving the lifting load and isokinetic back extension performance of individuals without impairments.

  15. Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects.

    PubMed

    Pirondini, Elvira; Coscia, Martina; Marcheschi, Simone; Roas, Gianluca; Salsedo, Fabio; Frisoli, Antonio; Bergamasco, Massimo; Micera, Silvestro

    2016-01-23

    Exoskeletons for lower and upper extremities have been introduced in neurorehabilitation because they can guide the patient's limb following its anatomy, covering many degrees of freedom and most of its natural workspace, and allowing the control of the articular joints. The aims of this study were to evaluate the possible use of a novel exoskeleton, the Arm Light Exoskeleton (ALEx), for robot-aided neurorehabilitation and to investigate the effects of some rehabilitative strategies adopted in robot-assisted training. We studied movement execution and muscle activities of 16 upper limb muscles in six healthy subjects, focusing on end-effector and joint kinematics, muscle synergies, and spinal maps. The subjects performed three dimensional point-to-point reaching movements, without and with the exoskeleton in different assistive modalities and control strategies. The results showed that ALEx supported the upper limb in all modalities and control strategies: it reduced the muscular activity of the shoulder's abductors and it increased the activity of the elbow flexors. The different assistive modalities favored kinematics and muscle coordination similar to natural movements, but the muscle activity during the movements assisted by the exoskeleton was reduced with respect to the movements actively performed by the subjects. Moreover, natural trajectories recorded from the movements actively performed by the subjects seemed to promote an activity of muscles and spinal circuitries more similar to the natural one. The preliminary analysis on healthy subjects supported the use of ALEx for post-stroke upper limb robotic assisted rehabilitation, and it provided clues on the effects of different rehabilitative strategies on movement and muscle coordination.

  16. The relationship of strength and muscle balance to shoulder pain and impingement syndrome in elite quadriplegic wheelchair rugby players.

    PubMed

    Miyahara, M; Sleivert, G G; Gerrard, D F

    1998-04-01

    Wheelchair athletes are susceptible to injuries related to overuse of the shoulder, in particular shoulder impingement syndrome. The present study examined the relationship of shoulder pain to demographic details, isokinetic strength and muscle balance in 8 elite quadriplegic rugby players. Demographic data were collected using personal interviews and each subject was clinically examined for signs of impingement syndrome by a physician. In addition each subject underwent bilateral isokinetic strength testing of the shoulder at 60 and 180 deg/s for abduction/adduction and internal/external rotation. A series of step-wise multiple discriminant analysis successfully predicted clinical symptoms from demographic, muscular strength and balance data. In particular, there was a significant deficit in adductor strength and this was related to shoulder pain and wasting of the scapular muscles. This strength deficit may be due to the high level of spinal lesions in the quadriplegic population. The level of spinal lesion may contribute to the aetiology of shoulder pathology in quadriplegia, and differentiate it from that observed in able-bodied athletes who exhibit weak abductors.

  17. Arthroscopic Release of Flexor Hallucis Longus Tendon Sheath in Female Ballet Dancers: Dynamic Pathology, Surgical Technique, and Return to Dancing Performance.

    PubMed

    Funasaki, Hiroki; Hayashi, Hiroteru; Sakamoto, Kanako; Tsuruga, Rei; Marumo, Keishi

    2015-12-01

    Stenosing tenosynovitis of the flexor hallucis longus (FHL) tendon is known as a major overuse lesion in female dancers. We describe arthroscopic surgical techniques in relation to the dynamic pathology of the disease. Crepitus and pain on moving the great toe with the ankle in plantar flexion on preoperative examination confirm the diagnosis of FHL stenosing tenosynovitis even if the os trigonum is not evident. The ankle is approached through standard posterolateral and posteromedial portals. A 4.0-mm-diameter 30° arthroscope is used. Soft tissues around the talus are cleared with a motorized shaver and a radiofrequency device. The posterior aspects of the talus, os trigonum, and FHL tendon surrounded by the tendon sheath are visualized. The dynamic pathology of the FHL tendon is well observed on passive motion of the great toe. The prominent bone fragment of the talus is removed and the tendon sheath is cut with a retrograde knife and a motorized shaver from the superior border down to the entrance of the fibro-osseous tunnel. Arthroscopic release of the FHL tendon sheath is a useful and easy method to directly approach the dynamic pathology of FHL tenosynovitis in female ballet dancers.

  18. Distribution and severity of weakness among patients with polymyositis, dermatomyositis and juvenile dermatomyositis

    PubMed Central

    Harris-Love, M. O.; Shrader, J. A.; Koziol, D.; Pahlajani, N.; Jain, M.; Smith, M.; Cintas, H. L.; McGarvey, C. L.; James-Newton, L.; Pokrovnichka, A.; Moini, B.; Cabalar, I.; Lovell, D. J.; Wesley, R.; Plotz, P. H.; Miller, F. W.; Hicks, J. E.

    2009-01-01

    Objective. To describe the distribution and severity of muscle weakness using manual muscle testing (MMT) in 172 patients with PM, DM and juvenile DM (JDM). The secondary objectives included characterizing individual muscle group weakness and determining associations of weakness with functional status and myositis characteristics in this large cohort of patients with myositis. Methods. Strength was assessed for 13 muscle groups using the 10-point MMT and expressed as a total score, subscores based on functional and anatomical regions, and grades for individual muscle groups. Patient characteristics and secondary outcomes, such as clinical course, muscle enzymes, corticosteroid dosage and functional status were evaluated for association with strength using univariate and multivariate analyses. Results. A gradient of proximal weakness was seen, with PM weakest, DM intermediate and JDM strongest among the three myositis clinical groups (P ≤ 0.05). Hip flexors, hip extensors, hip abductors, neck flexors and shoulder abductors were the muscle groups with the greatest weakness among all three clinical groups. Muscle groups were affected symmetrically. Conclusions. Axial and proximal muscle impairment was reflected in the five weakest muscles shared by our cohort of myositis patients. However, differences in the pattern of weakness were observed among all three clinical groups. Our findings suggest a greater severity of proximal weakness in PM in comparison with DM. PMID:19074186

  19. Effects of obesity on lower extremity muscle function during walking at two speeds.

    PubMed

    Lerner, Zachary F; Board, Wayne J; Browning, Raymond C

    2014-03-01

    Walking is a recommended form of physical activity for obese adults, yet the effects of obesity and walking speed on the biomechanics of walking are not well understood. The purpose of this study was to examine joint kinematics, muscle force requirements and individual muscle contributions to the walking ground reaction forces (GRFs) at two speeds (1.25 ms(-1) and 1.50 ms(-1)) in obese and nonobese adults. Vasti (VAS), gluteus medius (GMED), gastrocnemius (GAST), and soleus (SOL) forces and their contributions to the GRFs were estimated using three-dimensional musculoskeletal models scaled to the anthropometrics of nine obese (35.0 (3.78 kg m(-2))); body mass index mean (SD)) and 10 nonobese (22.1 (1.02 kg m(-2))) subjects. The obese individuals walked with a straighter knee in early stance at the faster speed and greater pelvic obliquity during single limb support at both speeds. Absolute force requirements were generally greater in obese vs. nonobese adults, the main exception being VAS, which was similar between groups. At both speeds, lean mass (LM) normalized force output for GMED was greater in the obese group. Obese individuals appear to adopt a gait pattern that reduces VAS force output, especially at speeds greater than their preferred walking velocity. Greater relative GMED force requirements in obese individuals may contribute to altered kinematics and increased risk of musculoskeletal injury/pathology. Our results suggest that obese individuals may have relative weakness of the VAS and hip abductor muscles, specifically GMED, which may act to increase their risk of musculoskeletal injury/pathology during walking, and therefore may benefit from targeted muscle strengthening. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Effects of Muscle Strength and Balance Control on Sit-to-Walk and Turn Durations in the Timed Up and Go Test.

    PubMed

    Chen, Tzurei; Chou, Li-Shan

    2017-12-01

    To examine the association of muscle strength and balance control with the amount of time taken to perform sit-to-walk (STW) or turning components of the Timed Up and Go (TUG) test in older adults. Correlations; multiple regression models. General community. Older adults (N=60) age >70 years recruited from the community. Not applicable. Muscle strength, balance control, and TUG test performance time. Muscle strength was quantified by peak joint moments during the isometric maximal voluntary contraction test for bilateral hip abductors, knee extensors, and ankle plantar flexors. Balance control was assessed with the Berg Balance Scale, Fullerton Advanced Balance Scale, and center of mass and ankle inclination angle derived during the TUG test performance. We found that balance control measures were significantly associated with both STW and turning durations even after controlling for muscle strength and other confounders (STW duration: P<.001, turning duration: P=.001). Adding strength to the regression model was found to significantly improve its prediction of STW duration (F change =5.945, P=.018), but not turning duration (F change =1.03, P=.14). Our findings suggest that poor balance control is an important factor that contributes to longer STW and turning durations on the TUG test. Furthermore, strength has a higher association with STW than turning duration. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. Motor unit recruitment strategies and muscle properties determine the influence of synaptic noise on force steadiness

    PubMed Central

    Dideriksen, Jakob L.; Negro, Francesco; Enoka, Roger M.

    2012-01-01

    Motoneurons receive synaptic inputs from tens of thousands of connections that cause membrane potential to fluctuate continuously (synaptic noise), which introduces variability in discharge times of action potentials. We hypothesized that the influence of synaptic noise on force steadiness during voluntary contractions is limited to low muscle forces. The hypothesis was examined with an analytical description of transduction of motor unit spike trains into muscle force, a computational model of motor unit recruitment and rate coding, and experimental analysis of interspike interval variability during steady contractions with the abductor digiti minimi muscle. Simulations varied contraction force, level of synaptic noise, size of motor unit population, recruitment range, twitch contraction times, and level of motor unit short-term synchronization. Consistent with the analytical derivations, simulations and experimental data showed that force variability at target forces above a threshold was primarily due to low-frequency oscillations in neural drive, whereas the influence of synaptic noise was almost completely attenuated by two low-pass filters, one related to convolution of motoneuron spike trains with motor unit twitches (temporal summation) and the other attributable to summation of single motor unit forces (spatial summation). The threshold force above which synaptic noise ceased to influence force steadiness depended on recruitment range, size of motor unit population, and muscle contractile properties. This threshold was low (<10% of maximal force) for typical values of these parameters. Results indicate that motor unit recruitment and muscle properties of a typical muscle are tuned to limit the influence of synaptic noise on force steadiness to low forces and that the inability to produce a constant force during stronger contractions is mainly attributable to the common low-frequency oscillations in motoneuron discharge rates. PMID:22423000

  2. Posterolateral hip muscle strengthening versus quadriceps strengthening for patellofemoral pain: a comparative control trial.

    PubMed

    Khayambashi, Khalil; Fallah, Alireza; Movahedi, Ahmadreza; Bagwell, Jennifer; Powers, Christopher

    2014-05-01

    To compare the efficacy of posterolateral hip muscle strengthening versus quadriceps strengthening in reducing pain and improving health status in persons with patellofemoral pain (PFP). Comparative control trial. Rehabilitation facility. Persons with a diagnosis of PFP (N=36; 18 men, 18 women). Patients were alternately assigned to a posterolateral hip muscle strengthening group (9 men and 9 women) or a quadriceps strengthening group (9 men and 9 women). The posterolateral hip muscle strengthening group performed hip abductor and external rotator strengthening exercises, whereas the quadriceps strengthening group performed quadriceps strengthening exercises (3 times a week for 8wk). Pain (visual analog scale [VAS]) and health status (Western Ontario McMaster Universities Osteoarthritis Index [WOMAC]) were assessed at baseline, postintervention, and 6-month follow-up. Significant improvements in VAS and WOMAC scores were observed in both groups from baseline to postintervention and baseline to 6-month follow-up (P<.001). Improvements in VAS and WOMAC scores in the posterolateral hip exercise group were superior to those in the quadriceps exercise group postintervention and at 6-month follow-up (P<.05). Although both intervention programs resulted in decreased pain and improved function in persons with PFP, outcomes in the posterolateral hip exercise group were superior to the quadriceps exercise group. The superior outcomes obtained in the posterolateral hip exercise group were maintained 6 months postintervention. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. Reconstruction for chronic Achilles tendinopathy: comparison of flexor hallucis longus (FHL) transfer versus V-Y advancement.

    PubMed

    Staggers, Jackson R; Smith, Kenneth; de C Netto, Cesar; Naranje, Sameer; Prasad, Krishna; Shah, Ashish

    2018-04-01

    Several operative techniques exist for Achilles tendinopathy. The purpose of our study was to compare the clinical and functional outcomes of flexor hallucis longus (FHL) transfer and V-Y advancement for the treatment of chronic insertional Achilles tendinopathy. Retrospective chart review from 2010 to 2016 of patients that underwent FHL transfer or V-Y advancement for chronic insertional Achilles tendinopathy. Outcome measures were compared for these two procedures. In total, 46 patients (49 ankles) with a mean age of 55.0 (range 33-73) years. Mean follow-up time 44.7 +/- 25.5 months. FHL group had 21 patients (21 ankles) with 89% satisfaction, 14% complication rate, final VAS of 0.4, final VISA-A of 89.1, subjective strength improvement following surgery of 78%, and 94% would recommend the procedure. V-Y group had 25 patients (28 ankles) with 74% subjective satisfaction, 21% complication rate, final VAS of 1.4, final VISA-A of 78.4, subjective strength improvement following surgery of 67%, and 84% would recommend the procedure. There was no significant difference in any of the results rates between the two groups (p > .05). V-Y advancement is comparable to FHL transfer for the operative management of insertional Achilles tendinopathy. Though our results trend towards less satisfactory results following V-Y advancement, we found high satisfaction rates with similar functional outcomes and complication rates in both operative groups. We suggest considering V-Y advancement as a viable option for the primary treatment of chronic insertional Achilles tendinopathy in patients who may not be an ideal candidate for FHL transfer.

  4. Differentiating between adductor and abductor spasmodic dysphonia using airflow interruption

    PubMed Central

    Hoffman, Matthew R.; Jiang, Jack J.; Rieves, Adam L.; McElveen, Kelsey A.B.; Ford, Charles N.

    2009-01-01

    Objective To measure the laryngeal resistance (RL), subglottal pressure (Ps), and mean flow rate (MFR) of adductor (ADSD) and abductor (ABSD) spasmodic dysphonia patients using the airflow interrupter. Methods The RL of six ABSD and seven ADSD patients was measured using the airflow interrupter, a noninvasive device designed to measure MFR and Ps via mechanical balloon valve interruption. Subjects performed ten trials at each of two intensity levels, with each trial consisting of a sustained /a/ during which phonation was interrupted for 500 ms. Laryngeal resistance was calculated as subglottal pressure divided by airflow. Results Mean RL for the ADSD and ABSD subtypes at 65 dB were 24.78 cmH2O/l/s and 14.51 cmH2O/l/s, respectively (p = 0.04). Mean RL at 70 dB were 40.02 cmH2O/l/s and 15.84 cmH2O/l/s (p = 0.014). Ps for the ADSD and ABSD subtypes at 65 dB were 10.23 cmH2O and 8.32 cmH2O, respectively (p = 0.582). At the 70 dB level, Ps were 12.39 cmH2O and 11.78 cmH2O (p = 0.886). MFR for the ADSD and ABSD subtypes at 65 dB were 435 ml/s and 746 ml/s (p = 0.205). Mean MFR at 70 dB were 518 ml/s and 848 ml/s (p = 0.198). Conclusion Noninvasive measurements of RL may be useful for differentiating between ADSD and ABSD. This simple objective test which produces a quantitative output could be used to evaluate laryngeal function in patients with spasmodic dysphonia. PMID:19554636

  5. Poor physical function in elderly women in low-level aged care is related to muscle strength rather than to measures of sarcopenia.

    PubMed

    Woods, Julie L; Iuliano-Burns, Sandra; King, Susannah J; Strauss, Boyd J; Walker, Karen Z

    2011-01-01

    To determine the prevalence of sarcopenia and investigate relationships among body composition, muscle strength, and physical function in elderly women in low-level aged care. Sixty-three ambulatory women (mean age 86 years) participated in this cross-sectional study where body composition was determined by dual energy X-ray absorptiometry (DXA); ankle, knee, and hip strength by the Nicholas Manual Muscle Tester; and physical function by 'timed up and go' (TUG) and walking speed (WS) over 6 meters. Body composition data from a female reference group (n = 62, mean age 29 years) provided cut-off values for defining sarcopenia. Elderly women had higher body mass index (P < 0.001), lower lean mass (P < 0.001), and higher fat mass (P < 0.01) than the young reference group. Only a small proportion (3.2%) had absolute sarcopenia (defined by appendicular skeletal muscle mass/height squared) whereas 37% had relative sarcopenia class II (defined by percentage skeletal muscle mass). Scores for TUG and WS indicated relatively poor physical function, yet these measures were not associated with muscle mass or indices of sarcopenia. In multivariate analysis, only hip abductor strength predicted both TUG and WS (both P = 0.01). Hip strength is a more important indicator of physical functioning than lean mass. Measurement of hip strength may therefore be a useful screening tool to detect those at risk of functional decline and requirement for additional care. Further longitudinal studies with a range of other strength measures are warranted.

  6. Degree of disability, pain levels, muscle strength, and electromyographic function in patients with Hansen's disease with common peroneal nerve damage.

    PubMed

    Véras, Larissa Sales Téles; Vale, Rodrigo Gomesde Souza; Mello, Danielli Braga de; Castro, José Adail Fonseca de; Lima, Vicente; Silva, Kelson Nonato Gomes da; Trott, Alexis; Dantas, Estélio Henrique Martin

    2012-06-01

    This study evaluated the degree of disability, pain levels, muscle strength, and electromyographic function (RMS) in individuals with leprosy. We assessed 29 individuals with leprosy showing common peroneal nerve damage and grade 1 or 2 disability who were referred for physiotherapeutic treatment, as well as a control group of 19 healthy participants without leprosy. All subjects underwent analyses of degree of disability, electromyographic tests, voluntary muscle force, and the Visual Analog Pain Scale. McNemar's test found higher levels of grade 2 of disability (Δ = 75.9%; p = 0.0001) among individuals with leprosy. The Mann-Whitney test showed greater pain levels (Δ = 5.0; p = 0.0001) in patients with leprosy who had less extension strength in the right and left extensor hallucis longus muscles (Δ = 1.28, p = 0.0001; Δ = 1.55, p = 0.0001, respectively) and dorsiflexion of the right and left feet (Δ = 1.24, p = 0.0001; Δ = 1.45, p = 0.0001, respectively) than control subjects. The Kruskal-Wallis test showed that the RMS score for dorsiflexion of the right (Δ = 181.66 m·s-2, p = 0.001) and left (Δ = 102.57m·s-2, p = 0.002) feet was lower in patients with leprosy than in control subjects, but intragroup comparisons showed no difference. Leprosy had a negative influence on all of the study variables, indicating the need for immediate physiotherapeutic intervention in individuals with leprosy. This investigation opens perspectives for future studies that analyze leprosy treatment with physical therapeutic intervention.

  7. Thumb postures and physical loads during mobile phone use - a comparison of young adults with and without musculoskeletal symptoms.

    PubMed

    Gustafsson, Ewa; Johnson, Peter W; Hagberg, Mats

    2010-02-01

    The aim of this study was to evaluate thumb postures, thumb movements and muscle activity when using mobile phones for SMS messaging and to determine whether there were differences in these exposures (a) across various mobile phone tasks, (b) between gender and (c) between subjects with and without musculoskeletal symptoms in shoulders and upper extremities. Fifty-six young adults (15 healthy and 41 with musculoskeletal symptoms) performed a series of distinct tasks on a mobile phone. Muscular load in four forearm/hand muscles in the right arm and the right and left trapezius muscles were measured using electromyography (EMG). Thumb movements were registered using an electrogoniometer. The results showed that postures (sitting or standing) and the type of mobile phone task (holding the phone versus texting) affected muscle activity and thumb positions. Females compared to males had higher muscle activity in the extensor digitorum and the abductor pollicis longus when entering SMS messages and tended to have greater thumb abduction, higher thumb movement velocities and fewer pauses in the thumb movements. Subjects with symptoms had lower muscle activity levels in the abductor pollicis longus and tended to have higher thumb movement velocities and fewer pauses in the thumb movements compared to those without symptoms.

  8. [Upright posture of man and morphologic evolution of the musculi extensores digitorum pedis with reference to evolutionary myology. III].

    PubMed

    Kaneff, A

    1986-01-01

    The following anatomical objects were studied with regard to myology during evolution: M. extensor hallucis longus (MEHL), M. extensor digitorum longus (MEDL) with M. peroneus tertius (MP III), M. peroneus brevis (MPB) with M. peroneus digiti V (MPD V), M. extensor hallucis brevis (MEHB), M. extensor digitorum brevis (MEDB), and the Retinaculum musculorum extensorum imum (RMEI). The study was carried out by the preparation of 3 different groups of material. The 1st group consists of lower extremities of humans. The number of the extremities differs for the particular objects between 151 and 358 (see page 381). The 2nd group of material consists of 122 Membra pelvina from Marsupialia, Insectivora, and Primates. Table 1 shows as well the mammalian species as the number of the studied extremities. The extremities of the 1st and 2nd group were preserved in an manner suitable for a macroscopic preparation. The 3rd group of material consists of 71 lower extremities from embryos and fetus. The lower legs and feet were stained either according to the method described by Morel and Bassal with eosin added or according to Weigert. From this material, complete series of cross sections were prepared. Table 2 shows the age of the embryos (VCL [mm]) as well as the number of the studied extremities. It is important that up to the age of 46 mm VCL the difference in the age of the embryos usually amounts from 0.5 to 1.0 mm. This small difference in the age of the embryos and fetus allows a very good follow up of the changes in construction during the organogenesis. The comparison of the 3 different groups shows the following changes for the above mentioned muscles: The M. extensor hallucis longus (MEHL) is a muscle which is not split. The same result applies for its tendon which inserts at the distal phalanx of the hallux. This primitive form of the muscle amounts actually to 51.12% in human beings. In 48.88% of the cases, additional tendons and muscles are formed by the MEHL. Most

  9. New Device for Intrinsic Hand Muscle Strength Measurement: An Alternative to Strain Gauge Handheld Dynamometer.

    PubMed

    Madhanagopal, Jagannathan; Singh, Om Prakash; Mohan, Vikram; Sathasivam, Kathiresan V; Omar, Abdul Hafidz; Abdul Kadir, Mohammed Rafiq

    2017-01-01

    An accurate measurement of intrinsic hand muscle strength (IHMS) is required by clinicians for effective clinical decision-making, diagnosis of certain diseases, and evaluation of the outcome of treatment. In practice, the clinicians use Intrins-o-meter and Rotterdam Intrinsic Hand Myometer for IHMS measurement. These are quite bulky, expensive, and possess poor interobserver reliability (37-52%) and sensitivity. The purpose of this study was to develop an alternative lightweight, accurate, cost-effective force measurement device with a simple electronic circuit and test its suitability for IHMS measurement. The device was constructed with ketjenblack/deproteinized natural rubber sensor, 1-MΩ potential divider, and Arduino Uno through the custom-written software. Then, the device was calibrated and tested for accuracy and repeatability within the force range of finger muscles (100 N). The 95% limit of agreement in accuracy from -1.95 N to 2.06 N for 10 to 100 N applied load and repeatability coefficient of ±1.91 N or 6.2% was achieved. Furthermore, the expenditure for the device construction was around US$ 53. For a practical demonstration, the device was tested among 16 participants for isometric strength measurement of the ulnar abductor and dorsal interossei. The results revealed that the performance of the device was suitable for IHMS measurement.

  10. Short-term effects of thermotherapy for spasticity on tibial nerve F-waves in post-stroke patients.

    PubMed

    Matsumoto, Shuji; Kawahira, Kazumi; Etoh, Seiji; Ikeda, Satoshi; Tanaka, Nobuyuki

    2006-03-01

    Thermotherapy is generally considered appropriate for post-stroke patients with spasticity, yet its acute antispastic effects have not been comprehensively investigated. F-wave parameters have been used to demonstrate changes in motor neuron excitability in spasticity and pharmacological antispastic therapy. The present study aimed to confirm the efficacy of thermotherapy for spasticity by evaluating alterations in F-wave parameters in ten male post-stroke patients with spastic hemiparesis (mean age: 49.0+/-15.0 years) and ten healthy male controls (mean age: 48.7+/-4.4 years). The subjects were immersed in water at 41 degrees C for 10 min. Recordings were made over the abductor hallucis muscle, and antidromic stimulation was performed on the tibial nerve at the ankle. Twenty F-waves were recorded before, immediately after, and 30 min following thermotherapy for each subject. F-wave amplitude and F-wave/M-response ratio were determined. Changes in body temperature and surface-skin temperature were monitored simultaneously. The mean and maximum values of both F-wave parameters were higher on the affected side before thermotherapy. In the post-stroke patients, the mean and maximum values of both parameters were significantly reduced after thermotherapy (P<0.01). Hence, the antispastic effects of thermotherapy were indicated by decreased F-wave parameters. Body temperature was significantly increased both immediately after and 30 min after thermotherapy in all subjects. This appeared to play an important role in decreased spasticity. Surface-skin temperature increased immediately after thermotherapy in both groups and returned to baseline 30 min later. These findings demonstrate that thermotherapy is an effective nonpharmacological antispastic treatment that might facilitate stroke rehabilitation.

  11. Short-term effects of thermotherapy for spasticity on tibial nerve F-waves in post-stroke patients

    NASA Astrophysics Data System (ADS)

    Matsumoto, Shuji; Kawahira, Kazumi; Etoh, Seiji; Ikeda, Satoshi; Tanaka, Nobuyuki

    2006-03-01

    Thermotherapy is generally considered appropriate for post-stroke patients with spasticity, yet its acute antispastic effects have not been comprehensively investigated. F-wave parameters have been used to demonstrate changes in motor neuron excitability in spasticity and pharmacological antispastic therapy. The present study aimed to confirm the efficacy of thermotherapy for spasticity by evaluating alterations in F-wave parameters in ten male post-stroke patients with spastic hemiparesis (mean age: 49.0±15.0 years) and ten healthy male controls (mean age: 48.7±4.4 years). The subjects were immersed in water at 41°C for 10 min. Recordings were made over the abductor hallucis muscle, and antidromic stimulation was performed on the tibial nerve at the ankle. Twenty F-waves were recorded before, immediately after, and 30 min following thermotherapy for each subject. F-wave amplitude and F-wave/M-response ratio were determined. Changes in body temperature and surface-skin temperature were monitored simultaneously. The mean and maximum values of both F-wave parameters were higher on the affected side before thermotherapy. In the post-stroke patients, the mean and maximum values of both parameters were significantly reduced after thermotherapy ( P<0.01). Hence, the antispastic effects of thermotherapy were indicated by decreased F-wave parameters. Body temperature was significantly increased both immediately after and 30 min after thermotherapy in all subjects. This appeared to play an important role in decreased spasticity. Surface-skin temperature increased immediately after thermotherapy in both groups and returned to baseline 30 min later. These findings demonstrate that thermotherapy is an effective nonpharmacological antispastic treatment that might facilitate stroke rehabilitation.

  12. Cross-sectional association between muscle strength and self-reported physical function in 195 hip osteoarthritis patients.

    PubMed

    Hall, Michelle; Wrigley, Tim V; Kasza, Jessica; Dobson, Fiona; Pua, Yong Hao; Metcalf, Ben R; Bennell, Kim L

    2017-02-01

    This study aimed to evaluate associations between strength of selected hip and knee muscles and self-reported physical function, and their clinical relevance, in men and women with hip osteoarthritis (OA). Cross-sectional data from 195 participants with symptomatic hip OA were used. Peak isometric torque of hip extensors, flexors, and abductors, and knee extensors were measured, along with physical function using the Western Ontario and McMaster Universities Osteoarthritis Index questionnaire. Separate linear regressions in men and women were used to determine the association between strength and physical function accounting for age, pain, and radiographic disease severity. Subsequently, magnitudes of strength associated with estimates of minimal clinically important improvement (MCII) in physical function were estimated according to severity of difficulty with physical function. For men, greater strength of the hip extensors, hip flexors and knee extensors were each associated with better physical function. For women, greater muscle strength of all tested muscles were each associated with better physical function. For men and women, increases in muscle strength between 17-32%, 133-223%, and 151-284% may be associated with estimates of MCII in physical function for those with mild, moderate, and severe physical dysfunction, respectively. Greater isometric strength of specific hip and thigh muscle groups may be associated with better self-reported physical function in men and women. In people with mild physical dysfunction, an estimate of MCII in physical function may be associated with attainable increases in strength. However, in patients with more severe dysfunction, greater and perhaps unattainable strength increases may be associated with an estimate of MCII in physical function. Longitudinal studies are required to validate these observations. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effect of neck flexion on somatosensory and motor evoked potentials in Hirayama disease.

    PubMed

    Abraham, A; Gotkine, M; Drory, V E; Blumen, S C

    2013-11-15

    Hirayama disease (HD) is a rare motor disorder mainly affecting young men, characterized by atrophy and weakness of forearm and hand muscles corresponding to a C7-T1 myotome distribution. The weakness is usually unilateral or asymmetric and progression usually stops within several years. The etiology of HD is not well understood. One hypothesis, mainly based on MRI findings, is that the weakness is a consequence of cervical flexion myelopathy. The aim of this study was to explore the function of corticospinal and ascending somatosensory pathways during neck flexion using evoked responses. 15 men with HD and 7 age-matched control male subjects underwent somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP) studies with the neck in neutral position and fully flexed. SSEP studies included electrical stimulation of median and ulnar nerves at the wrist, and tibial nerve at the ankle with recording over the ipsilateral Erb's point, cervical spine, and contralateral sensory cortex. MEP recordings were obtained by magnetic stimulation of the motor cortex and the cervical lower spinal roots; the evoked responses were recorded from the contralateral thenar and abductor hallucis muscles. MEP recordings demonstrated significant lower amplitudes, and slightly prolonged latencies in HD patients on cervical stimulation, compared to control subjects. During neck flexion, MEP studies also demonstrated a statistically significant drop in mean upper limb amplitude on cervical stimulation in HD patients, as well as in control subjects, although to a lesser degree. In contrast, no significant differences were found in SSEP studies in HD patients compared to control subjects, or between neutral and flexed position in these groups. The study shows a negative effect of cervical flexion on MEP amplitudes in HD patients as well as in control subjects, requiring more studies to investigate its significance. Neck flexion did not have an influence on any SSEP parameters in

  14. Plantar fascia anatomy and its relationship with Achilles tendon and paratenon

    PubMed Central

    Stecco, Carla; Corradin, Marco; Macchi, Veronica; Morra, Aldo; Porzionato, Andrea; Biz, Carlo; De Caro, Raffaele

    2013-01-01

    Although the plantar fascia (PF) has been studied quite well from a biomechanical viewpoint, its microscopic properties have been overlooked: nothing is known about its content of elastic fibers, the features of the extracellular matrix or the extent of innervation. From a functional and clinical standpoint, the PF is often correlated with the triceps surae muscle, but the anatomical grounds for this link are not clear. The aim of this work was to focus on the PF macroscopic and microscopic properties and study how Achilles tendon diseases might affect it. Twelve feet from unembalmed human cadavers were dissected to isolate the PF. Specimens from each PF were tested with various histological and immunohistochemical stains. In a second stage, 52 magnetic resonance images (MRI) obtained from patients complaining of aspecific ankle or foot pain were analyzed, dividing the cases into two groups based on the presence or absence of signs of degeneration and/or inflammation of the Achilles tendon. The thickness of PF and paratenon was assessed in the two groups and statistical analyses were conducted. The PF is a tissue firmly joined to plantar muscles and skin. Analyzing its possible connections to the sural structures showed that this fascia is more closely connected to the paratenon of Achilles tendon than to the Achilles tendon, through the periosteum of the heel. The PF extended medially and laterally, continuing into the deep fasciae enveloping the abductor hallucis and abductor digiti minimi muscles, respectively. The PF was rich in hyaluronan, probably produced by fibroblastic-like cells described as ‘fasciacytes’. Nerve endings and Pacini and Ruffini corpuscles were present, particularly in the medial and lateral portions, and on the surface of the muscles, suggesting a role for the PF in the proprioception of foot. In the radiological study, 27 of the 52 MRI showed signs of Achilles tendon inflammation and/or degeneration, and the PF was 3.43 ± 0.48 mm

  15. Plantar fascia anatomy and its relationship with Achilles tendon and paratenon.

    PubMed

    Stecco, Carla; Corradin, Marco; Macchi, Veronica; Morra, Aldo; Porzionato, Andrea; Biz, Carlo; De Caro, Raffaele

    2013-12-01

    Although the plantar fascia (PF) has been studied quite well from a biomechanical viewpoint, its microscopic properties have been overlooked: nothing is known about its content of elastic fibers, the features of the extracellular matrix or the extent of innervation. From a functional and clinical standpoint, the PF is often correlated with the triceps surae muscle, but the anatomical grounds for this link are not clear. The aim of this work was to focus on the PF macroscopic and microscopic properties and study how Achilles tendon diseases might affect it. Twelve feet from unembalmed human cadavers were dissected to isolate the PF. Specimens from each PF were tested with various histological and immunohistochemical stains. In a second stage, 52 magnetic resonance images (MRI) obtained from patients complaining of aspecific ankle or foot pain were analyzed, dividing the cases into two groups based on the presence or absence of signs of degeneration and/or inflammation of the Achilles tendon. The thickness of PF and paratenon was assessed in the two groups and statistical analyses were conducted. The PF is a tissue firmly joined to plantar muscles and skin. Analyzing its possible connections to the sural structures showed that this fascia is more closely connected to the paratenon of Achilles tendon than to the Achilles tendon, through the periosteum of the heel. The PF extended medially and laterally, continuing into the deep fasciae enveloping the abductor hallucis and abductor digiti minimi muscles, respectively. The PF was rich in hyaluronan, probably produced by fibroblastic-like cells described as 'fasciacytes'. Nerve endings and Pacini and Ruffini corpuscles were present, particularly in the medial and lateral portions, and on the surface of the muscles, suggesting a role for the PF in the proprioception of foot. In the radiological study, 27 of the 52 MRI showed signs of Achilles tendon inflammation and/or degeneration, and the PF was 3.43 ± 0.48 mm thick

  16. Relationship between lower limb muscle strength, self-reported pain and function, and frontal plane gait kinematics in knee osteoarthritis.

    PubMed

    Park, Sang-Kyoon; Kobsar, Dylan; Ferber, Reed

    2016-10-01

    The relationship between muscle strength, gait biomechanics, and self-reported physical function and pain for patients with knee osteoarthritis is not well known. The objective of this study was to investigate these relationships in this population. Twenty-four patients with knee osteoarthritis and 24 healthy controls were recruited. Self-reported pain and function, lower-limb maximum isometric force, and frontal plane gait kinematics during treadmill walking were collected on all patients. Between-group differences were assessed for 1) muscle strength and 2) gait biomechanics. Linear regressions were computed within the knee osteoarthritis group to examine the effect of muscle strength on 1) self-reported pain and function, and 2) gait kinematics. Patients with knee osteoarthritis exhibited reduced hip external rotator, knee extensor, and ankle inversion muscle force output compared with healthy controls, as well as increased peak knee adduction angles (effect size=0.770; p=0.013). Hip abductor strength was a significant predictor of function, but not after controlling for covariates. Ankle inversion, hip abduction, and knee flexion strength were significant predictors of peak pelvic drop angle after controlling for covariates (34.4% unique variance explained). Patients with knee osteoarthritis exhibit deficits in muscle strength and while they play an important role in the self-reported function of patients with knee osteoarthritis, the effect of covariates such as sex, age, mass, and height was more important in this relationship. Similar relationships were observed from gait variables, except for peak pelvic drop, where hip, knee, and ankle strength remained important predictors of this variable after controlling for covariates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Poor physical function in elderly women in low-level aged care is related to muscle strength rather than to measures of sarcopenia

    PubMed Central

    Woods, Julie L; Iuliano-Burns, Sandra; King, Susannah J; Strauss, Boyd J; Walker, Karen Z

    2011-01-01

    Purpose: To determine the prevalence of sarcopenia and investigate relationships among body composition, muscle strength, and physical function in elderly women in low-level aged care. Subjects and methods: Sixty-three ambulatory women (mean age 86 years) participated in this cross-sectional study where body composition was determined by dual energy X-ray absorptiometry (DXA); ankle, knee, and hip strength by the Nicholas Manual Muscle Tester; and physical function by ‘timed up and go’ (TUG) and walking speed (WS) over 6 meters. Body composition data from a female reference group (n = 62, mean age 29 years) provided cut-off values for defining sarcopenia. Results: Elderly women had higher body mass index (P < 0.001), lower lean mass (P < 0.001), and higher fat mass (P < 0.01) than the young reference group. Only a small proportion (3.2%) had absolute sarcopenia (defined by appendicular skeletal muscle mass/height squared) whereas 37% had relative sarcopenia class II (defined by percentage skeletal muscle mass). Scores for TUG and WS indicated relatively poor physical function, yet these measures were not associated with muscle mass or indices of sarcopenia. In multivariate analysis, only hip abductor strength predicted both TUG and WS (both P = 0.01). Conclusion: Hip strength is a more important indicator of physical functioning than lean mass. Measurement of hip strength may therefore be a useful screening tool to detect those at risk of functional decline and requirement for additional care. Further longitudinal studies with a range of other strength measures are warranted. PMID:21472094

  18. A hip abduction exercise prior to prolonged standing increased movement while reducing cocontraction and low back pain perception in those initially reporting low back pain.

    PubMed

    Viggiani, Daniel; Callaghan, Jack P

    2016-12-01

    Persons who develop low back pain from prolonged standing exhibit increased muscle cocontraction, decreased movement and increased spine extension. However, it is unclear how these factors relate to pain development. The purpose of this study was to use hip abductor fatigue to manipulate muscle activity patterns and determine its effects on standing behaviours and pain development. Forty participants stood for two hours twice, once following a hip abductor fatigue exercise (fatigue), and once without exercise beforehand (control). Trunk and gluteal muscle activity were measured to determine cocontraction. Lumbo-pelvic angles and force plates were used to assess posture and movement strategies. Visual analog scales differentiated pain (PDs) and non-pain developers (NPDs). PDs reported less low back pain during the fatigue session, with females having earlier reductions of similar scale than males. The fatigue session reduced gluteal and trunk cocontraction and increased centre of pressure movement; male and female PDs had opposing spine posture compensations. Muscle fatigue prior to standing reduced cocontraction, increased movement during standing and reduced the low back pain developed by PDs; the timing of pain reductions depended on spine postures adopted during standing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Closed kinetic chain exercises with or without additional hip strengthening exercises in management of patellofemoral pain syndrome: a randomized controlled trial.

    PubMed

    Ismail, M M; Gamaleldein, M H; Hassa, K A

    2013-10-01

    Patellofemoral pain syndrome (PFPS) is a common musculoskeletal pain condition, especially in females. Decreased hip muscle strength has been implicated as a contributing factor. Isolated open kinetic chain hip abductors and lateral rotators exercises were added by many authors to the rehabilitation program. However, Closed Kinetic Chain (CKC) exercises focusing on hip and knee muscles were not investigated if they can produce similar effect of hip strengthening and decreasing pain without the need of isolated exercises for hip musculature. The aim of the present study was to determine the effect of a CKC exercises program with or without additional hip strengthening exercises on pain and hip abductors and lateral rotators peak torque. Prospective randomized clinical trial. Patients with patellofemoral pain syndrome referred to the outpatient physical therapy clinic of the faculty of physical therapy, cairo university. Thirty two patients who had patellofemoral pain syndrome with age ranged from eighteen to thirty years. Patients were randomly assigned into two groups: CKC group and CKC with hip muscles strengthening exercises as a control (CO) group. Treatment was given 3 times/week, for 6 weeks. Patients were evaluated pre- and post-treatment for their pain severity using VAS, function of knee joint using Kujala questionnaire, hip abductors and external rotators concentric/eccentric peak torque. There were significant improvements in pain, function and hip muscles peak torque in both groups (P<0.05). However, there was no statistically significant difference between groups in hip muscles torque (P<0.05) but pain and function improvements were significantly greater in the CO group (P<0.05). Six weeks CKC program focusing on knee and hip strengthening has similar effect in improving hip muscles torque in patients with PFPS as a CKC exercises with additional hip strengthening exercises. However, adding isolated hip strengthening exercises has the advantage of more

  20. Modified Mostardi approach with ultra-high-molecular-weight polyethylene tape for total hip arthroplasty provides a good rate of union of osteotomized fragments.

    PubMed

    Kuroda, Yutaka; Akiyama, Haruhiko; Nankaku, Manabu; So, Kazutaka; Matsuda, Shuichi

    2015-07-01

    A lateral approach is common in total hip arthroplasty because of the good exposure it provides and its low complication rates. However, a drawback of the procedure is that the abductor mechanism is damaged when the tendinous insertion of the abductor muscle is split. Here, we describe a wafer technique using ultra-high-molecular-weight polyethylene tape for promising reattachment of the abductor mechanism. We retrospectively evaluated 120 consecutive primary total hip arthroplasties performed using a modified Mostardi approach, which involved reattaching the trochanter using either a braided polyester suture (polyester suture group, n = 60) or ultra-high-molecular-weight polyethylene tape (UHMWPE tape group, n = 60). The osteotomized fragment was reattached by inducing bone-to-bone contact using 3-mm-wide tapes that were precisely tied with a double-loop sliding knot in conjunction with a cable gun tensioner. The abductor strength and radiographic union rate were postoperatively assessed at 4 weeks and 6 months, respectively. A statistically significant lower incidence of nonunion and cutout was observed in the UHMWPE group (0 and 5.0 %, respectively) compared to the polyester suture group (8.3 and 15 %, respectively). No differences in abductor strength either preoperatively or at 4 weeks postoperatively were observed between the groups. In radiographically healed patients, abductor strength at 4 weeks post-surgery exceeded preoperative strength. The recovery rate of hip abductor strength was 109.9 ± 34.3 % in union patients and 92.9 ± 23.3 % in nonunion patients, which was statistically significant. The mean Japanese Orthopedic Association hip scores improved from 48.6 to 86.8 in union patients and from 50.3 to 85.9 in nonunion patients at 1 year postoperatively; however, this difference was not significant. The modified Mostardi approach using ultra-high molecular weight polyethylene tape can promote successful union of the osteotomized fragment.

  1. Low back and lower-limb muscle performance in male and female recreational runners with chronic low back pain.

    PubMed

    Cai, Congcong; Kong, Pui W

    2015-06-01

    Controlled laboratory study, cross-sectional. To compare lumbar extensor muscle fatigability, lumbar stabilizing muscle activation, and lower-limb strength between male and female runners with chronic low back pain (LBP) and healthy runners. Little is known about muscle performance in runners with chronic LBP. Eighteen recreational runners with chronic LBP (9 men, 9 women; mean age, 27.8 years) and 18 healthy recreational runners (9 men, 9 women; mean age, 24.6 years) were recruited. The median frequency slopes for bilateral iliocostalis and longissimus were calculated from electromyographic signals captured during a 2-minute Sorensen test. The thickness changes of the transversus abdominis and lumbar multifidus between resting and contraction were measured using an ultrasound scanner. Peak concentric torques of the bilateral hip extensors, hip abductors, and knee extensors were measured using an isokinetic dynamometer at 60°/s. The average values for both sides were used for statistical analysis. When averaged across sexes, peak knee extensor torque was 12.2% lower in the LBP group compared to the healthy group (mean difference, 0.29 Nm/kg; 95% confidence interval: 0.06, 0.53; P = .016). Male runners with chronic LBP exhibited smaller lumbar multifidus thickness changes compared to healthy male runners (mean difference, 0.13 cm; 95% confidence interval: 0.01, 0.25; P = .033). No other group differences were observed. Runners with chronic LBP exhibited diminished knee extensor strength compared to healthy runners. Male runners with chronic LBP demonstrated additional deficits in lumbar multifidus activation.

  2. Impact of Spinal Manipulation on Cortical Drive to Upper and Lower Limb Muscles

    PubMed Central

    Haavik, Heidi; Niazi, Imran Khan; Jochumsen, Mads; Sherwin, Diane; Flavel, Stanley; Türker, Kemal S.

    2016-01-01

    This study investigates whether spinal manipulation leads to changes in motor control by measuring the recruitment pattern of motor units in both an upper and lower limb muscle and to see whether such changes may at least in part occur at the cortical level by recording movement related cortical potential (MRCP) amplitudes. In experiment one, transcranial magnetic stimulation input–output (TMS I/O) curves for an upper limb muscle (abductor pollicus brevis; APB) were recorded, along with F waves before and after either spinal manipulation or a control intervention for the same subjects on two different days. During two separate days, lower limb TMS I/O curves and MRCPs were recorded from tibialis anterior muscle (TA) pre and post spinal manipulation. Dependent measures were compared with repeated measures analysis of variance, with p set at 0.05. Spinal manipulation resulted in a 54.5% ± 93.1% increase in maximum motor evoked potential (MEPmax) for APB and a 44.6% ± 69.6% increase in MEPmax for TA. For the MRCP data following spinal manipulation there were significant difference for amplitude of early bereitschafts-potential (EBP), late bereitschafts potential (LBP) and also for peak negativity (PN). The results of this study show that spinal manipulation leads to changes in cortical excitability, as measured by significantly larger MEPmax for TMS induced input–output curves for both an upper and lower limb muscle, and with larger amplitudes of MRCP component post manipulation. No changes in spinal measures (i.e., F wave amplitudes or persistence) were observed, and no changes were shown following the control condition. These results are consistent with previous findings that have suggested increases in strength following spinal manipulation were due to descending cortical drive and could not be explained by changes at the level of the spinal cord. Spinal manipulation may therefore be indicated for the patients who have lost tonus of their muscle and/or are

  3. Patellofemoral pain and asymmetrical hip rotation.

    PubMed

    Cibulka, Michael T; Threlkeld-Watkins, Julie

    2005-11-01

    Patellofemoral joint problems are the most common overuse injury of the lower extremity, and altered femoral or hip rotation may play a role in patellofemoral pain. The purpose of this case report is to describe the evaluation of and intervention for a patient with asymmetrical hip rotation and patellofemoral pain. The patient was a 15-year-old girl with an 8-month history of anterior right knee pain, without known trauma or injury. Prior to intervention, her score on the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) was 24%. Right hip medial (internal) rotation was less than left hip medial rotation, and manual muscle testing showed weakness of the right hip internal rotator and abductor muscles. The intervention was aimed at increasing right hip medial rotation, improving right hip muscle strength (eg, the muscle force exerted by a muscle or a group of muscles to overcome a resistance), and eliminating anterior right knee pain. After 6 visits (14 days), passive left and right hip medial rotations were symmetrical, and her right hip internal rotator and abductor muscle grades were Good plus. Her WOMAC score was 0%. The patient had right patellofemoral pain and an uncommon pattern of asymmetrical hip rotation, with diminished hip medial rotation and excessive hip lateral (external) rotation on the right side. The patient's outcomes suggest that femoral or hip joint asymmetry may be related to patellofemoral joint pain.

  4. Reliability of new software in measuring cervical multifidus diameters and shoulder muscle strength in a synchronized way; an ultrasonographic study

    PubMed Central

    Rahnama, Leila; Rezasoltani, Asghar; Khalkhali-Zavieh, Minoo; Rahnama, Behnam; Noori-Kochi, Farhang

    2015-01-01

    OBJECTIVES: This study was conducted with the purpose of evaluating the inter-session reliability of new software to measure the diameters of the cervical multifidus muscle (CMM), both at rest and during isometric contractions of the shoulder abductors in subjects with neck pain and in healthy individuals. METHOD: In the present study, the reliability of measuring the diameters of the CMM with the Sonosynch software was evaluated by using 24 participants, including 12 subjects with chronic neck pain and 12 healthy individuals. The anterior-posterior diameter (APD) and the lateral diameter (LD) of the CMM were measured in a resting state and then repeated during isometric contraction of the shoulder abductors. Measurements were taken on separate occasions 3 to 7 days apart in order to determine inter-session reliability. Intraclass correlation coefficient (ICC), standard error of measurement (SEM), and smallest detectable difference (SDD) were used to evaluate the relative and absolute reliability, respectively. RESULTS: The Sonosynch software has shown to be highly reliable in measuring the diameters of the CMM both in healthy subjects and in those with neck pain. The ICCs 95% CI for APD ranged from 0.84 to 0.94 in subjects with neck pain and from 0.86 to 0.94 in healthy subjects. For LD, the ICC 95% CI ranged from 0.64 to 0.95 in subjects with neck pain and from 0.82 to 0.92 in healthy subjects. CONCLUSIONS: Ultrasonographic measurement of the diameters of the CMM using Sonosynch has proved to be reliable especially for APD in healthy subjects as well as subjects with neck pain. PMID:26443975

  5. Hominin Hip Biomechanics: Changing Perspectives.

    PubMed

    Warrener, Anna G

    2017-05-01

    The shape of the human pelvis reflects the unique demands placed on the hip abductor muscles (gluteus medius and gluteus minimus), which stabilize the body in the frontal plane during bipedal locomotion. This morphological shift occurred early in hominin evolution, yet important shape differences between hominin species have led to significant disagreement about abductor function and locomotor capability in these extinct taxa. A static biomechanical model that relies on a close association between skeletal measurements of the pelvis and femur has traditionally been used to reconstruct hip biomechanics in these species. However, experimental biomechanical approaches have highlighted the dynamic nature of mediolateral balance in walking and running, challenging the assumptions of the static hip model. This article reviews traditional approaches for understanding hip abductor function, shows how they have been applied to the fossil hominin record, and discusses new techniques that integrate the dynamic nature of mediolateral balance during human locomotion. Anat Rec, 300:932-945, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Correlation of the Y-Balance Test with Lower-limb Strength of Adult Women

    PubMed Central

    Lee, Dong-Kyu; Kim, Gyoung-Mo; Ha, Sung-Min; Oh, Jae-Seop

    2014-01-01

    [Purpose] The purpose of this study was to elucidate the relationship between Y-balance test (YBT) distance and the lower-limb strength of adult women. [Subjects] Forty women aged 45 to 80 years volunteered for this study. [Methods] The participants were tested for maximal muscle strength of the lower limbs (hip extensors, hip flexors, hip abductors, knee extensors, knee flexors, and ankle dorsiflexors) and YBT distances in the anterior, posteromedial, and posterolateral directions. Pearson’s correlation coefficient was used to quantify the linear relationships between YBT distances and lower-limb strength. [Results] Hip extensor and knee flexor strength were positively correlated with YBT anterior distance. Hip extensor, hip abductor, and knee flexor strength were positively correlated with the YBT posteromedial distance. Hip extensor and knee flexor strength were positively correlated with YBT posterolateral distance. [Conclusion] There was a weak correlation between lower-limb strength (hip extensors, hip abductors, and knee flexors) and dynamic postural control as measured by the YBT. PMID:24926122

  7. Clinical outcomes and frontal plane two-dimensional biomechanics during the 30-second single leg stance test in patients before and after hip abductor tendon reconstructive surgery.

    PubMed

    Huxtable, Rose E; Ackland, Timothy R; Janes, Gregory C; Ebert, Jay R

    2017-07-01

    Hip abductor tendon tears are a common cause of Greater Trochanteric Pain Syndrome. Conservative treatments are often ineffective and surgical reconstruction may be recommended. This study investigated the improvement in clinical outcomes and frontal plane two-dimensional biomechanics during a 30-second single leg stance test, in patients undergoing reconstruction. We hypothesized that clinical scores and pertinent biomechanical variables would significantly improve post-surgery, and these outcomes would be significantly correlated. Twenty-one patients with symptomatic tendon tears underwent reconstruction. Patients were evaluated pre-surgery, and at 6 and 12months post-surgery, using patient-reported outcome measures, assessment of hip abductor strength and six-minute walk capacity. Frontal plane, two-dimensional, biomechanical variables including pelvis-on-femur angle, pelvic drop, trunk lean and lateral pelvic shift, were evaluated throughout a 30-second single leg stance test. ANOVA evaluated outcomes over time, while Pearson's correlations investigated associations between clinical scores, pain, functional and biomechanical outcome variables. While clinical and functional measures significantly improved (P<0.05) over time, no significant group differences (P>0.05) were observed in biomechanical variables from pre- to post-surgery. While five patients displayed a positive Trendelenburg sign pre-surgery, only one was positive post-surgery. Clinical outcomes and biomechanical variables during the single leg stance test were not correlated. Despite improvements in clinical and functional measures over time, biomechanical changes during a weight bearing single leg stance test were not significantly different following tendon repair. Follow up beyond 12months may be required, whereby symptomatic relief may precede functional and biomechanical improvement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Acute effects of muscle vibration on sensorimotor integration.

    PubMed

    Lapole, Thomas; Tindel, Jérémy

    2015-02-05

    Projections from the somesthetic cortex are believed to be involved in the modulation of motor cortical excitability by muscle vibration. The aim of the present pilot study was to analyse the effects of a vibration intervention on short-latency afferent inhibition (SAI), long-latency afferent inhibition (LAI), and afferent facilitation (AF), three intracortical mechanisms reflecting sensorimotor integration. Abductor pollicis brevis (APB) SAI, AF and LAI were investigated on 10 subjects by conditioning test transcranial magnetic stimulation pulses with median nerve electrical stimulation at inter-stimuli intervals in the range 15-25 ms, 25-60 ms, and 100-200 ms, respectively. Test motor evoked potentials (MEPs) were compared to unconditioned MEPs. Measurements were performed before and just after 15 min of vibration applied to the muscle belly of APB at a frequency of 80 Hz. SAI and LAI responses were significantly reduced compared to unconditioned test MEPs (P=0.039 and P<0.001, respectively). AF MEP amplitude was greater than SAI and LAI one (P=0.009 and P=0.004, respectively), but not different from test MEP (P=0.511). There was no significant main effect of vibration (P=0.905). However, 4 subjects were clearly identified as responders. Their mean vibration-induced increase was 324 ± 195% in APB SAI MEP amplitude, and 158 ± 53% and 319 ± 80% in AF and LAI, respectively. Significant differences in SAI, AF and LAI vibration-induced changes were found for responders when compared to non-responders (P=0.019, P=0.038, and P=0.01, respectively). A single session of APB vibration may increase sensorimotor integration, via decreased inhibition and increased facilitation. However, such results were not observed for all subjects, suggesting that other factors (such as attention to the sensory inputs) may have played a role. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. A Wider Pelvis Does Not Increase Locomotor Cost in Humans, with Implications for the Evolution of Childbirth

    PubMed Central

    Warrener, Anna G.; Lewton, Kristi L.; Pontzer, Herman; Lieberman, Daniel E.

