Note: This page contains sample records for the topic aberrant alternative splicing from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Aberrant Alternative Splicing Is Another Hallmark of Cancer  

PubMed Central

The vast majority of human genes are alternatively spliced. Not surprisingly, aberrant alternative splicing is increasingly linked to cancer. Splice isoforms often encode proteins that have distinct and even antagonistic properties. The abnormal expression of splice factors and splice factor kinases in cancer changes the alternative splicing of critically important pre-mRNAs. Aberrant alternative splicing should be added to the growing list of cancer hallmarks.

Ladomery, Michael

2013-01-01

2

Given Dimensions of Neoplastic Events as Aberrantly Operative Alternative Splicing  

PubMed Central

The provision of dynamic splicing events constitutes the reflected nature of neoplasia that locally infiltrates and systemically spreads in terms of evolutionary attributes of the primary and various secondary pathways in malignant transformation. The significant diversity in molecular characterization of the given tumor lesion would adaptively conform to dynamics of splicing as enhanced or silenced exons of the premessenger RNA molecule. The proteins synthesized are in turn potential modifiers in further gene expression within such contexts as RNA:protein and RNA:DNA binding events. The recognition of pathways of incremental scope would underline the development of lesions, such as tumors, as multiple alternative splicing phenomena primarily affecting molecular physicochemical identity. It is within contexts of operative intervention and modification that the real identity of the malignant neoplastic process arises, within terms of reference of contextual splicing events. Disrupted gene expression is thus a referential pathway in the modification of splicing that may prove constitutive or alternative, in first instance, but also aberrant as the lesion progresses locally and systemically.

Agius, Lawrence M.

2010-01-01

3

How prevalent is functional alternative splicing in the human genome?  

Microsoft Academic Search

Comparative analyses of ESTs and cDNAs with genomic DNA predict a high frequency of alternative splicing in human genes. However, there is an ongoing debate as to how many of these predicted splice variants are functional and how many are the result of aberrant splicing (or ‘noise’). To address this question, we compared alternatively spliced cassette exons that are conserved

Rotem Sorek; Ron Shamir; Gil Ast

2004-01-01

4

Genomics of alternative splicing: evolution, development and pathophysiology.  

PubMed

Alternative splicing is a major cellular mechanism in metazoans for generating proteomic diversity. A large proportion of protein-coding genes in multicellular organisms undergo alternative splicing, and in humans, it has been estimated that nearly 90 % of protein-coding genes-much larger than expected-are subject to alternative splicing. Genomic analyses of alternative splicing have illuminated its universal role in shaping the evolution of genomes, in the control of developmental processes, and in the dynamic regulation of the transcriptome to influence phenotype. Disruption of the splicing machinery has been found to drive pathophysiology, and indeed reprogramming of aberrant splicing can provide novel approaches to the development of molecular therapy. This review focuses on the recent progress in our understanding of alternative splicing brought about by the unprecedented explosive growth of genomic data and highlights the relevance of human splicing variation on disease and therapy. PMID:24378600

Gamazon, Eric R; Stranger, Barbara E

2014-06-01

5

Alternative splicing and muscular dystrophy  

PubMed Central

Alternative splicing of pre-mRNAs is a major contributor to proteomic diversity and to the control of gene expression in higher eukaryotic cells. For this reasons, alternative splicing is tightly regulated in different tissues and developmental stages and its disruption can lead to a wide range of human disorders. The aim of this review is to focus on the relevance of alternative splicing for muscle function and muscle disease. We begin by giving a brief overview of alternative splicing, muscle-specific gene expression and muscular dystrophy. Next, to illustrate these concepts we focus on two muscular dystrophy, myotonic muscular dystrophy and facioscapulohumeral muscular dystrophy, both associated to disruption of splicing regulation in muscle.

Pistoni, Mariaelena; Ghigna, Claudia; Gabellini, Davide

2013-01-01

6

Manumycin A corrects aberrant splicing of Clcn1 in myotonic dystrophy type 1 (DM1) mice.  

PubMed

Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults and as yet no cure for DM1. Here, we report the potential of manumycin A for a novel DM1 therapeutic reagent. DM1 is caused by expansion of CTG repeat. Mutant transcripts containing expanded CUG repeats lead to aberrant regulation of alternative splicing. Myotonia (delayed muscle relaxation) is the most commonly observed symptom in DM1 patients and is caused by aberrant splicing of the skeletal muscle chloride channel (CLCN1) gene. Identification of small-molecule compounds that correct aberrant splicing in DM1 is attracting much attention as a way of improving understanding of the mechanism of DM1 pathology and improving treatment of DM1 patients. In this study, we generated a reporter screening system and searched for small-molecule compounds. We found that manumycin A corrects aberrant splicing of Clcn1 in cell and mouse models of DM1. PMID:23828222

Oana, Kosuke; Oma, Yoko; Suo, Satoshi; Takahashi, Masanori P; Nishino, Ichizo; Takeda, Shin'ichi; Ishiura, Shoichi

2013-01-01

7

Manumycin A corrects aberrant splicing of Clcn1 in myotonic dystrophy type 1 (DM1) mice  

PubMed Central

Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults and as yet no cure for DM1. Here, we report the potential of manumycin A for a novel DM1 therapeutic reagent. DM1 is caused by expansion of CTG repeat. Mutant transcripts containing expanded CUG repeats lead to aberrant regulation of alternative splicing. Myotonia (delayed muscle relaxation) is the most commonly observed symptom in DM1 patients and is caused by aberrant splicing of the skeletal muscle chloride channel (CLCN1) gene. Identification of small-molecule compounds that correct aberrant splicing in DM1 is attracting much attention as a way of improving understanding of the mechanism of DM1 pathology and improving treatment of DM1 patients. In this study, we generated a reporter screening system and searched for small-molecule compounds. We found that manumycin A corrects aberrant splicing of Clcn1 in cell and mouse models of DM1.

Oana, Kosuke; Oma, Yoko; Suo, Satoshi; Takahashi, Masanori P.; Nishino, Ichizo; Takeda, Shin'ichi; Ishiura, Shoichi

2013-01-01

8

Kiwifruit floral gene APETALA2 is alternatively spliced and accumulates in aberrant indeterminate flowers in the absence of miR172.  

PubMed

In Arabidopsis, the identity of perianth and reproductive organs are specified by antagonistic action of two floral homeotic genes, APETALA2 (AP2) and AGAMOUS (AG). AP2 is also negatively regulated by an evolutionary conserved interaction with a microRNA, miR172, and has additional roles in general plant development. A kiwifruit gene with high levels of homology to AP2 and AP2-like genes from other plant species was identified. The transcript was abundant in the kiwifruit flower, particularly petal, suggesting a role in floral organ identity. Splice variants were identified, all containing both AP2 domains, including a variant that potentially produces a shorter transcript without the miRNA172 targeting site. Increased AP2 transcript accumulation was detected in the aberrant flowers of the mutant ‘Pukekohe dwarf’ with multiple perianth whorls and extended petaloid features. In contrast to normal kiwifruit flowers, the aberrant flowers failed to accumulate miR172 in the developing whorls, although accumulation was detected at the base of the flower. An additional role during dormancy in kiwifruit was proposed based on AP2 transcript accumulation in axillary buds before and after budbreak. PMID:22290408

Varkonyi-Gasic, Erika; Lough, Robyn H; Moss, Sarah M A; Wu, Rongmei; Hellens, Roger P

2012-03-01

9

Alternative splicing in regulation of cholesterol homeostasis  

PubMed Central

Purpose of review With the advent of whole-transcriptome sequencing, or RNA-seq, we now know that alternative splicing is a generalized phenomenon, with nearly all multi-exonic genes subject to alternative splicing. In this review we highlight recent studies examining alternative splicing as a modulator of cellular cholesterol homeostasis, and as an underlying mechanism of dyslipidemia. Recent findings A number of key genes involved in cholesterol metabolism are known to undergo functionally relevant alternative splicing. Recently, we have identified coordinated changes in alternative splicing in multiple genes in response to alteration in cellular sterol content. We and others have implicated several splicing factors as regulators of lipid metabolism. Furthermore, a number of cis-acting human gene variants that modulate alternative splicing have been implicated in a variety of human metabolic diseases. Summary Alternative splicing is of importance in various types of genetically influenced dyslipidemias, and in the regulation of cellular cholesterol metabolism.

Medina, Marisa W.; Krauss, Ronald M.

2013-01-01

10

Alternative Splicing in Plant Immunity  

PubMed Central

Alternative splicing (AS) occurs widely in plants and can provide the main source of transcriptome and proteome diversity in an organism. AS functions in a range of physiological processes, including plant disease resistance, but its biological roles and functional mechanisms remain poorly understood. Many plant disease resistance (R) genes undergo AS, and several R genes require alternatively spliced transcripts to produce R proteins that can specifically recognize pathogen invasion. In the finely-tuned process of R protein activation, the truncated isoforms generated by AS may participate in plant disease resistance either by suppressing the negative regulation of initiation of immunity, or by directly engaging in effector-triggered signaling. Although emerging research has shown the functional significance of AS in plant biotic stress responses, many aspects of this topic remain to be understood. Several interesting issues surrounding the AS of R genes, especially regarding its functional roles and regulation, will require innovative techniques and additional research to unravel.

Yang, Shengming; Tang, Fang; Zhu, Hongyan

2014-01-01

11

Alternative splicing regulation at tandem 3? splice sites  

PubMed Central

Alternative splicing (AS) constitutes a major mechanism creating protein diversity in humans. Previous bioinformatics studies based on expressed sequence tag and mRNA data have identified many AS events that are conserved between humans and mice. Of these events, ?25% are related to alternative choices of 3? and 5? splice sites. Surprisingly, half of all these events involve 3? splice sites that are exactly 3 nt apart. These tandem 3? splice sites result from the presence of the NAGNAG motif at the acceptor splice site, recently reported to be widely spread in the human genome. Although the NAGNAG motif is common in human genes, only a small subset of sites with this motif is confirmed to be involved in AS. We examined the NAGNAG motifs and observed specific features such as high sequence conservation of the motif, high conservation of ?30 bp at the intronic regions flanking the 3? splice site and overabundance of cis-regulatory elements, which are characteristic of alternatively spliced tandem acceptor sites and can distinguish them from the constitutive sites in which the proximal NAG splice site is selected. Our findings imply that AS at tandem splice sites and constitutive splicing of the distal NAG are highly regulated.

Akerman, Martin; Mandel-Gutfreund, Yael

2006-01-01

12

Regulation of alternative splicing in obesity and weight loss  

PubMed Central

Alternative splicing (AS) is a mechanism by which multiple mRNA transcripts are generated from a single gene. According to recent reports approximately 95–100% of human multi-exon genes undergo AS. This increases the amount of functionally different protein isoforms, and in some cases leads to metabolic diseases. Herein we provide a brief overview of the basic aspects of splicing regulation in obesity and insulin resistance with specific examples. In addition, we review our recent findings demonstrating that weight loss regulates AS of TCF7L2 gene in both liver and adipose tissue, and that this splicing associates with changes in fatty acid and glucose metabolism. Future studies using global analysis of transcript variants and splicing regulators are needed for exploring the association of AS with metabolic alterations in obesity and type 2 diabetes (T2D). Understanding of the molecular mechanisms behind the aberrantly spliced transcripts may also provide opportunities for new diagnostic approaches.

Kaminska, Dorota; Pihlajamaki, Jussi

2013-01-01

13

Regulation of alternative splicing within the supraspliceosome.  

PubMed

Alternative splicing is a fundamental feature in regulating the eukaryotic transcriptome, as ~95% of multi-exon human Pol II transcripts are subject to this process. Regulated splicing operates through the combinatorial interplay of positive and negative regulatory signals present in the pre-mRNA, which are recognized by trans-acting factors. All these RNA and protein components are assembled in a gigantic, 21 MDa, ribonucleoprotein splicing machine - the supraspliceosome. Because most alternatively spliced mRNA isoforms vary between different cell and tissue types, the ability to perform alternative splicing is expected to be an integral part of the supraspliceosome, which constitutes the splicing machine in vivo. Here we show that both the constitutively and alternatively spliced mRNAs of the endogenous human pol II transcripts: hnRNP A/B, survival of motor neuron (SMN) and ADAR2 are predominantly found in supraspliceosomes. This finding is consistent with our observations that the splicing regulators hnRNP G as well as all phosphorylated SR proteins are predominantly associated with supraspliceosomes. We further show that changes in alternative splicing of hnRNP A/B, affected by up regulation of SRSF5 (SRp40) or by treatment with C6-ceramide, occur within supraspliceosomes. These observations support the proposed role of the supraspliceosome in splicing regulation and alternative splicing. PMID:22100336

Sebbag-Sznajder, Naama; Raitskin, Oleg; Angenitzki, Minna; Sato, Taka-Aki; Sperling, Joseph; Sperling, Ruth

2012-01-01

14

Conserved RNA secondary structures promote alternative splicing  

Microsoft Academic Search

Pre-mRNA splicing is carried out by the spliceosome, which identifies exons and removes intervening introns. Alternative splicing in higher eukaryotes results in the generation of multiple protein isoforms from gene transcripts. The extensive alter- native splicing observed implies a flexibility of the spliceosome to identify exons within a given pre-mRNA. To reach this flexi- bility, splice-site selection in higher eukaryotes

PETER J. SHEPARD; KLEMENS J. HERTEL

2008-01-01

15

RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings  

PubMed Central

There are remarkable disparities among patients of different races with prostate cancer; however, the mechanism underlying this difference remains unclear. Here, we present a comprehensive landscape of the transcriptome profiles of 14 primary prostate cancers and their paired normal counterparts from the Chinese population using RNA-seq, revealing tremendous diversity across prostate cancer transcriptomes with respect to gene fusions, long noncoding RNAs (long ncRNA), alternative splicing and somatic mutations. Three of the 14 tumors (21.4%) harbored a TMPRSS2-ERG fusion, and the low prevalence of this fusion in Chinese patients was further confirmed in an additional tumor set (10/54=18.5%). Notably, two novel gene fusions, CTAGE5-KHDRBS3 (20/54=37%) and USP9Y-TTTY15 (19/54=35.2%), occurred frequently in our patient cohort. Further systematic transcriptional profiling identified numerous long ncRNAs that were differentially expressed in the tumors. An analysis of the correlation between expression of long ncRNA and genes suggested that long ncRNAs may have functions beyond transcriptional regulation. This study yielded new insights into the pathogenesis of prostate cancer in the Chinese population.

Ren, Shancheng; Peng, Zhiyu; Mao, Jian-Hua; Yu, Yongwei; Yin, Changjun; Gao, Xin; Cui, Zilian; Zhang, Jibin; Yi, Kang; Xu, Weidong; Chen, Chao; Wang, Fubo; Guo, Xinwu; Lu, Ji; Yang, Jun; Wei, Min; Tian, Zhijian; Guan, Yinghui; Tang, Liang; Xu, Chuanliang; Wang, Linhui; Gao, Xu; Tian, Wei; Wang, Jian; Yang, Huanming; Wang, Jun; Sun, Yinghao

2012-01-01

16

Functional consequences of developmentally regulated alternative splicing  

PubMed Central

Genome-wide analyses of metazoan transcriptomes have revealed an unexpected level of mRNA diversity that is generated by alternative splicing. Recently, regulatory networks have been identified through which splicing promotes dynamic remodeling of the transcriptome to promote physiological changes, which involve robust and coordinated alternative splicing transitions. The regulation of splicing in yeast, worms, flies and vertebrates affects a variety of biological processes. The functional classes of genes that are regulated by alternative splicing include both those with widespread homeostatic activities and genes with cell-type-specific functions. Alternative splicing can drive determinative physiological change or can have a permissive role by providing mRNA variability that is utilized by other regulatory mechanisms.

Kalsotra, Auinash; Cooper, Thomas A.

2012-01-01

17

The RNA-binding protein QKI suppresses cancer-associated aberrant splicing.  

PubMed

Lung cancer is the leading cause of cancer-related death worldwide. Aberrant splicing has been implicated in lung tumorigenesis. However, the functional links between splicing regulation and lung cancer are not well understood. Here we identify the RNA-binding protein QKI as a key regulator of alternative splicing in lung cancer. We show that QKI is frequently down-regulated in lung cancer, and its down-regulation is significantly associated with a poorer prognosis. QKI-5 inhibits the proliferation and transformation of lung cancer cells both in vitro and in vivo. Our results demonstrate that QKI-5 regulates the alternative splicing of NUMB via binding to two RNA elements in its pre-mRNA, which in turn suppresses cell proliferation and prevents the activation of the Notch signaling pathway. We further show that QKI-5 inhibits splicing by selectively competing with a core splicing factor SF1 for binding to the branchpoint sequence. Taken together, our data reveal QKI as a critical regulator of splicing in lung cancer and suggest a novel tumor suppression mechanism involving QKI-mediated regulation of the Notch signaling pathway. PMID:24722255

Zong, Feng-Yang; Fu, Xing; Wei, Wen-Juan; Luo, Ya-Ge; Heiner, Monika; Cao, Li-Juan; Fang, Zhaoyuan; Fang, Rong; Lu, Daru; Ji, Hongbin; Hui, Jingyi

2014-04-01

18

Identification of alternative 5?/3? splice sites based on the mechanism of splice site competition  

PubMed Central

Alternative splicing plays an important role in regulating gene expression. Currently, most efficient methods use expressed sequence tags or microarray analysis for large-scale detection of alternative splicing. However, it is difficult to detect all alternative splice events with them because of their inherent limitations. Previous computational methods for alternative splicing prediction could only predict particular kinds of alternative splice events. Thus, it would be highly desirable to predict alternative 5?/3? splice sites with various splicing levels using genomic sequences alone. Here, we introduce the competition mechanism of splice sites selection into alternative splice site prediction. This approach allows us to predict not only rarely used but also frequently used alternative splice sites. On a dataset extracted from the AltSplice database, our method correctly classified ?70% of the splice sites into alternative and constitutive, as well as ?80% of the locations of real competitors for alternative splice sites. It outperforms a method which only considers features extracted from the splice sites themselves. Furthermore, this approach can also predict the changes in activation level arising from mutations in flanking cryptic splice sites of a given splice site. Our approach might be useful for studying alternative splicing in both computational and molecular biology.

Xia, Huiyu; Bi, Jianning; Li, Yanda

2006-01-01

19

Alu-Containing Exons are Alternatively Spliced  

Microsoft Academic Search

Alu repetitive elements are found in ?1.4 million copies in the human genome, comprising more than one-tenth of it. Numerous studies describe exonizations of Alu elements, that is, splicing-mediated insertions of parts of Alu sequences into mature mRNAs. To study the connection between the exonization of Alu elements and alternative splicing, we used a database of ESTs and cDNAs aligned

Rotem Sorek; Gil Ast; Dan Graur

2002-01-01

20

Gene and alternative splicing annotation with AIR  

PubMed Central

Designing effective and accurate tools for identifying the functional and structural elements in a genome remains at the frontier of genome annotation owing to incompleteness and inaccuracy of the data, limitations in the computational models, and shifting paradigms in genomics, such as alternative splicing. We present a methodology for the automated annotation of genes and their alternatively spliced mRNA transcripts based on existing cDNA and protein sequence evidence from the same species or projected from a related species using syntenic mapping information. At the core of the method is the splice graph, a compact representation of a gene, its exons, introns, and alternatively spliced isoforms. The putative transcripts are enumerated from the graph and assigned confidence scores based on the strength of sequence evidence, and a subset of the high-scoring candidates are selected and promoted into the annotation. The method is highly selective, eliminating the unlikely candidates while retaining 98% of the high-quality mRNA evidence in well-formed transcripts, and produces annotation that is measurably more accurate than some evidence-based gene sets. The process is fast, accurate, and fully automated, and combines the traditionally distinct gene annotation and alternative splicing detection processes in a comprehensive and systematic way, thus considerably aiding in the ensuing manual curation efforts.

Florea, Liliana; Di Francesco, Valentina; Miller, Jason; Turner, Russell; Yao, Alison; Harris, Michael; Walenz, Brian; Mobarry, Clark; Merkulov, Gennady V.; Charlab, Rosane; Dew, Ian; Deng, Zuoming; Istrail, Sorin; Li, Peter; Sutton, Granger

2005-01-01

21

Gene and alternative splicing annotation with AIR.  

PubMed

Designing effective and accurate tools for identifying the functional and structural elements in a genome remains at the frontier of genome annotation owing to incompleteness and inaccuracy of the data, limitations in the computational models, and shifting paradigms in genomics, such as alternative splicing. We present a methodology for the automated annotation of genes and their alternatively spliced mRNA transcripts based on existing cDNA and protein sequence evidence from the same species or projected from a related species using syntenic mapping information. At the core of the method is the splice graph, a compact representation of a gene, its exons, introns, and alternatively spliced isoforms. The putative transcripts are enumerated from the graph and assigned confidence scores based on the strength of sequence evidence, and a subset of the high-scoring candidates are selected and promoted into the annotation. The method is highly selective, eliminating the unlikely candidates while retaining 98% of the high-quality mRNA evidence in well-formed transcripts, and produces annotation that is measurably more accurate than some evidence-based gene sets. The process is fast, accurate, and fully automated, and combines the traditionally distinct gene annotation and alternative splicing detection processes in a comprehensive and systematic way, thus considerably aiding in the ensuing manual curation efforts. PMID:15632090

Florea, Liliana; Di Francesco, Valentina; Miller, Jason; Turner, Russell; Yao, Alison; Harris, Michael; Walenz, Brian; Mobarry, Clark; Merkulov, Gennady V; Charlab, Rosane; Dew, Ian; Deng, Zuoming; Istrail, Sorin; Li, Peter; Sutton, Granger

2005-01-01

22

Interplay between estrogen receptor and AKT in Estradiol-induced alternative splicing  

PubMed Central

Background Alternative splicing is critical for generating complex proteomes in response to extracellular signals. Nuclear receptors including estrogen receptor alpha (ER?) and their ligands promote alternative splicing. The endogenous targets of ER?:estradiol (E2)-mediated alternative splicing and the influence of extracellular kinases that phosphorylate ER? on E2-induced splicing are unknown. Methods MCF-7 and its anti-estrogen derivatives were used for the majority of the assays. CD44 mini gene was used to measure the effect of E2 and AKT on alternative splicing. ExonHit array analysis was performed to identify E2 and AKT-regulated endogenous alternatively spliced apoptosis-related genes. Quantitative reverse transcription polymerase chain reaction was performed to verify alternative splicing. ER? binding to alternatively spliced genes was verified by chromatin immunoprecipitation assay. Bromodeoxyuridine incorporation-ELISA and Annexin V labeling assays were done to measure cell proliferation and apoptosis, respectively. Results We identified the targets of E2-induced alternative splicing and deconstructed some of the mechanisms surrounding E2-induced splicing by combining splice array with ER? cistrome and gene expression array. E2-induced alternatively spliced genes fall into at least two subgroups: coupled to E2-regulated transcription and ER? binding to the gene without an effect on rate of transcription. Further, AKT, which phosphorylates both ER? and splicing factors, influenced ER?:E2 dependent splicing in a gene-specific manner. Genes that are alternatively spliced include FAS/CD95, FGFR2, and AXIN-1. E2 increased the expression of FGFR2 C1 isoform but reduced C3 isoform at mRNA level. E2-induced alternative splicing of FAS and FGFR2 in MCF-7 cells correlated with resistance to FAS activation-induced apoptosis and response to keratinocyte growth factor (KGF), respectively. Resistance of MCF-7 breast cancer cells to the anti-estrogen tamoxifen was associated with ER?-dependent overexpression of FGFR2, whereas resistance to fulvestrant was associated with ER?-dependent isoform switching, which correlated with altered response to KGF. Conclusion E2 may partly alter cellular proteome through alternative splicing uncoupled to its effects on transcription initiation and aberration in E2-induced alternative splicing events may influence response to anti-estrogens.

2013-01-01

23

Tumor microenvironment-associated modifications of alternative splicing  

PubMed Central

Pre-mRNA alternative splicing is modified in cancer, but the origin and specificity of these changes remain unclear. Here, we probed ovarian tumors to identify cancer-associated splicing isoforms and define the mechanism by which splicing is modified in cancer cells. Using high-throughput quantitative PCR, we monitored the expression of splice variants in laser-dissected tissues from ovarian tumors. Surprisingly, changes in alternative splicing were not limited to the tumor tissues but were also found in the tumor microenvironment. Changes in the tumor-associated splicing events were found to be regulated by splicing factors that are differentially expressed in cancer tissues. Overall, ?20% of the alternative splicing events affected by the down-regulation of the splicing factors QKI and RBFOX2 were altered in the microenvironment of ovarian tumors. Together, our results indicate that the tumor microenvironment undergoes specific changes in alternative splicing orchestrated by a limited number of splicing factors.

Brosseau, Jean-Philippe; Lucier, Jean-Francois; Nwilati, Hanad; Thibault, Philippe; Garneau, Daniel; Gendron, Daniel; Durand, Mathieu; Couture, Sonia; Lapointe, Elvy; Prinos, Panagiotis; Klinck, Roscoe; Perreault, Jean-Pierre; Chabot, Benoit; Abou-Elela, Sherif

2014-01-01

24

Alternative Splicing for Diseases, Cancers, Drugs, and Databases  

PubMed Central

Alternative splicing is a major diversification mechanism in the human transcriptome and proteome. Several diseases, including cancers, have been associated with dysregulation of alternative splicing. Thus, correcting alternative splicing may restore normal cell physiology in patients with these diseases. This paper summarizes several alternative splicing-related diseases, including cancers and their target genes. Since new cancer drugs often target spliceosomes, several clinical drugs and natural products or their synthesized derivatives were analyzed to determine their effects on alternative splicing. Other agents known to have modulating effects on alternative splicing during therapeutic treatment of cancer are also discussed. Several commonly used bioinformatics resources are also summarized.

Lee, Jin-Ching; Hou, Ming-Feng; Wang, Chun-Lin; Chen, Chien-Chi; Huang, Hurng-Wern

2013-01-01

25

Model-based detection of alternative splicing signals  

PubMed Central

Motivation: Transcripts from ?95% of human multi-exon genes are subject to alternative splicing (AS). The growing interest in AS is propelled by its prominent contribution to transcriptome and proteome complexity and the role of aberrant AS in numerous diseases. Recent technological advances enable thousands of exons to be simultaneously profiled across diverse cell types and cellular conditions, but require accurate identification of condition-specific splicing changes. It is necessary to accurately identify such splicing changes to elucidate the underlying regulatory programs or link the splicing changes to specific diseases. Results: We present a probabilistic model tailored for high-throughput AS data, where observed isoform levels are explained as combinations of condition-specific AS signals. According to our formulation, given an AS dataset our tasks are to detect common signals in the data and identify the exons relevant to each signal. Our model can incorporate prior knowledge about underlying AS signals, measurement quality and gene expression level effects. Using a large-scale multi-tissue AS dataset, we demonstrate the advantage of our method over standard alternative approaches. In addition, we describe newly found tissue-specific AS signals which were verified experimentally, and discuss associated regulatory features. Contact: yoseph@psi.utoronto.ca; frey@psi.utoronto.ca Supplementary information: Supplementary data are available at Bioinformatics online.

Barash, Yoseph; Blencowe, Benjamin J.; Frey, Brendan J.

2010-01-01

26

Libraries enriched for alternatively spliced exons reveal splicing patterns in melanocytes and melanomas.  

PubMed

It is becoming increasingly clear that alternative splicing enables the complex development and homeostasis of higher organisms. To gain a better understanding of how splicing contributes to regulatory pathways, we have developed an alternative splicing library approach for the identification of alternatively spliced exons and their flanking regions by alternative splicing sequence enriched tags sequencing. Here, we have applied our approach to mouse melan-c melanocyte and B16-F10Y melanoma cell lines, in which 5,401 genes were found to be alternatively spliced. These genes include those encoding important regulatory factors such as cyclin D2, Ilk, MAPK12, MAPK14, RAB4, melastatin 1 and previously unidentified splicing events for 436 genes. Real-time PCR further identified cell line-specific exons for Tmc6, Abi1, Sorbs1, Ndel1 and Snx16. Thus, the ASL approach proved effective in identifying splicing events, which suggest that alternative splicing is important in melanoma development. PMID:15782199

Watahiki, Akira; Waki, Kazunori; Hayatsu, Norihito; Shiraki, Toshiyuki; Kondo, Shinji; Nakamura, Mari; Sasaki, Daisuke; Arakawa, Takahiro; Kawai, Jun; Harbers, Matthias; Hayashizaki, Yoshihide; Carninci, Piero

2004-12-01

27

Implicit alternative splicing for genetic algorithms  

Microsoft Academic Search

In this paper we present a new nature-inspired variation operator for binary encodings in genetic algorithms (GAs). Our method, called implicit alternative splicing (iAS), is repeatedly applied to the individual encodings in the algorithm's population and inverts randomly chosen segments of decreasing size in a systematic fashion. Its goal is to determine the largest possible segment the inversion of which

Philipp Rohlfshagen; John A. Bullinaria

2007-01-01

28

Does distance matter? Variations in alternative 3? splicing regulation  

PubMed Central

Alternative splicing constitutes a major mechanism creating protein diversity in humans. This diversity can result from the alternative skipping of entire exons or by alternative selection of the 5? or 3? splice sites that define the exon boundaries. In this study, we analyze the sequence and evolutionary characteristics of alternative 3? splice sites conserved between human and mouse genomes for distances ranging from 3 to 100 nucleotides. We show that alternative splicing events can be distinguished from constitutive splicing by a combination of properties which vary depending on the distance between the splice sites. Among the unique features of alternative 3? splice sites, we observed an unexpectedly high occurrence of events in which a polypyrimidine tract was found to overlap the upstream splice site. By applying a machine-learning approach, we show that we can successfully discriminate true alternative 3? splice sites from constitutive 3? splice sites. Finally, we propose that the unique features of the intron flanking alternative splice sites are indicative of a regulatory mechanism that is involved in splice site selection. We postulate that the process of splice site selection is influenced by the distance between the competitive splice sites.

Akerman, Martin; Mandel-Gutfreund, Yael

2007-01-01

29

Accurate identification of alternatively spliced exons using support vector machine  

Microsoft Academic Search

Motivation: Alternative splicing is a major component of the regulation acting on mammalian transcriptomes. It is esti- mated that over half of all human genes have more than one splice variant. Previous studies have shown that alterna- tively spliced exons possess several features that distinguish them from constitutively spliced ones. Recently, we have demonstrated that such features can be used

Gideon Dror; Rotem Sorek; Ron Shamir

2005-01-01

30

ECgene: an alternative splicing database update  

PubMed Central

ECgene () was developed to provide functional annotation for alternatively spliced genes. The applications encompass the genome-based transcript modeling for alternative splicing (AS), domain analysis with Gene Ontology (GO) annotation and expression analysis based on the EST and SAGE data. We have expanded the ECgene's AS modeling and EST clustering to nine organisms for which sufficient EST data are available in the GenBank. As for the human genome, we have also introduced several new applications to analyze differential expression. ECprofiler is an ontology-based candidate gene search system that allows users to select an arbitrary combination of gene expression pattern and GO functional categories. DEGEST is a database of differentially expressed genes and isoforms based on the EST information. Importantly, gene expression is analyzed at three distinctive levels—gene, isoform and exon levels. The user interfaces for functional and expression analyses have been substantially improved. ASviewer is a dedicated java application that visualizes the transcript structure and functional features of alternatively spliced variants. The SAGE part of the expression module provides many additional features including SNP, differential expression and alternative tag positions.

Lee, Yeunsook; Lee, Younghee; Kim, Bumjin; Shin, Youngah; Nam, Seungyoon; Kim, Pora; Kim, Namshin; Chung, Won-Hyong; Kim, Jaesang; Lee, Sanghyuk

2007-01-01

31

Integrating alternative splicing detection into gene prediction  

PubMed Central

Background Alternative splicing (AS) is now considered as a major actor in transcriptome/proteome diversity and it cannot be neglected in the annotation process of a new genome. Despite considerable progresses in term of accuracy in computational gene prediction, the ability to reliably predict AS variants when there is local experimental evidence of it remains an open challenge for gene finders. Results We have used a new integrative approach that allows to incorporate AS detection into ab initio gene prediction. This method relies on the analysis of genomically aligned transcript sequences (ESTs and/or cDNAs), and has been implemented in the dynamic programming algorithm of the graph-based gene finder EuGÈNE. Given a genomic sequence and a set of aligned transcripts, this new version identifies the set of transcripts carrying evidence of alternative splicing events, and provides, in addition to the classical optimal gene prediction, alternative optimal predictions (among those which are consistent with the AS events detected). This allows for multiple annotations of a single gene in a way such that each predicted variant is supported by a transcript evidence (but not necessarily with a full-length coverage). Conclusions This automatic combination of experimental data analysis and ab initio gene finding offers an ideal integration of alternatively spliced gene prediction inside a single annotation pipeline.

Foissac, Sylvain; Schiex, Thomas

2005-01-01

32

Alternative-splicing-mediated gene expression  

NASA Astrophysics Data System (ADS)

Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

Wang, Qianliang; Zhou, Tianshou

2014-01-01

33

The Birth of an Alternatively Spliced Exon: 3' Splice-Site Selection in Alu Exons  

Microsoft Academic Search

Alu repetitive elements can be inserted into mature messenger RNAs via a splicing-mediated process termed exonization. To understand the molecular basis and the regulation of the process of turning intronic Alus into new exons, we compiled and analyzed a data set of human exonized Alus. We revealed a mechanism that governs 3' splice-site selection in these exons during alternative splicing.

Galit Lev-Maor; Rotem Sorek; Noam Shomron; Gil Ast

2003-01-01

34

Elements of the rat tropoelastin gene associated with alternative splicing.  

PubMed

Multiple isoforms of tropoelastin, the soluble precursor of elastin, are the products of translation of splice-variant mRNAs derived from the single-copy tropoelastin gene. Previous data had demonstrated DNA sequence heterogeneity in three domains of rat tropoelastin mRNA, indicating alternative splicing of several exons of the rat tropoelastin gene. Rat tropoelastin genomic clones encompassing the sites of alternative splicing were isolated and sequenced. Two sites of alternative splicing identified in rat tropoelastin mRNA sequences corresponded to exons 13-15 and exon 33 of the rat tropoelastin gene. Furthermore, the variable inclusion of an alanine codon in exon 16 resulted from two functional acceptor sites separated by three nucleotides. DNA sequences flanking exons subject to alternative splicing were analyzed. These exons contained splicing signals that differed from consensus sequences and from splicing signals of constitutively spliced exons. Introns immediately 5' of exons 14 and 33, for example, lacked typical polypyrimidine tracts and had weak, overlapping branch point sequences. Further, a region of secondary structure encompassing the acceptor site of exon 13 may influence alternative splicing of this exon. These results demonstrate that multiple cis-acting sequence elements may contribute to alternative splicing of rat tropoelastin pre-mRNA. PMID:1572637

Pierce, R A; Alatawi, A; Deak, S B; Boyd, C D

1992-04-01

35

Neuronal Signaling through Alternative Splicing: Some Exons CaRRE...  

NSDL National Science Digital Library

Alternative splicing represents a mechanism by which a single gene can be used to create proteins with different functions. Neurons use alternative splicing to produce channels with different sequences and biophysical or regulatory properties. O'Donovan and Darnell discuss a mechanism by which neurons can alter channel splicing in response to neuronal activity through a signal generated by calcium and calcium/calmodulin-dependent kinase activity.

Kevin J. O'Donovan (The Rockefeller University;Laboratory of Molecular Neuro-Oncology REV); Robert B. Darnell (The Rockefeller University;Laboratory of Molecular Neuro-Oncology REV)

2001-08-07

36

Alternative splicing in chronic myeloid leukemia (CML): a novel therapeutic target?  

PubMed

Although the imatinib based therapy of chronic myeloid leukemia (CML) represents a triumph of medicine, not all patients with CML benefit from this drug due to the development of resistance and intolerance. The interruption of imatinib treatment is often followed by clinical relapse, suggesting a failure in the killing of residual leukaemic stem cells. There is need to identify alternative selective molecular targets for this disease and develop more effective therapeutic approaches. Alternative pre-mRNA splicing (AS) is an epigenetic process that greatly diversifies the repertoire of the transcriptome. AS orchestrates interactions between various types of proteins and between proteins and nucleic acids. Changes caused by individual splicing events in the cells are small, however, "splicing programs" typically react to these individual changes with considerable effects in cell proliferation, cell survival, and apoptosis. Current evidence suggests a pivotal role of AS in leukemias, particularly in myelodisplastic syndrome (MDS) and chronic lymphocyte leukemia (CLL). From these studies and studies in other malignances, it is clear that splicing abnormalities play a significant role in malignant transformation. Evaluation of AS events in CML can be used to identify novel disease markers and drugsensitive targets to overcome the limits of the small molecule inhibitors currently used for treating patients with CML. The use of aberrant splice variants as disease markers has been reported, however, little is known about the use of splicing abnormalities as drug targets in CML. Herein we discuss potential therapeutic approaches that can be used to target splicing abnormalities in CML. PMID:23906050

Adamia, Sophia; Pilarski, Patrick M; Bar-Natan, Michal; Stone, Richard M; Griffin, James D

2013-09-01

37

Alternative 5' splice site selection induced by heat shock.  

PubMed Central

The mouse HSP47 gene consists of six exons separated by five introns. Three HSP47 cDNAs differing only in their 5' noncoding regions have been reported. One of these alternatively spliced mRNAs was detected only after heat shock, which caused an alternative 5' splice donor site selection. Other stress inducers, including an amino acid analog and sodium arsenite, had no effect on the alternative splicing. The alternatively spliced mRNA, which was 169 nucleotides longer in the 5' noncoding region compared to mRNA transcribed in non-heat shock conditions, was efficiently translated under heat shock conditions. This novel finding that alternative splicing is caused by artificial treatment like heat shock will provide a useful in vivo model for understanding the exon-intron recognition mechanism as well as heat shock-induced alterations in gene expression. Images

Takechi, H; Hosokawa, N; Hirayoshi, K; Nagata, K

1994-01-01

38

Development of a novel splice array platform and its application in the identification of alternative splice variants in lung cancer  

Microsoft Academic Search

BACKGROUND: Microarrays strategies, which allow for the characterization of thousands of alternative splice forms in a single test, can be applied to identify differential alternative splicing events. In this study, a novel splice array approach was developed, including the design of a high-density oligonucleotide array, a labeling procedure, and an algorithm to identify splice events. RESULTS: The array consisted of

Ruben Pio; David Blanco; Maria Jose Pajares; Elena Aibar; Olga Durany; Teresa Ezponda; Jackeline Agorreta; Javier Gomez-Roman; Miguel Angel Anton; Angel Rubio; Maria D Lozano; Jose M López-Picazo; Francesc Subirada; Tamara Maes; Luis M Montuenga

2010-01-01

39

Selective secretion of alternatively spliced fibronectin variants  

PubMed Central

We demonstrate that the alternatively spliced variable (V) region of fibronectin (FN) is required for secretion of FN dimers during biosynthesis. Alternative splicing of the V segment of the rat FN transcript generates three subunit variants (V120, V95, V0) that differ by the inclusion or omission of an additional 120 or 95 amino acids. We are exploring the functions of this segment by expressing variant cDNAs in normal and transformed fibroblasts. Like FN itself, the cDNA-encoded polypeptides (deminectins [DNs]) containing the V120 or V95 segment are efficiently secreted as disulfide-bonded homodimers. However, few homodimers of DNs lacking this region, V0 DNs, are secreted. V0 homodimers do form inside the cell, as demonstrated by biosynthetic analyses of dimer formation and secretion using pulse-chase and time course experiments, but these dimers seldom reach the cell surface and are probably degraded intracellularly. Coexpression of V0 and V120 subunits results in intracellular formation of three types of dimers, V0-V0, V0-V120, and V120-V120, but only the V120-containing dimers are secreted. This selective retention of V0 homodimers indicates that the V region is required for formation and secretion of native FN dimers. In an analogous in vivo situation, we show that plasma FN also lacks V0- V0 dimers and consists of V0-V+ and V+-V+ combinations. Dissection of V region sequences by deletion mapping localizes the major site involved in DN dimer secretion to an 18-amino acid segment within V95. In addition, high levels of dimer secretion can be restored by insertion of V into a heterologous site 10 kD COOH terminal to its normal location. We discuss the potential role of intracellular protein- protein interactions in FN dimer formation.

