Sample records for abell cluster supernova

  1. Analysis of LAC Observations of Clusters of Galaxies and Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Hughes, J.

    1996-01-01

    The following publications are included and serve as the final report: The X-ray Spectrum of Abell 665; Clusters of Galaxies; Ginga Observation of an Oxygen-rich Supernova Remnant; Ginga Observations of the Coma Cluster and Studies of the Spatial Distribution of Iron; A Measurement of the Hubble Constant from the X-ray Properties and the Sunyaev-Zel'dovich Effect of Abell 2218; Non-polytropic Model for the Coma Cluster; and Abundance Gradients in Cooling Flow Clusters: Ginga LAC (Large Area Counter) and Einstein SSS (Solid State Spectrometer) Spectra of A496, A1795, A2142, and A2199.

  2. RELICS Discovery of a Probable Lens-magnified SN behind Galaxy Cluster Abell 1763

    NASA Astrophysics Data System (ADS)

    Rodney, S.; Coe, D.; Bradley, L.; Strolger, L.; Brammer, G.; Avila, R.; Ryan, R.; Ogaz, S.; Riess, A.; Sharon, K.; Johnson, T.; Paterno-Mahler, R.; Molino, A.; Graham, M.; Kelly, P.; Filippenko, A.; Frye, B.; Foley, R.; Schmidt, K.; Umetsu, K.; Czakon, N.; Weiner, B.; Stark, D.; Mainali, R.; Zitrin, A.; Sendra, I.; Graur, O.; Grillo, C.; Hjorth, J.; Selsing, J.; Christensen, L.; Rosati, P.; Nonino, M.; Balestra, I.; Vulcani, B.; McCully, C.; Dawson, W.; Bouwens, R.; Lam, D.; Trenti, M.; Nunez, D. Carrasco; Matheson, T.; Merten, J.; Jha, S.; Jones, C.; Andrade-Santos, F.; Salmon, B.; Bradac, M.; Hoag, A.; Huang, K.; Wang, X.; Oesch, P.

    2016-07-01

    We report the discovery of a likely supernova (SN) in the background field of the galaxy cluster Abell 1763 (a.k.a. RXC J1335.3+4059, ZwCl 1333.7+4117). The SN candidate was detected in Hubble Space Telescope (HST) observations collected on June 17, 2016 as part of the Reionization Lensing Cluster Survey (RELICS, HST program ID: 14096, PI: D.Coe).

  3. Chemical Enrichment History Of Abell 3112 Galaxy Cluster Out To The Virial Radius

    NASA Astrophysics Data System (ADS)

    Ezer, C.; Bulbul, E.; Ercan, E.; Smith, R.; Bautz, M.; Loewenstein, M.; McDonald, M.; Miller, E.

    2017-10-01

    The deep potential well of the galaxy clusters confines all metals produced via supernova explosions within the intra-cluster medium (ICM). The radial distributions of these metals along the ICM are direct records of the metal enrichment history. In this work, we investigate the chemical enrichment history of Abell 3112 galaxy cluster from cluster's core to out to radius R_{200} (˜ 1470 kpc) by analyzing a deep 1.2 Ms Suzaku observations with overlapping 72 ks Chandra observations. The fraction of supernova explosions enriching the ICM is obtained by fitting the X-ray spectra with a robust snapec model implemented in XSPEC. The ratio of supernova type Ia explosions to the core collapse supernova explosions is found in the range 0.12 - 0.16 and uniformly distributed out to R_{200}. The uniform spatial distribution of supernova enrichment indicates an early metal enrichment between the epoch of z ˜ 2 - 3. We also observe that W7, CDD, and WDD SN Ia models equally better explain the highest signal-to-noise region compared to 2D delayed detonation model CDDT. We further report the first time temperature (3.37 ± 0.77 keV) and metallicity (0.22 ± 0.08 Z_{⊙}) measurements of this archetypal cluster at its virial radius.

  4. Uniform Contribution of Supernova Explosions to the Chemical Enrichment of Abell 3112 out to R{sub 200}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ezer, Cemile; Ercan, E. Nihal; Bulbul, Esra

    2017-02-10

    The spatial distribution of the metals residing in the intra-cluster medium (ICM) of galaxy clusters records all the information on a cluster’s nucleosynthesis and chemical enrichment history. We present measurements from a total of 1.2 Ms Suzaku XIS and 72 ks Chandra observations of the cool-core galaxy cluster Abell 3112 out to its virial radius (∼1470 kpc). We find that the ratio of the observed supernova type Ia explosions to the total supernova explosions has a uniform distribution at a level of 12%–16% out to the cluster’s virial radius. The observed fraction of type Ia supernova explosions is in agreementmore » with the corresponding fraction found in our Galaxy and the chemical enrichment of our Galaxy. The non-varying supernova enrichment suggests that the ICM in cluster outskirts was enriched by metals at an early stage before the cluster itself was formed during a period of intense star formation activity. Additionally, we find that the 2D delayed detonation model CDDT produce significantly worse fits to the X-ray spectra compared to simple 1D W7 models. This is due to the relative overestimate of Si, and the underestimate of Mg in these models with respect to the measured abundances.« less

  5. The X-ray cluster Abell 744

    NASA Technical Reports Server (NTRS)

    Kurtz, M. J.; Huchra, J. P.; Beers, T. C.; Geller, M. J.; Gioia, I. M.

    1985-01-01

    X-ray and optical observations of the cluster of galaxies Abell 744 are presented. The X-ray flux (assuming H(0) = 100 km/s per Mpc) is about 9 x 10 to the 42nd erg/s. The X-ray source is extended, but shows no other structure. Photographic photometry (in Kron-Cousins R), calibrated by deep CCD frames, is presented for all galaxies brighter than 19th magnitude within 0.75 Mpc of the cluster center. The luminosity function is normal, and the isopleths show little evidence of substructure near the cluster center. The cluster has a dominant central galaxy, which is classified as a normal brightest-cluster elliptical on the basis of its luminosity profile. New redshifts were obtained for 26 galaxies in the vicinity of the cluster center; 20 appear to be cluster members. The spatial distribution of redshifts is peculiar; the dispersion within the 150 kpc core radius is much greater than outside. Abell 744 is similar to the nearby cluster Abell 1060.

  6. The rates and time-delay distribution of multiply imaged supernovae behind lensing clusters

    NASA Astrophysics Data System (ADS)

    Li, Xue; Hjorth, Jens; Richard, Johan

    2012-11-01

    Time delays of gravitationally lensed sources can be used to constrain the mass model of a deflector and determine cosmological parameters. We here present an analysis of the time-delay distribution of multiply imaged sources behind 17 strong lensing galaxy clusters with well-calibrated mass models. We find that for time delays less than 1000 days, at z = 3.0, their logarithmic probability distribution functions are well represented by P(log Δt) = 5.3 × 10-4Δttilde beta/M2502tilde beta, with tilde beta = 0.77, where M250 is the projected cluster mass inside 250 kpc (in 1014M⊙), and tilde beta is the power-law slope of the distribution. The resultant probability distribution function enables us to estimate the time-delay distribution in a lensing cluster of known mass. For a cluster with M250 = 2 × 1014M⊙, the fraction of time delays less than 1000 days is approximately 3%. Taking Abell 1689 as an example, its dark halo and brightest galaxies, with central velocity dispersions σ>=500kms-1, mainly produce large time delays, while galaxy-scale mass clumps are responsible for generating smaller time delays. We estimate the probability of observing multiple images of a supernova in the known images of Abell 1689. A two-component model of estimating the supernova rate is applied in this work. For a magnitude threshold of mAB = 26.5, the yearly rate of Type Ia (core-collapse) supernovae with time delays less than 1000 days is 0.004±0.002 (0.029±0.001). If the magnitude threshold is lowered to mAB ~ 27.0, the rate of core-collapse supernovae suitable for time delay observation is 0.044±0.015 per year.

  7. A 1400-MHz survey of 1478 Abell clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Owen, F. N.; White, R. A.; Hilldrup, K. C.; Hanisch, R. J.

    1982-01-01

    Observations of 1478 Abell clusters of galaxies with the NRAO 91-m telescope at 1400 MHz are reported. The measured beam shape was deconvolved from the measured source Gaussian fits in order to estimate the source size and position angle. All detected sources within 0.5 corrected Abell cluster radii are listed, including the cluster number, richness class, distance class, magnitude of the tenth brightest galaxy, redshift estimate, corrected cluster radius in arcmin, right ascension and error, declination and error, total flux density and error, and angular structure for each source.

  8. Illuminating a Dark Lens : A Type Ia Supernova Magnified by the Frontier Fields Galaxy Cluster Abell 2744

    NASA Astrophysics Data System (ADS)

    Rodney, Steven A.; Patel, Brandon; Scolnic, Daniel; Foley, Ryan J.; Molino, Alberto; Brammer, Gabriel; Jauzac, Mathilde; Bradač, Maruša; Broadhurst, Tom; Coe, Dan; Diego, Jose M.; Graur, Or; Hjorth, Jens; Hoag, Austin; Jha, Saurabh W.; Johnson, Traci L.; Kelly, Patrick; Lam, Daniel; McCully, Curtis; Medezinski, Elinor; Meneghetti, Massimo; Merten, Julian; Richard, Johan; Riess, Adam; Sharon, Keren; Strolger, Louis-Gregory; Treu, Tommaso; Wang, Xin; Williams, Liliya L. R.; Zitrin, Adi

    2015-09-01

    SN HFF14Tom is a Type Ia SN discovered at z=1.3457+/- 0.0001 behind the galaxy cluster Abell 2744 (z = 0.308). In a cosmology-independent analysis, we find that HFF14Tom is 0.77 ± 0.15 mag brighter than unlensed Type Ia SNe at similar redshift, implying a lensing magnification of {μ }{obs}=2.03+/- 0.29. This observed magnification provides a rare opportunity for a direct empirical test of galaxy cluster lens models. Here we test 17 lens models, 13 of which were generated before the SN magnification was known, qualifying as pure “blind tests.” The models are collectively fairly accurate: 8 of the models deliver median magnifications that are consistent with the measured μ to within 1σ. However, there is a subtle systematic bias: the significant disagreements all involve models overpredicting the magnification. We evaluate possible causes for this mild bias, and find no single physical or methodological explanation to account for it. We do find that model accuracy can be improved to some extent with stringent quality cuts on multiply imaged systems, such as requiring that a large fraction have spectroscopic redshifts. In addition to testing model accuracies as we have done here, Type Ia SN magnifications could also be used as inputs for future lens models of Abell 2744 and other clusters, providing valuable constraints in regions where traditional strong- and weak-lensing information is unavailable.

  9. Redshifts in the Southern Abell Redshift Survey Clusters. I. The Data

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Quintana, H.; Infante, L.; Lambas, D. G.; Muriel, H.

    2005-11-01

    The Southern Abell Redshift Survey (SARS) contains 39 clusters of galaxies with redshifts in the range 0.021h (while avoiding the LMC and SMC), with |b|>40°. Cluster locations were chosen from the Abell and Abell-Corwin-Olowin catalogs, while galaxy positions were selected from the Automatic Plate Measuring Facility galaxy catalog with extinction-corrected magnitudes in the range 15<=bJ<19. SARS used the Las Campanas 2.5 m du Pont telescope, observing either 65 or 128 objects concurrently over a 1.5 deg2 field. New redshifts for 3440 galaxies are reported in the fields of these 39 clusters of galaxies.

  10. X-ray emission from a complete sample of Abell clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Briel, Ulrich G.; Henry, J. Patrick

    1993-11-01

    The ROSAT All-Sky Survey (RASS) is used to investigate the X-ray properties of a complete sample of Abell clusters with measured redshifts and accurate positions. The sample comprises the 145 clusters within a 561 square degree region at high galactic latitude. The mean redshift is 0.17. This sample is especially well suited to be studied within the RASS since the mean exposure time is higher than average and the mean galactic column density is very low. These together produce a flux limit of about 4.2 x 10-13 erg/sq cm/s in the 0.5 to 2.5 keV energy band. Sixty-six (46%) individual clusters are detected at a significance level higher than 99.7% of which 7 could be chance coincidences of background or foreground sources. At redshifts greater than 0.3 six clusters out of seven (86%) are detected at the same significance level. The detected objects show a clear X-ray luminosity -- galaxy count relation with a dispersion consistent with other external estimates of the error in the counts. By analyzing the excess of positive fluctuations of the X-ray flux at the cluster positions, compared with the fluctuations of randomly drawn background fields, it is possible to extend these results below the nominal flux limit. We find 80% of richness R greater than or = 0 and 86% of R greater than or = 1 clusters are X-ray emitters with fluxes above 1 x 10-13 erg/sq cm/s. Nearly 90% of the clusters meeting the requirements to be in Abell's statistical sample emit above the same level. We therefore conclude that almost all Abell clusters are real clusters and the Abell catalog is not strongly contaminated by projection effects. We use the Kaplan-Meier product limit estimator to calculate the cumulative X-ray luminosity function. We show that the shape of the luminosity functions are similiar for different richness classes, but the characteristic luminosities of richness 2 clusters are about twice those of richness 1 clusters which are in turn about twice those of richness 0

  11. The cluster Abell 780: an optical view

    NASA Astrophysics Data System (ADS)

    Durret, F.; Slezak, E.; Adami, C.

    2009-11-01

    Context: The Abell 780 cluster, better known as the Hydra A cluster, has been thouroughly analyzed in X-rays. However, little is known about its optical properties. Aims: We propose to derive the galaxy luminosity function (GLF) in this apparently relaxed cluster and to search for possible environmental effects by comparing the GLFs in various regions and by looking at the galaxy distribution at large scale around Abell 780. Methods: Our study is based on optical images obtained with the ESO 2.2m telescope and WFI camera in the B and R bands, covering a total region of 67.22 × 32.94 arcmin^2, or 4.235 × 2.075 Mpc2 for a cluster redshift of 0.0539. Results: In a region of 500 kpc radius around the cluster center, the GLF in the R band shows a double structure, with a broad and flat bright part and a flat faint end that can be fit by a power law with an index α ~ - 0.85 ± 0.12 in the 20.25 ≤ R ≤ 21.75 interval. If we divide this 500 kpc radius region in north+south or east+west halves, we find no clear difference between the GLFs in these smaller regions. No obvious large-scale structure is apparent within 5 Mpc from the cluster, based on galaxy redshifts and magnitudes collected from the NED database in a much larger region than that covered by our data, suggesting that there is no major infall of material in any preferential direction. However, the Serna-Gerbal method reveals a gravitationally bound structure of 27 galaxies, which includes the cD, and of a more strongly gravitationally bound structure of 14 galaxies. Conclusions: These optical results agree with the overall relaxed structure of Abell 780 previously derived from X-ray analyses. Based on observations obtained at the European Southern Observatory, program ESO 68.A-0084(A), P. I. E. Slezak. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics

  12. The X-ray luminosity functions of Abell clusters from the Einstein Cluster Survey

    NASA Technical Reports Server (NTRS)

    Burg, R.; Giacconi, R.; Forman, W.; Jones, C.

    1994-01-01

    We have derived the present epoch X-ray luminosity function of northern Abell clusters using luminosities from the Einstein Cluster Survey. The sample is sufficiently large that we can determine the luminosity function for each richness class separately with sufficient precision to study and compare the different luminosity functions. We find that, within each richness class, the range of X-ray luminosity is quite large and spans nearly a factor of 25. Characterizing the luminosity function for each richness class with a Schechter function, we find that the characteristic X-ray luminosity, L(sub *), scales with richness class as (L(sub *) varies as N(sub*)(exp gamma), where N(sub *) is the corrected, mean number of galaxies in a richness class, and the best-fitting exponent is gamma = 1.3 +/- 0.4. Finally, our analysis suggests that there is a lower limit to the X-ray luminosity of clusters which is determined by the integrated emission of the cluster member galaxies, and this also scales with richness class. The present sample forms a baseline for testing cosmological evolution of Abell-like clusters when an appropriate high-redshift cluster sample becomes available.

  13. Topology in two dimensions. II - The Abell and ACO cluster catalogues

    NASA Astrophysics Data System (ADS)

    Plionis, Manolis; Valdarnini, Riccardo; Coles, Peter

    1992-09-01

    We apply a method for quantifying the topology of projected galaxy clustering to the Abell and ACO catalogues of rich clusters. We use numerical simulations to quantify the statistical bias involved in using high peaks to define the large-scale structure, and we use the results obtained to correct our observational determinations for this known selection effect and also for possible errors introduced by boundary effects. We find that the Abell cluster sample is consistent with clusters being identified with high peaks of a Gaussian random field, but that the ACO shows a slight meatball shift away from the Gaussian behavior over and above that expected purely from the high-peak selection. The most conservative explanation of this effect is that it is caused by some artefact of the procedure used to select the clusters in the two samples.

  14. Evidence for an extensive intracluster medium from radio observations of distant Abell clusters

    NASA Technical Reports Server (NTRS)

    Hanisch, R. J.; Ulmer, M. P.

    1985-01-01

    Observations have been made of 18 distance class 5 and 6 Abell clusters of galaxies using the VLA in its 'C' configuration at a frequency of 1460 MHz. Half of the clusters in the sample are confirmed or probable sources of X-ray emission. All the detected radio sources with flux densities above 10 mJy are reported, and information is provided concerning the angular extent of the sources, as well as the most likely optical identification. The existence of an extensive intracluster medium is inferred by identifying extended/distorted radio sources with galaxies whose apparent magnitudes are consistent with their being cluster members and that are at projected distances of 3-4 Abell radii (6-8 Mpc) from the nearest cluster center. By requiring that the radio sources are confined by the ambient medium, the ambient density is calculated and the total cluster mass is estimated. As a sample calculation, a wide-angle-tail radio source some 5 Mpc from the center of Abell 348 is used to estimate these quantities.

  15. Deep Chandra Observations of Abell 586: A Remarkably Relaxed Non-Cool-Core Cluster

    NASA Astrophysics Data System (ADS)

    Richstein, Hannah; Su, Yuanyuan

    2018-01-01

    The dichotomy between cool-core and non-cool-core clusters has been a lasting perplexity in extragalactic astronomy. Nascent cores in non-cool-core clusters may have been disrupted by major mergers, yet the dichotomy cannot be reproduced in cosmology simulations. We present deep Chandra observations of the massive galaxy cluster Abell 586, which resides at z=0.17, thus allowing its gas properties to be measured out to its virial radius. Abell 586 appears remarkably relaxed with a nearly spherical X-ray surface brightness distribution and without any offset between its X-ray and optical centroids. We measure that its temperature profile does not decrease towards the cluster center and its central entropy stays above 100 keV cm2. A non-cool-core emerges in Abell 586 in the absence of any disruptions on the large scale. Our study demonstrates that non-cool-core clusters can be formed without major mergers. The origins of some non-cool-core clusters may be related to conduction, AGN feedback, or preheating.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.

  16. Galaxy Cluster Abell 1689

    NASA Image and Video Library

    2017-12-08

    Release Date: March 10, 2010 - Distant galaxy clusters mysteriously stream at a million miles per hour along a path roughly centered on the southern constellations Centaurus and Hydra. A new study led by Alexander Kashlinsky at NASA's Goddard Space Flight Center in Greenbelt, Md., tracks this collective motion -- dubbed the "dark flow" -- to twice the distance originally reported, out to more than 2.5 billion light-years. Abell 1689, redshift 0.181. Credit: NASA/Goddard Space Flight Center/Scientific Visualization Studio/ESA/L. Bradley/JHU To learn more go to: www.nasa.gov/centers/goddard/news/releases/2010/10-023.html To see other visualizations related to this story go to: svs.gsfc.nasa.gov/goto?10580

  17. Weak Gravitational Lensing by the Nearby Cluster Abell 3667.

    PubMed

    Joffre; Fischer; Frieman; McKay; Mohr; Nichol; Johnston; Sheldon; Bernstein

    2000-05-10

    We present two weak lensing reconstructions of the nearby (zcl=0.055) merging cluster Abell 3667, based on observations taken approximately 1 yr apart under different seeing conditions. This is the lowest redshift cluster with a weak lensing mass reconstruction to date. The reproducibility of features in the two mass maps demonstrates that weak lensing studies of low-redshift clusters are feasible. These data constitute the first results from an X-ray luminosity-selected weak lensing survey of 19 low-redshift (z<0.1) southern clusters.

  18. Suzaku observations of low surface brightness cluster Abell 1631

    NASA Astrophysics Data System (ADS)

    Babazaki, Yasunori; Mitsuishi, Ikuyuki; Ota, Naomi; Sasaki, Shin; Böhringer, Hans; Chon, Gayoung; Pratt, Gabriel W.; Matsumoto, Hironori

    2018-04-01

    We present analysis results for a nearby galaxy cluster Abell 1631 at z = 0.046 using the X-ray observatory Suzaku. This cluster is categorized as a low X-ray surface brightness cluster. To study the dynamical state of the cluster, we conduct four-pointed Suzaku observations and investigate physical properties of the Mpc-scale hot gas associated with the A 1631 cluster for the first time. Unlike relaxed clusters, the X-ray image shows no strong peak at the center and an irregular morphology. We perform spectral analysis and investigate the radial profiles of the gas temperature, density, and entropy out to approximately 1.5 Mpc in the east, north, west, and south directions by combining with the XMM-Newton data archive. The measured gas density in the central region is relatively low (a few ×10-4 cm-3) at the given temperature (˜2.9 keV) compared with X-ray-selected clusters. The entropy profile and value within the central region (r < 0.1 r200) are found to be flatter and higher (≳400 keV cm2). The observed bolometric luminosity is approximately three times lower than that expected from the luminosity-temperature relation in previous studies of relaxed clusters. These features are also observed in another low surface brightness cluster, Abell 76. The spatial distributions of galaxies and the hot gas appear to be different. The X-ray luminosity is relatively lower than that expected from the velocity dispersion. A post-merger scenario may explain the observed results.

  19. Suzaku observations of low surface brightness cluster Abell 1631

    NASA Astrophysics Data System (ADS)

    Babazaki, Yasunori; Mitsuishi, Ikuyuki; Ota, Naomi; Sasaki, Shin; Böhringer, Hans; Chon, Gayoung; Pratt, Gabriel W.; Matsumoto, Hironori

    2018-06-01

    We present analysis results for a nearby galaxy cluster Abell 1631 at z = 0.046 using the X-ray observatory Suzaku. This cluster is categorized as a low X-ray surface brightness cluster. To study the dynamical state of the cluster, we conduct four-pointed Suzaku observations and investigate physical properties of the Mpc-scale hot gas associated with the A 1631 cluster for the first time. Unlike relaxed clusters, the X-ray image shows no strong peak at the center and an irregular morphology. We perform spectral analysis and investigate the radial profiles of the gas temperature, density, and entropy out to approximately 1.5 Mpc in the east, north, west, and south directions by combining with the XMM-Newton data archive. The measured gas density in the central region is relatively low (a few ×10-4 cm-3) at the given temperature (˜2.9 keV) compared with X-ray-selected clusters. The entropy profile and value within the central region (r < 0.1 r200) are found to be flatter and higher (≳400 keV cm2). The observed bolometric luminosity is approximately three times lower than that expected from the luminosity-temperature relation in previous studies of relaxed clusters. These features are also observed in another low surface brightness cluster, Abell 76. The spatial distributions of galaxies and the hot gas appear to be different. The X-ray luminosity is relatively lower than that expected from the velocity dispersion. A post-merger scenario may explain the observed results.

  20. An off-axis galaxy cluster merger: Abell 0141

    NASA Astrophysics Data System (ADS)

    Caglar, Turgay

    2018-04-01

    We present structural analysis results of Abell 0141 (z = 0.23) based on X-ray data. The X-ray luminosity map demonstrates that Abell 0141 (A0141) is a bimodal galaxy cluster, which is separated on the sky by ˜0.65 Mpc with an elongation along the north-south direction. The optical galaxy density map also demonstrates this bimodality. We estimate sub-cluster ICM temperatures of 5.17^{+0.20}_{-0.19} keV for A0141N and 5.23^{+0.24}_{-0.23} keV for A0141S. We obtain X-ray morphological parameters w = 0.034 ± 0.004, c = 0.113 ± 0.004, and w = 0.039 ± 0.004, c = 0.104 ± 0.005 for A0141N and A0141S, respectively. The resulting X-ray morphological parameters indicate that both sub-clusters are moderately disturbed non-cool core structures. We find a slight brightness jump in the bridge region, and yet, there is still an absence of strong X-ray emitting gas between sub-clusters. We discover a significantly hotspot (˜10 keV) between sub-clusters, and a Mach number M = 1.69^{+0.40}_{-0.37} is obtained by using the temperature jump condition. However, we did not find direct evidence for shock-heating between sub-clusters. We estimate the sub-clusters' central entropies as K0 > 100 keV cm2, which indicates that the sub-clusters are not cool cores. We find some evidence that the system undergoes an off-axis collision; however, the cores of each sub-clusters have not yet been destroyed. Due to the orientation of X-ray tails of sub-clusters, we suggest that the northern sub-cluster moves through the south-west direction, and the southern cluster moves through the north-east direction. In conclusion, we are witnessing an earlier phase of close core passage between sub-clusters.

  1. Chandra and XMM-Newton Observations of the Abell 3395/Abell 3391 Intercluster Filament

    NASA Astrophysics Data System (ADS)

    Alvarez, Gabriella E.; Randall, Scott W.; Bourdin, Hervé; Jones, Christine; Holley-Bockelmann, Kelly

    2018-05-01

    We present Chandra and XMM-Newton X-ray observations of the Abell 3391/Abell 3395 intercluster filament. It has been suggested that the galaxy clusters Abell 3395, Abell 3391, and the galaxy group ESO-161 -IG 006 located between the two clusters, are in alignment along a large-scale intercluster filament. We find that the filament is aligned close to the plane of the sky, in contrast to previous results. We find a global projected filament temperature kT = {4.45}-0.55+0.89 keV, electron density {n}e={1.08}-0.05+0.06× {10}-4 cm‑3, and {M}gas}={2.7}-0.1+0.2 × {10}13 M ⊙. The thermodynamic properties of the filament are consistent with that of the intracluster medium (ICM) of Abell 3395 and Abell 3391, suggesting that the filament emission is dominated by ICM gas that has been tidally disrupted during an early stage merger between these two clusters. We present temperature, density, entropy, and abundance profiles across the filament. We find that the galaxy group ESO-161 may be undergoing ram-pressure-stripping in the low-density environment at or near the virial radius of both clusters, due to its rapid motion through the filament.

  2. Hubble Frontier Field Abell 2744

    NASA Image and Video Library

    2014-01-07

    This long-exposure image from NASA Hubble Space Telescope of massive galaxy cluster Abell 2744 is the deepest ever made of any cluster of galaxies. Shown in the foreground is Abell 2744, located in the constellation Sculptor.

  3. Abell 2069 - An X-ray cluster of galaxies with multiple subcondensations

    NASA Technical Reports Server (NTRS)

    Gioia, I. M.; Maccacaro, T.; Geller, M. J.; Huchra, J. P.; Stocke, J.; Steiner, J. E.

    1982-01-01

    X-ray and optical observations of the cluster Abell 2069 are presented. The cluster is at a mean redshift of 0.116. The cluster shows multiple condensations in both the X-ray emission and in the galaxy surface density and, thus, does not appear to be relaxed. There is a close correspondence between the gas and galaxy distributions which indicates that the galaxies in this system do map the mass distribution, contrary to what might be expected if low-mass neutrinos dominate the cluster mass.

  4. The Mass Function of Abell Clusters

    NASA Astrophysics Data System (ADS)

    Chen, J.; Huchra, J. P.; McNamara, B. R.; Mader, J.

    1998-12-01

    The velocity dispersion and mass functions for rich clusters of galaxies provide important constraints on models of the formation of Large-Scale Structure (e.g., Frenk et al. 1990). However, prior estimates of the velocity dispersion or mass function for galaxy clusters have been based on either very small samples of clusters (Bahcall and Cen 1993; Zabludoff et al. 1994) or large but incomplete samples (e.g., the Girardi et al. (1998) determination from a sample of clusters with more than 30 measured galaxy redshifts). In contrast, we approach the problem by constructing a volume-limited sample of Abell clusters. We collected individual galaxy redshifts for our sample from two major galaxy velocity databases, the NASA Extragalactic Database, NED, maintained at IPAC, and ZCAT, maintained at SAO. We assembled a database with velocity information for possible cluster members and then selected cluster members based on both spatial and velocity data. Cluster velocity dispersions and masses were calculated following the procedures of Danese, De Zotti, and di Tullio (1980) and Heisler, Tremaine, and Bahcall (1985), respectively. The final velocity dispersion and mass functions were analyzed in order to constrain cosmological parameters by comparison to the results of N-body simulations. Our data for the cluster sample as a whole and for the individual clusters (spatial maps and velocity histograms) in our sample is available on-line at http://cfa-www.harvard.edu/ huchra/clusters. This website will be updated as more data becomes available in the master redshift compilations, and will be expanded to include more clusters and large groups of galaxies.

  5. A Moderate Redshift Supernova Search Program

    NASA Astrophysics Data System (ADS)

    Adams, M. T.; Wheeler, J. C.; Ward, M.; Wren, W. R.; Schmidt, B. P.

    1995-12-01

    We report on a recently initiated supernova (SN) search program using the McDonald Observatory 0.76m telescope and Prime Focus Camera (PFC). This SN search program takes advantage of the PFC's 42.6 x 42.6 arcmin FOV to survey moderate redshift Abell clusters in single Kron-Cousins R-band images. Our scientific goal is to discover and provide quality BVRI photometric follow-up, to R \\ +21, for a significant SNe sample at 0.03 < z < 0.15. These data will constrain SNe progenitor models and calibrate SN luminosity, color and light curve characteristics, as a function of host galaxy type, increasing our understanding of the utility of SNe as "calibrated candles" and cosmological model probes. The McDonald SNe provide an important link between the local discoveries of the LBL Automated Nearby SN Search (Pennypacker et al 1995, Aiguiblava NATO ASI Proceedings, in preparation), and the very distant SNe found by the LBL/UC Berkeley group (Perlmutter et al 1995, ApJ, 440, L41), and the High Redshift SN Search Team (Schmidt et al 1995, Aiguiblava NATO ASI Proceedings). The McDonald SN search program includes a sample of the Abell clusters used by Lauer and Postman (1994, ApJ, 425, 418) to analyze Local Group motion. SNe discovered in these clusters contribute to the resolution of the Local Group motion controversy. We present an overview of the McDonald Observatory supernova search program, and discuss recent results.

  6. See Change: the Supernova Sample from the Supernova Cosmology Project High Redshift Cluster Supernova Survey

    NASA Astrophysics Data System (ADS)

    Hayden, Brian; Perlmutter, Saul; Boone, Kyle; Nordin, Jakob; Rubin, David; Lidman, Chris; Deustua, Susana E.; Fruchter, Andrew S.; Aldering, Greg Scott; Brodwin, Mark; Cunha, Carlos E.; Eisenhardt, Peter R.; Gonzalez, Anthony H.; Jee, James; Hildebrandt, Hendrik; Hoekstra, Henk; Santos, Joana; Stanford, S. Adam; Stern, Daniel; Fassbender, Rene; Richard, Johan; Rosati, Piero; Wechsler, Risa H.; Muzzin, Adam; Willis, Jon; Boehringer, Hans; Gladders, Michael; Goobar, Ariel; Amanullah, Rahman; Hook, Isobel; Huterer, Dragan; Huang, Xiaosheng; Kim, Alex G.; Kowalski, Marek; Linder, Eric; Pain, Reynald; Saunders, Clare; Suzuki, Nao; Barbary, Kyle H.; Rykoff, Eli S.; Meyers, Joshua; Spadafora, Anthony L.; Sofiatti, Caroline; Wilson, Gillian; Rozo, Eduardo; Hilton, Matt; Ruiz-Lapuente, Pilar; Luther, Kyle; Yen, Mike; Fagrelius, Parker; Dixon, Samantha; Williams, Steven

    2017-01-01

    The Supernova Cosmology Project has finished executing a large (174 orbits, cycles 22-23) Hubble Space Telescope program, which has measured ~30 type Ia Supernovae above z~1 in the highest-redshift, most massive galaxy clusters known to date. Our SN Ia sample closely matches our pre-survey predictions; this sample will improve the constraint by a factor of 3 on the Dark Energy equation of state above z~1, allowing an unprecedented probe of Dark Energy time variation. When combined with the improved cluster mass calibration from gravitational lensing provided by the deep WFC3-IR observations of the clusters, See Change will triple the Dark Energy Task Force Figure of Merit. With the primary observing campaign completed, we present the preliminary supernova sample and our path forward to the supernova cosmology results. We also compare the number of SNe Ia discovered in each cluster with our pre-survey expectations based on cluster mass and SFR estimates. Our extensive HST and ground-based campaign has already produced unique results; we have confirmed several of the highest redshift cluster members known to date, confirmed the redshift of one of the most massive galaxy clusters at z~1.2 expected across the entire sky, and characterized one of the most extreme starburst environments yet known in a z~1.7 cluster. We have also discovered a lensed SN Ia at z=2.22 magnified by a factor of ~2.7, which is the highest spectroscopic redshift SN Ia currently known.

  7. Pixel Color–Magnitude Diagram Analysis of the Brightest Cluster Galaxies in Dynamically Young and Old Clusters Abell 1139 and Abell 2589

    NASA Astrophysics Data System (ADS)

    Lee, Joon Hyeop; Oh, Sree; Jeong, Hyunjin; Yi, Sukyoung K.; Kyeong, Jaemann; Park, Byeong-Gon

    2017-07-01

    As a case study to understand the coevolution of Brightest Cluster Galaxies (BCGs) and their host clusters, we investigate the BCGs in dynamically young and old clusters Abell 1139 (A1139) and Abell 2589 (A2589). We analyze the pixel color–magnitude diagrams (pCMDs) using deep g- and r-band images, obtained from the Canada–France–Hawaii Telescope observations. After masking foreground/background objects and smoothing pixels in consideration of the observational seeing size, detailed pCMD features are compared between the two BCGs. (1) Although the overall shapes of the pCMDs are similar to those of typical early-type galaxies, the A2589-BCG tends to have redder mean pixel color and smaller pixel color deviation at given surface brightness than the A1139-BCG. (2) The mean pixel color distribution as a function of pixel surface brightness (pCMD backbone) indicates that the A2589-BCG formed a larger central body (∼2.0 kpc in radius) via major dry mergers at an early epoch than the A1139-BCG (a central body ∼1.3 kpc in radius), whereas they have grown commonly in subsequent minor mergers. (3) The spatial distributions of the pCMD outliers reveal that the A1139-BCG experienced considerable tidal events more recently than the A2589-BCG, whereas the A2589-BCG has an asymmetric compact core, possibly resulting from a major dry merger at an early epoch. (4) The A2589-BCG shows a very large faint-to-bright pixel number ratio, compared to early-type non-BCGs, whereas the ratio for the A1139-BCG is not distinctively large. These results are consistent with the idea that the BCG in the dynamically older cluster (A2589) formed earlier and is better relaxed.

  8. Revisiting the monster: the mass profile of the galaxy cluster Abell 3827 using dynamical and strong lensing constrains

    NASA Astrophysics Data System (ADS)

    Rodrigo Carrasco Damele, Eleazar; Verdugo, Tomas

    2018-01-01

    The galaxy cluster Abell 3827 is one of the most massive clusters know at z ≦ 0.1 (Richness class 2, BM typeI, X-ray LX = 2.4 x 1044 erg s-1). The Brightest Cluster Galaxy (BCG) in Abell 3827 is perhaps the most extreme example of ongoing galaxy cannibalism. The multi-component BCG hosts the stellar remnants nuclei of at least four bright elliptical galaxies embedded in a common assymetric halo extended up to 15 kpc. The most notorious characteristic of the BCG is the existence of a unique strong gravitational lens system located within the inner 15 kpc region. A mass estimation of the galaxy based on strong lensing model was presented in Carrasco et al (2010, ApJL, 715, 160). Moreover, the exceptional strong lensing lens system in Abell 3827 and the location of the four bright galaxies has been used to measure for the first time small physical separations between dark and ordinary matter (Williams et al. 2011, MNRAS, 415, 448, Massey et al. 2015, MNRAS, 449, 3393). In this contribution, we present a detailed strong lensing and dynamical analysis of the cluster Abell 3827 based on spectroscopic redshift of the lensed features and from ~70 spectroscopically confirmed member galaxies inside 0.5 x 0.5 Mpc from the cluster center.

  9. The cD galaxy in Abell cluster 1775

    NASA Technical Reports Server (NTRS)

    Hayes, J. J. E.; Bhattacharya, B.

    1990-01-01

    Over the last 20 years, a number of workers have studied the multiple nuclei cD galaxy in the rich Abell cluster 1775, trying to discover its nature. In all the cases though, very little has been published concerning its morphology. The majority of arguments about the nature of this object have been based on the relative radial velocities of the 2 components with each other and with the other galaxies in the cluster, or its radio morphology. Very little work has been done on the optical morphology. To rectify that lack of data, the authors have obtained charge coupled device (CCD) images of the cD. The authors find from the CCD data that the cD is unlikely to be a bound object and that there is strong evidence for a collision.

  10. Suzaku observations of the outskirts of the galaxy cluster Abell 3395, including a filament toward Abell 3391

    NASA Astrophysics Data System (ADS)

    Sugawara, Yuuki; Takizawa, Motokazu; Itahana, Madoka; Akamatsu, Hiroki; Fujita, Yutaka; Ohashi, Takaya; Ishisaki, Yoshitaka

    2017-12-01

    The results of Suzaku observations of the outskirts of Abell 3395, including a large-scale structure filament toward Abell 3391, are presented. We measured temperature and abundance distributions from the southern outskirt of A 3395 to the north at the virial radius, where a filament structure has been found in the former X-ray and Sunyaev-Zel'dovich (SZ) effect observations between A 3391 and A 3395. The overall temperature structure is consistent with the universal profile proposed by Okabe, N., et al. 2014, PASJ, 66, 99 for relaxed clusters, except for the filament region. A hint of intracluster medium heating is found between the two clusters, which might be due to their interaction in the early phase of a cluster merger. Although we obtained a relatively low metal abundance of Z=0.169^{+0.164+0.009+0.018}_{-0.150-0.004-0.015} solar, where the first, second, and third errors are statistical, cosmic X-ray background systematic, and non-X-ray background systematic, respectively, at the virial radius in the filament, our results are still consistent with previous results for other clusters (Z ˜ 0.3 solar) within errors. Therefore, our results are also consistent with the early enrichment scenario. We estimated Compton y parameters only from X-ray results in the region between A 3391 and A 3395 assuming a simple geometry. They are smaller than the previous SZ results with the Planck satellite. The difference could be attributed to a more elaborate geometry such as a filament inclined to the line-of-sight direction, or underestimation of the X-ray temperature because of the unresolved multi-temperature structures or undetected hot X-ray emission of the shock-heated gas.

  11. ROSAT HRI images of Abell 85 and Abell 496: Evidence for inhomogeneities in cooling flows

    NASA Technical Reports Server (NTRS)

    Prestwich, Andrea H.; Guimond, Stephen J.; Luginbuhl, Christian; Joy, Marshall

    1994-01-01

    We present ROSAT HRI images of two clusters of galaxies with cooling flows, Abell 496 and Abell 85. In these clusters, x-ray emission on small scales above the general cluster emission is significant at the 3 sigma level. There is no evidence for optical counterparts. The enhancements may be associated with lumps of gas at a lower temperature and higher density than the ambient medium, or hotter, denser gas perhaps compressed by magnetic fields. These observations can be used to test models of how thermal instabilities form and evolve in cooling flows.

  12. Mystery solved: discovery of extended radio emission in the merging galaxy cluster Abell 2146

    NASA Astrophysics Data System (ADS)

    Hlavacek-Larrondo, J.; Gendron-Marsolais, M.-L.; Fecteau-Beaucage, D.; van Weeren, R. J.; Russell, H. R.; Edge, A.; Olamaie, M.; Rumsey, C.; King, L.; Fabian, A. C.; McNamara, B.; Hogan, M.; Mezcua, M.; Taylor, G.

    2018-04-01

    Abell 2146 (z = 0.232) is a massive galaxy cluster currently undergoing a spectacular merger in the plane of the sky with a bullet-like morphology. It was the first system in which both the bow and upstream shock fronts were detected at X-ray wavelengths (Mach ˜2), yet deep Giant MetreWave Telescope 325 MHz observations failed to detect extended radio emission associated with the cluster as is typically seen in such systems. We present new, multiconfiguration 1-2 GHz Karl G. Jansky Very Large Array (VLA) observations of Abell 2146 totalling 16 h of observations. These data reveal for the first time the presence of an extended (≈850 kpc), faint radio structure associated with Abell 2146. The structure appears to harbour multiple components, one associated with the upstream shock that we classify as a radio relic and one associated with the subcluster core that is consisted as being a radio halo bounded by the bow shock. The newly detected structures have some of the lowest radio powers detected thus far in any cluster (P1.4 GHz, halo = 2.4 ± 0.2 × 1023 W Hz-1 and P1.4 GHz, relic = 2.2 ± 0.2 × 1023 W Hz-1). The flux measurement of the halo, as well as its morphology, also suggests that the halo was recently created (≈0.3 Gyr after core passage), consistent with the dynamical state of the cluster. These observations demonstrate the capacity of the upgraded VLA to detect extremely faint and extended radio structures. Based on these observations, we predict that many more radio relics and radio haloes in merging clusters should be detected by future radio facilities such as the Square Kilometre Array.

  13. Lensed Type Ia supernovae as probes of cluster mass models

    Science.gov Websites

    SAO/NASA ADS Astronomy Abstract Service Title: Lensed Type Ia supernovae as probes of cluster mass Origin: OUP Astronomy Keywords: gravitational lensing: strong, supernovae: general, galaxies: clusters

  14. ROSAT HRI images of Abell 85 and Abell 496: Evidence for inhomogeneities in cooling flows

    NASA Technical Reports Server (NTRS)

    Prestwich, Andrea H.; Guimond, Stephen J.; Luginbuhl, Christian B.; Joy, Marshall

    1995-01-01

    We present ROSAT high-resolution images of two clusters of galaxies with cooling flows, Abell 496 and Abell 85. In these clusters, X-ray emission on small scales above the general cluster emission is significant at the 3 sigma level. There is no evidence for optical counterparts. If real, the enhancements may be associated with clumps of gas at a lower temperature and higher density than the ambient medium, or hotter, denser gas perhaps compressed by magnetic fields. These observations can be used to test models of how thermal instabilities form and evolve in cooling flows.

  15. Environmental Effects on Galaxy Evolution. II. Quantifying the Tidal Features in NIR Images of the Cluster Abell 85

    NASA Astrophysics Data System (ADS)

    Venkatapathy, Y.; Bravo-Alfaro, H.; Mayya, Y. D.; Lobo, C.; Durret, F.; Gamez, V.; Valerdi, M.; Granados-Contreras, A. P.; Navarro-Poupard, F.

    2017-12-01

    This work is part of a series of papers devoted to investigating the evolution of cluster galaxies during their infall. In the present article, we image in NIR a selected sample of galaxies throughout the massive cluster Abell 85 (z = 0.055). We obtain (JHK‧) photometry for 68 objects, reaching ˜1 mag arcsec-2 deeper than 2MASS. We use these images to unveil asymmetries in the outskirts of a sample of bright galaxies and develop a new asymmetry index, {α }{An}, which allows us to quantify the degree of disruption by the relative area occupied by the tidal features on the plane of the sky. We measure the asymmetries for a subsample of 41 large-area objects, finding clear asymmetries in 10 galaxies; most of these are in groups and pairs projected at different clustercentric distances, and some of them are located beyond R 500. Combining information on the H I gas content of blue galaxies and the distribution of substructures across Abell 85 with the present NIR asymmetry analysis, we obtain a very powerful tool to confirm that tidal mechanisms are indeed present and are currently affecting a fraction of galaxies in Abell 85. However, when comparing our deep NIR images with UV blue images of two very disrupted (jellyfish) galaxies in this cluster, we discard the presence of tidal interactions down to our detection limit. Our results suggest that ram-pressure stripping is at the origin of such spectacular disruptions. We conclude that across a complex cluster like Abell 85, environmental mechanisms, both gravitational and hydrodynamical, are playing an active role in driving galaxy evolution.

  16. Abell 1142 and the Missing Central Galaxy – A Cluster in Transition?

    NASA Astrophysics Data System (ADS)

    Jones, Alexander; Su, Yuanyuan; Buote, David; Forman, William; van Weeren, Reinout; Jones, Christine; Gastaldello, Fabio; Kraft, Ralph; Randall, Scott

    2018-01-01

    Two types of galaxy clusters exist: cool core (CC) clusters which exhibit centrally-peaked metallicity and X-ray emission and non-cool core (NCC) clusters, possessing comparably homogeneous metallicity and X-ray emission distributions. However, the origin of this dichotomy is still unknown. The current prevailing theories state that either there is a primordial entropy limit, above which a CC is unable to form, or that clusters can change type through major mergers and radiative cooling. Abell 1142 is a galaxy cluster that can provide a unique probe of the root of this cluster-type division. It is formed of two merging sub-clusters, each with its own brightest cluster galaxies (BCG). Its enriched X-ray centroid (possible CC remnant) lies between these two BCGs. We present the thermal and chemical distributions of this system using deep (180ks) XMM-Newton observations to shed light on the role of mergers in the evolution of galaxy clusters.

  17. Statistical analysis of catalogs of extragalactic objects. II - The Abell catalog of rich clusters

    NASA Technical Reports Server (NTRS)

    Hauser, M. G.; Peebles, P. J. E.

    1973-01-01

    The results of a power-spectrum analysis are presented for the distribution of clusters in the Abell catalog. Clear and direct evidence is found for superclusters with small angular scale, in agreement with the recent study of Bogart and Wagoner (1973). It is also found that the degree and angular scale of the apparent superclustering varies with distance in the manner expected if the clustering is intrinsic to the spatial distribution rather than a consequence of patchy local obscuration.

  18. Embedded spiral patterns in the massive galaxy cluster Abell 1835

    NASA Astrophysics Data System (ADS)

    Ueda, S.; Kitayama, T.; Dotani, T.

    2017-10-01

    We report on the properties of the intracluster medium (ICM) in the central region of the massive galaxy cluster, Abell 1835, obtained with the data from the Chandra X-ray Observatory. We find distinctive spiral patterns in the cool core in the residual image of the X-ray surface brightness after its nominal profile is subtracted. The spiral patterns consist of two arms. One of them appears as positive, and the other appears as negative excesses in the residual image. Their sizes are ˜ 70 kpc and their morphologies are consistent with each other. We find that the spiral patterns extend from the cool core out to the hotter surrounding ICM. We analyze the X-ray spectra extracted from both regions. We obtain that the ICM properties are similar to those expected by gas sloshing. We also find that the ICM in the two regions of spiral patterns is near or is in pressure equilibrium. Abell 1835 may now be experiencing gas sloshing induced by an off-axis minor merger. These results have been already published (Ueda, Kitayama, & Dotani 2017, ApJ, 837, 34).

  19. Diffuse radio emission in the complex merging galaxy cluster Abell2069

    NASA Astrophysics Data System (ADS)

    Drabent, A.; Hoeft, M.; Pizzo, R. F.; Bonafede, A.; van Weeren, R. J.; Klein, U.

    2015-03-01

    Context. Galaxy clusters with signs of a recent merger in many cases show extended diffuse radio features. This emission originates from relativistic electrons that suffer synchrotron losses due to the intracluster magnetic field. The mechanisms of particle acceleration and the properties of the magnetic field are still poorly understood. Aims: We search for diffuse radio emission in galaxy clusters. Here, we study the complex galaxy cluster Abell 2069, for which X-ray observations indicate a recent merger. Methods: We investigate the cluster's radio continuum emission by deep Westerbork Synthesis Radio Telescope (WSRT) observations at 346 MHz and Giant Metrewave Radio Telescope (GMRT) observations at 322 MHz. Results: We find an extended diffuse radio feature roughly coinciding with the main component of the cluster. We classify this emission as a radio halo and estimate its lower limit flux density at 25 ± 9 mJy. Moreover, we find a second extended diffuse source located at the cluster's companion and estimate its flux density at 15 ± 2 mJy. We speculate that this is a small halo or a mini-halo. If true, this cluster is the first example of a double-halo in a single galaxy cluster.

  20. Galaxy Cluster Abell 1689

    NASA Image and Video Library

    2017-12-08

    Image release August 19, 2010 An international team of astronomers using gravitational lensing observations from the NASA/ESA Hubble Space Telescope has taken an important step forward in the quest to solve the riddle of dark energy, a phenomenon which mysteriously appears to power the Universe's accelerating expansion. Their results appear in the 20 August 2010 issue of the journal Science. This image shows the galaxy cluster Abell 1689, with the mass distribution of the dark matter in the gravitational lens overlaid (in purple). The mass in this lens is made up partly of normal (baryonic) matter and partly of dark matter. Distorted galaxies are clearly visible around the edges of the gravitational lens. The appearance of these distorted galaxies depends on the distribution of matter in the lens and on the relative geometry of the lens and the distant galaxies, as well as on the effect of dark energy on the geometry of the Universe. Credit: NASA, ESA, E. Jullo (JPL/LAM), P. Natarajan (Yale) and J-P. Kneib (LAM). To view a video of this image go to: www.flickr.com/photos/gsfc/4909967467 NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook To read more go to: www.spacetelescope.org/news/heic1014/?utm_source=feedburn...

  1. A Strong Merger Shock in Abell 665

    NASA Technical Reports Server (NTRS)

    Dasadia, S.; Sun, M.; Sarazin, C.; Morandi, A.; Markevitch, M.; Wik, D.; Feretti, L.; Giovannini, G.; Govoni, F.

    2016-01-01

    Deep (103 ks) Chandra observations of Abell 665 have revealed rich structures in this merging galaxy cluster, including a strong shock and two cold fronts. The newly discovered shock has a Mach number of M =?3.0 +/- 0.6, propagating in front of a cold disrupted cloud. This makes Abell 665 the second cluster, after the Bullet cluster, where a strong merger shock of M is approximately 3 has been detected. The shock velocity from jump conditions is consistent with (2.7 +/- 0.7) × 10(exp 3) km s(exp -1). The new data also reveal a prominent southern cold front with potentially heated gas ahead of it. Abell 665 also hosts a giant radio halo. There is a hint of diffuse radio emission extending to the shock at the north, which needs to be examined with better radio data. This new strong shock provides a great opportunity to study the reacceleration model with the X-ray and radio data combined.

  2. A redshift survey of the strong-lensing cluster ABELL 383

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, Margaret J.; Hwang, Ho Seong; Kurtz, Michael J.

    2014-03-01

    Abell 383 is a famous rich cluster (z = 0.1887) imaged extensively as a basis for intensive strong- and weak-lensing studies. Nonetheless, there are few spectroscopic observations. We enable dynamical analyses by measuring 2360 new redshifts for galaxies with r {sub Petro} ≤ 20.5 and within 50' of the Brightest Cluster Galaxy (BCG; R.A.{sub 2000} = 42.°014125, decl.{sub 2000} = –03.°529228). We apply the caustic technique to identify 275 cluster members within 7 h {sup –1} Mpc of the hierarchical cluster center. The BCG lies within –11 ± 110 km s{sup –1} and 21 ± 56 h {sup –1} kpcmore » of the hierarchical cluster center; the velocity dispersion profile of the BCG appears to be an extension of the velocity dispersion profile based on cluster members. The distribution of cluster members on the sky corresponds impressively with the weak-lensing contours of Okabe et al. especially when the impact of foreground and background structure is included. The values of R {sub 200} = 1.22 ± 0.01 h {sup –1} Mpc and M {sub 200} = (5.07 ± 0.09) × 10{sup 14} h {sup –1} M {sub ☉} obtained by application of the caustic technique agree well with recent completely independent lensing measures. The caustic estimate extends direct measurement of the cluster mass profile to a radius of ∼5 h {sup –1} Mpc.« less

  3. X-Ray Spectroscopy of the Cluster of Galaxies Abell 1795 with XMM-Newton

    NASA Technical Reports Server (NTRS)

    Tamura, T.; Kaastra, J. S.; Peterson, J. R.; Paerels, F.; Mittaz, J. P. D.; Trudolyubov, S. P.; Stewart, G.; Fabian, A. C.; Mushotzky, R. F.; Lumb, D. H.

    2000-01-01

    The initial results from XMM-Newton observations of the rich cluster of galaxies Abell 1795 are presented. The spatially-resolved X-ray spectra taken by the European Photon Imaging Cameras (EPIC) show a temperature drop at a radius of - 200 kpc from the cluster center, indicating that the ICM is cooling. Both the EPIC and the Reflection Grating Spectrometers (RGS) spectra extracted from the cluster center can be described by an isothermal model with a temperature of approx. 4 keV. The volume emission measure of any cool component (less than 1 keV) is less than a few % of the hot component at the cluster center. A strong O VIII Lyman alpha line was detected with the RGS from the cluster core. The O abundance of the ICM is 0.2-0.5 times the solar value. The O to Fe ratio at the cluster center is 0.5 - 1.5 times the solar ratio.

  4. RADIO AND DEEP CHANDRA OBSERVATIONS OF THE DISTURBED COOL CORE CLUSTER ABELL 133

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall, S. W.; Nulsen, P. E. J.; Forman, W. R.

    2010-10-10

    We present results based on new Chandra and multi-frequency radio observations of the disturbed cool core cluster Abell 133. The diffuse gas has a complex bird-like morphology, with a plume of emission extending from two symmetric wing-like features. The plume is capped with a filamentary radio structure that has been previously classified as a radio relic. X-ray spectral fits in the region of the relic indicate the presence of either high-temperature gas or non-thermal emission, although the measured photon index is flatter than would be expected if the non-thermal emission is from inverse Compton scattering of the cosmic microwave backgroundmore » by the radio-emitting particles. We find evidence for a weak elliptical X-ray surface brightness edge surrounding the core, which we show is consistent with a sloshing cold front. The plume is consistent with having formed due to uplift by a buoyantly rising radio bubble, now seen as the radio relic, and has properties consistent with buoyantly lifted plumes seen in other systems (e.g., M87). Alternatively, the plume may be a gas sloshing spiral viewed edge-on. Results from spectral analysis of the wing-like features are inconsistent with the previous suggestion that the wings formed due to the passage of a weak shock through the cool core. We instead conclude that the wings are due to X-ray cavities formed by displacement of X-ray gas by the radio relic. The central cD galaxy contains two small-scale cold gas clumps that are slightly offset from their optical and UV counterparts, suggestive of a galaxy-galaxy merger event. On larger scales, there is evidence for cluster substructure in both optical observations and the X-ray temperature map. We suggest that the Abell 133 cluster has recently undergone a merger event with an interloping subgroup, initialing gas sloshing in the core. The torus of sloshed gas is seen close to edge-on, leading to the somewhat ragged appearance of the elliptical surface brightness edge

  5. Shocks and Bubbles in a Deep Chandra Observation of the Cooling Flow Cluster Abell 2052

    DTIC Science & Technology

    2009-01-01

    the bubble rims related to radio source outbursts have been found in a few clusters including M87/ Virgo (Forman et al. 2005), Hydra A (Nulsen et al...Printed in the U.S.A. SHOCKS AND BUBBLES IN A DEEP CHANDRA OBSERVATION OF THE COOLING FLOW CLUSTER ABELL 2052 E. L. Blanton1, S. W. Randall2, E. M...Douglass1, C. L. Sarazin3, T. E. Clarke4,5, and B. R. McNamara2,6,7 1 Institute for Astrophysical Research , Boston University, 725 Commonwealth Avenue

  6. On the merging cluster Abell 578 and its central radio galaxy 4C+67.13

    DOE PAGES

    Hagino, K.; Stawarz, Ł.; Siemiginowska, A.; ...

    2015-05-26

    Here we analyze radio, optical, and X-ray data for the peculiar cluster Abell 578. This cluster is not fully relaxed and consists of two merging sub-systems. The brightest cluster galaxy (BCG), CGPG 0719.8+6704, is a pair of interacting ellipticals with projected separation ~10 kpc, the brighter of which hosts the radio source 4C+67.13. The Fanaroff–Riley type-II radio morphology of 4C+67.13 is unusual for central radio galaxies in local Abell clusters. Our new optical spectroscopy revealed that both nuclei of the CGPG 0719.8+6704 pair are active, albeit at low accretion rates corresponding to the Eddington ratiomore » $$\\sim {{10}^{-4}}$$ (for the estimated black hole masses of $$\\sim 3\\times {{10}^{8}}\\;{{M}_{\\odot }}$$ and $$\\sim {{10}^{9}}\\;{{M}_{\\odot }}$$). The gathered X-ray (Chandra) data allowed us to confirm and to quantify robustly the previously noted elongation of the gaseous atmosphere in the dominant sub-cluster, as well as a large spatial offset (~60 kpc projected) between the position of the BCG and the cluster center inferred from the modeling of the X-ray surface brightness distribution. Detailed analysis of the brightness profiles and temperature revealed also that the cluster gas in the vicinity of 4C+67.13 is compressed (by a factor of about ~1.4) and heated (from $$\\simeq 2.0$$ keV up to 2.7 keV), consistent with the presence of a weak shock (Mach number ~1.3) driven by the expanding jet cocoon. As a result, this would then require the jet kinetic power of the order of $$\\sim {{10}^{45}}$$ erg s –1, implying either a very high efficiency of the jet production for the current accretion rate, or a highly modulated jet/accretion activity in the system.« less

  7. See Change: Cosmology Analysis Update for the Supernova Cosmology Project High-z Cluster Supernova Survey

    NASA Astrophysics Data System (ADS)

    Hayden, Brian; Aldering, Gregory; Amanullah, Rahman; Barbary, Kyle; Bohringer, Hans; Boone, Kyle Robert; Brodwin, Mark; Cunha, Carlos; Currie, Miles; Deustua, Susana; Dixon, Samantha; Eisenhardt, Peter; Fassbender, Rene; Fruchter, Andrew; Gladders, Michael; Gonzalez, Anthony; Goobar, Ariel; Hildebrandt, Hendrik; Hilton, Matt; Hoekstra, Henk; Hook, Isobel; Huang, Xiaosheng; Huterer, Dragan; Jee, Myungkook James; Kim, Alex; Kowalski, Marek; Lidman, Chris; Linder, Eric; Luther, Kyle; Meyers, Joshua; Muzzin, Adam; Nordin, Jakob; Pain, Reynald; Perlmutter, Saul; Richard, Johan; Rosati, Piero; Rozo, Eduardo; Rubin, David; Ruiz-Lapuente, Pilar; Rykoff, Eli; Santos, Joana; Myers Saunders, Clare; Sofiatti, Caroline; Spadafora, Anthony L.; Stanford, Spencer; Stern, Daniel; Suzuki, Nao; Webb, Tracy; Wechsler, Risa; Williams, Steven; Willis, Jon; Wilson, Gillian; Yen, Mike

    2018-01-01

    The Supernova Cosmology Project has finished executing a large (174 orbits, cycles 22-23) Hubble Space Telescope program, which has measured ~30 type Ia Supernovae above z~1 in the highest-redshift, most massive galaxy clusters known to date. We present the status of the ongoing blinded cosmology analysis, demonstrating substantial improvement to the uncertainty on the Dark Energy density above z~1. Our extensive HST and ground-based campaign has already produced unique results; we have confirmed several of the highest redshift cluster members known to date, confirmed the redshift of one of the most massive galaxy clusters expected across the entire sky, and characterized one of the most extreme starburst environments yet known in a z~1.7 cluster. We have also discovered a lensed SN Ia at z=2.22 magnified by a factor of ~2.8, which is the highest spectroscopic redshift SN Ia currently known.

  8. Limit on graviton mass from galaxy cluster Abell 1689

    NASA Astrophysics Data System (ADS)

    Desai, Shantanu

    2018-02-01

    To date, the only limit on graviton mass using galaxy clusters was obtained by Goldhaber and Nieto in 1974, using the fact that the orbits of galaxy clusters are bound and closed, and extend up to 580 kpc. From positing that only a Newtonian potential gives rise to such stable bound orbits, a limit on the graviton mass m_g<10^{-29} eV was obtained (PRD 9,1119, 1974). Recently, it has been shown that one can obtain closed bound orbits for Yukawa potential (arXiv:1705.02444), thus invalidating the main ansatz used in Goldhaber and Nieto to obtain the graviton mass bound. In order to obtain a revised estimate using galaxy clusters, we use dynamical mass models of the Abell 1689 (A1689) galaxy cluster to check their compatibility with a Yukawa gravitational potential. We assume mass models for the gas, dark matter, and galaxies for A1689 from arXiv:1703.10219 and arXiv:1610.01543, who used this cluster to test various alternate gravity theories, which dispense with the need for dark matter. We quantify the deviations in the acceleration profile using these mass models assuming a Yukawa potential and that obtained assuming a Newtonian potential by calculating the χ^2 residuals between the two profiles. Our estimated bound on the graviton mass (m_g) is thereby given by, m_g < 1.37 × 10^{-29} eV or in terms of the graviton Compton wavelength of, λ_g>9.1 × 10^{19} km at 90% confidence level.

  9. The merging cluster Abell 1758: an optical and dynamical view

    NASA Astrophysics Data System (ADS)

    Monteiro-Oliveira, Rogerio; Serra Cypriano, Eduardo; Machado, Rubens; Lima Neto, Gastao B.

    2015-08-01

    The galaxy cluster Abell 1758-North (z=0.28) is a binary system composed by the sub-structures NW and NE. This is supposed to be a post-merging cluster due to observed detachment between the NE BCG and the respective X-ray emitting hot gas clump in a scenario very close to the famous Bullet Cluster. On the other hand, the projected position of the NW BCG coincides with the local hot gas peak. This system was been targeted previously by several studies, using multiple wavelengths and techniques, but there is still no clear picture of the scenario that could have caused this unusual configuration. To help solving this complex puzzle we added some pieces: firstly, we have used deep B, RC and z' Subaru images to perform both weak lensing shear and magnification analysis of A1758 (including here the South component that is not in interaction with A1758-North) modeling each sub-clump as an NFW profile in order to constrain masses and its center positions through MCMC methods; the second piece is the dynamical analysis using radial velocities available in the literature (143) plus new Gemini-GMOS/N measurements (68 new redshifts).From weak lensing we found that independent shear and magnification mass determinations are in excellent agreement between them and combining both we could reduce mass error bar by ~30% compared to shear alone. By combining this two weak-lensing probes we found that the position of both Northern BCGs are consistent with the masses centers within 2σ and and the NE hot gas peak to be offseted of the respective mass peak (M200=5.5 X 1014 M⊙) with very high significance. The most massive structure is NW (M200=7.95 X 1014 M⊙ ) where we observed no detachment between gas, DM and BCG.We have calculated a low line-of-sight velocity difference (<300 km/s) between A1758 NW and NE. We have combined it with the projected velocity of 1600 km/s which was estimated by previous X-ray analysis (David & Kempner 2004) and we have obtained a small angle between

  10. Three Gravitationally Lensed Supernovae Behind Clash Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Patel, Brandon; McCully, Curtis; Jha, Saurbh W.; Rodney, Steven A.; Jones, David O.; Graur, Or; Merten, Julian; Zitrin, Adi; Riess, Adam G.; Matheson, Thomas; hide

    2014-01-01

    We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and A383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was approx. 1.0 +/- 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is approx. 0.2 +/- 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak-lensing maps of the clusters (in magnitude units, 2.5 log10 µ): 0.83 +/- 0.16 mag for SN CLO12Car, 0.28 +/- 0.08 mag for SN CLN12Did, and 0.43 +/- 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.

  11. THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Postman, Marc; Coe, Dan; Bradley, Larry

    2012-04-01

    The Cluster Lensing And Supernova survey with Hubble (CLASH) is a 524-orbit Multi-Cycle Treasury Program to use the gravitational lensing properties of 25 galaxy clusters to accurately constrain their mass distributions. The survey, described in detail in this paper, will definitively establish the degree of concentration of dark matter in the cluster cores, a key prediction of structure formation models. The CLASH cluster sample is larger and less biased than current samples of space-based imaging studies of clusters to similar depth, as we have minimized lensing-based selection that favors systems with overly dense cores. Specifically, 20 CLASH clusters are solelymore » X-ray selected. The X-ray-selected clusters are massive (kT > 5 keV) and, in most cases, dynamically relaxed. Five additional clusters are included for their lensing strength ({theta}{sub Ein} > 35'' at z{sub s} = 2) to optimize the likelihood of finding highly magnified high-z (z > 7) galaxies. A total of 16 broadband filters, spanning the near-UV to near-IR, are employed for each 20-orbit campaign on each cluster. These data are used to measure precise ({sigma}{sub z} {approx} 0.02(1 + z)) photometric redshifts for newly discovered arcs. Observations of each cluster are spread over eight epochs to enable a search for Type Ia supernovae at z > 1 to improve constraints on the time dependence of the dark energy equation of state and the evolution of supernovae. We present newly re-derived X-ray luminosities, temperatures, and Fe abundances for the CLASH clusters as well as a representative source list for MACS1149.6+2223 (z 0.544).« less

  12. VizieR Online Data Catalog: Abell 315 spectroscopic dataset (Biviano+, 2017)

    NASA Astrophysics Data System (ADS)

    Biviano, A.; Popesso, P.; Dietrich, J. P.; Zhang, Y.-Y.; Erfanianfar, G.; Romaniello, M.; Sartoris, B.

    2017-03-01

    Abell 315 was observed at the European Southern Observatory (ESO) Very Large Telescope (VLT) with the VIsible MultiObject Spectrograph (VIMOS). The VIMOS data were acquired using 8 separate pointings, plus 2 additional pointings required to provide the needed redundancy within the central region and to cover the gaps between the VIMOS quadrants. Catalog of galaxies with redshifts in the region of the cluster Abell 315, with flags indicating whether these galaxies are members of the cluster, members of substructures within the cluster, and with probabilities for the cluster members to belong to the main cluster structure. (1 data file).

  13. Metallicity Gradients in the Intracluster Gas of Abell 496

    NASA Astrophysics Data System (ADS)

    Dupke, Renato A.; White, Raymond E., III

    2000-07-01

    Analysis of spatially resolved ASCA spectra of the intracluster gas in Abell 496 confirms there are mild metal abundance enhancements near the center, as previously found in a joint analysis of spectra from Ginga Large Area Counter and Einstein solid state spectrometer. Simultaneous analysis of spectra from all ASCA instruments (SIS+GIS) shows that the iron abundance is 0.36+/-0.03 solar 3'-12' from the center of the cluster and rises ~50% to 0.53+/-0.04 solar within the central 2'. The F-test shows that this abundance gradient is significant at the more than 99.99% level. Nickel and sulfur abundances are also centrally enhanced. We use a variety of elemental abundance ratios to assess the relative contribution of Type Ia supernovae (SNe Ia) and Type II supernovae (SNe II) to the metal enrichment of the intracluster gas. We find spatial gradients in several abundance ratios, indicating that the fraction of iron from SNe Ia increases toward the cluster center, with SNe Ia accounting for ~50% of the iron mass 3'-12' from the center and ~70% within 2'. The increased proportion of SN Ia ejecta at the center is such that the central iron abundance enhancement can be attributed wholly to SNe Ia; we find no significant gradient in SN II ejecta. These spatial gradients in the proportion of SN Ia/II ejecta imply that the dominant metal enrichment mechanism near the center is different than in the outer parts of the cluster. We show that the central abundance enhancement is unlikely to be due to ram pressure stripping of gas from cluster galaxies or to secularly accumulated stellar mass loss within the central cD. We suggest that the additional SN Ia ejecta near the center is the vestige of a secondary SN Ia-driven wind from the cD (following a more energetic protogalactic SN II-driven wind phase), which was partially smothered in the cD due to its location at the cluster center.

  14. Dynamical history of a binary cluster: Abell 3653

    NASA Astrophysics Data System (ADS)

    Caglar, Turgay; Hudaverdi, Murat

    2017-12-01

    We study the dynamical structure of a bimodal galaxy cluster Abell 3653 at z = 0.1089 using optical and X-ray data. Observations include archival data from the Anglo-Australian Telescope, X-ray observatories XMM-Newton and Chandra. We draw a global picture for A3653 using galaxy density, X-ray luminosity and temperature maps. The galaxy distribution has a regular morphological shape at the 3 Mpc size. The galaxy density map shows an elongation in the east-west direction, which perfectly aligns with the extended diffuse X-ray emission. We detect two dominant groups around the two brightest cluster galaxies (BCGs). BCG1 (z = 0.1099) can be associated with the main cluster A3653E, and a foreground subcluster A3653W is concentrated at BCG2 (z = 0.1075). Both X-ray peaks are dislocated from the BCGs by ∼35 kpc, which suggest an ongoing merger process. We measure the subcluster gas temperatures of 4.67 and 3.66 keV, respectively. Two-body dynamical analysis shows that A3653E and A3653W are very likely gravitationally bound (93.5 per cent probability). The highly favoured scenario suggests that the two subclusters have a mass ratio of 1.4 and are colliding close to the plane of sky (α = 17.61°) at 2400 km s-1, and will undergo core passage in 380 Myr. The temperature map also significantly shows a shock-heated gas (6.16 keV) between the subclusters, which confirms the supersonic infalling scenario.

  15. ASCA observations of distant clusters of galaxies.

    NASA Astrophysics Data System (ADS)

    Tsuru, T.; Koyama, K.; Hughes, J. P.; Arimoto, N.; Kii, T.; Hattori, M.

    It is important not only in studies of clusters of galaxies but also in cosmological aspects to investigate the evolution of X-ray properties of clusters of galaxies. ASCA enables detailed spectral studies on distant clusters and the evolution of temperature for the first time. The authors present here "preliminary" results of ASCA observation of 17 distant (z = 0.14 - 0.55) clusters of galaxies. The sample includes: Cl0016+16 Abell 370, Abell 1995, Abell 959, ACGG 118, Zw 3136, EMSS 1305.4+2941, Abell 1851, Abell 963, Abell 2163, EMSS 0839.8+2938, Abell 665, Abell 1689, Abell 2218, Abell 586, Abell 1413, Abell 1895. The cosmological constants of H0 = 50 km/s/Mpc and q0 = 0.5 are adopted in this paper.

  16. The Hubble Space Telescope Cluster Supernova Survey. II. The Type la Supernova rate in high-redshift galaxy clusters

    DOE PAGES

    Barbary, K.; Aldering, G.; Amanullah, R.; ...

    2011-12-28

    Here we report a measurement of the Type Ia supernova (SN Ia) rate in galaxy clusters at 0.9 < z < 1.46 from the Hubble Space Telescope Cluster Supernova Survey. This is the first cluster SN Ia rate measurement with detected z > 0.9 SNe. Finding 8 ± 1 cluster SNe Ia, we determine an SN Ia rate of 0.50 +0.23 -0.19 (stat) +0.10 -0.09 (sys) h 2 70 SNuB (SNuB ≡ 10 -12 SNe L -1 ⊙,B yr -1). In units of stellar mass, this translates to 0.36 + 0.16 -0.13 (stat) +0.07 -0.06 (sys) h 2 70 SNuMmore » (SNuM ≡ 10 -12 SNe M –1 ⊙ yr –1). This represents a factor of ≈ 5 ± 2 increase over measurements of the cluster rate at z < 0.2. We parameterize the late-time SN Ia delay time distribution (DTD) with a power law: Ψ(t)∝t s . Under the approximation of a single-burst cluster formation redshift of zf = 3, our rate measurement in combination with lower-redshift cluster SN Ia rates constrains s = –1.41 +0.47 –0.40, consistent with measurements of the DTD in the field. This measurement is generally consistent with expectations for the "double degenerate" scenario and inconsistent with some models for the "single degenerate" scenario predicting a steeper DTD at large delay times. We check for environmental dependence and the influence of younger stellar populations by calculating the rate specifically in cluster red-sequence galaxies and in morphologically early-type galaxies, finding results similar to the full cluster rate. Finally, the upper limit of one hostless cluster SN Ia detected in the survey implies that the fraction of stars in the intra-cluster medium is less than 0.47 (95% confidence), consistent with measurements at lower redshifts.« less

  17. Dynamics of cD clusters of galaxies. II: Analysis of seven Abell clusters

    NASA Technical Reports Server (NTRS)

    Oegerle, William R.; Hill, John M.

    1994-01-01

    We have investigated the dynamics of the seven Abell clusters A193, A399, A401, A1795, A1809, A2063, and A2124, based on redshift data reported previously by us (Hill & Oegerle, (1993)). These papers present the initial results of a survey of cD cluster kinematics, with an emphasis on studying the nature of peculiar velocity cD galaxies and their parent clusters. In the current sample, we find no evidence for significant peculiar cD velocities, with respect to the global velocity distribution. However, the cD in A2063 has a significant (3 sigma) peculiar velocity with respect to galaxies in the inner 1.5 Mpc/h, which is likely due to the merger of a subcluster with A2063. We also find significant evidence for subclustering in A1795, and a marginally peculiar cD velocity with respect to galaxies within approximately 200 kpc/h of the cD. The available x-ray, optical, and galaxy redshift data strongly suggest that a subcluster has merged with A1795. We propose that the subclusters which merged with A1795 and A2063 were relatively small, with shallow potential wells, so that the cooling flows in these clusters were not disrupted. Two-body gravitational models of the A399/401 and A2063/MKW3S systems indicate that A399/401 is a bound pair with a total virial mass of approximately 4 x 10(exp 15) solar mass/h, while A2063 and MKW3S are very unlikely to be bound.