    2015-01-01

    The shape of the human female pelvis is thought to reflect an evolutionary trade-off between two competing demands: a pelvis wide enough to permit the birth of large-brained infants, and narrow enough for efficient bipedal locomotion. This trade-off, known as the obstetrical dilemma, is invoked to explain the relative difficulty of human childbirth and differences in locomotor performance between men and women. The basis for the obstetrical dilemma is a standard static biomechanical model that predicts wider pelves in females increase the metabolic cost of locomotion by decreasing the effective mechanical advantage of the hip abductor muscles for pelvic stabilization during the single-leg support phase of walking and running, requiring these muscles to produce more force. Here we experimentally test this model against a more accurate dynamic model of hip abductor mechanics in men and women. The results show that pelvic width does not predict hip abductor mechanics or locomotor cost in either women or men, and that women and men are equally efficient at both walking and running. Since a wider birth canal does not increase a woman’s locomotor cost, and because selection for successful birthing must be strong, other factors affecting maternal pelvic and fetal size should be investigated in order to help explain the prevalence of birth complications caused by a neonate too large to fit through the birth canal. PMID:25760381

  10. [Cleft palate repair with a combined method of mucosal flap pushback of the hard palate].

    PubMed

    Zhao, Z; Li, S; Xu, J

    1996-03-01

    From January of 1992, we applied a combined method to repair cleft palate in 20 patients and received satisfactory results. The method is characterized by pushing back the mucosal flap of the hard palate, a Z-plasty on the nasal mucosa, repositioning the levator muscle to lengthen the palate, circumferential pharyng oplasty using denervated extensor hallucis brevis muscle, without making relaxing incisions and elevating the mucoperiosteal flap, avoiding interference to the greater and lesser palatine vessels and nerves, without relaxing palatal aponeurosis. The advantages of this method are preserving the normal anatomy and function of the palate and nasopharyngeal cavity, improving the function of velopharyngeal closure and minimizing secondary deformities.

  11. Displacement of the hip center of rotation after arthroplasty of Crowe III and IV dysplasia: a radiological and biomechanical study.

    PubMed

    Abolghasemian, Mansour; Samiezadeh, Saeid; Jafari, Davood; Bougherara, Habiba; Gross, Allan E; Ghazavi, Mohammad T

    2013-06-01

    To study the direction and biomechanical consequences of hip center of rotation (HCOR) migration in Crowe type III and VI hips after total hip arthroplasty, post-operative radiographs and CT scans of several unilaterally affected hips were evaluated. Using a three-dimensional model of the human hip, the HCOR was moved in all directions, and joint reaction force (JRF) and abductor muscle force (AMF) were calculated for single-leg stance configuration. Comparing to the normal side, HCOR had displaced medially and inferiorly by an average of 23.4% and 20.8%, respectively, of the normal femoral head diameter. Significant decreases in JRF (13%) and AMF (46.13%) were observed in a presumptive case with that amount of displacement. Isolated inferior displacement had a small, increasing effect on these forces. In Crowe type III and IV hips, the HCOR migrates inferiorly and medially after THA, resulting in a decrease in JRF, AMF, and abductor muscle contraction force. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. 'Bald trochanter' spontaneous rupture of the conjoined tendons of the gluteus medius and minimus presenting as a trochanteric bursitis.

    PubMed

    LaBan, Myron M; Weir, Susan K; Taylor, Ronald S

    2004-10-01

    A 66-yr-old white woman presented with progressive complaints of right lateral hip and thigh pain associated with a disabling limp without an antecedent history of trauma. Physical examination revealed localized pain over the right greater trochanter to palpation. A full pain-free range of motion of the right hip was associated with weakness in the hip abductors. The patient ambulated with a compensated right Trendelenburg gait. Subsequent magnetic resonance imaging demonstrated a trochanteric bursitis and an effusion of the hip and a full-thickness tear of the gluteus medius muscle, with both a disruption and retraction of the tendon of an atretic gluteus minimus muscle. Conjoined tendon pathology of both the gluteus medius and minimus as, revealed by magnetic resonance examination, is probably more frequent than heretofore commonly recognized. In patients presenting with "intractable" complaints of a trochanteric bursitis and an ambulatory limp due to weakness in the hip abductors, imaging studies calling attention to a possible tendon rupture may be diagnostic.

  13. Bone mineral density, muscle strength, and recreational exercise in men

    NASA Technical Reports Server (NTRS)

    Snow-Harter, C.; Whalen, R.; Myburgh, K.; Arnaud, S.; Marcus, R.

    1992-01-01

    Muscle strength has been shown to predict bone mineral density (BMD) in women. We examined this relationship in 50 healthy men who ranged in age from 28 to 51 years (average 38.3 years). BMD of the lumbar spine, proximal femur, whole body, and tibia were measured by dual-energy x-ray absorptiometry (Hologic QDR 1000W). Dynamic strength using one repetition maximum was assessed for the biceps, quadriceps, and back extensors and for the hip abductors, adductors, and flexors. Isometric grip strength was measured by dynamometry. Daily walking mileage was assessed by 9 week stepmeter records and kinematic analysis of video filming. Subjects were designated as exercisers and nonexercisers. Exercisers participated in recreational exercise at least two times each week. The results demonstrated that BMD at all sites correlated with back and biceps strength (p < 0.01 to p = 0.0001). Body weight correlated with tibia and whole-body BMD (p < 0.001); age negatively correlated with Ward's triangle BMD (p < 0.01). In stepwise multiple regressions, back strength was the only independent predictor of spine and femoral neck density (R2 = 0.27). Further, back strength was the most robust predictor of BMD at the trochanter, Ward's triangle, whole body, and tibia, although biceps strength, age, body weight, and leg strength contributed significantly to BMD at these skeletal sites, accounting for 35-52% of the variance in BMD. Exercisers and nonexercisers were similar for walking (3.97 versus 3.94 miles/day), age (37.8 versus 38.5) years, and weight (80.0 versus 77.7 kg). However, BMD and muscle strength were significantly greater in exercises than in nonexercisers.(ABSTRACT TRUNCATED AT 250 WORDS).

  14. Comparative anatomy of the radial sesamoid bone in the polar bear (Ursus maritimus), the brown bear (Ursus arctos) and the giant panda (Ailuropoda melanoleuca).

    PubMed

    Endo, H; Makita, T; Sasaki, M; Arishima, K; Yamamoto, M; Hayashi, Y

    1999-08-01

    Since we have clarified the manipulation mechanism using the radial sesamoid (RS) in the giant panda (Ailuropoda melanoleuca), our aim in this study is to examine the position, shape and function of the RS morphologically, and to observe the attachment to the RS of the M. abductor pollicis longus and the M. opponens pollicis in the other Ursidae species. So, we focused on the carpus and manus of the polar bear (Ursus maritimus) and the brown bear (Ursus arctos) in this study. The RS was tightly articulated to the radial carpal, and could not adduct-abduct independently of the radial carpal. The M. abductor pollicis longus tendon and the M. opponens pollicis belly were attached to the RS, independently. In the polar bear, the deep concave and the flat surface were confirmed in attachment area for these two muscles. The morphological relationship between the RS and the M. abductor pollicis longus and the M. opponens pollicis in the two species of bears were essentially consistent with that in the giant panda. It also demonstrated that the manipulation mechanism of the giant panda has been completely based on the functional relationship between the small RS, and the M. abductor pollicis longus and the M. opponens pollicis in Ursidae species.

  15. The Effect of Visual and Auditory Enhancements on Excitability of the Primary Motor Cortex during Motor Imagery: A Pilot Study

    ERIC Educational Resources Information Center

    Ikeda, Kohei; Higashi, Toshio; Sugawara, Kenichi; Tomori, Kounosuke; Kinoshita, Hiroshi; Kasai, Tatsuya

    2012-01-01

    The effect of visual and auditory enhancements of finger movement on corticospinal excitability during motor imagery (MI) was investigated using the transcranial magnetic stimulation technique. Motor-evoked potentials were elicited from the abductor digit minimi muscle during MI with auditory, visual and, auditory and visual information, and no…

  16. [A cadaveric study of a new capsulorrhaphy for the surgical treatment of hallux valgus].

    PubMed

    Orozco-Villaseñor, S L; Monzó-Planella, M; Martín-Oliva, X; Vázquez-Escamilla, J; Mayagoitia-Vázquez, J J; Frías-Chimal, J E

    2017-01-01

    There are many surgical options for the treatment of hallux valgus in combination with capsular repairs for the correction of hallux valgus. This report corresponds to a descriptive study where a new capsulorrhaphy technique in hallux valgus is proposed. Six dissections were performed on cadavers with hallux valgus deformity using the following surgical technique: medial approach on the first toe longitudinally, dissecting by planes and locating the metatarsophalangeal joint capsule; it was incised longitudinally. The capsule was separated and an exostectomy of the first metatarsal head was done, the edges were regularized and a release of the abductor hallucis was performed. Later, the capsular remnant was resected and repaired. Six cadaveric feet with hallux valgus were studied, five with mild deformity, one with moderate deformity, one foot with the 2nd finger on supraductus. Many capsular repairs have been reported in the literature, including «L», triangular, «V-Y», rectangular, with satisfactory results, along with osteotomy of the first metatarsal. In this report, a new capsular repair was described. Applying this new capsular repair, we reduced the metatarsophalangeal and intermetatarsal angles and achieved a capsular closure with suitable tension; the metatarsophalangeal joint mobility was preserved.

  17. Effect of stretching with and without muscle strengthening exercises for the foot and hip in patients with plantar fasciitis: A randomized controlled single-blind clinical trial.

    PubMed

    Kamonseki, Danilo H; Gonçalves, Geiseane A; Yi, Liu C; Júnior, Império Lombardi

    2016-06-01

    To compare the effect of stretching with and without muscle strengthening of the foot alone or foot and hip on pain and function in patients with plantar fasciitis. Single blind randomized controlled trial. Eighty-three patients with plantar fasciitis were allocated to one of three treatment options for an eight-week period: Foot Exercise Group (FEG - extrinsic and intrinsic foot muscles), Foot and Hip Exercise Group (FHEG - abductor and lateral rotator muscles) and Stretching Alone Exercise Group (SAEG). A visual analog scale for pain, the Foot and Ankle Outcome Score and the Star Excursion Balance Test. All evaluations were performed before treatment and after the last treatment session. Improvements were found in all groups regarding the visual analog scale, the pain, activities of daily living, sports and recreation, quality of life (p < 0.001) and other symptoms (p < 0.01) subscales of the Foot and Ankle Outcome Score as well as posterolateral movement, posteromedial movement and composite score (p < 0.001) on the Star Excursion Balance Test. No time-group interactions were found for any of the variables (p > 0.05). All three exercise protocols analyzed led to improvements at eight-week follow-up in pain, function and dynamic lower limb stability in patients with plantar fasciitis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Pathomorphism of spiral tibial fractures in computed tomography imaging.

    PubMed

    Guzik, Grzegorz

    2011-01-01

    Spiral fractures of the tibia are virtually homogeneous with regard to their pathomorphism. The differences that are seen concern the level of fracture of the fibula, and, to a lesser extent, the level of fracture of the tibia, the length of fracture cleft, and limb shortening following the trauma. While conventional radiographs provide sufficient information about the pathomorphism of fractures, computed tomography can be useful in demonstrating the spatial arrangement of bone fragments and topography of soft tissues surrounding the fracture site. Multiple cross-sectional computed tomography views of spiral fractures of the tibia show the details of the alignment of bone chips at the fracture site, axis of the tibial fracture cleft, and topography of soft tissues that are not visible on standard radiographs. A model of a spiral tibial fracture reveals periosteal stretching with increasing spiral and longitudinal displacement. The cleft in tibial fractures has a spiral shape and its line is invariable. Every spiral fracture of both crural bones results in extensive damage to the periosteum and may damage bellies of the long flexor muscle of toes, flexor hallucis longus as well as the posterior tibial muscle. Computed tomography images of spiral fractures of the tibia show details of damage that are otherwise invisible on standard radiographs. Moreover, CT images provide useful information about the spatial location of the bone chips as well as possible threats to soft tissues that surround the fracture site. Every spiral fracture of the tibia is associated with disruption of the periosteum. 1. Computed tomography images of spiral fractures of the tibia show details of damage otherwise invisible on standard radiographs, 2. The sharp end of the distal tibial chip can damage the tibialis posterior muscle, long flexor muscles of the toes and the flexor hallucis longus, 3. Every spiral fracture of the tibia is associated with disruption of the periosteum.

  19. Physical performance measures that predict faller status in community-dwelling older adults.

    PubMed

    Macrae, P G; Lacourse, M; Moldavon, R

    1992-01-01

    Falls are a leading cause of fatal and nonfatal injuries among the elderly. Accurate determination of risk factors associated with falls in older adults is necessary, not only for individual patient management, but also for the development of fall prevention programs. The purpose of this study was to evaluate the effectiveness of clinical measures, such as the one-legged stance test (OLST), sit-to-stand test (STST), manual muscle tests (MMT), and response speed in predicting faller status in community-dwelling older adults (N = 94, age 60-89 years). The variables assessed were single-leg standing (as measured by OLST), STST, and MMT of 12 different muscle groups (hip flexors, hip abductors, hip adductors, knee flexors, knee extensors, ankle dorsiflexors, ankle plantarflexors, shoulder flexors, shoulder abductors, elbow flexors, elbow extensors, and finger flexors), and speed of response (as measured by a visual hand reaction and movement time task). Of the 94 older adults assessed, 28 (29.7%) reported at least one fall within the previous year. The discriminant analysis revealed that there were six variables that significantly discriminated between fallers and nonfallers. These variables included MMT of the ankle dorsiflexors, knee flexors, hip abductors, and knee extensors, as well as time on the OLST and the STST. The results indicate that simple clinical measures of musculoskeletal function can discriminate fallers from nonfallers in community-dwelling older adults. J Orthop Sports Phys Ther 1992;16(3):123-128.

  20. Influence of consonant voicing characteristics on sentence production in abductor versus adductor spasmodic dysphonia.

    PubMed

    Cannito, Michael P; Chorna, Lesya B; Kahane, Joel C; Dworkin, James P

    2014-05-01

    This study evaluated the hypotheses that sentence production by speakers with adductor (AD) and abductor (AB) spasmodic dysphonia (SD) may be differentially influenced by consonant voicing and manner features, in comparison with healthy, matched, nondysphonic controls. This was a prospective, single blind study, using a between-groups, repeated measures design for the independent variables of perceived voice quality and sentence duration. Sixteen subjects with ADSD and 10 subjects with ABSD, as well as 26 matched healthy controls produced four short, simple sentences that were systematically loaded with voiced or voiceless consonants of either obstruant or continuant manner categories. Experienced voice clinicians, who were "blind" as to speakers' group affixations, used visual analog scaling to judge the overall voice quality of each sentence. Acoustic sentence durations were also measured. Speakers with ABSD or ADSD demonstrated significantly poorer than normal voice quality on all sentences. Speakers with ABSD exhibited longer than normal duration for voiceless consonant sentences. Speakers with ADSD had poorer voice quality for voiced than for voiceless consonant sentences. Speakers with ABSD had longer durations for voiceless than for voiced consonant sentences. The two subtypes of SD exhibit differential performance on the basis of consonant voicing in short, simple sentences; however, each subgroup manifested voicing-related differences on a different variable (voice quality vs sentence duration). Findings suggest different underlying pathophysiological mechanisms for ABSD and ADSD. Findings also support inclusion of short, simple sentences containing voiced or voiceless consonants as part of the diagnostic protocol for SD, with measurement of sentence duration in addition to judments of voice quality severity. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  1. [F-waves in brachial plexus palsy correlated to the prognosis of intrinsic paralysis].

    PubMed

    Nobuta, S

    1995-04-01

    F-waves were examined in 80 nerves of 40 brachial plexus palsies in 37 cases. The electrical responses were evoked by 30 consecutive supramaximal electric stimuli to the median and ulnar nerves at the wrist and elbow, and recorded from the abductor pollicis brevis and abductor digiti minimi muscles. Three parameters in the F-waves were analyzed--conduction velocity, the difference between the maximal and minimal latencies, and the amplitude. In all cases, examinations were done repeatedly to detect changes in these parameters, and the results were compared with the clinical course of the intrinsic muscle function. Twenty-seven cases were investigated before and after explorative surgery. The findings were divided into four groups. The 1st group consisted of 12 nerves in which F-waves were not recorded. The intrinsic muscle power in this group was zero, and did not show any restoration. The 2nd group consisted of 10 nerves in which the conduction velocity was delayed. The muscle power in this group was fair, poor or trace, and there was no change in conduction velocity and muscle function. The 3rd group consisted of 18 nerves in which parameters other than the conduction velocity were abnormal, and the intrinsic muscle power in this group was fair, good or normal. In 7 of these nerves, the large latency difference decreased to normal at the 2nd, 3rd or 4th test with functional recovery in the intrinsic muscle. The high amplitude also changed to normal at the 2nd test with functional recovery. The 4th group consisted of 40 nerves in which all the parameters were normal and had full intrinsic muscle power. In conclusion, an examination of the F-waves was valuable to indicate the prognosis of the intrinsic muscle in the hand in brachial plexus palsy.

  2. Tibial Lengthening: Extraarticular Calcaneotibial Screw to Prevent Ankle Equinus

    PubMed Central

    Belthur, Mohan V.; Paley, Dror; Jindal, Gaurav; Burghardt, Rolf D.; Specht, Stacy C.

    2008-01-01

    Between 2003 and 2006, we used an extraarticular, cannulated, fully threaded posterior calcaneotibial screw to prevent equinus contracture in 10 patients (four male and six female patients, 14 limbs) undergoing tibial lengthening with the intramedullary skeletal kinetic distractor. Diagnoses were fibular hemimelia (two), mesomelic dwarfism (two), posteromedial bow (one), hemihypertrophy (one), poliomyelitis (one), achondroplasia (one), posttraumatic limb-length discrepancy (one), and hypochondroplasia (one). Average age was 24.5 years (range, 15–54 years). The screw (length, typically 125 mm; diameter, 7 mm) was inserted with the ankle in 10° dorsiflexion. Gastrocnemius soleus recession was performed in two patients to achieve 10° dorsiflexion. Average lengthening was 4.9 cm (range, 3–7 cm). Screws were removed after a mean 3.3 months (range, 2–6 months). Preoperative ankle range of motion was regained within 6 months of screw removal. No neurovascular complications were encountered, and no patients experienced equinus contracture. We also conducted a cadaveric study in which one surgeon inserted screws in eight cadaveric legs under image intensifier control. The flexor hallucis longus muscle belly was the closest anatomic structure noted during dissection. The screw should be inserted obliquely from upper lateral edge of the calcaneus and aimed lateral in the tibia to avoid the flexor hallucis longus muscle. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18800215

  3. A comparison of the diagnostic accuracy of MARS MRI and ultrasound of the painful metal-on-metal hip arthroplasty.

    PubMed

    Siddiqui, Imran A; Sabah, Shiraz A; Satchithananda, Keshthra; Lim, Adrian K; Cro, Suzie; Henckel, Johann; Skinner, John A; Hart, Alister J

    2014-08-01

    Metal artifact reduction sequence (MARS) MRI and ultrasound scanning (USS) can both be used to detect pseudotumors, abductor muscle atrophy, and tendinous pathology in patients with painful metal-on-metal (MOM) hip arthroplasty. We wanted to determine the diagnostic test characteristics of USS using MARS MRI as a reference for detection of pseudotumors and muscle atrophy. PatienTS AND METHODS: We performed a prospective cohort study to compare MARS MRI and USS findings in 19 consecutive patients with unilateral MOM hips. Protocolized USS was performed by consultant musculoskeletal radiologists who were blinded regarding clinical details. Reports were independently compared with MARS MRI, the imaging gold standard, to calculate predictive values. The prevalence of pseudotumors on MARS MRI was 68% (95% CI: 43-87) and on USS it was 53% (CI: 29-76). The sensitivity of USS in detecting pseudotumors was 69% (CI 39-91) and the specificity was 83% (CI: 36-97). The sensitivity of detection of abductor muscle atrophy was 47% (CI: 24-71). In addition, joint effusion was detected in 10 cases by USS and none were seen by MARS MRI. We found a poor agreement between USS and MARS MRI. USS was inferior to MARS MRI for detection of pseudotumors and muscle atrophy, but it was superior for detection of joint effusion and tendinous pathologies. MARS MRI is more advantageous than USS for practical reasons, including preoperative planning and longitudinal comparison.

  4. Magnetic resonance imaging phenotyping of Becker muscular dystrophy.

    PubMed

    Faridian-Aragh, Neda; Wagner, Kathryn R; Leung, Doris G; Carrino, John A

    2014-12-01

    There is little information on magnetic resonance imaging (MRI) phenotypes of Becker muscular dystrophy (BMD). This study presents the MRI phenotyping of the upper and lower extremities of a large cohort of BMD patients. In this retrospective study, MRI images of 33 BMD subjects were evaluated for severity, distribution, and symmetry of involvement. Teres major, triceps long head, biceps brachii long head, gluteus maximus, gluteus medius, vasti, adductor longus, adductor magnus, semitendinosus, semimembranosus, and biceps femoris muscles showed the highest severity and frequency of involvement. All analyzed muscles had a high frequency of symmetric involvement. There was significant variability of involvement between muscles within some muscle groups, most notably the arm abductors, posterior arm muscles, medial thigh muscles, and lateral hip rotators. This study showed a distinctive pattern of involvement of extremity muscles in BMD subjects. © 2014 Wiley Periodicals, Inc.

  5. An Integrated Musculoskeletal Countermeasure Battery for Long-Duration Lunar Missions

    NASA Technical Reports Server (NTRS)

    Lang, T. F.; Streeper, T. S.; Cavanagh, P. R.; Saeed, I. H.; Carpenter, R. D.; Frassetto, L. A.; Lee, S. M. C.; Grodsinsky, C. M.; Funk, J.; Hanson, A. M.; hide

    2011-01-01

    During extended periods of skeletal unloading, losses in strength and density of the proximal femur will occur. In long-duration spaceflight, resistive exercise is used to replace the normal loads exerted on the spine and hip. At the present time, there is no conclusive evidence that hip bone loss has been prevented in this scenario. Our group has recently developed and clinically evaluated a multifunctional exercise system, the Combined Countermeasure Device (CCD). The CCD comprises a low-footprint Stuart Platform for lower-body resistance exercise and balance training, and a cardiovascular exercise bicycle. A consideration for resistance exercise was targeting of the hip abductor and adductor muscles, which attach directly at the hip and which should subject it to the largest loads. In our training study, we found that CCD exercise increased hip adductor and abductor strength, and modeling results suggest that this exercise exerts forces on the hip of approx. 4-6 body weights at 1g, compared to forces of approx.2.5 body weight y squatting exercise. In our current study, we hypothesize that abductor and adductor exercise will increase the density and strength of the proximal femur.

  6. A comparison of muscle strength and endurance, exercise capacity, fatigue perception and quality of life in patients with chronic obstructive pulmonary disease and healthy subjects: a cross-sectional study.

    PubMed

    Calik-Kutukcu, Ebru; Savci, Sema; Saglam, Melda; Vardar-Yagli, Naciye; Inal-Ince, Deniz; Arikan, Hulya; Aribas, Zeynep; Ozer, Ozge; Bosnak-Guclu, Meral; Coplu, Lutfi

    2014-01-27

    Chronic obstructive pulmonary disease (COPD) has significant systemic effects that substantially impact quality of life and survival. The purpose of this study was to assess and compare peripheral muscle strength and endurance, exercise capacity, fatigue perception and quality of life between patients with COPD and healthy subjects. Twenty COPD patients (mean FEV1 49.3 ± 19.2%) and 20 healthy subjects were included in the study. Pulmonary function testing and six-minute walk test (6MWT) were performed. Peripheral muscle strength was measured with a hand-held dynamometer, peripheral muscle endurance was evaluated with sit-ups, squats and modified push-ups tests. Fatigue perception was assessed using the Fatigue Impact Scale (FIS) and Fatigue Severity Scale (FSS). General quality of life was determined with the Nottingham Health Profile (NHP), and cough-specific quality of life was evaluated with the Leicester Cough Questionnaire (LCQ). Pulmonary functions, strength of shoulder abductor and flexor muscles, numbers of sit-ups and squats, 6MWT distance and 6MWT% were significantly lower in COPD patients than in healthy subjects (p < 0.05). FIS psychosocial sub-dimension and total scores, NHP scores for all sub-dimensions except pain sub-dimension of the COPD group were significantly higher than those of healthy subjects (p < 0.05). The LCQ physical, psychological and social sub-dimensions and total scores were significantly lower in COPD patients than in healthy subjects (p < 0.05). Pulmonary functions, peripheral muscle strength and endurance, exercise capacity and quality of life were adversely affected in patients with COPD. There are greater effect of fatigue on psychosocial functioning and general daily life activities and effect of cough on the quality of life in patients with COPD. This study supports the idea that COPD patients must be evaluated in a comprehensive manner for planning pulmonary rehabilitation programs.

  7. Co-ingestion of carbohydrate and whey protein increases fasted rates of muscle protein synthesis immediately after resistance exercise in rats

    PubMed Central

    Wang, Wanyi; Ding, Zhenping; Solares, Geoffrey J.; Choi, Soon-Mi; Wang, Bo; Yoon, Aram; Farrar, Roger P.; Ivy, John L.

    2017-01-01

    The objective of the study was to investigate whether co-ingestion of carbohydrate and protein as compared with protein alone augments muscle protein synthesis (MPS) during early exercise recovery. Two months old rats performed 10 repetitions of ladder climbing with 75% of body weight attached to their tails. Placebo (PLA), whey protein (WP), or whey protein plus carbohydrate (CP) was then given to rats by gavage. An additional group of sedentary rats (SED) was used as controls. Blood samples were collected immediately and at either 1 or 2 h after exercise. The flexor hallucis longus muscle was excised at 1 or 2 h post exercise for analysis of MPS and related signaling proteins. MPS was significantly increased by CP compared with PLA (p<0.05), and approached significance compared with WP at 1 h post exercise (p = 0.08). CP yielded a greater phosphorylation of mTOR compared with SED and PLA at 1 h post exercise and SED and WP at 2 h post exercise. CP also increased phosphorylation of p70S6K compared with SED at 1 and 2 h post exercise. 4E-BP1 phosphorylation was inhibited by PLA at 1 h but elevated by WP and CP at 2 h post exercise relative to SED. The phosphorylation of AMPK was elevated by exercise at 1 h post exercise, and this elevated level was sustained only in the WP group at 2 h. The phosphorylation of Akt, GSK3, and eIF2Bε were unchanged by treatments. Plasma insulin was transiently increased by CP at 1 h post exercise. In conclusion, post-exercise CP supplementation increases MPS post exercise relative to PLA and possibly WP, which may have been mediated by greater activation of the mTOR signaling pathway. PMID:28296942

  8. Normative values for volume and fat content of the hip abductor muscles and their dependence on side, age and gender in a healthy population.

    PubMed

    Marcon, Magda; Berger, Nicole; Manoliu, Andrei; Fischer, Michael A; Nanz, Daniel; Andreisek, Gustav; Ulbrich, Erika J

    2016-04-01

    To determine normative values for volume and fat content of the gluteus medius (GMed) and minimus (GMin) muscle in healthy volunteers and to evaluate their dependence on age, gender and leg dominance. The IRB approval was obtained for this study. 80 healthy volunteers (females, 40; males, 40; age range 20-62 years), divided into four age groups, were included. Fat- and water-signal-separated MR images of the pelvis were acquired on a 3.0 T MR with a 3-point mDIXON sequence. Normalized volume and fat-signal fraction (FSF) of the GMed (ViGMed, FSFGMed) and GMin (ViGMin, FSFGMin) muscles were determined. The overall mean volumes (normalized) and FSF ± SD: ViGMed 105.13 ± 16.30 cm(3); ViGMin 30.24 ± 5.15 cm(3); FSFGMed 8.13 ± 1.70 % and FSFGMin 9.89 ± 2.72 %. Comparing different age subgroups within each gender no significant differences were found concerning the volumes and FSFs (except FSFGMin in male subgroup aged 20-29 versus 50-62 years, P = 0.014). Comparing FSFs differences between the two genders, only in 20-29 years subgroup, FSFGMed (P =0.003) and FSFGMin (P =0.002) were greater in female. Volume differences between the two legs were not significant (P > 0.077); FSFGMed and FSFGMin (P =0.005 for both) were significantly lower in the dominant leg in female but not in male group (P = 0.454 for FSFGMed and P = 0.643 for FSFMin). No age dependency was evident for volume normative data for GMed and GMin and normative data for FSF values showed no age- or gender dependency.

  9. Muscle Deoxygenation Causes Muscle Fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  10. Significant and serious dehydration does not affect skeletal muscle cramp threshold frequency.

    PubMed

    Braulick, Kyle W; Miller, Kevin C; Albrecht, Jay M; Tucker, Jared M; Deal, James E

    2013-07-01

    Many clinicians believe that exercise-associated muscle cramps (EAMC) occur because of dehydration. Experimental research supporting this theory is lacking. Mild hypohydration (3% body mass loss) does not alter threshold frequency (TF), a measure of cramp susceptibility, when fatigue and exercise intensity are controlled. No experimental research has examined TF following significant (3-5% body mass loss) or serious hypohydration (>5% body mass loss). Determine if significant or serious hypohydration, with moderate electrolyte losses, decreases TF. A prepost experimental design was used. Dominant limb flexor hallucis brevis cramp TF, cramp electromyography (EMG) amplitude and cramp intensity were measured in 10 euhydrated, unacclimated men (age=24±4 years, height=184.2±4.8 cm, mass=84.8±11.4 kg). Subjects alternated exercising with their non-dominant limb or upper body on a cycle ergometer every 15 min at a moderate intensity until 5% body mass loss or volitional exhaustion (3.8±0.8 h; 39.1±1.5°C; humidity 18.4±3%). Cramp variables were reassessed posthypohydration. Subjects were well hydrated at the study's onset (urine specific gravity=1.005±0.002). They lost 4.7±0.5% of their body mass (3.9±0.5 litres of fluid), 4.0±1.5 g of Na(+) and 0.6±0.1 g K(+) via exercise-induced sweating. Significant (n=5) or serious hypohydration (n=5) did not alter cramp TF (euhydrated=15±5 Hz, hypohydrated=13±6 Hz; F1,9=3.0, p=0.12), cramp intensity (euhydrated= 94.2±41%, hypohydrated=115.9±73%; F1,9=1.9, p=0.2) or cramp EMG amplitude (euhydrated=0.18±0.06 µV, hypohydrated= 0.18±0.09 µV; F1,9=0.1, p=0.79). Significant and serious hypohydration with moderate electrolyte losses does not alter cramp susceptibility when fatigue and exercise intensity are controlled. Neuromuscular control may be more important in the onset of muscle cramps than dehydration or electrolyte losses.

  11. Impact of the Femoral Head Position on Moment Arms in Total Hip Arthroplasty: A Parametric Finite Element Study.

    PubMed

    Rüdiger, Hannes A; Parvex, Valérie; Terrier, Alexandre

    2016-03-01

    Although the importance of accurate femoral reconstruction to achieve a good functional outcome is well documented, quantitative data on the effects of a displacement of the femoral center of rotation on moment arms are scarce. The purpose of this study was to calculate moment arms after nonanatomical femoral reconstruction. Finite element models of 15 patients including the pelvis, the femur, and the gluteal muscles were developed. Moment arms were calculated within the native anatomy and compared to distinct displacement of the femoral center of rotation (leg lengthening of 10 mm, loss of femoral offset of 20%, anteversion ±10°, and fixed anteversion at 15°). Calculations were performed within the range of motion observed during a normal gait cycle. Although with all evaluated displacements of the femoral center of rotation, the abductor moment arm remained positive, some fibers initially contributing to extension became antagonists (flexors) and vice versa. A loss of 20% of femoral offset led to an average decrease of 15% of abductor moment. Femoral lengthening and changes in femoral anteversion (±10°, fixed at 15°) led to minimal changes in abductor moment arms (maximum change of 5%). Native femoral anteversion correlated with the changes in moment arms induced by the 5 variations of reconstruction. Accurate reconstruction of offset is important to maintaining abductor moment arms, while changes of femoral rotation had minimal effects. Patients with larger native femoral anteversion appear to be more susceptible to femoral head displacements. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Results of Treatment of Posterior Ankle Impingement Syndrome and Flexor Hallucis Longus Tendinopathy in Dancers: A Systematic Review.

    PubMed

    Rietveld, A B M Boni; Hagemans, F M T; Haitjema, S; Vissers, T; Nelissen, R G H H

    2018-03-15

    Dancing on pointe and relevé requires extreme plantar flexion of the talo-crural joint. Hence, these positions may lead to posterior ankle impingement syndrome (PAIS). PAIS often coincides with flexor hallucis longus tendinopathy (FHL tendinopathy, or "dancers' tendinitis"). Both injuries can appear in isolation as well. The goal of this review is to evaluate the results and the available levels of evidence of conservative and operative treatment (both open and endoscopic) of PAIS and FHL tendinopathy in dancers. It also offers an insight into the history of dance medical publications on this subject. In October 2016, a systematic search of PubMed, Embase, Cochrane, CINAHL, Web of Science, and (in French) ScienceDirect databases was undertaken. Five hundred and seventy-six publications were found, of which a total of 27 reported the results of operative treatment in 376 ankles (344 open, 32 endoscopic) in 324 dancers. The outcome was good to excellent in most cases (89%). The mean period of return to dance for all surgeries combined (PAIS and FHL tendinopathy, open and endo) was 11 weeks (range: 4 to 36 weeks), and for isolated FHL tendinopathy 16 weeks (range: 8 to 36 weeks). Only six publications reported the results of conservative treatment in 33 ankles (13 PAIS, 20 FHL tendinopathy) of 28 dancers, which does not allow for any evidence-based recommendations. Most studies failed to include dance-specific baseline characteristics, like dance style and level of participation. We concluded that only retrospective studies with levels of evidence four and five show that operative treatment for PAIS and FHL tendinopathy is successful with few complications. Since isolated PAIS, PAIS combined with FHL tendinopathy, and isolated FHL injuries appear to be different pathological entities, more research taking into account demography, dance type, and level of participation is needed to find out in which cases early operative management should be considered or avoided. The

  13. Electromyographic study of hip muscles involved in total hip arthroplasty: Surprising results using the direct anterior minimally invasive approach.

    PubMed

    Bernard, Jules; Razanabola, Fredson; Beldame, Julien; Van Driessche, Stéphane; Brunel, Helena; Poirier, Thomas; Matsoukis, Jean; Billuart, Fabien

    2018-05-16

    The functional and clinical benefit of minimally invasive total hip arthroplasty (THA) is well-known, but the literature reports impaired gait and posture parameters as compared to the general population, especially following use of the anterior minimally invasive approach, which has more severe impact on posture than the posterior approach. The reasons for this impairment, however, remain unexplained. We therefore conducted a surface electromyography (sEMG) study of the hip muscles liable to be affected by arthroplasty surgery: gluteus maximus (GMax), gluteus medius (GMed), tensor fasciae latae (TFL), and sartorius (S). The study addressed the following questions: (1) Is bipodal and unipodal GMed activity greater following anterior THA than in asymptomatic subjects? (2) Is a single manual test sufficient to assess maximal voluntary contraction (MVC) in hip abductors (GMax, GMed, TFL) and flexors (TFL, S)? Bipodal and unipodal GMed activity is greater following anterior THA than in asymptomatic subjects. Eleven patients with anterior THA and 11 asymptomatic subjects, matched for age, gender and body-mass index, were included. Subjects underwent 3 postural tests: bipodal, eyes closed (BEC), unipodal on the operated side (UOP), and unipodal on the non-operated side (UnOP), with unipodal results averaged between both sides in the asymptomatic subjects. Data were recorded from 4-channel EMG and a force plate. EMG test activity was normalized as a ratio of MVC activity. Postural parameters (mean center of pressure displacement speed) were poorer and sEMG activity higher in anterior THA than asymptomatic subjects (p<0.005). On the BEC test, GMax and GMed activity was higher on both operated and non-operated sides than in asymptomatic controls (respectively, 0.15±0.12 and 0.12±0.6 versus 0.07±0.06 for GMax, and 0.13±0.08 and 0.13±0.08 versus 0.08±0.05 for GMed; p<0.05). On unipodal tests, both UOP and UnOP GMed activities were higher than in controls (respectively

  14. Myofascial treatment for patients with acetabular labral tears: a single-subject research design study.

    PubMed

    Cashman, Glenn E; Mortenson, W Ben; Gilbart, Michael K

    2014-08-01

    Single-subject research design using 4 consecutive patients. To assess whether treatment using soft tissue therapy (ART or Active Release Technique), stretching, and strengthening of the hip abductors, hip external rotators, and tensor fascia latae muscles reduces pain and improves self-reported hip function in patients with acetabular labral tears who also have posterolateral hip pain of suspected myofascial origin. Acetabular labral tears cause pain in some but not all patients. Pain commonly presents anteriorly but may also present posteriorly and laterally. The standard of care is arthroscopic repair, which helps many but not all patients. It is possible that these patients may present with extra-articular contributions to their pain, such as myofascial pain, making their clinical presentation more complex. No previous study has assessed soft tissue therapy as a treatment option for this subset of patients. This A-B-A design used repeated measures of the Hip Outcome Score and visual analog scale for pain. Four patients were treated for 6 to 8 weeks, using a combination of soft tissue therapy, stretching, and strengthening for the hip abductors, external rotators, and tensor fascia latae. Data were assessed visually, statistically, and by comparing mean differences before and after intervention. All 4 patients experienced both statistically significant and clinically meaningful improvement in posterolateral hip pain and hip-related function. Three patients also experienced reduction in anteromedial hip pain. Myofascial hip pain may contribute to hip-related symptoms and disability in patients with acetabular labral tears and posterolateral hip pain. These patients may benefit from soft tissue therapy combined with stretching and strengthening exercises targeting the hip abductors, tensor fascia latae, and hip external rotator muscles. Level of Evidence Therapy, level 4.

  15. Changes in hip and ankle range of motion and hip muscle strength in 8–11 year old novice female ballet dancers and controls: a 12 month follow up study

    PubMed Central

    Bennell, K; Khan, K; Matthews, B; Singleton, C

    2001-01-01

    Objectives—To evaluate in a 12 month longitudinal study changes in hip and ankle range of motion and hip muscle strength in young female novice ballet dancers. Methods—Fifty three of the original 77 (69%) female dancers aged 8–11 years and 40 of the original 49 (82%) controls returned for follow up measurements one year later. Supine right active hip external (ER) and internal (IR) rotation were measured using an inclinometer. A turnout protractor was used to assess standing active turnout range. Range of right weight bearing ankle dorsiflexion and calf muscle length were measured in a standing lunge position using an inclinometer. A manual muscle tester was used to assess right hip flexor, IR, ER, abductor and adductor strength. Results—The mean (SD) 12 month change in hip ER did not differ between dancers (11.7 (11.3)°) and controls (8.1 (17.6)°). Dancers gained 12.5 (13.5)° hip IR which was significantly greater than controls (0.5 (13.9)°). Greater IR change was associated with improved IR strength (r = 0.34, p<0.001). Dancers increased total turnout (12.0 (16.7)°) significantly more than controls (2.2 (20.0)°). There was no significant change in ankle dorsiflexion range in either group. Dancers and controls increased in all measures of hip muscle strength (p<0.001) and dancers achieved significantly greater gains in three out of five muscle groups (all, p<0.05). Conclusions—Total hip range of motion increased in both ballet students and controls at this young age. However, ankle dorsiflexion did not, which is probably due to this movement being blocked by bony apposition, rather than soft tissue stretch. This has implications for ballet teachers, as it has long been accepted that this movement could be improved with training. Dancers had greater increases in hip strength after 12 months compared with controls in muscles specific for ballet, suggesting that hip strength can be trained at this young age. Whether these gains are permanent requires

  16. The effects of voluntary control of respiration on the excitability of the primary motor hand area, evaluated by end-tidal CO2 monitoring.

    PubMed

    Ozaki, Isamu; Kurata, Kiyoshi

    2015-11-01

    To investigate the effects of voluntary deep breathing on the excitability of the hand area in the primary motor cortex (M1). We applied near-threshold transcranial magnetic stimulation (TMS) over M1 during the early phase of inspiration or expiration in both normal automatic and voluntary deep, but not "forced", breathing in eight healthy participants at rest. We monitored exhaled CO2 levels continuously, and recorded motor-evoked potentials (MEPs) simultaneously from the abductor pollicis brevis, first dorsal interosseous, abductor digiti minimi, flexor digitorum superficialis, and extensor incidis muscles. We observed that, during voluntary deep breathing, MEP amplitude increased by up to 50% for all recorded muscles and the latency of MEPs decreased by approximately 1ms, compared with normal automatic breathing. We found no difference in the amplitude or latency of MEPs between inspiratory and expiratory phases in either normal automatic or voluntary deep breathing. Voluntary deep breathing at rest facilitates MEPs following TMS over the hand area of M1, and MEP enhancement occurs throughout the full respiratory cycle. The M1 hand region is continuously driven by top-down neural signals over the entire respiratory cycle of voluntary deep breathing. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Triplet firing origin in human motor units: emerging hypotheses.

    PubMed

    Kudina, Lydia P; Andreeva, Regina E

    2016-03-01

    A specific feature of motor unit (MU) firing behaviour is rhythmic trains of single discharges at low rate resulting from the prolonged motoneuronal afterhyperpolarization. However, some MUs exhibit occasional doublets with uniquely short interspike intervals (2.5-20.0 ms). Motoneuronal delayed depolarization is commonly accepted to be doublet underlying mechanism. Apart from doublets, much scarcer MU triple discharges were described, but their mechanisms are disputable. The aim of the present study was to analyse MU triplet firing origin in healthy humans. MU triple discharges occasionally arising during gentle voluntary muscle contractions were compared with those arising in axons during motor nerve stimulation. Firing pattern was analysed in 109 MUs of four muscles: the tibialis anterior, the flexor carpi ulnaris, the abductor pollicis brevis, and the abductor digiti minimi. Our findings present evidence that during voluntary contractions two kinds of MU triplet firing can be occasionally observed: "true" motoneuronal triplets (interspike intervals of 3.6-17.3 ms) with the delayed depolarization as the possible underlying mechanism and axonal triple discharges including the M-response and F-wave. The findings can be useful not only for understanding mechanisms of the very rare motoneuronal firing in healthy humans but also for estimation of pathological triplet firing origin.

  18. A comparison of muscle strength and endurance, exercise capacity, fatigue perception and quality of life in patients with chronic obstructive pulmonary disease and healthy subjects: a cross-sectional study

    PubMed Central

    2014-01-01

    Background Chronic obstructive pulmonary disease (COPD) has significant systemic effects that substantially impact quality of life and survival. The purpose of this study was to assess and compare peripheral muscle strength and endurance, exercise capacity, fatigue perception and quality of life between patients with COPD and healthy subjects. Methods Twenty COPD patients (mean FEV1 49.3 ± 19.2%) and 20 healthy subjects were included in the study. Pulmonary function testing and six-minute walk test (6MWT) were performed. Peripheral muscle strength was measured with a hand-held dynamometer, peripheral muscle endurance was evaluated with sit-ups, squats and modified push-ups tests. Fatigue perception was assessed using the Fatigue Impact Scale (FIS) and Fatigue Severity Scale (FSS). General quality of life was determined with the Nottingham Health Profile (NHP), and cough-specific quality of life was evaluated with the Leicester Cough Questionnaire (LCQ). Results Pulmonary functions, strength of shoulder abductor and flexor muscles, numbers of sit-ups and squats, 6MWT distance and 6MWT% were significantly lower in COPD patients than in healthy subjects (p < 0.05). FIS psychosocial sub-dimension and total scores, NHP scores for all sub-dimensions except pain sub-dimension of the COPD group were significantly higher than those of healthy subjects (p < 0.05). The LCQ physical, psychological and social sub-dimensions and total scores were significantly lower in COPD patients than in healthy subjects (p < 0.05). Conclusions Pulmonary functions, peripheral muscle strength and endurance, exercise capacity and quality of life were adversely affected in patients with COPD. There are greater effect of fatigue on psychosocial functioning and general daily life activities and effect of cough on the quality of life in patients with COPD. This study supports the idea that COPD patients must be evaluated in a comprehensive manner for planning pulmonary

  19. THE CLINICAL, FUNCTIONAL AND BIOMECHANICAL PRESENTATION OF PATIENTS WITH SYMPTOMATIC HIP ABDUCTOR TENDON TEARS.

    PubMed

    Ebert, Jay R; Retheesh, Theertha; Mutreja, Rinky; Janes, Gregory C

    2016-10-01

    Hip abductor tendon (HAT) tearing is commonly implicated in greater trochanteric pain syndrome (GTPS), though limited information exists on the disability associated with this condition and specific presentation of these patients. To describe the clinical, functional and biomechanical presentation of patients with symptomatic HAT tears. Secondary purposes were to investigate the association between these clinical and functional measures, and to compare the pain and disability reported by HAT tear patients to those with end-stage hip osteoarthritis (OA). Prospective case series. One hundred forty-nine consecutive patients with symptomatic HAT tears were evaluated using the Harris (HHS) and Oxford (OHS) Hip Scores, SF-12, an additional series of 10 questions more pertinent to those with lateral hip pain, active hip range of motion (ROM), maximal isometric hip abduction strength, six-minute walk capacity and 30-second single limb stance (SLS) test. The presence of a Trendelenburg sign and pelvis-on-femur (POF) angle were determined via 2D video analysis. An age matched comparative sample of patients with end-stage hip OA was recruited for comparison of all patient-reported outcome scores. Independent t-tests investigated group and limb differences, while analysis of variance evaluated pain changes during the functional tests. Pearson's correlation coefficients investigated the correlation between clinical measures in the HAT tear group. No differences existed in patient demographics and patient-reported outcome scores between HAT tear and hip OA cohorts, apart from significantly worse SF-12 mental subscale scores (p = 0.032) in the HAT tear group. Patients with HAT tears demonstrated significantly lower (p < 0.05) hip abduction strength and active ROM in all planes of motion on their affected limb. Pain significantly increased throughout the 30-second SLS test for the HAT tear group, with 57% of HAT tear patients demonstrating a positive Trendelenburg sign

  20. THE CLINICAL, FUNCTIONAL AND BIOMECHANICAL PRESENTATION OF PATIENTS WITH SYMPTOMATIC HIP ABDUCTOR TENDON TEARS

    PubMed Central

    Retheesh, Theertha; Mutreja, Rinky; Janes, Gregory C.

    2016-01-01

    Background Hip abductor tendon (HAT) tearing is commonly implicated in greater trochanteric pain syndrome (GTPS), though limited information exists on the disability associated with this condition and specific presentation of these patients. Purpose To describe the clinical, functional and biomechanical presentation of patients with symptomatic HAT tears. Secondary purposes were to investigate the association between these clinical and functional measures, and to compare the pain and disability reported by HAT tear patients to those with end-stage hip osteoarthritis (OA). Study Design Prospective case series. Methods One hundred forty-nine consecutive patients with symptomatic HAT tears were evaluated using the Harris (HHS) and Oxford (OHS) Hip Scores, SF-12, an additional series of 10 questions more pertinent to those with lateral hip pain, active hip range of motion (ROM), maximal isometric hip abduction strength, six-minute walk capacity and 30-second single limb stance (SLS) test. The presence of a Trendelenburg sign and pelvis-on-femur (POF) angle were determined via 2D video analysis. An age matched comparative sample of patients with end-stage hip OA was recruited for comparison of all patient-reported outcome scores. Independent t-tests investigated group and limb differences, while analysis of variance evaluated pain changes during the functional tests. Pearson's correlation coefficients investigated the correlation between clinical measures in the HAT tear group. Results No differences existed in patient demographics and patient-reported outcome scores between HAT tear and hip OA cohorts, apart from significantly worse SF-12 mental subscale scores (p = 0.032) in the HAT tear group. Patients with HAT tears demonstrated significantly lower (p < 0.05) hip abduction strength and active ROM in all planes of motion on their affected limb. Pain significantly increased throughout the 30-second SLS test for the HAT tear group, with 57% of HAT tear patients

  1. Exploring the effect of electrical muscle stimulation as a novel treatment of intractable tremor in Parkinson's disease.

    PubMed

    Jitkritsadakul, Onanong; Thanawattano, Chusak; Anan, Chanawat; Bhidayasiri, Roongroj

    2015-11-15

    As the pathophysiology of tremor in Parkinson disease (PD) involves a complex interaction between central and peripheral mechanisms, we propose that modulation of peripheral reflex mechanism by electrical muscle stimulation (EMS) may improve tremor temporarily. To determine the efficacy of EMS as a treatment for drug resistant tremor in PD patients. This study was a single-blinded, quasi-experimental study involving 34 PD patients with classic resting tremor as confirmed by tremor analysis. The EMS was given at 50Hz over the abductor pollicis brevis and interrosseus muscles for 10s with identified tremor parameters before and during stimulation as primary outcomes. Compared to before stimulation, we observed a significant reduction in the root mean square (RMS) of the angular velocity (p<0.001) and peak magnitude (p<0.001) of resting tremor while tremor frequency (p=0.126) and dispersion (p=0.284) remained unchanged during stimulation. The UPDRS tremor score decreased from 10.59 (SD=1.74) before stimulation to 8.85 (SD=2.19) during stimulation (p<0.001). The average percentage of improvement of the peak magnitude and RMS angular velocity was 49.57% (SD=38.89) and 43.81% (SD=33.15) respectively. 70.6% and 61.8% of patients experienced at least 30% tremor attenuation as calculated from the peak magnitude and RMS angular velocity respectively. Our study demonstrated the efficacy of EMS in temporarily improving resting tremor in medically intractable PD patients. Although tremor severity decreased, they were not completely eliminated and continued with a similar frequency, thus demonstrating the role of peripheral reflex mechanism in the modulation of tremor, but not as a generator. EMS should be further explored as a possible therapeutic intervention for tremor in PD. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Sex-specific hip osteoarthritis-associated gait abnormalities: Alterations in dynamic hip abductor function differ in men and women.

    PubMed

    Foucher, Kharma C

    2017-10-01

    Hip osteoarthritis results in abnormal gait mechanics, but it is not known whether abnormalities are the same in men and women. The hypothesis tested was that gait abnormalities are different in men and women with hip osteoarthritis vs. sex-specific asymptomatic groups. 150 subjects with mild through severe radiographic hip osteoarthritis and 159 asymptomatic subjects were identified from an Institutional Review Board-approved motion analysis data repository. Sagittal plane hip range of motion and peak external moments about the hip, in all three planes, averaged from normal speed walking trials, were compared for men and women, with and without hip osteoarthritis using analysis of variance. There were significant sex by group interactions for the external peak hip adduction and external rotation moments (P=0.009-0.045). Although asymptomatic women had peak adduction and external rotation moments that were respectively 12% higher and 23% lower than asymptomatic men (P=0.026-0.037), these variables did not differ between men and women with hip osteoarthritis (P≥0.684). The osteoarthritis vs. asymptomatic group difference in the peak hip adduction moment was 45% larger in women than in men. The osteoarthritis vs. asymptomatic group difference in the peak hip external rotation moment was 55% larger for men than for women (P<0.001). Sex did not influence the association between radiographic severity and gait variables. Normal sex differences in gait were not seen in hip osteoarthritis. Sex-specific adaptations may reflect different aspects of hip abductor function. Men and women with hip osteoarthritis may require different interventions to improve function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Fluctuations in isometric muscle force can be described by one linear projection of low-frequency components of motor unit discharge rates

    PubMed Central

    Negro, Francesco; Holobar, Aleš; Farina, Dario

    2009-01-01

    The aim of the study was to investigate the relation between linear transformations of motor unit discharge rates and muscle force. Intramuscular (wire electrodes) and high-density surface EMG (13 × 5 electrode grid) were recorded from the abductor digiti minimi muscle of eight healthy men during 60 s contractions at 5%, 7.5% and 10% of the maximal force. Spike trains of a total of 222 motor units were identified from the EMG recordings with decomposition algorithms. Principal component analysis of the smoothed motor unit discharge rates indicated that one component (first common component, FCC) described 44.2 ± 7.5% of the total variability of the smoothed discharge rates when computed over the entire contraction interval and 64.3 ± 10.2% of the variability when computed over 5 s intervals. When the FCC was computed from four or more motor units per contraction, it correlated with the force produced by the muscle (62.7 ± 10.1%) by a greater degree (P < 0.001) than the smoothed discharge rates of individual motor units (41.4 ± 7.8%). The correlation between FCC and the force signal increased up to 71.8 ± 13.1% when the duration and the shape of the smoothing window for discharge rates were similar to the average motor unit twitch force. Moreover, the coefficients of variation (CoV) for the force and for the FCC signal were correlated in all subjects (R2 range = 0.14–0.56; P < 0.05) whereas the CoV for force was correlated to the interspike interval variability in only one subject (R2= 0.12; P < 0.05). Similar results were further obtained from measures on the tibialis anterior muscle of an additional eight subjects during contractions at forces up to 20% of the maximal force (e.g. FCC explained 59.8 ± 11.0% of variability of the smoothed discharge rates). In conclusion, one signal captures most of the underlying variability of the low-frequency components of motor unit discharge rates and explains large part of the fluctuations in the motor output during

  4. Fluctuations in isometric muscle force can be described by one linear projection of low-frequency components of motor unit discharge rates.

