Science.gov

Sample records for abelian gauge fields

  1. Non-Abelian gauge fields

    NASA Astrophysics Data System (ADS)

    Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus

    2013-07-01

    Building a universal quantum computer is a central goal of emerging quantum technologies, which has the potential to revolutionize science and technology. Unfortunately, this future does not seem to be very close at hand. However, quantum computers built for a special purpose, i.e. quantum simulators , are currently developed in many leading laboratories. Many schemes for quantum simulation have been proposed and realized using, e.g., ultracold atoms in optical lattices, ultracold trapped ions, atoms in arrays of cavities, atoms/ions in arrays of traps, quantum dots, photonic networks, or superconducting circuits. The progress in experimental implementations is more than spectacular. Particularly interesting are those systems that simulate quantum matter evolving in the presence of gauge fields. In the quantum simulation framework, the generated (synthetic) gauge fields may be Abelian, in which case they are the direct analogues of the vector potentials commonly associated with magnetic fields. In condensed matter physics, strong magnetic fields lead to a plethora of fascinating phenomena, among which the most paradigmatic is perhaps the quantum Hall effect. The standard Hall effect consists in the appearance of a transverse current, when a longitudinal voltage difference is applied to a conducting sample. For quasi-two-dimensional semiconductors at low temperatures placed in very strong magnetic fields, the transverse conductivity, the ratio between the transverse current and the applied voltage, exhibits perfect and robust quantization, independent for instance of the material or of its geometry. Such an integer quantum Hall effect, is now understood as a deep consequence of underlying topological order. Although such a system is an insulator in the bulk, it supports topologically robust edge excitations which carry the Hall current. The robustness of these chiral excitations against backscattering explains the universality of the quantum Hall effect. Another

  2. Non-Abelian gauge fields

    NASA Astrophysics Data System (ADS)

    Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus

    2013-07-01

    Building a universal quantum computer is a central goal of emerging quantum technologies, which has the potential to revolutionize science and technology. Unfortunately, this future does not seem to be very close at hand. However, quantum computers built for a special purpose, i.e. quantum simulators , are currently developed in many leading laboratories. Many schemes for quantum simulation have been proposed and realized using, e.g., ultracold atoms in optical lattices, ultracold trapped ions, atoms in arrays of cavities, atoms/ions in arrays of traps, quantum dots, photonic networks, or superconducting circuits. The progress in experimental implementations is more than spectacular. Particularly interesting are those systems that simulate quantum matter evolving in the presence of gauge fields. In the quantum simulation framework, the generated (synthetic) gauge fields may be Abelian, in which case they are the direct analogues of the vector potentials commonly associated with magnetic fields. In condensed matter physics, strong magnetic fields lead to a plethora of fascinating phenomena, among which the most paradigmatic is perhaps the quantum Hall effect. The standard Hall effect consists in the appearance of a transverse current, when a longitudinal voltage difference is applied to a conducting sample. For quasi-two-dimensional semiconductors at low temperatures placed in very strong magnetic fields, the transverse conductivity, the ratio between the transverse current and the applied voltage, exhibits perfect and robust quantization, independent for instance of the material or of its geometry. Such an integer quantum Hall effect, is now understood as a deep consequence of underlying topological order. Although such a system is an insulator in the bulk, it supports topologically robust edge excitations which carry the Hall current. The robustness of these chiral excitations against backscattering explains the universality of the quantum Hall effect. Another

  3. Non-Abelian gauge field theory in scale relativity

    NASA Astrophysics Data System (ADS)

    Nottale, Laurent; Célérier, Marie-Noëlle; Lehner, Thierry

    2006-03-01

    Gauge field theory is developed in the framework of scale relativity. In this theory, space-time is described as a nondifferentiable continuum, which implies it is fractal, i.e., explicitly dependent on internal scale variables. Owing to the principle of relativity that has been extended to scales, these scale variables can themselves become functions of the space-time coordinates. Therefore, a coupling is expected between displacements in the fractal space-time and the transformations of these scale variables. In previous works, an Abelian gauge theory (electromagnetism) has been derived as a consequence of this coupling for global dilations and/or contractions. We consider here more general transformations of the scale variables by taking into account separate dilations for each of them, which yield non-Abelian gauge theories. We identify these transformations with the usual gauge transformations. The gauge fields naturally appear as a new geometric contribution to the total variation of the action involving these scale variables, while the gauge charges emerge as the generators of the scale transformation group. A generalized action is identified with the scale-relativistic invariant. The gauge charges are the conservative quantities, conjugates of the scale variables through the action, which find their origin in the symmetries of the "scale-space." We thus found in a geometric way and recover the expression for the covariant derivative of gauge theory. Adding the requirement that under the scale transformations the fermion multiplets and the boson fields transform such that the derived Lagrangian remains invariant, we obtain gauge theories as a consequence of scale symmetries issued from a geometric space-time description.

  4. Non-Abelian Aharonov-Bohm effect with the time-dependent gauge fields

    NASA Astrophysics Data System (ADS)

    Hosseini Mansoori, Seyed Ali; Mirza, Behrouz

    2016-04-01

    We investigate the non-Abelian Aharonov-Bohm (AB) effect for time-dependent gauge fields. We prove that the non-Abelian AB phase shift related to time-dependent gauge fields, in which the electric and magnetic fields are written in the adjoint representation of SU (N) generators, vanishes up to the first order expansion of the phase factor. Therefore, the flux quantization in a superconductor ring does not appear in the time-dependent Abelian or non-Abelian AB effect.

  5. Infrared Maximally Abelian Gauge

    SciTech Connect

    Mendes, Tereza; Cucchieri, Attilio; Mihara, Antonio

    2007-02-27

    The confinement scenario in Maximally Abelian gauge (MAG) is based on the concepts of Abelian dominance and of dual superconductivity. Recently, several groups pointed out the possible existence in MAG of ghost and gluon condensates with mass dimension 2, which in turn should influence the infrared behavior of ghost and gluon propagators. We present preliminary results for the first lattice numerical study of the ghost propagator and of ghost condensation for pure SU(2) theory in the MAG.

  6. Stability of domain walls coupled to Abelian gauge fields

    SciTech Connect

    George, Damien P.; Volkas, Raymond R.

    2005-11-15

    Rozowsky, Volkas and Wali [J. Rozowsky, R. Volkas, and K. Wali, Phys. Lett. B 580, 249 (2004).] recently found interesting numerical solutions to the field equations for a gauged U(1)xU(1) scalar field model. Their solutions describe a reflection-symmetric domain wall with scalar fields and coupled gauge configurations that interpolate between constant magnetic fields on one side of the wall and exponentially decaying ones on the other side. This corresponds physically to an infinite sheet of supercurrent confined to the domain wall with a linearly rising gauge potential on one side and Meissner suppression on the other. While it was shown that these static solutions satisfied the field equations, their stability was left unresolved. In this paper, we analyze the normal modes of perturbations of the static solutions to demonstrate their perturbative stability.

  7. Abelian p-form (p = 1, 2, 3) gauge theories as the field theoretic models for the Hodge theory

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Krishna, S.; Shukla, A.; Malik, R. P.

    2014-09-01

    Taking the simple examples of an Abelian 1-form gauge theory in two (1+1)-dimensions, a 2-form gauge theory in four (3+1)-dimensions and a 3-form gauge theory in six (5+1)-dimensions of space-time, we establish that such gauge theories respect, in addition to the gauge symmetry transformations that are generated by the first-class constraints of the theory, additional continuous symmetry transformations. We christen the latter symmetry transformations as the dual-gauge transformations. We generalize the above gauge and dual-gauge transformations to obtain the proper (anti-)BRST and (anti-)dual-BRST transformations for the Abelian 3-form gauge theory within the framework of BRST formalism. We concisely mention such symmetries for the 2D free Abelian 1-form and 4D free Abelian 2-form gauge theories and briefly discuss their topological aspects in our present endeavor. We conjecture that any arbitrary Abelian p-form gauge theory would respect the above cited additional symmetry in D = 2p(p = 1, 2, 3, …) dimensions of space-time. By exploiting the above inputs, we establish that the Abelian 3-form gauge theory, in six (5+1)-dimensions of space-time, is a perfect model for the Hodge theory whose discrete and continuous symmetry transformations provide the physical realizations of all aspects of the de Rham cohomological operators of differential geometry. As far as the physical utility of the above nilpotent symmetries is concerned, we demonstrate that the 2D Abelian 1-form gauge theory is a perfect model of a new class of topological theory and 4D Abelian 2-form as well as 6D Abelian 3-form gauge theories are the field theoretic models for the quasi-topological field theory.

  8. Topological phase transitions on a triangular optical lattice with non-Abelian gauge fields

    NASA Astrophysics Data System (ADS)

    Iskin, M.

    2016-03-01

    We study the mean-field BCS-BEC evolution of a uniform Fermi gas on a single-band triangular lattice and construct its ground-state phase diagrams, showing a wealth of topological quantum phase transitions between gapped and gapless superfluids that are induced by the interplay of an out-of-plane Zeeman field and a generic non-Abelian gauge field.

  9. BCS-BEC crossover induced by a synthetic non-Abelian gauge field

    NASA Astrophysics Data System (ADS)

    Vyasanakere, Jayantha P.; Zhang, Shizhong; Shenoy, Vijay B.

    2011-07-01

    We investigate the ground state of interacting spin-(1)/(2) fermions in three dimensions at a finite density (ρ˜kF3) in the presence of a uniform non-Abelian gauge field. The gauge-field configuration (GFC) described by a vector λ≡(λx,λy,λz), whose magnitude λ determines the gauge coupling strength, generates a generalized Rashba spin-orbit interaction. For a weak attractive interaction in the singlet channel described by a small negative scattering length (kF|as|≲1), the ground state in the absence of the gauge field (λ=0) is a BCS (Bardeen-Cooper-Schrieffer) superfluid with large overlapping pairs. With increasing gauge-coupling strength, a non-Abelian gauge field engenders a crossover of this BCS ground state to a BEC (Bose-Einstein condensate) of bosons even with a weak attractive interaction that fails to produce a two-body bound state in free vacuum (λ=0). For large gauge couplings (λ/kF≫1), the BEC attained is a condensate of bosons whose properties are solely determined by the Rashba gauge field (and not by the scattering length so long as it is nonzero)—we call these bosons “rashbons.” In the absence of interactions (as=0-), the shape of the Fermi surface of the system undergoes a topological transition at a critical gauge coupling λT. For high-symmetry GFCs we show that the crossover from the BCS superfluid to the rashbon BEC occurs in the regime of λ near λT. In the context of cold atomic systems, these results make an interesting suggestion of obtaining BCS-BEC crossover through a route other than tuning the interaction between the fermions.

  10. BCS-BEC crossover induced by a synthetic non-Abelian gauge field

    SciTech Connect

    Vyasanakere, Jayantha P.; Shenoy, Vijay B.; Zhang Shizhong

    2011-07-01

    We investigate the ground state of interacting spin-(1/2) fermions in three dimensions at a finite density ({rho}{approx}k{sub F}{sup 3}) in the presence of a uniform non-Abelian gauge field. The gauge-field configuration (GFC) described by a vector {lambda}{identical_to}({lambda}{sub x},{lambda}{sub y},{lambda}{sub z}), whose magnitude {lambda} determines the gauge coupling strength, generates a generalized Rashba spin-orbit interaction. For a weak attractive interaction in the singlet channel described by a small negative scattering length (k{sub F}|a{sub s}| < or approx. 1), the ground state in the absence of the gauge field ({lambda}=0) is a BCS (Bardeen-Cooper-Schrieffer) superfluid with large overlapping pairs. With increasing gauge-coupling strength, a non-Abelian gauge field engenders a crossover of this BCS ground state to a BEC (Bose-Einstein condensate) of bosons even with a weak attractive interaction that fails to produce a two-body bound state in free vacuum ({lambda}=0). For large gauge couplings ({lambda}/k{sub F}>>1), the BEC attained is a condensate of bosons whose properties are solely determined by the Rashba gauge field (and not by the scattering length so long as it is nonzero)--we call these bosons ''rashbons.'' In the absence of interactions (a{sub s}=0{sup -}), the shape of the Fermi surface of the system undergoes a topological transition at a critical gauge coupling {lambda}{sub T}. For high-symmetry GFCs we show that the crossover from the BCS superfluid to the rashbon BEC occurs in the regime of {lambda} near {lambda}{sub T}. In the context of cold atomic systems, these results make an interesting suggestion of obtaining BCS-BEC crossover through a route other than tuning the interaction between the fermions.

  11. Simulation of non-Abelian lattice gauge fields with a single-component gas

    NASA Astrophysics Data System (ADS)

    Kosior, Arkadiusz; Sacha, Krzysztof

    2014-07-01

    We show that non-Abelian lattice gauge fields can be simulated with a single-component ultra-cold atomic gas in an optical-lattice potential. An optical lattice can be viewed as a Bravais lattice with a N-point basis. An atom located at different points of the basis can be considered as a particle in different internal states. The appropriate engineering of tunneling amplitudes of atoms in an optical lattice allows one to realize U(N) gauge potentials and control a mass of particles that experience such non-Abelian gauge fields. We provide and analyze a concrete example of an optical-lattice configuration that allows for simulation of a static U(2) gauge model with a constant Wilson loop and an adjustable mass of particles. In particular, we observe that the non-zero mass creates large conductive gaps in the energy spectrum, which could be important in the experimental detection of the transverse Hall conductivity.

  12. Quantum phase transition of ultracold bosons in the presence of a non-Abelian synthetic gauge field

    SciTech Connect

    Grass, T.; Saha, K.; Sengupta, K.; Lewenstein, M.

    2011-11-15

    We study the Mott phases and the superfluid-insulator transition of two-component ultracold bosons on a square optical lattice in the presence of a non-Abelian synthetic gauge field, which renders a SU(2)-hopping matrix for the bosons. Using a resummed hopping expansion, we calculate the excitation spectra in the Mott insulating phases and demonstrate that the superfluid-insulator phase boundary displays a nonmonotonic dependence on the gauge-field strength. We also compute the momentum distribution of the bosons in the presence of the non-Abelian field and show that they develop peaks at nonzero momenta as the superfluid-insulator transition point is approached from the Mott side. Finally, we study the superfluid phases near the transition and discuss the induced spatial pattern of the superfluid density due to the presence of the non-Abelian gauge potential.

  13. Dynamical symmetry breaking, gauge fields, and stability in four-Fermi, non-abelian interactions

    SciTech Connect

    Portney, M.N.

    1983-01-01

    The Nambu model of dynamical breaking of global symmetry is extended to the case of non-abelian SU(N) models. The possible patterns of symmetry breaking are investigated, and the masses of the composite spinless particles are found. Corresponding to each broken generator, this composite is the massless Goldstone boson. When the global symmetries are made local by the addition of gauge fields, the composite pseudoscalar Goldstone bosons disappear and the axial gauge fields become massive. This is analogous to the Higgs mechanism, but without the introduction of fundamental scalar fields. The composite scalar Goldstone bosons remain in the theory, and the vector gauge fields are still massless. This is in agreement with the charge conjugation argument. The stability of the possible solutions is discussed using several criteria. It is concluded that in theories with zero bare mass, if a nontrivial solution exists, the completely symmetric massive solution is realized. If the bare mass is symmetric and non-zero, asymmetric solutions may be found, with corresponding scalar Goldstone composites. These violate the persistent mass condition of Preskill and Weinberg.

  14. Abelian 3-form gauge theory: Superfield approach

    NASA Astrophysics Data System (ADS)

    Malik, R. P.

    2012-09-01

    We discuss a D-dimensional Abelian 3-form gauge theory within the framework of Bonora-Tonin's superfield formalism and derive the off-shell nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for this theory. To pay our homage to Victor I. Ogievetsky (1928-1996), who was one of the inventors of Abelian 2-form (antisymmetric tensor) gauge field, we go a step further and discuss the above D-dimensional Abelian 3-form gauge theory within the framework of BRST formalism and establish that the existence of the (anti-)BRST invariant Curci-Ferrari (CF) type of restrictions is the hallmark of any arbitrary p-form gauge theory (discussed within the framework of BRST formalism).

  15. Localizing gauge fields on a topological Abelian string and the Coulomb law

    SciTech Connect

    Torrealba S, Rafael S.

    2010-07-15

    The confinement of electromagnetic field is studied in axial symmetrical, warped, six-dimensional brane world, using a recently proposed topological Abelian string-vortex solution as background. It was found, that the massless gauge field fluctuations follow four-dimensional Maxwell equations in the Lorenz gauge. The massless zero mode is localized when the thickness of the string vortex is less than 5{beta}/4{pi}e{sup 2}v{sup 2} and there are no other localized massless modes. There is also an infinite of nonlocalized massive Fourier modes, that follow four-dimensional Proca equations with a continuous spectrum. To compute the corrections to the Coulomb potential, a radial cutoff was introduced, in order to achieve a discrete mass spectrum. As a main result, a (R{sub o}/{beta}R{sup 2}) correction was found for the four-dimensional effective Coulomb law; the result is in correspondence with the observed behavior of the Coulomb potential at today's measurable distances.

  16. Optical Abelian lattice gauge theories

    SciTech Connect

    Tagliacozzo, L.; Celi, A.; Zamora, A.; Lewenstein, M.

    2013-03-15

    We discuss a general framework for the realization of a family of Abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable for quantum simulations. Within this class, we study in detail the phases of a U(1)-invariant lattice gauge theory in 2+1 dimensions, originally proposed by P. Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4 Multiplication-Sign 4. We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices, where we discuss in detail a protocol for the preparation of the ground-state. We propose two key experimental tests that can be used as smoking gun of the proper implementation of a gauge theory in optical lattices. These tests consist in verifying the absence of spontaneous (gauge) symmetry breaking of the ground-state and the presence of charge confinement. We also comment on the relation between standard compact U(1) lattice gauge theory and the model considered in this paper. - Highlights: Black-Right-Pointing-Pointer We study the quantum simulation of dynamical gauge theories in optical lattices. Black-Right-Pointing-Pointer We focus on digital simulation of abelian lattice gauge theory. Black-Right-Pointing-Pointer We rediscover and discuss the puzzling phase diagram of gauge magnets. Black-Right-Pointing-Pointer We detail the protocol for time evolution and ground-state preparation in any phase. Black-Right-Pointing-Pointer We provide two experimental tests to validate gauge theory quantum simulators.

  17. Gauge invariance for a whole Abelian model

    SciTech Connect

    Chauca, J.; Doria, R.; Soares, W.

    2012-09-24

    Light invariance is a fundamental principle for physics be done. It generates Maxwell equations, relativity, Lorentz group. However there is still space for a fourth picture be developed which is to include fields with same Lorentz nature. It brings a new room for field theory. It says that light invariance does not work just to connect space and time but it also associates different fields with same nature. Thus for the ((1/2),(1/2)) representation there is a fields family {l_brace}A{sub {mu}I}{r_brace} to be studied. This means that given such fields association one should derive its corresponding gauge theory. This is the effort at this work. Show that there is a whole gauge theory to cover these fields relationships. Considering the abelian case, prove its gauge invariance. It yields the kinetic, massive, trilinear and quadrilinear gauge invariant terms.

  18. Bound states of two spin-(1/2) fermions in a synthetic non-Abelian gauge field

    SciTech Connect

    Vyasanakere, Jayantha P.; Shenoy, Vijay B.

    2011-03-01

    We study the bound states of two spin-(1/2) fermions interacting via a contact attraction (characterized by a scattering length) in the singlet channel in three-dimensional space in presence of a uniform non-Abelian gauge field. The configuration of the gauge field that generates a Rashba-type spin-orbit interaction is described by three coupling parameters ({lambda}{sub x},{lambda}{sub y},{lambda}{sub z}). For a generic gauge field configuration, the critical scattering length required for the formation of a bound state is negative, i.e., shifts to the ''BCS side'' of the resonance. Interestingly, we find that there are special high-symmetry configurations (e.g., {lambda}{sub x}={lambda}{sub y}={lambda}{sub z}) for which there is a two-body bound state for anyscattering length however small and negative. Remarkably, the bound-state wave functions obtained for such configurations have nematic spin structure similar to those found in liquid {sup 3}He. Our results show that the BCS-BEC (Bose-Einstein condensation) crossover is drastically affected by the presence of a non-Abelian gauge field. We discuss possible experimental signatures of our findings both at high and low temperatures.

  19. Maximal Abelian gauge and a generalized BRST transformation

    NASA Astrophysics Data System (ADS)

    Deguchi, Shinichi; Pandey, Vipul Kumar; Mandal, Bhabani Prasad

    2016-05-01

    We apply a generalized Becchi-Rouet-Stora-Tyutin (BRST) formulation to establish a connection between the gauge-fixed SU (2) Yang-Mills (YM) theories formulated in the Lorenz gauge and in the Maximal Abelian (MA) gauge. It is shown that the generating functional corresponding to the Faddeev-Popov (FP) effective action in the MA gauge can be obtained from that in the Lorenz gauge by carrying out an appropriate finite and field-dependent BRST (FFBRST) transformation. In this procedure, the FP effective action in the MA gauge is found from that in the Lorenz gauge by incorporating the contribution of non-trivial Jacobian due to the FFBRST transformation of the path integral measure. The present FFBRST formulation might be useful to see how Abelian dominance in the MA gauge is realized in the Lorenz gauge.

  20. Optical quantum simulation of Abelian gauge field using cold atomic ensembles coupled with arrays of optical cavities

    NASA Astrophysics Data System (ADS)

    Liu, YiMin; Liu, RongWan

    2014-12-01

    A potentially practical scheme is proposed to realize optical quantum simulation of artificial Abelian gauge field in a scalable architecture consisting of cold atomic ensembles with optical cavities. In the present model, the collective excitations of cold atomic ensembles can be converted to the bosonic modes within the low-excitation limit, where the structure of two-dimension (2D) square plaquette enables the polaritons to move like a charged particle subjected to an external magnetic field. We find that the energy spectrum of this hybrid system exhibits a shape of Hofstadter buttery. Our work provides a different perspective to the quantum simulation of condensed matter and many-body physics in the context of cavity quantum electrodynamics. The experimental feasibility are justified using the existing techniques.

  1. Confinement Driven by Scalar Field in 4d Non Abelian Gauge Theories

    SciTech Connect

    Chabab, Mohamed

    2007-01-12

    We review some of the most recent work on confinement in 4d gauge theories with a massive scalar field (dilaton). Emphasis is put on the derivation of confining analytical solutions to the Coulomb problem versus dilaton effective couplings to gauge terms. It is shown that these effective theories can be relevant to model quark confinement and may shed some light on confinement mechanism. Moreover, the study of interquark potential, derived from Dick Model, in the heavy meson sector proves that phenomenological investigation of tmechanism is more than justified and deserves more efforts.

  2. Superfluid transition temperature across the BCS-BEC crossover induced by a synthetic non-Abelian gauge field

    NASA Astrophysics Data System (ADS)

    Vyasanakere, Jayanth P.; Shenoy, Vijay B.

    2013-03-01

    A non-Abelian gauge field that induces a spin-orbit coupling on the motion of fermions engenders a BCS-BEC crossover even for weakly attracting fermions. The transition temperature at large spin-orbit coupling is known to be determined by the mass of the emergent boson - the rashbon. We obtain the transition temperature of the system as a function of the spin-orbit coupling by constructing and studying a Gaussian fluctuation (Nozieres-Schmitt-Rink) theory. These results will help guide the upcoming experiments on spin-orbit coupled fermions. In addition, this work suggests a route to enhance the transition temperature of a weakly attracting fermionic system by tuning the spin-orbit coupling. Work supported by CSIR, DST, DAE India

  3. New infinite-dimensional symmetry groups for the stationary axisymmetric Einstein Maxwell equations with multiple Abelian gauge fields

    NASA Astrophysics Data System (ADS)

    Gao, Ya-Jun

    2006-01-01

    The so-called extended hyperbolic complex (EHC) function method is used to study further the stationary axisymmetric Einstein-Maxwell theory with p Abelian gauge fields (EM-p theory, for short). Two EHC structural Riemann-Hilbert (RH) transformations are constructed and are then shown to give an infinite-dimensional symmetry group of the EM-p theory. This symmetry group is verified to have the structure of semidirect product of Kac-Moody group SU(hat p+1,1) and Virasoro group. Moreover, the infinitesimal forms of these two RH transformations are calculated and found to give exactly the same infinitesimal transformations as in previous author's paper by a different scheme. This demonstrates that the results obtained in the present paper provide some exponentiations of all the infinitesimal symmetry transformations obtained before.

  4. Magnetic monopoles and Abelian gauge fixing in SU(4) gauge group

    NASA Astrophysics Data System (ADS)

    Rafibakhsh, Shahnoosh; Eshraghi, Mojtaba; Kahnemuii, Mohammad Javad

    2016-01-01

    Abelian gauge fixing procedure is used to create the SU (4) magnetic monopoles in the vicinity of the points where the gluon field becomes singular. The matrix of the scalar field is considered as almost diagonal in the SU (2) and SU (3) subspaces. The gauge transformation which diagonalizes the hedgehog filed, transforms the gluon field into two regular and singular parts. The abelian magnetic monopoles which appear in the latter part obey the quantization condition.

  5. Topological Quantum Phase Transition in Synthetic Non-Abelian Gauge Potential: Gauge Invariance and Experimental Detections

    PubMed Central

    Sun, Fadi; Yu, Xiao-Lu; Ye, Jinwu; Fan, Heng; Liu, Wu-Ming

    2013-01-01

    The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non-Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and explore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase transition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops. PMID:23846153

  6. Non-Abelian discrete gauge symmetries in F-theory

    NASA Astrophysics Data System (ADS)

    Grimm, Thomas W.; Pugh, Tom G.; Regalado, Diego

    2016-02-01

    The presence of non-Abelian discrete gauge symmetries in four-dimensional F-theory compactifications is investigated. Such symmetries are shown to arise from seven-brane configurations in genuine F-theory settings without a weak string coupling description. Gauge fields on mutually non-local seven-branes are argued to gauge both R-R and NS-NS two-form bulk axions. The gauging is completed into a generalisation of the Heisenberg group with either additional seven-brane gauge fields or R-R bulk gauge fields. The former case relies on having seven-brane fluxes, while the latter case requires torsion cohomology and is analysed in detail through the M-theory dual. Remarkably, the M-theory reduction yields an Abelian theory that becomes non-Abelian when translated into the correct duality frame to perform the F-theory limit. The reduction shows that the gauge coupling function depends on the gauged scalars and transforms non-trivially as required for the groups encountered. This field dependence agrees with the expectations for the kinetic mixing of seven-branes and is unchanged if the gaugings are absent.

  7. Gauge fields

    SciTech Connect

    Mills, R.

    1989-06-01

    This article is a survey of the history and ideas of gauge theory. Described here are the gradual emergence of symmetry as a driving force in the shaping of physical theory; the elevation of Noether's theorem, relating symmetries to conservation laws, to a fundamental principle of nature; and the force of the idea (''the gauge principle'') that the symmetries of nature, like the interactions themselves, should be local in character. The fundamental role of gauge fields in mediating the interactions of physics springs from Noether's theorem and the gauge principle in a remarkably clean and elegant way, leaving, however, some tantalizing loose ends that might prove to be the clue to a future deeper level of understanding. The example of the electromagnetic field as the prototype gauge theory is discussed in some detail and serves as the basis for examining the similarities and differences that emerge in generalizing to non-Abelian gauge theories. The article concludes with a brief examination of the dream of total unification: all the forces of nature in a single unified gauge theory, with the differences among the forces due to the specific way in which the fundamental symmetries are broken in the local environment.

  8. Quantization of higher abelian gauge theory in generalized differential cohomology

    NASA Astrophysics Data System (ADS)

    Szabo, R.

    We review and elaborate on some aspects of the quantization of certain classes of higher abelian gauge theories using techniques of generalized differential cohomology. Particular emphasis is placed on the examples of generalized Maxwell theory and Cheeger-Simons cohomology, and of Ramond-Ramond fields in Type II superstring theory and differential K-theory.

  9. Lattice QCD Green's functions in maximally Abelian gauge: Infrared Abelian dominance and the quark sector

    NASA Astrophysics Data System (ADS)

    Schröck, Mario; Vogt, Hannes

    2016-01-01

    On lattice gauge field configurations with 2 +1 dynamical quark flavors, we investigate the momentum space quark and gluon propagators in the combined maximally Abelian plus U (1 )3×U (1 )8 Landau gauge. We extract the gluon fields from the lattice link variables and study the diagonal and off-diagonal gluon propagators. We find that the infrared region of the transverse diagonal gluon propagator is strongly enhanced compared to the off-diagonal propagator. The Dirac operator from the Asqtad action is inverted on the diagonal and off-diagonal gluon backgrounds separately. In agreement with the hypothesis of infrared Abelian dominance, we find that the off-diagonal gluon background hardly gives rise to any nontrivial quark dynamics while the quark propagator from the diagonal gluon background closely resembles its Landau gauge counterpart.

  10. Gauge invariance of color confinement due to the dual Meissner effect caused by Abelian monopoles

    SciTech Connect

    Suzuki, Tsuneo; Hasegawa, Masayasu; Ishiguro, Katsuya; Koma, Yoshiaki; Sekido, Toru

    2009-09-01

    The mechanism of non-Abelian color confinement is studied in SU(2) lattice gauge theory in terms of the Abelian fields and monopoles extracted from non-Abelian link variables without adopting gauge fixing. First, the static quark-antiquark potential and force are computed with the Abelian and monopole Polyakov loop correlators, and the resulting string tensions are found to be identical to the non-Abelian string tension. These potentials also show the scaling behavior with respect to the change of lattice spacing. Second, the profile of the color-electric field between a quark and an antiquark is investigated with the Abelian and monopole Wilson loops. The color-electric field is squeezed into a flux tube due to monopole supercurrent with the same Abelian color direction. The parameters corresponding to the penetration and coherence lengths show the scaling behavior, and the ratio of these lengths, i.e., the Ginzburg-Landau parameter, indicates that the vacuum type is near the border of the type 1 and type 2 (dual) superconductors. These results are summarized in which the Abelian fundamental charge defined in an arbitrary color direction is confined inside a hadronic state by the dual Meissner effect. As the color-neutral state in any Abelian color direction corresponds to the physical color-singlet state, this effect explains non-Abelian color confinement and supports the existence of a gauge-invariant mechanism of color confinement due to the dual Meissner effect caused by Abelian monopoles.

  11. Cold Atoms in Non-Abelian Gauge Potentials: From the Hofstadter Moth to Lattice Gauge Theory

    SciTech Connect

    Osterloh, K.; Baig, M.; Santos, L.; Zoller, P.; Lewenstein, M.

    2005-07-01

    We demonstrate how to create artificial external non-Abelian gauge potentials acting on cold atoms in optical lattices. The method employs atoms with k internal states, and laser assisted state sensitive tunneling, described by unitary kxk matrices. The single-particle dynamics in the case of intense U(2) vector potentials lead to a generalized Hofstadter butterfly spectrum which shows a complex mothlike structure. We discuss the possibility to realize non-Abelian interferometry (Aharonov-Bohm effect) and to study many-body dynamics of ultracold matter in external lattice gauge fields.

  12. Ward-Takahashi identities for Abelian chiral gauge theories

    NASA Astrophysics Data System (ADS)

    de Lima, Ana Paula Cardoso Rodrigues; Dias, Sebastião Alves

    2016-04-01

    By considering a general Abelian chiral gauge theory, we investigate the behavior of anomalous Ward-Takahashi (WT) identities concerning their prediction for the usual relationship between the vertex and two-point fermion functions. Using gauge anomaly vanishing results, we show that the usual (in the nonanomalous case) WT identity connecting the vertex and two-point fermion 1PI functions is modified for Abelian chiral gauge theories. The modification, however, implies a relation between fermion and charge renormalization constants that can be important in a future study of renormalization of such theories.

  13. Electric-magnetic dualities in non-abelian and non-commutative gauge theories

    NASA Astrophysics Data System (ADS)

    Ho, Jun-Kai; Ma, Chen-Te

    2016-08-01

    Electric-magnetic dualities are equivalence between strong and weak coupling constants. A standard example is the exchange of electric and magnetic fields in an abelian gauge theory. We show three methods to perform electric-magnetic dualities in the case of the non-commutative U (1) gauge theory. The first method is to use covariant field strengths to be the electric and magnetic fields. We find an invariant form of an equation of motion after performing the electric-magnetic duality. The second method is to use the Seiberg-Witten map to rewrite the non-commutative U (1) gauge theory in terms of abelian field strength. The third method is to use the large Neveu Schwarz-Neveu Schwarz (NS-NS) background limit (non-commutativity parameter only has one degree of freedom) to consider the non-commutative U (1) gauge theory or D3-brane. In this limit, we introduce or dualize a new one-form gauge potential to get a D3-brane in a large Ramond-Ramond (R-R) background via field redefinition. We also use perturbation to study the equivalence between two D3-brane theories. Comparison of these methods in the non-commutative U (1) gauge theory gives different physical implications. The comparison reflects the differences between the non-abelian and non-commutative gauge theories in the electric-magnetic dualities. For a complete study, we also extend our studies to the simplest abelian and non-abelian p-form gauge theories, and a non-commutative theory with the non-abelian structure.

  14. Enhancing Gauge Symmetries of Non-Abelian Supersymmetric Chern-Simons Model

    NASA Astrophysics Data System (ADS)

    Gharavi, Kh. Bahalke; Monemzadeh, M.; Nejad, S. Abarghouei

    2016-07-01

    In this article, we study gauge symmetries of the Non-Abelian Supersymmetric Chern-Simons model (SCS) of SU(2) group at (2+1)-dimensions in the framework of the formalism of constrained systems. Since, broken gauge symmetries in this physical system lead to the presence of nonphysical degrees of freedom, the Non-Abelian SCS model is strictly constrained to second-class constraints. Hence, by introducing some auxiliary fields and using finite order BFT method, we obtain a gauge symmetric model by converting second-class constraint to first-class ones. Ultimately, the partition function of the model is obtained in the extended phase space.

  15. Controlling and probing non-abelian emergent gauge potentials in spinor Bose-Fermi mixtures

    PubMed Central

    Phuc, Nguyen Thanh; Tatara, Gen; Kawaguchi, Yuki; Ueda, Masahito

    2015-01-01

    Gauge fields, typified by the electromagnetic field, often appear as emergent phenomena due to geometrical properties of a curved Hilbert subspace, and provide a key mechanism for understanding such exotic phenomena as the anomalous and topological Hall effects. Non-abelian gauge potentials serve as a source of non-singular magnetic monopoles. Here we show that unlike conventional solid materials, the non-abelianness of emergent gauge potentials in spinor Bose-Fermi atomic mixtures can be continuously varied by changing the relative particle-number densities of bosons and fermions. The non-abelian feature is captured by an explicit dependence of the measurable spin current density of fermions in the mixture on the variable coupling constant. Spinor mixtures also provide us with a method to coherently and spontaneously generate a pure spin current without relying on the spin Hall effect. Such a spin current is expected to have potential applications in the new generation of atomtronic devices. PMID:26330292

  16. Breaking an Abelian gauge symmetry near a black hole horizon

    SciTech Connect

    Gubser, Steven S.

    2008-09-15

    I argue that coupling the Abelian Higgs model to gravity plus a negative cosmological constant leads to black holes which spontaneously break the gauge invariance via a charged scalar condensate slightly outside their horizon. This suggests that black holes can superconduct.

  17. Gauge anomalies in an effective field theory

    SciTech Connect

    Preskill, J. )

    1991-09-01

    A four-dimensional gauge theory with anomalous fermion content can be consistently quantized, provided that at least some gauge fields are permitted to have nonvanishing masses. Such a theory is nonrenormalizable; there is a maximal value of the ultraviolet cutoff {Lambda}, beyond which the locality of the theory breaks down. The maximal {Lambda} can be estimated in perturbation theory and has a qualitatively different character in Abelian and non-Abelian anomalous gauge theories.

  18. Study of the zero modes of the Faddeev–Popov operator in the maximal Abelian gauge

    SciTech Connect

    Capri, M.A.L. Guimaraes, M.S. Lemes, V.E.R. Sorella, S.P. Tedesco, D.G.

    2014-05-15

    A study of the zero modes of the Faddeev–Popov operator in the maximal Abelian gauge is presented in the case of the gauge group SU(2) and for different Euclidean space–time dimensions. Explicit examples of classes of normalizable zero modes and corresponding gauge field configurations are constructed by taking into account two boundary conditions, namely: (i) the finite Euclidean Yang–Mills action, (ii) the finite Hilbert norm. -- Highlights: •We study the zero modes of the Faddeev–Popov operator in the maximal Abelian gauge. •For d=2 we obtain solutions with finite action but not finite Hilbert norm. •For d=3,4 we obtain solutions with finite action and finite Hilbert norm. •These results can be compared with those previously obtained in the Landau gauge.

  19. AGT relations for abelian quiver gauge theories on ALE spaces

    NASA Astrophysics Data System (ADS)

    Pedrini, Mattia; Sala, Francesco; Szabo, Richard J.

    2016-05-01

    We construct level one dominant representations of the affine Kac-Moody algebra gl̂k on the equivariant cohomology groups of moduli spaces of rank one framed sheaves on the orbifold compactification of the minimal resolution Xk of the Ak-1 toric singularity C2 /Zk. We show that the direct sum of the fundamental classes of these moduli spaces is a Whittaker vector for gl̂k, which proves the AGT correspondence for pure N = 2 U(1) gauge theory on Xk. We consider Carlsson-Okounkov type Ext-bundles over products of the moduli spaces and use their Euler classes to define vertex operators. Under the decomposition gl̂k ≃ h ⊕sl̂k, these vertex operators decompose as products of bosonic exponentials associated to the Heisenberg algebra h and primary fields of sl̂k. We use these operators to prove the AGT correspondence for N = 2 superconformal abelian quiver gauge theories on Xk.

  20. Supersymmetric composite gauge fields with compensators

    NASA Astrophysics Data System (ADS)

    Nishino, Hitoshi; Rajpoot, Subhash

    2016-06-01

    We study supersymmetric composite gauge theory, supplemented with compensator mechanism. As our first example, we give the formulation of N = 1 supersymmetric non-Abelian composite gauge theory without the kinetic term of a non-Abelian gauge field. The important ingredient is the Proca-Stueckelberg-type compensator scalar field that makes the gauge-boson field equation non-singular, i.e., the field equation can be solved for the gauge field algebraically as a perturbative expansion. As our second example, we perform the gauging of chiral-symmetry for N = 1 supersymmetry in four dimensions by a composite gauge field. These results provide supporting evidence for the consistency of the mechanism that combines the composite gauge field formulations and compensator formulations, all unified under supersymmetry.

  1. Experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers

    NASA Astrophysics Data System (ADS)

    Yin, Long-Jing; Qiao, Jia-Bin; Zuo, Wei-Jie; Li, Wen-Tian; He, Lin

    2015-08-01

    Non-Abelian gauge potentials are quite relevant in subatomic physics, but they are relatively rare in a condensed matter context. Here we report the experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers by scanning tunneling microscopy and spectroscopy. At a magic twisted angle, θ ≈(1.11±0.05 ) ∘ , a pronounced sharp peak, which arises from the nondispersive flat bands at the charge neutrality point, is observed in the tunneling density of states due to the action of the non-Abelian gauge fields. Moreover, we observe confined electronic states in the twisted bilayer, as manifested by regularly spaced tunneling peaks with energy spacing δ E ≈vF/D ≈70 meV (here vF is the Fermi velocity of graphene and D is the period of the moiré patterns). This indicates that the non-Abelian gauge potentials in twisted graphene bilayers confine low-energy electrons into a triangular array of quantum dots following the modulation of the moiré patterns. Our results also directly demonstrate that the Fermi velocity in twisted bilayers can be tuned from about 106m /s to zero by simply reducing the twisted angle of about 2∘.

  2. Non-Abelian gauge invariance and the infrared approximation

    SciTech Connect

    Cho, H.h.; Fried, H.M.; Grandou, T.

    1988-02-15

    Two constructions are given of infrared approximations, defined by a nonlocal configuration-space restrictions, which preserve the local, non-Abelian gauge invariance of SU(N) two-dimensional QCD (QCD/sub 2/). These continuum infrared methods are used to estimate the quenched order parameter in the strong-coupling, or chiral, limit and are compared to a previous calculation where gauge invariance was not manifest. Both constructions provide results which, in the chiral limit, differ from each other and from the previous estimation by an inessential, multiplicative scaling factor.

  3. Discrete Abelian gauge symmetries and axions

    NASA Astrophysics Data System (ADS)

    Honecker, Gabriele; Staessens, Wieland

    2015-07-01

    We combine two popular extensions of beyond the Standard Model physics within the framework of intersecting D6-brane models: discrete ℤn symmetries and Peccei-Quinn axions. The underlying natural connection between both extensions is formed by the presence of massive U(1) gauge symmetries in D-brane model building. Global intersecting D6-brane models on toroidal orbifolds of the type T6/ℤ2N and T6/ℤ2 × ℤ2M with discrete torsion offer excellent playgrounds for realizing these extensions. A generation-dependent ℤ2 symmetry is identified in a global Pati-Salam model, while global left-right symmetric models give rise to supersymmetric realizations of the DFSZ axion model. In one class of the latter models, the axion as well as Standard Model particles carry a non-trivial ℤ3 charge.

  4. Particle coupled to a heat bath in non-Abelian gauge potentials

    NASA Astrophysics Data System (ADS)

    Guingarey, Issoufou; Avossevou, Gabriel Y. H.

    2015-12-01

    We derive the quantum Langevin equation (QLE) for a harmonically single trapped cold atom subjected to artificial non-Abelian gauge potentials and linearly coupled to a heat bath. The independent-oscillator (IO) and the momentum-momenta coupling models are studied. In each case, the non-Abelian effect on the QLE is pointed out for a U(2 ) gauge transformation. For the IO model, only the generalized Lorentz force is modified by the appearance of an additive term. For the momentum-momenta coupling model, the generalized Lorentz force as well as the friction force are subjected to modifications. The dependence of the system on the magnetic field is explicit even if the gauge potential is uniform in space.

  5. Chaos, scaling and existence of a continuum limit in classical non-Abelian lattice gauge theory

    SciTech Connect

    Nielsen, H.B.; Rugh, H.H.; Rugh, S.E.

    1996-12-31

    We discuss space-time chaos and scaling properties for classical non-Abelian gauge fields discretized on a spatial lattice. We emphasize that there is a {open_quote}no go{close_quotes} for simulating the original continuum classical gauge fields over a long time span since there is a never ending dynamical cascading towards the ultraviolet. We note that the temporal chaotic properties of the original continuum gauge fields and the lattice gauge system have entirely different scaling properties thereby emphasizing that they are entirely different dynamical systems which have only very little in common. Considered as a statistical system in its own right the lattice gauge system in a situation where it has reached equilibrium comes closest to what could be termed a {open_quotes}continuum limit{close_quotes} in the limit of very small energies (weak non-linearities). We discuss the lattice system both in the limit for small energies and in the limit of high energies where we show that there is a saturation of the temporal chaos as a pure lattice artifact. Our discussion focuses not only on the temporal correlations but to a large extent also on the spatial correlations in the lattice system. We argue that various conclusions of physics have been based on monitoring the non-Abelian lattice system in regimes where the fields are correlated over few lattice units only. This is further evidenced by comparison with results for Abelian lattice gauge theory. How the real time simulations of the classical lattice gauge theory may reach contact with the real time evolution of (semi-classical aspects of) the quantum gauge theory (e.g. Q.C.D.) is left an important question to be further examined.

  6. a Note on the - Invariant Lagrangian Densities for the Free Abelian 2-FORM Gauge Theory

    NASA Astrophysics Data System (ADS)

    Gupta, Saurabh; Malik, R. P.

    We show that the previously known off-shell nilpotent (s(a)b2 = 0) and absolutely anticommuting (sb sab + sab sb = 0) Becchi-Rouet-Stora-Tyutin (BRST) transformations (sb) and anti-BRST transformations (sab) are the symmetry transformations of the appropriate Lagrangian densities of a four (3+1)-dimensional (4D) free Abelian 2-form gauge theory which do not explicitly incorporate a very specific constrained field condition through a Lagrange multiplier 4D vector field. The above condition, which is the analogue of the Curci-Ferrari restriction of the non-Abelian 1-form gauge theory, emerges from the Euler-Lagrange equations of motion of our present theory and ensures the absolute anticommutativity of the transformations s(a)b. Thus, the coupled Lagrangian densities, proposed in our present investigation, are aesthetically more appealing and more economical.

  7. Entanglement of Vortex Lattices for Ultracold Bose Gases in a Non-Abelian Gauge Potential

    NASA Astrophysics Data System (ADS)

    Cheng, Szu-Cheng; Jiang, T. F.; Jheng, Shih-Da; Atomic; Molecular Physics Team; Atomic; Molecular Physics Team

    We develop a theory, referred to as the von Neumann lattice in a higher Landau level, for vortex lattices labelled by an integral number of flux quantums per unit cell in a higher Landau level. Using this lattice theory, we study the vortex lattice states of a pseudospin-1/2 ultracold Bose gas with contact interactions in a non-Abelian gauge potential. In addition to a uniform magnetic field, the Bose gas is also subjected to a non-Abelian gauge field, which creates an effect of the spin-orbit coupling to lift the spin degeneracy of the Landau levels. Because of interactions from the spin-orbit coupling, there are new degenerate points of the single particle spectrum due to the crossings of two Landau levels at certain coupling strengths. We show that interactions from the spin-orbit coupling force the nature and structure of the vortex lattice changing dramatically if the strength of the non-Abelian gauge field is increasing. We also find that the ground state of the vortex lattice at a degenerate point exhibits strong correlation and entanglement involving vortex lattices from different Landau levels. This entangled state builds the connection between two phases of vortex lattices during the first order phase transition of the adiabatic evolution.

  8. Non-Abelian gauge redundancy and entropic ambiguities

    NASA Astrophysics Data System (ADS)

    Balachandran, A. P.; de Queiroz, A. R.; Vaidya, S.

    2015-04-01

    The von Neumann entropy of a generic quantum state is not unique unless the state can be uniquely decomposed as a sum of extremal or pure states. Therefore one reaches the remarkable possibility that there may be many entropies for a given state. We show that this happens if the GNS representation (of the algebra of observables in some quantum state) is reducible, and some representations in the decomposition occur with non-trivial degeneracy. This ambiguity in entropy, which can occur at zero temperature, can often be traced to a gauge symmetry emergent from the non-trivial topological character of the configuration space of the underlying system. We also establish the analogue of an H-theorem for this entropy by showing that its evolution is Markovian, determined by a stochastic matrix. After demonstrating this entropy ambiguity for the simple example of the algebra of 2 × 2 matrices, we argue that the degeneracies in the GNS representation can be interpreted as an emergent broken gauge symmetry, and play an important role in the analysis of emergent entropy due to non-Abelian anomalies. We work out the simplest situation with such non-Abelian symmetry, that of an ethylene molecule.

  9. Dynamical breakdown of Abelian gauge chiral symmetry by strong Yukawa interactions

    SciTech Connect

    Benes, Petr; Brauner, Tomas; Hosek, Jiri

    2007-03-01

    We consider a model with anomaly-free Abelian gauge axial-vector symmetry, which is intended to mimic the standard electroweak gauge chiral SU(2){sub L}xU(1){sub Y} theory. Within this model we demonstrate: (1) Strong Yukawa interactions between massless fermion fields and a massive scalar field carrying the axial charge generate dynamically the fermion and boson proper self-energies, which are ultraviolet-finite and chirally noninvariant. (2) Solutions of the underlying Schwinger-Dyson equations found numerically exhibit a huge amplification of the fermion mass ratios as a response to mild changes of the ratios of the Yukawa couplings. (3) The 'would-be' Nambu-Goldstone boson is a composite of both the fermion and scalar fields, and it gives rise to the mass of the axial-vector gauge boson. (4) Spontaneous breakdown of the gauge symmetry further manifests by mass splitting of the complex scalar and by new symmetry-breaking vertices, generated at one loop. In particular, we work out in detail the cubic vertex of the Abelian gauge boson.

  10. Simulation of non-Abelian gauge theories with optical lattices.

    PubMed

    Tagliacozzo, L; Celi, A; Orland, P; Mitchell, M W; Lewenstein, M

    2013-01-01

    Many phenomena occurring in strongly correlated quantum systems still await conclusive explanations. The absence of isolated free quarks in nature is an example. It is attributed to quark confinement, whose origin is not yet understood. The phase diagram for nuclear matter at general temperatures and densities, studied in heavy-ion collisions, is not settled. Finally, we have no definitive theory of high-temperature superconductivity. Though we have theories that could underlie such physics, we lack the tools to determine the experimental consequences of these theories. Quantum simulators may provide such tools. Here we show how to engineer quantum simulators of non-Abelian lattice gauge theories. The systems we consider have several applications: they can be used to mimic quark confinement or to study dimer and valence-bond states (which may be relevant for high-temperature superconductors). PMID:24162080

  11. Simulation of non-Abelian gauge theories with optical lattices

    NASA Astrophysics Data System (ADS)

    Tagliacozzo, L.; Celi, A.; Orland, P.; Mitchell, M. W.; Lewenstein, M.

    2013-10-01

    Many phenomena occurring in strongly correlated quantum systems still await conclusive explanations. The absence of isolated free quarks in nature is an example. It is attributed to quark confinement, whose origin is not yet understood. The phase diagram for nuclear matter at general temperatures and densities, studied in heavy-ion collisions, is not settled. Finally, we have no definitive theory of high-temperature superconductivity. Though we have theories that could underlie such physics, we lack the tools to determine the experimental consequences of these theories. Quantum simulators may provide such tools. Here we show how to engineer quantum simulators of non-Abelian lattice gauge theories. The systems we consider have several applications: they can be used to mimic quark confinement or to study dimer and valence-bond states (which may be relevant for high-temperature superconductors).

  12. Topological invariants measured for Abelian and non-Abelian monopole fields

    NASA Astrophysics Data System (ADS)

    Sugawa, Seiji; Salces Carcoba, Francisco; Perry, Abigail; Yue, Yuchen; Putra, Andika; Spielman, Ian

    2016-05-01

    Understanding the topological nature of physical systems is an important topic in contemporary physics, ranging from condensed matter to high energy. In this talk, I will present experiments measuring the 1st and 2nd Chern number in a four-level quantum system both with degenerate and non-degenerate energies. We engineered the system's Hamiltonian by coupling hyperfine ground states of rubidium-87 Bose-Einstein condensates with rf and microwave fields. We non-adiabatically drove the system and measured the linear response to obtain the local (non-Abelian) Berry curvatures. Then, the Chern numbers were evaluated on (hyper-)spherical manifolds in parameter space. We obtain Chern numbers close to unity for both the 1st and the 2nd Chern numbers. The non-zero Chern number can be interpreted as monopole residing inside the manifold. For our system, the monopoles correspond to a Dirac monopole for non-degenerate spectra and a Yang monopole for our degenerate case. We also show how the dynamical evolution under non-Abelian gauge field emerged in degenerate quantum system is different from non-degenerate case by showing path-dependent acquisition of non-Abelian geometric phase and Wilson loops.

  13. Harada–Tsutsui gauge recovery procedure: From Abelian gauge anomalies to the Stueckelberg mechanism

    SciTech Connect

    Lima, Gabriel Di Lemos Santiago

    2014-02-15

    Revisiting a path-integral procedure developed by Harada and Tsutsui for recovering gauge invariance from anomalous effective actions, it is shown that there are two ways to achieve gauge symmetry: one already presented by the authors, which is shown to preserve the anomaly in the sense of standard current conservation law, and another one which is anomaly-free, preserving current conservation. It is also shown that the application of the Harada–Tsutsui technique to other models which are not anomalous but do not exhibit gauge invariance allows the identification of the gauge invariant formulation of the Proca model, also done by the referred authors, with the Stueckelberg model, leading to the interpretation of the gauge invariant map as a generalization of the Stueckelberg mechanism. -- Highlights: • A gauge restoration technique from Abelian anomalous models is discussed. • It is shown that there is another way that leads to gauge symmetry restoration from such technique. • It is shown that the first gauge restoration preserves the anomaly, while the proposed second one is free from anomalies. • It is shown that the proposed gauge symmetry restoration can be identified with the Stueckelberg mechanism.

  14. Non-Abelian SU(2) Lattice Gauge Theories in Superconducting Circuits.

    PubMed

    Mezzacapo, A; Rico, E; Sabín, C; Egusquiza, I L; Lamata, L; Solano, E

    2015-12-11

    We propose a digital quantum simulator of non-Abelian pure-gauge models with a superconducting circuit setup. Within the framework of quantum link models, we build a minimal instance of a pure SU(2) gauge theory, using triangular plaquettes involving geometric frustration. This realization is the least demanding, in terms of quantum simulation resources, of a non-Abelian gauge dynamics. We present two superconducting architectures that can host the quantum simulation, estimating the requirements needed to run possible experiments. The proposal establishes a path to the experimental simulation of non-Abelian physics with solid-state quantum platforms. PMID:26705616

  15. Non-Abelian black holes in D=5 maximal gauged supergravity

    SciTech Connect

    Cvetic, M.; Lue, H.; Pope, C. N.

    2010-02-15

    We investigate static non-Abelian black hole solutions of anti-de Sitter (AdS) Einstein-Yang-Mills-dilaton gravity, which is obtained as a consistent truncation of five-dimensional maximal gauged supergravity. If the dilaton is (consistently) set to zero, the remaining equations of motion, with a spherically-symmetric ansatz, may be derived from a superpotential. The associated first-order equations admit an explicit solution supported by a non-Abelian SU(2) gauge potential, which has a logarithmically growing mass term. In an extremal limit the horizon geometry becomes AdS{sub 2}xS{sup 3}. If the dilaton is also excited, the equations of motion cannot easily be solved explicitly, but we obtain the asymptotic form of the more general non-Abelian black holes in this case. An alternative consistent truncation, in which the Yang-Mills fields are set to zero, also admits a description in terms of a superpotential. This allows us to construct explicit wormhole solutions (neutral spherically-symmetric domain walls). These solutions may be generalized to dimensions other than five.

  16. Three phases in the three-dimensional Abelian-Higgs model with nonlocal gauge interactions

    SciTech Connect

    Takashima, Shunsuke; Ichinose, Ikuo; Matsui, Tetsuo; Sakakibara, Kazuhiko

    2006-08-15

    We study the phase structure of the three-dimensional (3D) nonlocal compact U(1) lattice gauge theory coupled with a Higgs field by Monte Carlo simulations. The nonlocal interactions among gauge variables are along the temporal direction and mimic the effect of local coupling to massless particles. In contrast to the 3D local Abelian-Higgs model having only the confinement phase, the present model exhibits the confinement, Higgs, and Coulomb phases separated by three second-order transition lines emanating from a triple point. This result is relevant not only to the 3D massless QED coupled with a Higgs field but also to electron fractionalization phenomena in strongly correlated electron systems like the high-T{sub c} superconductors and the fractional quantum Hall effect.

  17. Classical gauged massless Rarita-Schwinger fields

    NASA Astrophysics Data System (ADS)

    Adler, Stephen L.

    2015-10-01

    We show that, in contrast to known results in the massive case, a minimally gauged massless Rarita-Schwinger field yields a consistent classical theory, with a generalized fermionic gauge invariance realized as a canonical transformation. To simplify the algebra, we study a two-component left chiral reduction of the massless theory. We formulate the classical theory in both Lagrangian and Hamiltonian form for a general non-Abelian gauging and analyze the constraints and the Rarita-Schwinger gauge invariance of the action. An explicit wave front calculation for Abelian gauge fields shows that wavelike modes do not propagate with superluminal velocities. An analysis of Rarita-Schwinger spinor scattering from gauge fields shows that adiabatic decoupling fails in the limit of zero gauge field amplitude, invalidating various "no-go" theorems based on "on-shell" methods that claim to show the impossibility of gauging Rarita-Schwinger fields. Quantization of Rarita-Schwinger fields, using many formulas from this paper, is taken up in the following paper.

  18. Light-induced gauge fields for ultracold atoms.

    PubMed

    Goldman, N; Juzeliūnas, G; Öhberg, P; Spielman, I B

    2014-12-01

    Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length scales, our Universe is ruled by gravity, whose gauge structure suggests the existence of a particle-the graviton-that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge fields of different nature: materials can be immersed in external electromagnetic fields, but they can also feature emerging gauge fields in their low-energy description. In this review, we focus on another kind of gauge field: those engineered in systems of ultracold neutral atoms. In these setups, atoms are suitably coupled to laser fields that generate effective gauge potentials in their description. Neutral atoms 'feeling' laser-induced gauge potentials can potentially mimic the behavior of an electron gas subjected to a magnetic field, but also, the interaction of elementary particles with non-Abelian gauge fields. Here, we review different realized and proposed techniques for creating gauge potentials-both Abelian and non-Abelian-in atomic systems and discuss their implication in the context of quantum simulation. While most of these setups concern the realization of background and classical gauge potentials, we conclude with more exotic proposals where these synthetic fields might be made dynamical, in view of simulating interacting gauge theories with cold atoms. PMID:25422950

  19. Constraint Structure and Quantization of a Non-Abelian Gauge Theory by Means of Dirac Brackets

    NASA Astrophysics Data System (ADS)

    Bracken, Paul

    An SO(3) non-Abelian gauge theory is introduced. The Hamiltonian density is determined and the constraint structure of the model is derived. The first-class constraints are obtained and gauge-fixing constraints are introduced into the model. Finally, using the constraints, the Dirac brackets can be determined and a canonical quantization is found using Dirac's procedure.

  20. Momentum subtraction scheme renormalization group functions in the maximal Abelian gauge

    NASA Astrophysics Data System (ADS)

    Bell, J. M.; Gracey, J. A.

    2013-10-01

    The one-loop 3-point vertex functions of QCD in the maximal Abelian gauge are evaluated at the fully symmetric point at one loop. As a consequence the theory is renormalized in the various momentum subtraction schemes, which are defined by the trivalent vertices, as well as in the MS¯ scheme. From these the two-loop renormalization group functions in the momentum schemes are derived using the one-loop conversion functions. In parallel we repeat the analysis for the Curci-Ferrari gauge, which corresponds to the maximal Abelian gauge in a specific limit. The relation between the Λ parameters in different schemes is also provided.