  18. On the Merging Cluster Abell 578 and Its Central Radio Galaxy 4C+67.13

    NASA Astrophysics Data System (ADS)

    Hagino, K.; Stawarz, Ł.; Siemiginowska, A.; Cheung, C. C.; Kozieł-Wierzbowska, D.; Szostek, A.; Madejski, G.; Harris, D. E.; Simionescu, A.; Takahashi, T.

    2015-06-01

    Here we analyze radio, optical, and X-ray data for the peculiar cluster Abell 578. This cluster is not fully relaxed and consists of two merging sub-systems. The brightest cluster galaxy (BCG), CGPG 0719.8+6704, is a pair of interacting ellipticals with projected separation ˜10 kpc, the brighter of which hosts the radio source 4C+67.13. The Fanaroff-Riley type-II radio morphology of 4C+67.13 is unusual for central radio galaxies in local Abell clusters. Our new optical spectroscopy revealed that both nuclei of the CGPG 0719.8+6704 pair are active, albeit at low accretion rates corresponding to the Eddington ratio ˜ {{10}-4} (for the estimated black hole masses of ˜ 3× {{10}8} {{M}⊙ } and ˜ {{10}9} {{M}⊙ }). The gathered X-ray (Chandra) data allowed us to confirm and to quantify robustly the previously noted elongation of the gaseous atmosphere in the dominant sub-cluster, as well as a large spatial offset (˜60 kpc projected) between the position of the BCG and the cluster center inferred from the modeling of the X-ray surface brightness distribution. Detailed analysis of the brightness profiles and temperature revealed also that the cluster gas in the vicinity of 4C+67.13 is compressed (by a factor of about ˜1.4) and heated (from ≃ 2.0 keV up to 2.7 keV), consistent with the presence of a weak shock (Mach number ˜1.3) driven by the expanding jet cocoon. This would then require the jet kinetic power of the order of ˜ {{10}45} erg s-1, implying either a very high efficiency of the jet production for the current accretion rate, or a highly modulated jet/accretion activity in the system. Based on service observations made with the WHT operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  19. Evolution of the UV upturn in cluster galaxies: Abell 1689

    NASA Astrophysics Data System (ADS)

    Ali, S. S.; Bremer, M. N.; Phillipps, S.; De Propris, R.

    2018-05-01

    We have measured the strength of the UV upturn for red sequence galaxies in the Abell 1689 cluster at z = 0.18, reaching to or below the L* level and therefore probing the general evolution of the upturn phenomenon. We find that the range of UV upturn strengths in the population as a whole has not declined over the past 2.2 Gyrs. This is consistent with a model where hot horizontal branch stars, produced by a Helium-enriched population, provide the required UV flux. Based on local counterparts, this interpretation of the result implies Helium abundances of at least 1.5 times the primordial value for this HB population, along with high formation and assembly redshifts for the galaxies and at least a subset of their stellar populations.

  20. Astrophysics. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens.

    PubMed

    Kelly, Patrick L; Rodney, Steven A; Treu, Tommaso; Foley, Ryan J; Brammer, Gabriel; Schmidt, Kasper B; Zitrin, Adi; Sonnenfeld, Alessandro; Strolger, Louis-Gregory; Graur, Or; Filippenko, Alexei V; Jha, Saurabh W; Riess, Adam G; Bradac, Marusa; Weiner, Benjamin J; Scolnic, Daniel; Malkan, Matthew A; von der Linden, Anja; Trenti, Michele; Hjorth, Jens; Gavazzi, Raphael; Fontana, Adriano; Merten, Julian C; McCully, Curtis; Jones, Tucker; Postman, Marc; Dressler, Alan; Patel, Brandon; Cenko, S Bradley; Graham, Melissa L; Tucker, Bradley E

    2015-03-06

    In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster's gravitational potential also creates multiple images of the z = 1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses. Copyright © 2015, American Association for the Advancement of Science.

  1. Three gravitationally lensed supernovae behind clash galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Brandon; McCully, Curtis; Jha, Saurabh W.

    2014-05-01

    We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and A383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive.more » Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was ∼1.0 ± 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is ∼0.2 ± 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak-lensing maps of the clusters (in magnitude units, 2.5 log{sub 10}μ): 0.83 ± 0.16 mag for SN CLO12Car, 0.28 ± 0.08 mag for SN CLN12Did, and 0.43 ± 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.« less

  2. X-ray constraints on the shape of the dark matter in five Abell clusters

    NASA Technical Reports Server (NTRS)

    Buote, David A.; Canizares, Claude R.

    1992-01-01

    X-ray observations obtained with the Einstein Observatory are used to constrain the shape of the dark matter in the inner regions of Abell clusters A401, A426, A1656, A2029, and A2199, each of which exhibits highly flattened optical isopleths. The dark matter is modeled as an ellipsoid with a mass density of about r exp -2. The possible shapes of the dark matter is constrained by comparing these model isophotes to the image isophotes. The X-ray isophotes, and therefore the gravitational potentials, have ellipticities of about 0.1-0.2. The dark matter within the central 1 Mpc is found to be substantially rounder for all the clusters. It is concluded that the shape of the galaxy distributions in these clusters traces neither the gravitational potential nor the gravitating matter.

  3. UV Observations of the Galaxy Cluster Abell 1795 with the Optical Monitor on XMM-Newton

    NASA Technical Reports Server (NTRS)

    Mittaz, J. P. D.; Kaastra, J. S.; Tamura, T.; Fabian, A. C.; Mushotzky, F.; Peterson, J. R.; Ikebe, Y.; Lumb, D. H.; Paerels, F.; Stewart, G.

    2000-01-01

    We present the results of an analysis of broad band UV observations of the central regions of Abell 1795 observed with the optical monitor on XMM-Newton. As have been found with other UV observations of the central regions of clusters of galaxies, we find evidence for star formation. However, we also find evidence for absorption in the cD galaxy on a more extended scale than has been seen with optical imaging. We also report the first UV observation of part of the filamentary structure seen in H-alpha, X-rays and very deep U band imaging. The part of the filament we see is very blue with UV colours consistent with a very early (O/B) stellar population. This is the first direct evidence of a dominant population of early type stars at the centre of Abell 1795 and implies very recent star formation. The relationship of this emission to emission at other wavebands is discussed.

  4. On the X-ray spectrum of the volume emissivity arising from Abell clusters

    NASA Technical Reports Server (NTRS)

    Stottlemyer, A. R.; Boldt, E. A.

    1984-01-01

    HEAO 1 A-2 X-ray spectra (2-15 keV) for an optically selected sample of Abell clusters of galaxies with z less than 0.1 have been analyzed to determine the energy dependence of the cosmological X-ray volume emissivity arising from such clusters. This spectrum is well fitted by an isothermal-bremsstrahlung model with kT = 7.4 + or - 1.5 KeV. This result is a test of the isothermal-volume-emissivity spectrum to be inferred from the conjecture that all contributing clusters may be characterized by kT = 7 keV, as assumed by McKee et al. (1980) in estimating the underlying luminosity function for the same sample. Although satisfied at the statistical level indicated, the analysis of a low-luminosity subsample suggests that this assumption of identical isothermal spectra would lead to a systematic error for a more statistically precise determination of the luminosity function's form.

  5. The near-infrared Tully-Fisher relation - A preliminary study of the Coma and Abell 400 clusters

    NASA Technical Reports Server (NTRS)

    Guhathakurta, Puragra; Bernstein, Gary; Raychaudhury, Somak; Haynes, Martha; Giovanelli, Riccardo; Herter, Terry; Vogt, Nicole

    1993-01-01

    We have started a large project to study the NIR Tully-Fisher (TF) relation using H- and I-band surface photometry of spiral galaxies. A preliminary study of 20 spirals in the Coma and Abell 400 clusters is presented. The NIR images have been used to derive accurate inclinations and total magnitudes, and rotational linewidths are measured from high-quality 21-cm Arecibo data. The scatter in the Coma TF plot is found to be 0.19 mag in the H band and 0.20 mag in the I band for a set of 13 galaxies, if we assume that they are all at the same distance. The deviation of the Coma galaxies from the best-fit Tully-Fisher relation is correlated with their redshift, indicating that some of the galaxies are not bound to the cluster. Indeed, if we treat all the galaxies in the Coma sample as undergoing free Hubble expansion, the TF scatter drops to 0.12 and 0.13 mag for the H- and I-band datasets, respectively. The Abell 400 sample is best fit by a common distance model, yielding a scatter of 0.12 mag for seven galaxies in H using a fixed TF slope. We are in the process of studying cluster and field spirals out to about 10,000 km/s in order to calibrate the NIR TF relation and will apply it to more nearby galaxies to measure the peculiar velocity field in the local universe.

  6. A compilation of redshifts and velocity dispersions for Abell clusters (Struble and Rood 1987): Documentation for the machine-readable version

    NASA Technical Reports Server (NTRS)

    Warren, Wayne H., Jr.

    1989-01-01

    The machine readable version of the compilation, as it is currently being distributed from the Astronomical Data Center, is described. The catalog contains redshifts and velocity dispersions for all Abell clusters for which these data had been published up to 1986 July. Also included are 1950 equatorial coordinates for the centers of the listed clusters, numbers of observations used to determine the redshifts, and bibliographical references citing the data sources.

  7. Regulation of the X-ray luminosity of clusters of galaxies by cooling and supernova feedback.

    PubMed

    Voit, G M; Bryan, G L

    2001-11-22

    Clusters of galaxies are thought to contain about ten times as much dark matter as baryonic matter. The dark component therefore dominates the gravitational potential of a cluster, and the baryons confined by this potential radiate X-rays with a luminosity that depends mainly on the gas density in the cluster's core. Predictions of the X-rays' properties based on models of cluster formation do not, however, agree with the observations. If the models ignore the condensation of cooling gas into stars and feedback from the associated supernovae, they overestimate the X-ray luminosity because the density of the core gas is too high. An early episode of uniformly distributed supernova feedback could rectify this by heating the uncondensed gas and therefore making it harder to compress into the core, but such a process seems to require an implausibly large number of supernovae. Here we show how radiative cooling of intergalactic gas and subsequent supernova heating conspire to eliminate highly compressible low-entropy gas from the intracluster medium. This brings the core entropy and X-ray luminosities of clusters into agreement with the observations, in a way that depends little on the efficiency of supernova heating in the early Universe.

  8. High energy neutrinos and gamma-ray emission from supernovae in compact star clusters

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Ellison, D. C.; Gladilin, P. E.; Osipov, S. M.

    2017-01-01

    Compact clusters of young massive stars are observed in the Milky Way and in starburst galaxies. The compact clusters with multiple powerful winds of young massive stars and supernova shocks are favorable sites for high-energy particle acceleration. We argue that expanding young supernova (SN) shells in compact stellar clusters can be very efficient PeV CR accelerators. At a stage when a supernova shock is colliding with collective fast winds from massive stars in a compact cluster the Fermi mechanism allows particle acceleration to energies well above the standard limits of diffusive shock acceleration in an isolated SNR. The energy spectrum of protons in such an accelerator is a hard power-law with a broad spectral upturn above TeV before a break at multi-PeV energies, providing a large energy flux in the high-energy end of the spectrum. The acceleration stage in the colliding shock flow lasts for a few hundred years after the supernova explosion producing high-energy CRs that escape the accelerator and diffuse through the ambient matter producing γ-rays and neutrinos in inelastic nuclear collisions. In starburst galaxies a sizeable fraction of core collapse supernovae is expected to occur in compact star clusters and therefore their high energy gamma-ray and neutrino spectra in the PeV energy regime may differ strongly from that of our Galaxy. To test the model with individual sources we briefly discuss the recent H.E.S.S. detections of gamma-rays from two potential candidate sources, Westerlund 1 and HESS J1806-204 in the Milky Way. We argue that this model of compact star clusters, with typical parameters, could produce a neutrino flux sufficient to explain a fraction of the recently detected IceCube South Pole Observatory neutrinos.

  9. Uncertainties in the cluster-cluster correlation function

    NASA Astrophysics Data System (ADS)

    Ling, E. N.; Frenk, C. S.; Barrow, J. D.

    1986-12-01

    The bootstrap resampling technique is applied to estimate sampling errors and significance levels of the two-point correlation functions determined for a subset of the CfA redshift survey of galaxies and a redshift sample of 104 Abell clusters. The angular correlation function for a sample of 1664 Abell clusters is also calculated. The standard errors in xi(r) for the Abell data are found to be considerably larger than quoted 'Poisson errors'. The best estimate for the ratio of the correlation length of Abell clusters (richness class R greater than or equal to 1, distance class D less than or equal to 4) to that of CfA galaxies is 4.2 + 1.4 or - 1.0 (68 percentile error). The enhancement of cluster clustering over galaxy clustering is statistically significant in the presence of resampling errors. The uncertainties found do not include the effects of possible systematic biases in the galaxy and cluster catalogs and could be regarded as lower bounds on the true uncertainty range.

  10. A Statistical Study of Multiply Imaged Systems in the Lensing Cluster Abell 68

    NASA Astrophysics Data System (ADS)

    Richard, Johan; Kneib, Jean-Paul; Jullo, Eric; Covone, Giovanni; Limousin, Marceau; Ellis, Richard; Stark, Daniel; Bundy, Kevin; Czoske, Oliver; Ebeling, Harald; Soucail, Geneviève

    2007-06-01

    We have carried out an extensive spectroscopic survey with the Keck and VLT telescopes, targeting lensed galaxies in the background of the massive cluster Abell 68. Spectroscopic measurements are obtained for 26 lensed images, including a distant galaxy at z=5.4. Redshifts have been determined for 5 out of 7 multiple-image systems. Through a careful modeling of the mass distribution in the strongly lensed regime, we derive a mass estimate of 5.3×1014 Msolar within 500 kpc. Our mass model is then used to constrain the redshift distribution of the remaining multiply imaged and singly imaged sources. This enables us to examine the physical properties for a subsample of 7 Lyα emitters at 1.7<~z<~5.5, whose unlensed luminosities of ~=1041 ergs s-1 are fainter than similar objects found in blank fields. Of particular interest is an extended Lyα emission region surrounding a highly magnified source at z=2.6, detected in VIMOS integral field spectroscopy data. The physical scale of the most distant lensed source at z=5.4 is very small (<300 pc), similar to the lensed z~5.6 emitter reported by Ellis et al. in Abell 2218. New photometric data available for Abell 2218 allow for a direct comparison between these two unique objects. Our survey illustrates the practicality of using lensing clusters to probe the faint end of the z~2-5 Lyα luminosity function in a manner that is complementary to blank-field narrowband surveys. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Also based on observations collected at the Very Large Telescope (Antu/UT1 and Melipal/UT3), European Southern Observatory, Paranal, Chile (ESO programs 070.A-0643 and 073.A-0774), the NASA/ESA Hubble Space Telescope

  11. Mapping the Dark Matter Distribution of the Merging Galaxy Cluster Abell 115

    NASA Astrophysics Data System (ADS)

    Kim, Mincheol; Jee, Myungkook James; Forman, William; Golovich, Nathan; van Weeren, Reinout

    2018-01-01

    The colliding galaxy cluster Abell 115 shows a number of clear merging features including radio relics, double X-ray peaks, and offsets between the cluster member galaxies and the X-ray distributions. In order to constrain the merging scenario of this complex system, it is critical to know where the dark matter is. We present a high-fidelity weak-lensing analysis of the system using a state-of-the-art method that robustly models the detailed PSF variations. Our mass reconstruction reveals two distinct mass peaks. Through a careful bootstrapping analysis, we demonstrate that the positions of these two mass peaks are highly consistent with those of the cluster galaxies, although the comparison with the X-ray emission shows that the mass peaks lead the X-ray peaks. We obtain the first weak-lensing mass of each subcluster by simultaneously fitting two NFW profiles, as well as the total mass of the system. Interestingly, the total mass is a few factors lower than the published dynamical mass based on velocity dispersion. This large mass discrepancy may be attributed to a significant disruption of the cluster galaxy orbits due to the violent merger. Our preliminary analysis indicates that the two subclusters might have experienced a first off-axis collision a few Gyrs ago and might be now returning for a second collision.

  12. Hierarchical Velocity Structure in the Core of Abell 2597

    NASA Technical Reports Server (NTRS)

    Still, Martin; Mushotzky, Richard

    2004-01-01

    We present XMM-Newton RGS and EPIC data of the putative cooling flow cluster Abell 2597. Velocities of the low-ionization emission lines in the spectrum are blue shifted with respect to the high-ionization lines by 1320 (sup +660) (sub -210) kilometers per second, which is consistent with the difference in the two peaks of the galaxy velocity distribution and may be the signature of bulk turbulence, infall, rotation or damped oscillation in the cluster. A hierarchical velocity structure such as this could be the direct result of galaxy mergers in the cluster core, or the injection of power into the cluster gas from a central engine. The uniform X-ray morphology of the cluster, the absence of fine scale temperature structure and the random distribution of the the galaxy positions, independent of velocity, suggests that our line of sight is close to the direction of motion. These results have strong implications for cooling flow models of the cluster Abell 2597. They give impetus to those models which account for the observed temperature structure of some clusters using mergers instead of cooling flows.

  13. Non-thermal pressure in the outskirts of Abell 2142

    NASA Astrophysics Data System (ADS)

    Fusco-Femiano, Roberto; Lapi, Andrea

    2018-03-01

    Clumping and turbulence are expected to affect the matter accreted on to the outskirts of galaxy clusters. To determine their impact on the thermodynamic properties of Abell 2142, we perform an analysis of the X-ray temperature data from XMM-Newton via our SuperModel, a state-of-the-art tool for investigating the astrophysics of the intracluster medium already tested on many individual clusters (since Cavaliere, Lapi & Fusco-Femiano 2009). Using the gas density profile corrected for clumpiness derived by Tchernin et al. (2016), we find evidence for the presence of a non-thermal pressure component required to sustain gravity in the cluster outskirts of Abell 2142, that amounts to about 30 per cent of the total pressure at the virial radius. The presence of the non-thermal component implies the gas fraction to be consistent with the universal value at the virial radius and the electron thermal pressure profile to be in good agreement with that inferred from the SZ data. Our results indicate that the presence of gas clumping and of a non-thermal pressure component are both necessary to recover the observed physical properties in the cluster outskirts. Moreover, we stress that an alternative method often exploited in the literature (included Abell 2142) to determine the temperature profile kBT = Pe/ne basing on a combination of the Sunyaev-Zel'dovich (SZ) pressure Pe and of the X-ray electron density ne does not allow us to highlight the presence of non-thermal pressure support in the cluster outskirts.

  14. Can standard cosmological models explain the observed Abell cluster bulk flow?

    NASA Technical Reports Server (NTRS)

    Strauss, Michael A.; Cen, Renyue; Ostriker, Jeremiah P.; Laure, Tod R.; Postman, Marc

    1995-01-01

    Lauer and Postman (LP) observed that all Abell clusters with redshifts less than 15,000 km/s appear to be participating in a bulk flow of 689 km/s with respect to the cosmic microwave background. We find this result difficult to reconcile with all popular models for large-scale structure formation that assume Gaussian initial conditions. This conclusion is based on Monte Carlo realizations of the LP data, drawn from large particle-mesh N-body simulations for six different models of the initial power spectrum (standard, tilted, and Omega(sub 0) = 0.3 cold dark matter, and two variants of the primordial baryon isocurvature model). We have taken special care to treat properly the longest-wavelength components of the power spectra. The simulations are sampled, 'observed,' and analyzed as identically as possible to the LP cluster sample. Large-scale bulk flows as measured from clusters in the simulations are in excellent agreement with those measured from the grid: the clusters do not exhibit any strong velocity bias on large scales. Bulk flows with amplitude as large as that reported by LP are not uncommon in the Monte Carlo data stes; the distribution of measured bulk flows before error bias subtraction is rougly Maxwellian, with a peak around 400 km/s. However the chi squared of the observed bulk flow, taking into account the anisotropy of the error ellipsoid, is much more difficult to match in the simulations. The models examined are ruled out at confidence levels between 94% and 98%.

  15. Radio observations of the double-relic galaxy cluster Abell 1240

    NASA Astrophysics Data System (ADS)

    Hoang, D. N.; Shimwell, T. W.; van Weeren, R. J.; Intema, H. T.; Röttgering, H. J. A.; Andrade-Santos, F.; Akamatsu, H.; Bonafede, A.; Brunetti, G.; Dawson, W. A.; Golovich, N.; Best, P. N.; Botteon, A.; Brüggen, M.; Cassano, R.; de Gasperin, F.; Hoeft, M.; Stroe, A.; White, G. J.

    2018-05-01

    We present LOFAR 120 - 168 MHz images of the merging galaxy cluster Abell 1240 that hosts double radio relics. In combination with the GMRT 595 - 629 MHz and VLA 2 - 4 GHz data, we characterised the spectral and polarimetric properties of the radio emission. The spectral indices for the relics steepen from their outer edges towards the cluster centre and the electric field vectors are approximately perpendicular to the major axes of the relics. The results are consistent with the picture that these relics trace large-scale shocks propagating outwards during the merger. Assuming diffusive shock acceleration (DSA), we obtain shock Mach numbers of M=2.4 and 2.3 for the northern and southern shocks, respectively. For M≲ 3 shocks, a pre-existing population of mildly relativistic electrons is required to explain the brightness of the relics due to the high (>10 per cent) particle acceleration efficiency required. However, for M≳ 4 shocks the required efficiency is ≳ 1% and ≳ 0.5%, respectively, which is low enough for shock acceleration directly from the thermal pool. We used the fractional polarization to constrain the viewing angle to ≥53 ± 3° and ≥39 ± 5° for the northern and southern shocks, respectively. We found no evidence for diffuse emission in the cluster central region. If the halo spans the entire region between the relics (˜1.8 Mpc) our upper limit on the power is P1.4GHz = (1.4 ± 0.6) × 1023 W Hz-1 which is approximately equal to the anticipated flux from a cluster of this mass. However, if the halo is smaller than this, our constraints on the power imply that the halo is underluminous.

  16. Diffuse X-ray emission from Abell clusters 401 and 399 - A gravitationally bound system

    NASA Technical Reports Server (NTRS)

    Ulmer, M. P.; Kinzer, R.; Cruddace, R. G.; Wood, K.; Evans, W.; Byram, E. T.; Chubb, T. A.; Friedman, H.

    1979-01-01

    The X-ray emission from the Abell 401-399 region has been studied using data obtained by the A-1 proportional counter aboard HEAO 1 in two different ways. The first involved routine scanning of the region during the all-sky survey, and the second was an observation in which the instrument was pointed at A401 during a lunar occultation. The emission is shown to be unusually extended and to be centered on a point lying between A401 and A399. The best fit of a uniform disk model to the data yielded a radius of 25.5 + or -4.4 arcmin for the lunar occultation and 42 + or - 17 arcmin for the scans. A possible explanation of the results is that A401 and A399 are both diffuse cluster X-ray sources. Alternatively, the emission may come from a large gas cloud of at least 10 to the 15th solar masses enveloping both clusters.

  17. Abell 1763: A Giant Gas Sloshing Spiral But No Cool Core

    NASA Astrophysics Data System (ADS)

    Douglass, Edmund

    2017-09-01

    We propose a 76 ksec observation of the z=0.23 galaxy cluster Abell 1763. Previous Chandra data reveals the system as host to a large 950 kpc gas sloshing spiral. Atypical of spiral-hosting clusters, an intact cool core is not detected. Its absence suggests the interaction has led to significant disruption since the onset of core sloshing. The primary cluster is accompanied by two X-ray emitting subsystems. Given the orientation of the spiral, both systems are strong candidates for being the perturber responsible for its formation. Abell 1763 provides us with the rare opportunity to examine an infall event (primary + perturber) resulting in sloshing to the point of core disintegration. Detailed analysis will be performed on the disrupted core, the spiral, and the perturber candidates.

  18. Resolution of the apparent discrepancy between the number of massive subhaloes in Abell 2744 and ΛCDM

    NASA Astrophysics Data System (ADS)

    Mao, Tian-Xiang; Wang, Jie; Frenk, Carlos S.; Gao, Liang; Li, Ran; Wang, Qiao; Cao, Xiaoyue; Li, Ming

    2018-07-01

    Schwinn et al. have recently compared the abundance and distribution of massive substructures identified in a gravitational lensing analysis of Abell 2744 by Jauzac et al. and N-body simulation, and found no cluster in Lambda cold dark matter (ΛCDM) simulation that is similar to Abell 2744. Schwinn et al. identified the measured projected aperture masses with the actual masses associated with subhaloes in the Millenium XXL N-body simulation. We have used the high-resolution Phoenix cluster simulations to show that such an identification is incorrect: the aperture mass is dominated by mass in the body of the cluster that happens to be projected along the line of sight to the subhalo. This enhancement varies from factors of a few to factors of more than 100, particularly for subhaloes projected near the centre of the cluster. We calculate aperture masses for subhaloes in our simulation and compare them to the measurements for Abell 2744. We find that the data for Abell 2744 are in excellent agreement with the matched predictions from ΛCDM. We provide further predictions for aperture mass functions of subhaloes in idealized surveys with varying mass detection thresholds.

  19. Enhanced momentum feedback from clustered supernovae

    NASA Astrophysics Data System (ADS)

    Gentry, Eric S.; Krumholz, Mark R.; Dekel, Avishai; Madau, Piero

    2017-02-01

    Young stars typically form in star clusters, so the supernovae (SNe) they produce are clustered in space and time. This clustering of SNe may alter the momentum per SN deposited in the interstellar medium (ISM) by affecting the local ISM density, which in turn affects the cooling rate. We study the effect of multiple SNe using idealized 1D hydrodynamic simulations which explore a large parameter space of the number of SNe, and the background gas density and metallicity. The results are provided as a table and an analytic fitting formula. We find that for clusters with up to ˜100 SNe, the asymptotic momentum scales superlinearly with the number of SNe, resulting in a momentum per SN which can be an order of magnitude larger than for a single SN, with a maximum efficiency for clusters with 10-100 SNe. We argue that additional physical processes not included in our simulations - self-gravity, breakout from a galactic disc, and galactic shear - can slightly reduce the momentum enhancement from clustering, but the average momentum per SN still remains a factor of 4 larger than the isolated SN value when averaged over a realistic cluster mass function for a star-forming galaxy. We conclude with a discussion of the possible role of mixing between hot and cold gas, induced by multidimensional instabilities or pre-existing density variations, as a limiting factor in the build-up of momentum by clustered SNe, and suggest future numerical experiments to explore these effects.

  20. Twin radio relics in the nearby low-mass galaxy cluster Abell 168

    NASA Astrophysics Data System (ADS)

    Dwarakanath, K. S.; Parekh, V.; Kale, R.; George, L. T.

    2018-06-01

    We report the discovery of twin radio relics in the outskirts of the low-mass merging galaxy cluster Abell 168 (redshift=0.045). One of the relics is elongated with a linear extent ˜800 kpc and projected width of ˜80 kpc and is located ˜900 kpc towards the north of the cluster centre, oriented roughly perpendicular to the major axis of the X-ray emission. The second relic is ring-shaped with a size ˜220 kpc and is located near the inner edge of the elongated relic at a distance of ˜600 kpc from the cluster centre. These radio sources were imaged at 323 and 608 MHz with the Giant Meterwave Radio Telescope and at 1520 MHz with the Karl G. Jansky Very Large Array (VLA). The elongated relic was detected at all frequencies, with a radio power of 1.38 ± 0.14 × 1023 W Hz-1 at 1.4 GHz and a power law in the frequency range 70-1500 MHz (S ∝ να, α = -1.1 ± 0.04). This radio power is in good agreement with that expected from the known empirical relation between the radio powers of relics and host cluster masses. This is the lowest mass (M500 = 1.24 × 1014 M⊙) cluster in which relics due to merger shocks are detected. The ring-shaped relic has a steeper spectral index (α) of -1.74 ± 0.29 in the frequency range 100-600 MHz. We propose this relic to be an old plasma, revived due to adiabatic compression by the outgoing shock that produced the elongated relic.

  1. The cluster-cluster correlation function. [of galaxies

    NASA Technical Reports Server (NTRS)

    Postman, M.; Geller, M. J.; Huchra, J. P.

    1986-01-01

    The clustering properties of the Abell and Zwicky cluster catalogs are studied using the two-point angular and spatial correlation functions. The catalogs are divided into eight subsamples to determine the dependence of the correlation function on distance, richness, and the method of cluster identification. It is found that the Corona Borealis supercluster contributes significant power to the spatial correlation function to the Abell cluster sample with distance class of four or less. The distance-limited catalog of 152 Abell clusters, which is not greatly affected by a single system, has a spatial correlation function consistent with the power law Xi(r) = 300r exp -1.8. In both the distance class four or less and distance-limited samples the signal in the spatial correlation function is a power law detectable out to 60/h Mpc. The amplitude of Xi(r) for clusters of richness class two is about three times that for richness class one clusters. The two-point spatial correlation function is sensitive to the use of estimated redshifts.

  2. The Distance and Mass of the Galaxy Cluster Abell 1995 Derived from Sunyaev-Zeldovich Effect and X-Ray Measurements

    NASA Technical Reports Server (NTRS)

    Patel, Sandeep K.; Joy, Marshall; Carlstrom, John E.; Holder, Gilbert P.; Reese, Erik D.; Gomez, Percy L.; Hughes, John P.; Grego, Laura; Holzapfel, William L.

    2000-01-01

    We present multiwavelength observations of the Abell 1995 galaxy cluster. From an analysis of X-ray spectroscopy and imaging data, we derive the electron temperature, cluster core radius, and central electron number density. Using optical spectroscopy of 15 cluster members, we derive an accurate cluster redshift and velocity dispersion. Finally, the interferometric imaging of the Sunyaev-Zeldovich effect toward Abell 1995 at 28.5 GHz provides a measure of the integrated pressure through the cluster. The X-ray and Sunyaev-Zeldovich effect observations are combined to determine the angular diameter distance to the cluster of D(sub A) = 1294(sup +294 +438, sub -283 -458) Mpc (Statistical followed by systematic uncertainty), implying a Hubble constant of H(sub 0) = 52.2(sup +11.4 +18.5, sub -11.9 -17.7) km/s.Mpc for Omega(sub M) = 0.3 and Omega(sub lambda) = 0.7. We find a best-fit H(sub 0) of 46 km/s.Mpc for the Omega(sub M) = 1 and Omega(sub lambda) = 0 cosmology, and 48 km/s.Mpc for Omega(sub M) = 0.3 and Omega(sub lambda) = 0.0. The X-ray data are also used to derive a total cluster mass of M(sup HSE, sub tot)(r(sub 500)) = 5.18(sup +0.62, sub -0.48) x 10(exp 14)/h solar mass; the optical velocity dispersion yields an independent and consistent estimate of M(sup virial, sub tot)(r(sub 500)) = 6.35(sup +1.51, sub -1.19) X 10(exp 14) /h solar mass. Both of the total mass estimates are evaluated at a fiducial radius, r(sub 500) = 830 /h kpc, where the overdensity is 500 times the critical density. The total cluster mass is then combined with gas mass measurements to determine a cluster gas mass fraction of F(sub g) = 0.056(sup +0.010, sub -0.013) /h(sup 3/2) in combination with recent baryon density constraints, the measured gas mass fraction yields an upper limit on the mass density parameter of Omega(sub M) h(sup 1/2) <= 0.34(sup +/0.06, sub 0.05.

  3. Application of a XMM-Newton EPIC Monte Carlo to Analysis And Interpretation of Data for Abell 1689, RXJ0658-55 And the Centaurus Clusters of Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, Karl E.; /Stockholm U. /SLAC; Peterson, J.R.

    2007-04-17

    We propose a new Monte Carlo method to study extended X-ray sources with the European Photon Imaging Camera (EPIC) aboard XMM Newton. The Smoothed Particle Inference (SPI) technique, described in a companion paper, is applied here to the EPIC data for the clusters of galaxies Abell 1689, Centaurus and RXJ 0658-55 (the ''bullet cluster''). We aim to show the advantages of this method of simultaneous spectral-spatial modeling over traditional X-ray spectral analysis. In Abell 1689 we confirm our earlier findings about structure in temperature distribution and produce a high resolution temperature map. We also confirm our findings about velocity structuremore » within the gas. In the bullet cluster, RXJ 0658-55, we produce the highest resolution temperature map ever to be published of this cluster allowing us to trace what looks like the motion of the bullet in the cluster. We even detect a south to north temperature gradient within the bullet itself. In the Centaurus cluster we detect, by dividing up the luminosity of the cluster in bands of gas temperatures, a striking feature to the north-east of the cluster core. We hypothesize that this feature is caused by a subcluster left over from a substantial merger that slightly displaced the core. We conclude that our method is very powerful in determining the spatial distributions of plasma temperatures and very useful for systematic studies in cluster structure.« less

  4. Galaxy evolution in the cluster Abell 85: new insights from the dwarf population

    NASA Astrophysics Data System (ADS)

    Habas, Rebecca; Fadda, Dario; Marleau, Francine R.; Biviano, Andrea; Durret, Florence

    2018-04-01

    We present the first results of a new spectroscopic survey of the cluster Abell 85 targeting 1466 candidate cluster members within the central ˜1 deg2 of the cluster and having magnitudes mr < 20.5 using the VIsible MultiObject Spectrograph on the VLT and the Hydra spectrograh on WIYN. A total of 520 galaxies are confirmed as either relaxed cluster members or part of an infalling population. A significant fraction are low mass; the median stellar mass of the sample is 109.6 M⊙, and 25 per cent have stellar masses below 109 M⊙ (i.e. 133 dwarf galaxies). We also identify seven active galactic nuclei (AGN), four of which reside in dwarf host galaxies. We probe the evolution of star formation rates, based on Hα emission and continuum modelling, as a function of both mass and environment. We find that more star-forming galaxies are observed at larger clustercentric distances, while infalling galaxies show evidence for recently enhanced star-forming activity. Main-sequence galaxies, defined by their continuum star formation rates, show different evolutionary behaviour based on their mass. At the low-mass end, the galaxies have had their star formation recently quenched, while more massive galaxies show no significant change. The time-scales probed here favour fast quenching mechanisms, such as ram-pressure stripping. Galaxies within the green valley, defined similarly, do not show evidence of quenching. Instead, the low-mass galaxies maintain their levels of star-forming activity, while the more massive galaxies have experienced a recent burst.

  5. ParallABEL: an R library for generalized parallelization of genome-wide association studies.

    PubMed

    Sangket, Unitsa; Mahasirimongkol, Surakameth; Chantratita, Wasun; Tandayya, Pichaya; Aulchenko, Yurii S

    2010-04-29

    Genome-Wide Association (GWA) analysis is a powerful method for identifying loci associated with complex traits and drug response. Parts of GWA analyses, especially those involving thousands of individuals and consuming hours to months, will benefit from parallel computation. It is arduous acquiring the necessary programming skills to correctly partition and distribute data, control and monitor tasks on clustered computers, and merge output files. Most components of GWA analysis can be divided into four groups based on the types of input data and statistical outputs. The first group contains statistics computed for a particular Single Nucleotide Polymorphism (SNP), or trait, such as SNP characterization statistics or association test statistics. The input data of this group includes the SNPs/traits. The second group concerns statistics characterizing an individual in a study, for example, the summary statistics of genotype quality for each sample. The input data of this group includes individuals. The third group consists of pair-wise statistics derived from analyses between each pair of individuals in the study, for example genome-wide identity-by-state or genomic kinship analyses. The input data of this group includes pairs of SNPs/traits. The final group concerns pair-wise statistics derived for pairs of SNPs, such as the linkage disequilibrium characterisation. The input data of this group includes pairs of individuals. We developed the ParallABEL library, which utilizes the Rmpi library, to parallelize these four types of computations. ParallABEL library is not only aimed at GenABEL, but may also be employed to parallelize various GWA packages in R. The data set from the North American Rheumatoid Arthritis Consortium (NARAC) includes 2,062 individuals with 545,080, SNPs' genotyping, was used to measure ParallABEL performance. Almost perfect speed-up was achieved for many types of analyses. For example, the computing time for the identity-by-state matrix was

  6. ParallABEL: an R library for generalized parallelization of genome-wide association studies

    PubMed Central

    2010-01-01

    Background Genome-Wide Association (GWA) analysis is a powerful method for identifying loci associated with complex traits and drug response. Parts of GWA analyses, especially those involving thousands of individuals and consuming hours to months, will benefit from parallel computation. It is arduous acquiring the necessary programming skills to correctly partition and distribute data, control and monitor tasks on clustered computers, and merge output files. Results Most components of GWA analysis can be divided into four groups based on the types of input data and statistical outputs. The first group contains statistics computed for a particular Single Nucleotide Polymorphism (SNP), or trait, such as SNP characterization statistics or association test statistics. The input data of this group includes the SNPs/traits. The second group concerns statistics characterizing an individual in a study, for example, the summary statistics of genotype quality for each sample. The input data of this group includes individuals. The third group consists of pair-wise statistics derived from analyses between each pair of individuals in the study, for example genome-wide identity-by-state or genomic kinship analyses. The input data of this group includes pairs of SNPs/traits. The final group concerns pair-wise statistics derived for pairs of SNPs, such as the linkage disequilibrium characterisation. The input data of this group includes pairs of individuals. We developed the ParallABEL library, which utilizes the Rmpi library, to parallelize these four types of computations. ParallABEL library is not only aimed at GenABEL, but may also be employed to parallelize various GWA packages in R. The data set from the North American Rheumatoid Arthritis Consortium (NARAC) includes 2,062 individuals with 545,080, SNPs' genotyping, was used to measure ParallABEL performance. Almost perfect speed-up was achieved for many types of analyses. For example, the computing time for the identity

  7. Discovery of large-scale diffuse radio emission in low-mass galaxy cluster Abell 1931

    NASA Astrophysics Data System (ADS)

    Brüggen, M.; Rafferty, D.; Bonafede, A.; van Weeren, R. J.; Shimwell, T.; Intema, H.; Röttgering, H.; Brunetti, G.; Di Gennaro, G.; Savini, F.; Wilber, A.; O'Sullivan, S.; Ensslin, T. A.; De Gasperin, F.; Hoeft, M.

    2018-07-01

    Extended, steep-spectrum radio synchrotron sources are pre-dominantly found in massive galaxy clusters as opposed to groups. LOFAR Two-Metre Sky Survey images have revealed a diffuse, ultra-steep-spectrum radio source in the low-mass cluster Abell 1931. The source has a fairly irregular morphology with the largest linear size of about 550 kpc. The source is only seen in LOFAR observations at 143 MHz and Giant Metre Radio Telescope observations at 325 MHz. The spectral index of the total source between 143 and 325 MHz is α _{143}^{325} = -2.86 ± 0.36. The source remains invisible in Very Large Array (1-2 GHz) observations as expected given the spectral index. Chandra X-ray observations of the cluster revealed a bolometric luminosity of LX = (1.65 ± 0.39) × 1043 erg s-1 and a temperature of 2.92_{-0.87}^{+1.89} keV which implies a mass of around ˜1014 M⊙. We conclude that the source is a remnant radio galaxy that has shut off around 200 Myr ago. The brightest cluster galaxy, a radio-loud elliptical galaxy, could be the source for this extinct source. Unlike remnant sources studied in the literature, our source has a steep spectrum at low radio frequencies. Studying such remnant radio galaxies at low radio frequencies is important for understanding the scarcity of such sources and their role in feedback processes.

  8. Discovery of large-scale diffuse radio emission in low-mass galaxy cluster Abell 1931

    NASA Astrophysics Data System (ADS)

    Brüggen, M.; Rafferty, D.; Bonafede, A.; van Weeren, R. J.; Shimwell, T.; Intema, H.; Röttgering, H.; Brunetti, G.; Di Gennaro, G.; Savini, F.; Wilber, A.; O'Sullivan, S.; Ensslin, T. A.; De Gasperin, F.; Hoeft, M.

    2018-04-01

    Extended, steep-spectrum radio synchrotron sources are pre-dominantly found in massive galaxy clusters as opposed to groups. LOFAR Two-Metre Sky Survey images have revealed a diffuse, ultra-steep spectrum radio source in the low-mass cluster Abell 1931. The source has a fairly irregular morphology with a largest linear size of about 550 kpc. The source is only seen in LOFAR observations at 143 MHz and GMRT observations at 325 MHz. The spectral index of the total source between 143 MHz and 325 MHz is α _{143}^{325} = -2.86 ± 0.36. The source remains invisible in Very Large Array (1-2 GHz) observations as expected given the spectral index. Chandra X-ray observations of the cluster revealed a bolometric luminosity of LX = (1.65 ± 0.39) × 1043 erg s-1 and a temperature of 2.92_{-0.87}^{+1.89} keV which implies a mass of around ˜1014M⊙. We conclude that the source is a remnant radio galaxy that has shut off around 200 Myr ago. The brightest cluster galaxy, a radio-loud elliptical galaxy, could be the source for this extinct source. Unlike remnant sources studied in the literature, our source has a steep spectrum at low radio frequencies. Studying such remnant radio galaxies at low radio frequencies is important for understanding the scarcity of such sources and their role in feedback processes.

  9. The genus curve of the Abell clusters

    NASA Technical Reports Server (NTRS)

    Rhoads, James E.; Gott, J. Richard, III; Postman, Marc

    1994-01-01

    We study the topology of large-scale structure through a genus curve measurement of the recent Abell catalog redshift survey of Postman, Huchra, and Geller (1992). The structure is found to be spongelike near median density and to exhibit isolated superclusters and voids at high and low densities, respectively. The genus curve shows a slight shift toward 'meatball' topology, but remains consistent with the hypothesis of Gaussian random phase initial conditions. The amplitude of the genus curve corresponds to a power-law spectrum with index n = 0.21(sub -0.47 sup +0.43) on scales of 48/h Mpc or to a cold dark matter power spectrum with omega h = 0.36(sub -0.17 sup +0.46).

  10. The genus curve of the Abell clusters

    NASA Astrophysics Data System (ADS)

    Rhoads, James E.; Gott, J. Richard, III; Postman, Marc

    1994-01-01

    We study the topology of large-scale structure through a genus curve measurement of the recent Abell catalog redshift survey of Postman, Huchra, and Geller (1992). The structure is found to be spongelike near median density and to exhibit isolated superclusters and voids at high and low densities, respectively. The genus curve shows a slight shift toward 'meatball' topology, but remains consistent with the hypothesis of Gaussian random phase initial conditions. The amplitude of the genus curve corresponds to a power-law spectrum with index n = 0.21-0.47+0.43 on scales of 48/h Mpc or to a cold dark matter power spectrum with omega h = 0.36-0.17+0.46.

  11. Diffuse light and building history of the galaxy cluster Abell 2667

    NASA Astrophysics Data System (ADS)

    Covone, G.; Adami, C.; Durret, F.; Kneib, J.-P.; Lima Neto, G. B.; Slezak, E.

    2006-12-01

    Aims.We searched for diffuse intracluster light in the galaxy cluster Abell 2667 (z=0.233) from HST images in three broad band-filters. Methods: .We applied an iterative multi-scale wavelet analysis and reconstruction technique to these images, which allows to subtract stars and galaxies from the original images. Results: .We detect a zone of diffuse emission southwest of the cluster center (DS1) and a second faint object (ComDif) within DS1. Another diffuse source (DS2) may be detected at lower confidence level northeast of the center. These sources of diffuse light contribute to 10-15% of the total visible light in the cluster. Whether they are independent entities or part of the very elliptical external envelope of the central galaxy remains unclear. Deep VLT VIMOS integral field spectroscopy reveals a faint continuum at the positions of DS1 and ComDif but do not allow a redshift to be computed, so we conclude if these sources are part of the central galaxy or not. A hierarchical substructure detection method reveals the presence of several galaxy pairs and groups defining a similar direction to the one drawn by the DS1 - central galaxy - DS2 axis. The analysis of archive XMM-Newton and Chandra observations shows X-ray emission elongated in the same direction. The X-ray temperature map shows the presence of a cool core, a broad cool zone stretching from north to south, and hotter regions towards the northeast, southwest, and northwest. This might suggest shock fronts along these directions produced by infalling material, even if uncertainties remain quite large on the temperature determination far from the center. Conclusions: .These various data are consistent with a picture in which diffuse sources are concentrations of tidal debris and harassed matter expelled from infalling galaxies by tidal stripping and undergoing an accretion process onto the central cluster galaxy; as such, they are expected to be found along the main infall directions. Note, however

  12. Chandra Observation of the WAT Radio Source/ICM Interaction in Abell 623

    NASA Astrophysics Data System (ADS)

    Anand, Gagandeep; Blanton, Elizabeth L.; Randall, Scott W.; Paterno-Mahler, Rachel; Douglass, Edmund

    2017-01-01

    Galaxy clusters are important objects for studying the physics of the intracluster medium (ICM), galaxy formation and evolution, and cosmological parameters. Clusters containing wide-angle tail (WAT) radio sources are particularly valuable for studies of the interaction between these sources and the surrounding ICM. These sources are thought to form when the ram pressure from the ICM caused by the relative motion between the host radio galaxy and the cluster bends the radio lobes into a distinct wide-angle morphology. We present our results from the analysis of a Chandra observation of the nearby WAT hosting galaxy cluster Abell 623. A clear decrement in X-ray emission is coincident with the southern radio lobe, consistent with being a cavity carved out by the radio source. We present profiles of surface brightness, temperature, density, and pressure and find evidence for a possible shock. Based on the X-ray pressure in the vicinity of the radio lobes and assumptions about the content of the lobes, we estimate the relative ICM velocity required to bend the lobes into the observed angle. We also present spectral model fits to the overall diffuse cluster emission and see no strong signature for a cool core. The sum of the evidence indicates that Abell 623 may be undergoing a large scale cluster-cluster merger.

  13. On Iron Enrichment, Star Formation, and Type Ia Supernovae in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Loewenstein, Michael

    2006-01-01

    The nature of star formation and Type Ia supernovae (SNIa) in galaxies in the field and in rich galaxy clusters are contrasted by juxtaposing the buildup of heavy metals in the universe inferred from observed star formation and supernovae rate histories with data on the evolution of Fe abundances in the intracluster medium (ICM). Models for the chemical evolution of Fe in these environments are constructed, subject to observational constraints, for this purpose. While models with a mean delay for SNIa of 3 Gyr and standard initial mass function (IMF) are fully consistent with observations in the field, cluster Fe enrichment immediately tracked a rapid, top-heavy phase of star formation - although transport of Fe into the ICM may have been more prolonged and star formation likely continued beyond redshift 1. The means of this prompt enrichment consisted of SNII yielding greater than or equal to 0.1 solar mass per explosion (if the SNIa rate normalization is scaled down from its value in the field according to the relative number of candidate progenitor stars in the 3 - 8 solar mass range) and/or SNIa with short delay times originating during the rapid star formation epoch. Star formation is greater than 3 times more efficient in rich clusters than in the field, mitigating the overcooling problem in numerical cluster simulations. Both the fraction of baryons cycled through stars, and the fraction of the total present-day stellar mass in the form of stellar remnants, are substantially greater in clusters than in the field.

  14. Cluster redshifts in five suspected superclusters

    NASA Technical Reports Server (NTRS)

    Ciardullo, R.; Ford, H.; Harms, R.

    1985-01-01

    Redshift surveys for rich superclusters were carried out in five regions of the sky containing surface-density enhancements of Abell clusters. While several superclusters are identified, projection effects dominate each field, and no system contains more than five rich clusters. Two systems are found to be especially interesting. The first, field 0136 10, is shown to contain a superposition of at least four distinct superclusters, with the richest system possessing a small velocity dispersion. The second system, 2206 - 22, though a region of exceedingly high Abell cluster surface density, appears to be a remarkable superposition of 23 rich clusters almost uniformly distributed in redshift space between 0.08 and 0.24. The new redshifts significantly increase the three-dimensional information available for the distance class 5 and 6 Abell clusters and allow the spatial correlation function around rich superclusters to be estimated.

  15. Supernova Cosmology Project

    Science.gov Websites

    Supernova Survey: An Intensive HST Survey for z>1 Type Ia Supernovae by Targeting Galaxy Clusters Survey new survey strategy to discover and study high redshift Type Ia supernovae (SNe Ia) using the Hubble improvement in the efficiency of finding SNe compared to an HST field survey and a factor of three improvement

  16. Supernova Cosmology Project

    Science.gov Websites

    Space Telescope Cluster Supernova Survey: II. The Type Ia Supernova Rate in High-Redshift Galaxy /abs/0809.1648 Constraining Dust and Color Variations of High-z SNe Using NICMOS on the Hubble Space /0804.4142 A New Determination of the High-Redshift Type Ia Supernova Rates with the Hubble Space Telescope

  17. Extracting Galaxy Cluster Gas Inhomogeneity from X-Ray Surface Brightness: A Statistical Approach and Application to Abell 3667

    NASA Astrophysics Data System (ADS)

    Kawahara, Hajime; Reese, Erik D.; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi

    2008-11-01

    Our previous analysis indicates that small-scale fluctuations in the intracluster medium (ICM) from cosmological hydrodynamic simulations follow the lognormal probability density function. In order to test the lognormal nature of the ICM directly against X-ray observations of galaxy clusters, we develop a method of extracting statistical information about the three-dimensional properties of the fluctuations from the two-dimensional X-ray surface brightness. We first create a set of synthetic clusters with lognormal fluctuations around their mean profile given by spherical isothermal β-models, later considering polytropic temperature profiles as well. Performing mock observations of these synthetic clusters, we find that the resulting X-ray surface brightness fluctuations also follow the lognormal distribution fairly well. Systematic analysis of the synthetic clusters provides an empirical relation between the three-dimensional density fluctuations and the two-dimensional X-ray surface brightness. We analyze Chandra observations of the galaxy cluster Abell 3667, and find that its X-ray surface brightness fluctuations follow the lognormal distribution. While the lognormal model was originally motivated by cosmological hydrodynamic simulations, this is the first observational confirmation of the lognormal signature in a real cluster. Finally we check the synthetic cluster results against clusters from cosmological hydrodynamic simulations. As a result of the complex structure exhibited by simulated clusters, the empirical relation between the two- and three-dimensional fluctuation properties calibrated with synthetic clusters when applied to simulated clusters shows large scatter. Nevertheless we are able to reproduce the true value of the fluctuation amplitude of simulated clusters within a factor of 2 from their two-dimensional X-ray surface brightness alone. Our current methodology combined with existing observational data is useful in describing and inferring the

  18. Cool Core Disruption in Abell 1763

    NASA Astrophysics Data System (ADS)

    Douglass, Edmund; Blanton, Elizabeth L.; Clarke, Tracy E.; Randall, Scott W.; Edwards, Louise O. V.; Sabry, Ziad

    2017-01-01

    We present the analysis of a 20 ksec Chandra archival observation of the massive galaxy cluster Abell 1763. A model-subtracted image highlighting excess cluster emission reveals a large spiral structure winding outward from the core to a radius of ~950 kpc. We measure the gas of the inner spiral to have significantly lower entropy than non-spiral regions at the same radius. This is consistent with the structure resulting from merger-induced motion of the cluster’s cool core, a phenomenon seen in many systems. Atypical of spiral-hosting clusters, an intact cool core is not detected. Its absence suggests the system has experienced significant disruption since the initial dynamical encounter that set the sloshing core in motion. Along the major axis of the elongated ICM distribution we detect thermal features consistent with the merger event most likely responsible for cool core disruption. The merger-induced transition towards non-cool core status will be discussed. The interaction between the powerful (P1.4 ~ 1026 W Hz-1) cluster-center WAT radio source and its ICM environment will also be discussed.

  19. The Sunyaev-Zeldovich Effect in Abell 370

    NASA Technical Reports Server (NTRS)

    Grego, Laura; Carlstrom, John E.; Joy, Marshall K.; Reese, Erik D.; Holder, Gilbert P.; Patel, Sandeep; Cooray, Asantha R.; Holzappel, William L.

    2000-01-01

    We present interferometric measurements of the Sunyaev-Zeldovich (SZ) effect toward the galaxy cluster Abell 370. These measurements, which directly probe the pressure of the cluster's gas, show the gas distribution to be strongly aspherical, as do the X-ray and gravitational lensing observations. We calculate the cluster's gas mass fraction in two ways. We first compare the gas mass derived from the SZ measurements to the lensing-derived gravitational mass near the critical lensing radius. We also calculate the gas mass fraction from the SZ data by deprojecting the three-dimensional gas density distribution and deriving the total mass under the assumption that the gas is in hydrostatic equilibrium (HSE). We test the assumptions in the HSE method by comparing the total cluster mass implied by the two methods and find that they agree within the errors of the measurement. We discuss the possible system- atic errors in the gas mass fraction measurement and the constraints it places on the matter density parameter, Omega(sub M).

  20. Probing the non-thermal emission in Abell 2146 and the Perseus cluster with the JVLA

    NASA Astrophysics Data System (ADS)

    Gendron-Marsolais, Marie-Lou; Hlavacek-Larrondo, Julie; van Weeren, Reinout; Clarke, Tracy; Intema, Huib; Russell, Helen; Edge, Alastair; Fabian, Andy; Olamaie, Malak; Rumsey, Clare; King, Lindsay; McNamara, Brian; Fecteau-Beaucage, David; Hogan, Michael; Mezcua, Mar; Taylor, Gregory; Blundell, Katherine; Sanders, Jeremy

    2018-01-01

    Jets created from accretion onto supermassive black holes release relativistic particles on large distances. These strongly affect the intracluster medium when located in the center of a brightest cluster galaxy. The hierarchical merging of subclusters and groups, from which cluster originate, also generates perturbations into the intracluster medium through shocks and turbulence, constituting a potential source of reacceleration for these particles. I will present deep multi-configuration low radio frequency observations from the Karl G. Jansky Very Large Array of two unique clusters, probing the non-thermal emission from the old particle population of the AGN outflows.Recently awarded of 550 hours of Chandra observations, Abell 2146 is one of the rare clusters undergoing a spectacular merger in the plane of the sky. Our recent deep multi-configuration JVLA 1.4 GHz observations have revealed the presence of a structure extending to 850 kpc in size, consisting of one component associated with the upstream shock and classified as a radio relic, and one associated with the subcluster core, consistent with a radio halo bounded by the bow shock. Theses structures have some of the lowest radio powers detected thus far in any cluster. The flux measurements of the halo, its morphology and measurements of the dynamical state of the cluster suggest that the halo was recently created (~ 0.3 Gyr after core passage). This makes A2146 extremely interesting to study, allowing us to probe the complete evolutionary stages of halos.I will also present results on 230-470 MHz JVLA observations of the Perseus cluster. Our observations of this nearby relaxed cool core cluster have revealed a multitude of new structures associated with the mini-halo, extending to hundreds of kpc in size. Its irregular morphology seems to be have been influenced both by the AGN activity and by the sloshing motion of the cluster’ gas. In addition, it has a filamentary structure similar to that seen in

  1. Dark matter dynamics in Abell 3827: new data consistent with standard cold dark matter

    NASA Astrophysics Data System (ADS)

    Massey, Richard; Harvey, David; Liesenborgs, Jori; Richard, Johan; Stach, Stuart; Swinbank, Mark; Taylor, Peter; Williams, Liliya; Clowe, Douglas; Courbin, Frédéric; Edge, Alastair; Israel, Holger; Jauzac, Mathilde; Joseph, Rémy; Jullo, Eric; Kitching, Thomas D.; Leonard, Adrienne; Merten, Julian; Nagai, Daisuke; Nightingale, James; Robertson, Andrew; Romualdez, Luis Javier; Saha, Prasenjit; Smit, Renske; Tam, Sut-Ieng; Tittley, Eric

    2018-06-01

    We present integral field spectroscopy of galaxy cluster Abell 3827, using Atacama Large Millimetre Array (ALMA) and Very Large Telescope/Multi-Unit Spectroscopic Explorer. It reveals an unusual configuration of strong gravitational lensing in the cluster core, with at least seven lensed images of a single background spiral galaxy. Lens modelling based on Hubble Space Telescope imaging had suggested that the dark matter associated with one of the cluster's central galaxies may be offset. The new spectroscopic data enable better subtraction of foreground light, and better identification of multiple background images. The inferred distribution of dark matter is consistent with being centred on the galaxies, as expected by Λ cold dark matter. Each galaxy's dark matter also appears to be symmetric. Whilst, we do not find an offset between mass and light (suggestive of self-interacting dark matter) as previously reported, the numerical simulations that have been performed to calibrate Abell 3827 indicate that offsets and asymmetry are still worth looking for in collisions with particular geometries. Meanwhile, ALMA proves exceptionally useful for strong lens image identifications.

  2. Tracing Large Scale Structure with a Redshift Survey of Rich Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Batuski, D.; Slinglend, K.; Haase, S.; Hill, J. M.

    1993-12-01

    Rich clusters of galaxies from Abell's catalog show evidence of structure on scales of 100 Mpc and hold promise of confirming the existence of structure in the more immediate universe on scales corresponding to COBE results (i.e., on the order of 10% or more of the horizon size of the universe). However, most Abell clusters do not as yet have measured redshifts (or, in the case of most low redshift clusters, have only one or two galaxies measured), so present knowledge of their three dimensional distribution has quite large uncertainties. The shortage of measured redshifts for these clusters may also mask a problem of projection effects corrupting the membership counts for the clusters, perhaps even to the point of spurious identifications of some of the clusters themselves. Our approach in this effort has been to use the MX multifiber spectrometer to measure redshifts of at least ten galaxies in each of about 80 Abell cluster fields with richness class R>= 1 and mag10 <= 16.8. This work will result in a somewhat deeper, much more complete (and reliable) sample of positions of rich clusters. Our primary use for the sample is for two-point correlation and other studies of the large scale structure traced by these clusters. We are also obtaining enough redshifts per cluster so that a much better sample of reliable cluster velocity dispersions will be available for other studies of cluster properties. To date, we have collected such data for 40 clusters, and for most of them, we have seven or more cluster members with redshifts, allowing for reliable velocity dispersion calculations. Velocity histograms for several interesting cluster fields are presented, along with summary tables of cluster redshift results. Also, with 10 or more redshifts in most of our cluster fields (30({') } square, just about an `Abell diameter' at z ~ 0.1) we have investigated the extent of projection effects within the Abell catalog in an effort to quantify and understand how this may effect

  3. An Analysis of Rich Cluster Redshift Survey Data for Large Scale Structure Studies

    NASA Astrophysics Data System (ADS)

    Slinglend, K.; Batuski, D.; Haase, S.; Hill, J.

    1994-12-01

    The results from the COBE satellite show the existence of structure on scales on the order of 10% or more of the horizon scale of the universe. Rich clusters of galaxies from Abell's catalog show evidence of structure on scales of 100 Mpc and may hold the promise of confirming structure on the scale of the COBE result. However, many Abell clusters have zero or only one measured redshift, so present knowledge of their three dimensional distribution has quite large uncertainties. The shortage of measured redshifts for these clusters may also mask a problem of projection effects corrupting the membership counts for the clusters. Our approach in this effort has been to use the MX multifiber spectrometer on the Steward 2.3m to measure redshifts of at least ten galaxies in each of 80 Abell cluster fields with richness class R>= 1 and mag10 <= 16.8 (estimated z<= 0.12) and zero or one measured redshifts. This work will result in a deeper, more complete (and reliable) sample of positions of rich clusters. Our primary intent for the sample is for two-point correlation and other studies of the large scale structure traced by these clusters in an effort to constrain theoretical models for structure formation. We are also obtaining enough redshifts per cluster so that a much better sample of reliable cluster velocity dispersions will be available for other studies of cluster properties. To date, we have collected such data for 64 clusters, and for most of them, we have seven or more cluster members with redshifts, allowing for reliable velocity dispersion calculations. Velocity histograms and stripe density plots for several interesting cluster fields are presented, along with summary tables of cluster redshift results. Also, with 10 or more redshifts in most of our cluster fields (30({') } square, just about an `Abell diameter' at z ~ 0.1) we have investigated the extent of projection effects within the Abell catalog in an effort to quantify and understand how this may effect

  4. Revisiting Abell 2744: a powerful synergy of GLASS spectroscopy and HFF photometry

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Wang

    We present new emission line identifications and improve the lensing reconstruction of the mass distribution of galaxy cluster Abell 2744 using the Grism Lens-Amplified Survey from Space (GLASS) spectroscopy and the Hubble Frontier Fields (HFF) imaging. We performed blind and targeted searches for faint line emitters on all objects, including the arc sample, within the field of view (FoV) of GLASS prime pointings. We report 55 high quality spectroscopic redshifts, 5 of which are for arc images. We also present an extensive analysis based on the HFF photometry, measuring the colors and photometric redshifts of all objects within the FoV, and comparing the spectroscopic and photometric redshift estimates. In order to improve the lens model of Abell 2744, we develop a rigorous algorithm to screen arc images, based on their colors and morphology, and selecting the most reliable ones to use. As a result, 25 systems (corresponding to 72 images) pass the screening process and are used to reconstruct the gravitational potential of the cluster pixellated on an adaptive mesh. The resulting total mass distribution is compared with a stellar mass map obtained from the Spitzer Frontier Fields data in order to study the relative distribution of stars and dark matter in the cluster.

  5. LOFAR discovery of a double radio halo system in Abell 1758 and radio/X-ray study of the cluster pair

    NASA Astrophysics Data System (ADS)

    Botteon, A.; Shimwell, T. W.; Bonafede, A.; Dallacasa, D.; Brunetti, G.; Mandal, S.; van Weeren, R. J.; Brüggen, M.; Cassano, R.; de Gasperin, F.; Hoang, D. N.; Hoeft, M.; Röttgering, H. J. A.; Savini, F.; White, G. J.; Wilber, A.; Venturi, T.

    2018-05-01

    Radio halos and radio relics are diffuse synchrotron sources that extend over Mpc-scales and are found in a number of merger galaxy clusters. They are believed to form as a consequence of the energy that is dissipated by turbulence and shocks in the intra-cluster medium (ICM). However, the precise physical processes that generate these steep synchrotron spectrum sources are still poorly constrained. We present a new LOFAR observation of the double galaxy cluster Abell 1758. This system is composed of A1758N, a massive cluster hosting a known giant radio halo, and A1758S, which is a less massive cluster whose diffuse radio emission is confirmed here for the first time. Our observations have revealed a radio halo and a candidate radio relic in A1758S, and a suggestion of emission along the bridge connecting the two systems which deserves confirmation. We combined the LOFAR data with archival VLA and GMRT observations to constrain the spectral properties of the diffuse emission. We also analyzed a deep archival Chandra observation and used this to provide evidence that A1758N and A1758S are in a pre-merger phase. The ICM temperature across the bridge that connects the two systems shows a jump which might indicate the presence of a transversal shock generated in the initial stage of the merger.

  6. Probing the dynamical and X-ray mass proxies of the cluster of galaxies Abell S1101

    NASA Astrophysics Data System (ADS)

    Rabitz, Andreas; Zhang, Yu-Ying; Schwope, Axel; Verdugo, Miguel; Reiprich, Thomas H.; Klein, Matthias

    2017-01-01

    Context. The galaxy cluster Abell S1101 (S1101 hereafter) deviates significantly from the X-ray luminosity versus velocity dispersion relation (L-σ) of galaxy clusters in our previous study. Given reliable X-ray luminosity measurement combining XMM-Newton and ROSAT, this could most likely be caused by the bias in the velocity dispersion due to interlopers and low member statistic in the previous sample of member galaxies, which was solely based on 20 galaxy redshifts drawn from the literature. Aims: We intend to increase the galaxy member statistics to perform precision measurements of the velocity dispersion and dynamical mass of S1101. We aim for a detailed substructure and dynamical state characterization of this cluster, and a comparison of mass estimates derived from (I) the velocity dispersion (Mvir), (II) the caustic mass computation (Mcaustic), and (III) mass proxies from X-ray observations and the Sunyaev-Zel'dovich (SZ) effect. Methods: We carried out new optical spectroscopic observations of the galaxies in this cluster field with VIMOS, obtaining a sample of 60 member galaxies for S1101. We revised the cluster redshift and velocity dispersion measurements based on this sample and also applied the Dressler-Shectman substructure test. Results: The completeness of cluster members within r200 was significantly improved for this cluster. Tests for dynamical substructure do not show evidence of major disturbances or merging activities in S1101. We find good agreement between the dynamical cluster mass measurements and X-ray mass estimates, which confirms the relaxed state of the cluster displayed in the 2D substructure test. The SZ mass proxy is slightly higher than the other estimates. The updated measurement of σ erased the deviation of S1101 in the L-σ relation. We also noticed a background structure in the cluster field of S1101. This structure is a galaxy group that is very close to the cluster S1101 in projection but at almost twice its redshift

  7. Abel's theorem in the noncommutative case

    NASA Astrophysics Data System (ADS)

    Leitenberger, Frank

    2004-03-01

    We define noncommutative binary forms. Using the typical representation of Hermite we prove the fundamental theorem of algebra and we derive a noncommutative Cardano formula for cubic forms. We define quantized elliptic and hyperelliptic differentials of the first kind. Following Abel we prove Abel's theorem.

  8. Probing the Curious Case of a Galaxy Cluster Merger in Abell 115 with High-fidelity Chandra X-Ray Temperature and Radio Maps

    NASA Astrophysics Data System (ADS)

    Hallman, Eric J.; Alden, Brian; Rapetti, David; Datta, Abhirup; Burns, Jack O.

    2018-05-01

    We present results from an X-ray and radio study of the merging galaxy cluster Abell 115. We use the full set of five Chandra observations taken of A115 to date (360 ks total integration) to construct high-fidelity temperature and surface brightness maps. We also examine radio data from the Very Large Array at 1.5 GHz and the Giant Metrewave Radio Telescope at 0.6 GHz. We propose that the high X-ray spectral temperature between the subclusters results from the interaction of the bow shocks driven into the intracluster medium by the motion of the subclusters relative to one another. We have identified morphologically similar scenarios in Enzo numerical N-body/hydrodynamic simulations of galaxy clusters in a cosmological context. In addition, the giant radio relic feature in A115, with an arc-like structure and a relatively flat spectral index, is likely consistent with other shock-associated giant radio relics seen in other massive galaxy clusters. We suggest a dynamical scenario that is consistent with the structure of the X-ray gas, the hot region between the clusters, and the radio relic feature.

  9. VLA Radio Observations of the HST Frontier Fields Cluster Abell 2744: The Discovery of New Radio Relics

    NASA Astrophysics Data System (ADS)

    Pearce, C. J. J.; van Weeren, R. J.; Andrade-Santos, F.; Jones, C.; Forman, W. R.; Brüggen, M.; Bulbul, E.; Clarke, T. E.; Kraft, R. P.; Medezinski, E.; Mroczkowski, T.; Nonino, M.; Nulsen, P. E. J.; Randall, S. W.; Umetsu, K.

    2017-08-01

    Cluster mergers leave distinct signatures in the intracluster medium (ICM) in the form of shocks and diffuse cluster radio sources that provide evidence for the acceleration of relativistic particles. However, the physics of particle acceleration in the ICM is still not fully understood. Here we present new 1-4 GHz Jansky Very Large Array (VLA) and archival Chandra observations of the HST Frontier Fields Cluster Abell 2744. In our new VLA images, we detect the previously known ˜2.1 Mpc radio halo and ˜1.5 Mpc radio relic. We carry out a radio spectral analysis from which we determine the relic’s injection spectral index to be {α }{inj}=-1.12+/- 0.19. This corresponds to a shock Mach number of { M }={2.05}-0.19+0.31 under the assumption of diffusive shock acceleration. We also find evidence for spectral steepening in the post-shock region. We do not find evidence for a significant correlation between the radio halo’s spectral index and ICM temperature. In addition, we observe three new polarized diffuse sources and determine two of these to be newly discovered giant radio relics. These two relics are located in the southeastern and northwestern outskirts of the cluster. The corresponding integrated spectral indices measure -1.81 ± 0.26 and -0.63 ± 0.21 for the SE and NW relics, respectively. From an X-ray surface brightness profile we also detect a possible density jump of R={1.39}-0.22+0.34 co-located with the newly discovered SE relic. This density jump would correspond to a shock front Mach number of { M }={1.26}-0.15+0.25.

  10. A series of shocks and edges in Abell 2219

    DOE PAGES

    Canning, R. E. A.; Allen, S. W.; Applegate, D. E.; ...

    2016-09-22

    Here, we present deep, 170 ks, Chandra X-ray observations of Abell 2219 (z = 0.23), one of the hottest and most X-ray luminous clusters known, and which is experiencing a major merger event. We discover a ‘horseshoe’ of high-temperature gas surrounding the ram-pressure-stripped, bright, hot, X-ray cores. We confirm an X-ray shock front located north-west of the X-ray centroid and along the projected merger axis. We also find a second shock front to the south-east of the X-ray centroid making this only the second cluster where both the shock and reverse shock are confirmed with X-ray temperature measurements. We alsomore » present evidence for a possible sloshing cold front in the ‘remnant tail’ of one of the sub-cluster cores. The cold front and north-west shock front geometrically bound the radio halo and appear to be directly influencing the radio properties of the cluster.« less

  11. Type-Ia Supernova Rates to Redshift 2.4 from Clash: The Cluster Lensing and Supernova Survey with Hubble

    NASA Technical Reports Server (NTRS)

    Graur, O.; Rodney, S. A.; Maoz, D.; Riess, A. G.; Jha, S. W.; Postman, M.; Dahlen, T.; Holoien, T. W.-S.; McCully, C.; Patel, B.; hide

    2014-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, approximately 13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z greater than 1.2.We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range z greater than 1.8 and less than 2.4. The results are consistent with the rates measured by the HST/ GOODS and Subaru Deep Field SN surveys.We model these results together with previous measurements at z less than 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of 1.00 (+0.06(0.09))/(-0.06(0.10)) (statistical) (+0.12/-0.08) (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at greater than 99% significance level.

  12. Type-Ia supernova rates to redshift 2.4 from clash: The cluster lensing and supernova survey with Hubble

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graur, O.; Rodney, S. A.; Riess, A. G.

    2014-03-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, ∼13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z > 1.2. We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit onmore » the SN Ia rate in the range 1.8 < z < 2.4. The results are consistent with the rates measured by the HST/GOODS and Subaru Deep Field SN surveys. We model these results together with previous measurements at z < 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of −1.00{sub −0.06(0.10)}{sup +0.06(0.09)} (statistical){sub −0.08}{sup +0.12} (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at >99% significance level.« less

  13. The XMM Cluster Outskirts Project (X-COP)

    NASA Astrophysics Data System (ADS)

    Eckert, D.

    2017-10-01

    The outskirts of galaxy clusters (typically the regions located beyond R500) are the regions where the transition between the virialized ICM and the infalling material from the large-scale structure takes place. As such, they play a central role in our understanding of the processes leading to the virialization of the accreting gas within the central dark-matter halo. I will give an overview of the XMM cluster outskirts project (X-COP), a very large program on XMM to study the virial region of galaxy clusters with unprecedented details. I will show how X-ray observations can be combined with the Sunyaev-Zeldovich signal to recover the thermodynamic properties and hydrostatic mass of the ICM, bypassing the need for expensive X-ray spectroscopic observations. I will discuss the results obtained using this technique on Abell 2142 and Abell 2319 and give prospects for the results expected using the full X-COP sample. I will also present recent results on the search for warm-hot baryons in the filaments connected to clusters, emphasizing on the discovery of 3 filaments of 10-million-degree gas connected to the massive cluster Abell 2744.

  14. The kinematics of dense clusters of galaxies. II - The distribution of velocity dispersions

    NASA Technical Reports Server (NTRS)

    Zabludoff, Ann I.; Geller, Margaret J.; Huchra, John P.; Ramella, Massimo

    1993-01-01

    From the survey of 31 Abell R above 1 cluster fields within z of 0.02-0.05, we extract 25 dense clusters with velocity dispersions omicron above 300 km/s and with number densities exceeding the mean for the Great Wall of galaxies by one deviation. From the CfA Redshift Survey (in preparation), we obtain an approximately volume-limited catalog of 31 groups with velocity dispersions above 100 km/s and with the same number density limit. We combine these well-defined samples to obtain the distribution of cluster velocity dispersions. The group sample enables us to correct for incompleteness in the Abell catalog at low velocity dispersions. The clusters from the Abell cluster fields populate the high dispersion tail. For systems with velocity dispersions above 700 km/s, approximately the median for R = 1 clusters, the group and cluster abundances are consistent. The combined distribution is consistent with cluster X-ray temperature functions.