    PubMed

    Negro, Francesco; Holobar, Ales; Farina, Dario

    2009-12-15

    The aim of the study was to investigate the relation between linear transformations of motor unit discharge rates and muscle force. Intramuscular (wire electrodes) and high-density surface EMG (13 x 5 electrode grid) were recorded from the abductor digiti minimi muscle of eight healthy men during 60 s contractions at 5%, 7.5% and 10% of the maximal force. Spike trains of a total of 222 motor units were identified from the EMG recordings with decomposition algorithms. Principal component analysis of the smoothed motor unit discharge rates indicated that one component (first common component, FCC) described 44.2 +/- 7.5% of the total variability of the smoothed discharge rates when computed over the entire contraction interval and 64.3 +/- 10.2% of the variability when computed over 5 s intervals. When the FCC was computed from four or more motor units per contraction, it correlated with the force produced by the muscle (62.7 +/- 10.1%) by a greater degree (P < 0.001) than the smoothed discharge rates of individual motor units (41.4 +/- 7.8%). The correlation between FCC and the force signal increased up to 71.8 +/- 13.1% when the duration and the shape of the smoothing window for discharge rates were similar to the average motor unit twitch force. Moreover, the coefficients of variation (CoV) for the force and for the FCC signal were correlated in all subjects (R(2) range = 0.14-0.56; P < 0.05) whereas the CoV for force was correlated to the interspike interval variability in only one subject (R(2) = 0.12; P < 0.05). Similar results were further obtained from measures on the tibialis anterior muscle of an additional eight subjects during contractions at forces up to 20% of the maximal force (e.g. FCC explained 59.8 +/- 11.0% of variability of the smoothed discharge rates). In conclusion, one signal captures most of the underlying variability of the low-frequency components of motor unit discharge rates and explains large part of the fluctuations in the motor output

  5. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    PubMed Central

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  6. Ecological divergence and medial cuneiform morphology in gorillas.

    PubMed

    Tocheri, Matthew W; Solhan, Christyna R; Orr, Caley M; Femiani, John; Frohlich, Bruno; Groves, Colin P; Harcourt-Smith, William E; Richmond, Brian G; Shoelson, Brett; Jungers, William L

    2011-02-01

    Gorillas are more closely related to each other than to any other extant primate and are all terrestrial knuckle-walkers, but taxa differ along a gradient of dietary strategies and the frequency of arboreality in their behavioral repertoire. In this study, we test the hypothesis that medial cuneiform morphology falls on a morphocline in gorillas that tracks function related to hallucial abduction ability and relative frequency of arboreality. This morphocline predicts that western gorillas, being the most arboreal, should display a medial cuneiform anatomy that reflects the greatest hallucial abduction ability, followed by grauer gorillas, and then by mountain gorillas. Using a three-dimensional methodology to measure angles between articular surfaces, relative articular and nonarticular areas, and the curvatures of the hallucial articular surface, the functional predictions are partially confirmed in separating western gorillas from both eastern gorillas. Western gorillas are characterized by a more medially oriented, proportionately larger, and more mediolaterally curved hallucial facet than are eastern gorillas. These characteristics follow the predictions for a more prehensile hallux in western gorillas relative to a more stable, plantigrade hallux in eastern gorillas. The characteristics that distinguish eastern gorilla taxa from one another appear unrelated to hallucial abduction ability or frequency of arboreality. In total, this reexamination of medial cuneiform morphology suggests differentiation between eastern and western gorillas due to a longstanding ecological divergence and more recent and possibly non-adaptive differences between eastern taxa. Published by Elsevier Ltd.

  7. Muscle force compensation among synergistic muscles after fatigue of a single muscle.

    PubMed

    Stutzig, Norman; Siebert, Tobias

    2015-08-01

    The aim of this study was to examine control strategies among synergistic muscles after fatigue of a single muscle. It was hypothesized that the compensating mechanism is specific for each fatigued muscle. The soleus (SOL), gastrocnemius lateralis (GL) and medialis (GM) were fatigued in separate sessions on different days. In each experiment, subjects (n = 11) performed maximal voluntary contractions prior to and after fatiguing a single muscle (SOL, GL or GM) while the voluntary muscle activity and torque were measured. Additionally, the maximal single twitch torque of the plantarflexors and the maximal spinal reflex activity (H-reflex) of the SOL, GL and GM were determined. Fatigue was evoked using neuromuscular stimulation. Following fatigue the single twitch torque decreased by -20.1%, -19.5%, and -23.0% when the SOL, GL, or GM, have been fatigued. The maximal voluntary torque did not decrease in any session but the synergistic voluntary muscle activity increased significantly. Moreover, we found no alterations in spinal reflex activity. It is concluded that synergistic muscles compensate each other. Furthermore, it seems that self-compensating mechanism of the fatigued muscles occurred additionally. The force compensation does not depend on the function of the fatigued muscle. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Muscle-Specific Vascular Endothelial Growth Factor Deletion Induces Muscle Capillary Rarefaction Creating Muscle Insulin Resistance

    PubMed Central

    Bonner, Jeffrey S.; Lantier, Louise; Hasenour, Clinton M.; James, Freyja D.; Bracy, Deanna P.; Wasserman, David H.

    2013-01-01

    Muscle insulin resistance is associated with a reduction in vascular endothelial growth factor (VEGF) action and muscle capillary density. We tested the hypothesis that muscle capillary rarefaction critically contributes to the etiology of muscle insulin resistance in chow-fed mice with skeletal and cardiac muscle VEGF deletion (mVEGF−/−) and wild-type littermates (mVEGF+/+) on a C57BL/6 background. The mVEGF−/− mice had an ∼60% and ∼50% decrease in capillaries in skeletal and cardiac muscle, respectively. The mVEGF−/− mice had augmented fasting glucose turnover. Insulin-stimulated whole-body glucose disappearance was blunted in mVEGF−/− mice. The reduced peripheral glucose utilization during insulin stimulation was due to diminished in vivo cardiac and skeletal muscle insulin action and signaling. The decreased insulin-stimulated muscle glucose uptake was independent of defects in insulin action at the myocyte, suggesting that the impairment in insulin-stimulated muscle glucose uptake was due to poor muscle perfusion. The deletion of VEGF in cardiac muscle did not affect cardiac output. These studies emphasize the importance for novel therapeutic approaches that target the vasculature in the treatment of insulin-resistant muscle. PMID:23002035

  9. Skeletal muscle

    USDA-ARS?s Scientific Manuscript database

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  10. Muscle biopsy

    MedlinePlus

    ... muscle ( myopathic changes ) Tissue death of the muscle (necrosis) Disorders that involve inflammation of the blood vessels and affect muscles ( necrotizing vasculitis ) Traumatic muscle damage ...

  11. Intermuscular relationship of human muscle fiber type proportions: slow leg muscles predict slow neck muscles.

    PubMed

    Vikne, Harald; Gundersen, Kristian; Liestøl, Knut; Maelen, Jan; Vøllestad, Nina

    2012-04-01

    Our aim in this study was to examine whether the muscle fiber type proportions in different muscles from the same individual are interrelated. Samples were excised from five skeletal muscles in each of 12 human autopsy cases, and the fiber type proportions were determined by immunohistochemistry. We further examined the intermuscular relationship in fiber type proportion by reanalyzing three previously published data sets involving other muscles. Subjects demonstrated a predominantly high or low proportion of type 1 fibers in all examined muscles, and the overall difference between individuals was statistically significant (P < 0.001). Accordingly, the type 1 fiber proportions in most muscles were positively correlated (median r = 0.42, range -0.03-0.80). Similar results were also obtained from the three reanalyzed data sets. We suggest the existence of an across-muscle phenotype with respect to fiber type proportions; some individuals display generally faster muscles and some individuals slower muscles when compared with others. Copyright © 2011 Wiley Periodicals, Inc.

  12. Hip rate of force development and strength are impaired in females with patellofemoral pain without signs of altered gluteus medius and maximus morphology.

    PubMed

    Nunes, Guilherme S; Barton, Christian John; Serrão, Fábio Viadanna

    2018-02-01

    To compare rate of force development (RFD) and isometric muscle strength of the hip abductors and extensors; and the thickness and the amount of non-contractile tissue of the gluteus medius and maximus between females with and without patellofemoral pain (PFP). Cross-sectional study. Fifty-four physically active females (27 with PFP and 27 healthy individuals) were studied. Hip muscle isometric strength and RFD was evaluated using isokinetic dynamometry. RFD was measured until 30%, 60%, and 90% of the maximal isometric torque (MIT). Hip muscle morphology was evaluated using ultrasonography. The PFP group possessed slower RFD compared to the control group by 33% for hip abductors until 90%MIT (-0.23%/ms, 95%CI -0.44 to -0.02, ES=0.59); by 51% for hip extensors until 30%MIT (-0.42%/ms, 95%CI -0.66 to -0.18, ES=0.97); and by 55% for hip extensors until 60%MIT (-0.36%/ms, 95%CI -0.60 to -0.12, ES=0.81). The PFP group possessed reduced isometric torque compared to the control group by 10% for hip abduction (-16.0Nm/kg×100, 95% CI -30.2 to -1.9, ES=0.61) and by 15% for hip extension (-30.1Nm/kg×100, 95%CI -51.4 to -8.9, ES=0.76). No significant between group differences for the thickness and the amount of non-contractile tissue of the gluteus medius and maximus were identified. Females with PFP have deficits in isometric strength and RFD in hip abduction and extension. RFD deficits are greater than strength deficits which may highlight their potential importance. Hip muscle strength and RFD deficits do not appear to be explained by muscle thickness or proportion of non-contractile tissue of the gluteal musculature as measured by ultrasound. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. An Emotion-Enriched Context Influences the Effect of Action Observation on Cortical Excitability.

    PubMed

    Lagravinese, Giovanna; Bisio, Ambra; De Ferrari, Alessia Raffo; Pelosin, Elisa; Ruggeri, Piero; Bove, Marco; Avanzino, Laura

    2017-01-01

    Observing other people in action activates the "mirror neuron system" that serves for action comprehension and prediction. Recent evidence suggests that this function requires a high level codification triggered not only by components of motor behavior, but also by the environment where the action is embedded. An overlooked component of action perceiving is the one related to the emotional information provided by the context where the observed action takes place. Indeed, whether valence and arousal associated to an emotion might exert an influence on motor system activation during action observation has not been assessed so far. Here, cortico-spinal excitability of the left motor cortex was recorded in three groups of subjects. In the first condition, motor-evoked potential (MEPs) were recorded from a muscle involved in the grasping movement (i.e., abductor pollicis brevis, APB) while participants were watching the same reach-to-grasp movement embedded in contexts with negative emotional valence, but different levels of arousal: sadness (low arousal), and disgust (high arousal) ("Context plus Movement-APB" condition). In the second condition, MEPs were recorded from APB muscle while participants were observing static images representing the contexts in which the movement observed by participants in "Context plus Movement-APB" condition took place ("Context Only-APB" condition). Finally, in the third condition, MEPS were recorded from a muscle not involved in the grasping action, i.e., abductor digiti minimi, ADM, while participants were watching the same videos shown during the "Context plus Movement-APB" condition ("Context plus Movement-ADM" condition). Results showed a greater increase of cortical excitability only during the observation of the hand moving in the context eliciting disgust, and these changes were specific for the muscle involved in the observed action. Our findings show that the emotional context in which a movement occurs modulates motor

  14. Nerve-muscle interactions during flight muscle development in Drosophila

    NASA Technical Reports Server (NTRS)

    Fernandes, J. J.; Keshishian, H.

    1998-01-01

    During Drosophila pupal metamorphosis, the motoneurons and muscles differentiate synchronously, providing an opportunity for extensive intercellular regulation during synapse formation. We examined the existence of such interactions by developmentally delaying or permanently eliminating synaptic partners during the formation of indirect flight muscles. When we experimentally delayed muscle development, we found that although adult-specific primary motoneuron branching still occurred, the higher order (synaptic) branching was suspended until the delayed muscle fibers reached a favourable developmental state. In reciprocal experiments we found that denervation caused a decrease in the myoblast pool. Furthermore, the formation of certain muscle fibers (dorsoventral muscles) was specifically blocked. Exceptions were the adult muscles that use larval muscle fibers as myoblast fusion targets (dorsal longitudinal muscles). However, when these muscles were experimentally compelled to develop without their larval precursors, they showed an absolute dependence on the motoneurons for their formation. These data show that the size of the myoblast pool and early events in fiber formation depend on the presence of the nerve, and that, conversely, peripheral arbor development and synaptogenesis is closely synchronized with the developmental state of the muscle.

  15. Force encoding in muscle spindles during stretch of passive muscle

    PubMed Central

    Blum, Kyle P.; Zytnicki, Daniel

    2017-01-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  16. Force encoding in muscle spindles during stretch of passive muscle.

    PubMed

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  17. Surround Inhibition in the Primary Motor Cortex is Task-specifically Modulated in Non-professional Musicians but not in Healthy Controls During Real Piano Playing.

    PubMed

    Márquez, Gonzalo; Keller, Martin; Lundbye-Jensen, Jesper; Taube, Wolfgang

    2018-03-01

    Research has indicated that at the onset of a finger movement, unwanted contractions of adjacent muscles are prevented by inhibiting the cortical areas representing these muscles. This so-called surround inhibition (SI) seems relevant for the performance of selective finger movements but may not be necessary for tasks involving functional coupling between different finger muscles. Therefore, the present study compared SI between isolated finger movement and complex selective finger movements while playing a three-finger sequence on the piano in nine non-professional musicians and 10 untrained control participants. Transcranial magnetic stimulation (TMS) was applied to the contralateral motor cortex to assess SI in the first dorsal interosseous (FDI), abductor pollicis brevis (APB) and abductor digiti minimi (ADM) during the movement preparation and the late phasic phases. The results reveal stronger SI during the preparation phase than during the phasic phase (30.6% vs. 10.7%; P < 0.05) in the isolated-finger condition in both musicians and controls. Results also show higher SI in musicians during the preparation phase of the isolated finger condition compared to the preparation phase of the three-finger sequence (40% vs. 15%; P < 0.05). However, the control group did not show this task-specific modulation of SI (isolated: 25% vs. sequence: 25%; P > 0.05). Thus, musicians were able to modulate SI between conditions whereas control participants revealed constant levels of SI. Therefore, it may be assumed that long-term training as observed in skilled musicians is accompanied by task-specific effects on SI modulation potentially relating to the ability to perform selective and complex finger movements. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Painful unilateral temporalis muscle enlargement: reactive masticatory muscle hypertrophy.

    PubMed

    Katsetos, Christos D; Bianchi, Michael A; Jaffery, Fizza; Koutzaki, Sirma; Zarella, Mark; Slater, Robert

    2014-06-01

    An instance of isolated unilateral temporalis muscle hypertrophy (reactive masticatory muscle hypertrophy with fiber type 1 predominance) confirmed by muscle biopsy with histochemical fiber typing and image analysis in a 62 year-old man is reported. The patient presented with bruxism and a painful swelling of the temple. Absence of asymmetry or other abnormalities of the craniofacial skeleton was confirmed by magnetic resonance imaging and cephalometric analyses. The patient achieved symptomatic improvement only after undergoing botulinum toxin injections. Muscle biopsy is key in the diagnosis of reactive masticatory muscle hypertrophy and its distinction from masticatory muscle myopathy (hypertrophic branchial myopathy) and other non-reactive causes of painful asymmetric temporalis muscle enlargement.

  19. Evaluation of muscle hyperactivity of the grimacing muscles by unilateral tight eyelid closure and stapedius muscle tone.

    PubMed

    Shiba, Masato; Matsuo, Kiyoshi; Ban, Ryokuya; Nagai, Fumio

    2012-10-01

    Muscle hyperactivity of grimacing muscles, including the orbicularis oculi and corrugator supercilii muscles that cause crow's feet and a glabellar frown line with ageing, cannot be accurately evaluated by surface observation. In 71 subjects, this study investigated the extent to which grimacing muscles are innervated by the bilateral motor cortices, whether the corticofacial projection to the grimacing muscles affects the facially innervated stapedius muscle tone by measuring static compliance of the tympanic membrane, and whether unilateral tight eyelid closure with contraction of the grimacing muscles changes static compliance. Unilateral tight eyelid closure and its subsequent change in the contralateral vertical medial eyebrow position revealed that motor neurons of the orbicularis oculi and corrugator supercilii muscles were innervated by the bilateral motor cortices with weak-to-strong contralateral dominance. The orbicularis oculi, corrugator supercilii, and stapedius muscles innervated by the bilateral motor cortices had increased muscle hyperactivity, which lowered the vertical medial eyebrow position and decreased the static compliance of the tympanic membrane more than those innervated by the unilateral motor cortex. Unilateral enhanced tight eyelid closure with contraction of the grimacing muscles in certain subjects ipsilaterally decreased the static compliance with increased contraction of the stapedius muscle, which probably occurs to immobilise the tympanic membrane and protect the inner ear from loud sound. Evaluation of unilateral tight eyelid closure and the subsequent change in the contralateral vertical medial eyebrow position as well as a measurement of the static compliance for the stapedius muscle tone has revealed muscle hyperactivity of grimacing muscles.

  20. Age-related changes in rat intrinsic laryngeal muscles: analysis of muscle fibers, muscle fiber proteins, and subneural apparatuses.

    PubMed

    Nishida, Naoya; Taguchi, Aki; Motoyoshi, Kazumi; Hyodo, Masamitsu; Gyo, Kiyofumi; Desaki, Junzo

    2013-03-01

    We compared age-related changes in the intrinsic laryngeal muscles of aged and young adult rats by determining the number and diameter of muscle fibers, contractile muscle protein (myosin heavy chain isoforms, MHC) composition, and the morphology of the subneural apparatuses. In aged rats, both the numbers and the diameters of muscle fibers decreased in the cricothyroid (CT) muscle. The number of fibers, but not diameter, decreased in the thyroarytenoid (TA) muscle. In the posterior cricoarytenoid (PCA) muscle, neither the number nor the diameter of fibers changed significantly. Aging was associated with a decrease in type IIB and an increase in type IIA MHC isoform levels in CT muscle, but no such changes were observed in the TA or PCA muscles. Morphological examination of primary synaptic clefts of the subneural apparatus revealed that aging resulted in decreased labyrinthine and increased depression types in only the CT muscle. In the aged group, morphologically immature subneural apparatuses were found infrequently in the CT muscle, indicating continued tissue remodeling. We suggest, therefore, that age-related changes in the intrinsic laryngeal muscles primarily involve the CT muscle, whereas the structures of the TA and PCA muscles may better resist aging processes and therefore are less vulnerable to functional impairment. This may reflect differences in their roles; the CT muscle controls the tone of the vocal folds, while the TA and PCA muscles play an essential role in vital activities such as respiration and swallowing.

  1. Muscle force depends on the amount of transversal muscle loading.

    PubMed

    Siebert, Tobias; Till, Olaf; Stutzig, Norman; Günther, Michael; Blickhan, Reinhard

    2014-06-03

    Skeletal muscles are embedded in an environment of other muscles, connective tissue, and bones, which may transfer transversal forces to the muscle tissue, thereby compressing it. In a recent study we demonstrated that transversal loading of a muscle with 1.3Ncm(-2) reduces maximum isometric force (Fim) and rate of force development by approximately 5% and 25%, respectively. The aim of the present study was to examine the influence of increasing transversal muscle loading on contraction dynamics. Therefore, we performed isometric experiments on rat M. gastrocnemius medialis (n=9) without and with five different transversal loads corresponding to increasing pressures of 1.3Ncm(-2) to 5.3Ncm(-2) at the contact area between muscle and load. Muscle loading was induced by a custom-made plunger which was able to move in transversal direction. Increasing transversal muscle loading resulted in an almost linear decrease in muscle force from 4.8±1.8% to 12.8±2% Fim. Compared to an unloaded isometric contraction, rate of force development decreased from 20.2±4.0% at 1.3Ncm(-2) muscle loading to 34.6±5.7% at 5.3Ncm(-2). Experimental observation of the impact of transversal muscle loading on contraction dynamics may help to better understand muscle tissue properties. Moreover, applying transversal loads to muscles opens a window to analyze three-dimensional muscle force generation. Data presented in this study may be important to develop and validate muscle models which enable simulation of muscle contractions under compression and enlighten the mechanisms behind. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Effect of shoulder girdle strengthening on trunk alignment in patients with stroke.

    PubMed

    Awad, Amina; Shaker, Hussien; Shendy, Wael; Fahmy, Manal

    2015-07-01

    [Purpose] This study investigated the effect of shoulder girdle strengthening, particularly the scapular muscles, on poststroke trunk alignment. [Subjects and Methods] The study involved 30 patients with residual hemiparesis following cerebrovascular stroke. Patient assessment included measuring shoulder muscle peak torque, scapular muscles peak force, spinal lateral deviation angle, and motor functional performance. Patients were randomly allocated either to the control group or the study group and received an 18-session strengthening program including active resisted exercises for shoulder abductors and external rotators in addition to trunk control exercises. The study group received additional strengthening exercises for the scapular muscles. [Results] The two groups showed significant improvement in strength of all shoulder and scapular muscles, with higher improvement in the study group. Similarly, the lateral spinal deviation angles significantly improved in both groups, with significantly higher improvement in the study group. Transfer activity, sitting balance, upper limb functions, and hand movements significantly improved in the two groups, with higher improvement in the latter two functions in the study group. [Conclusion] Strengthening of shoulder girdle muscles, particularly scapular muscles, can significantly contribute to improving the postural alignment of the trunk in patients with poststroke hemiparesis.

  3. Electrophysiological diagnosis and patterns of response to treatment of botulism with neuromuscular respiratory failure.

    PubMed

    Kongsaengdao, Subsai; Samintarapanya, Kanoksri; Rusmeechan, Siwarit; Sithinamsuwan, Pasiri; Tanprawate, Surat

    2009-08-01

    In this study we describe the electrophysiological findings in botulism patients with neuromuscular respiratory failure from major botulism outbreaks in Thailand. High-rate repetitive nerve stimulation testing (RNST) of the abductor digiti minimi (ADM) muscle of 17 botulism patients with neuromuscular respiratory failure showed mostly incremental responses, especially in response to >20-HZ stimulation. In the most severe stage of neuromuscular respiratory failure, RNST failed to elicit a compound muscle action potential (CMAP) of the ADM muscle. In the moderately severe stage, the initial CMAPs were of very low amplitude, and a 3-HZ RNST elicited incremental or decremental responses. A 10-HZ RNST elicited mainly decremental responses. In the early recovery stage, the initial CMAP amplitudes of the ADM muscle improved, with initially low amplitudes and an incremental response to 3- and 10-HZ RNSTs. Improved electrophysiological patterns of the ADM muscle correlated with improved respiratory muscle function. Incremental responses to 20-HZ RNST were most useful for diagnosis. The initial electrodiagnostic sign of recovery following treatment of neuromuscular respiratory failure was an increased CMAP amplitude and an incremental response to 10-20-HZ RNST. Muscle Nerve 40: 271-278, 2009.

  4. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    PubMed

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Fibularis tertius: revisiting the anatomy.

    PubMed

    Rourke, K; Dafydd, H; Parkin, I G

    2007-11-01

    Fibularis tertius (FT) may be used during reconstructive surgery and muscle transposition with retention of function. The muscle was examined in both lower limbs of 41 cadavers. Measurements were made of muscle belly length and width, tendon length and width, and the size of the origin on the fibula. Tendon insertion, nerve and blood supplies were also examined. FT was absent in five (6.1%) lower limbs of three (7.3%) subjects. The size of its origin demonstrated inter- and intra-individual variation. FT arose from the distal fibula and on average occupied (28.4 +/- 9.1)% (mean +/- S. D.) of the total shaft length. In all cases the tendon inserted into the dorsal surface of the shafts of both the fourth and fifth metatarsals. A small nerve branch consistently arose from the deep fibular nerve near the origin of extensor digitorum longus. The nerve ran parallel to the length of this muscle, between it and extensor hallucis longus, before piercing FT. Anatomy textbooks describe FT as inserting into the fifth metatarsal only. This study, supported by data from previous reports, suggests that the "textbook" accounts of FT should be updated to record that most commonly its tendon reaches both the fourth and fifth metatarsals.

  6. Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology

    ERIC Educational Resources Information Center

    Sandage, Mary J.; Smith, Audrey G.

    2017-01-01

    Purpose: Intrinsic laryngeal skeletal muscle bioenergetics, the means by which muscles produce fuel for muscle metabolism, is an understudied aspect of laryngeal physiology with direct implications for voice habilitation and rehabilitation. The purpose of this review is to describe bioenergetic pathways identified in limb skeletal muscle and…

  7. Human Muscle Fiber

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The stimulus of gravity affects RNA production, which helps maintain the strength of human muscles on Earth (top), as seen in this section of muscle fiber taken from an astronaut before spaceflight. Astronauts in orbit and patients on Earth fighting muscle-wasting diseases need countermeasures to prevent muscle atrophy, indicated here with white lipid droplets (bottom) in the muscle sample taken from the same astronaut after spaceflight. Kerneth Baldwin of the University of California, Irvine, is conducting research on how reducing the stimulus of gravity affects production of the RNA that the body uses as a blueprint for making muscle proteins. Muscle proteins are what give muscles their strength, so when the RNA blueprints aren't available for producing new proteins to replace old ones -- a situation that occurs in microgravity -- the muscles atrophy. When the skeletal muscle system is exposed to microgravity during spaceflight, the muscles undergo a reduced mass that translates to a reduction in strength. When this happens, muscle endurance decreases and the muscles are more prone to injury, so individuals could have problems in performing extravehicular activity [space walks] or emergency egress because their bodies are functionally compromised.

  8. Trunk extensor muscle fatigue influences trunk muscle activities.

    PubMed

    Hoseinpoor, Tahere Seyed; Kahrizi, Sedighe; Mobini, Bahram

    2015-01-01

    Trunk muscles fatigue is one of the risk factors in workplaces and daily activities. Loads would be redistributed among active and passive tissues in a non-optimal manner in fatigue conditions. Therefore, a single tissue might be overloaded with minimal loads and as a result the risk of injury would increase. The goal of this paper was to assess the electromyographic response of trunk extensor and abdominal muscles after trunk extensor muscles fatigue induced by cyclic lifting task. This was an experimental study that twenty healthy women participated. For assessing automatic response of trunk extensor and abdominal muscles before and after the fatigue task, electromyographic activities of 6 muscles: thorasic erector spine (TES), lumbar erector spine (LES), lumbar multifidus (LMF), transverse abdominis/ internal oblique (TrA/IO), rectus abdominis (RA) and external oblique (EO) were recorded in standing position with no load and symmetric axial loads equal to 25% of their body weights. Statistical analysis showed that all the abdominal muscles activity decreased with axial loads after performing fatigue task but trunk extensor activity remained constant. Results of the current study indicated that muscle recruitment strategies changed with muscle fatigue and load bearing, therefore risks of tissue injury may increase in fatigue conditions.

  9. Individual muscle control using an exoskeleton robot for muscle function testing.

    PubMed

    Ueda, Jun; Ming, Ding; Krishnamoorthy, Vijaya; Shinohara, Minoru; Ogasawara, Tsukasa

    2010-08-01

    Healthy individuals modulate muscle activation patterns according to their intended movement and external environment. Persons with neurological disorders (e.g., stroke and spinal cord injury), however, have problems in movement control due primarily to their inability to modulate their muscle activation pattern in an appropriate manner. A functionality test at the level of individual muscles that investigates the activity of a muscle of interest on various motor tasks may enable muscle-level force grading. To date there is no extant work that focuses on the application of exoskeleton robots to induce specific muscle activation in a systematic manner. This paper proposes a new method, named "individual muscle-force control" using a wearable robot (an exoskeleton robot, or a power-assisting device) to obtain a wider variety of muscle activity data than standard motor tasks, e.g., pushing a handle by hand. A computational algorithm systematically computes control commands to a wearable robot so that a desired muscle activation pattern for target muscle forces is induced. It also computes an adequate amount and direction of a force that a subject needs to exert against a handle by his/her hand. This individual muscle control method enables users (e.g., therapists) to efficiently conduct neuromuscular function tests on target muscles by arbitrarily inducing muscle activation patterns. This paper presents a basic concept, mathematical formulation, and solution of the individual muscle-force control and its implementation to a muscle control system with an exoskeleton-type robot for upper extremity. Simulation and experimental results in healthy individuals justify the use of an exoskeleton robot for future muscle function testing in terms of the variety of muscle activity data.

  10. Muscle Contraction.

    PubMed

    Sweeney, H Lee; Hammers, David W

    2018-02-01

    SUMMARYMuscle cells are designed to generate force and movement. There are three types of mammalian muscles-skeletal, cardiac, and smooth. Skeletal muscles are attached to bones and move them relative to each other. Cardiac muscle comprises the heart, which pumps blood through the vasculature. Skeletal and cardiac muscles are known as striated muscles, because the filaments of actin and myosin that power their contraction are organized into repeating arrays, called sarcomeres, that have a striated microscopic appearance. Smooth muscle does not contain sarcomeres but uses the contraction of filaments of actin and myosin to constrict blood vessels and move the contents of hollow organs in the body. Here, we review the principal molecular organization of the three types of muscle and their contractile regulation through signaling mechanisms and discuss their major structural and functional similarities that hint at the possible evolutionary relationships between the cell types. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  11. Scapular kinematic and shoulder muscle activity alterations after serratus anterior muscle fatigue.

    PubMed

    Umehara, Jun; Kusano, Ken; Nakamura, Masatoshi; Morishita, Katsuyuki; Nishishita, Satoru; Tanaka, Hiroki; Shimizu, Itsuroh; Ichihashi, Noriaki

    2018-02-23

    Although the serratus anterior muscle has an important role in scapular movement, no study to date has investigated the effect of serratus anterior fatigue on scapular kinematics and shoulder muscle activity. The purpose of this study was to clarify the effect of serratus anterior fatigue on scapular movement and shoulder muscle activity. The study participants were 16 healthy men. Electrical muscle stimulation was used to fatigue the serratus anterior muscle. Shoulder muscle strength and endurance, scapular movement, and muscle activity were measured before and after the fatigue task. The muscle activity of the serratus anterior, upper and lower trapezius, anterior and middle deltoid, and infraspinatus muscles was recorded, and the median power frequency of these muscles was calculated to examine the degree of muscle fatigue. The muscle endurance and median power frequency of the serratus anterior muscle decreased after the fatigue tasks, whereas the muscle activities of the serratus anterior, upper trapezius, and infraspinatus muscles increased. External rotation of the scapula at the shoulder elevated position increased after the fatigue task. Selective serratus anterior fatigue due to electric muscle stimulation decreased the serratus anterior endurance at the flexed shoulder position. Furthermore, the muscle activities of the serratus anterior, upper trapezius, and infraspinatus increased and the scapular external rotation was greater after serratus anterior fatigue. These results suggest that the rotator cuff and scapular muscle compensated to avoid the increase in internal rotation of the scapula caused by the dysfunction of the serratus anterior muscle. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  12. Monitoring respiratory muscles.

    PubMed

    Nava, S

    1998-12-01

    The respiratory system consists of two main parts, the lung and the ventilatory pump. The latter consists of the bony structure of the thorax, the central respiratory controllers, the inspiratory and expiratory muscles, and the nerves innervating these muscles. Respiratory muscle fatigue occurs when respiratory muscle endurance is exceeded. Muscle fatigue is defined as a condition in which there is a reduction in the capacity for developing force and/or velocity of a muscle, resulting from muscle activity, and which is reversible by rest. The respiratory muscles are somewhat difficult to assess and the techniques employed are still relatively primitive. The most important methods of respiratory muscles function assessment are: 1) the vital capacity manoeuvre, which depends on maximum inspiratory and expiratory effort by the muscles and may be a useful indicator of respiratory muscle function; 2) radiological screening has been proposed for the detection of diaphragm paralysis. This may be helpful if the paralysis is unilateral, but bilateral paralysis is difficult to detect; and 3) respiratory muscles strength may be assessed with either voluntary or nonvoluntary manoeuvres. The function of the inspiratory muscles is assessed with 3 voluntary dependent manoeuvres. They are the so called Müller manoeuvre (or maximal inspiratory pressure), the sniff test and the combined test. All these three manoeuvres generate a pressure that is a reflection of complex interactions between several muscle groups since the efforts produce different mechanisms of activity of inspiratory and expiratory muscles. Two techniques are presently employed to assess diaphragm function, not being dependent on the patient's motivation: electrical phrenic nerve stimulation and cervical magnetic stimulation. Since it is less painful, magnetic cervical stimulation overcomes some of the difficulties encountered during electrical stimulation. With these two techniques recordings of diaphragmatic

  13. Activation of respiratory muscles during respiratory muscle training.

    PubMed

    Walterspacher, Stephan; Pietsch, Fabian; Walker, David Johannes; Röcker, Kai; Kabitz, Hans-Joachim

    2018-01-01

    It is unknown which respiratory muscles are mainly activated by respiratory muscle training. This study evaluated Inspiratory Pressure Threshold Loading (IPTL), Inspiratory Flow Resistive Loading (IFRL) and Voluntary Isocapnic Hyperpnea (VIH) with regard to electromyographic (EMG) activation of the sternocleidomastoid muscle (SCM), parasternal muscles (PARA) and the diaphragm (DIA) in randomized order. Surface EMG were analyzed at the end of each training session and normalized using the peak EMG recorded during maximum inspiratory maneuvers (Sniff nasal pressure: SnPna, maximal inspiratory mouth occlusion pressure: PImax). 41 healthy participants were included. Maximal activation was achieved for SCM by SnPna; the PImax activated predominantly PARA and DIA. Activations of SCM and PARA were higher in IPTL and VIH than for IFRL (p<0.05). DIA was higher applying IPTL compared to IFRL or VIH (p<0.05). IPTL, IFRL and VIH differ in activation of inspiratory respiratory muscles. Whereas all methods mainly stimulate accessory respiratory muscles, diaphragm activation was predominant in IPTL. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Muscle cooling delays activation of the muscle metaboreflex in humans.

    PubMed

    Ray, C A; Hume, K M; Gracey, K H; Mahoney, E T

    1997-11-01

    Elevation of muscle temperature has been shown to increase muscle sympathetic nerve activity (MSNA) during isometric exercise in humans. The purpose of the present study was to evaluate the effect of muscle cooling on MSNA responses during exercise. Eight subjects performed ischemic isometric handgrip at 30% of maximal voluntary contraction to fatigue followed by 2 min of postexercise muscle ischemia (PEMI), with and without local cooling of the forearm. Local cooling of the forearm decreased forearm muscle temperature from 31.8 +/- 0.4 to 23.1 +/- 0.8 degrees C (P = 0.001). Time to fatigue was not different during the control and cold trials (156 +/- 11 and 154 +/- 5 s, respectively). Arterial pressures and heart rate were not significantly affected by muscle cooling during exercise, although heart rate tended to be higher during the second minute of exercise (P = 0.053) during muscle cooling. Exercise-induced increases in MSNA were delayed during handgrip with local cooling compared with control. However, MSNA responses at fatigue and PEMI were not different between the two conditions. These findings suggest that muscle cooling delayed the activation of the muscle metaboreflex during ischemic isometric exercise but did not prevent its full expression during fatiguing contraction. These results support the concept that muscle temperature can play a role in the regulation of MSNA during exercise.

  15. Associations of passive muscle stiffness, muscle stretch tolerance, and muscle slack angle with range of motion: individual and sex differences.

    PubMed

    Miyamoto, Naokazu; Hirata, Kosuke; Miyamoto-Mikami, Eri; Yasuda, Osamu; Kanehisa, Hiroaki

    2018-05-29

    Joint range of motion (ROM) is an important parameter for athletic performance and muscular injury risk. Nonetheless, a complete description of muscular factors influencing ROM among individuals and between men and women is lacking. We examined whether passive muscle stiffness (evaluated by angle-specific muscle shear modulus), tolerance to muscle stretch (evaluated by muscle shear modulus at end-ROM), and muscle slack angle of the triceps surae are associated with the individual variability and sex difference in dorsiflexion ROM, using ultrasound shear wave elastography. For men, ROM was negatively correlated to passive muscle stiffness of the medial and lateral gastrocnemius in a tensioned state and positively to tolerance to muscle stretch in the medial gastrocnemius. For women, ROM was only positively correlated to tolerance to muscle stretch in all muscles but not correlated to passive muscle stiffness. Muscle slack angle was not correlated to ROM in men and women. Significant sex differences were observed only for dorsiflexion ROM and passive muscle stiffness in a tensioned state. These findings suggest that muscular factors associated with ROM are different between men and women. Furthermore, the sex difference in dorsiflexion ROM might be attributed partly to that in passive muscle stiffness of plantar flexors.

  16. The muscle spindle as a feedback element in muscle control

    NASA Technical Reports Server (NTRS)

    Andrews, L. T.; Iannone, A. M.; Ewing, D. J.

    1973-01-01

    The muscle spindle, the feedback element in the myotatic (stretch) reflex, is a major contributor to muscular control. Therefore, an accurate description of behavior of the muscle spindle during active contraction of the muscle, as well as during passive stretch, is essential to the understanding of muscle control. Animal experiments were performed in order to obtain the data necessary to model the muscle spindle. Spectral density functions were used to identify a linear approximation of the two types of nerve endings from the spindle. A model reference adaptive control system was used on a hybrid computer to optimize the anatomically defined lumped parameter estimate of the spindle. The derived nonlinear model accurately predicts the behavior of the muscle spindle both during active discharge and during its silent period. This model is used to determine the mechanism employed to control muscle movement.

  17. Tropomyosin 4 defines novel filaments in skeletal muscle associated with muscle remodelling/regeneration in normal and diseased muscle.

    PubMed

    Vlahovich, Nicole; Schevzov, Galina; Nair-Shaliker, Visalini; Ilkovski, Biljana; Artap, Stanley T; Joya, Josephine E; Kee, Anthony J; North, Kathryn N; Gunning, Peter W; Hardeman, Edna C

    2008-01-01

    The organisation of structural proteins in muscle into highly ordered sarcomeres occurs during development, regeneration and focal repair of skeletal muscle fibers. The involvement of cytoskeletal proteins in this process has been documented, with nonmuscle gamma-actin found to play a role in sarcomere assembly during muscle differentiation and also shown to be up-regulated in dystrophic muscles which undergo regeneration and repair [Lloyd et al.,2004; Hanft et al.,2006]. Here, we show that a cytoskeletal tropomyosin (Tm), Tm4, defines actin filaments in two novel compartments in muscle fibers: a Z-line associated cytoskeleton (Z-LAC), similar to a structure we have reported previously [Kee et al.,2004], and longitudinal filaments that are orientated parallel to the sarcomeric apparatus, present during myofiber growth and repair/regeneration. Tm4 is upregulated in paradigms of muscle repair including induced regeneration and focal repair and in muscle diseases with repair/regeneration features, muscular dystrophy and nemaline myopathy. Longitudinal Tm4-defined filaments also are present in diseased muscle. Transition of the Tm4-defined filaments from a longitudinal to a Z-LAC orientation is observed during the course of muscle regeneration. This Tm4-defined cytoskeleton is a marker of growth and repair/regeneration in response to injury, disease state and stress in skeletal muscle.

  18. Synchronous monitoring of muscle dynamics and muscle force for maximum isometric tetanus

    NASA Astrophysics Data System (ADS)

    Zakir Hossain, M.; Grill, Wolfgang

    2010-03-01

    Skeletal muscle is a classic example of a biological soft matter . At both macro and microscopic levels, skeletal muscle is exquisitely oriented for force generation and movement. In addition to the dynamics of contracting and relaxing muscle which can be monitored with ultrasound, variations in the muscle force are also expected to be monitored. To observe such force and sideways expansion variations synchronously for the skeletal muscle a novel detection scheme has been developed. As already introduced for the detection of sideways expansion variations of the muscle, ultrasonic transducers are mounted sideways on opposing positions of the monitored muscle. To detect variations of the muscle force, angle of pull of the monitored muscle has been restricted by the mechanical pull of the sonic force sensor. Under this condition, any variation in the time-of-flight (TOF) of the transmitted ultrasonic signals can be introduced by the variation of the path length between the transducers. The observed variations of the TOF are compared to the signals obtained by ultrasound monitoring for the muscle dynamics. The general behavior of the muscle dynamics and muscle force shows almost an identical concept. Since muscle force also relates the psychological boosting-up effects, the influence of boosting-up on muscle force and muscle dynamics can also be quantified form this study. Length-tension or force-length and force-velocity relationship can also be derived quantitatively with such monitoring.

  19. Muscle tension line concept in nasolabial muscle complex--based on 3-dimensional reconstruction of nasolabial muscle fibers.

    PubMed

    Yin, Ningbei; Wu, Jiajun; Chen, Bo; Song, Tao; Ma, Hengyuan; Zhao, Zhenmin; Wang, Yongqian; Li, Haidong; Wu, Di

    2015-03-01

    Plastic surgeons have attempted various ways to rebuild the aesthetic subunits of the upper lip in patients with cleft lip with less than perfect results in most cases. We propose that repairing the 3 muscle tension line groups in the nasolabial complex will have improved aesthetic results. Micro-computed tomographic scans were performed on the nasolabial tissues of 5 normal aborted fetuses and used to construct a 3-dimensional model to study the nasolabial muscle complex structure. The micro-computed tomographic (CT) scans showed the close relationship and interaction between the muscle fibers of nasalis, pars peripheralis, levator labii superioris, and pars marginalis. Based on the 2-dimensional images obtained from the micro-computed tomographic scans, we suggest the concept of nasolabial muscle complex and muscle tension line group theory: there is a close relationship among the alar part of the nasalis, depressor septi muscle, orbicularis oris muscle, and levator labii superioris alaeque nasi. The tension line groups are 3 tension line structures in the nasolabial muscle complex that interlock with each other at the intersections and maintain the specific shape and aesthetics of the lip and nose.

  20. Sumoylated α-skeletal muscle actin in the skeletal muscle of adult rats.

    PubMed

    Uda, Munehiro; Kawasaki, Hiroaki; Iizumi, Kyoichi; Shigenaga, Ayako; Baba, Takeshi; Naito, Hisashi; Yoshioka, Toshitada; Yamakura, Fumiyuki

    2015-11-01

    Skeletal muscles are composed of two major muscle fiber types: slow-twitch oxidative fibers and fast-twitch glycolytic fibers. The proteins in these muscle fibers are known to differ in their expression, relative abundance, and post-translational modifications. In this study, we report a previously unreported post-translational modification of α-skeletal muscle actin in the skeletal muscles of adult male F344 rats in vivo. Using two-dimensional electrophoresis (2D-PAGE), we first examined the differences in the protein expression profiles between the soleus and plantaris muscles. We found higher intensity protein spots at approximately 60 kDa and pH 9 on 2D-PAGE for the soleus muscle compared with the plantaris muscle. These spots were identified as α-skeletal muscle actin by liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry and western blot analyses. In addition, we found that the 60 kDa α-skeletal muscle actin is modified by small ubiquitin-like modifier (SUMO) 1, using 2D-PAGE and western blot analyses. Furthermore, we found that α-skeletal muscle actin with larger molecular weight was localized in the nuclear and cytosol of the skeletal muscle, but not in the myofibrillar fraction by the combination of subcellular fractionation and western blot analyses. These results suggest that α-skeletal muscle actin is modified by SUMO-1 in the skeletal muscles, localized in nuclear and cytosolic fractions, and the extent of this modification is much higher in the slow muscles than in the fast muscles. This is the first study to show the presence of SUMOylated actin in animal tissues.

  1. Modeling Muscles

    ERIC Educational Resources Information Center

    Goodwyn, Lauren; Salm, Sarah

    2007-01-01

    Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…

  2. Differentiation of original and regenerated skeletal muscle fibres in mdx dystrophic muscles.

    PubMed

    Earnshaw, John C; Kyprianou, Phillip; Krishan, Kewal; Dhoot, Gurtej K

    2002-07-01

    The differentiation of both original muscle fibres and the regenerated muscle fibres following necrosis in mdx muscles was investigated using immunoblotting and immunocytochemical procedures. Before the onset of necrosis, postnatal skeletal muscles in mdx mouse differentiated well with only a slight delay in differentiation indicated by the level of developmental isoforms of troponin T. Prior to the onset of apparent myopathic change, both fast and slow skeletal muscle fibre types in mdx leg muscles also differentiated well when investigated by analysis of specific myosin heavy chain expression pattern. While the original muscle fibres in mdx leg muscles developed well, the differentiation of regenerated myotubes into both slow and distinct fast muscle fibre types, however, was markedly delayed or inhibited as indicated by several clusters of homogeneously staining fibres even at 14 weeks of age. The number of slow myosin heavy chain-positive myotubes amongst the regenerated muscle clusters was quite small even in soleus. This study thus established that while muscle fibres initially develop normally with only a slight delay in the differentiation process, the differentiation of regenerated myotubes in mdx muscles is markedly compromised and consequently delayed.

  3. Relationship of Skeletal Muscle Development and Growth to Breast Muscle Myopathies: A Review.

    PubMed

    Velleman, Sandra G

    2015-12-01

    Selection in meat-type birds has focused on growth rate, muscling, and feed conversion. These strategies have made substantial improvements but have affected muscle structure, repair mechanisms, and meat quality, especially in the breast muscle. The increase in muscle fiber diameters has reduced available connective tissue spacing, reduced blood supply, and altered muscle metabolism in the breast muscle. These changes have increased muscle fiber degeneration and necrosis but have limited muscle repair mechanisms mediated by the adult myoblast (satellite cell) population of cells, likely resulting in the onset of myopathies. This review focuses on muscle growth mechanisms and how changes in the cellular development of the breast muscle may be associated with breast muscle myopathies occurring in meat-type birds.

  4. [Analysis of phonosurgical methods of treatment in spasmodic dysphonia].

    PubMed

    Kosztyła-Hojna, Bożena; Berger, Greta; Zdrojkowski, Maciej

    2017-02-20

    Spasmodic dysphonia (SD) is rather a rare voice disorder. It is most often seen in woman aged 40-50. The disease is caused by deep emotional and neurological disorders of extrapyramidal system. Two main clinical forms of SD are distinguished: about 90% of cases - adductor spasmodic dysphonia and abductor spasmodic dysphonia roughly 10%. Conservative therapy does not always yield sufficient effects. Botulinum toxin - type A injections into the thyroarytenoid muscle are also used in therapy. Though results are temporary and reversible. Among phonosurgical methods thyroplasty type II according to Isshiki and tyroarytenoid muscle myectomy (TAM) should be also mentioned among phonosurgical methods. The aim of the work is to evaluate results of conservative and phonosurgical treatment of SD. Spasmodic dysphonia markedly restricts communication process of patients and public relations both social and occupational.

  5. Analysis of mirror neuron system activation during action observation alone and action observation with motor imagery tasks.

    PubMed

    Cengiz, Bülent; Vurallı, Doğa; Zinnuroğlu, Murat; Bayer, Gözde; Golmohammadzadeh, Hassan; Günendi, Zafer; Turgut, Ali Emre; İrfanoğlu, Bülent; Arıkan, Kutluk Bilge

    2018-02-01

    This study aimed to explore the relationship between action observation (AO)-related corticomotor excitability changes and phases of observed action and to explore the effects of pure AO and concurrent AO and motor imagery (MI) state on corticomotor excitability using TMS. It was also investigated whether the mirror neuron system activity is muscle-specific. Fourteen healthy volunteers were enrolled in the study. EMG recordings were taken from the right first dorsal interosseous and the abductor digiti minimi muscles. There was a significant main effect of TMS timing (after the beginning of the movement, at the beginning of motor output state, and during black screen) on the mean motor evoked potential (MEP) amplitude. Mean MEP amplitudes for AO combined with MI were significantly higher than pure AO session. There was a significant interaction between session and TMS timing. There was no significant main effect of muscle on MEP amplitude. The results indicate that corticomotor excitability is modulated by different phases of the observed motor movement and this modulation is not muscle-specific. Simultaneous MI and AO enhance corticomotor excitability significantly compared to pure AO.

  6. Changes in muscle spindle firing in response to length changes of neighboring muscles

    PubMed Central

    Smilde, Hiltsje A.; Vincent, Jake A.; Baan, Guus C.; Nardelli, Paul; Lodder, Johannes C.; Mansvelder, Huibert D.; Cope, Tim C.

    2016-01-01

    Skeletal muscle force can be transmitted to the skeleton, not only via its tendons of origin and insertion but also through connective tissues linking the muscle belly to surrounding structures. Through such epimuscular myofascial connections, length changes of a muscle may cause length changes within an adjacent muscle and hence, affect muscle spindles. The aim of the present study was to investigate the effects of epimuscular myofascial forces on feedback from muscle spindles in triceps surae muscles of the rat. We hypothesized that within an intact muscle compartment, muscle spindles not only signal length changes of the muscle in which they are located but can also sense length changes that occur as a result of changing the length of synergistic muscles. Action potentials from single afferents were measured intra-axonally in response to ramp-hold release (RHR) stretches of an agonistic muscle at different lengths of its synergist, as well as in response to synergist RHRs. A decrease in force threshold was found for both soleus (SO) and lateral gastrocnemius afferents, along with an increase in length threshold for SO afferents. In addition, muscle spindle firing could be evoked by RHRs of the synergistic muscle. We conclude that muscle spindles not only signal length changes of the muscle in which they are located but also local length changes that occur as a result of changing the length and relative position of synergistic muscles. PMID:27075540

  7. Muscle enzyme release does not predict muscle function impairment after triathlon.

    PubMed

    Margaritis, I; Tessier, F; Verdera, F; Bermon, S; Marconnet, P

    1999-06-01

    We sought to determine the effects of a long distance triathlon (4 km swim, 120 km bike-ride, and 30 km run) on the four-day kinetics of the biochemical markers of muscle damage, and whether they were quantitatively linked with muscle function impairment and soreness. Data were collected from 2 days before until 4 days after the completion of the race. Twelve triathletes performed the triathlon and five did not. Maximal voluntary contraction (MVC), muscle soreness (DOMS) and total serum CK, CK-MB, LDH, AST and ALT activities were assessed. Significant changes after triathlon completion were found for all muscle damage indirect markers over time (p < 0.0001). MVC of the knee extensor and flexor muscles decreased over time (p < 0.05). There is disparity in the time point at which peak values where reached for DOMS, MVC and enzyme leakage. There is no correlation between serum enzyme leakage, DOMS and MVC impairment which occur after triathlon. Long distance triathlon race caused muscle damage, but extent, as well as muscle recovery cannot be evaluated by the magnitude of changes in serum enzyme activities. Muscle enzyme release cannot be used to predict the magnitude of the muscle function impairment caused by muscle damage.

  8. Transcranial magnetic stimulation in the semi-quantitative, pre-operative assessment of patients undergoing spinal deformity surgery.

    PubMed

    Glasby, Michael A; Tsirikos, Athanasios I; Henderson, Lindsay; Horsburgh, Gillian; Jordan, Brian; Michaelson, Ciara; Adams, Christopher I; Garrido, Enrique

    2017-08-01

    To compare measurements of motor evoked potential latency stimulated either magnetically (mMEP) or electrically (eMEP) and central motor conduction time (CMCT) made pre-operatively in conscious patients using transcranial and intra-operatively using electrical cortical stimulation before and after successful instrumentation for the treatment of adolescent idiopathic scoliosis. A group initially of 51 patients with adolescent idiopathic scoliosis aged 12-19 years was evaluated pre-operatively in the outpatients' department with transcranial magnetic stimulation. The neurophysiological data were then compared statistically with intra-operative responses elicited by transcranial electrical stimulation both before and after successful surgical intervention. MEPs were measured as the cortically evoked compound action potentials of Abductor hallucis. Minimum F-waves were measured using conventional nerve conduction methods and the lower motor neuron conduction time was calculated and this was subtracted from MEP latency to give CMCT. Pre-operative testing was well tolerated in our paediatric/adolescent patients. No neurological injury occurred in any patient in this series. There was no significant difference in the values of mMEP and eMEP latencies seen pre-operatively in conscious patients and intra-operatively in patients under anaesthetic. The calculated quantities mCMCT and eCMCT showed the same statistical correlations as the quantities mMEP and eMEP latency. The congruency of mMEP and eMEP and of mCMCT and eCMCT suggests that these measurements may be used comparatively and semi-quantitatively for the comparison of pre-, intra-, and post-operative spinal cord function in spinal deformity surgery.

  9. Tarsal decancellation in the residual resistant arthrogrypotic clubfoot.

    PubMed

    Iskandar, Hany N; Bishay, Sherif N G; Sharaf-El-Deen, Hatem Abdel-Rahman; El-Sayed, Mohsen Mohammad

    2011-03-01

    Conservatism is well recognised after Ponseti's method in the treatment of congenital clubfoot; however, this is not applicable to the complex and resistant arthrogrypotic type which challenges the orthopaedic surgeon. In such a type, soft tissue releases as fasciotomies, tenotomies, and capsulotomies, as well as osteotomies are insufficient, and joint fusions are not suitable in early childhood before skeletal maturity. Twelve children (15 feet) with residual resistant arthrogrypotic clubfeet between 2-4 years of age were analysed clinically and radiographically. All of the cases received previous conservative Ponseti's method of treatment in their first year of life followed by soft tissue releases (plantar fasciotomy, posteromedial tenotomies, capsulotomies, and abductor hallucis release) before treatment by decancellation of the cuboid, the calcaneus, and the talus to correct the complex adduction, supination, varus, and equinus deformities. Pre-operative measurements of certain foot angles were compared with their corresponding postoperative values. A grading scheme for evaluation of the results using a point scoring system was suggested to evaluate accurately both clinical and radiographic results after a follow-up period of an average of 3.3 years. Six feet (40%) had excellent, six (40%) good, three (20%) fair, and no poor (0%) outcome. There was no major complication. There was significant improvement in the result (P > 0.035). Tarsal decancellation is particularly applicable to residual resistant clubfoot such as the arthrogrypotic type at an early age. It shortens the period of disability, improves the range of foot motion, and does not interfere with the foot bone growth.

  10. Muscle Strength and Muscle Mass in Older Patients during Hospitalization: The EMPOWER Study

    PubMed Central

    Van Ancum, Jeanine M.; Scheerman, Kira; Pierik, Vincent D.; Numans, Siger T.; Verlaan, Sjors; Smeenk, Hanne E.; Slee-Valentijn, Monique; Kruizinga, Roeliene C.; Meskers, Carel G.M.; Maier, Andrea B.