1989-01-01

40

Radiolabeled Semi-quantitative RT-PCR Assay for the Analysis of Alternative Splicing of Interleukin Genes.  

PubMed

Alternative splicing evolved as a very efficient way to generate proteome diversity from a limited number of genes, while at the same time modulating posttranscriptional events of gene expression-such as stability, turnover, subcellular localization, binding properties, and general activity of both mRNAs and proteins. Since the vast majority of human genes undergo alternative splicing, it comes to no surprise that interleukin genes also show extensive alternative splicing. In fact, there is a growing body of evidence indicating that alternative splicing plays a central role in modulating the pleiotropic functions of cytokines, and aberrant expression of alternatively spliced interleukin mRNAs has been linked to disease. However, while several interleukin splice variants have been described, their function is still poorly understood. This is particularly relevant, since alternatively spliced cytokine isoforms can act both as disease biomarkers and as candidate entry points for therapeutic intervention. In this chapter we describe a protocol that uses radiolabeled semi-quantitative RT-PCR to efficiently detect, analyze, and quantify alternative splicing patterns of cytokine genes. PMID:24908320

Shakola, Felitsiya; Byrne, Stephen; Javed, Kainaat; Ruggiu, Matteo

2014-01-01

41

CAG repeats mimic CUG repeats in the misregulation of alternative splicing  

PubMed Central

Mutant transcripts containing expanded CUG repeats in the untranslated region are a pathogenic factor in myotonic dystrophy type 1 (DM1). The mutant RNA sequesters the muscleblind-like 1 (MBNL1) splicing factor and causes misregulation of the alternative splicing of multiple genes that are linked to clinical symptoms of the disease. In this study, we show that either long untranslated CAG repeat RNA or short synthetic CAG repeats induce splicing aberrations typical of DM1. Alternative splicing defects are also caused by translated CAG repeats in normal cells transfected with a mutant ATXN3 gene construct and in cells derived from spinocerebellar ataxia type 3 and Huntington's disease patients. Splicing misregulation is unlikely to be caused by traces of antisense transcripts with CUG repeats, and the possible trigger of this misregulation may be sequestration of the MBNL1 protein with nuclear RNA inclusions containing expanded CAG repeat transcripts. We propose that alternative splicing misregulation by mutant CAG repeats may contribute to the pathological features of polyglutamine disorders.

Mykowska, Agnieszka; Sobczak, Krzysztof; Wojciechowska, Marzena; Kozlowski, Piotr; Krzyzosiak, Wlodzimierz J.

2011-01-01

42

BIPASS: BioInformatics Pipeline Alternative Splicing Services  

PubMed Central

BioInformatics Pipeline Alternative Splicing Services (BIPASS) offer support to scientists interested in gathering information related to alternative splicing (AS) events. The service BIPAS–SpliceDB provides access to AS information that has been extracted a priori from various public databases and stored in a data warehouse. In contrast, the BIPAS–Align&Splice service allows scientists to submit their own sequences and genome to compute AS analysis results. BIPAS services offer various user-friendly ways to navigate through the results. AS results are organized at different conceptual levels (clusters and sequences), and are displayed in graphs or summarized in tables that can be downloaded in XML or text format. The two BIPAS services SpliceDB and Align&Splice are available online at http://bip.umiacs.umd.edu:8080/.

Lacroix, Zoe; Legendre, Christophe; Raschid, Louiqa; Snyder, Ben

2007-01-01

43

Identical Splicing of Aberrant Epidermal Growth Factor Receptor Transcripts from Amplified Rearranged Genes in Human Glioblastomas  

Microsoft Academic Search

The epidermal growth factor receptor gene has been found to be amplified and rearranged in human glioblastomas in vivo. Here we present the sequence across a splice junction of aberrant epidermal growth factor receptor transcripts derived from corresponding and uniquely rearranged genes that are coamplified and coexpressed with non-rearranged epidermal growth factor receptor genes in six primary human glioblastomas. Each

Noriaki Sugawa; A. Jonas Ekstrand; C. David James; V. Peter Collins

1990-01-01

44

Aberrant Splicing of tau Pre-mRNA Caused by Intronic Mutations Associated with the Inherited Dementia Frontotemporal Dementia with Parkinsonism Linked to Chromosome 17  

PubMed Central

Frontotemporal dementia accounts for a significant fraction of dementia cases. Frontotemporal dementia with parkinsonism linked to chromosome 17 is associated with either exonic or intronic mutations in the tau gene. This highlights the involvement of aberrant pre-mRNA splicing in the pathogenesis of neurodegenerative disorders. Little is known about the molecular mechanisms of the splicing defects underlying these diseases. To establish a model system for studying the role of pre-mRNA splicing in neurodegenerative diseases, we have constructed a tau minigene that reproduces tau alternative splicing in both cultured cells and in vitro biochemical assays. We demonstrate that mutations in a nonconserved intronic region of the human tau gene lead to increased splicing between exon 10 and exon 11. Systematic biochemical analyses indicate the importance of U1 snRNP and, to a lesser extent, U6 snRNP in differentially recognizing wild-type versus intron mutant tau pre-mRNAs. Gel mobility shift assays with purified U1 snRNP and oligonucleotide-directed RNase H cleavage experiments support the idea that the intronic mutations destabilize a stem-loop structure that sequesters the 5? splice site downstream of exon 10 in tau pre-mRNA, leading to increases in U1 snRNP binding and in splicing between exon 10 and exon 11. Thus, mutations in nonconserved intronic regions that increase rather than decrease alternative splicing can be an important pathogenic mechanism for the development of human diseases.

Jiang, Zhihong; Cote, Jocelyn; Kwon, Jennifer M.; Goate, Alison M.; Wu, Jane Y.

2000-01-01

45

Safer, Silencing-Resistant Lentiviral Vectors: Optimization of the Ubiquitous Chromatin-Opening Element through Elimination of Aberrant Splicing  

PubMed Central

Gammaretroviral and lentiviral vectors have been used successfully in several clinical gene therapy trials, although powerful enhancer elements have caused insertional mutagenesis and clonal dysregulation. Self-inactivating vectors with internal heterologous regulatory elements have been developed as potentially safer and more effective alternatives. Lentiviral vectors containing a ubiquitous chromatin opening element from the human HNRPA2B1-CBX3 locus (A2UCOE), which allows position-independent, long-term transgene expression, are particularly promising. In a recently described assay, aberrantly spliced mRNA transcripts initiated in the vector A2UCOE sequence were found to lead to upregulation of growth hormone receptor gene (Ghr) expression in transduced murine Bcl-15 cells. Aberrant hybrid mRNA species formed between A2UCOE and a number of other cellular genes were also detected in transduced human PLB-985 myelomonocytic cells. Modification of the A2UCOE by mutation or deletion of recognized and potential cryptic splice donor sites was able to abrogate these splicing events and hybrid mRNA formation in Bcl-15 cells. This modification did not compromise A2UCOE regulatory activity in terms of resistance to CpG methylation and gene silencing in murine P19 embryonic carcinoma cells. These refined A2UCOE regulatory elements are likely to improve intrinsic biosafety and may be particularly useful for a number of clinical applications where robust gene expression is desirable.

Knight, Sean; Zhang, Fang; Mueller-Kuller, Uta; Bokhoven, Marieke; Gupta, Abhinav; Broughton, Thomas; Sha, Sha; Antoniou, Michael N.; Brendel, Christian; Grez, Manuel; Thrasher, Adrian J.; Collins, Mary

2012-01-01

46

Genome-wide survey of Alternative Splicing in Sorghum Bicolor.  

PubMed

Sorghum bicolor is a member of grass family which is an attractive model plant for genome study due to interesting genome features like low genome size. In this research, we performed comprehensive investigation of Alternative Splicing and ontology aspects of genes those have undergone these events in sorghum bicolor. We used homology based alignments between gene rich transcripts, represented by tentative consensus (TC) transcript sequences, and genomic scaffolds to deduce the structure of genes and identify alternatively spliced transcripts in sorghum. Using homology mapping of assembled expressed sequence tags with genomics data, we identified 2,137 Alternative Splicing events in S. bicolor. Our study showed that complex events and intron retention are the main types of Alternative Splicing events in S. bicolor and highlights the prevalence of splicing site recognition for definition of introns in this plant. Annotations of the alternatively spliced genes revealed that they represent diverse biological process and molecular functions, suggesting a fundamental role for Alternative Splicing in affecting the development and physiology of S. bicolor. PMID:25049459

Panahi, Bahman; Abbaszadeh, Bahram; Taghizadeghan, Mehdi; Ebrahimie, Esmaeil

2014-07-01

47

Identification of Common Genetic Variation That Modulates Alternative Splicing  

PubMed Central

Alternative splicing of genes is an efficient means of generating variation in protein function. Several disease states have been associated with rare genetic variants that affect splicing patterns. Conversely, splicing efficiency of some genes is known to vary between individuals without apparent ill effects. What is not clear is whether commonly observed phenotypic variation in splicing patterns, and hence potential variation in protein function, is to a significant extent determined by naturally occurring DNA sequence variation and in particular by single nucleotide polymorphisms (SNPs). In this study, we surveyed the splicing patterns of 250 exons in 22 individuals who had been previously genotyped by the International HapMap Project. We identified 70 simple cassette exon alternative splicing events in our experimental system; for six of these, we detected consistent differences in splicing pattern between individuals, with a highly significant association between splice phenotype and neighbouring SNPs. Remarkably, for five out of six of these events, the strongest correlation was found with the SNP closest to the intron–exon boundary, although the distance between these SNPs and the intron–exon boundary ranged from 2 bp to greater than 1,000 bp. Two of these SNPs were further investigated using a minigene splicing system, and in each case the SNPs were found to exert cis-acting effects on exon splicing efficiency in vitro. The functional consequences of these SNPs could not be predicted using bioinformatic algorithms. Our findings suggest that phenotypic variation in splicing patterns is determined by the presence of SNPs within flanking introns or exons. Effects on splicing may represent an important mechanism by which SNPs influence gene function.

Hull, Jeremy; Campino, Susana; Rowlands, Kate; Chan, Man-Suen; Copley, Richard R; Taylor, Martin S; Rockett, Kirk; Elvidge, Gareth; Keating, Brendan; Knight, Julian; Kwiatkowski, Dominic

2007-01-01

48

Genome-wide mapping of alternative splicing in Arabidopsis thaliana  

PubMed Central

Alternative splicing can enhance transcriptome plasticity and proteome diversity. In plants, alternative splicing can be manifested at different developmental stages, and is frequently associated with specific tissue types or environmental conditions such as abiotic stress. We mapped the Arabidopsis transcriptome at single-base resolution using the Illumina platform for ultrahigh-throughput RNA sequencing (RNA-seq). Deep transcriptome sequencing confirmed a majority of annotated introns and identified thousands of novel alternatively spliced mRNA isoforms. Our analysis suggests that at least ?42% of intron-containing genes in Arabidopsis are alternatively spliced; this is significantly higher than previous estimates based on cDNA/expressed sequence tag sequencing. Random validation confirmed that novel splice isoforms empirically predicted by RNA-seq can be detected in vivo. Novel introns detected by RNA-seq were substantially enriched in nonconsensus terminal dinucleotide splice signals. Alternative isoforms with premature termination codons (PTCs) comprised the majority of alternatively spliced transcripts. Using an example of an essential circadian clock gene, we show that intron retention can generate relatively abundant PTC+ isoforms and that this specific event is highly conserved among diverse plant species. Alternatively spliced PTC+ isoforms can be potentially targeted for degradation by the nonsense mediated mRNA decay (NMD) surveillance machinery or regulate the level of functional transcripts by the mechanism of regulated unproductive splicing and translation (RUST). We demonstrate that the relative ratios of the PTC+ and reference isoforms for several key regulatory genes can be considerably shifted under abiotic stress treatments. Taken together, our results suggest that like in animals, NMD and RUST may be widespread in plants and may play important roles in regulating gene expression.

Filichkin, Sergei A.; Priest, Henry D.; Givan, Scott A.; Shen, Rongkun; Bryant, Douglas W.; Fox, Samuel E.; Wong, Weng-Keen; Mockler, Todd C.

2010-01-01

49

Alternative splicing in human tumour viruses: a therapeutic target?  

PubMed

Persistent infection with cancer risk-related viruses leads to molecular, cellular and immune response changes in host organisms that in some cases direct cellular transformation. Alternative splicing is a conserved cellular process that increases the coding complexity of genomes at the pre-mRNA processing stage. Human and other animal tumour viruses use alternative splicing as a process to maximize their transcriptomes and proteomes. Medical therapeutics to clear persistent viral infections are still limited. However, specific lessons learned in some viruses [e.g. HIV and HCV (hepatitis C virus)] suggest that drug-directed inhibition of alternative splicing could be useful for this purpose. The present review describes the basic mechanisms of constitutive and alternative splicing in a cellular context and known splicing patterns and the mechanisms by which these might be achieved for the major human infective tumour viruses. The roles of splicing-related proteins expressed by these viruses in cellular and viral gene regulation are explored. Moreover, we discuss some currently available drugs targeting SR (serine/arginine-rich) proteins that are the main regulators of constitutive and alternative splicing, and their potential use in treatment for so-called persistent viral infections. PMID:22738337

Hernandez-Lopez, Hegel R; Graham, Sheila V

2012-07-15

50

Functional characterization of alternatively spliced human SECISBP2 transcript variants  

PubMed Central

Synthesis of selenoproteins depends on decoding of the UGA stop codon as the amino acid selenocysteine (Sec). This process requires the presence of a Sec insertion sequence element (SECIS) in the 3?-untranslated region of selenoprotein mRNAs and its interaction with the SECIS binding protein 2 (SBP2). In humans, mutations in the SBP2-encoding gene Sec insertion sequence binding protein 2 (SECISBP2) that alter the amino acid sequence or cause splicing defects lead to abnormal thyroid hormone metabolism. Herein, we present the first in silico and in vivo functional characterization of alternative splicing of SECISBP2. We report a complex splicing pattern in the 5?-region of human SECISBP2, wherein at least eight splice variants encode five isoforms with varying N-terminal sequence. One of the isoforms, mtSBP2, contains a mitochondrial targeting sequence and localizes to mitochondria. Using a minigene-based in vivo splicing assay we characterized the splicing efficiency of several alternative transcripts, and show that the splicing event that creates mtSBP2 can be modulated by antisense oligonucleotides. Moreover, we show that full-length SBP2 and some alternatively spliced variants are subject to a coordinated transcriptional and translational regulation in response to ultraviolet type A irradiation-induced stress. Overall, our data broadens the functional scope of a housekeeping protein essential to selenium metabolism.

Papp, Laura V.; Wang, Junning; Kennedy, Derek; Boucher, Didier; Zhang, Yan; Gladyshev, Vadim N.; Singh, Ravindra N.; Khanna, Kum Kum

2008-01-01

51

Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator.  

PubMed Central

Alternative splicing of pre-mRNA is a fundamental mechanism of differential gene expression in that it can give rise to functionally distinct proteins from a single gene, according to the developmental or physiological state of cells in multicellular organisms. In the pre-mRNA of the cell surface molecule CD44, the inclusion of up to 10 variant exons (v1-v10) is regulated during development, upon activation of lymphocytes and dendritic cells, and during tumour progression. Using minigene constructs containing CD44 exon v5, we have discovered exonic RNA elements that couple signal transduction to alternative splicing. They form a composite splice regulator encompassing an exon recognition element and splice silencer elements. Both type of elements are necessary to govern cell type-specific inclusion of the exon as well as inducible inclusion in T cells after stimulation by concanavalin A, by Ras signalling or after activation of protein kinase C by phorbol ester. Inducible splicing does not depend on de novo protein synthesis. The coupling of signal transduction to alternative splicing by such elements probably represents the mechanism whereby splice patterns of genes are established during development and can be changed under physiological and pathological conditions.

Konig, H; Ponta, H; Herrlich, P

1998-01-01

52

Analysis of Alternative Splicing in Plants with Bioinformatics Tools  

Microsoft Academic Search

Alternative splicing is a molecular mechanism utilized by a broad range of eukaryotes to extend the repertoire of functions\\u000a encoded by single genes and to posttranscriptionally regulate gene expression. Recent analyses of expressed transcript sequences\\u000a aligned to the complete genomes of Arabidopsis and rice indicate that alternative splicing in plants is prevalent and exhibits\\u000a several features similar to other higher

B. J. Haas

53

Alternative splicing of type II procollagen: IIB or not IIB?  

PubMed

Abstract Over two decades ago, two isoforms of the type II procollagen gene (COL2A1) were discovered. These isoforms, named IIA and IIB, are generated in a developmentally-regulated manner by alternative splicing of exon 2. Chondroprogenitor cells synthesize predominantly IIA isoforms (containing exon 2) while differentiated chondrocytes produce mainly IIB transcripts (devoid of exon 2). Importantly, this IIA-to-IIB alternative splicing switch occurs only during chondrogenesis. More recently, two other isoforms have been reported (IIC and IID) that also involve splicing of exon 2; these findings highlight the complexities involving regulation of COL2A1 expression. The biological significance of why different isoforms of COL2A1 exist within the context of skeletal development and maintenance is still not completely understood. This review will provide current knowledge on COL2A1 isoform expression during chondrocyte differentiation and what is known about some of the mechanisms that control exon 2 alternative splicing. Utilization of mouse models to address the biological significance of Col2a1 alternative splicing in vivo will also be discussed. From the knowledge acquired to date, some new questions and concepts are now being proposed on the importance of Col2a1 alternative splicing in regulating extracellular matrix assembly and how this may subsequently affect cartilage and endochondral bone quality and function. PMID:24669942

McAlinden, Audrey

2014-06-01

54

The evolutionary landscape of alternative splicing in vertebrate species.  

PubMed

How species with similar repertoires of protein-coding genes differ so markedly at the phenotypic level is poorly understood. By comparing organ transcriptomes from vertebrate species spanning ~350 million years of evolution, we observed significant differences in alternative splicing complexity between vertebrate lineages, with the highest complexity in primates. Within 6 million years, the splicing profiles of physiologically equivalent organs diverged such that they are more strongly related to the identity of a species than they are to organ type. Most vertebrate species-specific splicing patterns are cis-directed. However, a subset of pronounced splicing changes are predicted to remodel protein interactions involving trans-acting regulators. These events likely further contributed to the diversification of splicing and other transcriptomic changes that underlie phenotypic differences among vertebrate species. PMID:23258890

Barbosa-Morais, Nuno L; Irimia, Manuel; Pan, Qun; Xiong, Hui Y; Gueroussov, Serge; Lee, Leo J; Slobodeniuc, Valentina; Kutter, Claudia; Watt, Stephen; Colak, Recep; Kim, TaeHyung; Misquitta-Ali, Christine M; Wilson, Michael D; Kim, Philip M; Odom, Duncan T; Frey, Brendan J; Blencowe, Benjamin J

2012-12-21

55

Alternative splicing of SLC39A14 in colorectal cancer is regulated by the Wnt pathway.  

PubMed

Alternative splicing is a crucial step in the generation of protein diversity and its misregulation is observed in many human cancer types. By analyzing 143 colorectal samples using exon arrays, SLC39A14, a divalent cation transporter, was identified as being aberrantly spliced in tumor samples. SLC39A14 contains two mutually exclusive exons 4A and 4B and the exon 4A/4B ratio was significantly altered in adenomas (p = 3.6 × 10(-10)) and cancers (p = 9.4 × 10(-11)), independent of microsatellite stability status. The findings were validated in independent exon array data sets and by quantitative real-time reverse-transcription PCR (qRT-PCR). Aberrant Wnt signaling is a hallmark of colorectal tumorigenesis and is characterized by nuclear ?-catenin. Experimental inactivation of Wnt signaling in DLD1 and Ls174T cells by knockdown of ?-catenin or overexpression of dominant negative TCFs (TCF1 and TCF4) altered the 4A/4B ratio, indicating that SLC39A14 splicing is regulated by the Wnt pathway. An altered 4A/4B ratio was also observed in gastric and lung cancer where Wnt signaling is also known to be aberrantly activated. The splicing factor SRSF1 and its regulator, the kinase SRPK1, were found to be deregulated upon Wnt inactivation in colorectal carcinoma cells. SRPK1 was also found up-regulated in both adenoma samples (p = 1.5 × 10(-5)) and cancer samples (p = 5 × 10(-4)). In silico splicing factor binding analysis predicted SRSF1 to bind predominantly to the cancer associated exon 4B, hence, it was hypothesized that SRPK1 activates SRSF1 through phosphorylation, followed by SRSF1 binding to exon 4B and regulation of SLC39A14 splicing. Indeed, siRNA-mediated knockdown of SRPK1 and SRSF1 in DLD1 and SW480 colorectal cancer cells led to a change in the 4A/4B isoform ratio, supporting a role of these factors in the regulation of SLC39A14 splicing. In conclusion, alternative splicing of SLC39A14 was identified in colorectal tumors and found to be regulated by the Wnt pathway, most likely through regulation of SRPK1 and SRSF1. PMID:20938052

Thorsen, Kasper; Mansilla, Francisco; Schepeler, Troels; Øster, Bodil; Rasmussen, Mads H; Dyrskjøt, Lars; Karni, Rotem; Akerman, Martin; Krainer, Adrian R; Laurberg, Søren; Andersen, Claus L; Ørntoft, Torben F

2011-01-01

56

Position-dependent FUS-RNA interactions regulate alternative splicing events and transcriptions  

PubMed Central

FUS is an RNA-binding protein that regulates transcription, alternative splicing, and mRNA transport. Aberrations of FUS are causally associated with familial and sporadic ALS/FTLD. We analyzed FUS-mediated transcriptions and alternative splicing events in mouse primary cortical neurons using exon arrays. We also characterized FUS-binding RNA sites in the mouse cerebrum with HITS-CLIP. We found that FUS-binding sites tend to form stable secondary structures. Analysis of position-dependence of FUS-binding sites disclosed scattered binding of FUS to and around the alternatively spliced exons including those associated with neurodegeneration such as Mapt, Camk2a, and Fmr1. We also found that FUS is often bound to the antisense RNA strand at the promoter regions. Global analysis of these FUS-tags and the expression profiles disclosed that binding of FUS to the promoter antisense strand downregulates transcriptions of the coding strand. Our analysis revealed that FUS regulates alternative splicing events and transcriptions in a position-dependent manner.

Ishigaki, Shinsuke; Masuda, Akio; Fujioka, Yusuke; Iguchi, Yohei; Katsuno, Masahisa; Shibata, Akihide; Urano, Fumihiko; Sobue, Gen; Ohno, Kinji

2012-01-01

57

Alternatively spliced domains interact to regulate BK potassium channel gating.  

PubMed

Most human genes contain multiple alternative splice sites believed to extend the complexity and diversity of the proteome. However, little is known about how interactions among alternative exons regulate protein function. We used the Caenorhabditis elegans slo-1 large-conductance calcium and voltage-activated potassium (BK) channel gene, which contains three alternative splice sites (A, B, and C) and encodes at least 12 splice variants, to investigate the functional consequences of alternative splicing. These splice sites enable the insertion of exons encoding part of the regulator of K(+) conductance (RCK)1 Ca(2+) coordination domain (exons A1 and A2) and portions of the RCK1-RCK2 linker (exons B0, B1, B2, C0, and C1). Exons A1 and A2 are used in a mutually exclusive manner and are 67% identical. The other exons can extend the RCK1-RCK2 linker by up to 41 residues. Electrophysiological recordings of all isoforms show that the A1 and A2 exons regulate activation kinetics and Ca(2+) sensitivity, but only if alternate exons are inserted at site B or C. Thus, RCK1 interacts with the RCK1-RCK2 linker, and the effect of exon variation on gating depends on the combination of alternate exons present in each isoform. PMID:22049343

Johnson, Brandon E; Glauser, Dominique A; Dan-Glauser, Elise S; Halling, D Brent; Aldrich, Richard W; Goodman, Miriam B

2011-12-20

58

Alternative splicing: multiple control mechanisms and involvement in human disease  

Microsoft Academic Search

Alternative splicing is an important mechanism for controlling gene expression. It allows large proteomic complexity from a limited number of genes. An interplay of cis-acting sequences and trans-acting factors modulates the splicing of regulated exons. Here, we discuss the roles of the SR and hnRNP families of proteins in this process. We also focus on the role of the transcriptional

Javier F Cáceres; Alberto R Kornblihtt

2002-01-01

59

Alternative splicing in the fragile X gene FMR1.  

PubMed

The FMR1 gene, associated with fragile X syndrome, has recently been cloned and the sequence of partial cDNA clones is known. We have determined additional cDNA sequences both at the 5' and 3' end. We have characterized the expressed gene by means of RT-PCR in various tissues and have found that alternative splicing takes place in the FMR1 gene, which does not seem to be tissue specific. When the different alternative splicing events are combined, 12 distinct mRNA products could result from FMR1 expression in each tested tissue. In all these transcripts the open reading frame is maintained until the same stop codon. At the 3' end alternative use of polyadenylation signals is found. The alternative splicing allows functional diversity of the FMR-1 gene. Whether all the possible proteins will be synthesized and whether they will be functionally active has to be determined. PMID:8504300

Verkerk, A J; de Graaff, E; De Boulle, K; Eichler, E E; Konecki, D S; Reyniers, E; Manca, A; Poustka, A; Willems, P J; Nelson, D L

1993-04-01

60

Regulation of Chemoresistance Via Alternative Messenger RNA Splicing  

PubMed Central

The acquisition of drug resistance to chemotherapy is a significant problem in the treatment of cancer, greatly increasing patient morbidity and mortality. Tumors are often sensitive to chemotherapy upon initial treatment, but repeated treatments can select for those cells that have were able to survive initial therapy and have acquired cellular mechanisms to enhance their resistance to subsequent chemotherapy treatment. Many cellular mechanisms of drug resistance have been identified, most of which result from changes in gene and protein expression. While changes at the transcriptional level have been duly noted, it is primarily the post-transcriptional processing of pre-mRNA into mature mRNA that regulates the composition of the proteome and it is the proteome that actually regulates the cell’s response to chemotherapeutic insult, inducing cell survival or death. During pre-mRNA processing, intronic non-protein-coding sequences are removed and protein-coding exons are spliced to form a continuous template for protein translation. Alternative splicing involves the differential inclusion or exclusion of exonic sequences into the mature transcript, generating different mRNA templates for protein production. This regulatory mechanism enables the potential to produce many different protein isoforms from the same gene. In this review I will explain the mechanism of alternative pre-mRNA splicing and look at some specific examples of how splicing factors, splicing factor kinases and alternative splicing of specific pre-mRNAs from genes have been shown to contribute to acquisition of the drug resistant phenotype.

Eblen, Scott T.

2012-01-01

61

ESTGenes: Alternative Splicing From ESTs in Ensembl  

PubMed Central

We describe a novel algorithm for deriving the minimal set of nonredundant transcripts compatible with the splicing structure of a set of ESTs mapped on a genome. Sets of ESTs with compatible splicing are represented by a special type of graph. We describe the algorithms for building the graphs and for deriving the minimal set of transcripts from the graphs that are compatible with the evidence. These algorithms are part of the Ensembl automatic gene annotation system, and its results, using ESTs, are provided at www.ensembl.org as ESTgenes for the mosquito, Caenorhabditis briggsae, C. elegans, zebrafish, human, mouse, and rat genomes. Here we also report on the results of this method applied to the human and mouse genomes.

Eyras, Eduardo; Caccamo, Mario; Curwen, Val; Clamp, Michele

2004-01-01

62

Genomewide comparative analysis of alternative splicing in plants.  

PubMed

Alternative splicing (AS) has been extensively studied in mammalian systems but much less in plants. Here we report AS events deduced from EST/cDNA analysis in two model plants: Arabidopsis and rice. In Arabidopsis, 4,707 (21.8%) of the genes with EST/cDNA evidence show 8,264 AS events. Approximately 56% of these events are intron retention (IntronR), and only 8% are exon skipping. In rice, 6,568 (21.2%) of the expressed genes display 14,542 AS events, of which 53.5% are IntronR and 13.8% are exon skipping. The consistent high frequency of IntronR suggests prevalence of splice site recognition by intron definition in plants. Different AS events within a given gene occur, for the most part, independently. In total, 36-43% of the AS events produce transcripts that would be targets of the non-sense-mediated decay pathway, if that pathway were to operate in plants as in humans. Forty percent of Arabidopsis AS genes are alternatively spliced also in rice, with some examples strongly suggesting a role of the AS event as an evolutionary conserved mechanism of posttranscriptional regulation. We created a comprehensive web-interfaced database to compile and visualize the evidence for alternative splicing in plants (Alternative Splicing in Plants, available at www.plantgdb.org/ASIP). PMID:16632598

Wang, Bing-Bing; Brendel, Volker

2006-05-01

63

Factors influencing alternative splice site utilization in vivo.  

PubMed Central

To study factors that influence the choice of alternative pre-mRNA splicing pathways, we introduced plasmids expressing either wild-type or mutated simian virus 40 (SV40) early regions into tissue culture cells and then measured the quantities of small-t and large-T RNAs produced. One important element controlling splice site selection was found to be the size of the intron removed in the production of small-t mRNA; expansion of this intron (from 66 to 77 or more nucleotides) resulted in a substantial increase in the amount of small-t mRNA produced relative to large-T mRNA. This suggests that in the normal course of SV40 early pre-mRNA processing, large-T splicing is at a competitive advantage relative to small-t splicing because of the small size of the latter intron. Several additional features of the pre-mRNA that can influence splice site selection were also identified by analyzing the effects of mutations containing splice site duplications. These include the strengths of competing 5' splice sites and the relative positions of splice sites in the pre-mRNA. Finally, we showed that the ratio of small-t to large-T mRNA was 10 to 15-fold greater in human 293 cells than in HeLa cells or other mammalian cell types. These results suggest the existence of cell-specific trans-acting factors that can dramatically alter the pattern of splice site selection in a pre-mRNA. Images

Fu, X Y; Manley, J L

1987-01-01

64

A chloroplast retrograde signal regulates nuclear alternative splicing.  

PubMed

Light is a source of energy and also a regulator of plant physiological adaptations. We show here that light/dark conditions affect alternative splicing of a subset of Arabidopsis genes preferentially encoding proteins involved in RNA processing. The effect requires functional chloroplasts and is also observed in roots when the communication with the photosynthetic tissues is not interrupted, suggesting that a signaling molecule travels through the plant. Using photosynthetic electron transfer inhibitors with different mechanisms of action, we deduce that the reduced pool of plastoquinones initiates a chloroplast retrograde signaling that regulates nuclear alternative splicing and is necessary for proper plant responses to varying light conditions. PMID:24763593

Petrillo, Ezequiel; Herz, Micaela A Godoy; Fuchs, Armin; Reifer, Dominik; Fuller, John; Yanovsky, Marcelo J; Simpson, Craig; Brown, John W S; Barta, Andrea; Kalyna, Maria; Kornblihtt, Alberto R

2014-04-25

65

Microenvironment Changes (in pH) Affect VEGF Alternative Splicing  

PubMed Central

Vascular endothelial growth factor-A (VEGF-A) has several isoforms, which differ in their capacity to bind extracellular matrix proteins and also in their affinity for VEGF receptors. Although the relative contribution of the VEGF isoforms has been studied in tumor angiogenesis, little is known about the mechanisms that regulate the alternative splicing process. Here, we tested microenvironment cues that might regulate VEGF alternative splicing. To test this, we used endometrial cancer cells that produce all VEGF isoforms as a model, and exposed them to varying pH levels, hormones, glucose and CoCl2 (to mimic hypoxia). Low pH had the most consistent effects in inducing variations in VEGF splicing pattern (VEGF121 increased significantly, p?splicing factors) expression and phosphorylation. SF2/ASF, SRp20 and SRp40 down-regulation by siRNA impaired the effects of pH stimulation, blocking the shift in VEGF isoforms production. Taken together, we show for the first time that acidosis (low pH) regulates VEGF-A alternative splicing, may be through p38 activation and suggest the possible SR proteins involved in this process. Electronic supplementary material The online version of this article (doi:10.1007/s12307-008-0013-4) contains supplementary material, which is available to authorized users.

Elias, Ana Paula

2008-01-01

66

Transposable element insertions respecify alternative exon splicing in three Drosophila myosin heavy chain mutants.  

PubMed Central

Insertions of transposable elements into the myosin heavy chain (Mhc) locus disrupt the regulation of alternative pre-mRNA splicing for multi-alternative exons in the Mhc2, Mhc3, and Mhc4 mutants in Drosophila. Sequence and expression analyses show that each inserted element introduces a strong polyadenylation signal that defines novel terminal exons, which are then differentially recognized by the alternative splicing apparatus. Mhc2 and Mhc4 have insertion elements located within intron 7c and exon 9a, respectively, and each expresses a single truncated transcript that contains an aberrant terminal exon defined by the poly(A) signal of the inserted element and the 3' acceptor of the upstream common exon. In Mhc3, a poly(A) signal inserted into Mhc intron 7d defines terminal exons using either the upstream 3' acceptor of common exon 6 or the 7d acceptor, leading to the expression of 4.1- and 1.7-kb transcripts, respectively. Acceptor selection is regulated in Mhc3 transcripts, where the 3' acceptor of common Mhc exon 6 is preferentially selected in larvae, whereas the alternative exon 7d acceptor is favored in adults. These results reflect the adult-specific use of exon 7d and suggest that the normal exon 7 alternative splicing mechanism continues to influence the selection of exon 7d in Mhc3 transcripts. Overall, transposable element-induced disruptions in alternative processing demonstrate a role for the nonconsensus 3' acceptors in Mhc exons 7 and 9 alternative splicing regulation.

Davis, M B; Dietz, J; Standiford, D M; Emerson, C P

1998-01-01

67

Assessing the number of ancestral alternatively spliced exons in the human genome  

PubMed Central

Background It is estimated that between 35% and 74% of all human genes undergo alternative splicing. However, as a gene that undergoes alternative splicing can have between one and dozens of alternative exons, the number of alternatively spliced genes by itself is not informative enough. An additional parameter, which was not addressed so far, is therefore the number of human exons that undergo alternative splicing. We have previously described an accurate machine-learning method allowing the detection of conserved alternatively spliced exons without using ESTs, which relies on specific features of the exon and its genomic vicinity that distinguish alternatively spliced exons from constitutive ones. Results In this study we use the above-described approach to calculate that 7.2% (± 1.1%) of all human exons that are conserved in mouse are alternatively spliced in both species. Conclusion This number is the first estimation for the extent of ancestral alternatively spliced exons in the human genome.

Sorek, Rotem; Dror, Gideon; Shamir, Ron

2006-01-01

68

Hypoxia-Induced Alternative Splicing in Endothelial Cells  

PubMed Central

Background Adaptation to low oxygen by changing gene expression is vitally important for cell survival and tissue development. The sprouting of new blood vessels, initiated from endothelial cells, restores the oxygen supply of ischemic tissues. In contrast to the transcriptional response induced by hypoxia, which is mainly mediated by members of the HIF family, there are only few studies investigating alternative splicing events. Therefore, we performed an exon array for the genome-wide analysis of hypoxia-related changes of alternative splicing in endothelial cells. Methodology/Principal findings Human umbilical vein endothelial cells (HUVECs) were incubated under hypoxic conditions (1% O2) for 48 h. Genome-wide transcript and exon expression levels were assessed using the Affymetrix GeneChip Human Exon 1.0 ST Array. We found altered expression of 294 genes after hypoxia treatment. Upregulated genes are highly enriched in glucose metabolism and angiogenesis related processes, whereas downregulated genes are mainly connected to cell cycle and DNA repair. Thus, gene expression patterns recapitulate known adaptations to low oxygen supply. Alternative splicing events, until now not related to hypoxia, are shown for nine genes: six which are implicated in angiogenesis-mediated cytoskeleton remodeling (cask, itsn1, larp6, sptan1, tpm1 and robo1); one, which is involved in the synthesis of membrane-anchors (pign) and two universal regulators of gene expression (cugbp1 and max). Conclusions/Significance For the first time, this study investigates changes in splicing in the physiological response to hypoxia on a genome-wide scale. Nine alternative splicing events, until now not related to hypoxia, are reported, considerably expanding the information on splicing changes due to low oxygen supply. Therefore, this study provides further knowledge on hypoxia induced gene expression changes and presents new starting points to study the hypoxia adaptation of endothelial cells.

Weigand, Julia E.; Boeckel, Jes-Niels; Gellert, Pascal; Dimmeler, Stefanie

2012-01-01

69

Regulation of alternative splicing by the core spliceosomal machinery  

PubMed Central

Alternative splicing (AS) plays a major role in the generation of proteomic diversity and in gene regulation. However, the role of the basal splicing machinery in regulating AS remains poorly understood. Here we show that the core snRNP (small nuclear ribonucleoprotein) protein SmB/B? self-regulates its expression by promoting the inclusion of a highly conserved alternative exon in its own pre-mRNA that targets the spliced transcript for nonsense-mediated mRNA decay (NMD). Depletion of SmB/B? in human cells results in reduced levels of snRNPs and a striking reduction in the inclusion levels of hundreds of additional alternative exons, with comparatively few effects on constitutive exon splicing levels. The affected alternative exons are enriched in genes encoding RNA processing and other RNA-binding factors, and a subset of these exons also regulate gene expression by activating NMD. Our results thus demonstrate a role for the core spliceosomal machinery in controlling an exon network that appears to modulate the levels of many RNA processing factors.

Saltzman, Arneet L.; Pan, Qun; Blencowe, Benjamin J.

2011-01-01

70

Alternative splicing in the NF-?B signaling pathway  

PubMed Central

Activation of transcription factor NF-?B can affect the expression of several hundred genes, many of which are involved in inflammation and immunity. The proper NF-?B transcriptional response is primarily regulated by post-translational modification of NF-?B signaling constituents. Herein, we review the accumulating evidence suggesting that alternative splicing of NF-?B signaling components is another means of controlling NF-?B signaling. Several alternative splicing events in both the tumor necrosis factor and Toll/interleukin-1 NF-?B signaling pathways can inhibit the NF-?B response, whereas others enhance NF-?B signaling. Alternative splicing of mRNAs encoding some NF-?B signaling components can be induced by prolonged exposure to an NF-?B-activating signal, such as lipopolysaccharide, suggesting a mechanism for negative feedback to dampen excessive NF-?B signaling. Moreover, some NF-?B alternative splicing events appear to be specific for certain diseases, and could serve as therapeutic targets or biomarkers.

Leeman, Joshua R.; Gilmore, Thomas D.

2008-01-01

71

Comprehensive annotation of splice junctions supports pervasive alternative splicing at the BRCA1 locus: a report from the ENIGMA consortium.  