  1. Pauli-Villars Regularization of Non-Abelian Gauge Theories

    NASA Astrophysics Data System (ADS)

    Hiller, J. R.

    2016-04-01

    As an extension of earlier work on QED, we construct a BRST-invariant Lagrangian for SU(N) Yang-Mills theory with fundamental matter, regulated by the inclusion of massive Pauli-Villars (PV) gluons and PV quarks. The underlying gauge symmetry for massless PV gluons is generalized to accommodate the PV-index-changing currents that are required by the regularization. Auxiliary adjoint scalars are used, in a mechanism due to Stueckelberg, to attribute mass to the PV gluons and the PV quarks. The addition of Faddeev-Popov ghosts then establishes a residual BRST symmetry. Although there are drawbacks to the approach, in particular the computational load of a large number of PV fields and a nonlocal interaction of the ghost fields, this formulation could provide a foundation for renormalizable nonperturbative solutions of light-front QCD in an arbitrary covariant gauge.

  2. Pauli-Villars Regularization of Non-Abelian Gauge Theories

    NASA Astrophysics Data System (ADS)

    Hiller, J. R.

    2016-07-01

    As an extension of earlier work on QED, we construct a BRST-invariant Lagrangian for SU(N) Yang-Mills theory with fundamental matter, regulated by the inclusion of massive Pauli-Villars (PV) gluons and PV quarks. The underlying gauge symmetry for massless PV gluons is generalized to accommodate the PV-index-changing currents that are required by the regularization. Auxiliary adjoint scalars are used, in a mechanism due to Stueckelberg, to attribute mass to the PV gluons and the PV quarks. The addition of Faddeev-Popov ghosts then establishes a residual BRST symmetry. Although there are drawbacks to the approach, in particular the computational load of a large number of PV fields and a nonlocal interaction of the ghost fields, this formulation could provide a foundation for renormalizable nonperturbative solutions of light-front QCD in an arbitrary covariant gauge.

  3. Maximal Abelian and Curci-Ferrari gauges in momentum subtraction at three loops

    NASA Astrophysics Data System (ADS)

    Bell, J. M.; Gracey, J. A.

    2015-12-01

    The vertex structure of QCD fixed in the maximal Abelian gauge (MAG) and Curci-Ferrari gauge is analyzed at two loops at the fully symmetric point for the 3-point functions corresponding to the three momentum subtraction (MOM) renormalization schemes. Consequently, the three-loop renormalization group functions are determined for each of these three schemes in each gauge using properties of the renormalization group equation.

  4. Gauge fields in spintronics

    NASA Astrophysics Data System (ADS)

    Fujita, T.; Jalil, M. B. A.; Tan, S. G.; Murakami, S.

    2011-12-01

    We present an overview of gauge fields in spintronics, focusing on their origin and physical consequences. Important topics, such as the Berry gauge field associated with adiabatic quantum evolution as well as gauge fields arising from other non-adiabatic considerations, are discussed. We examine the appearance and effects of gauge fields across three spaces, namely real-space, momentum-space, and time, taking on a largely semiclassical approach. We seize the opportunity to study other "spin-like" systems, including graphene, topological insulators, magnonics, and photonics, which emphasize the ubiquity and importance of gauge fields. We aim to provide an intuitive and pedagogical insight into the role played by gauge fields in spin transport.

  5. Field theory aspects of non-Abelian T-duality and {N} =2 linear quivers

    NASA Astrophysics Data System (ADS)

    Lozano, Yolanda; Núñez, Carlos

    2016-05-01

    In this paper we propose a linear quiver with gauge groups of increasing rank as field theory dual to the AdS 5 background constructed by Sfetsos and Thompson through non-Abelian T-duality. The formalism to study 4d {N} = 2 SUSY CFTs developed by Gaiotto and Maldacena is essential for our proposal. We point out an interesting relation between (Hopf) Abelian and non-Abelian T-dual backgrounds that allows to see both backgrounds as different limits of a solution constructed by Maldacena and Núñez. This suggests different completions of the long quiver describing the CFT dual to the nonAbelian T-dual background that match different observables.

  6. Gauge-invariant implementation of the Abelian-Higgs model on optical lattices

    NASA Astrophysics Data System (ADS)

    Bazavov, A.; Meurice, Y.; Tsai, S.-W.; Unmuth-Yockey, J.; Zhang, Jin

    2015-10-01

    We present a gauge-invariant effective action for the Abelian-Higgs model (scalar electrodynamics) with a chemical potential μ on a (1 +1 )-dimensional lattice. This formulation provides an expansion in the hopping parameter κ which we test with Monte Carlo simulations for a broad range of the inverse gauge coupling βp l=1 /g2 and small values of the scalar self-coupling λ . In the opposite limit of infinitely large λ , the partition function can be written as a traced product of local tensors which allows us to write exact blocking formulas. Gauss's law is automatically satisfied and the introduction of μ has consequences only if we have an external electric field, g2=0 or an explicit gauge symmetry breaking. The time-continuum limit of the blocked transfer matrix can be obtained numerically and, for g2=0 and a spin-1 truncation, the small volume energy spectrum is identical to the low energy spectrum of a two-species Bose-Hubbard model in the limit of large on-site repulsion. We extend this procedure for finite βp l and derive a spin-1 approximation of the Hamiltonian. It involves new terms corresponding to transitions among the two species in the Bose-Hubbard model. We propose an optical lattice implementation involving a ladder structure.

  7. Quaternion gauge fields. Pseudocolor

    SciTech Connect

    Govorkov, A.B.

    1987-03-01

    A simplified Guenaydin-Guersey model, in which a Majorana field constructed using quaternions combines a lepton and a color quark, is considered. Formulation of the gauge principle directly in the quaternions leads to the appearance of two vector quaternion gauge fields, these corresponding to the decomposition SO(4) approx. SO(3) x SO(3) of the invariance group. The diagonal subgroup SO(3) of automorphisms of the quarternions appears as a pseudocolor symmetry of the quarks, and the gauge field corresponding to it as the field of three color gluons. The other gauge field corresponds to lepton-quark transitions and in the presence of spontaneous breaking of the SO(4) gauge symmetry by the scalar quaternion field acquires a (large) finite mass.

  8. Dyonic String-Like Solution in a Non-Abelian Gauge Theory with Two Potentials

    NASA Astrophysics Data System (ADS)

    Tripathi, Buddhi Vallabh; Nandan, Hemwati; Purohit, K. D.

    2016-04-01

    Axially symmetric dyon solutions of a non-Abelian gauge theory model with two potentials are sought. While seeking axially symmetric (flux tube like solutions) for the model, we stumbled upon an exact solution which represents an infinite string-like dyonic configuration with cylindrical symmetry.

  9. Strong-weak coupling duality in non-abelian gauge theories

    NASA Astrophysics Data System (ADS)

    Ferrari, Frank

    1997-05-01

    This is a general introduction to electric-magnetic duality in non-abelian gauge theories. In chapter I, I review the general ideas which led in the late 70s to the idea of electric/magnetic duality in quantum field theory. In chapters II and III, I focus mainly on N=2 supersymmetric theories. I present the lagrangians and explain in more or less detail the non-renormalization theorems, rigid special geometry, supersymmetric instanton calculus, charge fractionization, the semiclassical theory of monopoles, duality in Maxwell theory and the famous Seiberg-Witten solution. I discuss various physical applications, as electric charge confinement, chiral symmetry breaking or non-trivial superconformal theories in four dimensions. In Section II.3 new material is presented, related to the computation of the eta invariant of certain Dirac operators coupled minimally to non-trivial monopole field configurations. I explain how these invariants can be obtained exactly by a one-loop calculation in a suitable N=2 supersymmetric gauge theory. This is an unexpected application of the holomorphy properties of N=2 supersymmetry, and constitutes a tremendous simplification of the usual computation. An expanded version of these new results will be published soon.

  10. The non-Abelian gauge theory of matrix big bangs

    NASA Astrophysics Data System (ADS)

    O'Loughlin, Martin; Seri, Lorenzo

    2010-07-01

    We study at the classical and quantum mechanical level the time-dependent Yang-Mills theory that one obtains via the generalisation of discrete light-cone quantization to singular homogeneous plane waves. The non-Abelian nature of this theory is known to be important for physics near the singularity, at least as far as the number of degrees of freedom is concerned. We will show that the quartic interaction is always subleading as one approaches the singularity and that close enough to t = 0 the evolution is driven by the diverging tachyonic mass term. The evolution towards asymptotically flat space-time also reveals some surprising features.

  11. Topological superfluids on a square optical lattice with non-Abelian gauge fields: Effects of next-nearest-neighbor hopping in the BCS-BEC evolution

    NASA Astrophysics Data System (ADS)

    Iskin, M.

    2016-01-01

    We consider a two-component Fermi gas with attractive interactions on a square optical lattice, and study the interplay of Zeeman field, spin-orbit coupling, and next-nearest-neighbor hopping on the ground-state phase diagrams in the entire BCS-BEC evolution. In particular, we first classify and distinguish all possible superfluid phases by the momentum-space topology of their zero-energy quasiparticle-quasihole excitations, and then numerically establish a plethora of quantum phase transitions in between. These transitions are further signaled and evidenced by the changes in the corresponding topological invariant of the system, i.e., its Chern number. Lastly, we find that the superfluid phase exhibits a reentrant structure, separated by a fingering normal phase, the origin of which is traced back to the changes in the single-particle density of states.

  12. Non-Abelian Gauge Groups for Real and Complex Amended Maxwell's Equations

    NASA Astrophysics Data System (ADS)

    Rauscher, E. A.

    2002-04-01

    We have developed an eight dimensional complex Minkowski space M4, compiled of four real dimensions and four imaginary dimensions, which is constant with Lorentz invariance and analytic continuation in the complex plane(1). Complexification, of Maxwell's equations requires a non-Abelian gauge group, which amends the usual theory which utilizes the usual unimodular Weyl U1 group. We have examined the modification of gauge conditions using higher symmetry groups such as SU2, SUn and other groups such as the SL(2,c) double cover group of the rotational group SO(3,1). The mappability of the twistor algebra and the spinor calculus is analyzed in the context of the electromagnetic theory. Thus we are led to new and interesting physics involving extended metrical space constraints, the usual transverse and also longitudinal, non Hertzian electric and magnetic field solutions to Maxwell's equations, possibly leading to new communications systems and antennae theory, non-zero solutions to Ñ·B, and a possible finite but small rest mass of the photon. Comparison of our theoretical approach is made to the work of T.W. Barrett and H.F. Hermuth?s work on amended Maxwell's theories. (1) C. Ramon and E. A. Rauscher, Found. of Phys. 10, 661 (1980)

  13. Holonomy of a principal composite bundle connection, non-Abelian geometric phases, and gauge theory of gravity

    SciTech Connect

    Viennot, David

    2010-10-15

    We show that the holonomy of a connection defined on a principal composite bundle is related by a non-Abelian Stokes theorem to the composition of the holonomies associated with the connections of the component bundles of the composite. We apply this formalism to describe the non-Abelian geometric phase (when the geometric phase generator does not commute with the dynamical phase generator). We find then an assumption to obtain a new kind of separation between the dynamical and the geometric phases. We also apply this formalism to the gauge theory of gravity in the presence of a Dirac spinor field in order to decompose the holonomy of the Lorentz connection into holonomies of the linear connection and of the Cartan connection.

  14. Non-abelian gauge extensions for B-decay anomalies

    NASA Astrophysics Data System (ADS)

    Boucenna, Sofiane M.; Celis, Alejandro; Fuentes-Martín, Javier; Vicente, Avelino; Virto, Javier

    2016-09-01

    We study the generic features of minimal gauge extensions of the Standard Model in view of recent hints of lepton-flavor non-universality in semi-leptonic b → sℓ+ℓ- and b → cℓν decays. We classify the possible models according to the symmetry-breaking pattern and the source of flavor non-universality. We find that in viable models the SU (2) L factor is embedded non-trivially in the extended gauge group, and that gauge couplings should be universal, hinting to the presence of new degrees of freedom sourcing non-universality. Finally, we provide an explicit model that can explain the B-decay anomalies in a coherent way and confront it with the relevant phenomenological constraints.

  15. Field Equations for Abelian Vector Fields in the Bianchi Type I Metric in the Framework of Teleparallel Gravity

    SciTech Connect

    Triyanta; Zen, F. P.; Supardi; Wardaya, A. Y.

    2010-12-23

    Gauge theory, under the framework of quantum field theory, has successfully described three fundamental interactions: electromagnetic, weak, and strong interactions. Problems of describing the gravitational interaction in a similar manner has not been satisfied yet until now. Teleparallel gravity (TG) is one proposal describing gravitational field as a gauge field. This theory is quite new and it is equivalent to Einstein's general relativity. But as gravitational field in TG is expressed by torsion, rather than curvature, it gives an alternative framework for solving problems on gravity. This paper will present solution of the dynamical equation of abelian vector fields under the framework of TG in the Bianchi type I spacetime.

  16. Properties of a consistent Lorentz-violating Abelian gauge theory

    SciTech Connect

    Alexandre, J.; Vergou, A.

    2011-06-15

    A Lorentz-violating modification of massless QED is proposed, with higher-order space derivatives for the photon field. The fermion dynamical mass generation is studied with the Schwinger-Dyson approach. Perturbative properties of the model are calculated at one-loop and discussed at higher-order loops, showing the consistency of the model. We explain that there is no contradiction with the definition of the speed of light c, although fermions see an effective light cone, with a maximum speed smaller than c.

  17. Abelian gauge symmetries and proton decay in global F-theory GUTs

    SciTech Connect

    Grimm, Thomas W.; Weigand, Timo

    2010-10-15

    The existence of Abelian gauge symmetries in four-dimensional F-theory compactifications depends on the global geometry of the internal Calabi-Yau four-fold and has important phenomenological consequences. We study conceptual and phenomenological aspects of such U(1) symmetries along the Coulomb and the Higgs branch. As one application we examine Abelian gauge factors arising after a certain global restriction of the Tate model that goes beyond a local spectral cover analysis. In SU(5) grand unified theory (GUT) models this mechanism enforces a global U(1){sub X} symmetry that prevents dimension-4 proton decay and allows for an identification of candidate right-handed neutrinos. We invoke a detailed account of the singularities of Calabi-Yau four-folds and their mirror duals starting from an underlying E{sub 8} and E{sub 7}xU(1) enhanced Tate model. The global resolutions and deformations of these singularities can be used as the appropriate framework to analyze F-theory GUT models.

  18. Gauge fields and inflation

    NASA Astrophysics Data System (ADS)

    Maleknejad, A.; Sheikh-Jabbari, M. M.; Soda, J.

    2013-07-01

    The isotropy and homogeneity of the cosmic microwave background (CMB) favors “scalar driven” early Universe inflationary models. However, gauge fields and other non-scalar fields are far more common at all energy scales, in particular at high energies seemingly relevant to inflation models. Hence, in this review we consider the role and consequences, theoretical and observational, that gauge fields can have during the inflationary era. Gauge fields may be turned on in the background during inflation, or may become relevant at the level of cosmic perturbations. There have been two main classes of models with gauge fields in the background, models which show violation of the cosmic no-hair theorem and those which lead to isotropic FLRW cosmology, respecting the cosmic no-hair theorem. Models in which gauge fields are only turned on at the cosmic perturbation level, may source primordial magnetic fields. We also review specific observational features of these models on the CMB and/or the primordial cosmic magnetic fields. Our discussions will be mainly focused on the inflation period, with only a brief discussion on the post inflationary (p)reheating era. Large field models: The initial value of the inflaton field is large, generically super-Planckian, and it rolls slowly down toward the potential minimum at smaller φ values. For instance, chaotic inflation is one of the representative models of this class. The typical potential of large-field models has a monomial form as V(φ)=V0φn. A simple analysis using the dynamical equations reveals that for number of e-folds Ne larger than 60, we require super-Planckian initial field values,5φ0>3M. For these models typically ɛ˜η˜Ne-1. Small field models: Inflaton field is initially small and slowly evolves toward the potential minimum at larger φ values. The small field models are characterized by the following potential V(φ)=V0(1-(), which corresponds to a Taylor expansion about the origin, but more realistic

  19. Gauge fields and inflation

    NASA Astrophysics Data System (ADS)

    Maleknejad, A.; Sheikh-Jabbari, M. M.; Soda, J.

    2013-07-01

    The isotropy and homogeneity of the cosmic microwave background (CMB) favors “scalar driven” early Universe inflationary models. However, gauge fields and other non-scalar fields are far more common at all energy scales, in particular at high energies seemingly relevant to inflation models. Hence, in this review we consider the role and consequences, theoretical and observational, that gauge fields can have during the inflationary era. Gauge fields may be turned on in the background during inflation, or may become relevant at the level of cosmic perturbations. There have been two main classes of models with gauge fields in the background, models which show violation of the cosmic no-hair theorem and those which lead to isotropic FLRW cosmology, respecting the cosmic no-hair theorem. Models in which gauge fields are only turned on at the cosmic perturbation level, may source primordial magnetic fields. We also review specific observational features of these models on the CMB and/or the primordial cosmic magnetic fields. Our discussions will be mainly focused on the inflation period, with only a brief discussion on the post inflationary (p)reheating era. Large field models: The initial value of the inflaton field is large, generically super-Planckian, and it rolls slowly down toward the potential minimum at smaller φ values. For instance, chaotic inflation is one of the representative models of this class. The typical potential of large-field models has a monomial form as V(φ)=V0φn. A simple analysis using the dynamical equations reveals that for number of e-folds Ne larger than 60, we require super-Planckian initial field values,5φ0>3M. For these models typically ɛ˜η˜Ne-1. Small field models: Inflaton field is initially small and slowly evolves toward the potential minimum at larger φ values. The small field models are characterized by the following potential V(φ)=V0(1-(), which corresponds to a Taylor expansion about the origin, but more realistic

  20. The equations of motion for a classical color particle in background non-Abelian bosonic and fermionic fields

    NASA Astrophysics Data System (ADS)

    Markov, Yuri A.; Markova, Margaret A.; Shishmarev, Alexey A.

    2010-10-01

    Based on the most general principles of reality, gauge and reparametrization invariance, a problem of constructing the action describing dynamics of a classical color-charged particle interacting with background non-Abelian gauge and fermion fields is considered. The cases of the linear and quadratic dependence of a Lagrangian on background Grassmann fermion field are discussed. It is shown that in both cases in general there exists an infinite number of interaction terms, which should be included in the Lagrangian in question. Employing a simple iteration scheme, examples of the construction of the first few gauge-covariant currents and sources induced by a moving particle with non-Abelian charge are given. It is found that these quantities, by a suitable choice of parameters, exactly reproduce additional currents and sources previously obtained in Markov and Markova (2007 Nucl. Phys. A 784 443) on the basis of heuristic considerations.

  1. Quantization of gauge fields, graph polynomials and graph homology

    SciTech Connect

    Kreimer, Dirk; Sars, Matthias; Suijlekom, Walter D. van

    2013-09-15

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology. -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.

  2. Realizing non-Abelian gauge potentials in optical square lattices: an application to atomic Chern insulators

    NASA Astrophysics Data System (ADS)

    Goldman, N.; Gerbier, F.; Lewenstein, M.

    2013-07-01

    We describe a scheme to engineer non-Abelian gauge potentials on a square optical lattice using laser-induced transitions. We emphasize the case of two-electron atoms, where the electronic ground state g is laser-coupled to a metastable state e within a state-dependent optical lattice. In this scheme, the alternating pattern of lattice sites hosting g and e states depicts a chequerboard structure, allowing for laser-assisted tunnelling along both spatial directions. In this configuration, the nuclear spin of the atoms can be viewed as a ‘flavour’ quantum number undergoing non-Abelian tunnelling along nearest-neighbour links. We show that this technique can be useful to simulate the equivalent of the Haldane quantum Hall model using cold atoms trapped in square optical lattices, offering an interesting route to realize Chern insulators. The emblematic Haldane model is particularly suited to investigate the physics of topological insulators, but requires, in its original form, complex hopping terms beyond nearest-neighbouring sites. In general, this drawback inhibits a direct realization with cold atoms, using standard laser-induced tunnelling techniques. We demonstrate that a simple mapping allows us to express this model in terms of matrix hopping operators that are defined on a standard square lattice. This mapping is investigated for two models that lead to anomalous quantum Hall phases. We discuss the practical implementation of such models, exploiting laser-induced tunnelling methods applied to the chequerboard optical lattice.

  3. Absolutely anticommuting (anti-)BRST symmetry transformations for topologically massive Abelian gauge theory

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Kumar, R.; Malik, R. P.

    2010-11-01

    We demonstrate the existence of the nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for the four (3+1)-dimensional (4D) topologically massive Abelian U(1) gauge theory that is described by the coupled Lagrangian densities (which incorporate the celebrated ( B∧ F) term). The absolute anticommutativity of the (anti-) BRST symmetry transformations is ensured by the existence of a Curci-Ferrari type restriction that emerges from the superfield formalism as well as from the equations of motion which are derived from the above coupled Lagrangian densities. We show the invariance of the action from the point of view of the symmetry considerations as well as superfield formulation. We discuss, furthermore, the topological term within the framework of superfield formalism and provide the geometrical meaning of its invariance under the (anti-)BRST symmetry transformations.

  4. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    NASA Astrophysics Data System (ADS)

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan

    2014-08-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a ``hairline'' solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  5. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    PubMed Central

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan

    2014-01-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a “hairline” solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions. PMID:25103877

  6. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms.

    PubMed

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A W; Kwek, Leong Chuan

    2014-01-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions. PMID:25103877

  7. Origin of Abelian gauge symmetries in heterotic/F-theory duality

    NASA Astrophysics Data System (ADS)

    Cvetič, Mirjam; Grassi, Antonella; Klevers, Denis; Poretschkin, Maximilian; Song, Peng

    2016-04-01

    We study aspects of heterotic/F-theory duality for compactifications with Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with a rank one Mordell-Weil group of rational sections. By rigorously performing the stable degeneration limit in a class of toric models, we derive both the Calabi-Yau geometry as well as the spectral cover describing the vector bundle in the heterotic dual theory. We carefully investigate the spectral cover employing the group law on the elliptic curve in the heterotic theory. We find in explicit examples that there are three different classes of heterotic duals that have U(1) factors in their low energy effective theories: split spectral covers describing bundles with S(U( m) × U(1)) structure group, spectral covers containing torsional sections that seem to give rise to bundles with SU( m) × Z_k structure group and bundles with purely non-Abelian structure groups having a centralizer in E8 containing a U(1) factor. In the former two cases, it is required that the elliptic fibration on the heterotic side has a non-trivial Mordell-Weil group. While the number of geometrically massless U(1)'s is determined entirely by geometry on the F-theory side, on the heterotic side the correct number of U(1)'s is found by taking into account a Stückelberg mechanism in the lower-dimensional effective theory. In geometry, this corresponds to the condition that sections in the two half K3 surfaces that arise in the stable degeneration limit of F-theory can be glued together globally.

  8. Dynamical non-Abelian two-form: BRST quantization

    SciTech Connect

    Lahiri, A.

    1997-04-01

    When an antisymmetric tensor potential is coupled to the field strength of a gauge field via a BANDF coupling and a kinetic term for B is included, the gauge field develops an effective mass. The theory can be made invariant under a non-Abelian vector gauge symmetry by introducing an auxiliary vector field. The covariant quantization of this theory requires ghosts for ghosts. The resultant theory including gauge fixing and ghost terms is BRST invariant by construction, and therefore unitary. The construction of the BRST-invariant action is given for both Abelian and non-Abelian models of mass generation. {copyright} {ital 1997} {ital The American Physical Society}

  9. Gluon propagators in maximally Abelian gauge in SU(3) lattice QCD

    NASA Astrophysics Data System (ADS)

    Gongyo, Shinya; Suganuma, Hideo

    2013-04-01

    In SU(3) lattice QCD, we study diagonal and off-diagonal gluon propagators in the maximally Abelian gauge with U(1)3×U(1)8 Landau gauge fixing. These propagators are studied both in the coordinate space and in the momentum space. The Monte Carlo simulation is performed on 164 at β=6.0 and 324 at β=5.8 and 6.0 at the quenched level. In the four-dimensional Euclidean space-time, the effective mass of diagonal gluons is estimated as Mdiag≃0.3GeV and that of off-diagonal gluons as Moff≃1GeV in the region of r=0.4-1.0fm. In the momentum space, the effective mass of diagonal gluons is estimated as Mdiag≃0.3GeV and that of off-diagonal gluons as Moff≃1GeV in the region of p<1.1GeV. The off-diagonal gluon propagator is relatively suppressed in the infrared region and seems to be finite at zero momentum, while the diagonal gluon propagator is enhanced. Furthermore, we also study the functional form of these propagators in momentum space. These propagators are well fitted by Z/(p2+m2)ν with fit parameters, Z, m, and ν in the region of p<3.0GeV. From the fit results and lattice calculations, all of the spectral functions of diagonal and off-diagonal gluons would have negative regions.

  10. Quiver gauge theory of non-Abelian vortices and noncommutative instantons in higher dimensions

    SciTech Connect

    Popov, Alexander D.; Szabo, Richard J.

    2006-01-15

    We construct explicit Bogomolnyi, Prasad, Sommerfeld (BPS) and non-BPS solutions of the Yang-Mills equations on the noncommutative space R{sub {theta}}{sup 2n}xS{sup 2} which have manifest spherical symmetry. Using SU(2)-equivariant dimensional reduction techniques, we show that the solutions imply an equivalence between instantons on R{sub {theta}}{sup 2n}xS{sup 2} and non-Abelian vortices on R{sub {theta}}{sup 2n}, which can be interpreted as a blowing-up of a chain of D0-branes on R{sub {theta}}{sup 2n} into a chain of spherical D2-branes on R{sub {theta}}{sup 2n}xS{sup 2}. The low-energy dynamics of these configurations is described by a quiver gauge theory which can be formulated in terms of new geometrical objects generalizing superconnections. This formalism enables the explicit assignment of D0-brane charges in equivariant K-theory to the instanton solutions.

  11. Topological quantum field theory of three-dimensional bosonic Abelian-symmetry-protected topological phases

    NASA Astrophysics Data System (ADS)

    Ye, Peng; Gu, Zheng-Cheng

    2016-05-01

    Symmetry-protected topological phases (SPT) are short-range entangled gapped states protected by global symmetry. Nontrivial SPT phases cannot be adiabatically connected to the trivial disordered state (or atomic insulator) as long as certain global symmetry G is unbroken. At low energies, most of the two-dimensional SPTs with Abelian symmetry can be described by topological quantum field theory (TQFT) of the multicomponent Chern-Simons type. However, in contrast to the fractional quantum Hall effect where TQFT can give rise to interesting bulk anyons, TQFT for SPTs only supports trivial bulk excitations. The essential question in TQFT descriptions for SPTs is to understand how the global symmetry is implemented in the partition function. In this paper, we systematically study TQFT of three-dimensional SPTs with unitary Abelian symmetry (e.g., ZN1×ZN2×... ). In addition to the usual multicomponent B F topological term at level-1, we find that there are new topological terms with quantized coefficients (e.g., a1∧a2∧d a2 and a1∧a2∧a3∧a4 ) in TQFT actions, where a1,a2,... are 1-form U(1) gauge fields. These additional topological terms cannot be adiabatically turned off as long as G is unbroken. By investigating symmetry transformations for the TQFT partition function, we end up with the classification of SPTs that is consistent with the well-known group cohomology approach. We also discuss how to gauge the global symmetry and possible TQFT descriptions of Dijkgraaf-Witten gauge theory.

  12. Topological phase transitions with non-Abelian gauge potentials on square lattices

    NASA Astrophysics Data System (ADS)

    Chen, Yao-Hua; Li, Jian; Ting, C. S.

    2013-11-01

    We investigate the topological phase transition on interacting square lattices via the non-Abelian potential by employing the real-space cellular dynamical mean-field theory combining with the continuous-time Monte Carlo method. For a weak on-site Hubbard interaction, a topological band insulating state with a pair of gapless edge states is induced by a next-nearest-neighbor hopping. A phase transition from the metallic phase to the Mott insulating phase is observed when the interaction is increased. These two phases can be distinguished by detecting whether a bulk gap in the K-dependent spectral function exists. The whole phase diagrams as functions of the interaction, next-nearest-neighbor hopping energy, and temperature are presented. The experimental setup to observe these new interesting phase transitions is also discussed.

  13. Probing the QCD vacuum with an Abelian chromomagnetic field: A study within an effective model

    SciTech Connect

    Campanelli, L.; Ruggieri, M.

    2009-08-01

    We study the response of the QCD vacuum to an external Abelian chromomagnetic field in the framework of a nonlocal Nambu-Jona-Lasinio model with the Polyakov loop. We use the lattice results on the deconfinement temperature of the pure gauge theory to compute the same quantity in the presence of dynamical quarks. We find a linear relationship between the deconfinement temperature with quarks and the squared root of the applied field strength, gH, in qualitative (and to some extent also quantitative) agreement with existing lattice calculations. On the other hand, we find a discrepancy on the approximate chiral symmetry restoration: while lattice results suggest the deconfinement and the chiral restoration remain linked even at a nonzero value of gH, our results are consistent with a scenario in which the two transitions are separated as gH is increased.

  14. S-duality in SU(3) Yang-Mills theory with non-abelian unbroken gauge group

    NASA Astrophysics Data System (ADS)

    Schroers, B. J.; Bais, F. A.

    1998-12-01

    It is observed that the magnetic charges of classical monopole solutions in Yang-Mills-Higgs theory with non-abelian unbroken gauge group H are in one-to-one correspondence with coherent states of a dual or magnetic group H˜. In the spirit of the Goddard-Nuyts-Olive conjecture this observation is interpreted as evidence for a hidden magnetic symmetry of Yang-Mills theory. SU(3) Yang-Mills-Higgs theory with unbroken gauge group U(2) is studied in detail. The action of the magnetic group on semi-classical states is given explicitly. Investigations of dyonic excitations show that electric and magnetic symmetry are never manifest at the same time: Non-abelian magnetic charge obstructs the realisation of electric symmetry and vice-versa. On the basis of this fact the charge sectors in the theory are classified and their fusion rules are discussed. Non-abelian electric-magnetic duality is formulated as a map between charge sectors. Coherent states obey particularly simple fusion rules, and in the set of coherent states S-duality can be formulated as an SL(2, Z) mapping between sectors which leaves the fusion rules invariant.

  15. Interferometry with synthetic gauge fields

    SciTech Connect

    Anderson, Brandon M.; Taylor, Jacob M.; Galitski, Victor M.

    2011-03-15

    We propose a compact atom interferometry scheme for measuring weak, time-dependent accelerations. Our proposal uses an ensemble of dilute trapped bosons with two internal states that couple to a synthetic gauge field with opposite charges. The trapped gauge field couples spin to momentum to allow time-dependent accelerations to be continuously imparted on the internal states. We generalize this system to reduce noise and estimate the sensitivity of such a system to be S{approx}10{sup -7}(m/s{sup 2}/{radical}(Hz)).

  16. Dynamics of gauge field inflation

    SciTech Connect

    Alexander, Stephon; Jyoti, Dhrubo; Kosowsky, Arthur; Marcianò, Antonino

    2015-05-05

    We analyze the existence and stability of dynamical attractor solutions for cosmological inflation driven by the coupling between fermions and a gauge field. Assuming a spatially homogeneous and isotropic gauge field and fermion current, the interacting fermion equation of motion reduces to that of a free fermion up to a phase shift. Consistency of the model is ensured via the Stückelberg mechanism. We prove the existence of exactly one stable solution, and demonstrate the stability numerically. Inflation arises without fine tuning, and does not require postulating any effective potential or non-standard coupling.

  17. Canonical non-Abelian dual transformations in supersymmetric field theories

    SciTech Connect

    Curtright, T.; Zachos, C.

    1995-07-15

    A generating functional {ital F} is found for a canonical non-Abelian dual transformation which maps the supersymmetric chiral O(4) {sigma} model to an equivalent supersymmetric extension of the dual {sigma} model. This {ital F} produces a mapping between the classical phase spaces of the two theories in which the bosonic (coordinate) fields transform nonlocally, the fermions undergo a local tangent space chiral rotation, and all currents (fermionic and bosonic) mix locally. Purely bosonic curvature-free currents of the chiral model become a {ital symphysis} of purely bosonic and fermion bilinear currents of the dual theory. The corresponding transformation functional {ital T} which relates wave functions in the two quantum theories is argued to be {ital exactly} given by {ital T}=exp({ital iF}).

  18. On formulae for the class number of real Abelian fields

    NASA Astrophysics Data System (ADS)

    Kuz'min, L. V.

    1996-08-01

    For a given real Abelian field k and a given prime natural number \\ell we obtain an index formula for the order of the group \\operatorname{Cl}(k)_{\\ell,\\varphi}, where \\operatorname{Cl}(k)_{\\ell} is the \\ell-component of the class group of k \\operatorname{Cl}(k)_{\\ell,\\varphi} denotes the \\varphi-component of \\operatorname{Cl}(k)_\\ell corresponding to a {\\mathbf Q}_\\ell-irreducible character \\varphi of the Galois group G(k/{\\mathbf Q}) that is trivial on the Sylow \\ell-subgroup of G(k/{\\mathbf Q}). This result generalizes a conjecture of Gras. The proofs rely on the "main conjecture" of Iwasawa theory.

  19. Gauge fields, nonlinear realizations, supersymmetry

    NASA Astrophysics Data System (ADS)

    Ivanov, E. A.

    2016-07-01

    This is a brief survey of the all-years research activity in the Sector "Supersymmetry" (the former Markov Group) at the Bogoliubov Laboratory of Theoretical Physics. The focus is on the issues related to gauge fields, spontaneously broken symmetries in the nonlinear realizations approach, and diverse aspects of supersymmetry.

  20. Realizations of magnetic-monopole gauge fields - Diatoms and spin precession

    NASA Technical Reports Server (NTRS)

    Moody, J.; Shapere, A.; Wilczek, F.

    1986-01-01

    It is found that the effective Hamiltonian for nuclear rotation in a diatom is equivalent to that of a charged particle in a background magnetic-monopole field. In certain cases, half-integer orbital angular momentum or non-Abelian fields occur. Furthermore, the effects of magnetic-monopole-like gauge fields can be experimentally observed in spin-resonance experiments with variable magnetic fields.

  1. Robustness of fractional quantum Hall states with dipolar atoms in artificial gauge fields

    SciTech Connect

    Grass, T.; Baranov, M. A.; Lewenstein, M.

    2011-10-15

    The robustness of fractional quantum Hall states is measured as the energy gap separating the Laughlin ground state from excitations. Using thermodynamic approximations for the correlation functions of the Laughlin state and the quasihole state, we evaluate the gap in a two-dimensional system of dipolar atoms exposed to an artificial gauge field. For Abelian fields, our results agree well with the results of exact diagonalization for small systems but indicate that the large value of the gap predicted [Phys. Rev. Lett. 94, 070404 (2005)] was overestimated. However, we are able to show that the small gap found in the Abelian scenario dramatically increases if we turn to non-Abelian fields squeezing the Landau levels.

  2. Quantum Chromodynamics -- The Perfect Yang-Mills Gauge Field Theory

    NASA Astrophysics Data System (ADS)

    Gross, David

    David Gross: My talk today is about the most beautiful of all Yang-Mills Theories (non-Abelian gauge theories), the theory of the strong nuclear interactions, Quantum Chromodynamics, QCD. We are celebrating 60 years of the publication of a remarkable paper which introduced the concept of non-Abelian local gauge symmetries, now called the Yang-Mills theory, to physics. In the introduction to this paper it is noted that the usual principle of isotopic spin symmetry is not consistent with the concept of localized fields. This sentence has drawn attention over the years because the usual principle of isotopic spin symmetry is consistent, it is just not satisfactory. The authors, Yang and Mills, introduced a more satisfactory notion of local symmetry which did not require one to rotate (in isotopic spin space) the whole universe at once to achieve the symmetry transformation. Global symmetries are thus are similar to `action at a distance', whereas Yang-Mills theory is manifestly local...

  3. Holographic representation of higher spin gauge fields

    NASA Astrophysics Data System (ADS)

    Sarkar, Debajyoti; Xiao, Xiao

    2015-04-01

    Extending the results of [1,2] on the holographic representation of local gauge field operators in anti-de Sitter space, here we construct the bulk operators for higher spin gauge fields at the leading order in 1/N expansion. Working in the holographic gauge for higher spin gauge fields, we show that gauge field operators with integer spin s >1 can be represented by an integration over a ball region, which is the interior region of the spacelike bulk light cone on the boundary. The construction is shown to be anti-de Sitter covariant up to gauge transformations, and the two-point function between higher spin gauge fields and the boundary higher spin current exhibits singularities on both bulk and boundary light cones. We also comment on a possible extension to the level of three-point functions and carry out a causal construction for higher spin fields in de Sitter spacetime.

  4. Simplicial pseudorandom lattice study of a three-dimensional Abelian gauge model, the regular lattice as an extremum of the action

    SciTech Connect

    Pertermann, D.; Ranft, J.

    1986-09-15

    We introduce a simplicial pseudorandom version of lattice gauge theory. In this formulation it is possible to interpolate continuously between a regular simplicial lattice and a pseudorandom lattice. Using this method we study a simple three-dimensional Abelian lattice gauge theory. Calculating average plaquette expectation values, we find an extremum of the action for our regular simplicial lattice. Such a behavior was found in analytical studies in one and two dimensions.

  5. Collective states of non-Abelian quasiparticles in a magnetic field

    NASA Astrophysics Data System (ADS)

    Levin, Michael; Halperin, Bertrand I.

    2009-05-01

    Motivated by the physics of the Moore-Read ν=1/2 state away from half filling, we investigate collective states of non-Abelian e/4 quasiparticles in a magnetic field. We consider two types of collective states: incompressible liquids and Wigner crystals. In the incompressible liquid case, we construct a natural series of states which can be thought of as a non-Abelian generalization of the Laughlin states. These states are associated with a series of hierarchical states derived from the Moore-Read state—the simplest of which occur at filling fraction 8/17 and 7/13. Interestingly, we find that the hierarchical states are Abelian even though their parent state is non-Abelian. In the Wigner crystal case, we construct two candidate states. We find that they, too, are Abelian—in agreement with previous analysis.

  6. Field tests prove radar tank gauge accuracy

    SciTech Connect

    Sivaraman, S. )

    1990-04-23

    Radar tank gauging technology was recently field-tested on an asphalt tank at a marketing terminal in Bayonne, N.J. Results of the 3-month test demonstrate that the technology is comparable to, and most likely better than, manual gauging methods. Radar tank gauging technology provides a noncontact, noninvasive method of tank gauging. It lends itself for application to vertical, cylindrical, atmospheric storage tanks in asphalt, acid, wax, and heavy, viscous product service or other corrosive and high-temperature service.

  7. Topics in multi-component ultracold gases and gauge fields

    NASA Astrophysics Data System (ADS)

    Ozawa, Tomoki

    In this thesis, we present theoretical studies on three topics related to multi-component ultracold gases and gauge fields. The first topic that we discuss is artificial gauge fields in ultracold gases. Recently, methods to create artificial gauge fields coupled to neutral ultracold systems using a light-induced Berry's connection have been rapidly developing. These methods are not only capable of creating Abelian gauge fields, such as a conventional magnetic field, but also non-Abelian gauge fields, which opens a way to explore and simulate a wide variety of physical models. In this thesis, we discuss various properties of bosons with Rashba-Dresselhaus spin-orbit coupling, which is a special type of non-Abelian gauge field. We investigate the stability of Bose-Einstein condensates with Rashba-Dresselhaus spin-orbit coupling, and show that the condensates are stable against quantum and thermal fluctuations. We also consider the renormalization of the bare interaction by calculating the t-matrix and its consequence on the ground state phase diagrams. The second topic discussed here is three-component ultracold fermionic systems. It is known that ferromagnetism and superfluidity can coexist at low enough temperature in three-component ultracold fermions. In this thesis, we elucidate how fermionic pairing and population imbalance enhance each other. We also describe a crossover from Bardeen-Cooper-Schrieffer state of fermionic pairing state to the limit of Bose-Einstein condensate of three weakly interacting species of molecules, as the interaction increases. Furthermore, we find an interesting similarity in the free energies between three-component ultracold fermions and quantum chromodynamics. The last topic discussed here is Niels Bohr's double-slit interference gedankenexperiment with charged particles, which argues that the consistency of elementary quantum mechanics requires that the electromagnetic field must be quantized. In the experiment a particle's path

  8. Cartan gravity, matter fields, and the gauge principle

    SciTech Connect

    Westman, Hans F.; Zlosnik, Tom G.

    2013-07-15

    Gravity is commonly thought of as one of the four force fields in nature. However, in standard formulations its mathematical structure is rather different from the Yang–Mills fields of particle physics that govern the electromagnetic, weak, and strong interactions. This paper explores this dissonance with particular focus on how gravity couples to matter from the perspective of the Cartan-geometric formulation of gravity. There the gravitational field is represented by a pair of variables: (1) a ‘contact vector’ V{sup A} which is geometrically visualized as the contact point between the spacetime manifold and a model spacetime being ‘rolled’ on top of it, and (2) a gauge connection A{sub μ}{sup AB}, here taken to be valued in the Lie algebra of SO(2,3) or SO(1,4), which mathematically determines how much the model spacetime is rotated when rolled. By insisting on two principles, the gauge principle and polynomial simplicity, we shall show how one can reformulate matter field actions in a way that is harmonious with Cartan’s geometric construction. This yields a formulation of all matter fields in terms of first order partial differential equations. We show in detail how the standard second order formulation can be recovered. In particular, the Hodge dual, which characterizes the structure of bosonic field equations, pops up automatically. Furthermore, the energy–momentum and spin-density three-forms are naturally combined into a single object here denoted the spin-energy–momentum three-form. Finally, we highlight a peculiarity in the mathematical structure of our first-order formulation of Yang–Mills fields. This suggests a way to unify a U(1) gauge field with gravity into a SO(1,5)-valued gauge field using a natural generalization of Cartan geometry in which the larger symmetry group is spontaneously broken down to SO(1,3)×U(1). The coupling of this unified theory to matter fields and possible extensions to non-Abelian gauge fields are left as

  9. Abelian gauge extension of the standard model: Dark matter and radiative neutrino mass

    NASA Astrophysics Data System (ADS)

    Borah, Debasish; Adhikari, Rathin

    2012-05-01

    We study a simple extension of the standard model where the gauge group is extended by an additional U(1)X gauge symmetry. Neutrino mass arises both at tree level as well as radiatively by the anomaly-free addition of one singlet fermion NR and two triplet fermions Σ1R, Σ2R with suitable Higgs scalars. The spontaneous gauge symmetry breaking is achieved in a way that results in a residual Z2 symmetry and hence provides a stable cold dark matter candidate. We study the possible dark matter candidates in this model by incorporating the constraints from cosmology as well as direct detection experiments. We discuss both low- and high-mass (from GeV to the TeV scale) regimes of fermionic and scalar dark matter candidates in the model. We show that scalar dark matter relic density, although not significantly affected by the presence or absence of annihilation into U(1)X gauge boson pairs, is however affected by choice of U(1)X gauge charges. We discuss the neutrino mass phenomenology and its compatibility with the allowed dark matter mass ranges and we also comment on the implications of the model on Higgs signatures at colliders including those related to the fourth fermion generation.

  10. Physical decomposition of the gauge and gravitational fields

    SciTech Connect

    Chen Xiangsong; Zhu Benchao

    2011-04-15

    Physical decomposition of the non-Abelian gauge field has recently helped to achieve a meaningful gluon spin. Here we extend this approach to gravity and attempt a meaningful gravitational energy. The metric is unambiguously separated into a pure geometric term which contributes a null curvature tensor, and a physical term which represents the true gravitational effect and always vanishes in a flat space-time. By this decomposition the conventional pseudotensors of the gravitational stress-energy are easily rescued to produce a definite physical result. Our decomposition applies to any symmetric tensor, and has an interesting relation to the transverse-traceless decomposition discussed by Arnowitt, Deser and Misner, and by York.

  11. Constraints on gauge field production during inflation

    SciTech Connect

    Nurmi, Sami; Sloth, Martin S. E-mail: sloth@cp3.dias.sdu.dk

    2014-07-01

    In order to gain new insights into the gauge field couplings in the early universe, we consider the constraints on gauge field production during inflation imposed by requiring that their effect on the CMB anisotropies are subdominant. In particular, we calculate systematically the bispectrum of the primordial curvature perturbation induced by the presence of vector gauge fields during inflation. Using a model independent parametrization in terms of magnetic non-linearity parameters, we calculate for the first time the contribution to the bispectrum from the cross correlation between the inflaton and the magnetic field defined by the gauge field. We then demonstrate that in a very general class of models, the bispectrum induced by the cross correlation between the inflaton and the magnetic field can be dominating compared with the non-Gaussianity induced by magnetic fields when the cross correlation between the magnetic field and the inflaton is ignored.

  12. Regular non-Abelian vacua in N=4, SO(4) gauged supergravity

    SciTech Connect

    Chamseddine, Ali H.; Volkov, Mikhail S.

    2004-10-15

    We present a family of globally regular N=1 vacua in the D=4, N=4 gauged supergravity of Gates and Zwiebach. These solutions are labeled by the ratio {xi} of the two gauge couplings, and for {xi}=0 they reduce to the supergravity monopole previously used for constructing the gravity dual of N=1 super Yang-Mills theory. For {xi}>0 the solutions are asymptotically anti- de Sitter, but with an excess of the solid angle, and they reduce exactly to anti-de Sitter for {xi}=1. Solutions with {xi}<0 are topologically R{sup 1}xS{sup 3}, and for {xi}=-2 they become R{sup 1}xS{sup 3} geometrically. All solutions with {xi}{ne}0 can be promoted to D=11 to become vacua of M-theory.

  13. Kauffman knot polynomials in classical abelian Chern-Simons field theory

    SciTech Connect

    Liu Xin

    2010-12-15

    Kauffman knot polynomial invariants are discovered in classical abelian Chern-Simons field theory. A topological invariant t{sup I(L)} is constructed for a link L, where I is the abelian Chern-Simons action and t a formal constant. For oriented knotted vortex lines, t{sup I} satisfies the skein relations of the Kauffman R-polynomial; for un-oriented knotted lines, t{sup I} satisfies the skein relations of the Kauffman bracket polynomial. As an example the bracket polynomials of trefoil knots are computed, and the Jones polynomial is constructed from the bracket polynomial.

  14. Gauge invariant coupling of fields to torsion: A string inspired model

    SciTech Connect

    Bhattacharjee, Srijit; Chatterjee, Ayan

    2011-05-15

    In a consistent heterotic string theory, the Kalb-Ramond field, which is the source of space-time torsion, is augmented by Yang-Mills and gravitational Chern-Simons terms. When compactified to 4 dimensions and in the field theory limit, such additional terms give rise to interactions with interesting astrophysical predictions like rotation of plane of polarization for electromagnetic and gravitational waves. On the other hand, if one is also interested in coupling 2- or 3-form (Abelian or non-Abelian) gauge fields to torsion, one needs another class of interaction. In this paper, we shall study this interaction and offer some astrophysical and cosmological predictions. We explicitly calculate the Coleman-Weinberg potential for this theory. We also comment on the possibility of such terms in loop quantum gravity where, if the Barbero-Immirzi parameter is promoted to a field, acts as a source for torsion.

  15. Elastic Gauge Fields in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Cortijo, Alberto; Ferreiros, Yago; Landsteiner, Karl; Hernandez Vozmediano, Maria Angeles

    We show that, as it happens in graphene, elastic deformations couple to the electronic degrees of freedom as pseudo gauge fields in Weyl semimetals. We derive the form of the elastic gauge fields in a tight-binding model hosting Weyl nodes and see that this vector electron-phonon coupling is chiral, providing an example of axial gauge fields in three dimensions. As an example of the new response functions that arise associated to these elastic gauge fields, we derive a non-zero phonon Hall viscosity for the neutral system at zero temperature. The axial nature of the fields provides a test of the chiral anomaly in high energy with three axial vector couplings. European Union structural funds and the Comunidad de Madrid MAD2D-CM Program (S2013/MIT-3007).

  16. Spin dynamics under local gauge fields in chiral spin-orbit coupling systems

    NASA Astrophysics Data System (ADS)

    Tan, S. G.; Jalil, M. B. A.; Fujita, T.; Liu, X. J.

    2011-02-01

    We present a theoretical description of local spin dynamics in magnetic systems with a chiral spin texture and finite spin-orbit coupling (SOC). Spin precession about the relativistic effective magnetic field in a SOC system gives rise to a non-Abelian SU(2) gauge field reminiscent of the Yang-Mills field. In addition, the adiabatic relaxation of electron spin along the local spin yields an U(1) ⊗ U(1) topological gauge (Berry) field. We derive the corresponding equation of motion i.e. modified Landau-Lifshitz-Gilbert (LLG) equation, for the local spin under the influence of these effects. Focusing on the SU(2) gauge, we obtain the spin torque magnitude, and the amplitude and frequency of spin oscillations in this system. Our theoretical estimates indicate significant spin torque and oscillations in systems with large spin-orbit coupling, which may be utilized in technological applications such as current-induced magnetization-switching and tunable microwave oscillators.

  17. Toward a gauge field theory of gravity.

    NASA Astrophysics Data System (ADS)

    Yilmaz, H.

    Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.

  18. Quantized gauged massless Rarita-Schwinger fields

    NASA Astrophysics Data System (ADS)

    Adler, Stephen L.

    2015-10-01

    We study the quantization of a minimally gauged massless Rarita-Schwinger field, by both the Dirac bracket and functional integral methods. The Dirac bracket approach in the covariant radiation gauge leads to an anticommutator that has a nonsingular limit as gauge fields approach zero, is manifestly positive semidefinite, and is Lorentz invariant. The constraints also have the form needed to apply the Faddeev-Popov method for deriving a functional integral, using the same constrained Hamiltonian and inverse constraint matrix that appear in the Dirac bracket approach.

  19. Gauge-covariant decomposition and magnetic monopole for G (2 ) Yang-Mills field

    NASA Astrophysics Data System (ADS)

    Matsudo, Ryutaro; Kondo, Kei-Ichi

    2016-08-01

    We provide a gauge-covariant decomposition of the Yang-Mills field with the exceptional gauge group G (2 ), which extends the field decomposition proposed by Cho, Duan-Ge, and Faddeev-Niemi for the S U (N ) Yang-Mills field. As an application of the decomposition, we derive a new expression of the non-Abelian Stokes theorem for the Wilson loop operator in an arbitrary representation of G (2 ). The resulting new form is used to define gauge-invariant magnetic monopoles in the G (2 ) Yang-Mills theory. Moreover, we obtain the quantization condition to be satisfied by the resulting magnetic charge. The method given in this paper is general enough to be applicable to any semisimple Lie group other than S U (N ) and G (2 ).

  20. Geometrical Effective Action: Gauge Field Theory Without Ghosts.

    NASA Astrophysics Data System (ADS)

    Paris, Carmen Molina

    Ghosts were invented by Feynman (1) in 1962 while trying to construct a quantum theory of gravity. Having convinced himself that there was no way in which the gravitational field could consistently escape quantization in a universe where everything else is subject to the laws of quantum mechanics, he was trying to see how these laws would work when applied to spacetime curvature. The first obstacle he faced was the non-Abelian character of the diffeomorphism group (the gauge group of gravity) which forces the gravitational field to act partly as its own source. In the language of Feynman graphs this means that gravitational charge (stress-energy) is carried by graviton lines as well as by all other lines and hence leaks all over every graph. Feynman's key idea for solving the problem was to replace every Feynman propagator by its equivalent, an advanced Green's function minus a positive-frequency Wightman function, and to throw away all noncausal loops of advanced Green's functions^1, obtaining thereby a mode sum over tree functions. It is easy to show that tree functions are gauge invariant provided the external lines bear only physical mode functions. Feynman therefore proposed to restrict the mode sums to physical modes, a procedure that not only secures gauge invariance but unitarity as well. But there is a difficulty: Because the physical mode functions are defined in a special frame, the procedure is not manifestly Lorentz invariant ^2. Feynman was able to show that deletion of the nonphysical modes is equivalent to subtracting, from the contribution of every closed loop, that of another (Lorentz invariant) loop propagating a particle having spin 1 (or one less than that of the gauge field). This is the ghost. Because its contribution is subtracted, it is a fermion. Feynman's discovery, and the work that it stimulated, made it seem as if the quantum theory of gauge fields cannot even be formulated without ghosts. It is the purpose of this dissertation to show

  1. Gauge gravitation theory: Gravity as a Higgs field

    NASA Astrophysics Data System (ADS)

    Sardanashvily, Gennadi

    2016-05-01

    Gravitation theory is formulated as gauge theory on natural bundles with spontaneous symmetry breaking, where gauge symmetries are general covariant transformations, gauge fields are general linear connections, and Higgs fields are pseudo-Riemannian metrics.

  2. Central charge and entangled gauge fields

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Wei

    2015-07-01

    Entanglement entropy of gauge fields is calculated using the partition function in curved spacetime with a boundary. Deriving a Gibbons-Hawking-like term from a Becchi-Rouet-Stora-Tyutin (BRST) action produces a Wald-entropy-like codimension-2 surface term. It is further suggested that boundary degrees of freedom localized on the entanglement surface generated from the gauge redundancy could be used to resolve a subtle mismatch in a universal conformal anomaly-entanglement entropy relation.

  3. Gauge field optics with anisotropic media.

    PubMed

    Liu, Fu; Li, Jensen

    2015-03-13

    By considering gauge transformations on the macroscopic Maxwell's equations, a two-dimensional gauge field, with its pseudomagnetic field in the real space, is identified as tilted anisotropy in the constitutive parameters. We show that the optical spin Hall effect with broadband response and one-way edge states become possible simply by using anisotropic media. The proposed gauge field also allows us to obtain unidirectional propagation for a particular pseudospin based on the Aharonov-Bohm effect. Our approach will be useful in spoof magneto-optics with arbitrary magnetic fields mimicked by metamaterials with subwavelength unit cells. It also serves as a generic way to design polarization-dependent devices. PMID:25815934

  4. Non-Abelian string and particle braiding in topological order: Modular SL (3 ,Z ) representation and (3 +1 ) -dimensional twisted gauge theory

    NASA Astrophysics Data System (ADS)

    Wang, Juven C.; Wen, Xiao-Gang

    2015-01-01

    String and particle braiding statistics are examined in a class of topological orders described by discrete gauge theories with a gauge group G and a 4-cocycle twist ω4 of G 's cohomology group H4(G ,R /Z ) in three-dimensional space and one-dimensional time (3 +1 D ) . We establish the topological spin and the spin-statistics relation for the closed strings and their multistring braiding statistics. The 3 +1 D twisted gauge theory can be characterized by a representation of a modular transformation group, SL (3 ,Z ) . We express the SL (3 ,Z ) generators Sx y z and Tx y in terms of the gauge group G and the 4-cocycle ω4. As we compactify one of the spatial directions z into a compact circle with a gauge flux b inserted, we can use the generators Sx y and Tx y of an SL (2 ,Z ) subgroup to study the dimensional reduction of the 3D topological order C3 D to a direct sum of degenerate states of 2D topological orders Cb2 D in different flux b sectors: C3 D=⊕bCb2 D . The 2D topological orders Cb2 D are described by 2D gauge theories of the group G twisted by the 3-cocycle ω3 (b ), dimensionally reduced from the 4-cocycle ω4. We show that the SL (2 ,Z ) generators, Sx y and Tx y, fully encode a particular type of three-string braiding statistics with a pattern that is the connected sum of two Hopf links. With certain 4-cocycle twists, we discover that, by threading a third string through two-string unlink into a three-string Hopf-link configuration, Abelian two-string braiding statistics is promoted to non-Abelian three-string braiding statistics.

  5. Black holes from generalized gauge field theories

    NASA Astrophysics Data System (ADS)

    Diaz-Alonso, J.; Rubiera-Garcia, D.

    2011-02-01

    We summarize the main results of a broad analysis on electrostatic, spherically symmetric (ESS) solutions of a class of non-linear electrodynamics models minimally coupled to gravitation. Such models are defined as arbitrary functions of the two quadratic field invariants, constrained by several physical admissibility requirements, and split into different families according to the behaviour of these lagrangian density functions in vacuum and on the boundary of their domains of definition. Depending on these behaviours the flat-space energy of the ESS field can be finite or divergent. For each model we qualitatively study the structure of its associated gravitational configurations, which can be asymptotically Schwarzschild-like or with an anomalous non Schwarzschild-like behaviour at r → ∞ (but being asymptotically flat and well behaved anyhow). The extension of these results to the non-abelian case is also briefly considered.

  6. Gauges for intense-field electrodynamics

    NASA Astrophysics Data System (ADS)

    Reiss, Howard R.

    1980-08-01

    For all gauges of the Göppert-Mayer type, the two-body Schrödinger equation for charged particles in a plane-wave electromagnetic field fails to separate into center-of-mass and relative-coordinate equations when the field is sufficiently intense.

  7. Non-Abelian dynamics in the resonant decay of the Higgs after inflation

    SciTech Connect

    Enqvist, Kari; Nurmi, Sami; Rusak, Stanislav E-mail: sami.nurmi@helsinki.fi

    2014-10-01

    We study the resonant decay of the Higgs condensate into weak gauge bosons after inflation and estimate the corrections arising from the non-Abelian self-interactions of the gauge fields. We find that non-Abelian interaction terms induce an effective mass which tends to shut down the resonance. For the broad resonance relevant for the Standard Model Higgs the produced gauge particles backreact on the dynamics of the Higgs condensate before the non-Abelian terms grow large. The non-Abelian terms can however significantly affect the final stages of the resonance after the backreaction. In the narrow resonance regime, which may be important for extensions of the Standard Model, the non-Abelian terms affect already the linear stage and terminate the resonance before the Higgs condensate is affected by the backreaction of decay products.

  8. The charged inflaton and its gauge fields: preheating and initial conditions for reheating

    NASA Astrophysics Data System (ADS)

    Lozanov, Kaloian D.; Amin, Mustafa A.