  15. SUPERNOVAE AND THEIR EXPANDING BLAST WAVES DURING THE EARLY EVOLUTION OF GALACTIC GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenorio-Tagle, Guillermo; Silich, Sergiy; Muñoz-Tuñón, Casiana

    2015-11-20

    Our arguments deal with the early evolution of Galactic globular clusters and show why only a few of the supernovae (SNe) products were retained within globular clusters and only in the most massive cases (M ≥ 10{sup 6} M{sub ⊙}), while less massive clusters were not contaminated at all by SNe. Here, we show that SN blast waves evolving in a steep density gradient undergo blowout and end up discharging their energy and metals into the medium surrounding the clusters. This inhibits the dispersal and the contamination of the gas left over from a first stellar generation. Only the ejecta from well-centeredmore » SNe that evolve into a high-density medium available for a second stellar generation (2SG) in the most massive clusters would be retained. These are likely to mix their products with the remaining gas, eventually leading in these cases to an Fe-contaminated 2SG.« less

  16. Characterizing the Small Scale Structure in Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Forman, William R.

    2001-01-01

    We studied galaxy clusters Abell 119, Abell 754, and Abell 1750, using data from the ASCA and ROSAT satellites. In addition, we completed the paper "Merging Binary Clusters". In this paper we study three prominent bi-modal X-ray clusters: A3528, A1750 and A3395. Since the sub-clusters in these systems have projected separations of 0.93, 1.00 and 0.67 Mpc respectively, we examine their X-ray and optical observations to investigate the dynamics and possible merging of these sub-clusters. Using data taken with ROSAT and ASCA, we analyze the temperature and surface brightness distributions. We also analyze the velocity distributions of the three clusters using new measurements supplemented with previously published data. We examined both the overall cluster properties as well as the two sub-cluster elements in each. These results were then applied to the determination of the overall cluster masses, that demonstrate excellent consistency between the various methods used. While the characteristic parameters of the sub-clusters are typical of isolated objects, our temperature results for the regions between the two sub-clusters clearly confirm the presence of merger activity that is suggested by the surface brightness distributions. These three clusters represent a progression of equal-sized sub-cluster mergers, starting from initial contact to immediately before first core passage.

  17. Coma cluster of galaxies

    NASA Image and Video Library

    1999-12-02

    Atlas Image mosaic, covering 34 x 34 on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies over 1000 members, most prominently the two giant ellipticals, NGC 4874 right and NGC 4889 left.

  18. Galaxy clusters, type Ia supernovae and the fine structure constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holanda, R.F.L.; Busti, V.C.; Colaço, L.R.

    2016-08-01

    As is well known, measurements of the Sunyaev-Zeldovich effect can be combined with observations of the X-ray surface brightness of galaxy clusters to estimate the angular diameter distance to these structures. In this paper, we show that this technique depends on the fine structure constant, α. Therefore, if α is a time-dependent quantity, e.g., α = α{sub 0}φ( z ), where φ is a function of redshift, we argue that current data do not provide the real angular diameter distance, D {sub A}( z ), to the cluster, but instead D {sub A}{sup data}( z ) = φ( z ){supmore » 2} D {sub A}( z ). We use this result to derive constraints on a possible variation of α for a class of dilaton runaway models considering a sample of 25 measurements of D {sub A}{sup data}( z ) in redshift range 0.023 < z < 0.784 and estimates of D {sub A}( z ) from current type Ia supernovae observations. We find no significant indication of variation of α with the present data.« less

  19. Shocking Tails in the Major Merger Abell 2744

    NASA Astrophysics Data System (ADS)

    Owers, Matt S.; Couch, Warrick J.; Nulsen, Paul E. J.; Randall, Scott W.

    2012-05-01

    We identify four rare "jellyfish" galaxies in Hubble Space Telescope imagery of the major merger cluster Abell 2744. These galaxies harbor trails of star-forming knots and filaments which have formed in situ in gas tails stripped from the parent galaxies, indicating they are in the process of being transformed by the environment. Further evidence for rapid transformation in these galaxies comes from their optical spectra, which reveal starburst, poststarburst, and active galactic nucleus features. Most intriguingly, three of the jellyfish galaxies lie near intracluster medium features associated with a merging "Bullet-like" subcluster and its shock front detected in Chandra X-ray images. We suggest that the high-pressure merger environment may be responsible for the star formation in the gaseous tails. This provides observational evidence for the rapid transformation of galaxies during the violent core passage phase of a major cluster merger.

  20. SHOCKING TAILS IN THE MAJOR MERGER ABELL 2744

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owers, Matt S.; Couch, Warrick J.; Nulsen, Paul E. J.

    We identify four rare 'jellyfish' galaxies in Hubble Space Telescope imagery of the major merger cluster Abell 2744. These galaxies harbor trails of star-forming knots and filaments which have formed in situ in gas tails stripped from the parent galaxies, indicating they are in the process of being transformed by the environment. Further evidence for rapid transformation in these galaxies comes from their optical spectra, which reveal starburst, poststarburst, and active galactic nucleus features. Most intriguingly, three of the jellyfish galaxies lie near intracluster medium features associated with a merging 'Bullet-like' subcluster and its shock front detected in Chandra X-raymore » images. We suggest that the high-pressure merger environment may be responsible for the star formation in the gaseous tails. This provides observational evidence for the rapid transformation of galaxies during the violent core passage phase of a major cluster merger.« less

  1. Flexion in Abell 2744

    NASA Astrophysics Data System (ADS)

    Bird, J. P.; Goldberg, D. M.

    2018-05-01

    We present the first flexion-focused gravitational lensing analysis of the Hubble Frontier Field observations of Abell 2744 (z = 0.308). We apply a modified Analytic Image Model technique to measure source galaxy flexion and shear values at a final number density of 82 arcmin-2. By using flexion data alone, we are able to identify the primary mass structure aligned along the heart of the cluster in addition to two major substructure peaks, including an NE component that corresponds to previous lensing work and a new peak detection offset 1.43 arcmin from the cluster core towards the east. We generate two types of non-parametric reconstructions: flexion aperture mass maps, which identify central core, E, and NE substructure peaks with mass signal-to-noise contours peaking at 3.5σ, 2.7σ, and 2.3σ, respectively; and convergence maps derived directly from the smoothed flexion field. For the primary peak, we find a mass of (1.62 ± 0.12) × 1014 h-1 M⊙ within a 33 arcsec (105 h-1 kpc) aperture, a mass of (2.92 ± 0.26) × 1013 h-1 M⊙ within a 16 arcsec (50 h-1 kpc) aperture for the north-eastern substructure, and (8.81 ± 0.52) × 1013 h-1 M⊙ within a 25 arcsec (80 h-1 kpc) aperture for the novel eastern substructure.

  2. The Filtered Abel Transform and Its Application in Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Simons, Stephen N. (Technical Monitor); Yuan, Zeng-Guang

    2003-01-01

    Many non-intrusive combustion diagnosis methods generate line-of-sight projections of a flame field. To reconstruct the spatial field of the measured properties, these projections need to be deconvoluted. When the spatial field is axisymmetric, commonly used deconvolution method include the Abel transforms, the onion peeling method and the two-dimensional Fourier transform method and its derivatives such as the filtered back projection methods. This paper proposes a new approach for performing the Abel transform method is developed, which possesses the exactness of the Abel transform and the flexibility of incorporating various filters in the reconstruction process. The Abel transform is an exact method and the simplest among these commonly used methods. It is evinced in this paper that all the exact reconstruction methods for axisymmetric distributions must be equivalent to the Abel transform because of its uniqueness and exactness. Detailed proof is presented to show that the two dimensional Fourier methods when applied to axisymmetric cases is identical to the Abel transform. Discrepancies among various reconstruction method stem from the different approximations made to perform numerical calculations. An equation relating the spectrum of a set of projection date to that of the corresponding spatial distribution is obtained, which shows that the spectrum of the projection is equal to the Abel transform of the spectrum of the corresponding spatial distribution. From the equation, if either the projection or the distribution is bandwidth limited, the other is also bandwidth limited, and both have the same bandwidth. If the two are not bandwidth limited, the Abel transform has a bias against low wave number components in most practical cases. This explains why the Abel transform and all exact deconvolution methods are sensitive to high wave number noises. The filtered Abel transform is based on the fact that the Abel transform of filtered projection data is equal

  3. Revisiting Abell 2744: a powerful synergy of the GLASS spectroscopy and the HFF photometry.

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Borello Schmidt, Kasper; Treu, Tommaso

    2015-08-01

    We present new emission line identifications and improve the strong lensing reconstruction of the massive cluster Abell 2744 using the Grism Lens-Amplified Survey from Space (GLASS) observations and the full depth of the Hubble Frontier Fields (HFF) imaging. We performed a blind and targeted search for emission lines in objects within the full field of view (FoV) of the GLASS prime pointings, including all the previously known multiple arc images. We report over 50 high quality spectroscopic redshifts, 4 of which are for the arc images. We also present an extensive analysis based on the HFF photometry, measuring the colors and photometric redshifts of all objects within the FoV, and comparing the spectroscopic and photometric results of the same ensemble of sources. In order to improve the lens model of Abell 2744, we develop a rigorous alogorithm to screen arc images, based on their colors and morphology, and selecting the most reliable ones to use. As a result, 21 systems (corresponding to 59 images) pass the screening process and are used to reconstruct the gravitational potential of the cluster pixellated on an adaptive mesh. The resulting total mass distribution is compared with a stellar mass map obtained from the deep Spitzer Frontier Fields data in a fashion very similar to the reduction of the Spitzer UltRa Faint SUrvey Program (SURFS UP) clusters, in order to study the relative distribution of stars and dark matter in the cluster. The maps of convergence, shear, and magnification are made publicly available in the standard HFF format.

  4. Mass dependent galaxy transformation mechanisms in the complex environment of SuperGroup Abell 1882

    NASA Astrophysics Data System (ADS)

    Sengupta, Aparajita

    We present our data and results from panchromatic photometry and optical spectrometry of the nearest (extremely rich) filamentary large scale structure, SuperGroup Abell 1882. It is a precursor of a cluster and is an inevitable part of the narrative in the study of galaxy transformations. There has been strong empirical evidence over the past three decades that galaxy environment affects galaxy properties. Blue disky galaxies transform into red bulge-like galaxies as they traverse into the deeper recesses of a cluster. However, we have little insight into the story of galaxy evolution in the early stages of cluster formation. Besides, in relaxed clusters that have been studied extensively, several evolutionary mechanisms take effect on similar spatial and temporal scales, making it almost impossible to disentangle different local and global mechanisms. A SuperGroup on the other hand, has a shallower dark-matter potential. Here, the accreting galaxies are subjected to evolutionary mechanisms over larger time and spatial scales. This separates processes that are otherwise superimposed in rich cluster-filament interfaces. As has been found from cluster studies, galaxy color and morphology tie very strongly with local galaxy density even in a complex and nascent structure like Abell 1882. Our major results indicate that there is a strong dependence of galaxy transformations on the galaxy masses themselves. Mass- dependent evolutionary mechanisms affect galaxies at different spatial scales. The galaxy color also varies with radial projected distance from the assumed center of the structure for a constant local galaxy density, indicating the underlying large scale structure as a second order evolutionary driver. We have looked for clues to the types of mechanisms that might cause the transformations at various mass regimes. We have found the thoroughly quenched low mass galaxies confined to the groups, whereas there are evidences of intermediate-mass quenched galaxies

  5. A New Method to Constrain Supernova Fractions Using X-ray Observations of Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Bulbul, Esra; Smith, Randall K.; Loewenstein, Michael

    2012-01-01

    Supernova (SN) explosions enrich the intracluster medium (ICM) both by creating and dispersing metals. We introduce a method to measure the number of SNe and relative contribution of Type Ia supernovae (SNe Ia) and core-collapse supernovae (SNe cc) by directly fitting X-ray spectral observations. The method has been implemented as an XSPEC model called snapec. snapec utilizes a single-temperature thermal plasma code (apec) to model the spectral emission based on metal abundances calculated using the latest SN yields from SN Ia and SN cc explosion models. This approach provides a self-consistent single set of uncertainties on the total number of SN explosions and relative fraction of SN types in the ICM over the cluster lifetime by directly allowing these parameters to be determined by SN yields provided by simulations. We apply our approach to XMM-Newton European Photon Imaging Camera (EPIC), Reflection Grating Spectrometer (RGS), and 200 ks simulated Astro-H observations of a cooling flow cluster, A3112.We find that various sets of SN yields present in the literature produce an acceptable fit to the EPIC and RGS spectra of A3112. We infer that 30.3% plus or minus 5.4% to 37.1% plus or minus 7.1% of the total SN explosions are SNe Ia, and the total number of SN explosions required to create the observed metals is in the range of (1.06 plus or minus 0.34) x 10(exp 9), to (1.28 plus or minus 0.43) x 10(exp 9), fromsnapec fits to RGS spectra. These values may be compared to the enrichment expected based on well-established empirically measured SN rates per star formed. The proportions of SNe Ia and SNe cc inferred to have enriched the ICM in the inner 52 kiloparsecs of A3112 is consistent with these specific rates, if one applies a correction for the metals locked up in stars. At the same time, the inferred level of SN enrichment corresponds to a star-to-gas mass ratio that is several times greater than the 10% estimated globally for clusters in the A3112 mass range.

  6. The Sunyaev-Zel'dovich Effect Spectrum of Abell 2163

    NASA Technical Reports Server (NTRS)

    LaRoque, S. J.; Carlstrom, J. E.; Reese, E. D.; Holder, G. P.; Holzapfel, W. L.; Joy, M.; Grego, L.; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present an interferometric measurement of the Sunyaev-Zel'dovich effect (SZE) at 1 cm for the galaxy cluster Abell 2163. We combine this data point with previous measurements at 1.1, 1.4, and 2.1 mm from the SuZIE experiment to construct the most complete SZE spectrum to date. The intensity in four wavelength bands is fit to determine the Compton y-parameter (y(sub 0)) and the peculiar velocity (v(sub p)) for this cluster. Our results are y(sub 0) = 3.56((sup +0.41+0.27)(sub -0.41-0.19)) X 10(exp -4) and v(sub p) = 410((sup +1030+460) (sub -850-440)) km s(exp -1) where we list statistical and systematic uncertainties, respectively, at 68% confidence. These results include corrections for contamination by Galactic dust emission. We find less contamination by dust emission than previously reported. The dust emission is distributed over much larger angular scales than the cluster signal and contributes little to the measured signal when the details of the SZE observing strategy are taken into account.

  7. Cosmic Ray Production in Supernovae

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Ellison, D. C.; Marcowith, A.; Osipov, S. M.

    2018-02-01

    We give a brief review of the origin and acceleration of cosmic rays (CRs), emphasizing the production of CRs at different stages of supernova evolution by the first-order Fermi shock acceleration mechanism. We suggest that supernovae with trans-relativistic outflows, despite being rather rare, may accelerate CRs to energies above 10^{18} eV over the first year of their evolution. Supernovae in young compact clusters of massive stars, and interaction powered superluminous supernovae, may accelerate CRs well above the PeV regime. We discuss the acceleration of the bulk of the galactic CRs in isolated supernova remnants and re-acceleration of escaped CRs by the multiple shocks present in superbubbles produced by associations of OB stars. The effects of magnetic field amplification by CR driven instabilities, as well as superdiffusive CR transport, are discussed for nonthermal radiation produced by nonlinear shocks of all speeds including trans-relativistic ones.

  8. Search For Cosmic-Ray-Induced Gamma-Ray Emission In Galaxy Clusters

    DOE PAGES

    Ackermann, M.

    2014-04-30

    Current theories predict relativistic hadronic particle populations in clusters of galaxies in addition to the already observed relativistic leptons. In these scenarios hadronic interactions give rise to neutral pions which decay into rays that are potentially observable with the Large Area Telescope (LAT) on board the Fermi space telescope. We present a joint likelihood analysis searching for spatially extended γ-ray emission at the locations of 50 galaxy clusters in 4 years of Fermi-LAT data under the assumption of the universal cosmic-ray model proposed by Pinzke & Pfrommer (2010). We find an excess at a significance of 2.7 σ which uponmore » closer inspection is however correlated to individual excess emission towards three galaxy clusters: Abell 400, Abell 1367 and Abell 3112. We discuss these cases in detail and conservatively attribute the emission to unmodeled background (for example, radio galaxies within the clusters). Through the combined analysis of 50 clusters we exclude hadronic injection efficiencies in simple hadronic models above 21% and establish limits on the cosmic-ray to thermal pressure ratio within the virial radius, R200, to be below 1.2-1.4% depending on the morphological classification. In addition we derive new limits on the γ-ray flux from individual clusters in our sample.« less

  9. ROSAT PSPC Observations of CL0016+16

    NASA Technical Reports Server (NTRS)

    Hughes, John P. (Principal Investigator)

    1996-01-01

    Several ROSAT observations concerning with complex spatial structures in Sunyaev-Zel'dovich decrement clusters Abell 665 and CL0016+16, discovery of Be/X-ray stars in two supernova remnants in the Small Magellanic Cloud, a new transient pulsar in the Small Magellanic Cloud with an unusual x-ray spectrum, a new x-ray-discovered cluster of galaxies associated with CL0016+16, and the distance to CL0016+16 vs. the Hubble constant, are presented.

  10. Large Scale Structure Studies: Final Results from a Rich Cluster Redshift Survey

    NASA Astrophysics Data System (ADS)

    Slinglend, K.; Batuski, D.; Haase, S.; Hill, J.

    1995-12-01

    The results from the COBE satellite show the existence of structure on scales on the order of 10% or more of the horizon scale of the universe. Rich clusters of galaxies from the Abell-ACO catalogs show evidence of structure on scales of 100 Mpc and hold the promise of confirming structure on the scale of the COBE result. Unfortunately, until now, redshift information has been unavailable for a large percentage of these clusters, so present knowledge of their three dimensional distribution has quite large uncertainties. Our approach in this effort has been to use the MX multifiber spectrometer on the Steward 2.3m to measure redshifts of at least ten galaxies in each of 88 Abell cluster fields with richness class R>= 1 and mag10 <= 16.8 (estimated z<= 0.12) and zero or one measured redshifts. This work has resulted in a deeper, 95% complete and more reliable sample of 3-D positions of rich clusters. The primary intent of this survey has been to constrain theoretical models for the formation of the structure we see in the universe today through 2-pt. spatial correlation function and other analyses of the large scale structures traced by these clusters. In addition, we have obtained enough redshifts per cluster to greatly improve the quality and size of the sample of reliable cluster velocity dispersions available for use in other studies of cluster properties. This new data has also allowed the construction of an updated and more reliable supercluster candidate catalog. Our efforts have resulted in effectively doubling the volume traced by these clusters. Presented here is the resulting 2-pt. spatial correlation function, as well as density plots and several other figures quantifying the large scale structure from this much deeper and complete sample. Also, with 10 or more redshifts in most of our cluster fields, we have investigated the extent of projection effects within the Abell catalog in an effort to quantify and understand how this may effect the Abell sample.

  11. The Sunyaev-Zel'dovich Effect in Abell 370

    NASA Technical Reports Server (NTRS)

    Grego, Laura; Carlstrom, John E.; Joy, Marshall K.; Reese, Erik D.; Holder, Gilbert P.; Patel, Sandeep; Holzapfel, William L.; Cooray, Asantha K.

    1999-01-01

    We present interferometric measurements of the Sunyaev-Zel'dovich (SZ) effect towards the galaxy cluster Abell 370. These measurements, which directly probe the pressure of the cluster's gas, show the gas is strongly aspherical, on agreement with the morphology revealed by x-ray and gravitational lensing observations. We calculate the cluster's gas mass fraction by comparing the gas mass derived from the SZ measurements to the lensing-derived gravitational mass near the critical lensing radius. We also calculate the gas mass fraction from the SZ data by deriving the total mass under the assumption that the gas is in hydrostatic equilibrium (HSE). We test the assumptions in the HSE method by comparing the total cluster mass implied by the two methods. The Hubble constant derived for this cluster, when the known systematic uncertainties are included, has a very wide range of values and therefore does not provide additional constraints on the validity of the assumptions. We examine carefully the possible systematic errors in the gas fraction measurement. The gas fraction is a lower limit to the cluster's baryon fraction and so we compare the gas mass fraction, calibrated by numerical simulations to approximately the virial radius, to measurements of the global mass fraction of baryonic matter, OMEGA(sub B)/OMEGA(sub matter). Our lower limit to the cluster baryon fraction is f(sub B) = (0.043 +/- 0.014)/h (sub 100). From this, we derive an upper limit to the universal matter density, OMEGA(sub matter) <= 0.72/h(sub 100), and a likely value of OMEGA(sub matter) <= (0.44(sup 0.15, sub -0.12)/h(sub 100).

  12. Origin of central abundances in the hot intra-cluster medium. II. Chemical enrichment and supernova yield models

    NASA Astrophysics Data System (ADS)

    Mernier, F.; de Plaa, J.; Pinto, C.; Kaastra, J. S.; Kosec, P.; Zhang, Y.-Y.; Mao, J.; Werner, N.; Pols, O. R.; Vink, J.

    2016-11-01

    The hot intra-cluster medium (ICM) is rich in metals, which are synthesised by supernovae (SNe) and accumulate over time into the deep gravitational potential well of clusters of galaxies. Since most of the elements visible in X-rays are formed by type Ia (SNIa) and/or core-collapse (SNcc) supernovae, measuring their abundances gives us direct information on the nucleosynthesis products of billions of SNe since the epoch of the star formation peak (z 2-3). In this study, we compare the most accurate average X/Fe abundance ratios (compiled in a previous work from XMM-Newton EPIC and RGS observations of 44 galaxy clusters, groups, and ellipticals), representative of the chemical enrichment in the nearby ICM, to various SNIa and SNcc nucleosynthesis models found in the literature. The use of a SNcc model combined to any favoured standard SNIa model (deflagration or delayed-detonation) fails to reproduce our abundance pattern. In particular, the Ca/Fe and Ni/Fe ratios are significantly underestimated by the models. We show that the Ca/Fe ratio can be reproduced better, either by taking a SNIa delayed-detonation model that matches the observations of the Tycho supernova remnant, or by adding a contribution from the "Ca-rich gap transient" SNe, whose material should easily mix into the hot ICM. On the other hand, the Ni/Fe ratio can be reproduced better by assuming that both deflagration and delayed-detonation SNIa contribute in similar proportions to the ICM enrichment. In either case, the fraction of SNIa over the total number of SNe (SNIa+SNcc) contributing to the ICM enrichment ranges within 29-45%. This fraction is found to be systematically higher than the corresponding SNIa/(SNIa+SNcc) fraction contributing to the enrichment of the proto-solar environnement (15-25%). We also discuss and quantify two useful constraints on both SNIa (I.e. the initial metallicity on SNIa progenitors and the fraction of low-mass stars that result in SNIa) and SNcc (I.e. the effect of

  13. STRONG GRAVITATIONAL LENSING BY THE SUPER-MASSIVE cD GALAXY IN ABELL 3827

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrasco, E. R.; Gomez, P. L.; Lee, H.

    2010-06-01

    We have discovered strong gravitational lensing features in the core of the nearby cluster Abell 3827 by analyzing Gemini South GMOS images. The most prominent strong lensing feature is a highly magnified, ring-shaped configuration of four images around the central cD galaxy. GMOS spectroscopic analysis puts this source at z {approx} 0.2. Located {approx}20'' away from the central galaxy is a secondary tangential arc feature which has been identified as a background galaxy with z {approx} 0.4. We have modeled the gravitational potential of the cluster core, taking into account the mass from the cluster, the brightest cluster galaxy (BCG),more » and other galaxies. We derive a total mass of (2.7 {+-} 0.4) x 10{sup 13} M {sub sun} within 37 h {sup -1} kpc. This mass is an order of magnitude larger than that derived from X-ray observations. The total mass derived from lensing data suggests that the BCG in this cluster is perhaps the most massive galaxy in the nearby universe.« less

  14. Canibalismo Extremo y Lente Gravitacional Intensa en el Cúmulo de Galaxias Abell 3827

    NASA Astrophysics Data System (ADS)

    Díaz, R. J.; West, M.; Bergmann, M.; Carrasco, E. R.; Gomez, P.; Lee, H.; Miller, B.; Turner, J.

    Abell 3827 is one of the most massive known clusters and at its center we observe an extreme example of galactic canibalism: a super giant elliptical galaxy in its formation process, devoring five massive galaxies at the same time. Using high spatial resolution Gemini+GMOS imagery and multi-object spectroscopy, we derived the redshift (z=0.099) and the radial velocity dispersion of the 55 brightest galaxies in the cluster central region (1134 +- 125 km/s). The estimated virial mass is ~ 1E14 M(sun) inside a radius of 300 kpc of the cluster center. We have also found features corresponding to a strong gravitational lense, four anular features arranged in an Einstein Ring from a galaxy (z=0.2) at double redshift than the cluster, and a fifth arclet feature corresponding to the lensed light of a farther galaxy (z=0.4). The possible Einstein Ring is of small angular size and the gravitational lense morphology would confirm that the cluster is indeed very massive and dense. FULL TEXT IN SPANISH.

  15. Tauberian theorems for Abel summability of sequences of fuzzy numbers

    NASA Astrophysics Data System (ADS)

    Yavuz, Enes; ćoşkun, Hüsamettin

    2015-09-01

    We give some conditions under which Abel summable sequences of fuzzy numbers are convergent. As corollaries we obtain the results given in [E. Yavuz, Ö. Talo, Abel summability of sequences of fuzzy numbers, Soft computing 2014, doi: 10.1007/s00500-014-1563-7].

  16. VizieR Online Data Catalog: Strong lensing mass modeling of 4 HFF clusters (Kawamata+, 2016)

    NASA Astrophysics Data System (ADS)

    Kawamata, R.; Oguri, M.; Ishigaki, M.; Shimasaku, K.; Ouchi, M.

    2018-02-01

    We use the public HFF data (http://www.stsci.edu/hst/campaigns/frontier-fields/) for our analysis. The HFF targets six massive clusters, Abell 2744 (z=0.308), MACS J0416.1-2403 (z=0.397), MACS J0717.5+3745 (z=0.545), MACS J1149.6+2223 (z=0.541), Abell S1063 (z=0.348), and Abell 370 (z=0.375), which have been chosen according to their lensing strength and also their accessibility from major ground-based telescopes. The cluster core and parallel field region of each cluster are observed deeply with the IR channel of Wide Field Camera 3 (WFC3/IR) and the Advanced Camera for Surveys (ACS). As of 2015 October, HST observations for the first four clusters, Abell 2744, MACS J0416.1-2403, MACS J0717.5+3745, and MACS J1149.6+2223, are completed. In this study, we use the Version 1.0 data products of drizzled images with a pixel scale of 0.03"/pixel provided by the Space Telescope Science Institute (STScI). The images for each cluster consist of F435W (B435), F606W (V606), and F814W (i814) images from ACS, and F105W (Y105), F125W (J125), F140W (JH140), and F160W (H160) images from WFC3/IR. (7 data files).

  17. Gemini Frontier Fields: Wide-field Adaptive Optics Ks-band Imaging of the Galaxy Clusters MACS J0416.1-2403 and Abell 2744

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Carrasco, E. R.; Pessev, P.; Garrel, V.; Winge, C.; Neichel, B.; Vidal, F.

    2015-04-01

    We have observed two of the six Frontier Fields galaxy clusters, MACS J0416.1-2403 and Abell 2744, using the Gemini Multi-Conjugate Adaptive Optics System (GeMS) and the Gemini South Adaptive Optics Imager (GSAOI). With 0.″ 08-0.″ 10 FWHM our data are nearly diffraction-limited over a 100\\prime\\prime × 100\\prime\\prime wide area. GeMS/GSAOI complements the Hubble Space Telescope (HST) redwards of 1.6 μm with twice the angular resolution. We reach a 5σ depth of {{K}s}˜ 25.6 mag (AB) for compact sources. In this paper, we describe the observations, data processing, and initial public data release. We provide fully calibrated, co-added images matching the native GSAOI pixel scale as well as the larger plate scales of the HST release, adding to the legacy value of the Frontier Fields. Our work demonstrates that even for fields at high galactic latitude where natural guide stars are rare, current multi-conjugated adaptive optics technology at 8 m telescopes has opened a new window on the distant universe. Observations of a third Frontier Field, Abell 370, are planned. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). Based on observations made with ESO Telescopes at the La Silla and Paranal Observatories, Chile.

  18. The wonderful apparatus of John Jacob Abel called the "artificial kidney".

    PubMed

    Eknoyan, Garabed

    2009-01-01

    Hemodialysis, which now provides life-saving therapy to millions of individuals, began as an exploratory attempt to sustain the lives of selected patients in the 1950s. That was a century after the formulation of the concept and determination of the laws governing dialysis. The first step in the translation of the laboratory principles of dialysis to living animals was the "vividiffusion" apparatus developed by John Jacob Abel (1859-1938), dubbed the "artificial kidney" in the August 11, 1913 issue of The Times of London reporting the demonstration of vividiffusion by Abel at University College. The detailed article in the January 18, 1914 of the New York Times, reproduced here, is based on the subsequent medical reports published by Abel et al. Tentative attempts of human dialysis in the decade that followed based on the vividiffusion apparatus of Abel and his materials (collodion, hirudin, and glass) met with failure and had to be abandoned. Practical dialysis became possible in the 1940s and thereafter after cellophane, heparin, and teflon became available. Abel worked in an age of great progress and experimental work in the basic sciences that laid the foundations of science-driven medicine. It was a "Heroic Age of Medicine," when medical discoveries and communicating them to the public were assuming increasing importance. This article provides the cultural, social, scientific, and medical background in which Abel worked, developed and reported his wonderful apparatus called the "artificial kidney."

  19. Abell 1033: birth of a radio phoenix

    DOE PAGES

    de Gasperin, F.; Ogrean, G. A.; van Weeren, R. J.; ...

    2015-02-26

    We report that extended steep-spectrum radio emission in a galaxy cluster is usually associated with a recent merger. However, given the complex scenario of galaxy cluster mergers, many of the discovered sources hardly fit into the strict boundaries of a precise taxonomy. This is especially true for radio phoenixes that do not have very well defined observational criteria. Radio phoenixes are aged radio galaxy lobes whose emission is reactivated by compression or other mechanisms. Here in this paper, we present the detection of a radio phoenix close to the moment of its formation. The source is located in Abell 1033,more » a peculiar galaxy cluster which underwent a recent merger. To support our claim, we present unpublished Westerbork Synthesis Radio Telescope and Chandra observations together with archival data from the Very Large Array and the Sloan Digital Sky Survey. We discover the presence of two subclusters displaced along the N–S direction. The two subclusters probably underwent a recent merger which is the cause of a moderately perturbed X-ray brightness distribution. A steep-spectrum extended radio source very close to an active galactic nucleus (AGN) is proposed to be a newly born radio phoenix: the AGN lobes have been displaced/compressed by shocks formed during the merger event. This scenario explains the source location, morphology, spectral index, and brightness. Finally, we show evidence of a density discontinuity close to the radio phoenix and discuss the consequences of its presence.« less

  20. Supernova Cosmology Project

    Science.gov Websites

    <= Back to SCP Home Page Discovery of Unusual Optical Transient with the Hubble Space Telescope observations of SCP 06F6, an unusual optical transient discovered during the Hubble Space Telescope Cluster Supernova Survey. The transient brightened over a period of ~100 days, reached a peak magnitude of ~21.0 in

  1. The Kormendy relation of galaxies in the Frontier Fields clusters: Abell S1063 and MACS J1149.5+2223

    NASA Astrophysics Data System (ADS)

    Tortorelli, Luca; Mercurio, Amata; Paolillo, Maurizio; Rosati, Piero; Gargiulo, Adriana; Gobat, Raphael; Balestra, Italo; Caminha, G. B.; Annunziatella, Marianna; Grillo, Claudio; Lombardi, Marco; Nonino, Mario; Rettura, Alessandro; Sartoris, Barbara; Strazzullo, Veronica

    2018-06-01

    We analyse the Kormendy relations (KRs) of the two Frontier Fields clusters, Abell S1063, at z = 0.348, and MACS J1149.5+2223, at z = 0.542, exploiting very deep Hubble Space Telescope photometry and Very Large Telescope (VLT)/Multi Unit Spectroscopic Explorer (MUSE) integral field spectroscopy. With this novel data set, we are able to investigate how the KR parameters depend on the cluster galaxy sample selection and how this affects studies of galaxy evolution based on the KR. We define and compare four different galaxy samples according to (a) Sérsic indices: early-type (`ETG'), (b) visual inspection: `ellipticals', (c) colours: `red', (d) spectral properties: `passive'. The classification is performed for a complete sample of galaxies with mF814W ≤ 22.5 ABmag (M* ≳ 1010.0 M⊙). To derive robust galaxy structural parameters, we use two methods: (1) an iterative estimate of structural parameters using images of increasing size, in order to deal with closely separated galaxies and (2) different background estimations, to deal with the intracluster light contamination. The comparison between the KRs obtained from the different samples suggests that the sample selection could affect the estimate of the best-fitting KR parameters. The KR built with ETGs is fully consistent with the one obtained for ellipticals and passive. On the other hand, the KR slope built on the red sample is only marginally consistent with those obtained with the other samples. We also release the photometric catalogue with structural parameters for the galaxies included in the present analysis.

  2. The Grism Lens-amplified Survey from Space (GLASS). IV. Mass Reconstruction of the Lensing Cluster Abell 2744 from Frontier Field Imaging and GLASS Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, X.; Hoag, A.; Huang, K.-H.; Treu, T.; Bradač, M.; Schmidt, K. B.; Brammer, G. B.; Vulcani, B.; Jones, T. A.; Ryan, R. E., Jr.; Amorín, R.; Castellano, M.; Fontana, A.; Merlin, E.; Trenti, M.

    2015-09-01

    We present a strong and weak lensing reconstruction of the massive cluster Abell 2744, the first cluster for which deep Hubble Frontier Fields (HFF) images and spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) are available. By performing a targeted search for emission lines in multiply imaged sources using the GLASS spectra, we obtain five high-confidence spectroscopic redshifts and two tentative ones. We confirm one strongly lensed system by detecting the same emission lines in all three multiple images. We also search for additional line emitters blindly and use the full GLASS spectroscopic catalog to test reliability of photometric redshifts for faint line emitters. We see a reasonable agreement between our photometric and spectroscopic redshift measurements, when including nebular emission in photometric redshift estimations. We introduce a stringent procedure to identify only secure multiple image sets based on colors, morphology, and spectroscopy. By combining 7 multiple image systems with secure spectroscopic redshifts (at 5 distinct redshift planes) with 18 multiple image systems with secure photometric redshifts, we reconstruct the gravitational potential of the cluster pixellated on an adaptive grid, using a total of 72 images. The resulting mass map is compared with a stellar mass map obtained from the deep Spitzer Frontier Fields data to study the relative distribution of stars and dark matter in the cluster. We find that the stellar to total mass ratio varies substantially across the cluster field, suggesting that stars do not trace exactly the total mass in this interacting system. The maps of convergence, shear, and magnification are made available in the standard HFF format.

  3. THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). IV. MASS RECONSTRUCTION OF THE LENSING CLUSTER ABELL 2744 FROM FRONTIER FIELD IMAGING AND GLASS SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X.; Schmidt, K. B.; Jones, T. A.

    2015-09-20

    We present a strong and weak lensing reconstruction of the massive cluster Abell 2744, the first cluster for which deep Hubble Frontier Fields (HFF) images and spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) are available. By performing a targeted search for emission lines in multiply imaged sources using the GLASS spectra, we obtain five high-confidence spectroscopic redshifts and two tentative ones. We confirm one strongly lensed system by detecting the same emission lines in all three multiple images. We also search for additional line emitters blindly and use the full GLASS spectroscopic catalog to test reliability of photometricmore » redshifts for faint line emitters. We see a reasonable agreement between our photometric and spectroscopic redshift measurements, when including nebular emission in photometric redshift estimations. We introduce a stringent procedure to identify only secure multiple image sets based on colors, morphology, and spectroscopy. By combining 7 multiple image systems with secure spectroscopic redshifts (at 5 distinct redshift planes) with 18 multiple image systems with secure photometric redshifts, we reconstruct the gravitational potential of the cluster pixellated on an adaptive grid, using a total of 72 images. The resulting mass map is compared with a stellar mass map obtained from the deep Spitzer Frontier Fields data to study the relative distribution of stars and dark matter in the cluster. We find that the stellar to total mass ratio varies substantially across the cluster field, suggesting that stars do not trace exactly the total mass in this interacting system. The maps of convergence, shear, and magnification are made available in the standard HFF format.« less

  4. Wavelet transform analysis of the small-scale X-ray structure of the cluster Abell 1367

    NASA Technical Reports Server (NTRS)

    Grebeney, S. A.; Forman, W.; Jones, C.; Murray, S.

    1995-01-01

    We have developed a new technique based on a wavelet transform analysis to quantify the small-scale (less than a few arcminutes) X-ray structure of clusters of galaxies. We apply this technique to the ROSAT position sensitive proportional counter (PSPC) and Einstein high-resolution imager (HRI) images of the central region of the cluster Abell 1367 to detect sources embedded within the diffuse intracluster medium. In addition to detecting sources and determining their fluxes and positions, we show that the wavelet analysis allows a characterization of the sources extents. In particular, the wavelet scale at which a given source achieves a maximum signal-to-noise ratio in the wavelet images provides an estimate of the angular extent of the source. To account for the widely varying point response of the ROSAT PSPC as a function of off-axis angle requires a quantitative measurement of the source size and a comparison to a calibration derived from the analysis of a Deep Survey image. Therefore, we assume that each source could be described as an isotropic two-dimensional Gaussian and used the wavelet amplitudes, at different scales, to determine the equivalent Gaussian Full Width Half-Maximum (FWHM) (and its uncertainty) appropriate for each source. In our analysis of the ROSAT PSPC image, we detect 31 X-ray sources above the diffuse cluster emission (within a radius of 24 min), 16 of which are apparently associated with cluster galaxies and two with serendipitous, background quasars. We find that the angular extents of 11 sources exceed the nominal width of the PSPC point-spread function. Four of these extended sources were previously detected by Bechtold et al. (1983) as 1 sec scale features using the Einstein HRI. The same wavelet analysis technique was applied to the Einstein HRI image. We detect 28 sources in the HRI image, of which nine are extended. Eight of the extended sources correspond to sources previously detected by Bechtold et al. Overall, using both the

  5. X-ray astrophysics: Constraining thermal conductivity in intracluster gas in clusters of galaxies and placing limits on progenitor systems of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Russell, Brock Richard

    X-ray astrophysics provides a great many opportunities to study astronomical structures with large energies or high temperatures. This dissertation will describe two such applications: the use of Swift X-ray Telescope (XRT) data to analyze the interaction between a supernova shock and the circumstellar medium, and the use of a straightforward computer simulation to model the dynamics of intracluster gas in clusters of galaxies and constrain the thermal conduction coefficient. Stars emit stellar wind at varying rates throughout their lifetimes. This wind populates the circumstellar medium (CSM) with gas. When the supernova explodes, the shock wave propogates outward through this CSM and heats it to X-ray emitting temperatures. By analyzing X-ray observations of the immediate post-supernova environment, we are able to determine whether any significant CSM is present. By stacking a large number of Swift observations of SNe Ia, we increase the sensitivity. We find no X-rays, with an upper limit of 1.7 x 1038 erg s-1 and a 3 sigma upper limit on the mass loss rate of progenitor systems 1.1 x 10-6 solar masses per year x (vw)/(10 km s -1). This low upper limit precludes a massive progenitor as the binary companion in the supernova progenitor system, unless that star is in Roche lobe overflow. The hot Intracluster Medium (ICM) is composed of tenuous gas which is gravitationally-bound to the cluster of galaxies. This gas is not initially of uniform temperature, and experiences thermal conduction while maintaining hydrostatic equilibrium. However, magnetic field lines present in the ionized gas inhibit the full thermal conduction. In this dissertation, we present the results of a new one-dimensional simulation that models this conduction (and includes cooling while maintaining hydrostatic equilibrium). By comparing the results of this model with the observed gas temperature profiles and recent accurate constraints on the scatter of the gas fraction, we are able to constrain

  6. RELICS: Strong Lens Models for Five Galaxy Clusters from the Reionization Lensing Cluster Survey

    NASA Astrophysics Data System (ADS)

    Cerny, Catherine; Sharon, Keren; Andrade-Santos, Felipe; Avila, Roberto J.; Bradač, Maruša; Bradley, Larry D.; Carrasco, Daniela; Coe, Dan; Czakon, Nicole G.; Dawson, William A.; Frye, Brenda L.; Hoag, Austin; Huang, Kuang-Han; Johnson, Traci L.; Jones, Christine; Lam, Daniel; Lovisari, Lorenzo; Mainali, Ramesh; Oesch, Pascal A.; Ogaz, Sara; Past, Matthew; Paterno-Mahler, Rachel; Peterson, Avery; Riess, Adam G.; Rodney, Steven A.; Ryan, Russell E.; Salmon, Brett; Sendra-Server, Irene; Stark, Daniel P.; Strolger, Louis-Gregory; Trenti, Michele; Umetsu, Keiichi; Vulcani, Benedetta; Zitrin, Adi

    2018-06-01

    Strong gravitational lensing by galaxy clusters magnifies background galaxies, enhancing our ability to discover statistically significant samples of galaxies at {\\boldsymbol{z}}> 6, in order to constrain the high-redshift galaxy luminosity functions. Here, we present the first five lens models out of the Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program, based on new HST WFC3/IR and ACS imaging of the clusters RXC J0142.9+4438, Abell 2537, Abell 2163, RXC J2211.7–0349, and ACT-CLJ0102–49151. The derived lensing magnification is essential for estimating the intrinsic properties of high-redshift galaxy candidates, and properly accounting for the survey volume. We report on new spectroscopic redshifts of multiply imaged lensed galaxies behind these clusters, which are used as constraints, and detail our strategy to reduce systematic uncertainties due to lack of spectroscopic information. In addition, we quantify the uncertainty on the lensing magnification due to statistical and systematic errors related to the lens modeling process, and find that in all but one cluster, the magnification is constrained to better than 20% in at least 80% of the field of view, including statistical and systematic uncertainties. The five clusters presented in this paper span the range of masses and redshifts of the clusters in the RELICS program. We find that they exhibit similar strong lensing efficiencies to the clusters targeted by the Hubble Frontier Fields within the WFC3/IR field of view. Outputs of the lens models are made available to the community through the Mikulski Archive for Space Telescopes.

  7. LOFAR discovery of an ultra-steep radio halo and giant head-tail radio galaxy in Abell 1132

    NASA Astrophysics Data System (ADS)

    Wilber, A.; Brüggen, M.; Bonafede, A.; Savini, F.; Shimwell, T.; van Weeren, R. J.; Rafferty, D.; Mechev, A. P.; Intema, H.; Andrade-Santos, F.; Clarke, A. O.; Mahony, E. K.; Morganti, R.; Prandoni, I.; Brunetti, G.; Röttgering, H.; Mandal, S.; de Gasperin, F.; Hoeft, M.

    2018-01-01

    Low-Frequency Array (LOFAR) observations at 144 MHz have revealed large-scale radio sources in the unrelaxed galaxy cluster Abell 1132. The cluster hosts diffuse radio emission on scales of ∼650 kpc near the cluster centre and a head-tail (HT) radio galaxy, extending up to 1 Mpc, south of the cluster centre. The central diffuse radio emission is not seen in NRAO VLA FIRST Survey, Westerbork Northern Sky Survey, nor in C & D array VLA observations at 1.4 GHz, but is detected in our follow-up Giant Meterwave Radio Telescope (GMRT) observations at 325 MHz. Using LOFAR and GMRT data, we determine the spectral index of the central diffuse emission to be α = -1.75 ± 0.19 (S ∝ να). We classify this emission as an ultra-steep spectrum radio halo and discuss the possible implications for the physical origin of radio haloes. The HT radio galaxy shows narrow, collimated emission extending up to 1 Mpc and another 300 kpc of more diffuse, disturbed emission, giving a full projected linear size of 1.3 Mpc - classifying it as a giant radio galaxy (GRG) and making it the longest HT found to date. The head of the GRG coincides with an elliptical galaxy (SDSS J105851.01+564308.5) belonging to Abell 1132. In our LOFAR image, there appears to be a connection between the radio halo and the GRG. The turbulence that may have produced the halo may have also affected the tail of the GRG. In turn, the GRG may have provided seed electrons for the radio halo.

  8. Clusters of Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Fort, Bernard

    For a long time, the small number of clusters at z > 0.3 in the Abell survey catalogue and simulations of the standard CDM formation of large scale structures provided a paradigm where clusters were considered as young merging structures. At earlier times, loose concentrations of galaxy clumps were mostly anticipated. Recent observations broke the taboo. Progressively we became convinced that compact and massive clusters at z = 1 or possibly beyond exist and should be searched for.

  9. AGN Feedback in Clusters of Galaxies

    DTIC Science & Technology

    2010-01-01

    cooling non-radiatively or being heated to higher temperatures. Throughout this paper , we use the term “cooling flow” to indicate clusters with...taurus cluster [51] and M87/ Virgo [24]. Concentric ripple-like features are also seen surrounding the center of Abell 2052, but current analysis shows that...2002) Chandra Imaging of the X-ray Core of the Virgo Cluster . ApJ 579:560-570. 37. Fujita Y et al. (2002) Chandra Observations of the Disruption of the

  10. A uniform contribution of core-collapse and type Ia supernovae to the chemical enrichment pattern in the outskirts of the Virgo Cluster

    DOE PAGES

    Simionescu, A.; Werner, N.; Urban, O.; ...

    2015-09-24

    We present the first measurements of the abundances of α-elements (Mg, Si, and S) extending out beyond the virial radius of a cluster of galaxies. Our results, based on Suzaku Key Project observations of the Virgo Cluster, show that the chemical composition of the intracluster medium is consistent with being constant on large scales, with a flat distribution of the Si/Fe, S/Fe, and Mg/Fe ratios as a function of radius and azimuth out to 1.4 Mpc (1.3 r 200). Chemical enrichment of the intergalactic medium due solely to core-collapse supernovae (SNcc) is excluded with very high significance; instead, the measuredmore » metal abundance ratios are generally consistent with the solar value. The uniform metal abundance ratios observed today are likely the result of an early phase of enrichment and mixing, with both SNcc and SNe Ia contributing to the metal budget during the period of peak star formation activity at redshifts of 2–3. Furthermore, we estimate the ratio between the number of SNe Ia and the total number of supernovae enriching the intergalactic medium to be between 12% and 37%, broadly consistent with the metal abundance patterns in our own Galaxy or with the SN Ia contribution estimated for the cluster cores.« less

  11. A UNIFORM CONTRIBUTION OF CORE-COLLAPSE AND TYPE Ia SUPERNOVAE TO THE CHEMICAL ENRICHMENT PATTERN IN THE OUTSKIRTS OF THE VIRGO CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simionescu, A.; Ichinohe, Y.; Werner, N.

    2015-10-01

    We present the first measurements of the abundances of α-elements (Mg, Si, and S) extending out beyond the virial radius of a cluster of galaxies. Our results, based on Suzaku Key Project observations of the Virgo Cluster, show that the chemical composition of the intracluster medium is consistent with being constant on large scales, with a flat distribution of the Si/Fe, S/Fe, and Mg/Fe ratios as a function of radius and azimuth out to 1.4 Mpc (1.3 r{sub 200}). Chemical enrichment of the intergalactic medium due solely to core-collapse supernovae (SNcc) is excluded with very high significance; instead, the measuredmore » metal abundance ratios are generally consistent with the solar value. The uniform metal abundance ratios observed today are likely the result of an early phase of enrichment and mixing, with both SNcc and SNe Ia contributing to the metal budget during the period of peak star formation activity at redshifts of 2–3. We estimate the ratio between the number of SNe Ia and the total number of supernovae enriching the intergalactic medium to be between 12% and 37%, broadly consistent with the metal abundance patterns in our own Galaxy or with the SN Ia contribution estimated for the cluster cores.« less

  12. VLA Discovers Giant Rings Around Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    2006-11-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered giant, ring-like structures around a cluster of galaxies. The discovery provides tantalizing new information about how such galaxy clusters are assembled, about magnetic fields in the vast spaces between galaxy clusters, and possibly about the origin of cosmic rays. Radio-Optical Image of Cluster Galaxy Cluster Abell 3376 (Radio/Optical) CREDIT: Joydeep Bagchi, IUCAA, NRAO/AUI/NSF Above, a combined radio/optical image shows the galaxy cluster Abell 3376 in visible light (blue) and radio (red) images. The giant radio arcs surrounding the cluster were discovered using the Very Large Array. The visible-light image is from the Digitized Sky survey. Below, an X-ray image of Abell 3376 made using the European Space Agency's XMM-Newton telescope shows a spectacular, bullet-shaped region of X-rays coming from gas heated to 60 million degrees Kelvin. The bullet shape results from the supersonic collision of a smaller smaller galaxy subcluster with the main body of the larger cluster. Click on images for larger version. X-Ray Image of Cluster Galaxy Cluster Abell 3376 (X-Ray) CREDIT: Joydeep Bagchi, IUCAA, ESA "These giant, radio-emitting rings probably are the result of shock waves caused by violent collisions of smaller groups of galaxies within the cluster," said Joydeep Bagchi, of the Inter-University Centre for Astronomy and Astrophysics in Pune, India, who led an international research team. The scientists reported their findings in the November 3 edition of the journal Science. The newly-discovered ring segments, some 6 million light-years across, surround a galaxy cluster called Abell 3376, more than 600 million light-years from Earth. They were revealed because fast-moving electrons emitted radio waves as they spiraled around magnetic field lines in intergalactic space. "Even from this large distance, the feeble radio waves were easily picked up by the VLA

  13. The Richness Dependence of Galaxy Cluster Correlations: Results From A Redshift Survey Of Rich APM Clusters

    NASA Technical Reports Server (NTRS)

    Croft, R. A. C.; Dalton, G. B.; Efstathiou, G.; Sutherland, W. J.; Maddox, S. J.

    1997-01-01

    We analyze the spatial clustering properties of a new catalog of very rich galaxy clusters selected from the APM Galaxy Survey. These clusters are of comparable richness and space density to Abell Richness Class greater than or equal to 1 clusters, but selected using an objective algorithm from a catalog demonstrably free of artificial inhomogeneities. Evaluation of the two-point correlation function xi(sub cc)(r) for the full sample and for richer subsamples reveals that the correlation amplitude is consistent with that measured for lower richness APM clusters and X-ray selected clusters. We apply a maximum likelihood estimator to find the best fitting slope and amplitude of a power law fit to x(sub cc)(r), and to estimate the correlation length r(sub 0) (the value of r at which xi(sub cc)(r) is equal to unity). For clusters with a mean space density of 1.6 x 10(exp -6) h(exp 3) MpC(exp -3) (equivalent to the space density of Abell Richness greater than or equal to 2 clusters), we find r(sub 0) = 21.3(+11.1/-9.3) h(exp -1) Mpc (95% confidence limits). This is consistent with the weak richness dependence of xi(sub cc)(r) expected in Gaussian models of structure formation. In particular, the amplitude of xi(sub cc)(r) at all richnesses matches that of xi(sub cc)(r) for clusters selected in N-Body simulations of a low density Cold Dark Matter model.

  14. Anti-inflammatory and antioxidative effects of Camellia oleifera Abel components.

    PubMed

    Xiao, Xiaomei; He, Liangmei; Chen, Yayun; Wu, Longhuo; Wang, Lin; Liu, Zhiping

    2017-11-01

    Camellia oleifera Abel is a member of Camellia, and its seeds are used to extract Camellia oil, which is generally used as cooking oil in the south of China. Camellia oil consists of unsaturated fatty acids, tea polyphenol, squalene, saponin, carrot element and vitamins, etc. The seed remains after oil extraction of C. oleifera Abel are by-products of oil production, named as Camellia oil cake. Its extracts contain bioactive compounds including sasanquasaponin, flavonoid and tannin. Major components from Camellia oil and its cake have been shown to have anti-inflammatory, antioxidative, antimicrobial and antitumor activities. In this review, we will summarize the latest advance in the studies on anti-inflammatory or antioxidative effects of C. oleifera products, thus providing valuable reference for the future research and development of C. oleifera Abel.

  15. Deep spectroscopy of nearby galaxy clusters - IV. The quench of the star formation in galaxies in the infall region of Abell 85

    NASA Astrophysics Data System (ADS)

    Aguerri, J. A. L.; Agulli, I.; Méndez-Abreu, J.

    2018-06-01

    Our aim is to understand the role of the environment in the quenching of star formation of galaxies located in the infall cluster region of Abell 85 (A85). This is achieved by studying the post-starburst galaxy population as tracer of recent quenching. By measuring the equivalent width (EW) of the [O II] and Hδ spectral lines, we classify the galaxies into three groups: passive (PAS), emission line (EL), and post-starburst (PSB) galaxies. The PSB galaxy population represents ˜ 4.5 per cent of the full sample. Dwarf galaxies (Mr > -18.0) account for ˜ 70 - 80 per cent of PSBs, which indicates that most of the galaxies undergoing recent quenching are low-mass objects. Independently of the environment, PSB galaxies are disc-like objects with g - r colour between the blue ELs and the red PAS ones. The PSB and EL galaxies in low-density environments show similar luminosities and local galaxy densities. The dynamics and local galaxy density of the PSB population in high-density environments are shared with PAS galaxies. However, PSB galaxies inside A85 are at shorter clustercentric radius than PAS and EL ones. The value of the EW(Hδ) is larger for those PSBs closer to the cluster centre. We propose two different physical mechanisms producing PSB galaxies depending on the environment. In low-density environments, gas-rich minor mergers or accretions could produce the PSB galaxies. For high-density environments like A85, PSBs would be produced by the removal of the gas reservoirs of EL galaxies by ram-pressure stripping when they pass near the cluster centre.

  16. Nucleosynthesis in Thermonuclear Supernovae

    NASA Astrophysics Data System (ADS)

    Seitenzahl, Ivo Rolf; Townsley, Dean M.

    The explosion energy of thermonuclear (type Ia) supernovae is derived from the difference in nuclear binding energy liberated in the explosive fusion of light "fuel" nuclei, predominantly carbon and oxygen, into more tightly bound nuclear "ash" dominated by iron and silicon group elements. The very same explosive thermonuclear fusion event is also one of the major processes contributing to the nucleosynthesis of the heavy elements, in particular the iron-group elements. For example, most of the iron and manganese in the sun and its planetary system were produced in thermonuclear supernovae. Here, we review the physics of explosive thermonuclear burning in carbon-oxygen white dwarf material and the methodologies utilized in calculating predicted nucleosynthesis from hydrodynamic explosion models. While the dominant explosion scenario remains unclear, many aspects of the nuclear combustion and nucleosynthesis are common to all models and must occur in some form in order to produce the observed yields. We summarize the predicted nucleosynthetic yields for existing explosion models, placing particular emphasis on characteristic differences in the nucleosynthetic signatures of the different suggested scenarios leading to type Ia supernovae. Following this, we discuss how these signatures compare with observations of several individual supernovae, remnants, and the composition of material in our galaxy and galaxy clusters.

  17. Diffuse Optical Light in Galaxy Clusters. I. Abell 3888

    NASA Astrophysics Data System (ADS)

    Krick, J. E.; Bernstein, R. A.; Pimbblet, K. A.

    2006-01-01

    We are undertaking a program to measure the characteristics of the intracluster light (ICL; total flux, profile, color, and substructure) in a sample of 10 galaxy clusters with a range of cluster mass, morphology, and redshift. We present here the methods and results for the first cluster in that sample, A3888. We have identified an ICL component in A3888 in V and r that contains 13%+/-5% of the total cluster light and extends to 700 h-170 kpc (~0.3r200) from the center of the cluster. The ICL color in our smallest radial bin is V-r=0.3+/-0.1, similar to the central cluster elliptical galaxies. The ICL is redder than the galaxies at 400 h-170 kpc1) with a high-metallicity (1.0 Zsolarcluster. In addition, we find three low surface brightness features near the cluster center that are blue (V-r=0.0) and contain a total flux of 0.1M*. Based on these observations and X-ray and galaxy morphology, we suggest that this cluster is entering a phase of significant merging of galaxy groups in the core, whereupon we expect the ICL fraction to grow significantly with the formation of a cD galaxy, as well as the infall of groups.

  18. Astronomical observations with the FAUST telescope

    NASA Technical Reports Server (NTRS)

    Bixler, J.; Bowyer, S.; Malina, R.; Martin, C.; Lampton, M.; Deharveng, J. M.; Courtes, G.

    1984-01-01

    The far-ultraviolet space telescope (FAUST) was flown on Spacelab 1 to provide wide-field imaging in the wavelength range 1300 to 1800 angstroms.Most of the developed film showed high levels of background exposure. Frames with a lower background included exposures of the Cygnus Loop supernova remnant and an exposure in the direction of the galaxy cluster Abell 2634. Several exposures will be used in a search for hot white dwarf stars.

  19. Radio supernovae and super star clusters in the circumnuclear region of NGC 1365

    NASA Astrophysics Data System (ADS)

    Lindblad, P. O.; Kristen, H.

    Groundbased optical and VLA observations have shown that the nucleus of the barred Seyfert 1 galaxy NGC 1365 is surrounded by a number of star forming regions, or "hot spots", as well as a number of resolved and unresolved continuum radio sources. HST/FOC observations reveal that the nucleus is surrounded by a ring of very compact unresolved sources of the kind that have been discovered in a number of other galaxies, and that have been assumed to be very compact young globular star clusters. The hot spots are resolved into groups of such compact sources. VLA observations at lambda = 2 cm, where the resolution approaches that of HST, reveals that the brightest unresolved radio source at 2 cm, which has been assumed to be a radio supernova, coincides with one of the compact HST sources. The implications of this will be discussed.

  20. A Census of Star Formation and Active Galactic Nuclei Populations in Abell 1689

    NASA Astrophysics Data System (ADS)

    Jones, Logan H.; Atlee, David Wesley

    2016-01-01

    A recent survey of low-z galaxy clusters observed a disjunction between X-ray and mid-infrared selected populations of active galactic nuclei (X-ray and IR AGNs) (Atlee+ 2011, ApJ 729, 22.). Here we present an analysis of near-infrared spectroscopic data of star-forming galaxies in cluster Abell 1689 in order to confirm the identity of some of their IR AGN and to provide a check on their reported star formation rates. Our sample consists of 24 objects in Abell 1689. H and K band spectroscopic observations of target objects and standard stars were obtained by David Atlee between 2010 May 17 and 2011 June 6 using the Large Binocular Telescope's LUCI instrument. After undergoing initial reductions, standard stars were corrected for telluric absorption using TelFit (Gullikson+ 2014, AJ, 158, 53). Raw detector counts were converted to physical units using the wavelength-dependent response of the grating and the star's reported H and K band magnitudes to produce conversion factors that fully correct for instrumental effects. Target spectra were flux-calibrated using the airmass-corrected transmission profiles produced by TelFit and the associated H band conversion factor (or the average of the two factors, for nights with two standard stars). Star formation rates were calculated using the SFR-L(Ha) relation reported in Kennicutt (1998), with the measured luminosity of the Pa-a emission line at the luminosity distance of the cluster used as a proxy for L(Ha) (Kennicutt 1998, ARA&A 36, 189; Hummer & Stoney 1987, MNRAS 346, 1055). The line ratios H2 2.121 mm/Brg and [FeII]/Pab were used to classify targets as starburst galaxies, AGNs, or LINERs (Rodriguez-Ardila+ 2005, MNRAS, 364, 1041). Jones was supported by the NOAO/KPNO Research Experience for Undergraduates (REU) Program, which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  1. Improved Abel transform inversion: First application to COSMIC/FORMOSAT-3

    NASA Astrophysics Data System (ADS)

    Aragon-Angel, A.; Hernandez-Pajares, M.; Juan, J.; Sanz, J.

    2007-05-01

    In this paper the first results of Ionospheric Tomographic inversion are presented, using the Improved Abel Transform on the COSMIC/FORMOSAT-3 constellation of 6 LEO satellites, carrying on-board GPS receivers.[- 4mm] The Abel transform inversion is a wide used technique which in the ionospheric context makes it possible to retrieve electron densities as a function of height based of STEC (Slant Total Electron Content) data gathered from GPS receivers on board of LEO (Low Earth Orbit) satellites. Within this precise use, the classical approach of the Abel inversion is based on the assumption of spherical symmetry of the electron density in the vicinity of an occultation, meaning that the electron content varies in height but not horizontally. In particular, one implication of this assumption is that the VTEC (Vertical Total Electron Content) is a constant value for the occultation region. This assumption may not always be valid since horizontal ionospheric gradients (a very frequent feature in some ionosphere problematic areas such as the Equatorial region) could significantly affect the electron profiles. [- 4mm] In order to overcome this limitation/problem of the classical Abel inversion, a studied improvement of this technique can be obtained by assuming separability in the electron density (see Hernández-Pajares et al. 2000). This means that the electron density can be expressed by the multiplication of VTEC data and a shape function which assumes all the height dependency in it while the VTEC data keeps the horizontal dependency. Actually, it is more realistic to assume that this shape fuction depends only on the height and to use VTEC information to take into account the horizontal variation rather than considering spherical symmetry in the electron density function as it has been carried out in the classical approach of the Abel inversion.[-4mm] Since the above mentioned improved Abel inversion technique has already been tested and proven to be a useful

  2. XMM-Newton Observations of the Southeastern Radio Relic in Abell 3667

    NASA Astrophysics Data System (ADS)

    Storm, Emma; Vink, Jacco; Zandanel, Fabio; Akamatsu, Hiroki

    2018-06-01

    Radio relics, elongated, non-thermal, structures located at the edges of galaxy clusters, are the result of synchrotron radiation from cosmic-ray electrons accelerated by merger-driven shocks at the cluster outskirts. However, X-ray observations of such shocks in some clusters suggest that they are too weak to efficiently accelerate electrons via diffusive shock acceleration to energies required to produce the observed radio power. We examine this issue in the merging galaxy cluster Abell 3667 (A3667), which hosts a pair of radio relics. While the Northwest relic in A3667 has been well studied in the radio and X-ray by multiple instruments, the Southeast relic region has only been observed so far by Suzaku, which detected a temperature jump across the relic, suggesting the presence of a weak shock. We present observations of the Southeastern region of A3667 with XMM-Newton centered on the radio relic. We confirm the existence of an X-ray shock with Mach number of about 1.8 from a clear detection of temperature jump and a tentative detection of a density jump, consistent with previous measurements by Suzaku. We discuss the implications of this measurement for diffusive shock acceleration as the main mechanism for explaining the origin of radio relics. We then speculate on the plausibility of alternative scenarios, including re-acceleration and variations in the Mach number along shock fronts.

  3. The HST Frontier Fields: High-Level Science Data Products for the First 4 Completed Clusters, and Latest Data on the Remaining Clusters

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Borncamp, David; Gunning, Heather C.; Hilbert, Bryan; Khandrika, Harish G.; Lucas, Ray A.; Ogaz, Sara; Porterfield, Blair; Grogin, Norman A.; Robberto, Massimo; Flanagan, Kathryn; Mountain, Matt; HST Frontier Fields Team

    2016-01-01

    The Hubble Space Telescope Frontier Fields program is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The first four of these clusters are now complete, namely Abell 2744, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223, with each of these having been observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, using ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W). The remaining two clusters, Abell 370 and Abell S1063, are currently in progress. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including a total of 24 separate cumulative-depth data releases during each epoch, as well as full-depth version 1.0 releases at the end of each completed epoch. These products include all the full-depth distortion-corrected mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The resulting high-level science products are delivered via the Mikulski Archive for Space Telescopes (MAST) to the community on a rapid timescale to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.

  4. The first high resolution image of coronal gas in a starbursting cool core cluster

    NASA Astrophysics Data System (ADS)

    Johnson, Sean

    2017-08-01

    Galaxy clusters represent a unique laboratory for directly observing gas cooling and feedback due to their high masses and correspondingly high gas densities and temperatures. Cooling of X-ray gas observed in 1/3 of clusters, known as cool-core clusters, should fuel star formation at prodigious rates, but such high levels of star formation are rarely observed. Feedback from active galactic nuclei (AGN) is a leading explanation for the lack of star formation in most cool clusters, and AGN power is sufficient to offset gas cooling on average. Nevertheless, some cool core clusters exhibit massive starbursts indicating that our understanding of cooling and feedback is incomplete. Observations of 10^5 K coronal gas in cool core clusters through OVI emission offers a sensitive means of testing our understanding of cooling and feedback because OVI emission is a dominant coolant and sensitive tracer of shocked gas. Recently, Hayes et al. 2016 demonstrated that synthetic narrow-band imaging of OVI emission is possible through subtraction of long-pass filters with the ACS+SBC for targets at z=0.23-0.29. Here, we propose to use this exciting new technique to directly image coronal OVI emitting gas at high resolution in Abell 1835, a prototypical starbursting cool-core cluster at z=0.252. Abell 1835 hosts a strong cooling core, massive starburst, radio AGN, and at z=0.252, it offers a unique opportunity to directly image OVI at hi-res in the UV with ACS+SBC. With just 15 orbits of ACS+SBC imaging, the proposed observations will complete the existing rich multi-wavelength dataset available for Abell 1835 to provide new insights into cooling and feedback in clusters.

  5. HD271791: dynamical versus binary-supernova ejection scenario

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2009-05-01

    The atmosphere of the extremely high-velocity (530-920kms-1) early B-type star HD271791 is enriched in α-process elements, which suggests that this star is a former secondary component of a massive tight binary system and that its surface was polluted by the nucleosynthetic products after the primary star exploded in a supernova. It was proposed that the (asymmetric) supernova explosion unbind the system and that the secondary star (HD271791) was released at its orbital velocity in the direction of Galactic rotation. In this Letter, we show that to explain the Galactic rest-frame velocity of HD271791 within the framework of the binary-supernova scenario, the stellar remnant of the supernova explosion (a <~10Msolar black hole) should receive an unrealistically large kick velocity of >=750-1200kms-1. We therefore consider the binary-supernova scenario as highly unlikely and instead propose that HD271791 attained its peculiar velocity in the course of a strong dynamical three- or four-body encounter in the dense core of the parent star cluster. Our proposal implies that by the moment of encounter HD271791 was a member of a massive post-supernova binary.

  6. Anatomy of a Merger: A Deep Chandra Observation of Abell 115

    NASA Astrophysics Data System (ADS)

    Forman, William R.

    2017-08-01

    A deep Chandra observation of Abell 115 provides a unique probe of the anatomy of cluster mergers. The X-ray image shows two prominent subclusters, A115N (north) and A115S (south) with a projected separation of almost 1 Mpc. The X-ray subclusters each have ram-pressure stripped tails that unambiguously indicate the directions of motion. The central BCG of A115N hosts the radio source 3C28 which shows a pair of jets, almost perpendicular to the direction of the sucluster's motion. The jets terminate in lobes each of which has a "tail" pointing IN the direction of motion of the subcluster. The Chandra analysis provides details of the merger including the velocities of the subclusters both through analysis of the cold front and a weak shock. The motion of A115N through the cluster generates counter-rotating vortices in the subcluster gas that form the two radio tails. Hydrodynamic modeling yields circulation velocities within the A115N sub cluster. Thus, the radio emitting plasma acts as a dye tracing the motions of the X-ray emitting plasma. A115S shows two "cores", one coincident with the BCG and a second appears as a ram pressure stripped tail.

  7. Constraining the Mass of the Spectacular Pandora's Cluster, Abell 2744

    NASA Astrophysics Data System (ADS)

    Carrasco, Rodrigo; Frye, Brenda; Coe, Dan; Dupke, Renato; Merten, Julian; Sodre, Laerte; Massey, Richard; Braglia, Filberto; Cypriano, Eduardo; Zitrin, Adi; Krick, Jessica; Benitez, Narciso

    2011-08-01

    Violent cluster mergers provide a unique opportunity to study the interplay between dark matter (DM) and ICM and to set constraints on the nature of DM. In particular, cluster mergers near first core passage allow us to ``see'' DM by comparing the spatial distribution of the intra-cluster gas (baryonic) to that of DM. We have recently finished a lensing analysis of the particularly interesting merging system, A2744, the Pandora cluster. We found that it is the result of a spectacular merging event, significantly more complex than the "Bullet Cluster", that produced a wide variety of new phenomenologies, among them, a Bullet, a Dark sub-cluster (no gas), a Ghost sub-cluster (no DM), which can provide fundamental insights to the physics of the ICM, and begs further observations. Our analyses revealed 34 arcs produced by strong gravitational lensing, none of which had been published to date. Spectroscopic redshifts of these arcs are essential to determine precise masses of the main merging system providing crucial information for further numerical simulations and to set stronger constraints on the DM self-interaction cross-section. Therefore we are requesting 17.2 hours on Gemini+GMOS-S, primarily to obtain spectroscopic redshifts of multiply strongly lensed arcs produced by this impressive cluster.

  8. Abel's Theorem Simplifies Reduction of Order

    ERIC Educational Resources Information Center

    Green, William R.

    2011-01-01

    We give an alternative to the standard method of reduction or order, in which one uses one solution of a homogeneous, linear, second order differential equation to find a second, linearly independent solution. Our method, based on Abel's Theorem, is shorter, less complex and extends to higher order equations.

  9. The GenABEL Project for statistical genomics.

    PubMed

    Karssen, Lennart C; van Duijn, Cornelia M; Aulchenko, Yurii S

    2016-01-01

    Development of free/libre open source software is usually done by a community of people with an interest in the tool. For scientific software, however, this is less often the case. Most scientific software is written by only a few authors, often a student working on a thesis. Once the paper describing the tool has been published, the tool is no longer developed further and is left to its own device. Here we describe the broad, multidisciplinary community we formed around a set of tools for statistical genomics. The GenABEL project for statistical omics actively promotes open interdisciplinary development of statistical methodology and its implementation in efficient and user-friendly software under an open source licence. The software tools developed withing the project collectively make up the GenABEL suite, which currently consists of eleven tools. The open framework of the project actively encourages involvement of the community in all stages, from formulation of methodological ideas to application of software to specific data sets. A web forum is used to channel user questions and discussions, further promoting the use of the GenABEL suite. Developer discussions take place on a dedicated mailing list, and development is further supported by robust development practices including use of public version control, code review and continuous integration. Use of this open science model attracts contributions from users and developers outside the "core team", facilitating agile statistical omics methodology development and fast dissemination.

  10. The GenABEL Project for statistical genomics

    PubMed Central

    Karssen, Lennart C.; van Duijn, Cornelia M.; Aulchenko, Yurii S.

    2016-01-01

    Development of free/libre open source software is usually done by a community of people with an interest in the tool. For scientific software, however, this is less often the case. Most scientific software is written by only a few authors, often a student working on a thesis. Once the paper describing the tool has been published, the tool is no longer developed further and is left to its own device. Here we describe the broad, multidisciplinary community we formed around a set of tools for statistical genomics. The GenABEL project for statistical omics actively promotes open interdisciplinary development of statistical methodology and its implementation in efficient and user-friendly software under an open source licence. The software tools developed withing the project collectively make up the GenABEL suite, which currently consists of eleven tools. The open framework of the project actively encourages involvement of the community in all stages, from formulation of methodological ideas to application of software to specific data sets. A web forum is used to channel user questions and discussions, further promoting the use of the GenABEL suite. Developer discussions take place on a dedicated mailing list, and development is further supported by robust development practices including use of public version control, code review and continuous integration. Use of this open science model attracts contributions from users and developers outside the “core team”, facilitating agile statistical omics methodology development and fast dissemination. PMID:27347381

  11. Lens models under the microscope: comparison of Hubble Frontier Field cluster magnification maps

    NASA Astrophysics Data System (ADS)

    Priewe, Jett; Williams, Liliya L. R.; Liesenborgs, Jori; Coe, Dan; Rodney, Steven A.

    2017-02-01

    Using the power of gravitational lensing magnification by massive galaxy clusters, the Hubble Frontier Fields provide deep views of six patches of the high-redshift Universe. The combination of deep Hubble imaging and exceptional lensing strength has revealed the greatest numbers of multiply-imaged galaxies available to constrain models of cluster mass distributions. However, even with O(100) images per cluster, the uncertainties associated with the reconstructions are not negligible. The goal of this paper is to show the diversity of model magnification predictions. We examine seven and nine mass models of Abell 2744 and MACS J0416, respectively, submitted to the Mikulski Archive for Space Telescopes for public distribution in 2015 September. The dispersion between model predictions increases from 30 per cent at common low magnifications (μ ˜ 2) to 70 per cent at rare high magnifications (μ ˜ 40). MACS J0416 exhibits smaller dispersions than Abell 2744 for 2 < μ < 10. We show that magnification maps based on different lens inversion techniques typically differ from each other by more than their quoted statistical errors. This suggests that some models underestimate the true uncertainties, which are primarily due to various lensing degeneracies. Though the exact mass sheet degeneracy is broken, its generalized counterpart is not broken at least in Abell 2744. Other local degeneracies are also present in both clusters. Our comparison of models is complementary to the comparison of reconstructions of known synthetic mass distributions. By focusing on observed clusters, we can identify those that are best constrained, and therefore provide the clearest view of the distant Universe.