PubMed

Loss-of-function germline mutations in BRCA1 (MIM #113705) confer markedly increased risk of breast and ovarian cancer. The full-length transcript codifies for a protein involved in DNA repair pathways and cell-cycle checkpoints. Several BRCA1 splicing isoforms have been described in public domain databases, but the physiological role (if any) of BRCA1 alternative splicing remains to be established. An accurate description of 'naturally occurring' alternative splicing at this locus is a prerequisite to understand its biological significance. However, a systematic analysis of alternative splicing at the BRCA1 locus is yet to be conducted. Here, the Evidence-Based Network for the Interpretation of Germ-Line Mutant Alleles consortium combines RT-PCR, exon scanning, cloning, sequencing and relative semi-quantification to describe naturally occurring BRCA1 alternative splicing with unprecedented resolution. The study has been conducted in blood-related RNA sources, commonly used for clinical splicing assays, as well as in one healthy breast tissue. We have characterized a total of 63 BRCA1 alternative splicing events, including 35 novel findings. A minimum of 10 splicing events (?1Aq, ?5, ?5q, ?8p, ?9, ?(9,10), ?9_11, ?11q, ?13p and ?14p) represent a substantial fraction of the full-length expression level (ranging from 5 to 100%). Remarkably, our data indicate that BRCA1 alternative splicing is similar in blood and breast, a finding supporting the clinical relevance of blood-based in vitro splicing assays. Overall, our data suggest an alternative splicing model in which most non-mutually exclusive alternative splicing events are randomly combined into individual mRNA molecules to produce hundreds of different BRCA1 isoforms. PMID:24569164

Colombo, Mara; Blok, Marinus J; Whiley, Phillip; Santamariña, Marta; Gutiérrez-Enríquez, Sara; Romero, Atocha; Garre, Pilar; Becker, Alexandra; Smith, Lindsay Denise; De Vecchi, Giovanna; Brandão, Rita D; Tserpelis, Demis; Brown, Melissa; Blanco, Ana; Bonache, Sandra; Menéndez, Mireia; Houdayer, Claude; Foglia, Claudia; Fackenthal, James D; Baralle, Diana; Wappenschmidt, Barbara; Díaz-Rubio, Eduardo; Caldés, Trinidad; Walker, Logan; Díez, Orland; Vega, Ana; Spurdle, Amanda B; Radice, Paolo; De La Hoya, Miguel

2014-07-15

72

RNAmotifs: prediction of multivalent RNA motifs that control alternative splicing  

PubMed Central

RNA-binding proteins (RBPs) regulate splicing according to position-dependent principles, which can be exploited for analysis of regulatory motifs. Here we present RNAmotifs, a method that evaluates the sequence around differentially regulated alternative exons to identify clusters of short and degenerate sequences, referred to as multivalent RNA motifs. We show that diverse RBPs share basic positional principles, but differ in their propensity to enhance or repress exon inclusion. We assess exons differentially spliced between brain and heart, identifying known and new regulatory motifs, and predict the expression pattern of RBPs that bind these motifs. RNAmotifs is available at https://bitbucket.org/rogrro/rna_motifs.

2014-01-01

73

Splice-Junction Elements and Intronic Sequences Regulate Alternative Splicing of the Drosophila Myosin Heavy Chain Gene Transcript  

PubMed Central

The Drosophila muscle myosin heavy chain (Mhc) gene primary transcript contains five alternatively spliced exon groups (exons 3, 7, 9, 11 and 15), each of which contains two to five mutually exclusive members. Individual muscles typically select a specific alternative exon from each group for incorporation into the processed message. We report here on the cis-regulatory mechanisms that direct the processing of alternative exons in Mhc exon 11 in individual muscles using transgenic reporter constructs, RT-PCR and directed mutagenesis. The 6.0-kilobase exon 11 domain is sufficient to direct the correct processing of exon 11 alternatives, demonstrating that the alternative splicing cis-regulatory elements are local to Mhc exon 11. Mutational analysis of Mhc exon 11 reveals that the alternative exon nonconsensus 5'-splice donors are essential for alternative splicing regulation in general, but do not specify alternative exons for inclusion in individual muscles. Rather, we show, through exon substitutions and deletion analyses, that a 360-nucleotide intronic domain precisely directs the normal processing of one exon, Mhc exon 11e, in the indirect flight muscle. These and other data indicate that alternative exons are regulated in appropriate muscles through interactions between intronic alternative splice-specificity elements, nonconsensus exon 11 splice donors and, likely, novel exon-specific alternative splicing factors.

Standiford, D. M.; Davis, M. B.; Sun, W.; Emerson-Jr., C. P.

1997-01-01

74

Alternative Splicing of TAF6: Downstream Transcriptome Impacts and Upstream RNA Splice Control Elements.  

PubMed

The TAF6? pathway of apoptosis can dictate life versus death decisions independently of the status of p53 tumor suppressor. TAF6? is an inducible pro-apoptotic subunit of the general RNA polymerase II (Pol II) transcription factor TFIID. Alternative splice site choice of TAF6? has been shown to be a pivotal event in triggering death via the TAF6? pathway, yet nothing is currently known about the mechanisms that promote TAF6? splicing. Furthermore the transcriptome impact of the gain of function of TAF6? versus the loss of function of the major TAF6? splice form remains undefined. Here we employ comparative microarray analysis to show that TAF6? drives a transcriptome profile distinct from that resulting from depletion of TAF6?. To define the cis-acting RNA elements responsible for TAF6? alternative splicing we performed a mutational analysis of a TAF6 minigene system. The data point to several new RNA elements that can modulate TAF6? and also reveal a role for RNA secondary structure in the selection of TAF6?. PMID:25025302

Kamtchueng, Catherine; Stébenne, Marie-Éve; Delannoy, Aurélie; Wilhelm, Emmanuelle; Léger, Hélène; Benecke, Arndt G; Bell, Brendan

2014-01-01

75

Alternative Splicing of TAF6: Downstream Transcriptome Impacts and Upstream RNA Splice Control Elements  

PubMed Central

The TAF6? pathway of apoptosis can dictate life versus death decisions independently of the status of p53 tumor suppressor. TAF6? is an inducible pro-apoptotic subunit of the general RNA polymerase II (Pol II) transcription factor TFIID. Alternative splice site choice of TAF6? has been shown to be a pivotal event in triggering death via the TAF6? pathway, yet nothing is currently known about the mechanisms that promote TAF6? splicing. Furthermore the transcriptome impact of the gain of function of TAF6? versus the loss of function of the major TAF6? splice form remains undefined. Here we employ comparative microarray analysis to show that TAF6? drives a transcriptome profile distinct from that resulting from depletion of TAF6?. To define the cis-acting RNA elements responsible for TAF6? alternative splicing we performed a mutational analysis of a TAF6 minigene system. The data point to several new RNA elements that can modulate TAF6? and also reveal a role for RNA secondary structure in the selection of TAF6?.

Kamtchueng, Catherine; Stebenne, Marie-Eve; Delannoy, Aurelie; Wilhelm, Emmanuelle; Leger, Helene; Benecke, Arndt G.; Bell, Brendan

2014-01-01

76

Alternative transcription exceeds alternative splicing in generating the transcriptome diversity of cerebellar development  

PubMed Central

Despite our growing knowledge that many mammalian genes generate multiple transcript variants that may encode functionally distinct protein isoforms, the transcriptomes of various tissues and their developmental stages are poorly defined. Identifying the transcriptome and its regulation in a cell/tissue is the key to deciphering the cell/tissue-specific functions of a gene. We built a genome-wide inventory of noncoding and protein-coding transcripts (transcriptomes), their promoters (promoteromes) and histone modification states (epigenomes) for developing, and adult cerebella using integrative massive-parallel sequencing and bioinformatics approach. The data consists of 61,525 (12,796 novel) distinct mRNAs transcribed by 29,589 (4792 novel) promoters corresponding to 15,669 protein-coding and 7624 noncoding genes. Importantly, our results show that the transcript variants from a gene are predominantly generated using alternative transcriptional rather than splicing mechanisms, highlighting alternative promoters and transcriptional terminations as major sources of transcriptome diversity. Moreover, H3K4me3, and not H3K27me3, defined the use of alternative promoters, and we identified a combinatorial role of H3K4me3 and H3K27me3 in regulating the expression of transcripts, including transcript variants of a gene during development. We observed a strong bias of both H3K4me3 and H3K27me3 for CpG-rich promoters and an exponential relationship between their enrichment and corresponding transcript expression. Furthermore, the majority of genes associated with neurological diseases expressed multiple transcripts through alternative promoters, and we demonstrated aberrant use of alternative promoters in medulloblastoma, cancer arising in the cerebellum. The transcriptomes of developing and adult cerebella presented in this study emphasize the importance of analyzing gene regulation and function at the isoform level.

Pal, Sharmistha; Gupta, Ravi; Kim, Hyunsoo; Wickramasinghe, Priyankara; Baubet, Valerie; Showe, Louise C.; Dahmane, Nadia; Davuluri, Ramana V.

2011-01-01

77

Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches  

Microsoft Academic Search

Alternative splicing of mRNA precursors provides an important means of genetic control and is a crucial step in the expression of most genes. Alternative splicing markedly affects human development, and its misregulation underlies many human diseases. Although the mechanisms of alternative splicing have been studied extensively, until the past few years we had not begun to realize fully the diversity

Mo Chen; James L. Manley

2009-01-01

78

Aberrant RNA splicing in RHD 7-9 exons of DEL individuals in Taiwan: A mechanism study  

Microsoft Academic Search

BackgroundThe Rh blood D group provides a clinically important model of aberrant splicing with skipped exons. Approximately 30% of serologically D-negative Chinese individuals have an intact RHD gene (DEL phenotype) and induce allo-immunization in transfusions. The RHD1227GNA polymorphism occurs in >95% DEL phenotype of Asian descent. The effects of RHD 1227A and a novel allele on exon 9 splicing were

Hsiang-Chun Liu; Hock-Liew Eng; Yu-Fen Yang; Ya-Hui Wang; Kuan-Tsou Lin; Hua-Lin Wu; Tsun-Mei Lin

2010-01-01

79

Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease  

PubMed Central

Huntington disease (HD) is a devastating, late-onset, inherited neurodegenerative disorder that manifests with personality changes, movement disorders, and cognitive decline. It is caused by a CAG repeat expansion in exon 1 of the HTT gene that translates to a polyglutamine tract in the huntingtin protein (HTT). The formation of HTT fragments has been implicated as an essential step in the molecular pathogenesis of HD and several proteases that cleave HTT have been identified. However, the importance of smaller N-terminal fragments has been highlighted by their presence in HD postmortem brains and by the fact that nuclear inclusions are only detected by antibodies to the N terminus of HTT. Despite an intense research effort, the precise length of these fragments and the mechanism by which they are generated remains unknown. Here we show that CAG repeat length–dependent aberrant splicing of exon 1 HTT results in a short polyadenylated mRNA that is translated into an exon 1 HTT protein. Given that mutant exon 1 HTT proteins have consistently been shown to be highly pathogenic in HD mouse models, the aberrant splicing of HTT mRNA provides a mechanistic basis for the molecular pathogenesis of HD. RNA-targeted therapeutic strategies designed to lower the levels of HTT are under development. Many of these approaches would not prevent the production of exon 1 HTT and should be reviewed in light of our findings.

Sathasivam, Kirupa; Neueder, Andreas; Gipson, Theresa A.; Landles, Christian; Benjamin, Agnesska C.; Bondulich, Marie K.; Smith, Donna L.; Faull, Richard L. M.; Roos, Raymund A. C.; Howland, David; Detloff, Peter J.; Housman, David E.; Bates, Gillian P.

2013-01-01

80

Role ofBMPR2 Alternative Splicing in HPAH Penetrance  

PubMed Central

Background Bone morphogenic protein receptor 2 (BMPR2) gene mutations are the most common cause of heritable PAH (HPAH). However only 20% of mutation carriers get clinical disease. Here we explored the hypothesis that this reduced penetrance is in part due to an alteration in BMPR2 alternative splicing. Methods and Results Our data showed that BMPR2 has multiple alternatively spliced variants. Two of these, isoform-A (full-length) and isoform-B (missing exon 12), were expressed in all tissues analyzed. Analysis of cultured lymphocytes (CLs) of 47 BMPR2 mutation-positive HPAH-patients and 35 BMPR2 mutation-positive unaffected-carriers showed that patients had higher levels of isoform-B compared to isoform-A (B/A ratio) than carriers (P=0.002). Furthermore compared to cells with low B/A ratio, cells with high B/A ratio had lower levels of unphosphorylated cofilin following BMP stimulation. Analysis of exon 12 sequences identified an exonic splice enhancer, which binds serine arginine splicing factor 2 (SRSF2). Because SRSF2 promotes exon inclusion, reduced SRSF2 expression would mean that exon 12 would not be included in final BMPR2 mRNA (thus promoting increased isoform-B formation). Western blot analysis showed that SRSF2 expression was lower in cells from patients compared to carriers; and, siRNA-mediated knockdown of SRSF2 in pulmonary microvascular endothelial cells resulted in elevated levels of isoform-B compared to isoform-A, i.e. elevated B/A ratio. Conclusions Alterations in BMPR2 isoform ratios may provide an explanation of the reduced penetrance among BMPR2 mutation carriers. This ratio is controlled by an exonic splice enhancer in exon 12 and its associated splicing factor SRSF2.

Cogan, Joy; Austin, Eric; Hedges, Lora; Womack, Bethany; West, James; Loyd, James; Hamid, Rizwan

2012-01-01

81

Alternative splicing of the ErbB-4 cytoplasmic domain and its regulation by hedgehog signaling identify distinct medulloblastoma subsets  

Microsoft Academic Search

Medulloblastoma (MB) results from aberrant development of cerebellar neurons in which altered hedgehog (Hh) signalling plays a major role. We investigated the possible influence of Hh signalling on ErbB-receptor expression in MB, in particular that of the ErbB-4 CYT-1 and CYT-2 isoforms generated by alternative splicing of the cytoplasmic domain. ErbB-4 expression was downregulated in Hh-induced MBs from Patched-1+\\/? mice.

E Ferretti; L Di Marcotullio; M Gessi; T Mattei; A Greco; A Po; E De Smaele; F Giangaspero; R Riccardi; C Di Rocco; S Pazzaglia; M Maroder; M Alimandi; I Screpanti; A Gulino

2006-01-01

82

Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative splicing  

PubMed Central

Alternative splicing of pre-messenger RNAs diversifies gene products in eukaryotes and is guided by factors that enable spliceosomes to recognize particular splice sites. Here we report that alternative splicing of Saccharomyces cerevisiae SRC1 pre-mRNA is promoted by the conserved ubiquitin-like protein Hub1. Structural and biochemical data show that Hub1 binds non-covalently to a conserved element termed HIND, which is present in the spliceosomal protein Snu66 in yeast and mammals, and Prp38 in plants. Hub1 binding mildly alters spliceosomal protein interactions and barely affects general splicing in S. cerevisiae. However, spliceosomes that lack Hub1, or are defective in Hub1–HIND interaction, cannot use certain non-canonical 5? splice sites and are defective in alternative SRC1 splicing. Hub1 confers alternative splicing not only when bound to HIND, but also when experimentally fused to Snu66, Prp38, or even the core splicing factor Prp8. Our study indicates a novel mechanism for splice site utilization that is guided by non-covalent modification of the spliceosome by an unconventional ubiquitin-like modifier.

Mishra, Shravan Kumar; Ammon, Tim; Popowicz, Grzegorz M.; Krajewski, Marcin; Nagel, Roland J.; Ares, Manuel; Holak, Tad A.; Jentsch, Stefan

2013-01-01

83

Statistical and Computational Methods for High-Throughput Sequencing Data Analysis of Alternative Splicing  

PubMed Central

The burgeoning field of high-throughput sequencing significantly improves our ability to understand the complexity of transcriptomes. Alternative splicing, as one of the most important driving forces for transcriptome diversity, can now be studied at an unprecedent resolution. Efficient and powerful computational and statistical methods are in urgent need to facilitate the characterization and quantification of alternative splicing events. Here we discuss methods in splice junction read mapping, and methods in exon-centric or isoform-centric quantification of alternative splicing. In addition, we discuss HITS-CLIP and splicing QTL analyses which are novel high-throughput sequencing based approaches in the dissection of splicing regulation.

2013-01-01

84

Variable window binding for mutually exclusive alternative splicing  

PubMed Central

Background Genes of advanced organisms undergo alternative splicing, which can be mutually exclusive, in the sense that only one exon is included in the mature mRNA out of a cluster of alternative choices, often arranged in a tandem array. In many cases, however, the details of the underlying biologic mechanisms are unknown. Results We describe 'variable window binding' - a mechanism used for mutually exclusive alternative splicing by which a segment ('window') of a conserved nucleotide 'anchor' sequence upstream of the exon 6 cluster in the pre-mRNA of the fruitfly Dscam gene binds to one of the introns, thereby activating selection of the exon directly downstream from the binding site. This mechanism is supported by the fact that the anchor sequence can be inferred solely from a comparison of the intron sequences using a genetic algorithm. Because the window location varies for each exon choice, regulation can be achieved by obstructing part of that sequence. We also describe a related mechanism based on competing pre-mRNA stem-loop structures that could explain the mutually exclusive choice of exon 17 of the Dscam gene. Conclusion On the basis of comparative sequence analysis, we propose efficient biologic mechanisms of alternative splicing of the Drosophila Dscam gene that rely on the inherent structure of the pre-mRNA. Related mechanisms employing 'locus control regions' could be involved on other occasions of mutually exclusive choices of exons or genes.

Anastassiou, Dimitris; Liu, Hairuo; Varadan, Vinay

2006-01-01

85

Alternative splicing of BRAF transcripts and characterization of C-terminally truncated B-Raf isoforms in colorectal cancer.  

PubMed

The BRAF proto-oncogene is mutated in a subset of human tumors, including colorectal cancer. A splicing variant lacking exons 14 and 15 (BRAF del E14/15) has been described recently. However, the frequency of the variant, the kinase activity of the protein isoform, its biological function, and which allele it is derived from remains unknown. BRAF mRNA from colorectal cancer cell lines and colonic epithelium was reversely transcribed, subcloned, and screened for alternative splicing. New transcript variants and allelic origin of alternatively spliced transcripts were analyzed by DNA sequencing. Kinase activity of the B-Raf isoforms was determined by Western blotting after transfections with expression constructs of the different BRAF variants. Four additional BRAF transcript variants resulting in C-terminal truncation of the gene product were found. Alternative splicing was found at frequencies from 4.7 to 16.7% in normal and neoplastic colorectal cells. Alternative transcripts were shown to be derived from both wild-type and V600E alleles. All nonconsensus B-Raf protein variants were found to be kinase-dead and failed to coactivate full-length B-Raf. In conclusion, we present a highly sensitive method for the detection of aberrantly spliced transcripts. Alternative splicing of exons 14, 15, 15b, 16b and 16c occurs in a considerable fraction of BRAF mRNA in normal colon and colorectal cancer cells and is independent of the V600E mutational status of the parental allele. Splicing of nonfunctional transcripts affects overall cellular B-Raf activity and might represent a mechanism to decrease sensitivity to growth signals. PMID:23354951

Hirschi, Benjamin; Kolligs, Frank T

2013-08-01

86

Arabidopsis PTB1 and PTB2 proteins negatively regulate splicing of a mini-exon splicing reporter and affect alternative splicing of endogenous genes differentially.  

PubMed

This paper examines the function of Arabidopsis thaliana AtPTB1 and AtPTB2 as plant splicing factors. The effect on splicing of overexpression of AtPTB1 and AtPTB2 was analysed in an in vivo protoplast transient expression system with a novel mini-exon splicing reporter. A range of mutations in pyrimidine-rich sequences were compared with and without AtPTB and NpU2AF(65) overexpression. Splicing analyses of constructs in protoplasts and RNA from overexpression lines used high-resolution reverse transcription polymerase chain reaction (RT-PCR). AtPTB1 and AtPTB2 reduced inclusion/splicing of the potato invertase mini-exon splicing reporter, indicating that these proteins can repress plant intron splicing. Mutation of the polypyrimidine tract and closely associated Cytosine and Uracil-rich (CU-rich) sequences, upstream of the mini-exon, altered repression by AtPTB1 and AtPTB2. Coexpression of a plant orthologue of U2AF(65) alleviated the splicing repression of AtPTB1. Mutation of a second CU-rich upstream of the mini-exon 3' splice site led to a decline in mini-exon splicing, indicating the presence of a splicing enhancer sequence. Finally, RT-PCR of AtPTB overexpression lines with c. 90 known alternative splicing (AS) events showed that AtPTBs significantly altered AS of over half the events. AtPTB1 and AtPTB2 are splicing factors that influence alternative splicing. This occurs in the potato invertase mini-exon via the polypyrimidine tract and associated pyrimidine-rich sequence. PMID:24749484

Simpson, Craig G; Lewandowska, Dominika; Liney, Michele; Davidson, Diane; Chapman, Sean; Fuller, John; McNicol, Jim; Shaw, Paul; Brown, John W S

2014-07-01

87

Genomewide comparative analysis of alternative splicing in plants  

Microsoft Academic Search

Alternative splicing (AS) has been extensively studied in mammalian systems but much less in plants. Here we report AS events deduced from EST\\/cDNA analysis in two model plants: Arabidopsis and rice. In Arabidopsis, 4,707 (21.8%) of the genes with EST\\/cDNA evidence show 8,264 AS events. Approximately 56% of these events are intron retention (IntronR), and only 8% are exon skipping.

Bing-Bing Wang; Volker Brendel

2006-01-01

88

Differential Requirements for Alternative Splicing and Nuclear Export Functions of Equine Infectious Anemia Virus Rev Protein  

Microsoft Academic Search

The Rev protein of equine infectious anemia virus (ERev) exports unspliced and partially spliced viral RNAs from the nucleus. Like several cellular proteins, ERev regulates its own mRNA by mediating an alternative splicing event. To determine the requirements for these functions, we have identified ERev mutants that affect RNA export or both export and alternative splicing. Mutants were further characterized

MATTHEW E. HARRIS; RICHARD R. GONTAREK; DAVID DERSE; THOMAS J. HOPE

1998-01-01

89

Sudemycin E influences alternative splicing and changes chromatin modifications  

PubMed Central

Sudemycin E is an analog of the pre-messenger RNA splicing modulator FR901464 and its derivative spliceostatin A. Sudemycin E causes the death of cancer cells through an unknown mechanism. We found that similar to spliceostatin A, sudemycin E binds to the U2 small nuclear ribonucleoprotein (snRNP) component SF3B1. Native chromatin immunoprecipitations showed that U2 snRNPs physically interact with nucleosomes. Sudemycin E induces a dissociation of the U2 snRNPs and decreases their interaction with nucleosomes. To determine the effect on gene expression, we performed genome-wide array analysis. Sudemycin E first causes a rapid change in alternative pre-messenger RNA splicing, which is later followed by changes in overall gene expression and arrest in the G2 phase of the cell cycle. The changes in alternative exon usage correlate with a loss of the H3K36me3 modification in chromatin encoding these exons. We propose that sudemycin E interferes with the ability of U2 snRNP to maintain an H3K36me3 modification in actively transcribed genes. Thus, in addition to the reversible changes in alternative splicing, sudemycin E causes changes in chromatin modifications that result in chromatin condensation, which is a likely contributing factor to cancer cell death.

Convertini, Paolo; Shen, Manli; Potter, Philip M.; Palacios, Gustavo; Lagisetti, Chandraiah; de la Grange, Pierre; Horbinski, Craig; Fondufe-Mittendorf, Yvonne N.; Stamm, Stefan

2014-01-01

90

Sudemycin E influences alternative splicing and changes chromatin modifications.  

PubMed

Sudemycin E is an analog of the pre-messenger RNA splicing modulator FR901464 and its derivative spliceostatin A. Sudemycin E causes the death of cancer cells through an unknown mechanism. We found that similar to spliceostatin A, sudemycin E binds to the U2 small nuclear ribonucleoprotein (snRNP) component SF3B1. Native chromatin immunoprecipitations showed that U2 snRNPs physically interact with nucleosomes. Sudemycin E induces a dissociation of the U2 snRNPs and decreases their interaction with nucleosomes. To determine the effect on gene expression, we performed genome-wide array analysis. Sudemycin E first causes a rapid change in alternative pre-messenger RNA splicing, which is later followed by changes in overall gene expression and arrest in the G2 phase of the cell cycle. The changes in alternative exon usage correlate with a loss of the H3K36me3 modification in chromatin encoding these exons. We propose that sudemycin E interferes with the ability of U2 snRNP to maintain an H3K36me3 modification in actively transcribed genes. Thus, in addition to the reversible changes in alternative splicing, sudemycin E causes changes in chromatin modifications that result in chromatin condensation, which is a likely contributing factor to cancer cell death. PMID:24623796

Convertini, Paolo; Shen, Manli; Potter, Philip M; Palacios, Gustavo; Lagisetti, Chandraiah; de la Grange, Pierre; Horbinski, Craig; Fondufe-Mittendorf, Yvonne N; Webb, Thomas R; Stamm, Stefan

2014-04-01

91

The cardiotonic steroid digitoxin regulates alternative splicing through depletion of the splicing factors SRSF3 and TRA2B  

PubMed Central

Modulation of alternative pre-mRNA splicing is a potential approach to therapeutic targeting for a variety of human diseases. We investigated the mechanism by which digitoxin, a member of the cardiotonic steroid class of drugs, regulates alternative splicing. Transcriptome-wide analysis identified a large set of alternative splicing events that change after digitoxin treatment. Within and adjacent to these regulated exons, we identified enrichment of potential binding sites for the splicing factors SRp20 (SRSF3/SFRS3) and Tra2-? (SFRS10/TRA2B). We further find that both of these proteins are depleted from cells by digitoxin treatment. Characterization of SRp20 and Tra2-? splicing targets revealed that many, but not all, digitoxin-induced splicing changes can be attributed to the depletion of one or both of these factors. Re-expression of SRp20 or Tra2-? after digitoxin treatment restores normal splicing of their targets, indicating that the digitoxin effect is directly due to these factors. These results demonstrate that cardiotonic steroids, long prescribed in the clinical treatment of heart failure, have broad effects on the cellular transcriptome through these and likely other RNA binding proteins. The approach described here can be used to identify targets of other potential therapeutics that act as alternative splicing modulators.

Anderson, Erik S.; Lin, Chia-Ho; Xiao, Xinshu; Stoilov, Peter; Burge, Christopher B.; Black, Douglas L.

2012-01-01

92

Alternative splicing of the G protein-coupled receptor superfamily in human airway smooth muscle diversifies the complement of receptors  

PubMed Central

G protein-coupled receptors (GPCRs) are the largest signaling family in the genome, serve an expansive array of functions, and are targets for ?50% of current therapeutics. In many tissues, such as airway smooth muscle (ASM), complex, unexpected, or paradoxical responses to agonists/antagonists occur without known mechanisms. We hypothesized that ASM express many more GPCRs than predicted, and that these undergo substantial alternative splicing, creating a highly diversified receptor milieu. Transcript arrays were designed detecting 434 GPCRs and their predicted splice variants. In this cell type, 353 GPCRs were detected (including 111 orphans), with expression levels varying by ?900-fold. Receptors used for treating airway disease were expressed lower than others with similar signaling properties, indicating potentially more effective targets. A disproportionate number of Class-A peptide-group receptors, and those coupling to Gq/11 or Gs (vs. Gi), was found. Importantly, 192 GPCRs had, on average, five different expressed receptor isoforms because of splicing events, including alternative splice donors and acceptors, novel introns, intron retentions, exon(s) skips, and novel exons, with the latter two events being most prevalent. The consequences of splicing were further investigated with the leukotriene B4 receptor, known for its aberrant responsiveness in lung. We found transcript expression of three variants because of alternative donor and acceptor splice sites, representing in-frame deletions of 38 and 100 aa, with protein expression of all three isoforms. Thus, alternative splicing, subject to conditional, temporal, and cell-type regulation, is a major mechanism that diversifies the GPCR superfamily, creating local recepteromes with specialized environments.

Einstein, Richard; Jordan, Heather; Zhou, Weiyin; Brenner, Michael; Moses, Esther G.; Liggett, Stephen B.

2008-01-01

93

Genetic Variation of Pre-mRNA Alternative Splicing in Human Populations  

PubMed Central

The precise splicing outcome of a transcribed gene is controlled by complex interactions between cis regulatory splicing signals and trans-acting regulators. In higher eukaryotes, alternative splicing is a prevalent mechanism for generating transcriptome and proteome diversity. Alternative splicing can modulate gene function, affect organismal phenotype and cause disease. Common genetic variation that affects splicing regulation can lead to differences in alternative splicing between human individuals and consequently impact expression level or protein function. In several well-documented examples, such natural variation of alternative splicing has indeed been shown to influence disease susceptibility and drug response. With new microarray- and sequencing-based genomic technologies that can analyze eukaryotic transcriptomes at the exon- or nucleotide-level, it has become possible to globally compare the alternative splicing profiles across human individuals in any tissue or cell type of interest. Recent large-scale transcriptome studies using high-density splicing-sensitive microarray and deep RNA sequencing (RNA-Seq) have revealed widespread genetic variation of alternative splicing in humans. In the future, an extensive catalogue of alternative splicing variation in human populations will help elucidate the molecular underpinnings of complex traits and human diseases, and shed light on the mechanisms of splicing regulation in human cells.

Lu, Zhi-xiang; Jiang, Peng; Xing, Yi

2011-01-01

94

Exon expression and alternatively spliced genes in Tourette Syndrome.  

PubMed

Tourette Syndrome (TS) is diagnosed based upon clinical criteria including motor and vocal tics. We hypothesized that differences in exon expression and splicing might be useful for pathophysiology and diagnosis. To demonstrate exon expression and alternatively spliced gene differences in blood of individuals with TS compared to healthy controls (HC), RNA was isolated from the blood of 26 un-medicated TS subjects and 23 HC. Each sample was run on Affymetrix Human Exon 1.0 ST (HuExon) arrays and on 3' biased U133 Plus 2.0 (HuU133) arrays. To investigate the differentially expressed exons and transcripts, analyses of covariance (ANCOVA) were performed, controlling for age, gender, and batch. Differential alternative splicing patterns between TS and HC were identified using analyses of variance (ANOVA) models in Partek. Three hundred and seventy-six exon probe sets were differentially expressed between TS and HC (raw P?|1.2|) that separated TS and HC subjects using hierarchical clustering and Principal Components Analysis. The probe sets predicted TS compared to HC with a >90% sensitivity and specificity using a 10-fold cross-validation. Ninety genes (transcripts) had differential expression of a single exon (raw P?alternatively spliced (raw P?

Tian, Yingfang; Liao, Isaac H; Zhan, Xinhua; Gunther, Joan R; Ander, Bradley P; Liu, Dazhi; Lit, Lisa; Jickling, Glen C; Corbett, Blythe A; Bos-Veneman, Netty G P; Hoekstra, Pieter J; Sharp, Frank R

2011-01-01

95

Gene Array Analyzer: alternative usage of gene arrays to study alternative splicing events.  

PubMed

Exon arrays are regularly used to analyze differential splicing events. GeneChip Gene 1.0 ST Arrays (gene arrays) manufactured by Affymetrix, Inc. are primarily used to determine expression levels of transcripts, although their basic design is rather similar to GeneChip Exon 1.0 ST Arrays (exon arrays). Here, we show that the newly developed Gene Array Analyzer (GAA), which evolved from our previously published Exon Array Analyzer (EAA), enables economic and user-friendly analysis of alternative splicing events using gene arrays. To demonstrate the applicability of GAA, we profiled alternative splicing events during embryonic heart development. In addition, we found that numerous developmental splicing events are also activated under pathological conditions. We reason that the usage of GAA considerably expands the analysis of gene expression based on gene arrays and supplies an additional level of information without further costs and with only little effort. PMID:22123740

Gellert, Pascal; Teranishi, Mizue; Jenniches, Katharina; De Gaspari, Piera; John, David; Kreymborg, Karsten grosse; Braun, Thomas; Uchida, Shizuka

2012-03-01

96

WebScipio: reconstructing alternative splice variants of eukaryotic proteins  

PubMed Central

Accurate exon–intron structures are essential prerequisites in genomics, proteomics and for many protein family and single gene studies. We originally developed Scipio and the corresponding web service WebScipio for the reconstruction of gene structures based on protein sequences and available genome assemblies. WebScipio also allows predicting mutually exclusive spliced exons and tandemly arrayed gene duplicates. The obtained gene structures are illustrated in graphical schemes and can be analysed down to the nucleotide level. The set of eukaryotic genomes available at the WebScipio server is updated on a daily basis. The current version of the web server provides access to ?3400 genome assembly files of >1100 sequenced eukaryotic species. Here, we have also extended the functionality by adding a module with which expressed sequence tag (EST) and cDNA data can be mapped to the reconstructed gene structure for the identification of all types of alternative splice variants. WebScipio has a user-friendly web interface, and we believe that the improved web server will provide better service to biologists interested in the gene structure corresponding to their protein of interest, including all types of alternative splice forms and tandem gene duplicates. WebScipio is freely available at http://www.webscipio.org.

Hatje, Klas; Hammesfahr, Bjorn; Kollmar, Martin

2013-01-01

97

Long noncoding RNA modulates alternative splicing regulators in Arabidopsis.  

PubMed

Alternative splicing (AS) of pre-mRNA represents a major mechanism underlying increased transcriptome and proteome complexity. Here, we show that the nuclear speckle RNA-binding protein (NSR) and the AS competitor long noncoding RNA (or ASCO-lncRNA) constitute an AS regulatory module. AtNSR-GFP translational fusions are expressed in primary and lateral root (LR) meristems. Double Atnsr mutants and ASCO overexpressors exhibit an altered ability to form LRs after auxin treatment. Interestingly, auxin induces a major change in AS patterns of many genes, a response largely dependent on NSRs. RNA immunoprecipitation assays demonstrate that AtNSRs interact not only with their alternatively spliced mRNA targets but also with the ASCO-RNA in vivo. The ASCO-RNA displaces an AS target from an NSR-containing complex in vitro. Expression of ASCO-RNA in Arabidopsis affects the splicing patterns of several NSR-regulated mRNA targets. Hence, lncRNA can hijack nuclear AS regulators to modulate AS patterns during development. PMID:25073154

Bardou, Florian; Ariel, Federico; Simpson, Craig G; Romero-Barrios, Natali; Laporte, Philippe; Balzergue, Sandrine; Brown, John W S; Crespi, Martin

2014-07-28

98

Insertion of a T next to the donor splice site of intron 1 causes aberrantly spliced mRNA in a case of infantile GM1-gangliosidosis.  

PubMed

The lysosomal storage disorders GM1-gangliosidosis and Morquio B syndrome are caused by a complete or partial deficiency of acid beta-galactosidase. Here, we have characterized the mutation segregating in a family with two siblings affected by the severe infantile form of GM1-gangliosidosis. In total mRNA preparations derived from the patients' fibroblasts at least two aberrantly spliced beta-galactosidase transcripts (1 and 2) have been identified. Both transcripts contain a 20 nucleotide (nt) insertion derived from the 5' end of intron 1 of the beta-galactosidase gene. Furthermore, in transcript 2 sequences encoded by exon II are deleted during the splicing process. Comparison of the 20-nt insertion with wild-type intronic sequences indicated that in the genomic DNA of the patients an extra T nucleotide is present immediately downstream of the conserved GT splice donor dinucleotide of intron 1. Both patients are homozygous for the T nucleotide insertion. We propose that this single base insertion is the mutation responsible for aberrant splicing of beta-galactosidase pre-mRNA, giving rise to transcripts that cannot encode a normal protein. PMID:8199591

Morrone, A; Morreau, H; Zhou, X Y; Zammarchi, E; Kleijer, W J; Galjaard, H; d'Azzo, A

1994-01-01

99

Co-transcriptional regulation of alternative pre-mRNA splicing  

PubMed Central

While studies of alternative pre-mRNA splicing regulation have typically focused on RNA-binding proteins and their target sequences within nascent message, it is becoming increasingly evident that mRNA splicing, RNA polymerase II (pol II) elongation and chromatin structure are intricately intertwined. The majority of introns in higher eukaryotes are excised prior to transcript release in a manner that is dependent on transcription through pol II. As a result of co-transcriptional splicing, variations in pol II elongation influence alternative splicing patterns, wherein a slower elongation rate is associated with increased inclusion of alternative exons within mature mRNA. Physiological barriers to pol II elongation, such as repressive chromatin structure, can thereby similarly impact splicing decisions. Surprisingly, pre-mRNA splicing can reciprocally influence pol II elongation and chromatin structure. Here, we highlight recent advances in co-transcriptional splicing that reveal an extensive network of coupling between splicing, transcription and chromatin remodeling complexes.

Shukla, Sanjeev; Oberdoerffer, Shalini

2012-01-01

100

Novel alternative splicing isoform biomarkers identification from high-throughput plasma proteomics profiling of breast cancer  

PubMed Central

Background In the biopharmaceutical industry, biomarkers define molecular taxonomies of patients and diseases and serve as surrogate endpoints in early-phase drug trials. Molecular biomarkers can be much more sensitive than traditional lab tests. Discriminating disease biomarkers by traditional method such as DNA microarray has proved challenging. Alternative splicing isoform represents a new class of diagnostic biomarkers. Recent scientific evidence is demonstrating that the differentiation and quantification of individual alternative splicing isoforms could improve insights into disease diagnosis and management. Identifying and characterizing alternative splicing isoforms are essential to the study of molecular mechanisms and early detection of complex diseases such as breast cancer. However, there are limitations with traditional methods used for alternative splicing isoform determination such as transcriptome-level, low level of coverage and poor focus on alternative splicing. Results Therefore, we presented a peptidomics approach to searching novel alternative splicing isoforms in clinical proteomics. Our results showed that the approach has significant potential in enabling discovery of new types of high-quality alternative splicing isoform biomarkers. Conclusions We developed a peptidomics approach for the proteomics community to analyze, identify, and characterize alternative splicing isoforms from MS-based proteomics experiments with more coverage and exclusive focus on alternative splicing. The approach can help generate novel hypotheses on molecular risk factors and molecular mechanisms of cancer in early stage, leading to identification of potentially highly specific alternative splicing isoform biomarkers for early detection of cancer.

2013-01-01

101

TMEM16A alternative splicing coordination in breast cancer  

PubMed Central

Background TMEM16A, also known as Anoctamin-1, is a calcium-activated chloride channel gene overexpressed in many tumors. The role of TMEM16A in cancer is not completely understood and no data are available regarding the potential tumorigenic properties of the multiple isoforms generated by alternative splicing (AS). Methods We evaluated TMEM16A AS pattern, isoforms distribution and Splicing Coordination (SC), in normal tissues and breast cancers, through a semi-quantitative PCR-assay that amplifies transcripts across three AS exons, 6b, 13 and 15. Results In breast cancer, we did not observe an association either to AS of individual exons or to specific TMEM16A isoforms, and induced expression of the most common isoforms present in tumors in the HEK293 Flp-In Tet-ON system had no effect on cellular proliferation and migration. The analysis of splicing coordination, a mechanism that regulates AS of distant exons, showed a preferential association of exon 6b and 15 in several normal tissues and tumors: isoforms that predominantly include exon 6b tend to exclude exon 15 and vice versa. Interestingly, we found an increase in SC in breast tumors compared to matched normal tissues. Conclusions As the different TMEM16A isoforms do not affect proliferation or migration and do not associate with tumors, our results suggest that the resulting channel activities are not directly involved in cell growth and motility. Conversely, the observed increase in SC in breast tumors suggests that the maintenance of the regulatory mechanism that coordinates distant alternative spliced exons in multiple genes other than TMEM16A is necessary for cancer cell viability.

2013-01-01

102

Genome-wide detection of tissue-specific alternative splicing in the human transcriptome  

PubMed Central

We have developed an automated method for discovering tissue-specific regulation of alternative splicing through a genome-wide analysis of expressed sequence tags (ESTs). Using this approach, we have identified 667 tissue-specific alternative splice forms of human genes. We validated our muscle-specific and brain-specific splice forms for known genes. A high fraction (8/10) were reported to have a matching tissue specificity by independent studies in the published literature. The number of tissue-specific alternative splice forms is highest in brain, while eye_retina, muscle, skin, testis and lymph have the greatest enrichment of tissue-specific splicing. Overall, 10–30% of human alternatively spliced genes in our data show evidence of tissue-specific splice forms. Seventy-eight percent of our tissue-specific alternative splices appear to be novel discoveries. We present bioinformatics analysis of several tissue-specific splice forms, including automated protein isoform sequence and domain prediction, showing how our data can provide valuable insights into gene function in different tissues. For example, we have discovered a novel kidney-specific alternative splice form of the WNK1 gene, which appears to specifically disrupt its N-terminal kinase domain and may play a role in PHAII hypertension. Our database greatly expands knowledge of tissue-specific alternative splicing and provides a comprehensive dataset for investigating its functional roles and regulation in different human tissues.