    2016-06-01

    We calculate particle production during inflation and in the early stages of reheating after inflation in models with a charged scalar field coupled to Abelian and non-Abelian gauge fields. A detailed analysis of the power spectra of primordial electric fields, magnetic fields and charge fluctuations at the end of inflation and preheating is provided. We carefully account for the Gauss constraints during inflation and preheating, and clarify the role of the longitudinal components of the electric field. We calculate the timescale for the back-reaction of the produced gauge fields on the inflaton condensate, marking the onset of non-linear evolution of the fields. We provide a prescription for initial conditions for lattice simulations necessary to capture the subsequent nonlinear dynamics. On the observational side, we find that the primordial magnetic fields generated are too small to explain the origin of magnetic fields on galactic scales and the charge fluctuations are well within observational bounds for the models considered in this paper.

  9. Revisiting the gauge fields of strained graphene

    NASA Astrophysics Data System (ADS)

    Iorio, Alfredo; Pais, Pablo

    2015-12-01

    We show that when graphene is only subject to strain, the spin connection gauge field that arises plays no measurable role, but when intrinsic curvature is present and strain is small, spin connection dictates most of the physics. We do so by showing that the Weyl field associated with strain is a pure gauge field and no constraint on the (2 +1 )-dimensional spacetime appears. On the other hand, for constant intrinsic curvature that also gives a pure gauge Weyl field, we find a classical manifestation of a quantum Weyl anomaly, descending from a constrained spacetime. We are in the position to do this because we find the equations that the conformal factor in (2 +1 ) dimensions has to satisfy, which is a nontrivial generalization to (2 +1 ) dimensions of the classic Liouville equation of the differential geometry of surfaces. Finally, we comment on the peculiarities of the only gauge field that can describe strain, the well-known pseudogauge field A1˜u11-u22 and A2˜u12 , and conclude by offering some scenarios in fundamental physics that this peculiar field could help to realize.

  10. Gauge field theory of covariant strings

    NASA Astrophysics Data System (ADS)

    Kaku, Michio

    1986-03-01

    We present a gauge covariant second-quantized field theory of strings which is explicitly invariant under the gauge transformations generated by the Virasoro algebra. Unlike the old field theory strings [1] this new formulation is Lorentz covariant as well as gauge covariant under the continuous group Diff( S1) and its central extension. We derive the free action: L=Φ(X) †P[i∂ τ-(L 0-1)]PΦ(X) , in the same way that Feynman derived the Schrödinger equation from the path integral formalism. The action is manifestly invariant under the gauge transformation δΦ(X)= limit∑n=1∞ɛ -nL -nΦ(X) , where P is a projection operator which annihilates spurious states. We give three distinct formulations of this operator P to all orders, the first based on extracting the operator from the functional formulation of the Nambu-Goto action, and the second and third based on inverting the Shapovalov matrix on a Verma module. This gauge covariant formulation can be easily extended to the Green-Schwarz superstring [2,3]. One element application of these methods is to re-express the old Neveu-Schwarz-Ramond model as a field theory which is manifestly invariant under space-time supersymmetric transformations.

  11. Cosmological consequences of classical flavor-space locked gauge field radiation

    NASA Astrophysics Data System (ADS)

    Bielefeld, Jannis; Caldwell, Robert R.

    2015-06-01

    We propose a classical SU(2) gauge field in a flavor-space locked configuration as a species of radiation in the early Universe and show that it would have a significant imprint on a primordial stochastic gravitational wave spectrum. In the flavor-space locked configuration, the electric and magnetic fields of each flavor are parallel and mutually orthogonal to other flavors, with isotropic and homogeneous stress energy. Due to the non-Abelian coupling, the gauge field breaks the symmetry between left- and right-circularly polarized gravitational waves. This broken chiral symmetry results in a unique signal: nonzero cross-correlation of the cosmic microwave background temperature and polarization, T B and E B , both of which should be zero in the standard, chiral symmetric case. We forecast the ability of current and future cosmic microwave background experiments to constrain this model. Furthermore, a wide range of behavior is shown to emerge, depending on the gauge field coupling, abundance, and allocation into electric and magnetic field energy density. The fluctuation power of primordial gravitational waves oscillates back and forth into fluctuations of the gauge field. In certain cases, the gravitational wave spectrum is shown to be suppressed or amplified by up to an order of magnitude depending on the initial conditions of the gauge field.

  12. Boundary conformal field theory and tunneling of edge quasiparticles in non-Abelian topological states

    SciTech Connect

    Fendley, Paul; Fisher, Matthew P.A.; Nayak, Chetan

    2009-07-15

    We explain how (perturbed) boundary conformal field theory allows us to understand the tunneling of edge quasiparticles in non-Abelian topological states. The coupling between a bulk non-Abelian quasiparticle and the edge is due to resonant tunneling to a zero mode on the quasiparticle, which causes the zero mode to hybridize with the edge. This can be reformulated as the flow from one conformally invariant boundary condition to another in an associated critical statistical mechanical model. Tunneling from one edge to another at a point contact can split the system in two, either partially or completely. This can be reformulated in the critical statistical mechanical model as the flow from one type of defect line to another. We illustrate these two phenomena in detail in the context of the {nu}=5/2 quantum Hall state and the critical Ising model. We briefly discuss the case of Fibonacci anyons and conclude by explaining the general formulation and its physical interpretation.

  13. A non-perturbative argument for the non-abelian Higgs mechanism

    SciTech Connect

    De Palma, G.; Strocchi, F.

    2013-09-15

    The evasion of massless Goldstone bosons by the non-abelian Higgs mechanism is proved by a non-perturbative argument in the local BRST gauge. -- Highlights: •The perturbative explanation of the Higgs mechanism (HM) is not under mathematical control. •We offer a non-perturbative proof of the absence of Goldstone bosons from the non-abelian HM. •Our non-perturbative proof in the BRST gauge avoids a mean field ansatz and expansion.

  14. Non-Abelian geometric phase and long-range atomic forces

    NASA Technical Reports Server (NTRS)

    Zygelman, B.

    1990-01-01

    It is shown how gauge fields, or geometric phases, manifest as observable effects in both bound and free diatom systems. It is shown that, in addition to altering energy splittings in bound systems, geometric phases induce transitions in levels separated by a finite-energy gap. An example is given where the non-Abelian gauge field couples nondegenerate electronic levels in a diatom. This gauge-field coupling gives rise to an observable effect. It is shown that when the diatom is 'pulled apart', the non-Abelian geometric phase manifests as a long-range atomic force.

  15. Matrix product states for gauge field theories.

    PubMed

    Buyens, Boye; Haegeman, Jutho; Van Acoleyen, Karel; Verschelde, Henri; Verstraete, Frank

    2014-08-29

    The matrix product state formalism is used to simulate Hamiltonian lattice gauge theories. To this end, we define matrix product state manifolds which are manifestly gauge invariant. As an application, we study (1+1)-dimensional one flavor quantum electrodynamics, also known as the massive Schwinger model, and are able to determine very accurately the ground-state properties and elementary one-particle excitations in the continuum limit. In particular, a novel particle excitation in the form of a heavy vector boson is uncovered, compatible with the strong coupling expansion in the continuum. We also study full quantum nonequilibrium dynamics by simulating the real-time evolution of the system induced by a quench in the form of a uniform background electric field. PMID:25215973

  16. A gauge field theory of fermionic continuous-spin particles

    NASA Astrophysics Data System (ADS)

    Bekaert, X.; Najafizadeh, M.; Setare, M. R.

    2016-09-01

    In this letter, we suggest a local covariant action for a gauge field theory of fermionic Continuous-Spin Particles (CSPs). The action is invariant under gauge transformations without any constraint on both the gauge field and the gauge transformation parameter. The Fang-Fronsdal equations for a tower of massless fields with all half-integer spins arise as a particular limit of the equation of motion of fermionic CSPs.

  17. Mass generation for non-Abelian antisymmetric tensor fields in a three-dimensional space-time

    SciTech Connect

    Medeiros, D. M.; Landim, R. R.; Almeida, C. A. S.

    2001-06-15

    Starting from a recently proposed Abelian topological model in 2+1 dimensions, which involve the Kalb-Ramond two form field, we study a non-Abelian generalization of the model. An obstruction for the generalization is detected. However, we show that the goal is achieved if we introduce a vectorial auxiliary field. Consequently, a model is proposed, exhibiting a non-Abelian topological mass generation mechanism in D=3, that provides mass for the Kalb-Ramond field. The covariant quantization of this model requires ghosts for ghosts. Therefore, in order to quantize the theory, we construct a complete set of Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST equations using the horizontality condition.

  18. Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν = 5/2.

    PubMed

    Willett, R L; Nayak, C; Shtengel, K; Pfeiffer, L N; West, K W

    2013-11-01

    We show that the resistance of the ν = 5/2 quantum Hall state, confined to an interferometer, oscillates with the magnetic field consistent with an Ising-type non-Abelian state. In three quantum Hall interferometers of different sizes, resistance oscillations at ν = 7/3 and integer filling factors have the magnetic field period expected if the number of quasiparticles contained within the interferometer changes so as to keep the area and the total charge within the interferometer constant. Under these conditions, an Abelian state such as the (3, 3, 1) state would show oscillations with the same period as at an integer quantum Hall state. However, in an Ising-type non-Abelian state there would be a rapid oscillation associated with the "even-odd effect" and a slower one associated with the accumulated Abelian phase due to both the Aharonov-Bohm effect and the Abelian part of the quasiparticle braiding statistics. Our measurements at ν = 5/2 are consistent with the latter. PMID:24237543

  19. Fields in nonaffine bundles. IV. Harmonious non-Abelian currents in string defects

    NASA Astrophysics Data System (ADS)

    Carter, Brandon

    2010-11-01

    This article continues the study of the category of harmonious field models that was recently introduced as a kinetically nonlinear generalization of the well-known harmonic category of multiscalar fields over a supporting brane world sheet in a target space with a curved Riemannian metric. Like the perfectly harmonious case of which a familiar example is provided by ordinary barotropic perfect fluids, another important subcategory is the simply harmonious case, for which it is shown that as well as “wiggle” modes of the underlying brane world sheet, and sound type longitudinal modes, there will also be transverse shake modes that propagate at the speed of light. Models of this type are shown to arise from a non-Abelian generalization of the Witten mechanism for conducting string formation by ordinary scalar fields with a suitable quartic self-coupling term in the action.

  20. Topological quantum liquids with quaternion non-Abelian statistics.

    PubMed

    Xu, Cenke; Ludwig, Andreas W W

    2012-01-27

    Noncollinear magnetic order is typically characterized by a tetrad ground state manifold (GSM) of three perpendicular vectors or nematic directors. We study three types of tetrad orders in two spatial dimensions, whose GSMs are SO(3) = S(3)/Z(2), S(3)/Z(4), and S(3)/Q(8), respectively. Q(8) denotes the non-Abelian quaternion group with eight elements. We demonstrate that after quantum disordering these three types of tetrad orders, the systems enter fully gapped liquid phases described by Z(2), Z(4), and non-Abelian quaternion gauge field theories, respectively. The latter case realizes Kitaev's non-Abelian toric code in terms of a rather simple spin-1 SU(2) quantum magnet. This non-Abelian topological phase possesses a 22-fold ground state degeneracy on the torus arising from the 22 representations of the Drinfeld double of Q(8). PMID:22400884

  1. Impact of the strong electromagnetic field on the QCD effective potential for homogeneous Abelian gluon field configurations

    SciTech Connect

    Galilo, Bogdan V.; Nedelko, Sergei N.

    2011-11-01

    The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of an external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic, and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalyzing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions on the strongly interacting hadronic matter.

  2. Noether's therorem for local gauge transformations

    SciTech Connect

    Karatas, D.L.; Kowalski, K.L.

    1989-05-22

    The variational methods of classical field theory may be applied to any theory with an action which is invariant under local gauge transformations. What is the significance of the resulting Noether current. This paper examines such currents for both Abelian and non-Abelian gauge theories and provides an explanation for their form and limited range of physical significance on a level accessible to those with a basic knowledge of classical field theory. Several of the more subtle aspects encountered in the application of the residual local gauge symmetry found by Becchi, Rouet, Stora, and Tyutin are also considered in detail in a self-contained manner. 23 refs.

  3. Numerical techniques for lattice gauge theories

    SciTech Connect

    Creutz, M.

    1981-02-06

    The motivation for formulating gauge theories on a lattice is reviewed. Monte Carlo simulation techniques are then discussed for these systems. Finally, the Monte Carlo methods are combined with renormalization group analysis to give strong numerical evidence for confinement of quarks by non-Abelian gauge fields.

  4. Generating functionals for Green's functions in gauge field theories

    SciTech Connect

    Bordag, M.; Kaschlun, L.; Matveev, V.A.; Robaschik, D.

    1987-09-01

    The structure of the generating functional of the one-particle-irreducible Green's functions in gauge field theories is investigated. Both axial as well as covariant gauge conditions are considered. For both cases, the general structure of the functionals is obtained, and a functional expansion with respect to nonlocal operators is given. The appearance of gauge-dependent operators in the case of the covariant gauge follows in a natural manner from the structure of the corresponding functional.

  5. Spin dynamics under local gauge fields in chiral spin-orbit coupling systems

    SciTech Connect

    Tan, S.G.; Jalil, M.B.A.; Fujita, T.; Liu, X.J.

    2011-02-15

    Research Highlights: > We derive a modified LLG equation in magnetic systems with spin-orbit coupling (SOC). > Our results are applied to magnetic multilayers, and DMS and magnetic Rashba systems. > SOC mediated magnetization switching is predicted in rare earth metals (large SOC). > The magnetization trajectory and frequency can be modulated by applied voltage. > This facilitates potential application as tunable microwave oscillators. - Abstract: We present a theoretical description of local spin dynamics in magnetic systems with a chiral spin texture and finite spin-orbit coupling (SOC). Spin precession about the relativistic effective magnetic field in a SOC system gives rise to a non-Abelian SU(2) gauge field reminiscent of the Yang-Mills field. In addition, the adiabatic relaxation of electron spin along the local spin yields an U(1) x U(1) topological gauge (Berry) field. We derive the corresponding equation of motion i.e. modified Landau-Lifshitz-Gilbert (LLG) equation, for the local spin under the influence of these effects. Focusing on the SU(2) gauge, we obtain the spin torque magnitude, and the amplitude and frequency of spin oscillations in this system. Our theoretical estimates indicate significant spin torque and oscillations in systems with large spin-orbit coupling, which may be utilized in technological applications such as current-induced magnetization-switching and tunable microwave oscillators.

  6. Gauge field localization on brane worlds

    SciTech Connect

    Guerrero, Rommel; Rodriguez, R. Omar; Melfo, Alejandra; Pantoja, Nelson

    2010-04-15

    We consider the effects of spacetime curvature and brane thickness on the localization of gauge fields on a brane via kinetic terms induced by localized fermions. We find that in a warped geometry with an infinitely thin brane, both the infrared and the ultraviolet behavior of the electromagnetic propagator are affected, providing a more stringent bound on the brane's tension than that coming from the requirement of four-dimensional gravity on the brane. On the other hand, for a thick wall in a flat spacetime, where the fermions are localized by means of a Yukawa coupling, we find that four-dimensional electromagnetism is recovered in a region bounded from above by the same critical distance appearing in the thin case, but also from below by a new scale related to the brane's thickness and the electromagnetic couplings. This imposes very stringent bounds on the brane's thickness which seem to invalidate the localization mechanism for this case.

  7. Spontaneous symmetry breaking, and strings defects in hypercomplex gauge field theories

    NASA Astrophysics Data System (ADS)

    Cartas-Fuentevilla, R.; Meza-Aldama, O.

    2016-02-01

    Inspired by the appearance of split-complex structures in the dimensional reduction of string theory, and in the theories emerging as byproducts, we study the hypercomplex formulation of Abelian gauge field theories by incorporating a new complex unit to the usual complex one. The hypercomplex version of the traditional Mexican hat potential associated with the U(1) gauge field theory, corresponds to a hybrid potential with two real components, and with U(1)× SO(1,1) as symmetry group. Each component corresponds to a deformation of the hat potential, with the appearance of a new degenerate vacuum. Hypercomplex electrodynamics will show novel properties, such as spontaneous symmetry breaking scenarios with running masses for the vectorial and scalar Higgs fields, and such as Aharonov-Bohm type strings defects as exact solutions; these topological defects may be detected only by quantum interference of charged particles through gauge invariant loop integrals. In a particular limit, the hyperbolic electrodynamics does not admit topological defects associated with continuous symmetries.

  8. Theoretical princi les of constructing the equations of motion for a spin color-charged particle in gauge and fermion fields

    NASA Astrophysics Data System (ADS)

    Markov, Yu. A.; Shishmarev, A. A.

    2010-11-01

    Based on the most general principles of materiality, gauge, and re-parameterized invariance, the problem of constructing an action describing the dynamics of a classical color-charged particle moving in external non-Abelian gauge and fermion fields is considered. The case of a linear Lagrangian dependence on the external fermion fields is discussed. Within the framework of the description of the color degree of freedom of the particle with half-integer spin by the Grassmann color charges, a new concept of the Grassmann color source of the particle being a fermion analog of the conventional color current is introduced.

  9. Non-abelian dynamics in first-order cosmological phase transitions

    SciTech Connect

    Johnson, Mikkel B.; Kisslinger, Leonard S.; Henley, Ernest M.; Hwang, P. W-Y.; Stevens, T.

    2004-01-01

    Bubble collisions in cosmological phase transitions are explored, taking the non-abelian character of the gauge fields into account. Both the QCD and electroweak phase transitions are considered. Numerical solutions of the field equations in several limits are presented. The investigations reported in this talk have been motivated by an interest in studying cosmological phase transitions quantitatively, taking the non-abelian character of the gauge fields into account. Ultimately, we hope to identify observable consequences of cosmological phase transitions. First-order phase transitions proceed by nucleation of bubbles of the broken phase in the background of the symmetric phase. Bubble collisions are of special interest, as they may lead to observable effects such as correlations in the cosmic microwave background (CMB) or as seeds of galactic and extra-galactic magnetic fields. The quantum chromodynamic (QCD) and the electroweak (EW) phase transitions are both candidates of interest in these respects. The Lagrangian driving both the QCD and the EW phase transitions are essentially known and make it possible to approach the physics of the phase transitions from first principles. However, a difficulty to making reliable predictions is that the fundamental guage fields in both these instances are non-abelian: the gluon field in QCD and the W and Z fields in the EW case. The quantitative role of non-abelian fields in cosmological phase transitions is poorly known and difficult to calculate due to the nonlinearities arising from the non-abelian character of the gauge fields.

  10. Atomic quantum simulation of U(N) and SU(N) non-Abelian lattice gauge theories.

    PubMed

    Banerjee, D; Bögli, M; Dalmonte, M; Rico, E; Stebler, P; Wiese, U-J; Zoller, P

    2013-03-22

    Using ultracold alkaline-earth atoms in optical lattices, we construct a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at nonzero temperature or baryon density. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can address the corresponding chiral dynamics in real time. PMID:25166816

  11. Appearance of gauge structure in simple dynamical systems

    NASA Technical Reports Server (NTRS)

    Wilczek, F.; Zee, A.

    1984-01-01

    By generalizing a construction of Berry and Simon, it is shown that non-Abelian gauge fields arise in the adiabatic development of simple quantum mechanical systems. Characteristics of the gauge fields are related to energy splittings, which may be observable in real systems. Similar phenomena are found for suitable classical systems.

  12. Notoph gauge theory: Superfield formalism

    NASA Astrophysics Data System (ADS)

    Malik, R. P.

    2011-05-01

    We derive absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for the 4D free Abelian 2-form gauge theory by exploiting the superfield approach to BRST formalism. The antisymmetric tensor gauge field of the above theory was christened as the "notoph" (i.e. the opposite of "photon") gauge field by Ogievetsky and Palubarinov way back in 1966-67. We briefly outline the problems involved in obtaining the absolute anticonimutativity of the (anti-) BRST transformations and their resolution within the framework of geometrical superfield approach to BRST formalism. One of the highlights of our results is the emergence of a Curci-Ferrari type of restriction in the context of 4D Abelian 2-form (notoph) gauge theory which renders the nilpotent (anti-) BRST symmetries of the theory to be absolutely anticommutative in nature.

  13. Geometry and energy of non-Abelian vortices

    SciTech Connect

    Manton, Nicholas S.; Rink, Norman A.

    2011-04-15

    We study pure Yang-Mills theory on {Sigma}xS{sup 2}, where {Sigma} is a compact Riemann surface, and invariance is assumed under rotations of S{sup 2}. It is well known that the self-duality equations in this setup reduce to vortex equations on {Sigma}. If the Yang-Mills gauge group is SU(2), the Bogomolny vortex equations of the Abelian Higgs model are obtained. For larger gauge groups, one generally finds vortex equations involving several matrix-valued Higgs fields. Here we focus on Yang-Mills theory with gauge group SU(N)/Z{sub N} and a special reduction which yields only one non-Abelian Higgs field. One of the new features of this reduction is the fact that while the instanton number of the theory in four dimensions is generally fractional with denominator N, we still obtain an integral vortex number in the reduced theory. We clarify the relation between these two topological charges at a bundle geometric level. Another striking feature is the emergence of nontrivial lower and upper bounds for the energy of the reduced theory on {Sigma}. These bounds are proportional to the area of {Sigma}. We give special solutions of the theory on {Sigma} by embedding solutions of the Abelian Higgs model into the non-Abelian theory, and we relate our work to the language of quiver bundles, which has recently proved fruitful in the study of dimensional reduction of Yang-Mills theory.

  14. Non-Abelian gerbes and enhanced Leibniz algebras

    NASA Astrophysics Data System (ADS)

    Strobl, Thomas

    2016-07-01

    We present the most general gauge-invariant action functional for coupled 1- and 2-form gauge fields with kinetic terms in generic dimensions, i.e., dropping eventual contributions that can be added in particular space-time dimensions only such as higher Chern-Simons terms. After appropriate field redefinitions it coincides with a truncation of the Samtleben-Szegin-Wimmer action. In the process one sees explicitly how the existence of a gauge-invariant functional enforces that the most general semistrict Lie 2-algebra describing the bundle of a non-Abelian gerbe gets reduced to a very particular structure, which, after the field redefinition, can be identified with the one of an enhanced Leibniz algebra. This is the first step towards a systematic construction of such functionals for higher gauge theories, with kinetic terms for a tower of gauge fields up to some highest form degree p , solved here for p =2 .

  15. Topological phases of lattice bosons with a dynamical gauge field

    NASA Astrophysics Data System (ADS)

    Raventós, David; Graß, Tobias; Juliá-Díaz, Bruno; Santos, Luis; Lewenstein, Maciej

    2016-03-01

    Optical lattices with a complex-valued tunneling term have become a standard way of studying gauge-field physics with cold atoms. If the complex phase of the tunneling is made density dependent, such a system features even a self-interacting or dynamical magnetic field. In this paper we study the scenario of a few bosons in either a static or a dynamical gauge field by means of exact diagonalization. The topological structures are identified computing their Chern number. Upon decreasing the atom-atom contact interaction, the effect of the dynamical gauge field is enhanced, giving rise to a phase transition between two topologically nontrivial phases.

  16. Three-dimensional black holes with conformally coupled scalar and gauge fields

    NASA Astrophysics Data System (ADS)

    Cárdenas, Marcela; Fuentealba, Oscar; Martínez, Cristián

    2014-12-01

    We consider three-dimensional gravity with negative cosmological constant in the presence of a scalar and an Abelian gauge field. Both fields are conformally coupled to gravity, the scalar field through a nonminimal coupling with the curvature and the gauge field by means of a Lagrangian given by a power of the Maxwell one. A sixth-power self-interaction potential, which does not spoil conformal invariance is also included in the action. Using a circularly symmetric ansatz, we obtain black hole solutions dressed with the scalar and gauge fields, which are regular on and outside the event horizon. These charged hairy black holes are asymptotically anti-de Sitter spacetimes. The mass and the electric charge are computed by using the Regge-Teitelboim Hamiltonian approach. If both leading and subleading terms of the asymptotic condition of the scalar field are present, a boundary condition that functionally relates them is required for determining the mass. Since the asymptotic form of the scalar field solution is defined by two integration constants, the boundary condition may or may not respect the asymptotic conformal symmetry. An analysis of the temperature and entropy of these black holes is presented. The temperature is a monotonically increasing function of the horizon radius as expected for asymptotically anti-de Sitter black holes. However, restrictions on the parameters describing the black holes are found by requiring the entropy to be positive, which, given the nonminimal coupling considered here, does not follow the area law. Remarkably, the same conditions ensure that the conformally related solutions become black holes in the Einstein frame.

  17. Line of critical points in 2+1 dimensions: quantum critical loop gases and non-Abelian gauge theory.

    PubMed

    Freedman, Michael; Nayak, Chetan; Shtengel, Kirill

    2005-04-15

    In this Letter, we (1) construct a one-parameter family of lattice models of interacting spins; (2) obtain their exact ground states; (3) derive a statistical-mechanical analogy which relates their ground states to O(n) loop gases; (4) show that the models are critical for dgauge theory; and (7) show that its one-loop beta function vanishes for all values of the coupling constant, implying that it is also on a critical line. PMID:15904103

  18. Baryon squishing in synthetic dimensions by effective SU (M) gauge fields

    NASA Astrophysics Data System (ADS)

    Ghosh, Sudeep Kumar; Yadav, Umesh K.; Shenoy, Vijay B.

    We investigate the physics of SU (M) symmetric interactions in the ``synthetic dimensions'' (Celi et al., PRL 112, 043001 (2014)) that provides a cold atom realization of the Hofstadter model. We show that this system is equivalent to particles (with SU (M) symmetric interactions) experiencing an SU (M) Zeeman field at each lattice site and a non-Abelian SU (M) gauge potential that affects their hopping. This equivalence brings out the possibility of generating non-local interactions between particles at different sites of the optical lattice. In addition, the gauge field induces a flavor-orbital coupling, which mitigates the ``baryon breaking'' effect of the Zeeman field. For M particles, concomitantly, the SU (M) singlet baryon which is site localized in the usual 1d optical lattice, is deformed to a non-local object (``squished baryon''). We conclusively demonstrate this effect by analytical arguments and exact (numerical) diagonalization studies. Our study promises a rich many-body phase diagram for this system. It also uncovers the possibility of using the synthetic dimension system to laboratory realize condensed matter models such as the SU (M) random flux model, inconceivable in conventional experimental systems. Reference: arXiv:1503.02301 Work supported by CSIR, DST and DAE.

  19. Gluon production from non-Abelian Weizsäcker-Williams fields in nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Kovner, Alex; McLerran, Larry; Weigert, Heribert

    1995-12-01

    We consider the collisions of large nuclei using the theory of McLerran and Venugopalan. The two nuclei are ultrarelativistic and sources of non-Abelian Weizs¨acker-Williams fields. These sources are in the end averaged over all color orientations locally with a Gaussian weight. We show that there is a solution of the equations of motion for the two nucleus scattering problem where the fields are time and rapidity independent before the collision. After the collision the solution depends on proper time, but is independent of rapidity. We show how to extract the produced gluons from the classical evolution of the fields.

  20. Condensing Non-Abelian Quasiparticles

    SciTech Connect

    Hermanns, M.

    2010-02-05

    A most interesting feature of certain fractional quantum Hall states is that their quasiparticles obey non-Abelian fractional statistics. So far, candidate non-Abelian wave functions have been constructed from conformal blocks in cleverly chosen conformal field theories. In this work we present a hierarchy scheme by which we can construct daughter states by condensing non-Abelian quasiparticles (as opposed to quasiholes) in a parent state, and show that the daughters have a non-Abelian statistics that differs from the parent. In particular, we discuss the daughter of the bosonic, spin-polarized Moore-Read state at nu=4/3 as an explicit example.

  1. Gauge Invariance of Sedeonic Equations for Massive and Massless Fields

    NASA Astrophysics Data System (ADS)

    Mironov, Victor L.; Mironov, Sergey V.

    2016-07-01

    In the present paper we discuss the gauge invariance of generalized second-order and first-order wave equations for massive and massless fields based on sedeonic space-time operators and sedeonic wave functions.

  2. Composite gauge-bosons made of fermions

    NASA Astrophysics Data System (ADS)

    Suzuki, Mahiko

    2016-07-01

    We construct a class of Abelian and non-Abelian local gauge theories that consist only of matter fields of fermions. The Lagrangian is local and does not contain an auxiliary vector field nor a subsidiary condition on the matter fields. It does not involve an extra dimension nor supersymmetry. This Lagrangian can be extended to non-Abelian gauge symmetry only in the case of SU(2) doublet matter fields. We carry out an explicit diagrammatic computation in the leading 1 /N order to show that massless spin-one bound states appear with the correct gauge coupling. Our diagram calculation exposes the dynamical features that cannot be seen in the formal auxiliary vector-field method. For instance, it shows that the s -wave fermion-antifermion interaction in the 3S1 channel (ψ ¯ γμψ ) alone cannot form the bound gauge bosons; the fermion-antifermion pairs must couple to the d -wave state too. One feature common to our class of Lagrangian is that the Noether current does not exist. Therefore it evades possible conflict with the no-go theorem of Weinberg and Witten on the formation of the non-Abelian gauge bosons.

  3. Non-Abelian quantum holonomy of hydrogenlike atoms

    SciTech Connect

    Mousolou, Vahid Azimi; Canali, Carlo M.; Sjoeqvist, Erik

    2011-09-15

    We study the Uhlmann holonomy [Rep. Math. Phys. 24, 229 (1986)] of quantum states for hydrogenlike atoms where the intrinsic spin and orbital angular momentum are coupled by the spin-orbit interaction and are subject to a slowly varying magnetic field. We show that the holonomy for the orbital angular momentum and spin subsystems is non-Abelian while the holonomy of the whole system is Abelian. Quantum entanglement in the states of the whole system is crucially related to the non-Abelian gauge structure of the subsystems. We analyze the phase of the Wilson loop variable associated with the Uhlmann holonomy and find a relation between the phase of the whole system and corresponding marginal phases. Based on the results for the model system, we provide evidence that the phase of the Wilson loop variable and the mixed-state geometric phase [E. Sjoeqvist et al., Phys. Rev. Lett. 85, 2845 (2000).] are generally inequivalent.

  4. The Fock-Schwinger Gauge in the Bfv Formalism

    NASA Astrophysics Data System (ADS)

    Barcelos-Neto, J.; Galvão, Carlos A. P.; Gaete, P.

    We consider the implementation of a properly modified form of the Fock-Schwinger gauge condition in a general non-Abelian gauge theory in the context of the BFV formalism. Arguments are presented to justify the necessity of modifying the original Fock-Schwinger condition. The free field propagator and the general Ward identity are also calculated.

  5. Artificial gauge field for photons in coupled cavity arrays

    SciTech Connect

    Umucalilar, R. O.; Carusotto, I.

    2011-10-15

    We propose and characterize solid-state photonic structures where light experiences an artificial gauge field. A nontrivial phase for photons tunneling between adjacent sites of a coupled cavity array can be obtained by inserting optically active materials in the structure or by inducing a suitable coupling of the propagation and polarization degrees of freedom. We also discuss the feasibility of observing strong gauge field effects in the optical spectra of realistic systems, including the Hofstadter butterfly spectrum.

  6. Abelian link invariants and homology

    SciTech Connect

    Guadagnini, Enore; Mancarella, Francesco

    2010-06-15

    We consider the link invariants defined by the quantum Chern-Simons field theory with compact gauge group U(1) in a closed oriented 3-manifold M. The relation of the Abelian link invariants with the homology group of the complement of the links is discussed. We prove that, when M is a homology sphere or when a link--in a generic manifold M--is homologically trivial, the associated observables coincide with the observables of the sphere S{sup 3}. Finally, we show that the U(1) Reshetikhin-Turaev surgery invariant of the manifold M is not a function of the homology group only, nor a function of the homotopy type of M alone.

  7. A Lindemann-Weierstrass theorem for semi-abelian varieties over function fields

    NASA Astrophysics Data System (ADS)

    Bertrand, Daniel; Pillay, Anand

    2010-04-01

    We prove an analogue of the Lindemann-Weierstrass theorem (that the exponentials of a {Q} -linearly independent set of algebraic numbers are algebraically independent), replacing {Q}^{alg} by {C}(t)^{alg} and {G}_{m}^{n} by a semi-abelian variety over {C}(t)^{alg} . Both the formulations of our results and the methods are differential algebraic in nature.

  8. The WMO Field Intercomparison of Rain Intensity Gauges

    NASA Astrophysics Data System (ADS)

    Lanza, Luca G.; Vuerich, E.

    2009-12-01

    The first Field Intercomparison of Rainfall Intensity (RI) gauges was organised by WMO (the World Meteorological Organisation) from October 2007 to April 2009 in Vigna di Valle, Rome (Italy). The campaign is held at the Centre of Meteorological Experimentations (ReSMA) of the Italian Meteorological Service. A group of 30 previously selected rain gauges based on different measuring principles are involved in the Intercomparison. Installation of the instruments in the field was preceded by the laboratory calibration of all submitted catching-type rain gauges at the University of Genoa. Additional meteorological sensors (ancillary information) and the observations and measurements performed by the Global Climate Observing System/Global Atmosphere Watch (GCOS/GAW) meteorological station of Vigna di Valle were analyzed as metadata. All catching-type gauges were tested after installation using a portable calibration device specifically developed at the University of Genoa, simulating an ordinary calibration inspection in the field. This paper is dedicated to the summary of preliminary results of the Intercomparison measurements. It offers a view on the main achievements expected from the Intercomparison in evaluating the performance of the instruments in field conditions. Comparison of several rain gauges demonstrated the possibility to evaluate the performance of RI gauges at one-minute resolution in time, as recommended by the WMO Commission for Instruments and Methods of Observations (WMO-CIMO). Results indicate that synchronised tipping-bucket rain gauges (TBR), using internal correction algorithms, and weighing gauges (WG) with improved dynamic stability and short step response are the most accurate gauges for one-minute RI measurements, since providing the lowest measurement uncertainty with respect to the assumed working reference.

  9. Gauge Fields and Scalars in Rolling Tachyon Backgrounds

    SciTech Connect

    Thomas Mehen; Brian Wecht

    2003-04-01

    We investigate the dynamics of gauge and scalar fields on unstable D-branes with rolling tachyons. Assuming an FRW metric on the brane, we find a solution of the tachyon equation of motion which is valid for arbitrary tachyon potentials and scale factors. The equations of motion for a U(1) gauge field and a scalar field in this background are derived. These fields see an effective metric which differs from the original FRW metric. The field equations receive large corrections due to the curvature of the effective metric as well as the time variation of the gauge coupling. The equations of state for these fields resemble those of nonrelativistic matter rather than those of massless particles.

  10. On whole Abelian model dynamics

    SciTech Connect

    Chauca, J.; Doria, R.

    2012-09-24

    Physics challenge is to determine the objects dynamics. However, there are two ways for deciphering the part. The first one is to search for the ultimate constituents; the second one is to understand its behaviour in whole terms. Therefore, the parts can be defined either from elementary constituents or as whole functions. Historically, science has been moving through the first aspect, however, quarks confinement and complexity are interrupting this usual approach. These relevant facts are supporting for a systemic vision be introduced. Our effort here is to study on the whole meaning through gauge theory. Consider a systemic dynamics oriented through the U(1) - systemic gauge parameter which function is to collect a fields set {l_brace}A{sub {mu}I}{r_brace}. Derive the corresponding whole gauge invariant Lagrangian, equations of motion, Bianchi identities, Noether relationships, charges and Ward-Takahashi equations. Whole Lorentz force and BRST symmetry are also studied. These expressions bring new interpretations further than the usual abelian model. They are generating a systemic system governed by 2N+ 10 classical equations plus Ward-Takahashi identities. A whole dynamics based on the notions of directive and circumstance is producing a set determinism where the parts dynamics are inserted in the whole evolution. A dynamics based on state, collective and individual equations with a systemic interdependence.

  11. General covariant gauge fixing for massless spin-two fields

    SciTech Connect

    Brandt, F. T.; Frenkel, J.; McKeon, D. G. C.

    2007-11-15

    The most general covariant gauge fixing Lagrangian is considered for a spin-two gauge theory in the context of the Faddeev-Popov procedure. In general, five parameters characterize this gauge fixing. Certain limiting values for these parameters give rise to a spin-two propagator that is either traceless or transverse, but for no values of these parameters is this propagator simultaneously traceless and transverse. Having a traceless-transverse propagator ensures that only the physical degrees of freedom associated with the tensor field propagate, and hence it is analogous to the Landau gauge in electrodynamics. To obtain such a traceless-transverse propagator, a gauge fixing Lagrangian which is not quadratic must be employed; this sort of gauge fixing Lagrangian is not encountered in the usual Faddeev-Popov procedure. It is shown that when this nonquadratic gauge fixing Lagrangian is used, two fermionic and one bosonic ghosts arise. As a simple application we discuss the energy-momentum tensor of the gravitational field at finite temperature.

  12. Linear resistivity from non-abelian black holes

    NASA Astrophysics Data System (ADS)

    Herzog, Christopher P.; Huang, Kuo-Wei; Vaz, Ricardo

    2014-11-01

    Starting with the holographic p-wave superconductor, we show how to obtain a finite DC conductivity through a non-abelian gauge transformation. The translational symmetry is preserved. We obtain phenomenological similarities with high temperature cuprate superconductors. Our results suggest that a lattice or impurities are not essential to produce a finite DC resistivity with a linear temperature dependence. An analogous field theory calculation for free fermions, presented in the appendix, indicates our results may be a special feature of strong interactions.

  13. Representation of a gauge field via intrinsic "BRST" operator

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Lavrov, Peter M.

    2015-11-01

    We show that there exists a representation of a matrix-valued gauge field via intrinsic "BRST" operator assigned to matrix-valued generators of a gauge algebra. In this way, we reproduce the standard formulation of the ordinary Yang-Mills theory. In the case of a generating quasigroup/groupoid, we give a natural counterpart to the Yang-Mills action. The latter counterpart does also apply as to the most general case of an involution for matrix-valued gauge generators.

  14. Gauge invariant two-point vertices of shadow fields, AdS/CFT, and conformal fields

    SciTech Connect

    Metsaev, R. R.

    2010-05-15

    In the framework of gauge invariant Stueckelberg approach, totally symmetric arbitrary spin shadow fields in flat space-time of dimension greater than or equal to four are studied. Gauge invariant two-point vertices for such shadow fields are obtained. We demonstrate that, in Stueckelberg gauge frame, these gauge invariant vertices become the standard two-point vertices of CFT. Light-cone gauge two-point vertices of the shadow fields are also obtained. AdS/CFT correspondence for the shadow fields and the non-normalizable solutions of free massless totally symmetric arbitrary spin AdS fields is studied. AdS fields are considered in a modified de Donder gauge and this simplifies considerably the study of AdS/CFT correspondence. We demonstrate that the bulk action, when it is evaluated on solution of the Dirichlet problem, leads to the two-point gauge invariant vertex of shadow field. Also we show that the bulk action evaluated on solution of the Dirichlet problem leads to new description of conformal fields. The new description involves Stueckelberg gauge symmetries and gives simple higher-derivative Lagrangian for the conformal arbitrary spin field. In the Stueckelberg gauge frame, our Lagrangian becomes the standard Lagrangian of conformal field. Light-cone gauge Lagrangian of the arbitrary spin conformal field is also obtained.

  15. First Law for fields with Internal Gauge Freedom

    NASA Astrophysics Data System (ADS)

    Prabhu, Kartik

    2016-03-01

    We extend the analysis of Iyer and Wald to derive the First Law of blackhole mechanics in the presence of fields charged under an `internal gauge group'. We treat diffeomorphisms and gauge transformations in a unified way by formulating the theory on a principal bundle. The first law then relates the energy and angular momentum at infinity to a potential times charge term at the horizon. The gravitational potential and charge give a notion of temperature and entropy respectively.

  16. Large field inflation models from higher-dimensional gauge theories

    NASA Astrophysics Data System (ADS)

    Furuuchi, Kazuyuki; Koyama, Yoji

    2015-02-01

    Motivated by the recent detection of B-mode polarization of CMB by BICEP2 which is possibly of primordial origin, we study large field inflation models which can be obtained from higher-dimensional gauge theories. The constraints from CMB observations on the gauge theory parameters are given, and their naturalness are discussed. Among the models analyzed, Dante's Inferno model turns out to be the most preferred model in this framework.

  17. Large field inflation models from higher-dimensional gauge theories

    SciTech Connect

    Furuuchi, Kazuyuki; Koyama, Yoji

    2015-02-23

    Motivated by the recent detection of B-mode polarization of CMB by BICEP2 which is possibly of primordial origin, we study large field inflation models which can be obtained from higher-dimensional gauge theories. The constraints from CMB observations on the gauge theory parameters are given, and their naturalness are discussed. Among the models analyzed, Dante’s Inferno model turns out to be the most preferred model in this framework.

  18. CFT adapted gauge invariant formulation of arbitrary spin fields in AdS and modified de Donder gauge

    NASA Astrophysics Data System (ADS)

    Metsaev, R. R.

    2009-01-01

    Using Poincaré parametrization of AdS space, we study totally symmetric arbitrary spin massless fields in AdS space of dimension greater than or equal to four. CFT adapted gauge invariant formulation for such fields is developed. Gauge symmetries are realized similarly to the ones of Stueckelberg formulation of massive fields. We demonstrate that the curvature and radial coordinate contributions to the gauge transformation and Lagrangian of the AdS fields can be expressed in terms of ladder operators. Realization of the global AdS symmetries in the conformal algebra basis is obtained. Modified de Donder gauge leading to simple gauge fixed Lagrangian is found. The modified de Donder gauge leads to decoupled equations of motion which can easily be solved in terms of the Bessel function. Interrelations between our approach to the massless AdS fields and the Stueckelberg approach to massive fields in flat space are discussed.

  19. Effective action for the Abelian Higgs model in FLRW

    SciTech Connect

    George, Damien P.; Mooij, Sander; Postma, Marieke E-mail: smooij@nikhef.nl

    2012-11-01

    We compute the divergent contributions to the one-loop action of the U(1) Abelian Higgs model. The calculation allows for a Friedmann-Lemaitre-Robertson-Walker space-time and a time-dependent expectation value for the scalar field. Treating the time-dependent masses as two-point interactions, we use the in-in formalism to compute the first, second and third order graphs that contribute quadratic and logarithmic divergences to the effective scalar action. Working in R{sub ξ} gauge we show that the result is gauge invariant upon using the equations of motion.

  20. Gauge transformation of double field theory for open string

    NASA Astrophysics Data System (ADS)

    Ma, Chen-Te

    2015-09-01

    We combine symmetry structures of ordinary (parallel directions) and dual (transversal directions) coordinates to construct the Dirac-Born-Infeld theory. The ordinary coordinates are associated with the Neumann boundary conditions and the dual coordinates are associated with the Dirichlet boundary conditions. Gauge fields become scalar fields by exchanging the ordinary and dual coordinates. A gauge transformation of a generalized metric is governed by the generalized Lie derivative. The gauge transformation of the massless closed string theory gives the C -bracket, but the gauge transformation of the open string theory gives the F -bracket. The F -bracket with the strong constraints is different from the Courant bracket by an exact one-form. This exact one-form should come from the one-form gauge field. Based on a symmetry point of view, we deduce a suitable action with a nonzero H -flux at the low-energy level. From an equation of motion of the scalar dilaton, it defines a generalized scalar curvature. Finally, we construct a double sigma model with a boundary term and show that this model with constraints is classically equivalent to the ordinary sigma model.

  1. Gauge-flation and cosmic no-hair conjecture

    SciTech Connect

    Maleknejad, A.; Sheikh-Jabbari, M.M.; Soda, Jiro E-mail: jabbari@theory.ipm.ac.ir

    2012-01-01

    Gauge-flation, inflation from non-Abelian gauge fields, was introduced in [1, 2]. In this work, we study the cosmic no-hair conjecture in gauge-flation. Starting from Bianchi-type I cosmology and through analytic and numeric studies we demonstrate that the isotropic FLRW inflation is an attractor of the dynamics of the theory and that the anisotropies are damped within a few e-folds, in accord with the cosmic no-hair conjecture.

  2. Wormholes, emergent gauge fields, and the weak gravity conjecture

    NASA Astrophysics Data System (ADS)

    Harlow, Daniel

    2016-01-01

    This paper revisits the question of reconstructing bulk gauge fields as boundary operators in AdS/CFT. In the presence of the wormhole dual to the thermofield double state of two CFTs, the existence of bulk gauge fields is in some tension with the microscopic tensor factorization of the Hilbert space. I explain how this tension can be resolved by splitting the gauge field into charged constituents, and I argue that this leads to a new argument for the "principle of completeness", which states that the charge lattice of a gauge theory coupled to gravity must be fully populated. I also claim that it leads to a new motivation for (and a clarification of) the "weak gravity conjecture", which I interpret as a strengthening of this principle. This setup gives a simple example of a situation where describing low-energy bulk physics in CFT language requires knowledge of high-energy bulk physics. This contradicts to some extent the notion of "effective conformal field theory", but in fact is an expected feature of the resolution of the black hole information problem. An analogous factorization issue exists also for the gravitational field, and I comment on several of its implications for reconstructing black hole interiors and the emergence of spacetime more generally.

  3. Conformal field theory dual of the RS model with gauge fields in the bulk

    NASA Astrophysics Data System (ADS)

    Agashe, K.; Delgado, A.

    2003-02-01

    It has been conjectured that the (weakly coupled) Randall-Sundrum (RS) model with gauge fields in the bulk is dual to a (strongly coupled) 4D conformal field theory (CFT) with an UV cutoff and in which global symmetries of the CFT are gauged. We elucidate features of this dual CFT which are crucial for a complete understanding of the proposed duality. We argue that the limit of no (or small) brane-localized kinetic term for bulk gauge field on the RS side (often studied in the literature) is dual to no bare kinetic term for the gauge field which is coupled to the CFT global current. In this limit, the kinetic term for this gauge field in the dual CFT is “induced” by CFT loops. Then, this CFT loop contribution to the gauge field 1PI two-point function is dual (on the RS side) to the full gauge propagator (i.e., including the contribution of Kaluza-Klein and zero modes) with both external points on the Planck brane. We also emphasize that loop corrections to the gauge coupling on the RS side are dual to subleading effects in a large-N expansion on the CFT side; these subleading corrections to the gauge coupling in the dual CFT are (in general) sensitive to the strong dynamics of the CFT.

  4. Gauge field back reaction on a black hole

    SciTech Connect

    Hochberg, D.; Kephart, T.W. )

    1993-02-15

    The order-[h bar] fluctuations of gauge fields in the vicinity of a black hole can create a repulsive antigravity region extending out beyond the renormalized Schwarzschild horizon. If the strength of this repulsive force increases as higher orders in the back reaction are included, the formation of a wormholelike object could occur.

  5. Operation of cold-cathode gauges in high magnetic fields

    SciTech Connect

    Thomas, S.R. Jr.; Goerz, D.A.; Pickles, W.L.

    1985-11-11

    The Mirror Fusion Test Facility (MFTF-B), under construction at LLNL, requires measurement of the neutral gas density in high magnetic fields near the plasma at several axial regions. This Background Gas Pressure (BGP) diagnostic will help us understand the role of background neutrals in particle and power balance, particularly in the maintenance of the cold halo plasma that shields the hot core plasma from the returning neutrals. It consists of several cold-cathode, magnetron-type gauges stripped of their permanent magnets, and utilizes the MFTF-B ambient B-field in strengths of 5 to 25 kG. Similar gauges have operated in TMX-U in B-fields up to 3 kG. To determine how well the gauges will perform, we assembled a test stand which operated magnetron gauges in an external, uniform magnetic field of up to 30 kG, over a pressure range of 1E-8 T to 1E-5 T, at several cathode voltages. This paper describes the test stand and presents the results of the tests.

  6. Study of the phase structure of Abelian field theories through non-lattice, non-perturbative calculations

    SciTech Connect

    Karanikas, A.I.; Ktorides, C.N.; Mavromatos, N.E.

    1986-12-01

    A recently proposed approach to gauge field theories, by which one formulates them non-locally and subsequently approaches locality arbitrarily close, is applied to U(1) gauge theories. We test the possibility that the aformentioned methodology might introduce a measure in the functional integral which supports non-perturbative calculations in the continuum. In particular, we are able to carry relevant calculations pertaining to the expectation value of the Wilson's loop operator in 3+1, 2+1 and 1+1 dimensions. The results are similar to ones obtained through the lattice regularization of R(1) gauge theory, with the important difference that in our case they refer to continuum U(1) gauge theory, as a function of the bare coupling constant. We further solidify the validity of our approach by conducting a calculation referring to the 2-dimensional scalar Heisenberg model, remaining always in the continuum. copyright 1986 Academic Press, Inc.

  7. On a gauge covariant formulation of string field theories

    NASA Astrophysics Data System (ADS)

    Ju-Fei, Tang; Chuan-Jie, Zhu

    1986-11-01

    It is shown that the Neveu-Nicolai-West formulation of the gauge covariant string field theories and that of Banks and Peskin can be obtained by different consistent truncation of the BRST multiplets. A proof is given to show the equivalence of light-cone formulation and the gauge covariant formulation without using the property of trivial cohomology of string differential forms. We would like to thank D.D. Wu and X.J. Zhou for discussion and Yi-Bing Ding for careful reading of the manuscript.

  8. Gauge equivalence in QCD: The Weyl and Coulomb gauges

    NASA Astrophysics Data System (ADS)

    Haller, Kurt; Ren, Hai-Cang

    2003-10-01

    The Weyl-gauge (Aa0=0) QCD Hamiltonian is unitarily transformed to a representation in which it is expressed entirely in terms of gauge-invariant quark and gluon fields. In a subspace of gauge-invariant states we have constructed that implement the non-Abelian Gauss’s law, this unitarily transformed Weyl-gauge Hamiltonian can be further transformed and, under appropriate circumstances, can be identified with the QCD Hamiltonian in the Coulomb gauge. We demonstrate an isomorphism that materially facilitates the application of this Hamiltonian to a variety of physical processes, including the evaluation of S-matrix elements. This isomorphism relates the gauge-invariant representation of the Hamiltonian and the required set of gauge-invariant states to a Hamiltonian of the same functional form but dependent on ordinary unconstrained Weyl-gauge fields operating within a space of “standard” perturbative states. The fact that the gauge-invariant chromoelectric field is not Hermitian has important implications for the functional form of the Hamiltonian finally obtained. When this non-Hermiticity is taken into account, the “extra” vertices in the Christ-Lee’ Coulomb-gauge Hamiltonian are natural outgrowths of the formalism. When this non-Hermiticity is neglected, the Hamiltonian used in the earlier work of Gribov and others results.

  9. Coset construction of a D-brane gauge field

    NASA Astrophysics Data System (ADS)

    McArthur, I. N.

    2016-04-01

    D-branes have a world-volume U (1) gauge field A whose field strength F = dA gives rise to a Born-Infeld term in the D-brane action. Supersymmetry and kappa symmetry transformations of A are traditionally inferred by the requirement that the Born-Infeld term is consistent with both supersymmetry and kappa symmetry of the D-brane action. In this paper, we show that integrability of the assigned supersymmetry transformations leads to an extension of the standard supersymmetry algebra that includes a fermionic central charge. We construct a superspace one-form on an enlarged superspace related by a coset construction to this centrally extended algebra whose supersymmetry and kappa symmetry transformations are derived, rather than inferred. It is shown that under pullback, these transformations are of the form expected for the D-brane U (1) gauge field. We relate these results to manifestly supersymmetric approaches to construction of D-brane actions.

  10. Field emitter based extractor gauges and residual gas analyzers

    SciTech Connect

    Changkun Dong; G. Rao Myneni

    1999-04-01

    Attempts at using the Spindt-type molybdenum field emitter arrays in the extractor gauges and a residual gas analyzer are presented in this article. The sensitivity of the fuel emitter gauge is as high as 11 Torr{sup -1}. The departure from linearity of the pressure versus ion current measurements did not exceed 10% over the pressure range of 10{sup -10} - 10{sup -6} Torr. Stable sensitivities for nitrogen, helium, and hydrogen were achieved below 10{sup -7} Torr with the field emitter residual gas analyzer. The slightly reduced emission current and sensitivity, after long-term operation, are of concern and need to be addressed. Residual gas spectra indicate that when using field emitters, the electron stimulated desorption ions (O{sup +}, F{sup +}, and Cl{sup +}) are reduced as compared to those made using a hot filament source.

  11. Gauge fields for rippled graphene membranes under central load

    NASA Astrophysics Data System (ADS)

    Barraza-Lopez, Salvador; Sloan, James V.; Pacheco, Alejandro A.; Horvath, Cedric M.; Wang, Zheng Fei

    2013-03-01

    Gauge fields on graphene are invariably expressed in the language of continuum elasticity. Following an approach where the atomic positions play the preponderant role, a model of strain on graphene was developed where all relevant quantities -including gauge fields- are directly expressed in terms of atomic displacements only. Suspended, rippled graphene membranes under cetral load by a sharp object were studied using this approach. The effects from both the pseudo-magnetic field and the deformation potential were included in calculations of the electron density at different spatial locations (the deformation potential acts as an on-site potential energy). The deformation potential -neglected without proper justification in many published works- appears to modify the electronic spectrum dramatically in a qualitative way. Discussion of experiments relevant to the model will also be given.

  12. Spinor Condensates on a Cylindrical Surface in Synthetic Gauge Fields.

    PubMed

    Ho, Tin-Lun; Huang, Biao

    2015-10-01

    We show that by modifying the setup of the recent experiment that creates a "Dirac string" one can engineer a quasi-2D spinor Bose-Einstein condensate on a cylindrical surface, with a synthetic magnetic field normal to the surface. Because of the muticonnectivity of the surface, there are two types of vortices (called A and B) with the same vorticity. This is very different from the planar case, which only has one kind of vortex for fixed circulation. As the strength of the synthetic gauge field increases, the ground states will form a necklace of alternating AB vortices surrounding the lateral midpoint of the cylinder, and will split into two A and B necklaces at higher synthetic gauge fields. The fact that even the basic vortex structure of a Bose-Einstein condensate is altered in a cylindrical surface implies that richer phenomena are in store for quantum gases in other curved surfaces. PMID:26550734

  13. Emergent gauge fields and the high-temperature superconductors.

    PubMed

    Sachdev, Subir

    2016-08-28

    The quantum entanglement of many states of matter can be represented by electric and magnetic fields, much like those found in Maxwell's theory. These fields 'emerge' from the quantum structure of the many-electron state, rather than being fundamental degrees of freedom of the vacuum. I review basic aspects of the theory of emergent gauge fields in insulators in an intuitive manner. In metals, Fermi liquid (FL) theory relies on adiabatic continuity from the free electron state, and its central consequence is the existence of long-lived electron-like quasi-particles around a Fermi surface enclosing a volume determined by the total density of electrons, via the Luttinger theorem. However, long-range entanglement and emergent gauge fields can also be present in metals. I focus on the 'fractionalized Fermi liquid' (FL*) state, which also has long-lived electron-like quasi-particles around a Fermi surface; however, the Luttinger theorem on the Fermi volume is violated, and this requires the presence of emergent gauge fields, and the associated loss of adiabatic continuity with the free electron state. Finally, I present a brief survey of some recent experiments in the hole-doped cuprate superconductors, and interpret the properties of the pseudogap regime in the framework of the FL* theory.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'. PMID:27458260

  14. Dualities between semiclassical strings and quantum gauge field theories

    NASA Astrophysics Data System (ADS)

    Ouyang, Peter

    In this thesis we study several examples of the correspondence between gauge field theories and string theories. A recurrent theme of these studies is that distinctively quantum mechanical behavior on the gauge theory side of the correspondence can have a classical or semiclassical description in terms of string calculations, as one might expect from general considerations of open/closed duality. We begin in Chapter 1 by reviewing the simplest duality, which relates Type IIB supergravity in AdS5 x S5 to N = 4 SU(N) gauge theory at large N. Working with this background spacetirne, we turn to a study of D-brane probes with large quantum numbers in Chapter 2. We employ semiclassical methods to compute the excitation spectrum of these D-branes, including corrections of order 1/N, which are related to loop effects in the dual field theory. In Chapter 3 we discuss the gauge/gravity duals with N = 1 supersymmetry which arise from placing D-branes at a conifold singularity. The inclusion of fractional D3-branes breaks conformal invariance, leading to a rich variety of phenomena in the gauge theory, among them chiral anomalies, a cascade of Seiberg dualities and confinement in the infrared. We pay particular attention to the chiral anomalies of the gauge theory and show that they can be described in terms of classical spontaneous symmetry breaking in the dual string theory. In accord with low-energy confinement in the field theory, almost all of the moduli of the supergravity solution are fixed; we conclude Chapter 3 with some observations on the possibility of stabilizing the volume of the compact space in which the conifold is embedded. Finally, in Chapter 4 we study versions of the conifold theory with D7-branes, which introduce fundamental matter into the gauge theory. By solving the classical supergravity equations of motion we identify a variant of the Klebanov-Strassler duality cascade where the rate of the cascade decreases as the theory flows to low energies.

  15. Enhanced gauge symmetry and winding modes in double field theory

    NASA Astrophysics Data System (ADS)

    Aldazabal, G.; Graña, M.; Iguri, S.; Mayo, M.; Nuñez, C.; Rosabal, J. A.

    2016-03-01

    We provide an explicit example of how the string winding modes can be incorporated in double field theory. Our guiding case is the closed bosonic string compactified on a circle of radius close to the self-dual point, where some modes with non-zero winding or discrete momentum number become massless and enhance the U(1) × U(1) symmetry to SU(2) × SU(2). We compute three-point string scattering amplitudes of massless and slightly massive states, and extract the corresponding effective low energy gauge field theory. The enhanced gauge symmetry at the self-dual point and the Higgs-like mechanism arising when changing the compactification radius are examined in detail. The extra massless fields associated to the enhancement are incorporated into a generalized frame with Oleft(d+3,d+3right)/Oleft(d+3right)× Oleft(d+3right) structure, where d is the number of non-compact dimensions. We devise a consistent double field theory action that reproduces the low energy string effective action with enhanced gauge symmetry. The construction requires a truly non-geometric frame which explicitly depends on both the compact coordinate along the circle and its dual.