  12. Detection of a pair of prominent X-ray cavities in Abell 3847

    NASA Astrophysics Data System (ADS)

    Vagshette, Nilkanth D.; Naik, Sachindra; Patil, Madhav. K.; Sonkamble, Satish S.

    2017-04-01

    We present the results obtained from a detailed analysis of a deep Chandra observation of the bright FRII radio galaxy 3C 444 in Abell 3847 cluster. A pair of huge X-ray cavities are detected along the north and south directions from the centre of 3C 444. X-ray and radio images of the cluster reveal peculiar positioning of the cavities and radio bubbles. The radio lobes and X-ray cavities are apparently not spatially coincident and exhibit offsets by ˜61 and 77 kpc from each other along the north and south directions, respectively. Radial temperature and density profiles reveal the presence of a cool core in the cluster. Imaging and spectral studies showed the removal of substantial amount of matter from the core of the cluster by the radio jets. A detailed analysis of the temperature and density profiles showed the presence of a rarely detected elliptical shock in the cluster. Detection of inflating cavities at an average distance of ˜55 kpc from the centre implies that the central engine feeds a remarkable amount of radio power (˜6.3 × 1044 erg s-1) into the intra-cluster medium over ˜108 yr, the estimated age of cavity. The cooling luminosity of the cluster was estimated to be ˜8.30 × 1043 erg s-1 , which confirms that the AGN power is sufficient to quench the cooling. Ratios of mass accretion rate to Eddington and Bondi rates were estimated to be ˜0.08 and 3.5 × 104, respectively. This indicates that the black hole in the core of the cluster accretes matter through chaotic cold accretion.

  13. Applications for edge detection techniques using Chandra and XMM-Newton data: galaxy clusters and beyond

    NASA Astrophysics Data System (ADS)

    Walker, S. A.; Sanders, J. S.; Fabian, A. C.

    2016-09-01

    The unrivalled spatial resolution of the Chandra X-ray observatory has allowed many breakthroughs to be made in high-energy astrophysics. Here we explore applications of Gaussian gradient magnitude (GGM) filtering to X-ray data, which dramatically improves the clarity of surface brightness edges in X-ray observations, and maps gradients in X-ray surface brightness over a range of spatial scales. In galaxy clusters, we find that this method is able to reveal remarkable substructure behind the cold fronts in Abell 2142 and Abell 496, possibly the result of Kelvin-Helmholtz instabilities. In Abell 2319 and Abell 3667, we demonstrate that the GGM filter can provide a straightforward way of mapping variations in the widths and jump ratios along the lengths of cold fronts. We present results from our ongoing programme of analysing the Chandra and XMM-Newton archives with the GGM filter. In the Perseus cluster, we identify a previously unseen edge around 850 kpc from the core to the east, lying outside a known large-scale cold front, which is possibly a bow shock. In MKW 3s we find an unusual `V' shape surface brightness enhancement starting at the cluster core, which may be linked to the AGN jet. In the Crab nebula a new, moving feature in the outer part of the torus is identified which moves across the plane of the sky at a speed of ˜0.1c, and lies much further from the central pulsar than the previous motions seen by Chandra.

  14. JVLA 1.5 GHz Continuum Observation of CLASH Clusters. I. Radio Properties of the BCGs

    NASA Astrophysics Data System (ADS)

    Yu, Heng; Tozzi, Paolo; van Weeren, Reinout; Liuzzo, Elisabetta; Giovannini, Gabriele; Donahue, Megan; Balestra, Italo; Rosati, Piero; Aravena, Manuel

    2018-02-01

    We present high-resolution (∼1″), 1.5 GHz continuum observations of the brightest cluster galaxies (BCGs) of 13 CLASH (Cluster Lensing And Supernova survey with Hubble) clusters at 0.18< z< 0.69 with the Karl G. Jansky Very Large Array (JVLA). Radio emission is clearly detected and characterized for 11 BCGs, while for two of them we obtain only upper limits to their radio flux (< 0.1 mJy at 5σ confidence level). We also consider five additional clusters whose BCG is detected in FIRST or NVSS. We find radio powers in the range from 2× {10}23 to ∼ {10}26 {{W}} {{Hz}}-1 and radio spectral indices {α }1.530 (defined as the slope between 1.5 and 30 GHz) distributed from ∼ -1 to ‑0.25 around the central value < α > =-0.68. The radio emission from the BCGs is resolved in three cases (Abell 383, MACS J1931, and RX J2129), and unresolved or marginally resolved in the remaining eight cases observed with JVLA. In all the cases the BCGs are consistent with being powered by active galactic nuclei. The radio power shows a positive correlation with the BCG star formation rate, and a negative correlation with the central entropy of the surrounding intracluster medium (ICM) except in two cases (MACS J1206 and CL J1226). Finally, over the restricted range in radio power sampled by the CLASH BCGs, we observe a significant scatter between the radio power and the average mechanical power stored in the ICM cavities.

  15. Interacting supernovae and supernova impostors

    NASA Astrophysics Data System (ADS)

    Tartaglia, Leonardo

    2016-02-01

    Massive stars are thought to end their lives with spectacular explosions triggered by the gravitational collapse of their cores. Interacting supernovae are generally attributed to supernova explosions occurring in dense circumstellar media, generated through mass-loss which characterisie the late phases of the life of their progenitors. In the last two decades, several observational evidences revealed that mass-loss in massive stars may be related to violent eruptions involving their outer layers, such as the luminous blue variables. Giant eruptions of extragalactic luminous blue variables, similar to that observed in Eta Car in the 19th century, are usually labelled 'SN impostors', since they mimic the behaviour of genuine SNe, but are not the final act of the life of the progenitor stars. The mechanisms producing these outbursts are still not understood, although the increasing number of observed cases triggered the efforts of the astronomical community to find possible theoretical interpretations. More recently, a number of observational evidences suggested that also lower-mass stars can experience pre-supernova outbursts, hence becoming supernova impostors. Even more interestingly, there is growing evidence of a connection among massive stars, their outbursts and interacting supernovae. All of this inspired this research, which has been focused in particular on the characterisation of supernova impostors and the observational criteria that may allow us to safely discriminate them from interacting supernovae. Moreover, the discovery of peculiar transients, motivated us to explore the lowest range of stellar masses that may experience violent outbursts. Finally, the quest for the link among massive stars, their giant eruptions and interacting supernovae, led us to study the interacting supernova LSQ13zm, which possibly exploded a very short time after an LBV-like major outburst.

  16. Structure and Formation of cD Galaxies: NGC 6166 in ABELL 2199

    NASA Astrophysics Data System (ADS)

    Bender, Ralf; Kormendy, John; Cornell, Mark E.; Fisher, David B.

    2015-07-01

     Hobby-Eberly Telescope (HET) spectroscopy is used to measure the velocity dispersion profile of the nearest prototypical cD galaxy, NGC 6166 in the cluster Abell 2199. We also present composite surface photometry from many telescopes. We confirm the defining feature of a cD galaxy; i.e., (we suggest), a halo of stars that fills the cluster center and that is controlled dynamically by cluster gravity, not by the central galaxy. Our HET spectroscopy shows that the velocity dispersion of NGC 6166 rises from σ ≃ 300 km s-1 in the inner r˜ 10\\prime\\prime to σ =865+/- 58 km s-1 at r ˜ 100″ in the cD halo. This extends published observations of an outward σ increase and shows for the first time that σ rises all the way to the cluster velocity dispersion of 819 ± 32 km s-1. We also observe that the main body of NGC 6166 moves at +206 ± 39 km s-1 with respect to the cluster mean velocity, but the velocity of the inner cD halo is ˜70 km s-1 closer to the cluster velocity. These results support our picture that cD halos consist of stars that were stripped from individual cluster galaxies by fast tidal encounters.  However, our photometry does not confirm the widespread view that cD halos are identifiable as an extra, low-surface-brightness component that is photometrically distinct from the inner, steep-Sérsic-function main body of an otherwise-normal giant elliptical galaxy. Instead, all of the brightness profile of NGC 6166 outside its core is described to ±0.037 V mag arcsec-2 by a single Sérsic function with index n≃ 8.3. The cD halo is not recognizable from photometry alone. This blurs the distinction between cluster-dominated cD halos and the similarly-large-Sérsic-index halos of giant, core-boxy-nonrotating ellipticals. These halos are believed to be accreted onto compact, high-redshift progenitors (“red nuggets”) by large numbers of minor mergers. They belong dynamically to their central galaxies. Still, cDs and core-boxy-nonrotating Es

  17. VizieR Online Data Catalog: Magellan/M2FS spectroscopy of Abell 267 (Tucker+, 2017)

    NASA Astrophysics Data System (ADS)

    Tucker, E.; Walker, M. G.; Mateo, M.; Olszewski, E. W.; Bailey, J. I.; Crane, J. D.; Shectman, S. A.

    2018-02-01

    We select targets for Michigan/Magellan Fiber System (M2FS) observations by identifying galaxies detected in SDSS images (Data Release 12; Alam et al.2015, Cat. V/147) that are projected along the line of sight to Abell 267 and are likely to be quiescent cluster members. We observed 223 individual galaxy spectra on 2013 November 30 on the Clay Magellan Telescope using M2FS. We used the low-resolution grating on M2FS and chose a coverage range of 4600-6400Å with a resolution of R~2000. The detector used with M2FS consists of two 4096*4112 pixel CCDs. (1 data file).

  18. Abel inversion using fast Fourier transforms.

    PubMed

    Kalal, M; Nugent, K A

    1988-05-15

    A fast Fourier transform based Abel inversion technique is proposed. The method is faster than previously used techniques, potentially very accurate (even for a relatively small number of points), and capable of handling large data sets. The technique is discussed in the context of its use with 2-D digital interferogram analysis algorithms. Several examples are given.

  19. Dynamics of cD Clusters of Galaxies. 4; Conclusion of a Survey of 25 Abell Clusters

    NASA Technical Reports Server (NTRS)

    Oegerle, William R.; Hill, John M.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present the final results of a spectroscopic study of a sample of cD galaxy clusters. The goal of this program has been to study the dynamics of the clusters, with emphasis on determining the nature and frequency of cD galaxies with peculiar velocities. Redshifts measured with the MX Spectrometer have been combined with those obtained from the literature to obtain typically 50 - 150 observed velocities in each of 25 galaxy clusters containing a central cD galaxy. We present a dynamical analysis of the final 11 clusters to be observed in this sample. All 25 clusters are analyzed in a uniform manner to test for the presence of substructure, and to determine peculiar velocities and their statistical significance for the central cD galaxy. These peculiar velocities were used to determine whether or not the central cD galaxy is at rest in the cluster potential well. We find that 30 - 50% of the clusters in our sample possess significant subclustering (depending on the cluster radius used in the analysis), which is in agreement with other studies of non-cD clusters. Hence, the dynamical state of cD clusters is not different than other present-day clusters. After careful study, four of the clusters appear to have a cD galaxy with a significant peculiar velocity. Dressler-Shectman tests indicate that three of these four clusters have statistically significant substructure within 1.5/h(sub 75) Mpc of the cluster center. The dispersion 75 of the cD peculiar velocities is 164 +41/-34 km/s around the mean cluster velocity. This represents a significant detection of peculiar cD velocities, but at a level which is far below the mean velocity dispersion for this sample of clusters. The picture that emerges is one in which cD galaxies are nearly at rest with respect to the cluster potential well, but have small residual velocities due to subcluster mergers.

  20. Pandora Cluster Seen by Spitzer

    NASA Image and Video Library

    2016-09-28

    This image of galaxy cluster Abell 2744, also called Pandora's Cluster, was taken by the Spitzer Space Telescope. The gravity of this galaxy cluster is strong enough that it acts as a lens to magnify images of more distant background galaxies. This technique is called gravitational lensing. The fuzzy blobs in this Spitzer image are the massive galaxies at the core of this cluster, but astronomers will be poring over the images in search of the faint streaks of light created where the cluster magnifies a distant background galaxy. The cluster is also being studied by NASA's Hubble Space Telescope and Chandra X-Ray Observatory in a collaboration called the Frontier Fields project. In this image, light from Spitzer's infrared channels is colored blue at 3.6 microns and green at 4.5 microns. http://photojournal.jpl.nasa.gov/catalog/PIA20920

  1. Radio active galactic nuclei in galaxy clusters: Feedback, merger signatures, and cluster tracers

    NASA Astrophysics Data System (ADS)

    Paterno-Mahler, Rachel Beth

    Galaxy clusters, the largest gravitationally-bound structures in the universe, are composed of 50-1000s of galaxies, hot X-ray emitting gas, and dark matter. They grow in size over time through cluster and group mergers. The merger history of a cluster can be imprinted on the hot gas, known as the intracluster medium (ICM). Merger signatures include shocks, cold fronts, and sloshing of the ICM, which can form spiral structures. Some clusters host double-lobed radio sources driven by active galactic nuclei (AGN). First, I will present a study of the galaxy cluster Abell 2029, which is very relaxed on large scales and has one of the largest continuous sloshing spirals yet observed in the X-ray, extending outward approximately 400 kpc. The sloshing gas interacts with the southern lobe of the radio galaxy, causing it to bend. Energy injection from the AGN is insufficient to offset cooling. The sloshing spiral may be an important additional mechanism in preventing large amounts of gas from cooling to very low temperatures. Next, I will present a study of Abell 98, a triple system currently undergoing a merger. I will discuss the merger history, and show that it is causing a shock. The central subcluster hosts a double-lobed AGN, which is evacuating a cavity in the ICM. Understanding the physical processes that affect the ICM is important for determining the mass of clusters, which in turn affects our calculations of cosmological parameters. To further constrain these parameters, as well as models of galaxy evolution, it is important to use a large sample of galaxy clusters over a range of masses and redshifts. Bent, double-lobed radio sources can potentially act as tracers of galaxy clusters over wide ranges of these parameters. I examine how efficient bent radio sources are at tracing high-redshift (z>0.7) clusters. Out of 646 sources in our high-redshift Clusters Occupied by Bent Radio AGN (COBRA) sample, 282 are candidate new, distant clusters of galaxies based on

  2. Very old and very young compact objects: X-ray studies of galactic globular clusters and recent core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Pooley, David Aaron

    2003-09-01

    This thesis comprises the results of two distinct areas of research, namely, X-ray studies of Galactic globular clusters and X-ray studies of recent core collapse supernovae. My analyses of the Chandra X-ray Observatory observations of the globular clusters NGC 6752 and NGC 6440 revealed as many low- luminosity X-ray sources as was in the entire census of globular cluster sources with the previous best X-ray imaging instrument, Röntgensatellit. In the observation of NGC 6752, I detect 6 X-ray sources within the 10''.5 core radius and 13 more within the 115' half-mass radius down to a limiting luminosity of Lx ≈ 1030 ergs s -1 for cluster sources. Based on a reanalysis of archival data from the Hubble Space Telescope and the Australia Telescope Compact Array, I make 12 optical identifications and one radio identification. Based on X- ray and optical properties of the identifications, I find 10 likely cataclysmic variables (CVs), 1 3 likely RS CVn or BY Dra systems, and 1 or 2 possible background objects. Of the 7 sources for which no optical identifications were made, one was detected in the archival radio data, and another was found to be a millisecond pulsar. Of the remaining sources, I expect that ˜2 4 are background objects and that the rest are either CVs or millisecond pulsars whose radio emission has not been detected. These and other Chandra results on globular clusters indicate that the dozens of CVs per cluster expected by theoretical arguments are being found. Based upon X-ray luminosities and colors, I conclude that there are 4 5 likely quiescent low-mass X-ray binaries and that most of the other sources are cataclysmic variables. I compare these results to Chandra results from other globular clusters and find the X-ray luminosity functions differ among the clusters. Observations of the Type II-P (plateau) Supernova (SN) 1999em and Type IIn (narrow emission line) SN 1998S have enabled estimation of the profile of the SN ejecta, the structure of the

  3. The SILCC project - III. Regulation of star formation and outflows by stellar winds and supernovae

    NASA Astrophysics Data System (ADS)

    Gatto, Andrea; Walch, Stefanie; Naab, Thorsten; Girichidis, Philipp; Wünsch, Richard; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Peters, Thomas; Derigs, Dominik; Baczynski, Christian; Puls, Joachim

    2017-04-01

    We study the impact of stellar winds and supernovae on the multiphase interstellar medium using three-dimensional hydrodynamical simulations carried out with FLASH. The selected galactic disc region has a size of (500 pc)2 × ±5 kpc and a gas surface density of 10 M⊙ pc-2. The simulations include an external stellar potential and gas self-gravity, radiative cooling and diffuse heating, sink particles representing star clusters, stellar winds from these clusters that combine the winds from individual massive stars by following their evolution tracks, and subsequent supernova explosions. Dust and gas (self-) shielding is followed to compute the chemical state of the gas with a chemical network. We find that stellar winds can regulate star (cluster) formation. Since the winds suppress the accretion of fresh gas soon after the cluster has formed, they lead to clusters that have lower average masses (102-104.3 M⊙) and form on shorter time-scales (10-3-10 Myr). In particular, we find an anticorrelation of cluster mass and accretion time-scale. Without winds, the star clusters easily grow to larger masses for ˜5 Myr until the first supernova explodes. Overall, the most massive stars provide the most wind energy input, while objects beginning their evolution as B-type stars contribute most of the supernova energy input. A significant outflow from the disc (mass loading ≳1 at 1 kpc) can be launched by thermal gas pressure if more than 50 per cent of the volume near the disc mid-plane can be heated to T > 3 × 105 K. Stellar winds alone cannot create a hot volume-filling phase. The models that are in best agreement with observed star formation rates drive either no outflows or weak outflows.

  4. DISENTANGLING THE ICL WITH THE CHEFs: ABELL 2744 AS A CASE STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiménez-Teja, Y.; Dupke, R., E-mail: yojite@iaa.es

    Measurements of the intracluster light (ICL) are still prone to methodological ambiguities, and there are multiple techniques in the literature to address them, mostly based on the binding energy, the local density distribution, or the surface brightness. A common issue with these methods is the a priori assumption of a number of hypotheses on either the ICL morphology, its surface brightness level, or some properties of the brightest cluster galaxy (BCG). The discrepancy in the results is high, and numerical simulations just place a boundary on the ICL fraction in present-day galaxy clusters in the range 10%–50%. We developed amore » new algorithm based on the Chebyshev–Fourier functions to estimate the ICL fraction without relying on any a priori assumption about the physical or geometrical characteristics of the ICL. We are able to not only disentangle the ICL from the galactic luminosity but mark out the limits of the BCG from the ICL in a natural way. We test our technique with the recently released data of the cluster Abell 2744, observed by the Frontier Fields program. The complexity of this multiple merging cluster system and the formidable depth of these images make it a challenging test case to prove the efficiency of our algorithm. We found a final ICL fraction of 19.17 ± 2.87%, which is very consistent with numerical simulations.« less

  5. A photometric analysis of Abell 1689: two-dimensional multistructure decomposition, morphological classification and the Fundamental Plane

    NASA Astrophysics Data System (ADS)

    Dalla Bontà, E.; Davies, R. L.; Houghton, R. C. W.; D'Eugenio, F.; Méndez-Abreu, J.

    2018-02-01

    We present a photometric analysis of 65 galaxies in the rich cluster Abell 1689 at z = 0.183, using the Hubble Space Telescope Advanced Camera for Surveys archive images in the rest-frame V band. We perform two-dimensional multicomponent photometric decomposition of each galaxy adopting different models of the surface-brightness distribution. We present an accurate morphological classification for each of the sample galaxies. For 50 early-type galaxies, we fit both a de Vaucouleurs law and a Sérsic law; S0s are modelled by also including a disc component described by an exponential law. Bars of SB0s are described by the profile of a Ferrers ellipsoid. For the 15 spirals, we model a Sérsic bulge, exponential disc and, when required, a Ferrers bar component. We derive the Fundamental Plane (FP) by fitting 40 early-type galaxies in the sample, using different surface-brightness distributions. We find that the tightest plane is that derived by Sérsic bulges. We find that bulges of spirals lie on the same relation. The FP is better defined by the bulges alone rather than the entire galaxies. Comparison with local samples shows both an offset and rotation in the FP of Abell 1689.

  6. The HST Frontier Fields: High-Level Science Data Products for the First 4 Completed Clusters, and for the Last 2 Clusters Currently in Progress

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer M.; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Borncamp, David; Gunning, Heather C.; Hilbert, Bryan; Khandrika, Harish G.; Lucas, Ray A.; Ogaz, Sara; Porterfield, Blair; Sunnquist, Ben; Grogin, Norman A.; Robberto, Massimo; Sembach, Kenneth; Flanagan, Kathryn; Mountain, Matt; HST Frontier Fields Team

    2016-06-01

    The Hubble Space Telescope Frontier Fields program (PI: J. Lotz) is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The first four of these clusters are now complete, namely Abell 2744, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223, with each of these having been observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, using ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W). The remaining two clusters, Abell 370 and Abell S1063, are currently in progress, with the first epoch for each having been completed. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including cumulative-depth v0.5 data releases during each epoch, as well as full-depth version 1.0 releases after the completion of each epoch. These products include all the full-depth distortion-corrected mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The full set of resulting high-level science products are publicly delivered to the community via the Mikulski Archive for Space Telescopes (MAST) to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the

  7. INFRARED OBSERVATIONAL MANIFESTATIONS OF YOUNG DUSTY SUPER STAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-González, Sergio; Tenorio-Tagle, Guillermo; Silich, Sergiy, E-mail: sergiomtz@inaoep.mx

    The growing evidence pointing at core-collapse supernovae as large dust producers makes young massive stellar clusters ideal laboratories to study the evolution of dust immersed in a hot plasma. Here we address the stochastic injection of dust by supernovae, and follow its evolution due to thermal sputtering within the hot and dense plasma generated by young stellar clusters. Under these considerations, dust grains are heated by means of random collisions with gas particles which result in the appearance of  infrared spectral signatures. We present time-dependent infrared spectral energy distributions that are to be expected from young stellar clusters. Our results aremore » based on hydrodynamic calculations that account for the stochastic injection of dust by supernovae. These also consider gas and dust radiative cooling, stochastic dust temperature fluctuations, the exit of dust grains out of the cluster volume due to the cluster wind, and a time-dependent grain size distribution.« less

  8. The Inhomogeneous Centers of Cooling Flows in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Sharma, Mangala

    2004-04-01

    The intracluster medium (ICM) in the centers of galaxy clusters is cool, dense and may be imhomogeneous. We present Chandra X-ray Observatory imaging spectroscopic data on two galaxy clusters, Abell 1991 and MS 0839.8+2938, that have cooling flows in their central few hundred kpc. Their cD galaxies show current star formation, and host compact radio sources. The hot ICM at both their centers has nonhomogeneities on kiloparsec scales. These finer structures are likely to be signatures of the formation of clusters through infall of smaller, cooler subclusters.

  9. Reconstruction of the two-dimensional gravitational potential of galaxy clusters from X-ray and Sunyaev-Zel'dovich measurements

    NASA Astrophysics Data System (ADS)

    Tchernin, C.; Bartelmann, M.; Huber, K.; Dekel, A.; Hurier, G.; Majer, C. L.; Meyer, S.; Zinger, E.; Eckert, D.; Meneghetti, M.; Merten, J.

    2018-06-01

    Context. The mass of galaxy clusters is not a direct observable, nonetheless it is commonly used to probe cosmological models. Based on the combination of all main cluster observables, that is, the X-ray emission, the thermal Sunyaev-Zel'dovich (SZ) signal, the velocity dispersion of the cluster galaxies, and gravitational lensing, the gravitational potential of galaxy clusters can be jointly reconstructed. Aims: We derive the two main ingredients required for this joint reconstruction: the potentials individually reconstructed from the observables and their covariance matrices, which act as a weight in the joint reconstruction. We show here the method to derive these quantities. The result of the joint reconstruction applied to a real cluster will be discussed in a forthcoming paper. Methods: We apply the Richardson-Lucy deprojection algorithm to data on a two-dimensional (2D) grid. We first test the 2D deprojection algorithm on a β-profile. Assuming hydrostatic equilibrium, we further reconstruct the gravitational potential of a simulated galaxy cluster based on synthetic SZ and X-ray data. We then reconstruct the projected gravitational potential of the massive and dynamically active cluster Abell 2142, based on the X-ray observations collected with XMM-Newton and the SZ observations from the Planck satellite. Finally, we compute the covariance matrix of the projected reconstructed potential of the cluster Abell 2142 based on the X-ray measurements collected with XMM-Newton. Results: The gravitational potentials of the simulated cluster recovered from synthetic X-ray and SZ data are consistent, even though the potential reconstructed from X-rays shows larger deviations from the true potential. Regarding Abell 2142, the projected gravitational cluster potentials recovered from SZ and X-ray data reproduce well the projected potential inferred from gravitational-lensing observations. We also observe that the covariance matrix of the potential for Abell 2142

  10. Supernova VLBI

    NASA Astrophysics Data System (ADS)

    Bartel, N.

    2009-08-01

    We review VLBI observations of supernovae over the last quarter century and discuss the prospect of imaging future supernovae with space VLBI in the context of VSOP-2. From thousands of discovered supernovae, most of them at cosmological distances, ˜50 have been detected at radio wavelengths, most of them in relatively nearby galaxies. All of the radio supernovae are Type II or Ib/c, which originate from the explosion of massive progenitor stars. Of these, 12 were observed with VLBI and four of them, SN 1979C, SN 1986J, SN 1993J, and SN 1987A, could be imaged in detail, the former three with VLBI. In addition, supernovae or young supernova remnants were discovered at radio wavelengths in highly dust-obscured galaxies, such as M82, Arp 299, and Arp 220, and some of them could also be imaged in detail. Four of the supernovae so far observed were sufficiently bright to be detectable with VSOP-2. With VSOP-2 the expansion of supernovae can be monitored and investigated with unsurpassed angular resolution, starting as early as the time of the supernova's transition from its opaque to transparent stage. Such studies can reveal, in a movie, the aftermath of a supernova explosion shortly after shock break out.

  11. Chandra Catches Early Phase of Cosmic Assembly

    NASA Astrophysics Data System (ADS)

    2004-08-01

    iron atoms produced by supernovas in the embedded galaxies must still be contained in and around the galaxies, perhaps in grains of dust not well mixed with the observed X-ray-emitting gas. Over time, as the cluster merges with the other clusters and the hot gas pressure increases, the dust grains will be driven from the galaxies, mixed with the hot gas, and destroyed, liberating the iron atoms. Building a massive galaxy cluster is a step-by-step enterprise that takes billions of years. Exactly how long it takes for such a cluster to form depends on many factors, such as the density of subclusters in the vicinity, the rate of the expansion of the universe, and the relative amounts of dark energy and dark matter. Chandra X-ray Image of Abell 2125, Low Energy Chandra X-ray Image of Abell 2125, Low Energy Cluster formation also involves complex interactions between the galaxies and the hot gas that may determine how large the galaxies in the cluster can ultimately become. These interactions determine how the galaxies maintain their gas content, the fuel for star formation. The observations of Abell 2125 provide a rare glimpse into the early steps in this process. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  12. Galaxy luminosity profiles of SARS clusters

    NASA Astrophysics Data System (ADS)

    Coenda, V.; Donzelli, C.; Muriel, H.; Quintana, H.; Infante, L.

    We have analyzed CCD images in the R filter of 14 Abell clusters of the SARS survey, with cz<40000 km/s. We have obtained the luminosity profiles of 507 galaxies and we have studied several relations between the photometric and structural parameters. In the present contributed paper we analyze the following relations: the Kormendy relation and the correlations among the Sérsic parameters.

  13. How supernovae launch galactic winds?

    NASA Astrophysics Data System (ADS)

    Fielding, Drummond; Quataert, Eliot; Martizzi, Davide; Faucher-Giguère, Claude-André

    2017-09-01

    We use idealized three-dimensional hydrodynamic simulations of global galactic discs to study the launching of galactic winds by supernovae (SNe). The simulations resolve the cooling radii of the majority of supernova remnants (SNRs) and thus self-consistently capture how SNe drive galactic winds. We find that SNe launch highly supersonic winds with properties that agree reasonably well with expectations from analytic models. The energy loading (η _E= \\dot{E}_wind/ \\dot{E}_SN) of the winds in our simulations are well converged with spatial resolution while the wind mass loading (η _M= \\dot{M}_wind/\\dot{M}_\\star) decreases with resolution at the resolutions we achieve. We present a simple analytic model based on the concept that SNRs with cooling radii greater than the local scaleheight break out of the disc and power the wind. This model successfully explains the dependence (or lack thereof) of ηE (and by extension ηM) on the gas surface density, star formation efficiency, disc radius and the clustering of SNe. The winds our simulations are weaker than expected in reality, likely due to the fact that we seed SNe preferentially at density peaks. Clustering SNe in time and space substantially increases the wind power.

  14. Multicolour CCD surface photometry for E and S0 galaxies in 10 clusters

    NASA Astrophysics Data System (ADS)

    Jorgensen, Inger; Franx, Marijn; Kjaergaard, Per

    1995-04-01

    CCD surface photometry for 232 E and S0 galaxies is presented. The galaxies are observed in Gunn r and Johnson B, or Gunn r and g. For 48 of the galaxies surface photometry in Johnson U is also presented. Aperture magnitudes in Gunn nu are derived for half of the galaxies. Galaxies in the following clusters have been observed: Abell 194, Abell 539, Abell 3381, Abell 3574, Abell S639, Abell S753, HydraI (Abell 1060), DC2345-28, Doradus and Grm15. The data are part of our ongoing study of the large-scale motions in the Universe and the physical background for the fundamental plane. We use a full model fitting technique for analysing the CCD images. This gives radial profiles of local surface brightness, colour, ellipticity and position angle. The residuals relative to the elliptical isophotes are described quantitatively by Fourier expansions. Effective radius, mean surface brightness and total magnitude are derived by fitting a de Vaucouleurs r^¼ growth curve. We have derived a characteristic radius r_n similar to the diameter D_n introduced by Dressler et al. The derivation of the effective parameters and of r_n takes the seeing into account. We confirm the results by Saglia et al. that the effects of the seeing can be substantial. Seeing-corrected values of the effective parameters and r_n are also presented for 147 E and S0 galaxies in the Coma cluster. Colours, colour gradients and geometrical parameters are derived. The photometry is internally consistent within 0.016 mag. Comparison with the photoelectric aperture photometry from Burstein et al. shows a mean offset of 0.010 mag with an rms scatter of 0.034 mag. The global photometric parameters are compared with data from Faber et al., Lucey et al. and Lucey & Carter. These comparisons imply that the typical rms errors are as follows - log r_n:+/-0.015 log r_e:+/-0.045 m_T:+/-0.09 mag; _e:+/-0.16 mag. The rms error on the combination log r_e-0.35_e which enters the fundamental plane is +/-0.020. Also

  15. Bayesian Abel Inversion in Quantitative X-Ray Radiography

    DOE PAGES

    Howard, Marylesa; Fowler, Michael; Luttman, Aaron; ...

    2016-05-19

    A common image formation process in high-energy X-ray radiography is to have a pulsed power source that emits X-rays through a scene, a scintillator that absorbs X-rays and uoresces in the visible spectrum in response to the absorbed photons, and a CCD camera that images the visible light emitted from the scintillator. The intensity image is related to areal density, and, for an object that is radially symmetric about a central axis, the Abel transform then gives the object's volumetric density. Two of the primary drawbacks to classical variational methods for Abel inversion are their sensitivity to the type andmore » scale of regularization chosen and the lack of natural methods for quantifying the uncertainties associated with the reconstructions. In this work we cast the Abel inversion problem within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown density pro le, the data precision matrix, and two scale parameters. This allows the data to drive the localization of features in the reconstruction and results in a joint posterior distribution for the unknown density pro le, the prior parameters, and the spatial structure of the precision matrix. Results of the density reconstructions and pointwise uncertainty estimates are presented for both synthetic signals and real data from a U.S. Department of Energy X-ray imaging facility.« less

  16. The XMM Cluster Outskirts Project (X-COP): Thermodynamic properties of the intracluster medium out to R200 in Abell 2319

    NASA Astrophysics Data System (ADS)

    Ghirardini, V.; Ettori, S.; Eckert, D.; Molendi, S.; Gastaldello, F.; Pointecouteau, E.; Hurier, G.; Bourdin, H.

    2018-06-01

    Aims: We present the joint analysis of the X-ray and Sunyaev-Zel'dovich (SZ) signals in Abell 2319, the galaxy cluster with the highest signal-to-noise ratio in SZ Planck maps and that has been surveyed within our XMM-Newton Cluster Outskirts Project (X-COP), a very large program which aims to grasp the physical condition in 12 local (z < 0.1) and massive (M200 > 3 × 1014 M⊙) galaxy clusters out to R200 and beyond. Methods: We recover the profiles of the thermodynamic properties by the geometrical deprojection of the X-ray surface brightness, of the SZ Comptonization parameter, and accurate and robust spectroscopic measurements of the gas temperature out to 3.2 Mpc (1.6 R200), 4 Mpc (2 R200), and 1.6 Mpc (0.8 R200), respectively. We resolve the clumpiness of the gas density to be below 20% over the entire observed volume. We also demonstrate that most of this clumpiness originates from the ongoing merger and can be associated with large-scale inhomogeneities (the "residual" clumpiness). We estimate the total mass through the hydrostatic equilibrium equation. This analysis is done both in azimuthally averaged radial bins and in eight independent angular sectors, enabling us to study in detail the azimuthal variance of the recovered properties. Results: Given the exquisite quality of the X-ray and SZ datasets, their radial extension, and their complementarity, we constrain at R200 the total hydrostatic mass, modelled with a Navarro-Frenk-White profile at very high precision (M200 = 10.7 ± 0.5stat. ± 0.9syst. × 1014 M⊙). We identify the ongoing merger and how it is affecting differently the gas properties in the resolved azimuthal sectors. We have several indications that the merger has injected a high level of non-thermal pressure in this system: the clumping free density profile is above the average profile obtained by stacking Rosat/PSPC observations; the gas mass fraction recovered using our hydrostatic mass profile exceeds the expected cosmic gas fraction

  17. Astronomical Resources: Supernovae.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1987-01-01

    Contains a partially annotated, nontechnical bibliography of recent materials about supernovae, including some about the discovery of a supernova in the Large Magellanic Cloud. Includes citations of general books and articles about supernovae, articles about Supernova 1987A, and a few science fiction stories using supernovae. (TW)

  18. The HST Frontier Fields: Complete High-Level Science Data Products for All 6 Clusters

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer M.; Borncamp, David; Khandrika, Harish G.; Lucas, Ray A.; Martlin, Catherine; Porterfield, Blair; Sunnquist, Ben; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Grogin, Norman A.; Gunning, Heather C.; Hilbert, Bryan; Ogaz, Sara; Robberto, Massimo; Sembach, Kenneth; Flanagan, Kathryn; Mountain, Matt; HST Frontier Fields Team

    2017-01-01

    The Hubble Space Telescope Frontier Fields program (PI: J. Lotz) is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The entire program has now completed successfully for all 6 clusters, namely Abell 2744, Abell S1063, Abell 370, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223,. Each of these was observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, obtaining images in ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W) on both the main cluster and the parallel field in all cases. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including cumulative-depth data releases during each epoch, as well as full-depth releases after the completion of each epoch. These products include all the full-depth distortion-corrected drizzled mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The full set of resulting high-level science products and mosaics are publicly delivered to the community via the Mikulski Archive for Space Telescopes (MAST) to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.

  19. Gone with the Wind: Watching Galaxy Transformation in Abell 2125

    NASA Astrophysics Data System (ADS)

    Keel, W.; Owen, F.; Ledlow, M.; Wang, D.

    2003-12-01

    Dense environments clearly foster the transformation of galaxies, but it has proven difficult to untangle the roles of various processes in cluster environments. We have found a uniquely strong case for ongoing stripping of gas from the galaxy C153 in Abell 2125. The cluster, at z=0.25, includes merging subsystems with a relative line-of-sight velocity near 2000 km/s. C153, identified using the VLA as a strong radio source powered by star formation, is the brightest cluster member with activity of this kind, and part of the less populous blueshifted grouping. Several lines of evidence indicate that it is being swept by a stripping event. (1) A tail of ionized gas is seen in [O II] emission, which extends at least 70 kpc toward the cluster core, coinciding with a soft X-ray feature seen in the Chandra observations reported by Wang et al. (2) HST WFPC2 images reveal disturbed and clumpy morphology, including luminous star-forming complexes and chaotic dust features. (3) The spectral energy distribution and Gemini GMOS absorption-line spectrum indicate a massive burst of star formation ≈ 108 years ago superimposed on an older and much fainter population. (4) The stellar and gas kinematics are decoupled, with multiple gas velocity systems including counter-rotating components. The large velocity difference between the galaxy and (most of the) intracluster medium may contribute to the signatures being more prominent than hitherto seen. The starburst age is consistent with estimates of the time since the closest encounter of the major subsystems during the cluster-level merger. We continue to explore whether a starburst outflow or tidal damage has added to the role of stripping by the ICM, and how star formation has proceeded in the gas after leaving the galaxy disk. This work was supported by NASA through HST grant GO-07279.01-96A, and by the NSF through facilities at NRAO, Kitt Peak, and Gemini-North.

  20. Crazy heart: kinematics of the "star pile" in Abell 545

    NASA Astrophysics Data System (ADS)

    Salinas, R.; Richtler, T.; West, M. J.; Romanowsky, A. J.; Lloyd-Davies, E.; Schuberth, Y.

    2011-04-01

    We study the structure and internal kinematics of the "star pile" in Abell 545 - a low surface brightness structure lying in the center of the cluster. We have obtained deep long-slit spectroscopy of the star pile using VLT/FORS2 and Gemini/GMOS, which is analyzed in conjunction with deep multiband CFHT/MEGACAM imaging. As presented in a previous study the star pile has a flat luminosity profile and its color is consistent with the outer parts of elliptical galaxies. Its velocity map is irregular, with parts being seemingly associated with an embedded nucleus, and others which have significant velocity offsets to the cluster systemic velocity with no clear kinematical connection to any of the surrounding galaxies. This would make the star pile a dynamically defined stellar intra-cluster component. The complicated pattern in velocity and velocity dispersions casts doubts on the adequacy of using the whole star pile as a dynamical test for the innermost dark matter profile of the cluster. This status is fulfilled only by the nucleus and its nearest surroundings which lie at the center of the cluster velocity distribution. Based on observations taken at the European Southern Observatory, Cerro Paranal, Chile, under programme ID 080.B-0529. Also based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and SECYT (Argentina); and on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National

  1. Dust in Supernovae and Supernova Remnants I: Formation Scenarios

    NASA Astrophysics Data System (ADS)

    Sarangi, A.; Matsuura, M.; Micelotta, E. R.

    2018-04-01

    Supernovae are considered as prime sources of dust in space. Observations of local supernovae over the past couple of decades have detected the presence of dust in supernova ejecta. The reddening of the high redshift quasars also indicate the presence of large masses of dust in early galaxies. Considering the top heavy IMF in the early galaxies, supernovae are assumed to be the major contributor to these large amounts of dust. However, the composition and morphology of dust grains formed in a supernova ejecta is yet to be understood with clarity. Moreover, the dust masses inferred from observations in mid-infrared and submillimeter wavelength regimes differ by two orders of magnitude or more. Therefore, the mechanism responsible for the synthesis of molecules and dust in such environments plays a crucial role in studying the evolution of cosmic dust in galaxies. This review summarises our current knowledge of dust formation in supernova ejecta and tries to quantify the role of supernovae as dust producers in a galaxy.

  2. A Cluster and a Sea of Galaxies

    NASA Astrophysics Data System (ADS)

    2010-05-01

    A new wide-field image released today by ESO displays many thousands of distant galaxies, and more particularly a large group belonging to the massive galaxy cluster known as Abell 315. As crowded as it may appear, this assembly of galaxies is only the proverbial "tip of the iceberg", as Abell 315 - like most galaxy clusters - is dominated by dark matter. The huge mass of this cluster deflects light from background galaxies, distorting their observed shapes slightly. When looking at the sky with the unaided eye, we mostly only see stars within our Milky Way galaxy and some of its closest neighbours. More distant galaxies are just too faint to be perceived by the human eye, but if we could see them, they would literally cover the sky. This new image released by ESO is both a wide-field and long-exposure one, and reveals thousands of galaxies crowding an area on the sky roughly as large as the full Moon. These galaxies span a vast range of distances from us. Some are relatively close, as it is possible to distinguish their spiral arms or elliptical halos, especially in the upper part of the image. The more distant appear just like the faintest of blobs - their light has travelled through the Universe for eight billion years or more before reaching Earth. Beginning in the centre of the image and extending below and to the left, a concentration of about a hundred yellowish galaxies identifies a massive galaxy cluster, designated with the number 315 in the catalogue compiled by the American astronomer George Abell in 1958 [1]. The cluster is located between the faint, red and blue galaxies and the Earth, about two billion light-years away from us. It lies in the constellation of Cetus (the Whale). Galaxy clusters are some of the largest structures in the Universe held together by gravity. But there is more in these structures than the many galaxies we can see. Galaxies in these giants contribute to only ten percent of the mass, with hot gas in between galaxies

  3. supernovae: Photometric classification of supernovae

    NASA Astrophysics Data System (ADS)

    Charnock, Tom; Moss, Adam

    2017-05-01

    Supernovae classifies supernovae using their light curves directly as inputs to a deep recurrent neural network, which learns information from the sequence of observations. Observational time and filter fluxes are used as inputs; since the inputs are agnostic, additional data such as host galaxy information can also be included.

  4. U(1)-invariant membranes: The geometric formulation, Abel, and pendulum differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheltukhin, A. A.; Fysikum, AlbaNova, Stockholm University, 106 91 Stockholm; NORDITA, Roslagstullsbacken 23, 106 91 Stockholm

    The geometric approach to study the dynamics of U(1)-invariant membranes is developed. The approach reveals an important role of the Abel nonlinear differential equation of the first type with variable coefficients depending on time and one of the membrane extendedness parameters. The general solution of the Abel equation is constructed. Exact solutions of the whole system of membrane equations in the D=5 Minkowski space-time are found and classified. It is shown that if the radial component of the membrane world vector is only time dependent, then the dynamics is described by the pendulum equation.

  5. The ESO Nearby Abell Cluster Survey. VI. Spatial distribution and kinematics of early- and late-type galaxies

    NASA Astrophysics Data System (ADS)

    de Theije, P. A. M.; Katgert, P.

    1999-01-01

    Analysis of the data obtained in the ESO Nearby Abell Cluster Survey (ENACS) has shown that the space distribution and kinematics of galaxies with detectable emission lines in their spectra differ significantly from those of galaxies without emission lines. This result, and details of the kinematics, were considered as support for the idea that at least the spirals with emission lines are on orbits that are not isotropic. This might indicate that this subset of late-type galaxies either has `first approach'-orbits towards the dense core of their respective clusters, or has orbits that `avoid' the core. The galaxies with emission lines are essentially all late-type galaxies. On the other hand, the emission-line galaxies represent only about a third of the late-type galaxies, the majority of which do not show detectable emission lines. The galaxies without emission lines are therefore a mix of early- and late-type galaxies. In this paper we attempt to separate early- and late-type galaxies, and we study possible differences in distribution and kinematics of the two galaxy classes. For only about 10% of the galaxies in the ENACS, the morphology is known from imaging. Here, we describe our classification on the basis of the ENACS spectrum. The significant information in each spectrum is compressed into 15 Principal Components, which are used as input for an Artificial Neural Network. The latter is `trained' with 150 of the 270 galaxies for which a morphological type is available from Dressler, and subsequently used to classify each galaxy. This yields a classification for two-thirds of the ENACS galaxies. The Artificial Neural Network has two output classes: early-type (E+S0) and late-type (S+I) galaxies. We do not distinguish E and S0 galaxies, because these cannot be separated very robustly on the basis of the spectrum. The success rate of the classification is estimated from the sample of 120 galaxies with Dressler morphologies which were not used to train the ANN

  6. Abyssal BEnthic Laboratory (ABEL): a novel approach for long-term investigation at abyssal depths

    NASA Astrophysics Data System (ADS)

    Berta, M.; Gasparoni, F.; Capobianco, M.

    1995-03-01

    This study assesses the feasibility of a configuration for a benthic underwater system, called ABEL (Abyssal BEnthic Laboratory), capable of operating both under controlled and autonomous modes for periods of several months to over one year at abyssal depths up to 6000 m. A network of stations, capable of different configurations, has been identified as satisfying the widest range of scientific expectations, and at the same time to address the technological challenge to increase the feasibility of scientific investigations, even when the need is not yet well specified. The overall system consists of a central Benthic Investigation Laboratory, devoted to the execution of the most complex scientific activities, with fixed Satellite Stations acting as nodes of a measuring network and a Mobile Station extending ABEL capabilities with the possibility to carry out surveys over the investigation area and interventions on the fixed stations. ABEL architecture also includes a dedicated deployment and recovery module, as well as sea-surface and land-based facilities. Such an installation constitutes the sea-floor equivalent of a meteorological or geophysical laboratory. Attention has been paid to selecting investigation tools supporting the ABEL system to carry out its mission with high operativity and minimal risk and environmental impact. This demands technologies to enable presence and operation at abyssal depths for the required period of time. Presence can be guaranteed by proper choice of power supply and communication systems. Operations require visual and manipulative capabilities, as well as deployment and retrieval capabilities. Advanced control system architectures must be considered, along with knowledge based approaches, to comply with the requirements for autonomous control. The results of this investigation demonstrate the feasibility of the ABEL concept and the pre-dimensioning of its main components.

  7. The HST Frontier Fields: Complete Observations and High-Level Science Data Products for All 6 Clusters

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer M.; Borncamp, David; Khandrika, Harish G.; Lucas, Ray A.; Martlin, Catherine; Martlin, Catherine; Porterfield, Blair; Sunnquist, Ben; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Grogin, Norman A.; Gunning, Heather C.; Hilbert, Bryan; Ogaz, Sara; Robberto, Massimo; Sembach, Kenneth; Flanagan, Kathryn; Mountain, Matt; HST Frontier Fields Team

    2017-06-01

    The Hubble Space Telescope Frontier Fields program is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The entire program has now completed successfully for all 6 clusters, namely Abell 2744, Abell S1063, Abell 370, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223,. Each of these was observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, obtaining images in ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W) on both the main cluster and the parallel field in all cases. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including cumulative-depth data releases during each epoch, as well as full-depth releases after the completion of each epoch. These products include all the full-depth distortion-corrected drizzled mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The full set of resulting high-level science products and mosaics are publicly delivered to the community via the Mikulski Archive for Space Telescopes (MAST) to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.

  8. PredictABEL: an R package for the assessment of risk prediction models.

    PubMed

    Kundu, Suman; Aulchenko, Yurii S; van Duijn, Cornelia M; Janssens, A Cecile J W

    2011-04-01

    The rapid identification of genetic markers for multifactorial diseases from genome-wide association studies is fuelling interest in investigating the predictive ability and health care utility of genetic risk models. Various measures are available for the assessment of risk prediction models, each addressing a different aspect of performance and utility. We developed PredictABEL, a package in R that covers descriptive tables, measures and figures that are used in the analysis of risk prediction studies such as measures of model fit, predictive ability and clinical utility, and risk distributions, calibration plot and the receiver operating characteristic plot. Tables and figures are saved as separate files in a user-specified format, which include publication-quality EPS and TIFF formats. All figures are available in a ready-made layout, but they can be customized to the preferences of the user. The package has been developed for the analysis of genetic risk prediction studies, but can also be used for studies that only include non-genetic risk factors. PredictABEL is freely available at the websites of GenABEL ( http://www.genabel.org ) and CRAN ( http://cran.r-project.org/).

  9. Abell 48 - a rare WN-type central star of a planetary nebula

    NASA Astrophysics Data System (ADS)

    Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.

    2013-04-01

    A considerable fraction of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient. Almost all of these H-deficient central stars (CSs) display spectra with strong carbon and helium lines. Most of them exhibit emission-line spectra resembling those of massive WC stars. Therefore these stars are classed as CSPNe of spectral type [WC]. Recently, quantitative spectral analysis of two emission-line CSs, PB 8 and IC 4663, revealed that these stars do not belong to the [WC] class. Instead PB 8 has been classified as [WN/WC] type and IC 4663 as [WN] type. In this work we report the spectroscopic identification of another rare [WN] star, the CS of Abell 48. We performed a spectral analysis of Abell 48 with the Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres. We find that the expanding atmosphere of Abell 48 is mainly composed of helium (85 per cent by mass), hydrogen (10 per cent) and nitrogen (5 per cent). The residual hydrogen and the enhanced nitrogen abundance make this object different from the other [WN] star IC 4663. We discuss the possible origin of this atmospheric composition.

  10. High-Performance Mixed Models Based Genome-Wide Association Analysis with omicABEL software

    PubMed Central

    Fabregat-Traver, Diego; Sharapov, Sodbo Zh.; Hayward, Caroline; Rudan, Igor; Campbell, Harry; Aulchenko, Yurii; Bientinesi, Paolo

    2014-01-01

    To raise the power of genome-wide association studies (GWAS) and avoid false-positive results in structured populations, one can rely on mixed model based tests. When large samples are used, and when multiple traits are to be studied in the ’omics’ context, this approach becomes computationally challenging. Here we consider the problem of mixed-model based GWAS for arbitrary number of traits, and demonstrate that for the analysis of single-trait and multiple-trait scenarios different computational algorithms are optimal. We implement these optimal algorithms in a high-performance computing framework that uses state-of-the-art linear algebra kernels, incorporates optimizations, and avoids redundant computations, increasing throughput while reducing memory usage and energy consumption. We show that, compared to existing libraries, our algorithms and software achieve considerable speed-ups. The OmicABEL software described in this manuscript is available under the GNU GPL v. 3 license as part of the GenABEL project for statistical genomics at http: //www.genabel.org/packages/OmicABEL. PMID:25717363

  11. High-Performance Mixed Models Based Genome-Wide Association Analysis with omicABEL software.

    PubMed

    Fabregat-Traver, Diego; Sharapov, Sodbo Zh; Hayward, Caroline; Rudan, Igor; Campbell, Harry; Aulchenko, Yurii; Bientinesi, Paolo

    2014-01-01

    To raise the power of genome-wide association studies (GWAS) and avoid false-positive results in structured populations, one can rely on mixed model based tests. When large samples are used, and when multiple traits are to be studied in the 'omics' context, this approach becomes computationally challenging. Here we consider the problem of mixed-model based GWAS for arbitrary number of traits, and demonstrate that for the analysis of single-trait and multiple-trait scenarios different computational algorithms are optimal. We implement these optimal algorithms in a high-performance computing framework that uses state-of-the-art linear algebra kernels, incorporates optimizations, and avoids redundant computations, increasing throughput while reducing memory usage and energy consumption. We show that, compared to existing libraries, our algorithms and software achieve considerable speed-ups. The OmicABEL software described in this manuscript is available under the GNU GPL v. 3 license as part of the GenABEL project for statistical genomics at http: //www.genabel.org/packages/OmicABEL.

  12. Supernova 1987A: The Supernova of a Lifetime

    NASA Astrophysics Data System (ADS)

    Kirshner, Robert

    2017-01-01

    Supernova 1987A, the brightest supernova since Kepler's in 1604, was detected 30 years ago at a distance of 160 000 light years in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. Visible with the naked eye and detected with the full range of technology constructed since Kepler's time, SN 1987A has continued to be a rich source of empirical information to help understand supernova explosions and their evolution into supernova remnants. While the light output has faded by a factor of 10 000 000 over those 30 years, instrumentation, like the Hubble Space Telescope, the Chandra X-ray Observatory, and the Atacama Large Millimeter Array has continued to improve so that this supernova continues to be visible in X-rays, ultraviolet light, visible light, infrared light and in radio emission. In this review, I will sketch what has been learned from these observations about the pre-supernova star and its final stages of evolution, the explosion physics, the energy sources for emission, and the shock physics as the expanding debris encounters the circumstellar ring that was created about 20 000 years before the explosion. Today, SN 1987A is making the transition to a supernova remnant- the energetics are no longer dominated by the radioactive elements produced in the explosion, but by the interaction of the expanding debris with the surrounding gas. While we are confident that the supernova explosion had its origin in gravitational collapse, careful searches for a compact object at the center of the remnant place upper limits of a few solar luminosities on that relic. Support for HST GO programs 13401 and 13405 was provided by NASA through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  13. Supernova Cosmology Project

    Science.gov Websites

    Supernova The Supernova Cosmology Project The image above and the movie clips ( QuickTime, or MPEG), show Centaurus A galaxy. The image on the left shows how a supernova appears as it brightens and fades brightness is, from the image at left. The bottom right graph shows how the spectrum of the supernova changes

  14. X-ray studies of supernova remnants: A different view of supernova explosions

    PubMed Central

    Badenes, Carles

    2010-01-01

    The unprecedented spatial and spectral resolutions of Chandra have revolutionized our view of the X-ray emission from supernova remnants. The excellent datasets accumulated on young, ejecta-dominated objects like Cas A or Tycho present a unique opportunity to study at the same time the chemical and physical structure of the explosion debris and the characteristics of the circumstellar medium sculpted by the progenitor before the explosion. Supernova remnants can thus put strong constraints on fundamental aspects of both supernova explosion physics and stellar evolution scenarios for supernova progenitors. This view of the supernova phenomenon is completely independent of, and complementary to, the study of distant extragalactic supernovae at optical wavelengths. The calibration of these two techniques has recently become possible thanks to the detection and spectroscopic follow-up of supernova light echoes. In this paper, I review the most relevant results on supernova remnants obtained during the first decade of Chandra and the impact that these results have had on open issues in supernova research. PMID:20404206

  15. A variational regularization of Abel transform for GPS radio occultation

    NASA Astrophysics Data System (ADS)

    Wee, Tae-Kwon

    2018-04-01

    In the Global Positioning System (GPS) radio occultation (RO) technique, the inverse Abel transform of measured bending angle (Abel inversion, hereafter AI) is the standard means of deriving the refractivity. While concise and straightforward to apply, the AI accumulates and propagates the measurement error downward. The measurement error propagation is detrimental to the refractivity in lower altitudes. In particular, it builds up negative refractivity bias in the tropical lower troposphere. An alternative to AI is the numerical inversion of the forward Abel transform, which does not incur the integration of error-possessing measurement and thus precludes the error propagation. The variational regularization (VR) proposed in this study approximates the inversion of the forward Abel transform by an optimization problem in which the regularized solution describes the measurement as closely as possible within the measurement's considered accuracy. The optimization problem is then solved iteratively by means of the adjoint technique. VR is formulated with error covariance matrices, which permit a rigorous incorporation of prior information on measurement error characteristics and the solution's desired behavior into the regularization. VR holds the control variable in the measurement space to take advantage of the posterior height determination and to negate the measurement error due to the mismodeling of the refractional radius. The advantages of having the solution and the measurement in the same space are elaborated using a purposely corrupted synthetic sounding with a known true solution. The competency of VR relative to AI is validated with a large number of actual RO soundings. The comparison to nearby radiosonde observations shows that VR attains considerably smaller random and systematic errors compared to AI. A noteworthy finding is that in the heights and areas that the measurement bias is supposedly small, VR follows AI very closely in the mean refractivity

  16. Exploring the origin of a large cavity in Abell 1795 using deep Chandra observations

    NASA Astrophysics Data System (ADS)

    Walker, S. A.; Fabian, A. C.; Kosec, P.

    2014-12-01

    We examine deep stacked Chandra observations of the galaxy cluster Abell 1795 (over 700 ks) to study in depth a large (34 kpc radius) cavity in the X-ray emission. Curiously, despite the large energy required to form this cavity (4PV = 4 × 1060 erg), there is no obvious counterpart to the cavity on the opposite side of the cluster, which would be expected if it has formed due to jets from the central active galactic nucleus (AGN) inflating bubbles. There is also no radio emission associated with the cavity, and no metal enhancement or filaments between it and the brightest cluster galaxy, which are normally found for bubbles inflated by AGN which have risen from the core. One possibility is that this is an old ghost cavity, and that gas sloshing has dominated the distribution of metals around the core. Projection effects, particularly the long X-ray bright filament to the south-east, may prevent us from seeing the companion bubble on the opposite side of the cluster core. We calculate that such a companion bubble would easily have been able to uplift the gas in the southern filament from the core. Interestingly, it has recently been found that inside the cavity is a highly variable X-ray point source coincident with a small dwarf galaxy. Given the remarkable spatial correlation of this point source and the X-ray cavity, we explore the possibility that an outburst from this dwarf galaxy in the past could have led to the formation of the cavity, but find this to be an unlikely scenario.

  17. Retrieval Performance and Indexing Differences in ABELL and MLAIB

    ERIC Educational Resources Information Center

    Graziano, Vince

    2012-01-01

    Searches for 117 British authors are compared in the Annual Bibliography of English Language and Literature (ABELL) and the Modern Language Association International Bibliography (MLAIB). Authors are organized by period and genre within the early modern era. The number of records for each author was subdivided by format, language of publication,…

  18. GSFC Contributions to the NATO X-ray Astronomy Institute, Erice, July 1979. [X-ray spectra of supernova remants, galactic X-ray sources, active galactic nuclei, and clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Mushotzky, R. F.

    1979-01-01

    An overview of X-ray astronomical spectroscopy in general is presented and results obtained by HEAO 1 and 2 as well as earlier spacecraft are examined. Particular emphasis is given to the spectra of supernova remnants; galactic binary X-ray sources, cataclysmic variables, bulges, pulsars, and stars; the active nuclei of Seyfert 1 galaxy, BL Lac, and quasars; the diffuse X-ray background; and galactic clusters.

  19. Supernova Relic Neutrinos and the Supernova Rate Problem: Analysis of Uncertainties and Detectability of ONeMg and Failed Supernovae

    NASA Astrophysics Data System (ADS)

    Mathews, Grant J.; Hidaka, Jun; Kajino, Toshitaka; Suzuki, Jyutaro

    2014-08-01

    Direct measurements of the core collapse supernova rate (R SN) in the redshift range 0 <= z <= 1 appear to be about a factor of two smaller than the rate inferred from the measured cosmic massive star formation rate (SFR). This discrepancy would imply that about one-half of the massive stars that have been born in the local observed comoving volume did not explode as luminous supernovae. In this work, we explore the possibility that one could clarify the source of this "supernova rate problem" by detecting the energy spectrum of supernova relic neutrinos with a next generation 106 ton water Čerenkov detector like Hyper-Kamiokande. First, we re-examine the supernova rate problem. We make a conservative alternative compilation of the measured SFR data over the redshift range 0 <=z <= 7. We show that by only including published SFR data for which the dust obscuration has been directly determined, the ratio of the observed massive SFR to the observed supernova rate R SN has large uncertainties {\\sim }1.8^{+1.6}_{-0.6} and is statistically consistent with no supernova rate problem. If we further consider that a significant fraction of massive stars will end their lives as faint ONeMg SNe or as failed SNe leading to a black hole remnant, then the ratio reduces to {\\sim }1.1^{+1.0}_{-0.4} and the rate problem is essentially solved. We next examine the prospects for detecting this solution to the supernova rate problem. We first study the sources of uncertainty involved in the theoretical estimates of the neutrino detection rate and analyze whether the spectrum of relic neutrinos can be used to independently identify the existence of a supernova rate problem and its source. We consider an ensemble of published and unpublished core collapse supernova simulation models to estimate the uncertainties in the anticipated neutrino luminosities and temperatures. We illustrate how the spectrum of detector events might be used to establish the average neutrino temperature and

  20. Serre duality, Abel's theorem, and Jacobi inversion for supercurves over a thick superpoint

    NASA Astrophysics Data System (ADS)

    Rothstein, Mitchell J.; Rabin, Jeffrey M.

    2015-04-01

    The principal aim of this paper is to extend Abel's theorem to the setting of complex supermanifolds of dimension 1 | q over a finite-dimensional local supercommutative C-algebra. The theorem is proved by establishing a compatibility of Serre duality for the supercurve with Poincaré duality on the reduced curve. We include an elementary algebraic proof of the requisite form of Serre duality, closely based on the account of the reduced case given by Serre in Algebraic groups and class fields, combined with an invariance result for the topology on the dual of the space of répartitions. Our Abel map, taking Cartier divisors of degree zero to the dual of the space of sections of the Berezinian sheaf, modulo periods, is defined via Penkov's characterization of the Berezinian sheaf as the cohomology of the de Rham complex of the sheaf D of differential operators. We discuss the Jacobi inversion problem for the Abel map and give an example demonstrating that if n is an integer sufficiently large that the generic divisor of degree n is linearly equivalent to an effective divisor, this need not be the case for all divisors of degree n.

  1. Simulations of galaxy cluster collisions with a dark plasma component

    NASA Astrophysics Data System (ADS)

    Spethmann, Christian; Veermäe, Hardi; Sepp, Tiit; Heikinheimo, Matti; Deshev, Boris; Hektor, Andi; Raidal, Martti

    2017-12-01

    Context. Dark plasma is an intriguing form of self-interacting dark matter with an effective fluid-like behavior, which is well motivated by various theoretical particle physics models. Aims: We aim to find an explanation for an isolated mass clump in the Abell 520 system, which cannot be explained by traditional models of dark matter, but has been detected in weak lensing observations. Methods: We performed N-body smoothed particle hydrodynamics simulations of galaxy cluster collisions with a two component model of dark matter, which is assumed to consist of a predominant non-interacting dark matter component and a 10-40% mass fraction of dark plasma. Results: The mass of a possible dark clump was calculated for each simulation in a parameter scan over the underlying model parameters. In two higher resolution simulations shock-waves and Mach cones were observed to form in the dark plasma halos. Conclusions: By choosing suitable simulation parameters, the observed distributions of dark matter in both the Bullet cluster (1E 0657-558) and Abell 520 (MS 0451.5+0250) can be qualitatively reproduced. Movies associated to Figs. A.1 and A.2 are available at http://www.aanda.org

  2. Mass Mapping Abell 2261 with Kinematic Weak Lensing: A Pilot Study for NASAs WFIRST mission

    NASA Astrophysics Data System (ADS)

    Eifler, Tim

    2015-02-01

    We propose to investigate a new method to extract cosmological information from weak gravitational lensing in the context of the mission design and requirements of NASAs Wide-Field Infrared Survey Telescope (WFIRST). In a recent paper (Huff, Krause, Eifler, George, Schlegel 2013) we describe a new method for reducing the shape noise in weak lensing measurements by an order of magnitude. Our method relies on spectroscopic measurements of disk galaxy rotation and makes use of the well-established Tully-Fisher (TF) relation in order to control for the intrinsic orientations of galaxy disks. Whereas shape noise is one of the major limitations for current weak lensing experiments it ceases to be an important source of statistical error in our new proposed technique. Specifically, we propose a pilot study that maps the projected mass distribution in the massive cluster Abell 2261 (z=0.225) to infer whether this promising technique faces systematics that prohibit its application to WFIRST. In addition to the cosmological weak lensing prospects, these measurements will also allow us to test kinematic lensing in the context of cluster mass reconstruction with a drastically improved signal-to-noise (S/N) per galaxy.

  3. Gravitational lens models of arcs in clusters

    NASA Technical Reports Server (NTRS)

    Bergmann, Anton G.; Petrosian, Vahe; Lynds, Roger

    1990-01-01

    It is now well established that the luminous arcs discovered in clusters of galaxies, in particular those in Abell 370 and Cluster 2244-02, are produced by gravitational lensing of background sources. The arcs are modeled and constraints are placed on the distribution of the mass in the clusters and the shape and size of the sources. The models require, as expected, a large amount of dark matter in the clusters and a mass-to blue-light ratio for the cluster which exceeds 100 solar mass/solar luminosity and could be as high as 1000 solar mass/solar luminosity depending on cosmological parameters and the distribution of the dark matter. Furthermore, it is found that in the case of the arc in A370 the dark matter must have a different distribution than the luminous galaxies, while for the arc in Cl 2244 the dark matter can have a distribution similar to that of the light matter (galaxies) or a separate distribution.

  4. Supernova relic neutrinos and the supernova rate problem: Analysis of uncertainties and detectability of ONeMg and failed supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathews, Grant J.; Hidaka, Jun; Kajino, Toshitaka

    2014-08-01

    Direct measurements of the core collapse supernova rate (R{sub SN}) in the redshift range 0 ≤ z ≤ 1 appear to be about a factor of two smaller than the rate inferred from the measured cosmic massive star formation rate (SFR). This discrepancy would imply that about one-half of the massive stars that have been born in the local observed comoving volume did not explode as luminous supernovae. In this work, we explore the possibility that one could clarify the source of this 'supernova rate problem' by detecting the energy spectrum of supernova relic neutrinos with a next generation 10{supmore » 6} ton water Čerenkov detector like Hyper-Kamiokande. First, we re-examine the supernova rate problem. We make a conservative alternative compilation of the measured SFR data over the redshift range 0 ≤z ≤ 7. We show that by only including published SFR data for which the dust obscuration has been directly determined, the ratio of the observed massive SFR to the observed supernova rate R{sub SN} has large uncertainties ∼1.8{sub −0.6}{sup +1.6} and is statistically consistent with no supernova rate problem. If we further consider that a significant fraction of massive stars will end their lives as faint ONeMg SNe or as failed SNe leading to a black hole remnant, then the ratio reduces to ∼1.1{sub −0.4}{sup +1.0} and the rate problem is essentially solved. We next examine the prospects for detecting this solution to the supernova rate problem. We first study the sources of uncertainty involved in the theoretical estimates of the neutrino detection rate and analyze whether the spectrum of relic neutrinos can be used to independently identify the existence of a supernova rate problem and its source. We consider an ensemble of published and unpublished core collapse supernova simulation models to estimate the uncertainties in the anticipated neutrino luminosities and temperatures. We illustrate how the spectrum of detector events might be used to establish the

  5. VizieR Online Data Catalog: Halpha measurements in Abell 2465 (Wegner+, 2015)

    NASA Astrophysics Data System (ADS)

    Wegner, G. A.; Chu, D. S.; Hwang, H. S.

    2015-07-01

    The wavelength of the Hα line at the redshift of Abell 2465 is near 817nm in a clear spectral region between the many telluric emission lines. A custom narrow-band filter for observing Hα was obtained from the Andover Corp. It has a peak transmission at 817.7nm (m817) and a full width at half-maximum (FWHM) of 8.77nm. The wide filter was a Gunn i (ig) filter with nearly the same central wavelength of 820nm and a FWHM of 185nm, and was manufactured by Custom Scientific. Hα observations of Abell 2465 were obtained 2012 September 19-23 using the 2.4m Hiltner telescope at the MDM Observatory on Kitt Peak. The 'Nellie' CCD was used. (1 data file).

  6. Is the Eagle Nebula powered by a hidden supernova remnant ?

    NASA Astrophysics Data System (ADS)

    Boulanger, Francois

    2008-10-01

    Spitzer observations of the Eagle nebula (M16) reveal the presence of a large (8 pc diameter) shell of dust heated to anomalously high temperatures. Modeling of dust excitation shows that the shell emission cannot be powered by the cluster UV radiation but that it can be accounted for by collisionally heated dust in a young (a few 1000 yrs) supernova remnant. We have re-analyzed deep Chandra observations that show diffuse emission consistent with this hypothesis, but also with galactic ridge emission. We propose a 50 ksec XMM observation to probe the spatial extent of the diffuse X-ray emission beyond the Spitzer shell. Absence of emission outside of this shell will strongly support the supernova remnant interpretation

  7. Matching Supernovae to Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  8. Evolution of Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Arbutina, B.

    2017-12-01

    This book, both a monograph and a graduate textbook, is based on my original research and partly on the materials prepared earlier for the 2007 and 2008 IARS Astrophysics Summer School in Istanbul, AstroMundus course 'Supernovae and Their Remnants' that was held for the first time in 2011 at the Department of Astronomy, Faculty of Mathematics, University of Belgrade, and a graduate course 'Evolution of Supernova Remnants' that I teach at the aforementioned university. The first part Supernovae (introduction, thermonuclear supernovae, core-collapse supernovae) provides introductory information and explains the classification and physics of supernova explosions, while the second part Supernova remnants (introduction, shock waves, cosmic rays and particle acceleration, magnetic fields, synchrotron radiation, hydrodynamic and radio evolution of supernova remnants), which is the field I work in, is more detailed in scope i.e. technical/mathematical. Special attention is paid to details of mathematical derivations that often cannot be found in original works or available literature. Therefore, I believe it can be useful to both, graduate students and researchers interested in the field.

  9. Dust in Supernovae and Supernova Remnants II: Processing and Survival

    NASA Astrophysics Data System (ADS)

    Micelotta, E. R.; Matsuura, M.; Sarangi, A.

    2018-03-01

    Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations.

  10. A remarkable double-ring galaxy in the cluster Abell 2199

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pence, W.D.; Oegerle, W.; Borne, K.D.

    B and R CCD images have been obtained of the morphologically peculiar galaxy A1627 + 39, which lies near the center of the rich cluster of galaxies A2199. The galaxy is determined to be a nearly face-on barred S0 galaxy containing two nonconcentric rings. The rings are quite unusual in that they are displaced in opposite directions from the galactic center. There is no color difference across the rings, indicating no recent burst of star formation. Two hypotheses for the origin of the rings have been investigated: (1) a resonance effect with the central bar, and (2) the result ofmore » an off-axis, deeply penetrating collision with another cluster member. Models of such a collision are presented, which can reproduce the observed rings. However, neither hypothesis can provide a completely satisfactory explanation of all the observations reported here. 32 refs.« less

  11. Coma cluster of galaxies

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  12. Chandra Finds Ghosts Of Eruption In Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    2002-01-01

    "Ghostly" relics of an ancient eruption that tore through a cluster of galaxies were recently uncovered by NASA's Chandra X-ray Observatory. The discovery implies that galaxy clusters are the sites of enormously energetic and recurring explosions, and may provide an explanation why galaxy clusters behave like giant cosmic magnets. "Chandra's image revealed vast regions in the galaxy cluster Abell 2597 that contain almost no X-ray or radio emission. We call them ghost cavities," said Brian McNamara of Ohio University in Athens today during a press conference at the American Astronomical Society meeting in Washington. "They appear to be remnants of an old explosion where the radio emission has faded away over millions of years." The ghost cavities were likely created by extremely powerful explosions, due to material falling toward a black hole millions of times more massive than the Sun. As the matter swirled around the black hole, located in a galaxy near the center of the cluster, it generated enormous electromagnetic fields that expelled material from the vicinity of the black hole at high speeds. This explosive activity in Abell 2597 created jets of highly energetic particles that cleared out voids in the hot gas. Because they are lighter than the surrounding material, the cavities will eventually push their way to the edge of the cluster, just as air bubbles in water make their way to the surface. Researchers also found evidence that this explosion was not a one-time event. "We detected a small, bright radio source near the center of the cluster that indicates a new explosion has occurred recently," said team member Michael Wise of the Massachusetts Institute of Technology in Cambridge, "so the cycle of eruption is apparently continuing." Though dim, the ghost cavities are not completely empty. They contain a mixture of very hot gas, high-energy particles and magnetic fields -- otherwise the cavities would have collapsed under the pressure of the surrounding hot

  13. Large-Scale Structure Studies with the REFLEX Cluster Survey

    NASA Astrophysics Data System (ADS)

    Schuecker, P.; Bohringer, H.; Guzzo, L.; Collins, C.; Neumann, D. M.; Schindler, S.; Voges, W.

    1998-12-01

    First preliminary results of the ROSAT ESO Flux-Limited X-Ray (REFLEX) Cluster Survey are described. The survey covers 13,924 square degrees of the southern hemisphere. The present sample consists of about 470 rich clusters (1/3 non Abell/ACO clusters) with X-ray fluxes S >= 3.0 times 10^{-12} erg s^{-1} cm^{-2} (0.1-2.4 keV) and redshifts z <= 0.3. In contrast to other low-redshift surveys, the cumulative flux-number counts have an almost Euclidean slope. Comoving cluster number densities are found to be almost redshift-independent throughout the total survey volume. The X-ray luminosity function is well described by a Schechter function. The power spectrum of the number density fluctuations could be measured on scales up to 400 h^{-1} Mpc. A deeper survey with about 800 galaxy clusters in the same area is in progress.