Xu, Qiang; Modrek, Barmak; Lee, Christopher

2002-01-01

103

Global analysis of alternative splicing regulation by insulin and wingless signaling in Drosophila cells  

PubMed Central

Background Despite the prevalence and biological relevance of both signaling pathways and alternative pre-mRNA splicing, our knowledge of how intracellular signaling impacts on alternative splicing regulation remains fragmentary. We report a genome-wide analysis using splicing-sensitive microarrays of changes in alternative splicing induced by activation of two distinct signaling pathways, insulin and wingless, in Drosophila cells in culture. Results Alternative splicing changes induced by insulin affect more than 150 genes and more than 50 genes are regulated by wingless activation. About 40% of the genes showing changes in alternative splicing also show regulation of mRNA levels, suggesting distinct but also significantly overlapping programs of transcriptional and post-transcriptional regulation. Distinct functional sets of genes are regulated by each pathway and, remarkably, a significant overlap is observed between functional categories of genes regulated transcriptionally and at the level of alternative splicing. Functions related to carbohydrate metabolism and cellular signaling are enriched among genes regulated by insulin and wingless, respectively. Computational searches identify pathway-specific sequence motifs enriched near regulated 5' splice sites. Conclusions Taken together, our data indicate that signaling cascades trigger pathway-specific and biologically coherent regulatory programs of alternative splicing regulation. They also reveal that alternative splicing can provide a novel molecular mechanism for crosstalk between different signaling pathways.

Hartmann, Britta; Castelo, Robert; Blanchette, Marco; Boue, Stephanie; Rio, Donald C; Valcarcel, Juan

2009-01-01

104

The Coupling of Alternative Splicing and Nonsense?Mediated mRNA Decay  

Microsoft Academic Search

M ost human genes exhibit alternative splicing, but not all alternatively spliced transcripts produce functional proteins. Computational and experimental results indicate that a substantial fraction of alternative splicing events in humans result in mRNA isoforms that harbor a premature termination codon (PTC). These transcripts are predicted to be degraded by the nonsense?mediated mRNA decay (NMD) pathway. One explanation for the

Liana F. Lareau; Angela N. Brooks; David A. W. Soergel; Qi Meng; Steven E. Brenner

2007-01-01

105

Gene duplication followed by exon structure divergence substitutes for alternative splicing in zebrafish.  

PubMed

In this study we report novel findings regarding the evolutionary relationship between gene duplication and alternative splicing, two processes that increase proteomic diversity. By studying teleost fish, we find that gene duplication followed by exon structure divergence between paralogs, but not gene duplication alone, leads to a significant reduction in alternative splicing, as measured by both the proportion of genes that undergo alternative splicing as well as mean number of transcripts per gene. Additionally, we show that this effect is independent of gene family size and gene function. Furthermore, we provide evidence that the reduction in alternative splicing may be due to the partitioning of ancestral splice forms among the duplicate genes - a form of subfunctionalization. Taken together these results indicate that exon structure evolution subsequent to gene duplication may be a common substitute for alternative splicing. PMID:24942242

Lambert, Matthew J; Olsen, Kyle G; Cooper, Cynthia D

2014-08-10

106

SASD: the Synthetic Alternative Splicing Database for identifying novel isoform from proteomics  

PubMed Central

Background Alternative splicing is an important and widespread mechanism for generating protein diversity and regulating protein expression. High-throughput identification and analysis of alternative splicing in the protein level has more advantages than in the mRNA level. The combination of alternative splicing database and tandem mass spectrometry provides a powerful technique for identification, analysis and characterization of potential novel alternative splicing protein isoforms from proteomics. Therefore, based on the peptidomic database of human protein isoforms for proteomics experiments, our objective is to design a new alternative splicing database to 1) provide more coverage of genes, transcripts and alternative splicing, 2) exclusively focus on the alternative splicing, and 3) perform context-specific alternative splicing analysis. Results We used a three-step pipeline to create a synthetic alternative splicing database (SASD) to identify novel alternative splicing isoforms and interpret them at the context of pathway, disease, drug and organ specificity or custom gene set with maximum coverage and exclusive focus on alternative splicing. First, we extracted information on gene structures of all genes in the Ensembl Genes 71 database and incorporated the Integrated Pathway Analysis Database. Then, we compiled artificial splicing transcripts. Lastly, we translated the artificial transcripts into alternative splicing peptides. The SASD is a comprehensive database containing 56,630 genes (Ensembl gene IDs), 95,260 transcripts (Ensembl transcript IDs), and 11,919,779 Alternative Splicing peptides, and also covering about 1,956 pathways, 6,704 diseases, 5,615 drugs, and 52 organs. The database has a web-based user interface that allows users to search, display and download a single gene/transcript/protein, custom gene set, pathway, disease, drug, organ related alternative splicing. Moreover, the quality of the database was validated with comparison to other known databases and two case studies: 1) in liver cancer and 2) in breast cancer. Conclusions The SASD provides the scientific community with an efficient means to identify, analyze, and characterize novel Exon Skipping and Intron Retention protein isoforms from mass spectrometry and interpret them at the context of pathway, disease, drug and organ specificity or custom gene set with maximum coverage and exclusive focus on alternative splicing.

2013-01-01

107

Alternative Splicing Events Is Not a Key Event for Gene Expression Regulation in Uremia  

PubMed Central

Background The control of gene expression in the course of chronic kidney disease (CKD) is not well addressed. Alternative splicing is a common way to increase complexity of proteins. More than 90% of human transcripts are alternatively spliced. We hypothesised that CKD can induce modification of the alternative splicing machinery. Methods During mutation screening in autosomal dominant polycystic kidney disease, we identified in mononuclear cells (PBMC), an alternative splicing event on the exon 30 of PKD1 gene, the gene implicated in this disease. This alternative splice variant was not correlated with the cystic disease but with CKD. To confirm the association between this variant and CKD, a monocentric clinical study was performed with 3 different groups according to their kidney function (CKD5D, CKD3-5 and normal kidney function). An exon microarray approach was used to highlight splicing events in whole human genome in a normal cell model (fibroblasts) incubated with uremic serum. Alternative splicing variants identified were confirmed by RT-PCR. Results The splicing variant of the exon 30 of PKD1 was more frequent in PBMCs from patients with CKD compared to control. With the microarray approach, despite the analysis of more than 230 000 probes, we identified 36 genes with an abnormal splicing index evocating splicing event in fibroblasts exposed to uremic serum. Only one abnormal splicing event in one gene, ADH1B, was confirmed by RT-PCR. Conclusion We observed two alternative spliced genes in two different cell types associated with CKD. Alternative splicing could play a role in the control of gene expression during CKD but it does not seem to be a major mechanism.

Sallee, Marion; Fontes, Michel; Louis, Laurence; Cerini, Claire; Brunet, Philippe; Burtey, Stephane

2013-01-01

108

Periostin shows increased evolutionary plasticity in its alternatively spliced region  

PubMed Central

Background Periostin (POSTN) is a secreted extracellular matrix protein of poorly defined function that has been related to bone and heart development as well as to cancer. In human and mouse, it is known to undergo alternative splicing in its C-terminal region, which is devoid of known protein domains. Differential expression of periostin, sometimes of specific splicing isoforms, is observed in a broad range of human cancers, including breast, pancreatic, and colon cancer. Here, we combine genomic and transcriptomic sequence data from vertebrate organisms to study the evolution of periostin and particularly of its C-terminal region. Results We found that the C-terminal part of periostin is markedly more variable among vertebrates than the rest of periostin in terms of exon count, length, and splicing pattern, which we interpret as a consequence of neofunctionalization after the split between periostin and its paralog transforming growth factor, beta-induced (TGFBI). We also defined periostin's sequential 13-amino acid repeat units - well conserved in teleost fish, but more obscure in higher vertebrates - whose secondary structure is predicted to be consecutive beta strands. We suggest that these beta strands may mediate binding interactions with other proteins through an extended beta-zipper in a manner similar to the way repeat units in bacterial cell wall proteins have been reported to bind human fibronectin. Conclusions Our results, obtained with the help of the increasingly large collection of complete vertebrate genomes, document the evolutionary plasticity of periostin's C-terminal region, and for the first time suggest a basis for its functional role.

2010-01-01

109

Alternative splicing of mRNA of mouse interleukin-4 and interleukin-6  

Microsoft Academic Search

Interleukin-4 and interleukin-6 are multifunctional regulatory proteins, which participate both in haemopoiesis and in immunopoiesis. The alternative splicing of these interleukins in humans is known to proceed in a tissue-specific manner. Additionally, changes in splicing can also be dependent on tissue pathology.In this work, we report on the presence of alternatively spliced mRNA (IL-4?2mRNA), lacking exon 2, in mouse bone

Olga P. Yatsenko; Maxim L. Filipenko; Eugene A. Khrapov; Elena N. Voronina; Vladimir A. Kozlov; Sergey V. Sennikov

2004-01-01

110

Genome-wide analysis of light-regulated alternative splicing mediated by photoreceptors in Physcomitrella patens  

PubMed Central

Background Light is one of the most important factors regulating plant growth and development. Light-sensing photoreceptors tightly regulate gene expression to control photomorphogenic responses. Although many levels of gene expression are modulated by photoreceptors, regulation at the mRNA splicing step remains unclear. Results We performed high-throughput mRNA sequencing to analyze light-responsive changes in alternative splicing in the moss Physcomitrella patens, and found that a large number of alternative splicing events were induced by light in the moss protonema. Light-responsive intron retention preferentially occurred in transcripts involved in photosynthesis and translation. Many of the alternatively spliced transcripts were expressed from genes with a function relating to splicing or light signaling, suggesting a potential impact on pre-mRNA splicing and photomorphogenic gene regulation in response to light. Moreover, most light-regulated intron retention was induced immediately upon light exposure, while motif analysis identified a repetitive GAA motif that may function as an exonic regulatory cis element in light-mediated alternative splicing. Further analysis in gene-disrupted mutants was consistent with a function for multiple red-light photoreceptors in the upstream regulation of light-responsive alternative splicing. Conclusions Our results indicate that intensive alternative splicing occurs in non-vascular plants and that, during photomorphogenesis, light regulates alternative splicing with transcript selectivity. We further suggest that alternative splicing is rapidly fine-tuned by light to modulate gene expression and reorganize metabolic processes, and that pre-mRNA cis elements are involved in photoreceptor-mediated splicing regulation.

2014-01-01

111

The importance of identifying alternative splicing in vertebrate genome annotation.  

PubMed

While alternative splicing (AS) can potentially expand the functional repertoire of vertebrate genomes, relatively few AS transcripts have been experimentally characterized. We describe our detailed manual annotation of vertebrate genomes, which is generating a publicly available geneset rich in AS. In order to achieve this we have adopted a highly sensitive approach to annotating gene models supported by correctly mapped, canonically spliced transcriptional evidence combined with a highly cautious approach to adding unsupported extensions to models and making decisions on their functional potential. We use information about the predicted functional potential and structural properties of every AS transcript annotated at a protein-coding or non-coding locus to place them into one of eleven subclasses. We describe the incorporation of new sequencing and proteomics technologies into our annotation pipelines, which are used to identify and validate AS. Combining all data sources has led to the production of a rich geneset containing an average of 6.3?AS transcripts for every human multi-exon protein-coding gene. The datasets produced have proved very useful in providing context to studies investigating the functional potential of genes and the effect of variation may have on gene structure and function. DATABASE URL: http://www.ensembl.org/index.html, http://vega.sanger.ac.uk/index.html. PMID:22434846

Frankish, Adam; Mudge, Jonathan M; Thomas, Mark; Harrow, Jennifer

2012-01-01

112

Alternatively Spliced Tissue Factor Is Not Sufficient for Embryonic Development  

PubMed Central

Tissue factor (TF) triggers blood coagulation and is translated from two mRNA splice isoforms, encoding membrane-anchored full-length TF (flTF) and soluble alternatively-spliced TF (asTF). The complete knockout of TF in mice causes embryonic lethality associated with failure of the yolk sac vasculature. Although asTF plays roles in postnatal angiogenesis, it is unknown whether it activates coagulation sufficiently or makes previously unrecognized contributions to sustaining integrity of embryonic yolk sac vessels. Using gene knock-in into the mouse TF locus, homozygous asTF knock-in (asTFKI) mice, which express murine asTF in the absence of flTF, exhibited embryonic lethality between day 9.5 and 10.5. Day 9.5 homozygous asTFKI embryos expressed asTF protein, but no procoagulant activity was detectable in a plasma clotting assay. Although the ?-smooth-muscle-actin positive mesodermal layer as well as blood islands developed similarly in day 8.5 wild-type or homozygous asTFKI embryos, erythrocytes were progressively lost from disintegrating yolk sac vessels of asTFKI embryos by day 10.5. These data show that in the absence of flTF, asTF expressed during embryonic development has no measurable procoagulant activity, does not support embryonic vessel stability by non-coagulant mechanisms, and fails to maintain a functional vasculature and embryonic survival.

Sluka, Susanna H. M.; Akhmedov, Alexander; Vogel, Johannes; Unruh, Dusten; Bogdanov, Vladimir Y.; Camici, Giovanni G.; Luscher, Thomas F.; Ruf, Wolfram; Tanner, Felix C.

2014-01-01

113

An EMT-Driven Alternative Splicing Program Occurs in Human Breast Cancer and Modulates Cellular Phenotype  

PubMed Central

Epithelial-mesenchymal transition (EMT), a mechanism important for embryonic development, plays a critical role during malignant transformation. While much is known about transcriptional regulation of EMT, alternative splicing of several genes has also been correlated with EMT progression, but the extent of splicing changes and their contributions to the morphological conversion accompanying EMT have not been investigated comprehensively. Using an established cell culture model and RNA–Seq analyses, we determined an alternative splicing signature for EMT. Genes encoding key drivers of EMT–dependent changes in cell phenotype, such as actin cytoskeleton remodeling, regulation of cell–cell junction formation, and regulation of cell migration, were enriched among EMT–associated alternatively splicing events. Our analysis suggested that most EMT–associated alternative splicing events are regulated by one or more members of the RBFOX, MBNL, CELF, hnRNP, or ESRP classes of splicing factors. The EMT alternative splicing signature was confirmed in human breast cancer cell lines, which could be classified into basal and luminal subtypes based exclusively on their EMT–associated splicing pattern. Expression of EMT–associated alternative mRNA transcripts was also observed in primary breast cancer samples, indicating that EMT–dependent splicing changes occur commonly in human tumors. The functional significance of EMT–associated alternative splicing was tested by expression of the epithelial-specific splicing factor ESRP1 or by depletion of RBFOX2 in mesenchymal cells, both of which elicited significant changes in cell morphology and motility towards an epithelial phenotype, suggesting that splicing regulation alone can drive critical aspects of EMT–associated phenotypic changes. The molecular description obtained here may aid in the development of new diagnostic and prognostic markers for analysis of breast cancer progression.

Flytzanis, Nicholas C.; Balsamo, Michele; Condeelis, John S.; Oktay, Maja H.; Burge, Christopher B.; Gertler, Frank B.

2011-01-01

114

Correcting for Differential Transcript Coverage Reveals a Strong Relationship between Alternative Splicing and Organism Complexity.  

PubMed

What at the genomic level underlies organism complexity? Although several genomic features have been associated with organism complexity, in the case of alternative splicing, which has long been proposed to explain the variation in complexity, no such link has been established. Here, we analyzed over 39 million expressed sequence tags available for 47 eukaryotic species with fully sequenced genomes to obtain a comparable index of alternative splicing estimates, which corrects for the distorting effect of a variable number of transcripts per species-an important obstacle for comparative studies of alternative splicing. We find that alternative splicing has steadily increased over the last 1,400 My of eukaryotic evolution and is strongly associated with organism complexity, assayed as the number of cell types. Importantly, this association is not explained as a by-product of covariance between alternative splicing with other variables previously linked to complexity including gene content, protein length, proteome disorder, and protein interactivity. In addition, we found no evidence to suggest that the relationship of alternative splicing to cell type number is explained by drift due to reduced Ne in more complex species. Taken together, our results firmly establish alternative splicing as a significant predictor of organism complexity and are, in principle, consistent with an important role of transcript diversification through alternative splicing as a means of determining a genome's functional information capacity. PMID:24682283

Chen, Lu; Bush, Stephen J; Tovar-Corona, Jaime M; Castillo-Morales, Atahualpa; Urrutia, Araxi O

2014-06-01

115

Intronic Sequences Flanking Alternatively Spliced Exons Are Conserved Between Human and Mouse  

Microsoft Academic Search

Comparison of the sequences of mouse and human genomes revealed a surprising number of nonexonic, nonexpressed conserved sequences, for which no function could be assigned. To study the possible correlation between these conserved intronic sequences and alternative splicing regulation, we developed a method to identify exons that are alternatively spliced in both human and mouse. We compiled two exon sets:

Rotem Sorek; Gil Ast

2003-01-01

116

Correcting for Differential Transcript Coverage Reveals a Strong Relationship between Alternative Splicing and Organism Complexity  

PubMed Central

What at the genomic level underlies organism complexity? Although several genomic features have been associated with organism complexity, in the case of alternative splicing, which has long been proposed to explain the variation in complexity, no such link has been established. Here, we analyzed over 39 million expressed sequence tags available for 47 eukaryotic species with fully sequenced genomes to obtain a comparable index of alternative splicing estimates, which corrects for the distorting effect of a variable number of transcripts per species—an important obstacle for comparative studies of alternative splicing. We find that alternative splicing has steadily increased over the last 1,400 My of eukaryotic evolution and is strongly associated with organism complexity, assayed as the number of cell types. Importantly, this association is not explained as a by-product of covariance between alternative splicing with other variables previously linked to complexity including gene content, protein length, proteome disorder, and protein interactivity. In addition, we found no evidence to suggest that the relationship of alternative splicing to cell type number is explained by drift due to reduced Ne in more complex species. Taken together, our results firmly establish alternative splicing as a significant predictor of organism complexity and are, in principle, consistent with an important role of transcript diversification through alternative splicing as a means of determining a genome’s functional information capacity.

Chen, Lu; Bush, Stephen J.; Tovar-Corona, Jaime M.; Castillo-Morales, Atahualpa; Urrutia, Araxi O.

2014-01-01

117

Regulation of alternative splicing by the circadian clock and food related cues  

PubMed Central

Background The circadian clock orchestrates daily rhythms in metabolism, physiology and behaviour that allow organisms to anticipate regular changes in their environment, increasing their adaptation. Such circadian phenotypes are underpinned by daily rhythms in gene expression. Little is known, however, about the contribution of post-transcriptional processes, particularly alternative splicing. Results Using Affymetrix mouse exon-arrays, we identified exons with circadian alternative splicing in the liver. Validated circadian exons were regulated in a tissue-dependent manner and were present in genes with circadian transcript abundance. Furthermore, an analysis of circadian mutant Vipr2-/- mice revealed the existence of distinct physiological pathways controlling circadian alternative splicing and RNA binding protein expression, with contrasting dependence on Vipr2-mediated physiological signals. This view was corroborated by the analysis of the effect of fasting on circadian alternative splicing. Feeding is an important circadian stimulus, and we found that fasting both modulates hepatic circadian alternative splicing in an exon-dependent manner and changes the temporal relationship with transcript-level expression. Conclusions The circadian clock regulates alternative splicing in a manner that is both tissue-dependent and concurrent with circadian transcript abundance. This adds a novel temporal dimension to the regulation of mammalian alternative splicing. Moreover, our results demonstrate that circadian alternative splicing is regulated by the interaction between distinct physiological cues, and illustrates the capability of single genes to integrate circadian signals at different levels of regulation.

2012-01-01

118

Alternatively spliced isoforms of TRIP8b differentially control h channel trafficking and function  

PubMed Central

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (h channels) are the molecular basis for the current, Ih, which contributes crucially to intrinsic neuronal excitability. The subcellular localization and biophysical properties of h channels govern their function, but the mechanisms controlling these characteristics, and especially the potential role of auxiliary subunits or other binding proteins remain unclear. We focused on TRIP8b, an h channel-interacting protein that colocalizes with HCN1 in cortical and hippocampal pyramidal neuron dendrites, and found that it exists in multiple alternative splice variants with distinct effects on h channel trafficking and function. The developmentally-regulated splice variants of TRIP8b all shared dual, C-terminus-located interaction sites with HCN1. When coexpressed with HCN1 in heterologous cells individual TRIP8b isoforms similarly modulated gating of Ih, causing a hyperpolarizing shift in voltage-dependence of channel activation, but differentially upregulated or downregulated Ih current density and HCN1 surface expression. In hippocampal neurons, coexpression of TRIP8b isoforms with HCN1 produced isoform-specific changes of HCN1 localization. Interestingly, the TRIP8b isoforms most abundant in the brain are those predicted to enhance h channel surface expression. Indeed, shRNA knockdown of TRIP8b in hippocampal neurons significantly reduced native Ih. Thus, although TRIP8b exists in multiple splice isoforms, our data suggest that the predominant role of this protein in brain is to promote h channel surface expression and enhance Ih. Because Ih expression is altered in models of several diseases, including temporal lobe epilepsy, TRIP8b may play a role in both normal neuronal function and in aberrant neuronal excitability associated with neurological disease.

Lewis, Alan S.; Schwartz, Emily; Chan, C. Savio; Noam, Yoav; Shin, Minyoung; Wadman, Wytse J.; Surmeier, D. James; Baram, Tallie Z.; Macdonald, Robert L.; Chetkovich, Dane M.

2009-01-01

119

Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR)  

PubMed Central

Alternative mRNA splicing is a major mechanism for gene regulation and transcriptome diversity. Despite the extent of the phenomenon, the regulation and specificity of the splicing machinery are only partially understood. Adenosine-to-inosine (A-to-I) RNA editing of pre-mRNA by ADAR enzymes has been linked to splicing regulation in several cases. Here we used bioinformatics approaches, RNA-seq and exon-specific microarray of ADAR knockdown cells to globally examine how ADAR and its A-to-I RNA editing activity influence alternative mRNA splicing. Although A-to-I RNA editing only rarely targets canonical splicing acceptor, donor, and branch sites, it was found to affect splicing regulatory elements (SREs) within exons. Cassette exons were found to be significantly enriched with A-to-I RNA editing sites compared with constitutive exons. RNA-seq and exon-specific microarray revealed that ADAR knockdown in hepatocarcinoma and myelogenous leukemia cell lines leads to global changes in gene expression, with hundreds of genes changing their splicing patterns in both cell lines. This global change in splicing pattern cannot be explained by putative editing sites alone. Genes showing significant changes in their splicing pattern are frequently involved in RNA processing and splicing activity. Analysis of recently published RNA-seq data from glioblastoma cell lines showed similar results. Our global analysis reveals that ADAR plays a major role in splicing regulation. Although direct editing of the splicing motifs does occur, we suggest it is not likely to be the primary mechanism for ADAR-mediated regulation of alternative splicing. Rather, this regulation is achieved by modulating trans-acting factors involved in the splicing machinery.

Solomon, Oz; Oren, Shirley; Safran, Michal; Deshet-Unger, Naamit; Akiva, Pinchas; Jacob-Hirsch, Jasmine; Cesarkas, Karen; Kabesa, Reut; Amariglio, Ninette; Unger, Ron; Rechavi, Gideon; Eyal, Eran

2013-01-01

120

Epithelial splicing regulator protein 1 and alternative splicing in somatotroph adenomas.  

PubMed

Somatotroph adenomas secrete supraphysiological amounts of GH, causing acromegaly. We have previously hypothesized that epithelial mesenchymal transition (EMT) may play a central role in the progression of these adenomas and that epithelial splicing regulator 1 (ESRP1) may function prominently as a master regulator of the EMT process in pituitary adenomas causing acromegaly. To further elucidate the role of ESRP1 in somatotroph adenomas and in EMT progression, we used RNA sequencing (RNAseq) to sequence somatotroph adenomas characterized by high and low ESRP1 levels. Transcripts identified by RNAseq were analyzed in 65 somatotroph adenomas and in GH-producing pituitary rat cells with a specific knockdown of Esrp1. The clinical importance of the transcripts was further investigated by correlating mRNA expression levels with clinical indices of disease activity and treatment response. Many of the transcripts and isoforms identified by RNAseq and verified by quantitative PCR were involved in vesicle transport and calcium signaling and were associated with clinical outcomes. Silencing Esrp1 in GH3 cells resulted in changes of gene expression overlapping the data observed in human somatotroph adenomas and revealed a decreased granulation pattern and attenuated GH release. We observed an alternative splicing pattern for F-box and leucine-rich repeat protein 20, depending on the ESPR1 levels and on changes in circulating IGF-I levels after somatostatin analog treatment. Our study indicates that ESRP1 in somatotroph adenomas regulates transcripts that may be essential in the EMT progression and in the response to somatostatin analog treatment. PMID:23825128

Lekva, Tove; Berg, Jens Petter; Lyle, Robert; Heck, Ansgar; Ringstad, Geir; Olstad, Ole Kristoffer; Michelsen, Annika Elisabet; Casar-Borota, Olivera; Bollerslev, Jens; Ueland, Thor

2013-09-01

121

Alternative splicing of rat tropoelastin mRNA is tissue-specific and developmentally regulated.  

PubMed

Sequence analysis of cDNA clones coding for rat tropoelastin previously has identified two variants that potentially corresponded to alternatively spliced tropoelastin mRNAs (Pierce et al., 1990). We have now used S1 nuclease protection analysis of total RNA from aorta, skin and lungs of 10-day and 6-week old rats to localize all sites of alternative splicing in the tropoelastin mRNA and to examine tissue-specific and developmental regulation of the use of these sites. This analysis revealed multiple sites of alternative splicing involving rat tropoelastin coding sequences corresponding to exons 12 through 15 of the bovine tropoelastin gene and a single site of alternative splicing at sequences corresponding to exon 33. Messenger RNAs from all three tissues at both developmental stages were alternatively spliced at the same sites; there was no evidence for the use of an alternative splice site unique to a particular tissue or developmental stage. However, both tissue-specific and developmentally regulated differences were apparent in the proportion of rat tropoelastin mRNA alternatively spliced at exon 33. Tropoelastin mRNA from the aorta and lungs of neonatal rats was alternatively spliced at exon 33 ten time more frequently than tropoelastin mRNA from skin. Between 10 days and 6 weeks of development, the use of this site of alternative splicing decreased by twenty-fold in RNA from skin, ten-fold in RNA from lungs and two-fold in RNA from aorta. In contrast, alternative splicing at exons 12 through 15 occurred in a small percentage of the mRNA and use of these sites exhibited minimal tissue-specific differences or developmental regulation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1811166

Heim, R A; Pierce, R A; Deak, S B; Riley, D J; Boyd, C D; Stolle, C A

1991-11-01

122

An aberrant spliced transcript of focal adhesion kinase is exclusively expressed in human breast cancer  

PubMed Central

Purpose To clarify the roles of a new aberrantly spliced transcript of FAK that lacks exon 26 (denoted -26-exon FAK) in human breast cancers. Methods Transcripts of FAK expressed in 102 human breast tumor tissues and 52 corresponding normal tissues were analyzed by RT-PCR and DNA sequencing, as well as agarose gel electrophoresis. The cDNA of -26-exon FAK was cloned and expressed in MCF-10A cells, and then the kinase activity, cellular localization and migration capability of FAK were examined by western blotting, immunofluorescent staining and migration assays, respectively. The expression levels of FAK were analyzed by western blotting in MCF-7 cells treated with TNF-? or in MCF-10A cells upon serum deprivation. The MCF-10A cells transfected with a plasmid expressing -26-exon FAK were cultured in serum-free medium and cell apoptosis was analyzed by flow cytometry. Results The -26-exon FAK transcript was exclusively present in human breast tumor tissues and the encoded protein possessed the same kinase activity, cellular localization and cell migration-promoting ability as wild-type FAK. In MCF-7 cells treated with TNF-?, and in MCF-10A cells upon serum deprivation, the -26-exon FAK was resistant to proteolysis while wild-type FAK was largely cleaved. In addition, the -26-exon FAK, but not wild-type FAK, inhibited cell apoptosis. Conclusions The -26-exon FAK transcript, which is exclusively expressed in human breast tumor tissues, encodes a protein that possesses the same kinase activity and biological function as the wild-type FAK, but because it is resistant to the caspase-mediated cleavage that induces the proteolysis of the wild-type form, it ultimately prevents apoptosis.

2014-01-01

123

Diverging Alternative Splicing Fingerprints in the Transforming Growth Factor-? Signaling Pathway Identified in Thoracic Aortic Aneurysms  

PubMed Central

Impaired regulation of the transforming growth factor-? (TGF?) signaling pathway has been linked to thoracic aortic aneurysm (TAA). Previous work has indicated that differential splicing is a common phenomenon, potentially influencing the function of proteins. In the present study we investigated the occurrence of differential splicing in the TGF? pathway associated with TAA in patients with bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV). Affymetrix human exon arrays were applied to 81 intima/media tissue samples from dilated (n = 51) and nondilated (n = 30) aortas of TAV and BAV patients. To analyze the occurrence of alternative splicing in the TGF? pathway, multivariate techniques, including principal component analysis and OPLS-DA (orthogonal partial least squares to latent structures discriminant analysis), were applied on all exons (n = 614) of the TGF? pathway. The scores plot, based on the splice index of individual exons, showed separate clusters of patients with both dilated and nondilated aorta, thereby illustrating the potential importance of alternative splicing in TAA. In total, differential splicing was detected in 187 exons. Furthermore, the pattern of alternative splicing is clearly differs between TAV and BAV patients. Differential splicing was specific for BAV and TAV patients in 40 and 86 exons, respectively, and splicings of 61 exons were shared between the two phenotypes. The occurrence of differential splicing was demonstrated in selected genes by reverse transcription–polymerase chain reaction. In summary, alternative splicing is a common feature of TAA formation. Our results suggest that dilatation in TAV and BAV patients has different alternative splicing fingerprints in the TGF? pathway.

Kurtovic, Sanela; Paloschi, Valentina; Folkersen, Lasse; Gottfries, Johan; Franco-Cereceda, Anders; Eriksson, Per

2011-01-01

124

Aberrant 3? splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization  

PubMed Central

The frequency distribution of mutation-induced aberrant 3? splice sites (3?ss) in exons and introns is more complex than for 5? splice sites, largely owing to sequence constraints upstream of intron/exon boundaries. As a result, prediction of their localization remains a challenging task. Here, nucleotide sequences of previously reported 218 aberrant 3?ss activated by disease-causing mutations in 131 human genes were compared with their authentic counterparts using currently available splice site prediction tools. Each tested algorithm distinguished authentic 3?ss from cryptic sites more effectively than from de novo sites. The best discrimination between aberrant and authentic 3?ss was achieved by the maximum entropy model. Almost one half of aberrant 3?ss was activated by AG-creating mutations and ?95% of the newly created AGs were selected in vivo. The overall nucleotide structure upstream of aberrant 3?ss was characterized by higher purine content than for authentic sites, particularly in position ?3, that may be compensated by more stringent requirements for positive and negative nucleotide signatures centred around position ?11. A newly developed online database of aberrant 3?ss will facilitate identification of splicing mutations in a gene or phenotype of interest and future optimization of splice site prediction tools.

Vorechovsky, Igor

2006-01-01

125

The Alternative Splicing Gallery (ASG): bridging the gap between genome and transcriptome.  

PubMed

Alternative splicing essentially increases the diversity of the transcriptome and has important implications for physiology, development and the genesis of diseases. Conventionally, alternative splicing is investigated in a case-by-case fashion, but this becomes cumbersome and error prone if genes show a huge abundance of different splice variants. We use a different approach and integrate all transcripts derived from a gene into a single splicing graph. Each transcript corresponds to a path in the graph, and alternative splicing is displayed by bifurcations. This representation preserves the relationships between different splicing variants and allows us to investigate systematically all possible putative transcripts. We built a database of splicing graphs for human genes, using transcript information from various major sources (Ensembl, RefSeq, STACK, TIGR and UniGene). A Web interface allows users to display the splicing graphs, to interactively assemble transcripts and to access their sequences as well as neighboring genomic regions. We also provide for each gene an exhaustive pre-computed catalog of putative transcripts--in total more than 1.2 million sequences. We found that approximately 65% of the investigated genes show evidence for alternative splicing, and in 5% of the cases, a single gene might produce over 100 transcripts. PMID:15292448

Leipzig, Jeremy; Pevzner, Pavel; Heber, Steffen

2004-01-01

126

Integrative analysis of tissue-specific methylation and alternative splicing identifies conserved transcription factor binding motifs  

PubMed Central

The exact role of intragenic DNA methylation in regulating tissue-specific gene regulation is unclear. Recently, the DNA-binding protein CTCF has been shown to participate in the regulation of alternative splicing in a DNA methylation-dependent manner. To globally evaluate the relationship between DNA methylation and tissue-specific alternative splicing, we performed genome-wide DNA methylation profiling of mouse retina and brain. In protein-coding genes, tissue-specific differentially methylated regions (T-DMRs) were preferentially located in exons and introns. Gene ontology and evolutionary conservation analysis suggest that these T-DMRs are likely to be biologically relevant. More than 14% of alternatively spliced genes were associated with a T-DMR. T-DMR-associated genes were enriched for developmental genes, suggesting that a specific set of alternatively spliced genes may be regulated through DNA methylation. Novel DNA sequences motifs overrepresented in T-DMRs were identified as being associated with positive and/or negative regulation of alternative splicing in a position-dependent context. The majority of these evolutionarily conserved motifs contain a CpG dinucleotide. Some transcription factors, which recognize these motifs, are known to be involved in splicing. Our results suggest that DNA methylation-dependent alternative splicing is widespread and lay the foundation for further mechanistic studies of the role of DNA methylation in tissue-specific splicing regulation.

Wan, Jun; Oliver, Verity F.; Zhu, Heng; Zack, Donald J.; Qian, Jiang; Merbs, Shannath L.

2013-01-01

127

Alternative splicing and expression profile analysis of expressed sequence tags in domestic pig.  

PubMed

Domestic pig (Sus scrofa domestica) is one of the most important mammals to humans. Alternative splicing is a cellular mechanism in eukaryotes that greatly increases the diversity of gene products. Expression sequence tags (ESTs) have been widely used for gene discovery, expression profile analysis, and alternative splicing detection. In this study, a total of 712,905 ESTs extracted from 101 different non-normalized EST libraries of the domestic pig were analyzed. These EST libraries cover the nervous system, digestive system, immune system, and meat production related tissues from embryo, newborn, and adult pigs, making contributions to the analysis of alternative splicing variants as well as expression profiles in various stages of tissues. A modified approach was designed to cluster and assemble large EST datasets, aiming to detect alternative splicing together with EST abundance of each splicing variant. Much efforts were made to classify alternative splicing into different types and apply different filters to each type to get more reliable results. Finally, a total of 1,223 genes with average 2.8 splicing variants were detected among 16,540 unique genes. The overview of expression profiles would change when we take alternative splicing into account. PMID:17572361

Zhang, Liang; Tao, Lin; Ye, Lin; He, Ling; Zhu, Yuan-Zhong; Zhu, Yue-Dong; Zhou, Yan

2007-02-01

128

Identification and characterization of alternative splicing in parasitic nematode transcriptomes  

PubMed Central

Background Alternative splicing (AS) of mRNA is a vital mechanism for enhancing genomic complexity in eukaryotes. Spliced isoforms of the same gene can have diverse molecular and biological functions and are often differentially expressed across various tissues, times, and conditions. Thus, AS has important implications in the study of parasitic nematodes with complex life cycles. Transcriptomic datasets are available from many species, but data must be revisited with splice-aware assembly protocols to facilitate the study of AS in helminthes. Methods We sequenced cDNA from the model worm Caenorhabditis elegans using 454/Roche technology for use as an experimental dataset. Reads were assembled with Newbler software, invoking the cDNA option. Several combinations of parameters were tested and assembled transcripts were verified by comparison with previously reported C. elegans genes and transcript isoforms and with Illumina RNAseq data. Results Thoughtful adjustment of program parameters increased the percentage of assembled transcripts that matched known C. elegans sequences, decreased mis-assembly rates (i.e., cis- and trans-chimeras), and improved the coverage of the geneset. The optimized protocol was used to update de novo transcriptome assemblies from nine parasitic nematode species, including important pathogens of humans and domestic animals. Our assemblies indicated AS rates in the range of 20-30%, typically with 2-3 transcripts per AS locus, depending on the species. Transcript isoforms from the nine species were translated and searched for similarity to known proteins and functional domains. Some 21 InterPro domains, including several involved in nucleotide and chromatin binding, were statistically correlated with AS genetic loci. In most cases, the Roche/454 data explored in this study are the only sequences available from the species in question; however, the recently published genome of the human hookworm Necator americanus provided an additional opportunity to validate our results. Conclusions Our optimized assembly parameters facilitated the first survey of AS among parasitic nematodes. The nine transcriptome assemblies, their protein translations, and basic annotations are available from Nematode.net as a resource for the research community. These should be useful for studies of specific genes and gene families of interest as well as for curating draft genome assemblies as they become available.

2014-01-01

129

Identification of five mouse ?-opioid receptor (MOR) gene (Oprm1) splice variants containing a newly identified alternatively spliced exon  

PubMed Central

The mouse ?-opioid receptor gene, Oprm1, currently contains 18 recognized alternatively spliced exons (Doyle et al., 2007) that generate 27 splice variants encoding at least 11 morphine-binding isoforms of the receptor. Here, we identify five MOR variants that contain an as yet undescribed exon (exon 19) of the gene, and we provide evidence that these MOR splice variants are expressed in the C57BL/6 and DBA/2 mouse strains. Three splice variants, MOR-1Eii, MOR-1Eiii and MOR-1Eiv, encode the MOR-1E isoform and contain the newly identified exon 19 in their 3’ untranslated regions. The fourth splice variant encodes a novel ?-opioid receptor isoform, MOR-1U, and contains exon 19 in its coding region. The cytoplasmic tail of the putative MOR-1U isoform contains a putative nuclear localization signal encoded by the sequence of exon 19. Exon 19 appears to be conserved in the rat, but not in humans. In mouse and rat Oprm1, exon 19 is located between described exons 7 and 8. We also report the cloning of the “full-length” MOR-1T splice variant (Kvam et al., 2004) that encodes MOR-1 and contains the newly identified exon in its 3’ UTR. RT-PCR analysis suggests that splice variants MOR-1Eii, MOR-1Eiii, MOR-1Eiv, MOR-1T and MOR-1U are expressed in all brain regions analyzed (cortex, cerebellum, hypothalamus, thalamus and striatum). These exon 19-containing splice variants add to the growing complexity of the mouse Oprm1 gene.

Doyle, Glenn A.; Sheng, X. Rebecca; Lin, Sharon S.J.; Press, Danielle M.; Grice, Dorothy E.; Buono, Russell J.; Ferraro, Thomas N.; Berrettini, Wade H.