  16. Polarization-dependent optics using gauge-field metamaterials

    SciTech Connect

    Liu, Fu; Xiao, Shiyi; Li, Jensen; Wang, Saisai; Hang, Zhi Hong

    2015-12-14

    We show that effective gauge field for photons with polarization-split dispersion surfaces, being realized using uniaxial metamaterials, can be used for polarization control with unique opportunities. The metamaterials with the proposed gauge field correspond to a special choice of eigenpolarizations on the Poincaré sphere as pseudo-spins, in contrary to those from either conventional birefringent crystals or optical active media. It gives rise to all-angle polarization control and a generic route to manipulate photon trajectories or polarizations in the pseudo-spin domain. As demonstrations, we show beam splitting (birefringent polarizer), all-angle polarization control, unidirectional polarization filter, and interferometer as various polarization control devices in the pseudo-spin domain. We expect that more polarization-dependent devices can be designed under the same framework.

  17. On discrete symmetries for a whole Abelian model

    NASA Astrophysics Data System (ADS)

    Chauca, J.; Doria, R.

    2012-10-01

    Considering the whole concept applied to gauge theory a nonlinear abelian model is derived. A next step is to understand on the model properties. At this work, it will be devoted to discrete symmetries. For this, we will work based in two fields reference systems. This whole gauge symmetry allows to be analyzed through different sets which are the constructor basis {Dμ,Xiμ} and the physical basis {GμI}. Taking as fields reference system the diagonalized spin-1 sector, P, C, T and PCT symmetries are analyzed. They show that under this systemic model there are conservation laws driven for the parts and for the whole. It develops the meaning of whole-parity, field-parity and so on. However it is the whole symmetry that rules. This means that usually forbidden particles as pseudovector photons can be introduced through such whole abelian system. As result, one notices that the fields whole {GμI} manifest a quanta diversity. It involves particles with different spins, masses and discrete quantum numbers under a same gauge symmetry. It says that without violating PCT symmetry different possibilities on discrete symmetries can be accommodated.

  18. On discrete symmetries for a whole Abelian model

    SciTech Connect

    Chauca, J.; Doria, R.

    2012-09-24

    Considering the whole concept applied to gauge theory a nonlinear abelian model is derived. A next step is to understand on the model properties. At this work, it will be devoted to discrete symmetries. For this, we will work based in two fields reference systems. This whole gauge symmetry allows to be analyzed through different sets which are the constructor basis {l_brace}D{sub {mu}},X{sup i}{sub {mu}}{r_brace} and the physical basis {l_brace}G{sub {mu}I}{r_brace}. Taking as fields reference system the diagonalized spin-1 sector, P, C, T and PCT symmetries are analyzed. They show that under this systemic model there are conservation laws driven for the parts and for the whole. It develops the meaning of whole-parity, field-parity and so on. However it is the whole symmetry that rules. This means that usually forbidden particles as pseudovector photons can be introduced through such whole abelian system. As result, one notices that the fields whole {l_brace}G{sub {mu}I}{r_brace} manifest a quanta diversity. It involves particles with different spins, masses and discrete quantum numbers under a same gauge symmetry. It says that without violating PCT symmetry different possibilities on discrete symmetries can be accommodated.

  19. Super-gauge field in de Sitter universe

    NASA Astrophysics Data System (ADS)

    Parsamehr, S.; Enayati, M.; Takook, M. V.

    2016-05-01

    The Gupta-Bleuler triplet for a vector-spinor gauge field is presented in the de Sitter ambient space formalism. The invariant space of field equation solutions is obtained with respect to an indecomposable representation of the de Sitter group. By using the general solution of the massless spin-3/2 field equation, the vector-spinor quantum field operator and its corresponding Fock space is constructed. The quantum field operator can be written in terms of the vector-spinor polarization states and a quantum conformally coupled massless scalar field, which is constructed on Bunch-Davies vacuum state. The two-point function is also presented, which is de Sitter covariant and analytic.

  20. Modulation of the waterfall by a gauge field

    SciTech Connect

    Lyth, David H.; Karčiauskas, Mindaugas E-mail: mindaugas@ugr.es

    2013-01-01

    We present the first complete calculation of the curvature perturbation generated during the hybrid inflation waterfall, caused by the coupling of the waterfall field to a gauge field A whose kinetic function f{sup 2} depends on the inflaton field. We impose an upper bound on the field A≡fA which ensures that it has a negligible effect before the waterfall. We confirm the claim of Soda and Yokoyama, that the perturbation δB generates a statistically anisotropic spectrum and bispectrum, which could easily be observable. We also discover a new phenomenon, whereby the time-dependent 'varyon' field B causes the inflaton contribution to vary during the waterfall. The varyon mechanism might be implemented also with a scalar field and might not involve the waterfall.

  1. Modulation of the waterfall by a gauge field

    NASA Astrophysics Data System (ADS)

    Lyth, David H.; Karčiauskas, Mindaugas

    2013-01-01

    We present the first complete calculation of the curvature perturbation generated during the hybrid inflation waterfall, caused by the coupling of the waterfall field to a gauge field A whose kinetic function f2 depends on the inflaton field. We impose an upper bound on the field A≡fA which ensures that it has a negligible effect before the waterfall. We confirm the claim of Soda and Yokoyama, that the perturbation δB generates a statistically anisotropic spectrum and bispectrum, which could easily be observable. We also discover a new phenomenon, whereby the time-dependent `varyon' field B causes the inflaton contribution to vary during the waterfall. The varyon mechanism might be implemented also with a scalar field and might not involve the waterfall.

  2. Strong-field approximation for intense-laser-atom processes: The choice of gauge

    SciTech Connect

    Bauer, D.; Milosevic, D.B.; Becker, W.

    2005-08-15

    The strong-field approximation (SFA) can be and has been applied in both length gauge and velocity gauge with quantitatively conflicting answers. For ionization of negative ions with a ground state of odd parity, the predictions of the two gauges differ qualitatively: in the envelope of the angular-resolved energy spectrum, dips in one gauge correspond to humps in the other. We show that the length-gauge SFA matches the exact numerical solution of the time-dependent Schroedinger equation.

  3. Equivariant fields in an S U (N ) gauge theory with new spontaneously generated fuzzy extra dimensions

    NASA Astrophysics Data System (ADS)

    Kürkçüoǧlu, S.; Ünal, G.

    2016-05-01

    We find new spontaneously generated fuzzy extra dimensions emerging from a certain deformation of N =4 supersymmetric Yang-Mills theory with cubic soft supersymmetry breaking and mass deformation terms. First, we determine a particular four-dimensional fuzzy vacuum that may be expressed in terms of a direct sum of product of two fuzzy spheres, and denote it in short as SF2 Int×SF2 Int . The direct sum structure of the vacuum is clearly revealed by a suitable splitting of the scalar fields in the model in a manner that generalizes our approach in [Phys. Rev. D 92, 025022 (2015)]. Fluctuations around this vacuum have the structure of gauge fields over SF2 Int×SF2 Int, and this enables us to conjecture the spontaneous broken model as an effective U (n ) (n gauge theory on the product manifold M4×SF2 Int×SF2 Int. We support this interpretation by examining the U (4 ) theory and determining all of the S U (2 )×S U (2 ) equivariant fields in the model, characterizing its low energy degrees of freedom. Monopole sectors with winding numbers (±1 ,0 ),(0 ,±1 ),(±1 ,±1 ) are accessed from SF2 Int×SF2 Int after suitable projections, and subsequently equivariant fields in these sectors are obtained. We indicate how Abelian Higgs type models with vortex solutions emerge after dimensionally reducing over the fuzzy monopole sectors as well. A family of fuzzy vacua is determined by giving a systematic treatment for the splitting of the scalar fields, and it is made manifest that suitable projections of these vacuum solutions yield all higher winding number fuzzy monopole sectors. We observe that the vacuum configuration SF2 Int×SF2 Int identifies with the bosonic part of the product of two fuzzy superspheres with O S P (2 ,2 )×O S P (2 ,2 ) supersymmetry and elaborate on this unexpected and intriguing feature.

  4. Gauge invariant approach to low-spin anomalous conformal currents and shadow fields

    SciTech Connect

    Metsaev, R. R.

    2011-05-15

    Conformal low-spin anomalous currents and shadow fields in flat space-time of dimensions greater than or equal to four are studied. The gauge invariant formulation for such currents and shadow fields is developed. Gauge symmetries are realized by involving Stueckelberg and auxiliary fields. The gauge invariant differential constraints for anomalous currents and shadow fields and the realization of global conformal symmetries are obtained. Gauge invariant two-point vertices for anomalous shadow fields are also obtained. In the Stueckelberg gauge frame, these gauge invariant vertices become the standard two-point vertices of conformal field theory. Light-cone gauge two-point vertices of the anomalous shadow fields are derived. The AdS/CFT correspondence for anomalous currents and shadow fields and the respective normalizable and non-normalizable solutions of massive low-spin anti-de Sitter fields is studied. The bulk fields are considered in a modified de Donder gauge that leads to decoupled equations of motion. We demonstrate that leftover on-shell gauge symmetries of bulk massive fields correspond to gauge symmetries of boundary anomalous currents and shadow fields, while the modified (Lorentz) de Donder gauge conditions for bulk massive fields correspond to differential constraints for boundary anomalous currents and shadow fields.

  5. Axion inflation with gauge field production and primordial black holes

    NASA Astrophysics Data System (ADS)

    Bugaev, Edgar; Klimai, Peter

    2014-11-01

    We study the process of primordial black hole (PBH) formation at the beginning of the radiation era for the cosmological scenario in which the inflaton is a pseudo-Nambu-Goldstone boson (axion) and there is a coupling of the inflaton with some gauge field. In this model inflation is accompanied by the gauge quanta production, and a strong rise of the curvature power spectrum amplitude at small scales (along with non-Gaussianity) is predicted. We show that data on PBH searches can be used for a derivation of essential constraints on the model parameters in such an axion inflation scenario. We compare our numerical results with the similar results published earlier, in the work [A. Linde, S. Mooij, and E. Pajer, Phys. Rev. D 87, 103506 (2013)].

  6. Synthetic gauge fields for vibrational excitations of trapped ions.

    PubMed

    Bermudez, Alejandro; Schaetz, Tobias; Porras, Diego

    2011-10-01

    The vibrations of a collection of ions in a microtrap array can be described in terms of tunneling phonons. We show that the vibrational couplings may be tailored by using a gradient of the trap frequencies together with a periodic driving of the trapping potentials. These ingredients allow us to induce effective gauge fields on the vibrational excitations, such that phonons mimic the behavior of charged particles in a magnetic field. In particular, microtrap arrays are well suited to realize a quantum simulator of the famous Aharonov-Bohm effect and observe the paradigmatic edge states typical from quantum-Hall samples and topological insulators. PMID:22107274

  7. Langevin description of gauged scalar fields in a thermal bath

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yuhei; Motohashi, Hayato; Suyama, Teruaki; Yokoyama, Jun'ichi

    2014-04-01

    We study the dynamics of the oscillating gauged scalar field in a thermal bath. A Langevin-type equation of motion of the scalar field, which contains both dissipation and fluctuation terms, is derived by using the real-time finite-temperature effective action approach. The existence of the quantum fluctuation-dissipation relation between the nonlocal dissipation term and the Gaussian stochastic noise terms is verified. We find that the noise variables are anticorrelated at equal time. The dissipation rate for each mode is also studied, which turns out to depend on the wave number.

  8. A generally relativistic gauge classification of the Dirac fields

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca

    2016-04-01

    We consider generally relativistic gauge transformations for the spinorial fields finding two mutually exclusive but together exhaustive classes in which fermions are placed adding supplementary information to the results obtained by Lounesto, and identifying quantities analogous to the momentum vector and the Pauli-Lubanski axial vector. We discuss how our results are similar to those obtained by Wigner by taking into account the system of Dirac field equations. We will investigate the consequences for the dynamics and in particular we shall address the problem of getting the nonrelativistic approximation in a consistent way. We are going to comment on extensions.

  9. CMB power spectrum contribution from cosmic strings using field-evolution simulations of the Abelian Higgs model

    SciTech Connect

    Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon

    2007-03-15

    We present the first field-theoretic calculations of the contribution made by cosmic strings to the temperature power spectrum of the cosmic microwave background (CMB). Unlike previous work, in which strings were modeled as idealized one-dimensional objects, we evolve the simplest example of an underlying field theory containing local U(1) strings, the Abelian Higgs model. Limitations imposed by finite computational volumes are overcome using the scaling property of string networks and a further extrapolation related to the lessening of the string width in comoving coordinates. The strings and their decay products, which are automatically included in the field theory approach, source metric perturbations via their energy-momentum tensor, the unequal-time correlation functions of which are used as input into the CMB calculation phase. These calculations involve the use of a modified version of CMBEASY, with results provided over the full range of relevant scales. We find that the string tension {mu} required to normalize to the WMAP 3-year data at multipole l=10 is G{mu}=[2.04{+-}0.06(stat.){+-}0.12(sys.)]x10{sup -6}, where we have quoted statistical and systematic errors separately, and G is Newton's constant. This is a factor 2-3 higher than values in current circulation.

  10. Quantum structure of the non-Abelian Weizsäcker-Williams field for a very large nucleus

    NASA Astrophysics Data System (ADS)

    Kovchegov, Yuri V.

    1997-05-01

    We consider the McLerran-Venugopalan model for calculation of the small-x part of the gluon distribution function for a very large ultrarelativistic nucleus at weak coupling. We construct the Feynman diagrams which correspond to the classical Weizsäcker-Williams field found previously [Yu. V. Kovchegov, Phys. Rev. D 54, 5463 (1996)] as a solution of the classical equations of motion for the gluon field in the light-cone gauge. Analyzing these diagrams we obtain a limit for the McLerran-Venugopalan model. We show that as long as this limit is not violated a classical field can be used for the calculation of scattering amplitudes.

  11. Optomechanical Metamaterials: Dirac polaritons, Gauge fields, and Instabilities

    NASA Astrophysics Data System (ADS)

    Peano, Vittorio; Schmidt, Michael; Marquardt, Florian

    2014-03-01

    Freestanding photonic crystals can be used to trap both light and mechanical vibrations. These ``optomechanical crystal'' structures have already been experimentally demonstrated to yield strong coupling between a photon mode and a phonon mode, co-localized at a single defect site. Future devices may feature a regular superlattice of such defects, turning them into ``optomechanical arrays.'' We predict that tailoring the optomechanical band structure of such arrays can be used to implement Dirac physics of photons and phonons, to create a photonic gauge field via mechanical vibrations, and to observe a novel optomechanical instability. ERC Starting Grant OPTOMECH and via the DARPA program ORCHID.

  12. The energy-momentum tensor(s) in classical gauge theories

    DOE PAGESBeta

    Gieres, Francois; Blaschke, Daniel N.; Reboud, Meril; Schweda, Manfred

    2016-07-12

    We give an introduction to, and review of, the energy–momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space–time. For the canonical energy–momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy–momentum tensor. Here, the relationship with the Einstein–Hilbert tensor following from the coupling to a gravitational field is also discussed.

  13. Gauge fields in graphene with nonuniform elastic deformations: A quantum field theory approach

    NASA Astrophysics Data System (ADS)

    Arias, Enrique; Hernández, Alexis R.; Lewenkopf, Caio

    2015-12-01

    We investigate the low-energy continuum limit theory for electrons in a graphene sheet under strain. We use the quantum field theory in curved spaces to analyze the effect of the system deformations into an effective gauge field. We study both in-plane and out-of-plane deformations and obtain a closed expression for the effective gauge field due to arbitrary nonuniform sheet deformations. The obtained results reveal a remarkable relation between the local-pseudomagnetic field and the Riemann curvature, so far overlooked.

  14. Quark masses, the Dashen phase, and gauge field topology

    SciTech Connect

    Creutz, Michael

    2013-12-15

    The CP violating Dashen phase in QCD is predicted by chiral perturbation theory to occur when the up–down quark mass difference becomes sufficiently large at fixed down-quark mass. Before reaching this phase, all physical hadronic masses and scattering amplitudes are expected to behave smoothly with the up-quark mass, even as this mass passes through zero. In Euclidean space, the topological susceptibility of the gauge fields is positive at positive quark masses but diverges to negative infinity as the Dashen phase is approached. A zero in this susceptibility provides a tentative signal for the point where the mass of the up quark vanishes. I discuss potential ambiguities with this determination. -- Highlights: •The CP violating Dashen phase in QCD occurs when the up quark mass becomes sufficiently negative. •Before reaching this phase, all physical hadronic masses and scattering amplitudes behave smoothly with the up-quark mass. •The topological susceptibility of the gauge fields diverges to negative infinity as the Dashen phase is approached. •A zero in the topological susceptibility provides a tentative signal for the point where the mass of the up quark vanishes. •The universality of this definition remains unproven. Potential ambiguities are discussed.

  15. Geometry and dynamics of a coupled 4 D-2 D quantum field theory

    NASA Astrophysics Data System (ADS)

    Bolognesi, Stefano; Chatterjee, Chandrasekhar; Evslin, Jarah; Konishi, Kenichi; Ohashi, Keisuke; Seveso, Luigi

    2016-01-01

    Geometric and dynamical aspects of a coupled 4 D-2 D interacting quantum field theory — the gauged nonAbelian vortex — are investigated. The fluctuations of the internal 2 D nonAbelian vortex zeromodes excite the massless 4 D Yang-Mills modes and in general give rise to divergent energies. This means that the well-known 2 D C{P}^{N-1} zeromodes associated with a nonAbelian vortex become nonnormalizable.

  16. Gauge invariant backreaction in general single field models of inflation

    NASA Astrophysics Data System (ADS)

    Marozzi, G.; Vacca, G. P.

    2013-07-01

    In a general single field inflationary model, we consider the effects of long wavelength scalar fluctuations on the effective expansion rate and equation of state seen by a class of free-falling observers, using a physical gauge invariant formulation. In a previous work we showed that for a free massive inflaton no backreaction is observed within some constraints. In this paper we extend the validity of our previous results to the case of an arbitrary self-interacting inflation potential, working to second order in cosmological perturbation theory and to all order in slow-roll approximation. For these general inflationary models, we also show the equivalence of the free-falling observers to the ones comoving with the inflaton field.

  17. Tight-binding lattices with an oscillating imaginary gauge field

    NASA Astrophysics Data System (ADS)

    Longhi, Stefano

    2016-08-01

    We consider non-Hermitian dynamics of a quantum particle hopping on a one-dimensional tight-binding lattice made of N sites with asymmetric hopping rates induced by a time-periodic oscillating imaginary gauge field. A deeply different behavior is found depending on the lattice topology. While in a linear chain (open boundary conditions) an oscillating field can lead to a complex quasienergy spectrum via a multiple parametric resonance; in a ring topology (Born-von Karman periodic boundary conditions) an entirely real quasienergy spectrum can be found and the dynamics is pseudo-Hermitian. In the large-N limit, parametric instability and pseudo-Hermitian dynamics in the two different lattice topologies are physically explained on the basis of a simple picture of wave-packet propagation.

  18. Topological Growing of Laughlin States in Synthetic Gauge Fields

    NASA Astrophysics Data System (ADS)

    Grusdt, Fabian; Letscher, Fabian; Hafezi, Mohammad; Fleischhauer, Michael

    2014-10-01

    We suggest a scheme for the preparation of highly correlated Laughlin states in the presence of synthetic gauge fields, realizing an analogue of the fractional quantum Hall effect in photonic or atomic systems of interacting bosons. It is based on the idea of growing such states by adding weakly interacting composite fermions along with magnetic flux quanta one by one. The topologically protected Thouless pump ("Laughlin's argument") is used to create two localized flux quanta and the resulting hole excitation is subsequently filled by a single boson, which, together with one of the flux quanta, forms a composite fermion. Using our protocol, filling 1/2 Laughlin states can be grown with particle number N increasing linearly in time and strongly suppressed number fluctuations. To demonstrate the feasibility of our scheme, we consider two-dimensional lattices subject to effective magnetic fields and strong on-site interactions. We present numerical simulations of small lattice systems and also discuss the influence of losses.

  19. Capitulation in Abelian extensions of some fields ℚ (√{p1p2q , }i )

    NASA Astrophysics Data System (ADS)

    Azizi, Abdelmalek; Zekhnini, Abdelkader; Taous, Mohammed

    2016-02-01

    We study the capitulation of the 2-ideal classes of an infinite family of imaginary biquadratic number fields consisting of fields k =ℚ (√{p1p2q , }i ), where i =√{-1 } and p1 ≡ p2 ≡ -q ≡ 1 (mod 4) are different primes. For each of the three quadratic extensions K /k inside the absolute genus field k(*) of k , we compute the capitulation kernel of K /k . Then we deduce that each strongly ambiguous class of k /ℚ (i ) capitulates already in k(*), which is smaller than the relative genus field (k/ℚ (i )) *.

  20. Efficient computation of root numbers and class numbers of parametrized families of real abelian number fields

    NASA Astrophysics Data System (ADS)

    Louboutin, Stephane R.

    2007-03-01

    Let \\{K_m\\} be a parametrized family of simplest real cyclic cubic, quartic, quintic or sextic number fields of known regulators, e.g., the so-called simplest cubic and quartic fields associated with the polynomials P_m(x) Dx^3 -mx^2-(m+3)x+1 and P_m(x) Dx^4 -mx^3-6x^2+mx+1 . We give explicit formulas for powers of the Gaussian sums attached to the characters associated with these simplest number fields. We deduce a method for computing the exact values of these Gaussian sums. These values are then used to efficiently compute class numbers of simplest fields. Finally, such class number computations yield many examples of real cyclotomic fields Q(zeta_p)^+ of prime conductors pge 3 and class numbers h_p^+ greater than or equal to p . However, in accordance with Vandiver's conjecture, we found no example of p for which p divides h_p^+ .

  1. Gauge fields, strings, solitons, anomalies, and the speed of life

    NASA Astrophysics Data System (ADS)

    Niemi, A. J.

    2014-10-01

    Joel Cohen proposed that "mathematics is biology's next microscope, only better; biology is mathematics' next physics, only better." Here, we aim for something even better. We try to combine mathematical physics and biology into a picoscope of life. For this, we merge techniques that were introduced and developed in modern mathematical physics, largely by Ludvig Faddeev, to describe objects such as solitons and Higgs and to explain phenomena such as anomalies in gauge fields. We propose a synthesis that can help to resolve the protein folding problem, one of the most important conundrums in all of science. We apply the concept of gauge invariance to scrutinize the extrinsic geometry of strings in three-dimensional space. We evoke general principles of symmetry in combination with Wilsonian universality and derive an essentially unique Landau-Ginzburg energy that describes the dynamics of a generic stringlike configuration in the far infrared. We observe that the energy supports topological solitons that relate to an anomaly similarly to how a string is framed around its inflection points. We explain how the solitons operate as modular building blocks from which folded proteins are composed. We describe crystallographic protein structures by multisolitons with experimental precision and investigate the nonequilibrium dynamics of proteins under temperature variations. We simulate the folding process of a protein at in vivo speed and with close to picoscale accuracy using a standard laptop computer. With picobiology as next pursuit of mathematical physics, things can only get better.

  2. Yang-Mills field theory in an axial field-strength gauge

    NASA Astrophysics Data System (ADS)

    Tyburski, Lawrence

    1984-02-01

    We introduce what we call an axial field-strength gauge as an alternative to the conventional Coulomb gauge in the Yang-Mills field theory. This new gauge does not share the pathologies that were shown to exist in the Coulomb gauge by Gribov and Mandelstam. We apply this new gauge to the calculation, in two special cases, of the energy possessed by sources J1,20 interacting in the presence of a background field produced by a source J30, which is assumed to be of order g-1, in the limit g goes to zero, where g is the coupling constant. In the case in which the charge density J30 consists of two infinite uniform parallel plates bearing charge densities equal in magnitude but opposite in sign, we find that the potential energy possessed by two point particles bearing charge densities J1,20 grows linearly in proportion to the distance between them at large distances when the two particles are separated along a line parallel to the background field. This is a confining potential.

  3. Calibration and characterization of Bayard--Alpert gauges operating in high magnetic fields

    SciTech Connect

    Pickles, W.L.; Hunt, A.L.

    1986-05-01

    Standard Bayard--Alpert gauges have been successfully operated for several months in 0.3--0.7 T magnetic fields at eleven locations near the plasma edge of the Tandem Mirror Experiment-Upgrade (TMX-U). After individual calibration in the local TMX-U magnetic field, the gauges clearly measure gas density. One of these eleven gauges has been studied extensively and has maintained calibration within 12% during this period of operation. All gauge filaments are tungsten and are heated with direct current. The gauge housing allows operation in the low density plasma outside the limiter radius by thermalizing the neutral gas that enters the gauge and by preventing plasma from entering the gauge. Changing the orientation of the gauge with respect to the magnetic field changes the gauge calibration, or effective sensitivity, by as much as a factor of 100. Only some orientations of the filament collector plane with respect to the magnetic field direction allow calibrated operation as a pressure gauge. This range of angles is approximately from 20/sup 0/ to 50/sup 0/. Each of the eleven gauges was oriented to produce a usable sensitivity, then calibrated for the magnetic field effects at that position. After initial operation in the magnetic field, a small recalibration of less than 10% for permanent filament distortion was necessary for the unshielded gauge. For D/sub 2/, CH/sub 4/, X/sub e/ and Kr gas, the measured recalibration factor to the gauge sensitivity in the same high magnetic field varied only 16% rms about the average of 9.7 for the unshielded gauge. Repeated measurement of the magnetic recalibration for each of the species over a 1 month period showed less than 12% variation.

  4. Chiral imprint of a cosmic gauge field on primordial gravitational waves

    NASA Astrophysics Data System (ADS)

    Bielefeld, Jannis; Caldwell, Robert R.

    2015-06-01

    A cosmological gauge field with isotropic stress-energy introduces parity violation into the behavior of gravitational waves. We show that a primordial spectrum of inflationary gravitational waves develops a preferred handedness, left or right circularly polarized, depending on the abundance and coupling of the gauge field during the radiation era. A modest abundance of the gauge field would induce parity-violating correlations of the cosmic microwave background temperature and polarization patterns that could be detected by current and future experiments.

  5. Competition between Abelian and Zeeman magnetic field effects in a two dimensional ultracold gas of fermions

    SciTech Connect

    Cichy, Agnieszka; Polak, Tomasz P.

    2015-03-15

    The ground state of ultracold fermions in the presence of effects of orbital and Zeeman magnetic fields is analyzed. Five different states are found: unpolarized superconducting state, partially and fully polarized normal states and phase separated regions, partially or fully polarized. The system, in the presence of orbital synthetic magnetic field effects, shows non-monotonous changes of the phase boundaries when electron concentration is varied. We observe not only reentrant phenomena, but also density dependent oscillations of different areas of the phase diagram. Moreover the chemical potential shows oscillatory behavior and discontinuities with respect to changes in the number of fermions.

  6. Quantum structure of the non-Abelian Weizs{umlt a}cker-Williams field for a very large nucleus

    SciTech Connect

    Kovchegov, Y.V.

    1997-05-01

    We consider the McLerran-Venugopalan model for calculation of the small-x part of the gluon distribution function for a very large ultrarelativistic nucleus at weak coupling. We construct the Feynman diagrams which correspond to the classical Weizs{umlt a}cker-Williams field found previously [Yu. V. Kovchegov, Phys. Rev. D {bold 54}, 5463 (1996)] as a solution of the classical equations of motion for the gluon field in the light-cone gauge. Analyzing these diagrams we obtain a limit for the McLerran-Venugopalan model. We show that as long as this limit is not violated a classical field can be used for the calculation of scattering amplitudes. {copyright} {ital 1997} {ital The American Physical Society}

  7. Abelian and non-Abelian bosonization: The operator solution of the WZW. sigma. model

    SciTech Connect

    do Amaral, R.L.P.G. ); Stephany Ruiz, J.E. )

    1991-03-15

    The complete equivalence between the Abelian and the non-Abelian bosonization formalisms for the treatment of SU({ital N}) fermions in two dimensions is analyzed and the operator solution of the Wess-Zumino-Witten nonlinear {sigma} model, written in terms of the scalar fields of the non-Abelian construction, is obtained. The importance of the order and disorder operators is stressed. In particular, they are used to show that an adequate reinterpretation of Mandelstam's formula gives the fermion representation in the non-Abelian bosonization formalism.

  8. The Abelian Higgs model and a minimal length in an un-particle scenario

    NASA Astrophysics Data System (ADS)

    Gaete, Patricio; Spallucci, Euro

    2014-01-01

    We consider both the Abelian Higgs model and the impact of a minimal length in the un-particle sector. It is shown that even if the Higgs field takes a non-vanishing vacuum expectation value (v.e.v.), gauge interaction keeps its long-range character leading to an effective gauge symmetry restoration. The effect of a quantum-gravity-induced minimal length on a physical observable is then estimated by using a physically based alternative to the usual Wilson loop approach. Interestingly, we obtain an ultraviolet finite interaction energy described by a confluent hypergeometric function, which shows a remarkable richness of behavior.

  9. Standard model with partial gauge invariance

    NASA Astrophysics Data System (ADS)

    Chkareuli, J. L.; Kepuladze, Z.

    2012-03-01

    We argue that an exact gauge invariance may disable some generic features of the Standard Model which could otherwise manifest themselves at high energies. One of them might be related to the spontaneous Lorentz invariance violation (SLIV), which could provide an alternative dynamical approach to QED and Yang-Mills theories with photon and non-Abelian gauge fields appearing as massless Nambu-Goldstone bosons. To see some key features of the new physics expected we propose partial rather than exact gauge invariance in an extended SM framework. This principle applied, in some minimal form, to the weak hypercharge gauge field B μ and its interactions, leads to SLIV with B field components appearing as the massless Nambu-Goldstone modes, and provides a number of distinctive Lorentz breaking effects. Being naturally suppressed at low energies they may become detectable in high energy physics and astrophysics. Some of the most interesting SLIV processes are considered in significant detail.

  10. On the controllers of prime ideals of group algebras of Abelian torsion-free groups of finite rank over a field of positive characteristic

    SciTech Connect

    Tushev, A V

    2006-10-31

    In the present paper certain methods are developed that enable one to study the properties of the controller of a prime faithful ideal I of the group algebra kA of an Abelian torsion-free group A of finite rank over a field k. The main idea is that the quotient ring kA/I by the given ideal I can be embedded as an integral domain k[A] into some field F and the group A becomes a subgroup of the multiplicative group of the field F. This allows one to apply certain results of field theory, such as Kummer's theory and the properties of the multiplicative groups of fields, to the study of the integral domain k[A]. In turn, the properties of the integral domain k[A]{approx_equal}kA/I depend essentially on the properties of the ideal I. In particular, by using these methods, an independent proof of the new version of Brookes's theorem on the controllers of prime ideals of the group algebra kA of an Abelian torsion-free group A of finite rank is obtained in the case where the field k has positive characteristic.

  11. Multiflavor QCD* on R_3 * S_1: Studying Transition From Abelian to Non-Abelian Confinement

    SciTech Connect

    Shifman, M.; Unsal, M.; /SLAC /Stanford U., Phys. Dept.

    2009-03-31

    The center-stabilized multiflavor QCD* theories formulated on R{sub 3} x S{sub 1} exhibit both Abelian and non-Abelian confinement as a function of the S{sub 1} radius, similar to the Seiberg-Witten theory as a function of the mass deformation parameter. For sufficiently small number of flavors and small r(S{sub 1}), we show occurrence of a mass gap in gauge fluctuations, and linear confinement. This is a regime of confinement without continuous chiral symmetry breaking ({chi}SB). Unlike one-flavor theories where there is no phase transition in r(S{sub 1}), the multiflavor theories possess a single phase transition associated with breaking of the continuous {chi}S. We conjecture that the scale of the {chi}SB is parametrically tied up with the scale of Abelian to non-Abelian confinement transition.

  12. Topological growing of Laughlin states in synthetic gauge fields.

    PubMed

    Grusdt, Fabian; Letscher, Fabian; Hafezi, Mohammad; Fleischhauer, Michael

    2014-10-10

    We suggest a scheme for the preparation of highly correlated Laughlin states in the presence of synthetic gauge fields, realizing an analogue of the fractional quantum Hall effect in photonic or atomic systems of interacting bosons. It is based on the idea of growing such states by adding weakly interacting composite fermions along with magnetic flux quanta one by one. The topologically protected Thouless pump ("Laughlin's argument") is used to create two localized flux quanta and the resulting hole excitation is subsequently filled by a single boson, which, together with one of the flux quanta, forms a composite fermion. Using our protocol, filling 1/2 Laughlin states can be grown with particle number N increasing linearly in time and strongly suppressed number fluctuations. To demonstrate the feasibility of our scheme, we consider two-dimensional lattices subject to effective magnetic fields and strong on-site interactions. We present numerical simulations of small lattice systems and also discuss the influence of losses. PMID:25375718

  13. Gauge fields in real and momentum spaces in magnets: monopoles and skyrmions.

    PubMed

    Nagaosa, N; Yu, X Z; Tokura, Y

    2012-12-28

    Electronic states in magnets are characterized by the quantum mechanical Berry phase defined in both the real and momentum spaces. This Berry phase constitutes the gauge fields, i.e. the emergent electromagnetic fields in solids, and affects the motion of the electrons. In momentum space, the band crossings act as the magnetic monopoles, i.e. the sources or sinks of the gauge flux. In real space, the spin textures with non-coplanar spin configurations produce the gauge field by the solid angle leading to the spin chirality. Skyrmion is the representative structure supporting this gauge field. A typical phenomenon reflecting this gauge field is the anomalous Hall effect, i.e. the Hall effect produced by the spontaneous magnetization combined with the relativistic spin-orbit interaction. We discuss a few examples recently studied related to these issues with some new results on skyrmion formation. PMID:23166382

  14. Gauge-invariant expectation values of the energy of a molecule in an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Mandal, Anirban; Hunt, Katharine L. C.

    2016-01-01

    In this paper, we show that the full Hamiltonian for a molecule in an electromagnetic field can be separated into a molecular Hamiltonian and a field Hamiltonian, both with gauge-invariant expectation values. The expectation value of the molecular Hamiltonian gives physically meaningful results for the energy of a molecule in a time-dependent applied field. In contrast, the usual partitioning of the full Hamiltonian into molecular and field terms introduces an arbitrary gauge-dependent potential into the molecular Hamiltonian and leaves a gauge-dependent form of the Hamiltonian for the field. With the usual partitioning of the Hamiltonian, this same problem of gauge dependence arises even in the absence of an applied field, as we show explicitly by considering a gauge transformation from zero applied field and zero external potentials to zero applied field, but non-zero external vector and scalar potentials. We resolve this problem and also remove the gauge dependence from the Hamiltonian for a molecule in a non-zero applied field and from the field Hamiltonian, by repartitioning the full Hamiltonian. It is possible to remove the gauge dependence because the interaction of the molecular charges with the gauge potential cancels identically with a gauge-dependent term in the usual form of the field Hamiltonian. We treat the electromagnetic field classically and treat the molecule quantum mechanically, but nonrelativistically. Our derivation starts from the Lagrangian for a set of charged particles and an electromagnetic field, with the particle coordinates, the vector potential, the scalar potential, and their time derivatives treated as the variables in the Lagrangian. We construct the full Hamiltonian using a Lagrange multiplier method originally suggested by Dirac, partition this Hamiltonian into a molecular term Hm and a field term Hf, and show that both Hm and Hf have gauge-independent expectation values. Any gauge may be chosen for the calculations; but

  15. Gauge-invariant expectation values of the energy of a molecule in an electromagnetic field.

    PubMed

    Mandal, Anirban; Hunt, Katharine L C

    2016-01-28

    In this paper, we show that the full Hamiltonian for a molecule in an electromagnetic field can be separated into a molecular Hamiltonian and a field Hamiltonian, both with gauge-invariant expectation values. The expectation value of the molecular Hamiltonian gives physically meaningful results for the energy of a molecule in a time-dependent applied field. In contrast, the usual partitioning of the full Hamiltonian into molecular and field terms introduces an arbitrary gauge-dependent potential into the molecular Hamiltonian and leaves a gauge-dependent form of the Hamiltonian for the field. With the usual partitioning of the Hamiltonian, this same problem of gauge dependence arises even in the absence of an applied field, as we show explicitly by considering a gauge transformation from zero applied field and zero external potentials to zero applied field, but non-zero external vector and scalar potentials. We resolve this problem and also remove the gauge dependence from the Hamiltonian for a molecule in a non-zero applied field and from the field Hamiltonian, by repartitioning the full Hamiltonian. It is possible to remove the gauge dependence because the interaction of the molecular charges with the gauge potential cancels identically with a gauge-dependent term in the usual form of the field Hamiltonian. We treat the electromagnetic field classically and treat the molecule quantum mechanically, but nonrelativistically. Our derivation starts from the Lagrangian for a set of charged particles and an electromagnetic field, with the particle coordinates, the vector potential, the scalar potential, and their time derivatives treated as the variables in the Lagrangian. We construct the full Hamiltonian using a Lagrange multiplier method originally suggested by Dirac, partition this Hamiltonian into a molecular term Hm and a field term Hf, and show that both Hm and Hf have gauge-independent expectation values. Any gauge may be chosen for the calculations; but

  16. CFT adapted gauge invariant formulation of massive arbitrary spin fields in AdS

    NASA Astrophysics Data System (ADS)

    Metsaev, R. R.

    2010-01-01

    Using Poincaré parametrization of AdS space, we study massive totally symmetric arbitrary spin fields in AdS space of dimension greater than or equal to four. CFT adapted gauge invariant formulation for such fields is developed. Gauge symmetries are realized by using Stueckelberg formulation of massive fields. We demonstrate that the mass parameter, curvature and radial coordinate contributions to the gauge transformation and Lagrangian of the AdS massive fields can be expressed in terms of ladder operators. Three representations for the Lagrangian are discussed. Realization of the global AdS symmetries in the conformal algebra basis is obtained. Modified de Donder gauge leading to simple gauge fixed Lagrangian is found. The modified de Donder gauge leads to decoupled equations of motion which can easily be solved in terms of the Bessel function. New simple representation for gauge invariant Lagrangian of massive (A)dS field in arbitrary coordinates is obtained. Light-cone gauge Lagrangian of massive AdS field is also presented.

  17. Noncontractible hyperloops in gauge models with Higgs fields in the fundamental representation

    NASA Astrophysics Data System (ADS)

    Burzlaff, Jürgen

    1984-11-01

    We study finite-energy configurations in SO( N) gauge theories with Higgs fields in the fundamental representation. For all winding numbers, noncontractible hyperloops are constructed. The corresponding energy density is spherically symmetric, and the configuration with maximal energy on each hyperloop can be determined. Noncontractible hyperloops with an arbitrary winding number for SU(2) gauge theory are also given.

  18. Universal Reconnection of Non-Abelian Cosmic Strings

    SciTech Connect

    Eto, Minoru; Hashimoto, Koji; Marmorini, Giacomo; Nitta, Muneto; Ohashi, Keisuke; Vinci, Walter

    2007-03-02

    We show that local and semilocal strings in Abelian and non-Abelian gauge theories with critical couplings always reconnect classically in collision, by using moduli space approximation. The moduli matrix formalism explicitly identifies a well-defined set of the vortex moduli parameters. Our analysis of generic geodesic motion in terms of those shows right-angle scattering in head-on collision of two vortices, which is known to give the reconnection of the strings.

  19. Universal reconnection of non-Abelian cosmic strings.

    PubMed

    Eto, Minoru; Hashimoto, Koji; Marmorini, Giacomo; Nitta, Muneto; Ohashi, Keisuke; Vinci, Walter

    2007-03-01

    We show that local and semilocal strings in Abelian and non-Abelian gauge theories with critical couplings always reconnect classically in collision, by using moduli space approximation. The moduli matrix formalism explicitly identifies a well-defined set of the vortex moduli parameters. Our analysis of generic geodesic motion in terms of those shows right-angle scattering in head-on collision of two vortices, which is known to give the reconnection of the strings. PMID:17359147

  20. Quantum Hall effects in a non-Abelian honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Li, Ling; Hao, Ningning; Liu, Guocai; Bai, Zhiming; Li, Zai-Dong; Chen, Shu; Liu, W. M.

    2015-12-01

    We study the tunable quantum Hall effects in a non-Abelian honeycomb optical lattice which is a multi-Dirac-point system. We find that the quantum Hall effects present different features with the change in relative strengths of several perturbations. Namely, the quantum spin Hall effect can be induced by gauge-field-dressed next-nearest-neighbor hopping, which, together with a Zeeman field, can induce the quantum anomalous Hall effect characterized by different Chern numbers. Furthermore, we find that the edge states of the multi-Dirac-point system represent very different features for different boundary geometries, in contrast with the generic two-Dirac-point system. Our study extends the borders of the field of quantum Hall effects in a honeycomb optical lattice with multivalley degrees of freedom.

  1. On the Potentials of Supersymmetric Theories with Gauge-Field Mixing Terms

    NASA Astrophysics Data System (ADS)

    Nunes Ferreira, Cristine

    2004-12-01

    In this letter, we reconsider the delicate issue of symmetry and supersymmetry breakings for gauge theories with gauge-field mixings. The purpose is to study generalyzed potentials in the presence of more than a single gauge potential. In this work, following a stream of investigation on supersymmetric gauge theories without flat directions, we contemplate the possibility of building up D- and F-term potentials by means of a gauge-field mixing in connection with a U(1)×U(1)' -symmetry. We investigate a generalized potential including an N=1 supersymmetric extension of the Maxwell-Chern-Simons model focusing on the study of cosmic string configurations. This analysis sheds some light on the formation of cosmic strings for model with violation of Lorentz symmetry.

  2. Gauging nonrelativistic field theories using the coset construction

    NASA Astrophysics Data System (ADS)

    Karananas, Georgios K.; Monin, Alexander

    2016-03-01

    We discuss how nonrelativistic spacetime symmetries can be gauged in the context of the coset construction. We consider theories invariant under the centrally extended Galilei algebra as well as the Lifshitz one, and we investigate under what conditions they can be supplemented by scale transformations. We also clarify the role of torsion in these theories.

  3. More Efficient Thermalization of Gauge Fields in Lattice QCD Simulations

    SciTech Connect

    Frigori, R.B.; Cucchieri, A.; Mendes, T.; Mihara, A.

    2004-12-02

    We introduce a new thermalization algorithm for pure SU(2) lattice gauge theory by combining heat-bath and micro-canonical updates in a single step, while preserving ergodicity. We test the new algorithm in the two-dimensional case and compare its performance with the standard heat-bath method.

  4. Thermometry of Cold Atoms in Optical Lattices via Artificial Gauge Fields

    NASA Astrophysics Data System (ADS)

    Roscilde, Tommaso

    2014-03-01

    Artificial gauge fields are a unique way of manipulating the motional state of cold atoms. Here we propose the use (practical or conceptual) of artificial gauge fields—obtained, e.g., experimentally via lattice shaking or conceptually via a Galilean transformation—to perform primary noise thermometry of cold atoms in optical lattices, not requiring any form of prior calibration. The proposed thermometric scheme relies on fundamental fluctuation-dissipation relations, connecting the global response to the variation of the applied gauge field and the fluctuation of quantities related to the momentum distribution (such as the average kinetic energy or the average current). We demonstrate gauge-field thermometry for several physical situations, including free fermions and interacting bosons. The proposed approach is extremely robust to quantum fluctuations—even in the vicinity of a quantum phase transition—when it relies on the thermal fluctuations of an emerging classical field, associated with the onset of Bose condensation or chiral order.

  5. On the Infrared Behaviour of Landau Gauge Yang-Mills Theory with Differently Charged Scalar Fields

    SciTech Connect

    Alkofer, Reinhard; Maas, Axel; Macher, Veronika; Fister, Leonard

    2011-05-23

    Recently it has been argued that infrared singularities of the quark-gluon vertex of Landau gauge QCD can confine static quarks via a linear potential. It is demonstrated that the same mechanism also may confine fundamental scalar fields. This opens the possibility that within functional approaches static confinement is an universal property of the gauge sector even though it is formally represented in the functional equations of the matter sector. The colour structure of Dyson-Schwinger equations for fundamental and adjoint scalar fields is determined for the gauge groups SU(N) and G(2) exhibiting interesting cancellations purely due to colour algebra.

  6. On Lagrangian approach to self-dual gauge fields in spacetime of nontrivial topology

    NASA Astrophysics Data System (ADS)

    Bandos, Igor

    2014-08-01

    We study the Lagrangian description of chiral bosons, p-form gauge fields with (anti-)self-dual gauge field strengths, in D = 2 p + 2 dimensional spacetime of non-trivial topology. We show that the manifestly Lorentz and diffeomorphism invariant Pasti-Sorokin-Tonin (PST) approach is consistent and produces the (anti-)self-duality equation also in topologically nontrivial spacetime. We discuss in what circumstances the nontrivial topology makes difference between two disconnected, da-timelike and da-spacelike branches of the PST system, the gauge fixed version of which are described by not manifestly invariant Henneaux-Teitelboim (HT) and Perry-Schwarz (PS) actions, respectively.

  7. Symmetry breaking and restoration for interacting scalar and gauge fields in Lifshitz type theories

    NASA Astrophysics Data System (ADS)

    Farakos, K.; Metaxas, D.

    2012-05-01

    We consider the one-loop effective potential at zero and finite temperature in field theories with anisotropic space-time scaling, with critical exponent z = 2, including both scalar and gauge fields. Depending on the relative strength of the coupling constants for the gauge and scalar interactions, we find that there is a symmetry breaking term induced at one loop at zero temperature and we find symmetry restoration through a first-order phase transition at high temperature.

  8. Gauge turbulence, topological defect dynamics, and condensation in Higgs models

    SciTech Connect

    Gasenzer, Thomas; McLerran, Larry; Pawlowski, Jan M.; Sexty, Dénes

    2014-07-28

    The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.

  9. Gauge turbulence, topological defect dynamics, and condensation in Higgs models

    DOE PAGESBeta

    Gasenzer, Thomas; McLerran, Larry; Pawlowski, Jan M.; Sexty, Dénes

    2014-07-28

    The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixedmore » point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.« less

  10. Quark confinement: Dual superconductor picture based on a non-Abelian Stokes theorem and reformulations of Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi; Kato, Seikou; Shibata, Akihiro; Shinohara, Toru

    2015-05-01

    The purpose of this paper is to review the recent progress in understanding quark confinement. The emphasis of this review is placed on how to obtain a manifestly gauge-independent picture for quark confinement supporting the dual superconductivity in the Yang-Mills theory, which should be compared with the Abelian projection proposed by 't Hooft. The basic tools are novel reformulations of the Yang-Mills theory based on change of variables extending the decomposition of the SU(N) Yang-Mills field due to Cho, Duan-Ge and Faddeev-Niemi, together with the combined use of extended versions of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the SU(N) Wilson loop operator. Moreover, we give the lattice gauge theoretical versions of the reformulation of the Yang-Mills theory which enables us to perform the numerical simulations on the lattice. In fact, we present some numerical evidences for supporting the dual superconductivity for quark confinement. The numerical simulations include the derivation of the linear potential for static interquark potential, i.e., non-vanishing string tension, in which the "Abelian" dominance and magnetic monopole dominance are established, confirmation of the dual Meissner effect by measuring the chromoelectric flux tube between quark-antiquark pair, the induced magnetic-monopole current, and the type of dual superconductivity, etc. In addition, we give a direct connection between the topological configuration of the Yang-Mills field such as instantons/merons and the magnetic monopole. We show especially that magnetic monopoles in the Yang-Mills theory can be constructed in a manifestly gauge-invariant way starting from the gauge-invariant Wilson loop operator and thereby the contribution from the magnetic monopoles can be extracted from the Wilson loop in a gauge-invariant way through the non-Abelian Stokes theorem for the Wilson loop operator, which is a prerequisite for exhibiting magnetic monopole dominance for quark

  11. Gauge interaction as periodicity modulation

    NASA Astrophysics Data System (ADS)

    Dolce, Donatello

    2012-06-01

    The paper is devoted to a geometrical interpretation of gauge invariance in terms of the formalism of field theory in compact space-time dimensions (Dolce, 2011) [8]. In this formalism, the kinematic information of an interacting elementary particle is encoded on the relativistic geometrodynamics of the boundary of the theory through local transformations of the underlying space-time coordinates. Therefore gauge interactions are described as invariance of the theory under local deformations of the boundary. The resulting local variations of the field solution are interpreted as internal transformations. The internal symmetries of the gauge theory turn out to be related to corresponding space-time local symmetries. In the approximation of local infinitesimal isometric transformations, Maxwell's kinematics and gauge invariance are inferred directly from the variational principle. Furthermore we explicitly impose periodic conditions at the boundary of the theory as semi-classical quantization condition in order to investigate the quantum behavior of gauge interaction. In the abelian case the result is a remarkable formal correspondence with scalar QED.

  12. Disk relations for tree amplitudes in minimal coupling theory of gauge field and gravity

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Xin; Du, Yi-Jian; Ma, Qian

    2010-07-01

    KLT relations on S factorize closed string amplitudes into product of open string tree amplitudes. The field theory limits of KLT factorization relations hold in minimal coupling theory of gauge field and gravity. In this paper, we consider the field theory limits of relations on D. Though the relations on D and KLT factorization relations hold on worldsheets with different topologies, we find the field theory limits of D relations also hold in minimal coupling theory of gauge field and gravity. We use the D relations to give three- and four-point tree amplitudes where gluons are minimally coupled to gravitons. We also give a further discussion on general tree amplitudes in minimal coupling theory of gauge field and gravity. In general, any tree amplitude with M gravitons in addition to N gluons can be given by pure-gluon tree amplitudes with N+2M legs.

  13. Potential and flux decomposition for dynamical systems and non-equilibrium thermodynamics: Curvature, gauge field, and generalized fluctuation-dissipation theorem

    SciTech Connect

    Feng Haidong; Wang Jin

    2011-12-21

    The driving force of the dynamical system can be decomposed into the gradient of a potential landscape and curl flux (current). The fluctuation-dissipation theorem (FDT) is often applied to near equilibrium systems with detailed balance. The response due to a small perturbation can be expressed by a spontaneous fluctuation. For non-equilibrium systems, we derived a generalized FDT that the response function is composed of two parts: (1) a spontaneous correlation representing the relaxation which is present in the near equilibrium systems with detailed balance and (2) a correlation related to the persistence of the curl flux in steady state, which is also in part linked to a internal curvature of a gauge field. The generalized FDT is also related to the fluctuation theorem. In the equal time limit, the generalized FDT naturally leads to non-equilibrium thermodynamics where the entropy production rate can be decomposed into spontaneous relaxation driven by gradient force and house keeping contribution driven by the non-zero flux that sustains the non-equilibrium environment and breaks the detailed balance. On any particular path, the medium heat dissipation due to the non-zero curl flux is analogous to the Wilson lines of an Abelian gauge theory.

  14. Numerical studies of light-matter interaction driven by plasmonic fields: The velocity gauge

    NASA Astrophysics Data System (ADS)

    Chacón, A.; Ciappina, M. F.; Lewenstein, M.

    2015-12-01

    Conventional theoretical approaches to model strong field phenomena driven by plasmonic fields are based on the length gauge formulation of the laser-matter coupling. Obviously, from the physical point of view, there exists no preferable gauge and, consequently, the predictions and outcomes should be independent of this choice. The use of the length gauge is mainly due to the fact that the quantity obtained from finite-element simulations of plasmonic fields is the plasmonic enhanced laser electric field rather than the laser vector potential. We develop, from first principles, the velocity gauge formulation of the problem and we apply it to the high-order-harmonic generation (HHG) in atoms. A comparison to the results obtained with the length gauge is made. As expected, it is analytically and numerically demonstrated that both gauges give equivalent descriptions of the emitted HHG spectra resulting from the interaction of a spatially inhomogeneous field and the single active electron model of the helium atom. We discuss, however, advantages and disadvantages of using different gauges in terms of numerical efficiency, which turns out to be very different. In order to understand it, we analyze the quantum mechanical results using time-frequency Gabor distributions. This analysis, combined with classical calculations based on solutions of the Newton equation, yields important physical insight into the electronic quantum paths underlying the dynamics of the harmonic generation process. The results obtained in this way also allow us to assess the quality of the quantum approaches in both gauges and put stringent limits on the numerical parameters required for a desired accuracy.

  15. Spin-orbit coupling, spin currents and emergent gauge fields in solids

    NASA Astrophysics Data System (ADS)

    Sa, Debanand

    2012-07-01

    The role of spin-orbit interaction has been exploited to construct an emergent gauge theory in solids. It has been shown that the charge and spin currents in such a solid form a SU(2)×U(1) gauge theory. The lack of gauge symmetry in the SU(2) sector and as a consequence, the non-conservation of spin is spelled out. The phenomenon of spin motive force and spin Hall effect is discussed. The importance of such force in the mesoscopic transport as well as Aharonov-Casher effect is outlined. It is shown that the spin currents in such a theory become the source of electric field.

  16. Fun with the Abelian Higgs model

    NASA Astrophysics Data System (ADS)

    Malinský, Michal

    2013-05-01

    In calculations of the elementary scalar spectra of spontaneously broken gauge theories there are a number of subtleties which, though it is often unnecessary to deal with them in the order-of-magnitude type of calculations, have to be taken into account if fully consistent results are sought for. Within the "canonical" effective-potential approach these are, for instance: the need to handle infinite series of nested commutators of derivatives of field-dependent mass matrices, the need to cope with spurious IR divergences emerging in the consistent leading-order approximation and, in particular, the need to account for the fine interplay between the renormalization effects in the one- and two-point Green functions which, indeed, is essential for the proper stable vacuum identification and, thus, for the correct interpretation of the results. In this note we illustrate some of these issues in the realm of the minimal Abelian Higgs model and two of its simplest extensions including extra heavy scalars in the spectrum in attempt to exemplify the key aspects of the usual "hierarchy problem" lore in a very specific and simple setting. We emphasize that, regardless of the omnipresent polynomial cut-off dependence in the one-loop corrections to the scalar two-point function, the physical Higgs boson mass is always governed by the associated symmetry-breaking VEV and, as such, it is generally as UV-robust as all other VEV-driven masses in the theory.

  17. On p -form theories with gauge invariant second order field equations

    NASA Astrophysics Data System (ADS)

    Deffayet, Cédric; Mukohyama, Shinji; Sivanesan, Vishagan

    2016-04-01

    We explore field theories of a single p -form with equations of motions of order strictly equal to 2 and gauge invariance. We give a general method for the classification of such theories which are extensions to the p -forms of the Galileon models for scalars. Our classification scheme allows us to compute an upper bound on the number of different such theories depending on p and on the space-time dimension. We are also able to build a nontrivial Galileon-like theory for a 3-form with gauge invariance and an action which is polynomial into the derivatives of the form. This theory has gauge invariant field equations but an action which is not, like a Chern-Simons theory. Hence the recently discovered no-go theorem stating that there are no nontrivial gauge invariant vector Galileons (which we are also able here to confirm with our method) does not extend to other odd-p cases.

  18. Two-point Green function of Chern-Simons gauge field in anyon gas

    SciTech Connect

    Hieu, N.V.; Son, N.H. )

    1992-01-20

    This paper reports on the quantum theory of the anyon gas that was developed in the framework of the field theoretical formalism. The existence of the classical background CS gauge field created by the quasiparticles below the Fermi level and acting as some effective magnetic field was taken into account. The expressions of the two-point Green functions of the free and interacting CS gauge fields were derived. It was shown that they determine the conductivity tensor of the anyon gas. The relevance to the FQHE was discussed.

  19. Stochastic Simulation of Precipitation Fields Conditioned on Radar and Gauge Information

    NASA Astrophysics Data System (ADS)

    Pfaff, T.; Bárdossy, A.

    2009-04-01

    Precipitation is the main input variable for hydrological modelling. Operational precipitation data are usually provided by rain gauges, weather radar and sometimes satellite observations., Precipitation data with very high spatial and temporal resolution is necessary especially for flash flood forecasting in small catchments. Usually these can neither be provided by rain gauge networks nor satellite measurements. However, radar data has not been used widely in operational flood forecasting yet. Modelling results obtained with radar derived precipitation forcing still don't show a better skill than those obtained by using gauge observations. Radar data suffers from a set of errors. The common ones are uncertainties in the Z-R relation, attenuation effects and uncertain vertical profiles of reflectivity. Corrections for any of these errors have been devised but it has also been shown that some corrections just shift the uncertainty from one source to another. Since the 'true' rainfall field cannot be known, true error statistics cannot be calculated. A measure of uncertainty can be obtained by comparing radar (R) and gauge data (G). Recent developments towards radar ensemble generation focus on the generation of relative uncertainty fields. They are based on comparisons of radar data with gauge data or of radar fields with reference fields obtained by gauge adjustment. The generated fields are then multiplied with the radar field to create the realizations. The proposed approach aims at stochastic simulation of precipitation fields conditioned on radar data In addition, the approach incorporates the additional information available from gauge measurements similarly to radar gauge adjustment. If radar data is adjusted by gauge data using either a multiplicative or an additive correction term, this single correction term can produce unrealistic results when it is regionalized to the radar cells surrounding the reference gauge. This problem can be avoided by splitting

  20. Overconnections and the energy-tensors of gauge and gravitational fields

    NASA Astrophysics Data System (ADS)

    Canarutto, Daniel

    2016-08-01

    A geometric construction for obtaining a prolongation of a connection to a connection of a bundle of connections is presented. This determines a natural extension of the notion of canonical energy-tensor which suits gauge and gravitational fields, and shares the main properties of the energy-tensor of a matter field in the jet space formulation of Lagrangian field theory, in particular with regards to symmetries of the Poincaré-Cartan form. Accordingly, the joint energy-tensor for interacting matter and gauge fields turns out to be a natural geometric object, whose definition needs no auxiliary structures. Various topics related to energy-tensors, symmetries and the Einstein equations in a theory with interacting matter, gauge and gravitational fields can be viewed under a clarifying light. Finally, the symmetry determined by the "Komar superpotential" is expressed as a symmetry of the gravitational Poincaré-Cartan form.