  14. Mpc-scale diffuse radio emission in two massive cool-core clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Sommer, Martin W.; Basu, Kaustuv; Intema, Huib; Pacaud, Florian; Bonafede, Annalisa; Babul, Arif; Bertoldi, Frank

    2017-04-01

    Radio haloes are diffuse synchrotron sources on scales of ˜1 Mpc that are found in merging clusters of galaxies, and are believed to be powered by electrons re-accelerated by merger-driven turbulence. We present measurements of extended radio emission on similarly large scales in two clusters of galaxies hosting cool cores: Abell 2390 and Abell 2261. The analysis is based on interferometric imaging with the Karl G. Jansky Very Large Array, Very Large Array and Giant Metrewave Radio Telescope. We present detailed radio images of the targets, subtract the compact emission components and measure the spectral indices for the diffuse components. The radio emission in A2390 extends beyond a known sloshing-like brightness discontinuity, and has a very steep in-band spectral slope at 1.5 GHz that is similar to some known ultrasteep spectrum radio haloes. The diffuse signal in A2261 is more extended than in A2390 but has lower luminosity. X-ray morphological indicators, derived from XMM-Newton X-ray data, place these clusters in the category of relaxed or regular systems, although some asymmetric features that can indicate past minor mergers are seen in the X-ray brightness images. If these two Mpc-scale radio sources are categorized as giant radio haloes, they question the common assumption of radio haloes occurring exclusively in clusters undergoing violent merging activity, in addition to commonly used criteria for distinguishing between radio haloes and minihaloes.

  15. Supernova explosions.

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1971-01-01

    The recent history of theoretical investigations of the supernova mechanism is considered, giving attention also to a number of nuclear physical problems which have yet to be solved in connection with the thermonuclear detonation. A variety of different processes of nucleo-synthesis are expected to occur in association with the supernova explosions. Aspects of the chemical evolution of the galaxy are discussed including the cosmic ray production of lithium, beryllium, and boron in the interstellar medium. Various hypotheses to account for the very large amount of light that comes from a supernova explosion are also examined.

  16. Anti-Brownian ELectrokinetic (ABEL) Trapping of Single High Density Lipoprotein (HDL) Particles

    NASA Astrophysics Data System (ADS)

    Bockenhauer, Samuel; Furstenberg, Alexandre; Wang, Quan; Devree, Brian; Jie Yao, Xiao; Bokoch, Michael; Kobilka, Brian; Sunahara, Roger; Moerner, W. E.

    2010-03-01

    The ABEL trap is a novel device for trapping single biomolecules in solution for extended observation. The trap estimates the position of a fluorescently-labeled object as small as ˜10 nm in solution and then applies a feedback electrokinetic drift every 20 us to trap the object by canceling its Brownian motion. We use the ABEL trap to study HDL particles at the single-copy level. HDL particles, essential in regulation of ``good'' cholesterol in humans, comprise a small (˜10 nm) lipid bilayer disc bounded by a belt of apolipoproteins. By engineering HDL particles with single fluorescent donor/acceptor probes and varying lipid compositions, we are working to study lipid diffusion on small length scales. We also use HDL particles as hosts for single transmembrane receptors, which should enable study of receptor conformational dynamics on long timescales.

  17. Galaxy clusters and cold dark matter - A low-density unbiased universe?

    NASA Technical Reports Server (NTRS)

    Bahcall, Neta A.; Cen, Renyue

    1992-01-01

    Large-scale simulations of a universe dominated by cold dark matter (CDM) are tested against two fundamental properties of clusters of galaxies: the cluster mass function and the cluster correlation function. We find that standard biased CDM models are inconsistent with these observations for any bias parameter b. A low-density, low-bias CDM-type model, with or without a cosmological constant, appears to be consistent with both the cluster mass function and the cluster correlations. The low-density model agrees well with the observed correlation function of the Abell, Automatic Plate Measuring Facility (APM), and Edinburgh-Durham cluster catalogs. The model is in excellent agreement with the observed dependence of the correlation strength on cluster mean separation, reproducing the measured universal dimensionless cluster correlation. The low-density model is also consistent with other large-scale structure observations, including the APM angular galaxy-correlations, and for lambda = 1-Omega with the COBE results of the microwave background radiation fluctuations.

  18. Peculiar Supernovae

    NASA Astrophysics Data System (ADS)

    Milisavljevic, Dan; Margutti, Raffaella

    2018-06-01

    What makes a supernova truly "peculiar?" In this review we attempt to address this question by tracing the history of the use of "peculiar" as a descriptor of non-standard supernovae back to the original binary spectroscopic classification of Type I vs. Type II proposed by Minkowski (Publ. Astron. Soc. Pac., 53:224, 1941). A handful of noteworthy examples are highlighted to illustrate a general theme: classes of supernovae that were once thought to be peculiar are later seen as logical branches of standard events. This is not always the case, however, and we discuss ASASSN-15lh as an example of a transient with an origin that remains contentious. We remark on how late-time observations at all wavelengths (radio-through-X-ray) that probe 1) the kinematic and chemical properties of the supernova ejecta and 2) the progenitor star system's mass loss in the terminal phases preceding the explosion, have often been critical in understanding the nature of seemingly unusual events.

  19. Parametric strong gravitational lensing analysis of Abell 1689

    NASA Astrophysics Data System (ADS)

    Halkola, A.; Seitz, S.; Pannella, M.

    2006-11-01

    We have derived the mass distribution of galaxy cluster Abell 1689 within 0.3h-170Mpc of the cluster centre using its strong lensing (SL) effect on 32 background galaxies, which are mapped in altogether 107 multiple images. The multiple images are based on some from the literature with modifications to both include new and exclude some of the original image systems. The cluster profile is explored further out to ~2.5h-170Mpc with weak lensing (WL) shear measurements from the literature. The masses of ~200 cluster galaxies are measured with the Fundamental Plane (FP) in order to model accurately the small-scale mass structure in the cluster. The cluster galaxies are modelled as elliptical truncated isothermal spheres. The scalings of the truncation radii with the velocity dispersions of galaxies are assumed to match those of: (i) field galaxies; and (ii) theoretical expectations for galaxies in dense environments. The dark matter (DM) component of the cluster is described by either non-singular isothermal ellipsoids (NSIE) or elliptical versions of the universal DM profile (elliptical Navarro, Frenk & White, ENFW). To account for substructure in the DM we allow for two DM haloes. The fitting of a non-singular isothermal sphere (NSIS) to the smooth DM component results in a velocity dispersion of 1450+39-31kms-1 and a core radius of 77+10-8h-170kpc, while a Navarro, Frenk & White (NFW) profile has an r200 of 2.86 +/- 0.16h-170Mpc (M200 = 3.2 × 1015Msolarh70) and a concentration of 4.7+0.6-0.5. The total mass profile is well described by either a NSIS profile with σ = 1514+18-17kms-1 and a core radius of rc = 71 +/- 5h-170kpc, or an NFW profile with C = 6.0 +/- 0.5 and r200 = 2.82 +/- 0.11h-170Mpc (M200 = 3.0 × 1015Msolarh70). The errors are assumed to be due to the error in assigning masses to the individual galaxies in the galaxy component. Their small size is due to the very strong constraints imposed by multiple images and the ability of the smooth DM component

  20. Supernovae neutrino pasta interaction

    NASA Astrophysics Data System (ADS)

    Lin, Zidu; Horowitz, Charles; Caplan, Matthew; Berry, Donald; Roberts, Luke

    2017-01-01

    In core-collapse supernovae, the neutron rich matter is believed to have complex structures, such as spherical, slablike, and rodlike shapes. They are collectively called ``nuclear pasta''. Supernovae neutrinos may scatter coherently on the ``nuclear pasta'' since the wavelength of the supernovae neutrinos are comparable to the nuclear pasta scale. Consequently, the neutrino pasta scattering is important to understand the neutrino opacity in the supernovae. In this work we simulated the ``nuclear pasta'' at different temperatures and densities using our semi-classical molecular dynamics and calculated the corresponding static structure factor that describes ν-pasta scattering. We found the neutrino opacities are greatly modified when the ``pasta'' exist and may have influence on the supernovae neutrino flux and average energy. Our neutrino-pasta scattering effect can finally be involved in the current supernovae simulations and we present preliminary proto neutron star cooling simulations including our pasta opacities.

  1. The Supernova Spectropolarimetry (SNSPOL) Project; Probing the Geometry of Supernova Explosions

    NASA Astrophysics Data System (ADS)

    Williams, George Grant; Leonard, Douglas; Smith, Nathan; Smith, Paul; Milne, Peter; Hoffman, Jennifer L.; Bilinski, Christopher

    2018-01-01

    In recent years, evidence has grown that most supernovae exhibit departures from spherical symmetry. These results, together with full three-dimensional modeling, are exposing the possibility that asymmetries are not simply an observable feature of some supernovae, but may, in fact, be a necessity of the explosion mechanism itself. However, with the exception of SN 1987A, a supernova photosphere cannot be resolved through direct imaging from ground or space. Only the powerful technique of polarimetry can directly probe asymmetries on those spatial scales. Spectropolarimetry enhances the power of this technique by revealing wavelength-dependent variations that may result from differences in the geometrical distributions of the various ionic species. Multi-epoch observations over several months can be used to follow the evolution of these asymmetries as a supernova evolves and its photosphere recedes through the ejecta. The Supernova Spectropolarimetry (SNSPOL) Project aims to study the predominance and characteristics of asymmetries in all types of supernovae by decoding their complex, time-dependent polarimetric behavior. This is accomplished through multi-epoch observations using the CCD Imaging/Spectropolarimeter (SPOL) on the 61” Kuiper, the 90” Bok, and the 6.5-m MMT telescopes. During the past six years, the SNSPOL Project has observed more than 95 supernovae, approximately 2/3 of which have been observed at multiple epochs. Here we present a summary of the project, its current status, and a few selected results.

  2. Possible Progenitor of Special Supernova Type Detected

    NASA Astrophysics Data System (ADS)

    2008-04-01

    'll learn a lot more about these important supernovas in the future." Voss agrees that, even if the X-ray source is not found to be the progenitor of SN 2007on, the hunt is worth the effort. "Finding the progenitor to one of these Type Ia supernovas is a great chase in astronomy right now," he said. "These supernovas are great tools for studying dark energy, but if we knew more about how they form they might become even better tools." Rasmus Voss receives support from the Excellence Cluster Universe in Garching, Germany. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass

  3. Chandra Observations of Dying Radio Sources in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Murgia, M.; Markevitch, M.; Govoni, F.; Parma, P.; Fanti, R.; de Ruiter, H. R.; Mack, K.-H.

    2012-01-01

    Context. The dying radio sources represent a very interesting and largely unexplored stage of the active galactic nucleus (AGN) evolution. They are considered to be very rare, and almost all of the few known ones were found in galaxy clusters. However, considering the small number detected so far, it has not been possible to draw any firm conclusions about their X-ray environment. Aims. We present X-ray observations performed with the Chandra satellite of the three galaxy clusters Abell 2276, ZwCl 1829.3+6912, and RX J1852.1+5711, which harbor at their center a dying radio source with an ultra-steep spectrum that we recently discovered. Methods. We analyzed the physical properties of the X-ray emitting gas surrounding these elusive radio sources. We determined the global X-ray properties of the clusters, derived the azimuthally averaged profiles of metal abundance, gas temperature, density, and pressure. Furthermore, we estimated the total mass profiles. Results. The large-scale X-ray emission is regular and spherical, suggesting a relaxed state for these systems. Indeed, we found that the three clusters are also characterized by significant enhancements in the metal abundance and declining temperature profiles toward the central region. For all these reasons, we classified RX J1852.1+5711, Abell 2276, and ZwCl 1829.3+6912 as cool-core galaxy clusters. Conclusions. We calculated the non-thermal pressure of the radio lobes assuming that the radio sources are in the minimum energy condition. For all dying sources we found that this is on average about one to two orders of magnitude lower than that of the external gas, as found for many other radio sources at the center of galaxy groups and clusters. We found marginal evidence for the presence of X-ray surface brightness depressions coincident with the fossil radio lobes of the dying sources in A2276 and ZwCl 1829.3+691. We estimated the outburst age and energy output for these two dying sources. The energy power from

  4. Cosmological constraints from strong gravitational lensing in clusters of galaxies.

    PubMed

    Jullo, Eric; Natarajan, Priyamvada; Kneib, Jean-Paul; D'Aloisio, Anson; Limousin, Marceau; Richard, Johan; Schimd, Carlo

    2010-08-20

    Current efforts in observational cosmology are focused on characterizing the mass-energy content of the universe. We present results from a geometric test based on strong lensing in galaxy clusters. Based on Hubble Space Telescope images and extensive ground-based spectroscopic follow-up of the massive galaxy cluster Abell 1689, we used a parametric model to simultaneously constrain the cluster mass distribution and dark energy equation of state. Combining our cosmological constraints with those from x-ray clusters and the Wilkinson Microwave Anisotropy Probe 5-year data gives Omega(m) = 0.25 +/- 0.05 and w(x) = -0.97 +/- 0.07, which are consistent with results from other methods. Inclusion of our method with all other available techniques brings down the current 2sigma contours on the dark energy equation-of-state parameter w(x) by approximately 30%.

  5. Color-magnitude relations in nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Rasheed, Mariwan A.; Mohammad, Khalid K.

    2018-06-01

    The rest-frame (g-r) /Mr color-magnitude relations of 12 Abell-type clusters are analyzed in the redshift range (0.02≲ z ≲ 0.10) and within a projected radius of 0.75 Mpc using photometric data from SDSS-DR9. We show that the color-magnitude relation parameters (slope, zero-point, and scatter) do not exhibit significant evolution within this low-redshift range. Thus, we can say that during the look-back time of z ˜ 0.1 all red sequence galaxies evolve passively, without any star formation activity.

  6. Finding Distances to Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    Type Ia supernovae are known as standard candles due to their consistency, allowing us to measure distances based on their brightness. But what if these explosions arent quite as consistent as we thought? Due scientific diligence requires careful checks, so a recent study investigates whether the metallicity of a supernovas environment affects the peak luminosity of the explosion.Metallicity Dependence?Type Ia supernovae are incredibly powerful tools for determining distances in our universe. Because these supernovae are formed by white dwarfs that explode when they reach a uniform accreted mass, the supernova peak luminosity is thought to be very consistent. This consistency allows these supernovae to be used as standard candles to measure distances to their host galaxies.But what if that peak luminosity is affected by a factor that we havent taken into account? Theorists have proposed that the luminosities of Type Ia supernovae might depend on the metallicity of their environments with high-metallicity environments suppressing supernova luminosities. If this is true, then we could be systematically mis-measuring cosmological distances using these supernovae.Testing AbundancesSupernova brightnesses vs. the metallicity of their environments. Low-metallicity supernovae (blue shading) and high-metallicity supernovae (red shading) have an average magnitude difference of ~0.14. [Adapted from Moreno-Raya et al. 2016]A team led by Manuel Moreno-Raya, of the Center for Energy, Environment and Technology (CIEMAT) in Spain, has observed 28 Type Ia supernovae in an effort to test for such a metallicity dependence. These supernovae each have independent distance measurements (e.g., from Cepheids or the Tully-Fisher relation).Moreno-Raya and collaborators used spectra from the 4.2-m William Herschel Telescope to estimate oxygen abundances in the region where each of these supernovae exploded. They then used these measurements to determine if metallicity of the local region

  7. Type Ia Supernova Cosmology

    NASA Astrophysics Data System (ADS)

    Leibundgut, B.; Sullivan, M.

    2018-03-01

    The primary agent for Type Ia supernova cosmology is the uniformity of their appearance. We present the current status, achievements and uncertainties. The Hubble constant and the expansion history of the universe are key measurements provided by Type Ia supernovae. They were also instrumental in showing time dilation, which is a direct observational signature of expansion. Connections to explosion physics are made in the context of potential improvements of the quality of Type Ia supernovae as distance indicators. The coming years will see large efforts to use Type Ia supernovae to characterise dark energy.

  8. Supernova Cosmology Project

    Science.gov Websites

    , 2014 The Supernova Cosmology Project and High-Z Team share the 2015 Breakthrough Prize in Fundamental Perlmutter, leader of the international Supernova Cosmology Project, and principal investigator of the

  9. Handbook of Supernovae

    NASA Astrophysics Data System (ADS)

    Athem Alsabti, Abdul

    2015-08-01

    Since the discovery of pulsars in 1967, few celestial phenomena have fascinated amateur and professional astronomers, and the public, more than supernovae - dying stars that explode spectacularly and, in so doing, may outshine a whole galaxy. Thousands of research papers, reviews, monographs and books have been published on this subject. These publications are often written either for a highly specific level of expertise or education, or with respect to a particular aspect of supernovae research. However, the study of supernovae is a very broad topic involving many integral yet connected aspects, including physics, mathematics, computation, history, theoretical studies and observation. More specifically, areas of study include historical supernovae, the different types and light curves, nucleosynthesis, explosion mechanisms, formation of black holes, neutron stars, cosmic rays, neutrinos and gravitational waves. Related questions include how supernovae remnants interact with interstellar matter nearby and how do these events affect the formation of new stars or planetary systems? Could they affect existing planetary systems? Closer to home, did any supernovae affect life on earth in the past or could they do so in the future? And on the larger scale, how did supernovae observations help measure the size and expansion of the universe? All these topics, and more, are to be covered in a new reference work, consisting of more than 100 articles and more than 1700 pages. It is intended to cover all the main facets of current supernovae research. It will be pitched at or above the level of a new postgraduate student, who will have successfully studied physics (or a similar scientific subject) to Bachelor degree level. It will be available in both print and electronic (updatable) formats, with the exception of the first section, which will consist of a review of all the topics of the handbook at a level that allows anyone with basic scientific knowledge to grasp the

  10. The Search for Lensed Supernovae

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-01-01

    Type Ia supernovae that have multiple images due to gravitational lensing can provide us with a wealth of information both about the supernovae themselves and about our surrounding universe. But how can we find these rare explosions?Clues from Multiple ImagesWhen light from a distant object passes by a massive foreground galaxy, the galaxys strong gravitational pull can bend the light, distorting our view of the backgroundobject. In severe cases, this process can cause multiple images of the distant object to appear in the foreground lensing galaxy.An illustration of gravitational lensing. Light from the distant supernova is bent as it passes through a giant elliptical galaxy in the foreground, causing multiple images of the supernova to appear to be hosted by the elliptical galaxy. [Adapted from image by NASA/ESA/A. Feild (STScI)]Observations of multiply-imaged Type Ia supernovae (explosions that occur when white dwarfs in binary systems exceed their maximum allowed mass) could answer a number of astronomical questions. Because Type Ia supernovae are standard candles, distant, lensed Type Ia supernovae can be used to extend the Hubble diagram to high redshifts. Furthermore, the lensing time delays from the multiply-imaged explosion can provide high-precision constraints on cosmological parameters.The catch? So far, weve only found one multiply-imaged Type Ia supernova: iPTF16geu, discovered late last year. Were going to need a lot more of them to develop a useful sample! So how do we identify themutiply-imaged Type Ias among the many billions of fleeting events discovered in current and future surveys of transients?Searching for AnomaliesAbsolute magnitudes for Type Ia supernovae in elliptical galaxies. None are expected to be above -20 in the B band, so if we calculate a magnitude for a Type Ia supernova thats larger than this, its probably not hosted by the galaxy we think it is! [Goldstein Nugent 2017]Two scientists from University of California, Berkeley and

  11. Solar abundance ratios of the iron-peak elements in the Perseus cluster.

    PubMed

    2017-11-23

    The metal abundance of the hot plasma that permeates galaxy clusters represents the accumulation of heavy elements produced by billions of supernovae. Therefore, X-ray spectroscopy of the intracluster medium provides an opportunity to investigate the nature of supernova explosions integrated over cosmic time. In particular, the abundance of the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding how the progenitors of typical type Ia supernovae evolve and explode. Recent X-ray studies of the intracluster medium found that the abundance ratios of these elements differ substantially from those seen in the Sun, suggesting differences between the nature of type Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition lines of chromium and manganese are weak and those of iron and nickel are very close in photon energy, high-resolution spectroscopy is required for an accurate determination of the abundances of these elements. Here we report observations of the Perseus cluster, with statistically significant detections of the resonance emission from chromium, manganese and nickel. Our measurements, combined with the latest atomic models, reveal that these elements have near-solar abundance ratios with respect to iron, in contrast to previous claims. Comparison between our results and modern nucleosynthesis calculations disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun). The observed abundance pattern of the iron-peak elements can be explained by taking into account a combination of near- and sub-Chandrasekhar-mass type Ia supernova systems, adding to the mounting evidence that both progenitor types make a substantial contribution to cosmic chemical enrichment.

  12. Solar abundance ratios of the iron-peak elements in the Perseus cluster

    DOE PAGES

    Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; ...

    2017-11-13

    The metal abundance of the hot plasma that permeates galaxy clusters represents the accumulation of heavy elements produced by billions of supernovae1. Therefore, X-ray spectroscopy of the intracluster medium provides an opportunity to investigate the nature of supernova explosions integrated over cosmic time. In particular, the abundance of the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding how the progenitors of typical type Ia supernovae evolve and explode2–6. Recent X-ray studies of the intracluster medium found that the abundance ratios of these elements differ substantially from those seen in the Sun, suggesting differences between the nature ofmore » type Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition lines of chromium and manganese are weak and those of iron and nickel are very close in photon energy, highresolution spectroscopy is required for an accurate determination of the abundances of these elements. Here in this paper we report observations of the Perseus cluster, with statistically significant detections of the resonance emission from chromium, manganese and nickel. Our measurements, combined with the latest atomic models, reveal that these elements have near-solar abundance ratios with respect to iron, in contrast to previous claims. Comparison between our results and modern nucleosynthesis calculations disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun). The observed abundance pattern of the iron-peak elements can be explained by taking into account a combination of near- and sub-Chandrasekhar-mass type Ia supernova systems, adding to the mounting evidence that both progenitor types make a substantial contribution to cosmic chemical enrichment.« less

  13. Solar abundance ratios of the iron-peak elements in the Perseus cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie

    The metal abundance of the hot plasma that permeates galaxy clusters represents the accumulation of heavy elements produced by billions of supernovae1. Therefore, X-ray spectroscopy of the intracluster medium provides an opportunity to investigate the nature of supernova explosions integrated over cosmic time. In particular, the abundance of the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding how the progenitors of typical type Ia supernovae evolve and explode2–6. Recent X-ray studies of the intracluster medium found that the abundance ratios of these elements differ substantially from those seen in the Sun, suggesting differences between the nature ofmore » type Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition lines of chromium and manganese are weak and those of iron and nickel are very close in photon energy, highresolution spectroscopy is required for an accurate determination of the abundances of these elements. Here in this paper we report observations of the Perseus cluster, with statistically significant detections of the resonance emission from chromium, manganese and nickel. Our measurements, combined with the latest atomic models, reveal that these elements have near-solar abundance ratios with respect to iron, in contrast to previous claims. Comparison between our results and modern nucleosynthesis calculations disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun). The observed abundance pattern of the iron-peak elements can be explained by taking into account a combination of near- and sub-Chandrasekhar-mass type Ia supernova systems, adding to the mounting evidence that both progenitor types make a substantial contribution to cosmic chemical enrichment.« less

  14. Radial distribution of metals in the hot intra-cluster medium as observed by XMM-Newton

    NASA Astrophysics Data System (ADS)

    Mernier, F.; de Plaa, J.; Kaastra, J.; Zhang, Y.; Akamatsu, H.; Gu, L.; Mao, J.; Pinto, C.; Reiprich, T.; Sanders, J.

    2017-10-01

    The hot intra-cluster medium (ICM), which accounts for ˜80% of the baryonic content in galaxy clusters, is rich in heavy elements. Since these metals have been produced by stars and supernovae before enriching the ICM, measuring metal abundance distributions in galaxy clusters and groups provides essential clues to determine the main astrophysical source(s) and epoch(s) of the ICM enrichment. In this work, we present radial abundance profiles averaged over 44 nearby cool-core galaxy clusters, groups, and massive ellipticals (the CHEERS sample) measured with XMM-Newton EPIC. While most of the Fe of the Universe is thought to be synthesised by Type Ia supernovae (SNIa), lighter elements, such as O, Mg, Si or S, are mostly produced by core-collapse supernovae (SNcc). The derived average radial profiles of the O, Mg, Si, S, Ar, Ca, Fe, and Ni abundances out to ˜ 0.5 r_{500} allows us to accurately compare the distributions of SNIa and SNcc products in clusters and groups. By comparing our results with recent chemo-dynamical simulations, we discuss the interpretation of the profiles in the context of early and late ICM enrichments.

  15. A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Langer, Norbert; Fossati, Luca; Bock, Douglas C.-J.; Castro, Norberto; Georgiev, Iskren Y.; Greiner, Jochen; Johnston, Simon; Rau, Arne; Tauris, Thomas M.

    2017-06-01

    When a massive star in a binary system explodes as a supernova, its companion star may be polluted with heavy elements from the supernova ejecta. Such pollution has been detected in a handful of post-supernova binaries 1 , but none of them is associated with a supernova remnant. We report the discovery of a binary G star strongly polluted with calcium and other elements at the position of the candidate neutron star [GV2003] N within the young galactic supernova remnant RCW 86. Our discovery suggests that the progenitor of the supernova that produced RCW 86 could have been a moving star, which exploded near the edge of its wind bubble and lost most of its initial mass because of common-envelope evolution shortly before core collapse, and that the supernova explosion might belong to the class of calcium-rich supernovae — faint and fast transients 2,3 , the origin of which is strongly debated 4-6 .

  16. The Noble-Abel Stiffened-Gas equation of state

    NASA Astrophysics Data System (ADS)

    Le Métayer, Olivier; Saurel, Richard

    2016-04-01

    Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOS named "Noble Abel stiffened gas," this formulation being a significant improvement of the popular "Stiffened Gas (SG)" EOS. It is a combination of the so-called "Noble-Abel" and "stiffened gas" equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.

  17. A Detailed Study of Chemical Enrichment History of Galaxy Clusters out to Virial Radius

    NASA Astrophysics Data System (ADS)

    Loewenstein, Michael

    The origin of the metal enrichment of the intracluster medium (ICM) represents a fundamental problem in extragalactic astrophysics, with implications for our understanding of how stars and galaxies form, the nature of Type Ia supernova (SNIa) progenitors, and the thermal history of the ICM. These heavy elements are ultimately synthesized by supernova (SN) explosions; however, the details of the sites of metal production and mechanisms that transport metals to the ICM remain unclear. To make progress, accurate abundance profiles for multiple elements extending from the cluster core out to the virial radius (r180) are required for a significant cluster sample. We propose an X-ray spectroscopic study of a carefully-chosen sample of archival Suzaku and XMM-Newton observations of 23 clusters: XMM-Newton data probe the cluster temperature and abundances out to (0.5-1)r500, while Suzaku data probe the cluster outskirts. A method devised by our team to utilize all elements with emission lines in the X-ray bandpass to measure the relative contributions of supernova explosions by direct modeling of their X-ray spectra will be applied in order to constrain the demographics of the enriching supernova population. In addition we will conduct a stacking analysis of our already existing Suzaku and XMM-Newton cluster spectra to search for weak emssion lines that are important SN diagnostics, and to look for trends with cluster mass and redshift. The funding we propose here will also support the data analysis of our recent Suzaku observations of the archetypal cluster A3112 (200 ks each on the core and outskirts). Our data analysis, intepreted using theoretical models we have developed, will enable us to constrain the star formation history, SN demographics, and nature of SNIa progenitors associated with galaxy cluster stellar populations - and, hence, directly addresess NASA s Strategic Objective 2.4.2 in Astrophysics that aims to improve the understanding of how the Universe works

  18. Nucleosynthesis in Supernovae

    NASA Astrophysics Data System (ADS)

    Thielemann, Friedrich-Karl; Isern, Jordi; Perego, Albino; von Ballmoos, Peter

    2018-04-01

    We present the status and open problems of nucleosynthesis in supernova explosions of both types, responsible for the production of the intermediate mass, Fe-group and heavier elements (with the exception of the main s-process). Constraints from observations can be provided through individual supernovae (SNe) or their remnants (e.g. via spectra and gamma-rays of decaying unstable isotopes) and through surface abundances of stars which witness the composition of the interstellar gas at their formation. With a changing fraction of elements heavier than He in these stars (known as metallicity) the evolution of the nucleosynthesis in galaxies over time can be determined. A complementary way, related to gamma-rays from radioactive decays, is the observation of positrons released in β+-decays, as e.g. from ^{26}Al, ^{44}Ti, ^{56,57}Ni and possibly further isotopes of their decay chains (in competition with the production of e+e- pairs in acceleration shocks from SN remnants, pulsars, magnetars or even of particle physics origin). We discuss (a) the role of the core-collapse supernova explosion mechanism for the composition of intermediate mass, Fe-group (and heavier?) ejecta, (b) the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae, faint supernovae, and gamma-ray bursts/hypernovae, (c) Type Ia supernovae and their nucleosynthesis (e.g. addressing the ^{55}Mn puzzle), plus (d) further constraints from galactic evolution, γ-ray and positron observations. This is complemented by the role of rare magneto-rotational supernovae (related to magnetars) in comparison with the nucleosynthesis of compact binary mergers, especially with respect to forming the heaviest r-process elements in galactic evolution.

  19. Red-Supergiant and Supernova Rate Problems: Implication for the Relic Supernova Neutrino Spectrum

    NASA Astrophysics Data System (ADS)

    Hidaka, J.; Kajino, T.; Mathews, G. J.

    2016-08-01

    Direct observations of core-collapse supernovae (SNe) and their red supergiant (RSG) progenitors suggest that the upper mass limit of RSGs may be only about 16.5{--}18{M}⊙ , while the standard theoretical value is as much as 25{M}⊙ . We investigate the possibility that RSGs with m\\gt 16.5{--}18{M}⊙ end their lives as failed supernovae (fSNe) and analyze their contribution to the relic supernova neutrino spectrum. We show that adopting this mass limit simultaneously solves both the RSG problem and the supernova rate problem. In addition, energetic neutrinos that originated from fSNe are sensitive to the explosion mechanism, and in particular, to the nuclear equation of state (EOS). We show that this solution to the RSG problem might also be used to constrain the EOS for failed supernovae.

  20. Type Ia supernova rate studies from the SDSS-II Supernova Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilday, Benjamin

    2008-08-01

    The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SNmore » Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.« less

  1. Atomic and molecular supernovae

    NASA Technical Reports Server (NTRS)

    Liu, Weihong

    1997-01-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  2. White dwarf models for type 1 supernovae and quiet supernovae, and presupernova evolution

    NASA Technical Reports Server (NTRS)

    Nomoto, K.

    1980-01-01

    Supernova mechanisms in accreting white dwarfs are considered with emphasis on deflagration as a plausible mechanism for producing Type I supernovae and electron captures to form quiet supernovae leaving neutron stars. These outcomes depend on accretion rate of helium, initial mass and composition of the white dwarf. The various types of hydrogen shell burning in the presupernova stage are also discussed.

  3. VizieR Online Data Catalog: GLASS. IV. Lensing cluster Abell 2744 (Wang+, 2015)

    NASA Astrophysics Data System (ADS)

    Wang, X.; Hoag, A.; Huang, K.-H.; Treu, T.; Bradac, M.; Schmidt, K. B.; Brammer, G. B.; Vulcani, B.; Jones, T. A.; Ryan, R. E. Jr; Amorin, R.; Castellano, M.; Fontana, A.; Merlin, E.; Trenti, M.

    2016-02-01

    The two position angles (P.A.s) of Grism Lens-Amplified Survey from Space (GLASS) data analyzed in this study were taken on 2014 August 22 and 23 (P.A.=135) and 2014 October 24 and 25 (P.A.=233), respectively. The Hubble Frontier Fields initiative (HFF, P.I. Lotz) is a Director's Discretionary Time legacy program with HST devoting 840 orbits of HST time to acquire optical ACS and NIR WFC3 imaging of six of the strongest lensing galaxy clusters on the sky. All six HFF clusters are included in the GLASS sample. The Spitzer Frontier Fields program (P.I. Soifer) is a Director's Discretionary Time program that images all six strong lensing galaxy clusters targeted by the HFF in both warm IRAC channels (3.6 and 4.5um). (2 data files).

  4. The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miknaitis, Gajus; Pignata, G.; Rest, A.

    We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the equation of state parameter of the dark energy. We present a method for optimizing the survey exposure times and cadence to maximize our sensitivity to the dark energy equation of state parameter w = P/{rho}c{sup 2} for a given fixed amount of telescope time. For our survey on the CTIO 4m telescope, measuring the luminosity distances and redshifts for supernovae at modest redshifts (z {approx} 0.5 {+-} 0.2) is optimal for determining w. We describe the data analysis pipeline based on usingmore » reliable and robust image subtraction to find supernovae automatically and in near real-time. Since making cosmological inferences with supernovae relies crucially on accurate measurement of their brightnesses, we describe our efforts to establish a thorough calibration of the CTIO 4m natural photometric system. In its first four years, ESSENCE has discovered and spectroscopically confirmed 102 type Ia SNe, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the resulting light curves for the all type Ia supernovae found by ESSENCE and used in our measurement of w, presented in Wood-Vasey et al. (2007).« less

  5. MAGNETAR-POWERED SUPERNOVAE IN TWO DIMENSIONS. I. SUPERLUMINOUS SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ke-Jung; Woosley, S. E.; Sukhbold, Tuguldur, E-mail: ken.chen@nao.ac.jp

    2016-11-20

    Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the piling up of radiatively accelerated matter in a thin dense shell deep inside the supernova. Here, we examine the problem in two dimensions and find that, while instabilities cause mixing and fracture this shell into filamentary structures that reduce the density contrast, the concentration of matter in a hollow shell persists. The extent of the mixing depends upon the relative energy input bymore » the magnetar and the kinetic energy of the inner ejecta. The light curve and spectrum of the resulting supernova will be appreciably altered, as will the appearance of the supernova remnant, which will be shellular and filamentary. A similar pile up and mixing might characterize other events where energy is input over an extended period by a centrally concentrated source, e.g., a pulsar, radioactive decay, a neutrino-powered wind, or colliding shells. The relevance of our models to the recent luminous transient ASASSN-15lh is briefly discussed.« less

  6. Supernova Fallback onto Magnetars and Propeller-powered Supernovae

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.; Ott, Christian D.

    2011-08-01

    We explore fallback accretion onto newly born magnetars during the supernova of massive stars. Strong magnetic fields (~1015 G) and short spin periods (~1-10 ms) have an important influence on how the magnetar interacts with the infalling material. At long spin periods, weak magnetic fields, and high accretion rates, sufficient material is accreted to form a black hole, as is commonly found for massive progenitor stars. When B <~ 5 × 1014 G, accretion causes the magnetar to spin sufficiently rapidly to deform triaxially and produces gravitational waves, but only for ≈50-200 s until it collapses to a black hole. Conversely, at short spin periods, strong magnetic fields, and low accretion rates, the magnetar is in the "propeller regime" and avoids becoming a black hole by expelling incoming material. This process spins down the magnetar, so that gravitational waves are only expected if the initial protoneutron star is spinning rapidly. Even when the magnetar survives, it accretes at least ≈0.3 M sun, so we expect magnetars born within these types of environments to be more massive than the 1.4 M sun typically associated with neutron stars. The propeller mechanism converts the ~1052 erg of spin energy in the magnetar into the kinetic energy of an outflow, which shock heats the outgoing supernova ejecta during the first ~10-30 s. For a small ~5 M sun hydrogen-poor envelope, this energy creates a brighter, faster evolving supernova with high ejecta velocities ~(1-3) × 104 km s-1 and may appear as a broad-lined Type Ib/c supernova. For a large >~ 10 M sun hydrogen-rich envelope, the result is a bright Type IIP supernova with a plateau luminosity of >~ 1043 erg s-1 lasting for a timescale of ~60-80 days.

  7. Using the XMM-Newton Optical Monitor to Study Cluster Galaxy Evolution

    NASA Technical Reports Server (NTRS)

    Miller, Neal A.; O'Steen, Richard; Yen, Steffi; Kuntz, K. D.; Hammer, Derek

    2012-01-01

    We explore the application of XMM Newton Optical Monitor (XMM-OM) ultraviolet (UV) data to study galaxy evolution. Our sample is constructed as the intersection of all Abell clusters with z < 0.05 and having archival XMM-OM data in either the UVM2 or UVW1 filters, plus optical and UV photometry from the Sloan Digital Sky Survey and GALEX, respectively. The 11 resulting clusters include 726 galaxies with measured redshifts, 520 of which have redshifts placing them within their parent Abell clusters. We develop procedures for manipulating the XMM-OM images and measuring galaxy photometry from them, and we confirm our results via comparison with published catalogs. Color-magnitude diagrams (CMDs) constructed using the XMM-OM data along with SDSS optical data show promise for evolutionary studies, with good separation between red and blue sequences and real variation in the width of the red sequence that is likely indicative of differences in star formation history. This is particularly true for UVW1 data, as the relative abundance of data collected using this filter and its depth make it an attractive choice. Available tools that use stellar synthesis libraries to fit the UV and optical photometric data may also be used, thereby better describing star formation history within the past billion years and providing estimates of total stellar mass that include contributions from young stars. Finally, color-color diagrams that include XMM-OM UV data appear useful to the photometric identification of both extragalactic and stellar sources.

  8. Using the XMM-Newton Optical Monitor to Study Cluster Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Miller, Neal A.; O'Steen, Richard; Yen, Steffi; Kuntz, K. D.; Hammer, Derek

    2012-02-01

    We explore the application of XMM-Newton Optical Monitor (XMM-OM) ultraviolet (UV) data to study galaxy evolution. Our sample is constructed as the intersection of all Abell clusters with z < 0.05 and having archival XMM-OM data in either the UVM2 or UVW1 filters, plus optical and UV photometry from the Sloan Digital Sky Survey and GALEX, respectively. The 11 resulting clusters include 726 galaxies with measured redshifts, 520 of which have redshifts placing them within their parent Abell clusters. We develop procedures for manipulating the XMM-OM images and measuring galaxy photometry from them, and we confirm our results via comparison with published catalogs. Color-magnitude diagrams (CMDs) constructed using the XMM-OM data along with SDSS optical data show promise for evolutionary studies, with good separation between red and blue sequences and real variation in the width of the red sequence that is likely indicative of differences in star formation history. This is particularly true for UVW1 data, as the relative abundance of data collected using this filter and its depth make it an attractive choice. Available tools that use stellar synthesis libraries to fit the UV and optical photometric data may also be used, thereby better describing star formation history within the past billion years and providing estimates of total stellar mass that include contributions from young stars. Finally, color-color diagrams that include XMM-OM UV data appear useful to the photometric identification of both extragalactic and stellar sources.

  9. The case for electron re-acceleration at galaxy cluster shocks

    NASA Astrophysics Data System (ADS)

    van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.; Golovich, Nathan; Lal, Dharam V.; Kang, Hyesung; Ryu, Dongsu; Brìggen, Marcus; Ogrean, Georgiana A.; Forman, William R.; Jones, Christine; Placco, Vinicius M.; Santucci, Rafael M.; Wittman, David; Jee, M. James; Kraft, Ralph P.; Sobral, David; Stroe, Andra; Fogarty, Kevin

    2017-01-01

    On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found1,2 . Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster-cluster merger events 3 . A long-standing problem is how low-Mach-number shocks can accelerate electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411-3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. It also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.

  10. Supernova Explosions Stay In Shape

    NASA Astrophysics Data System (ADS)

    2009-12-01

    At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same. A new study of images from NASA's Chandra X-ray Observatory on supernova remnants - the debris from exploded stars - shows that the symmetry of the remnants, or lack thereof, reveals how the star exploded. This is an important discovery because it shows that the remnants retain information about how the star exploded even though hundreds or thousands of years have passed. "It's almost like the supernova remnants have a 'memory' of the original explosion," said Laura Lopez of the University of California at Santa Cruz, who led the study. "This is the first time anyone has systematically compared the shape of these remnants in X-rays in this way." Astronomers sort supernovas into several categories, or "types", based on properties observed days after the explosion and which reflect very different physical mechanisms that cause stars to explode. But, since observed remnants of supernovas are leftover from explosions that occurred long ago, other methods are needed to accurately classify the original supernovas. Lopez and colleagues focused on the relatively young supernova remnants that exhibited strong X-ray emission from silicon ejected by the explosion so as to rule out the effects of interstellar matter surrounding the explosion. Their analysis showed that the X-ray images of the ejecta can be used to identify the way the star exploded. The team studied 17 supernova remnants both in the Milky Way galaxy and a neighboring galaxy, the Large Magellanic Cloud. For each of these remnants there is independent information about the type of supernova involved, based not on the shape of the remnant but, for example, on the elements observed in it. The researchers found that one type of supernova explosion - the so-called Type Ia - left behind relatively symmetric, circular

  11. An X-ray and optical study of the cluster of galaxies Abell 754

    NASA Technical Reports Server (NTRS)

    Fabricant, D.; Beers, T. C.; Geller, M. J.; Gorenstein, P.; Huchra, J. P.

    1986-01-01

    X-ray and optical data for A754 are used to study the relative distribution of the luminous and dark matter in this dense, rich cluster of galaxies with X-ray luminosity comparable to that of the Coma Cluster. A quantitative statistical comparison is made of the galaxy positions with the total mass responsible for maintaining the X-ray emitting gas in hydrostatic equilibrium. A simple bimodal model which fits both the X-ray and optical data suggests that the galaxies are distributed consistently with the projected matter distribution within the region covered by the X-ray map (0.5-1 Mpc). The X-ray and optical estimates of the mass in the central region of the cluster are 2.9 x 10 to the 14th and 3.6 + or - 0.5 x 10 to the 14th solar masses, respectively.

  12. Diffuse Optical Light in Galaxy Clusters. II. Correlations with Cluster Properties

    NASA Astrophysics Data System (ADS)

    Krick, J. E.; Bernstein, R. A.

    2007-08-01

    We have measured the flux, profile, color, and substructure in the diffuse intracluster light (ICL) in a sample of 10 galaxy clusters with a range of mass, morphology, redshift, and density. Deep, wide-field observations for this project were made in two bands at the 1 m Swope and 2.5 m du Pont telescopes at Las Campanas Observatory. Careful attention in reduction and analysis was paid to the illumination correction, background subtraction, point-spread function determination, and galaxy subtraction. ICL flux is detected in both bands in all 10 clusters ranging from 7.6×1010 to 7.0×1011 h-170 Lsolar in r and 1.4×1010 to 1.2×1011 h-170 Lsolar in the B band. These fluxes account for 6%-22% of the total cluster light within one-quarter of the virial radius in r and 4%-21% in the B band. Average ICL B-r colors range from 1.5 to 2.8 mag when k- and evolution corrected to the present epoch. In several clusters we also detect ICL in group environments near the cluster center and up to 1 h-170 Mpc distant from the cluster center. Our sample, having been selected from the Abell sample, is incomplete in that it does not include high-redshift clusters with low density, low flux, or low mass, and it does not include low-redshift clusters with high flux, high mass, or high density. This bias makes it difficult to interpret correlations between ICL flux and cluster properties. Despite this selection bias, we do find that the presence of a cD galaxy corresponds to both centrally concentrated galaxy profiles and centrally concentrated ICL profiles. This is consistent with ICL either forming from galaxy interactions at the center or forming at earlier times in groups and later combining in the center.

  13. Discovery of Ram-pressure Stripped Gas around an Elliptical Galaxy in Abell 2670

    NASA Astrophysics Data System (ADS)

    Sheen, Yun-Kyeong; Smith, Rory; Jaffé, Yara; Kim, Minjin; Yi, Sukyoung K.; Duc, Pierre-Alain; Nantais, Julie; Candlish, Graeme; Demarco, Ricardo; Treister, Ezequiel

    2017-05-01

    Studies of cluster galaxies are increasingly finding galaxies with spectacular one-sided tails of gas and young stars, suggestive of intense ram-pressure stripping. These so-called “jellyfish” galaxies typically have late-type morphology. In this paper, we present Multi Unit Spectroscopic Explorer (MUSE) observations of an elliptical galaxy in Abell 2670 with long tails of material visible in the optical spectra, as well as blobs with tadpole-like morphology. The spectra in the central part of the galaxy reveal a stellar component as well as ionized gas. The stellar component does not have significant rotation, while the ionized gas defines a clear star-forming gas disk. We argue, based on deep optical images of the galaxy, that the gas was most likely acquired during a past wet merger. It is possible that the star-forming blobs are also remnants of the merger. In addition, the direction and kinematics of the one-sided ionized tails, combined with the tadpole morphology of the star-forming blobs, strongly suggests that the system is undergoing ram pressure from the intracluster medium. In summary, this paper presents the discovery of a post-merger elliptical galaxy undergoing ram-pressure stripping.

  14. The nature of the driving mechanism in the pulsating hybrid PG 1159 star Abell 43

    NASA Astrophysics Data System (ADS)

    Quirion, P.-O.; Fontaine, G.; Brassard, P.

    2005-10-01

    We extend our previous pulsational stability analyses of PG 1159 stars by modeling the hybrid PG 1159 type star Abell 43. We show that the standard κ-mechanism due to the ionization of C and O in the envelope of this H-rich PG 1159 star is perfectly able to drive g-mode pulsations. Thus, contrary to a recent suggestion, there is no need to invoke any new or exotic mechanism to explain the pulsational instabilities observed in this particular star. Our expected instability band for l=1 modes extends in period from ~2604 s to ~5529 s, which is consistent with the available photometric observations of Abell 43. We also suggest that efforts to detect luminosity variations in its sibling NGC 7094 be pursued.

  15. Spiral Arm Morphology in Cluster Environment

    NASA Astrophysics Data System (ADS)

    Choi, Isaac Yeoun-Gyu; Ann, Hong Bae

    2011-10-01

    We examine the dependence of the morphology of spiral galaxies on the environment using the KIAS Value Added Galaxy Catalog (VAGC) which is derived from the Sloan Digital Sky Survey (SDSS) DR7. Our goal is to understand whether the local environment or global conditions dominate in determining the morphology of spiral galaxies. For the analysis, we conduct a morphological classification of galaxies in 20 X-ray selected Abell clusters up to z˜0.06, using SDSS color images and the X-ray data from the Northern ROSAT All-Sky (NORAS) catalog. We analyze the distribution of arm classes along the clustercentric radius as well as that of Hubble types. To segregate the effect of local environment from the global environment, we compare the morphological distribution of galaxies in two X-lay luminosity groups, the low-Lx clusters (Lx < 0.15×1044erg/s) and high-Lx clusters (Lx > 1.8×1044erg/s). We find that the morphology-clustercentric relation prevails in the cluster envirnment although there is a brake near the cluster virial radius. The grand design arms comprise about 40% of the cluster spiral galaxies with a weak morphology-clustercentric radius relation for the arm classes, in the sense that flocculent galaxies tend to increase outward, regardless of the X-ray luminosity. From the cumulative radial distribution of cluster galaxies, we found that the low-Lx clusters are fully virialized while the high-Lx clusters are not.

  16. Supernova Collisions with the Heliosphere

    NASA Astrophysics Data System (ADS)

    Fields, Brian D.; Athanassiadou, Themis; Johnson, Scott R.

    2008-05-01

    Nearby supernova explosions—within a few tens of pc of the solar system—have become a subject of intense scrutiny, due to the discovery of live undersea 60Fe from an event 2.8 Myr ago. A key open question concerns the delivery of supernova ejecta to the Earth, in particular penetration of the heliosphere by the supernova remnant (SNR). We present the first systematic numerical hydrodynamical study of the interaction between a supernova blast and the solar wind. Our simulations explore dynamic pressure regimes that are factors >=10 above those in other studies of the heliosphere under exotic conditions, for supernovae exploding at a range of distances through different interstellar environments, and interacting with solar winds of varying strengths. Our results are qualitatively consistent with the structure of the contemporary heliosphere modeled by previous work, but compressed to within the inner solar system. We demonstrate that key characteristics of the resulting heliospheric structure follow simple scaling laws that can be understood in terms of pressure-balance arguments, and which are in agreement with previous work. Our models show that a 10 pc supernova event, incident on a solar-wind outflow with the mean observed properties, compresses the heliopause to just beyond 1 AU. We also demonstrate scenarios where the supernova remnant compresses the heliopause to within 1 AU, in which cases supernova material will be directly deposited on Earth. Since 8 pc marks the nominal "kill radius" for severe biosphere damage, any extinction-level events should have left terrestrial deposits of supernova debris. We conclude with a brief discussion of the effect of our approximations and the impact of additional physics.

  17. Chandra observations of dying radio sources in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Murgia, M.; Markevitch, M.; Govoni, F.; Parma, P.; Fanti, R.; de Ruiter, H. R.; Mack, K.-H.

    2012-12-01

    Context. The dying radio sources represent a very interesting and largely unexplored stage of the active galactic nucleus (AGN) evolution. They are considered to be very rare, and almost all of the few known ones were found in galaxy clusters. However, considering the small number detected so far, it has not been possible to draw any firm conclusions about their X-ray environment. Aims: We present X-ray observations performed with the Chandra satellite of the three galaxy clusters Abell 2276, ZwCl 1829.3+6912, and RX J1852.1+5711, which harbor at their center a dying radio source with an ultra-steep spectrum that we recently discovered. Methods: We analyzed the physical properties of the X-ray emitting gas surrounding these elusive radio sources. We determined the global X-ray properties of the clusters, derived the azimuthally averaged profiles of metal abundance, gas temperature, density, and pressure. Furthermore, we estimated the total mass profiles. Results: The large-scale X-ray emission is regular and spherical, suggesting a relaxed state for these systems. Indeed, we found that the three clusters are also characterized by significant enhancements in the metal abundance and declining temperature profiles toward the central region. For all these reasons, we classified RX J1852.1+5711, Abell 2276, and ZwCl 1829.3+6912 as cool-core galaxy clusters. Conclusions: We calculated the non-thermal pressure of the radio lobes assuming that the radio sources are in the minimum energy condition. For all dying sources we found that this is on average about one to two orders of magnitude lower than that of the external gas, as found for many other radio sources at the center of galaxy groups and clusters. We found marginal evidence for the presence of X-ray surface brightness depressions coincident with the fossil radio lobes of the dying sources in A2276 and ZwCl 1829.3+691. We estimated the outburst age and energy output for these two dying sources. The energy power from

  18. The case for electron re-acceleration at galaxy cluster shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.

    On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found. Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster–cluster merger events. A long-standing problem is how low-Mach-number shocks can acceleratemore » electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411–3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. Lastly, it also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.« less

  19. The case for electron re-acceleration at galaxy cluster shocks

    DOE PAGES

    van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.; ...

    2017-01-04

    On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found. Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster–cluster merger events. A long-standing problem is how low-Mach-number shocks can acceleratemore » electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411–3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. Lastly, it also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.« less

  20. Ozone Depletion from Nearby Supernovae

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the 'biologically active' UV flux received at the surface of the Earth, the supernova must occur at approximately or less than 8 parsecs.

  1. The Core-Collapse Supernova-Black Hole Connection

    NASA Astrophysics Data System (ADS)

    O'Connor, Evan

    The death of a massive star is typically associated with a bright optical transient known as a core-collapse supernova. However, there is growing evidence that not all massive stars end their lives with a brillant optical display, but rather in a whimper. These failed supernovae, or unnovae, result from the central engine failing to turn the initial implosion of the iron core into an explosion that launches the supernova shock wave, unbinds the majority of the star, and creates the supernova as we know it. In these unnovae, the failure of the central engine is soon followed by the collapse of the would-be neutron star into a stellar mass black hole. Instead of the bright optical display following successful supernovae, little to no optical emission is expected from typical failed supernovae as most of the material quietly accretes onto the black hole. This makes the hunt for failed supernovae difficult. In this chapter for the Handbook of Supernovae, I present the growing observational evidence for failed supernovae and discuss the current theoretical understanding of how and in what stars the supernova central engine fails.

  2. Neutron stars in supernova remnants and beyond

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V.

    We propose a new approach for studying the neutron star/supernova remnant associations, based on the idea that the supernova remnants can be products of an off-centered supernova explosion in a preexisting bubble created by the wind of a moving massive star. A cavity supernova explosion of a moving star results in a considerable offset of the neutron star birth-place from the geometrical center of the supernova remnant. Therefore: a) the high transverse velocities inferred for a number of neutron stars through their association with supernova remnants can be reduced; b) the proper motion vector of a neutron star should not necessarily point away from the geometrical center of the associated supernova remnant. Taking into account these two facts allow us to enlarge the circle of possible neutron star/supernova remnant associations, and could significantly affect the results of previous studies of associations. The possibilities of our approach are illustrated with some examples. We also show that the concept of an off-centered cavity supernova explosion could be used to explain the peculiar structures of a number of supernova remnants and for searches for stellar remnants possibly associated with them.

  3. Are supernovae recorded in indigenous astronomical traditions?

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.

    2014-07-01

    Novae and supernovae are rare astronomical events that would have had an influence on the skywatching peoples who witnessed them. Although several bright novae/supernovae have been visible during recorded human history, there are many proposed but no confirmed accounts of supernovae in indigenous oral traditions or material culture. Criteria are established for confirming novae/supernovae in oral traditions and material culture, and claims from around the world are discussed to determine if they meet these criteria. Aboriginal Australian traditions are explored for possible descriptions of novae/supernovae. Although representations of supernovae may exist in Aboriginal traditions, there are currently no confirmed accounts of supernovae in Indigenous Australian oral or material traditions.

  4. Supernovae, supernebulae, and nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig; Harkness, Robert P.; Barkat, Zalman; Swartz, Douglas

    1986-10-01

    Supernova atmosphere calculations continue to show that variants of previously calculated carbon-deflagration models provide a good representation of the maximum light spectra of classical type Ia supernovae including the ultraviolet deficit. Careful consideration of the conditions leading to central thermonuclear runaway of degenerate carbon shows that runaway can, however, lead to detonation and direct conflict with observations. As witnessed by the spectra of type Ib supernovae, massive stars are expected to be the primary source of oxygen. Estimates of the absolute production of oxygen in massive stars suggest that if all stars more massive than ≡12 M_sun; explode as supernovae, oxygen would be overproduced in the solar neighborhood, an effect exacerbated by the recent increase in the reaction rate for 12C(α, γ)16O.

  5. The first ten years of Swift supernovae

    NASA Astrophysics Data System (ADS)

    Brown, Peter J.; Roming, Peter W. A.; Milne, Peter A.

    2015-09-01

    The Swift Gamma Ray Burst Explorer has proven to be an incredible platform for studying the multiwavelength properties of supernova explosions. In its first ten years, Swift has observed over three hundred supernovae. The ultraviolet observations reveal a complex diversity of behavior across supernova types and classes. Even amongst the standard candle type Ia supernovae, ultraviolet observations reveal distinct groups. When the UVOT data is combined with higher redshift optical data, the relative populations of these groups appear to change with redshift. Among core-collapse supernovae, Swift discovered the shock breakout of two supernovae and the Swift data show a diversity in the cooling phase of the shock breakout of supernovae discovered from the ground and promptly followed up with Swift. Swift observations have resulted in an incredible dataset of UV and X-ray data for comparison with high-redshift supernova observations and theoretical models. Swift's supernova program has the potential to dramatically improve our understanding of stellar life and death as well as the history of our universe.

  6. SUPERNOVA FALLBACK ONTO MAGNETARS AND PROPELLER-POWERED SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piro, Anthony L.; Ott, Christian D., E-mail: piro@caltech.edu, E-mail: cott@tapir.caltech.edu

    2011-08-01

    We explore fallback accretion onto newly born magnetars during the supernova of massive stars. Strong magnetic fields ({approx}10{sup 15} G) and short spin periods ({approx}1-10 ms) have an important influence on how the magnetar interacts with the infalling material. At long spin periods, weak magnetic fields, and high accretion rates, sufficient material is accreted to form a black hole, as is commonly found for massive progenitor stars. When B {approx}< 5 x 10{sup 14} G, accretion causes the magnetar to spin sufficiently rapidly to deform triaxially and produces gravitational waves, but only for {approx}50-200 s until it collapses to amore » black hole. Conversely, at short spin periods, strong magnetic fields, and low accretion rates, the magnetar is in the 'propeller regime' and avoids becoming a black hole by expelling incoming material. This process spins down the magnetar, so that gravitational waves are only expected if the initial protoneutron star is spinning rapidly. Even when the magnetar survives, it accretes at least {approx}0.3 M{sub sun}, so we expect magnetars born within these types of environments to be more massive than the 1.4 M{sub sun} typically associated with neutron stars. The propeller mechanism converts the {approx}10{sup 52} erg of spin energy in the magnetar into the kinetic energy of an outflow, which shock heats the outgoing supernova ejecta during the first {approx}10-30 s. For a small {approx}5 M{sub sun} hydrogen-poor envelope, this energy creates a brighter, faster evolving supernova with high ejecta velocities {approx}(1-3) x 10{sup 4} km s{sup -1} and may appear as a broad-lined Type Ib/c supernova. For a large {approx}> 10 M{sub sun} hydrogen-rich envelope, the result is a bright Type IIP supernova with a plateau luminosity of {approx}> 10{sup 43} erg s{sup -1} lasting for a timescale of {approx}60-80 days.« less

  7. Low-z Type Ia Supernova Calibration

    NASA Astrophysics Data System (ADS)

    Hamuy, Mario

    The discovery of acceleration and dark energy in 1998 arguably constitutes one of the most revolutionary discoveries in astrophysics in recent years. This paradigm shift was possible thanks to one of the most traditional cosmological tests: the redshift-distance relation between galaxies. This discovery was based on a differential measurement of the expansion rate of the universe: the current one provided by nearby (low-z) type Ia supernovae and the one in the past measured from distant (high-z) supernovae. This paper focuses on the first part of this journey: the calibration of the type Ia supernova luminosities and the local expansion rate of the universe, which was made possible thanks to the introduction of digital CCD (charge-coupled device) digital photometry. The new technology permitted us in the early 1990s to convert supernovae as precise tools to measure extragalactic distances through two key surveys: (1) the "Tololo Supernova Program" which made possible the critical discovery of the "peak luminosity-decline rate" relation for type Ia supernovae, the key underlying idea today behind precise cosmology from supernovae, and (2) the Calán/Tololo project which provided the low - z type Ia supernova sample for the discovery of acceleration.

  8. Banging Galaxy Clusters: High Fidelity X-ray Temperature and Radio Maps to Probe the Physics of Merging Clusters

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Hallman, Eric J.; Alden, Brian; Datta, Abhirup; Rapetti, David

    2017-06-01

    We present early results from an X-ray/Radio study of a sample of merging galaxy clusters. Using a novel X-ray pipeline, we have generated high-fidelity temperature maps from existing long-integration Chandra data for a set of clusters including Abell 115, A520, and MACSJ0717.5+3745. Our pipeline, written in python and operating on the NASA ARC high performance supercomputer Pleiades, generates temperature maps with minimal user interaction. This code will be released, with full documentation, on GitHub in beta to the community later this year. We have identified a population of observable shocks in the X-ray data that allow us to characterize the merging activity. In addition, we have compared the X-ray emission and properties to the radio data from observations with the JVLA and GMRT. These merging clusters contain radio relics and/or radio halos in each case. These data products illuminate the merger process, and how the energy of the merger is dissipated into thermal and non-thermal forms. This research was supported by NASA ADAP grant NNX15AE17G.

  9. Gravitational lensing statistics of amplified supernovae

    NASA Technical Reports Server (NTRS)

    Linder, Eric V.; Wagoner, Robert V.; Schneider, P.

    1988-01-01

    Amplification statistics of gravitationally lensed supernovae can provide a valuable probe of the lensing matter in the universe. A general probability distribution for amplification by compact objects is derived which allows calculation of the lensed fraction of supernovae at or greater than an amplification A and at or less than an apparent magnitude. Comparison of the computed fractions with future results from ongoing supernova searches can lead to determination of the mass density of compact dark matter components with masses greater than about 0.001 solar mass, while the time-dependent amplification (and polarization) of the expanding supernovae constrain the individual masses. Type II supernovae are found to give the largest fraction for deep surveys, and the optimum flux-limited search is found to be at approximately 23d magnitude, if evolution of the supernova rate is neglected.

  10. Pasta phases in core-collapse supernova matter

    NASA Astrophysics Data System (ADS)

    Pais, Helena; Chiacchiera, Silvia; Providência, Constança

    2016-04-01

    The pasta phase in core-collapse supernova matter (finite temperatures and fixed proton fractions) is studied within relativistic mean field models. Three different calculations are used for comparison, the Thomas-Fermi (TF), the Coexisting Phases (CP) and the Compressible Liquid Drop (CLD) approximations. The effects of including light clusters in nuclear matter and the densities at which the transitions between pasta configurations and to uniform matter occur are also investigated. The free energy and pressure, in the space of particle number densities and temperatures expected to cover the pasta region, are calculated. Finally, a comparison with a finite temperature Skyrme-Hartree-Fock calculation is drawn.

  11. How Bright Can Supernovae Get?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Supernovae enormous explosions associated with the end of a stars life come in a variety of types with different origins. A new study has examined how the brightest supernovae in the Universe are produced, and what limits might be set on their brightness.Ultra-Luminous ObservationsRecent observations have revealed many ultra-luminous supernovae, which haveenergies that challenge our abilities to explain them usingcurrent supernova models. An especially extreme example is the 2015 discovery of the supernova ASASSN-15lh, which shone with a peak luminosity of ~2*1045 erg/s, nearly a trillion times brighter than the Sun. ASASSN-15lh radiated a whopping ~2*1052 erg in the first four months after its detection.How could a supernova that bright be produced? To explore the answer to that question, Tuguldur Sukhbold and Stan Woosley at University of California, Santa Cruz, have examined the different sources that could produce supernovae and calculated upper limits on the potential luminosities ofeach of these supernova varieties.Explosive ModelsSukhbold and Woosley explore multiple different models for core-collapse supernova explosions, including:Prompt explosionA stars core collapses and immediately explodes.Pair instabilityElectron/positron pair production at a massive stars center leads to core collapse. For high masses, radioactivity can contribute to delayed energy output.Colliding shellsPreviously expelled shells of material around a star collide after the initial explosion, providing additional energy release.MagnetarThe collapsing star forms a magnetar a rapidly rotating neutron star with an incredibly strong magnetic field at its core, which then dumps energy into the supernova ejecta, further brightening the explosion.They then apply these models to different types of stars.Setting the LimitThe authors show that the light curve of ASASSN-15lh (plotted in orange) can be described by a model (black curve) in which a magnetar with an initial spin period of 0.7 ms

  12. How Well Do We Know The Supernova Equation of State?

    NASA Astrophysics Data System (ADS)

    Hempel, Matthias; Oertel, Micaela; Typel, Stefan; Klähn, Thomas

    We give an overview about equations of state (EOS) which are currently available for simulations of core-collapse supernovae and neutron star mergers. A few selected important aspects of the EOS, such as the symmetry energy, the maximum mass of neutron stars, and cluster formation, are confronted with constraints from experiments and astrophysical observations. There are just very few models which are compatible even with this very restricted set of constraints. These remaining models illustrate the uncertainty of the uniform nuclear matter EOS at high densities. In addition, at finite temperatures the medium modifications of nuclear clusters represent a conceptual challenge. In conclusion, there has been significant development in the recent years, but there is still need for further improved general purpose EOS tables.

  13. GalWeight: A New and Effective Weighting Technique for Determining Galaxy Cluster and Group Membership

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohamed H.; Wilson, Gillian; Klypin, Anatoly

    2018-07-01

    We introduce GalWeight, a new technique for assigning galaxy cluster membership. This technique is specifically designed to simultaneously maximize the number of bona fide cluster members while minimizing the number of contaminating interlopers. The GalWeight technique can be applied to both massive galaxy clusters and poor galaxy groups. Moreover, it is effective in identifying members in both the virial and infall regions with high efficiency. We apply the GalWeight technique to MDPL2 and Bolshoi N-body simulations, and find that it is >98% accurate in correctly assigning cluster membership. We show that GalWeight compares very favorably against four well-known existing cluster membership techniques (shifting gapper, den Hartog, caustic, SIM). We also apply the GalWeight technique to a sample of 12 Abell clusters (including the Coma cluster) using observations from the Sloan Digital Sky Survey. We conclude by discussing GalWeight’s potential for other astrophysical applications.

  14. ABEL model: Evaluates corporations` claims of inability to afford penalties and compliance costs (version 3.0.16). Model-simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-11-01

    The easy-to-use ABEL software evaluates for-profit company claims of inability to afford penalties, clean-up costs, or compliance costs. Violators raise the issue of inability to pay in most of EPA`s enforcement actions regardless of whether there is any hard evidence supporting those claims. The program enables Federal, State and local enforcement professionals to quickly determine if there was any validity to those claims. ABEL is a tool that promotes quick settlements by performing screening analyses of defendants and potentially responsible parties (PRP`s) to determine their financial capacity. After analyzing some basic financial ratios that reflect a company`s solvency, ABEL assessesmore » the firm`s ability to pay by focusing on projected cash flows. The model explicitly calculates the value of projected, internally generated cash flows from historical tax information, and compares these cash flows to the proposed environmental expenditure(s). The software is extremely easy to use. Version 3.0.16 updates the standard values for inflation and discount rate.« less

  15. Diagnostics of the Supernova Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryer, Chris L.; Ellinger, Carola; Young, Patrick A.

    The standard engine behind core-collapse supernovae is continuously evolving with increasingly detailed models. At this time, most simulations focus on an engine invoking turbulence above the proto-neutron star, sometimes termed the “convection-enhanced” engine. Finally, we review this engine and why it has become the standard for normal supernovae, focusing on a wide set of observations that provide insight into the supernova engine.

  16. Diagnostics of the Supernova Engine

    DOE PAGES

    Fryer, Chris L.; Ellinger, Carola; Young, Patrick A.; ...

    2017-10-17

    The standard engine behind core-collapse supernovae is continuously evolving with increasingly detailed models. At this time, most simulations focus on an engine invoking turbulence above the proto-neutron star, sometimes termed the “convection-enhanced” engine. Finally, we review this engine and why it has become the standard for normal supernovae, focusing on a wide set of observations that provide insight into the supernova engine.

  17. Deep CCD Photometry of the Rich Galaxy Cluster Abel 1656 Characteristics of the Dwarf Elliptical Galaxy Population in the Cluster Core

    NASA Astrophysics Data System (ADS)

    Secker, Jeffrey Alan

    1995-01-01

    We have developed a statistically rigorous and automated method to implement the detection, photometry and classification of faint objects on digital images. We use these methods to analyze deep R- and B-band CCD images of the central ~ 700 arcmin ^2 of the Coma cluster core, and an associated control field. We have detected and measured total R magnitudes and (B-R) colors for a sample of 3741 objects on the galaxy cluster fields, and 1164 objects on a remote control field, complete to a limiting magnitude of R = 22.5 mag. The typical uncertainties are +/- 0.06 and +/-0.12 mag in total magnitude and color respectively. The dwarf elliptical (dE) galaxies are confined to a well-defined sequence in the color range given by 0.7<= (B-R)<= 1.9 mag: within this interval there are 2535 dE candidates on our fields in the cluster core, and 694 objects on the control field. With an image scale of 0.53 arcsec/pixel and seeing near 1.2 arcsec, a large fraction of the dE galaxy candidates are resolved. We find a significant metallicity gradient in the radial distribution of the dwarf elliptical galaxies, which goes as Z~ R^{-0.32 } outwards from the cluster center at NGC 4874. As well, there is a strong color-luminosity correlation, in the sense that more luminous dE galaxies are redder in the mean. These effects give rise to a radial variation in the cluster luminosity function. The spatial distribution of the faint dE galaxies is well fit by a standard King model with a central surface density of Sigma _0 = 1.44 dEs arcmin^{ -2}, a core radius R_{ rm c} = 18.7 arcmin (~eq 0.44 Mpc), and a tidal radius of 1.44 deg ( ~eq 2.05 Mpc). This core is significantly larger than R_{rm c} = 12.3 arcmin (~eq 0.29 Mpc) found for the bright cluster galaxies. The composite luminosity function for Coma galaxies is modeled as the sum of a log -normal distribution for the giant galaxies and a Schechter function for the dwarf elliptical galaxies, with a faint -end slope of alpha = -1

  18. Neutrino signal from pair-instability supernovae

    NASA Astrophysics Data System (ADS)

    Wright, Warren P.; Gilmer, Matthew S.; Fröhlich, Carla; Kneller, James P.

    2017-11-01

    A very massive star with a carbon-oxygen core in the range of 64M ⊙supernova. Pair-instability supernovae are candidates for superluminous supernovae due to the prodigious amounts of radioactive elements they create. While the basic mechanism for the explosion is understood, how a star reaches a state is not, and thus observations of a nearby pair-instability supernova would allow us to test current models of stellar evolution at the extreme of stellar masses. Much will be sought within the electromagnetic radiation we detect from such a supernova but we should not forget that the neutrinos from a pair-instability supernova contain unique signatures of the event that unambiguously identify this type of explosion. We calculate the expected neutrino flux at Earth from two, one-dimensional pair-instability supernova simulations which bracket the mass range of stars which explode by this mechanism taking into account the full time and energy dependence of the neutrino emission and the flavor evolution through the outer layers of the star. We calculate the neutrino signals in five different detectors chosen to represent present or near future designs. We find the more massive progenitors explode as pair-instability supernova which can easily be detected in multiple different neutrino detectors at the "standard" supernova distance of 10 kpc producing several events in DUNE, JUNO, and Super-Kamiokande, while the lightest progenitors produce only a handful of events (if any) in the same detectors. The proposed Hyper-Kamiokande detector would detect neutrinos from a large pair-instability supernova as far as ˜50 kpc allowing it to reach the Megallanic Clouds and the several very high mass stars known to exist there.

  19. An Open Catalog for Supernova Data

    NASA Astrophysics Data System (ADS)

    Guillochon, James; Parrent, Jerod; Kelley, Luke Zoltan; Margutti, Raffaella

    2017-01-01

    We present the Open Supernova Catalog, an online collection of observations and metadata for presently 36,000+ supernovae and related candidates. The catalog is freely available on the web (https://sne.space), with its main interface having been designed to be a user-friendly, rapidly searchable table accessible on desktop and mobile devices. In addition to the primary catalog table containing supernova metadata, an individual page is generated for each supernova, which displays its available metadata, light curves, and spectra spanning X-ray to radio frequencies. The data presented in the catalog is automatically rebuilt on a daily basis and is constructed by parsing several dozen sources, including the data presented in the supernova literature and from secondary sources such as other web-based catalogs. Individual supernova data is stored in the hierarchical, human- and machine-readable JSON format, with the entirety of each supernova’s data being contained within a single JSON file bearing its name. The setup we present here, which is based on open-source software maintained via git repositories hosted on github, enables anyone to download the entirety of the supernova data set to their home computer in minutes, and to make contributions of their own data back to the catalog via git. As the supernova data set continues to grow, especially in the upcoming era of all-sky synoptic telescopes, which will increase the total number of events by orders of magnitude, we hope that the catalog we have designed will be a valuable tool for the community to analyze both historical and contemporary supernovae.

  20. Anti-Brownian ELectrokinetic (ABEL) trapping of single β2-adrenergic receptors in the absence and presence of agonist

    NASA Astrophysics Data System (ADS)

    Bockenhauer, Samuel; Fuerstenberg, Alexandre; Yao, Xiao Jie; Kobilka, Brian K.; Moerner, W. E.

    2012-02-01

    The ABEL trap allows trapping of single biomolecules in solution for extended observation without immobilization. The essential idea combines fluorescence-based position estimation with fast electrokinetic feedback in a microfluidic geometry to counter the Brownian motion of a single nanoscale object, hence maintaining its position in the field of view for hundreds of milliseconds to seconds. Such prolonged observation of single proteins allows access to slow dynamics, as probed by any available photophysical observables. We have used the ABEL trap to study conformational dynamics of the β2-adrenergic receptor, a key G-protein coupled receptor and drug target, in the absence and presence of agonist. A single environment-sensitive dye reports on the receptor microenvironment, providing a real-time readout of conformational change for each trapped receptor. The focus of this paper will be a quantitative comparison of the ligandfree and agonist-bound receptor data from our ABEL trap experiments. We observe a small but clearly detectable shift in conformational equilibria and a lengthening of fluctuation timescales upon binding of agonist. In order to quantify the shift in state distributions and timescales, we apply nonparametric statistical tests to place error bounds on the resulting single-molecule distributions.

  1. Analysis of the optical emission of the young precataclysmic variables HS 1857+5144 and ABELL 65

    NASA Astrophysics Data System (ADS)

    Shimansky, V. V.; Pozdnyakova, S. A.; Borisov, N. V.; Bikmaev, I. F.; Vlasyuk, V. V.; Spiridonova, O. I.; Galeev, A. I.; Mel'Nikov, S. S.

    2009-10-01

    We analyze the physical state and the properties of the close binary systems HS 1857+5144 and Abell 65. We took the spectra of both systems over a wide range of orbital phases with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) and obtained their multicolor light curves with the RTT150 and Zeiss-1000 telescopes of the SAO RAS. We demonstrate that both Abell 65 and HS 1857+5144 are young precataclysmic variables (PV) with orbital periods of P orb = 1. d 003729 and P orb = 0. d 26633331, respectively. The observed brightness and spectral variations during the orbital period are due to the radiation of the cold component, which absorbs the short-wave radiation of the hot component and reemits it in the visual part of the spectrum. A joint analysis of the brightness and radial velocity curves allowed us to find the possible and optimum sets of their fundamental parameters. We found the luminosity excesses of the secondary components of HS 1857+5144 and Abell 65 with respect to the corresponding Main Sequence stars to be typical for such objects. The excess luminosities of the secondary components of all young PVs are indicative of their faster relaxation rate towards the quiescent state compared to the rates estimated in earlier studies.