2008-01-01

130

Alternative Splicing of RNA Triplets Is Often Regulated and Accelerates Proteome Evolution  

PubMed Central

Thousands of human genes contain introns ending in NAGNAG (N any nucleotide), where both NAGs can function as 3? splice sites, yielding isoforms that differ by inclusion/exclusion of three bases. However, few models exist for how such splicing might be regulated, and some studies have concluded that NAGNAG splicing is purely stochastic and nonfunctional. Here, we used deep RNA-Seq data from 16 human and eight mouse tissues to analyze the regulation and evolution of NAGNAG splicing. Using both biological and technical replicates to estimate false discovery rates, we estimate that at least 25% of alternatively spliced NAGNAGs undergo tissue-specific regulation in mammals, and alternative splicing of strongly tissue-specific NAGNAGs was 10 times as likely to be conserved between species as was splicing of non-tissue-specific events, implying selective maintenance. Preferential use of the distal NAG was associated with distinct sequence features, including a more distal location of the branch point and presence of a pyrimidine immediately before the first NAG, and alteration of these features in a splicing reporter shifted splicing away from the distal site. Strikingly, alignments of orthologous exons revealed a ?15-fold increase in the frequency of three base pair gaps at 3? splice sites relative to nearby exon positions in both mammals and in Drosophila. Alternative splicing of NAGNAGs in human was associated with dramatically increased frequency of exon length changes at orthologous exon boundaries in rodents, and a model involving point mutations that create, destroy, or alter NAGNAGs can explain both the increased frequency and biased codon composition of gained/lost sequence observed at the beginnings of exons. This study shows that NAGNAG alternative splicing generates widespread differences between the proteomes of mammalian tissues, and suggests that the evolutionary trajectories of mammalian proteins are strongly biased by the locations and phases of the introns that interrupt coding sequences.

Bradley, Robert K.; Merkin, Jason; Lambert, Nicole J.; Burge, Christopher B.

2012-01-01

131

The coupling of alternative splicing and nonsense-mediated mRNA decay.  

PubMed

Most human genes exhibit alternative splicing, but not all alternatively spliced transcripts produce functional proteins. Computational and experimental results indicate that a substantial fraction of alternative splicing events in humans result in mRNA isoforms that harbor a premature termination codon (PTC). These transcripts are predicted to be degraded by the nonsense-mediated mRNA decay (NMD) pathway. One explanation for the abundance of PTC-containing isoforms is that they represent splicing errors that are identified and degraded by the NMD pathway. Another potential explanation for this startling observation is that cells may link alternative splicing and NMD to regulate the abundance of mRNA transcripts. This mechanism, which we call "Regulated Unproductive Splicing and Translation" (RUST), has been experimentally shown to regulate expression of a wide variety of genes in many organisms from yeast to human. It is frequently employed for autoregulation of proteins that affect the splicing process itself. Thus, alternative splicing and NMD act together to play an important role in regulating gene expression. PMID:18380348

Lareau, Liana F; Brooks, Angela N; Soergel, David A W; Meng, Qi; Brenner, Steven E

2007-01-01

132

Aberrant splicing and altered spatial expression patterns in fruitless mutants of Drosophila melanogaster.  

PubMed Central

The fruitless (fru) gene functions in Drosophila males to establish the potential for male sexual behaviors. fru encodes a complex set of sex-specific and sex-nonspecific mRNAs through the use of multiple promoters and alternative pre-mRNA processing. The male-specific transcripts produced from the distal (P1) fru promoter are believed to be responsible for its role in specifying sexual behavior and are only expressed in a small fraction of central nervous system (CNS) cells. To understand the molecular etiology of fruitless mutant phenotypes, we compared wild-type and mutant transcription patterns. These experiments revealed that the fru(2), fru(3), fru(4), and fru(sat) mutations, which are due to P-element inserts, alter the pattern of sex-specific and sex-nonspecific fru RNAs. These changes arise in part from the P-element insertions containing splice acceptor sites that create alternative processing pathways. In situ hybridization revealed no alterations in the locations of cells expressing the P1-fru-promoter-derived transcripts in fru(2), fru(3), fru(4), and fru(sat) pharate adults. For the fru(1) mutant (which is due to an inversion breakpoint near the P1 promoter), Northern analyses revealed no significant changes in fru transcript patterns. However, in situ hybridization revealed anomalies in the level and distribution of P1-derived transcripts: in fru(1) males, fewer P1-expressing neurons are found in regions of the dorsal lateral protocerebrum and abdominal ganglion compared to wild-type males. In other regions of the CNS, expression of these transcripts appears normal in fru(1) males. The loss of fruitless expression in these regions likely accounts for the striking courtship abnormalities exhibited by fru(1) males. Thus, we suggest that the mutant phenotypes in fru(2), fru(3), fru(4), and fru(sat) animals are due to a failure to appropriately splice P1 transcripts, whereas the mutant phenotype of fru(1) animals is due to the reduction or absence of P1 transcripts within specific regions of the CNS.

Goodwin, S F; Taylor, B J; Villella, A; Foss, M; Ryner, L C; Baker, B S; Hall, J C

2000-01-01

133

Alternative splicing of breast cancer associated gene BRCA1 from breast cancer cell line.  

PubMed

Breast cancer is the most common malignancy among women, and mutations in the BRCA1 gene produce increased susceptibility to these malignancies in certain families. In this study, the forward 1-13 exons of breast cancer associated gene BRCA1 were cloned from breast cancer cell line ZR-75-30 by RT-PCR method. Sequence analysis showed that nine BRCA1 splice forms were isolated and characterized, compared with wild-type BRCA1 gene, five splice forms of which were novel. These splice isoforms were produced from the molecular mechanism of 5' and 3' alternative splicing. All these splice forms deleting exon 11b and the locations of alternative splicing were focused on two parts:one was exons 2 and 3, and the other was exons 9 and 10. These splice forms accorded with GT-AG rule. Most these BRCA1 splice variants still kept the original reading frame. Western blot analysis indicated that some BRCA1 splice variants were expressed in ZR-75-30 cell line at the protein level. In addition, we confirmed the presence of these new transcripts of BRCA1 gene in MDA-MB-435S, K562, Hela, HLA, HIC, H9, Jurkat and human fetus samples by RT-PCR analysis. These results suggested that breast cancer associated gene BRCA1 may have unexpectedly a large number of splice variants. We hypothesized that alternative splicing of BRCA1 possibly plays a major role in the tumorigenesis of breast and/or ovarian cancer. Thus, the identification of cancer-specific splice forms will provide a novel source for the discovery of diagnostic or prognostic biomarkers and tumor antigens suitable as targets for therapeutic intervention. PMID:17244477

Lixia, Miao; Zhijian, Cao; Chao, Shen; Chaojiang, Gu; Congyi, Zheng

2007-01-31

134

Computational Evidence of NAGNAG Alternative Splicing in Human Large Intergenic Noncoding RNA  

PubMed Central

NAGNAG alternative splicing plays an essential role in biological processes and represents a highly adaptable system for posttranslational regulation of gene function. NAGNAG alternative splicing impacts a myriad of biological processes. Previous studies of NAGNAG largely focused on messenger RNA. To the best of our knowledge, this is the first study testing the hypothesis that NAGNAG alternative splicing is also operative in large intergenic noncoding RNA (lincRNA). The RNA-seq data sets from recent deep sequencing studies were queried to test our hypothesis. NAGNAG alternative splicing of human lincRNA was identified while querying two independent RNA-seq data sets. Within these datasets, 31 NAGNAG alternative splicing sites were identified in lincRNA. Notably, most exons of lincRNA containing NAGNAG acceptors were longer than those from protein-coding genes. Furthermore, presence of CAG coding appeared to participate in the splice site selection. Finally, expression of the isoforms of NAGNAG lincRNA exhibited tissue specificity. Together, this study improves our understanding of the NAGNAG alternative splicing in lincRNA.

Sun, Xiaoyong; Lin, Simon M.; Yan, Xiaoyan

2014-01-01

135

Alternative Splicing Mediates Responses of the Arabidopsis Circadian Clock to Temperature Changes[W  

PubMed Central

Alternative splicing plays crucial roles by influencing the diversity of the transcriptome and proteome and regulating protein structure/function and gene expression. It is widespread in plants, and alteration of the levels of splicing factors leads to a wide variety of growth and developmental phenotypes. The circadian clock is a complex piece of cellular machinery that can regulate physiology and behavior to anticipate predictable environmental changes on a revolving planet. We have performed a system-wide analysis of alternative splicing in clock components in Arabidopsis thaliana plants acclimated to different steady state temperatures or undergoing temperature transitions. This revealed extensive alternative splicing in clock genes and dynamic changes in alternatively spliced transcripts. Several of these changes, notably those affecting the circadian clock genes LATE ELONGATED HYPOCOTYL (LHY) and PSEUDO RESPONSE REGULATOR7, are temperature-dependent and contribute markedly to functionally important changes in clock gene expression in temperature transitions by producing nonfunctional transcripts and/or inducing nonsense-mediated decay. Temperature effects on alternative splicing contribute to a decline in LHY transcript abundance on cooling, but LHY promoter strength is not affected. We propose that temperature-associated alternative splicing is an additional mechanism involved in the operation and regulation of the plant circadian clock.

James, Allan B.; Syed, Naeem Hasan; Bordage, Simon; Marshall, Jacqueline; Nimmo, Gillian A.; Jenkins, Gareth I.; Herzyk, Pawel; Brown, John W.S.; Nimmo, Hugh G.

2012-01-01

136

Identification of Alternative Splicing Factors Involved in Prostate Cancer Progression.  

National Technical Information Service (NTIS)

The goal of this project is to identify and characterize proteins factors that regulate splicing of fibroblast growth factor 2 (FGFR2) in prostate cancer cells. A change in the splicing of this transcript has been shown to accompany the transition of mode...

R. P. Carstens

2003-01-01

137

Transgene regulation in plants by alternative splicing of a suicide exon  

PubMed Central

Compared to transcriptional activation, other mechanisms of gene regulation have not been widely exploited for the control of transgenes. One barrier to the general use and application of alternative splicing is that splicing-regulated transgenes have not been shown to be reliably and simply designed. Here, we demonstrate that a cassette bearing a suicide exon can be inserted into a variety of open reading frames (ORFs), generating transgenes whose expression is activated by exon skipping in response to a specific protein inducer. The surprisingly minimal sequence requirements for the maintenance of splicing fidelity and regulation indicate that this splicing cassette can be used to regulate any ORF containing one of the amino acids Glu, Gln or Lys. Furthermore, a single copy of the splicing cassette was optimized by rational design to confer robust gene activation with no background expression in plants. Thus, conditional splicing has the potential to be generally useful for transgene regulation.

Hickey, Scott F.; Sridhar, Malathy; Westermann, Alexander J.; Qin, Qian; Vijayendra, Pooja; Liou, Geoffrey; Hammond, Ming C.

2012-01-01

138

Drosha Promotes Splicing of a Pre-microRNA-like Alternative Exon  

PubMed Central

The ribonuclease III enzyme Drosha has a central role in the biogenesis of microRNA (miRNA) by binding and cleaving hairpin structures in primary RNA transcripts into precursor miRNAs (pre-miRNAs). Many miRNA genes are located within protein-coding host genes and cleaved by Drosha in a manner that is coincident with splicing of introns by the spliceosome. The close proximity of splicing and pre-miRNA biogenesis suggests a potential for co-regulation of miRNA and host gene expression, though this relationship is not completely understood. Here, we describe a cleavage-independent role for Drosha in the splicing of an exon that has a predicted hairpin structure resembling a Drosha substrate. We find that Drosha can cleave the alternatively spliced exon 5 of the eIF4H gene into a pre-miRNA both in vitro and in cells. However, the primary role of Drosha in eIF4H gene expression is to promote the splicing of exon 5. Drosha binds to the exon and enhances splicing in a manner that depends on RNA structure but not on cleavage by Drosha. We conclude that Drosha can function like a splicing enhancer and promote exon inclusion. Our results reveal a new mechanism of alternative splicing regulation involving a cleavage-independent role for Drosha in splicing.

Havens, Mallory A.; Reich, Ashley A.; Hastings, Michelle L.

2014-01-01

139

Drosha promotes splicing of a pre-microRNA-like alternative exon.  

PubMed

The ribonuclease III enzyme Drosha has a central role in the biogenesis of microRNA (miRNA) by binding and cleaving hairpin structures in primary RNA transcripts into precursor miRNAs (pre-miRNAs). Many miRNA genes are located within protein-coding host genes and cleaved by Drosha in a manner that is coincident with splicing of introns by the spliceosome. The close proximity of splicing and pre-miRNA biogenesis suggests a potential for co-regulation of miRNA and host gene expression, though this relationship is not completely understood. Here, we describe a cleavage-independent role for Drosha in the splicing of an exon that has a predicted hairpin structure resembling a Drosha substrate. We find that Drosha can cleave the alternatively spliced exon 5 of the eIF4H gene into a pre-miRNA both in vitro and in cells. However, the primary role of Drosha in eIF4H gene expression is to promote the splicing of exon 5. Drosha binds to the exon and enhances splicing in a manner that depends on RNA structure but not on cleavage by Drosha. We conclude that Drosha can function like a splicing enhancer and promote exon inclusion. Our results reveal a new mechanism of alternative splicing regulation involving a cleavage-independent role for Drosha in splicing. PMID:24786770

Havens, Mallory A; Reich, Ashley A; Hastings, Michelle L

2014-05-01

140

Ancient nature of alternative splicing and functions of introns  

SciTech Connect

Using four genomes: Chamydomonas reinhardtii, Agaricus bisporus, Aspergillus carbonarius, and Sporotricum thermophile with EST coverage of 2.9x, 8.9x, 29.5x, and 46.3x respectively, we identified 11 alternative splicing (AS) types that were dominated by intron retention (RI; biased toward short introns) and found 15, 35, 52, and 63percent AS of multiexon genes respectively. Genes with AS were more ancient, and number of AS correlated with number of exons, expression level, and maximum intron length of the gene. Introns with tendency to be retained had either stop codons or length of 3n+1 or 3n+2 presumably triggering nonsense-mediated mRNA decay (NMD), but introns retained in major isoforms (0.2-6percent of all introns) were biased toward 3n length and stop codon free. Stopless introns were biased toward phase 0, but 3n introns favored phase 1 that introduced more flexible and hydrophilic amino acids on both ends of introns which would be less disruptive to protein structure. We proposed a model in which minor RI intron could evolve into major RI that could facilitate intron loss through exonization.

Zhou, Kemin; Salamov, Asaf; Kuo, Alan; Aerts, Andrea; Grigoriev, Igor

2011-03-21

141

Alternative splicing results in RET isoforms with distinct trafficking properties  

PubMed Central

RET encodes a receptor tyrosine kinase that is essential for spermatogenesis, development of the sensory, sympathetic, parasympathetic, and enteric nervous systems and the kidneys, as well as for maintenance of adult midbrain dopaminergic neurons. RET is alternatively spliced to encode multiple isoforms that differ in their C-terminal amino acids. The RET9 and RET51 isoforms display unique levels of autophosphorylation and have differential interactions with adaptor proteins. They induce distinct gene expression patterns, promote different levels of cell differentiation and transformation, and play unique roles in development. Here we present a comprehensive study of the subcellular localization and trafficking of RET isoforms. We show that immature RET9 accumulates intracellularly in the Golgi, whereas RET51 is efficiently matured and present in relatively higher amounts on the plasma membrane. RET51 is internalized faster after ligand binding and undergoes recycling back to the plasma membrane. This differential trafficking of RET isoforms produces a more rapid and longer duration of signaling through the extracellular-signal regulated kinase/mitogen-activated protein kinase pathway downstream of RET51 relative to RET9. Together these differences in trafficking properties contribute to some of the functional differences previously observed between RET9 and RET51 and establish the important role of intracellular trafficking in modulating and maintaining RET signaling.

Richardson, Douglas S.; Rodrigues, David M.; Hyndman, Brandy D.; Crupi, Mathieu J. F.; Nicolescu, Adrian C.; Mulligan, Lois M.

2012-01-01

142

Subcellular localization and function of alternatively spliced Noxo1 isoforms  

PubMed Central

Nox organizer 1 (Noxo1), a p47phox homolog, is produced as four isoforms with unique N-terminal PX domains derived by alternative mRNA splicing. We compared the subcellular distribution of these isoforms or their isolated PX domains produced as GFP fusion proteins, as well as their ability to support Nox1 activity in several transfected models. Noxo1?, ?, ?, and ? show different subcellular localization patterns, determined by their PX domains. In HEK293 cells, Noxo1? exhibits prominent plasma membrane binding, Noxo1? shows plasma membrane and nuclear associations, Noxo1? and ? localize primarily on intracellular vesicles or cytoplasmic aggregates, but not the plasma membrane. Nox1 activity correlates with Noxo1 plasma membrane binding in HEK293 cells, since Noxo1? supports the highest activity and Noxo1? and Noxo1? support moderate or low activities, respectively. In COS-7 cells, where Noxo1? localizes on the plasma membrane, the activities supported by the three isoforms (?, ?, and ?) do not differ significantly. The PX domains of ? and ? bind the same phospholipids, including phosphatidic acid. These results indicate the variant PX domains are unique determinants of Noxo1 localization and Nox1 function. Finally, the over-expressed Noxo1 isoforms do not affect p22phox localization, although Nox1 is needed to transport p22phox to the plasma membrane.

Ueyama, Takehiko; Lekstrom, Kristen; Tsujibe, Satoshi; Saito, Naoaki; Leto, Thomas L.

2007-01-01

143

Effects of alternative splicing on the function of bestrophin-1 calcium-activated chloride channels.  

PubMed

The proposed Ca2+-activated Cl- channel protein Best1 (bestrophin 1) is expressed and functionally important in the retina and in the brain. Human BEST1 has two known splice variants, Best1V1 and Best1V2, which arise from alternative splicing of two exons: exon 2 splicing results in a unique N-terminal domain, whereas alternative splicing of exon 11 produces two mutually exclusive C-termini. Prior studies were limited to Best1V1 and its clinically relevant mutations. In the present work, we cloned a novel splice variant of Best1V1 missing exon 2 (Best1V1?ex2) and differing from each of the two previously identified isoforms by one alternatively spliced domain. This finding allowed us to determine the role for alternative splicing of the Best1 N- and C-termini. We heteroexpressed Best1V1?ex2 in HEK (human embryonic kidney)-293 cells, and compared its properties with Best1V1 and Best1V2. Western blot analysis confirmed protein expression from all three splice variants. Both Best1V1 and Best1V1?ex2 successfully formed Ca2+-activated Cl- channels, demonstrating that the N-terminus encoded by exon 2 is not essential for channel function. In contrast, Best1V2-expressing cells had no detectable Ca2+-activated Cl- currents, pointing to a critical role for splicing of the C-terminus. Surface protein biotinylation demonstrated that Best1V1 and Best1V1?ex2 are trafficked to the plasma membrane, whereas Best1V2 is not. These results define the impact of alternative splicing on Best1 function, and should be taken into consideration in future modelling of the Best1 protein structure. PMID:24341532

Kuo, Yu-Hung; Abdullaev, Iskandar F; Hyzinski-García, María C; Mongin, Alexander A

2014-03-15

144

A novel zinc finger gene on human chromosome 1qter that is alternatively spliced in human tissues and cell lines  

SciTech Connect

DNA-binding proteins that share the conserved C[sub 2]-H[sub 2] zinc finger motif have been shown to have important roles as transcriptional regulators of gene expression and have been implicated in several hereditary human diseases. In order to define potential candidate genes for inherited disorders characterized by aberrant gene expression, the authors utilized Kruppel-related sequences to isolate zinc finger-containing cDNAs. They isolated and characterized two novel zinc finger-encoding cDNAs from a human hepatoblastoma cell line, which demonstrate DNA sequence homology to a recently described human Kruppel-related gene HZF-3 and appear to be derived from a single gene by alternate mRNA splicing. This gene, denoted HZF-16,' gives rise to at least two gene products. One cDNA (i.e., HZF-16.2) has nine zinc finger domains, while alternative splicing of the message gives rise to a smaller product (i.e., HZF-16.1) that has four domains. Despite the internal splicing event, both the 5[prime]- and 3[prime]-untranslated sequences in both cDNAs are identical, as are the first three domains. In the HZF-16.1 cDNA, the fourth zinc finger domain is a fusion product of domains four and nine of HZF-16.2 and could potentially give rise to a new DNA-binding specificity. These alternatively spliced transcripts are differentially regulated in human tissues and transformed cell lines and show a different distribution of expression between human cell lines and normal human tissue. This novel gene was mapped to human chromosome 1q44 by chromosomal in situ suppression hybridization and thus represents a candidate gene for trisomy 1q syndrome and for several other disorders. 40 refs., 6 figs.

Saleh, M.; Selleri, L.; Evans, G.A. (Salk Inst. for Biological Studies, La Jolla, CA (United States))

1993-01-01

145

Targeting RNA Splicing for Disease Therapy  

PubMed Central

Splicing of pre-messenger RNA into mature messenger RNA is an essential step for expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics.

Havens, Mallory A.; Duelli, Dominik M.

2013-01-01

146

Targeting RNA splicing for disease therapy.  

PubMed

Splicing of pre-messenger RNA into mature messenger RNA is an essential step for the expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics. PMID:23512601

Havens, Mallory A; Duelli, Dominik M; Hastings, Michelle L

2013-01-01

147

The human XPG gene: gene architecture, alternative splicing and single nucleotide polymorphisms  

PubMed Central

Defects in the XPG DNA repair endonuclease gene can result in the cancer-prone disorders xeroderma pigmentosum (XP) or the XP–Cockayne syndrome complex. While the XPG cDNA sequence was known, determination of the genomic sequence was required to understand its different functions. In cells from normal donors, we found that the genomic sequence of the human XPG gene spans 30 kb, contains 15 exons that range from 61 to 1074 bp and 14 introns that range from 250 to 5763 bp. Analysis of the splice donor and acceptor sites using an information theory-based approach revealed three splice sites with low information content, which are components of the minor (U12) spliceosome. We identified six alternatively spliced XPG mRNA isoforms in cells from normal donors and from XPG patients: partial deletion of exon 8, partial retention of intron 8, two with alternative exons (in introns 1 and 6) and two that retained complete introns (introns 3 and 9). The amount of alternatively spliced XPG mRNA isoforms varied in different tissues. Most alternative splice donor and acceptor sites had a relatively high information content, but one has the U12 spliceosome sequence. A single nucleotide polymorphism has allele frequencies of 0.74 for 3507G and 0.26 for 3507C in 91 donors. The human XPG gene contains multiple splice sites with low information content in association with multiple alternatively spliced isoforms of XPG mRNA.

Emmert, Steffen; Schneider, Thomas D.; Khan, Sikandar G.; Kraemer, Kenneth H.

2001-01-01

148

Smooth muscle alternative splicing induced in fibroblasts by heterologous expression of a regulatory gene.  

PubMed Central

Alternative splicing is a common mechanism for regulating gene expression in different cell types. In order to understand this important process, the trans-acting factors that enforce the choice of particular splicing pathways in different environments must be identified. We have used the rat alpha-tropomyosin gene as a model system of tissue-specific alternative splicing. Exon 3 of alpha-tropomyosin is specifically inhibited in smooth muscle cells allowing the alternative inclusion of exon 2. We have used a novel gene transfer and selection strategy to detect a gene whose expression in fibroblasts is sufficient to switch them to smooth muscle-specific splicing of alpha-tropomyosin and also alpha-actinin. Extracts from the regulating fibroblasts contain an apparently novel 55 kDa protein which binds to RNA elements required for regulation of tropomyosin splicing. This protein is not detected in extracts of non-regulating cells and is therefore a strong candidate cell-specific splicing regulator. These experiments advance our understanding of smooth muscle splicing regulation as well as establishing a means for direct cloning of tissue-specific splicing regulators which have so far been refractory to biochemical analysis. Images

Roberts, G C; Gooding, C; Smith, C W

1996-01-01

149

Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis  

PubMed Central

Background The circadian clock enables living organisms to anticipate recurring daily and seasonal fluctuations in their growth habitats and synchronize their biology to the environmental cycle. The plant circadian clock consists of multiple transcription-translation feedback loops that are entrained by environmental signals, such as light and temperature. In recent years, alternative splicing emerges as an important molecular mechanism that modulates the clock function in plants. Several clock genes are known to undergo alternative splicing in response to changes in environmental conditions, suggesting that the clock function is intimately associated with environmental responses via the alternative splicing of the clock genes. However, the alternative splicing events of the clock genes have not been studied at the molecular level. Results We systematically examined whether major clock genes undergo alternative splicing under various environmental conditions in Arabidopsis. We also investigated the fates of the RNA splice variants of the clock genes. It was found that the clock genes, including EARLY FLOWERING 3 (ELF3) and ZEITLUPE (ZTL) that have not been studied in terms of alternative splicing, undergo extensive alternative splicing through diverse modes of splicing events, such as intron retention, exon skipping, and selection of alternative 5? splice site. Their alternative splicing patterns were differentially influenced by changes in photoperiod, temperature extremes, and salt stress. Notably, the RNA splice variants of TIMING OF CAB EXPRESSION 1 (TOC1) and ELF3 were degraded through the nonsense-mediated decay (NMD) pathway, whereas those of other clock genes were insensitive to NMD. Conclusion Taken together, our observations demonstrate that the major clock genes examined undergo extensive alternative splicing under various environmental conditions, suggesting that alternative splicing is a molecular scheme that underlies the linkage between the clock and environmental stress adaptation in plants. It is also envisioned that alternative splicing of the clock genes plays more complex roles than previously expected.

2014-01-01

150

SRp54 (SFRS11), a Regulator for tau Exon 10 Alternative Splicing Identified by an Expression Cloning Strategy  

Microsoft Academic Search

The tau gene encodes a microtubule-associated protein that is critical for neuronal survival and function. Splicing defects in the human tau gene lead to frontotemporal dementia with Parkinsonism linked to chro- mosome 17 (FTDP-17), an autosomal dominant neurodegenerative disorder. Genetic mutations associated with FTDP-17 often affect tau exon 10 alternative splicing. To investigate mechanisms regulating tau exon 10 alternative splicing,

Jane Y. Wu; Amar Kar; David Kuo; Bing Yu; Necat Havlioglu

2006-01-01

151

Determination of soluble tumor necrosis factor receptor 2 produced by alternative splicing.  

PubMed

Soluble cytokine receptors have proven to be very useful biomarkers in a large variety of diseases, including cancer, infections, and chronic inflammatory diseases. These soluble receptors are produced by proteolytic cleavage or alternative splicing. Several cytokine receptors including tumor necrosis factor receptor 2 (TNFR2) can be generated by both mechanisms. However, the conventional ELISA systems do not differentiate between these two types of soluble receptors. We describe a sandwich ELISA to specifically quantify soluble TNFR2 protein generated by alternative splicing. This method requires the use of a capturing monoclonal antibody (mAb) specific of an epitope present in the soluble TNFR2 generated by alternatively splicing but absent in the proteolytically generated isoform. Here we present a detailed protocol for the production and validation of such a mAb. This method has the potential to be applied for measuring other soluble cell surface molecules generated by alternative splicing. PMID:24788183

Romero, Xavier; Cañete, Juan D; Engel, Pablo

2014-01-01

152

Simultaneous quantification of alternatively spliced transcripts in a single droplet digital PCR reaction.  

PubMed

Human telomerase reverse transcriptase (hTERT) is an essential component required for telomerase activity and telomere maintenance. Several alternatively spliced forms of hTERT mRNA have been reported in human primary and tumor cells. Currently, however, there is no sensitive and accurate method for the simultaneous quantification of multiple alternatively spliced RNA transcripts, such as in the case of hTERT. Here we show droplet digital PCR (ddPCR) provides sensitive, simultaneous digital quantification in a single reaction of two alternatively spliced single deletion hTERT transcripts (?-/?+ and ?+/?-) as well as the opportunity to manually quantify non-deletion (?+/?+) and double deletion (?-/?-) transcripts. Our ddPCR method enables direct comparison among four alternatively spliced mRNAs without the need for internal standards or multiple primer pairs specific for each variant as real-time PCR (qPCR) requires, thus eliminating potential variation due to differences in PCR amplification efficiency. PMID:24924392

Sun, Bing; Tao, Lian; Zheng, Yun-Ling

2014-06-01

153

Opportunities and methods for studying alternative splicing in cancer with RNA-Seq.  

PubMed

The biogenesis, development and metastases of cancer are associated with many variations in the transcriptome. Alternative splicing of genes is a major post-transcriptional regulation mechanism that is involved in many types of cancer. The next-generation sequencing applied on RNAs (RNA-Seq) provides a new technology for studying transcriptomes. It provides an unprecedented opportunity for quantitatively studying alternative splicing in a systematic way. This mini-review summarizes the current RNA-Seq studies on cancer transcriptomes especially studies on cancer-related alternative splicing, and discusses the strategy for quantitative study of alternative splicing in cancers with RNA-Seq, the bioinformatics methods available and existing questions. PMID:23196057

Feng, Huijuan; Qin, Zhiyi; Zhang, Xuegong

2013-11-01

154

Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed by RNA-seq  

Microsoft Academic Search

Both transcription and post-transcriptional processes, such as alternative splicing, play crucial roles in controlling developmental programs in metazoans. Recently emerged RNA-seq method has brought our understanding of eukaryotic transcriptomes to a new level, because it can resolve both gene expression level and alternative splicing events simultaneously. To gain a better understanding of cellular differentiation in gonads, we analyzed mRNA profiles

Qiang Gan; Iouri Chepelev; Gang Wei; Lama Tarayrah; Kairong Cui; Keji Zhao; Xin Chen

2010-01-01

155

The Evolution of an Alternatively Spliced Exon in the ?A-Crystallin Gene  

Microsoft Academic Search

.   The evolutionary aspects of alternative splicing, as a mechanism to increase the diversity of gene products, are poorly understood.\\u000a Here we analyse the evolution of a 69-bp exon that is alternatively spliced in the primary transcript of the gene for the\\u000a mammalian eye lens protein ?A-crystallin. In rodents, the skipping of this exon 2 is attributed to the presence

Marjon A. M. van Dijk; Marcel A. M. Sweers; Wilfried W. de Jong

2001-01-01

156

Discovery of Gene Families and Alternatively Spliced Variants by RecA-Mediated Cloning  

Microsoft Academic Search

Probing the functional complexity of the human genome will require new gene cloning techniques, not only to discover intraspecies gene homologs and interspecies gene orthologs, but also to identify alternatively spliced gene variants. We report homologous cDNA cloning methods that allow cloning of gene family members, genes from different species, and alternatively spliced gene variants. We cloned human 14-3-3 gene

Hong Zeng; Elizabeth Allen; Chris W. Lehman; R. Geoffrey Sargent; Sushma Pati; David A. Zarling

2002-01-01

157

Heteroduplex formation and S1 digestion for mapping alternative splicing sites  

Microsoft Academic Search

The identification of alternatively spliced transcripts has contributed to a better comprehension of developmental mechanisms, tissue-specific physiological processes and human diseases. Polymerase chain reaction amplification of alternatively spliced variants commonly leads to the formation of heteroduplexes as a result of base pair- ing involving exons common between the two variants. S1 nuclease cleaves single-stranded loops of heteroduplexes and also nicks

E. N. Ferreira; M. C. R. Rangel; P. B. Pineda; D. O. Vidal; A. A. Camargo; S. J. Souza; D. M. Carraro

2008-01-01

158

Expression and transcriptional activity of alternative splice variants of Mitf exon 6  

Microsoft Academic Search

Microphthalmia-associated transcription factor (Mitf) is a tissue-specific transcription factor. At least nine distinct mouse\\u000a isoform mRNAs are encoded by alternative splicing of the first exon of Mitf (Mitf-A, -B, -C, -D, -E, -H, -J, -M, and -mc), while exons 2–9 of all Mitf isoforms examined to date are identical. In addition, alternative splice variants of exon 6a encoding 6 amino

Masaru Murakami; Yasuhiro Iwata; Masayuki Funaba

2007-01-01

159

EST comparison indicates 38% of human mRNAs contain possible alternative splice forms  

Microsoft Academic Search

Expressed sequence tag (EST) databases represent a large volume of information on expressed genes including tissue type, expression profile and exon structure. In this study we create an extensive data set of human alternative splicing. We report the analysis of 7867 non-redundant mRNAs, 3011 of which contained alternative splice forms (38% of all mRNAs analysed). From a total of 12?572

David Brett; Jens Hanke; Gerrit Lehmann; Sabine Haase; Sebastian Delbrück; Steffen Krueger; Jens Reich; Peer Bork

2000-01-01

160

Comprehensive Analysis of Alternative Splicing and Functionality in Neuronal Differentiation of P19 Cells  

Microsoft Academic Search

BackgroundAlternative splicing, which produces multiple mRNAs from a single gene, occurs in most human genes and contributes to protein diversity. Many alternative isoforms are expressed in a spatio-temporal manner, and function in diverse processes, including in the neural system.Methodology\\/Principal FindingsThe purpose of the present study was to comprehensively investigate neural-splicing using P19 cells. GeneChip Exon Array analysis was performed using

Hitoshi Suzuki; Ken Osaki; Kaori Sano; A. H. M. Khurshid Alam; Yuichiro Nakamura; Yasuhito Ishigaki; Kozo Kawahara; Toshifumi Tsukahara

2011-01-01

161

Modulation of aberrant NF1 pre-mRNA splicing by kinetin treatment  

PubMed Central

Neurofibromatosis type 1 is one of the most common neurocutaneous autosomal dominant disorders. It is caused by mutations in the neurofibromatosis type 1 (NF1) gene and approximately 30–40% of them affect the correct splicing of NF1 pre-mRNA. In this report, we evaluate the effect of five different drugs, previously found to modify splicing in several genetic disorders, on the splicing of mutated NF1 alleles. For this purpose, cell lines derived from patients bearing 19 different NF1-splicing defects were used. Our results showed that kinetin partially corrects the splicing defect in four of the studied mutations (c.910C>T, c.3113G>A, c.6724C>T and c.6791dupA). Our study is a valuable contribution to the field because it identifies new exon-skipping events that can be reversed by kinetin treatment and provides new information about kinetin splicing modulation. However, owing to the nature of mutations in our patients, kinetin treatment could not be used as a therapeutic agent in these cases.

Pros, Eva; Fernandez-Rodriguez, Juana; Benito, Llucia; Ravella, Anna; Capella, Gabriel; Blanco, Ignacio; Serra, Eduard; Lazaro, Conxi

2010-01-01

162

Extensive relationship between antisense transcription and alternative splicing in the human genome.  

PubMed

To analyze the relationship between antisense transcription and alternative splicing, we developed a computational approach for the detection of antisense-correlated exon splicing events using Affymetrix exon array data. Our analysis of expression data from 176 lymphoblastoid cell lines revealed that the majority of expressed sense-antisense genes exhibited alternative splicing events that were correlated to the expression of the antisense gene. Most of these events occurred in areas of sense-antisense (SAS) gene overlap, which were significantly enriched in both exons and nucleosome occupancy levels relative to nonoverlapping regions of the same genes. Nucleosome occupancy was highly correlated with Pol II abundance across overlapping regions and with concomitant increases in local alternative exon usage. These results are consistent with an antisense transcription-mediated mechanism of splicing regulation in normal human cells. A comparison of the prevalence of antisense-correlated splicing events between individuals of Mormon versus African descent revealed population-specific events that may indicate the continued evolution of new SAS loci. Furthermore, the presence of antisense transcription was correlated to alternative splicing across multiple metazoan species, suggesting that it may be a conserved mechanism contributing to splicing regulation. PMID:21719572

Morrissy, A Sorana; Griffith, Malachi; Marra, Marco A

2011-08-01

163

Extensive relationship between antisense transcription and alternative splicing in the human genome  

PubMed Central

To analyze the relationship between antisense transcription and alternative splicing, we developed a computational approach for the detection of antisense-correlated exon splicing events using Affymetrix exon array data. Our analysis of expression data from 176 lymphoblastoid cell lines revealed that the majority of expressed sense–antisense genes exhibited alternative splicing events that were correlated to the expression of the antisense gene. Most of these events occurred in areas of sense–antisense (SAS) gene overlap, which were significantly enriched in both exons and nucleosome occupancy levels relative to nonoverlapping regions of the same genes. Nucleosome occupancy was highly correlated with Pol II abundance across overlapping regions and with concomitant increases in local alternative exon usage. These results are consistent with an antisense transcription-mediated mechanism of splicing regulation in normal human cells. A comparison of the prevalence of antisense-correlated splicing events between individuals of Mormon versus African descent revealed population-specific events that may indicate the continued evolution of new SAS loci. Furthermore, the presence of antisense transcription was correlated to alternative splicing across multiple metazoan species, suggesting that it may be a conserved mechanism contributing to splicing regulation.

Morrissy, A. Sorana; Griffith, Malachi; Marra, Marco A.

2011-01-01

164

Alternative splicing: Functional diversity among voltage-gated calcium channels and behavioral consequences?  

PubMed Central

Neuronal voltage-gated calcium channels generate rapid, transient intracellular calcium signals in response to membrane depolarization. Neuronal CaV channels regulate a range of cellular functions and are implicated in a variety of neurological and psychiatric diseases including epilepsy, Parkinson’s disease, chronic pain, schizophrenia, and bipolar disorder. Each mammalian Cacna1 gene has the potential to generate tens to thousands of CaV channels by alternative pre-mRNA splicing, a process that adds fine granulation to the pool of CaV channel structures and functions. The precise composition of CaV channel splice isoform mRNAs expressed in each cell are controlled by cell-specific splicing factors. The activity of splicing factors are in turn regulated by molecules that encode various cellular features, including cell-type, activity, metabolic states, developmental state, and other factors. The cellular and behavioral consequences of individual sites of CaV splice isoforms are being elucidated, as are the cell-specific splicing factors that control splice isoform selection. Altered patterns of alternative splicing of CaV pre-mRNAs can alter behavior in subtle but measurable ways, with the potential to influence drug efficacy and disease severity. This article is part of a Special Issue entitled: Calcium channels.

Lipscombe, Diane; Andrade, Arturo; Allen, Summer E.

2012-01-01

165

RBM5, 6, and 10 differentially regulate NUMB alternative splicing to control cancer cell proliferation.  

PubMed

RBM5, a regulator of alternative splicing of apoptotic genes, and its highly homologous RBM6 and RBM10 are RNA-binding proteins frequently deleted or mutated in lung cancer. We report that RBM5/6 and RBM10 antagonistically regulate the proliferative capacity of cancer cells and display distinct positional effects in alternative splicing regulation. We identify the Notch pathway regulator NUMB as a key target of these factors in the control of cell proliferation. NUMB alternative splicing, which is frequently altered in lung cancer, can regulate colony and xenograft tumor formation, and its modulation recapitulates or antagonizes the effects of RBM5, 6, and 10 in cell colony formation. RBM10 mutations identified in lung cancer cells disrupt NUMB splicing regulation to promote cell growth. Our results reveal a key genetic circuit in the control of cancer cell proliferation. PMID:24332178

Bechara, Elias G; Sebestyén, Endre; Bernardis, Isabella; Eyras, Eduardo; Valcárcel, Juan

2013-12-12

166

Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression  

PubMed Central

Tissue-specific alternative splicing is critical for the emergence of tissue identity during development, yet the role of this process in malignant transformation is undefined. Tissue-specific splicing involves evolutionarily conserved, alternative exons that represent only a minority of the total alternative exons identified. Many of these conserved exons have functional features that influence signaling pathways to profound biological effect. Here, we determined that lineage-specific splicing of a brain-enriched cassette exon in the membrane-binding tumor suppressor annexin A7 (ANXA7) diminishes endosomal targeting of the EGFR oncoprotein, consequently enhancing EGFR signaling during brain tumor progression. ANXA7 exon splicing was mediated by the ribonucleoprotein PTBP1, which is normally repressed during neuronal development. PTBP1 was highly expressed in glioblastomas due to loss of a brain-enriched microRNA (miR-124) and to PTBP1 amplification. The alternative ANXA7 splicing trait was present in precursor cells, suggesting that glioblastoma cells inherit the trait from a potential tumor-initiating ancestor and that these cells exploit this trait through accumulation of mutations that enhance EGFR signaling. Our data illustrate that lineage-specific splicing of a tissue-regulated alternative exon in a constituent of an oncogenic pathway eliminates tumor suppressor functions and promotes glioblastoma progression. This paradigm may offer a general model as to how tissue-specific regulatory mechanisms can reprogram normal developmental processes into oncogenic ones.