  1. Decay of Color Gauge Fields in Heavy Ion Collisions and Nielsen-Olesen Instability

    NASA Astrophysics Data System (ADS)

    Iwazaki, A.

    2009-04-01

    We analyze the behavior of unstable modes in the glasma produced in high-energy heavy-ion collisions, using a simple model with effective homogeneous longitudinal color electric and magnetic fields. The unstable modes are approximately described as Nielsen-Olesen unstable modes under the homogeneous longitudinal gauge fields. We find that the Nielsen-Olesen unstable modes show properties very similar to those of the exponentially increasing unstable modes in the glasma recently demonstrated by Romatschke and Venugopalan. Although initial gauge fields in the glasma are much stronger than those in our model, they decay with the production of Nielsen-Olesen unstable modes. We discuss why we can reproduce the features of the glasma effectively by using homogeneous weak magnetic fields. Our analysis supports the idea that the decay of the gauge fields in the glasma is caused by Nielsen-Olesen instability.

  2. Thermalization of Color Gauge Fields in Heavy Ion Collisions and Nielsen-Olesen Instability

    NASA Astrophysics Data System (ADS)

    Iwazaki, A.

    We analyze the behavior of unstable modes in glasma produced initially in high energy heavy ion collisions, by using a simple model of homogeneous longitudinal color electric and magnetic fields. The unstable modes can be approximately described as Nielsen-Olesen unstable modes under the homogeneous longitudinal gauge fields. We find that the Nielsen-Olesen unstable modes show properties very similar to those of the exponentially increasing unstable modes in glasma demonstrated recently by Romatschke and Venugopalan. We discuss why such effective weak magnetic fields used in the model are appropriate to analyze the instability of the initial strong inhomogeneous gauge fields. Our analysis indicates that the decay of the gauge fields in glasma is caused by not Weibel instability but Nielsen-Olesen instability.

  3. Perturbations of matter fields in the second-order gauge-invariant cosmological perturbation theory

    NASA Astrophysics Data System (ADS)

    Nakamura, Kouji

    2009-12-01

    To show that the general framework of the second-order gauge-invariant perturbation theory developed by K. Nakamura [Prog. Theor. Phys. 110, 723 (2003)PTPKAV0033-068X10.1143/PTP.110.723; Prog. Theor. Phys. 113, 481 (2005)PTPKAV0033-068X10.1143/PTP.113.481] is applicable to a wide class of cosmological situations, some formulas for the perturbations of the matter fields are summarized within the framework of the second-order gauge-invariant cosmological perturbation theory in a four-dimensional homogeneous isotropic universe, which is developed in Prog. Theor. Phys. 117, 17 (2007)PTPKAV0033-068X10.1143/PTP.117.17. We derive the formulas for the perturbations of the energy-momentum tensors and equations of motion for a perfect fluid, an imperfect fluid, and a single scalar field, and show that all equations are derived in terms of gauge-invariant variables without any gauge fixing. Through these formulas, we may say that the decomposition formulas for the perturbations of any tensor field into gauge-invariant and gauge-variant parts, which are proposed in the above papers, are universal.

  4. Evaluating the catching performance of aerodynamic rain gauges through field comparisons and CFD modelling

    NASA Astrophysics Data System (ADS)

    Pollock, Michael; Colli, Matteo; Stagnaro, Mattia; Lanza, Luca; Quinn, Paul; Dutton, Mark; O'Donnell, Greg; Wilkinson, Mark; Black, Andrew; O'Connell, Enda

    2016-04-01

    observed in the vicinity of the collector, compared to the standard gauge shapes. Both the air velocity and the turbulent kinetic energy fields present structures that may improve the interception of particles by the aerodynamic gauge collector. To provide empirical validation, a field-based experimental campaign was undertaken at four UK research stations to compare the results of aerodynamic and conventional gauges, mounted in juxtaposition. The reference measurement is recorded using a rain gauge pit, as specified by the WMO. The results appear to demonstrate how the effect of the wind on rainfall measurements is influenced by the gauge shape and the mounting height. Significant undercatch is observed compared to the reference measurement. Aerodynamic gauges mounted on the ground catch more rainfall than juxtaposed straight-sided gauges, in most instances. This appears to provide some preliminary validation of the CFD model. The indication that an aerodynamic profile improves the gauge catching capability could be confirmed by tracking the hydrometeor trajectories with a Lagrangian method, based on the available set of airflows; and investigating time-dependent aerodynamic features by means of dedicated CFD simulations. Furthermore, wind-tunnel tests could be carried out to provide more robust physical validation of the CFD model.

  5. An Interacting Gauge Field Theoretic Model for Hodge Theory: Basic Canonical Brackets

    NASA Astrophysics Data System (ADS)

    R., Kumar; Gupta, S.; R. P., Malik

    2014-06-01

    We derive the basic canonical brackets amongst the creation and annihilation operators for a two (1 + 1)-dimensional (2D) gauge held theoretic model of an interacting Hodge theory where a U(1) gauge field (Aμ) is coupled with the fermionic Dirac fields (ψ and bar psi). In this derivation, we exploit the spin-statistics theorem, normal ordering and the strength of the underlying six infinitesimal continuous symmetries (and the concept of their generators) that are present in the theory. We do not use the definition of the canonical conjugate momenta (corresponding to the basic fields of the theory) anywhere in our whole discussion. Thus, we conjecture that our present approach provides an alternative to the canonical method of quantization for a class of gauge field theories that are physical examples of Hodge theory where the continuous symmetries (and corresponding generators) provide the physical realizations of the de Rham cohomological operators of differential geometry at the algebraic level.

  6. Abelian BF theory and Turaev-Viro invariant

    NASA Astrophysics Data System (ADS)

    Mathieu, P.; Thuillier, F.

    2016-02-01

    The U(1) BF quantum field theory is revisited in the light of Deligne-Beilinson cohomology. We show how the U(1) Chern-Simons partition function is related to the BF one and how the latter on its turn coincides with an abelian Turaev-Viro invariant. Significant differences compared to the non-abelian case are highlighted.

  7. Multiflavor QCD∗ on R3 ×S1: Studying transition from Abelian to non-Abelian confinement

    NASA Astrophysics Data System (ADS)

    Shifman, M.; Ünsal, M.

    2009-11-01

    The center-stabilized multiflavor QCD∗ theories formulated on R3 ×S1 exhibit both Abelian and non-Abelian confinement as a function of the S1 radius, similar to the Seiberg-Witten theory as a function of the mass deformation parameter. For sufficiently small number of flavors and small r (S1), we show occurrence of a mass gap in gauge fluctuations, and linear confinement. This is a regime of confinement without continuous chiral symmetry breaking (χSB). Unlike one-flavor theories where there is no phase transition in r (S1), the multiflavor theories possess a single phase transition associated with breaking of the continuous χS. We conjecture that the scale of the χSB is parametrically tied up with the scale of Abelian to non-Abelian confinement transition.

  8. Pure gauge configurations and tachyon solutions to string field theories equations of motion

    NASA Astrophysics Data System (ADS)

    Aref'eva, Irina Ya.; Gorbachev, Roman V.; Grigoryev, Dmitry A.; Khromov, Pavel N.; Maltsev, Maxim V.; Medvedev, Peter B.

    2009-05-01

    In construction of analytical solutions to open string field theories pure gauge configurations parameterized by wedge states play an essential role. These pure gauge configurations are constructed as perturbation expansions and to guaranty that these configurations are asymptotical solutions to equations of motion one needs to study convergence of the perturbation expansions. We demonstrate that for the large parameter of the perturbation expansion these pure gauge truncated configurations give divergent contributions to the equation of motion on the subspace of the wedge states. We perform this demonstration numerically for the pure gauge configurations related to tachyon solutions for the bosonic and NS fermionic SFT. By the numerical calculations we also show that the perturbation expansions are cured by adding extra terms. These terms are nothing but the terms necessary to make valued the Sen conjectures.

  9. Note on Gauge Theory on M4 × ZN with Auxiliary Field

    NASA Astrophysics Data System (ADS)

    Maekawa, T.; Taira, H.

    1997-06-01

    It is shown that the discrete gauge theory on ZN is well formulated with the auxiliary fields due to Chamseddine et al. and Okumura et al. together with the exterior algebra of Dimakis and Müller-Hoissen. A Lagrangian of the Yang-Mills-Higgs fields is also given.

  10. Warm Gauge-Flation with General Dissipative Coefficient

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Saleem, Rabia; Mohsaneen, Sidra

    2016-07-01

    In this work, we study the effects of generalized dissipative coefficient on the slow-roll inflation driven by non-Abelian gauge field minimally coupled to gravity. The dynamics of warm intermediate and logamediate inflationary models during weak and strong dissipative regimes is analyzed. In both cases, we explore effective scalar potential, slow-roll parameters, scalar and tensor power spectra, scalar spectral index and tensor to scalar ratio under slow-roll conditions. We conclude that our gauge-flationary model with generalized dissipative coefficient remains consistent with the recent data for dissipative parameter m = 3 and m = 1 for weak and strong dissipative eras, respectively.

  11. Anomalous Abelian symmetry in the standard model

    SciTech Connect

    Ramond, P.

    1995-12-31

    The observed hierarchy of quark and lepton masses can be parametrized by nonrenormalizable operators with dimensions determined by an anomalous Abelian family symmetry, a gauge extension to the minimal supersymmetric standard model. Such an Abelian symmetry is generic to compactified superstring theories, with its anomalies compensated by the Green-Schwarz mechanism. If we assume these two symmetries to be the same, we find the electroweak mixing angle to be sin {sup 2}{theta}{sub {omega}} = 3/8 at the string scale, just by setting the ratio of the product of down quark to charged lepton masses equal to one at the string scale. This assumes no GUT structure. The generality of the result suggests a superstring origin for the standard model. We generalize our analysis to massive neutrinos, and mixings in the lepton sector.

  12. Abundant stable gauge field hair for black holes in anti-de Sitter space.

    PubMed

    Baxter, J E; Helbling, Marc; Winstanley, Elizabeth

    2008-01-11

    We present new hairy black hole solutions of SU(N) Einstein-Yang-Mills (EYM) theory in asymptotically anti-de Sitter (AdS) space. These black holes are described by N+1 independent parameters and have N-1 independent gauge field degrees of freedom. Solutions in which all gauge field functions have no zeros exist for all N, and for a sufficiently large (and negative) cosmological constant. At least some of these solutions are shown to be stable under classical, linear, spherically symmetric perturbations. Therefore there is no upper bound on the amount of stable gauge field hair with which a black hole in AdS can be endowed. PMID:18232751

  13. Light supersymmetric axion in an anomalous Abelian extension of the standard model

    SciTech Connect

    Coriano, Claudio; Guzzi, Marco; Mariano, Antonio; Morelli, Simone

    2009-08-01

    We present a supersymmetric extension of the standard model (USSM-A) with an anomalous U(1) and Stueckelberg axions for anomaly cancellation, generalizing similar nonsupersymmetric constructions. The model, built by a bottom-up approach, is expected to capture the low-energy supersymmetric description of axionic symmetries in theories with gauged anomalous Abelian interactions, previously explored in the nonsupersymmetric case for scenarios with intersecting branes. The choice of a USSM-like superpotential, with one extra singlet superfield and an extra Abelian symmetry, allows a physical axionlike particle in the spectrum. We describe some general features of this construction and, in particular, the modification of the dark-matter sector which involves both the axion and several neutralinos with an axino component. The axion is expected to be very light in the absence of phases in the superpotential but could acquire a mass which can also be in the few GeV range or larger. In particular, the gauging of the anomalous symmetry allows independent mass/coupling interaction to the gauge fields of this particle, a feature which is absent in traditional (invisible) axion models. We comment on the general implications of our study for the signature of moduli from string theory due to the presence of these anomalous symmetries.

  14. Non-Abelian strings in supersymmetric Yang-Mills

    SciTech Connect

    Shifman, M.

    2012-09-26

    I give a broad review of novel phenomena discovered in certain Yang-Mills theories: non-Abelian strings and confined monopoles. Then I explain how these phenomena allow one to study strong dynamics of gauge theories in four dimensions from two-dimensional models emerging on the string world sheet.

  15. A discussion on supersymmetric cosmic strings with gauge-field mixing

    NASA Astrophysics Data System (ADS)

    Ferreira, C. N.; Godinho, C. F.; Helayel-Neto, J. A.

    2004-06-01

    Following a stream of investigation on supersymmetric gauge theories with cosmic-string solutions, we contemplate the possibility of building up a D and F term cosmic string by means of a gauge-field mixing in connection with a U(1)×U(1)' symmetry. The spontaneous break of both gauge symmetry and supersymmetry are thoroughly analysed and the fermion zero modes are worked out. The role of the gauge-field mixing parameter is elucidated in connection with the string configuration that comes out. As an application of the model presented here, we propose the possibility that the supersymmetric cosmic-string yields the production of fermionic charge carriers that may eject, at their late stages, particles that subsequently decay to produce cosmic rays of ultra-high energy. In our work, it turns out that massive supersymmetric fermionic partners may be produced for a SUSY breaking scale in the range 1011 1013 GeV, which is compatible with the phenomenology of a gravitino mass at the TeV scale. We also determine the range of the gauge-field mixing parameter, agr, in connection with the mass scales of the present model.

  16. Gauge theories on A(dS) space and Killing vectors

    SciTech Connect

    Banerjee, Rabin Majhi, Bibhas Ranjan

    2008-03-15

    We provide a general technique for collectively analysing a manifestly covariant formulation of non-abelian gauge theories on both anti-de Sitter as well as de Sitter spaces. This is done by stereographically projecting the corresponding theories, defined on a flat Minkowski space, onto the surface of the A(dS) hyperboloid. The gauge and matter fields in the two descriptions are mapped by conformal Killing vectors and conformal Killing spinors, respectively. A bilinear map connecting the spinors with the vector is established. Different forms of gauge fixing conditions and their equivalence are discussed. The U(1) axial anomaly as well as the non-abelian covariant and consistent chiral anomalies on A(dS) space are obtained. Electric-magnetic duality is demonstrated. The zero curvature limit is shown to yield consistent findings.

  17. Boson mapping techniques applied to constant gauge fields in QCD

    NASA Technical Reports Server (NTRS)

    Hess, Peter Otto; Lopez, J. C.

    1995-01-01

    Pairs of coordinates and derivatives of the constant gluon modes are mapped to new gluon-pair fields and their derivatives. Applying this mapping to the Hamiltonian of constant gluon fields results for large coupling constants into an effective Hamiltonian which separates into one describing a scalar field and another one for a field with spin two. The ground state is dominated by pairs of gluons coupled to color and spin zero with slight admixtures of color zero and spin two pairs. As color group we used SU(2).

  18. Non-Abelian chiral instabilities at high temperature on the lattice

    NASA Astrophysics Data System (ADS)

    Akamatsu, Yukinao; Rothkopf, Alexander; Yamamoto, Naoki

    2016-03-01

    We report on an exploratory lattice study on the phenomenon of chiral instabilities in non-Abelian gauge theories at high temperature. It is based on a recently constructed anomalous Langevin-type effective theory of classical soft gauge fields in the presence of a chiral number density n 5 = n R - n L. Evaluated in thermal equilibrium using classical lattice techniques it reveals that the fluctuating soft fields indeed exhibit a rapid energy increase at early times and we observe a clear dependence of the diffusion rate of topological charge (sphaleron rate) on the the initial n 5, relevant in both early universe baryogenesis and relativistic heavy-ion collisions. The topological charge furthermore shows a drift among distinct vacuum sectors, roughly proportional to the initial n 5 and in turn the chiral imbalance is monotonously reduced as required by helicity conservation.

  19. Condensation of gauge interacting massless fermions

    SciTech Connect

    Siringo, Fabio

    2004-09-15

    A single massless fermionic field with an Abelian U(1) gauge interaction (electrodynamics of a massless Dirac fermion) is studied by a variational method. Even without the insertion of any extra interaction the vacuum is shown to be unstable towards a particle-antiparticle condensate. The single particle excitations do acquire a mass and behave as massive Fermi particles. An explicit low-energy gap equation has been derived and numerically solved. Some consequences of condensation and mass generation are discussed in the framework of the standard model.

  20. Six-dimensional (1,0) superconformal models and higher gauge theory

    SciTech Connect

    Palmer, Sam; Sämann, Christian

    2013-11-15

    We analyze the gauge structure of a recently proposed superconformal field theory in six dimensions. We find that this structure amounts to a weak Courant-Dorfman algebra, which, in turn, can be interpreted as a strong homotopy Lie algebra. This suggests that the superconformal field theory is closely related to higher gauge theory, describing the parallel transport of extended objects. Indeed we find that, under certain restrictions, the field content and gauge transformations reduce to those of higher gauge theory. We also present a number of interesting examples of admissible gauge structures such as the structure Lie 2-algebra of an abelian gerbe, differential crossed modules, the 3-algebras of M2-brane models, and string Lie 2-algebras.

  1. A Geostatistical Framework for Estimating Rain Intensity Fields Using Dense Rain Gauge Networks

    NASA Astrophysics Data System (ADS)

    Benoit, L.; Mariethoz, G.

    2015-12-01

    Rain gauges provide direct and continuous observations of rain accumulation with a high time resolution (up to 1min). However the representativeness of these measurements is restricted to the funnel where rainwater is collected. Due to the high spatial heterogeneity of rainfall, this poor spatial representativeness is a strong limitation for the detailed reconstruction of rain intensity fields. Here we propose a geostatistical framework that is able to generate an ensemble of simulated rain fields based on data from a dense rain gauge network. When the density of rain gauges is high (sensor spacing in the range 500m to 1km), the spatial correlation between precipitation time series becomes sufficient to identify and track the rain patterns observed at the rain gauge sampling rate. Rain observations derived from such networks can thus be used to reconstruct the rain field with a high resolution in both space and time (i.e. 1min in time, 100m in space). Our method produces an ensemble of realizations that honor the rain intensities measured throughout the rain gauge network and preserve the main features of the rain intensity field at the considered scale, i.e.: the advection and morphing properties of rain cells over time, the intermittency and the skewed distribution of rainfall, and the decrease of the rain rate near the rain cell borders (dry drift). This allows to image the observed rain field and characterize its main features, as well as to quantify the related uncertainty. The obtained reconstruction of the rainfall are continuous in time, and therefore can complement weather radar observations which are snapshots of the rain field. In addition, the application of this method to networks with a spatial extent comparable to the one of a radar pixel (i.e. around 1km2) could allow exploration of the rain field within a single radar pixel.

  2. Investigation of gauge-fixed pure U(1) theory at strong coupling

    NASA Astrophysics Data System (ADS)

    Basak, S.; De, Asit K.

    2002-03-01

    We numerically investigate the phase diagram of pure U(1) gauge theory with gauge fixing at strong gauge coupling. The FM-FMD phase transition, which proved useful in defining Abelian lattice chiral gauge theory, persists also at strong gauge coupling. However, there the transition seems no longer to be continuous. At large gauge couplings we find evidences for confinement.

  3. Massive to gauge field reduction and gravitational wave zone information

    NASA Astrophysics Data System (ADS)

    Deser, S.

    2016-07-01

    I analyze the possible relevance of LIGO's gravitational wave detection to the viability of massive gravity models. In GR, a wave zone, where the linearized approximation holds, is guaranteed to exist and the observed wave's amplitude profile can be sufficiently related to the emitting strong field interior to verify that, in this case, it was due to an inspiraling black hole merger. After an excursion to massive spin 1's massless limit, linear massive tensor theory is shown explicitly to propagate only (retarded) maximal, helicity 2, modes to O( m) as m→ 0; however, we don't know if the full theory has a similar "wave zone" governed by the linear model. Even if it does, a much more serious obstacle for massive gravity is to construct a time-varying strong field event to compare with the strong field footprint of LIGO's observed signals.

  4. Dimensional reduction of symmetric gauge fields, Higgs models, and spontaneous compactification

    SciTech Connect

    Volobuev, I.P.; Kubyshin, Y.A. ); Mourao, J.M. ); Rudolph, G. )

    1989-05-01

    Questions relating to the dimensional reduction of symmetric gauge fields in multidimensional spaces of the form {ital E}={ital M}{times}{ital G}/{ital H} are discussed. For such fields a general geometrical method of dimensional reduction and a method for calculating the potentials of the scalar fields of the reduced theory in the case of symmetric spaces {ital G}/{ital H} are presented systematically. The connection between dimensional reduction of gauge fields and the theory of spontaneous compactification and the physical interpretation of the solutions of this theory is traced in detail. Much attention is devoted to the application of the method of dimensional reduction to fermion matter fields and to the construction by this method of realistic models of the interactions of elementary particles in Minkowski space.

  5. Experimental studies of collective excitations of a BEC in light-induced gauge fields

    NASA Astrophysics Data System (ADS)

    Li, Chuan-Hsun; Niffenegger, Robert; Blasing, David; Olson, Abraham; Chen, Yong P.

    2015-05-01

    We present our experimental studies of collective modes including spin dipole mode and scissors mode of a 87Rb Bose-Einstein condensate (BEC) in the presence of Raman light-induced gauge fields and synthetic spin-orbit coupling (SOC). By Raman dressing the mf spin states within the F =1 manifold, we engineer atoms' energy-momentum dispersion to create synthetic SOC, and spin dependent synthetic electric and magnetic fields. We have used spin dependent synthetic electric fields to make two BECs with different spins oscillate and collide in the optical trap. We have studied the effects of SOC on both the momentum damping and thermalization behaviors of the BECs when undergoing such spin dipole oscillations. We have also used spatially dependent synthetic electric fields to excite the scissors mode, which has been used as a probe for superfluidity. We have investigated the effects of the synthetic gauge fields and SOC on the measured scissors mode.

  6. On Geometrical Interpretation of Non-Abelian Flat Direction Constraints

    NASA Astrophysics Data System (ADS)

    Cleaver, G. B.; Nanopoulos, D. V.; Perkins, J. T.; Walker, J. W.

    In order to produce a low-energy effective field theory from a string model, it is necessary to specify a vacuum state. In order that this vacuum be supersymmetric, it is well known that all field expectation values must be along so-called flat directions, leaving the F- and D-terms of the scalar potential to be zero. The situation becomes particularly interesting when one attempts to realize such directions while assigning vacuum expectation values to fields transforming under non-Abelian representations of the gauge group. Since the expectation value is now shared among multiple components of a field, satisfaction of flatness becomes an inherently geometrical problem in the group space. Furthermore, the possibility emerges that a single seemingly dangerous F-term might experience a self-cancellation among its components. The hope exists that the geometric language can provide an intuitive and immediate recognition of when the D and F conditions are simultaneously compatible, as well as a powerful tool for their comprehensive classification. This is the avenue explored in this paper, and applied to the cases of SU(2) and SO(2N), relevant respectively to previous attempts at reproducing the MSSM and the flipped SU(5) GUT. Geometrical interpretation of non-Abelian flat directions finds application to M-theory through the recent conjecture of equivalence between D-term strings and wrapped D-branes of Type II theory.1 Knowledge of the geometry of the flat direction "landscape" of a D-term string model could yield information about the dual brane model. It is hoped that the techniques encountered will be of benefit in extending the viability of the quasirealistic phenomenologies already developed.

  7. N=2, 4 supersymmetric gauge field theory in two-time physics

    SciTech Connect

    Bars, Itzhak; Kuo, Y.-C.

    2009-01-15

    In the context of two-time physics in 4+2 dimensions we construct the most general N=2, 4 supersymmetric Yang-Mills gauge theories for any gauge group G. This builds on our previous work for N=1 supersymmetry (SUSY). The action, the conserved SUSY currents, and the SU(N) covariant SUSY transformation laws are presented for both N=2 and N=4. When the equations of motion are used the SUSY transformations close to the supergroup SU(2,2|N) with N=1, 2, 4. The SU(2,2)=SO(4,2) subsymmetry is realized linearly on 4+2 dimensional flat spacetime. All fields, including vectors and spinors, are in 4+2 dimensions. The extra gauge symmetries in 2T field theory, together with the kinematic constraints that follow from the action, remove all the ghosts to give a unitary theory. By choosing gauges and solving the kinematic equations, the 2T field theory in 4+2 flat spacetime can be reduced to various shadows in various 3+1 dimensional (generally curved) spacetimes. These shadows are related to each other by dualities. The conformal shadows of our theories in flat 3+1 dimensions coincide with the well known counterpart N=1, 2, 4 supersymmetric massless renormalizable field theories in 3+1 dimensions. It is expected that our more symmetric new structures in 4+2 spacetime may be useful for nonperturbative or exact solutions of these theories.

  8. A Student-Centered Field Project Comparing NEXRAD and Rain Gauge Precipitation Values in Mountainous Terrain.

    ERIC Educational Resources Information Center

    Woltemade, Christopher J.; Stanitski-Martin, Diane

    2002-01-01

    Undergraduate students compared Next Generation Weather Radar (NEXRAD) estimates of storm total precipitation to measurements from a network of 20 rain gauges. Student researchers gained valuable experience in field data collection, global positioning systems (GPS), geographic information systems (GIS), Internet data access and downloading,…

  9. Operation of cold-cathode magnetron gauges in high magnetic fields

    SciTech Connect

    Thomas, S.R. Jr.; Goerz, D.A.; Pickles, W.L.

    1986-05-01

    The Mirror Fusion Test Facility (MFTF-B), under construction at LLNL, requires measurement of the neutral gas density in high magnetic fields near the plasma at several axial regions. This background gas pressure (BGP) diagnostic will help us understand the role of background neutrals in particle and power balance, particularly in the maintenance of the cold halo plasma that shields the hot core plasma from the returning neutrals. The BGP consists of several cold-cathode, magnetron-type gauges stripped of their permanent magnets, and utilizes the MFTF-B ambient B-field in strengths of 5--25 kG. Similar gauges have operated in TMX-U in B-fields up to 3 kG. To determine how well the gauges will perform, we assembled a test stand which operated magnetron gauges in an external, uniform magnetic field of up to 30 kG, over a pressure range of 10/sup -8/--10/sup -5/ Torr, at several cathode voltages. This paper describes the test stand and presents the results of the tests.

  10. On the weak field approximation of the de Sitter gauge theory of gravity

    NASA Astrophysics Data System (ADS)

    Ma, Meng-Sen; Huang, Chao-Guang

    2013-01-01

    The weak field approximation of a model of de Sitter gauge theory of gravity is studied in two cases. Without torsion and spin current, the model cannot give the right non-relativistic approximation unless the density is a constant. With small torsion, a satisfactory Newtonian approximation can be obtained.

  11. Application of abelian holonomy formalism to the elementary theory of numbers

    NASA Astrophysics Data System (ADS)

    Abe, Yasuhiro

    2012-05-01

    We consider an abelian holonomy operator in two-dimensional conformal field theory with zero-mode contributions. The analysis is made possible by use of a geometric-quantization scheme for abelian Chern-Simons theory on S1 × S1 × R. We find that a purely zero-mode part of the holonomy operator can be expressed in terms of Riemann's zeta function. We also show that a generalization of linking numbers can be obtained in terms of the vacuum expectation values of the zero-mode holonomy operators. Inspired by mathematical analogies between linking numbers and Legendre symbols, we then apply these results to a space of Fp = Z/pZ, where p is an odd prime number. This enables us to calculate "scattering amplitudes" of identical odd primes in the holonomy formalism. In this framework, the Riemann hypothesis can be interpreted by means of a physically obvious fact, i.e., there is no notion of "scattering" for a single-particle system. Abelian gauge theories described by the zero-mode holonomy operators will be useful for studies on quantum aspects of topology and number theory.

  12. Phenomenological analysis of heterotic strings: Non-abelian constructions and landscape studies

    NASA Astrophysics Data System (ADS)

    Wasnik, Vaibhav Hemant

    String theory offers the unique promise of unifying all the known forces in nature. However, the internal consistency of the theory requires that spacetime have more than four dimensions. As a result, the extra dimensions must be compactified in some manner and how this compactification takes place is critical for determining the low-energy physical predictions of the theory. In this thesis we examine two distinct consequences of this fact. First, almost all of the prior research in string model-building has examined the consequences of compactifying on so-called "abelian" orbifolds. However, the most general class of compactifications, namely those on non-abelian orbifolds, remains almost completely unexplored. This thesis focuses on the low-energy phenomenological consequences of compactifying strings on non-abelian orbifolds. One of the main interests in pursuing these theories is that they can, in principle, naturally give rise to low-energy models which simultaneously have N=1 supersymmetry along with scalar particles transforming in the adjoint of the gauge group. These features, which are exceedingly difficult to achieve through abelian orbifolds, are exciting because they are the key ingredients in understanding how grand unification can emerge from string theory. Second, the need to compactify gives rise to a huge "landscape" of possible resulting low-energy phenomenologies. One of the goals of the landscape program in string theory is then to extract information about the space of string vacua in the form of statistical correlations between phenomenological features that are otherwise uncorrelated in field theory. Such correlations would thus represent features of string theory that hold independently of a vacuum-selection principle. In this thesis, we study statistical correlations between two features which are likely to be central to any potential description of nature at high-energy scales: gauge symmetries and spacetime supersymmetry. We analyze

  13. Validation of a novel fiber optic strain gauge in a cryogenic and high magnetic field environment

    NASA Astrophysics Data System (ADS)

    Baxter, Scott; Lakrimi, M.'hamed; Thomas, Adrian M.; Gao, Yunxin; Blakes, Hugh; Gibbens, Paul; Looi, Mengche

    2010-10-01

    We report on the first operation of an easy to use low cost novel fiber optic strain gauge (FOSG) in cryogenic and magnetic field environments. The FOSGs were mounted on a superconducting coil and resin impregnated. The gauges detected resin shrinkage upon curing. On cooldown, the FOSG monitored the thermal contraction strains of the coil and the electromagnetic strain during energization. The coil was deliberately quenched, in excess of 175 times, and again the FOSG detected the quenches and measured the thermal expansion-induced strains and subsequent re-cooling of the coil after a quench. Agreement with FEA predictions was very good.

  14. A New Method for Radar Rainfall Estimation Using Merged Radar and Gauge Derived Fields

    NASA Astrophysics Data System (ADS)

    Hasan, M. M.; Sharma, A.; Johnson, F.; Mariethoz, G.; Seed, A.

    2014-12-01

    Accurate estimation of rainfall is critical for any hydrological analysis. The advantage of radar rainfall measurements is their ability to cover large areas. However, the uncertainties in the parameters of the power law, that links reflectivity to rainfall intensity, have to date precluded the widespread use of radars for quantitative rainfall estimates for hydrological studies. There is therefore considerable interest in methods that can combine the strengths of radar and gauge measurements by merging the two data sources. In this work, we propose two new developments to advance this area of research. The first contribution is a non-parametric radar rainfall estimation method (NPZR) which is based on kernel density estimation. Instead of using a traditional Z-R relationship, the NPZR accounts for the uncertainty in the relationship between reflectivity and rainfall intensity. More importantly, this uncertainty can vary for different values of reflectivity. The NPZR method reduces the Mean Square Error (MSE) of the estimated rainfall by 16 % compared to a traditionally fitted Z-R relation. Rainfall estimates are improved at 90% of the gauge locations when the method is applied to the densely gauged Sydney Terrey Hills radar region. A copula based spatial interpolation method (SIR) is used to estimate rainfall from gauge observations at the radar pixel locations. The gauge-based SIR estimates have low uncertainty in areas with good gauge density, whilst the NPZR method provides more reliable rainfall estimates than the SIR method, particularly in the areas of low gauge density. The second contribution of the work is to merge the radar rainfall field with spatially interpolated gauge rainfall estimates. The two rainfall fields are combined using a temporally and spatially varying weighting scheme that can account for the strengths of each method. The weight for each time period at each location is calculated based on the expected estimation error of each method

  15. Classial lattice gauge fields with hard thermal loops

    NASA Astrophysics Data System (ADS)

    Hu, Chaoran

    We design, implement, and test a novel lattice program which is aimed at the study of long-range physics in either an electroweak or a quark-gluon plasma at high temperatures. Our approach starts from a separation of short-range (hard) and long-range (soft) modes. Hard modes are represented as particles, while soft modes are represented as lattice fields. Such a treatment is motivated by the dual classical limits of quantum fields as waves and particles in the infrared and ultraviolet limits, respectively. By including these charged particles, we are able to simulate their influence, by the name of 'hard thermal loops' (HTL), on the soft modes. Our investigations are based on two sets of coupled differential equations: Wong equation and Yang- Mills equation. The former describes the evolution of charged particles in the background of a mean field; the latter is the equation of motion of the mean field. The numerical implementation uses a modified leap-frog algorithm with time-centered evaluations. The validity of our approach is evaluated and verified by evidences from both analytical calculations and numerical measurements. Extensive tests have been done by using the U(1) plasma as a test ground. These include the measurement of plasma frequencies, damping rates, dispersion relation, and linear responses. Similar investigations are also performed in the SU(2) case. The results agree very well with those from perturbative calculations. An application where the method developed here has proved to be successful is the study of Chern-Simons number diffusion, which has to do with the baryon number violation responsible for the observed matter-antimatter asymmetry in the Universe. We have measured the diffusion rate and verified a newly proposed scaling law. Other applications such as the study of energy loss, color diffusion in a quark-gluon plasma await further development.

  16. Geometric phase and gauge connection in polyatomic molecules.

    PubMed

    Wittig, Curt

    2012-05-14

    Geometric phase is an interesting topic that is germane to numerous and varied research areas: molecules, optics, quantum computing, quantum Hall effect, graphene, and so on. It exists only when the system of interest interacts with something it perceives as exterior. An isolated system cannot display geometric phase. This article addresses geometric phase in polyatomic molecules from a gauge field theory perspective. Gauge field theory was introduced in electrodynamics by Fock and examined assiduously by Weyl. It yields the gauge field A(μ), particle-field couplings, and the Aharonov-Bohm phase, while Yang-Mills theory, the cornerstone of the standard model of physics, is a template for non-Abelian gauge symmetries. Electronic structure theory, including nonadiabaticity, is a non-Abelian gauge field theory with matrix-valued covariant derivative. Because the wave function of an isolated molecule must be single-valued, its global U(1) symmetry cannot be gauged, i.e., products of nuclear and electron functions such as χ(n)ψ(n) are forbidden from undergoing local phase transformation on R, where R denotes nuclear degrees of freedom. On the other hand, the synchronous transformations (first noted by Mead and Truhlar): ψ(n)→ψ(n)e(iζ) and simultaneously χ(n)→χ(n)e(-iζ), preserve single-valuedness and enable wave functions in each subspace to undergo phase transformation on R. Thus, each subspace is compatible with a U(1) gauge field theory. The central mathematical object is Berry's adiabatic connection i, which serves as a communication link between the two subsystems. It is shown that additions to the connection according to the gauge principle are, in fact, manifestations of the synchronous (e(iζ)/e(-iζ)) nature of the ψ(n) and χ(n) phase transformations. Two important U(1) connections are reviewed: qA(μ) from electrodynamics and Berry's connection. The gauging of SU(2) and SU(3) is reviewed and then used with molecules. The largest gauge

  17. SU(3) Landau gauge gluon and ghost propagators using the logarithmic lattice gluon field definition

    SciTech Connect

    Ilgenfritz, Ernst-Michael; Menz, Christoph; Mueller-Preussker, Michael; Schiller, Arwed; Sternbeck, Andre

    2011-03-01

    We study the Landau gauge gluon and ghost propagators of SU(3) gauge theory, employing the logarithmic definition for the lattice gluon fields and implementing the corresponding form of the Faddeev-Popov matrix. This is necessary in order to consistently compare lattice data for the bare propagators with that of higher-loop numerical stochastic perturbation theory. In this paper we provide such a comparison, and introduce what is needed for an efficient lattice study. When comparing our data for the logarithmic definition to that of the standard lattice Landau gauge we clearly see the propagators to be multiplicatively related. The data of the associated ghost-gluon coupling matches up almost completely. For the explored lattice spacings and sizes discretization artifacts, finite size, and Gribov-copy effects are small. At weak coupling and large momentum, the bare propagators and the ghost-gluon coupling are seen to be approached by those of higher-order numerical stochastic perturbation theory.

  18. Gauge-flation confronted with Planck

    SciTech Connect

    Namba, Ryo; Dimastrogiovanni, Emanuela; Peloso, Marco E-mail: ema@physics.umn.edu

    2013-11-01

    Gauge-flation is a recently proposed model in which inflation is driven solely by a non-Abelian gauge field thanks to a specific higher order derivative operator. The nature of the operator is such that it does not introduce ghosts. We compute the cosmological scalar and tensor perturbations for this model, improving over an existing computation. We then confront these results with the Planck data. The model is characterized by the quantity γ ≡ g{sup 2}Q{sup 2}/H{sup 2} (where g is the gauge coupling constant, Q the vector vev, and H the Hubble rate). For γ < 2, the scalar perturbations show a strong tachyonic instability. In the stable region, the scalar power spectrum n{sub s} is too low at small γ, while the tensor-to-scalar ratio r is too high at large γ. No value of γ leads to acceptable values for n{sub s} and r, and so the model is ruled out by the CMB data. The same behavior with γ was obtained in Chromo-natural inflation, a model in which inflation is driven by a pseudo-scalar coupled to a non-Abelian gauge field. When the pseudo-scalar can be integrated out, one recovers the model of Gauge-flation plus corrections. It was shown that this identification is very accurate at the background level, but differences emerged in the literature concerning the perturbations of the two models. On the contrary, our results show that the analogy between the two models continues to be accurate also at the perturbative level.

  19. Probing the holographic principle using dynamical gauge effects from open spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Zhao, Jianshi; Price, Craig; Liu, Qi; Gemelke, Nathan

    2016-05-01

    Dynamical gauge fields result from locally defined symmetries and an effective over-labeling of quantum states. Coupling atoms weakly to a reservoir of laser modes can create an effective dynamical gauge field purely due to the disregard of information in the optical states. Here we report measurements revealing effects of open spin-orbit coupling in a system where an effective model can be formed from a non-abelian SU(2) × U(1) field theory following the Yang-Mills construct. Forming a close analogy to dynamical gauge effects in quantum chromodynamics, we extract a measure of atomic motion which reveals the analog of a closing mass gap for the relevant gauge boson, shedding insight on long standing open problems in gauge-fixing scale anomalies. Using arguments following the holographic principle, we measure scaling relations which can be understood by quantifying information present in the local potential. New prospects using these techniques for developing fractionalization of multi-particle and macroscopic systems using dissipative and non-abelian gauge fields will also be discussed. We acknowledge support from NSF Award No. 1068570, and the Charles E. Kaufman Foundation.

  20. A Gauge Theory of Massive Spin One Particles

    NASA Astrophysics Data System (ADS)

    Vyas, Vivek M.; Srinivasan, V.

    2016-05-01

    An Abelian gauge theory describing dynamics of massive spin one bosons is constructed. This is achieved by appending to the Maxwell action, a gauge invariant mass term. The theory is quantised in temporal as well as Lorentz gauge, and the corresponding Hilbert spaces are constructed. In both the gauges, it is found that, the theory respects Lorentz invariance, locality, causality and unitarity.

  1. AdS/CFT and local renormalization group with gauge fields

    NASA Astrophysics Data System (ADS)

    Kikuchi, Ken; Sakai, Tadakatsu

    2016-03-01

    We revisit a study of local renormalization group (RG) with background gauge fields incorporated using the AdS/CFT correspondence. Starting with a (d+1)-dimensional bulk gravity coupled to scalars and gauge fields, we derive a local RG equation from a flow equation by working in the Hamilton-Jacobi formulation of the bulk theory. The Gauss's law constraint associated with gauge symmetry plays an important role. RG flows of the background gauge fields are governed by vector β -functions, and some of their interesting properties are known to follow. We give a systematic rederivation of them on the basis of the flow equation. Fixing an ambiguity of local counterterms in such a manner that is natural from the viewpoint of the flow equation, we determine all the coefficients uniquely appearing in the trace of the stress tensor for d=4. A relation between a choice of schemes and a virial current is discussed. As a consistency check, these are found to satisfy the integrability conditions of local RG transformations. From these results, we are led to a proof of a holographic c-theorem by determining a full family of schemes where a trace anomaly coefficient is related with a holographic c-function.

  2. Spin and charge transport induced by gauge fields in a ferromagnet

    NASA Astrophysics Data System (ADS)

    Shibata, Junya; Kohno, Hiroshi

    2011-11-01

    We present a microscopic theory of spin-dependent motive force (“spin motive force”) induced by magnetization dynamics in a conducting ferromagnet, by taking account of spin relaxation of conduction electrons. The theory is developed by calculating spin and charge transport driven by two kinds of gauge fields; one is the ordinary electromagnetic field Aμem, and the other is the effective gauge field Aμz induced by dynamical magnetic texture. The latter acts in the spin channel and gives rise to a spin motive force. It is found that the current induced as a linear response to Aμz is not gauge invariant in the presence of spin-flip processes. This fact is intimately related to the nonconservation of spin via Onsager reciprocity, so is robust, but indicates a theoretical inconsistency. This problem is resolved by considering the time dependence of spin-relaxation source terms in the “rotated frame,” as in the previous study on Gilbert damping [H. Kohno and J. Shibata, J. Phys. Soc. Jpn.JUPSAU0031-901510.1143/JPSJ.76.063710 76, 063710 (2007)]. This effect restores the gauge invariance while keeping spin nonconservation. It also gives a dissipative spin motive force expected as a reciprocal to the dissipative spin torque (“β term”).

  3. Electrically charged black hole solutions in generalized gauge field theories

    NASA Astrophysics Data System (ADS)

    Diaz-Alonso, J.; Rubiera-Garcia, D.

    2011-09-01

    We summarize the main features of a class of anomalous (asymptotically flat, but non Schwarzschild-like) gravitational configurations in models of gravitating non-linear electrodynamics (G-NED) whose Lagrangian densities are defined as arbitrary functions of the two field invariants and constrained by several physical admissibility conditions. This class of models and their associated electrostatic spherically symmetric black hole (ESSBH) solutions are characterized by the behaviours of the Lagrangian densities around the vacuum and at the boundary of their domain of definition.

  4. Pure gauge configurations and solutions to fermionic superstring field theory equations of motion

    NASA Astrophysics Data System (ADS)

    Aref'eva, I. Ya; Gorbachev, R. V.; Medvedev, P. B.

    2009-07-01

    Recent results on solutions to the equation of motion of the cubic fermionic string field theory and an equivalence of nonpolynomial and cubic string field theory are discussed. To have the possibility of dealing with both GSO(+) and GSO(-) sectors in the uniform way, a matrix formulation for the NS fermionic SFT is used. In constructions of analytical solutions to open-string field theories truncated pure gauge configurations parametrized by wedge states play an essential role. The matrix form of this parametrization for NS fermionic SFT is presented. Using the cubic open superstring field theory as an example we demonstrate explicitly that for the large parameter of the perturbation expansion these truncated pure gauge configurations give divergent contributions to the equations of motion on the subspace of the wedge states. The perturbation expansion is corrected by adding extra terms that are just those necessary for the equation of motion contracted with the solution itself to be satisfied.

  5. Restoration of the covariant gauge α in the initial field of gravity in de Sitter spacetime

    SciTech Connect

    Cheong, Lee Yen; Yan, Chew Xiao

    2014-03-05

    The gravitational field generated by a mass term and the initial surface through covariant retarded Green's function for linearized gravity in de Sitter spacetime was studied recently [4, 5] with the covariant gauges set to β = 2/3 and α = 5/3. In this paper we extend the work to restore the gauge parameter α in the field coming from the initial data using the method of shifting the parameter. The α terms in the initial field cancels exactly with the one coming from the source term. Consequently, the correct field configuration, with two equal mass points moving in its geodesic, one located at the North pole and another one located at the South pole, is reproduced in the whole manifold of de Sitter spacetime.

  6. Reconstruction of precipitation fields out of rain-gauge data in comparison to radar based products

    NASA Astrophysics Data System (ADS)

    Maurer, R.; Schüttemeyer, D.; Gerlach, N.; Simmer, C.

    2009-04-01

    During the last decades large progress was made in the area of precipitation observation mostly related to new methods for remote sensing of precipitation. Radar observations together with passive microwave precipitation measurements have proven to be reliable in this context. However, there is still a need for more extensively exploiting the spatial and temporal variability of the obtained signals, motivated - for instance - by the demand of reliable flood warning systems. To estimate precipitation with the required accuracy the current study examines a technique to construct precipitation fields out of data of a number of spatial distributed rain-gauges by a combination of kriging and fuzzy-logic. This method was applied for a period of 3 years (2005-2008, with 133 rain gauges for about 40.000km²) for one state (Rhineland-Palatinate) in Germany. The method was compared to the operational RADOLAN product of the German Weather Service (DWD). This hourly data set is based on a radar composite created from 16 German radar sites and adjusted to online available high-resolution rain gauge observations. Both procedures were tested independently from each other by cross-correlation. It is shown that the rain-gauge based method on average closely measures up to the accuracy of the RADOLAN product, but in convective situations RADOLAN clearly shows an enhanced performance. For stratiform precipitation fields RADOLAN possesses larger deviations compared to the rain-gauge based product. Due to restrictions in the number of rain gauges an integration of radar-data is indispensable. Thus, it is concluded that the described technique together with thoroughly quality controlled Radar measurements can give reliable estimates of quantitative precipitation suitable for numerous applications in hydrology and meteorology.

  7. Canonical quantization theory of general singular QED system of Fermi field interaction with generally decomposed gauge potential

    SciTech Connect

    Zhang, Zhen-Lu; Huang, Yong-Chang

    2014-03-15

    Quantization theory gives rise to transverse phonons for the traditional Coulomb gauge condition and to scalar and longitudinal photons for the Lorentz gauge condition. We describe a new approach to quantize the general singular QED system by decomposing a general gauge potential into two orthogonal components in general field theory, which preserves scalar and longitudinal photons. Using these two orthogonal components, we obtain an expansion of the gauge-invariant Lagrangian density, from which we deduce the two orthogonal canonical momenta conjugate to the two components of the gauge potential. We then obtain the canonical Hamiltonian in the phase space and deduce the inherent constraints. In terms of the naturally deduced gauge condition, the quantization results are exactly consistent with those in the traditional Coulomb gauge condition and superior to those in the Lorentz gauge condition. Moreover, we find that all the nonvanishing quantum commutators are permanently gauge-invariant. A system can only be measured in physical experiments when it is gauge-invariant. The vanishing longitudinal vector potential means that the gauge invariance of the general QED system cannot be retained. This is similar to the nucleon spin crisis dilemma, which is an example of a physical quantity that cannot be exactly measured experimentally. However, the theory here solves this dilemma by keeping the gauge invariance of the general QED system. -- Highlights: •We decompose the general gauge potential into two orthogonal parts according to general field theory. •We identify a new approach for quantizing the general singular QED system. •The results obtained are superior to those for the Lorentz gauge condition. •The theory presented solves dilemmas such as the nucleon spin crisis.

  8. Non-Abelian family symmetries as portals to dark matter

    NASA Astrophysics Data System (ADS)

    de Medeiros Varzielas, I.; Fischer, O.

    2016-01-01

    Non-Abelian family symmetries offer a very promising explanation for the flavour structure in the Standard Model and its extensions. We explore the possibility that dark matter consists in fermions that transform under a family symmetry, such that the visible and dark sector are linked by the familons - Standard Model gauge singlet scalars, responsible for spontaneously breaking the family symmetry. We study three representative models with non-Abelian family symmetries that have been shown capable to explain the masses and mixing of the Standard Model fermions.

  9. Symmetric solitonic excitations of the (1 + 1)-dimensional Abelian-Higgs classical vacuum.

    PubMed

    Diakonos, F K; Katsimiga, G C; Maintas, X N; Tsagkarakis, C E

    2015-02-01

    We study the classical dynamics of the Abelian-Higgs model in (1 + 1) space-time dimensions for the case of strongly broken gauge symmetry. In this limit the wells of the potential are almost harmonic and sufficiently deep, presenting a scenario far from the associated critical point. Using a multiscale perturbation expansion, the equations of motion for the fields are reduced to a system of coupled nonlinear Schrödinger equations. Exact solutions of the latter are used to obtain approximate analytical solutions for the full dynamics of both the gauge and Higgs field in the form of oscillons and oscillating kinks. Numerical simulations of the exact dynamics verify the validity of these solutions. We explore their persistence for a wide range of the model's single parameter, which is the ratio of the Higgs mass (m(H)) to the gauge-field mass (m(A)). We show that only oscillons oscillating symmetrically with respect to the "classical vacuum," for both the gauge and the Higgs field, are long lived. Furthermore, plane waves and oscillating kinks are shown to decay into oscillon-like patterns, due to the modulation instability mechanism. PMID:25768621

  10. Gravity as an internal Yang-Mills gauge field theory of the Poincaré group.

    NASA Astrophysics Data System (ADS)

    Hennig, Jörg; Nitsch, Jürgen

    1981-10-01

    In the framework of affine bundles we present gravity as an “internal” gauge field theory of the Poincaré group. The resulting geometry is a Riemann-Cartan space-time carrying torsion and curvature. In order to admit a nontrivial action of the translation group we formally extend the matter Lagrangian to affine field variables. Finally, we establish the relation of our approach with the formalism of Hehl et al.

  11. Designer Dirac Fermions, Topological Phases, and Gauge Fields in Molecular Graphene

    NASA Astrophysics Data System (ADS)

    Manoharan, Hari C.

    2013-03-01

    The observation of massless Dirac fermions in monolayer graphene has propelled a new area of science and technology seeking to harness charge carriers that behave relativistically within solid-state materials. Using low-temperature scanning tunneling microscopy and spectroscopy, we show the emergence of Dirac fermions in a fully tunable condensed-matter system--molecular graphene--assembled via atomic manipulation of a conventional two-dimensional electron system in a surface state. We embed, image, and tune the symmetries underlying the two-dimensional Dirac equation into these electrons by sculpting the surface potential with manipulated molecules. By distorting the effective electron hopping parameters into a Kekulé pattern, we find that these natively massless Dirac particles can be endowed with a tunable mass engendered by the associated scalar gauge field, in analogy to the Higgs field. With altered symmetry and texturing of the assembled lattices, the Dirac fermions can be dressed with gauge electric or magnetic fields such that the carriers believe they are in real fields and condense into the corresponding ground state, as confirmed by tunneling spectroscopy. Using these techniques we ultimately fabricate a quantum Hall state without breaking time-reversal symmetry, in which electrons quantize in a gauge magnetic field ramped to 60 Tesla with zero applied laboratory field. We show that these and other chiral states now possible to realize have direct analogues in topological insulators, and can be used to guide or confine charge in nontrivial ways.

  12. Faddeev–Jackiw quantization of an Abelian and non-Abelian exotic action for gravity in three dimensions

    SciTech Connect

    Escalante, Alberto Manuel-Cabrera, J.

    2015-10-15

    A detailed Faddeev–Jackiw quantization of an Abelian and non-Abelian exotic action for gravity in three dimensions is performed. We obtain for the theories under study the constraints, the gauge transformations, the generalized Faddeev–Jackiw brackets and we perform the counting of physical degrees of freedom. In addition, we compare our results with those found in the literature where the canonical analysis is developed, in particular, we show that both the generalized Faddeev–Jackiw brackets and Dirac’s brackets coincide to each other. Finally we discuss some remarks and prospects. - Highlights: • A detailed Faddeev–Jackiw analysis for exotic action of gravity is performed. • We show that Dirac’s brackets and Generalized [FJ] brackets are equivalent. • Without fixing the gauge exotic action is a non-commutative theory. • The fundamental gauge transformations of the theory are found. • Dirac and Faddeev–Jackiw approaches are compared.

  13. Parity anomalies in gauge theories in 2 + 1 dimensions

    SciTech Connect

    Rao, S.; Yahalom, R.

    1986-01-01

    We show that the introduction of massless fermions in an abelian gauge theory in 2+1 dimensions does not lead to any parity anomaly despite a non-commutativity of limits in the structure function of the odd part of the vacuum polarization tensor. However, parity anomaly does exist in non-abelian theories due to a conflict between gauge invariance under large gauge transformations and the parity symmetry. 6 refs.

  14. A gravitational gauge field theory based on Stephenson-Kilmister-Yang gravitation with scalar and spinor fields as gravitating matter sources

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-05-01

    A gravitational gauge theory with a spin-affine connection (Lorentz connection) as a rotational gauge potential (fundamental dynamical variable) is suggested for reformulating the theory of Stephenson-Kilmister-Yang gravity, in which the Einstein field equation of gravity is a first-integral solution of a spin-connection gravitational gauge field equation. A heavy intermediate field φ that accompanies a matter field \\varphi is introduced in order to remove the conventional dimensionful gravitational coupling. Such a \\varphi -φ coupling can lead to dimensionless gravitational coupling (i.e., the gravitational constant is dimensionless) in the present gravitational gauge field theory. A low-energy effective Lagrangian density for the matter field can be obtained by integrating out the accompanying heavy field in generating functional of path integral formalism, and therefore, a dimensionful gravitational coupling coefficient (Einstein gravitational constant) emerges. Such a dimensionless coupling of gravity, where the dimensionful coupling is emergent at low energies, is considered for scalar and spinor fields, which serve as gravitating matter fields (gravitational source). Though there are higher derivatives (e.g., third- and fourth-order partial derivatives) of the scalar and spinor fields in the low-energy effective Lagrangian densities, the ordinary equations of motion of the scalar and spinor fields can also be emergent from the present gravitational gauge theory. Therefore, the Einstein gravity can be recovered from the present gravitational gauge theory. In addition to the gravitational Lagrangian of the spacetime-rotational gauge potential (i.e., spin-affine connection), the Lagrangian of a spacetime-translational gauge potential (i.e., vierbein) is also constructed. Thus, the present dimensionless gravitational gauge coupling preserves local rotational and translational gauge symmetries. Since the spin-connection gravitational gauge field equation is a

  15. Matter in loop quantum gravity without time gauge: A nonminimally coupled scalar field

    SciTech Connect

    Cianfrani, Francesco; Montani, Giovanni

    2009-10-15

    We analyze the phase space of gravity nonminimally coupled to a scalar field in a generic local Lorentz frame. We reduce the set of constraints to a first class one by fixing a specific hypersurfaces in the phase space. The main issue of our analysis is to extend the features of the vacuum case to the presence of scalar matter by recovering the emergence of an SU(2) gauge structure and the nondynamical role of boost variables. Within this scheme, the supermomentum and the super-Hamiltonian are those ones associated with a scalar field minimally coupled to the metric in the Einstein frame. Hence, the kinematical Hilbert space is defined as in canonical loop quantum gravity with a scalar field, but the differences in the area spectrum are outlined to be the same as in the time-gauge approach.

  16. Emergent gauge fields and their nonperturbative effects in correlated electrons

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Seok; Tanaka, Akihiro

    2015-06-01

    nonperturbative dynamics of topological excitations is again seen to be crucial in classifying topologically nontrivial gapped systems. We point to some hidden links between several effective field theories with topological terms, starting with one-dimensional physics, and subsequently finding natural generalizations to higher dimensions.

  17. Electromagnetic superconductivity of vacuum induced by strong magnetic field: Numerical evidence in lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Braguta, V. V.; Buividovich, P. V.; Chernodub, M. N.; Kotov, A. Yu.; Polikarpov, M. I.

    2012-12-01

    Using numerical simulations of quenched SU (2) gauge theory we demonstrate that an external magnetic field leads to spontaneous generation of quark condensates with quantum numbers of electrically charged ρ mesons if the strength of the magnetic field exceeds the critical value eBc = 0.927 (77) GeV2 or Bc = (1.56 ± 0.13) ṡ1016 Tesla. The condensation of the charged ρ mesons in strong magnetic field is a key feature of the magnetic-field-induced electromagnetic superconductivity of the vacuum.

  18. On gauge enhancement and singular limits in G 2 compactifications of M-theory

    NASA Astrophysics Data System (ADS)

    Halverson, James; Morrison, David R.

    2016-04-01

    We study the physics of singular limits of G 2 compactifications of M-theory, which are necessary to obtain a compactification with non-abelian gauge symmetry or massless charged particles. This is more difficult than for Calabi-Yau compactifications, due to the absence of calibrated two-cycles that would have allowed for direct control of W-boson masses as a function of moduli. Instead, we study the relationship between gauge enhancement and singular limits in G 2 moduli space where an associative or coassociative submanifold shrinks to zero size; this involves the physics of topological defects and sometimes gives indirect control over particle masses, even though they are not BPS. We show how a lemma of Joyce associates the class of a three-cycle to any U(1) gauge theory in a smooth G 2 compactification. If there is an appropriate associative submanifold in this class then in the limit of nonabelian gauge symmetry it may be interpreted as a gauge theory worldvolume and provides the location of the singularities associated with non-abelian gauge or matter fields. We identify a number of gauge enhancement scenarios related to calibrated submanifolds, including Coulomb branches and non-isolated conifolds, and also study examples that realize them.

  19. Chiral gauge theories and a dirac neutrino - Dark matter connection

    NASA Astrophysics Data System (ADS)

    Hernandez, Daniel

    2016-06-01

    It is proposed that all light fermionic degrees of freedom, including the Standard Model (SM) fermions and all possible light beyond-the-standard model fields, are chiral with respect to some spontaneously broken abelian gauge symmetry. A new gauge symmetry U(1)ν is required if light fermionic new states are to exist. Anomaly cancellations mandate the existence of several new fields with nontrivial U(1)ν charges. A general technique to write down chiral-fermions-only models that are at least anomaly-free under a U(1) gauge symmetry is described. A concrete example that provides a Dark Matter candidate and leads to parametrically small Dirac neutrino masses is further developed.

  20. Semiclassical circular strings in AdS{sub 5} and 'long' gauge field strength operators

    SciTech Connect

    Park, I.Y.; Tirziu, A.; Tseytlin, A.A.