  2. Super-AGB Stars and their Role as Electron Capture Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Doherty, Carolyn L.; Gil-Pons, Pilar; Siess, Lionel; Lattanzio, John C.

    2017-11-01

    We review the lives, deaths and nucleosynthetic signatures of intermediate-mass stars in the range ≈6-12 M⊙, which form super-AGB stars near the end of their lives. The critical mass boundaries both between different types of massive white dwarfs (CO, CO-Ne, ONe), and between white dwarfs and supernovae, are examined along with the relative fraction of super-AGB stars that end life either as an ONe white dwarf or as a neutron star (or an ONeFe white dwarf), after undergoing an electron capture supernova event. The contribution of the other potential single-star channel to electron-capture supernovae, that of the failed massive stars, is also discussed. The factors that influence these different final fates and mass limits, such as composition, rotation, the efficiency of convection, the nuclear reaction rates, mass-loss rates, and third dredge-up efficiency, are described. We stress the importance of the binary evolution channels for producing electron-capture supernovae. Recent nucleosynthesis calculations and elemental yield results are discussed and a new set of s-process heavy element yields is presented. The contribution of super-AGB star nucleosynthesis is assessed within a Galactic perspective, and the (super-)AGB scenario is considered in the context of the multiple stellar populations seen in globular clusters. A brief summary of recent works on dust production is included. Last, we conclude with a discussion of the observational constraints and potential future advances for study into these stars on the low mass/high mass star boundary.

  3. Effects of Combined Stellar Feedback on Star Formation in Stellar Clusters

    NASA Astrophysics Data System (ADS)

    Wall, Joshua Edward; McMillan, Stephen; Pellegrino, Andrew; Mac Low, Mordecai; Klessen, Ralf; Portegies Zwart, Simon

    2018-01-01

    We present results of hybrid MHD+N-body simulations of star cluster formation and evolution including self consistent feedback from the stars in the form of radiation, winds, and supernovae from all stars more massive than 7 solar masses. The MHD is modeled with the adaptive mesh refinement code FLASH, while the N-body computations are done with a direct algorithm. Radiation is modeled using ray tracing along long characteristics in directions distributed using the HEALPIX algorithm, and causes ionization and momentum deposition, while winds and supernova conserve momentum and energy during injection. Stellar evolution is followed using power-law fits to evolution models in SeBa. We use a gravity bridge within the AMUSE framework to couple the N-body dynamics of the stars to the gas dynamics in FLASH. Feedback from the massive stars alters the structure of young clusters as gas ejection occurs. We diagnose this behavior by distinguishing between fractal distribution and central clustering using a Q parameter computed from the minimum spanning tree of each model cluster. Global effects of feedback in our simulations will also be discussed.

  4. Relics in galaxy clusters at high radio frequencies

    NASA Astrophysics Data System (ADS)

    Kierdorf, M.; Beck, R.; Hoeft, M.; Klein, U.; van Weeren, R. J.; Forman, W. R.; Jones, C.

    2017-04-01

    Aims: We investigated the magnetic properties of radio relics located at the peripheries of galaxy clusters at high radio frequencies, where the emission is expected to be free of Faraday depolarization. The degree of polarization is a measure of the magnetic field compression and, hence, the Mach number. Polarization observations can also be used to confirm relic candidates. Methods: We observed three radio relics in galaxy clusters and one radio relic candidate at 4.85 and 8.35 GHz in total emission and linearly polarized emission with the Effelsberg 100-m telescope. In addition, we observed one radio relic candidate in X-rays with the Chandra telescope. We derived maps of polarization angle, polarization degree, and Faraday rotation measures. Results: The radio spectra of the integrated emission below 8.35 GHz can be well fitted by single power laws for all four relics. The flat spectra (spectral indices of 0.9 and 1.0) for the so-called Sausage relic in cluster CIZA J2242+53 and the so-called Toothbrush relic in cluster 1RXS 06+42 indicate that models describing the origin of relics have to include effects beyond the assumptions of diffuse shock acceleration. The spectra of the radio relics in ZwCl 0008+52 and in Abell 1612 are steep, as expected from weak shocks (Mach number ≈2.4). Polarization observations of radio relics offer a method of measuring the strength and geometry of the shock front. We find polarization degrees of more than 50% in the two prominent Mpc-sized radio relics, the Sausage and the Toothbrush, which are among the highest percentages of linear polarization detected in any extragalactic radio source to date. This is remarkable because the large beam size of the Effelsberg single-dish telescope corresponds to linear extensions of about 300 kpc at 8.35 GHz at the distances of the relics. The high degree of polarization indicates that the magnetic field vectors are almost perfectly aligned along the relic structure, as expected for shock

  5. The Perth Automated Supernova Search

    NASA Astrophysics Data System (ADS)

    Williams, A. J.

    1997-12-01

    An automated search for supernovae in late spiral galaxies has been established at Perth Observatory, Western Australia. This automated search uses three low-cost PC-clone computers, a liquid nitrogen cooled CCD camera built locally, and a 61-cm telescope automated for the search. The images are all analysed automatically in real-time by routines in Perth Vista, the image processing system ported to the PC architecture for the search system. The telescope control software written for the project, Teljoy, maintains open-loop position accuracy better than 30" of arc after hundreds of jumps over an entire night. Total capital cost to establish and run this supernova search over the seven years of development and operation was around US$30,000. To date, the system has discovered a total of 6 confirmed supernovae, made an independent detection of a seventh, and detected one unconfirmed event assumed to be a supernova. The various software and hardware components of the search system are described in detail, the analysis of the first three years of data is discussed, and results presented. We find a Type Ib/c rate of 0.43 +/- 0.43 SNu, and a Type IIP rate of 0.86 +/- 0.49 SNu, where SNu are 'supernova units', expressed in supernovae per 10^10 solar blue luminosity galaxy per century. These values are for a Hubble constant of 75 km/s per Mpc, and scale as (H0/75)^2. The small number of discoveries has left large statistical uncertainties, but our strategy of frequent observations has reduced systematic errors - altering detection threshold or peak supernova luminosity by +/- 0.5 mag changes estimated rates by only around 20%. Similarly, adoption of different light curve templates for Type Ia and Type IIP supernovae has a minimal effect on the final statistics (2% and 4% change, respectively).

  6. Primordial inhomogeneities in the expanding universe. I - Density and velocity distributions of galaxies in the vicinities of rich clusters

    NASA Technical Reports Server (NTRS)

    Silk, J.; Wilson, M. L.

    1979-01-01

    The density profiles and Hubble flow deviations in the vicinities of rich galaxy clusters are derived for a variety of models of initial density and velocity perturbations at the recombination epoch. The galaxy correlation function, measured with respect to the Abell clusters, is used to normalize the theoretical models. The angular scales of the required primordial inhomogeneities are calculated. It is found that the resulting density profiles around rich clusters are surprisingly insensitive to the shape of the initial perturbations and also to the cosmological density parameter, Omega. However, it is shown that the distribution of galaxy radial velocities can provide a possible means of deriving Omega.

  7. Astrometry With the Hubble Space Telescope: Trigonometric Parallaxes of Planetary Nebula Nuclei NGC 6853, NGC 7293, ABELL 31, and DeHt 5

    DTIC Science & Technology

    2009-12-01

    reserved. Printed in the U.S.A. ASTROMETRY WITH THE HUBBLE SPACE TELESCOPE: TRIGONOMETRIC PARALLAXES OF PLANETARY NEBULA NUCLEI NGC 6853, NGC 7293, ABELL 31...present absolute parallaxes and relative proper motions for the central stars of the planetary nebulae NGC 6853 (The Dumbbell), NGC 7293 (The Helix...Abell 31, and DeHt 5. This paper details our reduction and analysis using DeHt 5 as an example. We obtain these planetary nebula nuclei (PNNi

  8. VizieR Online Data Catalog: Redshifts of 65 CANDELS supernovae (Rodney+, 2014)

    NASA Astrophysics Data System (ADS)

    Rodney, S. A.; Riess, A. G.; Strolger, L.-G.; Dahlen, T.; Graur, O.; Casertano, S.; Dickinson, M. E.; Ferguson, H. C.; Garnavich, P.; Hayden, B.; Jha, S. W.; Jones, D. O.; Kirshner, R. P.; Koekemoer, A. M.; McCully, C.; Mobasher, B.; Patel, B.; Weiner, B. J.; Cenko, S. B.; Clubb, K. I.; Cooper, M.; Filippenko, A. V.; Frederiksen, T. F.; Hjorth, J.; Leibundgut, B.; Matheson, T.; Nayyeri, H.; Penner, K.; Trump, J.; Silverman, J. M.; U, V.; Azalee Bostroem, K.; Challis, P.; Rajan, A.; Wolff, S.; Faber, S. M.; Grogin, N. A.; Kocevski, D.

    2015-01-01

    In this paper we present a measurement of the Type Ia supernova explosion rate as a function of redshift (SNR(z)) from a sample of 65 supernovae discovered in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) supernova program. This supernova survey is a joint operation of two Hubble Space Telescope (HST) Multi-Cycle Treasury (MCT) programs: CANDELS (PIs: Faber and Ferguson; Grogin et al., 2011ApJS..197...35G; Koekemoer et al., 2011ApJS..197...36K), and the Cluster Lensing and Supernovae search with Hubble (CLASH; PI: Postman; Postman et al. 2012, cat. J/ApJS/199/25). The supernova discovery and follow-up for both programs were allocated to the HST MCT supernova program (PI: Riess). The results presented here are based on the full five fields and ~0.25deg2 of the CANDELS program, observed from 2010 to 2013. A companion paper presents the SN Ia rates from the CLASH sample (Graur et al., 2014ApJ...783...28G). A composite analysis that combines the CANDELS+CLASH supernova sample and revisits past HST surveys will be presented in a future paper. The three-year CANDELS program was designed to probe galaxy evolution out to z~8 with deep infrared and optical imaging of five well-studied extragalactic fields: GOODS-S, GOODS-N (the Great Observatories Origins Deep Survey South and North; Giavalisco et al. 2004, cat. II/261), COSMOS (the Cosmic Evolution Survey, Scoville et al., 2007ApJS..172....1S; Koekemoer et al., 2007ApJS..172..196K), UDS (the UKIDSS Ultra Deep Survey; Lawrence et al. 2007, cat. II/314; Cirasuolo et al., 2007MNRAS.380..585C), EGS (the Extended Groth Strip; Davis et al. 2007, cat. III/248). As described fully in Grogin et al. (2011ApJS..197...35G), the CANDELS program includes both "wide" and "deep" fields. The wide component of CANDELS comprises the COSMOS, UDS, and EGS fields, plus one-third of the GOODS-S field and one half of the GOODS-N field--a total survey area of 730 arcmin2. The "deep" component of CANDELS came from the

  9. Understanding Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Hix, W. R.; Lentz, E. J.; Baird, M.; Messer, O. E. B.; Mezzacappa, A.; Lee, C.-T.; Bruenn, S. W.; Blondin, J. M.; Marronetti, P.

    2010-03-01

    Our understanding of core-collapse supernovae continues to improve as better microphysics is included in increasingly realistic neutrino-radiationhydrodynamic simulations. Recent multi-dimensional models with spectral neutrino transport, which slowly develop successful explosions for a range of progenitors between 12 and 25 solar mass, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progresses on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  10. The mystery of the "Kite" radio source in Abell 2626: Insights from new Chandra observations

    NASA Astrophysics Data System (ADS)

    Ignesti, A.; Gitti, M.; Brunetti, G.; O'Sullivan, E.; Sarazin, C.; Wong, K.

    2018-03-01

    Context. We present the results of a new Chandra study of the galaxy cluster Abell 2626. The radio emission of the cluster shows a complex system of four symmetric arcs without known correlations with the thermal X-ray emission. The mirror symmetry of the radio arcs toward the center and the presence of two optical cores in the central galaxy suggested that they may be created by pairs of precessing radio jets powered by dual active galactic nuclei (AGNs) inside the core dominant galaxy. However, previous observations failed to observe the second jetted AGN and the spectral trend due to radiative age along the radio arcs, thus challenging this interpretation. Aim. The new Chandra observation had several scientific objectives, including the search for the second AGN that would support the jet precession model. We focus here on the detailed study of the local properties of the thermal and non-thermal emission in the proximity of the radio arcs, in order to obtain further insights into their origin. Methods: We performed a standard data reduction of the Chandra dataset deriving the radial profiles of temperature, density, pressure and cooling time of the intra-cluster medium. We further analyzed the two-dimensional (2D) distribution of the gas temperature, discovering that the south-western junction of the radio arcs surrounds the cool core of the cluster. Results: We studied the X-ray surface brightness and spectral profiles across the junction, finding a cold front spatially coincident with the radio arcs. This may suggest a connection between the sloshing of the thermal gas and the nature of the radio filaments, raising new scenarios for their origin. A tantalizing possibility is that the radio arcs trace the projection of a complex surface connecting the sites where electrons are most efficiently reaccelerated by the turbulence that is generated by the gas sloshing. In this case, diffuse emission embedded by the arcs and with extremely steep spectrum should be

  11. The supernova-gamma-ray burst-jet connection.

    PubMed

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  12. Discovery of Ram-pressure Stripped Gas around an Elliptical Galaxy in Abell 2670

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, Yun-Kyeong; Kim, Minjin; Smith, Rory

    Studies of cluster galaxies are increasingly finding galaxies with spectacular one-sided tails of gas and young stars, suggestive of intense ram-pressure stripping. These so-called “jellyfish” galaxies typically have late-type morphology. In this paper, we present Multi Unit Spectroscopic Explorer (MUSE) observations of an elliptical galaxy in Abell 2670 with long tails of material visible in the optical spectra, as well as blobs with tadpole-like morphology. The spectra in the central part of the galaxy reveal a stellar component as well as ionized gas. The stellar component does not have significant rotation, while the ionized gas defines a clear star-forming gasmore » disk. We argue, based on deep optical images of the galaxy, that the gas was most likely acquired during a past wet merger. It is possible that the star-forming blobs are also remnants of the merger. In addition, the direction and kinematics of the one-sided ionized tails, combined with the tadpole morphology of the star-forming blobs, strongly suggests that the system is undergoing ram pressure from the intracluster medium. In summary, this paper presents the discovery of a post-merger elliptical galaxy undergoing ram-pressure stripping.« less

  13. Detection of Neutrinos from Galactic and Cosmic Supernovae

    NASA Astrophysics Data System (ADS)

    Beacom, John

    2010-11-01

    Detecting neutrinos is the key to understanding core-collapse supernovae, but this is notoriously difficult due to the small interaction cross section of neutrinos and the low frequency of supernovae. The prospects for detecting Galactic supernovae depend almost completely on the probability of a fluctuation from the low supernova rate; the detection aspects are largely under control. The prospects for detecting Cosmic supernovae instead depend almost completely on the detection aspects, especially regarding reducing detector backgrounds; the supernova rate and neutrino flux of the universe are now rather well measured or predicted. After decades of effort and patience, we have good reasons to anticipate that detecting supernova neutrinos is within reach.

  14. An Open Catalog for Supernova Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillochon, James; Parrent, Jerod; Kelley, Luke Zoltan

    We present the Open Supernova Catalog , an online collection of observations and metadata for presently 36,000+ supernovae and related candidates. The catalog is freely available on the web (https://sne.space), with its main interface having been designed to be a user-friendly, rapidly searchable table accessible on desktop and mobile devices. In addition to the primary catalog table containing supernova metadata, an individual page is generated for each supernova, which displays its available metadata, light curves, and spectra spanning X-ray to radio frequencies. The data presented in the catalog is automatically rebuilt on a daily basis and is constructed by parsingmore » several dozen sources, including the data presented in the supernova literature and from secondary sources such as other web-based catalogs. Individual supernova data is stored in the hierarchical, human- and machine-readable JSON format, with the entirety of each supernova’s data being contained within a single JSON file bearing its name. The setup we present here, which is based on open-source software maintained via git repositories hosted on github, enables anyone to download the entirety of the supernova data set to their home computer in minutes, and to make contributions of their own data back to the catalog via git. As the supernova data set continues to grow, especially in the upcoming era of all-sky synoptic telescopes, which will increase the total number of events by orders of magnitude, we hope that the catalog we have designed will be a valuable tool for the community to analyze both historical and contemporary supernovae.« less

  15. Neutrino Emission from Supernovae

    NASA Astrophysics Data System (ADS)

    Janka, Hans-Thomas

    Supernovae are the most powerful cosmic sources of MeV neutrinos. These elementary particles play a crucial role when the evolution of a massive star is terminated by the collapse of its core to a neutron star or a black hole and the star explodes as supernova. The release of electron neutrinos, which are abundantly produced by electron captures, accelerates the catastrophic infall and causes a gradual neutronization of the stellar plasma by converting protons to neutrons as dominant constituents of neutron star matter. The emission of neutrinos and antineutrinos of all flavors carries away the gravitational binding energy of the compact remnant and drives its evolution from the hot initial to the cold final state. The absorption of electron neutrinos and antineutrinos in the surroundings of the newly formed neutron star can power the supernova explosion and determines the conditions in the innermost supernova ejecta, making them an interesting site for the nucleosynthesis of iron-group elements and trans-iron nuclei.

  16. Supernova Forensics

    NASA Astrophysics Data System (ADS)

    Soderberg, Alicia M.

    2014-01-01

    For decades, the study of stellar explosions -- supernovae -- have focused almost exclusively on the strong optical emission that dominates the bolometric luminosity in the days following the ultimate demise of the star. Yet many of the leading breakthroughs in our understanding of stellar death have been enabled by obtaining data at other wavelengths. For example, I have shown that 1% of all supernovae give rise to powerful relativistic jets, representing the biggest bangs in the Universe since the Big Bang. My recent serendipitous X-ray discovery of a supernova in the act of exploding (“in flagrante delicto”) revealed a novel technique to discover new events and provide clues on the shock physics at the heart of the explosion. With the advent of sensitive new radio telescopes, my research group combines clues from across the electromagnetic spectrum (radio to gamma-ray), leading us to a holistic study of stellar death, the physics of the explosions, and their role in fertilizing the Universe with new elements, by providing the community with cosmic autopsy reports.

  17. THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE (CLASH): STRONG-LENSING ANALYSIS OF A383 FROM 16-BAND HST/WFC3/ACS IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitrin, A.; Broadhurst, T.; Coe, D.

    2011-12-01

    We examine the inner mass distribution of the relaxed galaxy cluster A383 (z = 0.189), in deep 16 band Hubble Space Telescope/ACS+WFC3 imaging taken as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) multi-cycle treasury program. Our program is designed to study the dark matter distribution in 25 massive clusters, and balances depth with a wide wavelength coverage, 2000-16000 A, to better identify lensed systems and generate precise photometric redshifts. This photometric information together with the predictive strength of our strong-lensing analysis method identifies 13 new multiply lensed images and candidates, so that a total of 27more » multiple images of nine systems are used to tightly constrain the inner mass profile gradient, dlog {Sigma}/dlog r {approx_equal} -0.6 {+-} 0.1 (r < 160 kpc). We find consistency with the standard distance-redshift relation for the full range spanned by the lensed images, 1.01 < z < 6.03, with the higher-redshift sources deflected through larger angles as expected. The inner mass profile derived here is consistent with the results of our independent weak-lensing analysis of wide-field Subaru images, with good agreement in the region of overlap ({approx}0.7-1 arcmin). Combining weak and strong lensing, the overall mass profile is well fitted by a Navarro-Frenk-White profile with M{sub vir} = (5.37{sup +0.70}{sub -0.63} {+-} 0.26) Multiplication-Sign 10{sup 14} M{sub Sun} h{sup -1} and a relatively high concentration, c{sub vir} = 8.77{sup +0.44}{sub -0.42} {+-} 0.23, which lies above the standard c-M relation similar to other well-studied clusters. The critical radius of A383 is modest by the standards of other lensing clusters, r{sub E} {approx_equal} 16 {+-} 2'' (for z{sub s} = 2.55), so the relatively large number of lensed images uncovered here with precise photometric redshifts validates our imaging strategy for the CLASH survey. In total we aim to provide similarly high-quality lensing data for 25

  18. An Optical and X-Ray Study of Abell 576, a Galaxy Cluster with a Cold Core

    NASA Astrophysics Data System (ADS)

    Mohr, Joseph J.; Geller, Margaret J.; Fabricant, Daniel G.; Wegner, Gary; Thorstensen, John; Richstone, Douglas O.

    1996-10-01

    We analyze the galaxy population and dynamics of the galaxy cluster A576; the observational constraints include 281 redshifts (230 new), R- band CCD galaxy photometry over a 2 h^-1^ Mpc x 2 h^-1^ Mpc region centered on the cluster, an Einstein IPC X-ray image, and an Einstein MPC X-ray spectrum. We focus on an 86% complete magnitude-limited sample (R_23.5_ < 17) of 169 cluster galaxies. The cluster galaxies with emission lines in their spectra have a larger velocity dispersion and are significantly less clustered on this 2 h^-1^ Mpc scale than galaxies without emission lines. We show that excluding the emission-line galaxies from the cluster sample decreases the velocity dispersion by 18% and the virial mass estimate by a factor of 2. The central cluster region contains a nonemission galaxy population and an intracluster medium which is significantly cooler (σ_core_ = 387_-105_^+250^ km s^-1^ and T_x_ = 1.6_-0.3_^+0.4^ keV at 90% confidence) than the global populations (σ = 977_-96_^+124^ km s^- 1^ for the nonemission population and T_X_ > 4 keV at 90% confidence). Because (1) the low-dispersion galaxy population is no more luminous than the global population and (2) the evidence for a cooling flow is weak, we suggest that the core of A576 may contain the remnants of a lower mass subcluster. We examine the cluster mass, baryon fraction, and luminosity function. The cluster virial mass varies significantly depending on the galaxy sample used. Consistency between the hydrostatic and virial estimators can be achieved if (1) the gas temperature at r~1 h^-1^ Mpc is T_X_ ~ 8 keV (the best-fit value) and (2) several velocity outliers are excluded from the virial calculation. Although the best-fit Schechter function parameters and the ratio of galaxy to gas mass in A576 are typical of other clusters, the baryon fraction is relatively low. Using the consistent cluster binding mass, we show that the gas mass fraction is ~3 h^-3/2^% and the baryon fraction is ~4%.

  19. VizieR Online Data Catalog: Ultradiffuse galaxies found in deep HST images of HFF (Lee+, 2017)

    NASA Astrophysics Data System (ADS)

    Lee, M. G.; Kang, J.; Lee, J. H.; Jang in, S.

    2018-03-01

    Abell S1063 and Abell 2744 are located at redshift z=0.348 and z=0.308, respectively, so their HST fields cover a relatively large fraction of each cluster. They are part of the target galaxy clusters in the Hubble Frontier Fields (HFF) Program, for which deep Hubble Space Telescope (HST) images are available (Lotz+ 2017ApJ...837...97L). We used ACS/F814W(I) and WFC3/F105W(Y) images for Abell S1063 and Abell 2744 in the HFF. The effective wavelengths of the F814W and F105W filters for the redshifts of Abell S1063 and Abell 2744 (6220 and 8030Å) correspond approximately to SDSS r' and Cousins I (or SDSS i') in the rest frame, respectively. Figure 1 display color images of the HST fields for Abell S1063 and Abell 2744. In this study we adopt the cosmological parameters H0=73km/s/Mpc, ΩM=0.27, and ΩΛ=0.73. For these parameters, luminosity distance moduli of Abell S1063 and Abell 2744 are (m-M)0=41.25 (d=1775Mpc) and 40.94 (d=1540Mpc), and angular diameter distances are 978 and 901Mpc, respectively. (5 data files).

  20. CLASH-VLT: A highly precise strong lensing model of the galaxy cluster RXC J2248.7-4431 (Abell S1063) and prospects for cosmography

    NASA Astrophysics Data System (ADS)

    Caminha, G. B.; Grillo, C.; Rosati, P.; Balestra, I.; Karman, W.; Lombardi, M.; Mercurio, A.; Nonino, M.; Tozzi, P.; Zitrin, A.; Biviano, A.; Girardi, M.; Koekemoer, A. M.; Melchior, P.; Meneghetti, M.; Munari, E.; Suyu, S. H.; Umetsu, K.; Annunziatella, M.; Borgani, S.; Broadhurst, T.; Caputi, K. I.; Coe, D.; Delgado-Correal, C.; Ettori, S.; Fritz, A.; Frye, B.; Gobat, R.; Maier, C.; Monna, A.; Postman, M.; Sartoris, B.; Seitz, S.; Vanzella, E.; Ziegler, B.

    2016-03-01

    Aims: We perform a comprehensive study of the total mass distribution of the galaxy cluster RXC J2248.7-4431 (z = 0.348) with a set of high-precision strong lensing models, which take advantage of extensive spectroscopic information on many multiply lensed systems. In the effort to understand and quantify inherent systematics in parametric strong lensing modelling, we explore a collection of 22 models in which we use different samples of multiple image families, different parametrizations of the mass distribution and cosmological parameters. Methods: As input information for the strong lensing models, we use the Cluster Lensing And Supernova survey with Hubble (CLASH) imaging data and spectroscopic follow-up observations, with the VIsible Multi-Object Spectrograph (VIMOS) and Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT), to identify and characterize bona fide multiple image families and measure their redshifts down to mF814W ≃ 26. A total of 16 background sources, over the redshift range 1.0-6.1, are multiply lensed into 47 images, 24 of which are spectroscopically confirmed and belong to ten individual sources. These also include a multiply lensed Lyman-α blob at z = 3.118. The cluster total mass distribution and underlying cosmology in the models are optimized by matching the observed positions of the multiple images on the lens plane. Bayesian Markov chain Monte Carlo techniques are used to quantify errors and covariances of the best-fit parameters. Results: We show that with a careful selection of a large sample of spectroscopically confirmed multiple images, the best-fit model can reproduce their observed positions with a rms scatter of 0.̋3 in a fixed flat ΛCDM cosmology, whereas the lack of spectroscopic information or the use of inaccurate photometric redshifts can lead to biases in the values of the model parameters. We find that the best-fit parametrization for the cluster total mass distribution is composed of an

  1. The Shape of Superluminous Supernovae

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    What causes the tremendous explosions of superluminous supernovae? New observations reveal the geometry of one such explosion, SN 2015bn, providing clues as to its source.A New Class of ExplosionsImage of a type Ia supernova in the galaxy NGC 4526. [NASA/ESA]Supernovae are powerful explosions that can briefly outshine the galaxies that host them. There are several different classifications of supernovae, each with a different physical source such as thermonuclear instability in a white dwarf, caused by accretion of too much mass, or the exhaustion of fuel in the core of a massive star, leading to the cores collapse and expulsion of its outer layers.In recent years, however, weve detected another type of supernovae, referred to as superluminous supernovae. These particularly energetic explosions last longer months instead of weeks and are brighter at their peaks than normal supernovae by factors of tens to hundreds.The physical cause of these unusual explosions is still a topic of debate. Recently, however, a team of scientists led by Cosimo Inserra (Queens University Belfast) has obtained new observations of a superluminous supernova that might help address this question.The flux and the polarization level (black lines) along the dominant axis of SN 2015bn, 24 days before peak flux (left) and 28 days after peak flux (right). Blue lines show the authors best-fitting model. [Inserra et al. 2016]Probing GeometryInserra and collaborators obtained two sets of observations of SN 2015bn one roughly a month before and one a month after the superluminous supernovas peak brightness using a spectrograph on the Very Large Telescope in Chile. These observations mark the first spectropolarimetric data for a superluminous supernova.Spectropolarimetry is the practice of obtaining information about the polarization of radiation from an objects spectrum. Polarization carries information about broken spatial symmetries in the object: only if the object is perfectly symmetric can it

  2. The ASAS-SN bright supernova catalogue - III. 2016

    NASA Astrophysics Data System (ADS)

    Holoien, T. W.-S.; Brown, J. S.; Stanek, K. Z.; Kochanek, C. S.; Shappee, B. J.; Prieto, J. L.; Dong, Subo; Brimacombe, J.; Bishop, D. W.; Bose, S.; Beacom, J. F.; Bersier, D.; Chen, Ping; Chomiuk, L.; Falco, E.; Godoy-Rivera, D.; Morrell, N.; Pojmanski, G.; Shields, J. V.; Strader, J.; Stritzinger, M. D.; Thompson, Todd A.; Woźniak, P. R.; Bock, G.; Cacella, P.; Conseil, E.; Cruz, I.; Fernandez, J. M.; Kiyota, S.; Koff, R. A.; Krannich, G.; Marples, P.; Masi, G.; Monard, L. A. G.; Nicholls, B.; Nicolas, J.; Post, R. S.; Stone, G.; Wiethoff, W. S.

    2017-11-01

    This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (mpeak ≤ 17), spectroscopically confirmed supernovae discovered in 2016. We then gather the near-infrared through ultraviolet magnitudes of all host galaxies and the offsets of the supernovae from the centres of their hosts from public data bases. We illustrate the results using a sample that now totals 668 supernovae discovered since 2014 May 1, including the supernovae from our previous catalogues, with type distributions closely matching those of the ideal magnitude limited sample from Li et al. This is the third of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.

  3. Fritz Zwicky: Novae Become Supernovae

    NASA Astrophysics Data System (ADS)

    Koenig, T.

    2005-12-01

    The Swiss physicist Fritz Zwicky (1898-1974) dabbled in a plethora of disciplines, including astronomy and astrophysics. His dabblings were with vested interest and he has left quite an impact. His first great success was his nova research. In the early 1930s, while supermarkets and Superman were flying, he labelled the distinctly brighter nova Supernova. It had been believed that novae were the collision of two stars, but Zwicky came to recognize supernovae as a phenomenon quite distinct from novae. He and Walter Baade explained supernova by melding astronomy and physics and in this aim they created neutron stars, explained the origin of cosmic rays, initiated the first sky survey, and confirmed that a number of historical novae were indeed supernovae. This was truly an important work in the history of astrophysics.

  4. Hardy Star Survives Supernova Blast

    NASA Image and Video Library

    2014-03-20

    This composite image contains data from Chandra (purple) that provides evidence for the survival of a companion star from the blast of a supernova explosion. Chandra's X-rays reveal a point-like source in the supernova remnant at the location of a massive star. The data suggest that mass is being pulled away from the massive star towards a neutron star or a black hole companion. If confirmed, this would be only the third binary system containing both a massive star and a neutron star or black hole ever found in the aftermath of a supernova. This supernova remnant is found embedded in clouds of ionized hydrogen, which are shown in optical light (yellow and cyan) from the MCELS survey, along with additional optical data from the DSS (white).

  5. High Redshift Supernova Search

    Science.gov Websites

    ;on schedule." Before-and-after pictures (and Hubble Space Telescope picture) of a high-redshift High Redshift Supernova Search Home Page of the Supernova Cosmology Project This is the Lawrence Foretell Fate of the Universe." Pictures from the ground and from the Hubble Space Telescope: [PDF

  6. Evolution of the BCG in Disturbed Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Ardila, Felipe; Strauss, Michael A.; Lauer, Tod R.; Postman, Marc

    2017-01-01

    The present paradigm in cosmology tells us that large-scale structures grow hierarchically. This suggests that galaxy clusters grow by accreting mass and merging with other clusters, a process which should be detectable by the presence of substructure within a cluster. Using the Dressler-Shectman (DS) three-dimensional test for dynamical substructure, we determined which clusters showed evidence for disturbance from a set of 227 Abell clusters from Lauer et al. (2014) with at least 50 member galaxies and spectroscopic redshifts, z < 0.08. Our results show that 155 (68.2%) of the clusters showed evidence for substructure at ≥ 95% confidence, while 72 did not. Kolmogorov-Smirnov tests suggest that the two populations of clusters (those with and without detected substructure) are significantly different in their distributions of BCG luminosities (Lm), but not in their BCG stellar velocity dispersions (σ), their BCG spatial offsets from the x-ray centers of the clusters, their BCG velocity offsets from the mean cluster velocity, the logarithmic slopes of their BCG photometric curves of growth (α), their cluster velocity dispersions, or their luminosity differences between the BCG and the second-ranked galaxy in the cluster (M2). Similarly, no significant difference was found in the fitting of the Lm-α-σ metric plane for BCGs of clusters with substructure compared those in which there is not substructure. This is surprising since our hierarchical growth models suggest that some of these BCG/cluster properties would be affected by a disturbance of the cluster, indicating that our understanding of how BCGs evolve with their clusters is incomplete and we should explore other ways to probe the level of disturbance.

  7. Supernova Photometric Lightcurve Classification

    NASA Astrophysics Data System (ADS)

    Zaidi, Tayeb; Narayan, Gautham

    2016-01-01

    This is a preliminary report on photometric supernova classification. We first explore the properties of supernova light curves, and attempt to restructure the unevenly sampled and sparse data from assorted datasets to allow for processing and classification. The data was primarily drawn from the Dark Energy Survey (DES) simulated data, created for the Supernova Photometric Classification Challenge. This poster shows a method for producing a non-parametric representation of the light curve data, and applying a Random Forest classifier algorithm to distinguish between supernovae types. We examine the impact of Principal Component Analysis to reduce the dimensionality of the dataset, for future classification work. The classification code will be used in a stage of the ANTARES pipeline, created for use on the Large Synoptic Survey Telescope alert data and other wide-field surveys. The final figure-of-merit for the DES data in the r band was 60% for binary classification (Type I vs II).Zaidi was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  8. Models for Supernovae and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Woosley, Stan

    Supernovae and gamma-ray bursts are the brightest stellar mass explosions in the universe. As such, they serve as cosmic beacons for probing cosmic structure and diagnosing the properties of stars and the universe when it was young. They also produce black holes and neutron stars, interesting in themselves as laboratories where exotic physics comes into play, and they make the elements from which life arises. Consequently, supernovae and gamma-ray bursts are subject to intense study by many NASA missions. We propose focused studies in five areas of supernova research that are directly relevant to NASA's missions, especially SWIFT, HST, JWST, and planning for WFIRST. Our specific topics are a) models for Type Ia supernovae; b) extreme supernovae and first supernovae; c) magnetar-powered supernovae; d) ultra-long duration gamma-ray bursts; and e) shock breakout in supernovae. These phenomena all have in common their importance to NASA missions and the fact that they can be studied using similar tools - computer codes that do radiation hydrodynamics. Our two principal codes, KEPLER (one-dimension) and CASTRO (one to three dimensions), have been honed to the task by years of supernova modeling, and have some unique capabilities. Type Ia supernovae have long been of interest to NASA, but their importance has increased lately because of their utility in determining cosmic distances and because a string of recent observational breakthroughs has severely limited their progenitors. Responding to these developments, we propose to focus on a class of model we have previously neglected, the merger of two white dwarfs. The mergers will be studied with KEPLER and CASTRO in one and two dimensions, and the spectra and light curves determined. The library of model results will be useful in interpreting the results of present NASA missions and planning new ones. A second important area of investigation will be the study of first generation stars and the supernovae that they produce

  9. Hubble snap a beautiful supernova explosion some 160,000 light-years from Earth

    NASA Image and Video Library

    2017-12-08

    Of all the varieties of exploding stars, the ones called Type Ia are perhaps the most intriguing. Their predictable brightness lets astronomers measure the expansion of the universe, which led to the discovery of dark energy. Yet the cause of these supernovae remains a mystery. Do they happen when two white dwarf stars collide? Or does a single white dwarf gorge on gases stolen from a companion star until bursting? If the second theory is true, the normal star should survive. Astronomers used NASA's Hubble Space Telescope to search the gauzy remains of a Type Ia supernova in a neighboring galaxy called the Large Magellanic Cloud. They found a sun-like star that showed signs of being associated with the supernova. Further investigations will be needed to learn if this star is truly the culprit behind a white dwarf's fiery demise. This image, taken with NASA's Hubble Space Telescope, shows the supernova remnant SNR 0509-68.7, also known as N103B. It is located 160,000 light-years from Earth in a neighboring galaxy called the Large Magellanic Cloud. N103B resulted from a Type Ia supernova, whose cause remains a mystery. One possibility would leave behind a stellar survivor, and astronomers have identified a possible candidate. The actual supernova remnant is the irregular shaped dust cloud, at the upper center of the image. The gas in the lower half of the image and the dense concentration of stars in the lower left are the outskirts of the star cluster NGC 1850. The Hubble image combines visible and near-infrared light taken by the Wide Field Camera 3 in June 2014. Credit: NASA, ESA and H.-Y. Chu (Academia Sinica, Taipei) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter

  10. Young Star Clusters: Keys to Understanding Massive Stars

    NASA Astrophysics Data System (ADS)

    Davies, B.

    2012-12-01

    Young, coeval clusters of stars provide the perfect laboratory in which to test our understanding of how massive stars evolve. Early optical observations limited us to a handful of low-mass clusters within 1kpc. However, thanks to the recent progress in infrared astronomy, the Milky Way's population of young massive star clusters is now beginning to be revealed. Here, I will review the recent progress made in this field, what it has told us about the evolution of massive stars to supernova and beyond, the prospects for this field, and some issues that should be taken into account when interpreting the results.

  11. The distant type Ia supernova rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pain, R.; Fabbro, S.; Sullivan, M.

    2002-05-20

    We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample,which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1more » supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.« less

  12. The Distant Type Ia Supernova Rate

    DOE R&D Accomplishments Database

    Pain, R.; Fabbro, S.; Sullivan, M.; Ellis, R. S.; Aldering, G.; Astier, P.; Deustua, S. E.; Fruchter, A. S.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I. M.; Howell, D. A.; Irwin, M. J.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lee, J. C.; Perlmutter, S.; Ruiz-Lapuente, P.; Schahmaneche, K.; Schaefer, B.; Walton, N. A.

    2002-05-28

    We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample, which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1 supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.

  13. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  14. Gamma ray constraints on the galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1992-01-01

    Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.

  15. Modeling Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Mezzacappa, Anthony

    2017-01-01

    Core collapse supernovae, or the death throes of massive stars, are general relativistic, neutrino-magneto-hydrodynamic events. The core collapse supernova mechanism is still not in hand, though key components have been illuminated, and the potential for multiple mechanisms for different progenitors exists. Core collapse supernovae are the single most important source of elements in the Universe, and serve other critical roles in galactic chemical and thermal evolution, the birth of neutron stars, pulsars, and stellar mass black holes, the production of a subclass of gamma-ray bursts, and as potential cosmic laboratories for fundamental nuclear and particle physics. Given this, the so called ``supernova problem'' is one of the most important unsolved problems in astrophysics. It has been fifty years since the first numerical simulations of core collapse supernovae were performed. Progress in the past decade, and especially within the past five years, has been exponential, yet much work remains. Spherically symmetric simulations over nearly four decades laid the foundation for this progress. Two-dimensional modeling that assumes axial symmetry is maturing. And three-dimensional modeling, while in its infancy, has begun in earnest. I will present some of the recent work from the ``Oak Ridge'' group, and will discuss this work in the context of the broader work by other researchers in the field. I will then point to future requirements and challenges. Connections with other experimental, observational, and theoretical efforts will be discussed, as well.

  16. The Chemistry of Population III Supernova Ejecta. II. The Nucleation of Molecular Clusters as a Diagnostic for Dust in the Early Universe

    NASA Astrophysics Data System (ADS)

    Cherchneff, Isabelle; Dwek, Eli

    2010-04-01

    We study the formation of molecular precursors to dust in the ejecta of Population III supernovae (Pop. III SNe) using a chemical kinetic approach to follow the evolution of small dust cluster abundances from day 100 to day 1000 after explosion. Our work focuses on zero-metallicity 20 M sun and 170 M sun progenitors, and we consider fully macroscopically mixed and unmixed ejecta. The dust precursors comprise molecular chains, rings, and small clusters of chemical composition relevant to the initial elemental composition of the ejecta under study. The nucleation stage for small silica, metal oxides and sulfides, pure metal, and carbon clusters is described with a new chemical reaction network highly relevant to the kinetic description of dust formation in hot circumstellar environments. We consider the effect of the pressure dependence of critical nucleation rates and test the impact of microscopically mixed He+ on carbon dust formation. Two cases of metal depletion on silica clusters (full and no depletion) are considered to derive upper limits to the amounts of dust produced in SN ejecta at 1000 days, while the chemical composition of clusters gives a prescription for the type of dust formed in Pop. III SNe. We show that the cluster mass produced in the fully mixed ejecta of a 170 M sun progenitor is ~ 25 M sun whereas its 20 M sun counterpart forms ~ 0.16 M sun of clusters. The unmixed ejecta of a 170 M sun progenitor SN synthesize ~5.6 M sun of small clusters, while its 20 M sun counterpart produces ~0.103 M sun. Our results point to smaller amounts of dust formed in the ejecta of Pop. III SNe by a factor of ~ 5 compared to values derived by previous studies, and to different dust chemical compositions. Such deviations result from some erroneous assumptions made, the inappropriate use of classical nucleation theory to model dust formation, and the omission of the synthesis of molecules in SN ejecta. We also find that the unmixed ejecta of massive Pop. III SNe

  17. Discovery of a Supernova in HST imaging of the MACSJ0717 Frontier Field

    NASA Astrophysics Data System (ADS)

    Rodney, Steven A.; Lotz, Jennifer; Strolger, Louis-Gregory

    2013-10-01

    We report the discovery of a supernova (SN) in Hubble Space Telescope (HST) observations centered on the galaxy cluster MACSJ0717. It was discovered in the F814W (i) band of the Advanced Camera for Surveys (ACS), in observations that were collected as part of the ongoing HST Frontier Fields (HFF) program (PI:J.Lotz, HST PID 13498). The FrontierSN ID for this object is SN HFF13Zar (nicknamed "SN Zara").

  18. Investigating the internal structure of galaxies and clusters through strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Jigish Gandhi, Pratik; Grillo, Claudio; Bonamigo, Mario

    2018-01-01

    Gravitational lensing studies have radically improved our understanding of the internal structure of galaxies and cluster-scale systems. In particular, the combination of strong lensing and stellar dynamics or stellar population synthesis models have made it possible to characterize numerous fundamental properties of the galaxies as well as dark matter halos and subhalos with unprecedented robustness and accuracy. Here we demonstrate the usefulness and accuracy of strong lensing as a probe for characterising the properties of cluster members as well as dark matter halos, to show that such characterisation carried out via lensing analyses alone is as viable as those carried out through a combination of spectroscopy and lensing analyses.Our study uses focuses on the early-type galaxy cluster MACS J1149.5+2223 at redshift 0.54 in the Hubble Frontier Fields (HFF) program, where the first magnified and spatially resolved multiple images of supernova (SN) “Refsdal” and its late-type host galaxy at redshift 1.489 were detected. The Refsdal system is unique in being the first ever multiply-imaged supernova, with it’s first four images appearing in an Einstein Cross configuration around one of the cluster members in 2015. In our lensing analyses we use HST data of the multiply-imaged SN Refsdal to constrain the dynamical masses, velocity dispersions, and virial radii of individual galaxies and dark matter halos in the MACS J1149.5+2223 cluster. For our lensing models we select a sample of 300 cluster members within approximately 500 kpc from the BCG, and a set of reliable multiple images associated with 18 distinct knots in the SN host spiral galaxy, as well as multiple images of the supernova itself. Our results provide accurate measurements of the masses, velocity dispersions, and radii of the cluster’s dark matter halo as well as three chosen members galaxies, in strong agreement with those obtained by Grillo et al 2015, demonstrating the usefulness of strong

  19. The Carnegie Supernova Project: The Low-Redshift Survey

    NASA Astrophysics Data System (ADS)

    Hamuy, Mario; Folatelli, Gastón; Morrell, Nidia I.; Phillips, Mark M.; Suntzeff, Nicholas B.; Persson, S. E.; Roth, Miguel; Gonzalez, Sergio; Krzeminski, Wojtek; Contreras, Carlos; Freedman, Wendy L.; Murphy, D. C.; Madore, Barry F.; Wyatt, P.; Maza, José; Filippenko, Alexei V.; Li, Weidong; Pinto, P. A.

    2006-01-01

    Supernovae are essential to understanding the chemical evolution of the universe. Type Ia supernovae also provide the most powerful observational tool currently available for studying the expansion history of the universe and the nature of dark energy. Our basic knowledge of supernovae comes from the study of their photometric and spectroscopic properties. However, the presently available data sets of optical and near-infrared light curves of supernovae are rather small and/or heterogeneous, and employ photometric systems that are poorly characterized. Similarly, there are relatively few supernovae whose spectral evolution has been well sampled, both in wavelength and phase, with precise spectrophotometric observations. The low-redshift portion of the Carnegie Supernova Project (CSP) seeks to remedy this situation by providing photometry and spectrophotometry of a large sample of supernovae taken on telescope/filter/detector systems that are well understood and well characterized. During a 5 year program that began in 2004 September, we expect to obtain high-precision u'g'r'i'BVYJHKs light curves and optical spectrophotometry for about 250 supernovae of all types. In this paper we provide a detailed description of the CSP survey observing and data reduction methodology. In addition, we present preliminary photometry and spectra obtained for a few representative supernovae during the first observing campaign.

  20. GASP. V. Ram-pressure stripping of a ring Hoag's-like galaxy in a massive cluster

    NASA Astrophysics Data System (ADS)

    Moretti, A.; Poggianti, B. M.; Gullieuszik, M.; Mapelli, M.; Jaffé, Y. L.; Fritz, J.; Biviano, A.; Fasano, G.; Bettoni, D.; Vulcani, B.; D'Onofrio, M.

    2018-04-01

    Through an ongoing MUSE program dedicated to study gas removal processes in galaxies (GAs Stripping Phenomena in galaxies with MUSE, GASP), we have obtained deep and wide integral field spectroscopy of the galaxy JO171. This galaxy resembles the Hoag's galaxy, one of the most spectacular examples of ring galaxies, characterized by a completely detached ring of young stars surrounding a central old spheroid. At odds with the isolated Hoag's galaxy, JO171 is part of a dense environment, the cluster Abell 3667, which is causing gas stripping along tentacles. Moreover, its ring counter-rotates with respect to the central spheroid. The joint analysis of the stellar populations and the gas/stellar kinematics shows that the origin of the ring was not due to an internal mechanism, but was related to a gas accretion event that happened in the distant past, prior to accretion on to Abell 3667, most probably within a filament. More recently, since infall in the cluster, the gas in the ring has been stripped by ram pressure, causing the quenching of star formation in the stripped half of the ring. This is the first observed case of ram-pressure stripping in action in a ring galaxy, and MUSE observations are able to reveal both of the events (accretion and stripping) that caused dramatic transformations in this galaxy.

  1. Oleiferoside W from the roots of Camellia oleifera C. Abel, inducing cell cycle arrest and apoptosis in A549 cells.

    PubMed

    Wu, Jiang-Ping; Kang, Nai-Xin; Zhang, Mi-Ya; Gao, Hong-Wei; Li, Xiao-Ran; Liu, Yan-Li; Xu, Qiong-Ming; Yang, Shi-Lin

    2017-07-06

    Camellia oleifera C. Abel has been widely cultivated in China, and a group of bioactive constituents such as triterpeniod saponin have been isolated from C. oleifera C. Abel. In the current study, a new triterpeniod saponin was isolated from the EtOH extract of the roots of C. oleifera C. Abel, named as oleiferoside W, and the cytotoxic properties of oleiferoside W were evaluated in non-small cell lung cancer A549 cells. At the same time the inducing apoptosis, the depolarization of mitochondrial membrane potential (Δψ), the up-regulation of related pro-apoptotic proteins, such as cleaved-PARP, cleaved-caspase-3, and the down-regulation of anti-apoptotic marker Bcl-2/Bax were measured on oleiferoside W. Furthermore, the function, inducing the generation of reactive oxygen species (ROS) and apoptosis, of oleiferoside W could be reversed by N-acetylcysteine (NAC). In conclusion, our findings showed that oleiferoside W induced apoptosis involving mitochondrial pathway and increasing intracellular ROS production in the A549 cells, suggesting that oleiferoside W may have the possibility to be a useful anticancer agent for therapy in lung cancer.

  2. Revealing Thermal Instabilities in the Core of the Phoenix Cluster

    NASA Astrophysics Data System (ADS)

    McDonald, Michael

    2017-08-01

    The Phoenix cluster is the most relaxed cluster known, and hosts the strongest cool core of any cluster yet discovered. At the center of this cluster is a massive starburst galaxy, with a SFR of 500-1000 Msun/yr, seemingly satisfying the early cooling flow predictions, despite the presence of strong AGN feedback from the central supermassive black hole. Here we propose deep narrow-band imaging of the central 120 kpc of the cluster, to map the warm (10^4K) ionized gas via the [O II] emission line. In low-z clusters, such as Perseus and Abell 1795, the warm, ionized phase is of critical importance to map out thermal instabilities in the hot gas, and maps of Halpha and [O II] have been used for decades to understand how (and how not) cooling proceeds in the intracluster medium. The data proposed for here, combined with deep ALMA data, a recently-approved Large Chandra Program, and recently-approved multi-frequency JVLA data, will allow us to probe the cooling ICM, the cool, filamentary gas, the cold molecular gas, the star-forming population, and the AGN jets all on scales of <10 kpc. This multi-observatory campaign, focusing on the most extreme cooling cluster, will lead to a more complete understanding of how and why thermal instabilities develop in the hot ICM of cool core clusters.

  3. Pulsational Pair-instability Supernovae

    NASA Astrophysics Data System (ADS)

    Woosley, S. E.

    2017-02-01

    The final evolution of stars in the mass range 70-140 {\\text{}}{M}⊙ is explored. Depending upon their mass loss history and rotation rates, these stars will end their lives as pulsational pair-instability supernovae (PPISN) producing a great variety of observational transients with total durations ranging from weeks to millennia and luminosities from 1041 to over 1044 erg s-1. No nonrotating model radiates more than 5× {10}50 erg of light or has a kinetic energy exceeding 5× {10}51 erg, but greater energies are possible, in principle, in magnetar-powered explosions, which are explored. Many events resemble SNe Ibn, SNe Icn, and SNe IIn, and some potential observational counterparts are mentioned. Some PPISN can exist in a dormant state for extended periods, producing explosions millennia after their first violent pulse. These dormant supernovae contain bright Wolf-Rayet stars, possibly embedded in bright X-ray and radio sources. The relevance of PPISN to supernova impostors like Eta Carinae, to superluminous supernovae, and to sources of gravitational radiation is discussed. No black holes between 52 and 133 {\\text{}}{M}⊙ are expected from stellar evolution in close binaries.

  4. Fast evolving pair-instability supernovae

    DOE PAGES

    Kozyreva, Alexandra; Gilmer, Matthew; Hirschi, Raphael; ...

    2016-10-06

    With an increasing number of superluminous supernovae (SLSNe) discovered the ques- tion of their origin remains open and causes heated debates in the supernova commu- nity. Currently, there are three proposed mechanisms for SLSNe: (1) pair-instability supernovae (PISN), (2) magnetar-driven supernovae, and (3) models in which the su- pernova ejecta interacts with a circumstellar material ejected before the explosion. Based on current observations of SLSNe, the PISN origin has been disfavoured for a number of reasons. Many PISN models provide overly broad light curves and too reddened spectra, because of massive ejecta and a high amount of nickel. In themore » cur- rent study we re-examine PISN properties using progenitor models computed with the GENEC code. We calculate supernova explosions with FLASH and light curve evolu- tion with the radiation hydrodynamics code STELLA. We find that high-mass models (200 M⊙ and 250 M⊙) at relatively high metallicity (Z=0.001) do not retain hydro- gen in the outer layers and produce relatively fast evolving PISNe Type I and might be suitable to explain some SLSNe. We also investigate uncertainties in light curve modelling due to codes, opacities, the nickel-bubble effect and progenitor structure and composition.« less

  5. Semi-supervised learning for photometric supernova classification

    NASA Astrophysics Data System (ADS)

    Richards, Joseph W.; Homrighausen, Darren; Freeman, Peter E.; Schafer, Chad M.; Poznanski, Dovi

    2012-01-01

    We present a semi-supervised method for photometric supernova typing. Our approach is to first use the non-linear dimension reduction technique diffusion map to detect structure in a data base of supernova light curves and subsequently employ random forest classification on a spectroscopically confirmed training set to learn a model that can predict the type of each newly observed supernova. We demonstrate that this is an effective method for supernova typing. As supernova numbers increase, our semi-supervised method efficiently utilizes this information to improve classification, a property not enjoyed by template-based methods. Applied to supernova data simulated by Kessler et al. to mimic those of the Dark Energy Survey, our methods achieve (cross-validated) 95 per cent Type Ia purity and 87 per cent Type Ia efficiency on the spectroscopic sample, but only 50 per cent Type Ia purity and 50 per cent efficiency on the photometric sample due to their spectroscopic follow-up strategy. To improve the performance on the photometric sample, we search for better spectroscopic follow-up procedures by studying the sensitivity of our machine-learned supernova classification on the specific strategy used to obtain training sets. With a fixed amount of spectroscopic follow-up time, we find that, despite collecting data on a smaller number of supernovae, deeper magnitude-limited spectroscopic surveys are better for producing training sets. For supernova Ia (II-P) typing, we obtain a 44 per cent (1 per cent) increase in purity to 72 per cent (87 per cent) and 30 per cent (162 per cent) increase in efficiency to 65 per cent (84 per cent) of the sample using a 25th (24.5th) magnitude-limited survey instead of the shallower spectroscopic sample used in the original simulations. When redshift information is available, we incorporate it into our analysis using a novel method of altering the diffusion map representation of the supernovae. Incorporating host redshifts leads to a 5

  6. X-ray emission from clusters and groups of galaxies

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    1998-01-01

    Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to approximately 1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2-4. The baryonic fractions vary by a factor of approximately 3 from cluster to cluster and almost always exceed 0.09 h50-[3/2] and thus are in fundamental conflict with the assumption of Omega = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2-0.45 solar, and the abundances of O and Si for low redshift systems are 0.6-1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z approximately 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1-0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50-2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures.

  7. X-ray emission from clusters and groups of galaxies.

    PubMed

    Mushotzky, R

    1998-01-06

    Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to approximately 1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2-4. The baryonic fractions vary by a factor of approximately 3 from cluster to cluster and almost always exceed 0.09 h50-[3/2] and thus are in fundamental conflict with the assumption of Omega = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2-0.45 solar, and the abundances of O and Si for low redshift systems are 0.6-1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z approximately 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1-0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50-2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures.

  8. On relative supernova rates and nucleosynthesis roles

    NASA Technical Reports Server (NTRS)

    Arnett, W. David; Schramm, David N.; Truran, James W.

    1988-01-01

    It is shown that the Ni-56-Fe-56 observed in SN 1987A argues that core collapse supernovae may be responsible for more that 50 percent of the iron in the galaxy. Furthermore it is argued that the time averaged rate of thermonuclear driven Type I supernovae may be at least an order of magnitude lower than the average rate of core collapse supernovae. The present low rate of Type II supernovae (below their time averaged rate of approx. 1/10 yr) is either because the past rate was much higher because many core collapse supernovae are dim like SN 1987A. However, even in this latter case they are only an order of magnitude dimmer that normal Type II's due to the contribution of Ni-56 decay to the light curve.

  9. Supernova shock breakout from a red supergiant.

    PubMed

    Schawinski, Kevin; Justham, Stephen; Wolf, Christian; Podsiadlowski, Philipp; Sullivan, Mark; Steenbrugge, Katrien C; Bell, Tony; Röser, Hermann-Josef; Walker, Emma S; Astier, Pierre; Balam, Dave; Balland, Christophe; Carlberg, Ray; Conley, Alex; Fouchez, Dominique; Guy, Julien; Hardin, Delphine; Hook, Isobel; Howell, D Andrew; Pain, Reynald; Perrett, Kathy; Pritchet, Chris; Regnault, Nicolas; Yi, Sukyoung K

    2008-07-11

    Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic "core-collapse" supernova. Such events are usually only detected at least a few days after the star has exploded. Observations of the supernova SNLS-04D2dc with the Galaxy Evolution Explorer space telescope reveal a radiative precursor from the supernova shock before the shock reached the surface of the star and show the initial expansion of the star at the beginning of the explosion. Theoretical models of the ultraviolet light curve confirm that the progenitor was a red supergiant, as expected for this type of supernova. These observations provide a way to probe the physics of core-collapse supernovae and the internal structures of their progenitor stars.

  10. Inside supernova 1987A

    NASA Technical Reports Server (NTRS)

    Mccray, Richard; Shull, J. Michael; Sutherland, Peter

    1987-01-01

    The future evolution of the electromagnetic spectrum of the supernova 1987A is considered. It is shown that conventional models for supernova explosions predict that within several months a spectacular display of X-rays and UV emission lines will be seen from SN 1987A as the envelope expands to reveal the inner debris of the explosion. Two likely scenarios are considered: first, that the debris produces strong gamma rays from radioactive Co-56, and second, that an X-ray-emitting pulsar exists at the center. It is also predicted that a bright infrared echo will soon appear as a result of reprocessing of the optical/ultraviolet light by circumstellar grains; the luminosity of this echo can provide a sensitive test of the mass-loss history of the supernova progenitor.

  11. Deep Chandra observations of the stripped galaxy group falling into Abell 2142

    NASA Astrophysics Data System (ADS)

    Eckert, D.; Gaspari, M.; Owers, M. S.; Roediger, E.; Molendi, S.; Gastaldello, F.; Paltani, S.; Ettori, S.; Venturi, T.; Rossetti, M.; Rudnick, L.

    2017-09-01

    In the local Universe, the growth of massive galaxy clusters mainly operates through the continuous accretion of group-scale systems. The infalling group in Abell 2142 is the poster child of such an accreting group, and as such, it is an ideal target to study the astrophysical processes induced by structure formation. We present the results of a deep (200 ks) observation of this structure with Chandra that highlights the complexity of this system in exquisite detail. In the core of the group, the spatial resolution of Chandra reveals a leading edge and complex AGN-induced activity. The morphology of the stripped gas tail appears straight in the innermost 250 kpc, suggesting that magnetic draping efficiently shields the gas from its surroundings. However, beyond 300 kpc from the core, the tail flares and the morphology becomes strongly irregular, which could be explained by a breaking of the drape, for example, caused by turbulent motions. The power spectrum of surface-brightness fluctuations is relatively flat (P2D ∝ k-2.3), which indicates that thermal conduction is strongly inhibited even beyond the region where magnetic draping is effective. The amplitude of density fluctuations in the tail is consistent with a mild level of turbulence with a Mach number M3D 0.1 - 0.25. Overall, our results show that the processes leading to the thermalization and mixing of the infalling gas are slow and relatively inefficient.

  12. Uncovering the secrets of the Quintuplet Cluster

    NASA Image and Video Library

    2015-07-13

    Although this cluster of stars gained its name due to its five brightest stars, it is home to hundreds more. The huge number of massive young stars in the cluster is clearly captured in this NASA/ESA Hubble Space Telescope image. The cluster is located close to the Arches Cluster and is just 100 light-years from the centre of our galaxy. The cluster’s proximity to the dust at the centre of the galaxy means that much of its visible light is blocked, which helped to keep the cluster unknown until its discovery in 1990, when it was revealed by observations in the infrared. Infrared images of the cluster, like the one shown here, allow us to see through the obscuring dust to the hot stars in the cluster. The Quintuplet Cluster hosts two extremely rare luminous blue variable stars: the Pistol Star and the lesser known V4650 Sgr. If you were to draw a line horizontally through the centre of this image from left to right, you could see the Pistol Star hovering just above the line about one third of the way along it. The Pistol Star is one of the most luminous known stars in the Milky Way and takes its name from the shape of the Pistol Nebula that it illuminates, but which is not visible in this infrared image. The exact age and future of the Pistol Star are uncertain, but it is expected to end in a supernova or even a hypernova in one to three million years. The cluster also contains a number of red supergiants. These stars are among the largest in the galaxy and are burning their fuel at an incredible speed, meaning they will have a very short lifetime. Their presence suggests an average cluster age of nearly four million years. At the moment these stars are on the verge of exploding as supernovae. During their spectacular deaths they will release vast amounts of energy which, in turn, will heat the material — dust and gas — between the other stars. This observation shows the Quintuplet Cluster in the infrared and demonstrates the leap in Hubble’s performance

  13. Big Bangs in Galaxy Clusters: Using X-ray Temperature Maps to Trace Merger Histories in Clusters with Radio Halos/Relics

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Datta, Abhirup; Hallman, Eric J.

    2016-06-01

    Galaxy clusters are assembled through large and small mergers which are the most energetic events ("bangs") since the Big Bang. Cluster mergers "stir" the intracluster medium (ICM) creating shocks and turbulence which are illuminated by ~Mpc-sized radio features called relics and halos. These shocks heat the ICM and are detected in x-rays via thermal emission. Disturbed morphologies in x-ray surface brightness and temperatures are direct evidence for cluster mergers. In the radio, relics (in the outskirts of the clusters) and halos (located near the cluster core) are also clear signposts of recent mergers. Our recent ENZO cosmological simulations suggest that around a merger event, radio emission peaks very sharply (and briefly) while the x-ray emission rises and decays slowly. Hence, a sample of galaxy clusters that shows both luminous x-ray emission and radio relics/halos are good candidates for very recent mergers. We are in the early stages of analyzing a unique sample of 48 galaxy clusters with (i) known radio relics and/or halos and (ii) significant archival x-ray observations (>50 ksec) from Chandra and/or XMM. We have developed a new x-ray data analysis pipeline, implemented on parallel processor supercomputers, to create x-ray surface brightness, high fidelity temperature, and pressure maps of these clusters in order to study merging activity. The temperature maps are made using three different map-making techniques: Weighted Voronoi Tessellation, Adaptive Circular Binning, and Contour Binning. In this talk, we will show preliminary results for several clusters, including Abell 2744 and the Bullet cluster. This work is supported by NASA ADAP grant NNX15AE17G.

  14. Distant Supernovae Indicate Ever-Expanding Universe

    NASA Astrophysics Data System (ADS)

    1998-12-01

    parameters, the age of the Universe and the geometry of space can be derived. They have been the focus of a large number of astronomical programmes over the past decades. Many aspects of the currently preferred cosmological model, the Hot Big Bang , have been impressively confirmed by observations of the expansion of the Universe, the cosmic background radiation, and also the explanation of the synthesis of light elements. Still, our knowledge about the dynamical state of the Universe, as well as the early formation of structures, i.e., of galaxies and stars, is far from complete - this remains a field of active research. Possibly, the simplest way to test our present assumptions in this direction is to measure accurate distances and compare them with the expected cosmic scale. This is where the recent results contribute to our understanding of the Universe. The key role of supernovae The two research teams, both with participation from ESO [1], have concentrated on the study of rare stellar explosions, during which certain old stars undergo internal incineration. In this process, explosive nuclear fusion burns matter into the most stable atomic nucleus, iron, and releases a gigantic amount of energy. ESO PR Photo 50a/98 ESO PR Photo 50a/98 [Preview - JPEG: 800 x 648 pix - 768k] [High-Res - JPEG: 3000 x 2431 pix - 8.5Mb] ESO PR Photo 50b/98 ESO PR Photo 50b/98 [Preview - JPEG: 800 x 649 pix - 784k] [High-Res - JPEG: 3000 x 2432 pix - 8.4Mb] These photos illustrate the follow-up observations on which the new results described in this Press Release are based. Sky fields with clusters of galaxies are monitored with the 4-m telescope at Cerro Tololo Interamerican Observatory (CTIO) in Chile and spectra are obtained of suddenly appearing star-like objects that may be supernovae. Confirmed Type Ia supernovae are then monitored by ESO telescopes at La Silla and at other observatories. In PR Photo 50a/98 , a supernova at redshift z = 0.51 [2] (corresponding to a distance of about 10

  15. Cosmic rays from supernovae and comments on the Vela X pre-supernova

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1971-01-01

    A possible history of the production of elements in the galaxy is presented, based on assumptions about the end points of stellar evolution and of the general evolution of the galaxy. A wide range of quantities involving the relative abundances of nucleosynthesis products observed in the solar system, and various galactic quantities such as the current rate of supernova production and the present gas content of the galaxy, were considered. These assumptions were utilized in a computer program in which the gas content of the galaxy is gradually turned into stars. The stars are continually enriched in the products of nucleosynthesis as they approach the ends of their evolutionary lifetimes. It is suggested that supernova explosions are associated with the mass range of about 4-8 solar masses. Possible theories on the type of stellar explosive event represented by the Vela supernova are discussed.

  16. XMM-Newton Observations of the Toothbrush and Sausage Clusters

    NASA Astrophysics Data System (ADS)

    Kara, S.; Mernier, F.; Ezer, C.; Akamatsu, H.; Ercan, E.

    2017-10-01

    Galaxy clusters are the largest gravitationally-bound objects in the universe. The member galaxies are embedded in a hot X-ray emitting Intra Cluster Medium (ICM) that has been enriched with metals produced by supernovae over the last billion years. Here we report new results from XMM-Newton archival observations of the merging clusters 1RXSJ0603.3+4213 and CIZA J2242.8+5301. These two clusters, also known as the Toothbrush and Sausage clusters, respectively, show a large radio relic associated with a merger shock North of their respective core. We show the distribution of the metal abundances with respect to the merger structures in these two clusters. The results are derived from spatially resolved X-ray spectra from the EPIC instrument on board XMM-Newton.

  17. ASASSN-18bt: Discovery of A Probable, Bright Supernova in a Kepler Supernova Field

    NASA Astrophysics Data System (ADS)

    Brown, Jon S.; Stanek, K. Z.; Vallely, P.; Kochanek, C. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Brimacombe, J.

    2018-02-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy UGC 04780, which is being monitored by Kepler between Dec 7 2017 and Feb 25, 2018.

  18. The ASAS-SN Bright Supernova Catalog – II. 2015

    DOE PAGES

    Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.; ...

    2017-01-16

    Here, this paper presents information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during 2015, its second full year of operations. The same information is presented for bright (mV ≤ 17), spectroscopically confirmed supernovae discovered by other sources in 2015. As with the first ASAS-SN bright supernova catalogue, we also present redshifts and near-ultraviolet through infrared magnitudes for all supernova host galaxies in both samples. Combined with our previous catalogue, this work comprises a complete catalogue of 455 supernovae from multiple professional and amateur sources, allowing for population studies that were previously impossible. This is themore » second of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.« less

  19. The ASAS-SN Bright Supernova Catalog – II. 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.

    Here, this paper presents information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during 2015, its second full year of operations. The same information is presented for bright (mV ≤ 17), spectroscopically confirmed supernovae discovered by other sources in 2015. As with the first ASAS-SN bright supernova catalogue, we also present redshifts and near-ultraviolet through infrared magnitudes for all supernova host galaxies in both samples. Combined with our previous catalogue, this work comprises a complete catalogue of 455 supernovae from multiple professional and amateur sources, allowing for population studies that were previously impossible. This is themore » second of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.« less

  20. The ASAS-SN bright supernova catalogue – III. 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.

    In this catalogue we summarize information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m peak ≤ 17), spectroscopically confirmed supernovae discovered in 2016. We then gather the near-infrared through ultraviolet magnitudes of all host galaxies and the offsets of the supernovae from the centres of their hosts from public data bases. We illustrate the results using a sample that now totals 668 supernovae discovered since 2014 May 1, including the supernovae from our previous catalogues, with type distributions closely matching those of the ideal magnitude limited sample from Li et al.more » This is then the third of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.« less

  1. The ASAS-SN bright supernova catalogue – III. 2016

    DOE PAGES

    Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.; ...

    2017-08-18

    In this catalogue we summarize information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m peak ≤ 17), spectroscopically confirmed supernovae discovered in 2016. We then gather the near-infrared through ultraviolet magnitudes of all host galaxies and the offsets of the supernovae from the centres of their hosts from public data bases. We illustrate the results using a sample that now totals 668 supernovae discovered since 2014 May 1, including the supernovae from our previous catalogues, with type distributions closely matching those of the ideal magnitude limited sample from Li et al.more » This is then the third of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.« less

  2. Two Years and Five Images of Supernova Refsdal

    NASA Astrophysics Data System (ADS)

    Kelly, Patrick

    2017-01-01

    In 1964, Sjur Refsdal hypothesized that a supernova (SN) whose light takes multiple paths to reach us around a strong gravitational lens could be used as a highly powerful probe. For such a system, the time delays between the images of the SN should depend sensitively on the cosmic expansion rate and the distribution of matter within the lens. I will present observations of the first strongly lensed SN resolved into multiple images, which was found in near-infrared imaging taken in early November 2014 with the Hubble Space Telescope (HST). SN `Refsdal' appeared in an Einstein cross configuration around an early-type galaxy in the MACS J1149.6+2223 cluster (z=0.54), and its light curve and spectrum are broadly similar to those of the peculiar and well-studied SN 1987A. Models of the cluster potential predicted that the SN would reappear within two years in a different image of its spiral host galaxy (z=1.49) closer to the cluster's center. In early December 2015, we detected the new image of the SN with the HST, and we anticipate being able to measure its relative time delay with a 1-2% precision, providing a rare test of blind model predictions.

  3. Detection of supernova neutrinos at spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2016-07-01

    After considering supernova shock effects, Mikheyev-Smirnov-Wolfenstein effects, neutrino collective effects, and Earth matter effects, the detection of supernova neutrinos at the China Spallation Neutron Source is studied and the expected numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and the “beta fit” distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on Earth is applied to some other spallation neutron sources, and the total expected numbers of supernova neutrinos observed through different reactions channels are given. Supported by National Natural Science Foundation of China (11205185, 11175020, 11275025, 11575023)

  4. Supernovae and cosmology with future European facilities.

    PubMed

    Hook, I M

    2013-06-13

    Prospects for future supernova surveys are discussed, focusing on the European Space Agency's Euclid mission and the European Extremely Large Telescope (E-ELT), both expected to be in operation around the turn of the decade. Euclid is a 1.2 m space survey telescope that will operate at visible and near-infrared wavelengths, and has the potential to find and obtain multi-band lightcurves for thousands of distant supernovae. The E-ELT is a planned, general-purpose ground-based, 40-m-class optical-infrared telescope with adaptive optics built in, which will be capable of obtaining spectra of type Ia supernovae to redshifts of at least four. The contribution to supernova cosmology with these facilities will be discussed in the context of other future supernova programmes such as those proposed for DES, JWST, LSST and WFIRST.

  5. Inverting ion images without Abel inversion: maximum entropy reconstruction of velocity maps.

    PubMed

    Dick, Bernhard

    2014-01-14

    A new method for the reconstruction of velocity maps from ion images is presented, which is based on the maximum entropy concept. In contrast to other methods used for Abel inversion the new method never applies an inversion or smoothing to the data. Instead, it iteratively finds the map which is the most likely cause for the observed data, using the correct likelihood criterion for data sampled from a Poissonian distribution. The entropy criterion minimizes the information content in this map, which hence contains no information for which there is no evidence in the data. Two implementations are proposed, and their performance is demonstrated with simulated and experimental data: Maximum Entropy Velocity Image Reconstruction (MEVIR) obtains a two-dimensional slice through the velocity distribution and can be compared directly to Abel inversion. Maximum Entropy Velocity Legendre Reconstruction (MEVELER) finds one-dimensional distribution functions Q(l)(v) in an expansion of the velocity distribution in Legendre polynomials P((cos θ) for the angular dependence. Both MEVIR and MEVELER can be used for the analysis of ion images with intensities as low as 0.01 counts per pixel, with MEVELER performing significantly better than MEVIR for images with low intensity. Both methods perform better than pBASEX, in particular for images with less than one average count per pixel.

  6. Toward an efficient Photometric Supernova Classifier

    NASA Astrophysics Data System (ADS)

    McClain, Bradley

    2018-01-01

    The Sloan Digital Sky Survey Supernova Survey (SDSS) discovered more than 1,000 Type Ia Supernovae, yet less than half of these have spectroscopic measurements. As wide-field imaging telescopes such as The Dark Energy Survey (DES) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) discover more supernovae, the need for accurate and computationally cheap photometric classifiers increases. My goal is to use a photometric classification algorithm based on Sncosmo, a python library for supernova cosmology analysis, to reclassify previously identified Hubble SN and other non-spectroscopically confirmed surveys. My results will be compared to other photometric classifiers such as PSNID and STARDUST. In the near future, I expect to have the algorithm validated with simulated data, optimized for efficiency, and applied with high performance computing to real data.