    2017-01-01

    Background Low muscle strength and muscle mass are associated with an increased length of hospital stay and higher mortality rate in inpatients. To what extent hospitalization affects muscle strength and muscle mass is unclear. Objective We aimed to assess muscle strength and muscle mass at admission and during hospitalization in older patients and its relation with being at risk of geriatric conditions. Methods The EMPOWER study included patients aged 70 years and older, admitted to 4 wards of the VU University Medical Center in the Netherlands between April and December 2015. At admission, patients were screened for being at risk of 4 geriatric conditions: delirium, falls, malnutrition, and functional disability. At admission and at discharge, muscle strength and muscle mass were assessed. Results A total of 373 patients (mean age, standard deviation [SD]: 79.6, 6.38 years) were included at admission, and 224 patients (mean age, SD: 80.1, 6.32 years) at discharge. At admission, lower muscle strength in both female and male patients and low muscle mass in male patients were associated with being at risk of a higher cumulative number of geriatric conditions. Muscle strength increased during hospitalization, but no change in muscle mass was observed. Changes in muscle measures were not associated with being at risk of geriatric conditions. Discussion Older patients with lower muscle strength and muscle mass at admission were at risk of a higher cumulative number of geriatric conditions. However, being at risk of geriatric conditions did not forecast further decrease in muscle strength and muscle mass during hospitalization PMID:28817825

  11. Muscle Strength and Muscle Mass in Older Patients during Hospitalization: The EMPOWER Study.

    PubMed

    Van Ancum, Jeanine M; Scheerman, Kira; Pierik, Vincent D; Numans, Siger T; Verlaan, Sjors; Smeenk, Hanne E; Slee-Valentijn, Monique; Kruizinga, Roeliene C; Meskers, Carel G M; Maier, Andrea B

    2017-01-01

    Low muscle strength and muscle mass are associated with an increased length of hospital stay and higher mortality rate in inpatients. To what extent hospitalization affects muscle strength and muscle mass is unclear. We aimed to assess muscle strength and muscle mass at admission and during hospitalization in older patients and its relation with being at risk of geriatric conditions. The EMPOWER study included patients aged 70 years and older, admitted to 4 wards of the VU University Medical Center in the Netherlands between April and December 2015. At admission, patients were screened for being at risk of 4 geriatric conditions: delirium, falls, malnutrition, and functional disability. At admission and at discharge, muscle strength and muscle mass were assessed. A total of 373 patients (mean age, standard deviation [SD]: 79.6, 6.38 years) were included at admission, and 224 patients (mean age, SD: 80.1, 6.32 years) at discharge. At admission, lower muscle strength in both female and male patients and low muscle mass in male patients were associated with being at risk of a higher cumulative number of geriatric conditions. Muscle strength increased during hospitalization, but no change in muscle mass was observed. Changes in muscle measures were not associated with being at risk of geriatric conditions. Older patients with lower muscle strength and muscle mass at admission were at risk of a higher cumulative number of geriatric conditions. However, being at risk of geriatric conditions did not forecast further decrease in muscle strength and muscle mass during hospitalization. © 2017 The Author(s) Published by S. Karger AG, Basel.

  12. Building Muscles, Keeping Muscles: Protein Turnover During Space Flight

    NASA Technical Reports Server (NTRS)

    Ferrando, Arny; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    As we age we lose muscle mass and strength. The problem is a matter of use it or lose it and more - a fact to which any active senior can attest. An imbalance in the natural cycle of protein turnover may be a contributing factor to decreased muscle mass. But the answer is not so simple, since aging is associated with changes in hormones, activity levels, nutrition, and often, disease. The human body constantly uses amino acids to build muscle protein, which then breaks down and must be replaced. When protein turnover gets out of balance, so that more protein breaks down than the body can replace, the result is muscle loss. This is not just the bane of aging, however. Severely burned people may have difficulty building new muscle long after the burned skin has been repaired. Answers to why we lose muscle mass and strength - and how doctors can fix it - may come from space. Astronauts usually eat a well-balanced diet and maintain an exercise routine to stay in top health. During long-duration flight, they exercise regularly to reduce the muscle loss that results from being in a near-weightless environment. Despite these precautions, astronauts lose muscle mass and strength during most missions. They quickly recover after returning to Earth - this is a temporary condition in an otherwise healthy population. Members of the STS-107 crew are participating in a study of the effects of space flight, hormone levels, and stress on protein turnover. When we are under stress, the body responds with a change in hormone levels. Researchers hypothesize that this stress-induced change in hormones along with the near-weightlessness might result in the body synthesizing less muscle protein, causing muscles to lose their strength and size. Astronauts, who must perform numerous duties in a confined and unusual environment, experience some stress during their flight, making them excellent candidates for testing the researchers' hypothesis.

  13. Muscle oxygenation and fascicle length during passive muscle stretching in ballet-trained subjects.

    PubMed

    Otsuki, A; Fujita, E; Ikegawa, S; Kuno-Mizumura, M

    2011-07-01

    Muscle stretching transiently decreases muscle-blood flow corresponding to a muscle extension. It may disturb a balance between muscular oxygen demand and oxygen supply to muscles and reduce muscle oxygenation. However, muscle-stretching training may improve blood circulatory condition, resulting in the maintained muscle oxygenation during muscle stretching. The aim of this study was to investigate changes in muscle-blood volume (tHb) and tissue oxygenation index (TOI) during muscle stretching determined by using near-infrared spectroscopy (NIRS) in ballet-trained (BT) and untrained (C) subjects. 11 BT women who regularly perform muscle stretching and 11 C women participated in this study. Fascicle lengths, tHb and TOI in the tibialis anterior muscle were measured during passive plantar flexion from ankle joint angles of 120° (baseline) to 140°, 160°, the maximal comfortable position without pain (CP), and the maximal position (MP). At 160°, the % fascicle-length change from baseline was significantly lower in the BT than the C group, however, for the changes in tHb and TOI the significant interaction effect between the 2 groups was not detected. On the other hand, although the increases in the fascicle length from baseline to CP and MP were greater in BT than C, the tHb and TOI reductions were comparable between groups. We concluded that it appears that BT can extend their muscles without excessive reduction in muscle-blood volume and muscle oxygenation at relatively same but absolutely greater muscle-stretching levels than C. The attenuation in these indices during high-level muscle stretching may be associated with the repetitive muscle stretching of long-term ballet training. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Laryngeal reinnervation for bilateral vocal fold paralysis.

    PubMed

    Marina, Mat B; Marie, Jean-Paul; Birchall, Martin A

    2011-12-01

    Laryngeal reinnervation for bilateral vocal fold paralysis (BVFP) patients is a promising technique to achieve good airway, although preserving a good quality of voice. On the other hand, the procedure is not simple. This review explores the recent literature on surgical technique and factors that may contribute to the success. Research and literature in this area are limited due to variability and complexity of the nerve supply. The posterior cricoarytenoid (PCA) muscle also receives nerve supply from the interarytenoid branch. Transection of this nerve at the point between interarytenoid and PCA branch may prevent aberrant reinnervation of adductor nerve axons to the PCA muscle. A varying degree of regeneration of injured recurrent laryngeal nerves (RLN) in humans of more than 6 months confirms subclinical reinnervation, which may prevent denervation-induced atrophy. Several promising surgical techniques have been developed for bilateral selective reinnervation for BVFP patients. This involves reinnervation of the abductor and adductor laryngeal muscles. The surgical technique aims at reinnervating the PCA muscle to trigger abduction during the respiratory cycle and preservation of good voice by strengthening the adductor muscles as well as prevention of laryngeal synkinesis.

  15. Structure-function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    NASA Astrophysics Data System (ADS)

    Gao, Yingxin; Zhang, Chi

    2015-03-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure-function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure-function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure-function relationship of skeletal muscle into the design of artificial muscle.

  16. Aerobic metabolism on muscle contraction in porcine gastric smooth muscle.

    PubMed

    Kanda, Hidenori; Kaneda, Takeharu; Nagai, Yuta; Urakawa, Norimoto; Shimizu, Kazumasa

    2018-05-18

    Exposure to chronic hypoxic conditions causes various gastric diseases, including gastric ulcers. It has been suggested that gastric smooth muscle contraction is associated with aerobic metabolism. However, there are no reports on the association between gastric smooth muscle contraction and aerobic metabolism, and we have investigated this association in the present study. High K + - and carbachol (CCh)-induced muscle contractions involved increasing O 2 consumption. Aeration with N 2 (hypoxia) and NaCN significantly decreased high K + - and CCh-induced muscle contraction and O 2 consumption. In addition, hypoxia and NaCN significantly decreased creatine phosphate (PCr) contents in the presence of high K + . Moreover, decrease in CCh-induced contraction and O 2 consumption was greater than that of high K + . Our results suggest that hypoxia and NaCN inhibit high K + - and CCh-induced contractions in gastric fundus smooth muscles by decreasing O 2 consumption and intracellular PCr content. However, the inhibition of CCh-induced muscle contraction was greater than that of high K + -induced muscle contraction.

  17. The tymbal muscle of cicada has flight muscle-type sarcomeric architecture and protein expression.

    PubMed

    Iwamoto, Hiroyuki

    2017-01-01

    The structural and biochemical features of the tymbal (sound-producing) muscle of cicadas were studied by X-ray diffraction and immunochemistry, and compared with those of flight muscles from the same species. The X-ray diffraction pattern of the tymbal muscle was very similar to that of the dorsal longitudinal flight muscle: In both muscles, the 2,0 equatorial reflection is much more intense than the 1,1, indicating that both muscles have a flight muscle-type myofilament lattice. In rigor, the first myosin/actin layer line reflection was finely lattice-sampled, indicating that the contractile proteins are arranged with a crystalline regularity as in asynchronous flight muscles. In contrast, the diffraction pattern from the tensor muscle, which modulates the sound by stressing the tymbal, did not show signs of such high regularity or flight muscle-type filament lattice. Electrophoretic patterns of myofibrillar proteins were also very similar in the tymbal muscle and flight muscles, but distinct from those from the tensor or leg muscles. The antibody raised against the flight muscle-specific troponin-I isoform reacted with an 80-kDa band from both tymbal and flight muscles, but with none of the bands from the tensor or leg muscles. The close similarities of the structural and biochemical profiles between the tymbal and the flight muscles suggest the possibility that a set of flight muscle-specific proteins is diverted to the tymbal muscle to meet its demand for fast, repetitive contractions.

  18. An allometric analysis of the number of muscle spindles in mammalian skeletal muscles

    PubMed Central

    Banks, R W

    2006-01-01

    An allometric analysis of the number of muscle spindles in relation to muscle mass in mammalian (mouse, rat, guinea-pig, cat, human) skeletal muscles is presented. It is shown that the trend to increasing number as muscle mass increases follows an isometric (length) relationship between species, whereas within a species, at least for the only essentially complete sample (human), the number of spindles scales, on average, with the square root rather than the cube root of muscle mass. An attempt is made to reconcile these apparently discrepant relationships. Use of the widely accepted spindle density (number of spindles g−1 of muscle) as a measure of relative abundance of spindles in different muscles is shown to be grossly misleading. It is replaced with the residuals of the linear regression of ln spindle number against ln muscle mass. Significant differences in relative spindle abundance as measured by residuals were found between regional groups of muscles: the greatest abundance is in axial muscles, including those concerned with head position, whereas the least is in muscles of the shoulder girdle. No differences were found between large and small muscles operating in parallel, or between antigravity and non-antigravity muscles. For proximal vs. distal muscles, spindles were significantly less abundant in the hand than the arm, but there was no difference between the foot and the leg. PMID:16761976

  19. Multiple variations of the tendons of the anatomical snuffbox.

    PubMed

    Thwin, San San; Fazlin, Fazlin; Than, Myo

    2014-01-01

    Multiple tendons of the abductor pollicis longus (APL) in the anatomical snuffbox of the wrist can lead to the development of de Quervain's syndrome, which is caused by stenosing tenosynovitis. A cadaveric study was performed to establish the variations present in the tendons of the anatomical snuffbox in a Malaysian population, in the hope that this knowledge would aid clinical investigation and surgical treatment of de Quervain's tenosynovitis. Routine dissection of ten upper limbs was performed to determine the variations in the tendons of the anatomical snuffbox of the wrist. In all the dissected upper limbs, the APL tendon of the first extensor compartment was found to have several (3-14) tendon slips. The insertion of the APL tendon slips in all upper limbs were at the base of the first metacarpal bone, trapezium and fascia of the opponens pollicis muscle; however, in seven specimens, they were also found to be attached to the fleshy belly of the abductor pollicis brevis muscle. In two specimens, double tendons of the extensor pollicis longus located in the third extensor compartment were inserted into the capsule of the proximal interphalangeal joints before being joined to the extensor expansion. In two other specimens, the first extensor compartment had two osseofibrous tunnels divided by a septum that separated the APL tendon from the extensor pollicis brevis tendon. Multiple variations were found in the anatomical snuffbox region of the dissected upper limbs. Knowledge of these variations would be useful in interventional radiology and orthopaedic surgery.

  20. What is the price for the Duchenne gait pattern in patients with cerebral palsy?

    PubMed

    Salami, Firooz; Niklasch, Mirjam; Krautwurst, Britta K; Dreher, Thomas; Wolf, Sebastian I

    2017-10-01

    Duchenne gait is characterized by trunk lean towards the affected stance limb with the pelvis stable or elevated on the swinging limb side during single limb stance phase. We assessed the relationship between hip abduction moments and trunk kinetics in patients with cerebral palsy showing excessive lateral trunk motion. Data of 18 subjects with bilateral spastic cerebral palsy (CP) and 20 aged matched typically developing subjects (TD) were collected retrospectively. Criteria for patient selection were barefoot walking without aid presenting with excessive lateral trunk motion. Subjects had been monitored by conventional 3D gait analysis of the lower extremity including four markers for monitoring trunk motion. Post-hoc, a generic musculoskeletal full body model (OpenSim 3.3) assuming a rigid trunk articulated to the pelvis by a single ball joint was applied for analyzing joint kinematics and kinetics of the lower limb joints including this spine joint. Joint angle ranges of motion, maximum joint moments and powers in the frontal plane as well as mechanical work were calculated and averaged within groups showing prominent differences between groups in all parameters. To the best of our knowledge, this is the first work explicitly looking into the kinetics of Duchenne gait in patients with CP, clinically known as compensation for unloading hip abductor muscles. The results show that excessive lateral trunk motion may indeed be an extremely effective compensation mechanism to unload the hip abductors in single limb stance but for the price of a drastic increase in demand on trunk muscle effort and work. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Multiple variations of the tendons of the anatomical snuffbox

    PubMed Central

    Thwin, San San; Zaini, Fazlin; Than, Myo

    2014-01-01

    INTRODUCTION Multiple tendons of the abductor pollicis longus (APL) in the anatomical snuffbox of the wrist can lead to the development of de Quervain's syndrome, which is caused by stenosing tenosynovitis. A cadaveric study was performed to establish the variations present in the tendons of the anatomical snuffbox in a Malaysian population, in the hope that this knowledge would aid clinical investigation and surgical treatment of de Quervain's tenosynovitis. METHODS Routine dissection of ten upper limbs was performed to determine the variations in the tendons of the anatomical snuffbox of the wrist. RESULTS In all the dissected upper limbs, the APL tendon of the first extensor compartment was found to have several (3–14) tendon slips. The insertion of the APL tendon slips in all upper limbs were at the base of the first metacarpal bone, trapezium and fascia of the opponens pollicis muscle; however, in seven specimens, they were also found to be attached to the fleshy belly of the abductor pollicis brevis muscle. In two specimens, double tendons of the extensor pollicis longus located in the third extensor compartment were inserted into the capsule of the proximal interphalangeal joints before being joined to the extensor expansion. In two other specimens, the first extensor compartment had two osseofibrous tunnels divided by a septum that separated the APL tendon from the extensor pollicis brevis tendon. CONCLUSION Multiple variations were found in the anatomical snuffbox region of the dissected upper limbs. Knowledge of these variations would be useful in interventional radiology and orthopaedic surgery. PMID:24452976

  2. Kinesthetic illusions attenuate experimental muscle pain, as do muscle and cutaneous stimulation.

    PubMed

    Gay, André; Aimonetti, Jean-Marc; Roll, Jean-Pierre; Ribot-Ciscar, Edith

    2015-07-30

    In the present study, muscle pain was induced experimentally in healthy subjects by administrating hypertonic saline injections into the tibialis anterior (TA) muscle. We first aimed at comparing the analgesic effects of mechanical vibration applied to either cutaneous or muscle receptors of the TA or to both types simultaneously. Secondly, pain alleviation was compared in subjects in whom muscle tendon vibration evoked kinesthetic illusions of the ankle joint. Muscle tendon vibration, which primarily activated muscle receptors, reduced pain intensity by 30% (p<0.01). In addition, tangential skin vibration reduced pain intensity by 33% (p<0.01), primarily by activating cutaneous receptors. Concurrently stimulating both sensory channels induced stronger analgesic effects (-51%, p<0.01), as shown by the lower levels of electrodermal activity. The strongest analgesic effects of the vibration-induced muscle inputs occurred when illusory movements were perceived (-38%, p=0.01). The results suggest that both cutaneous and muscle sensory feedback reduce muscle pain, most likely via segmental and supraspinal processes. Further clinical trials are needed to investigate these new methods of muscle pain relief. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration.

    PubMed

    Urciuolo, Anna; Urbani, Luca; Perin, Silvia; Maghsoudlou, Panagiotis; Scottoni, Federico; Gjinovci, Asllan; Collins-Hooper, Henry; Loukogeorgakis, Stavros; Tyraskis, Athanasios; Torelli, Silvia; Germinario, Elena; Fallas, Mario Enrique Alvarez; Julia-Vilella, Carla; Eaton, Simon; Blaauw, Bert; Patel, Ketan; De Coppi, Paolo

    2018-05-30

    Pathological conditions affecting skeletal muscle function may lead to irreversible volumetric muscle loss (VML). Therapeutic approaches involving acellular matrices represent an emerging and promising strategy to promote regeneration of skeletal muscle following injury. Here we investigated the ability of three different decellularised skeletal muscle scaffolds to support muscle regeneration in a xenogeneic immune-competent model of VML, in which the EDL muscle was surgically resected. All implanted acellular matrices, used to replace the resected muscles, were able to generate functional artificial muscles by promoting host myogenic cell migration and differentiation, as well as nervous fibres, vascular networks, and satellite cell (SC) homing. However, acellular tissue mainly composed of extracellular matrix (ECM) allowed better myofibre three-dimensional (3D) organization and the restoration of SC pool, when compared to scaffolds which also preserved muscular cytoskeletal structures. Finally, we showed that fibroblasts are indispensable to promote efficient migration and myogenesis by muscle stem cells across the scaffolds in vitro. This data strongly support the use of xenogeneic acellular muscles as device to treat VML conditions in absence of donor cell implementation, as well as in vitro model for studying cell interplay during myogenesis.

  4. Muscle fibre recruitment can respond to the mechanics of the muscle contraction.

    PubMed

    Wakeling, James M; Uehli, Katrin; Rozitis, Antra I

    2006-08-22

    This study investigates the motor unit recruitment patterns between and within muscles of the triceps surae during cycling on a stationary ergometer at a range of pedal speeds and resistances. Muscle activity was measured from the soleus (SOL), medial gastrocnemius (MG) and lateral gastrocnemius (LG) using surface electromyography (EMG) and quantified using wavelet and principal component analysis. Muscle fascicle strain rates were quantified using ultrasonography, and the muscle-tendon unit lengths were calculated from the segmental kinematics. The EMG intensities showed that the body uses the SOL relatively more for the higher-force, lower-velocity contractions than the MG and LG. The EMG spectra showed a shift to higher frequencies at faster muscle fascicle strain rates for MG: these shifts were independent of the level of muscle activity, the locomotor load and the muscle fascicle strain. These results indicated that a selective recruitment of the faster motor units occurred within the MG muscle in response to the increasing muscle fascicle strain rates. This preferential recruitment of the faster fibres for the faster tasks indicates that in some circumstances motor unit recruitment during locomotion can match the contractile properties of the muscle fibres to the mechanical demands of the contraction.

  5. Relationship between function of masticatory muscle in mouse and properties of muscle fibers.

    PubMed

    Abe, Shinichi; Hiroki, Emi; Iwanuma, Osamu; Sakiyama, Koji; Shirakura, Yoshitaka; Hirose, Daiki; Shimoo, Yoshiaki; Suzuki, Masashi; Ikari, Yasutoyo; Kikuchi, Ryusuke; Ide, Yoshinobu; Yoshinari, Masao

    2008-05-01

    Mammals exhibit marked morphological differences in the muscles surrounding the jaw bone due to differences in eating habits. Furthermore, the myofiber properties of the muscles differ with function. Since the muscles in the oral region have various functions such as eating, swallowing, and speech, it is believed that the functional role of each muscle differs. Therefore, to clarify the functional role of each masticatory muscle, the myofiber properties of the adult mouse masticatory muscles were investigated at the transcriptional level. Expression of MyHC-2b with a fast contraction rate and strong force was frequently noted in the temporal and masseter muscles. This suggests that the temporal and masseter muscles are closely involved in rapid antero-posterior masticatory movement, which is characteristic in mice. Furthermore, expression of MyHC-1 with a low contraction rate and weak continuous force was frequently detected in the lateral pterygoid muscle. This suggests that, in contrast to other masticatory muscles, mouse lateral pterygoid muscle is not involved in fast masticatory movement, but is involved in functions requiring continuous force such as retention of jaw position. This study revealed that muscles with different roles function comprehensively during complicated masticatory movement.

  6. The Need for Standardized Assessment of Muscle Quality in Skeletal Muscle Function Deficit and Other Aging-Related Muscle Dysfunctions: A Symposium Report.

    PubMed

    Correa-de-Araujo, Rosaly; Harris-Love, Michael O; Miljkovic, Iva; Fragala, Maren S; Anthony, Brian W; Manini, Todd M

    2017-01-01

    A growing body of scientific literature suggests that not only changes in skeletal muscle mass, but also other factors underpinning muscle quality, play a role in the decline in skeletal muscle function and impaired mobility associated with aging. A symposium on muscle quality and the need for standardized assessment was held on April 28, 2016 at the International Conference on Frailty and Sarcopenia Research in Philadelphia, Pennsylvania. The purpose of this symposium was to provide a venue for basic science and clinical researchers and expert clinicians to discuss muscle quality in the context of skeletal muscle function deficit and other aging-related muscle dysfunctions. The present article provides an expanded introduction concerning the emerging definitions of muscle quality and a potential framework for scientific inquiry within the field. Changes in muscle tissue composition, based on excessive levels of inter- and intra-muscular adipose tissue and intramyocellular lipids, have been found to adversely impact metabolism and peak force generation. However, methods to easily and rapidly assess muscle tissue composition in multiple clinical settings and with minimal patient burden are needed. Diagnostic ultrasound and other assessment methods continue to be developed for characterizing muscle pathology, and enhanced sonography using sensors to provide user feedback and improve reliability is currently the subject of ongoing investigation and development. In addition, measures of relative muscle force such as specific force or grip strength adjusted for body size have been proposed as methods to assess changes in muscle quality. Furthermore, performance-based assessments of muscle power via timed tests of function and body size estimates, are associated with lower extremity muscle strength may be responsive to age-related changes in muscle quality. Future aims include reaching consensus on the definition and standardized assessments of muscle quality, and

  7. Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles.

    PubMed

    Masugi, Yohei; Obata, Hiroki; Inoue, Daisuke; Kawashima, Noritaka; Nakazawa, Kimitaka

    2017-01-01

    While previous studies have shown that muscle stretching suppresses monosynaptic spinal reflex excitability in stretched muscles, its effects on non-stretched muscles is still largely unknown. The purpose of this study was to examine the effects of muscle stretching on monosynaptic spinal reflex in non-stretched muscles. Ten healthy male subjects participated in this study. Muscle stretching of the right triceps surae muscle was performed using a motor torque device for 1 minute. Three different dorsiflexion torques (at approximately 5, 10, and 15 Nm) were applied during muscle stretching. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded in both the lower-limb muscles before, during, and at 0 and 5 min following muscle stretching. The amplitudes of the spinal reflexes in both the stretched and non-stretched muscles in the right (ipsilateral) leg were smaller during stretching compared to before, and at 0 and 5 min after stretching. Furthermore, the degree of reduction in the amplitude of the spinal reflexes in the right (ipsilateral) leg muscles increased significantly as the dorsiflexion torque (i.e., stretching of the right triceps surae muscles) increased. In contrast, reduction in the amplitude of the spinal reflexes with increasing dorsiflexion torque was not seen in the left (contralateral) leg muscles. Our results clearly indicate that muscle stretching has inhibitory effects on monosynaptic spinal reflexes, not only in stretched muscles, but also in non-stretched muscles of the ipsilateral leg.

  8. Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles

    PubMed Central

    Obata, Hiroki; Inoue, Daisuke; Kawashima, Noritaka; Nakazawa, Kimitaka

    2017-01-01

    While previous studies have shown that muscle stretching suppresses monosynaptic spinal reflex excitability in stretched muscles, its effects on non-stretched muscles is still largely unknown. The purpose of this study was to examine the effects of muscle stretching on monosynaptic spinal reflex in non-stretched muscles. Ten healthy male subjects participated in this study. Muscle stretching of the right triceps surae muscle was performed using a motor torque device for 1 minute. Three different dorsiflexion torques (at approximately 5, 10, and 15 Nm) were applied during muscle stretching. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded in both the lower-limb muscles before, during, and at 0 and 5 min following muscle stretching. The amplitudes of the spinal reflexes in both the stretched and non-stretched muscles in the right (ipsilateral) leg were smaller during stretching compared to before, and at 0 and 5 min after stretching. Furthermore, the degree of reduction in the amplitude of the spinal reflexes in the right (ipsilateral) leg muscles increased significantly as the dorsiflexion torque (i.e., stretching of the right triceps surae muscles) increased. In contrast, reduction in the amplitude of the spinal reflexes with increasing dorsiflexion torque was not seen in the left (contralateral) leg muscles. Our results clearly indicate that muscle stretching has inhibitory effects on monosynaptic spinal reflexes, not only in stretched muscles, but also in non-stretched muscles of the ipsilateral leg. PMID:28662201

  9. Vascular delay improves latissimus dorsi muscle perfusion and muscle function for use in cardiomyoplasty.

    PubMed

    Carroll, S M; Heilman, S J; Stremel, R W; Tobin, G R; Barker, J H

    1997-04-01

    Ischemia of the distal portion of the latissimus dorsi muscle occurs in muscle transfer for cardiomyoplasty and reduces distal muscle contractility and thus the mechanical effectiveness of cardiomyoplasty. We hypothesized that muscle function would be improved by a vascular delay procedure that increases distal muscle perfusion of the latissimus dorsi muscle. The latissimus dorsi muscles of 10 adult mongrel dogs were subjected to a vascular delay procedure on one side and a sham procedure on the other. Following 10 days of vascular delay, muscle perfusion was measured with a laser-Doppler perfusion imager before and after elevation of the muscles as flaps based only on their thoracodorsal neurovascular pedicles. The muscles were wrapped and sutured around silicone chambers (simulating cardiomyoplasty), a stimulating electrode was placed around each thoracodorsal nerve, and the muscles were stimulated to contract in both rhythmic and tetanic fashion. Circumferential (distal and middle latissimus dorsi muscle function) force generation and fatigue rates were measured independently. Circumferential muscle force, circumferential and longitudinal fatigue rate, and distal, middle, and overall perfusion were significantly (p < 0.05) improved in delayed muscle compared with nondelayed muscle. We found that a vascular delay procedure and a 10-day delay adaptation period significantly improve latissimus dorsi muscle flap perfusion and function, particularly in the distal and middle portions of the muscle. Delay should be considered as a means of improving the clinical outcome in cardiomyoplasty.

  10. Characteristics of locomotion, muscle strength, and muscle tissue in regenerating rat skeletal muscles.

    PubMed

    Iwata, Akira; Fuchioka, Satoshi; Hiraoka, Koichi; Masuhara, Mitsuhiko; Kami, Katsuya

    2010-05-01

    Although numerous studies have aimed to elucidate the mechanisms used to repair the structure and function of injured skeletal muscles, it remains unclear how and when movement recovers following damage. We performed a temporal analysis to characterize the changes in movement, muscle function, and muscle structure after muscle injury induced by the drop-mass technique. At each time-point, movement recovery was determined by ankle kinematic analysis of locomotion, and functional recovery was represented by isometric force. As a histological analysis, the cross-sectional area of myotubes was measured to examine structural regeneration. The dorsiflexion angle of the ankle, as assessed by kinematic analysis of locomotion, increased after injury and then returned to control levels by day 14 post-injury. The isometric force returned to normal levels by day 21 post-injury. However, the size of the myotubes did not reach normal levels, even at day 21 post-injury. These results indicate that recovery of locomotion occurs prior to recovery of isometric force and that functional recovery occurs earlier than structural regeneration. Thus, it is suggested that recovery of the movement and function of injured skeletal muscles might be insufficient as markers for estimating the degree of neuromuscular system reconstitution.

  11. Muscle spindle autogenetic inhibition in the extraocular muscles of lamb.

    PubMed

    Pettorossi, V E; Filippi, G M

    1981-09-01

    The role of extraocular muscle (EOM) proprioceptors on eye motility has been investigated in lambs on "encéphale isolé", by evaluating the tension of EOMs at various lengths and velocities of stretch before and after proprioceptive blocks. The EOM tension, in the absence of proprioceptive input, was higher than in normal conditions. Such an effect occurred at lengthening values greater than 3 mm of stretch from resting muscle length, corresponding to 18 degrees of eye deviation and was dependent on the velocity of the stretch, being more effective at high velocity. The muscle receptors responsible for this effect was determined by comparing the sensitivity to vibratory stimulation of spindles and tendon organs to the amount of inhibition provoked by the same stimulation on an EOM electromyographic activity. The tension inhibition appeared to be correlated to muscle spindle activation. Thus, the presence of muscle spindles can determine a reduction of the tension within the stretched muscles. This result suggests that the EOM length and velocity signals operate moment to moment reduction on the stiffness of the muscle which antagonizes eye displacement, thus facilitating the ocular movements.

  12. Inhibition of muscle spindle afferent activity during masseter muscle fatigue in the rat.

    PubMed

    Brunetti, Orazio; Della Torre, Giovannella; Lucchi, Maria Luisa; Chiocchetti, Roberto; Bortolami, Ruggero; Pettorossi, Vito Enrico

    2003-09-01

    The influence of muscle fatigue on the jaw-closing muscle spindle activity has been investigated by analyzing: (1) the field potentials evoked in the trigeminal motor nucleus (Vmot) by trigeminal mesencephalic nucleus (Vmes) stimulation, (2) the orthodromic and antidromic responses evoked in the Vmes by stimulation of the peripheral and central axons of the muscle proprioceptive afferents, and (3) the extracellular unitary discharge of masseter muscle spindles recorded in the Vmes. The masseter muscle was fatigued by prolonged tetanic masseter nerve electrical stimulation. Pre- and postsynaptic components of the potentials evoked in the Vmot showed a significant reduction in amplitude following muscle fatigue. Orthodromic and antidromic potentials recorded in the Vmes also showed a similar amplitude decrease. Furthermore, muscle fatigue caused a decrease of the discharge frequency of masseter muscle spindle afferents in most of the examined units. The inhibition of the potential amplitude and discharge frequency was strictly correlated with the extent of muscle fatigue and was mediated by the group III and IV afferent muscle fibers activated by fatigue. In fact, the inhibitory effect was abolished by capsaicin injection in the masseter muscle that provokes selective degeneration of small afferent muscle fibers containing neurokinins. We concluded that fatigue signals originating from the muscle and traveling through capsaicin-sensitive fibers are able to diminish the proprioceptive input by a central presynaptic influence. In the second part of the study, we examined the central projection of the masseter small afferents sensitive to capsaicin at the electron-microscopic level. Fiber degeneration was induced by injecting capsaicin into the masseter muscle. Degenerating terminals were found on the soma and stem process in Vmes and on the dendritic tree of neurons in Vmot. This suggests that small muscle afferents may influence the muscle spindle activity through

  13. Sleep, Muscle Mass and Muscle Function in Older People.

    PubMed

    Buchmann, Nikolaus; Spira, Dominik; Norman, Kristina; Demuth, Ilja; Eckardt, Rahel; Steinhagen-Thiessen, Elisabeth

    2016-04-15

    Loss of muscle mass, particularly in old age, can restrict mobility and physical function. Sleep is thought to play a key role in the maintenance of muscle mass; sleep disturbances have a prevalence of 6-30% in Germany. In this study, based on data from the Berlin Aging Study II (BASE-II), we analyze the relationship between sleep efficiency and quality on the one hand, and muscle mass and muscle function on the other. We analyzed cross-sectional data from 1196 subjects (52.5% women; 68 ± 4 years). Sleep behavior was assessed with questions from the Pittsburgh Sleep Quality Index; appendicular lean mass (ALM) with dual x-ray absorp - tiometry; and muscle function with a measure of grip strength and with questionnaires about physical activity and impairment of physical activities. Low muscle mass was determined from the ALM corrected by the body-mass index (BMI), i.e., from the ratio ALM/BMI. 19.1% of the women and 13.4% of the men reported poor sleep quality. Men whose ALM/BMI ratio was below the cutoff value for low muscle mass more frequently reported very poor sleep efficiency (9.1% , versus 4.8% in women; p<0.002). The adjusted odds ratio for low muscle mass was 2.8 for men with poor sleep quality (95% confidence interval: [1.1; 6.7]) and 4.3 for men with poor sleep efficiency [1.2; 15.1]. In women, there was no statistically significant association between sleep quality and efficiency on the one hand and ALM/BMI values below cutoff on the other, but poor sleep quality was found to be associated with reduced grip strength (16.25 kg ± 2.33 kg versus 15.67 kg ± 2.38 kg; p = 0.009) and low appendicular lean mass (ALM: 16.25 kg ± 2.33 kg versus 15.67 kg ± 2.38 kg; p = 0.016). These findings support the hypothesis of a link between sleep and muscle mass. The dependence of muscle mass on sleep behavior needs to be investigated in longitudinal studies.

  14. Lower Cognitive Function in Older Patients with Lower Muscle Strength and Muscle Mass.

    PubMed

    van Dam, Romee; Van Ancum, Jeanine M; Verlaan, Sjors; Scheerman, Kira; Meskers, Carel G M; Maier, Andrea B

    2018-06-18

    Low muscle strength and muscle mass are associated with adverse outcomes in older hospitalized patients. The aim of this study was to assess the association between cognitive functioning and muscle strength and muscle mass in hospitalized older patients. This prospective inception cohort included 378 patients aged 70 years or older. At admission patients were assessed for cognitive functioning by use of the Six-Item Cognitive Impairment Test (6-CIT). Muscle strength and muscle mass were assessed using handheld dynamometry and segmental multifrequency bioelectrical impedance analysis, within 48 h after admission and on day 7, or earlier on the day of discharge. The data of 371 patients (mean age ± standard deviation 80.1 ± 6.4 years, 49.3% female) were available for analyses. The median (interquartile range) 6-CIT score was 4 (0-8) points. At admission, lower cognitive functioning was associated with lower muscle strength, lower skeletal muscle mass (SMM), lower appendicular lean mass, and lower SMM index. Cognitive functioning was not associated with change in muscle strength and muscle mass during hospitalization. This study further strengthens evidence for an association between lower cognitive functioning and lower muscle strength and muscle mass, but without a further decline during hospitalization. © 2018 The Author(s) Published by S. Karger AG, Basel.

  15. Metal-on-Metal Hip Retrieval Analysis: A Case Report

    PubMed Central

    Pace, Thomas B.; Rusaw, Kara A.; Minette, Lawrence J.; Shirley, Brayton R.; Snider, Rebecca G.; DesJardins, John D.

    2013-01-01

    This is a case report involving a single case with severe bone and soft tissue destruction in a young male patient with a 10-year-metal on-metal total hip arthroplasty. Following complete aseptic erosion of the affected hip greater trochanter and abductor muscles, the hip was revised for recurrent instability. Histological examination of the patient's periprosthetic tissues, serological studies, and review of recent medical reports of similar cases were used to support an explanation of the destructive process and better contribute to our understanding of human reaction to metal debris in some patients following metal-on-metal hip arthroplasty. PMID:23840999

  16. Healthy Muscles Matter

    MedlinePlus

    ... How can I keep my muscles more healthy? Physical activity Muscles that are not used will get smaller ... heart muscle as well! Get 60 minutes of physical activity every day. Get 60 minutes of physical activity ...

  17. Skeletal muscle atrophy in bioengineered skeletal muscle: a new model system.

    PubMed

    Lee, Peter H U; Vandenburgh, Herman H

    2013-10-01

    Skeletal muscle atrophy has been well characterized in various animal models, and while certain pathways that lead to disuse atrophy and its associated functional deficits have been well studied, available drugs to counteract these deficiencies are limited. An ex vivo tissue-engineered skeletal muscle offers a unique opportunity to study skeletal muscle physiology in a controlled in vitro setting. Primary mouse myoblasts isolated from adult muscle were tissue engineered into bioartificial muscles (BAMs) containing hundreds of aligned postmitotic muscle fibers expressing sarcomeric proteins. When electrically stimulated, BAMs generated measureable active forces within 2-3 days of formation. The maximum isometric tetanic force (Po) increased for ∼3 weeks to 2587±502 μN/BAM and was maintained at this level for greater than 80 days. When BAMs were reduced in length by 25% to 50%, muscle atrophy occurred in as little as 6 days. Length reduction resulted in significant decreases in Po (50.4%), mean myofiber cross-sectional area (21.7%), total protein synthesis rate (22.0%), and noncollagenous protein content (6.9%). No significant changes occurred in either the total metabolic activity or protein degradation rates. This study is the first in vitro demonstration that length reduction alone can induce skeletal muscle atrophy, and establishes a novel in vitro model for the study of skeletal muscle atrophy.

  18. Muscle atrophy

    MedlinePlus

    ... muscle atrophy may include: Burns Long-term corticosteroid therapy Malnutrition Muscular dystrophy and other diseases of the muscle Osteoarthritis Rheumatoid arthritis Home Care An exercise program ...

  19. The Impact of Muscle Disuse on Muscle Atrophy in Severely Burned Rats

    DTIC Science & Technology

    2010-12-01

    Following muscle collection from the right hindlimb, muscle isometric force of PL and SL was measured simultaneously in the left hindlimb under...37.5°C by manually adjusting the temperature of cir culating water in the rat surgical bed. The isometric force of the PL and SL muscles was then...the physiologic cross sectional area (CSA) of PL and SL was calculated using the following formula: CSA= ( muscle mass) × cos θ ( muscle fiber

  20. Intra-rater reliability of hallux flexor strength measures using the Nintendo Wii Balance Board.

    PubMed

    Quek, June; Treleaven, Julia; Brauer, Sandra G; O'Leary, Shaun; Clark, Ross A

    2015-01-01

    The purpose of this study was to investigate the intra-rater reliability of a new method in combination with the Nintendo Wii Balance Board (NWBB) to measure the strength of hallux flexor muscle. Thirty healthy individuals (age: 34.9 ± 12.9 years, height: 170.4 ± 10.5 cm, weight: 69.3 ± 15.3 kg, female = 15) participated. Repeated testing was completed within 7 days. Participants performed strength testing in sitting using a wooden platform in combination with the NWBB. This new method was set up to selectively recruit an intrinsic muscle of the foot, specifically the flexor hallucis brevis muscle. Statistical analysis was performed using intra-class coefficients and ordinary least product analysis. To estimate measurement error, standard error of measurement (SEM), minimal detectable change (MDC) and percentage error were calculated. Results indicate excellent intra-rater reliability (ICC = 0.982, CI = 0.96-0.99) with an absence of systematic bias. SEM, MDC and percentage error value were 0.5, 1.4 and 12 % respectively. This study demonstrates that a new method in combination with the NWBB application is reliable to measure hallux flexor strength and has potential to be used for future research and clinical application.

  1. Objective evaluation of muscle strength in infants with hypotonia and muscle weakness.

    PubMed

    Reus, Linda; van Vlimmeren, Leo A; Staal, J Bart; Janssen, Anjo J W M; Otten, Barto J; Pelzer, Ben J; Nijhuis-van der Sanden, Maria W G

    2013-04-01

    The clinical evaluation of an infant with motor delay, muscle weakness, and/or hypotonia would improve considerably if muscle strength could be measured objectively and normal reference values were available. The authors developed a method to measure muscle strength in infants and tested 81 typically developing infants, 6-36 months of age, and 17 infants with Prader-Willi Syndrome (PWS) aged 24 months. The inter-rater reliability of the measurement method was good (ICC=.84) and the convergent validity was confirmed by high Pearson's correlations between muscle strength, age, height, and weight (r=.79-.85). A multiple linear regression model was developed to predict muscle strength based on age, height, and weight, explaining 73% of the variance in muscle strength. In infants with PWS, muscle strength was significantly decreased. Pearson's correlations showed that infants with PWS in which muscle strength was more severely affected also had a larger motor developmental delay (r=.75). Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Bone Marrow Stromal Cells Generate Muscle Cells and Repair Muscle Degeneration

    NASA Astrophysics Data System (ADS)

    Dezawa, Mari; Ishikawa, Hiroto; Itokazu, Yutaka; Yoshihara, Tomoyuki; Hoshino, Mikio; Takeda, Shin-ichi; Ide, Chizuka; Nabeshima, Yo-ichi

    2005-07-01

    Bone marrow stromal cells (MSCs) have great potential as therapeutic agents. We report a method for inducing skeletal muscle lineage cells from human and rat general adherent MSCs with an efficiency of 89%. Induced cells differentiated into muscle fibers upon transplantation into degenerated muscles of rats and mdx-nude mice. The induced population contained Pax7-positive cells that contributed to subsequent regeneration of muscle upon repetitive damage without additional transplantation of cells. These MSCs represent a more ready supply of myogenic cells than do the rare myogenic stem cells normally found in muscle and bone marrow.

  3. Cricothyroid muscle and thyroarytenoid muscle dominance in vocal register control: preliminary results.

    PubMed

    Kochis-Jennings, Karen Ann; Finnegan, Eileen M; Hoffman, Henry T; Jaiswal, Sanyukta; Hull, Darcey

    2014-09-01

    Headmix and head registers use cricothyroid (CT) muscle dominant voicing, whereas chest and chestmix registers use thyroarytenoid (TA) muscle dominant voicing. Cross-sectional study. CT and TA electromyographic data obtained from five untrained singers and two trained singers were analyzed to determine CT and TA muscle dominance as a function of register. Simultaneous recordings of TA and CT muscle activity and audio were obtained during production of pitch glides and a variety of midrange and upper pitches in chest, chestmix, headmix, and head registers. TA dominant phonation was only observed for chest productions and headmix/head register productions below 300 Hz. All phonation above 300 Hz, regardless of register, showed CT:TA muscle activity ratios that were CT dominant or close to 1, indicating nearly equal CT and TA muscle activity. This was true for all subjects on all vocal tasks. For the subjects sampled in this study, pitch level appeared to have a greater effect on TA and CT muscle dominance than vocal register. Preliminary findings regarding CT and TA dominance and register control do not support the assumption that all chest and chestmix production has greater TA muscle activity than CT muscle activity or that all headmix and head production require greater CT muscle activity than TA muscle activity. The data indicate that pitch level may play a greater role in determining TA and CT dominance than register. Copyright © 2014 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  4. Complement activation promotes muscle inflammation during modified muscle use

    NASA Technical Reports Server (NTRS)

    Frenette, J.; Cai, B.; Tidball, J. G.

    2000-01-01

    Modified muscle use can result in muscle inflammation that is triggered by unidentified events. In the present investigation, we tested whether the activation of the complement system is a component of muscle inflammation that results from changes in muscle loading. Modified rat hindlimb muscle loading was achieved by removing weight-bearing from the hindlimbs for 10 days followed by reloading through normal ambulation. Experimental animals were injected with the recombinant, soluble complement receptor sCR1 to inhibit complement activation. Assays for complement C4 or factor B in sera showed that sCR1 produced large reductions in the capacity for activation of the complement system through both the classical and alternative pathways. Analysis of complement C4 concentration in serum in untreated animals showed that the classical pathway was activated during the first 2 hours of reloading. Analysis of factor B concentration in untreated animals showed activation of the alternative pathway at 6 hours of reloading. Administration of sCR1 significantly attenuated the invasion of neutrophils (-49%) and ED1(+) macrophages (-52%) that occurred in nontreated animals after 6 hours of reloading. The presence of sCR1 also reduced significantly the degree of edema by 22% as compared to untreated animals. Together, these data show that increased muscle loading activated the complement system which then briefly contributes to the early recruitment of inflammatory cells during modified muscle loading.

  5. Respiratory Muscle Plasticity

    PubMed Central

    Gransee, Heather M.; Mantilla, Carlos B.; Sieck, Gary C.

    2014-01-01

    Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle’s plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles. PMID:23798306

  6. The relationship between exercise-induced muscle fatigue, arterial blood flow and muscle perfusion after 56 days local muscle unloading.

    PubMed

    Weber, Tobias; Ducos, Michel; Mulder, Edwin; Beijer, Åsa; Herrera, Frankyn; Zange, Jochen; Degens, Hans; Bloch, Wilhelm; Rittweger, Jörn

    2014-05-01

    In the light of the dynamic nature of habitual plantar flexor activity, we utilized an incremental isokinetic exercise test (IIET) to assess the work-related power deficit (WoRPD) as a measure for exercise-induced muscle fatigue before and after prolonged calf muscle unloading and in relation to arterial blood flow and muscle perfusion. Eleven male subjects (31 ± 6 years) wore the HEPHAISTOS unloading orthosis unilaterally for 56 days. It allows habitual ambulation while greatly reducing plantar flexor activity and torque production. Endpoint measurements encompassed arterial blood flow, measured in the femoral artery using Doppler ultrasound, oxygenation of the soleus muscle assessed by near-infrared spectroscopy, lactate concentrations determined in capillary blood and muscle activity using soleus muscle surface electromyography. Furthermore, soleus muscle biopsies were taken to investigate morphological muscle changes. After the intervention, maximal isokinetic torque was reduced by 23·4 ± 8·2% (P<0·001) and soleus fibre size was reduced by 8·5 ± 13% (P = 0·016). However, WoRPD remained unaffected as indicated by an unchanged loss of relative plantar flexor power between pre- and postexperiments (P = 0·88). Blood flow, tissue oxygenation, lactate concentrations and EMG median frequency kinematics during the exercise test were comparable before and after the intervention, whereas the increase of RMS in response to IIET was less following the intervention (P = 0·03). In conclusion, following submaximal isokinetic muscle work exercise-induced muscle fatigue is unaffected after prolonged local muscle unloading. The observation that arterial blood flow was maintained may underlie the unchanged fatigability. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  7. The effect of muscle excursion on muscle recovery after tendon repair in a neglected tendon injury: a study in rabbit soleus muscles.

    PubMed

    Jeon, Suk Ha; Chung, Moon Sang; Baek, Goo Hyun; Lee, Young Ho; Gong, Hyun Sik

    2011-01-01

    We attempted to determine whether muscle excursion observed during operation can be a prognostic indicator of muscle recovery after delayed tendon repair in a rabbit soleus model. Eighteen rabbits underwent tenotomy of the soleus muscles bilaterally and were divided into three groups according to the period from tenotomy to repair. The tendons of each group were repaired 2, 4, and 6 weeks after tenotomy. The excursion of each soleus muscle was measured at the time of tenotomy (baseline), at 2, 4, 6 weeks after tenotomy, and 8 weeks after tendon repair. The amount of muscle recovery after tendon repair in terms of muscle excursion independently depended on the timing of repair and on the muscle excursion observed during repair. The regression model predicted that the muscle excursion recovered on average by 0.6% as the muscle excursion at the time of repair increased by 1% after adjusting for the timing of repair. This study suggests that measuring the muscle excursion during tendon repair may help physicians estimate the potential of muscle recovery in cases of delayed tendon repair. Copyright © 2010 Orthopaedic Research Society.

  8. Optical Cross-Sectional Muscle Area Determination of Drosophila Melanogaster Adult Indirect Flight Muscles.

    PubMed

    Selma-Soriano, Estela; Artero, Rubén; Llamusi, Beatriz

    2018-03-31

    Muscle mass wasting, known as muscle atrophy, is a common phenotype in Drosophila models of neuromuscular diseases. We have used the indirect flight muscles (IFMs) of flies, specifically the dorso-longitudinal muscles (DLM), as the experimental subject to measure the atrophic phenotype brought about by different genetic causes. In this protocol, we describe how to embed fly thorax muscles for semi thin sectioning, how to obtain a good contrast between muscle and the surrounding tissue, and how to process optical microscope images for semiautomatic acquisition of quantifiable data and analysis. We describe three specific applications of the methodological pipeline. First, we show how the method can be applied to quantify muscle degeneration in a myotonic dystrophy fly model; second, measurement of muscle cross-sectional area can help to identify genes that either promote or prevent muscle atrophy and/or muscle degeneration; third, this protocol can be applied to determine whether a candidate compound is able to significantly modify a given atrophic phenotype induced by a disease-causing mutation or by an environmental trigger.

  9. Onset of rigor mortis is earlier in red muscle than in white muscle.

    PubMed

    Kobayashi, M; Takatori, T; Nakajima, M; Sakurada, K; Hatanaka, K; Ikegaya, H; Matsuda, Y; Iwase, H

    2000-01-01

    Rigor mortis is thought to be related to falling ATP levels in muscles postmortem. We measured rigor mortis as tension determined isometrically in three rat leg muscles in liquid paraffin kept at 37 degrees C or 25 degrees C--two red muscles, red gastrocnemius (RG) and soleus (SO) and one white muscle, white gastrocnemius (WG). Onset, half and full rigor mortis occurred earlier in RG and SO than in WG both at 37 degrees C and at 25 degrees C even though RG and WG were portions of the same muscle. This suggests that rigor mortis directly reflects the postmortem intramuscular ATP level, which decreases more rapidly in red muscle than in white muscle after death. Rigor mortis was more retarded at 25 degrees C than at 37 degrees C in each type of muscle.

  10. Muscle anatomy and dynamic muscle function in osteogenesis imperfecta type I.

    PubMed

    Veilleux, Louis-Nicolas; Lemay, Martin; Pouliot-Laforte, Annie; Cheung, Moira S; Glorieux, Francis H; Rauch, Frank

    2014-02-01

    Results of previous studies suggested that children and adolescents with osteogenesis imperfecta (OI) type I have a muscle force deficit. However, muscle function has only been assessed by static isometric force tests and not in more natural conditions such as dynamic force and power tests. The purpose of this study was to assess lower extremity dynamic muscle function and muscle anatomy in OI type I. The study was performed in the outpatient department of a pediatric orthopedic hospital. A total of 54 individuals with OI type I (6-21 years; 20 male) and 54 age- and sex-matched controls took part in this study. Calf muscle cross-sectional area and density were measured by peripheral quantitative computed tomography. Lower extremity muscle function (peak force per body weight and peak power per body mass) was measured by jumping mechanography through 5 tests: multiple two-legged hopping, multiple one-legged hopping, single two-legged jump, chair-rise test, and heel-rise test. Compared with age- and sex-matched controls, patients with OI type I had smaller muscle size (P = .04) but normal muscle density (P = .21). They also had lower average peak force and lower specific force (peak force/muscle cross-sectional area; all P < .008). Average peak power was lower in patients with OI type I but not significantly so (all P > .054). Children and adolescents with OI type I have, on average, a significant force deficit in the lower limb as measured by dynamic force tests. Nonetheless, these data also show that OI type I is compatible with normal muscle performance in some individuals.

  11. Evaluating swallowing muscles essential for hyolaryngeal elevation by using muscle functional magnetic resonance imaging.

    PubMed

    Pearson, William G; Hindson, David F; Langmore, Susan E; Zumwalt, Ann C

    2013-03-01

    Reduced hyolaryngeal elevation, a critical event in swallowing, is associated with radiation therapy. Two muscle groups that suspend the hyoid, larynx, and pharynx have been proposed to elevate the hyolaryngeal complex: the suprahyoid and longitudinal pharyngeal muscles. Thought to assist both groups is the thyrohyoid, a muscle intrinsic to the hyolaryngeal complex. Intensity modulated radiation therapy guidelines designed to preserve structures important to swallowing currently exclude the suprahyoid and thyrohyoid muscles. This study used muscle functional magnetic resonance imaging (mfMRI) in normal healthy adults to determine whether both muscle groups are active in swallowing and to test therapeutic exercises thought to be specific to hyolaryngeal elevation. mfMRI data were acquired from 11 healthy subjects before and after normal swallowing and after swallowing exercise regimens (the Mendelsohn maneuver and effortful pitch glide). Whole-muscle transverse relaxation time (T2 signal, measured in milliseconds) profiles of 7 test muscles were used to evaluate the physiologic response of each muscle to each condition. Changes in effect size (using the Cohen d measure) of whole-muscle T2 profiles were used to determine which muscles underlie swallowing and swallowing exercises. Post-swallowing effect size changes (where a d value of >0.20 indicates significant activity during swallowing) for the T2 signal profile of the thyrohyoid was a d value of 0.09; a d value of 0.40 for the mylohyoid, 0.80 for the geniohyoid, 0.04 for the anterior digastric, and 0.25 for the posterior digastric-stylohyoid in the suprahyoid muscle group; and d values of 0.47 for the palatopharyngeus and 0.28 for the stylopharyngeus muscles in the longitudinal pharyngeal muscle group. The Mendelsohn maneuver and effortful pitch glide swallowing exercises showed significant effect size changes for all muscles tested, except for the thyrohyoid. Muscles of both the suprahyoid and the longitudinal

  12. Detection of muscle gap by L-BIA in muscle injuries: clinical prognosis.

    PubMed

    Nescolarde, L; Yanguas, J; Terricabras, J; Lukaski, H; Alomar, X; Rosell-Ferrer, J; Rodas, G

    2017-06-21

    Sport-related muscle injury classifications are based basically on imaging criteria such as ultrasound (US) and magnetic resonance imaging (MRI) without consensus because of a lack of clinical prognostics for return-to-play (RTP), which is conditioned upon the severity of the injury, and this in turn with the muscle gap (muscular fibers retraction). Recently, Futbol Club Barcelona's medical department proposed a new muscle injury classification in which muscle gap plays an important role, with the drawback that it is not always possible to identify by MRI. Localized bioimpedance measurement (L-BIA) has emerged as a non-invasive technique for supporting US and MRI to quantify the disrupted soft tissue structure in injured muscles. To correlate the severity of the injury according to the gap with the RTP, through the percent of change in resistance (R), reactance (Xc) and phase-angle (PA) by L-BIA measurements in 22 muscle injuries. After grouping the data according to the muscle gap (by MRI exam), there were significant differences in R between grade 1 and grade 2f (myotendinous or myofascial muscle injury with feather-like appearance), as well as between grade 2f and grade 2g (myotendinous or myofascial muscle injury with feather and gap). The Xc and PA values decrease significantly between each grade (i.e. 1 versus 2f, 1 versus 2g and 2f versus 2g). In addition, the severity of the muscle gap adversely affected the RTP with significant differences observed between 1 and 2g as well as between 2f and 2g. These results show that L-BIA could aid MRI and US in identifying the severity of an injured muscle according to muscle gap and therefore to accurately predict the RTP.