    2005-06-15

    We consider circular strings rotating with equal spins S{sub 1}=S{sub 2}=S in two orthogonal planes in AdS{sub 5} and suggest that they may be dual to long gauge-theory operators built out of self-dual components of gauge field strength. As was found in hep-th/0404187, the one-loop anomalous dimensions of the such gauge-theory operators are described by an antiferromagnetic XXX{sub 1} spin chain and scale linearly with length L>>1. We find that in the case of rigid rotating string both the classical energy E{sub 0} and the 1-loop string correction E{sub 1} depend linearly on the spin S (within the stability region of the solution). This supports the identification of the rigid rotating string with the gauge-theory operator corresponding to the maximal-spin (ferromagnetic) state of the XXX{sub 1} spin chain. The energy of more general rotating and pulsating strings also happens to scale linearly with both the spin and the oscillation number. Such solutions should be dual to other lower-spin states of the spin chain, with the antiferromagnetic ground state presumably corresponding to the string pulsating in two planes with no rotation.

  1. Roughness of undoped graphene and its short-range induced gauge field

    NASA Astrophysics Data System (ADS)

    Abedpour, N.; Neek-Amal, M.; Asgari, Reza; Shahbazi, F.; Nafari, N.; Tabar, M. Reza Rahimi

    2007-11-01

    We present both numerical and analytical studies of graphene roughness with a crystal structure including 500×500 atoms. The roughness can effectively result in a random gauge field and has important consequences for its electronic structure. Our results show that its height fluctuations in small scales have a scaling behavior with a temperature dependent roughness exponent in the interval of 0.6<χ<0.7 . The correlation function of height fluctuations depends on temperature with a characteristic length scale of ≈90Å (at room temperature). We show that the correlation function of the induced gauge field has a short-range nature with a correlation length of about ≃2-3Å . We also treat the problem analytically by using the Martin-Siggia-Rose method. The renormalization group flows did not yield any delocalized-localized transition arising from the graphene roughness. Our results are in good agreement with recent experimental observations.

  2. Higher spin conformal geometry in three dimensions and prepotentials for higher spin gauge fields

    NASA Astrophysics Data System (ADS)

    Henneaux, Marc; Hörtner, Sergio; Leonard, Amaury

    2016-01-01

    We study systematically the conformal geometry of higher spin bosonic gauge fields in three spacetime dimensions. We recall the definition of the Cotton tensor for higher spins and establish a number of its properties that turn out to be key in solving in terms of prepotentials the constraint equations of the Hamiltonian (3 + 1) formulation of four-dimensional higher spin gauge fields. The prepotentials are shown to exhibit higher spin conformal symmetry. Just as for spins 1 and 2, they provide a remarkably simple, manifestly duality invariant formulation of the theory. While the higher spin conformal geometry is developed for arbitrary bosonic spin, we explicitly perform the Hamiltonian analysis and derive the solution of the constraints only in the illustrative case of spin 3. In a separate publication, the Hamiltonian analysis in terms of prepotentials is extended to all bosonic higher spins using the conformal tools of this paper, and the same emergence of higher spin conformal symmetry is confirmed.

  3. Gauge covariant fermion propagator in quenched, chirally symmetric quantum electrodynamics

    SciTech Connect

    Roberts, C.D.; Dong, Z.; Munczek, H.J.

    1995-08-01

    The chirally symmetric solution of the massless, quenched, Dyson-Schwinger equation (DSE) for the fermion propagator in three- and four-dimensional quantum electrodynamics was obtained. The DSEs are a valuable nonperturbative tool for studying field theories. In recent years a good deal of progress was made in addressing the limitations of the DSE approach in the study of Abelian gauge theories. Key to this progress is an understanding of the role of the dressed fermion/gauge-boson vertex in ensuring gauge covariance and multiplicative renormalizability of the solution of the fermion DSE. The solutions we obtain are manifestly gauge covariant and a general gauge covariance constraint on the fermion/gauge-boson vertex is presented, which motivates a vertex Ansatz that, for the first time, both satisfies the Ward identity when the fermion self-mass is zero and ensures gauge covariance of the fermion propagator. This research facilitates gauge-invariant, nonperturbative studies of continuum quantum electrodynamics and has already been used by others in studies of the chiral phase transition.

  4. Higher-frequency extension of the gauging ranges of vector receivers in the nonuniform field of measuring chambers

    NASA Astrophysics Data System (ADS)

    Gordienko, V. A.; Goncharenko, B. I.; Zadorozhnyi, S. S.; Starkova, M. V.

    2012-09-01

    The paper discusses the frequency-dependent error of gauging acoustic receivers in the field of a standing wave and the fundamental possibility of extending the operating range of gauging of hydrophones toward high frequencies and finite-size vector receivers (acoustic pressure gradient receivers) in a vertical liquid column, oscillating in a small-volume cylindrical chamber.

  5. Strongly correlated states of a small cold-atom cloud from geometric gauge fields

    SciTech Connect

    Julia-Diaz, B.; Dagnino, D.; Barberan, N.; Guenter, K. J.; Dalibard, J.; Grass, T.; Lewenstein, M.

    2011-11-15

    Using exact diagonalization for a small system of cold bosonic atoms, we analyze the emergence of strongly correlated states in the presence of an artificial magnetic field. This gauge field is generated by a laser beam that couples two internal atomic states, and it is related to Berry's geometrical phase that emerges when an atom follows adiabatically one of the two eigenstates of the atom-laser coupling. Our approach allows us to go beyond the adiabatic approximation, and to characterize the generalized Laughlin wave functions that appear in the strong magnetic-field limit.

  6. Higher orbital physics and artificial gauge fields with ultracold quantum gases

    NASA Astrophysics Data System (ADS)

    Sengstock, Klaus

    2013-03-01

    Recently the physics of quantum gases in higher orbitals attracted a lot of attention, theoretically and experimentally. We report on studies of a new type of superfluid described by a complex order parameter, resulting from an interaction-induced hybridization of the two lowest orbitals for a binary spin-mixture. As a main result we observe a quantum phase transition between the normal superfluid and this unconventional superfluid phase, where the local phase angle of the complex order parameter is continuously twisted between neighboring lattice sites. In addition we discuss new experimental work on the creation of artificial gauge potentials for neutral atoms in 1D and 2D lattices, which do not rely on the internal structure of the atoms. Via a time-dependent driving of the optical lattice we have full control over amplitude and phase of the complex valued hopping parameters. In a 2D triangular lattice, we demonstrate the realization of gauge invariant staggered fluxes. Our system consists of an array of tubes filled with bosonic atoms having a well-defined local phase. The phase distribution obtained in presence of large amplitude staggered fluxes - where frustration plays a key role - obeys two fundamental symmetries, the discrete Ising symmetry (Z2) and a continuous global phase symmetry (U(1)). Via the full control of the staggered gauge fields, we are able to break the Ising symmetry on purpose which means lifting the degeneracy of the two possible Ising states, in analogy to a longitudinal homogenous magnetic field in the standard Ising-Spin model. The measurements reveal ``textbook like'' magnetization curves with the well known dependence on both, the external magnetic field and the temperature. We observe a thermally driven phase transition from an ordered Ising (ferromagnetic) to an unordered (paramagnetic) state. Future directions to combine orbital physics and gauge fields will be discussed.

  7. Interaction of the 4-rotational gauge field with orbital momentum, gravidiamagnetic effect, and orbital experiment ''Gravity Probe B''

    SciTech Connect

    Babourova, O. V.; Frolov, B. N.

    2010-07-15

    The direct interaction of the 4-rotational (Lorentzian) gauge field with angular orbital momentum of an external field is considered. This interaction appears in a new Poincare gauge theory of gravitation, in which tetrads are not true gauge fields, but represent some functions of the translational and 4-rotational gauge fields. The given interaction leads to a new effect: the existence of an electronic orbit precession under the action of an intensive external gravitational field (gravidiamagnetic effect), and also substantiates the existence of the direct interaction of the proper angular momentum of a gyroscope with the torsion field, which theoretically can be generated by the rotational angular momentum of the planet Earth. The latter interaction can be detected by the experiment Gravity Probe B on the satellite orbit.

  8. Localization of quantum topology in the presence of matter and gauge fields

    NASA Astrophysics Data System (ADS)

    Atyabi, Farzaneh

    2015-06-01

    In this paper a toy model of quantum topology is reviewed to study effects of matter and gauge fields on the topology fluctuations. In the model a collection of N one-dimensional manifolds is considered where a set of boundary conditions on states of Hilbert space specifies a set of all topologies perceived by quantum particle and probability of having a specific topology is determined by a partition function over all the topologies in the context of noncommutative spectral geometry. In general the topologies will be fuzzy with the exception of a particular case which is localized by imposing a specific boundary condition. Here fermions and bosons are added to the model. It is shown that in the presence of matter, the fuzziness of topology will be dependent on N, however for large N the dependence is removed similar to the case without matter. Also turning on a particular background gauge field can overcome the fuzziness of topology to reach a localized topology with classical interpretation. It can be seen that for large N more opportunities can be provided for choosing the background gauge field to localize the fuzzy topology.

  9. Robust ground state and artificial gauge in DQW exciton condensates under weak magnetic field

    NASA Astrophysics Data System (ADS)

    Hakioğlu, T.; Özgün, Ege; Günay, Mehmet

    2014-08-01

    An exciton condensate is a vast playground in studying a number of symmetries that are of high interest in the recent developments in topological condensed matter physics. In double quantum wells (DQWs) they pose highly nonconventional properties due to the pairing of non-identical fermions with a spin dependent order parameter. Here, we demonstrate a new feature in these systems: the robustness of the ground state to weak external magnetic field and the appearance of the artificial spinor gauge fields beyond a critical field strength where negative energy pair-breaking quasi particle excitations, i.e. de-excitation pockets (DX-pockets), are created in certain k regions. The DX-pockets are the Kramers symmetry broken analogs of the negative energy pockets examined in the 1960s by Sarma. They respect a disk or a shell-topology in k-space or a mixture between them depending on the magnetic field strength and the electron-hole density mismatch. The Berry connection between the artificial spinor gauge field and the TKNN number is made. This field describes a collection of pure spin vortices in real space when the magnetic field has only inplane components.

  10. Entanglement entropy and nonabelian gauge symmetry

    NASA Astrophysics Data System (ADS)

    Donnelly, William

    2014-11-01

    Entanglement entropy has proven to be an extremely useful concept in quantum field theory. Gauge theories are of particular interest, but for these systems the entanglement entropy is not clearly defined because the physical Hilbert space does not factor as a tensor product according to regions of space. Here we review a definition of entanglement entropy that applies to abelian and nonabelian lattice gauge theories. This entanglement entropy is obtained by embedding the physical Hilbert space into a product of Hilbert spaces associated to regions with boundary. The latter Hilbert spaces include degrees of freedom on the entangling surface that transform like surface charges under the gauge symmetry. These degrees of freedom are shown to contribute to the entanglement entropy, and the form of this contribution is determined by the gauge symmetry. We test our definition using the example of two-dimensional Yang-Mills theory, and find that it agrees with the thermal entropy in de Sitter space, and with the results of the Euclidean replica trick. We discuss the possible implications of this result for more complicated gauge theories, including quantum gravity.

  11. Magnetic-Field-Induced Insulator-Conductor Transition in SU(2) Quenched Lattice Gauge Theory

    SciTech Connect

    Buividovich, P.V.; Kharzeev, D.; Chernodub, M.N., Kalaydzhyan, T., Luschevskaya, E.V., and M.I. Polikarpov

    2010-09-24

    We study the correlator of two vector currents in quenched SU(2) lattice gauge theory with a chirally invariant lattice Dirac operator with a constant external magnetic field. It is found that in the confinement phase the correlator of the components of the current parallel to the magnetic field decays much slower than in the absence of a magnetic field, while for other components the correlation length slightly decreases. We apply the maximal entropy method to extract the corresponding spectral function. In the limit of zero frequency this spectral function yields the electric conductivity of quenched theory. We find that in the confinement phase the external magnetic field induces nonzero electric conductivity along the direction of the field, transforming the system from an insulator into an anisotropic conductor. In the deconfinement phase the conductivity does not exhibit any sizable dependence on the magnetic field.

  12. Extracting Flavor from Quiver Gauge Theories

    NASA Astrophysics Data System (ADS)

    Volansky, T.

    2007-04-01

    We consider a large class of models where an SU(5) gauge symmetry and a Froggatt-Nielsen (FN) Abelian flavor symmetry arise from a quiver gauge theory. Such quiver models are very restrictive and therefore have strong predictive power. In particular, under mild assumptions neutrino mass anarchy is predicted.

  13. Bulk gauge and matter fields in nested warping: II. Symmetry breaking and phenomenological consequences

    NASA Astrophysics Data System (ADS)

    Arun, Mathew Thomas; Choudhury, Debajyoti

    2016-04-01

    Generalizing the Randall-Sundrum scenario to higher dimensions with nested warpings has been shown to avoid the constraints besetting the former. In the first paper of this series [ JHEP 09 (2015) 202], the Standard Model gauge and fermion fields were extended into such a six-dimensional bulk and the construction was shown to have several interesting and welcome features. In this paper, we discuss the electroweak symmetry breaking, presenting a novel Higgs localization mechanism that leads to interesting phenomenology in the Higgs sector. Localizing the Higgs modifies the Z μ and W μ boson wavefunctions, which leads to tree level changes in the oblique parameters. Using these as well as the correction to low-energy four-Fermi operators, we derive the constraints on our model and also discuss the gauge coupling evolution therein. Amusingly, the model can naturally incorporate a Higgs resonance in the 700-800 GeV range.

  14. Conformal gauge-Yukawa theories away from four dimensions

    NASA Astrophysics Data System (ADS)

    Codello, Alessandro; Langæble, Kasper; Litim, Daniel F.; Sannino, Francesco

    2016-07-01

    We present the phase diagram and associated fixed points for a wide class of Gauge-Yukawa theories in d = 4 + ɛ dimensions. The theories we investigate involve non-abelian gauge fields, fermions and scalars in the Veneziano-Witten limit. The analysis is performed in steps, we start with QCD d and then we add Yukawa interactions and scalars which we study at next-to- and next-to-next-to-leading order. Interacting infrared fixed points naturally emerge in dimensions lower than four while ultraviolet ones appear above four. We also analyse the stability of the scalar potential for the discovered fixed points. We argue for a very rich phase diagram in three dimensions while in dimensions higher than four certain Gauge-Yukawa theories are ultraviolet complete because of the emergence of an asymptotically safe fixed point.

  15. Classifying BPS states in supersymmetric gauge theories coupled to higher derivative chiral models

    NASA Astrophysics Data System (ADS)

    Nitta, Muneto; Sasaki, Shin

    2015-06-01

    We study N =1 supersymmetric gauge theories coupled with higher derivative chiral models in four dimensions in the off-shell superfield formalism. We solve the equation of motion for the auxiliary fields and find two distinct on-shell structures of the Lagrangian that we call the canonical and noncanonical branches characterized by zero and nonzero auxiliary fields, respectively. We classify Bogomol'nyi-Prasado-Sommerfield (BPS) states of the models in Minkowski and Euclidean spaces. In Minkowski space, we find Abelian and non-Abelian vortices, vortex lumps (or gauged lumps with fractional lump charges) as 1 /2 BPS states in the canonical branch, and higher derivative generalization of vortices and vortex-(BPS)baby Skyrmions (or gauged BPS baby Skyrmions with fractional baby Skyrme charges) as 1 /4 BPS states in the noncanonical branch. In four-dimensional Euclidean space, we find Yang-Mills instantons trapped inside a non-Abelian vortex, intersecting vortices, and intersecting vortex-(BPS)baby Skyrmions as 1 /4 BPS states in the canonical branch but no BPS states in the noncanonical branch other than those in the Minkowski space.

  16. Nonlocal Hamiltonian gauge theories and their connection with lattice Hamiltonians

    SciTech Connect

    Ktorides, C.N.; Mavromatos, N.E.

    1985-06-15

    We introduce the concept of primitive Hamiltonian density for nonlocal Abelian gauge theories. We subsequently study the local limit both with respect to the continuum and with respect to a lattice structure introduced via hypercubic cells. The non-Abelian case is also discussed.

  17. Coupled inflaton and electromagnetic fields from Gravitoelectromagnetic Inflation with Lorentz and Feynman gauges

    SciTech Connect

    Membiela, Federico Agustín; Bellini, Mauricio E-mail: membiela@mdp.edu.ar

    2010-10-01

    Using a semiclassical approach to Gravitoelectromagnetic Inflation (GEMI), we study the origin and evolution of seminal inflaton and electromagnetic fields in the early inflationary universe from a 5D vacuum state. We use simultaneously the Lorentz and Feynman gauges. Our formalism is naturally not conformal invariant on the effective 4D de Sitter metric, which make possible the super adiabatic amplification of electric and magnetic field modes during the early inflationary epoch of the universe on cosmological scales. This is the first time that solutions for the electric field fluctuations are investigated in a systematic way as embeddings for inflationary models in 4D. An important and new result here obtained is that the spectrum of the electric field fluctuations depend with the scale, such that the spectral index increases quadratically as the scale decreases.

  18. Constraining the String Gauge Field by Galaxy Rotation Curves and Perihelion Precession of Planets

    NASA Astrophysics Data System (ADS)

    Cheung, Yeuk-Kwan E.; Xu, Feng

    2013-09-01

    We discuss a cosmological model in which the string gauge field coupled universally to matter gives rise to an extra centripetal force and will have observable signatures on cosmological and astronomical observations. Several tests are performed using data including galaxy rotation curves of 22 spiral galaxies of varied luminosities and sizes and perihelion precessions of planets in the solar system. The rotation curves of the same group of galaxies are independently fit using a dark matter model with the generalized Navarro-Frenk-White (NFW) profile and the string model. A remarkable fit of galaxy rotation curves is achieved using the one-parameter string model as compared to the three-parameter dark matter model with the NFW profile. The average χ2 value of the NFW fit is 9% better than that of the string model at a price of two more free parameters. Furthermore, from the string model, we can give a dynamical explanation for the phenomenological Tully-Fisher relation. We are able to derive a relation between field strength, galaxy size, and luminosity, which can be verified with data from the 22 galaxies. To further test the hypothesis of the universal existence of the string gauge field, we apply our string model to the solar system. Constraint on the magnitude of the string field in the solar system is deduced from the current ranges for any anomalous perihelion precession of planets allowed by the latest observations. The field distribution resembles a dipole field originating from the Sun. The string field strength deduced from the solar system observations is of a similar magnitude as the field strength needed to sustain the rotational speed of the Sun inside the Milky Way. This hypothesis can be tested further by future observations with higher precision.

  19. CONSTRAINING THE STRING GAUGE FIELD BY GALAXY ROTATION CURVES AND PERIHELION PRECESSION OF PLANETS

    SciTech Connect

    Cheung, Yeuk-Kwan E.; Xu Feng

    2013-09-01

    We discuss a cosmological model in which the string gauge field coupled universally to matter gives rise to an extra centripetal force and will have observable signatures on cosmological and astronomical observations. Several tests are performed using data including galaxy rotation curves of 22 spiral galaxies of varied luminosities and sizes and perihelion precessions of planets in the solar system. The rotation curves of the same group of galaxies are independently fit using a dark matter model with the generalized Navarro-Frenk-White (NFW) profile and the string model. A remarkable fit of galaxy rotation curves is achieved using the one-parameter string model as compared to the three-parameter dark matter model with the NFW profile. The average {chi}{sup 2} value of the NFW fit is 9% better than that of the string model at a price of two more free parameters. Furthermore, from the string model, we can give a dynamical explanation for the phenomenological Tully-Fisher relation. We are able to derive a relation between field strength, galaxy size, and luminosity, which can be verified with data from the 22 galaxies. To further test the hypothesis of the universal existence of the string gauge field, we apply our string model to the solar system. Constraint on the magnitude of the string field in the solar system is deduced from the current ranges for any anomalous perihelion precession of planets allowed by the latest observations. The field distribution resembles a dipole field originating from the Sun. The string field strength deduced from the solar system observations is of a similar magnitude as the field strength needed to sustain the rotational speed of the Sun inside the Milky Way. This hypothesis can be tested further by future observations with higher precision.

  20. Global Constraints on Anomalous Triple Gauge Couplings in the Effective Field Theory Approach

    NASA Astrophysics Data System (ADS)

    Falkowski, Adam; González-Alonso, Martín; Greljo, Admir; Marzocca, David

    2016-01-01

    We present a combined analysis of LHC Higgs data (signal strengths) together with LEP-2 W W production measurements. To characterize possible deviations from the standard model (SM) predictions, we employ the framework of an effective field theory (EFT) where the SM is extended by higher-dimensional operators suppressed by the mass scale of new physics Λ . The analysis is performed consistently at the order Λ-2 in the EFT expansion keeping all the relevant operators. While the two data sets suffer from flat directions, together they impose stringent model-independent constraints on the anomalous triple gauge couplings.

  1. Probing hidden sectors with Stückelberg U(1) gauge fields.

    PubMed

    Feng, Wan-Zhe; Shiu, Gary; Soler, Pablo; Ye, Fang

    2014-08-01

    We propose a framework in which visible matter interacts with matter from a hidden sector through mass mixings of Stückelberg U(1) gauge fields. In contrast to other Z(') mediation scenarios, our setup has the added appealing features that (i) the choice of Z(')'s can be significantly broadened without necessarily introducing unwanted exotic matter and (ii) there can be sizable tree-level interactions between the visible and hidden sectors. String theory embeddings of this scenario and their phenomenological features are briefly discussed. PMID:25148316

  2. Global Constraints on Anomalous Triple Gauge Couplings in the Effective Field Theory Approach.

    PubMed

    Falkowski, Adam; González-Alonso, Martín; Greljo, Admir; Marzocca, David

    2016-01-01

    We present a combined analysis of LHC Higgs data (signal strengths) together with LEP-2 WW production measurements. To characterize possible deviations from the standard model (SM) predictions, we employ the framework of an effective field theory (EFT) where the SM is extended by higher-dimensional operators suppressed by the mass scale of new physics Λ. The analysis is performed consistently at the order Λ(-2) in the EFT expansion keeping all the relevant operators. While the two data sets suffer from flat directions, together they impose stringent model-independent constraints on the anomalous triple gauge couplings. PMID:26799011

  3. Symmetries of abelian orbifolds

    NASA Astrophysics Data System (ADS)

    Hanany, Amihay; Seong, Rak-Kyeong

    2011-01-01

    Using the Polya Enumeration Theorem, we count with particular attention to {{{{mathbb{C}^3}}} left/ {Γ } right.} up to {{{{mathbb{C}^6}}} left/ {Γ } right.} , abelian orbifolds in various dimensions which are invariant under cycles of the permutation group S D . This produces a collection of multiplicative sequences, one for each cycle in the Cycle Index of the permutation group. A multiplicative sequence is controlled by its values on prime numbers and their pure powers. Therefore, we pay particular attention to orbifolds of the form {{{{mathbb{C}^D}}} left/ {Γ } right.} where the order of Γ is p α. We propose a generalization of these sequences for any D and any p.

  4. Quantum field theory of gravity with spin and scaling gauge invariance and spacetime dynamics with quantum inflation

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Liang

    2016-01-01

    Treating the gravitational force on the same footing as the electroweak and strong forces, we present a quantum field theory of gravity based on spin and scaling gauge symmetries. A biframe spacetime is initiated to describe such a quantum gravity theory. The gravifield sided on both locally flat noncoordinate spacetime and globally flat Minkowski spacetime is an essential ingredient for gauging global spin and scaling symmetries. The locally flat gravifield spacetime spanned by the gravifield is associated with a noncommutative geometry characterized by a gauge-type field strength of the gravifield. A coordinate-independent and gauge-invariant action for the quantum gravity is built in the gravifield basis. In the coordinate basis, we derive equations of motion for all quantum fields including the gravitational effect and obtain basic conservation laws for all symmetries. The equation of motion for the gravifield tensor is deduced in connection directly with the total energy-momentum tensor. When the spin and scaling gauge symmetries are broken down to a background structure that possesses the global Lorentz and scaling symmetries, we obtain exact solutions by solving equations of motion for the background fields in a unitary basis. The massless graviton and massive spinon result as physical quantum degrees of freedom. The resulting Lorentz-invariant and conformally flat background gravifield spacetime is characterized by a cosmic vector with a nonzero cosmological mass scale. The evolving Universe is, in general, not isotropic in terms of conformal proper time. The conformal size of the Universe becomes singular at the cosmological horizon and turns out to be inflationary in light of cosmic proper time. A mechanism for quantum scalinon inflation is demonstrated such that it is the quantum effect that causes the breaking of global scaling symmetry and generates the inflation of the early Universe, which is ended when the evolving vacuum expectation value of the

  5. Synthetic-gauge-field stabilization of the chiral-spin-liquid phase

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Hazzard, Kaden R. A.; Rey, Ana Maria; Hermele, Michael

    2016-06-01

    We explore the phase diagram of the SU (N ) Hubbard models describing fermionic alkaline-earth-metal atoms in a square optical lattice with, on average, one atom per site, using a slave rotor mean-field approach. We find that the chiral spin liquid (CSL) predicted for N ≥5 and large interactions passes through a fractionalized state with a spinon Fermi surface as interactions are decreased before transitioning to a weakly interacting metal. We show that by adding a uniform artificial gauge field with 2 π /N flux per plaquette, the CSL becomes the ground state for all N ≥3 at intermediate interactions, persists to weaker interactions, and exhibits a larger spin gap. For N ≥5 we find the CSL is the ground state everywhere the system is a Mott insulator. The gauge field stabilization of the CSL at lower interactions, and thus at weaker lattice depths, together with the increased spin gap, can relax the temperature constraints required for its experimental realization in ultracold atom systems.

  6. Non-Abelian clouds around Reissner-Nordström black holes: The existence line

    NASA Astrophysics Data System (ADS)

    Radu, Eugen; Tchrakian, D. H.; Yang, Yisong

    2016-06-01

    A known feature of electrically charged Reissner-Nordström-anti-de Sitter planar black holes is that they can become unstable when considered as solutions of Einstein-Yang-Mills theory. The mechanism for this is that the linearized Yang-Mills equations in the background of the Reissner-Nordström (RN) black holes possess a normalizable zero mode, resulting in non-Abelian (nA) magnetic clouds near the horizon. In this work we show that the same pattern may occur also for asymptotically flat RN black holes. Different from the anti-de Sitter case, in the Minkowskian background the prerequisites for the existence of the nA clouds are (i) a large enough gauge group, and (ii) the presence of some extra interaction terms in the matter Lagrangian. To illustrate this mechanism we present two specific examples, one in four- and the other in five-dimensional asymptotically flat spacetime. In the first case, we augment the usual S U (3 ) Yang-Mills Lagrangian with a higher-order (quartic) curvature term, while for the second one we add the Chern-Simons density to the S O (6 ) Yang-Mills system. In both cases, an Abelian gauge symmetry is spontaneously broken near a RN black hole horizon with the appearance of a condensate of nA gauge fields. In addition to these two examples, we review the corresponding picture for anti-de Sitter black holes. All these solutions are studied both analytically and numerically, existence proofs being provided for nA clouds in the background of RN black holes. The proofs use shooting techniques which are suggested by and in turn offer insights for our numerical methods. They indicate that, for a black hole of given mass, appropriate electric charge values are required to ensure the existence of solutions interpolating desired boundary behavior at the horizons and spatial infinity.

  7. Solving flavor puzzles with quiver gauge theories

    NASA Astrophysics Data System (ADS)

    Antebi, Yaron E.; Nir, Yosef; Volansky, Tomer

    2006-04-01

    We consider a large class of models where the SU(5) gauge symmetry and a Froggatt-Nielsen (FN) Abelian flavor symmetry arise from a U(5)×U(5) quiver gauge theory. An intriguing feature of these models is a relation between the gauge representation and the horizontal charge, leading to a restricted set of possible FN charges. Requiring that quark masses are hierarchical, the lepton flavor structure is uniquely determined. In particular, neutrino mass anarchy is predicted.

  8. Solving flavor puzzles with quiver gauge theories

    SciTech Connect

    Antebi, Yaron E.; Nir, Yosef; Volansky, Tomer

    2006-04-01

    We consider a large class of models where the SU(5) gauge symmetry and a Froggatt-Nielsen (FN) Abelian flavor symmetry arise from a U(5)xU(5) quiver gauge theory. An intriguing feature of these models is a relation between the gauge representation and the horizontal charge, leading to a restricted set of possible FN charges. Requiring that quark masses are hierarchical, the lepton flavor structure is uniquely determined. In particular, neutrino mass anarchy is predicted.

  9. On abelian group actions and Galois quantizations

    NASA Astrophysics Data System (ADS)

    Huru, H. L.; Lychagin, V. V.

    2013-08-01

    Quantizations of actions of finite abelian groups G are explicitly described by elements in the tensor square of the group algebra of G. Over algebraically closed fields of characteristic 0 these are in one to one correspondence with the second cohomology group of the dual of G. With certain adjustments this result is applied to group actions over any field of characteristic 0. In particular we consider the quantizations of Galois extensions, which are quantized by "deforming" the multiplication. For the splitting fields of products of quadratic polynomials this produces quantized Galois extensions that all are Clifford type algebras.

  10. On T-duality of R 2-corrections to DBI action at all orders of gauge field

    NASA Astrophysics Data System (ADS)

    Jafari, Ghadir; Ghodsi, Ahmad; Garousi, Mohammad R.

    2016-04-01

    Recently, it has been observed that in a T-duality invariant world-volume theory in flat spacetime, all orders of gauge field strength and all orders of the D-brane velocity appear in two specific matrices. Using these two matrices, we construct the world-volume couplings of two massless NSNS states at order α '2 and all orders of the velocity and the gauge field strength, by requiring them to be invariant under the linear T-duality. The standard extension F → F + P[ B], then produces all orders of the pull-back of B-field into the action. We compare the resulting couplings for zero velocity and gauge field strength, with the α '2 terms of the disk-level S-matrix element of two massless NSNS vertex operators in the presence of a constant background B-field. We have found an exact agreement.

  11. Renormalization of interactions of ultracold atoms in simulated Rashba gauge fields

    SciTech Connect

    Ozawa, Tomoki; Baym, Gordon

    2011-10-15

    Interactions of ultracold atoms with Rashba spin-orbit coupling, currently being studied with simulated (artificial) gauge fields, have nontrivial ultraviolet and infrared behavior. Examining the ultrastructure of the Bethe-Salpeter equation, we show that the linear ultraviolet divergence in the bare interaction can be renormalized as usual in terms of low-energy scattering lengths, and that for both bosons and fermions ultraviolet logarithmic divergences are absent. Calculating the leading order effective interaction with full dependence on the spin-orbit coupling strength and the center-of-mass momentum of the colliding pair, we elucidate the relation between mean-field interactions and physical three-dimensional scattering lengths. As a consequence of infrared logarithmic divergences in the two-particle propagator, the effective interaction vanishes as the center-of-mass momentum approaches zero.

  12. Analogue of Rashba pseudo-spin-orbit coupling in photonic lattices by gauge field engineering

    NASA Astrophysics Data System (ADS)

    Plotnik, Y.; Bandres, M. A.; Stützer, S.; Lumer, Y.; Rechtsman, M. C.; Szameit, A.; Segev, M.

    2016-07-01

    We present, theoretically and experimentally, the observation of the Rashba effect in photonic lattices, where the effect is brought about by an artificial gauge field, induced by the geometry of the system. In doing that, we demonstrate a particular form of coupling between pseudospin and momentum, resulting in spin-dependent shifts in the spectrum. Our system consists of two coupled, oppositely tilted waveguide arrays, where the evolution of an optical beam allows for probing the dynamics of the evolving wave packets, and the formation of spectral splitting. We show that the Rashba effect can be amplified or decreased through optical nonlinear effects, which correspond to mean-field interactions in various systems such as cold-atom lattices and exciton-polariton condensates.

  13. Artificial gauge fields and chiral edge states for ultracold fermions in synthetic dimensions

    NASA Astrophysics Data System (ADS)

    Fallani, Leonardo

    2015-05-01

    I will report on very recent experiments performed at LENS with ultracold 173Yb Fermi gases in artificial gauge fields. We have engineered Raman transitions between different 173Yb nuclear spin states to synthesize an effective lattice dynamics in a finite-sized ``extra dimension,'' which is encoded in the internal degree of freedom of the atoms. By using this innovative approach, we have realized synthetic magnetic fields for effectively-charged fermions in ladder geometries with a variable number of legs. Direct imaging of the individual legs allowed us to demonstrate the emergence of chiral edge currents and to observe edge-cyclotron orbits propagating along the edges of the system, thus providing a direct evidence of a fundamental feature of quantum Hall physics in condensed-matter systems.

  14. Chiral magnetism and spin liquid Mott insulators induced by synthetic gauge fields

    NASA Astrophysics Data System (ADS)

    Paramekanti, Arun; Hickey, Ciaran; Cincio, Lukasz; Papic, Zlatko; Vellat-Sadashivan, Arun; Sohal, Ramanjit

    2016-05-01

    Recent experiments using Raman-assisted tunneling or lattice-shaking have realized synthetic gauge fields and optical lattice bands with nontrivial band topology. Here we examine the effect of particle interactions in such bands, focussing on two-component fermions with local Hubbard repulsion. We show that interactions can drive the integer quantum Hall insulator into Mott insulating states which possess noncoplanar chiral magnetic textures and even chiral spin liquids with many-body topological order. We establish our results using a combination of mean field theory, strong coupling expansions, numerical exact diagonalization and DMRG methods. We also discuss possible signatures of such non-coplanar orders in Bragg scattering and noise measurements.

  15. Areal rainfall estimation using moving cars as rain gauges - laboratory and field experiment

    NASA Astrophysics Data System (ADS)

    Rabiei, Ehsan; Haberlandt, Uwe; Sester, Monika; Fitzner, Daniel

    2014-05-01

    Areal precipitation estimation for fine temporal and spatial resolution is still a challenging task. Beside the fact that newly developed instrumentations, e.g. weather radar, provide valuable information with high spatial and temporal resolutions, they are subject to different sources of errors. On the other hand, recording rain gauges provide accurate point rainfall depth, but are still often poor in density. Equipping a car with a GPS device as well as sensors measuring rainfall makes it possible to implement cars on the streets as the moving rain gauges. Initial results from a modeling study assuming arbitrary measurement errors have shown that implementing a reasonable large number of inaccurate measurement devices (raincars) provide more reliable areal precipitations compared to the available rain gauge network. The purpose of this study is to derive relationships between sensor readings and rain rate in a laboratory and quantify the errors. Sensor readings involve wiper frequency and optical sensors which are on the cars to automate wiper activities. Besides, the influence of car speed on the sensor readings is investigated implementing a car-speed simulator. It has been observed that the manual wiper activity adjustment, according to front visibility, shows a strong relationship between rainfall intensity and wiper speed. Two optical sensors calibrated in laboratory showed a relatively strong relationship with the rain intensity recorded by a tipping bucket. A positive relationship between the velocity and the amount of water has been observed meaning that the higher the speed of a car, the higher the amount of water hitting the car. Additionally, some preliminary results of the field experiments are discussed.

  16. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices.

    PubMed

    Zohar, Erez; Cirac, J Ignacio; Reznik, Benni

    2016-01-01

    Can high-energy physics be simulated by low-energy, non-relativistic, many-body systems such as ultracold atoms? Such ultracold atomic systems lack the type of symmetries and dynamical properties of high energy physics models: in particular, they manifest neither local gauge invariance nor Lorentz invariance, which are crucial properties of the quantum field theories which are the building blocks of the standard model of elementary particles. However, it turns out, surprisingly, that there are ways to configure an atomic system to manifest both local gauge invariance and Lorentz invariance. In particular, local gauge invariance can arise either as an effective low-energy symmetry, or as an exact symmetry, following from the conservation laws in atomic interactions. Hence, one could hope that such quantum simulators may lead to a new type of (table-top) experiments which will be used to study various QCD (quantum chromodynamics) phenomena, such as the confinement of dynamical quarks, phase transitions and other effects, which are inaccessible using the currently known computational methods. In this report, we review the Hamiltonian formulation of lattice gauge theories, and then describe our recent progress in constructing the quantum simulation of Abelian and non-Abelian lattice gauge theories in 1  +  1 and 2  +  1 dimensions using ultracold atoms in optical lattices. PMID:26684222

  17. Dynamical gauge effects in an open quantum network

    NASA Astrophysics Data System (ADS)

    Zhao, Jianshi; Price, Craig; Liu, Qi; Gemelke, Nathan

    2016-05-01

    We describe new experimental techniques for simulation of high-energy field theories based on an analogy between open thermodynamic systems and effective dynamical gauge-fields following SU(2) × U(1) Yang-Mills models. By coupling near-resonant laser-modes to atoms moving in a disordered optical environment, we create an open system which exhibits a non-equilibrium phase transition between two steady-state behaviors, exhibiting scale-invariant behavior near the transition. By measuring transport of atoms through the disordered network, we observe two distinct scaling behaviors, corresponding to the classical and quantum limits for the dynamical gauge field. This behavior is loosely analogous to dynamical gauge effects in quantum chromodynamics, and can mapped onto generalized open problems in theoretical understanding of quantized non-Abelian gauge theories. Additional, the scaling behavior can be understood from the geometric structure of the gauge potential and linked to the measure of information in the local disordered potential, reflecting an underlying holographic principle. We acknowledge support from NSF Award No.1068570, and the Charles E. Kaufman Foundation.

  18. Testing coordinate measuring arms with a geometric feature-based gauge: in situ field trials

    NASA Astrophysics Data System (ADS)

    Cuesta, E.; Alvarez, B. J.; Patiño, H.; Telenti, A.; Barreiro, J.

    2016-05-01

    This work describes in detail the definition of a procedure for calibrating and evaluating coordinate measuring arms (AACMMs or CMAs). CMAs are portable coordinate measuring machines that have been widely accepted in industry despite their sensitivity to the skill and experience of the operator in charge of the inspection task. The procedure proposed here is based on the use of a dimensional gauge that incorporates multiple geometric features, specifically designed for evaluating the measuring technique when CMAs are used, at company facilities (workshops or laboratories) and by the usual operators who handle these devices in their daily work. After establishing the procedure and manufacturing the feature-based gauge, the research project was complemented with diverse in situ field tests performed with the collaboration of companies that use these devices in their inspection tasks. Some of the results are presented here, not only comparing different operators but also comparing different companies. The knowledge extracted from these experiments has allowed the procedure to be validated, the defects of the methodologies currently used for in situ inspections to be detected, and substantial improvements for increasing the reliability of these portable instruments to be proposed.

  19. Field assessment of noncontact stream gauging using portable surface velocity radars (SVR)

    NASA Astrophysics Data System (ADS)

    Welber, Matilde; Le Coz, Jérôme; Laronne, Jonathan B.; Zolezzi, Guido; Zamler, Daniel; Dramais, Guillaume; Hauet, Alexandre; Salvaro, Martino

    2016-02-01

    The applicability of a portable, commercially available surface velocity radar (SVR) for noncontact stream gauging was evaluated through a series of field-scale experiments carried out in a variety of sites and deployment conditions. Comparisons with various concurrent techniques showed acceptable agreement with velocity profiles, with larger uncertainties close to the banks. In addition to discharge error sources shared with intrusive velocity-area techniques, SVR discharge estimates are affected by flood-induced changes in the bed profile and by the selection of a depth-averaged to surface velocity ratio, or velocity coefficient (α). Cross-sectional averaged velocity coefficients showed smaller fluctuations and closer agreement with theoretical values than those computed on individual verticals, especially in channels with high relative roughness. Our findings confirm that α = 0.85 is a valid default value, with a preferred site-specific calibration to avoid underestimation of discharge in very smooth channels (relative roughness ˜ 0.001) and overestimation in very rough channels (relative roughness > 0.05). Theoretically derived and site-calibrated values of α also give accurate SVR-based discharge estimates (within 10%) for low and intermediate roughness flows (relative roughness 0.001 to 0.05). Moreover, discharge uncertainty does not exceed 10% even for a limited number of SVR positions along the cross section (particularly advantageous to gauge unsteady flood flows and very large floods), thereby extending the range of validity of rating curves.

  20. Can (electric-magnetic) duality be gauged?

    SciTech Connect

    Bunster, Claudio; Henneaux, Marc

    2011-02-15

    There exists a formulation of the Maxwell theory in terms of two vector potentials, one electric and one magnetic. The action is then manifestly invariant under electric-magnetic duality transformations, which are rotations in the two-dimensional internal space of the two potentials, and local. We ask the question: Can duality be gauged? The only known and battle-tested method of accomplishing the gauging is the Noether procedure. In its decanted form, it amounts to turning on the coupling by deforming the Abelian gauge group of the free theory, out of whose curvatures the action is built, into a non-Abelian group which becomes the gauge group of the resulting theory. In this article, we show that the method cannot be successfully implemented for electric-magnetic duality. We thus conclude that, unless a radically new idea is introduced, electric-magnetic duality cannot be gauged. The implication of this result for supergravity is briefly discussed.

  1. Fundamental fermion interactions via vector bosons of unified SU(2) x SU(4) gauge fields

    NASA Astrophysics Data System (ADS)

    Marsch, Eckart; Narita, Yasuhito

    2016-02-01

    Employing the fermion unification model based on the intrinsic SU(8) symmetry of a generalized Dirac equation, we discuss the fundamental interactions under the SU(8)=SU(2)⊗SU(4) symmetry group. The physics involved can describe all fermions, the leptons (electron and neutrino), and the coloured up and down quarks of the first generation in the standard model (SM) by a complex SU(8) octet of Dirac spinor fields. The fermion interactions are found to be mediated by the unified SU(4) and SU(2) vector gauge boson fields, which include the photon, the gluons, and the bosons Z and W as well known from the SM, but also comprise new ones, namely three coloured X bosons carrying a fractional hypercharge of ±4/3 and transmuting leptons into quarks and vice versa. The full covariant derivative of the model is derived and discussed. The Higgs mechanism gives mass to the Z and W bosons, but also permits one to derive the mass of the coloured X boson, for which depending on the choice of the values of the coupling constant, the estimates are 35~GeV or 156~GeV, values that are well within reach of the LHC. The scalar Higgs field can also lend masses to the fermions and fix their physical values for given appropriate coupling constants to that field.

  2. A recipe for constructing frustration-free Hamiltonians with gauge and matter fields in one and two dimensions

    NASA Astrophysics Data System (ADS)

    Bernabé Ferreira, Miguel Jorge; Ibieta Jimenez, Juan Pablo; Padmanabhan, Pramod; Teôtonio Sobrinho, Paulo

    2015-12-01

    State sum constructions, such as Kuperberg’s algorithm, give partition functions of physical systems, like lattice gauge theories, in various dimensions by associating local tensors or weights with different parts of a closed triangulated manifold. Here we extend this construction by including matter fields to build partition functions in both two and three space-time dimensions. The matter fields introduce new weights to the vertices and they correspond to Potts spin configurations described by an {A}-module with an inner product. Performing this construction on a triangulated manifold with a boundary we obtain transfer matrices which are decomposed into a product of local operators acting on vertices, links and plaquettes. The vertex and plaquette operators are similar to the ones appearing in the quantum double models (QDMs) of Kitaev. The link operator couples the gauge and the matter fields, and it reduces to the usual interaction terms in known models such as {{{Z}}}2 gauge theory with matter fields. The transfer matrices lead to Hamiltonians that are frustration-free and are exactly solvable. According to the choice of the initial input, that of the gauge group and a matter module, we obtain interesting models which have a new kind of ground state degeneracy that depends on the number of equivalence classes in the matter module under gauge action. Some of the models have confined flux excitations in the bulk which become deconfined at the surface. These edge modes are protected by an energy gap provided by the link operator. These properties also appear in ‘confined Walker-Wang’ models which are 3D models having interesting surface states. Apart from the gauge excitations there are also excitations in the matter sector which are immobile and can be thought of as defects like in the Ising model. We only consider bosonic matter fields in this paper.

  3. RIKEN BNL RESEARCH CENTER WORKSHOP ON GAUGE-INVARIANT VARIABLES IN GAUGE THEORIES, VOLUME 20

    SciTech Connect

    VAN BAAL,P.; ORLAND,P.; PISARSKI,R.

    2000-06-01

    This four-day workshop focused on the wide variety of approaches to the non-perturbative physics of QCD. The main topic was the formulation of non-Abelian gauge theory in orbit space, but some other ideas were discussed, in particular the possible extension of the Maldacena conjecture to nonsupersymmetric gauge theories. The idea was to involve most of the participants in general discussions on the problem. Panel discussions were organized to further encourage debate and understanding. Most of the talks roughly fell into three categories: (1) Variational methods in field theory; (2) Anti-de Sitter space ideas; (3) The fundamental domain, gauge fixing, Gribov copies and topological objects (both in the continuum and on a lattice). In particular some remarkable progress in three-dimensional gauge theories was presented, from the analytic side by V.P. Nair and mostly from the numerical side by O. Philipsen. This work may ultimately have important implications for RHIC experiments on the high-temperature quark-gluon plasma.

  4. Coverings of topological semi-abelian algebras

    NASA Astrophysics Data System (ADS)

    Mucuk, Osman; Demir, Serap

    2016-08-01

    In this work, we study on a category of topological semi-abelian algebras which are topological models of given an algebraic theory T whose category of models is semi-abelian; and investigate some results on the coverings of topological models of such theories yielding semi-abelian categories. We also consider the internal groupoid structure in the semi-abelian category of T-algebras, and give a criteria for the lifting of internal groupoid structure to the covering groupoids.

  5. Two-component Abelian sandpile models.

    PubMed

    Alcaraz, F C; Pyatov, P; Rittenberg, V

    2009-04-01

    In one-component Abelian sandpile models, the toppling probabilities are independent quantities. This is not the case in multicomponent models. The condition of associativity of the underlying Abelian algebras imposes nonlinear relations among the toppling probabilities. These relations are derived for the case of two-component quadratic Abelian algebras. We show that Abelian sandpile models with two conservation laws have only trivial avalanches. PMID:19518280

  6. The existence of self-dual vortices in a non-Abelian {Phi}{sup 2} Chern-Simons theory

    SciTech Connect

    Chen Shouxin; Wang Ying

    2010-09-15

    Applying the dynamic shooting method, we proved the existence of nontopological radially symmetric n-vortex solutions to the self-dual equation in non-Abelian Chern-Simons gauge theory with a {Phi}{sup 2}-type potential. Moreover, we obtained all possible radially symmetric nontopological bare (or 0-vortex) solutions in the non-Abelian Chern-Simons model. Meanwhile, we established the asymptotic behavior for the solutions as |x|{yields}{infinity}.

  7. Abelian Hidden Sectors at a GeV

    SciTech Connect

    Morrissey, David E.; Poland, David; Zurek, Kathryn; /Fermilab /Michigan U.

    2009-04-16

    We discuss mechanisms for naturally generating GeV-scale hidden sectors in the context of weak-scale supersymmetry. Such low mass scales can arise when hidden sectors are more weakly coupled to supersymmetry breaking than the visible sector, as happens when supersymmetry breaking is communicated to the visible sector by gauge interactions under which the hidden sector is uncharged, or if the hidden sector is sequestered from gravity-mediated supersymmetry breaking. We study these mechanisms in detail in the context of gauge and gaugino mediation, and present specific models of Abelian GeV-scale hidden sectors. In particular, we discuss kinetic mixing of a U(1){sub x} gauge force with hypercharge, singlets or bi-fundamentals which couple to both sectors, and additional loop effects. Finally, we investigate the possible relevance of such sectors for dark matter phenomenology, as well as for low- and high-energy collider searches.

  8. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    NASA Astrophysics Data System (ADS)

    Li, Detian; Cheng, Yongjun; Wang, Yongjun; Zhang, Huzhong; Dong, Changkun; Li, Da

    2016-03-01

    Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10-8 Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  9. Introducing Abelian Groups Using Bullseyes and Jenga

    ERIC Educational Resources Information Center

    Smith, Michael D.

    2016-01-01

    The purpose of this article is to share a new approach for introducing students to the definition and standard examples of Abelian groups. The definition of an Abelian group is revised to include six axioms. A bullseye provides a way to visualize elementary examples and non-examples of Abelian groups. An activity based on the game of Jenga is used…

  10. [Investigations in dynamics of gauge theories in theoretical particle physics

    SciTech Connect

    Not Available

    1993-02-01

    The major theme of the theoretical physics research conducted under DOE support over the past several years has been within the rubric of the standard model, and concerned the interplay between symmetries and dynamics. The research was thus carried out mostly in the context of gauge field theories, and usually in the presence of chiral fermions. Dynamical symmetry breaking was examined both from the point of view of perturbation theory, as well as from non-perturbative techniques associated with certain characteristic features of specific theories. Among the topics of research were: the implications of abelian and non-abelian anomalies on the spectrum and possible dynamical symmetry breaking in any theory, topological and conformal properties of quantum fields in two and higher dimensions, the breaking of global chiral symmetries by vector-like gauge theories such as QCD, the phenomenological implications of a strongly interacting Higgs sector in the standard model, and the application of soliton ideas to the physics to be explored at the SSC.

  11. A space-time geostatistical framework for ensemble nowcasting using rainfall radar fields and gauge data

    NASA Astrophysics Data System (ADS)

    Caseri, Angelica; Ramos, Maria Helena; Javelle, Pierre; Leblois, Etienne

    2016-04-01

    Floods are responsible for a major part of the total damage caused by natural disasters. Nowcasting systems providing public alerts to flash floods are very important to prevent damages from extreme events and reduce their socio-economic impacts. The major challenge of these systems is to capture high-risk situations in advance, with good accuracy in the intensity, location and timing of future intense precipitation events. Flash flood forecasting has been studied by several authors in different affected areas. The majority of the studies combines rain gauge data with radar imagery advection to improve prediction for the next few hours. Outputs of Numerical Weather Prediction (NWP) models have also been increasingly used to predict ensembles of extreme precipitation events that might trigger flash floods. One of the challenges of the use of NWP for ensemble nowcasting is to successfully generate ensemble forecasts of precipitation in a short time calculation period to enable the production of flood forecasts with sufficient advance to issue flash flood alerts. In this study, we investigate an alternative space-time geostatistical framework to generate multiple scenarios of future rainfall for flash floods nowcasting. The approach is based on conditional simulation and an advection method applied within the Turning Bands Method (TBM). Ensemble forecasts of precipitation fields are generated based on space-time properties given by radar images and precipitation data collected from rain gauges during the development of the rainfall event. The results show that the approach developed can be an interesting alternative to capture precipitation uncertainties in location and intensity and generate ensemble forecasts of rainfall that can be useful to improve alerts for flash floods, especially in small areas.

  12. Higher derivatives and brane-localised kinetic terms in gauge theories on orbifolds

    NASA Astrophysics Data System (ADS)

    Ghilencea, Dumitru M.; Lee, Hyun Min; Schmidt-Hoberg, Kai

    2006-08-01

    We perform a detailed analysis of one-loop corrections to the self-energy of the (off-shell) gauge bosons in six-dimensional Script N = 1 supersymmetric gauge theories on orbifolds. After discussing the Abelian case in the standard Feynman diagram approach, we extend the analysis to the non-Abelian case by employing the method of an orbifold-compatible one-loop effective action for a classical background gauge field. We find that bulk higher derivative and brane-localised gauge kinetic terms are required to cancel one-loop divergences of the gauge boson self energy. After their renormalisation we study the momentum dependence of both the higher derivative coupling h(k2) and the effective gauge coupling geff(k2). For momenta smaller than the compactification scales, we obtain the 4D logarithmic running of geff(k2), with suppressed power-like corrections, while the higher derivative coupling is constant. We present in detail the threshold corrections to the low energy gauge coupling, due to the massive bulk modes. At momentum scales above the compactification scales, the higher derivative operator becomes important and leads to a power-like running of geff(k2) with respect to the momentum scale. The coefficient of this running is at all scales equal to the renormalised coupling of the higher derivative operator which ensures the quantum consistency of the model. We discuss the relation to the similar one-loop correction in the heterotic string, to show that the higher derivative operators are relevant in that case too, since the field theory limit of the one-loop string correction does not commute with the infrared regularisation of the (on-shell) string result.

  13. Particle in a Uniform Magnetic Field Under the Symmetric Gauge: The Eigenfunctions and the Time Evolution of Wave Packets

    ERIC Educational Resources Information Center

    de Brito, P. E.; Nazareno, H. N.

    2007-01-01

    In the present work we treat the problem of a particle in a uniform magnetic field along the symmetric gauge, so chosen since the wavefunctions present the required cylindrical symmetry. It is our understanding that by means of this work we can make a contribution to the teaching of the present subject, as well as encourage students to use…

  14. Inferring generalized time-dependent complex Ginzburg-Landau equations from modulus and gauge-field information

    SciTech Connect

    Yu, Rotha P.; Paganin, David M.; Morgan, Michael J.

    2008-04-01

    We develop a means to 'measure' the generalized 2+1-dimensional time-dependent complex Ginzburg-Landau equation, given both the wave-function modulus and gauge-field information over a series of five planes that are closely spaced in time. The methodology is tested using simulated data for a thin-film high-temperature superconductor in the Meissner state.

  15. Field-theory representation of gauge-gravity symmetry-protected topological invariants, group cohomology, and beyond.

    PubMed

    Wang, Juven C; Gu, Zheng-Cheng; Wen, Xiao-Gang

    2015-01-23

    The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is impossible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk excitations and topology-dependent ground state degeneracy. However, the partition functions from path integrals with various symmetry twists are universal SPT invariants, fully characterizing SPTs. In this work, we use gauge fields to represent those symmetry twists in closed spacetimes of any dimensionality and arbitrary topology. This allows us to express the SPT invariants in terms of continuum field theory. We show that SPT invariants of pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-gravity actions describe the beyond-group-cohomology SPTs. We find new examples of mixed gauge-gravity actions for U(1) SPTs in (4+1)D via the gravitational Chern-Simons term. Field theory representations of SPT invariants not only serve as tools for classifying SPTs, but also guide us in designing physical probes for them. In addition, our field theory representations are independently powerful for studying group cohomology within the mathematical context. PMID:25658993

  16. Field-Theory Representation of Gauge-Gravity Symmetry-Protected Topological Invariants, Group Cohomology, and Beyond

    NASA Astrophysics Data System (ADS)

    Wang, Juven C.; Gu, Zheng-Cheng; Wen, Xiao-Gang

    2015-01-01

    The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is impossible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk excitations and topology-dependent ground state degeneracy. However, the partition functions from path integrals with various symmetry twists are universal SPT invariants, fully characterizing SPTs. In this work, we use gauge fields to represent those symmetry twists in closed spacetimes of any dimensionality and arbitrary topology. This allows us to express the SPT invariants in terms of continuum field theory. We show that SPT invariants of pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-gravity actions describe the beyond-group-cohomology SPTs. We find new examples of mixed gauge-gravity actions for U(1) SPTs in (4 +1 )D via the gravitational Chern-Simons term. Field theory representations of SPT invariants not only serve as tools for classifying SPTs, but also guide us in designing physical probes for them. In addition, our field theory representations are independently powerful for studying group cohomology within the mathematical context.

  17. Quirks in supersymmetry with gauge coupling unification

    NASA Astrophysics Data System (ADS)

    Martin, Stephen P.

    2011-02-01

    I investigate the phenomenology of supersymmetric models with extra vectorlike supermultiplets that couple to the standard model gauge fields and transform as the fundamental representation of a new confining non-Abelian gauge interaction. If perturbative gauge coupling unification is to be maintained, the new group can be SU(2), SU(3), or SO(3). The impact on the sparticle mass spectrum is explored, with particular attention to the gaugino mass dominated limit in which the supersymmetric flavor problem is naturally solved. The new confinement length scale is astronomical for SO(3), so the new particles are essentially free. For the SU(2) and SU(3) cases, the new vectorlike fermions are quirks; pair production at colliders yields quirk-antiquirk states bound by stable flux tubes that are microscopic but long compared to the new confinement scale. I study the reach of the Tevatron and LHC for the optimistic case that in a significant fraction of events the quirk-antiquirk bound state will lose most of its energy before annihilating as quirkonium.

  18. Gauging the ungauged basin: How to diagnose catchment function from field reconnaissance to long-term observation.

    NASA Astrophysics Data System (ADS)

    McDonnell, J. J.; Sivapalan, M.

    2003-12-01

    Despite the widespread gauging (usually rainfall and runoff) of watersheds around the world for the past century, little thought has been given to gauging strategies in the context of what to measure, where to measure, and when. We explore in this talk whether or not gauging should be a mechanical and prescriptive approach or, perhaps alternatively as a diagnostic tool to probe how a catchment works. The following questions will be explored: Does a one size-fits-all approach work for basins in different climates, geological situations and vegetative environments? What are the minimum number and location of measurements necessary to even characterize a basin? Should we standardize our gauging for all catchments? How should concepts, theories and modeling inform where and what to measure? These questions have not been explored in detail since the early days of the International Hydrological Decade back in the 1960s. Nevertheless, it is these basic questions that may help us to reveal simplicity from the hitherto measured complexities of gauged basins developed thus far. As we move from the traditional headwater research basin to mesoscale basins and beyond, we need to rethink what it might mean to "gauge" a basin. How might we rapidly assess first order process controls from say a few days of field reconnaissance or perhaps some combination of assessed climate-vegetation-geologic controls on annual water balance, monthly flows, event dynamics, water age, geographic and time source components of flow. This talk presents some ideas on a road map to gauging within the PUB framework and considers how new approaches may reconsider the tradeoffs between precision and accuracy for spatial completeness, new data content and characterization of the gross stocks and flows of water (and things carried with the water) in a basin.

  19. Dark matter coupling to electroweak gauge and Higgs bosons: An effective field theory approach

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Yuan; Kolb, Edward W.; Wang, Lian-Tao

    2013-12-01

    If dark matter is a new species of particle produced in the early universe as a cold thermal relic (a weakly-interacting massive particle-WIMP), its present abundance, its scattering with matter in direct-detection experiments, its present-day annihilation signature in indirect-detection experiments, and its production and detection at colliders, depend crucially on the WIMP coupling to standard-model (SM) particles. It is usually assumed that the WIMP couples to the SM sector through its interactions with quarks and leptons. In this paper we explore the possibility that the WIMP coupling to the SM sector is via electroweak gauge and Higgs bosons. In the absence of an ultraviolet-complete particle-physics model, we employ effective field theory to describe the WIMP-SM coupling. We consider both scalars and Dirac fermions as possible dark-matter candidates. Starting with an exhaustive list of operators up to dimension 8, we present detailed calculation of dark-matter annihilations to all possible final states, including γγ, γZ, γh, ZZ, Zh, W+W-, hh, and ffbar, and demonstrate the correlations among them. We compute the mass scale of the effective field theory necessary to obtain the correct dark-matter mass density, and well as the resulting photon line signals.