Ferrarese, Roberto; Harsh, Griffith R.; Yadav, Ajay K.; Bug, Eva; Maticzka, Daniel; Reichardt, Wilfried; Dombrowski, Stephen M.; Miller, Tyler E.; Masilamani, Anie P.; Dai, Fangping; Kim, Hyunsoo; Hadler, Michael; Scholtens, Denise M.; Yu, Irene L.Y.; Beck, Jurgen; Srinivasasainagendra, Vinodh; Costa, Fabrizio; Baxan, Nicoleta; Pfeifer, Dietmar; von Elverfeldt, Dominik; Backofen, Rolf; Weyerbrock, Astrid; Duarte, Christine W.; He, Xiaolin; Prinz, Marco; Chandler, James P.; Vogel, Hannes; Chakravarti, Arnab; Rich, Jeremy N.; Carro, Maria S.; Bredel, Markus

2014-01-01

167

Neurexin III alpha: extensive alternative splicing generates membrane-bound and soluble forms.  

PubMed Central

The structure of neurexin III alpha was elucidated from overlapping cDNA clones. Neurexin III alpha is highly homologous to neurexins I alpha and II alpha and shares with them a distinctive domain structure that resembles a cell surface receptor. cDNA cloning and PCR experiments revealed alternative splicing at four positions in the mRNA for neurexin III alpha. Alternative splicing was previously observed at the same positions in either neurexin I alpha or neurexin II alpha or both, suggesting that the three neurexins are subject to extensive alternative splicing. This results in hundreds of different neurexins with variations in small sequences at similar positions in the proteins. The most extensive alternative splicing of neurexin III alpha was detected at its C-terminal site, which exhibits a minimum of 12 variants. Some of the alternatively spliced sequences at this position contain in-frame stop codons, suggesting the synthesis of secreted proteins. None of the sequences of the other splice sites in this or the other two neurexins include stop codons. RNA blot analysis demonstrate that neurexin III alpha is expressed in a brain-specific pattern. Our results suggest that the neurexins constitute a large family of polymorphic cell surface proteins that includes secreted variants, indicating a possible role as signaling molecules. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5

Ushkaryov, Y A; Sudhof, T C

1993-01-01

168

C6 pyridinium ceramide influences alternative pre-mRNA splicing by inhibiting protein phosphatase-1  

PubMed Central

Alternative pre-mRNA processing is a central element of eukaryotic gene regulation. The cell frequently alters the use of alternative exons in response to physiological stimuli. Ceramides are lipid-signaling molecules composed of sphingosine and a fatty acid. Previously, water-insoluble ceramides were shown to change alternative splicing and decrease SR-protein phosphorylation by activating protein phosphatase-1 (PP1). To gain further mechanistical insight into ceramide-mediated alternative splicing, we analyzed the effect of C6 pyridinium ceramide (PyrCer) on alternative splice site selection. PyrCer is a water-soluble ceramide analog that is under investigation as a cancer drug. We found that PyrCer binds to the PP1 catalytic subunit and inhibits the dephosphorylation of several splicing regulatory proteins containing the evolutionarily conserved RVxF PP1-binding motif (including PSF/SFPQ, Tra2-beta1 and SF2/ASF). In contrast to natural ceramides, PyrCer promotes phosphorylation of splicing factors. Exons that are regulated by PyrCer have in common suboptimal splice sites, are unusually short and share two 4-nt motifs, GAAR and CAAG. They are dependent on PSF/SFPQ, whose phosphorylation is regulated by PyrCer. Our results indicate that lipids can influence pre-mRNA processing by regulating the phosphorylation status of specific regulatory factors, which is mediated by protein phosphatase activity.

Sumanasekera, Chiranthani; Kelemen, Olga; Beullens, Monique; Aubol, Brandon E.; Adams, Joseph A.; Sunkara, Manjula; Morris, Andrew; Bollen, Mathieu; Andreadis, Athena; Stamm, Stefan

2012-01-01

169

Expanding the action of duplex RNAs into the nucleus: redirecting alternative splicing.  

PubMed

Double-stranded RNAs are powerful agents for silencing gene expression in the cytoplasm of mammalian cells. The potential for duplex RNAs to control expression in the nucleus has received less attention. Here, we investigate the ability of small RNAs to redirect splicing. We identify RNAs targeting an aberrant splice site that restore splicing and production of functional protein. RNAs can target sequences within exons or introns and affect the inclusion of exons within SMN2 and dystrophin, genes responsible for spinal muscular atrophy and Duchenne muscular dystrophy, respectively. Duplex RNAs recruit argonaute 2 (AGO2) to pre-mRNA transcripts and altered splicing requires AGO2 expression. AGO2 promotes transcript cleavage in the cytoplasm, but recruitment of AGO2 to pre-mRNAs does not reduce transcript levels, exposing a difference between cytoplasmic and nuclear pathways. Involvement of AGO2 in splicing, a classical nuclear process, reinforces the conclusion from studies of RNA-mediated transcriptional silencing that RNAi pathways can be adapted to function in the mammalian nucleus. These data provide a new strategy for controlling splicing and expand the reach of small RNAs within the nucleus of mammalian cells. PMID:21948593

Liu, Jing; Hu, Jiaxin; Corey, David R

2012-02-01

170

A tailless Dscam from Eriocheir sinensis diversified by alternative splicing.  

PubMed

Dscam (Down syndrome cell adhesion molecule), a member of the immunoglobulin superfamily (IgSF), plays an essential role in pathogen recognition and further involves in the innate defense of invertebrates. In the present study, the cDNA of a Dscam from Chinese mitten crab Eriocheir sinensis (designated EsDscam) was cloned and characterized. It contained a 5-terminal untranslated region (UTR) of 60 bp, a 3-UTR of 216 bp with a poly (A) tail, and an open reading frame (ORF) of 4848 bp encoding a polypeptide of 1615 amino acids with the putative molecular mass of 178.4 kDa and theoretical isoelectric point of 6.31. The EsDscam protein shared higher sequence identities and similar domain architecture with Dscams from other invertebrate, including typical 10 immunoglobulin (Ig) domains, 6 ?bronectin type 3 domains (FNIII) and one cell attachment sequence (RGD) in extracellular region, while it lacked the expected transmembrane domain and cytoplasmic tail compared with other members of Dscam family. After sequencing 80 separate clones of Ig2, 3 and Ig7 regions from pooled cDNA libraries constructed from normal and bacterial-infected crabs, 44 alternative sequences were detected in the N-terminal of Ig2, 39 ones in Ig3, and 31 ones in Ig7 domain, suggesting that EsDscam could potentially encode at least 53196 unique isoforms. Furthermore, two 3'UTR isoforms and two 5'UTR isoforms of EsDscam were also identified by RACE strategy. EsDscam mRNA was most abundantly expressed in the tissues of nerve, muscle, hepatopancreas and gill, and weakly expressed in heart, gonad and hemocytes. Western blotting and immunofluorescence analysis revealed that EsDscam protein was mainly distributed in serum, and few on the membrane of crab hemocytes. These results suggested that this tailless EsDscam was one member of crustacean Dscam family, and the generation of diverse isoforms through alternative splicing allowed it to recognize various pathogens and play an active role in immune defense of crabs. PMID:23664912

Wang, Jingjing; Wang, Lingling; Gao, Yang; Jiang, Qiufen; Yi, Qilin; Zhang, Huan; Zhou, Zhi; Qiu, Limei; Song, Linsheng

2013-08-01

171

Alternative Splicing of Fibroblast Growth Factor Receptor IgIII Loops in Cancer  

PubMed Central

Alternative splicing of the IgIII loop of fibroblast growth factor receptors (FGFRs) 1–3 produces b- and c-variants of the receptors with distinctly different biological impact based on their distinct ligand-binding spectrum. Tissue-specific expression of these splice variants regulates interactions in embryonic development, tissue maintenance and repair, and cancer. Alterations in FGFR2 splicing are involved in epithelial mesenchymal transition that produces invasive, metastatic features during tumor progression. Recent research has elucidated regulatory factors that determine the splice choice both on the level of exogenous signaling events and on the RNA-protein interaction level. Moreover, methodology has been developed that will enable the in depth analysis of splicing events during tumorigenesis and provide further insight on the role of FGFR 1–3 IIIb and IIIc in the pathophysiology of various malignancies. This paper aims to summarize expression patterns in various tumor types and outlines possibilities for further analysis and application.

Holzmann, Klaus; Grunt, Thomas; Heinzle, Christine; Sampl, Sandra; Steinhoff, Heinrich; Reichmann, Nicole; Kleiter, Miriam; Hauck, Marlene; Marian, Brigitte

2012-01-01

172

Binding of Equine Infectious Anemia Virus Rev to an Exon Splicing Enhancer Mediates Alternative Splicing and Nuclear Export of Viral mRNAs  

PubMed Central

In addition to facilitating the nuclear export of incompletely spliced viral mRNAs, equine infectious anemia virus (EIAV) Rev regulates alternative splicing of the third exon of the tat/rev mRNA. In the presence of Rev, this exon of the bicistronic RNA is skipped in a fraction of the spliced mRNAs. In this report, the cis-acting requirements for exon 3 usage were correlated with sequences necessary for Rev binding and transport of incompletely spliced RNA. The presence of a purine-rich exon splicing enhancer (ESE) was required for exon 3 recognition, and the addition of Rev inhibited exon 3 splicing. Glutathione-S-transferase (GST)-Rev bound to probes containing the ESE, and mutation of GAA repeats to GCA within the ESE inhibited both exon 3 recognition in RNA splicing experiments and GST-Rev binding in vitro. These results suggest that Rev regulates alternative splicing by binding at or near the ESE to block SR protein-ESE interactions. A 57-nucleotide sequence containing the ESE was sufficient to mediate Rev-dependent nuclear export of incompletely spliced RNAs. Rev export activity was significantly inhibited by mutation of the ESE or by trans-complementation with SF2/ASF. These results indicate that the ESE functions as a Rev-responsive element and demonstrate that EIAV Rev mediates exon 3 exclusion through protein-RNA interactions required for efficient export of incompletely spliced viral RNAs.

Belshan, Michael; Park, Gregory S.; Bilodeau, Patricia; Stoltzfus, C. Martin; Carpenter, Susan

2000-01-01

173

Alternatively spliced isoforms of the human constitutive androstane receptor  

PubMed Central

The nuclear receptor CAR (NR1I3) regulates transcription of genes encoding xenobiotic- and steroid-metabolizing enzymes. Regulatory processes that are mediated by CAR are modulated by a structurally diverse array of chemicals including common pharmaceutical and environmental agents. Here we describe four in-frame splice variants of the human CAR receptor gene. The variant mRNA splice transcripts were expressed in all human livers evaluated. Molecular modeling of the splice variant proteins predicts that the structural effects are localized within the receptor’s ligand-binding domain. Assays to assess function indicate that the variant proteins, when compared with the reference protein isoform, exhibit compromised activities with respect to DNA binding, transcriptional activation and coactivator recruitment.

Auerbach, Scott S.; Ramsden, Richard; Stoner, Matthew A.; Verlinde, Christophe; Hassett, Christopher; Omiecinski, Curtis J.

2003-01-01

174

Genome-Wide Analysis of Alternative Splicing during Dendritic Cell Response to a Bacterial Challenge  

PubMed Central

The immune system relies on the plasticity of its components to produce appropriate responses to frequent environmental challenges. Dendritic cells (DCs) are critical initiators of innate immunity and orchestrate the later and more specific adaptive immunity. The generation of diversity in transcriptional programs is central for effective immune responses. Alternative splicing is widely considered a key generator of transcriptional and proteomic complexity, but its role has been rarely addressed systematically in immune cells. Here we used splicing-sensitive arrays to assess genome-wide gene- and exon-level expression profiles in human DCs in response to a bacterial challenge. We find widespread alternative splicing events and splicing factor transcriptional signatures induced by an E. coli challenge to human DCs. Alternative splicing acts in concert with transcriptional modulation, but these two mechanisms of gene regulation affect primarily distinct functional gene groups. Alternative splicing is likely to have an important role in DC immunobiology because it affects genes known to be involved in DC development, endocytosis, antigen presentation and cell cycle arrest.

Rodrigues, Raquel; Grosso, Ana Rita; Moita, Luis

2013-01-01

175

TFPI? is an Active Alternatively Spliced Form of TFPI Present in Mice but not in Humans  

PubMed Central

Background Tissue factor pathway inhibitor (TFPI) is a potent inhibitor of tissue factor procoagulant activity produced as two alternatively spliced isoforms, TFPI? and TFPI?, which differ in domain structure and mechanism for cell surface association. 3’ RACE was used to search for new TFPI isoforms. TFPI?, a new alternatively spliced form of TFPI was identified and characterized. Methods The tissue expression, cell surface association and anticoagulant activity of TFPI? were characterized and compared to TFPI? and TFPI? through studies of mouse and human tissues and expression of recombinant proteins in CHO cells. Results TFPI? is produced by alternative splicing using the same 5’ splice donor site as TFPI? and a 3’ splice acceptor site 187 nucleotides beyond the stop codon of TFPI? in exon 8. The resulting protein has the first two Kunitz domains connected to an 18 amino acid C-terminal region specific to TFPI?. TFPI? mRNA is differentially produced in mouse tissues but is not encoded within the human TFPI gene. When expressed in CHO cells, TFPI? is secreted into conditioned media and effectively inhibits tissue factor procoagulant activity. Conclusions TFPI? is a third alternatively spliced form of TFPI widely expressed in mouse tissues but not made by human tissues. It contains the first two Kunitz domains and is a secreted, rather than a cell surface associated protein. It is a functional anticoagulant and may partially explain the resistance of mice to coagulopathy in tissue factor mediated models of disease.

Maroney, Susan A.; Ferrel, Josephine P.; Collins, Maureen L.; Mast, Alan E.

2013-01-01

176

RNA-dependent dynamic histone acetylation regulates MCL1 alternative splicing.  

PubMed

Histone deacetylases (HDACs) and lysine acetyltransferases (KATs) catalyze dynamic histone acetylation at regulatory and coding regions of transcribed genes. Highly phosphorylated HDAC2 is recruited within corepressor complexes to regulatory regions, while the nonphosphorylated form is associated with the gene body. In this study, we characterized the nonphosphorylated HDAC2 complexes recruited to the transcribed gene body and explored the function of HDAC-complex-mediated dynamic histone acetylation. HDAC1 and 2 were coimmunoprecipitated with several splicing factors, including serine/arginine-rich splicing factor 1 (SRSF1) which has roles in alternative splicing. The co-chromatin immunoprecipitation of HDAC1/2 and SRSF1 to the gene body was RNA-dependent. Inhibition of HDAC activity and knockdown of HDAC1, HDAC2 or SRSF1 showed that these proteins were involved in alternative splicing of MCL1. HDAC1/2 and KAT2B were associated with nascent pre-mRNA in general and with MCL1 pre-mRNA specifically. Inhibition of HDAC activity increased the occupancy of KAT2B and acetylation of H3 and H4 of the H3K4 methylated alternative MCL1 exon 2 nucleosome. Thus, nonphosphorylated HDAC1/2 is recruited to pre-mRNA by splicing factors to act at the RNA level with KAT2B and other KATs to catalyze dynamic histone acetylation of the MCL1 alternative exon and alter the splicing of MCL1 pre-mRNA. PMID:24234443

Khan, Dilshad H; Gonzalez, Carolina; Cooper, Charlton; Sun, Jian-Min; Chen, Hou Yu; Healy, Shannon; Xu, Wayne; Smith, Karen T; Workman, Jerry L; Leygue, Etienne; Davie, James R

2014-02-01

177

Alternatively spliced lysyl oxidase-like 4 isoforms have a pro-metastatic role in cancer.  

PubMed

We previously found LOXL4 to be alternatively spliced in an anatomic site-specific manner in tumors involving the serosal cavities. LOXL4 splice variants were predominantly or exclusively expressed in effusion specimens from ovarian and breast carcinoma patients, and were absent in primary carcinomas. In the present study, LOXL4 full-length or splice variants were overexpressed in ES-2 and MDA-MB-231 cells and their invasive and metastatic potential and microRNA expression profile were evaluated. ES-2 cells were further injected into SCID mice ovaries and the extent of tumor progression and metastases formation were compared. We show that both splice variants have a positive effect on the metastatic potential of cells in vitro and on tumor progression in vivo. In contrast, full-length LOXL4 is not pro-metastatic, and may even be considered as a tumor suppressor. In addition, we show that LOXL4 is a possible splicing target of the oncogenic splicing factors SRSF1 and hnRNP A1. In conclusion, our results point to a significant role for LOXL4 alternative splicing in tumor progression. PMID:22806361

Sebban, Shulamit; Golan-Gerstl, Regina; Karni, Rotem; Vaksman, Olga; Davidson, Ben; Reich, Reuven

2013-01-01

178

Alternative Splicing in the Differentiation of Human Embryonic Stem Cells into Cardiac Precursors  

PubMed Central

The role of alternative splicing in self-renewal, pluripotency and tissue lineage specification of human embryonic stem cells (hESCs) is largely unknown. To better define these regulatory cues, we modified the H9 hESC line to allow selection of pluripotent hESCs by neomycin resistance and cardiac progenitors by puromycin resistance. Exon-level microarray expression data from undifferentiated hESCs and cardiac and neural precursors were used to identify splice isoforms with cardiac-restricted or common cardiac/neural differentiation expression patterns. Splice events for these groups corresponded to the pathways of cytoskeletal remodeling, RNA splicing, muscle specification, and cell cycle checkpoint control as well as genes with serine/threonine kinase and helicase activity. Using a new program named AltAnalyze (http://www.AltAnalyze.org), we identified novel changes in protein domain and microRNA binding site architecture that were predicted to affect protein function and expression. These included an enrichment of splice isoforms that oppose cell-cycle arrest in hESCs and that promote calcium signaling and cardiac development in cardiac precursors. By combining genome-wide predictions of alternative splicing with new functional annotations, our data suggest potential mechanisms that may influence lineage commitment and hESC maintenance at the level of specific splice isoforms and microRNA regulation.

Salomonis, Nathan; Nelson, Brandon; Vranizan, Karen; Pico, Alexander R.; Hanspers, Kristina; Kuchinsky, Allan; Ta, Linda; Mercola, Mark; Conklin, Bruce R.

2009-01-01

179

Alternative splicing of the maize Ac transposase transcript in transgenic sugar beet (Beta vulgaris L.)  

PubMed Central

The maize Activator/Dissociation (Ac/Ds) transposable element system was introduced into sugar beet. The autonomous Ac and non-autonomous Ds element excise from the T-DNA vector and integrate at novel positions in the sugar beet genome. Ac and Ds excisions generate footprints in the donor T-DNA that support the hairpin model for transposon excision. Two complete integration events into genomic sugar beet DNA were obtained by IPCR. Integration of Ac leads to an eight bp duplication, while integration of Ds in a homologue of a sugar beet flowering locus gene did not induce a duplication. The molecular structure of the target site indicates Ds integration into a double strand break. Analyses of transposase transcription using RT–PCR revealed low amounts of alternatively spliced mRNAs. The fourth intron of the transposase was found to be partially misspliced. Four different splice products were identified. In addition, the second and third exon were found to harbour two and three novel introns, respectively. These utilize each the same splice donor but several alternative splice acceptor sites. Using the SplicePredictor online tool, one of the two introns within exon two is predicted to be efficiently spliced in maize. Most interestingly, splicing of this intron together with the four major introns of Ac would generate a transposase that lacks the DNA binding domain and two of its three nuclear localization signals, but still harbours the dimerization domain.

Lisson, Ralph; Hellert, Jan; Ringleb, Malte; Machens, Fabian; Kraus, Josef

2010-01-01

180

Characterization and alternative splicing of the complex I 19-kD subunit in Dunaliella salina: expression and mutual correlation of splice variants under diverse stresses.  

PubMed

Complex I is the first enzyme in the mitochondrial respiratory chain. It extracts energy from NADH, which is produced by the oxidation of sugars and fats, and traps the energy by virtue of a potential difference or voltage across the mitochondrial inner membrane. Herein, the genomic sequence and four splice variants encoding the complex I 19-kD subunit were isolated from Dunaliella salina. There were four transcripts coding for the complex I 19-kD subunit due to alternative splicing in algae, and the four transcripts were translated to two protein isoforms with varying C-terminals. We report the splicing pattern in the 3'-region of the D. salina 19-kD subunit, in which three of the exons (5, 6, and 7) could be alternatively spliced. Moreover, we found that four alternatively spliced variants were subject to coordinated transcription in response to different stresses by real-time quantitative PCR. PMID:20460714

Cao, Yu; Jin, Nan; Xu, Hui; Liu, Yi; Zhu, Wei Hua; Li, Xin Ran; Qiao, Dai Rong; Cao, Yi

2010-01-01

181

Role of the Modular Domains of SR Proteins in Subnuclear Localization and Alternative Splicing Specificity  

Microsoft Academic Search

SR proteins are required for constitutive pre- mRNA splicing and also regulate alternative splice site selection in a concentration-dependent manner. They have a modular structure that consists of one or two RNA-recognition motifs (RRMs) and a COOH-termi- nal arginine\\/serine-rich domain (RS domain). We have analyzed the role of the individual domains of these closely related proteins in cellular distribution, subnu-

J. F. Caceres; Tom Misteli; Gavin R. Screaton; David L. Spector; Adrian R. Krainer

1997-01-01

182

A mutation in a rare type of intron in a sodium-channel gene results in aberrant splicing and causes myotonia  

PubMed Central

Many mutations in the skeletal-muscle sodium-channel gene SCN4A have been associated with myotonia and/or periodic paralysis, but so far all of these mutations are located in exons. We found a patient with myotonia caused by a deletion/insertion located in intron 21 of SCN4A, which is an AT-AC type II intron. This is a rare class of introns that, despite having AT-AC boundaries, are spliced by the major or U2-type spliceosome. The patient's skeletal muscle expressed aberrantly spliced SCN4A mRNA isoforms generated by activation of cryptic splice sites. In addition, genetic suppression experiments using an SCN4A minigene showed that the mutant 5? splice site has impaired binding to the U1 and U6 snRNPs, which are the cognate factors for recognition of U2-type 5? splice sites. One of the aberrantly spliced isoforms encodes a channel with a 35-amino-acid insertion in the cytoplasmic loop between domains III and IV of Nav1.4. The mutant channel exhibited a marked disruption of fast inactivation, and a simulation in silico showed that the channel defect is consistent with the patient's myotonic symptoms. This is the first report of a disease-associated mutation in an AT-AC type II intron, and also the first intronic mutation in a voltage-gated ion channel gene showing a gain-of-function defect.

Kubota, Tomoya; Roca, Xavier; Kimura, Takashi; Kokunai, Yosuke; Nishino, Ichizo; Sakoda, Saburo; Krainer, Adrian R.; Takahashi, Masanori P.

2014-01-01

183

Entropy Measures Quantify Global Splicing Disorders in Cancer  

PubMed Central

Most mammalian genes are able to express several splice variants in a phenomenon known as alternative splicing. Serious alterations of alternative splicing occur in cancer tissues, leading to expression of multiple aberrant splice forms. Most studies of alternative splicing defects have focused on the identification of cancer-specific splice variants as potential therapeutic targets. Here, we examine instead the bulk of non-specific transcript isoforms and analyze their level of disorder using a measure of uncertainty called Shannon's entropy. We compare isoform expression entropy in normal and cancer tissues from the same anatomical site for different classes of transcript variations: alternative splicing, polyadenylation, and transcription initiation. Whereas alternative initiation and polyadenylation show no significant gain or loss of entropy between normal and cancer tissues, alternative splicing shows highly significant entropy gains for 13 of the 27 cancers studied. This entropy gain is characterized by a flattening in the expression profile of normal isoforms and is correlated to the level of estimated cellular proliferation in the cancer tissue. Interestingly, the genes that present the highest entropy gain are enriched in splicing factors. We provide here the first quantitative estimate of splicing disruption in cancer. The expression of normal splice variants is widely and significantly disrupted in at least half of the cancers studied. We postulate that such splicing disorders may develop in part from splicing alteration in key splice factors, which in turn significantly impact multiple target genes.

Ritchie, William; Granjeaud, Samuel; Puthier, Denis; Gautheret, Daniel

2008-01-01

184

Alternative pre-mRNA splicing switches modulate gene expression in late erythropoiesis  

SciTech Connect

Differentiating erythroid cells execute a unique gene expression program that insures synthesis of the appropriate proteome at each stage of maturation. Standard expression microarrays provide important insight into erythroid gene expression but cannot detect qualitative changes in transcript structure, mediated by RNA processing, that alter structure and function of encoded proteins. We analyzed stage-specific changes in the late erythroid transcriptome via use of high-resolution microarrays that detect altered expression of individual exons. Ten differentiation-associated changes in erythroblast splicing patterns were identified, including the previously known activation of protein 4.1R exon 16 splicing. Six new alternative splicing switches involving enhanced inclusion of internal cassette exons were discovered, as well as 3 changes in use of alternative first exons. All of these erythroid stage-specific splicing events represent activated inclusion of authentic annotated exons, suggesting they represent an active regulatory process rather than a general loss of splicing fidelity. The observation that 3 of the regulated transcripts encode RNA binding proteins (SNRP70, HNRPLL, MBNL2) may indicate significant changes in the RNA processing machinery of late erythroblasts. Together, these results support the existence of a regulated alternative pre-mRNA splicing program that is critical for late erythroid differentiation.

Yamamoto, Miki L.; Clark, Tyson A.; Gee, Sherry L.; Kang, Jeong-Ah; Schweitzer, Anthony C.; Wickrema, Amittha; Conboy, John G.

2009-02-03

185

Aberrant mRNA splicing associated with coding region mutations in children with carnitine-acylcarnitine translocase deficiency.  

PubMed

This report describes three infants with genetic defects of carnitine-acylcarnitine translocase (CACT), an inner mitochondrial membrane carrier that is essential for long-chain fatty acid oxidation. Two of the patients were of European and Chinese origin; the third was from consanguineous Turkish parents. CACT activity was totally deficient in cultured skin fibroblasts from all three patients. Patient 1 was heterozygous for a paternal frameshift mutation (120 del T in exon 1) and a maternal lariat branch point mutation (-10 T --> G in intron 2). Patient 2 was heterozygous for the same lariat branch point (-10T --> G intron 2) mutation, derived from the father, and a maternal frameshift mutation (362 del G in exon 3). Patient 3 was homozygous for a frameshift mutation (306 del C in exon 3). All of the three frameshift mutations give rise to the same stop codon at amino acid residue 127 which is predicted to cause premature protein truncation. In addition, cDNA transcript analysis showed that these coding sequence mutations also increase the amount of aberrant mRNA splicing and exon skipping at distances up to 7.7 kb nucleotides from mutation sites. The data suggest that the stability of mRNA transcripts is decreased or the frequency of aberrant splicing is increased in the presence of CACT coding sequence mutations. These results confirm that CACT is the genetic locus of the recessive mutations responsible for the fatal defects of fatty acid metabolism previously associated with deficiency of translocase activity in these three cases. PMID:11592821

Hsu, B Y; Iacobazzi, V; Wang, Z; Harvie, H; Chalmers, R A; Saudubray, J M; Palmieri, F; Ganguly, A; Stanley, C A

2001-01-01

186

Caffeine induces tumor cytotoxicity via the regulation of alternative splicing in subsets of cancer-associated genes.  

PubMed

Caffeine causes a diverse range of pharmacological effects that are time- and concentration-dependent and reversible. The detailed mechanisms of caffeine in tumor suppression via tumor suppressor protein p53 remain unclear. The isoforms of p53 are physiological proteins that are expressed in normal cells and generated via alternative promoters, splicing sites and/or translational initiation sites. In this study, we investigated how caffeine modulated cell cycle arrest and apoptosis via the expression of various alternatively spliced p53 isoforms. Caffeine reduced p53? expression and induced the expression of p53?, which contains an alternatively spliced p53 C-terminus. In HeLa cells, the expression levels of many serine/arginine-rich splicing factors, including serine/arginine-rich splicing factors 2 and 3, were altered by caffeine. Serine/arginine-rich splicing factor 3 was a promising candidate for the serine/arginine-rich splicing factors responsible for the alternative splicing of p53 in response to caffeine treatment. In addition to p53-dependent functions, multiple target genes of serine/arginine-rich splicing factor 3 suggest that caffeine can regulate epithelial-mesenchymal-transition and hypoxic conditions to inhibit the survival of tumor cells. In summary, our data provide a new pathway of caffeine-modulated tumor suppression via the alternative splicing of the target genes of serine/arginine-rich splicing factor 3. PMID:24333670

Lu, Guan-Yu; Huang, Shih-Ming; Liu, Shu-Ting; Liu, Pei-Yao; Chou, Wei-Yuan; Lin, Wei-Shiang

2014-02-01

187

Identifying Alternative Hyper-Splicing Signatures in MG-Thymoma by Exon Arrays  

PubMed Central

Background The vast majority of human genes (>70%) are alternatively spliced. Although alternative pre-mRNA processing is modified in multiple tumors, alternative hyper-splicing signatures specific to particular tumor types are still lacking. Here, we report the use of Affymetrix Human Exon Arrays to spot hyper-splicing events characteristic of myasthenia gravis (MG)-thymoma, thymic tumors which develop in patients with MG and discriminate them from colon cancer changes. Methodology/Principal Findings We combined GO term to parent threshold-based and threshold-independent ad-hoc functional statistics with in-depth analysis of key modified transcripts to highlight various exon-specific changes. These denote alternative splicing in MG-thymoma tumors compared to healthy human thymus and to in-house and Affymetrix datasets from colon cancer and healthy tissues. By using both global and specific, term-to-parent Gene Ontology (GO) statistical comparisons, our functional integrative ad-hoc method allowed the detection of disease-relevant splicing events. Conclusions/Significance Hyper-spliced transcripts spanned several categories, including the tumorogenic ERBB4 tyrosine kinase receptor and the connective tissue growth factor CTGF, as well as the immune function-related histocompatability gene HLA-DRB1 and interleukin (IL)19, two muscle-specific collagens and one myosin heavy chain gene; intriguingly, a putative new exon was discovered in the MG-involved acetylcholinesterase ACHE gene. Corresponding changes in spliceosome composition were indicated by co-decreases in the splicing factors ASF/SF2 and SC35. Parallel tumor-associated changes occurred in colon cancer as well, but the majority of the apparent hyper-splicing events were particular to MG-thymoma and could be validated by Fluorescent In-Situ Hybridization (FISH), Reverse Transcription–Polymerase Chain Reaction (RT-PCR) and mass spectrometry (MS) followed by peptide sequencing. Our findings demonstrate a particular alternative hyper-splicing signature for transcripts over-expressed in MG-thymoma, supporting the hypothesis that alternative hyper-splicing contributes to shaping the biological functions of these and other specialized tumors and opening new venues for the development of diagnosis and treatment approaches.

Soreq, Lilach; Gilboa-Geffen, Adi; Berrih-Aknin, Sonia; Lacoste, Paul; Darvasi, Ariel; Soreq, Eyal; Bergman, Hagai; Soreq, Hermona

2008-01-01

188

Internal Polyadenylation of the Parvovirus B19 Precursor mRNA Is Regulated by Alternative Splicing*  

PubMed Central

Alternative processing of parvovirus B19 (B19V) pre-mRNA is critical to generating appropriate levels of B19V mRNA transcripts encoding capsid proteins and small nonstructural proteins. Polyadenylation of the B19V pre-mRNA at the proximal polyadenylation site ((pA)p), which prevents generation of full-length capsid proteins encoding mRNA transcripts, has been suggested as a step that blocks B19V permissiveness. We report here that efficient splicing of the B19V pre-mRNA within the first intron (upstream of the (pA)p site) stimulated the polyadenylation; in contrast, splicing of the B19V pre-mRNA within the second intron (in which the (pA)p site resides) interfered with the polyadenylation, leading to the generation of a sufficient number of B19V mRNA transcripts polyadenylated at the distal polyadenylation site ((pA)d). We also found that splicing within the second intron and polyadenylation at the (pA)p site compete during processing of the B19V pre-mRNA. Furthermore, we discovered that the U1 RNA that binds to the 5? splice donor site of the second intron is fully responsible for inhibiting polyadenylation at the (pA)p site, whereas actual splicing, and perhaps assembly of the functional spliceosome, is not required. Finally, we demonstrated that inhibition of B19V pre-mRNA splicing within the second intron by targeting an intronic splicing enhancer using a Morpholino antisense oligonucleotide prevented B19V mRNA transcripts polyadenylated at the (pA)d site during B19V infection of human erythroid progenitors. Thus, our study reveals the mechanism by which alternative splicing coordinates alternative polyadenylation to generate full-length B19V mRNA transcripts at levels sufficient to support productive B19V infection.

Guan, Wuxiang; Huang, Qinfeng; Cheng, Fang; Qiu, Jianming

2011-01-01

189

Control of alternative splicing by forskolin through hnRNP K during neuronal differentiation.  

PubMed

The molecular basis of cell signal-regulated alternative splicing at the 3' splice site remains largely unknown. We isolated a protein kinase A-responsive ribonucleic acid (RNA) element from a 3' splice site of the synaptosomal-associated protein 25 (Snap25) gene for forskolin-inhibited splicing during neuronal differentiation of rat pheochromocytoma PC12 cells. The element binds specifically to heterogeneous nuclear ribonucleo protein (hnRNP) K in a phosphatase-sensitive way, which directly competes with the U2 auxiliary factor U2AF65, an essential component of early spliceosomes. Transcripts with similarly localized hnRNP K target motifs upstream of alternative exons are enriched in genes often associated with neurological diseases. We show that such motifs upstream of the Runx1 exon 6 also bind hnRNP K, and importantly, hnRNP K is required for forskolin-induced repression of the exon. Interestingly, this exon encodes the peptide domain that determines the switch of the transcriptional repressor/activator activity of Runx1, a change known to be critical in specifying neuron lineages. Consistent with an important role of the target genes in neurons, knocking down hnRNP K severely disrupts forskolin-induced neurite growth. Thus, through hnRNP K, the neuronal differentiation stimulus forskolin targets a critical 3' splice site component of the splicing machinery to control alternative splicing of crucial genes. This also provides a regulated direct competitor of U2AF65 for cell signal control of 3' splice site usage. PMID:22684629

Cao, Wenguang; Razanau, Aleh; Feng, Dairong; Lobo, Vincent G; Xie, Jiuyong

2012-09-01

190

Alternative splicing at NAGNAG acceptors in Arabidopsis thaliana SR and SR-related protein-coding genes  

PubMed Central

Background Several recent studies indicate that alternative splicing in Arabidopsis and other plants is a common mechanism for post-transcriptional modulation of gene expression. However, few analyses have been done so far to elucidate the functional relevance of alternative splicing in higher plants. Representing a frequent and universal subtle alternative splicing event among eukaryotes, alternative splicing at NAGNAG acceptors contributes to transcriptome diversity and therefore, proteome plasticity. Alternatively spliced NAGNAG acceptors are overrepresented in genes coding for proteins with RNA-recognition motifs (RRMs). As SR proteins, a family of RRM-containing important splicing factors, are known to be extensively alternatively spliced in Arabidopsis, we analyzed alternative splicing at NAGNAG acceptors in SR and SR-related genes. Results In a comprehensive analysis of the Arabidopsis thaliana genome, we identified 6,772 introns that exhibit a NAGNAG acceptor motif. Alternative splicing at these acceptors was assessed using available EST data, complemented by a sequence-based prediction method. Of the 36 identified introns within 30 SR and SR-related protein-coding genes that have a NAGNAG acceptor, we selected 15 candidates for an experimental analysis of alternative splicing under several conditions. We provide experimental evidence for 8 of these candidates being alternatively spliced. Quantifying the ratio of NAGNAG-derived splice variants under several conditions, we found organ-specific splicing ratios in adult plants and changes in seedlings of different ages. Splicing ratio changes were observed in response to heat shock and most strikingly, cold shock. Interestingly, the patterns of differential splicing ratios are similar for all analyzed genes. Conclusion NAGNAG acceptors frequently occur in the Arabidopsis genome and are particularly prevalent in SR and SR-related protein-coding genes. A lack of extensive EST coverage can be compensated by using the proposed sequence-based method to predict alternative splicing at these acceptors. Our findings indicate that the differential effects on NAGNAG alternative splicing in SR and SR-related genes are organ- and condition-specific rather than gene-specific.

Schindler, Stefanie; Szafranski, Karol; Hiller, Michael; Ali, Gul Shad; Palusa, Saiprasad G; Backofen, Rolf; Platzer, Matthias; Reddy, Anireddy SN

2008-01-01

191

Rbfox3-regulated alternative splicing of Numb promotes neuronal differentiation during development  

PubMed Central

Alternative premRNA splicing is a major mechanism to generate diversity of gene products. However, the biological roles of alternative splicing during development remain elusive. Here, we focus on a neuron-specific RNA-binding protein, Rbfox3, recently identified as the antigen of the widely used anti-NeuN antibody. siRNA-mediated loss-of-function studies using the developing chicken spinal cord revealed that Rbfox3 is required to promote neuronal differentiation of postmitotic neurons. Numb premRNA encoding a signaling adaptor protein was found to be a target of Rbfox3 action, and Rbfox3 repressed the inclusion of an alternative exon via binding to the conserved UGCAUG element in the upstream intron. Depleting a specific Numb splice isoform reproduced similar neuronal differentiation defects. Forced expression of the relevant Numb splice isoform was sufficient to rescue, in an isoform-specific manner, postmitotic neurons from defects in differentiation caused by Rbfox3 depletion. Thus, Rbfox3-dependent Numb alternative splicing plays an important role in the progression of neuronal differentiation during vertebrate development.

Kim, Kee K.; Nam, Joseph

2013-01-01

192

Alternative splicing of a group II intron in a surface layer protein gene in Clostridium tetani.  

PubMed

Group II introns are ribozymes and retroelements found in bacteria, and are thought to have been the ancestors of nuclear pre-mRNA introns. Whereas nuclear introns undergo prolific alternative splicing in some species, group II introns are not known to carry out equivalent reactions. Here we report a group II intron in the human pathogen Clostridium tetani, which undergoes four alternative splicing reactions in vivo. Together with unspliced transcript, five mRNAs are produced, each encoding a distinct surface layer protein isoform. Correct fusion of exon reading frames requires a shifted 5' splice site located 8 nt upstream of the canonical boundary motif. The shifted junction is accomplished by an altered IBS1-EBS1 pairing between the intron and 5' exon. Growth of C. tetani under a variety of conditions did not result in large changes in alternative splicing levels, raising the possibility that alternative splicing is constitutive. This work demonstrates a novel type of gene organization and regulation in bacteria, and provides an additional parallel between group II and nuclear pre-mRNA introns. PMID:24214997

McNeil, Bonnie A; Simon, Dawn M; Zimmerly, Steven

2014-02-01

193

Regulation of Dscam exon 17 alternative splicing by steric hindrance in combination with RNA secondary structures.  