  13. Muscle interleukin-6 and fasting-induced PDH regulation in mouse skeletal muscle.

    PubMed

    Gudiksen, Anders; Bertholdt, Laerke; Vingborg, Mikkel Birkkjaer; Hansen, Henriette Watson; Ringholm, Stine; Pilegaard, Henriette

    2017-03-01

    Fasting prompts a metabolic shift in substrate utilization from carbohydrate to predominant fat oxidation in skeletal muscle, and pyruvate dehydrogenase (PDH) is seen as a controlling link between the competitive oxidation of carbohydrate and fat during metabolic challenges like fasting. Interleukin (IL)-6 has been proposed to be released from muscle with concomitant effects on both glucose and fat utilization. The aim was to test the hypothesis that muscle IL-6 has a regulatory impact on fasting-induced suppression of skeletal muscle PDH. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and floxed littermate controls (control) were either fed or fasted for 6 or 18 h. Lack of muscle IL-6 elevated the respiratory exchange ratio in the fed and early fasting state, but not with prolonged fasting. Activity of PDH in the active form (PDHa) was higher in fed and fasted IL-6 MKO than in control mice at 18 h, but not at 6 h, whereas lack of muscle IL-6 did not prevent downregulation of PDHa activity in skeletal muscle or changes in plasma and muscle substrate levels in response to 18 h of fasting. Phosphorylation of three of four sites on PDH-E1α increased with 18 h of fasting, but was lower in IL-6 MKO mice than in control. In addition, both PDK4 mRNA and protein increased with 6 and 18 h of fasting in both genotypes, but PDK4 protein was lower in IL-6 MKO than in control. In conclusion, skeletal muscle IL-6 seems to regulate whole body substrate utilization in the fed, but not fasted, state and influence skeletal muscle PDHa activity in a circadian manner. However, skeletal muscle IL-6 is not required for maintaining metabolic flexibility in response to fasting. Copyright © 2017 the American Physiological Society.

  14. Difficulties in estimating muscle forces from muscle cross-sectional area. An example using the psoas major muscle.

    PubMed

    Gatton, M L; Pearcy, M J; Pettet, G J

    1999-07-15

    Most biomechanical models use muscle cross-sectional area (CSA) as an indicator of maximum isometric muscle force. In general, there are multiple estimates of CSA for the same muscle. For example, numerous studies have estimated the CSA of the psoas major muscle using different subject populations and positions. However, few studies have combined the available information to obtain an overall estimate of CSA or investigated the effect different subject characteristics may have on CSA. In the present update, nine studies that reported psoas major CSA or physiologic CSA were compared with respect to subject characteristics, methodology, and results. Corrections to cadaveric data were made to adjust physiologic CSA to CSA. Comparison of reported values for living subjects indicated that females have smaller mean CSA than males for the psoas major muscle and that body size does not significantly influence muscle CSA in males. Areas derived from cadaveric data were smaller than similar studies on living subjects, possibly because of subject age, removal of tendinous and fatty components of fascicles, and lack of detailed data for fascicle angles in the supine position. Results indicate that researchers who use muscle CSA in biomechanical models should carefully assess the appropriateness of the data used, particularly in relation to potential sex differences and the influence of postural changes on CSA.

  15. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy.

    PubMed

    Mendias, Christopher L; Schwartz, Andrew J; Grekin, Jeremy A; Gumucio, Jonathan P; Sugg, Kristoffer B

    2017-03-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sF o ), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic

  16. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy

    PubMed Central

    Schwartz, Andrew J.; Grekin, Jeremy A.; Gumucio, Jonathan P.; Sugg, Kristoffer B.

    2017-01-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sFo), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic

  17. Evaluating Swallowing Muscles Essential for Hyolaryngeal Elevation by Using Muscle Functional Magnetic Resonance Imaging

    PubMed Central

    Pearson, William G.; Hindson, David F.; Langmore, Susan E.; Zumwalt, Ann C.

    2012-01-01

    Summary Elevation of the larynx is critical to swallowing function, an observation supported by the fact that radiation therapy-induced dysphagia is associated with reduced laryngeal elevation. We investigated muscles underlying hyolaryngeal elevation by using muscle functional MRI. We acquired scans from 11 healthy subjects to determine whole-muscle T2 signal profiles pre-swallowing, post-swallowing, and after performing swallowing exercises. Results demonstrate muscles essential to laryngeal elevation and exercises that target them. Purpose Reduced hyolaryngeal elevation, a critical event in swallowing, is associated with radiation therapy. Two muscle groups that suspend the hyoid, larynx, and pharynx have been proposed to elevate the hyolaryngeal complex: the suprahyoid and longitudinal pharyngeal muscles. Thought to assist both groups is the thyrohyoid, a muscle intrinsic to the hyolaryngeal complex. Intensity modulated radiation therapy guidelines designed to preserve structures important to swallowing currently exclude the suprahyoid and thyrohyoid muscles. This study used muscle functional magnetic resonance imaging (mfMRI) in normal healthy adults to determine whether both muscle groups are active in swallowing and to test therapeutic exercises thought to be specific to hyolaryngeal elevation. Methods and Materials mfMRI data were acquired from 11 healthy subjects before and after normal swallowing and after swallowing exercise regimens (the Mendelsohn maneuver and effortful pitch glide). Whole-muscle transverse relaxation time (T2 signal, measured in milliseconds) profiles of 7 test muscles were used to evaluate the physiologic response of each muscle to each condition. Changes in effect size (using the Cohen d measure) of whole-muscle T2 profiles were used to determine which muscles underlie swallowing and swallowing exercises. Results Post-swallowing effect size changes (where a d value of >0.20 indicates significant activity during swallowing) for the T

  18. In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease.

    PubMed

    Khodabukus, Alastair; Prabhu, Neel; Wang, Jason; Bursac, Nenad

    2018-04-25

    Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Soluble Milk Proteins Improve Muscle Mass Recovery after Immobilization-Induced Muscle Atrophy in Old Rats but Do not Improve Muscle Functional Property Restoration.

    PubMed

    Verney, J; Martin, V; Ratel, S; Chavanelle, V; Bargetto, M; Etienne, M; Chaplais, E; Le Ruyet, P; Bonhomme, C; Combaret, L; Guillet, C; Boisseau, N; Sirvent, P; Dardevet, D

    2017-01-01

    Effect of 3 different dairy protein sources on the recovery of muscle function after limb immobilization in old rats. Longitudinal animal study. Institut National de la Recherche Agronomique (INRA). The study took part in a laboratory setting. Old rats were subjected to unilateral hindlimb immobilization for 8 days and then allowed to recover with 3 different dietary proteins: casein, soluble milk proteins or whey proteins for 49 days. Body weight, muscle mass, muscle fibre size, isometric, isokinetic torque, muscle fatigability and muscle oxidative status were measured before and at the end of the immobilization period and during the recovery period i.e 7, 21, 35 and 49 days post immobilization. In contrast to the casein diet, soluble milk proteins and whey proteins were efficient to favor muscle mass recovery after cast immobilization during aging. By contrast, none of the 3 diary proteins was able to improve muscle strength, power and fatigability showing a discrepancy between the recovery of muscle mass and function. However, the soluble milk proteins allowed a better oxidative capacity in skeletal muscle during the rehabilitation period. Whey proteins and soluble milk proteins improve muscle mass recovery after immobilization-induced muscle atrophy in old rats but do not allow muscle functional property restoration.

  20. The roles of muscle stem cells in muscle injury, atrophy and hypertrophy.

    PubMed

    Fukada, So-Ichiro

    2018-05-01

    Skeletal muscle is composed of multinuclear cells called myofibers. Muscular dystrophy (a genetic muscle disorder) induces instability in the cell membrane of myofibers and eventually causes myofibre damage. Non-genetic muscle disorders, including sarcopenia, diabetes, bedridden immobility and cancer cachexia, lead to atrophy of myofibres. In contrast, resistance training induces myofibre hypertrophy. Thus, myofibres exhibit a plasticity that is strongly affected by both intrinsic and extrinsic factors. There is no doubt that muscle stem cells (MuSCs, also known as muscle satellite cells) are indispensable for muscle repair/regeneration, but their contributions to atrophy and hypertrophy are still controversial. The present review focuses on the relevance of MuSCs to (i) muscle diseases and (ii) hypertrophy. Further, this review addresses fundamental questions about MuSCs to clarify the onset or progression of these diseases and which might lead to development of a MuSC-based therapy.

  1. Endurance training facilitates myoglobin desaturation during muscle contraction in rat skeletal muscle.

    PubMed

    Takakura, Hisashi; Furuichi, Yasuro; Yamada, Tatsuya; Jue, Thomas; Ojino, Minoru; Hashimoto, Takeshi; Iwase, Satoshi; Hojo, Tatsuya; Izawa, Tetsuya; Masuda, Kazumi

    2015-03-24

    At onset of muscle contraction, myoglobin (Mb) immediately releases its bound O2 to the mitochondria. Accordingly, intracellular O2 tension (PmbO2) markedly declines in order to increase muscle O2 uptake (mVO2). However, whether the change in PmbO2 during muscle contraction modulates mVO2 and whether the O2 release rate from Mb increases in endurance-trained muscles remain unclear. The purpose of this study was, therefore, to determine the effect of endurance training on O2 saturation of Mb (SmbO2) and PmbO2 kinetics during muscle contraction. Male Wistar rats were subjected to a 4-week swimming training (Tr group; 6 days per week, 30 min × 4 sets per day) with a weight load of 2% body mass. After the training period, deoxygenated Mb kinetics during muscle contraction were measured using near-infrared spectroscopy under hemoglobin-free medium perfusion. In the Tr group, the VmO2peak significantly increased by 32%. Although the PmbO2 during muscle contraction did not affect the increased mVO2 in endurance-trained muscle, the O2 release rate from Mb increased because of the increased Mb concentration and faster decremental rate in SmbO2 at the maximal twitch tension. These results suggest that the Mb dynamics during muscle contraction are contributing factors to faster VO2 kinetics in endurance-trained muscle.

  2. Endurance training facilitates myoglobin desaturation during muscle contraction in rat skeletal muscle

    PubMed Central

    Takakura, Hisashi; Furuichi, Yasuro; Yamada, Tatsuya; Jue, Thomas; Ojino, Minoru; Hashimoto, Takeshi; Iwase, Satoshi; Hojo, Tatsuya; Izawa, Tetsuya; Masuda, Kazumi

    2015-01-01

    At onset of muscle contraction, myoglobin (Mb) immediately releases its bound O2 to the mitochondria. Accordingly, intracellular O2 tension (PmbO2) markedly declines in order to increase muscle O2 uptake (mO2). However, whether the change in PmbO2 during muscle contraction modulates mO2 and whether the O2 release rate from Mb increases in endurance-trained muscles remain unclear. The purpose of this study was, therefore, to determine the effect of endurance training on O2 saturation of Mb (SmbO2) and PmbO2 kinetics during muscle contraction. Male Wistar rats were subjected to a 4-week swimming training (Tr group; 6 days per week, 30 min × 4 sets per day) with a weight load of 2% body mass. After the training period, deoxygenated Mb kinetics during muscle contraction were measured using near-infrared spectroscopy under hemoglobin-free medium perfusion. In the Tr group, the mO2peak significantly increased by 32%. Although the PmbO2 during muscle contraction did not affect the increased mO2 in endurance-trained muscle, the O2 release rate from Mb increased because of the increased Mb concentration and faster decremental rate in SmbO2 at the maximal twitch tension. These results suggest that the Mb dynamics during muscle contraction are contributing factors to faster O2 kinetics in endurance-trained muscle. PMID:25801957

  3. Maximum shortening velocity of lymphatic muscle approaches that of striated muscle.

    PubMed

    Zhang, Rongzhen; Taucer, Anne I; Gashev, Anatoliy A; Muthuchamy, Mariappan; Zawieja, David C; Davis, Michael J

    2013-11-15

    Lymphatic muscle (LM) is widely considered to be a type of vascular smooth muscle, even though LM cells uniquely express contractile proteins from both smooth muscle and cardiac muscle. We tested the hypothesis that LM exhibits an unloaded maximum shortening velocity (Vmax) intermediate between that of smooth muscle and cardiac muscle. Single lymphatic vessels were dissected from the rat mesentery, mounted in a servo-controlled wire myograph, and subjected to isotonic quick release protocols during spontaneous or agonist-evoked contractions. After maximal activation, isotonic quick releases were performed at both the peak and plateau phases of contraction. Vmax was 0.48 ± 0.04 lengths (L)/s at the peak: 2.3 times higher than that of mesenteric arteries and 11.4 times higher than mesenteric veins. In cannulated, pressurized lymphatic vessels, shortening velocity was determined from the maximal rate of constriction [rate of change in internal diameter (-dD/dt)] during spontaneous contractions at optimal preload and minimal afterload; peak -dD/dt exceeded that obtained during any of the isotonic quick release protocols (2.14 ± 0.30 L/s). Peak -dD/dt declined with pressure elevation or activation using substance P. Thus, isotonic methods yielded Vmax values for LM in the mid to high end (0.48 L/s) of those the recorded for phasic smooth muscle (0.05-0.5 L/s), whereas isobaric measurements yielded values (>2.0 L/s) that overlapped the midrange of values for cardiac muscle (0.6-3.3 L/s). Our results challenge the dogma that LM is classical vascular smooth muscle, and its unusually high Vmax is consistent with the expression of cardiac muscle contractile proteins in the lymphatic vessel wall.

  4. Distributions of nerve and muscle fibre types in locust jumping muscle.

    PubMed

    Hoyle, G

    1978-04-01

    Muscle fibres of the locust extensor tibiae (jumping muscle) were examined by interference microscopy and by electron microscopy. The electrical responses of single fibres and the mechanical responses of bundles or selected regions to the nerve fibres were examined. Four axons innervate the muscle: fast (FETi), slow (SETi), common inhibitor (CI) and dorsal unpaired median (DUMETi). Their distributions were examined by combined electrophysiological tracing and EM sectioning. The mean diameter of muscle fibres in different regions varies from 40 to 140 micrometer and is related to the local leg thickness rather than muscle fibre type. The fine structure of a fibre is related to its innervation. Fibres innervated by FETi but not SETi are of fast type ultrastructurally. Fibres innervated by SETi but not by FETi are of slow type ultrastructurally. Fibres innervated by both axons are generally intermediate between the extremes though more nearly of fast type than slow. Distal slow muscle fibres have much slower relaxation rates than do proximal ones. The most proximal bundles are of mixed muscle fibre type. There is an abrupt transition from a mixed population to homogeneous fast type, in the muscle units immediately distal to the most proximal bundles. This transition is associated with the presence of DUMETi terminals on some of the fibres distal to the transition point. There are no SETi endings on these same fibres. Fibres innervated by both SETi and FETi are scattered throughout the leg, but are commonest in the dorsal bundles. The percentage of these increases progressively passing distally. The most distal muscle fibres are innervated by SETi but not by FETi. It is concluded that different regions of the muscle will play different roles functionally since they are differentially sensitive to the pattern of SETi discharge.

  5. Muscle synergy space: learning model to create an optimal muscle synergy

    PubMed Central

    Alnajjar, Fady; Wojtara, Tytus; Kimura, Hidenori; Shimoda, Shingo

    2013-01-01

    Muscle redundancy allows the central nervous system (CNS) to choose a suitable combination of muscles from a number of options. This flexibility in muscle combinations allows for efficient behaviors to be generated in daily life. The computational mechanism of choosing muscle combinations, however, remains a long-standing challenge. One effective method of choosing muscle combinations is to create a set containing the muscle combinations of only efficient behaviors, and then to choose combinations from that set. The notion of muscle synergy, which was introduced to divide muscle activations into a lower-dimensional synergy space and time-dependent variables, is a suitable tool relevant to the discussion of this issue. The synergy space defines the suitable combinations of muscles, and time-dependent variables vary in lower-dimensional space to control behaviors. In this study, we investigated the mechanism the CNS may use to define the appropriate region and size of the synergy space when performing skilled behavior. Two indices were introduced in this study, one is the synergy stability index (SSI) that indicates the region of the synergy space, the other is the synergy coordination index (SCI) that indicates the size of the synergy space. The results on automatic posture response experiments show that SSI and SCI are positively correlated with the balance skill of the participants, and they are tunable by behavior training. These results suggest that the CNS has the ability to create optimal sets of efficient behaviors by optimizing the size of the synergy space at the appropriate region through interacting with the environment. PMID:24133444

  6. Evaluating Swallowing Muscles Essential for Hyolaryngeal Elevation by Using Muscle Functional Magnetic Resonance Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, William G., E-mail: bp1@bu.edu; Hindson, David F.; Langmore, Susan E.

    2013-03-01

    Purpose: Reduced hyolaryngeal elevation, a critical event in swallowing, is associated with radiation therapy. Two muscle groups that suspend the hyoid, larynx, and pharynx have been proposed to elevate the hyolaryngeal complex: the suprahyoid and longitudinal pharyngeal muscles. Thought to assist both groups is the thyrohyoid, a muscle intrinsic to the hyolaryngeal complex. Intensity modulated radiation therapy guidelines designed to preserve structures important to swallowing currently exclude the suprahyoid and thyrohyoid muscles. This study used muscle functional magnetic resonance imaging (mfMRI) in normal healthy adults to determine whether both muscle groups are active in swallowing and to test therapeutic exercisesmore » thought to be specific to hyolaryngeal elevation. Methods and Materials: mfMRI data were acquired from 11 healthy subjects before and after normal swallowing and after swallowing exercise regimens (the Mendelsohn maneuver and effortful pitch glide). Whole-muscle transverse relaxation time (T2 signal, measured in milliseconds) profiles of 7 test muscles were used to evaluate the physiologic response of each muscle to each condition. Changes in effect size (using the Cohen d measure) of whole-muscle T2 profiles were used to determine which muscles underlie swallowing and swallowing exercises. Results: Post-swallowing effect size changes (where a d value of >0.20 indicates significant activity during swallowing) for the T2 signal profile of the thyrohyoid was a d value of 0.09; a d value of 0.40 for the mylohyoid, 0.80 for the geniohyoid, 0.04 for the anterior digastric, and 0.25 for the posterior digastric-stylohyoid in the suprahyoid muscle group; and d values of 0.47 for the palatopharyngeus and 0.28 for the stylopharyngeus muscles in the longitudinal pharyngeal muscle group. The Mendelsohn maneuver and effortful pitch glide swallowing exercises showed significant effect size changes for all muscles tested, except for the thyrohyoid

  7. Influence of temperature on muscle recruitment and muscle function in vivo.

    PubMed

    Rome, L C

    1990-08-01

    Temperature has a large influence on the maximum velocity of shortening (Vmax) and maximum power output of muscle (Q10 = 1.5-3). In some animals, maximum performance and maximum sustainable performance show large temperature sensitivities, because these parameters are dependent solely on mechanical power output of the muscles. The mechanics of locomotion (sarcomere length excursions and muscle-shortening velocities, V) at a given speed, however, are precisely the same at all temperatures. Animals compensate for the diminished power output of their muscles at low temperatures by compressing their recruitment order into a narrower range of locomotor speeds, that is, recruiting more muscle fibers and faster fiber types at a given speed. By examining V/Vmax, I calculate that fish at 10 degrees C must recruit 1.53-fold greater fiber cross section than at 20 degrees C. V/Vmax also appears to be an important design constraint in muscle. It sets the lowest V and the highest V over which a muscle can be used effectively. Because the Vmax of carp slow red muscle has a Q10 of 1.6 between 10 and 20 degrees C, the slow aerobic fibers can be used over a 1.6-fold greater range of swim speeds at the warmer temperature. In some species of fish, Vmax can be increased during thermal acclimation, enabling animals to swim at higher speeds.

  8. Muscle Session Summary

    NASA Technical Reports Server (NTRS)

    Baldwin, Kenneth; Feeback, Daniel

    1999-01-01

    Presentations from the assembled group of investigators involved in specific research projeects related to skeletal muscle in space flight can categorized in thematic subtopics: regulation of contractile protein phenotypes, muscle growth and atrophy, muscle structure: injury, recovery,and regeneration, metabolism and fatigue, and motor control and loading factors.

  9. An Autologous Muscle Tissue Expansion Approach for the Treatment of Volumetric Muscle Loss

    DTIC Science & Technology

    2015-07-01

    potential therapy for some VML indications, autologous minced muscle grafts (1mm3 pieces of muscle ) are effective in promoting remarkable de novo fiber ...may be misaligned.9–12 More recently, minced muscle grafts were effective in promoting de novomus- cle fiber regeneration and functional recovery in...to enable torque stabilization. The contribution of the tenotomized EDL muscle was negligible in this testing system.13 Peak TA muscle isometric torque

  10. Hierarchical signaling transduction of the immune and muscle cell crosstalk in muscle regeneration.

    PubMed

    Yang, Wenjun; Hu, Ping

    2018-04-01

    The muscle regeneration is a complicated bioprocess that involved in many cell types, including necrotic muscle cells, satellite cells, mesenchymal cells, pericytes, immune cells, and other cell types present at the injury site. Immune cells involved in both innate and adaptive immune responses regulate the progress of muscle regeneration. In this review, we discussed the roles of different immune cells in muscle regeneration. The immune cells regulate muscle regeneration through cytokine production, cell-cell contacts, and general immune environment regulation. We also describe the current known mechanism of how immune cells regulating muscle regeneration. Copyright © 2017. Published by Elsevier Inc.

  11. Physical principles demonstrate that the biceps femoris muscle relative to the other hamstring muscles exerts the most force: implications for hamstring muscle strain injuries.

    PubMed

    Dolman, Bronwyn; Verrall, Geoffrey; Reid, Iain

    2014-07-01

    Of the hamstring muscle group the biceps femoris muscle is the most commonly injured muscle in sports requiring interval sprinting. The reason for this observation is unknown. The objective of this study was to calculate the forces of all three hamstring muscles, relative to each other, during a lengthening contraction to assess for any differences that may help explain the biceps femoris predilection for injury during interval sprinting. To calculate the displacement of each individual hamstring muscle previously performed studies on cadaveric anatomical data and hamstring kinematics during sprinting were used. From these displacement calculations for each individual hamstring muscle physical principles were then used to deduce the proportion of force exerted by each individual hamstring muscle during a lengthening muscle contraction. These deductions demonstrate that the biceps femoris muscle is required to exert proportionally more force in a lengthening muscle contraction relative to the semimembranosus and semitendinosus muscles primarily as a consequence of having to lengthen over a greater distance within the same time frame. It is hypothesized that this property maybe a factor in the known observation of the increased susceptibility of the biceps femoris muscle to injury during repeated sprints where recurrent higher force is required.

  12. The muscle-specific ubiquitin ligase atrogin-1/MAFbx mediates statin-induced muscle toxicity

    PubMed Central

    Hanai, Jun-ichi; Cao, Peirang; Tanksale, Preeti; Imamura, Shintaro; Koshimizu, Eriko; Zhao, Jinghui; Kishi, Shuji; Yamashita, Michiaki; Phillips, Paul S.; Sukhatme, Vikas P.; Lecker, Stewart H.

    2007-01-01

    Statins inhibit HMG-CoA reductase, a key enzyme in cholesterol synthesis, and are widely used to treat hypercholesterolemia. These drugs can lead to a number of side effects in muscle, including muscle fiber breakdown; however, the mechanisms of muscle injury by statins are poorly understood. We report that lovastatin induced the expression of atrogin-1, a key gene involved in skeletal muscle atrophy, in humans with statin myopathy, in zebrafish embryos, and in vitro in murine skeletal muscle cells. In cultured mouse myotubes, atrogin-1 induction following lovastatin treatment was accompanied by distinct morphological changes, largely absent in atrogin-1 null cells. In zebrafish embryos, lovastatin promoted muscle fiber damage, an effect that was closely mimicked by knockdown of zebrafish HMG-CoA reductase. Moreover, atrogin-1 knockdown in zebrafish embryos prevented lovastatin-induced muscle injury. Finally, overexpression of PGC-1α, a transcriptional coactivator that induces mitochondrial biogenesis and protects against the development of muscle atrophy, dramatically prevented lovastatin-induced muscle damage and abrogated atrogin-1 induction both in fish and in cultured mouse myotubes. Collectively, our human, animal, and in vitro findings shed light on the molecular mechanism of statin-induced myopathy and suggest that atrogin-1 may be a critical mediator of the muscle damage induced by statins. PMID:17992259

  13. MUSCLE INJURIES IN ATHLETES

    PubMed Central

    Barroso, Guilherme Campos; Thiele, Edilson Schwansee

    2015-01-01

    This article had the aim of demonstrating the physiology, diagnosis and treatment of muscle injuries, focusing on athletes and their demands and expectations. Muscle injuries are among the most common complaints in orthopedic practice, occurring both among athletes and among non-athletes. These injuries present a challenge for specialists, due to the slow recovery, during which time athletes are unable to take part in training and competitions, and due to frequent sequelae and recurrences of the injuries. Most muscle injuries (between 10% and 55% of all injuries) occur during sports activities. The muscles most commonly affected are the ischiotibial, quadriceps and gastrocnemius. These muscles go across two joints and are more subject to acceleration and deceleration forces. The treatment for muscle injuries varies from conservative treatment to surgery. New procedures are being used, like the hyperbaric chamber and the use of growth factors. However, there is still a high rate of injury recurrence. Muscle injury continues to be a topic of much controversy. New treatments are being researched and developed, but prevention through muscle strengthening, stretching exercises and muscle balance continues to be the best “treatment”. PMID:27027021

  14. Muscle Satellite Cell Protein Teneurin‐4 Regulates Differentiation During Muscle Regeneration

    PubMed Central

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So‐ichiro; Okano, Hideyuki; Takeda, Shin'ichi

    2015-01-01

    Abstract Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin‐4 (Ten‐4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten‐4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten‐4‐deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten‐4‐deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten‐4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten‐4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. Stem Cells 2015;33:3017–3027 PMID:26013034

  15. Repositioning forelimb superficialis muscles: tendon attachment and muscle activity enable active relocation of functional myofibers.

    PubMed

    Huang, Alice H; Riordan, Timothy J; Wang, Lingyan; Eyal, Shai; Zelzer, Elazar; Brigande, John V; Schweitzer, Ronen

    2013-09-16

    The muscles that govern hand motion are composed of extrinsic muscles that reside within the forearm and intrinsic muscles that reside within the hand. We find that the extrinsic muscles of the flexor digitorum superficialis (FDS) first differentiate as intrinsic muscles within the hand and then relocate as myofibers to their final position in the arm. This remarkable translocation of differentiated myofibers across a joint is dependent on muscle contraction and muscle-tendon attachment. Interestingly, the intrinsic flexor digitorum brevis (FDB) muscles of the foot are identical to the FDS in tendon pattern and delayed developmental timing but undergo limited muscle translocation, providing strong support for evolutionary homology between the FDS and FDB muscles. We propose that the intrinsic FDB pattern represents the original tetrapod limb and that translocation of the muscles to form the FDS is a mammalian evolutionary addition. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Safety and efficacy of exercise training in adults with Pompe disease: evalution of endurance, muscle strength and core stability before and after a 12 week training program.

    PubMed

    van den Berg, Linda E M; Favejee, Marein M; Wens, Stephan C A; Kruijshaar, Michelle E; Praet, Stephan F E; Reuser, Arnold J J; Bussmann, Johannes B J; van Doorn, Pieter A; van der Ploeg, Ans T

    2015-07-19

    Pompe disease is a proximal myopathy. We investigated whether exercise training is a safe and useful adjuvant therapy for adult Pompe patients, receiving enzyme replacement therapy. Training comprised 36 sessions of standardized aerobic, resistance and core stability exercises over 12 weeks. Before and after, the primary outcome measures safety, endurance (aerobic exercise capacity and distance walked on the 6 min walk test) and muscle strength, and secondary outcome measures core stability, muscle function and body composition, were evaluated. Of 25 patients enrolled, 23 successfully completed the training. Improvements in endurance were shown by increases in maximum workload capacity (110 W before to 122 W after training, [95 % CI of the difference 6 · 0 to 19 · 7]), maximal oxygen uptake capacity (69 · 4 % and 75 · 9 % of normal, [2 · 5 to 10 · 4]), and maximum walking distance (6 min walk test: 492 meters and 508, [-4 · 4 to 27 · 7] ). There were increases in muscle strength of the hip flexors (156 · 4 N to 180 · 7 N [1 · 6 to 13 · 6) and shoulder abductors (143 · 1 N to 150 · 7 N [13 · 2 to 35 · 2]). As an important finding in secondary outcome measures the number of patients who were able to perform the core stability exercises rose, as did the core stability balancing time (p < 0.05, for all four exercises). Functional tests showed small reductions in the time needed to climb four steps (2 · 4 sec to 2 · 1, [- 0 · 54 to -0 · 04 ]) and rise to standing position (5 · 8 sec to 4 · 8, [-2 · 0 to 0 · 0]), while time to run, the quick motor function test results and body composition remained unchanged. Our study shows that a combination of aerobic, strength and core stability exercises is feasible, safe and beneficial to adults with Pompe disease.

  17. Functional characteristics of the rat jaw muscles: daily muscle activity and fiber type composition.

    PubMed

    Kawai, Nobuhiko; Sano, Ryota; Korfage, Joannes A M; Nakamura, Saika; Tanaka, Eiji; van Wessel, Tim; Langenbach, Geerling E J; Tanne, Kazuo

    2009-12-01

    Skeletal muscles have a heterogeneous fiber type composition, which reflects their functional demand. The daily muscle use and the percentage of slow-type fibers have been shown to be positively correlated in skeletal muscles of larger animals but for smaller animals there is no information. The examination of this relationship in adult rats was the purpose of this study. We hypothesized a positive relationship between the percentage of fatigue-resistant fibers in each muscle and its total duration of use per day. Fourteen Wistar strain male rats (410-450 g) were used. A radio-telemetric device was implanted to record muscle activity continuously from the superficial masseter, deep masseter, anterior belly of digastric and anterior temporalis muscles. The degree of daily muscle use was quantified by the total duration of muscle activity per day (duty time) exceeding specified levels of the peak activity (2, 5, 20 and 50%). The fiber type composition of the muscles was examined by the myosin heavy chain content of the fibers by means of immunohistochemical staining. At lower activity levels (exceeding 2 and 5% of the peak activity), the duty time of the anterior belly of digastric muscle was significantly (P < 0.01) longer than those of the other muscles. The anterior belly of digastric muscle also contained the highest percentage of slow-type fibers (type I fiber and hybrid fiber co-expressing myosin heavy chain I + IIA) (ca. 11%; P < 0.05). By regression analysis for all four muscles, an inter-muscular comparison showed a positive relationship between the duty time (exceeding 50% of the peak activity) and the percentage of type IIX fibers (P < 0.05), which demonstrate intermediate physiological properties relative to type IIA and IIB fibers. For the jaw muscles of adult male rats, the variations of fiber type composition and muscle use suggest that the muscle containing the largest amounts of slow-type fibers (the anterior belly of digastric muscle) is mainly

  18. [Pattern of paralysis and reconstructive operations after traumatic brachial plexus lesions].

    PubMed

    Rühmann, O; Schmolke, S; Carls, J; Wirth, C J

    2002-12-01

    The aim of this study was to evaluate persistent patterns of paralysis after traumatic brachial plexus lesions. As a result, consecutive reconstructive operations according to our differential therapy concept are presented. Between 04/1994 and 12/2000 in 104 patients with brachial plexus palsy, the grade of muscle power of the affected upper extremities was evaluated prospectively. The neuromuscular patterns of defect showed, in most cases, insufficient muscle power grades of 0-2 for the deltoid muscle (90%), supraspinatus muscle (82%), infraspinatus muscle (93%), elbow flexors (67% to 77%), hand and finger extensors (69% to 71%), and the abductor and extensors of the thumb (67% to 70%). In corresponding frequency, the following operations were performed between 04/1994 and 06/2002: shoulder arthrodesis (n 26), trapezius transfer (n 80), rotation osteotomy of humerus (n 10), triceps to biceps transposition (n 11), transposition of forearm flexors or extensors/Steindler operation (n 12), latissimus transfer (n 7), pectoralis transfer (n 1), teres major transfer (n 1), transposition of forearm flexors to the tendons of extensor digitorum (n 19) and of the extensor pollicis longus (n 9), and wrist arthrodesis (n 5). On malfunction of muscles following brachial plexus lesions, taking into account the individual neuromuscular defect, passive joint function, and bony deformities, different procedures such as muscle transposition, arthrodesis, and corrective osteotomy can be performed to improve function of the upper extremity.

  19. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  20. Mean individual muscle activities and ratios of total muscle activities in a selective muscle strengthening experiment: the effects of lower limb muscle activity based on mediolateral slope angles during a one-leg stance.

    PubMed

    Lee, Sang-Yeol

    2016-09-01

    [Purpose] The purpose of this study was to provide basic data for research on selective muscle strengthening by identifying mean muscle activities and calculating muscle ratios for use in developing strengthening methods. [Subjects and Methods] Twenty-one healthy volunteers were included in this study. Muscle activity was measured during a one-leg stance under 6 conditions of slope angle: 0°, 5°, 10°, 15°, 20°, and 25°. The data used in the analysis were root mean square and % total muscle activity values. [Results] There were significant differences in the root mean square of the gluteus medius, the hamstring, and the medial gastrocnemius muscles. There were significant differences in % total muscle activity of the medial gastrocnemius. [Conclusion] Future studies aimed at developing selective muscle strengthening methods are likely to yield more effective results by using muscle activity ratios based on electromyography data.

  1. Hindlimb suspension reduces muscle regeneration

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Truong, Q.; Macius, A.; Schultz, E.

    1998-01-01

    Exposure of juvenile skeletal muscle to a weightless environment reduces growth and satellite cell mitotic activity. However, the effect of a weightless environment on the satellite cell population during muscle repair remains unknown. Muscle injury was induced in rat soleus muscles using the myotoxic snake venom, notexin. Rats were placed into hindlimb-suspended or weightbearing groups for 10 days following injury. Cellular proliferation during regeneration was evaluated using 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry and image analysis. Hindlimb suspension reduced (P < 0.05) regenerated muscle mass, regenerated myofiber diameter, uninjured muscle mass, and uninjured myofiber diameter compared to weightbearing rats. Hindlimb suspension reduced (P < 0.05) BrdU labeling in uninjured soleus muscles compared to weight-bearing muscles. However, hindlimb suspension did not abolish muscle regeneration because myofibers formed in the injured soleus muscles of hindlimb-suspended rats, and BrdU labeling was equivalent (P > 0.10) on myofiber segments isolated from the soleus muscles of hindlimb-suspended and weightbearing rats following injury. Thus, hindlimb suspension (weightlessness) does not suppress satellite cell mitotic activity in regenerating muscles before myofiber formation, but reduces growth of the newly formed myofibers.

  2. Physical principles demonstrate that the biceps femoris muscle relative to the other hamstring muscles exerts the most force: implications for hamstring muscle strain injuries

    PubMed Central

    Dolman, Bronwyn; Verrall, Geoffrey; Reid, Iain

    2014-01-01

    Summary Of the hamstring muscle group the biceps femoris muscle is the most commonly injured muscle in sports requiring interval sprinting. The reason for this observation is unknown. The objective of this study was to calculate the forces of all three hamstring muscles, relative to each other, during a lengthening contraction to assess for any differences that may help explain the biceps femoris predilection for injury during interval sprinting. To calculate the displacement of each individual hamstring muscle previously performed studies on cadaveric anatomical data and hamstring kinematics during sprinting were used. From these displacement calculations for each individual hamstring muscle physical principles were then used to deduce the proportion of force exerted by each individual hamstring muscle during a lengthening muscle contraction. These deductions demonstrate that the biceps femoris muscle is required to exert proportionally more force in a lengthening muscle contraction relative to the semimembranosus and semitendinosus muscles primarily as a consequence of having to lengthen over a greater distance within the same time frame. It is hypothesized that this property maybe a factor in the known observation of the increased susceptibility of the biceps femoris muscle to injury during repeated sprints where recurrent higher force is required. PMID:25506583

  3. Stiff muscle fibers in calf muscles of patients with cerebral palsy lead to high passive muscle stiffness.

    PubMed

    Mathewson, Margie A; Chambers, Henry G; Girard, Paul J; Tenenhaus, Mayer; Schwartz, Alexandra K; Lieber, Richard L

    2014-12-01

    Cerebral palsy (CP), caused by an injury to the developing brain, can lead to alterations in muscle function. Subsequently, increased muscle stiffness and decreased joint range of motion are often seen in patients with CP. We examined mechanical and biochemical properties of the gastrocnemius and soleus muscles, which are involved in equinus muscle contracture. Passive mechanical testing of single muscle fibers from gastrocnemius and soleus muscle of patients with CP undergoing surgery for equinus deformity showed a significant increase in fiber stiffness (p<0.01). Bundles of fibers that included their surrounding connective tissues showed no stiffness difference (p=0.28).). When in vivo sarcomere lengths were measured and fiber and bundle stiffness compared at these lengths, both fibers and bundles of patients with CP were predicted to be much stiffer in vivo compared to typically developing (TD) individuals. Interestingly, differences in fiber and bundle stiffness were not explained by typical biochemical measures such as titin molecular weight (a giant protein thought to impact fiber stiffness) or collagen content (a proxy for extracellular matrix amount). We suggest that the passive mechanical properties of fibers and bundles are thus poorly understood. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.

    PubMed

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael

    2017-08-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable

  5. Sonic hedgehog acts cell-autonomously on muscle precursor cells to generate limb muscle diversity

    PubMed Central

    Anderson, Claire; Williams, Victoria C.; Moyon, Benjamin; Daubas, Philippe; Tajbakhsh, Shahragim; Buckingham, Margaret E.; Shiroishi, Toshihiko; Hughes, Simon M.; Borycki, Anne-Gaëlle

    2012-01-01

    How muscle diversity is generated in the vertebrate body is poorly understood. In the limb, dorsal and ventral muscle masses constitute the first myogenic diversification, as each gives rise to distinct muscles. Myogenesis initiates after muscle precursor cells (MPCs) have migrated from the somites to the limb bud and populated the prospective muscle masses. Here, we show that Sonic hedgehog (Shh) from the zone of polarizing activity (ZPA) drives myogenesis specifically within the ventral muscle mass. Shh directly induces ventral MPCs to initiate Myf5 transcription and myogenesis through essential Gli-binding sites located in the Myf5 limb enhancer. In the absence of Shh signaling, myogenesis is delayed, MPCs fail to migrate distally, and ventral paw muscles fail to form. Thus, Shh production in the limb ZPA is essential for the spatiotemporal control of myogenesis and coordinates muscle and skeletal development by acting directly to regulate the formation of specific ventral muscles. PMID:22987640

  6. Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass

    PubMed Central

    Davey, Jonathan R.; Watt, Kevin I.; Parker, Benjamin L.; Chaudhuri, Rima; Ryall, James G.; Cunningham, Louise; Qian, Hongwei; Sartorelli, Vittorio; Chamberlain, Jeffrey; James, David E.

    2016-01-01

    The transforming growth factor-β (TGF-β) signaling network is a critical regulator of skeletal muscle mass and function and, thus, is an attractive therapeutic target for combating muscle disease, but the underlying mechanisms of action remain undetermined. We report that follistatin-based interventions (which modulate TGF-β network activity) can promote muscle hypertrophy that ameliorates aging-associated muscle wasting. However, the muscles of old sarcopenic mice demonstrate reduced response to follistatin compared with healthy young-adult musculature. Quantitative proteomic and transcriptomic analyses of young-adult muscles identified a transcription/translation signature elicited by follistatin exposure, which included repression of ankyrin repeat and SOCS box protein 2 (Asb2). Increasing expression of ASB2 reduced muscle mass, thereby demonstrating that Asb2 is a TGF-β network–responsive negative regulator of muscle mass. In contrast to young-adult muscles, sarcopenic muscles do not exhibit reduced ASB2 abundance with follistatin exposure. Moreover, preventing repression of ASB2 in young-adult muscles diminished follistatin-induced muscle hypertrophy. These findings provide insight into the program of transcription and translation events governing follistatin-mediated adaptation of skeletal muscle attributes and identify Asb2 as a regulator of muscle mass implicated in the potential mechanistic dysfunction between follistatin-mediated muscle growth in young and old muscles. PMID:27182554

  7. Role of muscle spindle in weightlessness-induced amyotrophia and muscle pain.

    PubMed

    Ali, Umar; Fan, Xiao-Li; You, Hao-Jun

    2009-10-01

    To date, the medium and long-term space flight is urgent in need and has become a major task of our manned space flight program. There is no doubt that medium and long-term space flight has serious damaging impact upon human physiological systems. For instance, atrophy of the lower limb anti-gravity muscle can be induced during the space flight. Muscle atrophy significantly affects the flight of astronauts in space. Most importantly, it influences the precise manipulation of the astronauts and their response capacity to emergencies on returning to the atmosphere from space. Muscle atrophy caused by weightlessness may also seriously disrupt the normal life and work of the astronauts during the re-adaptation period. Here we summarize the corresponding research concentrating on weightlessness-induced changes of muscular structure and function. By combining research on muscle pain, which is a common clinical pain disease, we further provide a hypothesis concerning a dynamic feedback model of "weightlessness condition right triple arrow muscular atrophy <--> muscle pain". This may be useful to explore the neural mechanisms underlying the occurrence and development of muscular atrophy and muscle pain, through the key study of muscle spindle, and furthermore provide more effective therapy for clinical treatment.

  8. Muscle twitching

    MedlinePlus

    ... Some are common and normal. Others are signs of a nervous system disorder. Causes Causes may include: Autoimmune disorders , such ... muscle Spinal muscular atrophy Weak muscles (myopathy) Symptoms of a nervous system disorder include: Loss of, or change in, sensation ...

  9. Ultrasound assessment of hamstring muscle size using posterior thigh muscle thickness.

    PubMed

    Abe, Takashi; Loenneke, Jeremy P; Thiebaud, Robert S

    2016-05-01

    Several studies have investigated the relationship between ultrasound-measured muscle thickness (MT) and individual muscle cross-sectional area (CSA) and muscle volume (MV) in extremity and trunk muscles; however, the hamstring muscle has not been studied. The purpose of this study was to examine the relationship between posterior thigh MT by ultrasound and the muscle CSA and MV of the hamstring obtained by magnetic resonance imaging (MRI). Ten young women aged 20-31 had MT measured by ultrasound at three sites on the medial anterior (50% of thigh length; TL) and posterior (50% and 70% of TL) aspects of the thigh. On the same day, a series of continuous muscle CSA along the thigh was measured by MRI. In each slice, the anatomical CSA of the hamstring (biceps femoris, semitendinosus and semimembranosus) and quadriceps muscle was analysed, and the CSAs at 50% and 70% of TL and maximal CSA of the hamstring (CSAmax ) were determined. MV was calculated by multiplying CSA by slice thickness. A significant correlation was observed between posterior 50% MT and 50% hamstring CSA (r = 0·848, P = 0·002) and between posterior 70% MT and 70% hamstring CSA (r = 0·679, P = 0·031). Posterior 50% MT (r = 0·732, P = 0·016) and 50% MTxTL (r = 0·873, P = 0·001) were also correlated to hamstring MV. Anterior:posterior 50% thigh MT ratio was correlated to MV ratio of quadriceps and hamstring muscles (r = 0·803, P = 0·005). Our results suggest that posterior thigh MT reflects hamstring muscle CSA and MV. The anterior:posterior MT ratio may serve as a surrogate for MV ratio of quadriceps and hamstring. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  10. Differential sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy.

    PubMed

    de Theije, C C; Langen, R C J; Lamers, W H; Gosker, H R; Schols, A M W J; Köhler, S E

    2015-01-15

    Hypoxia as a consequence of acute and chronic respiratory disease has been associated with muscle atrophy. This study investigated the sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy. Male mice were exposed to 8% normobaric oxygen for up to 21 days. Oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles were isolated, weighed, and assayed for expression profiles of the ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), and glucocorticoid receptor (GR) and hypoxia-inducible factor-1α (HIF1α) signaling. Fiber-type composition and the capillary network were investigated. Hypoxia-induced muscle atrophy was more prominent in the EDL than the soleus muscle. Although increased expression of HIF1α target genes showed that both muscle types sensed hypoxia, their adaptive responses differed. Atrophy consistently involved a hypoxia-specific effect (i.e., not attributable to a hypoxia-mediated reduction of food intake) in the EDL only. Hypoxia-specific activation of the UPS and ALP and increased expression of the glucocorticoid receptor (Gr) and its target genes were also mainly observed in the EDL. In the soleus, stimulation of gene expression of those pathways could be mimicked to a large extent by food restriction alone. Hypoxia increased the number of capillary contacts per fiber cross-sectional area in both muscles. In the EDL, this was due to type II fiber atrophy, whereas in the soleus the absolute number of capillary contacts increased. These responses represent two distinct modes to improve oxygen supply to muscle fibers, but may aggravate muscle atrophy in chronic obstructive pulmonary disease patients who have a predominance of type II fibers. Copyright © 2015 the American Physiological Society.

  11. From single muscle fiber to whole muscle mechanics: a finite element model of a muscle bundle with fast and slow fibers.

    PubMed

    Marcucci, Lorenzo; Reggiani, Carlo; Natali, Arturo N; Pavan, Piero G

    2017-12-01

    Muscles exhibit highly complex, multi-scale architecture with thousands of muscle fibers, each with different properties, interacting with each other and surrounding connective structures. Consequently, the results of single-fiber experiments are scarcely linked to the macroscopic or whole muscle behavior. This is especially true for human muscles where it would be important to understand of how skeletal muscles disorders affect patients' life. In this work, we developed a mathematical model to study how fast and slow muscle fibers, well characterized in single-fiber experiments, work and generate together force and displacement in muscle bundles. We characterized the parameters of a Hill-type model, using experimental data on fast and slow single human muscle fibers, and comparing experimental data with numerical simulations obtained from finite element (FE) models of single fibers. Then, we developed a FE model of a bundle of 19 fibers, based on an immunohistochemically stained cross section of human diaphragm and including the corresponding properties of each slow or fast fiber. Simulations of isotonic contractions of the bundle model allowed the generation of its apparent force-velocity relationship. Although close to the average of the force-velocity curves of fast and slow fibers, the bundle curve deviates substantially toward the fast fibers at low loads. We believe that the present model and the characterization of the force-velocity curve of a fiber bundle represents the starting point to link the single-fiber properties to those of whole muscle with FE application in phenomenological models of human muscles.

  12. The Promotion of a Functional Fibrosis in Skeletal Muscle with Volumetric Muscle Loss Injury Following the Transplantation of Muscle-ECM

    DTIC Science & Technology

    2013-02-04

    i.e., volumetric muscle loss; VML). The explicit goal is to restore functional capacity to the injured tissue by promoting generation of muscle fibers ...3,23,25,27,28]. As a result, trans- plantation of a variety of ECMs in preclinical animal models has resulted in modest levels of muscle fiber generation at...the site of the defect during the initial months post-injury [20,28e30]. However, an apparent enhanced rate of muscle fiber generation at

  13. Unilateral Muscle Overuse Causes Bilateral Changes in Muscle Fiber Composition and Vascular Supply

    PubMed Central

    Song, Yafeng; Forsgren, Sture; Liu, Jing-Xia; Yu, Ji-Guo; Stål, Per

    2014-01-01

    Unilateral strength training can cause cross-transfer strength effects to the homologous contralateral muscles. However, the impact of the cross-over effects on the muscle tissue is unclear. To test the hypothesis that unilateral muscle overuse causes bilateral alterations in muscle fiber composition and vascular supply, we have used an experimental rabbit model with unilateral unloaded overstrain exercise via electrical muscle stimulation (E/EMS). The soleus (SOL) and gastrocnemius (GA) muscles of both exercised (E) and contralateral non-exercised (NE) legs (n = 24) were morphologically analyzed after 1w, 3w and 6w of EMS. Non-exercised rabbits served as controls (n = 6). After unilateral intervention the muscles of both E and NE legs showed myositis and structural and molecular tissue changes that to various degrees mirrored each other. The fiber area was bilaterally smaller than in controls after 3w of E/EMS in both SOL (E 4420 and NE 4333 µm2 vs. 5183 µm2, p<0.05) and GA (E 3572 and NE 2983 µm2 vs. 4697 µm2, p<0.02) muscles. After 6w of E/EMS, the percentage of slow MyHCI fibers was lower than in controls in the NE legs of SOL (88.1% vs. 98.1%, p<0.009), while the percentage of fast MyHCIIa fibers was higher in the NE legs of GA (25.7% vs. 15.8%, p = 0.02). The number of capillaries around fibers in the E and NE legs was lower (SOL 13% and 15%, respectively, GA 25% and 23%, respectively, p<0.05) than in controls. The overall alterations were more marked in the fast GA muscle than in the slow SOL muscle, which on the other hand showed more histopathological muscle changes. We conclude that unilateral repetitive unloaded overuse exercise via EMS causes myositis and muscle changes in fiber type proportions, fiber area and fiber capillarization not only in the exercised leg, but also in the homologous muscles in the non-exercised leg. PMID:25545800

  14. Effects of experimental muscle pain on muscle activity and co-ordination during static and dynamic motor function.

    PubMed

    Graven-Nielsen, T; Svensson, P; Arendt-Nielsen, L

    1997-04-01

    The relation between muscle pain, muscle activity, and muscle co-ordination is still controversial. The present human study investigates the influence of experimental muscle pain on resting, static, and dynamic muscle activity. In the resting and static experiments, the electromyography (EMG) activity and the contraction force of m. tibialis anterior were assessed before and after injection of 0.5 ml hypertonic saline (5%) into the same muscle. In the dynamic experiment, injections of 0.5 ml hypertonic saline (5%) were performed into either m. tibialis anterior (TA) or m. gastrocnemius (GA) and the muscle activity and co-ordination were investigated during gait on a treadmill by EMG recordings from m. TA and m. GA. At rest no evidence of EMG hyperactivity was found during muscle pain. The maximal voluntary contraction (MVC) during muscle pain was significantly lower than the control condition (P < 0.05). During a static contraction at 80% of the pre-pain MVC muscle pain caused a significant reduction in endurance time (P < 0.043). During dynamic contractions, muscle pain resulted in a significant decrease of the EMG activity in the muscle, agonistic to the painful muscle (P < 0.05), and a significant increase of the EMG activity of the muscle, antagonistic to the painful muscle (P < 0.05). Muscle pain seems to cause a general protection of painful muscles during both static and dynamic contractions. The increased EMG activity of the muscle antagonistic to the painful muscle is probably a functional adaptation of muscle co-ordination in order to limit movements. Modulation of muscle activity by muscle pain could be controlled via inhibition of muscles agonistic to the movement and/or excitation of muscles antagonistic to the movement. The present results are in accordance with the pain-adaptation model (Lund, J.P., Stohler, C.S. and Widmer, C.G. In: H. Vaerøy and H. Merskey (Eds.), Progress in Fibromyalgia and Myofascial Pain. Elsevier, Amsterdam, 1993, pp. 311

  15. Muscle fatigue in fibromyalgia is in the brain, not in the muscles: a case-control study of perceived versus objective muscle fatigue.

    PubMed

    Bandak, Elisabeth; Amris, Kirstine; Bliddal, Henning; Danneskiold-Samsøe, Bente; Henriksen, Marius

    2013-06-01

    To investigate relationships between perceived and objectively measured muscle fatigue during exhausting muscle contractions in women with fibromyalgia (FM) compared with healthy controls (HC). Women with FM and HC completed an isometric muscle exhaustion task at 90° shoulder abduction. Surface electromyographic (EMG) activity in the deltoid muscle was recorded together with self-reported level of muscle fatigue. 25 participants with FM and 23 HC were included. Average time to exhaustion was 254 s shorter in participants with FM than in HC. Participants with FM did not exhibit the same level of objective signs of muscle fatigue, seen as fewer changes in the EMG activity, as the HC during the exhaustion task. The task did not provoke pain in the HC, while participants with FM reported a doubling of pain. Women with FM had shorter exhaustion times and showed fewer objective signs of muscle fatigue during an exhausting isometric shoulder abduction compared with younger HC. This indicates that perceived muscle fatigue may be of central origin and supports the notion of central nervous dysfunction as basic pathological changes in FM.

  16. Inferring Muscle-Tendon Unit Power from Ankle Joint Power during the Push-Off Phase of Human Walking: Insights from a Multiarticular EMG-Driven Model.