  20. Dynamics of non-integrable phases and gauge symmetry breaking

    SciTech Connect

    Hosotani, Y.

    1989-03-01

    On a multiply-connected space the non-integrable phase factor/ital P/ exp(ig..integral../ital A//sub ..mu..//ital dx//sup ..mu..//r brace/), a path-ordered line integral along anon-contractable loop, becomes a dynamical degree of freedom in gauge theory.The dynamics of such non-integrable phases are examined in detail with themost general boundary condition for gauge fields and fermions. Sometimesthe dynamics of the non-integrable phases compensate the arbitrariness inthe boundary condition imposed, leading to the same physics results. Inother cases the dynamics of the non-integrable phases induce spontaneousbreaking of non-Abelian gauge symmetry. In other words the physically realizedsymmetry of the system differs from, and can be either greater or smaller than,the symmetry of the boundary condition. The effective potential for thenon-integrable phases in the /ital SU/(/ital N/) gauge theory on/ital S//sup 1//direct product//ital R//sup 1/ital d//minus/2/is computed in the one-loop approximation. It is shown that the gauge symmetryis dynamically broken in the presence of fermions in the adjoint representation,depending on the value of the boundary condition parameter./copyright/ 1989 Academic Press, Inc.

  1. Inverse avalanches on Abelian sandpiles

    SciTech Connect

    Chau, H.F. Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080 )

    1994-11-01

    A simple and computationally efficient way of finding inverse avalanches for Abelian sandpiles, called the inverse particle addition operator, is presented. In addition, the method is shown to be optimal in the sense that it requires the minimum amount of computation among methods of the same kind. The method is also conceptually succinct because avalanche and inverse avalanche are placed in the same footing.

  2. Charged Q -balls in gauge mediated SUSY breaking models

    NASA Astrophysics Data System (ADS)

    Hong, Jeong-Pyong; Kawasaki, Masahiro; Yamada, Masaki

    2015-09-01

    It is known that after Affleck-Dine baryogenesis, spatial inhomogeneities of Affleck-Dine field grow into nontopological solitons called Q-balls. In gauge mediated supersymmetry (SUSY) breaking models, sufficiently large Q-balls with baryon charge are stable while Q-balls with lepton charge can always decay into leptons. For a Q-ball that carries nonzero B and L charges, the difference between the baryonic component and the leptonic component in decay rate may induce nonzero electric charge on the Q-ball. This implies that a charged Q-ball, also called gauged Q-ball, may emerge in our universe. In this paper, we investigate two complex scalar fields, a baryonic scalar field and a leptonic one, in an Abelian gauge theory. We find stable solutions of gauged Q-balls for different baryon and lepton charges. Those solutions show that a Coulomb potential arises and the Q-ball becomes electrically charged as expected. It is energetically favored that some amount of leptonic component decays, but there is an upper bound on its amount due to the Coulomb force. The baryonic decay also becomes possible by virtue of electrical repulsion, but we find that the evolution itself stops before it occurs mainly due to the Schwinger limit, so that the charged Q-balls eventually survive in the universe.

  3. Deligne-Beilinson cohomology and Abelian link invariants: Torsion case

    SciTech Connect

    Thuillier, F.

    2009-12-15

    For the Abelian Chern-Simons field theory, we consider the quantum functional integration over the Deligne-Beilinson cohomology classes and present an explicit path-integral nonperturbative computation of the Chern-Simons link invariants in SO(3){approx_equal}RP{sup 3}, a toy example of a 3-manifold with torsion.

  4. Local gauge transformation for the quark propagator in an SU(N) gauge theory

    NASA Astrophysics Data System (ADS)

    Aslam, M. Jamil; Bashir, A.; Gutiérrez-Guerrero, L. X.

    2016-04-01

    In an S U (N ) gauge field theory, the n -point Green functions, namely, propagators and vertices, transform under the simultaneous local gauge variations of the gluon vector potential and the quark matter field in such a manner that the physical observables remain invariant. In this article, we derive this intrinsically nonperturbative transformation law for the quark propagator within the system of covariant gauges. We carry out its explicit perturbative expansion up to O (gs6) and, for some terms, up to O (gs8) . We study the implications of this transformation for the quark-antiquark condensate, multiplicative renormalizability of the massless quark propagator, as well as its relation with the quark-gluon vertex at the one-loop order. Setting the color factors CF=1 and CA=0 , Landau-Khalatnikov-Fradkin transformation for the Abelian case of quantum electrodynamics is trivially recovered. We also test whether the usually employed proposals for the truncations of Schwinger-Dyson equations are consistent with what the Landau-Khalatnikov-Fradkin transformations entail for the massless quark propagator.

  5. Background field method and the cohomology of renormalization

    NASA Astrophysics Data System (ADS)

    Anselmi, Damiano

    2016-03-01

    Using the background field method and the Batalin-Vilkovisky formalism, we prove a key theorem on the cohomology of perturbatively local functionals of arbitrary ghost numbers in renormalizable and nonrenormalizable quantum field theories whose gauge symmetries are general covariance, local Lorentz symmetry, non-Abelian Yang-Mills symmetries and Abelian gauge symmetries. Interpolating between the background field approach and the usual, nonbackground approach by means of a canonical transformation, we take advantage of the properties of both approaches and prove that a closed functional is the sum of an exact functional plus a functional that depends only on the physical fields and possibly the ghosts. The assumptions of the theorem are the mathematical versions of general properties that characterize the counterterms and the local contributions to the potential anomalies. This makes the outcome a theorem on the cohomology of renormalization, rather than the whole local cohomology. The result supersedes numerous involved arguments that are available in the literature.

  6. Nonabelian 2D gauge theories for determinantal Calabi-Yau varieties

    NASA Astrophysics Data System (ADS)

    Jockers, Hans; Kumar, Vijay; Lapan, Joshua M.; Morrison, David R.; Romo, Mauricio

    2012-11-01

    The two-dimensional supersymmetric gauged linear sigma model (GLSM) with abelian gauge groups and matter fields has provided many insights into string theory on Calabi-Yau manifolds of a certain type: complete intersections in toric varieties. In this paper, we consider two GLSM constructions with nonabelian gauge groups and charged matter whose infrared CFTs correspond to string propagation on determinantal Calabi-Yau varieties, furnishing another broad class of Calabi-Yau geometries in addition to complete intersections. We show that these two models — which we refer to as the PAX and the PAXY model — are dual descriptions of the same low-energy physics. Using GLSM techniques, we determine the quantum Kähler moduli space of these varieties and find no disagreement with existing results in the literature.

  7. Synthetic gauge fields and many-body physics in an optical lattice clock

    NASA Astrophysics Data System (ADS)

    Koller, Andrew P.; Wall, Michael L.; Li, Shuming; Zhang, Xibo; Cooper, Nigel R.; Ye, Jun; Rey, Ana Maria

    2015-05-01

    We propose the implementation of a synthetic gauge field in a 1D optical lattice clock and explore the resulting single-particle and many-body physics. The system can realize an effective two-leg ladder by using the two clock states as a synthetic dimension, together with the tunneling-coupled 1D lattice sites. A large flux per plaquette is naturally generated because the clock laser imprints a phase that varies significantly across lattice sites. We propose to use standard spectroscopic tools - Ramsey and Rabi spectroscopy - to probe the band structure and reveal signatures of the spin-orbit coupling, including chiral edge states and the modification of single-particle physics due to s-wave and p-wave interactions. These effects can be probed in spite of the relatively high temperatures (~ micro Kelvin) and weak interactions, thanks to the exquisite precision and sensitivity of the JILA Sr optical lattice clock. We also discuss the exciting possibility of using the nuclear spin degrees of freedom to realize more exotic synthetic dimension topologies and flux patterns. Supported by JILA-NSF-PFC-1125844, NSF-PIF- 1211914, ARO, AFOSR, AFOSR-MURI, and NDSEG.

  8. I.I. Rabi Prize Talk: Artificial gauge fields in multi-level atoms

    NASA Astrophysics Data System (ADS)

    Spielman, Ian

    2015-05-01

    We used Raman lasers to induce artificial gauge fields or spin-orbit coupling in the three-level system formed by the f=1 electronic ground state manifold of rubidium-87. In this colloquium I will report on two effects of this laser-coupling. I will explore the itinerant magnetic phases present in a spin-1 spin-orbit coupled atomic Bose-Einstein condensate (BEC); in this system, itinerant ferromagnetic order is stabilized by the spin-orbit coupling, vanishing in its absence. We first located a second-order phase transition that continuously stiffens until, at a tricritical point, it transforms into a first-order transition. These measurements are all in agreement with theory. We engineered a two-dimensional magnetic lattice in an elongated strip geometry, with effective per-plaquette flux about 4/3 times the flux quanta. We imaged the localized edge and bulk states of atomic Bose-Einstein condensates in this strip, with single lattice-site resolution along the narrow direction. Further, we observed both the skipping orbits of excited atoms traveling down our system's edges, analogues to edge magnetoplasmons in 2-D electron systems. Our lattice's long direction consisted of the sites of an optical lattice and its narrow direction consisted of the internal atomic spin states: a synthetic dimension.

  9. Fractional quantum Hall physics with ultracold Rydberg gases in artificial gauge fields

    NASA Astrophysics Data System (ADS)

    Grusdt, F.; Fleischhauer, M.

    2013-04-01

    We study ultracold Rydberg-dressed Bose gases subject to artificial gauge fields in the fractional quantum Hall (FQH) regime. The characteristics of the Rydberg interaction give rise to interesting many-body ground states different from standard FQH physics in the lowest Landau level. The nonlocal but rapidly decreasing interaction potential favors crystalline ground states for very dilute systems. While a simple Wigner crystal becomes energetically favorable compared to the Laughlin liquid for filling fractions ν<1/12, a correlated crystal of composite particles emerges already for ν≤1/6 with a large energy gap to the simple Wigner crystal. The presence of a new length scale, the Rydberg blockade radius aB, gives rise to a bubble crystal phase for ν≲1/4 when the average particle distance becomes less than aB, which describes the region of saturated, almost constant interaction potential. For larger fillings indications for strongly correlated cluster liquids are found.

  10. Naturalness and ultraviolet structure of gauge theories with massive fermions

    NASA Astrophysics Data System (ADS)

    Gellas, G. C.; Karanikas, A. I.; Ktorides, C. N.

    1997-04-01

    According to the principle of naturalness a small, with respect to the cutoff, mass parameter entering a quantum field system is natural only when it is compatible with some symmetry in the limit where it vanishes. In this paper, advantage is taken of the liberty afforded by the renormalization procedure in order to harmonize the cutoff with the physical mass in a non-Abelian gauge field theory with spin-1/2 matter fields. The ultraviolet structure of the theory, from such a vantage point, is explored at the level of the full fermionic propagator, as well as the vertex function, using the world line approach. An interplay between this ultraviolet structure and the infrared behavior of the same system, but from the customary viewpoint ``cutoff much greater than mass,'' is pointed out. Direct implications for open fermionic lines in the world line path integral casting of field theories are also made.

  11. Field theory representation of mixed gauge-gravity symmetry-protected topological invariants, group cohomology and beyond

    NASA Astrophysics Data System (ADS)

    Wang, Juven; Gu, Zheng-Cheng; Wen, Xiao-Gang

    The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is impossible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk excitations and topology-dependent ground state degeneracy. However, the partition functions from path integrals with various symmetry twists are universal SPT invariants, fully characterizing SPTs. In this work, we use gauge fields to represent those symmetry twists in closed spacetimes of any dimensionality and arbitrary topology. This allows us to express the SPT invariants in terms of continuum field theory. We show that SPT invariants of pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-gravity actions describe the beyond-group-cohomology SPTs, recently observed by Kapustin. We find new examples of mixed gauge-gravity actions for U(1) SPTs in 3+1D and 4+1D via the Stiefel-Whitney class and the gravitational Chern-Simons term. [Work based on Phys. Rev. Lett. 114, 031601 (2015) arXiv:1405.7689

  12. Semistrict higher gauge theory

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Sämann, Christian; Wolf, Martin

    2015-04-01

    We develop semistrict higher gauge theory from first principles. In particular, we describe the differential Deligne cohomology underlying semistrict principal 2-bundles with connective structures. Principal 2-bundles are obtained in terms of weak 2-functors from the Čech groupoid to weak Lie 2-groups. As is demonstrated, some of these Lie 2-groups can be differentiated to semistrict Lie 2-algebras by a method due to Ševera. We further derive the full description of connective structures on semistrict principal 2-bundles including the non-linear gauge transformations. As an application, we use a twistor construction to derive superconformal constraint equations in six dimensions for a non-Abelian tensor multiplet taking values in a semistrict Lie 2-algebra.

  13. Universal attractor in a highly occupied non-Abelian plasma

    NASA Astrophysics Data System (ADS)

    Berges, J.; Boguslavski, K.; Schlichting, S.; Venugopalan, R.

    2014-06-01

    We study the thermalization process in highly occupied non-Abelian plasmas at weak coupling. The nonequilibrium dynamics of such systems is classical in nature and can be simulated with real-time lattice gauge theory techniques. We provide a detailed discussion of this framework and elaborate on the results reported in J. Berges, K. Boguslavski, S. Schlichting, and R. Venugopalan, Phys. Rev. D 89, 074011 (2014), 10.1103/PhysRevD.89.074011 along with novel findings. We demonstrate the emergence of universal attractor solutions, which govern the nonequilibrium evolution on large time scales both for nonexpanding and expanding non-Abelian plasmas. The turbulent attractor for a nonexpanding plasma drives the system close to thermal equilibrium on a time scale t ˜Q-1αs-7/4. The attractor solution for an expanding non-Abelian plasma leads to a strongly interacting albeit highly anisotropic system at the transition to the low-occupancy or quantum regime. This evolution in the classical regime is, within the uncertainties of our simulations, consistent with the "bottom up" thermalization scenario [R. Baier, A. H. Mueller, D. Schiff, and D. T. Son, Phys. Lett. B 502, 51 (2001), 10.1016/S0370-2693(01)00191-5]. While the focus of this paper is to understand the nonequilibrium dynamics in weak coupling asymptotics, we also discuss the relevance of our results for larger couplings in the early time dynamics of heavy ion collision experiments.

  14. Lemaitre-Tolman-Bondi solutions in the Newtonian gauge: from strong to weak fields

    SciTech Connect

    Van Acoleyen, Karel

    2008-10-15

    Lemaitre-Tolman-Bondi (LTB) solutions are used frequently to describe the collapse or expansion of spherically symmetric inhomogeneous mass distributions in the Universe. These exact solutions are obtained in the synchronous gauge where non-linear dynamics (with respect to the Friedmann-Lemaitre-Roberston-Walker (FLRW) background) induce large deviations from the FLRW metric. In this paper we show explicitly that this is a gauge artefact (for realistic sub-horizon inhomogeneities). We write down the non-linear gauge transformation from synchronous to Newtonian gauge for a general LTB solution using the fact that the peculiar velocities are small. In the latter gauge we recover the solution in the form of a weakly perturbed FLRW metric that is assumed in standard cosmology. Furthermore we show how to obtain the LTB solutions directly in Newtonian gauge and illustrate how the Newtonian approximation remains valid in the non-linear regime where cosmological perturbation theory breaks down. Finally we discuss the implications of our results for the backreaction scenario.

  15. Hidden Q-structure and Lie 3-algebra for non-abelian superconformal models in six dimensions

    NASA Astrophysics Data System (ADS)

    Lavau, Sylvain; Samtleben, Henning; Strobl, Thomas

    2014-12-01

    We disclose the mathematical structure underlying the gauge field sector of the recently constructed non-abelian superconformal models in six space-time dimensions. This is a coupled system of 1-form, 2-form, and 3-form gauge fields. We show that the algebraic consistency constraints governing this system permit to define a Lie 3-algebra, generalizing the structural Lie algebra of a standard Yang-Mills theory to the setting of a higher bundle. Reformulating the Lie 3-algebra in terms of a nilpotent degree 1 BRST-type operator Q, this higher bundle can be compactly described by means of a Q-bundle; its fiber is the shifted tangent of the Q-manifold corresponding to the Lie 3-algebra and its base the odd tangent bundle of space-time equipped with the de Rham differential. The generalized Bianchi identities can then be retrieved concisely from Q2 = 0, which encode all the essence of the structural identities. Gauge transformations are identified as vertical inner automorphisms of such a bundle, their algebra being determined from a Q-derived bracket.

  16. Investigations in gauge theories, topological solitons and string theories. Final report

    SciTech Connect

    Not Available

    1993-06-01

    This is the Final Report on a supported research project on theoretical particle physics entitled ``Investigations in Gauge Theories, Topological Solitons and String Theories.`` The major theme of particle theory pursued has been within the rubric of the standard model, particularly on the interplay between symmetries and dynamics. Thus, the research has been carried out primarily in the context of gauge with or without chiral fermions and in effective chiral lagrangian field theories. The topics studied include the physical implications of abelian and non-abelian anomalies on the spectrum and possible dynamical symmetry breaking in a wide range of theories. A wide range of techniques of group theory, differential geometry and function theory have been applied to probe topological and conformal properties of quantum field theories in two and higher dimensions, the breaking of global chiral symmetries by vector-like gauge theories such as QCD,the phenomenology of a possibly strongly interacting Higgs sector within the minimal standard model, and the relevance of solitonic ideas to non-perturbative phenomena at SSC energies.

  17. Majorana meets Coxeter: Non-Abelian Majorana fermions and non-Abelian statistics

    SciTech Connect

    Yasui, Shigehiro; Itakura, Kazunori; Nitta, Muneto

    2011-04-01

    We discuss statistics of vortices having zero-energy non-Abelian Majorana fermions inside them. Considering the system of multiple non-Abelian vortices, we derive a non-Abelian statistics that differs from the previously derived non-Abelian statistics. The non-Abelian statistics presented here is given by a tensor product of two different groups, namely the non-Abelian statistics obeyed by the Abelian Majorana fermions and the Coxeter group. The Coxeter group is a symmetric group related to the symmetry of polytopes in a high-dimensional space. As the simplest example, we consider the case in which a vortex contains three Majorana fermions that are mixed with each other under the SO(3) transformations. We concretely present the representation of the Coxeter group in our case and its geometrical expressions in the high-dimensional Hilbert space constructed from non-Abelian Majorana fermions.

  18. Artificial Gauge Field and Topological Phase in a Conventional Two-dimensional Electron Gas with Antidot Lattices

    PubMed Central

    Shi, Likun; Lou, Wenkai; Cheng, F.; Zou, Y. L.; Yang, Wen; Chang, Kai

    2015-01-01

    Based on the Born-Oppemheimer approximation, we divide the total electron Hamiltonian in a spin-orbit coupled system into the slow orbital motion and the fast interband transition processes. We find that the fast motion induces a gauge field on the slow orbital motion, perpendicular to the electron momentum, inducing a topological phase. From this general designing principle, we present a theory for generating artificial gauge field and topological phase in a conventional two-dimensional electron gas embedded in parabolically graded GaAs/InxGa1−xAs/GaAs quantum wells with antidot lattices. By tuning the etching depth and period of the antidot lattices, the band folding caused by the antidot potential leads to the formation of minibands and band inversions between neighboring subbands. The intersubband spin-orbit interaction opens considerably large nontrivial minigaps and leads to many pairs of helical edge states in these gaps. PMID:26471126

  19. Artificial Gauge Field and Topological Phase in a Conventional Two-dimensional Electron Gas with Antidot Lattices

    NASA Astrophysics Data System (ADS)

    Shi, Likun; Lou, Wenkai; Cheng, F.; Zou, Y. L.; Yang, Wen; Chang, Kai

    2015-10-01

    Based on the Born-Oppemheimer approximation, we divide the total electron Hamiltonian in a spin-orbit coupled system into the slow orbital motion and the fast interband transition processes. We find that the fast motion induces a gauge field on the slow orbital motion, perpendicular to the electron momentum, inducing a topological phase. From this general designing principle, we present a theory for generating artificial gauge field and topological phase in a conventional two-dimensional electron gas embedded in parabolically graded GaAs/InxGa1-xAs/GaAs quantum wells with antidot lattices. By tuning the etching depth and period of the antidot lattices, the band folding caused by the antidot potential leads to the formation of minibands and band inversions between neighboring subbands. The intersubband spin-orbit interaction opens considerably large nontrivial minigaps and leads to many pairs of helical edge states in these gaps.

  20. G2HDM: Gauged Two Higgs Doublet Model

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Chih; Tsai, Yue-Lin Sming; Yuan, Tzu-Chiang

    2016-04-01

    A novel model embedding the two Higgs doublets in the popular two Higgs doublet models into a doublet of a non-abelian gauge group SU(2) H is presented. The Standard Model SU(2) L right-handed fermion singlets are paired up with new heavy fermions to form SU(2) H doublets, while SU(2) L left-handed fermion doublets are singlets under SU(2) H . Distinctive features of this anomaly-free model are: (1) Electroweak symmetry breaking is induced from spontaneous symmetry breaking of SU(2) H via its triplet vacuum expectation value; (2) One of the Higgs doublet can be inert, with its neutral component being a dark matter candidate as protected by the SU(2) H gauge symmetry instead of a discrete Z 2 symmetry in the usual case; (3) Unlike Left-Right Symmetric Models, the complex gauge fields ( W 1 ' ∓ W 2 ' ) (along with other complex scalar fields) associated with the SU(2) H do not carry electric charges, while the third component W 3 ' can mix with the hypercharge U(1) Y gauge field and the third component of SU(2) L ; (4) Absence of tree level flavour changing neutral current is guaranteed by gauge symmetry; and etc. In this work, we concentrate on the mass spectra of scalar and gauge bosons in the model. Constraints from previous Z' data at LEP and the Large Hadron Collider measurements of the Standard Model Higgs mass, its partial widths of γγ and Zγ modes are discussed.

  1. Duality and integrability: Electromagnetism, linearized gravity, and massless higher spin gauge fields as bi-Hamiltonian systems

    SciTech Connect

    Barnich, Glenn; Troessaert, Cedric

    2009-04-15

    In the reduced phase space of electromagnetism, the generator of duality rotations in the usual Poisson bracket is shown to generate Maxwell's equations in a second, much simpler Poisson bracket. This gives rise to a hierarchy of bi-Hamiltonian evolution equations in the standard way. The result can be extended to linearized Yang-Mills theory, linearized gravity, and massless higher spin gauge fields.

  2. Hydrogen atom excitation in intense attosecond laser field: Gauge dependence of dipole approximation

    NASA Astrophysics Data System (ADS)

    Aldarmaa, Ch.; Khenmedekh, L.; Lkhagva, O.

    2014-03-01

    It is assumed that, the atomic excitations probability can be calculated using first order perturbation theory and dipole approximations. The validity of the dipole approximations had been examined by comparing the results with the results obtained by exact calculations within the first order perturbation theory[2]. Figure 1 shows the time dependence of the transition probability in the dipole approximation. From these plots it is obvious that, the probabilities obtained in the length gauge are higher than that in the velocity gauge, in the interaction period (-τ/2gauges became equal to each other precisely. Moreover those results are equal to the corresponding exact (without the dipole approximation) calculations results. (Figure 2) Though the time evolution of the same transition probabilities are different for these cases, the final results are the same for all three cases, excluding the 6s-6p0 transition. For the later case, only the length gauge give a false results, but the velocity gauge give the same result as the exact one, for the final value of the transition probability.

  3. Hydrogen atom excitation in intense attosecond laser field: Gauge dependence of dipole approximation

    SciTech Connect

    Aldarmaa, Ch. E-mail: l-xemee@yahoo.com; Khenmedekh, L. E-mail: l-xemee@yahoo.com; Lkhagva, O.

    2014-03-24

    It is assumed that, the atomic excitations probability can be calculated using first order perturbation theory and dipole approximations. The validity of the dipole approximations had been examined by comparing the results with the results obtained by exact calculations within the first order perturbation theory[2]. Figure 1 shows the time dependence of the transition probability in the dipole approximation. From these plots it is obvious that, the probabilities obtained in the length gauge are higher than that in the velocity gauge, in the interaction period (−τ/2gauges became equal to each other precisely. Moreover those results are equal to the corresponding exact (without the dipole approximation) calculations results. (Figure 2) Though the time evolution of the same transition probabilities are different for these cases, the final results are the same for all three cases, excluding the 6s-6p{sub 0} transition. For the later case, only the length gauge give a false results, but the velocity gauge give the same result as the exact one, for the final value of the transition probability.

  4. Phase of the fermion determinant in QED3 using a gauge invariant lattice regularization

    NASA Astrophysics Data System (ADS)

    Karthik, Nikhil; Narayanan, Rajamani

    2015-07-01

    We use canonical formalism to study the fermion determinant in different three-dimensional Abelian gauge-field backgrounds that contain nonzero magnetic and electric flux in order to understand the nonperturbative contributions to the parity-odd and parity-even parts of the phase. We show that a certain phase associated with free fermion propagation along a closed path in a momentum torus is responsible for the parity anomaly in a background with nonzero electric flux. We consider perturbations around backgrounds with nonzero magnetic flux to understand the structure of the parity-breaking perturbative term at finite temperature and mass.

  5. Introduction to gauge theories of the strong, weak, and electromagnetic interactions

    SciTech Connect

    Quigg, C.

    1980-07-01

    The plan of these notes is as follows. Chapter 1 is devoted to a brief evocative review of current beliefs and prejudices that form the context for the discussion to follow. The idea of Gauge Invariance is introduced in Chapter 2, and the connection between conservation laws and symmetries of the Lagrangian is recalled. Non-Abelian gauge field theories are constructed in Chapter 3, by analogy with the familiar case of electromagnetism. The Yang-Mills theory based upon isospin symmetry is constructed explicitly, and the generalization is made to other gauge groups. Chapter 4 is concerned with spontaneous symmetry breaking and the phenomena that occur in the presence or absence of local gauge symmetries. The existence of massless scalar fields (Goldstone particles) and their metamorphosis by means of the Higgs mechanism are illustrated by simple examples. The Weinberg-Salam model is presented in Chapter 5, and a brief resume of applications to experiment is given. Quantum Chromodynamics, the gauge theory of colored quarks and gluons, is developed in Chapter 6. Asymptotic freedom is derived schematically, and a few simple applications of perturbative QCD ae exhibited. Details of the conjectured confinement mechanism are omitted. The strategy of grand unified theories of the strong, weak, and electromagnetic interactions is laid out in Chapter 7. Some properties and consequences of the minimal unifying group SU(5) are presented, and the gauge hierarchy problem is introduced in passing. The final chapter contains an essay on the current outlook: aspirations, unanswered questions, and bold scenarios.

  6. Matrix product states and the non-Abelian rotor model

    NASA Astrophysics Data System (ADS)

    Milsted, Ashley

    2016-04-01

    We use uniform matrix product states to study the (1 +1 )D O (2 ) and O (4 ) rotor models, which are equivalent to the Kogut-Susskind formulation of matter-free non-Abelian lattice gauge theory on a "Hawaiian earring" graph for U (1 ) and S U (2 ), respectively. Applying tangent space methods to obtain ground states and determine the mass gap and the β function, we find excellent agreement with known results, locating the Berezinskii-Kosterlitz-Thouless transition for O (2 ) and successfully entering the asymptotic weak-coupling regime for O (4 ). To obtain a finite local Hilbert space, we truncate in the space of generalized Fourier modes of the gauge group, comparing the effects of different cutoff values. We find that higher modes become important in the crossover and weak-coupling regimes of the non-Abelian theory, where entanglement also suddenly increases. This could have important consequences for tensor network state studies of Yang-Mills on higher-dimensional graphs.

  7. Nonrelativistic limit of the abelianized ABJM model and the ADS/CMT correspondence

    NASA Astrophysics Data System (ADS)

    Lopez-Arcos, Cristhiam; Murugan, Jeff; Nastase, Horatiu

    2016-05-01

    We consider the nonrelativistic limit of the abelian reduction of the massive ABJM model proposed in [1], obtaining a supersymmetric version of the Jackiw-Pi model. The system exhibits an N=2 Super-Schrödinger symmetry with the Jackiw-Pi vortices emerging as BPS solutions. We find that this (2 + 1)-dimensional abelian field theory is dual to a certain (3+1)-dimensional gravity theory that differs somewhat from previously considered abelian condensed matter stand-ins for the ABJM model. We close by commenting on progress in the top-down realization of the AdS/CMT correspondence in a critical string theory.

  8. Fibonacci anyons from Abelian bilayer quantum Hall states.

    PubMed

    Vaezi, Abolhassan; Barkeshli, Maissam

    2014-12-01

    The possibility of realizing non-Abelian statistics and utilizing it for topological quantum computation (TQC) has generated widespread interest. However, the non-Abelian statistics that can be realized in most accessible proposals is not powerful enough for universal TQC. In this Letter, we consider a simple bilayer fractional quantum Hall system with the 1/3 Laughlin state in each layer. We show that interlayer tunneling can drive a transition to an exotic non-Abelian state that contains the famous "Fibonacci" anyon, whose non-Abelian statistics is powerful enough for universal TQC. Our analysis rests on startling agreements from a variety of distinct methods, including thin torus limits, effective field theories, and coupled wire constructions. We provide evidence that the transition can be continuous, at which point the charge gap remains open while the neutral gap closes. This raises the question of whether these exotic phases may have already been realized at ν=2/3 in bilayers, as past experiments may not have definitively ruled them out. PMID:25526149

  9. Discussion About the Magnetic Field Dimensionality, Invariant Axis Condition, and Coulomb Gauge to Solve the Grad-Shafranov Equation

    NASA Astrophysics Data System (ADS)

    González, A. Ojeda; Prestes, A.; Laurindo Sousa, A. Nilson

    2016-08-01

    We discuss the relationship between the Coulomb gauge, the existence of an invariant axis, and the dimensionality (2-D or 2frac {1}{2}-D) of the magnetic field in a mathematical-physical formalism that leads us to the Grad-Shafranov (GS) equation. In the literature, we found that a 2-D magnetic structure is used as a prerequisite to derive the GS equation from the Vlasov equation. However, other consulted works are based on a 2frac {1}{2}-D (two-and-a-half) magnetic structure as a prerequisite to derive the GS equation from the balance of forces between the pressure gradient and the magnetic force, respectively. We replaced the magnetic vector potential on Ampère's equation and used the Coulomb gauge to obtain a system of three Poisson equations, one for each component. We also used the same procedure explained above, but without the Coulomb gauge. Comparing z-component in both equation systems, we concluded that there are two possible solutions. We suggest using a 2frac {1}{2}-D magnetic field configuration instead of a 2-D, when working with kinetic theory or magnetostatic equilibrium to derive the GS equation. We clarified that there is no relationship between the Coulomb gauge and the magnetic field dimensionality. In this problem, the invariant axis condition is imposed, which means that ěc {nabla }\\cdot ěc {A} is independent of z, i.e., ěc {nabla }\\cdot ěc {A} could have any value in which an invariant axis is a sufficient condition to obtain the GS equation.

  10. General Yang-Mills type gauge theories for p-form gauge fields: From physics-based ideas to a mathematical framework or From Bianchi identities to twisted Courant algebroids

    NASA Astrophysics Data System (ADS)

    Grützmann, Melchior; Strobl, Thomas

    2015-10-01

    Starting with minimal requirements from the physical experience with higher gauge theories, i.e. gauge theories for a tower of differential forms of different form degrees, we discover that all the structural identities governing such theories can be concisely recombined into what is called a Q-structure or, equivalently, an L∞-algebroid. This has many technical and conceptual advantages: complicated higher bundles become just bundles in the category of Q-manifolds in this approach (the many structural identities being encoded in the one operator Q squaring to zero), gauge transformations are generated by internal vertical automorphisms in these bundles and even for a relatively intricate field content the gauge algebra can be determined in some lines and is given by what is called the derived bracket construction. This paper aims equally at mathematicians and theoretical physicists; each more physical section is followed by a purely mathematical one. While the considerations are valid for arbitrary highest form degree p, we pay particular attention to p = 2, i.e. 1- and 2-form gauge fields coupled nonlinearly to scalar fields (0-form fields). The structural identities of the coupled system correspond to a Lie 2-algebroid in this case and we provide different axiomatic descriptions of those, inspired by the application, including e.g. one as a particular kind of a vector-bundle twisted Courant algebroid.

  11. Non-Abelian vortices and non-Abelian statistics

    SciTech Connect

    Lo, H.; Preskill, J. )

    1993-11-15

    We study the interactions of non-Abelian vortices in two spatial dimensions. These interactions have novel features, because the Aharonov-Bohm effect enables a pair of vortices to exchange quantum numbers. The cross section for vortex-vortex scattering is typically a multivalued function of the scattering angle. There can be an exchange contribution to the vortex-vortex scattering amplitude that adds coherently with the direct amplitude, even if the two vortices have distinct quantum numbers. Thus two vortices can be indistinguishable'' even though they are not the same.

  12. On Geometrical Interpretation of Non-Abelian D and F-Flat Direction Constraints

    NASA Astrophysics Data System (ADS)

    Walker, Joel; Cleaver, Gerald; Nanopoulos, Dimitri; Perkins, John

    2004-10-01

    In order to produce a low energy effective field theory from a string model, it is necessary to specify a vacuum state. In order that this vacuum be supersymmetric, it is well known that all field expectation values must be along so-called flat directions, leaving the F- and D-terms of the scalar potential to be zero. The situation becomes particularly interesting when one attempts to realize such directions while assigning VEVS to fields transforming under non-Abelian representations of the gauge group. Since the expectation value is now shared among multiple components of a field, satisfaction of flatness becomes an inherently geometrical problem in the group space. Furthermore, the possibility emerges that a single seemingly dangerous F-term might experience a self-cancellation among its components. The hope exists that the geometric language can provide an intuitive and immediate recognition of when the D and F conditions are simultaneously compatible, as well as a powerful tool for their comprehensive classification. This is the avenue explored in this study, and applied to the cases of SU(2) and SO(2N), relevant respectively to previous attempts at reproducing the MSSM and the flipped SU(5) GUT. It is hoped that the techniques encountered will be of benefit in extending the viability of the quasi-realistic phenomenologies already developed.

  13. Semiclassical gravitoelectromagnetic inflation in a Lorentz gauge: Seminal inflaton fluctuations and electromagnetic fields from a 5D vacuum state

    NASA Astrophysics Data System (ADS)

    Membiela, Federico Agustín; Bellini, Mauricio

    2010-02-01

    Using a semiclassical approach to Gravitoelectromagnetic Inflation (GEMI), we study the origin and evolution of seminal inflaton and electromagnetic fields in the early inflationary universe from a 5D vacuum state. The difference with other previous works is that in this one we use a Lorentz gauge. Our formalism is naturally not conformal invariant on the effective 4D de Sitter metric, which make possible the super adiabatic amplification of magnetic field modes during the early inflationary epoch of the universe on cosmological scales.

  14. Bilayer quantum Hall phase transitions and the orbifold non-Abelian fractional quantum Hall states

    SciTech Connect

    Barkeshli, Maissam; Wen Xiaogang

    2011-09-15

    We study continuous quantum phase transitions that can occur in bilayer fractional quantum Hall (FQH) systems as the interlayer tunneling and interlayer repulsion are tuned. We introduce a slave-particle gauge theory description of a series of continuous transitions from the (ppq) Abelian bilayer states to a set of non-Abelian FQH states, which we dub orbifold FQH states, of which the Z{sub 4} parafermion (Read-Rezayi) state is a special case. This provides an example in which Z{sub 2} electron fractionalization leads to non-Abelian topological phases. The naive ''ideal'' wave functions and ideal Hamiltonians associated with these orbifold states do not in general correspond to incompressible phases but, instead, lie at a nearby critical point. We discuss this unusual situation from the perspective of the pattern-of-zeros/vertex algebra frameworks and discuss implications for the conceptual foundations of these approaches. Due to the proximity in the phase diagram of these non-Abelian states to the (ppq) bilayer states, they may be experimentally relevant, both as candidates for describing the plateaus in single-layer systems at filling fractions 8/3 and 12/5 and as a way to tune to non-Abelian states in double-layer or wide quantum wells.

  15. Superconductivity from gauge/gravity duality with flavor

    NASA Astrophysics Data System (ADS)

    Ammon, Martin; Erdmenger, Johanna; Kaminski, Matthias; Kerner, Patrick

    2009-10-01

    We consider thermal strongly-coupled N = 2 SYM theory with fundamental matter at finite isospin chemical potential. Using gauge/gravity duality, i.e. a probe of two flavor D7-branes embedded in the AdS black hole background, we find a critical temperature at which the system undergoes a second order phase transition. The critical exponent of this transition is one half and coincides with the result from mean field theory. In the thermodynamically favored phase, a flavor current acquires a vev and breaks an Abelian symmetry spontaneously. This new phase shows signatures known from superconductivity, such as an infinite dc conductivity and a gap in the frequency-dependent conductivity. The gravity setup allows for an explicit identification of the degrees of freedom in the dual field theory, as well as for a dual string picture of the condensation process.

  16. On the zero modes of the Faddeev-Popov operator in the Landau gauge

    SciTech Connect

    Landim, R. R.; Vilar, L. C. Q. Lemes, V. E. R.; Ventura, O. S.

    2014-02-15

    Following Henyey procedure [Phys. Rev. D 20, 1460 (1979)], we construct examples of zero modes of the Faddeev-Popov operator in the Landau gauge in Euclidean space in D dimensions, for both SU(2) and SU(3) groups. We obtain gauge field configurations A{sub μ}{sup a} which give rise to a field strength, F{sub μν}{sup a}=∂{sub μ}A{sub ν}{sup a}−∂{sub ν}A{sub μ}{sup a}+f{sup abc}A{sub μ}{sup b}A{sub ν}{sup c}, whose nonlinear term, f{sup abc}A{sub μ}{sup b}A{sub ν}{sup c}, turns out to be non-vanishing. To our knowledge, this is the first time where such a non-abelian configuration is explicitly obtained in the case of SU(3) in 4D.

  17. Abelian and non-abelian D-brane effective actions

    NASA Astrophysics Data System (ADS)

    Koerber, P.

    2004-09-01

    In this Ph.D. thesis, accepted at the Vrije Universiteit Brussel, we review and elaborate on a method to find the D-brane effective action, based on BPS equations. Firstly, both for the Yang-Mills action and the Born-Infeld action it is shown that these configurations are indeed BPS, i.e. solutions to these equations saturate a Bogomolny bound and leave some supersymmetry unbroken. Next, we use the BPS equations as a tool to construct the D-brane effective action and require that (a deformation of) these equations should still imply the equations of motion in more general cases. In the abelian case we managed to calculate all order in four-derivative corrections to the effective action and the BPS equations while in the non-abelian case we obtained the effective action up to order 4. Furthermore, we discuss a check based on the spectrum of strings stretching between intersecting branes. Finally, this Ph.D. thesis also discusses the construction of a boundary superspace which would be the first step to use the method of Weyl invariance in N = 2 superspace in order to again construct the D-brane effective action. A more detailed summary of each section can be found in the introduction.

  18. Confinement effects from interacting chromo-magnetic and axion fields

    NASA Astrophysics Data System (ADS)

    Gaete, Patricio; Spallucci, Euro

    2006-05-01

    We study a non-Abelian gauge theory with a pseudo scalar coupling phiTr(F*μνFμν) in the case where a constant chromo-electric, or chromo-magnetic, strength expectation value is present. We compute the interaction potential within the framework of gauge-invariant, path-dependent, variables formalism. While in the case of a constant chromo-electric field strength expectation value the static potential remains Coulombic, in the case of a constant chromo-magnetic field strength the potential energy is the sum of a Coulombic and a linear potential, leading to the confinement of static charges.

  19. Topologically Massive Non-Abelian Theory:. Superfield Approach

    NASA Astrophysics Data System (ADS)

    Krishna, S.; Shukla, A.; Malik, R. P.

    We apply the well-established techniques of geometrical superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism in the context of four (3+1)-dimensional (4D) dynamical non-Abelian 2-form gauge theory by exploiting its inherent "scalar" and "vector" gauge symmetry transformations and derive the corresponding off-shell nilpotent and absolutely anticommuting BRST and anti-BRST symmetry transformations. Our approach leads to the derivation of three (anti-)BRST invariant Curci-Ferrari (CF)-type restrictions that are found to be responsible for the absolute anticommutativity of the BRST and anti-BRST symmetry transformations. We derive the coupled Lagrangian densities that respect the (anti-)BRST symmetry transformations corresponding to the "vector" gauge transformations. We also capture the (anti-)BRST invariance of the CF-type restrictions and coupled Lagrangian densities within the framework of our superfield approach. We obtain, furthermore, the off-shell nilpotent (anti-)BRST symmetry transformations when the (anti-)BRST symmetry transformations corresponding to the "scalar" and "vector" gauge symmetries are merged together. These off-shell nilpotent "merged" (anti-)BRST symmetry transformations are, however, found to be non-anticommuting in nature.

  20. A non-Abelian black ring

    NASA Astrophysics Data System (ADS)

    Ortín, Tomás; Ramírez, Pedro F.

    2016-09-01

    We construct a supersymmetric black ring solution of SU (2) N = 1, d = 5 Super-Einstein-Yang-Mills (SEYM) theory by adding a distorted BPST instanton to an Abelian black ring solution of the same theory. The change cannot be observed from spatial infinity: neither the mass, nor the angular momenta or the values of the scalars at infinity differ from those of the Abelian ring. The entropy is, however, sensitive to the presence of the non-Abelian instanton, and it is smaller than that of the Abelian ring, in analogy to what happens in the supersymmetric colored black holes recently constructed in the same theory and in N = 2, d = 4 SEYM. By taking the limit in which the two angular momenta become equal we derive a non-Abelian generalization of the BMPV rotating black-hole solution.

  1. Anomaly cancelation in field theory and F-theory on a circle

    NASA Astrophysics Data System (ADS)

    Grimm, Thomas W.; Kapfer, Andreas

    2016-05-01

    We study the manifestation of local gauge anomalies of four- and six-dimensional field theories in the lower-dimensional Kaluza-Klein theory obtained after circle compactification. We identify a convenient set of transformations acting on the whole tower of massless and massive states and investigate their action on the low-energy effective theories in the Coulomb branch. The maps employ higher-dimensional large gauge transformations and precisely yield the anomaly cancelation conditions when acting on the one-loop induced Chern-Simons terms in the three- and five-dimensional effective theory. The arising symmetries are argued to play a key role in the study of the M-theory to F-theory limit on Calabi-Yau manifolds. For example, using the fact that all fully resolved F-theory geometries inducing multiple Abelian gauge groups or non-Abelian groups admit a certain set of symmetries, we are able to generally show the cancelation of pure Abelian or pure non-Abelian anomalies in these models.

  2. Non-Abelian Effects on D-Branes

    SciTech Connect

    Russo, Jorge G.

    2008-07-28

    We review different non-Abelian configurations of D-branes. We then extend the Myers dielectric effect to configurations with angular momentum. The resulting time-dependent N D0-brane bound states can be interpreted as describing rotating fuzzy ellipsoids. A similar solution exists also in the presence of a RR magnetic field, that we study in detail. We show that, for any finite N, above a certain critical angular momentum it is energetically more favorable for the bound state system to dissociate into an Abelian configuration of N D0-branes moving independently. We further study D-string configurations representing fuzzy funnels deformed by the magnetic field and by the rotational motion.

  3. Chiral quark dynamics and topological charge: The role of the Ramond-Ramond U(1) gauge field in holographic QCD

    NASA Astrophysics Data System (ADS)

    Thacker, H. B.; Xiong, Chi; Kamat, Ajinkya S.

    2011-11-01

    The Witten-Sakai-Sugimoto construction of holographic QCD in terms of D4 color branes and D8 flavor branes in type IIA string theory is used to investigate the role of topological charge in the chiral dynamics of quarks in QCD. The QCD theta term arises from a compactified five-dimensional Chern-Simons term on the D4 branes. This term couples the QCD topological charge to the Ramond-Ramond (RR) U(1) gauge field of type IIA string theory. For large Nc the contribution of instantons (D0 branes) is suppressed, and the nonzero topological susceptibility of pure-glue QCD is attributed to the presence of D6 branes, which constitute magnetic sources of the RR gauge field. The topological charge of QCD is required, by an anomaly inflow argument, to coincide in space-time with the intersection of the D6 branes and the D4 color branes. This clarifies the relation between D6 branes and the coherent, codimension-one topological charge membranes observed in QCD Monte Carlo calculations. Using open-string/closed-string duality, we interpret a quark loop (represented by a D4-D8 open-string loop) in terms of closed-string exchange between color and flavor branes. The role of the RR gauge field in quark-antiquark annihilation processes is discussed. RR exchange in the s-channel generates a 4-quark contact term which produces an η' mass insertion and provides an explanation for the observed spin-parity structure of the Okubo-Zweig-Iizuka rule. The (log⁡DetU)2 form of the U(1) anomaly emerges naturally. RR exchange in the t-channel of the qq¯ scattering amplitude produces a Nambu-Jona-Lasinio interaction which may provide a mechanism for spontaneous breaking of SU(Nf)×SU(Nf).

  4. The arithmetic of elliptic fibrations in gauge theories on a circle

    NASA Astrophysics Data System (ADS)

    Grimm, Thomas W.; Kapfer, Andreas; Klevers, Denis

    2016-06-01

    The geometry of elliptic fibrations translates to the physics of gauge theories in F-theory. We systematically develop the dictionary between arithmetic structures on elliptic curves as well as desingularized elliptic fibrations and symmetries of gauge theories on a circle. We show that the Mordell-Weil group law matches integral large gauge transformations around the circle in Abelian gauge theories and explain the significance of Mordell-Weil torsion in this context. We also use Higgs transitions and circle large gauge transformations to introduce a group law for genus-one fibrations with multi-sections. Finally, we introduce a novel arithmetic structure on elliptic fibrations with non-Abelian gauge groups in F-theory. It is defined on the set of exceptional divisors resolving the singularities and divisor classes of sections of the fibration. This group structure can be matched with certain integral non-Abelian large gauge transformations around the circle when studying the theory on the lower-dimensional Coulomb branch. Its existence is required by consistency with Higgs transitions from the non-Abelian theory to its Abelian phases in which it becomes the Mordell-Weil group. This hints towards the existence of a new underlying geometric symmetry.

  5. Hall response of interacting bosonic atoms in strong gauge fields: From condensed to fractional-quantum-Hall states

    NASA Astrophysics Data System (ADS)

    Pino, H.; Alba, E.; Taron, J.; Garcia-Ripoll, J. J.; Barberán, N.

    2013-05-01

    Interacting bosonic atoms under strong gauge fields undergo a series of phase transitions that take the cloud from a simple Bose-Einstein condensate all the way to a family of fractional-quantum-Hall-type states [M. Popp, B. Paredes, and J. I. Cirac, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.70.053612 70, 053612 (2004)]. In this work we demonstrate that the Hall response of the atoms can be used to locate the phase transitions and characterize the ground state of the many-body state. Moreover, the same response function reveals within some regions of the parameter space, the structure of the spectrum and the allowed transitions to excited states. We verify numerically these ideas using exact diagonalization for a small number of atoms, and provide an experimental protocol to implement the gauge fields and probe the linear response using a periodically driven optical lattice. Finally, we discuss our theoretical results in relation to recent experiments with condensates in artificial magnetic fields [L. J. LeBlanc, K. Jimenez-Garcia, R. A. Williams, M. C. Beeler, A. R. Perry, W. D. Phillips, and I. B. Spielman, Proc. Natl. Acad. Sci. USAPNASA60027-842410.1073/pnas.1202579109 109, 10811 (2012)] and we analyze the role played by vortex states in the Hall response.

  6. Gauge bosons at zero and finite temperature

    NASA Astrophysics Data System (ADS)

    Maas, Axel

    2013-03-01

    Gauge theories of the Yang-Mills type are the single most important building block of the standard model of particle physics and beyond. They are an integral part of the strong and weak interactions, and in their Abelian version of electromagnetism. Since Yang-Mills theories are gauge theories their elementary particles, the gauge bosons, cannot be described without fixing a gauge. Therefore, to obtain their properties a quantized and gauge-fixed setting is necessary. Beyond perturbation theory, gauge-fixing in non-Abelian gauge theories is obstructed by the Gribov-Singer ambiguity, which requires the introduction of non-local constraints. The construction and implementation of a method-independent gauge-fixing prescription to resolve this ambiguity is the single most important first step to describe gauge bosons beyond perturbation theory. Proposals for such a procedure, generalizing the perturbative Landau gauge, are described here. Their implementation are discussed for two example methods, lattice gauge theory and the quantum equations of motion. After gauge-fixing, it is possible to study gauge bosons in detail. The most direct access is provided by their correlation functions. The corresponding two- and three-point correlation functions are presented at all energy scales. These give access to the properties of the gauge bosons, like their absence from the asymptotic physical state space, particle-like properties at high energies, and the running coupling. Furthermore, auxiliary degrees of freedom are introduced during gauge-fixing, and their properties are discussed as well. These results are presented for two, three, and four dimensions, and for various gauge algebras. Finally, the modifications of the properties of gauge bosons at finite temperature are presented. Evidence is provided that these reflect the phase structure of Yang-Mills theory. However, it is found that the phase transition is not deconfining the gauge bosons, although the bulk

  7. Comparison Among HB-inspired Algorithms for Continuous-Spin Systems and Gauge Fields

    NASA Astrophysics Data System (ADS)

    Cucchieri, A.; Frigori, R. B.; Mendes, T.; Mihara, A.

    2006-09-01

    We propose a new local algorithm for the thermalization of n-vector spin models, which can also be used in the numerical simulation of SU(N) lattice gauge theories. The algorithm combines heat-bath (HB) and micro-canonical updates in a single step -- as opposed to the hybrid overrelaxation method, which alternates between the two kinds of update steps -- while preserving ergodicity. We test our proposed algorithm in the case of the one-dimensional 4-vector spin model and compare its performance with the standard HB algorithm and with other HB-inspired algorithms.

  8. Green functions for wave propagation on a five-dimensional manifold and the associated gauge fields generated by a uniformly moving point source

    SciTech Connect

    Aharonovich, I.; Horwitz, L. P.

    2006-12-15

    Gauge fields associated with the manifestly covariant dynamics of particles in (3,1) space time are five dimensional (5D). We provide solutions of the classical 5D gauge field equations in both (4,1) and (3,2) flat space-time metrics for the simple example of a uniformly moving point source. Green functions for the 5D field equations are obtained, which are consistent with the solutions for uniform motion obtained directly from the field equations with free asymptotic conditions.

  9. [Investigations in dynamics of gauge theories in theoretical particle physics]. [Virginia Polytechnic Institute State Univ. , Blacksburg

    SciTech Connect

    Not Available

    1993-01-01

    The major theme of the theoretical physics research conducted under DOE support over the past several years has been within the rubric of the standard model, and concerned the interplay between symmetries and dynamics. The research was thus carried out mostly in the context of gauge field theories, and usually in the presence of chiral fermions. Dynamical symmetry breaking was examined both from the point of view of perturbation theory, as well as from non-perturbative techniques associated with certain characteristic features of specific theories. Among the topics of research were: the implications of abelian and non-abelian anomalies on the spectrum and possible dynamical symmetry breaking in any theory, topological and conformal properties of quantum fields in two and higher dimensions, the breaking of global chiral symmetries by vector-like gauge theories such as QCD, the phenomenological implications of a strongly interacting Higgs sector in the standard model, and the application of soliton ideas to the physics to be explored at the SSC.

  10. Designer non-Abelian anyon platforms: from Majorana to Fibonacci

    NASA Astrophysics Data System (ADS)

    Alicea, Jason; Stern, Ady

    2015-12-01

    The emergence of non-Abelian anyons from large collections of interacting elementary particles is a conceptually beautiful phenomenon with important ramifications for fault-tolerant quantum computing. Over the last few decades the field has evolved from a highly theoretical subject to an active experimental area, particularly following proposals for trapping non-Abelian anyons in ‘engineered’ structures built from well-understood components. In this short overview we briefly tour the impressive progress that has taken place in the quest for the simplest type of non-Abelian anyon—defects binding Majorana zero modes—and then turn to similar strategies for pursuing more exotic excitations. Specifically, we describe how interfacing simple quantum Hall systems with conventional superconductors yields ‘parafermionic’ generalizations of Majorana modes and even Fibonacci anyons—the latter enabling fully fault tolerant universal quantum computation. We structure our treatment in a manner that unifies these topics in a coherent way. The ideas synthesized here spotlight largely uncharted experimental territory in the field of quantum Hall physics that appears ripe for discovery.

  11. Non-Abelian Weizsäcker-Williams field and a two-dimensional effective color charge density for a very large nucleus

    NASA Astrophysics Data System (ADS)

    Kovchegov, Yuri V.

    1996-11-01

    We consider a very large ultrarelativistic nucleus. Assuming a simple model of the nucleus and weak coupling we find a classical solution for the gluon field of the nucleus and construct the two-dimensional color charge density for McLerran-Venugopalan model out of it. We prove that the density of states distribution, as a function of color charge density, is Gaussian, confirming the assumption made by McLerran and Venugopalan.

  12. Non-Abelian Weizs{umlt a}cker-Williams field and a two-dimensional effective color charge density for a very large nucleus

    SciTech Connect

    Kovchegov, Y.V.

    1996-11-01

    We consider a very large ultrarelativistic nucleus. Assuming a simple model of the nucleus and weak coupling we find a classical solution for the gluon field of the nucleus and construct the two-dimensional color charge density for McLerran-Venugopalan model out of it. We prove that the density of states distribution, as a function of color charge density, is Gaussian, confirming the assumption made by McLerran and Venugopalan. {copyright} {ital 1996 The American Physical Society.}

  13. Supersymmetric 3D model for gravity with SU(2) gauge symmetry, mass generation and effective cosmological constant

    NASA Astrophysics Data System (ADS)

    Alvarez, Pedro D.; Pais, Pablo; Rodríguez, Eduardo; Salgado-Rebolledo, Patricio; Zanelli, Jorge

    2015-09-01

    A Chern-Simons system in 2+1 dimensions invariant under local Lorentz rotations, SU(2) gauge transformations, and local {N}=2 supersymmetry (SUSY) transformations is proposed. The field content is that of (2+1)-gravity plus an SU(2) gauge field, a spin-1/2 fermion charged with respect to SU(2) and a trivial free abelian gauge field. A peculiarity of the model is the absence of gravitini, although it includes gravity and SUSY. Likewise, no gauginos are present. All the parameters involved in the system are either protected by gauge invariance or emerge as integration constants. An effective mass and effective cosmological constant emerge by spontaneous breaking of local scaling invariance. The vacuum sector is defined by configurations with locally flat Lorentz and SU(2) connections sporting nontrivial global charges. Three-dimensional Lorentz-flat geometries are spacetimes of locally constant negative—or zero—Riemann curvature, which include Minkowski space, AdS3, BTZ black holes, and point particles. These solutions admit different numbers of globally defined, covariantly constant spinors and are therefore good candidates for stable ground states. The fermionic sector in this system could describe the dynamics of electrons in graphene in the long wavelength limit near the Dirac points, with the spin degree of freedom of the electrons represented by the SU(2) label. If this is the case, the SU(2) gauge field would produce a spin-spin interaction giving rise to strong correlation of electron pairs.

  14. Incorporation of generalized uncertainty principle into Lifshitz field theories

    SciTech Connect

    Faizal, Mir; Majumder, Barun

    2015-06-15

    In this paper, we will incorporate the generalized uncertainty principle into field theories with Lifshitz scaling. We will first construct both bosonic and fermionic theories with Lifshitz scaling based on generalized uncertainty principle. After that we will incorporate the generalized uncertainty principle into a non-abelian gauge theory with Lifshitz scaling. We will observe that even though the action for this theory is non-local, it is invariant under local gauge transformations. We will also perform the stochastic quantization of this Lifshitz fermionic theory based generalized uncertainty principle.

  15. Non-Abelian Stokes theorem for the Wilson loop operator in an arbitrary representation and its implication to quark confinement

    NASA Astrophysics Data System (ADS)

    Matsudo, Ryutaro; Kondo, Kei-Ichi

    2015-12-01

    We give a gauge-independent definition of magnetic monopoles in the S U (N ) Yang-Mills theory through the Wilson loop operator. For this purpose, we give an explicit proof of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the Wilson loop operator in an arbitrary representation of the S U (N ) gauge group to derive a new form for the non-Abelian Stokes theorem. The new form is used to extract the magnetic-monopole contribution to the Wilson loop operator in a gauge-invariant way, which enables us to discuss confinement of quarks in any representation from the viewpoint of the dual superconductor vacuum.

  16. General mirror pairs for gauged linear sigma models

    NASA Astrophysics Data System (ADS)

    Aspinwall, Paul S.; Plesser, M. Ronen

    2015-11-01

    We carefully analyze the conditions for an abelian gauged linear σ-model to exhibit nontrivial IR behavior described by a nonsingular superconformal field theory determining a superstring vacuum. This is done without reference to a geometric phase, by associating singular behavior to a noncompact space of (semi-)classical vacua. We find that models determined by reflexive combinatorial data are nonsingular for generic values of their parameters. This condition has the pleasant feature that the mirror of a nonsingular gauged linear σ-model is another such model, but it is clearly too strong and we provide an example of a non-reflexive mirror pair. We discuss a weaker condition inspired by considering extremal transitions, which is also mirror symmetric and which we conjecture to be sufficient. We apply these ideas to extremal transitions and to understanding the way in which both Berglund-Hübsch mirror symmetry and the Vafa-Witten mirror orbifold with discrete torsion can be seen as special cases of the general combinatorial duality of gauged linear σ-models. In the former case we encounter an example showing that our weaker condition is still not necessary.

  17. Simulation of the above-threshold-ionization experiment using the molecular strong-field approximation: The choice of gauge

    SciTech Connect

    Busuladzic, M.; Milosevic, D. B.