  7. Globular cluster formation with multiple stellar populations from hierarchical star cluster complexes

    NASA Astrophysics Data System (ADS)

    Bekki, Kenji

    2017-05-01

    Most old globular clusters (GCs) in the Galaxy are observed to have internal chemical abundance spreads in light elements. We discuss a new GC formation scenario based on hierarchical star formation within fractal molecular clouds. In the new scenario, a cluster of bound and unbound star clusters ('star cluster complex', SCC) that have a power-law cluster mass function with a slope (β) of 2 is first formed from a massive gas clump developed in a dwarf galaxy. Such cluster complexes and β = 2 are observed and expected from hierarchical star formation. The most massive star cluster ('main cluster'), which is the progenitor of a GC, can accrete gas ejected from asymptotic giant branch (AGB) stars initially in the cluster and other low-mass clusters before the clusters are tidally stripped or destroyed to become field stars in the dwarf. The SCC is initially embedded in a giant gas hole created by numerous supernovae of the SCC so that cold gas outside the hole can be accreted on to the main cluster later. New stars formed from the accreted gas have chemical abundances that are different from those of the original SCC. Using hydrodynamical simulations of GC formation based on this scenario, we show that the main cluster with the initial mass as large as [2-5] × 105 M⊙ can accrete more than 105 M⊙ gas from AGB stars of the SCC. We suggest that merging of hierarchical SSCs can play key roles in stellar halo formation around GCs and self-enrichment processes in the early phase of GC formation.

  8. Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae

    NASA Astrophysics Data System (ADS)

    Suzuki, Akihiro; Maeda, Keiichi

    2017-04-01

    The hydrodynamical interaction between freely expanding supernova ejecta and a relativistic wind injected from the central region is studied in analytic and numerical ways. As a result of the collision between the ejecta and the wind, a geometrically thin shell surrounding a hot bubble forms and expands in the ejecta. We use a self-similar solution to describe the early dynamical evolution of the shell and carry out a two-dimensional special relativistic hydrodynamic simulation to follow further evolution. The Rayleigh-Taylor instability inevitably develops at the contact surface separating the shocked wind and ejecta, leading to the complete destruction of the shell and the leakage of hot gas from the hot bubble. The leaking hot materials immediately catch up with the outermost layer of the supernova ejecta and thus different layers of the ejecta are mixed. We present the spatial profiles of hydrodynamical variables and the kinetic energy distributions of the ejecta. We stop the energy injection when a total energy of 1052 erg, which is 10 times larger than the initial kinetic energy of the supernova ejecta, is deposited into the ejecta and follow the subsequent evolution. From the results of our simulations, we consider expected emission from supernova ejecta powered by the energy injection at the centre and discuss the possibility that superluminous supernovae and broad-lined Ic supernovae could be produced by similar mechanisms.

  9. ROSAT observations of clusters with wide-angle tailed radio sources

    NASA Technical Reports Server (NTRS)

    Burns, Jack O.

    1993-01-01

    The goal of these ROSAT PSPC pointed observations was to understand the nature of X-ray emission associated clusters that contain luminous wide-angle tailed (WAT) radio sources identified with the centrally dominant cluster galaxies. These 500 kpc diameter radio sources are strongly affected by confinement and interaction with the intracluster medium. So, a complete picture of the origin and evolution of these radio sources is not possible without detailed X-ray observations which sample the distribution and temperature of the surrounding hot gas. Two WAT clusters have been observed with the ROSAT PSPC to date. The first is Abell 2634 which contains the WAT 3C 465 and was approved for observations in AO-1. Unfortunately, these observations were broken into two widely separated pieces in time. The first data set containing about 9000 sec of integration arrived in mid-March, 1992. The second data set containing about 10,500 sec arrived just recently in early April (after a first tape was destroyed in the mail). The second cluster is 1919+479 which was approved for observations in AO-2. These ROSAT data arrived in October 1992.

  10. A remarkably large depleted core in the Abell 2029 BCG IC 1101

    NASA Astrophysics Data System (ADS)

    Dullo, Bililign T.; Graham, Alister W.; Knapen, Johan H.

    2017-10-01

    We report the discovery of an extremely large (Rb ˜2.77 arcsec ≈ 4.2 kpc) core in the brightest cluster galaxy, IC 1101, of the rich galaxy cluster Abell 2029. Luminous core-Sérsic galaxies contain depleted cores - with sizes (Rb) typically 20-500 pc - that are thought to be formed by coalescing black hole binaries. We fit a (double nucleus) + (spheroid) + (intermediate-scale component) + (stellar halo) model to the Hubble Space Telescope surface brightness profile of IC 1101, finding the largest core size measured in any galaxy to date. This core is an order of magnitude larger than those typically measured for core-Sérsic galaxies. We find that the spheroid's V-band absolute magnitude (MV) of -23.8 mag (˜25 per cent of the total galaxy light, I.e. including the stellar halo) is faint for the large Rb, such that the observed core is 1.02 dex ≈ 3.4σs (rms scatter) larger than that estimated from the Rb-MV relation. The suspected scouring process has produced a large stellar mass deficit (Mdef) ˜4.9 × 1011 M⊙, I.e. a luminosity deficit ≈28 per cent of the spheroid's luminosity prior to the depletion. Using IC 1101's black hole mass (MBH) estimated from the MBH-σ, MBH-L and MBH-M* relations, we measure an excessive and unrealistically high number of 'dry' major mergers for IC 1101 (I.e. N ≳ 76) as traced by the large Mdef/MBH ratios of 38-101. The large core, high mass deficit and oversized Mdef/MBH ratio of IC 1101 suggest that the depleted core was scoured by overmassive SMBH binaries with a final coalesced mass MBH ˜ (4-10) × 1010 M⊙, I.e. ˜ (1.7-3.2) × σs larger than the black hole masses estimated using the spheroid's σ, L and M*. The large core might be partly due to oscillatory core passages by a gravitational radiation-recoiled black hole.

  11. Transients in the Local Universe : Systematically Searching the Gap between Novae and Supernovae

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi M.; Kulkarni, S.

    2009-05-01

    We present three systematic transient searches of the glaring luminosity gap between brightest novae (Mv = -10) and faintest supernovae (Mv = -16). The least explored regime in this gap, with several intriguing theoretical predictions, is short-duration transients (<10; days). Our searches are targeted and designed to be deeper and faster cadence (1-day) than traditional supernova searches and probe a larger volume compared to nova searches. We summarize discoveries from our search of the nearest, brightest galaxies (P60-FasTING, Fast Transients In Nearest Galaxies) and nearest galaxy clusters (CFHT-COVET, Coma and Virgo Exploration for Transients). We also highlight first results from the Palomar Transient Factory which targets local (<200 Mpc) luminosity concentrations. We suggest that building a complete inventory of transients in the local universe is timely. These transients are potential electromagnetic counterparts to next-generation instruments (e.g. Advanced LIGO, Auger, ICECUBE) which are also limited in sensitivity (due to intrumental or physical effects) to the local universe.

  12. Neutron Stars in Supernova Remnants and Beyond

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    We discuss a concept of off-centred cavity supernova explosion as applied to neutron star/supernova remnant associations and show how this concept could be used to preclude the anti-humane decapitating the Duck (G5.4-1.2 + G5.27-0.9) and dismembering the Swan (Cygnus Loop), as well as to search for a stellar remnant associated with the supernova remnant RCW86.

  13. Supernova Dust at Sub-micrometer Scales

    NASA Astrophysics Data System (ADS)

    Nittler, Larry; Stroud, R. M.

    2006-06-01

    Meteorites contain nanometer to micrometer stardust grains, which formed in pre-solar generations of stars and exhibit large isotopic anomalies that reflect the nuclear processes that occurred in their individual parent stars [1]. Supernovae of Type II have been identified as the sources of much of the stardust, including grains of SiC, Si3N4, graphite and Mg2SiO4. Although, the isotopic compositions of many elements in these grains point unambiguously to supernova nucleosynthesis processes [2], the data require extensive and heterogeneous mixing of disparate nuclear burning zones. A recent study found that individual 200 nm TiC sub-grains within a 12 micron supernova graphite grain have uniform Ti isotopic composition but a range of O isotopic ratios [3]. New microanalysis techniques allow us to correlate the physical microstructures of supernova grains with isotopic composition, e.g., SiC and Si3N4, providing a sub-micron view of condensation processes in supernova ejecta. Results on two SiC grains indicate that micron-sized SiC grains from supernovae consist of assemblages of smaller crystallites with some evidence of radiation and/or shock processing. This is in strong contrast to SiC grains from AGB stars, which are typically single euhedral crystals [4]. The Si, C and N isotopic compositions of the grains are highly uniform, in contrast to the model of [5], which predicts strong isotopic gradients in supernova-derived SiC grains.This work is supported by NASA.[1] Clayton D. D. and Nittler L. R. (2004) ARAA, 42, 39-78.[2] Nittler L. R., et al. (1996) ApJ, 462, L31-34.[3] Stadermann F. J., et al. (2005) GCA, 69, 177-188.[4] Daulton T. L., et al. (2002) Science, 296, 1852-1855.[5] Deneault E. A.-N., et al. (2003) ApJ, 594, 312-325.

  14. X-ray emission from clusters and groups of galaxies

    PubMed Central

    Mushotzky, Richard

    1998-01-01

    Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to ≈1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2–4. The baryonic fractions vary by a factor of ≈3 from cluster to cluster and almost always exceed 0.09 h50−[3/2] and thus are in fundamental conflict with the assumption of Ω = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2–0.45 solar, and the abundances of O and Si for low redshift systems are 0.6–1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z ≈ 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1–0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50−2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures. PMID:9419327

  15. Interacting supernovae and supernova impostors. LSQ13zm: an outburst heralds the death of a massive star

    DOE PAGES

    Tartaglia, L.; Pastorello, A.; Sullivan, M.; ...

    2016-03-23

    Here we report photometric and spectroscopic observations of the optical transient LSQ13zm. Historical data reveal the presence of an eruptive episode (that we label as ‘2013a’) followed by a much brighter outburst (‘2013b’) three weeks later, that we argue to be the genuine supernova explosion. This sequence of events closely resemble those observed for SN 2010mc and (in 2012) SN 2009ip. Furthermore, the absolute magnitude reached by LSQ13zm during 2013a (MR = -14.87 ± 0.25 mag) is comparable with those of supernova impostors, while that of the 2013b event (M R = -18.46 ± 0.21 mag) is consistent with thosemore » of interacting supernovae. Our spectra reveal the presence of a dense and structured circumstellar medium, probably produced through numerous pre-supernova mass-loss events. In addition, we find evidence for high-velocity ejecta, with a fraction of gas expelled at more than 20 000 km s -1. The spectra of LSQ13zm show remarkable similarity with those of well-studied core-collapse supernovae. From the analysis of the available photometric and spectroscopic data, we conclude that we first observed the last event of an eruptive sequence from a massive star, likely a Luminous Blue Variable, which a short time later exploded as a core-collapse supernova. Our detailed analysis of archival images suggests that the host galaxy is a star-forming Blue Dwarf Compact Galaxy.« less

  16. Interacting supernovae and supernova impostors. LSQ13zm: an outburst heralds the death of a massive star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartaglia, L.; Pastorello, A.; Sullivan, M.

    Here we report photometric and spectroscopic observations of the optical transient LSQ13zm. Historical data reveal the presence of an eruptive episode (that we label as ‘2013a’) followed by a much brighter outburst (‘2013b’) three weeks later, that we argue to be the genuine supernova explosion. This sequence of events closely resemble those observed for SN 2010mc and (in 2012) SN 2009ip. Furthermore, the absolute magnitude reached by LSQ13zm during 2013a (MR = -14.87 ± 0.25 mag) is comparable with those of supernova impostors, while that of the 2013b event (M R = -18.46 ± 0.21 mag) is consistent with thosemore » of interacting supernovae. Our spectra reveal the presence of a dense and structured circumstellar medium, probably produced through numerous pre-supernova mass-loss events. In addition, we find evidence for high-velocity ejecta, with a fraction of gas expelled at more than 20 000 km s -1. The spectra of LSQ13zm show remarkable similarity with those of well-studied core-collapse supernovae. From the analysis of the available photometric and spectroscopic data, we conclude that we first observed the last event of an eruptive sequence from a massive star, likely a Luminous Blue Variable, which a short time later exploded as a core-collapse supernova. Our detailed analysis of archival images suggests that the host galaxy is a star-forming Blue Dwarf Compact Galaxy.« less

  17. The HST Frontier Fields

    NASA Astrophysics Data System (ADS)

    Lotz, Jennifer; Mountain, M.; Grogin, N. A.; Koekemoer, A. M.; Capak, P. L.; Mack, J.; Coe, D. A.; Barker, E. A.; Adler, D. S.; Avila, R. J.; Anderson, J.; Casertano, S.; Christian, C. A.; Gonzaga, S.; Ferguson, H. C.; Fruchter, A. S.; Jenkner, H.; Jordan, I. J.; Hammer, D.; Hilbert, B.; Lawton, B. L.; Lee, J. C.; Lucas, R. A.; MacKenty, J. W.; Mutchler, M. J.; Ogaz, S.; Reid, I. N.; Royle, P.; Robberto, M.; Sembach, K.; Smith, L. J.; Sokol, J.; Surace, J. A.; Taylor, D.; Tumlinson, J.; Viana, A.; Williams, R. E.; Workman, W.

    2014-01-01

    Using Director's Discretionary observing time, HST is undertaking a revolutionary deep field observing program to peer deeper into the Universe than ever before. The Frontier Fields will combine the power of HST with the natural gravitational telescopes of high-magnification clusters of galaxies to produce the deepest observations of clusters and their lensed galaxies and the second-deepest observations of blank fields ever obtained. Up to six strong-lensing clusters (Abell 2744, MACSJ0416.1-2403, MACSJ0717.5+3745, MACSJ1149.5+2223, AbellS1063, and Abell 370) will be targeted with coordinated parallels of adjacent blank fields with ACS/WFC and WFC3/IR cameras to ~29th ABmag depths in seven bandpasses over the next three years. These observations will reveal distant galaxy populations ~10-100 times fainter than any previously observed, and improve our statistical understanding of galaxies during the epoch of reionization. Here we present Hubble Space Telescope observations of the first set of the Frontier Fields, Abell 2744, and describe the HST Frontier Fields observing strategy and schedule. All data for this observing program is nonproprietary and available immediately upon entry into the Mikulski Archive for Space Telescopes.

  18. The ROSAT Brightest Cluster Sample - I. The compilation of the sample and the cluster log N-log S distribution

    NASA Astrophysics Data System (ADS)

    Ebeling, H.; Edge, A. C.; Bohringer, H.; Allen, S. W.; Crawford, C. S.; Fabian, A. C.; Voges, W.; Huchra, J. P.

    1998-12-01

    We present a 90 per cent flux-complete sample of the 201 X-ray-brightest clusters of galaxies in the northern hemisphere (delta>=0 deg), at high Galactic latitudes (|b|>=20 deg), with measured redshifts z<=0.3 and fluxes higher than 4.4x10^-12 erg cm^-2 s^-1 in the 0.1-2.4 keV band. The sample, called the ROSAT Brightest Cluster Sample (BCS), is selected from ROSAT All-Sky Survey data and is the largest X-ray-selected cluster sample compiled to date. In addition to Abell clusters, which form the bulk of the sample, the BCS also contains the X-ray-brightest Zwicky clusters and other clusters selected from their X-ray properties alone. Effort has been made to ensure the highest possible completeness of the sample and the smallest possible contamination by non-cluster X-ray sources. X-ray fluxes are computed using an algorithm tailored for the detection and characterization of X-ray emission from galaxy clusters. These fluxes are accurate to better than 15 per cent (mean 1sigma error). We find the cumulative logN-logS distribution of clusters to follow a power law kappa S^alpha with alpha=1.31^+0.06_-0.03 (errors are the 10th and 90th percentiles) down to fluxes of 2x10^-12 erg cm^-2 s^-1, i.e. considerably below the BCS flux limit. Although our best-fitting slope disagrees formally with the canonical value of -1.5 for a Euclidean distribution, the BCS logN-logS distribution is consistent with a non-evolving cluster population if cosmological effects are taken into account. Our sample will allow us to examine large-scale structure in the northern hemisphere, determine the spatial cluster-cluster correlation function, investigate correlations between the X-ray and optical properties of the clusters, establish the X-ray luminosity function for galaxy clusters, and discuss the implications of the results for cluster evolution.

  19. Bridging the gap: from massive stars to supernovae.

    PubMed

    Maund, Justyn R; Crowther, Paul A; Janka, Hans-Thomas; Langer, Norbert

    2017-10-28

    Almost since the beginning, massive stars and their resultant supernovae have played a crucial role in the Universe. These objects produce tremendous amounts of energy and new, heavy elements that enrich galaxies, encourage new stars to form and sculpt the shapes of galaxies that we see today. The end of millions of years of massive star evolution and the beginning of hundreds or thousands of years of supernova evolution are separated by a matter of a few seconds, in which some of the most extreme physics found in the Universe causes the explosive and terminal disruption of the star. Key questions remain unanswered in both the studies of how massive stars evolve and the behaviour of supernovae, and it appears the solutions may not lie on just one side of the explosion or the other or in just the domain of the stellar evolution or the supernova astrophysics communities. The need to view massive star evolution and supernovae as continuous phases in a single narrative motivated the Theo Murphy international scientific meeting 'Bridging the gap: from massive stars to supernovae' at Chicheley Hall, UK, in June 2016, with the specific purpose of simultaneously addressing the scientific connections between theoretical and observational studies of massive stars and their supernovae, through engaging astronomers from both communities.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  20. Type IA Supernovae

    NASA Technical Reports Server (NTRS)

    Wheeler, J. Craig

    1992-01-01

    Spectral calculations show that a model based on the thermonuclear explosion of a degenerate carbon/oxygen white dwarf provides excellent agreement with observations of Type Ia supernovae. Identification of suitable evolutionary progenitors remains a severe problem. General problems with estimation of supernova rates are outlined and the origin of Type Ia supernovae from double degenerate systems are discussed in the context of new rates of explosion per H band luminosity, the lack of observed candidates, and the likely presence of H in the vicinity of some SN Ia events. Re-examination of the problems of triggering Type Ia by accretion of hydrogen from a companion shows that there may be an avenue involving cataclysmic variables, especially if extreme hibernation occurs. Novae may channel accreting white dwarfs to a unique locus in accretion rate/mass space. Systems that undergo secular evolution to higher mass transfer rates could lead to just the conditions necessary for a Type Ia explosion. Tests involving fluorescence or absorption in a surrounding circumstellar medium and the detection of hydrogen stripped from a companion, which should appear at low velocity inside the white dwarf ejecta, are suggested. Possible observational confirmation of the former is described.

  1. Pulsar Wind Bubble Blowout from a Supernova

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blondin, John M.; Chevalier, Roger A., E-mail: blondin@ncsu.edu

    For pulsars born in supernovae, the expansion of the shocked pulsar wind nebula is initially in the freely expanding ejecta of the supernova. While the nebula is in the inner flat part of the ejecta density profile, the swept-up, accelerating shell is subject to the Rayleigh–Taylor instability. We carried out two- and three-dimensional simulations showing that the instability gives rise to filamentary structure during this initial phase but does not greatly change the dynamics of the expanding shell. The flow is effectively self-similar. If the shell is powered into the outer steep part of the density profile, the shell ismore » subject to a robust Rayleigh–Taylor instability in which the shell is fragmented and the shocked pulsar wind breaks out through the shell. The flow is not self-similar in this phase. For a wind nebula to reach this phase requires that the deposited pulsar energy be greater than the supernova energy, or that the initial pulsar period be in the ms range for a typical 10{sup 51} erg supernova. These conditions are satisfied by some magnetar models for Type I superluminous supernovae. We also consider the Crab Nebula, which may be associated with a low energy supernova for which this scenario applies.« less

  2. Supernova brightening from chameleon-photon mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrage, C.

    2008-02-15

    Measurements of standard candles and measurements of standard rulers give an inconsistent picture of the history of the universe. This discrepancy can be explained if photon number is not conserved as computations of the luminosity distance must be modified. I show that photon number is not conserved when photons mix with chameleons in the presence of a magnetic field. The strong magnetic fields in a supernova mean that the probability of a photon converting into a chameleon in the interior of the supernova is high, this results in a large flux of chameleons at the surface of the supernova. Chameleonsmore » and photons also mix as a result of the intergalactic magnetic field. These two effects combined cause the image of the supernova to be brightened resulting in a model which fits both observations of standard candles and observations of standard rulers.« less

  3. Unusual Supernovae and Alternative Power Sources

    NASA Astrophysics Data System (ADS)

    Kasen, Daniel

    Recent observations have revealed a diverse class of peculiar supernovae, among them transients that are extremely luminous and unusually dim, or that evolve remarkably rapidly or slowly over time. The light curves of some of these events cannot be powered by ordinary energy sources such as the decay of radioactive isotopes. This chapter begins with a brief description of certain types of unusual supernovae and then reviews the basic physics of supernova light curves, deriving in a pedagogical way the analytic scalings that characterize the peak brightness and duration. After illustrating that ordinary power sources cannot explain all of the observed events, we turn to theoretical ideas involving less common mechanisms, such as energy injection from a long-lived central engine (a rapidly rotating magnetar or an accreting black hole). We conclude by speculating how alternative power sources may be manifest in observations of the assorted classes of peculiar supernovae.

  4. The supernova - supernova remnant connection through multi-dimensional magnetohydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Orlando, S.; Miceli, M.; Petruk, O.; Ono, M.

    2017-10-01

    Supernova remnants (SNRs) are diffuse extended sources often characterized by a rather complex morphology and a highly non-uniform distribution of ejecta. General consensus is that such a morphology reflects, on one hand, pristine structures and features of the progenitor supernova (SN) explosion and, on the other hand, the early interaction of the SN blast wave with the inhomogeneous circumstellar medium (CSM) formed in the latest stages of the progenitor star's evolution. Deciphering X-ray observations of SNRs, therefore, might open the possibility to reconstruct the ejecta structure as it was soon after the SN explosion and the structure and geometry of the medium immediately surrounding the progenitor star. This requires accurate and detailed models which describe the evolution from the on-set of the SN to the full remnant development and which connect the X-ray emission properties of the remnants to the progenitor SNe. Here we show how multi-dimensional SN-SNR magnetohydrodynamic models have been very effective in deciphering X-ray observations of SNR Cassiopeia A and SN 1987A. This has allowed us to unveil the average structure of ejecta in the immediate aftermath of the SN explosion and to constrain the 3D pre-supernova structure and geometry of the environment surrounding the progenitor SN.

  5. Supernovas y Cosmología

    NASA Astrophysics Data System (ADS)

    Folatelli, G.

    Supernovae are very relevant astrophysical objects because they indicate the violent end of certain stars and because they alter the interstellar medium. But most importantly, they have become an extremely useful tool for measuring cosmological distances. Based on highly precise distances to type Ia supernovae it was possible to find out that the expansion of the universe is currently accelerated. This led to introducing the concept of ``dark energy'' as a dominant and yet unknown component of the cosmos. In this article we will describe the method of distance measurements that leads to the determination of cosmological parameters. We will briefly review the current status of the field with emphasis on the importance of improving our knowledge about the physical nature of supernovae. FULL TEXT IN SPANISH

  6. New Supernova in the HST Frontier Field MACSJ0717.5+4745

    NASA Astrophysics Data System (ADS)

    Brammer, Gabriel; Kelly, Patrick; Rodney, Steve; Schmidt, Kasper Borello; Treu, Tommaso

    2014-01-01

    We report a supernova (SN) discovery in HST imaging of the Frontier Fields galaxy cluster MACSJ0717.5+3745 (z=0.5458) acquired as part of the Grism Lens Amplified Survey from Space (GLASS). The SN is designated HFF13cha (nicknamed "SN Chapel"), and was detected in WFC3-IR F105W (Y) and F140W (JH) images taken to calibrate and align the G102 and G141 grisms. A finder chart and the discovery images are available athttp://archive.stsci.edu/pub/ffsn/macs0717/HFF13cha/snChapelHostFinder.pdf.

  7. A common explosion mechanism for type Ia supernovae.

    PubMed

    Mazzali, Paolo A; Röpke, Friedrich K; Benetti, Stefano; Hillebrandt, Wolfgang

    2007-02-09

    Type Ia supernovae, the thermonuclear explosions of white dwarf stars composed of carbon and oxygen, were instrumental as distance indicators in establishing the acceleration of the universe's expansion. However, the physics of the explosion are debated. Here we report a systematic spectral analysis of a large sample of well-observed type Ia supernovae. Mapping the velocity distribution of the main products of nuclear burning, we constrain theoretical scenarios. We find that all supernovae have low-velocity cores of stable iron-group elements. Outside this core, nickel-56 dominates the supernova ejecta. The outer extent of the iron-group material depends on the amount of nickel-56 and coincides with the inner extent of silicon, the principal product of incomplete burning. The outer extent of the bulk of silicon is similar in all supernovae, having an expansion velocity of approximately 11,000 kilometers per second and corresponding to a mass of slightly over one solar mass. This indicates that all the supernovae considered here burned similar masses and suggests that their progenitors had the same mass. Synthetic light-curve parameters and three-dimensional explosion simulations support this interpretation. A single explosion scenario, possibly a delayed detonation, may thus explain most type Ia supernovae.

  8. The two-component giant radio halo in the galaxy cluster Abell 2142

    NASA Astrophysics Data System (ADS)

    Venturi, T.; Rossetti, M.; Brunetti, G.; Farnsworth, D.; Gastaldello, F.; Giacintucci, S.; Lal, D. V.; Rudnick, L.; Shimwell, T. W.; Eckert, D.; Molendi, S.; Owers, M.

    2017-07-01

    Aims: We report on a spectral study at radio frequencies of the giant radio halo in A 2142 (z = 0.0909), which we performed to explore its nature and origin. The optical and X-ray properties of the cluster suggest that A 2142 is not a major merger and the presence of a giant radio halo is somewhat surprising. Methods: We performed deep radio observations of A 2142 with the Giant Metrewave Radio Telescope (GMRT) at 608 MHz, 322 MHz, and 234 MHz and with the Very Large Array (VLA) in the 1-2 GHz band. We obtained high-quality images at all frequencies in a wide range of resolutions, from the galaxy scale, I.e. 5'', up to 60'' to image the diffuse cluster-scale emission. The radio halo is well detected at all frequencies and extends out to the most distant cold front in A 2142, about 1 Mpc away from the cluster centre. We studied the spectral index in two regions: the central part of the halo, where the X-ray emission peaks and the two brightest dominant galaxies are located; and a second region, known as the ridge (in the direction of the most distant south-eastern cold front), selected to follow the bright part of the halo and X-ray emission. We complemented our deep observations with a preliminary LOw Frequency ARray (LOFAR) image at 118 MHz and with the re-analysis of archival VLA data at 1.4 GHz. Results: The two components of the radio halo show different observational properties. The central brightest part has higher surface brightess and a spectrum whose steepness is similar to those of the known radio halos, I.e. α1.78 GHz118 MHz = 1.33 ± 0.08 . The ridge, which fades into the larger scale emission, is broader in size and has considerably lower surface brightess and a moderately steeper spectrum, I.e. α1.78 GHz118 MHz 1.5. We propose that the brightest part of the radio halo is powered by the central sloshing in A 2142, in a process similar to what has been suggested for mini-halos, or by secondary electrons generated by hadronic collisions in the ICM. On

  9. How supernovae became the basis of observational cosmology

    NASA Astrophysics Data System (ADS)

    Pruzhinskaya, Maria Victorovna; Lisakov, Sergey Mikhailovich

    2016-12-01

    This paper is dedicated to the discovery of one of the most important relationships in supernova cosmology - the relation between the peak luminosity of Type Ia supernovae and their luminosity decline rate after maximum light. The history of this relationship is quite long and interesting. The relationship was independently discovered by the American statistician and astronomer Bert Woodard Rust and the Soviet astronomer Yury Pavlovich Pskovskii in the 1970s. Using a limited sample of Type I supernovae they were able to show that the brighter the supernova is, the slower its luminosity declines after maximum. Only with the appearance of CCD cameras could Mark Phillips re-inspect this relationship on a new level of accuracy using a better sample of supernovae. His investigations confirmed the idea proposed earlier by Rust and Pskovskii.

  10. UV spectroscopy including ISM line absorption: of the exciting star of Abell 35

    NASA Astrophysics Data System (ADS)

    Ziegler, M.; Rauch, T.; Werner, K.; Kruk, J. W.

    Reliable spectral analysis that is based on high-resolution UV observations requires an adequate, simultaneous modeling of the interstellar line absorption and reddening. In the case of the central star of the planetary nebula Abell 35, BD-22 3467, we demonstrate our current standard spectral-analysis method that is based on the Tübingen NLTE Model-Atmosphere Package (TMAP). We present an on- going spectral analysis of FUSE and HST/STIS observations of BD-22 3467.

  11. Preview of a Forthcoming Supernova

    NASA Image and Video Library

    2017-12-08

    Supernova Supernovae can occur one of two ways. The first occurs when a white dwarf—the vestigial ember of a dead star—passes so close to a living star that its matter leaks into the white dwarf. This causes a catastrophic explosion. However most people understand supernovae as the death of a massive star. When the star runs out of fuel toward the end of its life, the gravity at its heart sucks the surrounding mass into its center. At temperatures rocketing above 100 billion degrees Fahrenheit, all the layers of the star abruptly explode outward. The explosions produced by supernovae are so brilliant that astronomers use their luminosity to measure the distance between galaxies, the scale of the universe and the effects of dark energy. For a short period of time, one dying star can appear to shine as brightly as an entire galaxy. Supernovae are relatively common events, one occurring in our own galaxy once every 100 years. In 2014, a person could see the supernova M82 with a pair of binoculars. The cosmologist Tycho Brahe’s observation of a supernova in 1572 allowed him to disprove Aristotle’s theory that the heavens never changed. After a supernova, material expelled in the explosion can form a nebula—an interstellar pile of gas and dust. Over millions of years, gravity pulls the nebula’s materials into a dense orb called a protostar, which will become a new star. Within a few million years, this new star could go supernova as well. ------------------------------ Original Caption: NASA image release Feb. 24, 2012 At the turn of the 19th century, the binary star system Eta Carinae was faint and undistinguished. In the first decades of the century, it became brighter and brighter, until, by April 1843, it was the second brightest star in the sky, outshone only by Sirius (which is almost a thousand times closer to Earth). In the years that followed, it gradually dimmed again and by the 20th century was totally invisible to the naked eye. The star has

  12. Searching for galaxy clusters in the Kilo-Degree Survey

    NASA Astrophysics Data System (ADS)

    Radovich, M.; Puddu, E.; Bellagamba, F.; Roncarelli, M.; Moscardini, L.; Bardelli, S.; Grado, A.; Getman, F.; Maturi, M.; Huang, Z.; Napolitano, N.; McFarland, J.; Valentijn, E.; Bilicki, M.

    2017-02-01

    Aims: In this paper, we present the tools used to search for galaxy clusters in the Kilo Degree Survey (KiDS), and our first results. Methods: The cluster detection is based on an implementation of the optimal filtering technique that enables us to identify clusters as over-densities in the distribution of galaxies using their positions on the sky, magnitudes, and photometric redshifts. The contamination and completeness of the cluster catalog are derived using mock catalogs based on the data themselves. The optimal signal to noise threshold for the cluster detection is obtained by randomizing the galaxy positions and selecting the value that produces a contamination of less than 20%. Starting from a subset of clusters detected with high significance at low redshifts, we shift them to higher redshifts to estimate the completeness as a function of redshift: the average completeness is 85%. An estimate of the mass of the clusters is derived using the richness as a proxy. Results: We obtained 1858 candidate clusters with redshift 0 cluster catalogs shows that we match more than 50% of the clusters (77% in the case of the redMaPPer catalog). We also cross-matched our cluster catalog with the Abell clusters, and clusters found by XMM and in the Planck-SZ survey; however, only a small number of them lie inside the KiDS area currently available. The catalog is available at http://kids.strw.leidenuniv.nl/DR2 and at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A107

  13. CHEERS: Chemical enrichment of clusters of galaxies measured using a large XMM-Newton sample

    NASA Astrophysics Data System (ADS)

    de Plaa, J.; Mernier, F.; Kaastra, J.; Pinto, C.

    2017-10-01

    The Chemical Enrichment RGS Sample (CHEERS) is aimed to be a sample of the most optimal clusters of galaxies for observation with the Reflection Grating Spectrometer (RGS) aboard XMM-Newton. It consists of 5 Ms of deep cluster observations of 44 objects obtained through a very large program and archival observations. The main goal is to measure chemical abundances in the hot Intra-Cluster Medium (ICM) of clusters to provide constraints on chemical evolution models. Especially the origin and evolution of type Ia supernovae is still poorly known and X-ray observations could contribute to constrain models regarding the SNIa explosion mechanism. Due to the high quality of the data, the uncertainties on the abundances are dominated by systematic effects. By carefully treating each systematic effect, we increase the accuracy or estimate the remaining uncertainty on the measurement. The resulting abundances are then compared to supernova models. In addition, also radial abundance profiles are derived. In the talk, we present an overview of the results that the CHEERS collaboration obtained based on the CHEERS data. We focus on the abundance measurements. The other topics range from turbulence measurements through line broadening to cool gas in groups.

  14. Implications for gravitational lensing and the dark matter content in clusters of galaxies from spatially resolved x-ray spectra

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.

    1994-01-01

    A simple method for deriving well-behaved temperature solutions to the equation of hydrostatic equilibrium for intracluster media with X-ray imaging observations is presented and applied to a series of generalized models as well as to observations of the Perseus cluster and Abell 2256. In these applications the allowed range in the ratio of nonbaryons to baryons as a function of radius is derived, taking into account the uncertainties and crude spatial resolution of the X-ray spectra and considering a range of physically reasonable mass models with various scale heights. Particular attention is paid to the central regions of the cluster, and it is found that the dark matter can be sufficiently concentrated to be consistent with the high central mass surface densities for moderate-redshift clusters from their gravitational lensing properties.

  15. A Quick Look at Supernova 1987A

    NASA Image and Video Library

    2017-02-24

    On February 24, 1987, astronomers in the southern hemisphere saw a supernova in the Large Magellanic Cloud. This new object was dubbed “Supernova 1987A” and was the brightest stellar explosion seen in over four centuries. Chandra has observed Supernova 1987A many times and the X-ray data reveal important information about this object. X-rays from Chandra have shown the expanding blast wave from the original explosion slamming into a ring of material expelled by the star before it exploded. The latest Chandra data reveal the blast wave has moved beyond the ring into a region that astronomers do not know much about. These observations can help astronomers learn how supernovas impact their environments and affect future generations of stars and planets.

  16. Nucleosynthesis in Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Stevenson, Taylor Shannon; Viktoria Ohstrom, Eva; Harris, James Austin; Hix, William R.

    2018-01-01

    The nucleosynthesis which occurs in core-collapse supernovae (CCSN) is one of the most important sources of elements in the universe. Elements from Oxygen through Iron come predominantly from supernovae, and contributions of heavier elements are also possible through processes like the weak r-process, the gamma process and the light element primary process. The composition of the ejecta depends on the mechanism of the explosion, thus simulations of high physical fidelity are needed to explore what elements and isotopes CCSN can contribute to Galactic Chemical Evolution. We will analyze the nucleosynthesis results from self-consistent CCSN simulations performed with CHIMERA, a multi-dimensional neutrino radiation-hydrodynamics code. Much of our understanding of CCSN nucleosynthesis comes from parameterized models, but unlike CHIMERA these fail to address essential physics, including turbulent flow/instability and neutrino-matter interaction. We will present nucleosynthesis predictions for the explosion of a 9.6 solar mass first generation star, relying both on results of the 160 species nuclear reaction network used in CHIMERA within this model and on post-processing with a more extensive network. The lowest mass iron core-collapse supernovae, like this model, are distinct from their more massive brethren, with their explosion mechanism and nucleosynthesis being more like electron capture supernovae resulting from Oxygen-Neon white dwarves. We will highlight the differences between the nucleosynthesis in this model and more massive supernovae. The inline 160 species network is a feature unique to CHIMERA, making this the most sophisticated model to date for a star of this type. We will discuss the need and mechanism to extrapolate the post-processing to times post-simulation and analyze the uncertainties this introduces for supernova nucleosynthesis. We will also compare the results from the inline 160 species network to the post-processing results to study further

  17. Constraints on cold dark matter theories from observations of massive x-ray-luminous clusters of galaxies at high redshift

    NASA Technical Reports Server (NTRS)

    Luppino, G. A.; Gioia, I. M.

    1995-01-01

    During the course of a gravitational lensing survey of distant, X-ray selected Einstein Observatory Extended Medium Sensitivity Survey (EMSS) clusters of galaxies, we have studied six X-ray-luminous (L(sub x) greater than 5 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) clusters at redshifts exceeding z = 0.5. All of these clusters are apparently massive. In addition to their high X-ray luminosity, two of the clusters at z approximately 0.6 exhibit gravitationally lensed arcs. Furthermore, the highest redshift cluster in our sample, MS 1054-0321 at z = 0.826, is both extremely X-ray luminous (L(sub 0.3-3.5keV)=9.3 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) and exceedingly rich with an optical richness comparable to an Abell Richness Class 4 cluster. In this Letter, we discuss the cosmological implications of the very existence of these clusters for hierarchical structure formation theories such as standard Omega = 1 CDM (cold dark matter), hybrid Omega = 1 C + HDM (hot dark matter), and flat, low-density Lambda + CDM models.

  18. Preparatory studies for the WFIRST supernova cosmology measurements

    NASA Astrophysics Data System (ADS)

    Perlmutter, Saul

    In the context of the WFIRST-AFTA Science Definition Team we developed a first version of a supernova program, described in the WFIRST-AFTA SDT report. This program uses the imager to discover supernova candidates and an Integral Field Spectrograph (IFS) to obtain spectrophotometric light curves and higher signal to noise spectra of the supernovae near peak to better characterize the supernovae and thus minimize systematic errors. While this program was judged a robust one, and the estimates of the sensitivity to the cosmological parameters were felt to be reliable, due to limitation of time the analysis was clearly limited in depth on a number of issues. The goal of this proposal is to further develop this program and refine the estimates of the sensitivities to the cosmological parameters using more sophisticated systematic uncertainty models and covariance error matrices that fold in more realistic data concerning observed populations of SNe Ia as well as more realistic instrument models. We propose to develop analysis algorithms and approaches that are needed to build, optimize, and refine the WFIRST instrument and program requirements to accomplish the best supernova cosmology measurements possible. We plan to address the following: a) Use realistic Supernova populations, subclasses and population drift. One bothersome uncertainty with the supernova technique is the possibility of population drift with redshift. We are in a unique position to characterize and mitigate such effects using the spectrophotometric time series of real Type Ia supernovae from the Nearby Supernova Factory (SNfactory). Each supernova in this sample has global galaxy measurements as well as additional local environment information derived from the IFS spectroscopy. We plan to develop methods of coping with this issue, e.g., by selecting similar subsamples of supernovae and allowing additional model flexibility, in order to reduce systematic uncertainties. These studies will allow us to

  19. An optical supernova associated with the X-ray flash XRF 060218.

    PubMed

    Pian, E; Mazzali, P A; Masetti, N; Ferrero, P; Klose, S; Palazzi, E; Ramirez-Ruiz, E; Woosley, S E; Kouveliotou, C; Deng, J; Filippenko, A V; Foley, R J; Fynbo, J P U; Kann, D A; Li, W; Hjorth, J; Nomoto, K; Patat, F; Sauer, D N; Sollerman, J; Vreeswijk, P M; Guenther, E W; Levan, A; O'Brien, P; Tanvir, N R; Wijers, R A M J; Dumas, C; Hainaut, O; Wong, D S; Baade, D; Wang, L; Amati, L; Cappellaro, E; Castro-Tirado, A J; Ellison, S; Frontera, F; Fruchter, A S; Greiner, J; Kawabata, K; Ledoux, C; Maeda, K; Møller, P; Nicastro, L; Rol, E; Starling, R

    2006-08-31

    Long-duration gamma-ray bursts (GRBs) are associated with type Ic supernovae that are more luminous than average and that eject material at very high velocities. Less-luminous supernovae were not hitherto known to be associated with GRBs, and therefore GRB-supernovae were thought to be rare events. Whether X-ray flashes--analogues of GRBs, but with lower luminosities and fewer gamma-rays--can also be associated with supernovae, and whether they are intrinsically 'weak' events or typical GRBs viewed off the axis of the burst, is unclear. Here we report the optical discovery and follow-up observations of the type Ic supernova SN 2006aj associated with X-ray flash XRF 060218. Supernova 2006aj is intrinsically less luminous than the GRB-supernovae, but more luminous than many supernovae not accompanied by a GRB. The ejecta velocities derived from our spectra are intermediate between these two groups, which is consistent with the weakness of both the GRB output and the supernova radio flux. Our data, combined with radio and X-ray observations, suggest that XRF 060218 is an intrinsically weak and soft event, rather than a classical GRB observed off-axis. This extends the GRB-supernova connection to X-ray flashes and fainter supernovae, implying a common origin. Events such as XRF 060218 are probably more numerous than GRB-supernovae.

  20. Eta Carinae: An Astrophysical Laboratory to Study Conditions During the Transition Between a Pseudo-Supernova and a Supernova

    NASA Astrophysics Data System (ADS)

    McKinnon, Darren; Gull, T. R.; Madura, T.

    2014-01-01

    A major puzzle in the studies of supernovae is the pseudo-supernova, or the near-supernovae state. It has been found to precede, in timespans ranging from months to years, a number of recently-detected distant supernovae. One explanation of these systems is that a member of a massive binary underwent a near-supernova event shortly before the actual supernova phenomenon. Luckily, we have a nearby massive binary, Eta Carinae, that provides an astrophysical laboratory of a near-analog. The massive, highly-eccentric, colliding-wind binary star system survived a non-terminal stellar explosion in the 1800's, leaving behind the incredible bipolar, 10"x20" Homunculus nebula. Today, the interaction of the binary stellar winds 1") is resolvable by the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope (HST). Using HST/STIS, several three-dimensional (3D) data cubes (2D spatial, 1D velocity) have been obtained at selected phases during Eta Carinae's 5.54-year orbital cycle. The data cubes were collected by mapping the central 1-2" at 0.05" intervals with a 52"x0.1" aperture. Selected forbidden lines, that form in the colliding wind regions, provide information on electron density of the shocked regions, the ionization by the hot secondary companion of the primary wind and how these regions change with orbital phase. By applying various analysis techniques to these data cubes, we can compare and measure temporal changes due to the interactions between the two massive winds. The observations, when compared to current 3D hydrodynamic models, provide insight on Eta Carinae's recent mass-loss history, important for determining the current and future states of this likely nearby supernova progenitor.

  1. Neutrino astronomy with supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Brdar, Vedran; Lindner, Manfred; Xu, Xun-Jie

    2018-04-01

    Modern neutrino facilities will be able to detect a large number of neutrinos from the next Galactic supernova. We investigate the viability of the triangulation method to locate a core-collapse supernova by employing the neutrino arrival time differences at various detectors. We perform detailed numerical fits in order to determine the uncertainties of these time differences for the cases when the core collapses into a neutron star or a black hole. We provide a global picture by combining all the relevant current and future neutrino detectors. Our findings indicate that in the scenario of a neutron star formation, supernova can be located with precision of 1.5 and 3.5 degrees in declination and right ascension, respectively. For the black hole scenario, sub-degree precision can be reached.

  2. Star Formation in Undergraduate ALFALFA Team Galaxy Groups and Clusters

    NASA Astrophysics Data System (ADS)

    Koopmann, Rebecca A.; Durbala, Adriana; Finn, Rose; Haynes, Martha P.; Coble, Kimberly A.; Craig, David W.; Hoffman, G. Lyle; Miller, Brendan P.; Crone-Odekon, Mary; O'Donoghue, Aileen A.; Troischt, Parker; Undergraduate ALFALFA Team; ALFALFA Team

    2017-01-01

    The Undergraduate ALFALFA Team (UAT) Groups project is a coordinated study of gas and star formation properties of galaxies in and around 36 nearby (z<0.03) groups and clusters of varied richness, morphological type mix, and X-ray luminosity. By studying a large range of environments and considering the spatial distributions of star formation, we probe mechanisms of gas depletion and morphological transformation. The project uses ALFALFA HI observations, optical observations, and digital databases like SDSS, and incorporates work undertaken by faculty and students at different institutions within the UAT. Here we present results from our wide area Hα and broadband R imaging project carried out with the WIYN 0.9m+MOSAIC/HDI at KPNO, including an analysis of radial star formation rates and extents of galaxies in the NGC 5846, Abell 779, NRGb331, and HCG 69 groups/clusters. This work has been supported by NSF grant AST-1211005 and AST-1637339.

  3. How to See a Recently Discovered Supernova

    ScienceCinema

    Nugent, Peter

    2017-12-12

    Berkeley Lab scientist Peter Nugent discusses a recently discovered supernova that is closer to Earth — approximately 21 million light-years away — than any other of its kind in a generation. Astronomers believe they caught the supernova within hours of its explosion, a rare feat made possible with a specialized survey telescope and state-of-the-art computational tools. The finding of such a supernova so early and so close has energized the astronomical community as they are scrambling to observe it with as many telescopes as possible, including the Hubble Space Telescope. More info on how to see it: http://newscenter.lbl.gov/feature-stories/2011/08/31/glimpse-cosmic-explosion/ News release: http://newscenter.lbl.gov/feature-stories/2011/08/25/supernova/

  4. How to See a Recently Discovered Supernova

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugent, Peter

    2011-08-31

    Berkeley Lab scientist Peter Nugent discusses a recently discovered supernova that is closer to Earth — approximately 21 million light-years away — than any other of its kind in a generation. Astronomers believe they caught the supernova within hours of its explosion, a rare feat made possible with a specialized survey telescope and state-of-the-art computational tools. The finding of such a supernova so early and so close has energized the astronomical community as they are scrambling to observe it with as many telescopes as possible, including the Hubble Space Telescope. More info on how to see it: http://newscenter.lbl.gov/feature-stories/2011/08/31/glimpse-cosmic-explosion/ News release:more » http://newscenter.lbl.gov/feature-stories/2011/08/25/supernova/« less

  5. Core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Mueller, Bernhard

    2017-01-01

    Core-collapse supernovae, the deaths of massive stars, are among the most spectacular phenomena in astrophysics: Not only can supernovae outshine their host galaxy for weeks; they are also laboratories for the behavior of matter at supranuclear densities, and one of the few environments where collective neutrino effects can become important. Moreover, supernovae play a central role in the cosmic matter cycle, e.g., as the dominant producers of oxygen in the Universe. Yet the mechanism by which massive stars explode has eluded us for decades, partly because classical astronomical observations across the electromagnetic spectrum cannot directly probe the supernovae ``engine''. Numerical simulations are thus our primary tool for understanding the explosion mechanism(s) of massive stars. Rigorous modeling needs to take a host of important physical ingredients into account, such as the emission and partial reabsorption of neutrinos from the young proto-neutron star, multi-dimensional fluid motions, general relativistic gravity, the equation of state of nuclear matter, and magnetic fields. This is a challenging multi-physics problem that has not been fully solved yet. Nonetheless, as I shall argue in this talk, recent first-principle 3D simulations have gone a long way towards demonstrating the viability of the most popular explosion scenario, the ``neutrino-driven mechanism''. Focusing on successful explosion models of the MPA-QUB-Monash collaboration, I will discuss possible requirements for robust explosions across a wide range of progenitors, such as accurate neutrino opacities, stellar rotation, and seed asymmetries from convective shell burning. With the advent of successful explosion models, supernova theory can also be confronted with astronomical observations. I will show that recent 3D models come closer to matching observed explosion parameters (explosion energies, neutron star kicks) than older 2D models, although there are still discrepancies. This work has

  6. Analysis of IUE Observations of Supernovae

    NASA Technical Reports Server (NTRS)

    Kirshner, Robert P.

    1996-01-01

    This program supported the analysis of IUE observations of supernovae. One aspect was a Target-of-Opportunity program to observe bright supernovae which was applied to SN 1993J in M81, and another was continuing analysis of the IUE data from SN 1987A. Because of its quick response time, the IUE satellite has continued to provide useful data on the ultraviolet spectra of supernovae. Even after the launch of the Hubble Space Telescope, which has much more powerful ultraviolet spectrometers, the IUE has enabled us to obtain early and frequent measurements of ultraviolet radiation: this information has been folded in with our HST data to create unique observations of supernova which can be interpreted to give powerful constraints on the physical properties of the exploding stars. Our chief result in the present grant period was the completion of a detailed reanalysis of the data on the circumstellar shell of SN 1987A. The presence of narrow high-temperature mission lines from nitrogen-rich gas close to SN 1987A has been the principal observational constraint on the evolution of the supernova's progenitor. Our new analysis shows that the onset of these lines, their rise to maximum, and their subsequent fading can be understood in the context of a model for the photoionization of circumstellar matter.

  7. Neutrino emission from nearby supernova progenitors

    NASA Astrophysics Data System (ADS)

    Yoshida, Takashi; Takahashi, Koh; Umeda, Hideyuki

    2016-05-01

    Neutrinos have an important role for energy loss process during advanced evolution of massive stars. Although the luminosity and average energy of neutrinos during the Si burning are much smaller than those of supernova neutrinos, these neutrinos are expected to be detected by the liquid scintillation neutrino detector KamLAND if a supernova explosion occurs at the distance of ~100 parsec. We investigate the neutrino emission from massive stars during advanced evolution. We calculate the evolution of the energy spectra of neutrinos produced through electron-positron pair-annihilation in the supernova progenitors with the initial mass of 12, 15, and 20 M ⊙ during the Si burning and core-collapse stages. The neutrino emission rate increases from ~ 1050 s-1 to ~ 1052 s-1. The average energy of electron-antineutrinos is about 1.25 MeV during the Si burning and gradually increases until the core-collapse. For one week before the supernova explosion, the KamLAND detector is expected to observe 12-24 and 6-13 v¯e events in the normal and inverted mass hierarchies, respectively, if a supernova explosion of a 12-20 M ⊙ star occurs at the distance of 200 parsec, corresponding to the distance to Betelgeuse. Observations of neutrinos from SN progenitors have a possibility to constrain the core structure and the evolution just before the core collapse of massive stars.

  8. Supernova Cosmology Inference with Probabilistic Photometric Redshifts (SCIPPR)

    NASA Astrophysics Data System (ADS)

    Peters, Christina; Malz, Alex; Hlozek, Renée

    2018-01-01

    The Bayesian Estimation Applied to Multiple Species (BEAMS) framework employs probabilistic supernova type classifications to do photometric SN cosmology. This work extends BEAMS to replace high-confidence spectroscopic redshifts with photometric redshift probability density functions, a capability that will be essential in the era the Large Synoptic Survey Telescope and other next-generation photometric surveys where it will not be possible to perform spectroscopic follow up on every SN. We present the Supernova Cosmology Inference with Probabilistic Photometric Redshifts (SCIPPR) Bayesian hierarchical model for constraining the cosmological parameters from photometric lightcurves and host galaxy photometry, which includes selection effects and is extensible to uncertainty in the redshift-dependent supernova type proportions. We create a pair of realistic mock catalogs of joint posteriors over supernova type, redshift, and distance modulus informed by photometric supernova lightcurves and over redshift from simulated host galaxy photometry. We perform inference under our model to obtain a joint posterior probability distribution over the cosmological parameters and compare our results with other methods, namely: a spectroscopic subset, a subset of high probability photometrically classified supernovae, and reducing the photometric redshift probability to a single measurement and error bar.

  9. UBVRIz Light Curves of 51 Type II Supernovae

    NASA Astrophysics Data System (ADS)

    Galbany, Lluís; Hamuy, Mario; Phillips, Mark M.; Suntzeff, Nicholas B.; Maza, José; de Jaeger, Thomas; Moraga, Tania; González-Gaitán, Santiago; Krisciunas, Kevin; Morrell, Nidia I.; Thomas-Osip, Joanna; Krzeminski, Wojtek; González, Luis; Antezana, Roberto; Wishnjewski, Marina; McCarthy, Patrick; Anderson, Joseph P.; Gutiérrez, Claudia P.; Stritzinger, Maximilian; Folatelli, Gastón; Anguita, Claudio; Galaz, Gaspar; Green, Elisabeth M.; Impey, Chris; Kim, Yong-Cheol; Kirhakos, Sofia; Malkan, Mathew A.; Mulchaey, John S.; Phillips, Andrew C.; Pizzella, Alessandro; Prosser, Charles F.; Schmidt, Brian P.; Schommer, Robert A.; Sherry, William; Strolger, Louis-Gregory; Wells, Lisa A.; Williger, Gerard M.

    2016-02-01

    We present a compilation of UBVRIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986-2003: the Cerro Tololo Supernova Survey, the Calán/Tololo Supernova Program (C&T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) from maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being shorter (longer) for larger (smaller) s values.

  10. Investigating the Origin of the Supernova Remnant W49B

    NASA Astrophysics Data System (ADS)

    Crum, Ryan Matthew; Frank, Kari A.; Dwarkadas, Vikram; Burrows, David N.

    2018-01-01

    W49B is a Galactic supernova remnant whose origin is still debated. Is it the remains of an unusual asymmetric Type 1a supernova or of a jet-driven core collapse supernova? Using the X-ray analysis method, Smoothed Particle Inference (SPI), we dig deeper into understanding the complex properties of SNR W49B. We do this by characterizing the temperatures and abundance ratios throughout the remnant. We will compare the results with a wide variety of supernova nucleosynthesis models in order to constrain the mechanism behind this unusual supernova remnant.

  11. AGN Heating in Simulated Cool-core Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuan; Ruszkowski, Mateusz; Bryan, Greg L., E-mail: yuanlium@umich.edu

    We analyze heating and cooling processes in an idealized simulation of a cool-core cluster, where momentum-driven AGN feedback balances radiative cooling in a time-averaged sense. We find that, on average, energy dissipation via shock waves is almost an order of magnitude higher than via turbulence. Most of the shock waves in the simulation are very weak shocks with Mach numbers smaller than 1.5, but the stronger shocks, although rare, dissipate energy more effectively. We find that shock dissipation is a steep function of radius, with most of the energy dissipated within 30 kpc, more spatially concentrated than radiative cooling loss.more » However, adiabatic processes and mixing (of post-shock materials and the surrounding gas) are able to redistribute the heat throughout the core. A considerable fraction of the AGN energy also escapes the core region. The cluster goes through cycles of AGN outbursts accompanied by periods of enhanced precipitation and star formation, over gigayear timescales. The cluster core is under-heated at the end of each cycle, but over-heated at the peak of the AGN outburst. During the heating-dominant phase, turbulent dissipation alone is often able to balance radiative cooling at every radius but, when this is occurs, shock waves inevitably dissipate even more energy. Our simulation explains why some clusters, such as Abell 2029, are cooling dominated, while in some other clusters, such as Perseus, various heating mechanisms including shock heating, turbulent dissipation and bubble mixing can all individually balance cooling, and together, over-heat the core.« less

  12. Nonstandard neutrino interactions in supernovae

    NASA Astrophysics Data System (ADS)

    Stapleford, Charles J.; Väänänen, Daavid J.; Kneller, James P.; McLaughlin, Gail C.; Shapiro, Brandon T.

    2016-11-01

    Nonstandard interactions (NSI) of neutrinos with matter can significantly alter neutrino flavor evolution in supernovae with the potential to impact explosion dynamics, nucleosynthesis, and the neutrinos signal. In this paper, we explore, both numerically and analytically, the landscape of neutrino flavor transformation effects in supernovae due to NSI and find a new, heretofore unseen transformation processes can occur. These new transformations can take place with NSI strengths well below current experimental limits. Within a broad swath of NSI parameter space, we observe symmetric and standard matter-neutrino resonances for supernovae neutrinos, a transformation effect previously only seen in compact object merger scenarios; in another region of the parameter space we find the NSI can induce neutrino collective effects in scenarios where none would appear with only the standard case of neutrino oscillation physics; and in a third region the NSI can lead to the disappearance of the high density Mikheyev-Smirnov-Wolfenstein resonance. Using a variety of analytical tools, we are able to describe quantitatively the numerical results allowing us to partition the NSI parameter according to the transformation processes observed. Our results indicate nonstandard interactions of supernova neutrinos provide a sensitive probe of beyond the Standard Model physics complementary to present and future terrestrial experiments.

  13. The Carnegie Supernova Project I. Photometry data release of low-redshift stripped-envelope supernovae

    NASA Astrophysics Data System (ADS)

    Stritzinger, M. D.; Anderson, J. P.; Contreras, C.; Heinrich-Josties, E.; Morrell, N.; Phillips, M. M.; Anais, J.; Boldt, L.; Busta, L.; Burns, C. R.; Campillay, A.; Corco, C.; Castellon, S.; Folatelli, G.; González, C.; Holmbo, S.; Hsiao, E. Y.; Krzeminski, W.; Salgado, F.; Serón, J.; Torres-Robledo, S.; Freedman, W. L.; Hamuy, M.; Krisciunas, K.; Madore, B. F.; Persson, S. E.; Roth, M.; Suntzeff, N. B.; Taddia, F.; Li, W.; Filippenko, A. V.

    2018-02-01

    The first phase of the Carnegie Supernova Project (CSP-I) was a dedicated supernova follow-up program based at the Las Campanas Observatory that collected science data of young, low-redshift supernovae between 2004 and 2009. Presented in this paper is the CSP-I photometric data release of low-redshift stripped-envelope core-collapse supernovae. The data consist of optical (uBgVri) photometry of 34 objects, with a subset of 26 having near-infrared (YJH) photometry. Twenty objects have optical pre-maximum coverage with a subset of 12 beginning at least five days prior to the epoch of B-band maximum brightness. In the near-infrared, 17 objects have pre-maximum observations with a subset of 14 beginning at least five days prior to the epoch of J-band maximum brightness. Analysis of this photometric data release is presented in companion papers focusing on techniques to estimate host-galaxy extinction and the light-curve and progenitor star properties of the sample. The analysis of an accompanying visual-wavelength spectroscopy sample of 150 spectra will be the subject of a future paper. Based on observations collected at Las Campanas Observatory.Tables 2-8 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A134

  14. Magnetar-powered Supernovae in Two Dimensions. II. Broad-line Supernovae Ic

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung; Moriya, Takashi J.; Woosley, Stan; Sukhbold, Tuguldur; Whalen, Daniel J.; Suwa, Yudai; Bromm, Volker

    2017-04-01

    Nascent neutron stars (NSs) with millisecond periods and magnetic fields in excess of 1016 Gauss can drive highly energetic and asymmetric explosions known as magnetar-powered supernovae. These exotic explosions are one theoretical interpretation for supernovae Ic-BL, which are sometimes associated with long gamma-ray bursts. Twisted magnetic field lines extract the rotational energy of the NS and release it as a disk wind or a jet with energies greater than 1052 erg over ˜20 s. What fraction of the energy of the central engine go into the wind and the jet remain unclear. We have performed two-dimensional hydrodynamical simulations of magnetar-powered supernovae (SNe) driven by disk winds and jets with the CASTRO code to investigate the effect of the central engine on nucleosynthetic yields, mixing, and light curves. We find that these explosions synthesize less than 0.05 {M}⊙ of {}56{Ni} and that this mass is not very sensitive to central engine type. The morphology of the explosion can provide a powerful diagnostic of the properties of the central engine. In the absence of a circumstellar medium, these events are not very luminous, with peak bolometric magnitudes of {M}b˜ -16.5 due to low {}56{Ni} production.

  15. Supernovae-generated high-velocity compact clouds

    NASA Astrophysics Data System (ADS)

    Yalinewich, A.; Beniamini, P.

    2018-05-01

    Context. A previous study claimed the discovery of an intermediate-mass black hole (IMBH). This hypothetical black hole was invoked in order to explain the high-velocity dispersion in one of several dense molecular clouds near the Galactic center. The same study considered the possibility that this cloud was due to a supernova explosion, but disqualified this scenario because no X-rays were detected. Aims: We here check whether a supernova explosion could have produced that cloud, and whether this explanation is more likely than an IMBH. More specifically, we wish to determine whether a supernova inside a dense molecular cloud would emit in the X-rays. Methods: We have approached this problem from two different directions. First, we performed an analytic calculation to determine the cooling rate by thermal bremsstrahlung and compared this time to the lifetime of the cloud. Second, we estimated the creation rate of these dense clouds in the central molecular zone (CMZ) region near the Galactic center, where they were observed. Based on this rate, we can place lower bounds on the total mass of IMBHs and clouds and compare this to the masses of the components of the CMZ. Results: We find that the cooling time of the supernova remnant inside a molecular cloud is shorter than its dynamical time. This means that the temperature in such a remnant would be much lower than that of a typical supernova remnant. At such a low temperature, the remnant is not expected to emit in the X-rays. We also find that to explain the rate at which such dense clouds are created requires fine-tuning the number of IMBHs. Conclusions: We find the supernova model to be a more likely explanation for the formation of high-velocity compact clouds than an IMBH.

  16. DISCOVERY OF X-RAY EMISSION FROM SUPERNOVA 1970G WITH CHANDRA: FILLING THE VOID BETWEEN SUPERNOVAE AND SUPERNOVA REMNANTS

    NASA Technical Reports Server (NTRS)

    Immler, Stefan; Kuntz, K. D.

    2005-01-01

    We report the discovery of X-ray emission from SN 1970G in M101, 35 yr after its outburst, using deep X-ray imaging with the Chundra X-Ray Observatory. The Chandra ACIS spectrum shows that the emission is soft (52 keV) and characteristic of the reverse-shock region. The X-ray luminosity, Lo,,, = (1.1 3 0.2) x lo3# ergs s-1, is likely caused by the interaction of the supernova shock with dense circumstellar matter. If the material was deposited by the stellar wind from the progenitor, a mass-loss rate of M = (2.6 ? 0.4) x M, yr-I (v,/lO km s-I) is inferred. Utilizing the high-resolution Chandra ACIS data of SN 1970G and its environment, we reconstruct the X-ray lightcurve from previous ROSAT HRI, PSPC, and XMM-Newton EPIC observations, and find a best-fit linear rate of decline of L cc t-# with index s = 2.7 t 0.9 over a period of -20-35 yr after the outburst. As the oldest supernova detected in X-rays, SN 1970G allows, for the first time, direct observation of the transition from a supenova to its supernova remnant phase.

  17. Acquiring information about neutrino parameters by detecting supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2010-08-01

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle θ13, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about θ13 and neutrino masses by detecting supernova neutrinos. We apply these methods to some current neutrino experiments.

  18. The Hubble Space Telescope Cluster Supernova Survey. III. Correlated

    Science.gov Websites

    Properties SAO/NASA ADS Astronomy Abstract Service Title: The Hubble Space Telescope Cluster Street, Cambridge, MA 02138, USA), AF(Department of Physics and Astronomy, University of Utah, Salt Lake , USA), AH(Institute of Astronomy, Graduate School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka

  19. Diffuse neutrino supernova background as a cosmological test

    NASA Astrophysics Data System (ADS)

    Barranco, J.; Bernal, A.; Delepine, D.

    2018-05-01

    The future detection and measurement of the diffuse neutrino supernova background will provide us with information about supernova neutrino emission and the cosmic core-collapse supernova rate. Little has been said about the information that this measurement could give us about the expansion history of the Universe. The purpose of this article is to study the change of the predicted diffuse supernova neutrino background as a function of the cosmological model. In particular, we study three different models: the Λ–Cold Dark Matter model, the Logotropic universe and a bulk viscous matter-dominated universe. By fitting the free parameters of each model with the supernova Ia probe, we calculate the predicted number of events in these three models. We found that the spectra and number of events for the Λ–Cold dark matter model and the Logotropic model are almost indistinguishable, while a bulk viscous matter-dominated cosmological model predicts more events.

  20. UBVRIz LIGHT CURVES OF 51 TYPE II SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galbany, Lluis; Hamuy, Mario; Jaeger, Thomas de

    We present a compilation of UBVRIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986–2003: the Cerro Tololo Supernova Survey, the Calán/Tololo Supernova Program (C and T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) frommore » maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being shorter (longer) for larger (smaller) s values.« less

  1. NASA Scientists Witness a Supernova Cosmic Rite of Passage

    NASA Astrophysics Data System (ADS)

    2005-11-01

    Scientists using NASA's Chandra X-ray Observatory have witnessed a cosmic rite of passage, the transition from a supernova to a supernova remnant, a process that has never been seen in much detail until now, leaving it poorly defined. A supernova is a massive star explosion; the remnant is the beautiful glowing shell that evolves afterwards. When does a supernova become supernova remnant? When does the shell appear and what powers its radiant glow? A science team led by Dr. Stefan Immler of NASA's Goddard Space Flight Center, Greenbelt, Md., has taken a fresh look at a supernova that exploded in 1970, called SN 1970G, just off the handle of the Big Dipper. This is the oldest supernova ever seen by X-ray telescopes. Chandra X-ray Image of SN 1970G Chandra X-ray Image of SN 1970G "Some astronomers have thought there's a moment when the supernova remnant magically turns on years after the supernova itself has faded away, when the shock wave of the explosion finally hits and lights up the interstellar medium," said Immler. "By contrast, our results show that a new supernova quickly and seamlessly evolves into a supernova remnant. The star's own debris, and not the interstellar medium gas, fuels the remnant." These results appear in The Astrophysical Journal, co-authored by Dr. Kip Kuntz, also of Goddard. They support previous Chandra observations of SN 1987A by Dr. Sangwook Park of Penn State. Using new data from Chandra and archived data from the European-led ROSAT and XMM-Newton observatories, Immler and Kuntz pieced together how SN 1970G evolved over the years. They found telltale signs of a supernova remnant - bright X-ray light - yet no evidence of interstellar gas, even across a distance around the site of the explosion 35 times larger than our solar system. Instead, the material that is heated by the supernova shock to glow in X-ray light, what we call the remnant, is from the stellar wind of the star itself and not distant gas in the interstellar medium. This

  2. OGLE-2014-SN-073 as a fallback accretion powered supernova

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Terreran, Giacomo; Blinnikov, Sergei I.

    2018-03-01

    We investigate the possibility that the energetic Type II supernova OGLE-2014-SN-073 is powered by a fallback accretion following the failed explosion of a massive star. Taking massive hydrogen-rich supernova progenitor models, we estimate the fallback accretion rate and calculate the light-curve evolution of supernovae powered by the fallback accretion. We find that such fallback accretion powered models can reproduce the overall observational properties of OGLE-2014-SN-073. It may imply that some failed explosions could be observed as energetic supernovae like OGLE-2014-SN-073 instead of faint supernovae as previously proposed.

  3. zBEAMS: a unified solution for supernova cosmology with redshift uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Ethan; Lochner, Michelle; Bassett, Bruce A.

    Supernova cosmology without spectra will be an important component of future surveys such as LSST. This lack of supernova spectra results in uncertainty in the redshifts which, if ignored, leads to significantly biased estimates of cosmological parameters. Here we present a hierarchical Bayesian formalism— zBEAMS—that addresses this problem by marginalising over the unknown or uncertain supernova redshifts to produce unbiased cosmological estimates that are competitive with supernova data with spectroscopically confirmed redshifts. zBEAMS provides a unified treatment of both photometric redshifts and host galaxy misidentification (occurring due to chance galaxy alignments or faint hosts), effectively correcting the inevitable contamination inmore » the Hubble diagram. Like its predecessor BEAMS, our formalism also takes care of non-Ia supernova contamination by marginalising over the unknown supernova type. We illustrate this technique with simulations of supernovae with photometric redshifts and host galaxy misidentification. A novel feature of the photometric redshift case is the important role played by the redshift distribution of the supernovae.« less

  4. Color Dispersion as an Indicator of Stellar Population Complexity: Insights from the Pixel Color–Magnitude Diagrams of 32 Bright Galaxies in Abell 1139 and Abell 2589

    NASA Astrophysics Data System (ADS)

    Lee, Joon Hyeop; Pak, Mina; Lee, Hye-Ran; Oh, Sree

    2018-04-01

    We investigate the properties of bright galaxies of various morphological types in Abell 1139 and Abell 2589, using pixel color–magnitude diagram (pCMD) analysis. The sample contains 32 galaxies brighter than M r = ‑21.3 mag with spectroscopic redshifts, which are deeply imaged in the g and r bands using the MegaCam mounted on the Canada–France–Hawaii Telescope. After masking contaminants with two-step procedures, we examine how the detailed properties in the pCMDs depend on galaxy morphology and infrared color. The mean g ‑ r color as a function of surface brightness (μ r ) in the pCMD of a galaxy shows good performance in distinguishing between early- and late-type galaxies, but it is not perfect because of the similarity between elliptical galaxies and bulge-dominated spiral galaxies. On the other hand, the g ‑ r color dispersion as a function of μ r works better. We find that the best set of parameters for galaxy classification is a combination of the minimum color dispersion at μ r ≤ 21.2 mag arcsec‑2 and the maximum color dispersion at 20.0 ≤ μ r ≤ 21.0 mag arcsec‑2 the latter reflects the complexity of stellar populations at the disk component in a typical spiral galaxy. Finally, the color dispersion measurements of an elliptical galaxy appear to be correlated with the Wide-field Infrared Survey Explorer infrared color ([4.6]–[12]). This indicates that the complexity of stellar populations in an elliptical galaxy is related to its recent star formation activities. From this observational evidence, we infer that gas-rich minor mergers or gas interactions may have usually occurred during the recent growth of massive elliptical galaxies.

  5. From Supernovae to Neutron Stars

    NASA Astrophysics Data System (ADS)

    Suwa, Yudai

    A core-collapse supernova is a generation site of a neutron star as well as one of the largest explosions in the universe. This article gives a brief overview of the studies on supernova explosion mechanism. Basic picture of the explosion mechanism, the method to solve neutrino transfer equation, the impact of the nuclear equation of state on the explosion, and long-term simulation of neutron star evolution from the onset of the explosion are presented.

  6. Red supergiants as supernova progenitors

    NASA Astrophysics Data System (ADS)

    Davies, Ben

    2017-09-01

    It is now well-established from pre-explosion imaging that red supergiants (RSGs) are the direct progenitors of Type-IIP supernovae. These images have been used to infer the physical properties of the exploding stars, yielding some surprising results. In particular, the differences between the observed and predicted mass spectrum has provided a challenge to our view of stellar evolutionary theory. However, turning what is typically a small number of pre-explosion photometric points into the physical quantities of stellar luminosity and mass requires a number of assumptions about the spectral appearance of RSGs, as well as their evolution in the last few years of life. Here I will review what we know about RSGs, with a few recent updates on how they look and how their appearance changes as they approach supernova. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  7. Characterizing Dark Energy Through Supernovae

    NASA Astrophysics Data System (ADS)

    Davis, Tamara M.; Parkinson, David

    Type Ia supernovae are a powerful cosmological probe that gave the first strong evidence that the expansion of the universe is accelerating. Here we provide an overview of how supernovae can go further to reveal information about what is causing the acceleration, be it dark energy or some modification to our laws of gravity. We first review the methods of statistical inference that are commonly used, making a point of separating parameter estimation from model selection. We then summarize the many different approaches used to explain or test the acceleration, including parametric models (like the standard model, ΛCDM), nonparametric models, dark fluid models such as quintessence, and extensions to standard gravity. Finally, we also show how supernova data can be used beyond the Hubble diagram, to give information on gravitational lensing and peculiar velocities that can be used to distinguish between models that predict the same expansion history.