    PubMed

    Honert, Eric C; Zelik, Karl E

    2016-01-01

    Inverse dynamics joint kinetics are often used to infer contributions from underlying groups of muscle-tendon units (MTUs). However, such interpretations are confounded by multiarticular (multi-joint) musculature, which can cause inverse dynamics to over- or under-estimate net MTU power. Misestimation of MTU power could lead to incorrect scientific conclusions, or to empirical estimates that misguide musculoskeletal simulations, assistive device designs, or clinical interventions. The objective of this study was to investigate the degree to which ankle joint power overestimates net plantarflexor MTU power during the Push-off phase of walking, due to the behavior of the flexor digitorum and hallucis longus (FDHL)-multiarticular MTUs crossing the ankle and metatarsophalangeal (toe) joints. We performed a gait analysis study on six healthy participants, recording ground reaction forces, kinematics, and electromyography (EMG). Empirical data were input into an EMG-driven musculoskeletal model to estimate ankle power. This model enabled us to parse contributions from mono- and multi-articular MTUs, and required only one scaling and one time delay factor for each subject and speed, which were solved for based on empirical data. Net plantarflexing MTU power was computed by the model and quantitatively compared to inverse dynamics ankle power. The EMG-driven model was able to reproduce inverse dynamics ankle power across a range of gait speeds (R2 ≥ 0.97), while also providing MTU-specific power estimates. We found that FDHL dynamics caused ankle power to slightly overestimate net plantarflexor MTU power, but only by ~2-7%. During Push-off, FDHL MTU dynamics do not substantially confound the inference of net plantarflexor MTU power from inverse dynamics ankle power. However, other methodological limitations may cause inverse dynamics to overestimate net MTU power; for instance, due to rigid-body foot assumptions. Moving forward, the EMG-driven modeling approach presented

  17. Functional recovery of completely denervated muscle: implications for innervation of tissue-engineered muscle.

    PubMed

    Kang, Sung-Bum; Olson, Jennifer L; Atala, Anthony; Yoo, James J

    2012-09-01

    Tissue-engineered muscle has been proposed as a solution to repair volumetric muscle defects and to restore muscle function. To achieve functional recovery, engineered muscle tissue requires integration of the host nerve. In this study, we investigated whether denervated muscle, which is analogous to tissue-engineered muscle tissue, can be reinnervated and can recover muscle function using an in vivo model of denervation followed by neurotization. The outcomes of this investigation may provide insights on the ability of tissue-engineered muscle to integrate with the host nerve and acquire normal muscle function. Eighty Lewis rats were classified into three groups: a normal control group (n=16); a denervated group in which sciatic innervations to the gastrocnemius muscle were disrupted (n=32); and a transplantation group in which the denervated gastrocnemius was repaired with a common peroneal nerve graft into the muscle (n=32). Neurofunctional behavior, including extensor postural thrust (EPT), withdrawal reflex latency (WRL), and compound muscle action potential (CMAP), as well as histological evaluations using alpha-bungarotoxin and anti-NF-200 were performed at 2, 4, 8, and 12 weeks (n=8) after surgery. We found that EPT was improved by transplantation of the nerve grafts, but the EPT values in the transplanted animals at 12 weeks postsurgery were still significantly lower than those measured for the normal control group at 4 weeks (EPT, 155.0±38.9 vs. 26.3±13.8 g, p<0.001; WRL, 2.7±2.30 vs. 8.3±5.5 s, p=0.027). In addition, CMAP latency and amplitude significantly improved with time after surgery in the transplantation group (p<0.001, one-way analysis of variance), and at 12 weeks postsurgery, CMAP latency and amplitude were not statistically different from normal control values (latency, 0.9±0.0 vs. 1.3±0.7 ms, p=0.164; amplitude, 30.2±7.0 vs. 46.4±26.9 mV, p=0.184). Histologically, regeneration of neuromuscular junctions was seen in the

  18. The effect of current flow direction on motor hot spot allocation by transcranial magnetic stimulation.

    PubMed

    Stephani, Caspar; Paulus, Walter; Sommer, Martin

    2016-01-01

    The objective of this study was to investigate the significance of pulse configurations and current direction for corticospinal activation using transcranial magnetic stimulation (TMS). In 11 healthy subjects (8 female), a motor map for the motor evoked potentials (MEPs) recorded from the first dorsal interosseus (FDI), abductor digiti minimi (ADM), extensor carpi radialis, and biceps brachii (BB) muscles of the dominant side was established. Starting from a manually determined hot spot of the FDI representation, we measured MEPs at equal oriented points on an hexagonal grid, with 7 MEPs recorded at each point, using the following pulse configurations: posteriorly directed monophasic (Mo-P), anteriorly directed monophasic (Mo-A), biphasic with the more relevant second cycle oriented posteriorly (Bi-P) as well as a reversed biphasic condition (Bi-A). For each pulse configuration, a hot spot was determined and a center of gravity (CoG) was calculated. We found that the factor current direction had an effect on location of the CoG-adjusted hot spot in the cranio-caudal axis but not in the latero-medial direction with anteriorly directed pulses locating the CoG more anteriorly and vice versa. In addition, the CoG for the FDI was more laterally than the cortical representations for the abductor digiti minimi (ADM) and extensor carpi radialis (ECR) which were registered as well. The results indicate that direction of the current pulse should be taken into account for determination of the motor representation of a muscle by TMS. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  19. Re-positioning forelimb superficialis muscles: tendon attachment and muscle activity enable active relocation of functional myofibers

    PubMed Central

    Huang, Alice H.; Riordan, Timothy J.; Wang, Lingyan; Eyal, Shai; Zelzer, Elazar; Brigande, John V.; Schweitzer, Ronen

    2013-01-01

    Summary The muscles that govern hand motion are composed of extrinsic muscles that reside within the forearm and intrinsic muscles that reside within the hand. We find that the extrinsic muscles of the flexor digitorum superficialis (FDS) first differentiate as intrinsic muscles within the hand and then relocate as myofibers to their final position in the arm. This unique translocation of differentiated myofibers across a joint is dependent on muscle contraction and muscle-tendon attachment. Interestingly, the intrinsic flexor digitorum brevis (FDB) muscles of the foot are identical to the FDS in tendon pattern and delayed developmental timing, but undergo limited muscle translocation, providing strong support for evolutionary homology between the FDS and FDB muscles. We propose that the intrinsic FDB pattern represents the original tetrapod limb and translocation of the muscles to form the FDS is a mammalian evolutionary addition. PMID:24044893

  20. Electromyographic evaluation of abdominal-muscle function with and without concomitant pelvic-floor-muscle contraction.

    PubMed

    Tahan, Nahid; Arab, Amir Massoud; Vaseghi, Bita; Khademi, Khosro

    2013-05-01

    Coactivation of abdominal and pelvic-floor muscles (PFM) is an issue considered by researchers recently. Electromyography (EMG) studies have shown that the abdominal-muscle activity is a normal response to PFM activity, and increase in EMG activity of the PFM concomitant with abdominal-muscle contraction was also reported. The purpose of this study was to compare the changes in EMG activity of the deep abdominal muscles during abdominal-muscle contraction (abdominal hollowing and bracing) with and without concomitant PFM contraction in healthy and low-back-pain (LBP) subjects. A 2 × 2 repeated-measures design. Laboratory. 30 subjects (15 with LBP, 15 without LBP). Peak rectified EMG of abdominal muscles. No difference in EMG of abdominal muscles with and without concomitant PFM contraction in abdominal hollowing (P = .84) and abdominal bracing (P = .53). No difference in EMG signal of abdominal muscles with and without PFM contraction between LBP and healthy subjects in both abdominal hollowing (P = .88) and abdominal bracing (P = .98) maneuvers. Adding PFM contraction had no significant effect on abdominal-muscle contraction in subjects with and without LBP.

  1. Muscle abnormalities in osteogenesis imperfecta

    PubMed Central

    Veilleux, L-N.; Trejo, P.; Rauch, F.

    2017-01-01

    Osteogenesis imperfecta (OI) is mainly characterized by bone fragility but muscle abnormalities have been reported both in OI mouse models and in children with OI. Muscle mass is decreased in OI, even when short stature is taken into account. Dynamic muscle tests aiming at maximal eccentric force production reveal functional deficits that can not be explained by low muscle mass alone. However, it appears that diaphyseal bone mass is normally adapted to muscle force. At present the determinants of muscle mass and function in OI have not been clearly defined. Physiotherapy interventions and bisphosphonate treatment appear to have some effect on muscle function in OI. Interventions targeting muscle mass have shown encouraging results in OI animal models and are an interesting area for further research. PMID:28574406

  2. Effect of repeated forearm muscle cooling on the adaptation of skeletal muscle metabolism in humans

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Hitoshi; Nishimura, Takayuki; Wijayanto, Titis; Watanuki, Shigeki; Tochihara, Yutaka

    2017-07-01

    This study aimed to investigate the effect of repeated cooling of forearm muscle on adaptation in skeletal muscle metabolism. It is hypothesized that repeated decreases of muscle temperature would increase the oxygen consumption in hypothermic skeletal muscle. Sixteen healthy males participated in this study. Their right forearm muscles were locally cooled to 25 °C by cooling pads attached to the skin. This local cooling was repeated eight times on separate days for eight participants (experimental group), whereas eight controls received no cold exposure. To evaluate adaptation in skeletal muscle metabolism, a local cooling test was conducted before and after the repeated cooling period. Change in oxy-hemoglobin content in the flexor digitorum at rest and during a 25-s isometric handgrip (10% maximal voluntary construction) was measured using near-infrared spectroscopy at every 2 °C reduction in forearm muscle temperature. The arterial blood flow was occluded for 15 s by upper arm cuff inflation at rest and during the isometric handgrip. The oxygen consumption in the flexor digitorum muscle was evaluated by a slope of the oxy-hemoglobin change during the arterial occlusion. In the experimental group, resting oxygen consumption in skeletal muscle did not show any difference between pre- and post-intervention, whereas muscle oxygen consumption during the isometric handgrip was significantly higher in post-intervention than in pre-test from thermoneutral baseline to 31 °C muscle temperature ( P < 0.05). This result indicated that repeated local muscle cooling might facilitate oxidative metabolism in the skeletal muscle. In summary, skeletal muscle metabolism during submaximal isometric handgrip was facilitated after repeated local muscle cooling.

  3. Effect of repeated forearm muscle cooling on the adaptation of skeletal muscle metabolism in humans.

    PubMed

    Wakabayashi, Hitoshi; Nishimura, Takayuki; Wijayanto, Titis; Watanuki, Shigeki; Tochihara, Yutaka

    2017-07-01

    This study aimed to investigate the effect of repeated cooling of forearm muscle on adaptation in skeletal muscle metabolism. It is hypothesized that repeated decreases of muscle temperature would increase the oxygen consumption in hypothermic skeletal muscle. Sixteen healthy males participated in this study. Their right forearm muscles were locally cooled to 25 °C by cooling pads attached to the skin. This local cooling was repeated eight times on separate days for eight participants (experimental group), whereas eight controls received no cold exposure. To evaluate adaptation in skeletal muscle metabolism, a local cooling test was conducted before and after the repeated cooling period. Change in oxy-hemoglobin content in the flexor digitorum at rest and during a 25-s isometric handgrip (10% maximal voluntary construction) was measured using near-infrared spectroscopy at every 2 °C reduction in forearm muscle temperature. The arterial blood flow was occluded for 15 s by upper arm cuff inflation at rest and during the isometric handgrip. The oxygen consumption in the flexor digitorum muscle was evaluated by a slope of the oxy-hemoglobin change during the arterial occlusion. In the experimental group, resting oxygen consumption in skeletal muscle did not show any difference between pre- and post-intervention, whereas muscle oxygen consumption during the isometric handgrip was significantly higher in post-intervention than in pre-test from thermoneutral baseline to 31 °C muscle temperature (P < 0.05). This result indicated that repeated local muscle cooling might facilitate oxidative metabolism in the skeletal muscle. In summary, skeletal muscle metabolism during submaximal isometric handgrip was facilitated after repeated local muscle cooling.

  4. Biomimetic Scaffolds for Regeneration of Volumetric Muscle Loss in Skeletal Muscle Injuries

    PubMed Central

    Grasman, Jonathan M.; Zayas, Michelle J.; Page, Ray; Pins, George D.

    2015-01-01

    Skeletal muscle injuries typically result from traumatic incidents such as combat injuries where soft-tissue extremity injuries are present in one of four cases. Further, about 4.5 million reconstructive surgical procedures are performed annually as a result of car accidents, cancer ablation, or cosmetic procedures. These combat- and trauma-induced skeletal muscle injuries are characterized by volumetric muscle loss (VML), which significantly reduces the functionality of the injured muscle. While skeletal muscle has an innate repair mechanism, it is unable to compensate for VML injuries because large amounts of tissue including connective tissue and basement membrane are removed or destroyed. This results in in a significant need to develop off-the-shelf biomimetic scaffolds to direct skeletal muscle regeneration. Here, the structure and organization of native skeletal muscle tissue is described in order to reveal clear design parameters that are necessary for scaffolds to mimic in order to successfully regenerate muscular tissue. We review the literature with respect to the materials and methodologies used to develop scaffolds for skeletal muscle tissue regeneration as well as the limitations of these materials. We further discuss the variety of cell sources and different injury models to provide some context for the multiple approaches used to evaluate these scaffold materials. Recent findings are highlighted to address the state of the field and directions are outlined for future strategies, both in scaffold design and in the use of different injury models to evaluate these materials, for regenerating functional skeletal muscle. PMID:26219862

  5. Ischemia causes muscle fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D. M.

    2001-01-01

    The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P < 0.05) than baseline value. Reduced twitch force was correlated in a dose-dependent manner with reduced muscle oxygenation (r = 0.78, P < 0.001). Although the correlation does not prove causation, the results indicate that ischemia leading to a 7% or greater reduction in muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue.

  6. Respiratory muscle involvement in sarcoidosis.

    PubMed

    Schreiber, Tina; Windisch, Wolfram

    2018-07-01

    In sarcoidosis, muscle involvement is common, but mostly asymptomatic. Currently, little is known about respiratory muscle and diaphragm involvement and function in patients with sarcoidosis. Reduced inspiratory muscle strength and/or a reduced diaphragm function may contribute to exertional dyspnea, fatigue and reduced health-related quality of life. Previous studies using volitional and non-volitional tests demonstrated a reduced inspiratory muscle strength in sarcoidosis compared to control subjects, and also showed that respiratory muscle function may even be significantly impaired in a subset of patients. Areas covered: This review examines the evidence on respiratory muscle involvement and its implications in sarcoidosis with emphasis on pathogenesis, diagnosis and treatment of respiratory muscle dysfunction. The presented evidence was identified by a literature search performed in PubMed and Medline for articles about respiratory and skeletal muscle function in sarcoidosis through to January 2018. Expert commentary: Respiratory muscle involvement in sarcoidosis is an underdiagnosed condition, which may have an important impact on dyspnea and health-related quality of life. Further studies are needed to understand the etiology, pathogenesis and extent of respiratory muscle involvement in sarcoidosis.

  7. Effect of altering starting length and activation timing of muscle on fiber strain and muscle damage.

    PubMed

    Butterfield, Timothy A; Herzog, Walter

    2006-05-01

    Muscle strain injuries are some of the most frequent injuries in sports and command a great deal of attention in an effort to understand their etiology. These injuries may be the culmination of a series of subcellular events accumulated through repetitive lengthening (eccentric) contractions during exercise, and they may be influenced by a variety of variables including fiber strain magnitude, peak joint torque, and starting muscle length. To assess the influence of these variables on muscle injury magnitude in vivo, we measured fiber dynamics and joint torque production during repeated stretch-shortening cycles in the rabbit tibialis anterior muscle, at short and long muscle lengths, while varying the timing of activation before muscle stretch. We found that a muscle subjected to repeated stretch-shortening cycles of constant muscle-tendon unit excursion exhibits significantly different joint torque and fiber strains when the timing of activation or starting muscle length is changed. In particular, measures of fiber strain and muscle injury were significantly increased by altering activation timing and increasing the starting length of the muscle. However, we observed differential effects on peak joint torque during the cyclic stretch-shortening exercise, as increasing the starting length of the muscle did not increase torque production. We conclude that altering activation timing and muscle length before stretch may influence muscle injury by significantly increasing fiber strain magnitude and that fiber dynamics is a more important variable than muscle-tendon unit dynamics and torque production in influencing the magnitude of muscle injury.

  8. Potential of laryngeal muscle regeneration using induced pluripotent stem cell-derived skeletal muscle cells.

    PubMed

    Dirja, Bayu Tirta; Yoshie, Susumu; Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Nakamura, Ryosuke; Otsuki, Koshi; Nomoto, Yukio; Wada, Ikuo; Hazama, Akihiro; Omori, Koichi

    2016-01-01

    Conclusion Induced pluripotent stem (iPS) cells may be a new potential cell source for laryngeal muscle regeneration in the treatment of vocal fold atrophy after recurrent laryngeal nerve paralysis. Objectives Unilateral vocal fold paralysis can lead to degeneration, atrophy, and loss of force of the thyroarytenoid muscle. At present, there are some treatments such as thyroplasty, arytenoid adduction, and vocal fold injection. However, such treatments cannot restore reduced mass of the thyroarytenoid muscle. iPS cells have been recognized as supplying a potential resource for cell transplantation. The aim of this study was to assess the effectiveness of the use of iPS cells for the regeneration of laryngeal muscle through the evaluation of both in vitro and in vivo experiments. Methods Skeletal muscle cells were generated from tdTomato-labeled iPS cells using embryoid body formation. Differentiation into skeletal muscle cells was analyzed by gene expression and immunocytochemistry. The tdTomato-labeled iPS cell-derived skeletal muscle cells were transplanted into the left atrophied thyroarytenoid muscle. To evaluate the engraftment of these cells after transplantation, immunohistochemistry was performed. Results The tdTomato-labeled iPS cells were successfully differentiated into skeletal muscle cells through an in vitro experiment. These cells survived in the atrophied thyroarytenoid muscle after transplantation.

  9. Catechins activate muscle stem cells by Myf5 induction and stimulate muscle regeneration.

    PubMed

    Kim, A Rum; Kim, Kyung Min; Byun, Mi Ran; Hwang, Jun-Ha; Park, Jung Il; Oh, Ho Taek; Kim, Hyo Kyeong; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2017-07-22

    Muscle weakness is one of the most common symptoms in aged individuals and increases risk of mortality. Thus, maintenance of muscle mass is important for inhibiting aging. In this study, we investigated the effect of catechins, polyphenol compounds in green tea, on muscle regeneration. We found that (-)-epicatechin gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) activate satellite cells by induction of Myf5 transcription factors. For satellite cell activation, Akt kinase was significantly induced after ECG treatment and ECG-induced satellite cell activation was blocked in the presence of Akt inhibitor. ECG also promotes myogenic differentiation through the induction of myogenic markers, including Myogenin and Muscle creatine kinase (MCK), in satellite and C2C12 myoblast cells. Finally, EGCG administration to mice significantly increased muscle fiber size for regeneration. Taken together, the results suggest that catechins stimulate muscle stem cell activation and differentiation for muscle regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Differences in muscle sympathetic nerve response to isometric exercise in different muscle groups.

    PubMed

    Saito, M

    1995-01-01

    The aim of this study was to examine the effects of muscle fibre composition on muscle sympathetic nerve activity (MSNA) in response to isometric exercise. The MSNA, recorded from the tibial nerve by a microneurographic technique during contraction and following arterial occlusion, was compared in three different muscle groups: the forearm (handgrip), anterior tibialis (foot dorsal contraction), and soleus muscles (foot plantar contraction) contracted separately at intensities of 20%, 33% and 50% of the maximal voluntary force. The increases in MSNA relative to control levels during contraction and occlusion were significant at all contracting forces for handgrip and at 33% and 50% of maximal for dorsal contraction, but there were no significant changes, except during exercise at 50%, for plantar contraction. The size of the MSNA response correlated with the contraction force in all muscle groups. Pooling data for all contraction forces, there were different MSNA responses among muscle groups in contraction forces (P = 0.0001, two-way analysis of variance), and occlusion periods (P = 0.0001). The MSNA increases were in the following order of magnitude: handgrip, dorsal, and plantar contractions. The order of the fibre type composition in these three muscles is from equal numbers of types I and II fibres in the forearm to increasing number of type I fibres in the leg muscles. The different MSNA responses to the contraction of different muscle groups observed may have been due in part to muscle metaboreflex intensity influenced by their metabolic capacity which is related to by their metabolic capacity which is related to the fibre type.

  11. Eccentric muscle challenge shows osteopontin polymorphism modulation of muscle damage.

    PubMed

    Barfield, Whitney L; Uaesoontrachoon, Kitipong; Wu, Chung-Sheih; Lin, Stephen; Chen, Yue; Wang, Paul C; Kanaan, Yasmine; Bond, Vernon; Hoffman, Eric P

    2014-08-01

    A promoter polymorphism of the osteopontin (OPN) gene (rs28357094) has been associated with multiple inflammatory states, severity of Duchenne muscular dystrophy (DMD) and muscle size in healthy young adults. We sought to define the mechanism of action of the polymorphism, using allele-specific in vitro reporter assays in muscle cells, and a genotype-stratified intervention in healthy controls. In vitro reporter constructs showed the G allele to respond to estrogen treatment, whereas the T allele showed no transcriptional response. Young adult volunteers (n = 187) were enrolled into a baseline study, and subjects with specific rs28357094 genotypes enrolled into an eccentric muscle challenge intervention [n = 3 TT; n = 3 GG/GT (dominant inheritance model)]. Female volunteers carrying the G allele showed significantly greater inflammation and increased muscle volume change as determined by magnetic resonance imaging T1- and T2-weighted images after eccentric challenge, as well as greater decrement in biceps muscle force. Our data suggest a model where the G allele enables enhanced activities of upstream enhancer elements due to loss of Sp1 binding at the polymorphic site. This results in significantly greater expression of the pro-inflammatory OPN cytokine during tissue remodeling in response to challenge in G allele carriers, promoting muscle hypertrophy in normal females, but increased damage in DMD patients. © The Author 2014. Published by Oxford University Press.

  12. Effect of painless diabetic neuropathy on pressure pain hypersensitivity (hyperalgesia) after acute foot trauma

    PubMed Central

    Wienemann, Tobias; Chantelau, Ernst A.; Koller, Armin

    2014-01-01

    Introduction and objective Acute injury transiently lowers local mechanical pain thresholds at a limb. To elucidate the impact of painless (diabetic) neuropathy on this post-traumatic hyperalgesia, pressure pain perception thresholds after a skeletal foot trauma were studied in consecutive persons without and with neuropathy (i.e. history of foot ulcer or Charcot arthropathy). Design and methods A case–control study was done on 25 unselected clinical routine patients with acute unilateral foot trauma (cases: elective bone surgery; controls: sprain, toe fracture). Cases were 12 patients (11 diabetic subjects) with severe painless neuropathy and chronic foot pathology. Controls were 13 non-neuropathic persons. Over 1 week after the trauma, cutaneous pressure pain perception threshold (CPPPT) and deep pressure pain perception threshold (DPPPT) were measured repeatedly, adjacent to the injury and at the opposite foot (pinprick stimulators, Algometer II®). Results In the control group, post-traumatic DPPPT (but not CPPPT) at the injured foot was reduced by about 15–25%. In the case group, pre- and post-operative CPPPT and DPPPT were supranormal. Although DPPPT fell post-operatively by about 15–20%, it remained always higher than the post-traumatic DPPPT in the control group: over musculus abductor hallucis 615 kPa (kilopascal) versus 422 kPa, and over metatarsophalangeal joint 518 kPa versus 375 kPa (medians; case vs. control group); CPPPT did not decrease post-operatively. Conclusion Physiological nociception and post-traumatic hyperalgesia to pressure are diminished at the foot with severe painless (diabetic) neuropathy. A degree of post-traumatic hypersensitivity required to ‘pull away’ from any one, even innocuous, mechanical impact in order to avoid additional damage is, therefore, lacking. PMID:25397867

  13. Your Muscles

    MedlinePlus

    ... and you need to throw up. The muscles push the food back out of the stomach so it comes up ... body the power it needs to lift and push things. Muscles in your neck and the top part of your back aren't as large, but they are capable ...

  14. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Somik; Yin, Hongshan; Department of Cardiovascular Medicine, Third Affiliated Hospital, Hebei Medical University, Shijiazhuang 050051, Hebei

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response ismore » observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.« less

  15. Association of low back pain with muscle stiffness and muscle mass of the lumbar back muscles, and sagittal spinal alignment in young and middle-aged medical workers.

    PubMed

    Masaki, Mitsuhiro; Aoyama, Tomoki; Murakami, Takashi; Yanase, Ko; Ji, Xiang; Tateuchi, Hiroshige; Ichihashi, Noriaki

    2017-11-01

    Muscle stiffness of the lumbar back muscles in low back pain (LBP) patients has not been clearly elucidated because quantitative assessment of the stiffness of individual muscles was conventionally difficult. This study aimed to examine the association of LBP with muscle stiffness assessed using ultrasonic shear wave elastography (SWE) and muscle mass of the lumbar back muscle, and spinal alignment in young and middle-aged medical workers. The study comprised 23 asymptomatic medical workers [control (CTR) group] and 9 medical workers with LBP (LBP group). Muscle stiffness and mass of the lumbar back muscles (lumbar erector spinae, multifidus, and quadratus lumborum) in the prone position were measured using ultrasonic SWE. Sagittal spinal alignment in the standing and prone positions was measured using a Spinal Mouse. The association with LBP was investigated by multiple logistic regression analysis with a forward selection method. The analysis was conducted using the shear elastic modulus and muscle thickness of the lumbar back muscles, and spinal alignment, age, body height, body weight, and sex as independent variables. Multiple logistic regression analysis showed that muscle stiffness of the lumbar multifidus muscle and body height were significant and independent determinants of LBP, but that muscle mass and spinal alignment were not. Muscle stiffness of the lumbar multifidus muscle in the LBP group was significantly higher than that in the CTR group. The results of this study suggest that LBP is associated with muscle stiffness of the lumbar multifidus muscle in young and middle-aged medical workers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Muscles within muscles: a tensiomyographic and histochemical analysis of the normal human vastus medialis longus and vastus medialis obliquus muscles

    PubMed Central

    Travnik, Ludvik; Djordjevič, Srdjan; Rozman, Sergej; Hribernik, Marija; Dahmane, Raja

    2013-01-01

    The aim of this study was to show the connection between structure (anatomical and histochemical) and function (muscle contraction properties) of vastus medialis obliquus (VMO) and vastus medialis longus (VML). The non-invasive tensiomyography (TMG) method was used to determine the contractile properties (contraction time; Tc) of VML and VMO muscle, as a reflection of the ratio between the slow and fast fibers in two groups of nine young men. VML and VMO significantly (P < 0.01) differ in the proportion of type 1 (59.6: 44%) and type 2b (6.3: 15%) fibers. The VML muscle is almost entirely composed of type 1 and type 2a fibers. In many samples of this muscle no type 2b fibers were found. The proportion of slow-twitch type 1 fibers is nearly twice as high as the proportion of fast-twitch type 2a fibers. These observations indicate that VML is a slower and more fatigue-resistant muscle than VMO muscle. These characteristics correspond to the different functions of the VML, which is an extensor of the knee, and to the VMO, which maintains the stable position of the patella in the femoral groove. Our results obtained by TMG provided additional evidence that muscle fibers within the segments of VM muscle were not homogenous with regard to their contractile properties, thereby confirming the histochemical results. Tc can be attributed to the higher percentage of slow-twitch fibers – type 1. The statistically shorter Tc (P ≤ 0.001) of VMO (22.8 ± 4.0 ms) compared with VML (26.7 ± 4.0 ms) in our study is consistent with previously found differences in histochemical, morphological and electrophysiological data. In conclusion, the results of this study provide evidence that the VML and VMO muscles are not only anatomically and histochemically different muscles, but also functionally different biological structures. PMID:23586984

  17. Prevalence of ulnar-to-median nerve motor fiber anastomosis (Riché-Cannieu communicating branch) in hand: An electrophysiological study

    PubMed Central

    Ahadi, Tannaz; Raissi, Gholam Reza; Yavari, Masood; Majidi, Lobat

    2016-01-01

    Background: Two main muscles studied in the hand for evaluation of median nerve injuries are opponens pollicis (OP) and abductor pollicis brevis (APB). However, Riché-Cannieu communicating branch (RCCB) may limit the use of these muscles in electrodiagnosis. This condition is confusing in the case of median nerve injuries. This study was conducted to evaluate the prevalence of RCCB. Methods: Twenty-three consecutive cases of complete median nerve injury were studied. Evoked responses via stimulation of median and ulnar nerves in the wrist and recording with needle in the thenar area were studied. Results: Of the patients, 82.6% exhibited RCCB. In 14 (60.8%) cases the OP and in 19(82.6%) cases APB was supplied by the ulnar nerve. Conclusion: RCCB was detected to be 60.8% in OP and 82.6% in APB, so OP is preferable to APB in the study of median nerve. PMID:27390694

  18. Effect of Statins on Skeletal Muscle: Exercise, Myopathy, and Muscle Outcomes

    PubMed Central

    Parker, Beth A.; Thompson, Paul D.

    2012-01-01

    Statins are effective for reducing low-density lipoprotein cholesterol and cardiac events, but can produce muscle side effects. We have hypothesized that statin-related muscle complaints are exacerbated by exercise and influenced by factors including mitochondrial dysfunction, membrane disruption and/or calcium handling. The interaction between statins, exercise and muscle symptoms may be more effectively diagnosed and treated as rigorous scientific studies accumulate. PMID:23000957

  19. Exercise-Induced Skeletal Muscle Damage.

    PubMed

    Evans, W J

    1987-01-01

    In brief: Delayed-onset muscle soreness is most likely caused by structural damage in skeletal muscle after eccentric exercise, in which muscles produce force while lengthening, as in running downhill. This damage may take as long as 12 weeks to repair. Therefore, athletes should allow plenty of time for recovery after events that cause extreme muscle soreness. Because prostaglandin E2 may be important in muscle repair, prostaglandin blockers, such as aspirin, may be useless or even detrimental in the treatment of delayed-onset muscle soreness. Eccentric exercise training may help prevent soreness.

  20. Action of obestatin in skeletal muscle repair: stem cell expansion, muscle growth, and microenvironment remodeling.

    PubMed

    Gurriarán-Rodríguez, Uxía; Santos-Zas, Icía; González-Sánchez, Jessica; Beiroa, Daniel; Moresi, Viviana; Mosteiro, Carlos S; Lin, Wei; Viñuela, Juan E; Señarís, José; García-Caballero, Tomás; Casanueva, Felipe F; Nogueiras, Rubén; Gallego, Rosalía; Renaud, Jean-Marc; Adamo, Sergio; Pazos, Yolanda; Camiña, Jesús P

    2015-06-01

    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration.

  1. Exercise-induced muscle glucose uptake in mice with graded, muscle-specific GLUT-4 deletion.

    PubMed

    Howlett, Kirsten F; Andrikopoulos, Sofianos; Proietto, Joseph; Hargreaves, Mark

    2013-08-01

    To investigate the importance of the glucose transporter GLUT-4 for muscle glucose uptake during exercise, transgenic mice with skeletal muscle GLUT-4 expression approximately 30-60% of normal (CON) and approximately 5-10% of normal (KO) were generated using the Cre/Lox system and compared with wild-type (WT) mice during approximately 40 min of treadmill running (KO: 37.7 ± 1.3 min; WT: 40 min; CON: 40 min, P = 0.18). In WT and CON animals, exercise resulted in an overall increase in muscle glucose uptake. More specifically, glucose uptake was increased in red gastrocnemius of WT mice and in the soleus and red gastrocnemius of CON mice. In contrast, the exercise-induced increase in muscle glucose uptake in all muscles was completely abolished in KO mice. Muscle glucose uptake increased during exercise in both red and white quadriceps of WT mice, while the small increases in CON mice were not statistically significant. In KO mice, there was no change at all in quadriceps muscle glucose uptake. No differences in muscle glycogen use during exercise were observed between any of the groups. However, there was a significant increase in plasma glucose levels after exercise in KO mice. The results of this study demonstrated that a reduction in skeletal muscle GLUT-4 expression to approximately 10% of normal levels completely abolished the exercise-induced increase in muscle glucose uptake.

  2. Regulation of skeletal muscle oxidative capacity and muscle mass by SIRT3

    USDA-ARS?s Scientific Manuscript database

    We have previously reported that the expression of mitochondrial deacetylase SIRT3 is high in the slow oxidative muscle and that the expression of muscle SIRT3 level is increased by dietary restriction or exercise training. To explore the function of SIRT3 in skeletal muscle, we report here the esta...

  3. Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats

    PubMed Central

    Bennett, Brian T.; Wilson, Joseph C.; Sperringer, Justin; Mohamed, Junaith S.; Edens, Neile K.; Pereira, Suzette L.

    2014-01-01

    In this study we tested the hypothesis that green tea extract (GTE) would improve muscle recovery after reloading following disuse. Aged (32 mo) Fischer 344 Brown Norway rats were randomly assigned to receive either 14 days of hindlimb suspension (HLS) or 14 days of HLS followed by normal ambulatory function for 14 days (recovery). Additional animals served as cage controls. The rats were given GTE (50 mg/kg body wt) or water (vehicle) by gavage 7 days before and throughout the experimental periods. Compared with vehicle treatment, GTE significantly attenuated the loss of hindlimb plantaris muscle mass (−24.8% vs. −10.7%, P < 0.05) and tetanic force (−43.7% vs. −25.9%, P <0.05) during HLS. Although GTE failed to further improve recovery of muscle function or mass compared with vehicle treatment, animals given green tea via gavage maintained the lower losses of muscle mass that were found during HLS (−25.2% vs. −16.0%, P < 0.05) and force (−45.7 vs. −34.4%, P < 0.05) after the reloading periods. In addition, compared with vehicle treatment, GTE attenuated muscle fiber cross-sectional area loss in both plantaris (−39.9% vs. −23.9%, P < 0.05) and soleus (−37.2% vs. −17.6%) muscles after HLS. This green tea-induced difference was not transient but was maintained over the reloading period for plantaris (−45.6% vs. −21.5%, P <0.05) and soleus muscle fiber cross-sectional area (−38.7% vs. −10.9%, P <0.05). GTE increased satellite cell proliferation and differentiation in plantaris and soleus muscles during recovery from HLS compared with vehicle-treated muscles and decreased oxidative stress and abundance of the Bcl-2-associated X protein (Bax), yet this did not further improve muscle recovery in reloaded muscles. These data suggest that muscle recovery following disuse in aging is complex. Although satellite cell proliferation and differentiation are critical for muscle repair to occur, green tea-induced changes in satellite cell number is

  4. Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats.

    PubMed

    Alway, Stephen E; Bennett, Brian T; Wilson, Joseph C; Sperringer, Justin; Mohamed, Junaith S; Edens, Neile K; Pereira, Suzette L

    2015-02-01

    In this study we tested the hypothesis that green tea extract (GTE) would improve muscle recovery after reloading following disuse. Aged (32 mo) Fischer 344 Brown Norway rats were randomly assigned to receive either 14 days of hindlimb suspension (HLS) or 14 days of HLS followed by normal ambulatory function for 14 days (recovery). Additional animals served as cage controls. The rats were given GTE (50 mg/kg body wt) or water (vehicle) by gavage 7 days before and throughout the experimental periods. Compared with vehicle treatment, GTE significantly attenuated the loss of hindlimb plantaris muscle mass (-24.8% vs. -10.7%, P < 0.05) and tetanic force (-43.7% vs. -25.9%, P <0.05) during HLS. Although GTE failed to further improve recovery of muscle function or mass compared with vehicle treatment, animals given green tea via gavage maintained the lower losses of muscle mass that were found during HLS (-25.2% vs. -16.0%, P < 0.05) and force (-45.7 vs. -34.4%, P < 0.05) after the reloading periods. In addition, compared with vehicle treatment, GTE attenuated muscle fiber cross-sectional area loss in both plantaris (-39.9% vs. -23.9%, P < 0.05) and soleus (-37.2% vs. -17.6%) muscles after HLS. This green tea-induced difference was not transient but was maintained over the reloading period for plantaris (-45.6% vs. -21.5%, P <0.05) and soleus muscle fiber cross-sectional area (-38.7% vs. -10.9%, P <0.05). GTE increased satellite cell proliferation and differentiation in plantaris and soleus muscles during recovery from HLS compared with vehicle-treated muscles and decreased oxidative stress and abundance of the Bcl-2-associated X protein (Bax), yet this did not further improve muscle recovery in reloaded muscles. These data suggest that muscle recovery following disuse in aging is complex. Although satellite cell proliferation and differentiation are critical for muscle repair to occur, green tea-induced changes in satellite cell number is by itself insufficient to

  5. HIF-1-driven skeletal muscle adaptations to chronic hypoxia: molecular insights into muscle physiology.

    PubMed

    Favier, F B; Britto, F A; Freyssenet, D G; Bigard, X A; Benoit, H

    2015-12-01

    Skeletal muscle is a metabolically active tissue and the major body protein reservoir. Drop in ambient oxygen pressure likely results in a decrease in muscle cells oxygenation, reactive oxygen species (ROS) overproduction and stabilization of the oxygen-sensitive hypoxia-inducible factor (HIF)-1α. However, skeletal muscle seems to be quite resistant to hypoxia compared to other organs, probably because it is accustomed to hypoxic episodes during physical exercise. Few studies have observed HIF-1α accumulation in skeletal muscle during ambient hypoxia probably because of its transient stabilization. Nevertheless, skeletal muscle presents adaptations to hypoxia that fit with HIF-1 activation, although the exact contribution of HIF-2, I kappa B kinase and activating transcription factors, all potentially activated by hypoxia, needs to be determined. Metabolic alterations result in the inhibition of fatty acid oxidation, while activation of anaerobic glycolysis is less evident. Hypoxia causes mitochondrial remodeling and enhanced mitophagy that ultimately lead to a decrease in ROS production, and this acclimatization in turn contributes to HIF-1α destabilization. Likewise, hypoxia has structural consequences with muscle fiber atrophy due to mTOR-dependent inhibition of protein synthesis and transient activation of proteolysis. The decrease in muscle fiber area improves oxygen diffusion into muscle cells, while inhibition of protein synthesis, an ATP-consuming process, and reduction in muscle mass decreases energy demand. Amino acids released from muscle cells may also have protective and metabolic effects. Collectively, these results demonstrate that skeletal muscle copes with the energetic challenge imposed by O2 rarefaction via metabolic optimization.

  6. Task constraints and minimization of muscle effort result in a small number of muscle synergies during gait.

    PubMed

    De Groote, Friedl; Jonkers, Ilse; Duysens, Jacques

    2014-01-01

    Finding muscle activity generating a given motion is a redundant problem, since there are many more muscles than degrees of freedom. The control strategies determining muscle recruitment from a redundant set are still poorly understood. One theory of motor control suggests that motion is produced through activating a small number of muscle synergies, i.e., muscle groups that are activated in a fixed ratio by a single input signal. Because of the reduced number of input signals, synergy-based control is low dimensional. But a major criticism on the theory of synergy-based control of muscles is that muscle synergies might reflect task constraints rather than a neural control strategy. Another theory of motor control suggests that muscles are recruited by optimizing performance. Optimization of performance has been widely used to calculate muscle recruitment underlying a given motion while assuming independent recruitment of muscles. If synergies indeed determine muscle recruitment underlying a given motion, optimization approaches that do not model synergy-based control could result in muscle activations that do not show the synergistic muscle action observed through electromyography (EMG). If, however, synergistic muscle action results from performance optimization and task constraints (joint kinematics and external forces), such optimization approaches are expected to result in low-dimensional synergistic muscle activations that are similar to EMG-based synergies. We calculated muscle recruitment underlying experimentally measured gait patterns by optimizing performance assuming independent recruitment of muscles. We found that the muscle activations calculated without any reference to synergies can be accurately explained by on average four synergies. These synergies are similar to EMG-based synergies. We therefore conclude that task constraints and performance optimization explain synergistic muscle recruitment from a redundant set of muscles.

  7. A three-dimensional muscle activity imaging technique for assessing pelvic muscle function

    NASA Astrophysics Data System (ADS)

    Zhang, Yingchun; Wang, Dan; Timm, Gerald W.

    2010-11-01

    A novel multi-channel surface electromyography (EMG)-based three-dimensional muscle activity imaging (MAI) technique has been developed by combining the bioelectrical source reconstruction approach and subject-specific finite element modeling approach. Internal muscle activities are modeled by a current density distribution and estimated from the intra-vaginal surface EMG signals with the aid of a weighted minimum norm estimation algorithm. The MAI technique was employed to minimally invasively reconstruct electrical activity in the pelvic floor muscles and urethral sphincter from multi-channel intra-vaginal surface EMG recordings. A series of computer simulations were conducted to evaluate the performance of the present MAI technique. With appropriate numerical modeling and inverse estimation techniques, we have demonstrated the capability of the MAI technique to accurately reconstruct internal muscle activities from surface EMG recordings. This MAI technique combined with traditional EMG signal analysis techniques is being used to study etiologic factors associated with stress urinary incontinence in women by correlating functional status of muscles characterized from the intra-vaginal surface EMG measurements with the specific pelvic muscle groups that generated these signals. The developed MAI technique described herein holds promise for eliminating the need to place needle electrodes into muscles to obtain accurate EMG recordings in some clinical applications.

  8. Muscle fatigue in the temporal and masseter muscles in patients with temporomandibular dysfunction.

    PubMed

    Woźniak, Krzysztof; Lipski, Mariusz; Lichota, Damian; Szyszka-Sommerfeld, Liliana

    2015-01-01

    The aim of this study is to evaluate muscle fatigue in the temporal and masseter muscles in patients with temporomandibular dysfunction (TMD). Two hundred volunteers aged 19.3 to 27.8 years (mean 21.50, SD 0.97) participated in this study. Electromyographical (EMG) recordings were performed using a DAB-Bluetooth Instrument (Zebris Medical GmbH, Germany). Muscle fatigue was evaluated on the basis of a maximum effort test. The test was performed during a 10-second maximum isometric contraction (MVC) of the jaws. An analysis of changes in the mean power frequency of the two pairs of temporal and masseter muscles (MPF%) revealed significant differences in the groups of patients with varying degrees of temporomandibular disorders according to Di (P < 0.0000). The study showed an increase in the muscle fatigue of the temporal and masseter muscles correlated with the intensity of temporomandibular dysfunction symptoms in patients. The use of surface electromyography in assessing muscle fatigue is an excellent diagnostic tool for identifying patients with temporomandibular dysfunction.

  9. Muscle Fatigue in the Temporal and Masseter Muscles in Patients with Temporomandibular Dysfunction

    PubMed Central

    Woźniak, Krzysztof; Lipski, Mariusz; Lichota, Damian

    2015-01-01

    The aim of this study is to evaluate muscle fatigue in the temporal and masseter muscles in patients with temporomandibular dysfunction (TMD). Two hundred volunteers aged 19.3 to 27.8 years (mean 21.50, SD 0.97) participated in this study. Electromyographical (EMG) recordings were performed using a DAB-Bluetooth Instrument (Zebris Medical GmbH, Germany). Muscle fatigue was evaluated on the basis of a maximum effort test. The test was performed during a 10-second maximum isometric contraction (MVC) of the jaws. An analysis of changes in the mean power frequency of the two pairs of temporal and masseter muscles (MPF%) revealed significant differences in the groups of patients with varying degrees of temporomandibular disorders according to Di (P < 0.0000). The study showed an increase in the muscle fatigue of the temporal and masseter muscles correlated with the intensity of temporomandibular dysfunction symptoms in patients. The use of surface electromyography in assessing muscle fatigue is an excellent diagnostic tool for identifying patients with temporomandibular dysfunction. PMID:25883949

  10. Reorganization of muscle synergies during multidirectional reaching in the horizontal plane with experimental muscle pain

    PubMed Central

    Muceli, Silvia; Falla, Deborah

    2014-01-01

    Muscle pain induces a complex reorganization of the motor strategy which cannot be fully explained by current theories. We tested the hypothesis that the neural control of muscles during reaching in the presence of nociceptive input is determined by a reorganization of muscle synergies with respect to control conditions. Muscle pain was induced by injection of hypertonic saline into the anterior deltoid muscle of eight men. Electromyographic (EMG) signals were recorded from 12 upper limb muscles as subjects performed a reaching task before (baseline) and after the injection of hypertonic (pain) saline, and after the pain sensation vanished. The EMG envelopes were factorized in muscle synergies, and activation signals extracted for each condition. Nociceptive stimulation resulted in a complex muscle reorganization without changes in the kinematic output. The anterior deltoid muscle activity decreased in all subjects while the changes in other muscles were subject specific. Three synergies sufficed to describe the EMG patterns in each condition, suggesting that reaching movements remain modular in the presence of experimental pain. Muscle reorganization in all subjects was accompanied by a change in the activation signals compatible with a change in the central drive to muscles. One, two or three synergies were shared between the baseline and painful conditions, depending on the subject. These results indicate that nociceptive stimulation may induce a reorganization of modular control in reaching. We speculate that such reorganization may be due to the recruitment of synergies specific to the painful condition. PMID:24453279

  11. The scaling of postcranial muscles in cats (Felidae) I: forelimb, cervical, and thoracic muscles.

    PubMed

    Cuff, Andrew R; Sparkes, Emily L; Randau, Marcela; Pierce, Stephanie E; Kitchener, Andrew C; Goswami, Anjali; Hutchinson, John R

    2016-07-01

    The body masses of cats (Mammalia, Carnivora, Felidae) span a ~300-fold range from the smallest to largest species. Despite this range, felid musculoskeletal anatomy remains remarkably conservative, including the maintenance of a crouched limb posture at unusually large sizes. The forelimbs in felids are important for body support and other aspects of locomotion, as well as climbing and prey capture, with the assistance of the vertebral (and hindlimb) muscles. Here, we examine the scaling of the anterior postcranial musculature across felids to assess scaling patterns between different species spanning the range of felid body sizes. The muscle architecture (lengths and masses of the muscle-tendon unit components) for the forelimb, cervical and thoracic muscles was quantified to analyse how the muscles scale with body mass. Our results demonstrate that physiological cross-sectional areas of the forelimb muscles scale positively with increasing body mass (i.e. becoming relatively larger). Many significantly allometric variables pertain to shoulder support, whereas the rest of the limb muscles become relatively weaker in larger felid species. However, when phylogenetic relationships were corrected for, most of these significant relationships disappeared, leaving no significantly allometric muscle metrics. The majority of cervical and thoracic muscle metrics are not significantly allometric, despite there being many allometric skeletal elements in these regions. When forelimb muscle data were considered in isolation or in combination with those of the vertebral muscles in principal components analyses and MANOVAs, there was no significant discrimination among species by either size or locomotory mode. Our results support the inference that larger felid species have relatively weaker anterior postcranial musculature compared with smaller species, due to an absence of significant positive allometry of forelimb or vertebral muscle architecture. This difference in strength

  12. Muscle activity of leg muscles during unipedal stance on therapy devices with different stability properties.

    PubMed

    Wolburg, Thomas; Rapp, Walter; Rieger, Jochen; Horstmann, Thomas

    2016-01-01

    To test the hypotheses that less stable therapy devices require greater muscle activity and that lower leg muscles will have greater increases in muscle activity with less stable therapy devices than upper leg muscles. Cross-sectional laboratory study. Laboratory setting. Twenty-five healthy subjects. Electromyographic activity of four lower (gastrocnemius medialis, soleus, tibialis anterior, peroneus longus) and four upper leg muscles (vastus medialis and lateralis, biceps femoris, semitendinosus) during unipedal quiet barefoot stance on the dominant leg on a flat rigid surface and on five therapy devices with varying stability properties. Muscle activity during unipedal stance differed significantly between therapy devices (P < 0.001). The order from lowest to highest relative muscle activity matched the order from most to least stable therapy device. There was no significant interaction between muscle location (lower versus upper leg) and therapy device (P = 0.985). Magnitudes of additional relative muscle activity for the respective therapy devices differed substantially among lower extremity muscles. The therapy devices offer a progressive increase in training intensity, and thus may be useful for incremental training programs in physiotherapeutic practice and sports training programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Tbx15 controls skeletal muscle fibre-type determination and muscle metabolism

    PubMed Central

    Lee, Kevin Y.; Singh, Manvendra K.; Ussar, Siegfried; Wetzel, Petra; Hirshman, Michael F.; Goodyear, Laurie J.; Kispert, Andreas; Kahn, C. Ronald

    2015-01-01

    Skeletal muscle is composed of both slow-twitch oxidative myofibers and fast-twitch glycolytic myofibers that differentially impact muscle metabolism, function and eventually whole-body physiology. Here we show that the mesodermal transcription factor T-box 15 (Tbx15) is highly and specifically expressed in glycolytic myofibers. Ablation of Tbx15 in vivo leads to a decrease in muscle size due to a decrease in the number of glycolytic fibres, associated with a small increase in the number of oxidative fibres. This shift in fibre composition results in muscles with slower myofiber contraction and relaxation, and also decreases whole-body oxygen consumption, reduces spontaneous activity, increases adiposity and glucose intolerance. Mechanistically, ablation of Tbx15 leads to activation of AMPK signalling and a decrease in Igf2 expression. Thus, Tbx15 is one of a limited number of transcription factors to be identified with a critical role in regulating glycolytic fibre identity and muscle metabolism. PMID:26299309

  14. Overexpression of IGF-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse

    PubMed Central

    Ye, Fan; Mathur, Sunita; Liu, Min; Borst, Stephen E.; Walter, Glenn A.; Sweeney, H. Lee; Vandenborne, Krista

    2014-01-01

    Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Since insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of viral mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading. Recombinant IGF-1 cDNA virus was injected into one of the posterior hindlimbs of the mice, while the contralateral limb was injected with saline (control). At 20 weeks of age, both hindlimbs were immobilized for two weeks to induce muscle atrophy in the soleus and ankle plantar flexor muscle group. Subsequently, the mice were allowed to reambulate and muscle damage and recovery was monitored over a period of 2 to 21 days. The primary finding of this study was that IGF-1 overexpression attenuated reloading-induced muscle damage in the soleus muscle, and accelerated muscle regeneration and force recovery. Muscle T2 assessed by MRI, a nonspecific marker of muscle damage, was significantly lower in IGF-1 injected, compared to contralateral soleus muscles at 2 and 5 days reambulation (P<0.05). The reduced prevalence of muscle damage in IGF-1 injected soleus muscles was confirmed on histology, with a lower fraction area of abnormal muscle tissue in IGF-I injected muscles at 2 days reambulation (33.2±3.3%vs 54.1±3.6%, P<0.05). Evidence of the effect of IGF-1 on muscle regeneration included timely increases in the number of central nuclei (21% at 5 days reambulation), paired-box transcription factor 7 (36% at 5 days), embryonic myosin (37% at 10 days), and elevated MyoD mRNA (7-fold at 2 days) in IGF-1 injected limbs (P<0.05). These findings demonstrate a potential role of IGF-1 in protecting unloaded

  15. Fuel-powered artificial muscles.

    PubMed

    Ebron, Von Howard; Yang, Zhiwei; Seyer, Daniel J; Kozlov, Mikhail E; Oh, Jiyoung; Xie, Hui; Razal, Joselito; Hall, Lee J; Ferraris, John P; Macdiarmid, Alan G; Baughman, Ray H

    2006-03-17

    Artificial muscles and electric motors found in autonomous robots and prosthetic limbs are typically battery-powered, which severely restricts the duration of their performance and can necessitate long inactivity during battery recharge. To help solve these problems, we demonstrated two types of artificial muscles that convert the chemical energy of high-energy-density fuels to mechanical energy. The first type stores electrical charge and uses changes in stored charge for mechanical actuation. In contrast with electrically powered electrochemical muscles, only half of the actuator cycle is electrochemical. The second type of fuel-powered muscle provides a demonstrated actuator stroke and power density comparable to those of natural skeletal muscle and generated stresses that are over a hundred times higher.

  16. Objective Evaluation of Muscle Strength in Infants with Hypotonia and Muscle Weakness

    ERIC Educational Resources Information Center

    Reus, Linda; van Vlimmeren, Leo A.; Staal, J. Bart; Janssen, Anjo J. W. M.; Otten, Barto J.; Pelzer, Ben J.; Nijhuis-van der Sanden, Maria W. G.

    2013-01-01

    The clinical evaluation of an infant with motor delay, muscle weakness, and/or hypotonia would improve considerably if muscle strength could be measured objectively and normal reference values were available. The authors developed a method to measure muscle strength in infants and tested 81 typically developing infants, 6-36 months of age, and 17…

  17. Experimental comparisons between McKibben type artificial muscles and straight fibers type artificial muscles

    NASA Astrophysics Data System (ADS)

    Nakamura, Taro

    2007-01-01

    This paper describes experimental comparison between a conventional McKibben type artificial muscle and a straight fibers type artificial muscle developed by the authors. A wearable device and a rehabilitation robot which assists a human muscle should have characteristics similar to those of human muscle. In addition, because the wearable device and the rehabilitation robot should be light, an actuator with a high power/weight ratio is needed. At present, the McKibben type is widely used as an artificial muscle, but in fact its physical model is highly nonlinear. Further, the heat and mechanical loss of this actuator are large because of the friction caused by the expansion and contraction of the sleeve. Therefore, the authors have developed an artificial muscle tube in which high strength glass fibers have been built into the tube made from natural latex rubber. As results, experimental results demonstrated that the developed artificial muscle is more effective regarding its fundamental characteristics than that of the McKibben type; the straight fibers types of artificial muscle have more contraction ratio and power, longer lifetime than the McKibben types. And it has almost same characteristics of human muscle for isotonic and isometric that evaluate it dynamically.

  18. Characterization of muscle ankyrin repeat proteins in human skeletal muscle.

    PubMed

    Wette, Stefan G; Smith, Heather K; Lamb, Graham D; Murphy, Robyn M

    2017-09-01

    Muscle ankyrin repeat proteins (MARPs) are a family of titin-associated, stress-response molecules and putative transducers of stretch-induced signaling in skeletal muscle. In cardiac muscle, cardiac ankyrin repeat protein (CARP) and diabetes-related ankyrin repeat protein (DARP) reportedly redistribute from binding sites on titin to the nucleus following a prolonged stretch. However, it is unclear whether ankyrin repeat domain protein 2 (Ankrd 2) shows comparable stretch-induced redistribution to the nucleus. We measured the following in rested human skeletal muscle: 1 ) the absolute amount of MARPs and 2 ) the distribution of Ankrd 2 and DARP in both single fibers and whole muscle preparations. In absolute amounts, Ankrd 2 is the most abundant MARP in human skeletal muscle, there being ~3.1 µmol/kg, much greater than DARP and CARP (~0.11 and ~0.02 µmol/kg, respectively). All DARP was found to be tightly bound at cytoskeletal (or possibly nuclear) sites. In contrast, ~70% of the total Ankrd 2 is freely diffusible in the cytosol [including virtually all of the phosphorylated (p)Ankrd 2-Ser99 form], ~15% is bound to non-nuclear membranes, and ~15% is bound at cytoskeletal sites, likely at the N2A region of titin. These data are not consistent with the proposal that Ankrd 2, per se, or pAnkrd 2-Ser99 mediates stretch-induced signaling in skeletal muscle, dissociating from titin and translocating to the nucleus, because the majority of these forms of Ankrd 2 are already free in the cytosol. It will be necessary to show that the titin-associated Ankrd 2 is modified by stretch in some as-yet-unidentified way, distinct from the diffusible pool, if it is to act as a stretch-sensitive signaling molecule. Copyright © 2017 the American Physiological Society.

  19. Lean muscle volume of the thigh has a stronger relationship with muscle power than muscle strength in women with knee osteoarthritis.