    2010-07-15

    We investigate how various versions of the molecular strong-field approximation (MSFA) agree with the experiment by Grasbon et al. [Phys. Rev. A 63, 041402(R) (2001)], in which the suppression of the ionization yield in the low-energy spectrum of the O{sub 2} molecule, compared to the spectrum of its companion atom Xe, was observed. In this experiment, it was also found that the spectrum of the N{sub 2} molecule is comparable to the corresponding spectrum of its companion atom Ar. We show that the length-gauge version of the MSFA with the initial state dressed by the laser field gives the best agreement with the experimental data for both O{sub 2} and N{sub 2} molecules.

  18. Photons emerging as Goldstone bosons from spontaneous Lorentz symmetry breaking: The Abelian Nambu model

    NASA Astrophysics Data System (ADS)

    Escobar, C. A.; Urrutia, L. F.

    2015-07-01

    After imposing current conservation together with the Gauss law as initial conditions on the Abelian Nambu model, we prove that the resulting theory is equivalent to standard QED in the nonlinear gauge (AμAμ-n2M2) =0 , to all orders in perturbation theory. We show this by writing both models in terms of the same variables, which produce identical Feynman rules for the interactions and propagators. A crucial point is to verify that the Faddeev-Popov ghosts arising from the gauge fixing procedure in the QED sector decouple to all orders. We verify this decoupling by following a method like that employed in Yang-Mills theories when investigating the behavior of axial gauges. The equivalence between the two theories supports the idea that gauge particles can be envisaged as the Goldstone bosons originating from spontaneous Lorentz symmetry breaking.

  19. Minimal non-Abelian model of atomic dark matter

    NASA Astrophysics Data System (ADS)

    Choquette, Jeremie; Cline, James M.

    2015-12-01

    A dark sector resembling the Standard Model, where the abundance of matter is explained by baryon and lepton asymmetries and stable constituents bind to form atoms, is a theoretically appealing possibility. We show that a minimal model with a hidden SU(2) gauge symmetry broken to U(1), with a Dirac fermion doublet, suffices to realize this scenario. Supplemented with a dark Higgs doublet that gets no vacuum expectation value, we readily achieve the dark matter asymmetry through leptogenesis. The model can simultaneously have three portals to the Standard Model, through the Higgs, non-Abelian kinetic mixing, and the heavy neutrino, with interesting phenomenology for direct and collider searches, as well as cosmologically relevant dark matter self-interactions. Exotic bound states consisting of two fermions and a doubly charged vector boson can exist in one phase of the theory.

  20. Critical string from non-Abelian vortex in four dimensions

    NASA Astrophysics Data System (ADS)

    Shifman, M.; Yung, A.

    2015-11-01

    In a class of non-Abelian solitonic vortex strings supported in certain N = 2 super-Yang-Mills theories we search for the vortex which can behave as a critical fundamental string. We use the Polchinski-Strominger criterion of the ultraviolet completeness. We identify an appropriate four-dimensional bulk theory: it has the U (2) gauge group, the Fayet-Iliopoulos term and four flavor hypermultiplets. It supports semilocal vortices with the world-sheet theory for orientational (size) moduli described by the weighted CP (2 , 2) model. The latter is superconformal. Its target space is six-dimensional. The overall Virasoro central charge is critical. We show that the world-sheet theory on the vortex supported in this bulk model is the bona fide critical string.

  1. Bagger-Lambert-Gustavsson-motivated Lagrangian formulation for the chiral two-form gauge field in D=6 and M5-branes

    SciTech Connect

    Pasti, Paolo; Tonin, Mario; Samsonov, Igor; Sorokin, Dmitri

    2009-10-15

    We reveal nonmanifest gauge and SO(1,5) Lorentz symmetries in the Lagrangian description of a six-dimensional free chiral field derived from the Bagger-Lambert-Gustavsson model in [P.-M. Ho and Y. Matsuo, J. High Energy Phys. 06 (2008) 105.] and make this formulation covariant with the use of a triplet of auxiliary scalar fields. We consider the coupling of this self-dual construction to gravity and its supersymmetrization. In the case of the nonlinear model of [P.-M. Ho, Y. Imamura, Y. Matsuo, and S. Shiba, J. High Energy Phys. 08 (2008) 014.] we solve the equations of motion of the gauge field, prove that its nonlinear field strength is self-dual and find a gauge-covariant form of the nonlinear action. Issues of the relation of this model to the known formulations of the M5-brane worldvolume theory are discussed.

  2. Effects of the quark field on the ghost propagator of lattice Landau gauge QCD

    SciTech Connect

    Furui, Sadataka; Nakajima, Hideo

    2006-05-01

    Infrared features of the ghost propagator of color-diagonal and color antisymmetric ghost propagator of quenched SU(2) and quenched SU(3) are compared with those of unquenched Kogut-Susskind fermion SU(3) lattice Landau gauge. We compare (i) the fluctuation of the ghost propagator (ii) the ghost condensate parameter v of the local composite operator (LCO) approach, and (iii) the Binder cumulant of color antisymmetric ghost propagator between quenched and unquenched configurations. The color-diagonal SU(3) ghost dressing function of unquenched configurations has weaker singularity than the quenched configurations. In both cases fluctuations become large in q<0.5 GeV. The ghost condensate parameter v in the ghost propagator of the unquenched MILC{sub c} configuration samples is {approx}0.002-0.04 GeV{sup 2} while that of the SU(2) parallel tempering samples is consistent with 0. The Binder cumulant defined as U(q)=1-(1/3)(<{phi}-vector{sup 4}>/(<{phi}-vector{sup 2}>){sup 2}), where {phi}-vector(q) is the color antisymmetric ghost propagator measured by the sample average of gauge fixed configurations via parallel tempering method, becomes {approx}4/9 in all the momentum region. The Binder cumulant of the color antisymmetric ghost propagator of quenched SU(2) can be explained by the 3D Gaussian distribution, but that of the unquenched MILC{sub c} deviates slightly from that of the eight-dimensional Gaussian distribution. The stronger singularity and large fluctuation in the quenched configuration could be the cause of the deviation of the Kugo-Ojima confinement parameter c from 1, and the presence of ordering in the ghost propagator of unquenched configurations makes it closer to 1.

  3. A New Fate of a Warped 5D FLRW Model with a U(1) Scalar Gauge Field

    NASA Astrophysics Data System (ADS)

    Slagter, Reinoud Jan; Pan, Supriya

    2016-03-01

    If we live on the weak brane with zero effective cosmological constant in a warped 5D bulk spacetime, gravitational waves and brane fluctuations can be generated by a part of the 5D Weyl tensor and carries information of the gravitational field outside the brane. We consider on a cylindrical symmetric warped FLRW background a U(1) self-gravitating scalar field coupled to a gauge field without bulk matter. It turns out that brane fluctuations can be formed dynamically, due to the modified energy-momentum tensor components of the scalar-gauge field ("cosmic string"). As a result, we find that the late-time behavior could significantly deviate from the standard evolution of the universe. The effect is triggered by the time-dependent warpfactor with two branches of the form ± 1/√{τ r}√{(c_1e^{√{2τ } t}+c_2e^{-√{2τ } t})(c_3e^{√{2τ } r}+c_4e^{-√{2τ } r})} ( with τ c_i constants) and the modified brane equations comparable with a dark energy effect. This is a brane-world mechanism, not present in standard 4D FLRW, where the large disturbances are rapidly damped as the expansion proceed. Because gravity can propagate in the bulk, the cosmic string can build up a huge angle deficit (or mass per unit length) by the warpfactor and can induce massive KK-modes felt on the brane. Disturbances in the spatial components of the stress-energy tensor cause cylindrical symmetric waves, amplified due to the presence of the bulk space and warpfactor. They could survive the natural damping due to the expansion of the universe. It turns out that one of the metric components becomes singular at the moment the warp factor develops an extremum. This behavior could have influence on the possibility of a transition from acceleration to deceleration or vice versa.

  4. Generalized higher gauge theory

    NASA Astrophysics Data System (ADS)

    Ritter, Patricia; Sämann, Christian; Schmidt, Lennart

    2016-04-01

    We study a generalization of higher gauge theory which makes use of generalized geometry and seems to be closely related to double field theory. The local kinematical data of this theory is captured by morphisms of graded manifolds between the canonical exact Courant Lie 2-algebroid T M ⊕ T ∗ M over some manifold M and a semistrict gauge Lie 2-algebra. We discuss generalized curvatures and infinitesimal gauge transformations. Finite gauge transformation as well as global kinematical data are then obtained from principal 2-bundles over 2-spaces. As dynamical principle, we consider first the canonical Chern-Simons action for such a gauge theory. We then show that a previously proposed 3-Lie algebra model for the six-dimensional (2,0) theory is very naturally interpreted as a generalized higher gauge theory.

  5. A gyro-gauge independent minimal guiding-center reduction by Lie-transforming the velocity vector field

    SciTech Connect

    Guillebon, L. de; Vittot, M.

    2013-08-15

    We introduce a gyro-gauge independent formulation of a simplified guiding-center reduction, which removes the fast time-scale from particle dynamics by Lie-transforming the velocity vector field. This is close to Krylov-Bogoliubov method of averaging the equations of motion, although more geometric. At leading order, the Lie-transform consists in the generator of Larmor gyration, which can be explicitly inverted, while working with gauge-independent coordinates and operators, by using the physical gyro-angle as a (constrained) coordinate. This brings both the change of coordinates and the reduced dynamics of the minimal guiding-center reduction order by order in a Larmor radius expansion. The procedure is algorithmic and the reduction is systematically derived up to full second order, in a more straightforward way than when Lie-transforming the phase-space Lagrangian or averaging the equations of motion. The results write up some structures in the guiding-center expansion. Extensions and limitations of the method are considered.

  6. PHYSICS OF ELEMENTARY PARTICLES AND FIELDS: Effective Action for Noncommutative U(1) Gauge Theory with Higher Dimensional Terms

    NASA Astrophysics Data System (ADS)

    Mirza, Behrouz; Zarei, Moslem

    2010-08-01

    In this paper we apply the assumption of our recent work in noncommutative scalar models to the noncommutative U(1) gauge theories. This assumption is that the noncommutative effects start to be visible continuously from a scale ΛNC and that below this scale the theory is a commutative one. Based on this assumption and using background field method and loop calculations, an effective action is derived for noncommutative U(1) gauge theory. It will be shown that the corresponding low energy effective theory is asymptotically free and that under this condition the noncommutative quadratic IR divergences will not appear. The effective theory contains higher dimensional terms, which become more important at high energies. These terms predict an elastic photon-photon scattering due to the noncommutativity of space. The coefficients of these higher dimensional terms also satisfy a positivity constraint indicating that in this theory the related diseases of superluminal signal propagating and bad analytic properties of S-matrix do not exist. In the last section, we will apply our method to the noncommutative extra dimension theories.

  7. Cold-atom quantum simulator for SU(2) Yang-Mills lattice gauge theory.

    PubMed

    Zohar, Erez; Cirac, J Ignacio; Reznik, Benni

    2013-03-22

    Non-Abelian gauge theories play an important role in the standard model of particle physics, and unfold a partially unexplored world of exciting physical phenomena. In this Letter, we suggest a realization of a non-Abelian lattice gauge theory-SU(2) Yang-Mills in (1 + 1) dimensions, using ultracold atoms. Remarkably, and in contrast to previous proposals, in our model gauge invariance is a direct consequence of angular momentum conservation and thus is fundamental and robust. Our proposal may serve as well as a starting point for higher-dimensional realizations. PMID:25166817

  8. Gauge invariants and bosonization

    NASA Astrophysics Data System (ADS)

    Kijowski, J.; Rudolph, G.; Rudolph, M.

    1998-12-01

    We present some results, which are part of our program of analyzing gauge theories with fermions in terms of local gauge invariant fields. In a first part the classical Dirac-Maxwell system is discussed. Next we develop a procedure which leads to a reduction of the functional integral to an integral over (bosonic) gauge invariant fields. We apply this procedure to the case of QED and the Schwinger model. In a third part we go some steps towards an analysis of the considered models. We construct effective (quantum) field theories which can be used to calculate vacuum expectation values of physical quantities.

  9. Studying critical string emerging from non-Abelian vortex in four dimensions

    NASA Astrophysics Data System (ADS)

    Koroteev, P.; Shifman, M.; Yung, A.

    2016-08-01

    Recently a special vortex string was found [5] in a class of soliton vortices supported in four-dimensional Yang-Mills theories that under certain conditions can become infinitely thin and can be interpreted as a critical ten-dimensional string. The appropriate bulk Yang-Mills theory has the U (2) gauge group and the Fayet-Iliopoulos term. It supports semilocal non-Abelian vortices with the world-sheet theory for orientational and size moduli described by the weighted CP (2 , 2) model. The full target space is R4 ×Y6 where Y6 is a non-compact Calabi-Yau space. We study the above vortex string from the standpoint of string theory, focusing on the massless states in four dimensions. In the generic case all massless modes are non-normalizable, hence, no massless gravitons or vector fields are predicted in the physical spectrum. However, at the selfdual point (at strong coupling) weighted CP (2 , 2) admits deformation of the complex structure, resulting in a single massless hypermultiplet in the bulk. We interpret it as a composite "baryon."

  10. Exponentiation of eikonal cross sections in nonabelian gauge theories

    NASA Astrophysics Data System (ADS)

    Gatheral, J. G. M.

    1983-12-01

    A theorem is presented which generalises the well-known exponentiation property of eikonal cross sections in abelian gauge theories to the nonabelian case. Address after September 1, 1983: Bank of America, 25 Cannon Street, London EC4P 4HN, UK.

  11. Aspects of entanglement entropy for gauge theories

    NASA Astrophysics Data System (ADS)

    Soni, Ronak M.; Trivedi, Sandip P.

    2016-01-01

    A definition for the entanglement entropy in a gauge theory was given recently in arXiv:1501.02593. Working on a spatial lattice, it involves embedding the physical state in an extended Hilbert space obtained by taking the tensor product of the Hilbert space of states on each link of the lattice. This extended Hilbert space admits a tensor product decomposition by definition and allows a density matrix and entanglement entropy for the set of links of interest to be defined. Here, we continue the study of this extended Hilbert space definition with particular emphasis on the case of Non-Abelian gauge theories.

  12. Gauged WZW Models via Equivariant Cohomology

    NASA Astrophysics Data System (ADS)

    García-Compeán, Hugo; Paniagua, Pablo

    The problem of finding a systematic computation of the gauge-invariant extension of WZW term by using equivariant cohomology is addressed. Witten's analysis for the two-dimensional case is extended to higher dimensions, in particular to four dimensions. It is shown that Cartan's model is used to find the anomaly cancellation condition while Weil's model is more appropriated to express the gauge-invariant extension of the WZW term. In the process we point out that both models are also useful to emphasize some nice relations with the Abelian anomaly.

  13. Field monitoring of the ice load of an icebreaker propeller blade using fiber optic strain gauges

    NASA Astrophysics Data System (ADS)

    Morin, Andre; Caron, Serge; Van Neste, Richard; Edgecombe, Merv H.

    1996-05-01

    Navigation in polar waters presents a formidable challenge to ships' propulsion systems as large ice pieces impinging on their propeller blades sometimes result in stresses exceeding the yield strength of the blade material. Damage to propellers is costly and can also spell disaster if a ship becomes disabled in a remote area. To prevent such situations, design practice must be improved and theoretical models of propeller/ice interaction must be validated against experimental data. The blade shape requires that the load be monitored at many locations in order to obtain an accurate picture of the stress and load distribution. Fiber optic sensors are ideally suited for such an application, owing to their small size, stability over time, immunity to electro-magnetic interference, resistance to corrosion and chemical attack by sea water and hydraulic oil. We report the full-scale instrumentation of an icebreaker propeller blade with 54 Fabry-Perot based fiber optic strain gauges and shaft-mounted electronics. The instrumentation design and installation procedures are described. Additional data gathered from the propulsion control system and the ship's navigation equipment is presented and the data fusion performed with underwater video imagery of the instrumented blade is also discussed. An overview of the noise-free data obtained during the Antarctic trials is given. We finally discuss the sensors behavior and long term response, presenting their applicability to smart structures.

  14. New bridge-circuit-type detector to measure precise resistance change of strain gauge at low temperature and magnetic field

    NASA Astrophysics Data System (ADS)

    Ohashi, Masashi; Kishii, Nobuya; Tateno, Shota

    2016-04-01

    We report a new highly accurate and versatile bridge-circuit-type detector that has a simple structure and demonstrates a low degree of error for measurements of thermal expansion and magnetostriction by the strain gauge method. As an example, a commercial physical property measurement system (PPMS) is combined with a compact bridge-circuit box. Thermal expansion and magnetostriction are calculated from the resistance of the bridge and bridge voltage, measured by the operation of a standard PPMS resistivity option. The performance of the new detector is demonstrated by measuring the temperature and magnetic field dependences of the strain to obtain the thermal expansion coefficient and magnetostriction of the single crystals of rare-earth compounds RAl2 (R = Dy, Tb).

  15. Calibration and characterization of Bayard-Alpert gauges operating in high magnetic fields. Revision 1

    SciTech Connect

    Pickles, W.L.; Hunt, A.L.

    1986-01-01

    Information is presented on the calibration and characterization of Bayard-Alpert gages in operation within high magnetic fields. Standard Bayard-Alpert commercial gages were used, and were unshielded from the local TMX-U magnetic field and were housed in stainless-steel cyclinders. (JDB)

  16. Partial gauge fixing and equivariant cohomology

    NASA Astrophysics Data System (ADS)

    Ferrari, Frank

    2014-05-01

    Given a gauge theory with gauge group G, it is sometimes useful to find an equivalent formulation in terms of a nontrivial gauge subgroup H ⊂G. This amounts to fixing the gauge partially from G down to H. We study this problem systematically, both from the algebraic and from the path integral points of view. We find that the usual BRST cohomology must be replaced by an equivariant version and that the ghost Lagrangian must always include quartic ghost terms, even at tree level. Both the Cartan and Weil models for equivariant cohomology play a role and find natural interpretations within the physics framework. Applications include the construction of D-brane models of emergent space, the 't Hooft Abelian projection scenario in quantum chromodynamics and the formulation of the low-energy effective theories of grand unified models.

  17. Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories

    NASA Astrophysics Data System (ADS)

    Wiese, U.-J.

    2013-11-01

    Abelian and non-Abelian gauge theories are of central importance in many areas of physics. In condensed matter physics, Abelian U(1) lattice gauge theories arise in the description of certain quantum spin liquids. In quantum information theory, Kitaev's toric code is a Z(2) lattice gauge theory. In particle physics, Quantum Chromodynamics (QCD), the non-Abelian SU(3) gauge theory of the strong interactions between quarks and gluons, is non-perturbatively regularized on a lattice. Quantum link models extend the concept of lattice gauge theories beyond the Wilson formulation, and are well suited for both digital and analog quantum simulation using ultracold atomic gases in optical lattices. Since quantum simulators do not suffer from the notorious sign problem, they open the door to studies of the real-time evolution of strongly coupled quantum systems, which are impossible with classical simulation methods. A plethora of interesting lattice gauge theories suggests itself for quantum simulation, which should allow us to address very challenging problems, ranging from confinement and deconfinement, or chiral symmetry breaking and its restoration at finite baryon density, to color superconductivity and the real-time evolution of heavy-ion collisions, first in simpler model gauge theories and ultimately in QCD.

  18. Non-Abelian vortices on a cylinder: Duality between vortices and walls

    SciTech Connect

    Eto, Minoru; Fujimori, Toshiaki; Isozumi, Youichi; Nitta, Muneto; Ohashi, Keisuke; Sakai, Norisuke; Ohta, Kazutoshi

    2006-04-15

    We investigate vortices on a cylinder in supersymmetric non-Abelian gauge theory with hypermultiplets in the fundamental representation. We identify moduli space of periodic vortices and find that a pair of wall-like objects appears as the vortex moduli is varied. Usual domain walls also can be obtained from the single vortex on the cylinder by introducing a twisted boundary condition. We can understand these phenomena as a T duality among D-brane configurations in type II superstring theories. Using this T-duality picture, we find a one-to-one correspondence between the moduli space of non-Abelian vortices and that of kinky D-brane configurations for domain walls.

  19. Topological Proximity Effect: A Gauge Influence from Distant Fields on Planar Quantum-Coherent Systems

    NASA Astrophysics Data System (ADS)

    Moulopoulos, K.

    2015-06-01

    A quantum system that lies nearby a magnetic or time-varying electric field region, and that is under periodic boundary conditions parallel to the interface, is shown to exhibit a "hidden" Aharonov-Bohm effect (magnetic or electric), caused by fluxes that are not enclosed by, but are merely neighboring to our system - its origin being the absence of magnetic monopoles in 3D space (with corresponding spacetime generalizations). Novel possibilities then arise, where a field-free system can be dramatically affected by manipulating fields in an adjacent or even distant land, provided that these nearby fluxes are not quantized (i.e. they are fractional or irrational parts of the flux quantum). Topological effects (such as Quantum Hall types of behaviors) can therefore be induced from outside our system (that is always field-free and can even reside in simply-connected space). Potential novel applications are outlined, and exotic consequences in solid state physics are pointed out (i.e. the possibility of field-free quantum periodic systems that violate Bloch's theorem), while formal analogies with certain high energy physics phenomena and with some rather under-explored areas in mechanics and thermodynamics are noted.

  20. Spin connection as Lorentz gauge field in Fairchild’s action

    NASA Astrophysics Data System (ADS)

    Cianfrani, Francesco; Montani, Giovanni; Scopelliti, Vincenzo

    2016-06-01

    We propose a modified gravitational action containing besides the Einstein-Cartan term some quadratic contributions resembling the Yang-Mills Lagrangian for the Lorentz spin connections. We outline how a propagating torsion arises and we solve explicitly the linearized equations of motion on a Minkowski background. We identify among torsion components six degrees of freedom: one is carried by a pseudo-scalar particle, five by a tachyon field. By adding spinor fields and neglecting backreaction on the geometry, we point out how only the pseudo-scalar particle couples directly with fermions, but the resulting coupling constant is suppressed by the ratio between fermion and Planck masses. Including backreaction, we demonstrate how the tachyon field provides causality violation in the matter sector, via an interaction mediated by gravitational waves.

  1. Negative refraction of ultra-cold atoms in optical lattices with nonuniform artificial gauge fields

    NASA Astrophysics Data System (ADS)

    Zhang, Ai-Xia; Xue, Ju-Kui

    2016-07-01

    We theoretically study the reflection and refraction of ultra-cold atoms in optical lattices exposed to a nonuniform artificial magnetic field. The introduction of the nonuniform artificial magnetic field to the optical lattice for suitable designer magnetic potential barrier can lead to a series of intriguing reflection and refraction phenomena of atoms, including reflection, positive refraction, negative refraction and atomic matter wave splitting. Both the occurrence and the distribution of these reflection and refraction scenarios can be coherently controlled by the nonuniform artificial magnetic field. In particular, the regions close to the boundary of reflection demonstrate two more interesting propagation modes, i.e., a reflected branch of atoms comprising a positive or negative refracted branch of atoms with almost same atom population will be excited simultaneously at the magnetic potential barrier. The results can be a guide for the coherent control of the matter waves in optical lattices and the design of new atom optics devices.

  2. Thermalization of color gauge fields in high energy heavy ion collisions

    SciTech Connect

    Iwazaki, Aiichi

    2008-03-15

    We discuss the quantum mechanical decay of the color magnetic field generated initially during high-energy heavy-ion collisions. The decay is caused by Nielsen-Olesen unstable modes and is accomplished possibly in a period <1 fm/c. We show that the decay products (i.e., incoherent gluons) may be thermalized in a sufficiently short period (<1 fm/c). The precise determination of the period is made by calculating the two-point function of the color magnetic field in a color glass condensate model.

  3. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer.

    PubMed

    Martinez, Esteban A; Muschik, Christine A; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-23

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman's idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments-the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories. PMID:27337339

  4. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

    NASA Astrophysics Data System (ADS)

    Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-01

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron–positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle–antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  5. Non-Abelian Braiding of Light

    NASA Astrophysics Data System (ADS)

    Iadecola, Thomas; Schuster, Thomas; Chamon, Claudio

    2016-08-01

    Many topological phenomena first proposed and observed in the context of electrons in solids have recently found counterparts in photonic and acoustic systems. In this work, we demonstrate that non-Abelian Berry phases can arise when coherent states of light are injected into "topological guided modes" in specially fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can be braided, leading to the accumulation of non-Abelian phases, which depend on the order in which the guided beams are wound around one another. Notably, these effects survive the limit of large photon occupation, and can thus also be understood as wave phenomena arising directly from Maxwell's equations, without resorting to the quantization of light. We propose an optical interference experiment as a direct probe of this non-Abelian braiding of light.

  6. Non-Abelian Braiding of Light.

    PubMed

    Iadecola, Thomas; Schuster, Thomas; Chamon, Claudio

    2016-08-12

    Many topological phenomena first proposed and observed in the context of electrons in solids have recently found counterparts in photonic and acoustic systems. In this work, we demonstrate that non-Abelian Berry phases can arise when coherent states of light are injected into "topological guided modes" in specially fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can be braided, leading to the accumulation of non-Abelian phases, which depend on the order in which the guided beams are wound around one another. Notably, these effects survive the limit of large photon occupation, and can thus also be understood as wave phenomena arising directly from Maxwell's equations, without resorting to the quantization of light. We propose an optical interference experiment as a direct probe of this non-Abelian braiding of light. PMID:27563965

  7. Abelian tensor hierarchy in 4D, N = 1 superspace

    NASA Astrophysics Data System (ADS)

    Becker, Katrin; Becker, Melanie; Linch, William D.; Robbins, Daniel

    2016-03-01

    With the goal of constructing the supersymmetric action for all fields, massless and massive, obtained by Kaluza-Klein compactification from type II theory or M-theory in a closed form, we embed the (Abelian) tensor hierarchy of p-forms in four-dimensional, N =1superspaceandconstructitsChern-Simons-likeinvariants. Whenspecializedtothe case in which the tensors arise from a higher-dimensional theory, the invariants may be interpreted as higher-dimensional Chern-Simons forms reduced to four dimensions. As an application of the formalism, we construct the eleven-dimensional Chern-Simons form in terms of four-dimensional, N = 1 superfields.

  8. Quantum fields in toroidal topology

    SciTech Connect

    Khanna, F.C.; Malbouisson, A.P.C.; Santana, A.E.

    2011-10-15

    The standard representation of c*-algebra is used to describe fields in compactified space-time dimensions characterized by topologies of the type {Gamma}{sub D}{sup d}=(S{sup 1}){sup d}xM{sup D-d}. The modular operator is generalized to introduce representations of isometry groups. The Poincare symmetry is analyzed and then we construct the modular representation by using linear transformations in the field modes, similar to the Bogoliubov transformation. This provides a mechanism for compactification of the Minkowski space-time, which follows as a generalization of the Fourier integral representation of the propagator at finite temperature. An important result is that the 2x2 representation of the real-time formalism is not needed. The end result on calculating observables is described as a condensate in the ground state. We initially analyze the free Klein-Gordon and Dirac fields, and then formulate non-abelian gauge theories in {Gamma}{sub D}{sup d}. Using the S-matrix, the decay of particles is calculated in order to show the effect of the compactification. - Highlights: > C*-algebra is used to describe fields in compactified space-time dimensions. > The space-time is characterized by toroidal topologies. > Representations of the Poincare group are studied by using the modular operator. > We derive non-abelian gauge theories in compactified regions of space-time. > We show the compactification effect in the decay of particles using the S-matrix.

  9. Spontaneous magnetization of a vacuum in the hot Universe and intergalactic magnetic fields

    NASA Astrophysics Data System (ADS)

    Demchik, V.; Skalozub, V.

    2015-01-01

    We review the spontaneous magnetization of the vacuum of non-Abelian gauge fields at high temperature. The standard model of particles is investigated as a particular example. By using both analytic methods of quantum field theory and gauge field theory on a lattice, we determine the Abelian (chromo)magnetic fields in the restored phase of the model at high temperatures T ≥ T ew . The fields are stable and temperature dependent, B = B( T). We investigate the mechanisms of the field stabilization in detail. The screening parameters for electric and magnetic fields—the Debye, m D ( B, T), and magnetic, m magn ( B, T), masses—are calculated. It is shown that, in the field presence, the former one is smaller than at zero field. The magnetic mass of the (chromo)magnetic fields is determined to be zero, as for usual U(1) magnetic field. We also show that the vacuum magnetization stops at temperatures below the electroweak phase transition temperature, T ≤ T ew , when a scalar condensate creates. These properties make reasonable a possibility that the intergalactic magnetic fields observed recently were spontaneously generated in the hot Universe at the reheating epoch due to vacuum polarization of non-Abelian gauge fields. We present a procedure for estimating the field strengths B( T) at different temperatures. In particular, the value of B( T ew ) ˜ 1014 G, at T ew is estimated with taking into consideration the observed intergalactic magnetic field B 0 ˜ 10-15 G. The magnetic field scale is also estimated. Some model dependent peculiarities of the phenomena studied are briefly discussed.

  10. Order-by-disorder of interacting bosons on the dice lattice under a synthetic gauge field

    NASA Astrophysics Data System (ADS)

    Payrits, Matjaz; Barnett, Ryan

    2014-03-01

    We consider a gas of interacting bosons in the two-dimensional dice lattice in the presence of a half-elementary magnetic flux threading each plaquette. The single particle spectrum of the system consists of three doubly-degenerate completely flat bands, which indicates a large ground state degeneracy. It is shown how this degeneracy is partially lifted in the superfluid regime at the mean-field level. Furthermore, it is shown how quantum and thermal fluctuations conclusively remove the remaining accidental degeneracy between the mean field states, thus selecting a unique state up to overall symmetries. This can be elegantly described by means of the distribution of condensate vortices in the Kagomé vortex lattice, which is dual to the dice lattice. We gratefully acknowledge support from the EPSRC and Imperial College London.

  11. Single field inflation in supergravity with a U(1) gauge symmetry

    SciTech Connect

    Heurtier, L.; Khalil, S.; Moursy, A.

    2015-10-19

    A single field inflation based on a supergravity model with a shift symmetry and U(1) extension of the MSSM is analyzed. We show that one of the real components of the two U(1) charged scalar fields plays the role of inflaton with an effective scalar potential similar to the “new chaotic inflation” scenario. Both non-anomalous and anomalous (with Fayet-Iliopoulos term) U(1) are studied. We show that the non-anomalous U(1) scenario is consistent with data of the cosmic microwave background and recent astrophysical measurements. A possible kinetic mixing between U(1) and U(1){sub B−L} is considered in order to allow for natural decay channels of the inflaton, leading to a reheating epoch. Upper limits on the reheating temperature thus turn out to favour an intermediate (∼O(10{sup 13}) GeV) scale B−L symmetry breaking.

  12. Bosons with Artificial Gauge Fields and Mott Physics on the Honeycomb Lattice

    NASA Astrophysics Data System (ADS)

    Vidanovic, Ivana; Petrescu, Alexandru; Le Hur, Karyn; Hofstetter, Walter

    2014-03-01

    We study bosons in the tight-binding model on the honeycomb lattice introduced by Haldane. We analyze the ground state topology and quasiparticle properties in the Mott phase by applying bosonic dynamical mean field theory, strong-coupling perturbation theory, exact diagonalization and numerical evaluations of sample Hall conductivity. The phase diagram also contains two different superfluid phases. The quasiparticle dynamics, number fluctuations, and local currents are measurable in cold atom experiments.

  13. Spinor description of D = 5 massless low-spin gauge fields

    NASA Astrophysics Data System (ADS)

    Uvarov, D. V.

    2016-07-01

    Spinor description for the curvatures of D = 5 Yang–Mills, Rarita–Schwinger and gravitational fields is elaborated. Restrictions imposed on the curvature spinors by the dynamical equations and Bianchi identities are analyzed. In the absence of sources symmetric curvature spinors with 2s indices obey first-order equations that in the linearized limit reduce to Dirac-type equations for massless free fields. These equations allow for a higher-spin generalization similarly to 4d case. Their solution in the form of the integral over Lorentz-harmonic variables parametrizing coset manifold {SO}(1,4)/({SO}(1,1)× {ISO}(3)) isomorphic to the three-sphere is considered. Superparticle model that contains such Lorentz harmonics as dynamical variables, as well as harmonics parametrizing the two-sphere {SU}(2)/U(1) is proposed. The states in its spectrum are given by the functions on S 3 that upon integrating over the Lorentz harmonics reproduce on-shell symmetric curvature spinors for various supermultiplets of D = 5 space–time supersymmetry.

  14. Artificial gauge fields and topology with ultracold atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Aidesburger, Monika

    2016-05-01

    Many intriguing condensed matter phenomena such as the integer and fractional quantum Hall effect arise due to the non-trivial topological properties of the underlying system. Synthetic materials that consist of ultracold neutral atoms confined in crystal-like structures using laser beams have the potential to simulate and address the complex questions that arise in this context. In this talk I report on the experimental realization of extremely strong artificial magnetic fields based on laser-assisted tunneling which give rise to topological energy bands. Their properties are characterized by topological invariants - the Chern numbers - which are at the origin of the integer quantum Hall effect. In particular we were able to realize the Hofstadter model for an effective flux 1/4 and determined the Chern number of the lowest energy band through a direct measurement of bulk topological currents. These experimental results pave the way for future studies of interacting topological systems with ultracold atoms in optical lattices.

  15. Quantum particle in a parabolic lattice in the presence of a gauge field

    NASA Astrophysics Data System (ADS)

    Kolovsky, Andrey R.; Grusdt, Fabian; Fleischhauer, Michael

    2014-03-01

    We analyze the eigenstates of a two-dimensional lattice with additional harmonic confinement in the presence of an artificial magnetic field. While the softness of the confinement makes a distinction between bulk and edge states difficult, the interplay of harmonic potential and lattice leads to a different classification of states in three energy regions: In the low-energy regime, where lattice effects are small, all states are transporting topologically nontrivial states. For large energies above a certain critical value, the periodic lattice causes localization of all states through a mechanism similar to Wannier-Stark localization. In the intermediate energy regime transporting, topologically nontrivial states coexist with topologically trivial countertransporting chaotic states. The character of the eigenstates, in particular their transport properties, are studied numerically and are explained using a semiclassical analysis.

  16. Yangians in Integrable Field Theories, Spin Chains and Gauge-String Dualities

    NASA Astrophysics Data System (ADS)

    Spill, Fabian

    In the following paper, which is based on the author's PhD thesis submitted to Imperial College London, we explore the applicability of Yangian symmetry to various integrable models, in particular, in relation with S-matrices. One of the main themes in this work is that, after a careful study of the mathematics of the symmetry algebras one finds that in an integrable model, one can directly reconstruct S-matrices just from the algebra. It has been known for a long time that S-matrices in integrable models are fixed by symmetry. However, Lie algebra symmetry, the Yang-Baxter equation, crossing and unitarity, which constrain the S-matrix in integrable models, are often taken to be separate, independent properties of the S-matrix. Here, we construct scattering matrices purely from the Yangian, showing that the Yangian is the right algebraic object to unify all required symmetries of many integrable models. In particular, we reconstruct the S-matrix of the principal chiral field, and, up to a CDD factor, of other integrable field theories with 𝔰𝔲(n) symmetry. Furthermore, we study the AdS/CFT correspondence, which is also believed to be integrable in the planar limit. We reconstruct the S-matrices at weak and at strong coupling from the Yangian or its classical limit. We give a pedagogical introduction into the subject, presenting a unified perspective of Yangians and their applications in physics. This paper should hence be accessible to mathematicians who would like to explore the application of algebraic objects to physics as well as to physicists interested in a deeper understanding of the mathematical origin of physical quantities.

  17. From Classical Fields to the Two-Fluid Model of Superfluidity:. Emergent Kinetics and Local Gauge Transformations

    NASA Astrophysics Data System (ADS)

    Salman, Hayder; Berloff, Natalia G.; Roberts, Paul H.

    2013-02-01

    The first successful macroscopic theory for the motion of superfluid helium was that of Lev Landau (1941) in which the fluid is modelled phenomenologically as an interpenetrating mixture of a superfluid and a normal fluid. It was later shown that Landau's two-fluid model can be derived from a one-fluid model within the classical-field approximation. Assuming a separation of scales exists between the slowly varying, large-scale, background (condensate) field, and the short rapidly evolving excitations, a full description of the kinetics between the condensate and the thermal cloud can be obtained. The kinetics describes three-wave and fourwave interactions that resemble the C12 and C22 terms, respectively, in the collision integrals of the ZNG theory (Chapter 5). The scale-separation assumption precludes analysis of the healing layer and thus does not include the dynamics of quantised vortices. Whilst the analysis required the use of small parameters arising from the scale-separation assumption and the assumption of a weakly depleted condensate, we expect the results to hold over a wider range of parameters. This is motivated by the validity of Landau's two-fluid model which can be derived from a one-fluid model using nothing more than the principle of Galilean invariance. Indeed, we argue that similar arguments can be used to recover a two-fluid model directly from a classical field simply by invoking a local gauge transformation. This derivation does not require any small parameters to be introduced, suggesting that the results that lead to the kinetic equations may turn out to be more general.

  18. Natural Poincare gauge model

    SciTech Connect

    Aldrovandi, R.; Pereira, J.G.

    1986-05-15

    Because it acts on space-time and is not semisimple, the Poincare group cannot lead to a gauge theory of the usual kind. A candidate model is discussed which keeps itself as close as possible to the typical gauge scheme. Its field equations are the Yang-Mills equations for the Poincare group. It is shown that there exists no Lagrangian for these equations.

  19. Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench.

    PubMed

    Banerjee, D; Dalmonte, M; Müller, M; Rico, E; Stebler, P; Wiese, U-J; Zoller, P

    2012-10-26

    Using a Fermi-Bose mixture of ultracold atoms in an optical lattice, we construct a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum links which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows us to investigate string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods. PMID:23215198

  20. Assessing regression kriging for its ability to represent precipitation fields over complex terrain using different gauging network densities.

    NASA Astrophysics Data System (ADS)

    Tsanis, Ioannis; Grillakis, Manolis; Varouchakis, Emmanouil; Koutroulis, Aristeidis; Seiradakis, Kostantinos

    2015-04-01

    Distributed hydrological modeling require spatially continuous precipitation data of high quality. However, precipitation is usually measured locally at a limited number of stations. Especially in areas of complex terrain, where the topography plays key role in the precipitation process, the gauging network is usually sparse or malfunction. The need of reliable precipitation data has led to the development of various spatial interpolation techniques specially designed for precipitation. Methodologies that can combine precipitation data to secondary information have been developed improving the skill of the interpolation. Regression kriging is an interpolation methodology which uses variable point values by combining a regression approach with a geostatistical approach (i.e. measuring spatial autocorrelation by kriging). The methodology is simple to use and has been already implemented in R and ArcGIS environments, thus it has a wider board of potential users. The methodology is assessed for its ability to represent precipitation fields in various precipitation station densities. Moreover, the results of Regression Kriging interpolation are compared to other interpolation techniques such as IDW, Kriging, Natural neighbor and spline, implemented in ArcGIS toolbox.

  1. Holomorphic field realization of SH c and quantum geometry of quiver gauge theories

    NASA Astrophysics Data System (ADS)

    Bourgine, Jean-Emile; Matsuo, Yutaka; Zhang, Hong

    2016-04-01

    In the context of 4D/2D dualities, SH c algebra, introduced by Schiffmann and Vasserot, provides a systematic method to analyse the instanton partition functions of N=2 supersymmetricgaugetheories. Inthispaper,werewritetheSH c algebrainterms of three holomorphic fields D 0( z), D ±1( z) with which the algebra and its representations are simplified. The instanton partition functions for arbitrary N=2 super Yang-Mills theories with A n and A n (1) type quiver diagrams are compactly expressed as a product of four building blocks, Gaiotto state, dilatation, flavor vertex operator and intertwiner which are written in terms of SH c and the orthogonal basis introduced by Alba, Fateev, Litvinov and Tarnopolskiy. These building blocks are characterized by new conditions which generalize the known ones on the Gaiotto state and the Carlsson-Okounkov vertex. Consistency conditions of the inner product give algebraic relations for the chiral ring generating functions defined by Nekrasov, Pestun and Shatashvili. In particular we show the polynomiality of the qq-characters which have been introduced as a deformation of the Yangian characters. These relations define a second quantization of the Seiberg-Witten geometry, and, accordingly, reduce to a Baxter TQ-equation in the Nekrasov-Shatashvili limit of the Omega-background.

  2. Towards a realization of the condensed-matter-gravity correspondence in string theory via consistent Abelian truncation of the Aharony-Bergman-Jafferis-Maldacena model.

    PubMed

    Mohammed, Asadig; Murugan, Jeff; Nastase, Horatiu

    2012-11-01

    We present an embedding of the three-dimensional relativistic Landau-Ginzburg model for condensed matter systems in an N = 6, U(N) × U(N) Chern-Simons-matter theory [the Aharony-Bergman-Jafferis-Maldacena model] by consistently truncating the latter to an Abelian effective field theory encoding the collective dynamics of O(N) of the O(N(2)) modes. In fact, depending on the vacuum expectation value on one of the Aharony-Bergman-Jafferis-Maldacena scalars, a mass deformation parameter μ and the Chern-Simons level number k, our Abelianization prescription allows us to interpolate between the Abelian Higgs model with its usual multivortex solutions and a Ø(4) theory. We sketch a simple condensed matter model that reproduces all the salient features of the Abelianization. In this context, the Abelianization can be interpreted as giving a dimensional reduction from four dimensions. PMID:23215268

  3. Taub-NUT dynamics with a magnetic field

    NASA Astrophysics Data System (ADS)

    Jante, Rogelio; Schroers, Bernd J.

    2016-06-01

    We study classical and quantum dynamics on the Euclidean Taub-NUT geometry coupled to an abelian gauge field with self-dual curvature and show that, even though Taub-NUT has neither bounded orbits nor quantum bound states, the magnetic binding via the gauge field produces both. The conserved Runge-Lenz vector of Taub-NUT dynamics survives, in a modified form, in the gauged model and allows for an essentially algebraic computation of classical trajectories and energies of quantum bound states. We also compute scattering cross sections and find a surprising electric-magnetic duality. Finally, we exhibit the dynamical symmetry behind the conserved Runge-Lenz and angular momentum vectors in terms of a twistorial formulation of phase space.

  4. Collective States of D(D3) Non-Abelian Anyons

    NASA Astrophysics Data System (ADS)

    Finch, P. E.; Frahm, H.

    2013-11-01

    We study an exactly solvable model of non-Abelian anyons symmetric under the quantum double of the dihedral group D3 on a one-dimensional lattice. Bethe ansatz methods are employed to compute the ground states of this model in different regions of the parameter space. The finite size spectrum is studied and the corresponding low energy field theories are identified.

  5. Gauging without initial symmetry

    NASA Astrophysics Data System (ADS)

    Kotov, Alexei; Strobl, Thomas

    2016-01-01

    The gauge principle is at the heart of a good part of fundamental physics: Starting with a group G of so-called rigid symmetries of a functional defined over space-time Σ, the original functional is extended appropriately by additional Lie(G) -valued 1-form gauge fields so as to lift the symmetry to Maps(Σ , G) . Physically relevant quantities are then to be obtained as the quotient of the solutions to the Euler-Lagrange equations by these gauge symmetries. In this article we show that one can construct a gauge theory for a standard sigma model in arbitrary space-time dimensions where the target metric is not invariant with respect to any rigid symmetry group, but satisfies a much weaker condition: It is sufficient to find a collection of vector fields va on the target M satisfying the extended Killing equationv a(i ; j) = 0 for some connection acting on the index a. For regular foliations this is equivalent to requiring the conormal bundle to the leaves with its induced metric to be invariant under leaf-preserving diffeomorphisms of M, which in turn generalizes Riemannian submersions to which the notion reduces for smooth leaf spaces M / ∼. The resulting gauge theory has the usual quotient effect with respect to the original ungauged theory: in this way, much more general orbits can be factored out than usually considered. In some cases these are orbits that do not correspond to an initial symmetry, but still can be generated by a finite-dimensional Lie group G. Then the presented gauging procedure leads to an ordinary gauge theory with Lie algebra valued 1-form gauge fields, but showing an unconventional transformation law. In general, however, one finds that the notion of an ordinary structural Lie group is too restrictive and should be replaced by the much more general notion of a structural Lie groupoid.

  6. Strong Coupling Gauge Theories in LHC ERA

    NASA Astrophysics Data System (ADS)

    Fukaya, H.; Harada, M.; Tanabashi, M.; Yamawaki, K.

    2011-01-01

    AdS/QCD, light-front holography, and the nonperturbative running coupling / Stanley J. Brodsky, Guy de Teramond and Alexandre Deur -- New results on non-abelian vortices - Further insights into monopole, vortex and confinement / K. Konishi -- Study on exotic hadrons at B-factories / Toru Iijima -- Cold compressed baryonic matter with hidden local symmetry and holography / Mannque Rho -- Aspects of baryons in holographic QCD / T. Sakai -- Nuclear force from string theory / K. Hashimoto -- Integrating out holographic QCD back to hidden local symmetry / Masayasu Harada, Shinya Matsuzaki and Koichi Yamawaki -- Holographic heavy quarks and the giant Polyakov loop / Gianluca Grignani, Joanna Karczmarek and Gordon W. Semenoff -- Effect of vector-axial-vector mixing to dilepton spectrum in hot and/or dense matter / Masayasu Harada and Chihiro Sasaki -- Infrared behavior of ghost and gluon propagators compatible with color confinement in Yang-Mills theory with the Gribov horizon / Kei-Ichi Kondo -- Chiral symmetry breaking on the lattice / Hidenori Fukaya [for JLQCD and TWQCD collaborations] -- Gauge-Higgs unification: Stable Higgs bosons as cold dark matter / Yutaka Hosotani -- The limits of custodial symmetry / R. Sekhar Chivukula ... [et al.] -- Higgs searches at the tevatron / Kazuhiro Yamamoto [for the CDF and D[symbol] collaborations] -- The top triangle moose / R. S. Chivukula ... [et al.] -- Conformal phase transition in QCD like theories and beyond / V. A. Miransky -- Gauge-Higgs unification at LHC / Nobuhito Maru and Nobuchika Okada -- W[symbol]W[symbol] scattering in Higgsless models: Identifying better effective theories / Alexander S. Belyaev ... [et al.] -- Holographic estimate of Muon g - 2 / Deog Ki Hong -- Gauge-Higgs dark matter / T. Yamashita -- Topological and curvature effects in a multi-fermion interaction model / T. Inagaki and M. Hayashi -- A model of soft mass generation / J. Hosek -- TeV physics and conformality / Thomas Appelquist -- Conformal

  7. Induced gravity I: real scalar field

    NASA Astrophysics Data System (ADS)

    Einhorn, Martin B.; Jones, D. R. Timothy

    2016-01-01

    We show that classically scale invariant gravity coupled to a single scalar field can undergo dimensional transmutation and generate an effective Einstein-Hilbert action for gravity, coupled to a massive dilaton. The same theory has an ultraviolet fixed point for coupling constant ratios such that all couplings are asymptotically free. However the catchment basin of this fixed point does not include regions of coupling constant parameter space compatible with locally stable dimensional transmutation. In a companion paper, we will explore whether this more desirable outcome does obtain in more complicated theories with non-Abelian gauge interactions.

  8. Lectures from the European RTN Winter School on Strings, Supergravity and Gauge Fields, CERN, 15 19 January 2007

    NASA Astrophysics Data System (ADS)

    Derendinger, J.-P.; Scrucca, C. A.; Uranga, A.

    2007-11-01

    This special issue is devoted to the proceedings of the conference 'Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, from the 15 to the 19 of January 2007. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools, which represents what is by now a well established tradition. The previous conferences have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006. The next will again take place at CERN, in January 2008. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, the notes of which are published in the present proceedings, and seven working group discussion sessions, focused on specific topics of the network research program. It was attended by approximatively 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. String theory is a compelling candidate for a theory of all interactions. A basic challenge in this field is therefore to explore the connection of string theory models and the laws of physics in different realms, like high-energy particle physics, early cosmology, or physics of strongly coupled gauge theories. Concerning the exploration of string theory compactifications leading to realistic models of particle physics, one of the main obstacles in this direction is the proper understanding of supersymmetry breaking. The lecture notes by Nathan Seiberg review the realization of spontaneous breaking of supersymmetry in field theory, including recent developments via the use of meta-stable long-lived vacua. It is

  9. Abelian and non-Abelian states in ν = 2 / 3 bilayer fractional quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Peterson, Michael; Wu, Yang-Le; Cheng, Meng; Barkeshli, Maissam; Wang, Zhenghan

    There are several possible theoretically allowed non-Abelian fractional quantum Hall (FQH) states that could potentially be realized in one- and two-component FQH systems at total filling fraction ν = n + 2 / 3 , for integer n. Some of these states even possess quasiparticles with non-Abelian statistics that are powerful enough for universal topological quantum computation, and are thus of particular interest. Here we initiate a systematic numerical study, using both exact diagonalization and variational Monte Carlo, to investigate the phase diagram of FQH systems at total filling fraction ν = n + 2 / 3 , including in particular the possibility of the non-Abelian Z4 parafermion state. In ν = 2 / 3 bilayers we determine the phase diagram as a function of interlayer tunneling and repulsion, finding only three competing Abelian states, without the Z4 state. On the other hand, in single-component systems at ν = 8 / 3 , we find that the Z4 parafermion state has significantly higher overlap with the exact ground state than the Laughlin state, together with a larger gap, suggesting that the experimentally observed ν = 8 / 3 state may be non-Abelian. Our results from the two complementary numerical techniques agree well with each other qualitatively. We acknowledge the Office of Research and Sponsored Programs at California State University Long Beach and Microsoft Station Q.

  10. Application of covariant analytic mechanics to gravity with Dirac field

    NASA Astrophysics Data System (ADS)

    Nakajima, Satoshi

    2016-03-01

    We applied the covariant analytic mechanics with the differential forms to the Dirac field and the gravity with the Dirac field. The covariant analytic mechanics treats space and time on an equal footing regarding the differential forms as the basis variables. A significant feature of the covariant analytic mechanics is that the canonical equations, in addition to the Euler-Lagrange equation, are not only manifestly general coordinate covariant but also gauge covariant. Combining our study and the previous works (the scalar field, the abelian and non-abelian gauge fields and the gravity without the Dirac field), the applicability of the covariant analytic mechanics was checked for all fundamental fields. We studied both the first and second order formalism of the gravitational field coupled with matters including the Dirac field. It was suggested that gravitation theories including higher order curvatures cannot be treated by the second order formalism in the covariant analytic mechanics. In addition, we showed that the covariant analytic mechanics is equivalent to corrected De Donder-Weyl theory.

  11. AkF ¯ chiral gauge theories

    NASA Astrophysics Data System (ADS)

    Shi, Yan-Liang; Shrock, Robert

    2015-11-01

    We study asymptotically free chiral gauge theories with an SU (N ) gauge group and chiral fermions transforming according to the antisymmetric rank-k tensor representation, Ak≡[k ]N , and the requisite number, nF ¯, of copies of fermions in the conjugate fundamental representation, F ¯ ≡[1] ¯ N , to render the theories anomaly-free. We denote these as AkF ¯ theories. We take N ≥2 k +1 so that nF ¯≥1 . The A2F ¯ theories form an infinite family with N ≥5 , but we show that the A3F ¯ and A4F ¯ theories are only asymptotically free for N in the respective ranges 7 ≤N ≤17 and 9 ≤N ≤11 , and that there are no asymptotically free AkF ¯ theories with k ≥5 . We investigate the types of ultraviolet to infrared evolution for these AkF ¯ theories and find that, depending on k and N , they may lead to a non-Abelian Coulomb phase, or may involve confinement with massless gauge-singlet composite fermions, bilinear fermion condensation with dynamical gauge and global symmetry breaking, or formation of multifermion condensates that preserve the gauge symmetry. We also show that there are no asymptotically free, anomaly-free SU (N ) SkF ¯ chiral gauge theories with k ≥3 , where Sk denotes the rank-k symmetric representation.

  12. Vortex operator and BKT transition in Abelian duality

    NASA Astrophysics Data System (ADS)

    Chern, Tong

    2016-04-01

    We give a new simple derivation for the sine-Gordon description of Berezinskii-Kosterlitz-Thouless (BKT) phase transition. Our derivation is simpler than traditional derivations. Besides, our derivation is a continuous field theoretic derivation by using path integration, different from the traditional derivations which are based on lattice theory or based on Coulomb gas model. Our new derivation relies on Abelian duality of two dimensional quantum field theory. By utilizing this duality in path integration, we find that the vortex configurations are naturally mapped to exponential operators in dual description. Since these operators are the vortex operators that can create vortices, the sine-Gordon description then naturally follows. Our method may be useful for the investigation to the BKT physics of superconductors.

  13. Anomaly nucleation constrains SU(2) gauge theories.

    PubMed

    Halverson, James

    2013-12-27

    We argue for the existence of additional constraints on SU(2) gauge theories in four dimensions when realized in ultraviolet completions admitting an analog of D-brane nucleation. In type II string compactifications these constraints are necessary and sufficient for the absence of cubic non-Abelian anomalies in certain nucleated SU(N>2) theories. It is argued that they appear quite broadly in the string landscape. Implications for particle physics are discussed; most realizations of the standard model in this context are inconsistent, unless extra electroweak fermions are added. PMID:24483790

  14. Aging gauge

    DOEpatents

    Betts, Robert E.; Crawford, John F.

    1989-04-04

    An aging gauge comprising a container having a fixed or a variable sized t opening with a cap which can be opened to control the sublimation rate of a thermally sublimational material contained within the container. In use, the aging gauge is stored with an item to determine total heat the item is subjected to and also the maximum temperature to which the item has been exposed. The aging gauge container contains a thermally sublimational material such as naphthalene or similar material which has a low sublimation rate over the temperature range from about 70.degree. F. to about 160.degree. F. The aging products determined by analyses of a like item aged along with the aging gauge for which the sublimation amount is determined is employed to establish a calibration curve for future aging evaluation. The aging gauge is provided with a means for determining the maximum temperature exposure (i.e., a thermally indicating material which gives an irreversible color change, Thermocolor pigment). Because of the relationship of doubling reaction rates for increases of 10.degree. C., equivalency of item used in accelerated aging evaluation can be obtained by referring to a calibration curve depicting storage temperature on the abscissa scale and multiplier on the ordinate scale.

  15. Aging gauge

    DOEpatents

    Betts, Robert E.; Crawford, John F.

    1989-01-01

    An aging gauge comprising a container having a fixed or a variable sized t opening with a cap which can be opened to control the sublimation rate of a thermally sublimational material contained within the container. In use, the aging gauge is stored with an item to determine total heat the item is subjected to and also the maximum temperature to which the item has been exposed. The aging gauge container contains a thermally sublimational material such as naphthalene or similar material which has a low sublimation rate over the temperature range from about 70.degree. F. to about 160.degree. F. The aging products determined by analyses of a like item aged along with the aging gauge for which the sublimation amount is determined is employed to establish a calibration curve for future aging evaluation. The aging gauge is provided with a means for determining the maximum temperature exposure (i.e., a thermally indicating material which gives an irreversible color change, Thermocolor pigment). Because of the relationship of doubling reaction rates for increases of 10.degree. C., equivalency of item used in accelerated aging evaluation can be obtained by referring to a calibration curve depicting storage temperature on the abscissa scale and multiplier on the ordinate scale.

  16. Gauged Q-balls

    NASA Technical Reports Server (NTRS)

    Lee, Kimyeong; Stein-Schabes, Jaime A.; Watkins, Richard; Widrow, Lawrence M.

    1988-01-01

    Classical non-topological soliton configurations are considered within the theory of a complex scalar field with a gauged U symmetry. Their existence and stability against dispersion are demonstrated and some of their properties are investigated analytically and numerically. The soliton configuration is such that inside the soliton the local U symmetry is broken, the gauge field becomes massive and for a range of values of the coupling constants the soliton becomes a superconductor pushing the charge to the surface. Furthermore, because of the repulsive Coulomb force, there is a maximum size for these objects, making impossible the existence of Q-matter in bulk form. Also briefly discussed are solitons with fermions in a U gauge theory.

  17. More on the properties of the first Gribov region in Landau gauge

    NASA Astrophysics Data System (ADS)

    Maas, Axel

    2016-03-01

    Complete gauge fixing beyond perturbation theory in non-Abelian gauge theories is a nontrivial problem. This is particularly evident in covariant gauges, where the Gribov-Singer ambiguity gives an explicit formulation of the problem. In practice, this is a problem if gauge-dependent quantities between different methods, especially lattice and continuum methods, should be compared: Only when treating the Gribov-Singer ambiguity in the same way is the comparison meaningful. To provide a better basis for such a comparison the structure of the first Gribov region in Landau gauge, a subset of all possible gauge copies satisfying the perturbative Landau gauge condition, will be investigated. To this end, lattice gauge theory will be used to investigate a two-dimensional projection of the region for SU(2) Yang-Mills theory in two, three, and four dimensions for a wide range of volumes and discretizations.

  18. Methods of Contemporary Gauge Theory

    NASA Astrophysics Data System (ADS)

    Makeenko, Yuri

    2002-08-01

    Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.

  19. Methods of Contemporary Gauge Theory

    NASA Astrophysics Data System (ADS)

    Makeenko, Yuri

    2005-11-01

    Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.

  20. Gauging the twisted Poincare symmetry as a noncommutative theory of gravitation

    SciTech Connect

    Chaichian, M.; Tureanu, A.; Oksanen, M.; Zet, G.

    2009-02-15

    Einstein's theory of general relativity was formulated as a gauge theory of Lorentz symmetry by Utiyama in 1956, while the Einstein-Cartan gravitational theory was formulated by Kibble in 1961 as the gauge theory of Poincare transformations. In this framework, we propose a formulation of the gravitational theory on canonical noncommutative space-time by covariantly gauging the twisted Poincare symmetry, in order to fulfil the requirement of covariance under the general coordinate transformations, an essential ingredient of the theory of general relativity. It appears that the twisted Poincare symmetry cannot be gauged by generalizing the Abelian twist to a covariant non-Abelian twist, nor by introducing a more general covariant twist element. The advantages of such a formulation as well as the related problems are discussed and possible ways out are outlined.