PubMed

The gene Down syndrome cell adhesion molecule (Dscam) potentially encodes 38 016 distinct isoforms in Drosophila melanogaster via mutually exclusive splicing. Here we reveal a combinatorial mechanism of regulation of Dscam exon 17 mutually exclusive splicing through steric hindrance in combination with RNA secondary structure. This mutually exclusive behavior is enforced by steric hindrance, due to the close proximity of the exon 17.2 branch point to exon 17.1 in Diptera, and the interval size constraint in non-Dipteran species. Moreover, intron-exon RNA structures are evolutionarily conserved in 36 non-Drosophila species of six distantly related orders (Diptera, Lepidoptera, Coleoptera, Hymenoptera, Hemiptera, and Phthiraptera), which regulates the selection of exon 17 variants via masking the splice site. By contrast, a previously uncharacterized RNA structure specifically activated exon 17.1 by bringing splice sites closer together in Drosophila, while the other moderately suppressed exon 17.1 selection by hindering the accessibility of polypyrimidine sequences. Taken together, these data suggest a phylogeny of increased complexity in regulating alternative splicing of Dscam exon 17 spanning more than 300 million years of insect evolution. These results also provide models of the regulation of alternative splicing through steric hindrance in combination with dynamic structural codes. PMID:24448213

Yue, Yuan; Li, Guoli; Yang, Yun; Zhang, Wenjing; Pan, Huawei; Chen, Ran; Shi, Feng; Jin, Yongfeng

2013-12-01

194

Computational Analysis of an Evolutionarily Conserved VertebrateMuscle Alternative Splicing Program  

SciTech Connect

A novel exon microarray format that probes gene expression with single exon resolution was employed to elucidate critical features of a vertebrate muscle alternative splicing program. A dataset of 56 microarray-defined, muscle-enriched exons and their flanking introns were examined computationally in order to investigate coordination of the muscle splicing program. Candidate intron regulatory motifs were required to meet several stringent criteria: significant over-representation near muscle-enriched exons, correlation with muscle expression, and phylogenetic conservation among genomes of several vertebrate orders. Three classes of regulatory motifs were identified in the proximal downstream intron, within 200nt of the target exons: UGCAUG, a specific binding site for Fox-1 related splicing factors; ACUAAC, a novel branchpoint-like element; and UG-/UGC-rich elements characteristic of binding sites for CELF splicing factors. UGCAUG was remarkably enriched, being present in nearly one-half of all cases. These studies suggest that Fox and CELF splicing factors play a major role in enforcing the muscle-specific alternative splicing program, facilitating expression of a set of unique isoforms of cytoskeletal proteins that are critical to muscle cell differentiation. Supplementary materials: There are four supplementary tables and one supplementary figure. The tables provide additional detailed information concerning the muscle-enriched datasets, and about over-represented oligonucleotide sequences in the flanking introns. The supplementary figure shows RT-PCR data confirming the muscle-enriched expression of exons predicted from the microarray analysis.

Das, Debopriya; Clark, Tyson A.; Schweitzer, Anthony; Marr,Henry; Yamamoto, Miki L.; Parra, Marilyn K.; Arribere, Josh; Minovitsky,Simon; Dubchak, Inna; Blume, John E.; Conboy, John G.

2006-06-15

195

The RNA-binding protein Sam68 modulates the alternative splicing of Bcl-x  

PubMed Central

The RNA-binding protein Sam68 is involved in apoptosis, but its cellular mRNA targets and its mechanism of action remain unknown. We demonstrate that Sam68 binds the mRNA for Bcl-x and affects its alternative splicing. Depletion of Sam68 by RNA interference caused accumulation of antiapoptotic Bcl-x(L), whereas its up-regulation increased the levels of proapoptotic Bcl-x(s). Tyrosine phosphorylation of Sam68 by Fyn inverted this effect and favored the Bcl-x(L) splice site selection. A point mutation in the RNA-binding domain of Sam68 influenced its splicing activity and subnuclear localization. Moreover, coexpression of ASF/SF2 with Sam68, or fusion with an RS domain, counteracted Sam68 splicing activity toward Bcl-x. Finally, Sam68 interacted with heterogenous nuclear RNP (hnRNP) A1, and depletion of hnRNP A1 or mutations that impair this interaction attenuated Bcl-x(s) splicing. Our results indicate that Sam68 plays a role in the regulation of Bcl-x alternative splicing and that tyrosine phosphorylation of Sam68 by Src-like kinases can switch its role from proapoptotic to antiapoptotic in live cells.

Paronetto, Maria Paola; Achsel, Tilman; Massiello, Autumn; Chalfant, Charles E.; Sette, Claudio

2007-01-01

196

ASPMF: a new approach for identifying alternative splicing isoforms using peptide mass fingerprinting.  

PubMed

Alternative splicing is generally accepted as a mechanism that explains the discrepancy between the number of genes and proteins. We used peptide mass fingerprinting with a theoretical database and scoring method to discover and identify alternative splicing isoforms. Our theoretical database was built using published alternative splicing databases such as ECgene, H-DBAS, and TISA. According to our theoretical database of 190,529 isoforms, 37% of human genes have multiple isoforms. The isoforms produced from a gene partially share common peptide fragments because they have common exons, making it difficult to distinguish isoforms. Therefore, we developed a new method that effectively distinguishes a true isoform among multiple isoforms in a gene. In order to evaluate our algorithm, we made test sets for 4226 protein isoforms extracted from our theoretical database randomly. Consequently, 94% of true isoforms were identified by our scoring algorithm. PMID:18835246

Lee, Seung-Won; Choi, Jae-Pil; Kim, Hyun-Jin; Hong, Ji-Man; Hur, Cheol-Goo

2008-12-01

197

A subgroup of MYB transcription factor genes undergoes highly conserved alternative splicing in Arabidopsis and rice.  

PubMed

MYB transcription factor genes play important roles in many developmental processes and in various defence responses of plants. Two Arabidopsis R2R3-type MYB genes, AtMYB59 and AtMYB48, were found to undergo similar alternative splicing. Both genes have four distinctively spliced transcripts that encode either MYB-related proteins or R2R3-MYB proteins. An extensive BLAST search of the GenBank database resulted in finding and cloning two rice homologues, both of which were also found to share a similar alternative splicing pattern. In a semi-quantitative study, the expression of one splice variant of AtMYB59 was found to be differentially regulated in treatments with different phytohormones and stresses. GFP fusion protein analysis revealed that both of the two predicted nuclear localization signals (NLSs) in the R3 domain are required for localizing to the nucleus. Promoter-GUS analysis in transgenic plants showed that 5'-UTR is sufficient for the translation initiation of type 3 transcripts (encoding R2R3-MYB proteins), but not for type 2 transcripts (encoding MYB-related proteins). Moreover, a new type of non-canonical intron, with the same nucleotide repeats at the 5' and 3' splice sites, was identified. Thirty-eight Arabidopsis and rice genes were found to have this type of non-canonical intron, most of which undergo alternative splicing. These data suggest that this subgroup of transcription factor genes may be involved in multiple biological processes and may be transcriptionally regulated by alternative splicing. PMID:16531467

Li, Jigang; Li, Xiaojuan; Guo, Lei; Lu, Feng; Feng, Xiaojie; He, Kun; Wei, Liping; Chen, Zhangliang; Qu, Li-Jia; Gu, Hongya

2006-01-01

198

Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed by RNA-seq  

PubMed Central

Both transcription and post-transcriptional processes, such as alternative splicing, play crucial roles in controlling developmental programs in metazoans. Recently emerged RNA-seq method has brought our understandings of eukaryotic transcriptomes to a new level, because it can resolve both gene expression level and alternative splicing events simultaneously. To gain a better understanding of cellular differentiation in gonads, we analyzed mRNA profiles from Drosophila testes and ovaries using RNA-seq. We identified a set of genes that have sex-specific isoforms in wild-type (wt) gonads, including several transcription factors. We found that differentiation of sperms from undifferentiated germ cells induced a dramatic down-regulation of RNA splicing factors. Our data confirmed that RNA splicing events are significantly more frequent in the undifferentiated-cell enriched bag of marbles (bam) mutant testis, but down-regulated upon differentiation in wt testis. Consistent with this, we showed that genes required for meiosis and terminal differentiation in wt testis were mainly regulated at the transcriptional level, but not by alternative splicing. Unexpectedly, we observed an increase in expression of all families of chromatin remodeling factors and histone modifying enzymes in the undifferentiated cell-enriched bam testis. More interestingly, chromatin regulators and histone modifying enzymes with opposite enzymatic activities are co-enriched in undifferentiated cells in testis, suggesting these cells may possess dynamic chromatin architecture. Finally, our data revealed many new features of the Drosophila gonadal transcriptomes, and will lead to a more comprehensive understanding of how differential gene expression and splicing regulate gametogenesis in Drosophila. Our data provided a foundation for the systematic study of gene expression and alternative splicing in many interesting areas of germ cell biology in Drosophila, such as the molecular basis for sexual dimorphism and the regulation of the proliferation vs. terminal differentiation programs in germline stem cell lineages. The GEO accession number for the raw and analyzed RNA-seq data is GSE16960.

Gan, Qiang; Chepelev, Iouri; Wei, Gang; Tarayrah, Lama; Cui, Kairong; Zhao, Keji; Chen, Xin

2010-01-01

199

Fine-Scale Variation and Genetic Determinants of Alternative Splicing across Individuals  

PubMed Central

Recently, thanks to the increasing throughput of new technologies, we have begun to explore the full extent of alternative pre–mRNA splicing (AS) in the human transcriptome. This is unveiling a vast layer of complexity in isoform-level expression differences between individuals. We used previously published splicing sensitive microarray data from lymphoblastoid cell lines to conduct an in-depth analysis on splicing efficiency of known and predicted exons. By combining publicly available AS annotation with a novel algorithm designed to search for AS, we show that many real AS events can be detected within the usually unexploited, speculative majority of the array and at significance levels much below standard multiple-testing thresholds, demonstrating that the extent of cis-regulated differential splicing between individuals is potentially far greater than previously reported. Specifically, many genes show subtle but significant genetically controlled differences in splice-site usage. PCR validation shows that 42 out of 58 (72%) candidate gene regions undergo detectable AS, amounting to the largest scale validation of isoform eQTLs to date. Targeted sequencing revealed a likely causative SNP in most validated cases. In all 17 incidences where a SNP affected a splice-site region, in silico splice-site strength modeling correctly predicted the direction of the micro-array and PCR results. In 13 other cases, we identified likely causative SNPs disrupting predicted splicing enhancers. Using Fst and REHH analysis, we uncovered significant evidence that 2 putative causative SNPs have undergone recent positive selection. We verified the effect of five SNPs using in vivo minigene assays. This study shows that splicing differences between individuals, including quantitative differences in isoform ratios, are frequent in human populations and that causative SNPs can be identified using in silico predictions. Several cases affected disease-relevant genes and it is likely some of these differences are involved in phenotypic diversity and susceptibility to complex diseases.

Coulombe-Huntington, Jasmin; Lam, Kevin C. L.; Dias, Christel; Majewski, Jacek

2009-01-01

200

Functional regulation of alternatively spliced Na+/Ca2+ exchanger (NCX1) isoforms.  

PubMed

Alternative splicing of RNA transcripts is a general characteristic for NCX genes in mammals, mollusks, and arthropods. Among the family of three NCX genes in mammals, the NCX1 gene contains six exons, namely, A, B, C, D, E, and F, that make up the alternatively spliced region. Studies of the NCX1 gene transcripts suggested that 16 distinct gene products can be produced from the NCX1 gene. The exons A and B are mutually exclusive when expressed. Generally, exon A-containing transcripts are predominantly found in excitable cells like cardiomyoctes and neurons, whereas exon B-containing transcripts are mostly found in nonexcitable cells like astrocytes and kidney cells. Other alternatively spliced exons (C-F) appear to be cassette-type exons and are found in various combinations. Interestingly, exon D is present in all characterized transcripts. The alternatively spliced isoforms of NCX1 show tissue-specific expression patterns, suggesting functional adaptation to tissues. To investigate functional differences among alternatively spliced isoforms of NCX1, we expressed an exon A-containing transcript present in cardiac tissue (NCX1.1) and an exon B-containing transcript found in the kidney (NCX1.3) in Xenopus oocytes. We demonstrated that the Na(+)/Ca(2+) exchangers expressed by exon A- and exon B-containing transcripts display differences in activation by PKA and by [Ca(2+)](i). We also observed that these two isoforms show differences in voltage dependence. Surprisingly, the alternatively spliced isoforms of NCX1 display greater functional differences among themselves than the products of different gene loci, NCX1, NCX2, and NCX3. PMID:12502560

Schulze, D H; Polumuri, S K; Gille, T; Ruknudin, A

2002-11-01

201

Expression of Two Novel Alternatively Spliced COL2A1 Isoforms During Chondrocyte Differentiation  

PubMed Central

Alternative splicing of the type II procollagen gene (COL2A1) is developmentally-regulated during chondrogenesis. Type IIA procollagen (+ exon 2) is synthesized by chondroprogenitor cells while type IIB procollagen (- exon 2) is synthesized by differentiated chondrocytes. Here, we report expression of two additional alternatively spliced COL2A1 isoforms during chondrocyte differentiation of bone marrow derived mesenchymal stem cells (MSCs). One isoform, named IIC, contains only the first 34 nucleotides of exon 2 by use of an alternative 5’ splice site, resulting in a premature termination codon and possible nonsense-mediated decay of IIC mRNA. Low levels of the IIC isoform were detected by RT-PCR and Southern analysis of COL2A1 cDNA amplified from differentiating rabbit and human MSCs. A second novel transcript, named IID, arises by use of another 5’ alternative splice site in intron 2. The IID isoform contains exon 2 plus 3 nucleotides, resulting in the insertion of an additional amino acid. The IID isoform was co-expressed with the IIA isoform during chondrogenesis, and was approximately one-third as abundant. Deletion of the IIC alternative 5’ splice site from a COL2A1 mini-gene construct resulted in a significant increase in the IIA:IIB ratio. A mutant mini-gene that inhibited production of the IID isoform, however, had differential effects on the production of the IIA and IIB isoforms: this was apparently related to the differentiation status of the cell type used. These data suggest that COL2A1 mRNA abundance and other aspects of chondrocyte differentiation may be regulated by the use of these previously undetermined alternative splice sites.

McAlinden, Audrey; Johnstone, Brian; Kollar, John; Kazmi, Najam; Hering, Thomas M.

2008-01-01

202

Expression of two novel alternatively spliced COL2A1 isoforms during chondrocyte differentiation.  

PubMed

Alternative splicing of the type II procollagen gene (COL2A1) is developmentally regulated during chondrogenesis. Type IIA procollagen (+ exon 2) is synthesized by chondroprogenitor cells while type IIB procollagen (- exon 2) is synthesized by differentiated chondrocytes. Here, we report expression of two additional alternatively spliced COL2A1 isoforms during chondrocyte differentiation of bone marrow-derived mesenchymal stem cells (MSCs). One isoform, named IIC, contains only the first 34 nucleotides of exon 2 by the use of an alternative 5' splice site, resulting in a premature termination codon and possible nonsense-mediated decay of IIC mRNA. Low levels of the IIC isoform were detected by RT-PCR and Southern analysis of COL2A1 cDNA amplified from differentiating rabbit and human MSCs. A second novel transcript, named IID, arises by the use of another 5' alternative splice site in intron 2. The IID isoform contains exon 2 plus 3 nucleotides, resulting in the insertion of an additional amino acid. The IID isoform was co-expressed with the IIA isoform during chondrogenesis, and was approximately one-third as abundant. Deletion of the IIC alternative 5' splice site from a COL2A1 mini-gene construct resulted in a significant increase in the IIA:IIB ratio. A mutant mini-gene that inhibited production of the IID isoform, however, had differential effects on the production of the IIA and IIB isoforms: this was apparently related to the differentiation status of the cell type used. These data suggest that COL2A1 mRNA abundance and other aspects of chondrocyte differentiation may be regulated by the use of these previously undetermined alternative splice sites. PMID:18023161

McAlinden, Audrey; Johnstone, Brian; Kollar, John; Kazmi, Najam; Hering, Thomas M

2008-04-01

203

Congenital analbuminemia caused by a novel aberrant splicing in the albumin gene  

PubMed Central

Introduction: Congenital analbuminemia is a rare autosomal recessive disorder manifested by the presence of a very low amount of circulating serum albumin. It is an allelic heterogeneous defect, caused by variety of mutations within the albumin gene in homozygous or compound heterozygous state. Herein we report the clinical and molecular characterization of a new case of congenital analbuminemia diagnosed in a female newborn of consanguineous (first degree cousins) parents from Ankara, Turkey, who presented with a low albumin concentration (< 8 g/L) and severe clinical symptoms. Materials and methods: The albumin gene of the index case was screened by single-strand conformation polymorphism, heteroduplex analysis, and direct DNA sequencing. The effect of the splicing mutation was evaluated by examining the cDNA obtained by reverse transcriptase - polymerase chain reaction (RT-PCR) from the albumin mRNA extracted from proband’s leukocytes. Results: DNA sequencing revealed that the proband is homozygous, and both parents are heterozygous, for a novel G>A transition at position c.1652+1, the first base of intron 12, which inactivates the strongly conserved GT dinucleotide at the 5? splice site consensus sequence of this intron. The splicing defect results in the complete skipping of the preceding exon (exon 12) and in a frame-shift within exon 13 with a premature stop codon after the translation of three mutant amino acid residues. Conclusions: Our results confirm the clinical diagnosis of congenital analbuminemia in the proband and the inheritance of the trait and contribute to shed light on the molecular genetics of analbuminemia.

Caridi, Gianluca; Dagnino, Monica; Erdeve, Omer; Di Duca, Marco; Yildiz, Duran; Alan, Serdar; Atasay, Begum; Arsan, Saadet; Campagnoli, Monica; Galliano, Monica; Minchiotti, Lorenzo

2014-01-01

204

Emerging Roles of Alternative Pre-mRNA Splicing Regulation in Neuronal Development and Function  

PubMed Central

Alternative pre-mRNA splicing has the potential to greatly diversify the repertoire of transcripts in multicellular organisms. Increasing evidence suggests that this expansive layer of gene regulation plays a particularly important role in the development and function of the nervous system, one of the most complex organ systems found in nature. In this review, we highlight recent studies that continue to emphasize the influence and contribution of alternative splicing regulation to various aspects of neuronal development in addition to its role in the mature nervous system.

Norris, Adam D.; Calarco, John A.

2012-01-01

205

Regulation of alternative splicing by short non-coding nuclear RNAs  

PubMed Central

Recent results from deep-sequencing and tiling array studies indicated the existence of a large number of short, metabolically stable, non-coding RNAs. Some of these short RNAs derive from known RNA classes like snoRNA or tRNAs. There are intriguing similarities between short non-coding nuclear RNAs and oligonucleotides used to change alternative splicing events, which usually target a disease-relevant RNA. We review the current knowledge of this emerging class of RNAs and discuss evidence that some of these short RNAs could function in alternative splice site selection.

Khanna, Amit

2010-01-01

206

DBIRD integrates alternative mRNA splicing with RNA polymerase II transcript elongation  

PubMed Central

Alternative mRNA splicing is the main reason vast mammalian proteomic complexity can be achieved with a limited number of genes. Splicing is physically and functionally coupled to transcription, and is greatly affected by the rate of transcript elongation1,2,3. As the nascent pre-mRNA emerges from transcribing RNA polymerase II (RNAPII), it is assembled into a messenger ribonucleoprotein (mRNP) particle which is its functional form and determines the fate of the mature transcript4. However, factors that connect the transcribing polymerase with the mRNP particle and help integrate transcript elongation with mRNA splicing remain obscure. Here, we characterized the interactome of chromatin-associated mRNP particles. This led to the identification of Deleted in Breast Cancer 1 (DBC1) and a protein we named ZIRD as subunits of a novel protein complex, named DBIRD, which binds directly to RNAPII. DBIRD regulates alternative splicing of a large set of exons embedded in A/T-rich DNA, and is present at the affected exons. RNAi-mediated DBIRD depletion results in region-specific decreases in transcript elongation, particularly across areas encompassing affected exons. Together, these data indicate that DBIRD complex acts at the interface between mRNP particles and RNAPII, integrating transcript elongation with the regulation of alternative splicing.

Close, Pierre; East, Philip; Dirac-Svejstrup, A. Barbara; Hartmann, Holger; Heron, Mark; Maslen, Sarah; Chariot, Alain; Soding, Johannes; Skehel, Mark; Svejstrup, Jesper Q.

2012-01-01

207

Positive and negative elements mediate control of alternative splicing in the AMPD1 gene.  

PubMed

The second exon of the AMP deaminase (AMPD) 1 gene is alternatively spliced in response to stage-specific signals elaborated during myocyte differentiation. Since inheritance of the mutation in exon 2 of the AMPD1 gene has been recently shown to be associated with a better prognosis of congestive heart failure and the alternative splicing of exon 2 modulates the residual activity of AMPD1 in individuals with this mutant allele, the regulatory mechanism of alternative splicing in the AMPD1 gene is clinically intriguing. Retention or exclusion of exon 2 results from the interplay between negative and positive elements in the primary transcript. Exon 2 is intrinsically defective and difficult to recognize. Herein, we show that this property of exon 2 is the consequence of three defects; a suboptimal 3' splice acceptor site, a suboptimal 5' splice donor site and the small size of the exon. An improvement in any one of these defects relieves the masking of this exon. Further, this defective exon can only be identified in the presence of the adjacent downstream intron. PMID:10767559

Morisaki, H; Morisaki, T; Kariko, K; Genetta, T; Holmes, E W

2000-04-01

208

Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle functions.  

PubMed

Rbfox RNA binding proteins are implicated as regulators of phylogenetically-conserved alternative splicing events important for muscle function. To investigate the function of rbfox genes, we used morpholino-mediated knockdown of muscle-expressed rbfox1l and rbfox2 in zebrafish embryos. Single and double morphant embryos exhibited changes in splicing of overlapping sets of bioinformatically-predicted rbfox target exons, many of which exhibit a muscle-enriched splicing pattern that is conserved in vertebrates. Thus, conservation of intronic Rbfox binding motifs is a good predictor of Rbfox-regulated alternative splicing. Morphology and development of single morphant embryos were strikingly normal; however, muscle development in double morphants was severely disrupted. Defects in cardiac muscle were marked by reduced heart rate and in skeletal muscle by complete paralysis. The predominance of wavy myofibers and abnormal thick and thin filaments in skeletal muscle revealed that myofibril assembly is defective and disorganized in double morphants. Ultra-structural analysis revealed that although sarcomeres with electron dense M- and Z-bands are present in muscle fibers of rbfox1l/rbox2 morphants, they are substantially reduced in number and alignment. Importantly, splicing changes and morphological defects were rescued by expression of morpholino-resistant rbfox cDNA. Additionally, a target-blocking MO complementary to a single UGCAUG motif adjacent to an rbfox target exon of fxr1 inhibited inclusion in a similar manner to rbfox knockdown, providing evidence that Rbfox regulates the splicing of target exons via direct binding to intronic regulatory motifs. We conclude that Rbfox proteins regulate an alternative splicing program essential for vertebrate heart and skeletal muscle functions. PMID:21925157

Gallagher, Thomas L; Arribere, Joshua A; Geurts, Paul A; Exner, Cameron R T; McDonald, Kent L; Dill, Kariena K; Marr, Henry L; Adkar, Shaunak S; Garnett, Aaron T; Amacher, Sharon L; Conboy, John G

2011-11-15

209

In vivo selection of kinase-responsive RNA elements controlling alternative splicing.  

PubMed

Alternative pre-mRNA splicing is often controlled by cell signals, for example, those activating the cAMP-dependent protein kinase (PKA) or the Ca2+/calmodulin-dependent protein kinase IV (CaMKIV). We have shown that CaMKIV regulates alternative splicing through short CA repeats and hnRNP L. Here we use a splicing reporter that shows PKA/CaMKIV promotion of exon inclusion to select from exons containing random 13-nt sequences for RNA elements responsive to the kinases in cultured cells. This selection not only identified both PKA- and CaMKIV-responsive elements that are similar to the CaMKIV-responsive RNA element 1 (CaRRE1) or CA repeats, but also A-rich elements not previously known to respond to these kinases. Consistently, hnRNP L is identified as a factor binding the CA-rich elements. Analyses of the motifs in the highly responsive elements indicate that they are indeed critical for the kinase effect and are enriched in alternative exons. Interestingly, a CAAAAAA motif is sufficient for the PKA/CaMKIV-regulated splicing of the exon 16 of the CaMK kinase beta1 (CaMKK2) transcripts, implying a role of this motif in signaling cross-talk or feedback regulation between these kinases through alternative splicing. Therefore, these experiments identified a group of RNA elements responsive to PKA and CaMKIV from in vivo selection. This also provides an approach for selecting RNA elements similarly responsive to other cell signals controlling alternative splicing. PMID:19386606

Li, Hongzhao; Liu, Guodong; Yu, Jiankun; Cao, Wenguang; Lobo, Vincent G; Xie, Jiuyong

2009-06-12

210

In Vivo Selection of Kinase-responsive RNA Elements Controlling Alternative Splicing*  

PubMed Central

Alternative pre-mRNA splicing is often controlled by cell signals, for example, those activating the cAMP-dependent protein kinase (PKA) or the Ca2+/calmodulin-dependent protein kinase IV (CaMKIV). We have shown that CaMKIV regulates alternative splicing through short CA repeats and hnRNP L. Here we use a splicing reporter that shows PKA/CaMKIV promotion of exon inclusion to select from exons containing random 13-nt sequences for RNA elements responsive to the kinases in cultured cells. This selection not only identified both PKA- and CaMKIV-responsive elements that are similar to the CaMKIV-responsive RNA element 1 (CaRRE1) or CA repeats, but also A-rich elements not previously known to respond to these kinases. Consistently, hnRNP L is identified as a factor binding the CA-rich elements. Analyses of the motifs in the highly responsive elements indicate that they are indeed critical for the kinase effect and are enriched in alternative exons. Interestingly, a CAAAAAA motif is sufficient for the PKA/CaMKIV-regulated splicing of the exon 16 of the CaMK kinase ?1 (CaMKK2) transcripts, implying a role of this motif in signaling cross-talk or feedback regulation between these kinases through alternative splicing. Therefore, these experiments identified a group of RNA elements responsive to PKA and CaMKIV from in vivo selection. This also provides an approach for selecting RNA elements similarly responsive to other cell signals controlling alternative splicing.

Li, Hongzhao; Liu, Guodong; Yu, Jiankun; Cao, Wenguang; Lobo, Vincent G.; Xie, Jiuyong

2009-01-01

211

A cytoplasmic quaking I isoform regulates the hnRNP F/H-dependent alternative splicing pathway in myelinating glia  

PubMed Central

The selective RNA-binding protein quaking I (QKI) plays important roles in controlling alternative splicing (AS). Three QKI isoforms are broadly expressed, which display distinct nuclear-cytoplasmic distribution. However, molecular mechanisms by which QKI isoforms control AS, especially in distinct cell types, still remain elusive. The quakingviable (qkv) mutant mice carry deficiencies of all QKI isoforms in oligodendrocytes (OLs) and Schwann cells (SWCs), the myelinating glia of central and peripheral nervous system (CNS and PNS), respectively, resulting in severe dysregulation of AS. We found that the cytoplasmic isoform QKI-6 regulates AS of polyguanine (G-run)-containing transcripts in OLs and rescues aberrant AS in the qkv mutant by repressing expression of two canonical splicing factors, heterologous nuclear ribonucleoproteins (hnRNPs) F and H. Moreover, we identified a broad spectrum of in vivo functional hnRNP F/H targets in OLs that contain conserved exons flanked by G-runs, many of which are dysregulated in the qkv mutant. Interestingly, AS targets of the QKI-6-hnRNP F/H pathway in OLs are differentially affected in SWCs, suggesting that additional cell-type-specific factors modulate AS during CNS and PNS myelination. Together, our studies provide the first evidence that cytoplasmic QKI-6 acts upstream of hnRNP F/H, which forms a novel pathway to control AS in myelinating glia.

Mandler, Mariana D.; Ku, Li; Feng, Yue

2014-01-01

212

A deep survey of alternative splicing in grape reveals changes in the splicing machinery related to tissue, stress condition and genotype  

PubMed Central

Background Alternative splicing (AS) significantly enhances transcriptome complexity. It is differentially regulated in a wide variety of cell types and plays a role in several cellular processes. Here we describe a detailed survey of alternative splicing in grape based on 124 SOLiD RNAseq analyses from different tissues, stress conditions and genotypes. Results We used the RNAseq data to update the existing grape gene prediction with 2,258 new coding genes and 3,336 putative long non-coding RNAs. Several gene structures have been improved and alternative splicing was described for about 30% of the genes. A link between AS and miRNAs was shown in 139 genes where we found that AS affects the miRNA target site. A quantitative analysis of the isoforms indicated that most of the spliced genes have one major isoform and tend to simultaneously co-express a low number of isoforms, typically two, with intron retention being the most frequent alternative splicing event. Conclusions As described in Arabidopsis, also grape displays a marked AS tissue-specificity, while stress conditions produce splicing changes to a minor extent. Surprisingly, some distinctive splicing features were also observed between genotypes. This was further supported by the observation that the panel of Serine/Arginine-rich splicing factors show a few, but very marked differences between genotypes. The finding that a part the splicing machinery can change in closely related organisms can lead to some interesting hypotheses for evolutionary adaptation, that could be particularly relevant in the response to sudden and strong selective pressures.

2014-01-01

213

PQBP1, a factor linked to intellectual disability, affects alternative splicing associated with neurite outgrowth  

PubMed Central

Polyglutamine-binding protein 1 (PQBP1) is a highly conserved protein associated with neurodegenerative disorders. Here, we identify PQBP1 as an alternative messenger RNA (mRNA) splicing (AS) effector capable of influencing splicing of multiple mRNA targets. PQBP1 is associated with many splicing factors, including the key U2 small nuclear ribonucleoprotein (snRNP) component SF3B1 (subunit 1 of the splicing factor 3B [SF3B] protein complex). Loss of functional PQBP1 reduced SF3B1 substrate mRNA association and led to significant changes in AS patterns. Depletion of PQBP1 in primary mouse neurons reduced dendritic outgrowth and altered AS of mRNAs enriched for functions in neuron projection development. Disease-linked PQBP1 mutants were deficient in splicing factor associations and could not complement neurite outgrowth defects. Our results indicate that PQBP1 can affect the AS of multiple mRNAs and indicate specific affected targets whose splice site determination may contribute to the disease phenotype in PQBP1-linked neurological disorders.

Wang, Qingqing; Moore, Michael J.; Adelmant, Guillaume; Marto, Jarrod A.; Silver, Pamela A.

2013-01-01

214

PQBP1, a factor linked to intellectual disability, affects alternative splicing associated with neurite outgrowth.  

PubMed

Polyglutamine-binding protein 1 (PQBP1) is a highly conserved protein associated with neurodegenerative disorders. Here, we identify PQBP1 as an alternative messenger RNA (mRNA) splicing (AS) effector capable of influencing splicing of multiple mRNA targets. PQBP1 is associated with many splicing factors, including the key U2 small nuclear ribonucleoprotein (snRNP) component SF3B1 (subunit 1 of the splicing factor 3B [SF3B] protein complex). Loss of functional PQBP1 reduced SF3B1 substrate mRNA association and led to significant changes in AS patterns. Depletion of PQBP1 in primary mouse neurons reduced dendritic outgrowth and altered AS of mRNAs enriched for functions in neuron projection development. Disease-linked PQBP1 mutants were deficient in splicing factor associations and could not complement neurite outgrowth defects. Our results indicate that PQBP1 can affect the AS of multiple mRNAs and indicate specific affected targets whose splice site determination may contribute to the disease phenotype in PQBP1-linked neurological disorders. PMID:23512658

Wang, Qingqing; Moore, Michael J; Adelmant, Guillaume; Marto, Jarrod A; Silver, Pamela A

2013-03-15

215

Paraquat Modulates Alternative Pre-mRNA Splicing by Modifying the Intracellular Distribution of SRPK2  

PubMed Central

Paraquat (PQ) is a neurotoxic herbicide that induces superoxide formation. Although it is known that its toxic properties are linked to ROS production, the cellular response to PQ is still poorly understood. We reported previously that treatment with PQ induced genome-wide changes in pre-mRNA splicing. Here, we investigated the molecular mechanism underlying PQ-induced pre-mRNA splicing alterations. We show that PQ treatment leads to the phosphorylation and nuclear accumulation of SRPK2, a member of the family of serine/arginine (SR) protein-specific kinases. Concomitantly, we observed increased phosphorylation of SR proteins. Site-specific mutagenesis identified a single serine residue that is necessary and sufficient for nuclear localization of SRPK2. Transfection of a phosphomimetic mutant modified splice site selection of the E1A minigene splicing reporter similar to PQ-treatment. Finally, we found that PQ induces DNA damage and vice versa that genotoxic treatments are also able to promote SRPK2 phosphorylation and nuclear localization. Consistent with these observations, treatment with PQ, cisplatin or ?-radiation promote changes in the splicing pattern of genes involved in DNA repair, cell cycle control, and apoptosis. Altogether, our findings reveal a novel regulatory mechanism that connects PQ to the DNA damage response and to the modulation of alternative splicing via SRPK2 phosphorylation.

Ruepp, Marc-David; Ranzini, Francesco; Maffioletti, Andrea; Alvarez, Reinaldo; Muhlemann, Oliver; Barabino, Silvia M. L.

2013-01-01

216

Genome-wide association between DNA methylation and alternative splicing in an invertebrate  

PubMed Central

Background Gene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. However, the regulatory functions of gene body DNA methylation remain largely unknown. DNA methylation in insects appears to be primarily confined to exons. Two recent studies in Apis mellifera (honeybee) and Nasonia vitripennis (jewel wasp) analyzed transcription and DNA methylation data for one gene in each species to demonstrate that exon-specific DNA methylation may be associated with alternative splicing events. In this study we investigated the relationship between DNA methylation, alternative splicing, and cross-species gene conservation on a genome-wide scale using genome-wide transcription and DNA methylation data. Results We generated RNA deep sequencing data (RNA-seq) to measure genome-wide mRNA expression at the exon- and gene-level. We produced a de novo transcriptome from this RNA-seq data and computationally predicted splice variants for the honeybee genome. We found that exons that are included in transcription are higher methylated than exons that are skipped during transcription. We detected enrichment for alternative splicing among methylated genes compared to unmethylated genes using fisher’s exact test. We performed a statistical analysis to reveal that the presence of DNA methylation or alternative splicing are both factors associated with a longer gene length and a greater number of exons in genes. In concordance with this observation, a conservation analysis using BLAST revealed that each of these factors is also associated with higher cross-species gene conservation. Conclusions This study constitutes the first genome-wide analysis exhibiting a positive relationship between exon-level DNA methylation and mRNA expression in the honeybee. Our finding that methylated genes are enriched for alternative splicing suggests that, in invertebrates, exon-level DNA methylation may play a role in the construction of splice variants by positively influencing exon inclusion during transcription. The results from our cross-species homology analysis suggest that DNA methylation and alternative splicing are genetic mechanisms whose utilization could contribute to a longer gene length and a slower rate of gene evolution.

2012-01-01

217

RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E)  

PubMed Central

Summary Activated RAS promotes dimerization of members of the RAF kinase family1-3. ATP-competitive RAF inhibitors activate ERK signaling4-7 by transactivating RAF dimers4. In melanomas with mutant BRAF(V600E), levels of RAS activation are low and these drugs bind to BRAF(V600E) monomers and inhibit their activity. This tumor-specific inhibition of ERK signaling results in a broad therapeutic index and RAF inhibitors have remarkable clinical activity in patients with melanomas that harbor mutant BRAF(V600E)8. However, resistance invariably develops. Here, we identify a novel resistance mechanism. We find that a subset of cells resistant to vemurafenib (PLX4032, RG7204) express a 61kd variant form of BRAF(V600E) that lacks exons 4-8, a region that encompasses the RAS-binding domain. p61BRAF(V600E) exhibits enhanced dimerization in cells with low levels of RAS activation, as compared to full length BRAF(V600E). In cells in which p61BRAF(V600E) is expressed endogenously or ectopically, ERK signaling is resistant to the RAF inhibitor. Moreover, a mutation that abolishes the dimerization of p61BRAF(V600E) restores its sensitivity to vemurafenib. Finally, we identified BRAF(V600E) splicing variants lacking the RAS-binding domain in the tumors of six of 19 patients with acquired resistance to vemurafenib. These data support the model that inhibition of ERK signaling by RAF inhibitors is dependent on levels of RAS-GTP too low to support RAF dimerization and identify a novel mechanism of acquired resistance in patients: expression of splicing isoforms of BRAF(V600E) that dimerize in a RAS-independent manner.

Poulikakos, Poulikos I.; Persaud, Yogindra; Janakiraman, Manickam; Kong, Xiangju; Ng, Charles; Moriceau, Gatien; Shi, Hubing; Atefi, Mohammad; Titz, Bjoern; Gabay, May Tal; Salton, Maayan; Dahlman, Kimberly B.; Tadi, Madhavi; Wargo, Jennifer A.; Flaherty, Keith T.; Kelley, Mark C.; Misteli, Tom; Chapman, Paul B.; Sosman, Jeffrey A.; Graeber, Thomas G.; Ribas, Antoni; Lo, Roger S.; Rosen, Neal; Solit, David B.

2011-01-01

218

RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E).  

PubMed

Activated RAS promotes dimerization of members of the RAF kinase family. ATP-competitive RAF inhibitors activate ERK signalling by transactivating RAF dimers. In melanomas with mutant BRAF(V600E), levels of RAS activation are low and these drugs bind to BRAF(V600E) monomers and inhibit their activity. This tumour-specific inhibition of ERK signalling results in a broad therapeutic index and RAF inhibitors have remarkable clinical activity in patients with melanomas that harbour mutant BRAF(V600E). However, resistance invariably develops. Here, we identify a new resistance mechanism. We find that a subset of cells resistant to vemurafenib (PLX4032, RG7204) express a 61-kDa variant form of BRAF(V600E), p61BRAF(V600E), which lacks exons 4-8, a region that encompasses the RAS-binding domain. p61BRAF(V600E) shows enhanced dimerization in cells with low levels of RAS activation, as compared to full-length BRAF(V600E). In cells in which p61BRAF(V600E) is expressed endogenously or ectopically, ERK signalling is resistant to the RAF inhibitor. Moreover, a mutation that abolishes the dimerization of p61BRAF(V600E) restores its sensitivity to vemurafenib. Finally, we identified BRAF(V600E) splicing variants lacking the RAS-binding domain in the tumours of six of nineteen patients with acquired resistance to vemurafenib. These data support the model that inhibition of ERK signalling by RAF inhibitors is dependent on levels of RAS-GTP too low to support RAF dimerization and identify a novel mechanism of acquired resistance in patients: expression of splicing isoforms of BRAF(V600E) that dimerize in a RAS-independent manner. PMID:22113612

Poulikakos, Poulikos I; Persaud, Yogindra; Janakiraman, Manickam; Kong, Xiangju; Ng, Charles; Moriceau, Gatien; Shi, Hubing; Atefi, Mohammad; Titz, Bjoern; Gabay, May Tal; Salton, Maayan; Dahlman, Kimberly B; Tadi, Madhavi; Wargo, Jennifer A; Flaherty, Keith T; Kelley, Mark C; Misteli, Tom; Chapman, Paul B; Sosman, Jeffrey A; Graeber, Thomas G; Ribas, Antoni; Lo, Roger S; Rosen, Neal; Solit, David B

2011-12-15

219

A Contracted DNA Repeat in LHX3 Intron 5 Is Associated with Aberrant Splicing and Pituitary Dwarfism in German Shepherd Dogs  

PubMed Central

Dwarfism in German shepherd dogs is due to combined pituitary hormone deficiency of unknown genetic cause. We localized the recessively inherited defect by a genome wide approach to a region on chromosome 9 with a lod score of 9.8. The region contains LHX3, which codes for a transcription factor essential for pituitary development. Dwarfs have a deletion of one of six 7 bp repeats in intron 5 of LHX3, reducing the intron size to 68 bp. One dwarf was compound heterozygous for the deletion and an insertion of an asparagine residue in the DNA-binding homeodomain of LHX3, suggesting involvement of the gene in the disorder. An exon trapping assay indicated that the shortened intron is not spliced efficiently, probably because it is too small. We applied bisulfite conversion of cytosine to uracil in RNA followed by RT-PCR to analyze the splicing products. The aberrantly spliced RNA molecules resulted from either skipping of exon 5 or retention of intron 5. The same splicing defects were observed in cDNA derived from the pituitary of dwarfs. A survey of similarly mutated introns suggests that there is a minimal distance requirement between the splice donor and branch site of 50 nucleotides. In conclusion, a contraction of a DNA repeat in intron 5 of canine LHX3 leads to deficient splicing and is associated with pituitary dwarfism.