    PubMed

    Davison, Michael J; Maly, Monica R; Keir, Peter J; Hapuhennedige, Sandani M; Kron, Amie T; Adachi, Jonathan D; Beattie, Karen A

    2017-01-01

    Thigh lean muscle and intramuscular fat have been implicated in the impairment of physical function observed in people with knee osteoarthritis. We investigated the relationships of quadriceps and hamstrings intramuscular fat fraction and lean muscle volume with muscle power and strength, controlling for neuromuscular activation, and physical performance in women with knee OA. Women (n=20) 55years or older with symptomatic, radiographic knee osteoarthritis underwent a 3.0T magnetic resonance imaging scan of the thigh of their most symptomatic knee. Axial fat-separated images were analyzed using software to quantify intramuscular fat and lean muscle volumes of the quadriceps and hamstrings. To quantify strength and power of the knee extensors and flexors, participants performed maximum voluntary isometric contraction and isotonic knee extensions and flexions, respectively. Electromyography of the quadriceps and hamstrings was measured. Participants also completed five physical performance tests. Quadriceps and hamstrings lean muscle volumes were related to isotonic knee extensor (B=0.624; p=0.017) and flexor (B=1.518; p=0.032) power, but not knee extensor (B=0.001; p=0.615) or flexor (B=0.001; p=0.564) isometric strength. Intramuscular fat fractions were not related to isotonic knee extensor or flexor power, nor isometric strength. No relationships were found between intramuscular fat or lean muscle volume and physical performance. Muscle power may be more sensitive than strength to lean muscle mass in women with knee osteoarthritis. Thigh lean muscle mass, but neither intramuscular nor intermuscular fat, is related to knee extensor and flexor power in women with knee osteoarthritis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Action of Obestatin in Skeletal Muscle Repair: Stem Cell Expansion, Muscle Growth, and Microenvironment Remodeling

    PubMed Central

    Gurriarán-Rodríguez, Uxía; Santos-Zas, Icía; González-Sánchez, Jessica; Beiroa, Daniel; Moresi, Viviana; Mosteiro, Carlos S; Lin, Wei; Viñuela, Juan E; Señarís, José; García-Caballero, Tomás; Casanueva, Felipe F; Nogueiras, Rubén; Gallego, Rosalía; Renaud, Jean-Marc; Adamo, Sergio; Pazos, Yolanda; Camiña, Jesús P

    2015-01-01

    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration. PMID:25762009

  1. Strengthening of the Hip and Core Versus Knee Muscles for the Treatment of Patellofemoral Pain: A Multicenter Randomized Controlled Trial

    PubMed Central

    Ferber, Reed; Bolgla, Lori; Earl-Boehm, Jennifer E.; Emery, Carolyn; Hamstra-Wright, Karrie

    2015-01-01

    Context: Patellofemoral pain (PFP) is the most common injury in running and jumping athletes. Randomized controlled trials suggest that incorporating hip and core strengthening (HIP) with knee-focused rehabilitation (KNEE) improves PFP outcomes. However, no randomized controlled trials have, to our knowledge, directly compared HIP and KNEE programs. Objective: To compare PFP pain, function, hip- and knee-muscle strength, and core endurance between KNEE and HIP protocols after 6 weeks of rehabilitation. We hypothesized greater improvements in (1) pain and function, (2) hip strength and core endurance for patients with PFP involved in the HIP protocol, and (3) knee strength for patients involved in the KNEE protocol. Design: Randomized controlled clinical trial. Setting: Four clinical research laboratories in Calgary, Alberta; Chicago, Illinois; Milwaukee, Wisconsin; and Augusta, Georgia. Patients or Other Participants: Of 721 patients with PFP screened, 199 (27.6%) met the inclusion criteria (66 men [31.2%], 133 women [66.8%], age = 29.0 ± 7.1 years, height = 170.4 ± 9.4 cm, weight = 67.6 ± 13.5 kg). Intervention(s): Patients with PFP were randomly assigned to a 6-week KNEE or HIP protocol. Main Outcome Measure(s): Primary variables were self-reported visual analog scale and Anterior Knee Pain Scale measures, which were conducted weekly. Secondary variables were muscle strength and core endurance measured at baseline and at 6 weeks. Results: Compared with baseline, both the visual analog scale and the Anterior Knee Pain Scale improved for patients with PFP in both the HIP and KNEE protocols (P < .001), but the visual analog scale scores for those in the HIP protocol were reduced 1 week earlier than in the KNEE group. Both groups increased in strength (P < .001), but those in the HIP protocol gained more in hip-abductor (P = .01) and -extensor (P = .01) strength and posterior core endurance (P = .05) compared with the KNEE group. Conclusions: Both the HIP and KNEE

  2. Muscle regeneration during hindlimb unloading results in a reduction in muscle size after reloading

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Pulvermacher, P. M.; Schultz, E.

    2001-01-01

    The hindlimb-unloading model was used to study the ability of muscle injured in a weightless environment to recover after reloading. Satellite cell mitotic activity and DNA unit size were determined in injured and intact soleus muscles from hindlimb-unloaded and age-matched weight-bearing rats at the conclusion of 28 days of hindlimb unloading, 2 wk after reloading, and 9 wk after reloading. The body weights of hindlimb-unloaded rats were significantly (P < 0.05) less than those of weight-bearing rats at the conclusion of hindlimb unloading, but they were the same (P > 0.05) as those of weight-bearing rats 2 and 9 wk after reloading. The soleus muscle weight, soleus muscle weight-to-body weight ratio, myofiber diameter, number of nuclei per millimeter, and DNA unit size were significantly (P < 0.05) smaller for the injured soleus muscles from hindlimb-unloaded rats than for the soleus muscles from weight-bearing rats at each recovery time. Satellite cell mitotic activity was significantly (P < 0.05) higher in the injured soleus muscles from hindlimb-unloaded rats than from weight-bearing rats 2 wk after reloading, but it was the same (P > 0.05) as in the injured soleus muscles from weight-bearing rats 9 wk after reloading. The injured soleus muscles from hindlimb-unloaded rats failed to achieve weight-bearing muscle size 9 wk after reloading, because incomplete compensation for the decrease in myonuclear accretion and DNA unit size expansion occurred during the unloading period.

  3. Macrophage depletion impairs skeletal muscle regeneration: The roles of regulatory factors for muscle regeneration.

    PubMed

    Liu, Xiaoguang; Liu, Yu; Zhao, Linlin; Zeng, Zhigang; Xiao, Weihua; Chen, Peijie

    2017-03-01

    Though macrophages are essential for skeletal muscle regeneration, which is a complex process, the roles and mechanisms of the macrophages in the process of muscle regeneration are still not fully understood. The objective of this study is to explore the roles of macrophages and the mechanisms involved in the regeneration of injured skeletal muscle. One hundred and twelve C57BL/6 mice were randomly divided into muscle contusion and macrophages depleted groups. Their gastrocnemius muscles were harvested at the time points of 12 h, 1, 3, 5, 7, 14 d post-injury. The changes in skeletal muscle morphology were assessed by hematoxylin and eosin (HE) stain. The gene expression was analyzed by real-time polymerase chain reaction. The data showed that CL-liposomes treatment did affect the expression of myogenic regulatory factors (MyoD, myogenin) after injury. In addition, CL-liposomes treatment decreased the expression of regulatory factors of muscle regeneration (HGF, uPA, COX-2, IGF-1, MGF, FGF6) and increased the expression of inflammatory cytokines (TGF-β1, TNF-α, IL-1β, RANTES) in the late stage of regeneration. Moreover, there were significant correlations between macrophages and some regulatory factors (such as HGF, uPA) for muscle regeneration. These results suggested that macrophages depletion impairs skeletal muscle regeneration and that the regulatory factors for muscle regeneration may play important roles in this process. © 2017 International Federation for Cell Biology.

  4. Exercise-induced muscle glucose uptake in mice with graded, muscle-specific GLUT-4 deletion

    PubMed Central

    Howlett, Kirsten F; Andrikopoulos, Sofianos; Proietto, Joseph; Hargreaves, Mark

    2013-01-01

    To investigate the importance of the glucose transporter GLUT-4 for muscle glucose uptake during exercise, transgenic mice with skeletal muscle GLUT-4 expression approximately 30–60% of normal (CON) and approximately 5–10% of normal (KO) were generated using the Cre/Lox system and compared with wild-type (WT) mice during approximately 40 min of treadmill running (KO: 37.7 ± 1.3 min; WT: 40 min; CON: 40 min, P = 0.18). In WT and CON animals, exercise resulted in an overall increase in muscle glucose uptake. More specifically, glucose uptake was increased in red gastrocnemius of WT mice and in the soleus and red gastrocnemius of CON mice. In contrast, the exercise-induced increase in muscle glucose uptake in all muscles was completely abolished in KO mice. Muscle glucose uptake increased during exercise in both red and white quadriceps of WT mice, while the small increases in CON mice were not statistically significant. In KO mice, there was no change at all in quadriceps muscle glucose uptake. No differences in muscle glycogen use during exercise were observed between any of the groups. However, there was a significant increase in plasma glucose levels after exercise in KO mice. The results of this study demonstrated that a reduction in skeletal muscle GLUT-4 expression to approximately 10% of normal levels completely abolished the exercise-induced increase in muscle glucose uptake. PMID:24303141

  5. Biceps brachii muscle oxygenation in electrical muscle stimulation.

    PubMed

    Muthalib, Makii; Jubeau, Marc; Millet, Guillaume Y; Maffiuletti, Nicola A; Ferrari, Marco; Nosaka, Kazunori

    2010-09-01

    The purpose of this study was to compare between electrical muscle stimulation (EMS) and maximal voluntary (VOL) isometric contractions of the elbow flexors for changes in biceps brachii muscle oxygenation (tissue oxygenation index, TOI) and haemodynamics (total haemoglobin volume, tHb = oxygenated-Hb + deoxygenated-Hb) determined by near-infrared spectroscopy (NIRS). The biceps brachii muscle of 10 healthy men (23-39 years) was electrically stimulated at high frequency (75 Hz) via surface electrodes to evoke 50 intermittent (4-s contraction, 15-s relaxation) isometric contractions at maximum tolerated current level (EMS session). The contralateral arm performed 50 intermittent (4-s contraction, 15-s relaxation) maximal voluntary isometric contractions (VOL session) in a counterbalanced order separated by 2-3 weeks. Results indicated that although the torque produced during EMS was approximately 50% of VOL (P<0.05), there was no significant difference in the changes in TOI amplitude or TOI slope between EMS and VOL over the 50 contractions. However, the TOI amplitude divided by peak torque was approximately 50% lower for EMS than VOL (P<0.05), which indicates EMS was less efficient than VOL. This seems likely because of the difference in the muscles involved in the force production between conditions. Mean decrease in tHb amplitude during the contraction phases was significantly (P<0.05) greater for EMS than VOL from the 10th contraction onwards, suggesting that the muscle blood volume was lower in EMS than VOL. It is concluded that local oxygen demand of the biceps brachii sampled by NIRS is similar between VOL and EMS.

  6. Platelet-Derived Growth Factor BB Influences Muscle Regeneration in Duchenne Muscle Dystrophy.

    PubMed

    Piñol-Jurado, Patricia; Gallardo, Eduard; de Luna, Noemi; Suárez-Calvet, Xavier; Sánchez-Riera, Carles; Fernández-Simón, Esther; Gomis, Clara; Illa, Isabel; Díaz-Manera, Jordi

    2017-08-01

    Duchenne muscular dystrophy (DMD) is characterized by a progressive loss of muscle fibers, and their substitution by fibrotic and adipose tissue. Many factors contribute to this process, but the molecular pathways related to regeneration and degeneration of muscle are not completely known. Platelet-derived growth factor (PDGF)-BB belongs to a family of growth factors that regulate proliferation, migration, and differentiation of mesenchymal cells. The role of PDGF-BB in muscle regeneration in humans has not been studied. We analyzed the expression of PDGF-BB in muscle biopsy samples from controls and patients with DMD. We performed in vitro experiments to understand the effects of PDGF-BB on myoblasts involved in the pathophysiology of muscular dystrophies and confirmed our results in vivo by treating the mdx murine model of DMD with repeated i.m. injections of PDGF-BB. We observed that regenerating and necrotic muscle fibers in muscle biopsy samples from DMD patients expressed PDGF-BB. In vitro, PDGF-BB attracted myoblasts and activated their proliferation. Analysis of muscles from the animals treated with PDGF-BB showed an increased population of satellite cells and an increase in the number of regenerative fibers, with a reduction in inflammatory infiltrates, compared with those in vehicle-treated mice. Based on our results, PDGF-BB may play a protective role in muscular dystrophies by enhancing muscle regeneration through activation of satellite cell proliferation and migration. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Autologous Minced Muscle Grafts: A Tissue Engineering Therapy for the Volumetric Loss of Skeletal Muscle

    DTIC Science & Technology

    2013-07-24

    report that over the first 16 wk postinjury, MG transplantation 1) promotes remarkable regeneration of innervated muscle fibers within the defect area...i.e., de novo muscle fiber regeneration); 2) reduced evidence of chronic injury in the remaining muscle mass compared with nonrepaired muscles ...cated nuclei in 30% of fibers observed in nonrepaired muscles ); and 3) significantly improves net torque production (i.e., 55% of the functional deficit

  8. Muscle Damage and Its Relationship with Muscle Fatigue During a Half-Iron Triathlon

    PubMed Central

    Coso, Juan Del; González-Millán, Cristina; Salinero, Juan José; Abián-Vicén, Javier; Soriano, Lidón; Garde, Sergio; Pérez-González, Benito

    2012-01-01

    Background To investigate the cause/s of muscle fatigue experienced during a half-iron distance triathlon. Methodology/Principal Findings We recruited 25 trained triathletes (36±7 yr; 75.1±9.8 kg) for the study. Before and just after the race, jump height and leg muscle power output were measured during a countermovement jump on a force platform to determine leg muscle fatigue. Body weight, handgrip maximal force and blood and urine samples were also obtained before and after the race. Blood myoglobin and creatine kinase concentrations were determined as markers of muscle damage. Results Jump height (from 30.3±5.0 to 23.4±6.4 cm; P<0.05) and leg power output (from 25.6±2.9 to 20.7±4.6 W · kg−1; P<0.05) were significantly reduced after the race. However, handgrip maximal force was unaffected by the race (430±59 to 430±62 N). Mean dehydration after the race was 2.3±1.2% with high inter-individual variability in the responses. Blood myoglobin and creatine kinase concentration increased to 516±248 µg · L−1 and 442±204 U · L−1, respectively (P<0.05) after the race. Pre- to post-race jump change did not correlate with dehydration (r = 0.16; P>0.05) but significantly correlated with myoglobin concentration (r = 0.65; P<0.001) and creatine kinase concentration (r = 0.54; P<0.001). Conclusions/significance During a half-iron distance triathlon, the capacity of leg muscles to produce force was notably diminished while arm muscle force output remained unaffected. Leg muscle fatigue was correlated with blood markers of muscle damage suggesting that muscle breakdown is one of the most relevant sources of muscle fatigue during a triathlon. PMID:22900101

  9. The Drosophila indirect flight muscle myosin heavy chain isoform is insufficient to transform the jump muscle into a highly stretch-activated muscle type

    PubMed Central

    Zhao, Cuiping

    2017-01-01

    Stretch activation (SA) is a delayed increase in force that enables high power and efficiency from a cyclically contracting muscle. SA exists in various degrees in almost all muscle types. In Drosophila, the indirect flight muscle (IFM) displays exceptionally high SA force production (FSA), whereas the jump muscle produces only minimal FSA. We previously found that expressing an embryonic (EMB) myosin heavy chain (MHC) isoform in the jump muscle transforms it into a moderately SA muscle type and enables positive cyclical power generation. To investigate whether variation in MHC isoforms is sufficient to produce even higher FSA, we substituted the IFM MHC isoform (IFI) into the jump muscle. Surprisingly, we found that IFI only caused a 1.7-fold increase in FSA, less than half the increase previously observed with EMB, and only at a high Pi concentration, 16 mM. This IFI-induced FSA is much less than what occurs in IFM, relative to isometric tension, and did not enable positive cyclical power generation by the jump muscle. Both isometric tension and FSA of control fibers decreased with increasing Pi concentration. However, for IFI-expressing fibers, only isometric tension decreased. The rate of FSA generation was ~1.5-fold faster for IFI fibers than control fibers, and both rates were Pi dependent. We conclude that MHC isoforms can alter FSA and hence cyclical power generation but that isoforms can only endow a muscle type with moderate FSA. Highly SA muscle types, such as IFM, likely use a different or additional mechanism. PMID:27881413

  10. Plakins in striated muscle.

    PubMed

    Boyer, Justin G; Bernstein, Marija A; Boudreau-Larivière, Céline

    2010-03-01

    Striated muscle cells contain numerous architectural proteins that contribute to the function of muscle as generators of mechanical force. Among these proteins are crosslinkers belonging to the plakin family, namely plectin, microtubule-actin crosslinking factor (ACF7/MACF1), bullous pemphigoid antigen 1 (Bpag1/dystonin), and desmoplakin. These plakin family members, in particular plectin and Bpag1/dystonin, exist as several isoforms. The domain organization of these plakin variants dictates their subcellular location and the proteins with which they interact. Several studies suggest that plakins exert unique functions within various compartments of the muscle cell including the sarcolemma, the sarcomere, both neuromuscular and myotendinous junctions in skeletal muscle, and the intercalated discs in cardiac muscle. Plakins may also regulate the cellular placement and function of specific organelles, notably the nucleus, mitochondria, Golgi apparatus, and sarcoplasmic reticulum. Here we review and summarize our current knowledge of the function of plakins in striated muscle cells.

  11. Muscle development and obesity

    PubMed Central

    2008-01-01

    The formation of skeletal muscle from the epithelial somites involves a series of events triggered by temporally and spatially discrete signals resulting in the generation of muscle fibers which vary in their contractile and metabolic nature. The fiber type composition of muscles varies between individuals and it has now been found that there are differences in fiber type proportions between lean and obese animals and humans. Amongst the possible causes of obesity, it has been suggested that inappropriate prenatal environments may ‘program’ the fetus and may lead to increased risks for disease in adult life. The characteristics of muscle are both heritable and plastic, giving the tissue some ability to adapt to signals and stimuli both pre and postnatally. Given that muscle is a site of fatty acid oxidation and carbohydrate metabolism and that its development can be changed by prenatal events, it is interesting to examine the possible relationship between muscle development and the risk of obesity. PMID:19279728

  12. Morphology of the lumbar transversospinal muscles examined in a mouse bearing a muscle fiber-specific nuclear marker.

    PubMed

    Cornwall, Jon; Deries, Marianne; Duxson, Marilyn

    2010-12-01

    Although the morphology of human lumbar transversospinal (TSP) muscles has been studied, little is known about the structure of these muscles in the mouse (Mus musculus). Such information is relevant given mice are often used as a "normal" phenotype for studies modeling human development. This study describes the gross morphology, muscle fiber arrangement, and innervation pattern of the mouse lumbar TSP muscles. A unique feature of the study is the use of a transgenic mouse line bearing a muscle-specific nuclear marker that allows clear delineation of muscle fiber and connective tissue boundaries. The lumbar TSP muscles of five mice were examined bilaterally; at each spinal level muscles attached to the caudal edge of the spinous process and passed caudally as a single complex unit. Fibers progressively terminated over the four vertebral segments caudad, with multiple points of muscle fiber attachment on each vertebra. Motor endplates, defined with acetylcholinesterase histochemistry, were consistently located half way along each muscle fiber, regardless of length, with all muscle fibers arranged in-parallel rather than in-series. These results provide information relevant to interpretation of developmental and functional studies involving this muscle group in the mouse and show mouse lumbar TSP muscles are different in form to descriptions of equivalent muscles in humans and horses.

  13. Triceps brachii muscle reconstruction with a latissimus dorsi muscle flap in a dog.

    PubMed

    Pavletic, Michael M; Kalis, Russell; Tribou, Patricia; Mouser, Pam J

    2015-01-15

    A 6-year-old spayed female Border Collie was examined for a severe deformity of the right forelimb. Three months prior to examination, the patient awkwardly fell off the couch and became acutely lame in the right forelimb, progressing to non-weight bearing over the following 72 hours. On physical examination, the dog carried the limb caudally against the thoracic wall, with the shoulder flexed and elbow in extension. The right triceps brachii muscle was atrophied and contracted, resulting in a resistant tension band effect that precluded manipulation of the right elbow joint. The physical changes in the triceps muscle were considered the primary cause of the patient's loss of limb function. Surgical treatment by means of elevation and transposition of the ipsilateral latissimus dorsi muscle was performed. The exposed triceps brachii muscles were transected 3 cm proximal to the tendons of insertion. Via a separate incision, the right latissimus dorsi muscle was elevated and tunneled subcutaneously beneath the interposing skin between the 2 surgical incisions. The muscle was then positioned and sutured to the proximal and distal borders of the divided triceps muscle group. Two weeks later, physical therapy was initiated. After 2 months, the patient regularly walked on the limb most of the time (9/10 steps). The surgical procedure for elevation and transposition of the latissimus dorsi muscle was relatively simple to perform. Physical therapy was an essential component to achieving the successful functional outcome in this case. This technique may be considered for treatment of similar patients in which the triceps muscle group is severely compromised.

  14. New twist on artificial muscles.

    PubMed

    Haines, Carter S; Li, Na; Spinks, Geoffrey M; Aliev, Ali E; Di, Jiangtao; Baughman, Ray H

    2016-10-18

    Lightweight artificial muscle fibers that can match the large tensile stroke of natural muscles have been elusive. In particular, low stroke, limited cycle life, and inefficient energy conversion have combined with high cost and hysteretic performance to restrict practical use. In recent years, a new class of artificial muscles, based on highly twisted fibers, has emerged that can deliver more than 2,000 J/kg of specific work during muscle contraction, compared with just 40 J/kg for natural muscle. Thermally actuated muscles made from ordinary polymer fibers can deliver long-life, hysteresis-free tensile strokes of more than 30% and torsional actuation capable of spinning a paddle at speeds of more than 100,000 rpm. In this perspective, we explore the mechanisms and potential applications of present twisted fiber muscles and the future opportunities and challenges for developing twisted muscles having improved cycle rates, efficiencies, and functionality. We also demonstrate artificial muscle sewing threads and textiles and coiled structures that exhibit nearly unlimited actuation strokes. In addition to robotics and prosthetics, future applications include smart textiles that change breathability in response to temperature and moisture and window shutters that automatically open and close to conserve energy.

  15. New twist on artificial muscles

    PubMed Central

    Haines, Carter S.; Li, Na; Spinks, Geoffrey M.; Aliev, Ali E.; Di, Jiangtao; Baughman, Ray H.

    2016-01-01

    Lightweight artificial muscle fibers that can match the large tensile stroke of natural muscles have been elusive. In particular, low stroke, limited cycle life, and inefficient energy conversion have combined with high cost and hysteretic performance to restrict practical use. In recent years, a new class of artificial muscles, based on highly twisted fibers, has emerged that can deliver more than 2,000 J/kg of specific work during muscle contraction, compared with just 40 J/kg for natural muscle. Thermally actuated muscles made from ordinary polymer fibers can deliver long-life, hysteresis-free tensile strokes of more than 30% and torsional actuation capable of spinning a paddle at speeds of more than 100,000 rpm. In this perspective, we explore the mechanisms and potential applications of present twisted fiber muscles and the future opportunities and challenges for developing twisted muscles having improved cycle rates, efficiencies, and functionality. We also demonstrate artificial muscle sewing threads and textiles and coiled structures that exhibit nearly unlimited actuation strokes. In addition to robotics and prosthetics, future applications include smart textiles that change breathability in response to temperature and moisture and window shutters that automatically open and close to conserve energy. PMID:27671626

  16. Comparison of isokinetic muscle strength and muscle power by types of warm-up.

    PubMed

    Sim, Young-Je; Byun, Yong-Hyun; Yoo, Jaehyun

    2015-05-01

    [Purpose] The purpose of this study was to clarify the influence of static stretching at warm-up on the isokinetic muscle torque (at 60°/sec) and muscle power (at 180°/sec) of the flexor muscle and extensor muscle of the knee joint. [Subjects and Methods] The subjects of this study were 10 healthy students with no medically specific findings. The warm-up group and warm-up with stretching group performed their respective warm-up prior to the isokinetic muscle torque evaluation of the knee joint. One-way ANOVA was performed by randomized block design for each variable. [Results] The results were as follows: First, the flexor peak torque and extensor peak torque of the knee joint tended to decrease at 60°/sec in the warm-up with stretching group compared with the control group and warm-up group, but without statistical significance. Second, extensor power at 180°/sec was also not statistically significant. However, it was found that flexor power increased significantly in the warm-up with stretching group at 180°/sec compared with the control group and warm-up group in which stretching was not performed. [Conclusion] Therefore, it is considered that in healthy adults, warm-up including two sets of stretching for 20 seconds per muscle group does not decrease muscle strength and muscle power.

  17. Hypoxia inducible factor 1 links fast-patterned muscle activity and fast muscle phenotype in rats.

    PubMed

    Lunde, Ida G; Anton, Siobhan L; Bruusgaard, Jo C; Rana, Zaheer A; Ellefsen, Stian; Gundersen, Kristian

    2011-03-15

    Exercise influences muscle phenotype by the specific pattern of action potentials delivered to the muscle, triggering intracellular signalling pathways. PO2 can be reduced by an order of magnitude in working muscle. In humans, carriers of a hyperactive polymorphism of the transcription factor hypoxia inducible factor 1α (HIF-1α) have 50% more fast fibres, and this polymorphism is prevalent among strength athletes. We have investigated the putative role of HIF-1α in mediating activity changes in muscle.When rat muscles were stimulated with short high frequency bursts of action potentials known to induce a fast muscle phenotype, HIF-1α increased by about 80%. In contrast, a pattern consisting of long low frequency trains known to make fast muscles slow reduced the HIF-1α level of the fast extensor digitorum longus (EDL) muscle by 44%. Nuclear protein extracts from normal EDL contained 2.3-fold more HIF-1α and 4-fold more HIF-1β than the slow soleus muscle, while von-Hippel-Lindau protein was 4.8-fold higher in slow muscles. mRNA displayed a reciprocal pattern; thus FIH-1 mRNA was almost 2-fold higher in fast muscle, while the HIF-1α level was half, and consequently protein/mRNA ratio for HIF-1α was more than 4-fold higher in the fast muscle, suggesting that HIF-1α is strongly suppressed post-transcriptionally in slow muscles.When HIF-1α was overexpressed for 14 days after somatic gene transfer in adult rats, a slow-to-fast transformation was observed, encompassing an increase in fibre cross sectional area, oxidative enzyme activity and myosin heavy chain. The latter was shown to be regulated at the mRNA level in C2C12 myotubes.

  18. Research opportunities in muscle atrophy

    NASA Technical Reports Server (NTRS)

    Herbison, G. J. (Editor); Talbot, J. M. (Editor)

    1984-01-01

    Muscle atrophy in a weightless environment is studied. Topics of investigation include physiological factors of muscle atrophy in space flight, biochemistry, countermeasures, modelling of atrophied muscle tissue, and various methods of measurement of muscle strength and endurance. A review of the current literature and suggestions for future research are included.

  19. Baroreflex modulation of muscle sympathetic nerve activity during posthandgrip muscle ischemia in humans

    NASA Technical Reports Server (NTRS)

    Cui, J.; Wilson, T. E.; Shibasaki, M.; Hodges, N. A.; Crandall, C. G.

    2001-01-01

    To identify whether muscle metaboreceptor stimulation alters baroreflex control of muscle sympathetic nerve activity (MSNA), MSNA, beat-by-beat arterial blood pressure (Finapres), and electrocardiogram were recorded in 11 healthy subjects in the supine position. Subjects performed 2 min of isometric handgrip exercise at 40% of maximal voluntary contraction followed by 2.5 min of posthandgrip muscle ischemia. During muscle ischemia, blood pressure was lowered and then raised by intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure was more negative (P < 0.001) during posthandgrip muscle ischemia (-201.9 +/- 20.4 units. beat(-1). mmHg(-1)) when compared with control conditions (-142.7 +/- 17.3 units. beat(-1). mmHg(-1)). No significant change in the slope of the relationship between heart rate and systolic blood pressure was observed. However, both curves shifted during postexercise ischemia to accommodate the elevation in blood pressure and MSNA that occurs with this condition. These data suggest that the sensitivity of baroreflex modulation of MSNA is elevated by muscle metaboreceptor stimulation, whereas the sensitivity of baroreflex of modulate heart rate is unchanged during posthandgrip muscle ischemia.

  20. Importance of contraction history on muscle force of porcine urinary bladder smooth muscle.

    PubMed

    Menzel, Robin; Böl, Markus; Siebert, Tobias

    2017-02-01

    The purpose of this study was to provide a comprehensive dataset of porcine urinary bladder smooth muscle properties. Particularly, the history dependence of force production, namely force depression (FD) following shortening and force enhancement (FE) following stretch, was analysed. During active micturition, the circumference of the urinary bladder changes enormously. Thus, FD might be an important phenomenon during smooth muscle contraction. Electrically stimulated, intact urinary bladder strips from pigs (n = 10) were suspended in an aerated-filled organ bath, and different isometric, isotonic, and isokinetic contraction protocols were performed to determine the force-length and the force-velocity relation. FD and FE were assessed in concentric and eccentric contractions with different ramp lengths and ramp velocities. Bladder smooth muscles exhibit considerable amounts of FD and FE. The amount of FD increased significantly with ramp length, while FE did not change. However, FE and FD were independent of ramp velocity. The results imply that smooth muscle bladder strips exhibit similar muscle properties and history-dependent behaviour compared to striated muscles. The provided dataset of muscle properties is important for bladder modelling as well as for the analyses and interpretation of dynamic bladder filling and voiding.

  1. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy

    NASA Technical Reports Server (NTRS)

    Gomes, M. D.; Lecker, S. H.; Jagoe, R. T.; Navon, A.; Goldberg, A. L.

    2001-01-01

    Muscle wasting is a debilitating consequence of fasting, inactivity, cancer, and other systemic diseases that results primarily from accelerated protein degradation by the ubiquitin-proteasome pathway. To identify key factors in this process, we have used cDNA microarrays to compare normal and atrophying muscles and found a unique gene fragment that is induced more than ninefold in muscles of fasted mice. We cloned this gene, which is expressed specifically in striated muscles. Because this mRNA also markedly increases in muscles atrophying because of diabetes, cancer, and renal failure, we named it atrogin-1. It contains a functional F-box domain that binds to Skp1 and thereby to Roc1 and Cul1, the other components of SCF-type Ub-protein ligases (E3s), as well as a nuclear localization sequence and PDZ-binding domain. On fasting, atrogin-1 mRNA levels increase specifically in skeletal muscle and before atrophy occurs. Atrogin-1 is one of the few examples of an F-box protein or Ub-protein ligase (E3) expressed in a tissue-specific manner and appears to be a critical component in the enhanced proteolysis leading to muscle atrophy in diverse diseases.

  2. 3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink.

    PubMed

    Choi, Yeong-Jin; Kim, Taek Gyoung; Jeong, Jonghyeon; Yi, Hee-Gyeong; Park, Ji Won; Hwang, Woonbong; Cho, Dong-Woo

    2016-10-01

    Engineered skeletal muscle tissues that mimic the structure and function of native muscle have been considered as an alternative strategy for the treatment of various muscular diseases and injuries. Here, it is demonstrated that 3D cell-printing of decellularized skeletal muscle extracellular matrix (mdECM)-based bioink facilitates the fabrication of functional skeletal muscle constructs. The cellular alignment and the shape of the tissue constructs are controlled by 3D cell-printing technology. mdECM bioink provides the 3D cell-printed muscle constructs with a myogenic environment that supports high viability and contractility as well as myotube formation, differentiation, and maturation. More interestingly, the preservation of agrin is confirmed in the mdECM, and significant increases in the formation of acetylcholine receptor clusters are exhibited in the 3D cell-printed muscle constructs. In conclusion, mdECM bioink and 3D cell-printing technology facilitate the mimicking of both the structural and functional properties of native muscle and hold great promise for producing clinically relevant engineered muscle for the treatment of muscular injuries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy

    PubMed Central

    Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F.

    2015-01-01

    Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies. PMID:26460719

  4. Daily muscle stretching enhances blood flow, endothelial function, capillarity, vascular volume and connectivity in aged skeletal muscle.

    PubMed

    Hotta, Kazuki; Behnke, Bradley J; Arjmandi, Bahram; Ghosh, Payal; Chen, Bei; Brooks, Rachael; Maraj, Joshua J; Elam, Marcus L; Maher, Patrick; Kurien, Daniel; Churchill, Alexandra; Sepulveda, Jaime L; Kabolowsky, Max B; Christou, Demetra D; Muller-Delp, Judy M

    2018-05-15

    In aged rats, daily muscle stretching increases blood flow to skeletal muscle during exercise. Daily muscle stretching enhanced endothelium-dependent vasodilatation of skeletal muscle resistance arterioles of aged rats. Angiogenic markers and capillarity increased in response to daily stretching in muscles of aged rats. Muscle stretching performed with a splint could provide a feasible means of improving muscle blood flow and function in elderly patients who cannot perform regular aerobic exercise. Mechanical stretch stimuli alter the morphology and function of cultured endothelial cells; however, little is known about the effects of daily muscle stretching on adaptations of endothelial function and muscle blood flow. The present study aimed to determine the effects of daily muscle stretching on endothelium-dependent vasodilatation and muscle blood flow in aged rats. The lower hindlimb muscles of aged Fischer rats were passively stretched by placing an ankle dorsiflexion splint for 30 min day -1 , 5 days week -1 , for 4 weeks. Blood flow to the stretched limb and the non-stretched contralateral limb was determined at rest and during treadmill exercise. Endothelium-dependent/independent vasodilatation was evaluated in soleus muscle arterioles. Levels of hypoxia-induced factor-1α, vascular endothelial growth factor A and neuronal nitric oxide synthase were determined in soleus muscle fibres. Levels of endothelial nitric oxide synthase and superoxide dismutase were determined in soleus muscle arterioles, and microvascular volume and capillarity were evaluated by microcomputed tomography and lectin staining, respectively. During exercise, blood flow to plantar flexor muscles was significantly higher in the stretched limb. Endothelium-dependent vasodilatation was enhanced in arterioles from the soleus muscle from the stretched limb. Microvascular volume, number of capillaries per muscle fibre, and levels of hypoxia-induced factor-1α, vascular endothelial growth

  5. Muscle Fiber Types and Training.

    ERIC Educational Resources Information Center

    Karp, Jason R.

    2001-01-01

    The specific types of fibers that make up individual muscles greatly influence how people will adapt to their training programs. This paper explains the complexities of skeletal muscles, focusing on types of muscle fibers (slow-twitch and fast-twitch), recruitment of muscle fibers to perform a motor task, and determining fiber type. Implications…

  6. Expiratory muscle loading increases intercostal muscle blood flow during leg exercise in healthy humans

    PubMed Central

    Athanasopoulos, Dimitris; Louvaris, Zafeiris; Cherouveim, Evgenia; Andrianopoulos, Vasilis; Roussos, Charis; Zakynthinos, Spyros

    2010-01-01

    We investigated whether expiratory muscle loading induced by the application of expiratory flow limitation (EFL) during exercise in healthy subjects causes a reduction in quadriceps muscle blood flow in favor of the blood flow to the intercostal muscles. We hypothesized that, during exercise with EFL quadriceps muscle blood flow would be reduced, whereas intercostal muscle blood flow would be increased compared with exercise without EFL. We initially performed an incremental exercise test on eight healthy male subjects with a Starling resistor in the expiratory line limiting expiratory flow to ∼ 1 l/s to determine peak EFL exercise workload. On a different day, two constant-load exercise trials were performed in a balanced ordering sequence, during which subjects exercised with or without EFL at peak EFL exercise workload for 6 min. Intercostal (probe over the 7th intercostal space) and vastus lateralis muscle blood flow index (BFI) was calculated by near-infrared spectroscopy using indocyanine green, whereas cardiac output (CO) was measured by an impedance cardiography technique. At exercise termination, CO and stroke volume were not significantly different during exercise, with or without EFL (CO: 16.5 vs. 15.2 l/min, stroke volume: 104 vs. 107 ml/beat). Quadriceps muscle BFI during exercise with EFL (5.4 nM/s) was significantly (P = 0.043) lower compared with exercise without EFL (7.6 nM/s), whereas intercostal muscle BFI during exercise with EFL (3.5 nM/s) was significantly (P = 0.021) greater compared with that recorded during control exercise (0.4 nM/s). In conclusion, increased respiratory muscle loading during exercise in healthy humans causes an increase in blood flow to the intercostal muscles and a concomitant decrease in quadriceps muscle blood flow. PMID:20507965

  7. The Drosophila indirect flight muscle myosin heavy chain isoform is insufficient to transform the jump muscle into a highly stretch-activated muscle type.

    PubMed

    Zhao, Cuiping; Swank, Douglas M

    2017-02-01

    Stretch activation (SA) is a delayed increase in force that enables high power and efficiency from a cyclically contracting muscle. SA exists in various degrees in almost all muscle types. In Drosophila, the indirect flight muscle (IFM) displays exceptionally high SA force production (F SA ), whereas the jump muscle produces only minimal F SA We previously found that expressing an embryonic (EMB) myosin heavy chain (MHC) isoform in the jump muscle transforms it into a moderately SA muscle type and enables positive cyclical power generation. To investigate whether variation in MHC isoforms is sufficient to produce even higher F SA , we substituted the IFM MHC isoform (IFI) into the jump muscle. Surprisingly, we found that IFI only caused a 1.7-fold increase in F SA , less than half the increase previously observed with EMB, and only at a high Pi concentration, 16 mM. This IFI-induced F SA is much less than what occurs in IFM, relative to isometric tension, and did not enable positive cyclical power generation by the jump muscle. Both isometric tension and F SA of control fibers decreased with increasing Pi concentration. However, for IFI-expressing fibers, only isometric tension decreased. The rate of F SA generation was ~1.5-fold faster for IFI fibers than control fibers, and both rates were Pi dependent. We conclude that MHC isoforms can alter F SA and hence cyclical power generation but that isoforms can only endow a muscle type with moderate F SA Highly SA muscle types, such as IFM, likely use a different or additional mechanism. Copyright © 2017 the American Physiological Society.

  8. [Muscle regeneration in mdx mouse, and a trial of normal myoblast transfer into regenerating dystrophic muscle].

    PubMed

    Takemitsu, M; Arahata, K; Nonaka, I

    1990-10-01

    The most ideal therapeutic trial on Duchenne muscular dystrophy (DMD) is a transfer of normal myoblasts into dystrophic muscle which has been attempted on animal models in several institutes. In the process of muscle regeneration, the transferred normal myoblasts are expected to incorporate into the regenerating fibers in host dystrophic mouse. To know the capacity of muscle regeneration in dystrophic muscle, we compared the regenerating process of the normal muscle with that of the dystrophic muscle after myonecrosis induced by 0.25% bupivacaine hydrochloride (BPVC) chronologically. In the present study, C57BL/10ScSn-mdx (mdx) mouse was used as an animal model of DMD and C57BL/10ScSn (B10) mouse as a control. There was no definite difference in the behavior of muscle fiber regeneration between normal and dystrophic muscles. The dystrophic muscle regenerated rapidly at the similar tempo to the normal as to their size and fiber type differentiation. The variation in fiber size diameter of dystrophic muscle, however, was more obvious than that of normal. To promote successful myoblast transfer from B10 mouse into dystrophic mdx mouse at higher ratio, cultured normal myoblasts were transferred into the regenerating dystrophic muscle on the first and the second day after myonecrosis induced by BPVC. Two weeks after the myoblast injection, the muscles were examined with immunohistochemical stain using anti dystrophin antibody. Although dystrophin-positive fibers appeared in dystrophic muscle, the positive fibers were unexpectedly small in number (3.86 +/- 1.50%).(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Group I Paks support muscle regeneration and counteract cancer-associated muscle atrophy.

    PubMed

    Cerquone Perpetuini, Andrea; Re Cecconi, Andrea David; Chiappa, Michela; Martinelli, Giulia Benedetta; Fuoco, Claudia; Desiderio, Giovanni; Castagnoli, Luisa; Gargioli, Cesare; Piccirillo, Rosanna; Cesareni, Gianni

    2018-05-21

    Skeletal muscle is characterized by an efficient regeneration potential that is often impaired during myopathies. Understanding the molecular players involved in muscle homeostasis and regeneration could help to find new therapies against muscle degenerative disorders. Previous studies revealed that the Ser/Thr kinase p21 protein-activated kinase 1 (Pak1) was specifically down-regulated in the atrophying gastrocnemius of Yoshida hepatoma-bearing rats. In this study, we evaluated the role of group I Paks during cancer-related atrophy and muscle regeneration. We examined Pak1 expression levels in the mouse Tibialis Anterior muscles during cancer cachexia induced by grafting colon adenocarcinoma C26 cells and in vitro by dexamethasone treatment. We investigated whether the overexpression of Pak1 counteracts muscle wasting in C26-bearing mice and in vitro also during interleukin-6 (IL6)-induced or dexamethasone-induced C2C12 atrophy. Moreover, we analysed the involvement of group I Paks on myogenic differentiation in vivo and in vitro using the group I chemical inhibitor IPA-3. We found that Pak1 expression levels are reduced during cancer-induced cachexia in the Tibialis Anterior muscles of colon adenocarcinoma C26-bearing mice and in vitro during dexamethasone-induced myotube atrophy. Electroporation of muscles of C26-bearing mice with plasmids directing the synthesis of PAK1 preserves fiber size in cachectic muscles by restraining the expression of atrogin-1 and MuRF1 and possibly by inducing myogenin expression. Consistently, the overexpression of PAK1 reduces the dexamethasone-induced expression of MuRF1 in myotubes and increases the phospho-FOXO3/FOXO3 ratio. Interestingly, the ectopic expression of PAK1 counteracts atrophy in vitro by restraining the IL6-Stat3 signalling pathway measured in luciferase-based assays and by reducing rates of protein degradation in atrophying myotubes exposed to IL6. On the other hand, we observed that the inhibition of group I Paks

  10. Sex Differences in Muscle Wasting.

    PubMed

    Anderson, Lindsey J; Liu, Haiming; Garcia, Jose M

    2017-01-01

    With aging and other muscle wasting diseases, men and women undergo similar pathological changes in skeletal muscle: increased inflammation, enhanced oxidative stress, mitochondrial dysfunction, satellite cell senescence, elevated apoptosis and proteasome activity, and suppressed protein synthesis and myocyte regeneration. Decreased food intake and physical activity also indirectly contribute to muscle wasting. Sex hormones also play important roles in maintaining skeletal muscle homeostasis. Testosterone is a potent anabolic factor promoting muscle protein synthesis and muscular regeneration. Estrogens have a protective effect on skeletal muscle by attenuating inflammation; however, the mechanisms of estrogen action in skeletal muscle are less well characterized than those of testosterone. Age- and/or disease-induced alterations in sex hormones are major contributors to muscle wasting. Hence, men and women may respond differently to catabolic conditions because of their hormonal profiles. Here we review the similarities and differences between men and women with common wasting conditions including sarcopenia and cachexia due to cancer, end-stage renal disease/chronic kidney disease, liver disease, chronic heart failure, and chronic obstructive pulmonary disease based on the literature in clinical studies. In addition, the responses in men and women to the commonly used therapeutic agents and their efficacy to improve muscle mass and function are also reviewed.

  11. Activation of plantar flexor muscles is constrained by multiple muscle synergies rather than joint torques

    PubMed Central

    Suzuki, Takahito; Kinugasa, Ryuta; Fukashiro, Senshi

    2017-01-01

    Behavioral evidence has suggested that a small number of muscle synergies may be responsible for activating a variety of muscles. Nevertheless, such dimensionality reduction may also be explained using the perspective of alternative hypotheses, such as predictions based on linear combinations of joint torques multiplied by corresponding coefficients. To compare the explanatory capacity of these hypotheses for describing muscle activation, we enrolled 12 male volunteers who performed isometric plantar flexor contractions at 10–100% of maximum effort. During each plantar flexor contraction, the knee extensor muscles were isometrically contracted at 0%, 50%, or 100% of maximum effort. Electromyographic activity was recorded from the vastus lateralis, medial gastrocnemius (MG), lateral gastrocnemius (LG), and soleus muscles and quantified using the average rectified value (ARV). At lower plantar flexion torque, regression analysis identified a clear linear relationship between the MG and soleus ARVs and between the MG and LG ARVs, suggesting the presence of muscle synergy (r2 > 0.65). The contraction of the knee extensor muscles induced a significant change in the slope of this relationship for both pairs of muscles (MG × soleus, P = 0.002; MG × LG, P = 0.006). Similarly, the slope of the linear relationship between the plantar flexion torque and the ARV of the MG or soleus changed significantly with knee extensor contraction (P = 0.031 and P = 0.041, respectively). These results suggest that muscle synergies characterized by non-mechanical constraints are selectively recruited according to whether contraction of the knee extensor muscles is performed simultaneously, which is relatively consistent with the muscle synergy hypothesis. PMID:29107958

  12. Respiratory muscle training increases respiratory muscle strength and reduces respiratory complications after stroke: a systematic review.

    PubMed

    Menezes, Kênia Kp; Nascimento, Lucas R; Ada, Louise; Polese, Janaine C; Avelino, Patrick R; Teixeira-Salmela, Luci F

    2016-07-01

    After stroke, does respiratory muscle training increase respiratory muscle strength and/or endurance? Are any benefits carried over to activity and/or participation? Does it reduce respiratory complications? Systematic review of randomised or quasi-randomised trials. Adults with respiratory muscle weakness following stroke. Respiratory muscle training aimed at increasing inspiratory and/or expiratory muscle strength. Five outcomes were of interest: respiratory muscle strength, respiratory muscle endurance, activity, participation and respiratory complications. Five trials involving 263 participants were included. The mean PEDro score was 6.4 (range 3 to 8), showing moderate methodological quality. Random-effects meta-analyses showed that respiratory muscle training increased maximal inspiratory pressure by 7 cmH2O (95% CI 1 to 14) and maximal expiratory pressure by 13 cmH2O (95% CI 1 to 25); it also decreased the risk of respiratory complications (RR 0.38, 95% CI 0.15 to 0.96) compared with no/sham respiratory intervention. Whether these effects carry over to activity and participation remains uncertain. This systematic review provided evidence that respiratory muscle training is effective after stroke. Meta-analyses based on five trials indicated that 30minutes of respiratory muscle training, five times per week, for 5 weeks can be expected to increase respiratory muscle strength in very weak individuals after stroke. In addition, respiratory muscle training is expected to reduce the risk of respiratory complications after stroke. Further studies are warranted to investigate whether the benefits are carried over to activity and participation. PROSPERO (CRD42015020683). [Menezes KKP, Nascimento LR, Ada L, Polese JC, Avelino PR, Teixeira-Salmela LF (2016) Respiratory muscle training increases respiratory muscle strength and reduces respiratory complications after stroke: a systematic review.Journal of Physiotherapy62: 138-144]. Copyright © 2016 Australian

  13. Noninvasive, near infrared spectroscopic-measured muscle pH and PO2 indicate tissue perfusion for cardiac surgical patients undergoing cardiopulmonary bypass

    NASA Technical Reports Server (NTRS)

    Soller, Babs R.; Idwasi, Patrick O.; Balaguer, Jorge; Levin, Steven; Simsir, Sinan A.; Vander Salm, Thomas J.; Collette, Helen; Heard, Stephen O.

    2003-01-01

    OBJECTIVE: To determine whether near infrared spectroscopic measurement of tissue pH and Po2 has sufficient accuracy to assess variation in tissue perfusion resulting from changes in blood pressure and metabolic demand during cardiopulmonary bypass. DESIGN: Prospective clinical study. SETTING: Academic medical center. SUBJECTS: Eighteen elective cardiac surgical patients. INTERVENTION: Cardiac surgery under cardiopulmonary bypass. MEASUREMENTS AND MAIN RESULTS: A near infrared spectroscopic fiber optic probe was placed over the hypothenar eminence. Reference Po2 and pH sensors were inserted in the abductor digiti minimi (V). Data were collected every 30 secs during surgery and for 6 hrs following cardiopulmonary bypass. Calibration equations developed from one third of the data were used with the remaining data to investigate sensitivity of the near infrared spectroscopic measurement to physiologic changes resulting from cardiopulmonary bypass. Near infrared spectroscopic and reference pH and Po2 measurements were compared for each subject using standard error of prediction. Near infrared spectroscopic pH and Po2 at baseline were compared with values during cardiopulmonary bypass just before rewarming commenced (hypotensive, hypothermic), after rewarming (hypotensive, normothermic) just before discontinuation of cardiopulmonary bypass, and at 6 hrs following cardiopulmonary bypass (normotensive, normothermic) using mixed-model analysis of variance. Near infrared spectroscopic pH and Po2 were well correlated with the invasive measurement of pH (R2 =.84) and Po2 (R 2 =.66) with an average standard error of prediction of 0.022 +/- 0.008 pH units and 6 +/- 3 mm Hg, respectively. The average difference between the invasive and near infrared spectroscopic measurement was near zero for both the pH and Po2 measurements. Near infrared spectroscopic Po2 significantly decreased 50% on initiation of cardiopulmonary bypass and remained depressed throughout the bypass and

  14. Muscle architecture and fibre characteristics of rat gastrocnemius and semimembranosus muscles during isometric contractions.

    PubMed

    Huijing, P A; van Lookeren Campagne, A A; Koper, J F

    1989-01-01

    Rat gastrocnemius medialis (GM) and semimembranosus (SM) muscles have a very different morphology. GM is a very pennate muscle, combining relatively short muscle fibre length with sizable fibre angles and long muscle and aponeurosis lengths. SM is a more parallel-fibred muscle, combining a relatively long fibre length with a small fibre angle and short aponeurosis length. The mechanisms of fibre shortening as well as angle increase are operational in GM as well as SM. However, as a consequence of isometric contraction, changes of fibre length and angle are greater for GM than for SM at any relative muscle length. These differences are particularly notable at short muscle lengths: at 80% of optimum muscle length, fibre length changes of approximately 30% are coupled to fibre angle changes of 15 degrees in GM, while for SM these changes are 4% and 0.6 degrees, respectively. A considerable difference was found for normalized active slack muscle length (GM approximately 80 and SM approximately 45%). This is explained by differences of degree of pennation as well as factors related to differences found for estimated fibre length-force characteristics. Estimated normalized active fibre slack length was considerably smaller for SM than for GM (approximately 40 and 60%, respectively). The most likely explanation of these findings are differences of distribution of optimum fibre lengths, possibly in combination with differences of myofilament lengths and/or fibre length distributions.

  15. Histological evidence for muscle insertion in extant amniote femora: implications for muscle reconstruction in fossils.

    PubMed

    Petermann, Holger; Sander, Martin

    2013-04-01

    Since the 19th century, identification of muscle attachment sites on bones has been important for muscle reconstructions, especially in fossil tetrapods, and therefore has been the subject of numerous biological and paleontological studies. At the microscopic level, in histological thin sections, the only features that can be used reliably for identifying tendon-bone or muscle-tendon-bone interactions are Sharpey's fibers. Muscles, however, do not only attach to the bone indirectly with tendons, but also directly. Previous studies failed to provide new indicators for muscle attachment, or to address the question of whether muscles with direct attachment can be identified histologically. However, histological identification of direct muscle attachments is important because these attachments do not leave visible marks (e.g. scars and rugosities) on the bone surface. We dissected the right hind limb and mapped the muscle attachment sites on the femur of one rabbit (Oryctolagus cuniculus), one Alligator mississippiensis, and one turkey (Meleagris cuniculus). We then extracted the femur and prepared four histological thin sections for the rabbit and the turkey and five histological thin sections for the alligator. Sharpey's fibers, vascular canal orientation, and a frayed periosteal margin can be indicators for indirect but also direct muscle attachment. Sharpey's fibers can be oriented to the cutting plane of the thin section at high angles, and two Sharpey's fibers orientations can occur in one area, possibly indicating a secondary force axis. However, only about 60% of mapped muscle attachment sites could be detected in thin sections, and frequently histological features suggestive of muscle attachment occurred outside mapped sites. While these insights should improve our ability to successfully identify and reconstruct muscles in extinct species, they also show the limitations of this approach. © 2013 The Authors Journal of Anatomy © 2013 Anatomical Society.

  16. Muscle MRI findings in facioscapulohumeral muscular dystrophy.

    PubMed

    Gerevini, Simonetta; Scarlato, Marina; Maggi, Lorenzo; Cava, Mariangela; Caliendo, Giandomenico; Pasanisi, Barbara; Falini, Andrea; Previtali, Stefano Carlo; Morandi, Lucia

    2016-03-01

    Facioscapulohumeral muscular dystrophy (FSHD) is characterized by extremely variable degrees of facial, scapular and lower limb muscle involvement. Clinical and genetic determination can be difficult, as molecular analysis is not always definitive, and other similar muscle disorders may have overlapping clinical manifestations. Whole-body muscle MRI examination for fat infiltration, atrophy and oedema was performed to identify specific patterns of muscle involvement in FSHD patients (30 subjects), and compared to a group of control patients (23) affected by other myopathies (NFSHD). In FSHD patients, we detected a specific pattern of muscle fatty replacement and atrophy, particularly in upper girdle muscles. The most frequently affected muscles, including paucisymptomatic and severely affected FSHD patients, were trapezius, teres major and serratus anterior. Moreover, asymmetric muscle involvement was significantly higher in FSHD as compared to NFSHD patients. In conclusion, muscle MRI is very sensitive for identifying a specific pattern of involvement in FSHD patients and in detecting selective muscle involvement of non-clinically testable muscles. Muscle MRI constitutes a reliable tool for differentiating FSHD from other muscular dystrophies to direct diagnostic molecular analysis, as well as to investigate FSHD natural history and follow-up of the disease. Muscle MRI identifies a specific pattern of muscle involvement in FSHD patients. Muscle MRI may predict FSHD in asymptomatic and severely affected patients. Muscle MRI of upper girdle better predicts FSHD. Muscle MRI may differentiate FSHD from other forms of muscular dystrophy. Muscle MRI may show the involvement of non-clinical testable muscles.

  17. Soleus muscles of SAMP8 mice provide an accelerated model of skeletal muscle senescence.

    PubMed

    Derave, Wim; Eijnde, Bert O; Ramaekers, Monique; Hespel, Peter

    2005-07-01

    Animal models are valuable research tools towards effective prevention of sarcopenia and towards a better understanding of the mechanisms underlying skeletal muscle aging. We investigated whether senescence-accelerated mouse (SAM) strains provide valid models for skeletal muscle aging studies. Male senescence-prone mice SAMP6 and SAMP8 were studied at age 10, 25 and 60 weeks and compared with senescence-resistant strain, SAMR1. Soleus and EDL muscles were tested for in vitro contractile properties, phosphocreatine content, muscle mass and fiber-type distribution. Declined muscle mass and contractility were observed at 60 weeks, the differences being more pronounced in SAMP8 than SAMP6 and more pronounced in soleus than EDL. Likewise, age-related decreases in muscle phosphocreatine content and type-II fiber size were most pronounced in SAMP8 soleus. In conclusion, typical features of muscular senescence occur at relatively young age in SAMP8 and nearly twice as fast as compared with other models. We suggest that soleus muscles of SAMP8 mice provide a cost-effective model for muscular aging studies.