  8. Late formation of silicon carbide in type II supernovae

    PubMed Central

    Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua

    2018-01-01

    We have found that individual presolar silicon carbide (SiC) dust grains from supernovae show a positive correlation between 49Ti and 28Si excesses, which is attributed to the radioactive decay of the short-lived (t½ = 330 days) 49V to 49Ti in the inner highly 28Si-rich Si/S zone. The 49V-49Ti chronometer shows that these supernova SiC dust grains formed at least 2 years after their parent stars exploded. This result supports recent dust condensation calculations that predict a delayed formation of carbonaceous and SiC grains in supernovae. The astronomical observation of continuous buildup of dust in supernovae over several years can, therefore, be interpreted as a growing addition of C-rich dust to the dust reservoir in supernovae. PMID:29376119

  9. Discovery of Most Recent Supernova in Our Galaxy

    NASA Astrophysics Data System (ADS)

    2008-05-01

    The most recent supernova in our Galaxy has been discovered by tracking the rapid expansion of its remains. This result, using NASA's Chandra X-ray Observatory and NRAO's Very Large Array (VLA), has implications for understanding how often supernovas explode in the Milky Way galaxy. The supernova explosion occurred about 140 years ago, making it the most recent supernova in the Milky Way as measured in Earth's time frame. Previously, the last known galactic supernova occurred around 1680, based on studying the expansion of its remnant Cassiopeia A. X-ray Image Radio and X-ray Images The recent supernova explosion was not seen in optical light about 140 years ago because it occurred close to the center of the Galaxy, and is embedded in a dense field of gas and dust. This made it about a trillion times fainter, in optical light, than an unobscured supernova. However, the supernova remnant it caused, G1.9+0.3, is now seen in X-ray and radio images. "We can see some supernova explosions with optical telescopes across half of the Universe, but when they're in this murk we can miss them in our own cosmic backyard," said Stephen Reynolds of North Carolina State University, who led the Chandra study. "Fortunately, the expanding gas cloud from the explosion shines brightly in radio waves and X-rays for thousands of years. X-ray and radio telescopes can see through all that obscuration and show us what we've been missing." Astronomers regularly observe supernovas in other galaxies like ours, and based on those rates, estimate that about three should explode every century in our Milky Way, although these estimates have large margins of error. People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act Oldest Known Objects Are Surprisingly Immature Action Replay of Powerful Stellar Explosion Milky Way’s Giant Black Hole Awoke from Slumber 300 Years Ago "If the supernova rate estimates are correct, there should be the remnants of

  10. Type Ia supernovae: explosions and progenitors

    NASA Astrophysics Data System (ADS)

    Kerzendorf, Wolfgang Eitel

    2011-08-01

    Supernovae are the brightest explosions in the universe. Supernovae in our Galaxy, rare and happening only every few centuries, have probably been observed since the beginnings of mankind. At first they were interpreted as religious omens but in the last half millennium they have increasingly been used to study the cosmos and our place in it. Tycho Brahe deduced from his observations of the famous supernova in 1572, that the stars, in contrast to the widely believe Aristotelian doctrine, were not immutable. More than 400 years after Tycho made his paradigm changing discovery using SN 1572, and some 60 years after supernovae had been identified as distant dying stars, two teams changed the view of the world again using supernovae. The found that the Universe was accelerating in its expansion, a conclusion that could most easily be explained if more than 70% of the Universe was some previously un-identified form of matter now often referred to as `Dark Energy'. Beyond their prominent role as tools to gauge our place in the Universe, supernovae themselves have been studied well over the past 75 years. We now know that there are two main physical causes of these cataclysmic events. One of these channels is the collapse of the core of a massive star. The observationally motivated classes Type II, Type Ib and Type Ic have been attributed to these events. This thesis, however is dedicated to the second group of supernovae, the thermonuclear explosions of degenerate carbon and oxygen rich material and lacking hydrogen - called Type Ia supernovae (SNe Ia). White dwarf stars are formed at the end of a typical star's life when nuclear burning ceases in the core, the outer envelope is ejected, with the degenerate core typically cooling for eternity. Theory predicts that such stars will self ignite when close to 1.38 Msun (called the Chandrasekhar Mass). Most stars however leave white dwarfs with 0.6 Msun, and no star leaves a remnant as heavy as 1.38 M! sun, which suggests

  11. Neutrino flavor instabilities in a time-dependent supernova model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbar, Sajad; Duan, Huaiyu

    2015-10-19

    In this study, a dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, stationary supernova model which possesses the (spatial) spherical symmetry about the center of the supernova and the (directional) axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this letter we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collectivemore » neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.« less

  12. Deep Recurrent Neural Networks for Supernovae Classification

    NASA Astrophysics Data System (ADS)

    Charnock, Tom; Moss, Adam

    2017-03-01

    We apply deep recurrent neural networks, which are capable of learning complex sequential information, to classify supernovae (code available at https://github.com/adammoss/supernovae). The observational time and filter fluxes are used as inputs to the network, but since the inputs are agnostic, additional data such as host galaxy information can also be included. Using the Supernovae Photometric Classification Challenge (SPCC) data, we find that deep networks are capable of learning about light curves, however the performance of the network is highly sensitive to the amount of training data. For a training size of 50% of the representational SPCC data set (around 104 supernovae) we obtain a type-Ia versus non-type-Ia classification accuracy of 94.7%, an area under the Receiver Operating Characteristic curve AUC of 0.986 and an SPCC figure-of-merit F 1 = 0.64. When using only the data for the early-epoch challenge defined by the SPCC, we achieve a classification accuracy of 93.1%, AUC of 0.977, and F 1 = 0.58, results almost as good as with the whole light curve. By employing bidirectional neural networks, we can acquire impressive classification results between supernovae types I, II and III at an accuracy of 90.4% and AUC of 0.974. We also apply a pre-trained model to obtain classification probabilities as a function of time and show that it can give early indications of supernovae type. Our method is competitive with existing algorithms and has applications for future large-scale photometric surveys.

  13. Supernova neutrino detection in LZ

    NASA Astrophysics Data System (ADS)

    Khaitan, D.

    2018-02-01

    In the first 10 seconds of a core-collapse supernova, almost all of its progenitor's gravitational potential, O(1053 ergs), is carried away in the form of neutrinos. These neutrinos, with O(10 MeV) kinetic energy, can interact via coherent elastic neutrino-nucleus scattering (CEνNS) depositing O(1 keV) in detectors. In this work we describe the performances of low-background dark matter detectors, such as LUX-ZEPLIN (LZ), optimized for detecting low-energy depositions, in detecting these neutrino interactions. For instance, a 27 Msolar supernova at 10 kpc is expected to produce ~350 neutrino interactions in the 7-tonne liquid xenon active volume of LZ. Based on the LS220 EoS neutrino flux model for a SN, the Noble Element Simulation Technique (NEST), and predicted CEνNS cross-sections for xenon, to study energy deposition and detection of SN neutrinos in LZ. We simulate the response of the LZ data acquisition system (DAQ) and demonstrate its capability and limitations in handling this interaction rate. We present an overview of the LZ detector, focusing on the benefits of liquid xenon for supernova neutrino detection. We discuss energy deposition and detector response simulations and their results. We present an analysis technique to reconstruct the total number of neutrinos and the time of the supernova core bounce.

  14. Supernova neutrinos and explosive nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Mathews, G. J.; Nakamura, K.; Shibagaki, S.; Suzuki, T.

    2014-05-01

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes 7Li, 11B, 92Nb, 138La and 180Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ13, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements 11B and 7Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ13, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  15. The All-Sky Automated Survey for Supernovae

    NASA Astrophysics Data System (ADS)

    Bersier, D.

    2016-12-01

    This is an overview of the All-Sky Automated Survey for SuperNovae - ASAS-SN. We briefly present the hardware and capabilities of the survey and describe the most recent science results, in particular tidal disruption events and supernovae, including the brightest SN ever found.

  16. Recent Hubble Space Telescope Imaging of the Light Echoes of Supernova 2014J in M 82 and Supernova 2016adj in Centaurus A

    NASA Astrophysics Data System (ADS)

    Lawrence, Stephen S.; Hyder, Ali; Sugerman, Ben; Crotts, Arlin P. S.

    2017-06-01

    We report on our ongoing use of Hubble Space Telescope (HST) imaging to monitor the scattered light echoes of recent heavily-extincted supernovae in two nearby, albeit unusual, galaxies.Supernova 2014J was a highly-reddened Type Ia supernova that erupted in the nearby irregular star-forming galaxy M 82 in 2014 January. It was discovered to have light echo by Crotts (2016) in early epoch HST imaging and has been further described by Yang, et al. (2017) based on HST imaging through late 2014. Our ongoing monitoring in the WFC3 F438W, F555W, and F814W filters shows that, consistent with Crotts (2106) and Yang, et al. (2017), throughout 2015 and 2016 the main light echo arc expanded through a dust complex located approximately 230 pc in the foreground of the supernova. This main light echo has, however, faded dramatically in our most recent HST imaging from 2017 March. The supernova itself has also faded to undetectable levels by 2017 March.Supernova 2016adj is a highly-reddened core-collapse supernova that erupted inside the unusual dust lane of the nearby giant elliptical galaxy Centaurus A (NGC 5128) in 2016 February. It was discovered to have a light echo by Sugerman & Lawrence (2016) in early epoch HST imaging in 2016 April. Our ongoing monitoring in the WFC3 F438W, F547M, and F814W filters shows a slightly elliptical series of light echo arc segments hosted by a tilted dust complex ranging approximately 150--225 pc in the foreground of the supernova. The supernova itself has also faded to undetectable levels by 2017 April.References: Crotts, A. P. S., ApJL, 804, L37 (2016); Yang et al., ApJ, 834, 60 (2017); Sugerman, B. and Lawrence, S., ATel #8890 (2016).

  17. RELICS: Reionization Lensing Cluster Survey - Discovering Brightly Lensed Distant Galaxies for JWST

    NASA Astrophysics Data System (ADS)

    Coe, Dan; Bradley, Larry; Salmon, Brett; Avila, Roberto J.; Ogaz, Sara; Bradac, Marusa; Huang, Kuang-Han; Strait, Victoria; Hoag, Austin; Sharon, Keren q.; Cerny, Catherine; Paterno-Mahler, Rachel; Johnson, Traci Lin; Mahler, Guillaume; Zitrin, Adi; Sendra Server, Irene; Acebron, Ana; Cibirka, Nathália; Rodney, Steven; Strolger, Louis; Riess, Adam; Dawson, William; Jones, Christine; Andrade-Santos, Felipe; Lovisari, Lorenzo; Czakon, Nicole; Umetsu, Keiichi; Trenti, Michele; Vulcani, Benedetta; Carrasco, Daniela; Livermore, Rachael; Stark, Daniel P.; Mainali, Ramesh; Frye, Brenda; Oesch, Pascal; Lam, Daniel; Toft, Sune; Ryan, Russell; Peterson, Avery; Past, Matthew; Kikuchihara, Shotaro; Ouchi, Masami; Oguri, Masamune

    2018-01-01

    The Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program has completed observations of 41 massive galaxy clusters with 188 orbits of HST ACS and WFC3/IR imaging and 390 hours of Spitzer IRAC imaging. This poster presents an overview of the program and data releases. Reduced images, catalogs, and lens models for all clusters are now available on MAST. RELICS is studying the clusters, supernovae, and lensed high-redshift galaxies. A companion poster presents our high-redshift results: over 300 lensed z ~ 6 - 10 candidates, including some of the brightest known at these redshifts (Salmon et al. 2018). These will be excellent targets for detailed follow-up study in JWST Cycle 1 GO proposals.

  18. Amplification and polarization of supernovae by gravitational lensing

    NASA Technical Reports Server (NTRS)

    Schneider, P.; Wagoner, Robert V.

    1987-01-01

    The gravitational lensing of supernovae by individual masses which could comprise the dark matter is analyzed. Detailed predictions of the amplification and polarization are presented, including effects of a galactic environment. Their time dependence is produced by the expansion of the supernovae beam within the lens. The fraction of supernovae which might thus be identified as being lensed in surveys at proposed limiting magnitudes is estimated. These two effects could provide the only known unique signature of microlensing.

  19. STRESS Counting Supernovae

    NASA Astrophysics Data System (ADS)

    Botticella, M. T.; Cappellaro, E.; Riello, M.; Greggio, L.; Benetti, S.; Patat, F.; Turatto, M.; Altavilla, G.; Pastorello, A.; Valenti, S.; Zampieri, L.; Harutyunyan, A.; Pignata, G.; Taubenberger, S.

    2008-12-01

    The rate of occurrence of supernovae (SNe) is linked to some of the basic ingredients of galaxy evolution, such as the star formation rate, the chemical enrichment and feedback processes. SN rates at intermediate redshift and their dependence on specific galaxy properties have been investigated in the Southern inTermediate Redshift ESO Supernova Search (STRESS). The rate of core collapse SNe (CC SNe) at a redshift of around 0.25 is found to be a factor two higher than the local value, whereas the SNe Ia rate remains almost constant. SN rates in red and blue galaxies were also measured and it was found that the SNe Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe.

  20. Effect of Supernovae on the Local Interstellar Material

    NASA Astrophysics Data System (ADS)

    Frisch, Priscilla; Dwarkadas, Vikram V.

    A range of astronomical data indicates that ancient supernovae created the galactic environment of the Sun and sculpted the physical properties of the interstellar medium near the heliosphere. In this paper, we review the characteristics of the local interstellar medium that have been affected by supernovae. The kinematics, magnetic field, elemental abundances, and configuration of the nearest interstellar material support the view that the Sun is at the edge of the Loop I superbubble, which has merged into the low-density Local Bubble. The energy source for the higher temperature X-ray-emitting plasma pervading the Local Bubble is uncertain. Winds from massive stars and nearby supernovae, perhaps from the Sco-Cen association, may have contributed radioisotopes found in the geologic record and galactic cosmic ray population. Nested supernova shells in the Orion and Sco-Cen regions suggest spatially distinct sites of episodic star formation. The heliosphere properties vary with the pressure of the surrounding interstellar cloud. A nearby supernova would modify this pressure equilibrium and thereby severely disrupt the heliosphere as well as the local interstellar medium.

  1. Essential Ingredients in Core-collapse Supernovae

    DOE PAGES

    Hix, William Raphael; Lentz, E. J.; Endeve, Eirik; ...

    2014-03-27

    Marking the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae bring together physics at a wide range in spatial scales, from kilometer-sized hydrodynamic motions (eventually growing to gigameter scale) down to femtometer scale nuclear reactions. Carrying 10more » $$^{44}$$ joules of kinetic energy and a rich-mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up ourselves and our solar system. We will discuss our emerging understanding of the convectively unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino-radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Recent multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.« less

  2. Imagery and spectroscopy of supernova remnants and H-2 regions

    NASA Technical Reports Server (NTRS)

    Dufour, R. J.

    1984-01-01

    Research activities relating to supernova remnants were summarized. The topics reviewed include: progenitor stars of supernova remnants, UV/optical/radio/X-ray imagery of selected regions in the Cygnus Loop, UV/optical spectroscopy of the Cygnus Loop spur, and extragalactic supernova remnant spectra.

  3. Resonant Spin-Flavor Conversion of Supernova Neutrinos

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Sato, K.

    2003-07-01

    We investigate resonant spin-flavor (RSF) conversions of supernova neutrinos which are induced by the interaction of neutrino magnetic moment and supernova magnetic fields. With a new diagram we propose, it is found that four conversions occur in supernovae, two are induced by the RSF effect and two by the pure Mikheyev-Smirnov-Wolfenstein (MSW) effect. The realistic numerical calculation of neutrino conversions indicates that the RSF-induced νe ↔ ντ tran¯ -12 9 -1 sition occurs efficiently, when µν > 10 µB (B0 /5 × 10 G) , where B0 is the strength of the magnetic field at the surface of iron core. We also evaluate the energy spectrum as a function of µν B0 at the super-Kamiokande detector using the calculated conversion probabilities, and find that the spectral deformation might have possibility to provide useful information on the neutrino magnetic moment as well as the magnetic field strength in supernovae.

  4. Red supergiants as supernova progenitors.

    PubMed

    Davies, Ben

    2017-10-28

    It is now well-established from pre-explosion imaging that red supergiants (RSGs) are the direct progenitors of Type-IIP supernovae. These images have been used to infer the physical properties of the exploding stars, yielding some surprising results. In particular, the differences between the observed and predicted mass spectrum has provided a challenge to our view of stellar evolutionary theory. However, turning what is typically a small number of pre-explosion photometric points into the physical quantities of stellar luminosity and mass requires a number of assumptions about the spectral appearance of RSGs, as well as their evolution in the last few years of life. Here I will review what we know about RSGs, with a few recent updates on how they look and how their appearance changes as they approach supernova.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  5. Highlight on Supernova Early Warning at Daya Bay

    NASA Astrophysics Data System (ADS)

    Wei, Hanyu

    Providing an early warning of supernova burst neutrinos is of importance in studying both supernova dynamics and neutrino physics. The Daya Bay Reactor Neutrino Experiment, with a unique feature of multiple liquid scintillator detectors, is sensitive to the full energy spectrum of supernova burst electron-antineutrinos. By utilizing 8 Antineutrino Detectors (ADs) in the three different experimental halls which are about 1 km's apart from each other, we obtain a powerful and prompt rejection of muon spallation background than single-detector experiments with the same target volume. A dedicated trigger system embedded in the data acquisition system has been installed to allow the detection of a coincidence of neutrino signals of all ADs via an inverse beta-decay (IBD) within a 10-second window, thus providing a robust early warning of a supernova occurrence within the Milky Way. An 8-AD associated supernova trigger table has been established theoretically to tabulate the 8-AD event counts' coincidence vs. the trigger rate. As a result, a golden trigger threshold, i.e. with a false alarm rate < 1/3-months, can be set as low as 6 candidates among the 8 detectors, leading to a 100% detection probability for all 1987A type supernova bursts at the distance to the Milky Way center and a 96% detection probability to those at the edge of the Milky Way.

  6. Light-curve and spectral properties of ultra-stripped core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.

    2017-11-01

    We discuss light-curve and spectral properties of ultra-stripped core-collapse supernovae. Ultra-stripped supernovae are supernovae with ejecta masses of only ~0.1M ⊙ whose progenitors lose their envelopes due to binary interactions with their compact companion stars. We follow the evolution of an ultra-stripped supernova progenitor until core collapse and perform explosive nucleosynthesis calculations. We then synthesize light curves and spectra of ultra-stripped supernovae based on the nucleosynthesis results. We show that ultra-stripped supernovae synthesize ~0.01M ⊙ of the radioactive 56Ni, and their typical peak luminosity is around 1042 erg s-1 or -16 mag. Their typical rise time is 5 - 10 days. By comparing synthesized and observed spectra, we find that SN 2005ek and some of so-called calcium-rich gap transients like PTF10iuv may be related to ultra-stripped supernovae.

  7. Suzaku Finds "Fossil" Fireballs from Supernovae

    NASA Image and Video Library

    2017-12-08

    Suzaku Finds "Fossil" Fireballs from Supernovae In a supernova remnant known as the Jellyfish Nebula, Suzaku detected X-rays from fully ionized silicon and sulfur -- an imprint of higher-temperature conditions immediately following the star's explosion. The nebula is about 65 light-years across. (12/30/2009) Credit: JAXA/NASA/Suzaku To learn more go to: www.nasa.gov/mission_pages/astro-e2/news/fossil-fireballs...

  8. Dust in a Type Ia Supernova Progenitor: Spitzer Spectroscopy of Kepler's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Williams, Brian J.; Borkowski, Kazimierz; Reynolds, Stephen P.; Ghavamian, Parviz; Blair, William P.; Long, Knox S.; Sankrit, Ravi

    2012-01-01

    Characterization of the relatively poorly-understood progenitor systems of Type Ia supernovae is of great importance in astrophysics, particularly given the important cosmological role that these supernovae play. Kepler's Supernova Remnant, the result of a Type Ia supernova, shows evidence for an interaction with a dense circumstellar medium (CSM), suggesting a single-degenerate progenitor system. We present 7.5-38 micron IR spectra of the remnant, obtained with the Spitzer Space Telescope, dominated by emission from warm dust. Broad spectral features at 10 and 18 micron, consistent with various silicate particles, are seen throughout. These silicates were likely formed in the stellar outflow from the progenitor system during the AGB stage of evolution, and imply an oxygen-rich chemistry. In addition to silicate dust, a second component, possibly carbonaceous dust, is necessary to account for the short-wavelength IRS and IRAC data. This could imply a mixed chemistry in the atmosphere of the progenitor system. However, non-spherical metallic iron inclusions within silicate grains provide an alternative solution. Models of collisionally-heated dust emission from fast shocks (> 1000 km/s) propagating into the CSM can reproduce the majority of the emission associated with non-radiative filaments, where dust temperatures are approx 80-100 K, but fail to account for the highest temperatures detected, in excess of 150 K. We find that slower shocks (a few hundred km/s) into moderate density material (n(sub o) approx 50-100 / cubic cm) are the only viable source of heating for this hottest dust. We confirm the finding of an overall density gradient, with densities in the north being an order of magnitude greater than those in the south.

  9. A more direct measure of supernova rates in starburst galaxies

    NASA Technical Reports Server (NTRS)

    Van Buren, Dave; Greenhouse, Matthew A.

    1994-01-01

    We determine ages for young supernova remnants in the starburst galaxies M82 and NGC 253 by applying Chevalier's model for radio emission from supernova blast waves expanding into the ejecta of their precursor stars. Absolute ages are determined by calibrating the model with radio observations of Cas A. We derive supernova rates of 0.10 and 0.08/yr for M82 and NGC 253, respectively. Assuming L (sub FIR) to be proportional to the supernova rate, we find r(sub SN) approximately equal 2 x 10(exp -12) x L(sub FIR), solar yr(exp -1) for these archetypal starburst galaxies. This approach is unique in that the supernova rate is derived from direct observation of supernova remnants rather than from star formation rates and an assumed initial mass function (IMF). We suggest that the approach presented here can be used to derive star-formation rates that are more directly related to observable quantities than those derived by other methods. We find that the supernova rate, far infrared (FIR) luminosity, and dynamical mass of the M82 starburst place few constraints on the initial mass function (IMF) slope and mass limits.

  10. The ν process in the innermost supernova ejecta

    NASA Astrophysics Data System (ADS)

    Sieverding, Andre; Martínez Pinedo, Gabriel; Langanke, Karlheinz; Harris, J. Austin; Hix, W. Raphael

    2018-01-01

    The neutrino-induced nucleosynthesis (ν process) in supernova explosions of massive stars of solar metallicity with initial main sequence masses between 13 and 30 M⊙ has been studied with an analytic explosion model using a new extensive set of neutrino-nucleus cross-sections and spectral properties that agree with modern supernova simulations. The production factors for the nuclei 7Li, 11B, 19F, 138La and 180Ta, are still significantly enhanced but do not reproduce the full solar abundances. We study the possible contribution of the innermost supernova eject to the production of the light elements 7Li and 11B with tracer particles based on a 2D supernova simulation of a 12 M⊙ progenitor and conclude, that a contribution exists but is negligible for the total yield for this explosion model.

  11. The impact of baryons on massive galaxy clusters: halo structure and cluster mass estimates

    NASA Astrophysics Data System (ADS)

    Henson, Monique A.; Barnes, David J.; Kay, Scott T.; McCarthy, Ian G.; Schaye, Joop

    2017-03-01

    We use the BAHAMAS (BAryons and HAloes of MAssive Systems) and MACSIS (MAssive ClusterS and Intercluster Structures) hydrodynamic simulations to quantify the impact of baryons on the mass distribution and dynamics of massive galaxy clusters, as well as the bias in X-ray and weak lensing mass estimates. These simulations use the subgrid physics models calibrated in the BAHAMAS project, which include feedback from both supernovae and active galactic nuclei. They form a cluster population covering almost two orders of magnitude in mass, with more than 3500 clusters with masses greater than 1014 M⊙ at z = 0. We start by characterizing the clusters in terms of their spin, shape and density profile, before considering the bias in both weak lensing and hydrostatic mass estimates. Whilst including baryonic effects leads to more spherical, centrally concentrated clusters, the median weak lensing mass bias is unaffected by the presence of baryons. In both the dark matter only and hydrodynamic simulations, the weak lensing measurements underestimate cluster masses by ≈10 per cent for clusters with M200 ≤ 1015 M⊙ and this bias tends to zero at higher masses. We also consider the hydrostatic bias when using both the true density and temperature profiles, and those derived from X-ray spectroscopy. When using spectroscopic temperatures and densities, the hydrostatic bias decreases as a function of mass, leading to a bias of ≈40 per cent for clusters with M500 ≥ 1015 M⊙. This is due to the presence of cooler gas in the cluster outskirts. Using mass weighted temperatures and the true density profile reduces this bias to 5-15 per cent.

  12. Discovery of the Most Distant Supernovae and the Quest for {Omega}

    DOE R&D Accomplishments Database

    Goldhaber, G.; Perlmutter, S.; Gabi, S.; Goobar, A.; Kim, A.; Kim, M.; Pain, R.; Pennypacker, C.; Small, I.; Boyle, B.

    1994-05-01

    A search for cosmological supernovae has discovered a number of a type Ia supernovae. In particular, one at z = 0.458 is the most distant supernovae yet observed. There is strong evidence from measurements of nearby type Ia supernovae that they can be considered as "standard candles". The authors plan to use these supernovae to measure the deceleration in the general expansion of the universe. The aim of their experiment is to try and observe and measure about 30 such distant supernovae in order to obtain a measurement of the deceleration parameter q{sub o} which is related to {Omega}. Here {Omega} is the ratio of the density of the universe to the critical density, and they expect a measurement with an accuracy of about 30%.

  13. Aspherical Supernovae and Oblique Shock Breakout

    NASA Astrophysics Data System (ADS)

    Afsariardchi, Niloufar; Matzner, Christopher D.

    2017-02-01

    In an aspherical supernova explosion, shock emergence is not simultaneous and non-radial flows develop near the stellar surface. Oblique shock breakouts tend to be easily developed in compact progenitors like stripped-envelop core collapse supernovae. According to Matzner et al. (2013), non-spherical explosions develop non-radial flows that alters the observable emission and radiation of a supernova explosion. These flows can limit ejecta speed, change the distribution of matter and heat of the ejecta, suppress the breakout flash, and most importantly engender collisions outside the star. We construct a global numerical FLASH hydrodynamic simulation in a two dimensional spherical coordinate, focusing on the non-relativistic, adiabatic limit in a polytropic envelope to see how these fundamental differences affect the early light curve of core-collapse SNe.

  14. The Rate of Core Collapse Supernovae to Redshift 2.5 from the CANDELS and CLASH Supernova Surveys

    NASA Astrophysics Data System (ADS)

    Strolger, Louis-Gregory; Dahlen, Tomas; Rodney, Steven A.; Graur, Or; Riess, Adam G.; McCully, Curtis; Ravindranath, Swara; Mobasher, Bahram; Shahady, A. Kristin

    2015-11-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey and Cluster Lensing And Supernova survey with Hubble multi-cycle treasury programs with the Hubble Space Telescope (HST) have provided new opportunities to probe the rate of core-collapse supernovae (CCSNe) at high redshift, now extending to z≈ 2.5. Here we use a sample of approximately 44 CCSNe to determine volumetric rates, RCC, in six redshift bins in the range 0.1\\lt z\\lt 2.5. Together with rates from our previous HST program, and rates from the literature, we trace a more complete history of {R}{CC}(z), with {R}{CC}=0.72+/- 0.06 yr-1 Mpc-3 10-4{h}703 at z\\lt 0.08, and increasing to {3.7}-1.6+3.1 yr-1 Mpc-3 10-4{h}703 to z≈ 2.0. The statistical precision in each bin is several factors better than than the systematic error, with significant contributions from host extinction, and average peak absolute magnitudes of the assumed luminosity functions for CCSN types. Assuming negligible time delays from stellar formation to explosion, we find these composite CCSN rates to be in excellent agreement with cosmic star formation rate density (SFRs) derived largely from dust-corrected rest-frame UV emission, with a scaling factor of k=0.0091+/- 0.0017 {M}⊙ -1, and inconsistent (to \\gt 95% confidence) with SFRs from IR luminous galaxies, or with SFR models that include simple evolution in the initial mass function over time. This scaling factor is expected if the fraction of the IMF contributing to CCSN progenitors is in the 8-50 M⊙ range. It is not supportive, however, of an upper mass limit for progenitors at \\lt 20 {M}⊙ .

  15. Determination of Cluster Distances from Chandra Imaging Spectroscopy and Sunyaev-Zeldovich Effect Measurements. I; Analysis Methods and Initial Results

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimiliano; Joy, Marshall K.; Carlstrom, John E.; LaRoque, Samuel J.

    2004-01-01

    X-ray and Sunyaev-Zeldovich Effect data ca,n be combined to determine the distance to galaxy clusters. High-resolution X-ray data are now available from the Chandra Observatory, which provides both spatial and spectral information, and interferometric radio measurements of the Sunyam-Zeldovich Effect are available from the BIMA and 0VR.O arrays. We introduce a Monte Carlo Markov chain procedure for the joint analysis of X-ray and Sunyaev-Zeldovich Effect data. The advantages of this method are the high computational efficiency and the ability to measure the full probability distribution of all parameters of interest, such as the spatial and spectral properties of the cluster gas and the cluster distance. We apply this technique to the Chandra X-ray data and the OVRO radio data for the galaxy cluster Abell 611. Comparisons with traditional likelihood-ratio methods reveal the robustness of the method. This method will be used in a follow-up paper to determine the distance of a large sample of galaxy clusters for which high-resolution Chandra X-ray and BIMA/OVRO radio data are available.

  16. The Carnegie Supernova Project: Intrinsic colors of type Ia supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Christopher R.; Persson, S. E.; Freedman, Wendy L.

    2014-07-01

    We present an updated analysis of the intrinsic colors of Type Ia supernova (SNe Ia) using the latest data release of the Carnegie Supernova Project. We introduce a new light-curve parameter very similar to stretch that is better suited for fast-declining events, and find that these peculiar types can be seen as extensions to the population of 'normal' SNe Ia. With a larger number of objects, an updated fit to the Lira relation is presented along with evidence for a dependence on the late-time slope of the B – V light-curves with stretch and color. Using the full wavelength rangemore » from u to H band, we place constraints on the reddening law for the sample as a whole and also for individual events/hosts based solely on the observed colors. The photometric data continue to favor low values of R{sub V} , though with large variations from event to event, indicating an intrinsic distribution. We confirm the findings of other groups that there appears to be a correlation between the derived reddening law, R{sub V} , and the color excess, E(B – V), such that larger E(B – V) tends to favor lower R{sub V} . The intrinsic u-band colors show a relatively large scatter that cannot be explained by variations in R{sub V} or by the Goobar power-law for circumstellar dust, but rather is correlated with spectroscopic features of the supernova and is therefore likely due to metallicity effects.« less

  17. Radial alignment of elliptical galaxies by the tidal force of a cluster of galaxies

    NASA Astrophysics Data System (ADS)

    Rong, Yu; Yi, Shu-Xu; Zhang, Shuang-Nan; Tu, Hong

    2015-08-01

    Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster are expected to point preferentially towards the centre of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work, an analytic model is formulated to simulate this effect. The deformation time-scale of a galaxy in a cluster is usually much shorter than the time-scale of change of the tidal force; the dynamical process of tidal interaction within the galaxy can thus be ignored. The equilibrium shape of a galaxy is then assumed to be the surface of equipotential that is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte Carlo method to calculate the radial orientation distribution of cluster galaxies, by assuming a Navarro-Frenk-White mass profile for the cluster and the initial ellipticity of field galaxies. The radial angles show a single-peak distribution centred at zero. The Monte Carlo simulations also show that a shift of the reference centre from the real cluster centre weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell 2744 are consistent with the simulated distribution.

  18. Direct Measurement of the Supernova Rate in Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Temi, Pasquale; Rank, David; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short times. Many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extintion is especially severe. Thus, determining the supernova rate in the active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micron emission line was the strongest line in the infrared spectrum for a period of a year and a half after the explosion. Since dust extintion is much less at 6.63 pm than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the NiII line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micron using ISOCAM to search for the NiII emission line characteristic of recent supernovae. We did not detect any NiII line emission brighter than a 5sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled to the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a NiII with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a NiII line luminosity greater than the line in SN1987A.

  19. CLUMP-3D: Testing ΛCDM with Galaxy Cluster Shapes

    NASA Astrophysics Data System (ADS)

    Sereno, Mauro; Umetsu, Keiichi; Ettori, Stefano; Sayers, Jack; Chiu, I.-Non; Meneghetti, Massimo; Vega-Ferrero, Jesús; Zitrin, Adi

    2018-06-01

    The ΛCDM model of structure formation makes strong predictions on the concentration and shape of dark matter (DM) halos, which are determined by mass accretion processes. Comparison between predicted shapes and observations provides a geometric test of the ΛCDM model. Accurate and precise measurements needs a full three-dimensional (3D) analysis of the cluster mass distribution. We accomplish this with a multi-probe 3D analysis of the X-ray regular Cluster Lensing and Supernova survey with Hubble (CLASH) clusters combining strong and weak lensing, X-ray photometry and spectroscopy, and the Sunyaev–Zel’dovich effect (SZe). The cluster shapes and concentrations are consistent with ΛCDM predictions. The CLASH clusters are randomly oriented, as expected given the sample selection criteria. Shapes agree with numerical results for DM-only halos, which hints at baryonic physics being less effective in making halos rounder.

  20. Problems with small area surveys: lensing covariance of supernova distance measurements.

    PubMed

    Cooray, Asantha; Huterer, Dragan; Holz, Daniel E

    2006-01-20

    While luminosity distances from type Ia supernovae (SNe) are a powerful probe of cosmology, the accuracy with which these distances can be measured is limited by cosmic magnification due to gravitational lensing by the intervening large-scale structure. Spatial clustering of foreground mass leads to correlated errors in SNe distances. By including the full covariance matrix of SNe, we show that future wide-field surveys will remain largely unaffected by lensing correlations. However, "pencil beam" surveys, and those with narrow (but possibly long) fields of view, can be strongly affected. For a survey with 30 arcmin mean separation between SNe, lensing covariance leads to a approximately 45% increase in the expected errors in dark energy parameters.

  1. Bridging the gap: from massive stars to supernovae

    PubMed Central

    Crowther, Paul A.; Janka, Hans-Thomas; Langer, Norbert

    2017-01-01

    Almost since the beginning, massive stars and their resultant supernovae have played a crucial role in the Universe. These objects produce tremendous amounts of energy and new, heavy elements that enrich galaxies, encourage new stars to form and sculpt the shapes of galaxies that we see today. The end of millions of years of massive star evolution and the beginning of hundreds or thousands of years of supernova evolution are separated by a matter of a few seconds, in which some of the most extreme physics found in the Universe causes the explosive and terminal disruption of the star. Key questions remain unanswered in both the studies of how massive stars evolve and the behaviour of supernovae, and it appears the solutions may not lie on just one side of the explosion or the other or in just the domain of the stellar evolution or the supernova astrophysics communities. The need to view massive star evolution and supernovae as continuous phases in a single narrative motivated the Theo Murphy international scientific meeting ‘Bridging the gap: from massive stars to supernovae’ at Chicheley Hall, UK, in June 2016, with the specific purpose of simultaneously addressing the scientific connections between theoretical and observational studies of massive stars and their supernovae, through engaging astronomers from both communities. This article is part of the themed issue ‘Bridging the gap: from massive stars to supernovae’. PMID:28923995

  2. An X-ray Luminous, Distant (z=0.78) Cluster of Galaxies

    NASA Technical Reports Server (NTRS)

    Donahue, Megan

    2001-01-01

    This granted funded ASCA studies of the most X-ray luminous clusters of galaxies in the Extended Medium Sensitivity Survey. These studies leveraged further observations with Chandra and sparked a new collaboration between the PI and John Carlstrom's Sunyaev-Zel'dovich team. The major scientific results due largely or in part from these observations: the first z=0.5-0.8 cluster temperature function, constraints on cluster evolution which showed definitively that the density of the universe divided by the critical density, Omega-m, could not be 1.0, constraints on cluster evolution limiting Omega_m to 0.2-0.5, independent of lambda, the first detections of intracluster iron in a z>0.6 cluster of galaxies. These results are independent of the supernova and cosmological microwave background results, and provide independent constraint on cosmological parameters.

  3. The evolution of red supergiants to supernovae

    NASA Astrophysics Data System (ADS)

    Beasor, Emma R.; Davies, Ben

    2017-11-01

    With red supergiants (RSGs) predicted to end their lives as Type IIP core collapse supernova (CCSN), their behaviour before explosion needs to be fully understood. Mass loss rates govern RSG evolution towards SN and have strong implications on the appearance of the resulting explosion. To study how the mass-loss rates change with the evolution of the star, we have measured the amount of circumstellar material around 19 RSGs in a coeval cluster. Our study has shown that mass loss rates ramp up throughout the lifetime of an RSG, with more evolved stars having mass loss rates a factor of 40 higher than early stage RSGs. Interestingly, we have also found evidence for an increase in circumstellar extinction throughout the RSG lifetime, meaning the most evolved stars are most severely affected. We find that, were the most evolved RSGs in NGC2100 to go SN, this extra extinction would cause the progenitor's initial mass to be underestimated by up to 9M⊙.

  4. The ν process in the innermost supernova ejecta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sieverding, Andre; Martínez-Pinedo, Gabriel; Langanke, Karlheinz

    2017-12-01

    The neutrino-induced nucleosynthesis (ν process) in supernova explosions of massive stars of solar metallicity with initial main sequence masses between 13 and 30 M⊙ has been studied with an analytic explosion model using a new extensive set of neutrino-nucleus cross-sections and spectral properties that agree with modern supernova simulations. The production factors for the nuclei 7Li, 11B, 19F, 138La and 180Ta, are still significantly enhanced but do not reproduce the full solar abundances. We study the possible contribution of the innermost supernova eject to the production of the light elements 7Li and 11B with tracer particles based on a 2Dmore » supernova simulation of a 12 M⊙ progenitor and conclude, that a contribution exists but is negligible for the total yield for this explosion model.« less

  5. Gamma-line emission from radioactivities produced in supernovae

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.; Timmes, F. X.

    1997-01-01

    The major targets for the gamma ray spectroscopy of supernovae are reviewed. The principle benefit of such observations is the insight provided into the mechanisms of supernova explosions, the distribution and nature of star forming regions in our Galaxy, and the history of the nucleosynthesis of our Galaxy. The emphasis is on two short lived species, Co-56 and Ti-44 which may be seen in individual events and two longer lived species, Al-26 and Fe-60, which can be seen as the cumulative production of many supernovae.

  6. Initial statistics from the Perth Automated Supernova Search

    NASA Astrophysics Data System (ADS)

    Williams, A. J.

    1997-08-01

    The Perth Automated Supernova Search uses the 61-cm PLAT (Perth Lowell Automated Telescope) at Perth Observatory, Western Australia. Since 1993 January 1, five confirmed supernovae have been found by the search. The analysis of the first three years of data is discussed, and preliminary results presented. We find a Type Ib/c rate of 0.43 +/- 0.43 SNu, and a Type IIP rate of 0.86 +/- 0.49 SNu, where SNu are 'supernova units'. These values are for a Hubble constant of 75 km per sec per Mpc.

  7. Rayleigh-Taylor mixing in supernova experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swisher, N. C.; Abarzhi, S. I., E-mail: snezhana.abarzhi@gmail.com; Kuranz, C. C.

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properlymore » accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order.« less

  8. The SuperNova Integral Field Spectrograph

    NASA Astrophysics Data System (ADS)

    Aldering, Gregory S.; Supernova Factory, Nearby

    2007-05-01

    The SuperNova Integral Field Spectrograph (SNIFS) is operated at the University of Hawaii 2.2 meter telescope on Mauna Kea by the Nearby Supernova Factory. The IFU has a 6x6 arcsecond field of view, and the combined blue and red channels simultaneously cover the full optical (320-1000 nm) spectral range. SNIFS was designed to allow spectrophotometry of supernovae under both photometric and non-photometric conditions. SNIFS is operated entirely remotely, in a quasi-automated mode, from as nearby as Hilo, Hawaii and as far away as Paris, France. Being mounted at the south bent Cassegrain focus of the UH 2.2-m, SNIFS is always available, either for regular Nearby Supernova Factory observations, or any of a range of programs conducted by astronomers at the University of Hawaii Institute for Astronomy. We illustrate some of the unique features of SNIFS and some of the science programs that have been undertaken using it. This work is supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, of the U.S. Department of Energy under Contracts No. DE-FG0-92ER40704, by a grant from the Gordon & Betty Moore Foundation, and in France by CNRS/IN2P3, CNRS/INSU and PNC.

  9. Supernova 1987A: 18 months later

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1989-01-01

    An overview of the significance for physics of the closest visual supernova in almost 400 years is presented. The supernova occurred in the Large Magellanic Cloud (LMC), approx. 50 kpc away. The supernova star was a massive star of approx. 15 to 20 solar mass. Observations now show that it was once a red giant but lost its outer envelope. The lower than standard luminosity and higher observed velocities are a natural consequence of the pre-supernova star being a blue rather than a red (supergiant). Of particular importance to physicsts is the detection of neutrinos from the event by detectors in the United States and Japan. Not only did this establish extra-solar system neutrino astronomy, but it also constrained the properties of neutrino. It is shown that the well established Kamioka-IMB neutrino burst experimentally implies an event with about 2 to 4 x 10 to the 53rd power ergs emitted in neutrinos and a temperature, T sub nu e, of between 4 and 4.5 MeV. This event is in excellent agreement with what one would expect from the gravitational core collapse of a massive star. The anticipated frequency of collapse events in our Galaxy is discussed.

  10. A Supernova Shockwaves

    NASA Image and Video Library

    2007-06-13

    Supernovae are the explosive deaths of the universe most massive stars. This false-color composite from NASA Spitzer Space Telescope and NASA Chandra X-ray Observatory shows the remnant of N132D, the wispy pink shell of gas at center.

  11. A low-energy core-collapse supernova without a hydrogen envelope.

    PubMed

    Valenti, S; Pastorello, A; Cappellaro, E; Benetti, S; Mazzali, P A; Manteca, J; Taubenberger, S; Elias-Rosa, N; Ferrando, R; Harutyunyan, A; Hentunen, V P; Nissinen, M; Pian, E; Turatto, M; Zampieri, L; Smartt, S J

    2009-06-04

    The final fate of massive stars depends on many factors. Theory suggests that some with initial masses greater than 25 to 30 solar masses end up as Wolf-Rayet stars, which are deficient in hydrogen in their outer layers because of mass loss through strong stellar winds. The most massive of these stars have cores which may form a black hole and theory predicts that the resulting explosion of some of them produces ejecta of low kinetic energy, a faint optical luminosity and a small mass fraction of radioactive nickel. An alternative origin for low-energy supernovae is the collapse of the oxygen-neon core of a star of 7-9 solar masses. No weak, hydrogen-deficient, core-collapse supernovae have hitherto been seen. Here we report that SN 2008ha is a faint hydrogen-poor supernova. We propose that other similar events have been observed but have been misclassified as peculiar thermonuclear supernovae (sometimes labelled SN 2002cx-like events). This discovery could link these faint supernovae to some long-duration gamma-ray bursts, because extremely faint, hydrogen-stripped core-collapse supernovae have been proposed to produce such long gamma-ray bursts, the afterglows of which do not show evidence of associated supernovae.

  12. A unified model of supernova driven by magnetic monopoles

    NASA Astrophysics Data System (ADS)

    Peng, Qiu-He; Liu, Jing-Jing; Chou, Chih-Kang

    2017-12-01

    In this paper, we first discuss a series of important but puzzling physical mechanisms concerning the energy source, various kinds of core collapsed supernovae explosion mechanisms during central gravitational collapse in astrophysics. We also discuss the puzzle of possible association of γ -ray burst with gravitational wave perturbation, the heat source for the molten interior of the core of the Earth and finally the puzzling problem of the cooling of white dwarfs. We then make use of the estimations for the space flux of magnetic monopoles (hereafter MMs) and nucleon decay induced by MMs (called the Rubakov-Callen (RC) effect) to obtain the luminosity due to the RC effect. In terms of the formula for this RC luminosity, we present a unified treatment for the heat source of the Earth's core, the energy source for the white dwarf interior, various kinds of core collapsed supernovae (Type II Supernova (SNII), Type Ib Supernova (SNIb), Type Ic Supernova (SNIc), Super luminous supernova (SLSN)), and the production mechanism for γ -ray burst. This unified model can also be used to reasonably explain the possible association of the short γ -ray burst detected by the Fermi γ -ray Burst Monitoring Satellite (GBM) with the LIGO gravitational wave event GW150914 in September 2015.

  13. A new supernova light curve modeling program

    NASA Astrophysics Data System (ADS)

    Jäger, Zoltán; Nagy, Andrea P.; Biro, Barna I.; Vinkó, József

    2017-12-01

    Supernovae are extremely energetic explosions that highlight the violent deaths of various types of stars. Studying such cosmic explosions may be important because of several reasons. Supernovae play a key role in cosmic nucleosynthesis processes, and they are also the anchors of methods of measuring extragalactic distances. Several exotic physical processes take place in the expanding ejecta produced by the explosion. We have developed a fast and simple semi-analytical code to model the the light curve of core collapse supernovae. This allows the determination of their most important basic physical parameters, like the the radius of the progenitor star, the mass of the ejected envelope, the mass of the radioactive nickel synthesized during the explosion, among others.

  14. UVIT view of ram-pressure stripping in action: Star formation in the stripped gas of the GASP jellyfish galaxy JO201 in Abell 85

    NASA Astrophysics Data System (ADS)

    George, K.; Poggianti, B. M.; Gullieuszik, M.; Fasano, G.; Bellhouse, C.; Postma, J.; Moretti, A.; Jaffé, Y.; Vulcani, B.; Bettoni, D.; Fritz, J.; Côté, P.; Ghosh, S. K.; Hutchings, J. B.; Mohan, R.; Sreekumar, P.; Stalin, C. S.; Subramaniam, A.; Tandon, S. N.

    2018-06-01

    Jellyfish are cluster galaxies that experience strong ram-pressure effects that strip their gas. Their Hα images reveal ionized gas tails up to 100 kpc, which could be hosting ongoing star formation. Here we report the ultraviolet (UV) imaging observation of the jellyfish galaxy JO201 obtained at a spatial resolution ˜ 1.3 kpc. The intense burst of star formation happening in the tentacles is the focus of the present study. JO201 is the "UV-brightest cluster galaxy" in Abell 85 (z ˜ 0.056) with knots and streams of star formation in the ultraviolet. We identify star forming knots both in the stripped gas and in the galaxy disk and compare the UV features with the ones traced by Hα emission. Overall, the two emissions remarkably correlate, both in the main body and along the tentacles. Similarly, also the star formation rates of individual knots derived from the extinction-corrected FUV emission agree with those derived from the Hα emission and range from ˜ 0.01 -to- 2.07 M⊙ yr-1. The integrated star formation rate from FUV flux is ˜ 15 M⊙ yr-1. The unprecedented deep UV imaging study of the jellyfish galaxy JO201 shows clear signs of extraplanar star-formation activity due to a recent/ongoing gas stripping event.

  15. Polarisation Spectral Synthesis For Type Ia Supernova Explosion Models

    NASA Astrophysics Data System (ADS)

    Bulla, Mattia

    2017-02-01

    Despite their relevance across a broad range of astrophysical research topics, Type Ia supernova explosions are still poorly understood and answers to the questions of when, why and how these events are triggered remain unclear. In this respect, polarisation offers a unique opportunity to discriminate between the variety of possible scenarios. The observational evidence that Type Ia supernovae are associated with rather low polarisation signals (smaller than a few per cent) places strong constraints for models and calls for modest asphericities in the progenitor system and/or explosion mechanism.The goal of this thesis is to assess the validity of contemporary Type Ia supernova explosion models by testing whether their predicted polarisation signatures can account for the small signals usually observed. To this end, we have implemented and tested an innovative Monte Carlo scheme in the radiative transfer code artis. Compared to previous Monte Carlo approaches, this technique produces synthetic observables (light curves, flux and polarisation spectra) with a substantial reduction in the Monte Carlo noise and therefore in the required computing time. This improvement is particularly crucial for our study as we aim to extract very weak polarisation signals, comparable to those detected in Type Ia supernovae. We have also demonstrated the applicability of this method to other classes of supernovae via a preliminary study of the first spectropolarimetry observations of superluminous supernovae.Using this scheme, we have calculated synthetic spectropolarimetry for three multi-dimensional explosion models recently proposed as promising candidates to explain Type Ia supernovae. Our findings highlight the power of spectropolarimetry in testing and discriminating between different scenarios. While all the three models predict light curves and flux spectra that are similar to each others and reproduce those observed in Type Ia supernovae comparably well, polarisation does

  16. Radial Alignment of Ellipitcal Galaxies by the Tidal Force of a Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang-Nan; Rong, Yu; Tu, Hong

    2015-08-01

    Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster of galaxies are expected to point preferentially toward the center of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work an analytic model is formulated to simulate this effect. The deformation time scale of a galaxy in a cluster is usually much shorter than the time scale of change of the tidal force; the dynamical process of the tidal interaction within the galaxy can thus be ignored. An equilibrium shape of a galaxy is then assumed to be the surface of equipotential, which is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte-Carlo method to calculate the radial orientation distribution of these galaxies, by assuming the NFW mass profile of the cluster and the initial ellipticity of field galaxies. The radial angles show a single peak distribution centered at zero. The Monte-Carlo simulations also show that a shift of the reference center from the real cluster center weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell~2744 are consistent with the simulated distribution.

  17. Radial Alignment of Elliptical Galaxies by the Tidal Force of a Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang-Nan; Rong, Yu; Tu, Hong

    2015-08-01

    Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster of galaxies are expected to point preferentially toward the center of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work an analytic model is formulated to simulate this effect. The deformation time scale of a galaxy in a cluster is usually much shorter than the time scale of change of the tidal force; the dynamical process of the tidal interaction within the galaxy can thus be ignored. An equilibrium shape of a galaxy is then assumed to be the surface of equipotential, which is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte-Carlo method to calculate the radial orientation distribution of these galaxies, by assuming the NFW mass profile of the cluster and the initial ellipticity of field galaxies. The radial angles show a single peak distribution centered at zero. The Monte-Carlo simulations also show that a shift of the reference center from the real cluster center weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell~2744 are consistent with the simulated distribution.

  18. The detectability of supernovae against elliptical galactic disks.

    NASA Astrophysics Data System (ADS)

    Pearce, E. C.

    A 75 cm telescope has been automated with a Prime 300 mini-computer to search approximately 250 galaxies per hour for young supernovae. The high-speed star-location and comparison algorithms used in the Digitized Astronomy Supernova Search (DASS) system is described.

  19. Breaking Self-Similarity in Poor Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Kempner, J. C.; David, L. P.

    2005-12-01

    The large scatter in the LX--TX relation among poor clusters in the ˜2--4 keV range indicates that the self-similarity seen among hotter clusters does not apply to their cooler siblings. Many forms of non-gravitational heating have been proposed to break this self-similarity, including cluster mergers, AGN heating, and supernova ``pre-heating.'' We present an analysis of a sample of poor clusters from the Chandra and XMM archives that suggests a cycle of heating and cooling in the cores of these clusters is responsible for the departures from self-similarity. That these differences exist only in the core is strongly suggestive of AGN heating as the dominant mechanism. Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Number G05-5138A issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-39073, and by NASA contract NAG5-12933.

  20. VLA radio upper limit on Type IIn Supernova 2008S

    NASA Astrophysics Data System (ADS)

    Chandra, Poonam; Soderberg, Alicia

    2008-02-01

    Poonam Chandra and Alicia Soderberg report on behalf of a larger collaboration: We observed type IIn supernova SN 2008S (CBET 1234) with the Very Large Array (VLA) on 2008, February 10.62 UT. We do not detect any radio emission at the supernova position (CBET 1234). The flux density at the supernova position is -62 +/- 36 uJy.

  1. Dark matter balls help supernovae to explode

    NASA Astrophysics Data System (ADS)

    Froggatt, C. D.; Nielsen, H. B.

    2015-10-01

    As a solution to the well-known problem that the shock wave potentially responsible for the explosion of a supernova actually tends to stall, we propose a new energy source arising from our model for dark matter. Our earlier model proposed that dark matter should consist of cm-large white dwarf-like objects kept together by a skin separating two different sorts of vacua. These dark matter balls or pearls will collect in the middle of any star throughout its lifetime. At some stage during the development of a supernova, the balls will begin to take in neutrons and then other surrounding material. By passing into a ball nucleons fall through a potential of order 10 MeV, causing a severe production of heat — of order 10 foe for a solar mass of material eaten by the balls. The temperature in the iron core will thereby be raised, splitting up the iron into smaller nuclei. This provides a mechanism for reviving the shock wave when it arrives and making the supernova explosion really occur. The onset of the heating due to the dark matter balls would at first stop the collapse of the supernova progenitor. This opens up the possibility of there being two collapses giving two neutrino outbursts, as apparently seen in the supernova SN1987A — one in Mont Blanc and one 4 h 43 min later in both IMB and Kamiokande.

  2. Hubble Uncovering the Secrets of the Quintuplet Cluster

    NASA Image and Video Library

    2017-12-08

    Although this cluster of stars gained its name due to its five brightest stars, it is home to hundreds more. The huge number of massive young stars in the cluster is clearly captured in this NASA/ESA Hubble Space Telescope image. The cluster is located close to the Arches Cluster and is just 100 light-years from the center of our galaxy. The cluster’s proximity to the dust at the center of the galaxy means that much of its visible light is blocked, which helped to keep the cluster unknown until its discovery in 1990, when it was revealed by infrared observations. Infrared images of the cluster, like the one shown here, allow us to see through the obscuring dust to the hot stars in the cluster. The Quintuplet Cluster hosts two extremely rare luminous blue variable stars: the Pistol Star and the lesser known V4650 Sgr. If you were to draw a line horizontally through the center of this image from left to right, you could see the Pistol Star hovering just above the line about one third of the way along it. The Pistol Star is one of the most luminous known stars in the Milky Way and takes its name from the shape of the Pistol Nebula that it illuminates, but which is not visible in this infrared image. The exact age and future of the Pistol Star are uncertain, but it is expected to end in a supernova or even a hypernova in one to three million years. The cluster also contains a number of red supergiants. These stars are among the largest in the galaxy and are burning their fuel at an incredible speed, meaning they will have a very short lifetime. Their presence suggests an average cluster age of nearly four million years. At the moment these stars are on the verge of exploding as supernovae. During their spectacular deaths they will release vast amounts of energy which, in turn, will heat the material — dust and gas — between the other stars. This observation shows the Quintuplet Cluster in the infrared and demonstrates the leap in Hubble’s performance since its

  3. Galaxy evolution in merging clusters: The passive core of the "Train Wreck" cluster of galaxies, A 520

    NASA Astrophysics Data System (ADS)

    Deshev, Boris; Finoguenov, Alexis; Verdugo, Miguel; Ziegler, Bodo; Park, Changbom; Hwang, Ho Seong; Haines, Christopher; Kamphuis, Peter; Tamm, Antti; Einasto, Maret; Hwang, Narae; Park, Byeong-Gon

    2017-11-01

    Aims: The mergers of galaxy clusters are the most energetic events in the Universe after the Big Bang. With the increased availability of multi-object spectroscopy and X-ray data, an ever increasing fraction of local clusters are recognised as exhibiting signs of recent or past merging events on various scales. Our goal is to probe how these mergers affect the evolution and content of their member galaxies. We specifically aim to answer the following questions: is the quenching of star formation in merging clusters enhanced when compared with relaxed clusters? Is the quenching preceded by a (short-lived) burst of star formation? Methods: We obtained optical spectroscopy of >400 galaxies in the field of the merging cluster Abell 520. We combine these observations with archival data to obtain a comprehensive picture of the state of star formation in the members of this merging cluster. Finally, we compare these observations with a control sample of ten non-merging clusters at the same redshift from The Arizona Cluster Redshift Survey (ACReS). We split the member galaxies into passive, star forming or recently quenched depending on their spectra. Results: The core of the merger shows a decreased fraction of star forming galaxies compared to clusters in the non-merging sample. This region, dominated by passive galaxies, is extended along the axis of the merger. We find evidence of rapid quenching of the galaxies during the core passage with no signs of a star burst on the time scales of the merger (≲0.4 Gyr). Additionally, we report the tentative discovery of an infalling group along the main filament feeding the merger, currently at 2.5 Mpc from the merger centre. This group contains a high fraction of star forming galaxies as well as approximately two thirds of all the recently quenched galaxies in our survey. The reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http

  4. High energy neutrinos from gamma-ray bursts with precursor supernovae.

    PubMed

    Razzaque, Soebur; Mészáros, Peter; Waxman, Eli

    2003-06-20

    The high energy neutrino signature from proton-proton and photo-meson interactions in a supernova remnant shell ejected prior to a gamma-ray burst provides a test for the precursor supernova, or supranova, model of gamma-ray bursts. Protons in the supernova remnant shell and photons entrapped from a supernova explosion or a pulsar wind from a fast-rotating neutron star remnant provide ample targets for protons escaping the internal shocks of the gamma-ray burst to interact and produce high energy neutrinos. We calculate the expected neutrino fluxes, which can be detected by current and future experiments.

  5. Broad-line Type Ic supernova SN 2014ad

    NASA Astrophysics Data System (ADS)

    Sahu, D. K.; Anupama, G. C.; Chakradhari, N. K.; Srivastav, S.; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken'ichi

    2018-04-01

    We present optical and ultraviolet photometry and low-resolution optical spectroscopy of the broad-line Type Ic supernova SN 2014ad in the galaxy PGC 37625 (Mrk 1309), covering the evolution of the supernova during -5 to +87 d with respect to the date of maximum in the B band. A late-phase spectrum obtained at +340 d is also presented. With an absolute V-band magnitude at peak of MV = -18.86 ± 0.23 mag, SN 2014ad is fainter than supernovae associated with gamma ray bursts (GRBs), and brighter than most of the normal and broad-line Type Ic supernovae without an associated GRB. The spectral evolution indicates that the expansion velocity of the ejecta, as measured using the Si II line, is as high as ˜33 500 km s-1 around maximum, while during the post-maximum phase it settles at ˜15 000 km s-1. The expansion velocity of SN 2014ad is higher than that of all other well-observed broad-line Type Ic supernovae except for the GRB-associated SN 2010bh. The explosion parameters, determined by applying Arnett's analytical light-curve model to the observed bolometric light-curve, indicate that it was an energetic explosion with a kinetic energy of ˜(1 ± 0.3) × 1052 erg and a total ejected mass of ˜(3.3 ± 0.8) M⊙, and that ˜0.24 M⊙ of 56Ni was synthesized in the explosion. The metallicity of the host galaxy near the supernova region is estimated to be ˜0.5 Z⊙.

  6. An extremely luminous X-ray outburst at the birth of a supernova

    NASA Astrophysics Data System (ADS)

    Soderberg, A. M.; Berger, E.; Page, K. L.; Schady, P.; Parrent, J.; Pooley, D.; Wang, X.-Y.; Ofek, E. O.; Cucchiara, A.; Rau, A.; Waxman, E.; Simon, J. D.; Bock, D. C.-J.; Milne, P. A.; Page, M. J.; Barentine, J. C.; Barthelmy, S. D.; Beardmore, A. P.; Bietenholz, M. F.; Brown, P.; Burrows, A.; Burrows, D. N.; Byrngelson, G.; Cenko, S. B.; Chandra, P.; Cummings, J. R.; Fox, D. B.; Gal-Yam, A.; Gehrels, N.; Immler, S.; Kasliwal, M.; Kong, A. K. H.; Krimm, H. A.; Kulkarni, S. R.; Maccarone, T. J.; Mészáros, P.; Nakar, E.; O'Brien, P. T.; Overzier, R. A.; de Pasquale, M.; Racusin, J.; Rea, N.; York, D. G.

    2008-05-01

    Massive stars end their short lives in spectacular explosions-supernovae-that synthesize new elements and drive galaxy evolution. Historically, supernovae were discovered mainly through their `delayed' optical light (some days after the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated. Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst. We attribute the outburst to the `break-out' of the supernova shock wave from the progenitor star, and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.

  7. An extremely luminous X-ray outburst at the birth of a supernova.

    PubMed

    Soderberg, A M; Berger, E; Page, K L; Schady, P; Parrent, J; Pooley, D; Wang, X-Y; Ofek, E O; Cucchiara, A; Rau, A; Waxman, E; Simon, J D; Bock, D C-J; Milne, P A; Page, M J; Barentine, J C; Barthelmy, S D; Beardmore, A P; Bietenholz, M F; Brown, P; Burrows, A; Burrows, D N; Bryngelson, G; Byrngelson, G; Cenko, S B; Chandra, P; Cummings, J R; Fox, D B; Gal-Yam, A; Gehrels, N; Immler, S; Kasliwal, M; Kong, A K H; Krimm, H A; Kulkarni, S R; Maccarone, T J; Mészáros, P; Nakar, E; O'Brien, P T; Overzier, R A; de Pasquale, M; Racusin, J; Rea, N; York, D G

    2008-05-22

    Massive stars end their short lives in spectacular explosions--supernovae--that synthesize new elements and drive galaxy evolution. Historically, supernovae were discovered mainly through their 'delayed' optical light (some days after the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated. Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst. We attribute the outburst to the 'break-out' of the supernova shock wave from the progenitor star, and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.

  8. An earlier explosion date for the Crab Nebula supernova

    NASA Astrophysics Data System (ADS)

    Abt, Helmut A.; Fountain, John W.

    2018-04-01

    The Chinese first reported the Crab Nebula supernova on 1054 July 5. Ecclesiastical documents from the near east reported it in April and May of 1054. More than 33 petroglyphs made by Native Americans in the US and Mexico are consistent with sightings both before and after conjunction with the Sun on 1054 May 27. We found a petroglyph showing the new star close to Venus and the Moon, which occurred on 1054 April 12 and April 13, respectively. Collins et al., using the four historical dates, derived a light curve that is like that of a Type Ia supernova. The only remaining problem with this identification is that this supernova was near maximum light for 85 d, which is unlike the behavior of any known supernova.

  9. The Progenitor Systems and Explosion Mechanisms of Supernovae

    NASA Astrophysics Data System (ADS)

    Milisavljevic, D.

    2013-10-01

    Supernovae are among the most powerful explosions in the universe. They affect the energy balance, global structure, and chemical make-up of galaxies, they produce neutron stars, black holes, and some gamma-ray bursts, and they have been used as cosmological yardsticks to detect the accelerating expansion of the universe. Fundamental properties of these cosmic engines, however, remain uncertain. In this review we discuss the progress made over the last two decades in understanding supernova progenitor systems and explosion mechanisms. We also comment on anticipated future directions of research and highlight alternative methods of investigation using young supernova remnants.

  10. Supernova Neutrino-Process and Implication in Neutrino Oscillation

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Fujiya, W.; Mathews, G. J.; Yoshida, T.; Shaku, K.; Nakamura, K.; Hayakawa, T.

    2012-08-01

    We studied the supernova nucleosynthesis induced by neutrino interactions and found that several isotopes of rare elements like 7Li, 11B, 138La, 180Ta and many others are predominantly produced by the neutrino-process in core-collapse supernovae. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here propose a new novel method to determine the unknown neutrino oscillation parameters, θ13 and mass hierarchy simultaneously from the supernova neutrino-process, combined with the r-process for heavy-element synthsis and the Galactic chemical evolution on light nuclei.

  11. The Distance to the Coma Cluster from the Tully--Fisher Relation

    NASA Astrophysics Data System (ADS)

    Herter, T.; Vogt, N. P.; Haynes, M. P.; Giovanelli, R.

    1993-12-01

    As part of a survey to determine the distances to nearby (z < .04) Abell clusters via application of the Tully--Fisher (TF) relation, we have obtained 21 cm HI line widths, optical rotation curves and photometric I--band CCD images of galaxies within and near the Coma cluster. Because spiral galaxies within the cluster itself are HI deficient and thus are detected marginally or not at all in HI, distance determinations using only the radio TF relation exclude true cluster members. Our sample includes eight HI deficient galaxies within 1.5 degrees of the cluster center, for which optical velocity widths are derived from their Hα and [NII] rotation curves. The 21 cm line widths have been extracted using a new algorithm designed to optimize the measurement for TF applications, taking into account the effects of spectral resolution and smoothing. The optical width is constructed from the velocity histogram, and is therefore a global value akin to the HI width. A correction for turbulent broadening of the HI is derived from comparison of the optical and HI widths. Using a combined sample of 260 galaxies in 11 clusters and an additional 30 field objects at comparable distances, we have performed a calibration of the radio and optical analogs of the TF relation. Preliminary results show a clear linear relationship with a small offset between optical and radio widths, and good agreement in deriving Tully--Fisher distances to clusters. Our Coma sample consists of 28 galaxies with optical widths and 42 with HI line widths, with an overlapping set of 20 galaxies. We will present the data on the Coma cluster, and discuss the results of our analysis.

  12. The past, present and future supernova threat to Earth's biosphere

    NASA Astrophysics Data System (ADS)

    Beech, Martin

    2011-12-01

    A brief review of the threat posed to Earth's biosphere via near-by supernova detonations is presented. The expected radiation dosage, cosmic ray flux and expanding blast wave collision effects are considered, and it is argued that a typical supernova must be closer than ˜10-pc before any appreciable and potentially harmful atmosphere/biosphere effects are likely to occur. In contrast, the critical distance for Gamma-ray bursts is of order 1-kpc. In spite of the high energy effects potentially involved, the geological record provides no clear-cut evidence for any historic supernova induced mass extinctions and/or strong climate change episodes. This, however, is mostly a reflection of their being numerous possible (terrestrial and astronomical) forcing mechanisms acting upon the biosphere and the difficulty of distinguishing between competing scenarios. Key to resolving this situation, it is suggested, is the development of supernova specific extinction and climate change linked ecological models. Moving to the future, we estimate that over the remaining lifetime of the biosphere (˜2 Gyr) the Earth might experience 1 GRB and 20 supernova detonations within their respective harmful threat ranges. There are currently at least 12 potential pre-supernova systems within 1-kpc of the Sun. Of these systems IK Pegasi is the closest Type Ia pre-supernova candidate and Betelgeuse is the closest potential Type II supernova candidate. We review in some detail the past, present and future behavior of these two systems. Developing a detailed evolutionary model we find that IK Pegasi will likely not detonate until some 1.9 billion years hence, and that it affords absolutely no threat to Earth's biosphere. Betelgeuse is the closest, reasonably well understood, pre-supernova candidate to the Sun at the present epoch, and may undergo detonation any time within the next several million years. The stand-off distance of Betelgeuse at the time of its detonation is estimated to fall

  13. XMM-Newton Observations of the Cluster of Galaxies Sersic 159-03

    NASA Technical Reports Server (NTRS)

    Kaastra, J. S.; Ferrigno, C.; Tamura, T.; Paerels, F. B. S.; Peterson, J. R.; Mittaz, J. P. D.

    2000-01-01

    The cluster of galaxies Sersic 159-03 was observed with the XMM-Newton X-ray observatory as part of the Guaranteed Time program. X-ray spectra taken with the EPIC and RGS instruments show no evidence for the strong cooling flow derived from previous X-ray observations. There is a significant lack of cool gas below 1.5 keV as compared to standard isobaric cooling flow models. While the oxygen is distributed more or less uniformly over the cluster, iron shows a strong concentration in the center of the cluster, slightly offset from the brightness center but within the central cD galaxy. This points to enhanced type Ia supernova activity in the center of the cluster. There is also an elongated iron-rich structure ex- tending to the east of the cluster, showing the inhomogeneity of the iron distribution. Finally, the temperature drops rapidly beyond 4' from the cluster center.

  14. Comparison of four stable numerical methods for Abel's integral equation

    NASA Technical Reports Server (NTRS)

    Murio, Diego A.; Mejia, Carlos E.

    1991-01-01

    The 3-D image reconstruction from cone-beam projections in computerized tomography leads naturally, in the case of radial symmetry, to the study of Abel-type integral equations. If the experimental information is obtained from measured data, on a discrete set of points, special methods are needed in order to restore continuity with respect to the data. A new combined Regularized-Adjoint-Conjugate Gradient algorithm, together with two different implementations of the Mollification Method (one based on a data filtering technique and the other on the mollification of the kernal function) and a regularization by truncation method (initially proposed for 2-D ray sample schemes and more recently extended to 3-D cone-beam image reconstruction) are extensively tested and compared for accuracy and numerical stability as functions of the level of noise in the data.

  15. Hypervelocity stars from young stellar clusters in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Fragione, G.; Capuzzo-Dolcetta, R.; Kroupa, P.

    2017-05-01

    The enormous velocities of the so-called hypervelocity stars (HVSs) derive, likely, from close interactions with massive black holes, binary stars encounters or supernova explosions. In this paper, we investigate the origin of HVSs as consequence of the close interaction between the Milky Way central massive black hole and a passing-by young stellar cluster. We found that both single and binary HVSs may be generated in a burst-like event, as the cluster passes near the orbital pericentre. High-velocity stars will move close to the initial cluster orbital plane and in the direction of the cluster orbital motion at the pericentre. The binary fraction of these HVS jets depends on the primordial binary fraction in the young cluster. The level of initial mass segregation determines the value of the average mass of the ejected stars. Some binary stars will merge, continuing their travel across and out of the Galaxy as blue stragglers.

  16. Searching for the missing baryons in clusters

    PubMed Central

    Rasheed, Bilhuda; Bahcall, Neta; Bode, Paul

    2011-01-01

    Observations of clusters of galaxies suggest that they contain fewer baryons (gas plus stars) than the cosmic baryon fraction. This “missing baryon” puzzle is especially surprising for the most massive clusters, which are expected to be representative of the cosmic matter content of the universe (baryons and dark matter). Here we show that the baryons may not actually be missing from clusters, but rather are extended to larger radii than typically observed. The baryon deficiency is typically observed in the central regions of clusters (∼0.5 the virial radius). However, the observed gas-density profile is significantly shallower than the mass-density profile, implying that the gas is more extended than the mass and that the gas fraction increases with radius. We use the observed density profiles of gas and mass in clusters to extrapolate the measured baryon fraction as a function of radius and as a function of cluster mass. We find that the baryon fraction reaches the cosmic value near the virial radius for all groups and clusters above . This suggests that the baryons are not missing, they are simply located in cluster outskirts. Heating processes (such as shock-heating of the intracluster gas, supernovae, and Active Galactic Nuclei feedback) likely contribute to this expanded distribution. Upcoming observations should be able to detect these baryons. PMID:21321229

  17. Can pair-instability supernova models match the observations of superluminous supernovae?

    NASA Astrophysics Data System (ADS)

    Kozyreva, Alexandra; Blinnikov, S.

    2015-12-01

    An increasing number of so-called superluminous supernovae (SLSNe) are discovered. It is believed that at least some of them with slowly fading light curves originate in stellar explosions induced by the pair instability mechanism. Recent stellar evolution models naturally predict pair instability supernovae (PISNe) from very massive stars at wide range of metallicities (up to Z = 0.006, Yusof et al.). In the scope of this study, we analyse whether PISN models can match the observational properties of SLSNe with various light-curve shapes. Specifically, we explore the influence of different degrees of macroscopic chemical mixing in PISN explosive products on the resulting observational properties. We artificially apply mixing to the 250 M⊙ PISN evolutionary model from Kozyreva et al. and explore its supernova evolution with the one-dimensional radiation hydrodynamics code STELLA. The greatest success in matching SLSN observations is achieved in the case of an extreme macroscopic mixing, where all radioactive material is ejected into the hydrogen-helium outer layer. Such an extreme macroscopic redistribution of chemicals produces events with faster light curves with high photospheric temperatures and high photospheric velocities. These properties fit a wider range of SLSNe than non-mixed PISN model. Our mixed models match the light curves, colour temperature, and photospheric velocity evolution of two well-observed SLSNe PTF12dam and LSQ12dlf. However, these models' extreme chemical redistribution may be hard to realize in massive PISNe. Therefore, alternative models such as the magnetar mechanism or wind-interaction may still to be favourable to interpret rapidly rising SLSNe.

  18. NASA's Hubble Sees A New Supernova Remnant Light Up

    NASA Image and Video Library

    2011-06-10

    NASA image release June 10, 2011 Astronomers using NASA's Hubble Space Telescope are witnessing the unprecedented transition of a supernova to a supernova remnant, where light from an exploding star in a neighboring galaxy, the Large Magellanic Cloud, reached Earth in February 1987. Named Supernova 1987A, it was the closest supernova explosion witnessed in almost 400 years. The supernova's close proximity to Earth has allowed astronomers to study it in detail as it evolves. Now, the supernova debris, which has faded over the years, is brightening. This means that a different power source has begun to light the debris. The debris of SN 1987A is beginning to impact the surrounding ring, creating powerful shock waves that generate X-rays observed with NASA's Chandra X-ray Observatory. Those X-rays are illuminating the supernova debris and shock heating is making it glow in visible light. The results are being reported in the June 9, 2011, issue of the journal Nature by a team including Robert Kirshner of the Harvard-Smithsonian Center for Astrophysics (CfA), who leads a long-term study of SN 1987A with Hubble. Since its launch in 1990, the Hubble telescope has provided a continuous record of the changes in SN 1987A. Credit: NASA, ESA, and P. Challis (Harvard-Smithsonian Center for Astrophysics) NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Find us on Instagram

  19. Hyperfast pulsars as the remnants of massive stars ejected from young star clusters

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2008-04-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of ~1100kms-1, which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of 106- 107starspc-3. Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.

  20. X-Ray Illumination of the Ejecta of Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Larsson, J.; Fransson, C.; Oestlin, G.; Groeningsson, P.; Jerkstrand, A.; Kozma, C.; Sollerman, J.; Challis, P.; Kirshner, R. P.; Chevalier, R. A.; hide

    2011-01-01

    When a massive star explodes as a supernova, substantial amounts of radioactive elements-primarily Ni-56, Ni-57 and Ti-44 are produced. After the initial from shock heating, the light emitted by the supernova is due to the decay of these elements. However, after decades, the energy powering a supernova remnant comes from the shock interaction between the ejecta and the surrounding medium. The transition to this phase has hitherto not been observed: supernovae occur too infrequently in the Milky Way to provide a young example, and extragalactic supernovae are generally too faint and too small. Here we report observations that show this transition in the supernova SN 1987A in the Large Magellan Cloud. From 1994 to 200l, the ejecta faded owing to radioactive decay of Ti-44 as predicted. Then the flux started to increase, more than doubling by the end of 2009. We show that this increase is the result of heat deposited by X-rays produced as the ejecta interacts with the surrounding material. In time, the X-rays will penetrate farther into the ejects, enabling us to analyse the structure and chemistry of the vanished star.