  18. Ethanol Exposure Causes Muscle Degeneration in Zebrafish

    PubMed Central

    Coffey, Elizabeth C.; Pasquarella, Maggie E.; Goody, Michelle F.

    2018-01-01

    Alcoholic myopathies are characterized by neuromusculoskeletal symptoms such as compromised movement and weakness. Although these symptoms have been attributed to neurological damage, EtOH may also target skeletal muscle. EtOH exposure during zebrafish primary muscle development or adulthood results in smaller muscle fibers. However, the effects of EtOH exposure on skeletal muscle during the growth period that follows primary muscle development are not well understood. We determined the effects of EtOH exposure on muscle during this phase of development. Strikingly, muscle fibers at this stage are acutely sensitive to EtOH treatment: EtOH induces muscle degeneration. The severity of EtOH-induced muscle damage varies but muscle becomes more refractory to EtOH as muscle develops. NF-kB induction in muscle indicates that EtOH triggers a pro-inflammatory response. EtOH-induced muscle damage is p53-independent. Uptake of Evans blue dye shows that EtOH treatment causes sarcolemmal instability before muscle fiber detachment. Dystrophin-null sapje mutant zebrafish also exhibit sarcolemmal instability. We tested whether Trichostatin A (TSA), which reduces muscle degeneration in sapje mutants, would affect EtOH-treated zebrafish. We found that TSA and EtOH are a lethal combination. EtOH does, however, exacerbate muscle degeneration in sapje mutants. EtOH also disrupts adhesion of muscle fibers to their extracellular matrix at the myotendinous junction: some detached muscle fibers retain beta-Dystroglycan indicating failure of muscle end attachments. Overexpression of Paxillin, which reduces muscle degeneration in zebrafish deficient for beta-Dystroglycan, is not sufficient to rescue degeneration. Taken together, our results suggest that EtOH exposure has pleiotropic deleterious effects on skeletal muscle. PMID:29615556

  19. A model of muscle atrophy based on live microscopy of muscle remodelling in Drosophila metamorphosis.

    PubMed

    Kuleesha, Yadav; Puah, Wee Choo; Wasser, Martin

    2016-02-01

    Genes controlling muscle size and survival play important roles in muscle wasting diseases. In Drosophila melanogaster metamorphosis, larval abdominal muscles undergo two developmental fates. While a doomed population is eliminated by cell death, another persistent group is remodelled and survives into adulthood. To identify and characterize genes involved in the development of remodelled muscles, we devised a workflow consisting of in vivo imaging, targeted gene perturbation and quantitative image analysis. We show that inhibition of TOR signalling and activation of autophagy promote developmental muscle atrophy in early, while TOR and yorkie activation are required for muscle growth in late pupation. We discovered changes in the localization of myonuclei during remodelling that involve anti-polar migration leading to central clustering followed by polar migration resulting in localization along the midline. We demonstrate that the Cathepsin L orthologue Cp1 is required for myonuclear clustering in mid, while autophagy contributes to central positioning of nuclei in late metamorphosis. In conclusion, studying muscle remodelling in metamorphosis can provide new insights into the cell biology of muscle wasting.

  20. A model of muscle atrophy based on live microscopy of muscle remodelling in Drosophila metamorphosis

    PubMed Central

    Kuleesha, Yadav; Puah, Wee Choo; Wasser, Martin

    2016-01-01

    Genes controlling muscle size and survival play important roles in muscle wasting diseases. In Drosophila melanogaster metamorphosis, larval abdominal muscles undergo two developmental fates. While a doomed population is eliminated by cell death, another persistent group is remodelled and survives into adulthood. To identify and characterize genes involved in the development of remodelled muscles, we devised a workflow consisting of in vivo imaging, targeted gene perturbation and quantitative image analysis. We show that inhibition of TOR signalling and activation of autophagy promote developmental muscle atrophy in early, while TOR and yorkie activation are required for muscle growth in late pupation. We discovered changes in the localization of myonuclei during remodelling that involve anti-polar migration leading to central clustering followed by polar migration resulting in localization along the midline. We demonstrate that the Cathepsin L orthologue Cp1 is required for myonuclear clustering in mid, while autophagy contributes to central positioning of nuclei in late metamorphosis. In conclusion, studying muscle remodelling in metamorphosis can provide new insights into the cell biology of muscle wasting. PMID:26998322

  1. Muscle Fiber Orientation Angle Dependence of the Tensile Fracture Behavior of Frozen Fish Muscle

    NASA Astrophysics Data System (ADS)

    Hagura, Yoshio; Okamoto, Kiyoshi; Suzuki, Kanichi; Kubota, Kiyoshi

    We have proposed a new cutting method for frozen fish named "cryo-cutting". This method applied tensile fracture force or bending fracture force to the frozen fish at appropriate low temperatures. In this paper, to clarify cryo-cutting mechanism, we analyzed tensile fracture behavior of the frozen fish muscle. In the analysis, the frozen fish muscle was considered unidirectionally fiber-reinforced composite material which consisted of fiber (muscle fiber) and matrix (connective tissue). Fracture criteria (maximum stress criterion, Tsai-Hill criterion) for the unidirectionally fiber-reinforced composite material were used. The following results were obtained: (1) By using Tsai-Hill criterion, muscle fiber orientation angle dependence of the tensile fracture stress could be calculated. (2) By using the maximum stress theory jointly with Tsai-Hill criterion, muscle fiber orientation angle dependence of the fracture mode of the frozen fish muscle could be estimated.

  2. mRNA Expression Signatures of Human Skeletal Muscle Atrophy Identify a Natural Compound that Increases Muscle Mass

    PubMed Central

    Kunkel, Steven D.; Suneja, Manish; Ebert, Scott M.; Bongers, Kale S.; Fox, Daniel K.; Malmberg, Sharon E.; Alipour, Fariborz; Shields, Richard K.; Adams, Christopher M.

    2011-01-01

    SUMMARY Skeletal muscle atrophy is a common and debilitating condition that lacks a pharmacologic therapy. To develop a potential therapy, we identified 63 mRNAs that were regulated by fasting in both human and mouse muscle, and 29 mRNAs that were regulated by both fasting and spinal cord injury in human muscle. We used these two unbiased mRNA expression signatures of muscle atrophy to query the Connectivity Map, which singled out ursolic acid as a compound whose signature was opposite to those of atrophy-inducing stresses. A natural compound enriched in apples, ursolic acid reduced muscle atrophy and stimulated muscle hypertrophy in mice. It did so by enhancing skeletal muscle insulin/IGF-I signaling, and inhibiting atrophy-associated skeletal muscle mRNA expression. Importantly, ursolic acid’s effects on muscle were accompanied by reductions in adiposity, fasting blood glucose and plasma cholesterol and triglycerides. These findings identify a potential therapy for muscle atrophy and perhaps other metabolic diseases. PMID:21641545

  3. Muscle fiber-type conversion in the transgenic pigs with overexpression of PGC1α gene in muscle.

    PubMed

    Ying, Fei; Zhang, Liang; Bu, Guowei; Xiong, Yuanzhu; Zuo, Bo

    2016-11-25

    The peroxisome proliferator-activated receptor gamma, co-activator 1 alpha(PGC1α) effectively induced the biosynthesis of the mitochondria and the energy metabolism, and also regulated the muscle fiber-type shift. Overexpression of PGC1α gene in mice led to higher oxidative muscle fiber composition in muscle. However, no researches about the significant differences of muscle fiber phenotype in pigs after PGC1α overexpression had been reported. The composition of muscle fiber-types which were distinguished by four myosin heavy chain(MYHC) isoforms, can significantly affect the muscle functions. In our study, we generated the transgenic pigs to investigate the effect of overexpression of PGC1α gene on muscle fiber-type conversion. The results showed that the number of oxidative muscle fiber(type1 muscle fiber) was increased and the number of glycolytic muscle fiber(type2b muscle fiber) was decreased in the transgenic pigs. Furthermore, we found that PGC1α overexpression up-regulated the expression of MYHC1 and MYHC2a and down-regulated the expression of MYHC2b.The analysis of genes expression demonstrated the main differentially expressed genes were MSTN, Myog and FOXO1. In conclusion, the overexpression of PGC1α gene can promote the glycolytic muscle fiber transform to the oxidative muscle fiber in pigs. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Muscle fiber-type conversion in the transgenic pigs with overexpression of PGC1α gene in muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying, Fei; Zhang, Liang; Bu, Guowei

    The peroxisome proliferator-activated receptor gamma, co-activator 1 alpha(PGC1α) effectively induced the biosynthesis of the mitochondria and the energy metabolism, and also regulated the muscle fiber-type shift. Overexpression of PGC1α gene in mice led to higher oxidative muscle fiber composition in muscle. However, no researches about the significant differences of muscle fiber phenotype in pigs after PGC1α overexpression had been reported. The composition of muscle fiber-types which were distinguished by four myosin heavy chain(MYHC) isoforms, can significantly affect the muscle functions. In our study, we generated the transgenic pigs to investigate the effect of overexpression of PGC1α gene on muscle fiber-typemore » conversion. The results showed that the number of oxidative muscle fiber(type1 muscle fiber) was increased and the number of glycolytic muscle fiber(type2b muscle fiber) was decreased in the transgenic pigs. Furthermore, we found that PGC1α overexpression up-regulated the expression of MYHC1 and MYHC2a and down-regulated the expression of MYHC2b.The analysis of genes expression demonstrated the main differentially expressed genes were MSTN, Myog and FOXO1. In conclusion, the overexpression of PGC1α gene can promote the glycolytic muscle fiber transform to the oxidative muscle fiber in pigs.« less

  5. Isometric muscle fatigue of the paravertebral and upper extremity muscles after whiplash injury.

    PubMed

    Rastovic, Pejana; Gojanovic, Marija Definis; Berberovic, Marina; Pavlovic, Marko; Lesko, Josip; Galic, Gordan; Pandza, Maja

    2017-01-01

    Whiplash-associated disorders (WAD) result from injury of neck structures that most often occur during traffic accidents as a result of rapid acceleration-deceleration. The dominant symptoms manifest in the musculoskeletal system and include increased fatigue. Because of the frequency of whiplash injuries, a simple, cheap and useful diagnostic tool is needed to differentiate whiplash injury from healthy patients or those faking symptoms. To determine muscle fatigue in patients with whiplash injury in six body positions. Analytical cross-sectional study. Emergency center, university hospital. We studied patients with whiplash injury from vehicular traffic accidents who presented to the emergency center within 6 hours of sustaining the injury. We determined whiplash injury grade according to the Quebec Task Force (QTF) classification and measured isometric muscle endurance in six different body positions. Control subjects for each patient were matched by age, gender and anthropomorphic characteristics. Cut-off values were determined to distinguish patients with whiplash injury from controls and for determination of injury grade . QTF grade, time to muscle fatigue in seconds. From September 2013 to September 2016, we enrolled 75 patients with whiplash injury and 75 matching control subjects. In all six positions, the patients with whiplash injury felt muscle fatigue faster than equivalent controls (P < .05) and the time to onset of muscle fatigue decreased with increasing injury grades in all six positions. Assignment to the patient or control group and to injury grade could be predicted with more than 90% accuracy on the basis of time to muscle fatigue. The most efficient position was the highest injury grade, by which 99.9% of the patients were accurately categorized. Isometric muscle endurance correlated with whiplash injury grade in all six positions (P < .01). Under clinical conditions, muscle endurance and the appearance of isometric muscle fatigue during

  6. Neuromuscular organization of avian flight muscle: architecture of single muscle fibres in muscle units of the pectoralis (pars thoracicus) of pigeon (Columba livia)

    PubMed Central

    Sokoloff, A. J.

    1999-01-01

    The M. pectoralis (pars thoracicus) of pigeons (Columba livia) is comprised of short muscle fibres that do not extend from muscle origin to insertion but overlap 'in-series'. Individual pectoralis motor units are limited in territory to a portion of muscle length and are comprised of either fast twitch, oxidative and glycolytic fibres (FOG) or fast twitch and glycolytic fibres (FG). FOG fibres make up 88 to 90% of the total muscle population and have a mean diameter one-half of that of the relatively large FG fibres. Here we report on the organization of individual fibres identified in six muscle units depleted of glycogen, three comprised of FOG fibres and three comprised of FG fibres. For each motor unit, fibre counts revealed unequal numbers of depleted fibres in different unit cross-sections. We traced individual fibres in one unit comprised of FOG fibres and a second comprised of FG fibres. Six fibres from a FOG unit (total length 15.45 mm) ranged from 10.11 to 11.82 mm in length and averaged (± s.d.) 10.74 ± 0.79 mm. All originated bluntly (en mass) from a fascicle near the proximal end of the muscle unit and all terminated intramuscularly. Five of these ended in a taper and one ended bluntly. Fibres coursed on average for 70% of the muscle unit length. Six fibres from a FG unit (total length 34.76 mm) ranged from 8.97 to 18.38 mm in length and averaged 15.32 ± 3.75 mm. All originated bluntly and terminated intramuscularly; one of these ended in a taper and five ended bluntly. Fibres coursed on average for 44% of the muscle unit length. Because fibres of individual muscle units do not extend the whole muscle unit territory, the effective cross-sectional area changes along the motor unit length. These non-uniformities in the distribution of fibres within a muscle unit emphasize that the functional interactions within and between motor units are complex.

  7. Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: a brief review.

    PubMed

    Abe, Takashi; Loenneke, Jeremy P; Fahs, Christopher A; Rossow, Lindy M; Thiebaud, Robert S; Bemben, Michael G

    2012-07-01

    Although evidence for high-intensity resistance training-induced muscle hypertrophy has accumulated over the last several decades, the basic concept of the training can be traced back to ancient Greece: Milo of Croton lifted a bull-calf daily until it was fully grown, which would be known today as progressive overload. Now, in the 21st century, different types of training are being tested and studied, such as low-intensity exercise combined with arterial as well as venous blood flow restriction (BFR) to/from the working muscles. Because BFR training requires the use of a cuff that is placed at the proximal ends of the arms and/or legs, the BFR is only applicable to limb muscles. Consequently, most previous BFR training studies have focused on the physiological adaptations of BFR limb muscles. Muscle adaptations in non-BFR muscles of the hip and trunk are lesser known. Recent studies that have reported both limb and trunk muscle adaptations following BFR exercise training suggest that low-intensity (20-30% of 1RM) resistance training combined with BFR elicits muscle hypertrophy in both BFR limb and non-BFR muscles. However, the combination of leg muscle BFR with walk training elicits muscle hypertrophy only in the BFR leg muscles. In contrast to resistance exercise with BFR, the exercise intensity may be too low during BFR walk training to cause muscle hypertrophy in the non-BFR gluteus maximus and other trunk muscles. Other mechanisms including hypoxia, local and systemic growth factors and muscle cell swelling may also potentially affect the hypertrophic response of non-BFR muscles to BFR resistance exercise. © 2012 The Authors Clinical Physiology and Functional Imaging © 2012 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  8. Biological organization of the extraocular muscles.

    PubMed

    Spencer, Robert F; Porter, John D

    2006-01-01

    Extraocular muscle is fundamentally distinct from other skeletal muscles. Here, we review the biological organization of the extraocular muscles with the intent of understanding this novel muscle group in the context of oculomotor system function. The specific objectives of this review are threefold. The first objective is to understand the anatomic arrangement of the extraocular muscles and their compartmental or layered organization in the context of a new concept of orbital mechanics, the active pulley hypothesis. The second objective is to present an integrated view of the morphologic, cellular, and molecular differences between extraocular and the more traditional skeletal muscles. The third objective is to relate recent data from functional and molecular biology studies to the established extraocular muscle fiber types. Developmental mechanisms that may be responsible for the divergence of the eye muscles from a skeletal muscle prototype also are considered. Taken together, a multidisciplinary understanding of extraocular muscle biology in health and disease provides insights into oculomotor system function and malfunction. Moreover, because the eye muscles are selectively involved or spared in a variety of neuromuscular diseases, knowledge of their biology may improve current pathogenic models of and treatments for devastating systemic diseases.

  9. Fiber typing in aging muscle.

    PubMed

    Purves-Smith, Fennigje M; Sgarioto, Nicolas; Hepple, Russell T

    2014-04-01

    It is accepted widely that fast-twitch muscle fibers are preferentially impacted in aging muscle, yet we hypothesize that this is not valid when aging muscle atrophy becomes severe. In this review, we summarize the evidence of fiber type-specific effect in aging muscle and the potential confounding roles of fibers coexpressing multiple myosin heavy-chain isoforms and their histochemical identification.

  10. Multifidus Muscle Changes After Back Injury Are Characterized by Structural Remodeling of Muscle, Adipose and Connective Tissue, but Not Muscle Atrophy: Molecular and Morphological Evidence.

    PubMed

    Hodges, Paul W; James, Gregory; Blomster, Linda; Hall, Leanne; Schmid, Annina; Shu, Cindy; Little, Chris; Melrose, James

    2015-07-15

    Longitudinal case-controlled animal study. To investigate putative cellular mechanisms to explain structural changes in muscle and adipose and connective tissues of the back muscles after intervertebral disc (IVD) injury. Structural back muscle changes are ubiquitous with back pain/injury and considered relevant for outcome, but their exact nature, time course, and cellular mechanisms remain elusive. We used an animal model that produces phenotypic back muscle changes after IVD injury to study these issues at the cellular/molecular level. Multifidus muscle was harvested from both sides of the spine at L1-L2 and L3-L4 IVDs in 27 castrated male sheep at 3 (n = 10) or 6 (n = 17) months after a surgical anterolateral IVD injury at both levels. Ten control sheep underwent no surgery (3 mo, n = 4; 6 mo, n = 6). Tissue was harvested at L4 for histological analysis of cross-sectional area of muscle and adipose and connective tissue (whole muscle), plus immunohistochemistry to identify proportion and cross-sectional area of individual muscle fiber types in the deepest fascicle. Quantitative polymerase chain reaction measured gene expression of typical cytokines/signaling molecules at L2. Contrary to predictions, there was no multifidus muscle atrophy (whole muscle or individual fiber). There was increased adipose and connective tissue (fibrotic proliferation) cross-sectional area and slow-to-fast muscle fiber transition at 6 but not 3 months. Within the multifidus muscle, increases in the expression of several cytokines (tumor necrosis factor α and interleukin-1β) and molecules that signal trophic/atrophic processes for the 3 tissue types (e.g., growth factor pathway [IGF-1, PI3k, Akt1, mTOR], potent tissue modifiers [calcineurin, PCG-1α, and myostatin]) were present. This study provides cellular evidence that refutes the presence of multifidus muscle atrophy accompanying IVD degeneration at this intermediate time point. Instead, adipose/connective tissue increased in

  11. Amino Acid Sensing in Skeletal Muscle

    PubMed Central

    Moro, Tatiana; Ebert, Scott M.; Adams, Christopher M.; Rasmussen, Blake B.

    2016-01-01

    Aging impairs skeletal muscle protein synthesis, leading to muscle weakness and atrophy. However, the underlying molecular mechanisms remain poorly understood. Here, we review evidence that mTORC1- and ATF4-mediated amino acid sensing pathways, triggered by impaired amino acid delivery to aged skeletal muscle, may play important roles in skeletal muscle aging. Interventions that alleviate age-related impairments in muscle protein synthesis, strength and/or muscle mass appear to do so by reversing age-related changes in skeletal muscle amino acid delivery, mTORC1 activity and/or ATF4 activity. An improved understanding of the mechanisms and roles of amino acid sensing pathways in skeletal muscle may lead to evidence-based strategies to attenuate sarcopenia. PMID:27444066

  12. Effects of inspiratory muscle training on balance ability and abdominal muscle thickness in chronic stroke patients

    PubMed Central

    Oh, Dongha; Kim, Gayeong; Lee, Wanhee; Shin, Mary Myong Sook

    2016-01-01

    [Purpose] This study evaluated the effects of inspiratory muscle training on pulmonary function, deep abdominal muscle thickness, and balance ability in stroke patients. [Subjects] Twenty-three stroke patients were randomly allocated to an experimental (n = 11) or control group (n = 12). [Methods] The experimental group received inspiratory muscle training-based abdominal muscle strengthening with conventional physical therapy; the control group received standard abdominal muscle strengthening with conventional physical therapy. Treatment was conducted 20 minutes per day, 3 times per week for 6 weeks. Pulmonary function testing was performed using an electronic spirometer. Deep abdominal muscle thickness was measured by ultrasonography. Balance was measured using the Berg balance scale. [Results] Forced vital capacity, forced expiratory volume in 1 second, deep abdominal muscle thickness, and Berg balance scale scores were significantly improved in the experimental group than in the control group. [Conclusion] Abdominal muscle strengthening accompanied by inspiratory muscle training is recommended to improve pulmonary function in stroke patients, and may also be used as a practical adjunct to conventional physical therapy. PMID:26957739

  13. Striated Muscle Function, Regeneration, and Repair

    PubMed Central

    Shadrin, I.Y.; Khodabukus, A.; Bursac, N.

    2016-01-01

    As the only striated muscle tissues in the body, skeletal and cardiac muscle share numerous structural and functional characteristics, while exhibiting vastly different size and regenerative potential. Healthy skeletal muscle harbors a robust regenerative response that becomes inadequate after large muscle loss or in degenerative pathologies and aging. In contrast, the mammalian heart loses its regenerative capacity shortly after birth, leaving it susceptible to permanent damage by acute injury or chronic disease. In this review, we compare and contrast the physiology and regenerative potential of native skeletal and cardiac muscles, mechanisms underlying striated muscle dysfunction, and bioengineering strategies to treat muscle disorders. We focus on different sources for cellular therapy, biomaterials to augment the endogenous regenerative response, and progress in engineering and application of mature striated muscle tissues in vitro and in vivo. Finally, we discuss the challenges and perspectives in translating muscle bioengineering strategies to clinical practice. PMID:27271751

  14. Imaging Patterns of Muscle Atrophy.

    PubMed

    Weber, Marc-André; Wolf, Marcel; Wattjes, Mike P

    2018-07-01

    The role of muscle imaging in the diagnosis of inherited and acquired muscle diseases has gained clinical relevance. In particular, magnetic resonance imaging (MRI) is increasingly being used for diagnostic purposes, especially with its capability of whole-body musculature assessment. The assessment and quantification of muscle involvement in muscle diseases can be of diagnostic value by identifying a certain involvement pattern and thus narrowing the differential diagnosis and supporting the clinical diagnosis. In addition, more recently the role of imaging has gone beyond diagnostic purposes and includes disease as well as treatment monitoring. Conventional and quantitative muscle MRI techniques allow for the detection of subclinical disease progression (e.g., in muscular dystrophies) and is a powerful surrogate outcome measure in clinical trials. We present and discuss recent data on the role of conventional and quantitative MRI in the diagnosis and monitoring of inherited dystrophic muscle diseases as well as muscle denervation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock★

    PubMed Central

    Dyar, Kenneth A.; Ciciliot, Stefano; Wright, Lauren E.; Biensø, Rasmus S.; Tagliazucchi, Guidantonio M.; Patel, Vishal R.; Forcato, Mattia; Paz, Marcia I.P.; Gudiksen, Anders; Solagna, Francesca; Albiero, Mattia; Moretti, Irene; Eckel-Mahan, Kristin L.; Baldi, Pierre; Sassone-Corsi, Paolo; Rizzuto, Rosario; Bicciato, Silvio; Pilegaard, Henriette; Blaauw, Bert; Schiaffino, Stefano

    2013-01-01

    Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-stimulated glucose uptake with reduced protein levels of GLUT4, the insulin-dependent glucose transporter, and TBC1D1, a Rab-GTPase involved in GLUT4 translocation. Pyruvate dehydrogenase (PDH) activity was also reduced due to altered expression of circadian genes Pdk4 and Pdp1, coding for PDH kinase and phosphatase, respectively. PDH inhibition leads to reduced glucose oxidation and diversion of glycolytic intermediates to alternative metabolic pathways, as revealed by metabolome analysis. The impaired glucose metabolism induced by muscle-specific Bmal1 knockout suggests that a major physiological role of the muscle clock is to prepare for the transition from the rest/fasting phase to the active/feeding phase, when glucose becomes the predominant fuel for skeletal muscle. PMID:24567902

  16. Effects of Inspiratory Muscle Training and Calisthenics-and-Breathing Exercises in COPD With and Without Respiratory Muscle Weakness.

    PubMed

    Basso-Vanelli, Renata P; Di Lorenzo, Valéria A Pires; Labadessa, Ivana G; Regueiro, Eloisa M G; Jamami, Mauricio; Gomes, Evelim L F D; Costa, Dirceu

    2016-01-01

    Patients with COPD may experience respiratory muscle weakness. Two therapeutic approaches to the respiratory muscles are inspiratory muscle training and calisthenics-and-breathing exercises. The aims of the study are to compare the effects of inspiratory muscle training and calisthenics-and-breathing exercises associated with physical training in subjects with COPD as an additional benefit of strength and endurance of the inspiratory muscles, thoracoabdominal mobility, physical exercise capacity, and reduction in dyspnea on exertion. In addition, these gains were compared between subjects with and without respiratory muscle weakness. 25 subjects completed the study: 13 composed the inspiratory muscle training group, and 12 composed the calisthenics-and-breathing exercises group. Subjects were assessed before and after training by spirometry, measurements of respiratory muscle strength and test of inspiratory muscle endurance, thoracoabdominal excursion measurements, and the 6-min walk test. Moreover, scores for the Modified Medical Research Council dyspnea scale were reported. After intervention, there was a significant improvement in both groups of respiratory muscle strength and endurance, thoracoabdominal mobility, and walking distance in the 6-min walk test. Additionally, there was a decrease of dyspnea in the 6-min walk test peak. A difference was found between groups, with higher values of respiratory muscle strength and thoracoabdominal mobility and lower values of dyspnea in the 6-min walk test peak and the Modified Medical Research Council dyspnea scale in the inspiratory muscle training group. In the inspiratory muscle training group, subjects with respiratory muscle weakness had greater gains in inspiratory muscle strength and endurance. Both interventions increased exercise capacity and decreased dyspnea during physical effort. However, inspiratory muscle training was more effective in increasing inspiratory muscle strength and endurance, which could

  17. Skeletal Muscle Regeneration, Repair and Remodelling in Aging: The Importance of Muscle Stem Cells and Vascularization.

    PubMed

    Joanisse, Sophie; Nederveen, Joshua P; Snijders, Tim; McKay, Bryon R; Parise, Gianni

    2017-01-01

    Sarcopenia is the age-related loss of skeletal muscle mass and strength. Ultimately, sarcopenia results in the loss of independence, which imposes a large financial burden on healthcare systems worldwide. A critical facet of sarcopenia is the diminished ability for aged muscle to regenerate, repair and remodel. Over the years, research has focused on elucidating underlying mechanisms of sarcopenia and the impaired ability of muscle to respond to stimuli with aging. Muscle-specific stem cells, termed satellite cells (SC), play an important role in maintaining muscle health throughout the lifespan. It is well established that SC are essential in skeletal muscle regeneration, and it has been hypothesized that a reduction and/or dysregulation of the SC pool, may contribute to accelerated loss of skeletal muscle mass that is observed with advancing age. The preservation of skeletal muscle tissue and its ability to respond to stimuli may be impacted by reduced SC content and impaired function observed with aging. Aging is also associated with a reduction in capillarization of skeletal muscle. We have recently demonstrated that the distance between type II fibre-associated SC and capillaries is greater in older compared to younger adults. The greater distance between SC and capillaries in older adults may contribute to the dysregulation in SC activation ultimately impairing muscle's ability to remodel and, in extreme circumstances, regenerate. This viewpoint will highlight the importance of optimal SC activation in addition to skeletal muscle capillarization to maximize the regenerative potential of skeletal muscle in older adults. © 2016 S. Karger AG, Basel.

  18. Stable expression of calpain 3 from a muscle transgene in vivo: Immature muscle in transgenic mice suggests a role for calpain 3 in muscle maturation

    PubMed Central

    Spencer, M. J.; Guyon, J. R.; Sorimachi, H.; Potts, A.; Richard, I.; Herasse, M.; Chamberlain, J.; Dalkilic, I.; Kunkel, L. M.; Beckmann, J. S.

    2002-01-01

    Limb-girdle muscular dystrophy, type 2A (LGMD 2A), is an autosomal recessive disorder that causes late-onset muscle-wasting, and is due to mutations in the muscle-specific protease calpain 3 (C3). Although LGMD 2A would be a feasible candidate for gene therapy, the reported instability of C3 in vitro raised questions about the potential of obtaining a stable, high-level expression of C3 from a transgene in vivo. We have generated transgenic (Tg) mice with muscle-specific overexpression of full-length C3 or C3 isoforms, which arise from alternative splicing, to test whether stable expression of C3 transgenes could occur in vivo. Unexpectedly, we found that full-length C3 can be overexpressed at high levels in vivo, without toxicity. In addition, we found that Tg expressing C3 lacking exon 6, an isoform expressed embryonically, have muscles that resemble regenerating or developing muscle. Tg expressing C3 lacking exon 15 shared this morphology in the soleus, but not other muscles. Assays of inflammation or muscle membrane damage indicated that the Tg muscles were not degenerative, suggesting that the immature muscle resulted from a developmental block rather than degeneration and regeneration. These studies show that C3 can be expressed stably in vivo from a transgene, and indicate that alternatively spliced C3 isoforms should not be used in gene-therapy applications because they impair proper muscle development. PMID:12084932

  19. Testosterone enhances C-14 2-deoxyglucose uptake by striated muscle. [sex hormones and muscle

    NASA Technical Reports Server (NTRS)

    Toop, J.; Max, S. R.

    1982-01-01

    The effect of testosterone propionate (TP) on C-14 2-deoxyglucose (C-14 2DG) uptake was studied in the rat levator ani muscle in vivo using the autoradiographic technique. Following a delay of 1 to 3 h after injecting TP, the rate of C-14 2DG uptake in experimental animals began to increase and continued to increase for at least 20 h. The label, which corresponds to C-14 2-deoxyglucose 6-phosphate, as demonstrated by chromatographic analysis of muscle extracts, was uniformly distributed over the entire muscle and was predominantly in muscle fibers, although nonmuscular elements were also labeled. The 1 to 3 h time lag suggests that the TP effect may be genomic, acting via androgen receptors, rather than directly on muscle membranes. Acceleration of glucose uptake may be an important early event in the anabolic response of the rat levator ani muscle to androgens.

  20. Korean mistletoe (Viscum album coloratum) extract regulates gene expression related to muscle atrophy and muscle hypertrophy.

    PubMed

    Jeong, Juseong; Park, Choon-Ho; Kim, Inbo; Kim, Young-Ho; Yoon, Jae-Min; Kim, Kwang-Soo; Kim, Jong-Bae

    2017-01-21

    Korean mistletoe (Viscum album coloratum) is a semi-parasitic plant that grows on various trees and has a diverse range of effects on biological functions, being implicated in having anti-tumor, immunostimulatory, anti-diabetic, and anti-obesity properties. Recently, we also reported that Korean mistletoe extract (KME) improves endurance exercise in mice, suggesting its beneficial roles in enhancing the capacity of skeletal muscle. We examined the expression pattern of several genes concerned with muscle physiology in C2C12 myotubes cells to identify whether KME inhibits muscle atrophy or promotes muscle hypertrophy. We also investigated these effects of KME in denervated mice model. Interestingly, KME induced the mRNA expression of SREBP-1c, PGC-1α, and GLUT4, known positive regulators of muscle hypertrophy, in C2C12 cells. On the contrary, KME reduced the expression of Atrogin-1, which is directly involved in the induction of muscle atrophy. In animal models, KME mitigated the decrease of muscle weight in denervated mice. The expression of Atrogin-1 was also diminished in those mice. Moreover, KME enhanced the grip strength and muscle weight in long-term feeding mice. Our results suggest that KME has beneficial effects on muscle atrophy and muscle hypertrophy.

  1. Powerful signals for weak muscles.

    PubMed

    Saini, Amarjit; Faulkner, Steve; Al-Shanti, Nasser; Stewart, Claire

    2009-10-01

    The aim of the present review is to summarise, evaluate and critique the different mechanisms involved in anabolic growth of skeletal muscle and the catabolic processes involved in cancer cachexia and sarcopenia of ageing. This is highly relevant, since they represent targets for future promising clinical investigations. Sarcopenia is an inevitable process associated with a gradual reduction in muscle mass and strength, associated with a reduction in motor unit number and atrophy of muscle fibres, especially the fast type IIa fibres. The loss of muscle mass with ageing is clinically important because it leads to diminished functional ability and associated complications. Cachexia is widely recognised as severe and rapid wasting accompanying disease states such as cancer or immunodeficiency disease. One of the main characteristics of cancer cachexia is asthenia or lack of strength, which is directly related to the muscle loss. Indeed, apart from the speed of loss, muscle wasting during cancer and ageing share many common metabolic pathways and mediators. In healthy young individuals, muscles maintain their mass and function because of a balance between protein synthesis and protein degradation associated with rates of anabolic and catabolic processes, respectively. Muscles grow (hypertrophy) when protein synthesis exceeds protein degradation. Conversely, muscles shrink (atrophy) when protein degradation dominates. These processes are not occurring independently of each other, but are finely coordinated by a web of intricate signalling networks. Such signalling networks are in charge of executing environmental and cellular cues that ultimately determine whether muscle proteins are synthesised or degraded. Increasing our understanding for the pathways involved in hypertrophy and atrophy and particularly the interaction of these pathways is essential in designing therapeutic strategies for both prevention and treatment of muscle wasting conditions with age and with

  2. Research opportunities in muscle atrophy

    NASA Technical Reports Server (NTRS)

    Herbison, G. J.; Talbot, J. M.

    1984-01-01

    A trophy of skeletal muscle; muscle a trophy associated with manned space flight; the nature, causes, and mechanisms of muscle atrophy associated with space flight, selected physiological factors, biochemical aspects, and countermeasures are addressed.

  3. Skeletal muscle mechanics, energetics and plasticity.

    PubMed

    Lieber, Richard L; Roberts, Thomas J; Blemker, Silvia S; Lee, Sabrina S M; Herzog, Walter

    2017-10-23

    The following papers by Richard Lieber (Skeletal Muscle as an Actuator), Thomas Roberts (Elastic Mechanisms and Muscle Function), Silvia Blemker (Skeletal Muscle has a Mind of its Own: a Computational Framework to Model the Complex Process of Muscle Adaptation) and Sabrina Lee (Muscle Properties of Spastic Muscle (Stroke and CP) are summaries of their representative contributions for the session on skeletal muscle mechanics, energetics and plasticity at the 2016 Biomechanics and Neural Control of Movement Conference (BANCOM 2016). Dr. Lieber revisits the topic of sarcomere length as a fundamental property of skeletal muscle contraction. Specifically, problems associated with sarcomere length non-uniformity and the role of sarcomerogenesis in diseases such as cerebral palsy are critically discussed. Dr. Roberts then makes us aware of the (often neglected) role of the passive tissues in muscles and discusses the properties of parallel elasticity and series elasticity, and their role in muscle function. Specifically, he identifies the merits of analyzing muscle deformations in three dimensions (rather than just two), because of the potential decoupling of the parallel elastic element length from the contractile element length, and reviews the associated implications for the architectural gear ratio of skeletal muscle contraction. Dr. Blemker then tackles muscle adaptation using a novel way of looking at adaptive processes and what might drive adaptation. She argues that cells do not have pre-programmed behaviors that are controlled by the nervous system. Rather, the adaptive responses of muscle fibers are determined by sub-cellular signaling pathways that are affected by mechanical and biochemical stimuli; an exciting framework with lots of potential. Finally, Dr. Lee takes on the challenging task of determining human muscle properties in vivo. She identifies the dilemma of how we can demonstrate the effectiveness of a treatment, specifically in cases of muscle

  4. Inspiratory muscle training increases inspiratory muscle strength in patients weaning from mechanical ventilation: a systematic review.

    PubMed

    Moodie, Lisa; Reeve, Julie; Elkins, Mark

    2011-01-01

    Does inspiratory muscle training improve inspiratory muscle strength and endurance, facilitate weaning, improve survival, and reduce the rate of reintubation and tracheostomy in adults receiving mechanical ventilation? Systematic review of randomised or quasi-randomised controlled trials. Adults over 16 years of age receiving mechanical ventilation. Inspiratory muscle training versus sham or no inspiratory muscle training. Data were extracted regarding inspiratory muscle strength and endurance, the duration of unassisted breathing periods, weaning success and duration, reintubation and tracheostomy, survival, adverse effects, and length of stay. Three studies involving 150 participants were included in the review. The studies varied in time to commencement of the training, the device used, the training protocol, and the outcomes measured. Inspiratory muscle training significantly increased inspiratory muscle strength over sham or no training (weighted mean difference 8 cmH(2)O, 95% CI 6 to 9). There were no statistically significant differences between the groups in weaning success or duration, survival, reintubation, or tracheostomy. Inspiratory muscle training was found to significantly increase inspiratory muscle strength in adults undergoing mechanical ventilation. Despite data from a substantial pooled cohort, it is not yet clear whether the increase in inspiratory muscle strength leads to a shorter duration of mechanical ventilation, improved weaning success, or improved survival. Further large randomised studies are required to clarify the impact of inspiratory muscle training on patients receiving mechanical ventilation. PROSPERO CRD42011001132. Copyright © 2011 Australian Physiotherapy Association. Published by .. All rights reserved.

  5. Cramp-fasciculation syndrome associated with monofocal motor neuropathy.

    PubMed

    Dubuisson, Nicolas J; Van Pesch, Vincent; Van Den Bergh, Peter Y K

    2017-10-01

    Cramp-fasciculation syndrome is a peripheral nerve hyperexcitability disorder, which could be caused by inflammatory neuropathy. We describe a 51-year-old woman who presented with a 4- to 5-year history of fasciculations and painful cramping of the right thenar eminence. Electrophysiological studies showed motor conduction block in the right median nerve between the axilla and the elbow with fasciculation potentials and cramp discharges on electromyography in the right abductor pollicis brevis muscle. High titers of serum anti-GM1 immunoglobulin M antibodies were detected. Monofocal motor neuropathy of the right median nerve was diagnosed. Intravenous immunoglobulin treatment led to significant improvement of symptoms and signs. Although fasciculations and cramps have been reported in multifocal motor neuropathy and are considered supporting criteria for the diagnosis, the occurrence of cramp-fasciculation syndrome as the presenting feature and predominant manifestation in monofocal motor neuropathy, a variant of multifocal motor neuropathy, is unique. Muscle Nerve 56: 828-832, 2017. © 2017 Wiley Periodicals, Inc.

  6. Partial transformation from fast to slow muscle fibers induced by deafferentation of capsaicin-sensitive muscle afferents.

    PubMed

    Brunetti, O; Barazzoni, A M; Della Torre, G; Clavenzani, P; Pettorossi, V E; Bortolami, R

    1997-11-01

    Mechanical and histochemical characteristics of the lateral gastrocnemius (LG) muscle of the rat were examined 21 days after capsaicin injection into the LG muscle. The capsaicin caused a decrease in generation rate of twitch and tetanic tension and an increase in fatigue resistance of LG muscle. The histochemical muscle fiber profile evaluated by myosin adenosine triphosphatase and reduced nicotinamide adenine dinucleotide tetrazolium reductase methods showed an increase of type I and IIC fibers and a decrease of the type IIB in whole muscle, and a decrease of the IIA, IIX fibers in the red part accompanied by their increase in the white part. Therefore the capsaicin treatment, which selectively eliminated fibers belonging to the III and IV groups of muscle afferents, induced muscle fiber transformation from fast contracting fatiguing fibers to slowly contracting nonfatiguing ones.

  7. Types of muscle tissue (image)

    MedlinePlus

    ... appear striated, and are under involuntary control. Smooth muscle fibers are located in walls of hollow visceral organs, ... shaped, and are also under involuntary control. Skeletal muscle fibers occur in muscles which are attached to the ...

  8. Muscle hypertrophy and pseudohypertrophy.

    PubMed

    Walters, Jon

    2017-10-01

    The physical examination always begins with a thorough inspection and patients with potential neuromuscular weakness are no exception. One question neurologists routinely address during this early part of the assessment is whether or not there is muscle enlargement. This finding may reflect true muscle hypertrophy-myofibres enlarged from repetitive activity, for example, in myotonia congenita or neuromyotonia-or muscles enlarged by the infiltration of fat or other tissue termed pseudohypertrophy or false enlargement. Pseudohypertrophic muscles are frequently paradoxically weak. Recognising such a clinical clue at the bed side can facilitate a diagnosis or at least can narrow down the list of potential suspects. This paper outlines the conditions, both myopathic and neurogenic, that cause muscle enlargement. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Histological evidence for muscle insertion in extant amniote femora: implications for muscle reconstruction in fossils

    PubMed Central

    Petermann, Holger; Sander, Martin

    2013-01-01

    Since the 19th century, identification of muscle attachment sites on bones has been important for muscle reconstructions, especially in fossil tetrapods, and therefore has been the subject of numerous biological and paleontological studies. At the microscopic level, in histological thin sections, the only features that can be used reliably for identifying tendon–bone or muscle–tendon-bone interactions are Sharpey's fibers. Muscles, however, do not only attach to the bone indirectly with tendons, but also directly. Previous studies failed to provide new indicators for muscle attachment, or to address the question of whether muscles with direct attachment can be identified histologically. However, histological identification of direct muscle attachments is important because these attachments do not leave visible marks (e.g. scars and rugosities) on the bone surface. We dissected the right hind limb and mapped the muscle attachment sites on the femur of one rabbit (Oryctolagus cuniculus), one Alligator mississippiensis, and one turkey (Meleagris cuniculus). We then extracted the femur and prepared four histological thin sections for the rabbit and the turkey and five histological thin sections for the alligator. Sharpey's fibers, vascular canal orientation, and a frayed periosteal margin can be indicators for indirect but also direct muscle attachment. Sharpey's fibers can be oriented to the cutting plane of the thin section at high angles, and two Sharpey's fibers orientations can occur in one area, possibly indicating a secondary force axis. However, only about 60% of mapped muscle attachment sites could be detected in thin sections, and frequently histological features suggestive of muscle attachment occurred outside mapped sites. While these insights should improve our ability to successfully identify and reconstruct muscles in extinct species, they also show the limitations of this approach. PMID:23439026

  10. Transduction of skeletal muscles with common reporter genes can promote muscle fiber degeneration and inflammation.

    PubMed

    Winbanks, Catherine E; Beyer, Claudia; Qian, Hongwei; Gregorevic, Paul

    2012-01-01

    Recombinant adeno-associated viral vectors (rAAV vectors) are promising tools for delivering transgenes to skeletal muscle, in order to study the mechanisms that control the muscle phenotype, and to ameliorate diseases that perturb muscle homeostasis. Many studies have employed rAAV vectors carrying reporter genes encoding for β-galactosidase (β-gal), human placental alkaline phosphatase (hPLAP), and green fluorescent protein (GFP) as experimental controls when studying the effects of manipulating other genes. However, it is not clear to what extent these reporter genes can influence signaling and gene expression signatures in skeletal muscle, which may confound the interpretation of results obtained in experimentally manipulated muscles. Herein, we report a strong pro-inflammatory effect of expressing reporter genes in skeletal muscle. Specifically, we show that the administration of rAAV6:hPLAP vectors to the hind limb muscles of mice is associated with dose- and time-dependent macrophage recruitment, and skeletal muscle damage. Dose-dependent expression of hPLAP also led to marked activity of established pro-inflammatory IL-6/Stat3, TNFα, IKKβ and JNK signaling in lysates obtained from homogenized muscles. These effects were independent of promoter type, as expression cassettes featuring hPLAP under the control of constitutive CMV and muscle-specific CK6 promoters both drove cellular responses when matched for vector dose. Importantly, the administration of rAAV6:GFP vectors did not induce muscle damage or inflammation except at the highest doses we examined, and administration of a transgene-null vector (rAAV6:MCS) did not cause damage or inflammation at any of the doses tested, demonstrating that GFP-expressing, or transgene-null vectors may be more suitable as experimental controls. The studies highlight the importance of considering the potential effects of reporter genes when designing experiments that examine gene manipulation in vivo.

  11. PEDF-derived peptide promotes skeletal muscle regeneration through its mitogenic effect on muscle progenitor cells.

    PubMed

    Ho, Tsung-Chuan; Chiang, Yi-Pin; Chuang, Chih-Kuang; Chen, Show-Li; Hsieh, Jui-Wen; Lan, Yu-Wen; Tsao, Yeou-Ping

    2015-08-01

    In response injury, intrinsic repair mechanisms are activated in skeletal muscle to replace the damaged muscle fibers with new muscle fibers. The regeneration process starts with the proliferation of satellite cells to give rise to myoblasts, which subsequently differentiate terminally into myofibers. Here, we investigated the promotion effect of pigment epithelial-derived factor (PEDF) on muscle regeneration. We report that PEDF and a synthetic PEDF-derived short peptide (PSP; residues Ser(93)-Leu(112)) induce satellite cell proliferation in vitro and promote muscle regeneration in vivo. Extensively, soleus muscle necrosis was induced in rats by bupivacaine, and an injectable alginate gel was used to release the PSP in the injured muscle. PSP delivery was found to stimulate satellite cell proliferation in damaged muscle and enhance the growth of regenerating myofibers, with complete regeneration of normal muscle mass by 2 wk. In cell culture, PEDF/PSP stimulated C2C12 myoblast proliferation, together with a rise in cyclin D1 expression. PEDF induced the phosphorylation of ERK1/2, Akt, and STAT3 in C2C12 myoblasts. Blocking the activity of ERK, Akt, or STAT3 with pharmacological inhibitors attenuated the effects of PEDF/PSP on the induction of C2C12 cell proliferation and cyclin D1 expression. Moreover, 5-bromo-2'-deoxyuridine pulse-labeling demonstrated that PEDF/PSP stimulated primary rat satellite cell proliferation in myofibers in vitro. In summary, we report for the first time that PSP is capable of promoting the regeneration of skeletal muscle. The signaling mechanism involves the ERK, AKT, and STAT3 pathways. These results show the potential utility of this PEDF peptide for muscle regeneration. Copyright © 2015 the American Physiological Society.

  12. Redox Control of Skeletal Muscle Regeneration.

    PubMed

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  13. Redox Control of Skeletal Muscle Regeneration

    PubMed Central

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane

    2017-01-01

    Abstract Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276–310. PMID:28027662

  14. Posterior cricoarytenoid muscle electrophysiologic changes are predictive of vocal cord paralysis with recurrent laryngeal nerve compressive injury in a canine model.

    PubMed

    Puram, Sidharth V; Chow, Harold; Wu, Che-Wei; Heaton, James T; Kamani, Dipti; Gorti, Gautham; Chiang, Feng Yu; Dionigi, Gianlorenzo; Barczynski, Marcin; Schneider, Rick; Dralle, Henning; Lorenz, Kerstin; Randolph, Gregory W

    2016-12-01

    Injury to the recurrent laryngeal nerve (RLN) is a dreaded complication of endocrine surgery. Intraoperative neural monitoring (IONM) has been increasingly utilized to assess the functional status of the RLN. Although the posterior cricoarytenoid muscle (PCA) is innervated by the RLN as the abductor of the larynx, PCA electromyography (EMG) is infrequently recorded during IONM and PCA activity after RLN compressive injury remains poorly characterized. Single-subject prospective animal study. We employed a canine model to identify postcricoid EMG correlates of postoperative vocal cord paralysis (VCP). Postcricoid electrode recordings were obtained before and after compressive RLN injury associated with VCP. Normative postcricoid recordings revealed mean amplitude of 1288 microvolt (μV) and latency of 8.2 millisecond (ms) with maximum (1 milliamp [mA]) vagal stimulation, and mean amplitude of 1807 μV and latency of 3.5 ms with maximum (1 mA) RLN stimulation. Following injury that was associated with VCP, there was 62.1% decrement in postcricoid EMG amplitude with maximum vagal stimulation and 80% decrement with maximum RLN stimulation. Threshold stimulation of the vagus increased by 23%, and there was a corresponding 42% decrease in amplitude. For RLN stimulation, latency increased by 17.3% following injury, whereas threshold stimulation increased by 61% with 35.5% decrement in EMG amplitude. Thus, if RLN amplitude decreases by ≥ 80%, with absolute amplitude of ≤ 300 μV or less and latency increase of ≥ 10%, RLN injury is likely associated with VCP. Our results predict postoperative VCP based on postcricoid electromyographic IONM and may guide surgical decision making. NA Laryngoscope, 126:2744-2751, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  15. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.

    PubMed

    Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda

    2016-07-01

    Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies

  16. Mechanical Properties of Respiratory Muscles

    PubMed Central

    Sieck, Gary C.; Ferreira, Leonardo F.; Reid, Michael B.; Mantilla, Carlos B.

    2014-01-01

    Striated respiratory muscles are necessary for lung ventilation and to maintain the patency of the upper airway. The basic structural and functional properties of respiratory muscles are similar to those of other striated muscles (both skeletal and cardiac). The sarcomere is the fundamental organizational unit of striated muscles and sarcomeric proteins underlie the passive and active mechanical properties of muscle fibers. In this respect, the functional categorization of different fiber types provides a conceptual framework to understand the physiological properties of respiratory muscles. Within the sarcomere, the interaction between the thick and thin filaments at the level of cross-bridges provides the elementary unit of force generation and contraction. Key to an understanding of the unique functional differences across muscle fiber types are differences in cross-bridge recruitment and cycling that relate to the expression of different myosin heavy chain isoforms in the thick filament. The active mechanical properties of muscle fibers are characterized by the relationship between myoplasmic Ca2+ and cross-bridge recruitment, force generation and sarcomere length (also cross-bridge recruitment), external load and shortening velocity (cross-bridge cycling rate), and cross-bridge cycling rate and ATP consumption. Passive mechanical properties are also important reflecting viscoelastic elements within sarcomeres as well as the extracellular matrix. Conditions that affect respiratory muscle performance may have a range of underlying pathophysiological causes, but their manifestations will depend on their impact on these basic elemental structures. PMID:24265238

  17. [Muscles and connective tissue: histology].

    PubMed

    Delage, J-P

    2012-10-01

    Here, we give some comments about the DVD movies "Muscle Attitudes" from Endovivo productions, the movies up lighting some loss in the attention given to studies on the connective tissue, and especially them into muscles. The main characteristics of the different components in the intra-muscular connective tissue (perimysium, endomysium, epimysium) are shown here with special references to their ordered architecture and special references to their spatial distributions. This connective tissue is abundant into the muscles and is in continuity with the muscles in vicinity, with their tendons and their sheath, sticking the whole on skin. This connective tissue has also very abundant connections on the muscles fibres. It is then assumed that the connective tissue sticks every organs or cells of the locomotion system. Considering the elastic properties of the collagen fibres which are the most abundant component of connective tissue, it is possible to up light a panel of connective tissue associated functions such as the transmission of muscle contractions or the regulation of protein and energetic muscles metabolism. Copyright © 2012. Published by Elsevier SAS.

  18. Ciliary muscle contraction force and trapezius muscle activity during manual tracking of a moving visual target.

    PubMed

    Domkin, Dmitry; Forsman, Mikael; Richter, Hans O

    2016-06-01

    Previous studies have shown an association of visual demands during near work and increased activity of the trapezius muscle. Those studies were conducted under stationary postural conditions with fixed gaze and artificial visual load. The present study investigated the relationship between ciliary muscle contraction force and trapezius muscle activity across individuals during performance of a natural dynamic motor task under free gaze conditions. Participants (N=11) tracked a moving visual target with a digital pen on a computer screen. Tracking performance, eye refraction and trapezius muscle activity were continuously measured. Ciliary muscle contraction force was computed from eye accommodative response. There was a significant Pearson correlation between ciliary muscle contraction force and trapezius muscle activity on the tracking side (0.78, p<0.01) and passive side (0.64, p<0.05). The study supports the hypothesis that high visual demands, leading to an increased ciliary muscle contraction during continuous eye-hand coordination, may increase trapezius muscle tension and thus contribute to the development of musculoskeletal complaints in the neck-shoulder area. Further experimental studies are required to clarify whether the relationship is valid within each individual or may represent a general personal trait, when individuals with higher eye accommodative response tend to have higher trapezius muscle activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Muscles and their myokines.

    PubMed

    Pedersen, Bente Klarlund

    2011-01-15

    In the past, the role of physical activity as a life-style modulating factor has been considered as that of a tool to balance energy intake. Although it is important to avoid obesity, physical inactivity should be discussed in a much broader context. There is accumulating epidemiological evidence that a physically active life plays an independent role in the protection against type 2 diabetes, cardiovascular diseases, cancer, dementia and even depression. For most of the last century, researchers sought a link between muscle contraction and humoral changes in the form of an 'exercise factor', which could be released from skeletal muscle during contraction and mediate some of the exercise-induced metabolic changes in other organs such as the liver and the adipose tissue. We have suggested that cytokines or other peptides that are produced, expressed and released by muscle fibres and exert autocrine, paracrine or endocrine effects should be classified as 'myokines'. Given that skeletal muscle is the largest organ in the human body, our discovery that contracting skeletal muscle secretes proteins sets a novel paradigm: skeletal muscle is an endocrine organ producing and releasing myokines, which work in a hormone-like fashion, exerting specific endocrine effects on other organs. Other myokines work via paracrine mechanisms, exerting local effects on signalling pathways involved in muscle metabolism. It has been suggested that myokines may contribute to exercise-induced protection against several chronic diseases.

  20. Muscle velocity recovery cycles: effects of repetitive stimulation on two muscles.

    PubMed

    Boërio, Delphine; Z'Graggen, Werner J; Tan, S Veronica; Guetg, Andri; Ackermann, Karin; Bostock, Hugh

    2012-07-01

    We sought to characterize the excitability properties of tibialis anterior (TA) and brachioradialis (BR) muscles at rest and during electrically induced muscle activation in normal subjects. Two centers recruited 10 subjects each. Multi-fiber velocity recovery cycles (VRCs) were recorded from TA (both centers) and BR (one center). VRCs were assessed at rest and during repetitive stimulation (intermittent 20 Hz for 6 min). Changes in latency and peak amplitude of the muscle action potential induced by a frequency ramp to 30 Hz were also characterized. Excitability properties recorded from TA were very similar between centers. Repetitive stimulation generated marked excitability changes, which were similar between TA and BR. Standardized tests of muscle VRCs and responses to repetitive stimulation can provide consistent measures of membrane function and may encourage their wider use in clinical neurophysiology to investigate the pathophysiology of neuromuscular disorders. Copyright © 2012 Wiley Periodicals, Inc.