Voorbij, Annemarie M. W. Y.; van Steenbeek, Frank G.; Vos-Loohuis, Manon; Martens, Ellen E. C. P.; Hanson-Nilsson, Jeanette M.; van Oost, Bernard A.; Kooistra, Hans S.; Leegwater, Peter A.

2011-01-01

220

Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing  

PubMed Central

Thiamin pyrophosphate (TPP) riboswitches are found in organisms from all three domains of life. Examples in bacteria commonly repress gene expression by terminating transcription or by blocking ribosome binding, whereas most eukaryotic TPP riboswitches are predicted to regulate gene expression by modulating RNA splicing. Given the widespread distribution of eukaryotic TPP riboswitches and the diversity of their locations in precursor messenger RNAs (pre-mRNAs), we sought to examine the mechanism of alternative splicing regulation by a fungal TPP riboswitch from Neurospora crassa, which is mostly located in a large intron separating protein-coding exons. Our data reveal that this riboswitch uses a long-distance (?530-nt separation) base-pairing interaction to regulate alternative splicing. Specifically, a portion of the TPP-binding aptamer can form a base-paired structure with a conserved sequence element (?) located near a 5? splice site, which greatly increases use of this 5? splice site and promotes gene expression. Comparative sequence analyses indicate that many fungal species carry a TPP riboswitch with similar intron architecture, and therefore the homologous genes in these fungi are likely to use the same mechanism. Our findings expand the scope of genetic control mechanisms relying on long-range RNA interactions to include riboswitches.

Li, Sanshu; Breaker, Ronald R.

2013-01-01

221

ECgene: Genome-based EST clustering and gene modeling for alternative splicing  

PubMed Central

With the availability of the human genome map and fast algorithms for sequence alignment, genome-based EST clustering became a viable method for gene modeling. We developed a novel gene-modeling method, ECgene (Gene modeling by EST Clustering), which combines genome-based EST clustering and the transcript assembly procedure in a coherent and consistent fashion. Specifically, ECgene takes alternative splicing events into consideration. The position of splice sites (i.e., exon–intron boundaries) in the genome map is utilized as the critical information in the whole procedure. Sequences that share any splice sites are grouped together to define an EST cluster in a manner similar to that of the genome-based version of the UniGene algorithm. Transcript assembly is achieved using graph theory that represents the exon connectivity in each cluster as a directed acyclic graph (DAG). Distinct paths along exons correspond to possible gene models encompassing all alternative splicing events. EST sequences in each cluster are subclustered further according to the compatibility with gene structure of each splice variant, and they can be regarded as clone evidence for the corresponding isoform. The reliability of each isoform is assessed from the nature of cluster members and from the minimum number of clones required to reconstruct all exons in the transcript.

Kim, Namshin; Shin, Seokmin; Lee, Sanghyuk

2005-01-01

222

Pyrvinium pamoate changes alternative splicing of the serotonin receptor 2C by influencing its RNA structure.  

PubMed

The serotonin receptor 2C plays a central role in mood and appetite control. It undergoes pre-mRNA editing as well as alternative splicing. The RNA editing suggests that the pre-mRNA forms a stable secondary structure in vivo. To identify substances that promote alternative exons inclusion, we set up a high-throughput screen and identified pyrvinium pamoate as a drug-promoting exon inclusion without editing. Circular dichroism spectroscopy indicates that pyrvinium pamoate binds directly to the pre-mRNA and changes its structure. SHAPE (selective 2'-hydroxyl acylation analysed by primer extension) assays show that part of the regulated 5'-splice site forms intramolecular base pairs that are removed by this structural change, which likely allows splice site recognition and exon inclusion. Genome-wide analyses show that pyrvinium pamoate regulates >300 alternative exons that form secondary structures enriched in A-U base pairs. Our data demonstrate that alternative splicing of structured pre-mRNAs can be regulated by small molecules that directly bind to the RNA, which is reminiscent to an RNA riboswitch. PMID:23393189

Shen, Manli; Bellaousov, Stanislav; Hiller, Michael; de La Grange, Pierre; Creamer, Trevor P; Malina, Orit; Sperling, Ruth; Mathews, David H; Stoilov, Peter; Stamm, Stefan

2013-04-01

223

Predicting the Impact of Alternative Splicing on Plant MADS Domain Protein Function  

Microsoft Academic Search

Several genome-wide studies demonstrated that alternative splicing (AS) significantly increases the transcriptome complexity in plants. However, the impact of AS on the functional diversity of proteins is difficult to assess using genome-wide approaches. The availability of detailed sequence annotations for specific genes and gene families allows for a more detailed assessment of the potential effect of AS on their function.

Edouard I. Severing; Aalt D. J. van Dijk; Giuseppa Morabito; Jacqueline Busscher-Lange; Richard G. H. Immink; Roeland C. H. J. van Ham

2012-01-01

224

PPS, a Large Multidomain Protein, Functions with Sex-Lethal to Regulate Alternative Splicing in Drosophila  

Microsoft Academic Search

Alternative splicing controls the expression of many genes, including the Drosophila sex determination gene Sex-lethal (Sxl). Sxl expression is controlled via a negative regulatory mechanism where inclusion of the translation-terminating male exon is blocked in females. Previous studies have shown that the mechanism leading to exon skipping is autoregulatory and requires the SXL protein to antagonize exon inclusion by interacting

Matthew L. Johnson; Alexis A. Nagengast; Helen K. Salz

2010-01-01

225

A Subtle Alternative Splicing Event Gives Rise to a Widely Expressed Human RNase k Isoform  

PubMed Central

Subtle alternative splicing leads to the formation of RNA variants lacking or including a small number of nucleotides. To date, the impact of subtle alternative splicing phenomena on protein biosynthesis has been studied in frame-preserving incidents. On the contrary, mRNA isoforms derived from frame-shifting events were poorly studied and generally characterized as non-coding. This work provides evidence for a frame-shifting subtle alternative splicing event which results in the production of a novel protein isoform. We applied a combined molecular approach for the cloning and expression analysis of a human RNase ? transcript (RNase ?-02) which lacks four consecutive bases compared to the previously isolated RNase ? isoform. RNase ?-02 mRNA is expressed in all human cell lines tested end encodes the synthesis of a 134-amino-acid protein by utilizing an alternative initiation codon. The expression of RNase ?-02 in the cytoplasm of human cells was verified by Western blot and immunofluorescence analysis using a specific polyclonal antibody developed on the basis of the amino-acid sequence difference between the two protein isoforms. The results presented here show that subtle changes during mRNA splicing can lead to the expression of significantly altered protein isoforms.

Karousis, Evangelos D.; Sideris, Diamantis C.

2014-01-01

226

CARM1 automethylation is controlled at the level of alternative splicing  

PubMed Central

Co-activator-associated arginine methyltransferase 1 (CARM1) is subjected to multiple post-translational modifications. Our previous finding that automethylation of CARM1 is essential for regulation of transcription and pre-mRNA splicing prompted us to investigate how automethylation is regulated. Here, we report that automethylation is regulated by alternative splicing of CARM1 mRNA to remove exon 15, containing the automethylation site. Specifically, we find that two major alternative transcripts encoding full-length CARM1 (CARM1FL) and CARM1 with exon 15 deleted (CARM1?E15) exist in cells, and each transcript produces the expected protein. Further biochemical characterizations of the automethylation-defective mutant and CARM1?E15 reveal overlapping yet different properties. Interestingly, other arginine methylation substrates also have missing exons encompassing the site(s) of methylation, suggesting that protein arginine methylation level may, in general, be controlled by the alternative splicing mechanism. Finally, we observed differential distribution of CARM1FL and CARM1?E15 in epithelial and stromal cells in normal mouse mammary gland. Thus, alternative splicing not only serves as the determinant for CARM1 automethylation but also generates cell type-specific isoforms that might regulate normal ER? biology in the mammary gland.

Wang, Lu; Charoensuksai, Purin; Watson, Nikole J.; Wang, Xing; Zhao, Zibo; Coriano, Carlos G.; Kerr, Leslie R.; Xu, Wei

2013-01-01

227

Cardiac glycosides correct aberrant splicing of IKBKAP-encoded mRNA in familial dysautonomia derived cells by suppressing expression of SRSF3.  

PubMed

The ability to modulate the production of the wild-type transcript in cells bearing the splice-altering familial dysautonomia (FD) causing mutation in the IKBKAP gene prompted a study of the impact of a panel of pharmaceuticals on the splicing of this transcript, which revealed the ability of the cardiac glycoside digoxin to increase the production of the wild-type, exon-20-containing, IKBKAP-encoded transcript and the full-length I?B-kinase-complex-associated protein in FD-derived cells. Characterization of the cis elements and trans factors involved in the digoxin-mediated effect on splicing reveals that this response is dependent on an SRSF3 binding site(s) located in the intron 5' of the alternatively spliced exon and that digoxin mediates its effect by suppressing the level of the SRSF3 protein. Characterization of the digoxin-mediated effect on the RNA splicing process was facilitated by the identification of several RNA splicing events in which digoxin treatment mediates the enhanced inclusion of exonic sequence. Moreover, we demonstrate the ability of digoxin to impact the splicing process in neuronal cells, a cell type profoundly impacted by FD. This study represents the first demonstration that digoxin possesses splice-altering capabilities that are capable of reversing the impact of the FD-causing mutation. These findings support the clinical evaluation of the impact of digoxin on the FD patient population. PMID:23711097

Liu, Bo; Anderson, Sylvia L; Qiu, Jinsong; Rubin, Berish Y

2013-08-01

228

Differentially expressed alternatively spliced genes in Malignant Pleural Mesothelioma identified using massively parallel transcriptome sequencing  

PubMed Central

Background Analyses of Expressed Sequence Tags (ESTs) databases suggest that most human genes have multiple alternative splice variants. The alternative splicing of pre-mRNA is tightly regulated during development and in different tissue types. Changes in splicing patterns have been described in disease states. Recently, we used whole-transcriptome shotgun pryrosequencing to characterize 4 malignant pleural mesothelioma (MPM) tumors, 1 lung adenocarcinoma and 1 normal lung. We hypothesized that alternative splicing profiles might be detected in the sequencing data for the expressed genes in these samples. Methods We developed a software pipeline to map the transcriptome read sequences of the 4 MPM samples and 1 normal lung sample onto known exon junction sequences in the comprehensive AceView database of expressed sequences and to count how many reads map to each junction. 13,274,187 transcriptome reads generated by the Roche/454 sequencing platform for 5 samples were compared with 151,486 exon junctions from the AceView database. The exon junction expression index (EJEI) was calculated for each exon junction in each sample to measure the differential expression of alternative splicing events. Top ten exon junctions with the largest EJEI difference between the 4 mesothelioma and the normal lung sample were then examined for differential expression using Quantitative Real Time PCR (qRT-PCR) in the 5 sequenced samples. Two of the differentially expressed exon junctions (ACTG2.aAug05 and CDK4.aAug05) were further examined with qRT-PCR in additional 18 MPM and 18 normal lung specimens. Results We found 70,953 exon junctions covered by at least one sequence read in at least one of the 5 samples. All 10 identified most differentially expressed exon junctions were validated as present by RT-PCR, and 8 were differentially expressed exactly as predicted by the sequence analysis. The differential expression of the AceView exon junctions for the ACTG2 and CDK4 genes were also observed to be statistically significant in an additional 18 MPM and 18 normal lung samples examined using qRT-PCR. The differential expression of these two junctions was shown to successfully classify these mesothelioma and normal lung specimens with high sensitivity (89% and 78%, respectively). Conclusion Whole-transcriptome shotgun sequencing, combined with a downstream bioinformatics pipeline, provides powerful tools for the identification of differentially expressed exon junctions resulting from alternative splice variants. The alternatively spliced genes discovered in the study could serve as useful diagnostic markers as well as potential therapeutic targets for MPM.

2009-01-01

229

Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery  

PubMed Central

The tight control of gene expression at the level of both transcription and post-transcriptional RNA processing is essential for mammalian development. We here investigate the role of protein arginine methyltransferase 5 (PRMT5), a putative splicing regulator and transcriptional cofactor, in mammalian development. We demonstrate that selective deletion of PRMT5 in neural stem/progenitor cells (NPCs) leads to postnatal death in mice. At the molecular level, the absence of PRMT5 results in reduced methylation of Sm proteins, aberrant constitutive splicing, and the alternative splicing of specific mRNAs with weak 5? donor sites. Intriguingly, the products of these mRNAs are, among others, several proteins regulating cell cycle progression. We identify Mdm4 as one of these key mRNAs that senses the defects in the spliceosomal machinery and transduces the signal to activate the p53 response, providing a mechanistic explanation of the phenotype observed in vivo. Our data demonstrate that PRMT5 is a master regulator of splicing in mammals and uncover a new role for the Mdm4 pre-mRNA, which could be exploited for anti-cancer therapy.

Bezzi, Marco; Teo, Shun Xie; Muller, Julius; Mok, Wei Chuen; Sahu, Sanjeeb Kumar; Vardy, Leah A.; Bonday, Zahid Q.; Guccione, Ernesto

2013-01-01

230

Alpharetroviral Vector-mediated Gene Therapy for X-CGD: Functional Correction and Lack of Aberrant Splicing  

PubMed Central

Comparative integrome analysis has revealed that the most neutral integration pattern among retroviruses is attributed to alpharetroviruses. We chose X-linked chronic granulomatous disease (X-CGD) as model to evaluate the potential of self-inactivating (SIN) alpharetroviral vectors for gene therapy of monogenic diseases. Therefore, we combined the alpharetroviral vector backbone with the elongation factor-1? short promoter, both considered to possess a low genotoxic profile, to drive transgene (gp91phox) expression. Following efficient transduction transgene expression was sustained and provided functional correction of the CGD phenotype in a cell line model at low vector copy number. Further analysis in a murine X-CGD transplantation model revealed gene-marking of bone marrow cells and oxidase positive granulocytes in peripheral blood. Transduction of human X-CGD CD34+ cells provided functional correction up to wild-type levels and long-term expression upon transplantation into a humanized mouse model. In contrast to lentiviral vectors, no aberrantly spliced transcripts containing cellular exons fused to alpharetroviral sequences were found in transduced cells, implying that the safety profile of alpharetroviral vectors may extend beyond their neutral integration profile. Taken together, this highlights the potential of this SIN alpharetroviral system as a platform for new candidate vectors for future gene therapy of hematopoietic disorders.

Kaufmann, Kerstin B.; Brendel, Christian; Suerth, Julia D.; Mueller-Kuller, Uta; Chen-Wichmann, Linping; Schwable, Joachim; Pahujani, Shweta; Kunkel, Hana; Schambach, Axel; Baum, Christopher; Grez, Manuel

2013-01-01

231

Alpharetroviral vector-mediated gene therapy for X-CGD: functional correction and lack of aberrant splicing.  

PubMed

Comparative integrome analysis has revealed that the most neutral integration pattern among retroviruses is attributed to alpharetroviruses. We chose X-linked chronic granulomatous disease (X-CGD) as model to evaluate the potential of self-inactivating (SIN) alpharetroviral vectors for gene therapy of monogenic diseases. Therefore, we combined the alpharetroviral vector backbone with the elongation factor-1? short promoter, both considered to possess a low genotoxic profile, to drive transgene (gp91(phox)) expression. Following efficient transduction transgene expression was sustained and provided functional correction of the CGD phenotype in a cell line model at low vector copy number. Further analysis in a murine X-CGD transplantation model revealed gene-marking of bone marrow cells and oxidase positive granulocytes in peripheral blood. Transduction of human X-CGD CD34+ cells provided functional correction up to wild-type levels and long-term expression upon transplantation into a humanized mouse model. In contrast to lentiviral vectors, no aberrantly spliced transcripts containing cellular exons fused to alpharetroviral sequences were found in transduced cells, implying that the safety profile of alpharetroviral vectors may extend beyond their neutral integration profile. Taken together, this highlights the potential of this SIN alpharetroviral system as a platform for new candidate vectors for future gene therapy of hematopoietic disorders. PMID:23207695

Kaufmann, Kerstin B; Brendel, Christian; Suerth, Julia D; Mueller-Kuller, Uta; Chen-Wichmann, Linping; Schwäble, Joachim; Pahujani, Shweta; Kunkel, Hana; Schambach, Axel; Baum, Christopher; Grez, Manuel

2013-03-01

232

Discovery and expression analysis of alternative splicing events conserved among plant SR proteins.  

PubMed

The high frequency of alternative splicing among the serine/arginine-rich (SR) family of proteins in plants has been linked to important roles in gene regulation during development and in response to environmental stress. In this article, we have searched and manually annotated all the SR proteins in the genomes of maize and sorghum. The experimental validation of gene structure by reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed, with few exceptions, that SR genes produced multiple isoforms of transcripts by alternative splicing. Despite sharing high structural similarity and conserved positions of the introns, the profile of alternative splicing diverged significantly between maize and sorghum for the vast majority of SR genes. These include many transcript isoforms discovered by RT-PCR and not represented in extant expressed sequence tag (EST) collection. However, we report the occurrence of various maize and sorghum SR mRNA isoforms that display evolutionary conservation of splicing events with their homologous SR genes in Arabidopsis and moss. Our data also indicate an important role of both 5' and 3' untranslated regions in the regulation of SR gene expression. These observations have potentially important implications for the processes of evolution and adaptation of plants to land. PMID:24356560

Rauch, Hypaitia B; Patrick, Tara L; Klusman, Katarina M; Battistuzzi, Fabia U; Mei, Wenbin; Brendel, Volker P; Lal, Shailesh K

2014-03-01

233

Human Aldehyde Dehydrogenase Genes: Alternatively-Spliced Transcriptional Variants and Their Suggested Nomenclature  

PubMed Central

OBJECTIVE The human aldehyde dehydrogenase (ALDH) gene superfamily consists of 19 genes encoding enzymes critical for NAD(P)+-dependent oxidation of endogenous and exogenous aldehydes, including drugs and environmental toxicants. Mutations in ALDH genes are the molecular basis of several disease states (e.g. Sjögren-Larsson syndrome, pyridoxine-dependent seizures, and type II hyperprolinemia) and may contribute to the etiology of complex diseases such as cancer and Alzheimer’s disease. The aim of this nomenclature update was to identify splice transcriptional variants principally for the human ALDH genes. METHODS Data-mining methods were used to retrieve all human ALDH sequences. Alternatively-spliced transcriptional variants were determined based upon: a) criteria for sequence integrity and genomic alignment; b) evidence of multiple independent cDNA sequences corresponding to a variant sequence; and c) if available, empirical evidence of variants from the literature. RESULTS AND CONCLUSION Alternatively-spliced transcriptional variants and their encoded proteins exist for most of the human ALDH genes; however, their function and significance remain to be established. When compared with the human genome, rat and mouse include an additional gene, Aldh1a7, in the ALDH1A subfamily. In order to avoid confusion when identifying splice variants in various genomes, nomenclature guidelines for the naming of such alternative transcriptional variants and proteins are recommended herein. In addition, a web database (www.aldh.org) has been developed to provide up-to-date information and nomenclature guidelines for the ALDH superfamily.

Black, William J.; Stagos, Dimitrios; Marchitti, Satori A.; Nebert, Daniel W.; Tipton, Keith F.; Bairoch, Amos; Vasiliou, Vasilis

2011-01-01

234

Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism  

PubMed Central

Increased risk for autism spectrum disorders (ASD) is attributed to hundreds of genetic loci. The convergence of ASD variants have been investigated using various approaches, including protein interactions extracted from the published literature. However, these datasets are frequently incomplete, carry biases and are limited to interactions of a single splicing isoform, which may not be expressed in the disease-relevant tissue. Here we introduce a new interactome mapping approach by experimentally identifying interactions between brain-expressed alternatively spliced variants of ASD risk factors. The Autism Spliceform Interaction Network reveals that almost half of the detected interactions and about 30% of the newly identified interacting partners represent contribution from splicing variants, emphasizing the importance of isoform networks. Isoform interactions greatly contribute to establishing direct physical connections between proteins from the de novo autism CNVs. Our findings demonstrate the critical role of spliceform networks for translating genetic knowledge into a better understanding of human diseases.

Corominas, Roser; Yang, Xinping; Lin, Guan Ning; Kang, Shuli; Shen, Yun; Ghamsari, Lila; Broly, Martin; Rodriguez, Maria; Tam, Stanley; Trigg, Shelly A.; Fan, Changyu; Yi, Song; Tasan, Murat; Lemmens, Irma; Kuang, Xingyan; Zhao, Nan; Malhotra, Dheeraj; Michaelson, Jacob J.; Vacic, Vladimir; Calderwood, Michael A.; Roth, Frederick P.; Tavernier, Jan; Horvath, Steve; Salehi-Ashtiani, Kourosh; Korkin, Dmitry; Sebat, Jonathan; Hill, David E.; Hao, Tong; Vidal, Marc; Iakoucheva, Lilia M.

2014-01-01

235

Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism.  

PubMed

Increased risk for autism spectrum disorders (ASD) is attributed to hundreds of genetic loci. The convergence of ASD variants have been investigated using various approaches, including protein interactions extracted from the published literature. However, these datasets are frequently incomplete, carry biases and are limited to interactions of a single splicing isoform, which may not be expressed in the disease-relevant tissue. Here we introduce a new interactome mapping approach by experimentally identifying interactions between brain-expressed alternatively spliced variants of ASD risk factors. The Autism Spliceform Interaction Network reveals that almost half of the detected interactions and about 30% of the newly identified interacting partners represent contribution from splicing variants, emphasizing the importance of isoform networks. Isoform interactions greatly contribute to establishing direct physical connections between proteins from the de novo autism CNVs. Our findings demonstrate the critical role of spliceform networks for translating genetic knowledge into a better understanding of human diseases. PMID:24722188

Corominas, Roser; Yang, Xinping; Lin, Guan Ning; Kang, Shuli; Shen, Yun; Ghamsari, Lila; Broly, Martin; Rodriguez, Maria; Tam, Stanley; Trigg, Shelly A; Fan, Changyu; Yi, Song; Tasan, Murat; Lemmens, Irma; Kuang, Xingyan; Zhao, Nan; Malhotra, Dheeraj; Michaelson, Jacob J; Vacic, Vladimir; Calderwood, Michael A; Roth, Frederick P; Tavernier, Jan; Horvath, Steve; Salehi-Ashtiani, Kourosh; Korkin, Dmitry; Sebat, Jonathan; Hill, David E; Hao, Tong; Vidal, Marc; Iakoucheva, Lilia M

2014-01-01

236

Identification of new alternative splice events in the TCIRG1 gene in different human tissues  

SciTech Connect

Two transcript variants (TV) of the T cell immune regulator gene 1 (TCIRG1) have already been characterized. TV1 encodes a subunit of the osteoclast vacuolar proton pump and TV2 encodes a T cell inhibitory receptor. Based on the search in dbEST, we validated by RT-PCR six new alternative splice events in TCIRG1 in most of the 28 human tissues studied. In addition, we observed that transcripts using the TV1 transcription start site and two splice forms previously described in a patient with infantile malignant osteopetrosis are also expressed in various tissues of healthy individuals. Studies of these nine splice forms in cytoplasmic RNA of peripheral blood mononuclear cells showed that at least six of them could be efficiently exported from the nucleus. Since various products with nearly ubiquitous tissue distribution are generated from TCIRG1, this gene may be involved in other processes besides immune response and bone resorption.

Smirnova, Anna S. [Immunogenetics Division, Pediatrics Department, Universidade Federal de Sao Paulo (UNIFESP-EPM), Sao Paulo (Brazil); Morgun, Andrey [Immunogenetics Division, Pediatrics Department, Universidade Federal de Sao Paulo (UNIFESP-EPM), Sao Paulo (Brazil)]. E-mail: anemorgun@hotmail.com; Shulzhenko, Natalia [Immunogenetics Division, Pediatrics Department, Universidade Federal de Sao Paulo (UNIFESP-EPM), Sao Paulo (Brazil); Silva, Ismael D.C.G. [Gynecology Department, Universidade Federal de Sao Paulo (UNIFESP-EPM), Sao Paulo (Brazil); Gerbase-DeLima, Maria [Immunogenetics Division, Pediatrics Department, Universidade Federal de Sao Paulo (UNIFESP-EPM), Sao Paulo (Brazil)

2005-05-13

237

HRP-2, the Caenorhabditis elegans Homolog of Mammalian Heterogeneous Nuclear Ribonucleoproteins Q and R, Is an Alternative Splicing Factor That Binds to UCUAUC Splicing Regulatory Elements*  

PubMed Central

Alternative splicing is regulated by cis sequences in the pre-mRNA that serve as binding sites for trans-acting alternative splicing factors. In a previous study, we used bioinformatics and molecular biology to identify and confirm that the intronic hexamer sequence UCUAUC is a nematode alternative splicing regulatory element. In this study, we used RNA affinity chromatography to identify trans factors that bind to this sequence. HRP-2, the Caenorhabditis elegans homolog of human heterogeneous nuclear ribonucleoproteins Q and R, binds to UCUAUC in the context of unc-52 intronic regulatory sequences as well as to RNAs containing tandem repeats of this sequence. The three Us in the hexamer are the most important determinants of this binding specificity. We demonstrate, using RNA interference, that HRP-2 regulates the alternative splicing of two genes, unc-52 and lin-10, both of which have cassette exons flanked by an intronic UCUAUC motif. We propose that HRP-2 is a protein responsible for regulating alternative splicing through binding interactions with the UCUAUC sequence.

Kabat, Jennifer L.; Barberan-Soler, Sergio; Zahler, Alan M.

2009-01-01

238

Constitutive nuclear localization of an alternatively spliced sirtuin-2 isoform.  

PubMed

Sirtuin-2 (SIRT2), the cytoplasmic member of the sirtuin family, has been implicated in the deacetylation of nuclear proteins. Although the enzyme has been reported to be located to the nucleus during G2/M phase, its spectrum of targets suggests functions in the nucleus throughout the cell cycle. While a nucleocytoplasmic shuttling mechanism has been proposed for SIRT2, recent studies have indicated the presence of a constitutively nuclear isoform. Here we report the identification of a novel splice variant (isoform 5) of SIRT2 that lacks a nuclear export signal and encodes a predominantly nuclear isoform. This novel isoform 5 fails to show deacetylase activity using several assays, both in vitro and in vivo, and we are led to conclude that this isoform is catalytically inactive. Nevertheless, it retains the ability to interact with p300, a known interaction partner. Moreover, changes in intrinsic tryptophan fluorescence upon denaturation indicate that the protein is properly folded. These data, together with computational analyses, confirm the structural integrity of the catalytic domain. Our results suggest an activity-independent nuclear function of the novel isoform. PMID:24177535

Rack, Johannes G M; Vanlinden, Magali R; Lutter, Timo; Aasland, Rein; Ziegler, Mathias

2014-04-17

239

Alternative Splicing of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor PAC1: Mechanisms of Fine Tuning of Brain Activity  

PubMed Central

Alternative splicing of the precursor mRNA encoding for the neuropeptide receptor PAC1/ADCYAP1R1 generates multiple protein products that exhibit pleiotropic activities. Recent studies in mammals and zebrafish have implicated some of these splice isoforms in control of both cellular and body homeostasis. Here, we review the regulation of PAC1 splice variants and their underlying signal transduction and physiological processes in the nervous system.

Blechman, Janna; Levkowitz, Gil

2013-01-01

240

Identification and characterization of NAGNAG alternative splicing in the moss Physcomitrella patens  

PubMed Central

Background Alternative splicing (AS) involving tandem acceptors that are separated by three nucleotides (NAGNAG) is an evolutionarily widespread class of AS, which is well studied in Homo sapiens (human) and Mus musculus (mouse). It has also been shown to be common in the model seed plants Arabidopsis thaliana and Oryza sativa (rice). In one of the first studies involving sequence-based prediction of AS in plants, we performed a genome-wide identification and characterization of NAGNAG AS in the model plant Physcomitrella patens, a moss. Results Using Sanger data, we found 295 alternatively used NAGNAG acceptors in P. patens. Using 31 features and training and test datasets of constitutive and alternative NAGNAGs, we trained a classifier to predict the splicing outcome at NAGNAG tandem splice sites (alternative splicing, constitutive at the first acceptor, or constitutive at the second acceptor). Our classifier achieved a balanced specificity and sensitivity of ? 89%. Subsequently, a classifier trained exclusively on data well supported by transcript evidence was used to make genome-wide predictions of NAGNAG splicing outcomes. By generation of more transcript evidence from a next-generation sequencing platform (Roche 454), we found additional evidence for NAGNAG AS, with altogether 664 alternative NAGNAGs being detected in P. patens using all currently available transcript evidence. The 454 data also enabled us to validate the predictions of the classifier, with 64% (80/125) of the well-supported cases of AS being predicted correctly. Conclusion NAGNAG AS is just as common in the moss P. patens as it is in the seed plants A. thaliana and O. sativa (but not conserved on the level of orthologous introns), and can be predicted with high accuracy. The most informative features are the nucleotides in the NAGNAG and in its immediate vicinity, along with the splice sites scores, as found earlier for NAGNAG AS in animals. Our results suggest that the mechanism behind NAGNAG AS in plants is similar to that in animals and is largely dependent on the splice site and its immediate neighborhood.

2010-01-01

241

Alternative Splicing Governs Cone Cyclic Nucleotide-gated (CNG) Channel Sensitivity to Regulation by Phosphoinositides.  

PubMed

Precursor mRNA encoding CNGA3 subunits of cone photoreceptor cyclic nucleotide-gated (CNG) channels undergoes alternative splicing, generating isoforms differing in the N-terminal cytoplasmic region of the protein. In humans, four variants arise from alternative splicing, but the functional significance of these changes has been a persistent mystery. Heterologous expression of the four possible CNGA3 isoforms alone or with CNGB3 subunits did not reveal significant differences in basic channel properties. However, inclusion of optional exon 3, with or without optional exon 5, produced heteromeric CNGA3 + CNGB3 channels exhibiting an ?2-fold greater shift in K1/2,cGMP after phosphatidylinositol 4,5-biphosphate or phosphatidylinositol 3,4,5-trisphosphate application compared with channels lacking the sequence encoded by exon 3. We have previously identified two structural features within CNGA3 that support phosphoinositides (PIPn) regulation of cone CNG channels: N- and C-terminal regulatory modules. Specific mutations within these regions eliminated PIPn sensitivity of CNGA3 + CNGB3 channels. The exon 3 variant enhanced the component of PIPn regulation that depends on the C-terminal region rather than the nearby N-terminal region, consistent with an allosteric effect on PIPn sensitivity because of altered N-C coupling. Alternative splicing of CNGA3 occurs in multiple species, although the exact variants are not conserved across CNGA3 orthologs. Optional exon 3 appears to be unique to humans, even compared with other primates. In parallel, we found that a specific splice variant of canine CNGA3 removes a region of the protein that is necessary for high sensitivity to PIPn. CNGA3 alternative splicing may have evolved, in part, to tune the interactions between cone CNG channels and membrane-bound phosphoinositides. PMID:24675082

Dai, Gucan; Sherpa, Tshering; Varnum, Michael D

2014-05-01

242

Novel RNA structural features of an alternatively splicing group II intron from Clostridium tetani.  

PubMed

Group II introns are ribozymes in bacterial and organellar genomes that function as self-splicing introns and as retroelements. Previously, we reported that the group II intron C.te.I1 of Clostridium tetani alternatively splices in vivo to produce five distinct coding mRNAs. Accurate fusion of upstream and downstream reading frames requires a shifted 5' splice site located 8 nt upstream of the usual 5' GUGYG motif. This site is specified by the ribozyme through an altered intron/exon-binding site 1 (IBS1-EBS1) pairing. Here we use mutagenesis and self-splicing assays to investigate in more detail the significance of the structural features of the C.te.I1 ribozyme. The shifted 5' splice site is shown to be affected by structures in addition to IBS1-EBS1, and unlike other group II introns, C.te.I1 appears to require a spacer between IBS1 and the GUGYG motif. In addition, the mechanism of 3' exon recognition is modified from the ancestral IIB mechanism to a IIA-like mechanism that appears to be longer than the typical single base-pair interaction and may extend up to 4 bp. The novel ribozyme properties that have evolved for C.te.I1 illustrate the plasticity of group II introns in adapting new structural and catalytic properties that can be utilized to affect gene expression. PMID:24751650

McNeil, Bonnie A; Zimmerly, Steven

2014-06-01

243

Stepwise assembly of the Nova-regulated alternative splicing network in the vertebrate brain  

PubMed Central

Novel organismal structures in metazoans are often undergirded by complex gene regulatory networks; as such, understanding the emergence of new structures through evolution requires reconstructing the series of evolutionary steps leading to these underlying networks. Here, we reconstruct the step-by-step assembly of the vertebrate splicing network regulated by Nova, a splicing factor that modulates alternative splicing in the vertebrate central nervous system by binding to clusters of YCAY motifs on pre-RNA transcripts. Transfection of human HEK293T cells with Nova orthologs indicated vertebrate-like splicing regulatory activity in bilaterian invertebrates, thus Nova acquired the ability to bind YCAY clusters and perform vertebrate-like splicing modulation at least before the last common ancestor of bilaterians. In situ hybridization studies in several species showed that Nova expression became restricted to CNS later on, during chordate evolution. Finally, comparative genomics studies revealed a diverse history for Nova-regulated exons, with target exons arising through both de novo exon creation and acquisition of YCAY motifs by preexisting exons throughout chordate and vertebrate history. In addition, we find that tissue-specific Nova expression patterns emerged independently in other lineages, suggesting independent assembly of tissue-specific regulatory networks.

Irimia, Manuel; Denuc, Amanda; Burguera, Demian; Somorjai, Ildiko; Martin-Duran, Jose M.; Genikhovich, Grigory; Jimenez-Delgado, Senda; Technau, Ulrich; Roy, Scott W.; Marfany, Gemma; Garcia-Fernandez, Jordi

2011-01-01

244

Verification of predicted alternatively spliced Wnt genes reveals two new splice variants (CTNNB1 and LRP5) and altered Axin-1 expression during tumour progression  

PubMed Central

Background Splicing processes might play a major role in carcinogenesis and tumour progression. The Wnt pathway is of crucial relevance for cancer progression. Therefore we focussed on the Wnt/?-catenin signalling pathway in order to validate the expression of sequences predicted as alternatively spliced by bioinformatic methods. Splice variants of its key molecules were selected, which may be critical components for the understanding of colorectal tumour progression and may have the potential to act as biological markers. For some of the Wnt pathway genes the existence of splice variants was either proposed (e.g. ?-Catenin and CTNNB1) or described only in non-colon tissues (e.g. GSK3?) or hitherto not published (e.g. LRP5). Results Both splice variants – normal and alternative form – of all selected Wnt pathway components were found to be expressed in cell lines as well as in samples derived from tumour, normal and healthy tissues. All splice positions corresponded totally with the bioinformatical prediction as shown by sequencing. Two hitherto not described alternative splice forms (CTNNB1 and LRP5) were detected. Although the underlying EST data used for the bioinformatic analysis suggested a tumour-specific expression neither a qualitative nor a significant quantitative difference between the expression in tumour and healthy tissues was detected. Axin-1 expression was reduced in later stages and in samples from carcinomas forming distant metastases. Conclusion We were first to describe that splice forms of crucial genes of the Wnt-pathway are expressed in human colorectal tissue. Newly described splicefoms were found for ?-Catenin, LRP5, GSK3?, Axin-1 and CtBP1. However, the predicted cancer specificity suggested by the origin of the underlying ESTs was neither qualitatively nor significant quantitatively confirmed. That let us to conclude that EST sequence data can give adequate hints for the existence of alternative splicing in tumour tissues. That no difference in the expression of these splice forms between cancerous tissues and normal mucosa was found, may indicate that the existence of different splice forms is of less significance for cancer formation as suggested by the available EST data. The currently available EST source is still insufficient to clearly deduce colon cancer specificity. More EST data from colon (tumour and healthy) is required to make reliable predictions.

Pospisil, Heike; Herrmann, Alexander; Butherus, Kristine; Pirson, Stefan; Reich, Jens G; Kemmner, Wolfgang

2006-01-01

245

A protocol for visual analysis of alternative splicing in RNA-Seq data using integrated genome browser.  

PubMed

Ultrahigh-throughput sequencing of cDNA (RNA-Seq) is an invaluable resource for investigating alternative splicing in an organism. Alternative splicing is a form of posttranscriptional regulation in which primary RNA transcripts from a single gene can be spliced in multiple ways leading to different RNA and protein products. In plants and other species, it has been shown that many genes involved in circadian regulation are alternatively spliced. As new RNA-Seq data sets become available, these data will lead to new insights into links between regulation RNA splicing and the circadian system. Analyzing RNA-Seq data sets requires software tools that can display RNA-Seq read alignments alongside gene models, enabling assessment of how treatments or developmental stages affect splicing patterns and production of novel variants. The Integrated Genome Browser (IGB) software program is a free and flexible desktop tool that enables discovery and quantification of alternative splicing. In this protocol, we use IGB and a cold-stress RNA-Seq data set to examine alternative splicing of Arabidopsis thaliana LHY, a circadian clock regulator. IGB is freely available from http://www.bioviz.org . PMID:24792048

Gulledge, Alyssa A; Vora, Hiral; Patel, Ketan; Loraine, Ann E

2014-01-01

246

A protocol for visual analysis of alternative splicing in RNA-Seq data using Integrated Genome Browser  

PubMed Central

Summary Ultra-high throughput sequencing of cDNA (RNA-Seq) is an invaluable resource for investigating alternative splicing in an organism. Alternative splicing is a form of post-transcriptional regulation in which primary RNA transcripts from a single gene can be spliced in multiple ways leading to different RNA and protein products. In plants and other species, it has been shown that many genes involved in circadian regulation are alternatively spliced. As new RNA-Seq data sets become available, these data will lead to new insights into links between regulation RNA splicing and the circadian system. Analyzing RNA-Seq data sets requires software tools that can display RNA-Seq read alignments alongside gene models, enabling assessment of how treatments or developmental stages affect splicing patterns and production of novel variants. The Integrated Genome Browser software program (IGB) is a free and flexible desktop tool that enables discovery and quantification of alternative splicing. In this protocol, we use IGB and a cold-stress RNA-Seq data set to examine alternative splicing of Arabidopsis thaliana LHY, a circadian clock regulator. Integrated Genome Browser is freely available from http://www.bioviz.org.

Gulledge, Alyssa A.; Vora, Hiral; Patel, Ketan; Loraine, Ann E.

2014-01-01

247

Key features of the two-intron Saccharomyces cerevisiae gene SUS1 contribute to its alternative splicing  

PubMed Central

Alternative pre-mRNA splicing allows dramatic expansion of the eukaryotic proteome and facilitates cellular response to changes in environmental conditions. The Saccharomyces cerevisiae gene SUS1, which encodes a protein involved in mRNA export and histone H2B deubiquitination, contains two introns; non-canonical sequences in the first intron contribute to its retention, a common form of alternative splicing in plants and fungi. Here we show that the pattern of SUS1 splicing changes in response to environmental change such as temperature elevation, and the retained intron product is subject to nonsense-mediated decay. The activities of different splicing factors determine the pattern of SUS1 splicing, including intron retention and exon skipping. Unexpectedly, removal of the 3? intron is affected by splicing of the upstream intron, suggesting that cross-exon interactions influence intron removal. Production of different SUS1 isoforms is important for cellular function, as we find that the temperature sensitivity and histone H2B deubiquitination defects observed in sus1? cells are only partially suppressed by SUS1 cDNA, but SUS1 that is able to undergo splicing complements these phenotypes. These data illustrate a role for S. cerevisiae alternative splicing in histone modification and cellular function and reveal important mechanisms for splicing of yeast genes containing multiple introns.

Hossain, Munshi Azad; Rodriguez, Caitlin M.; Johnson, Tracy L.

2011-01-01

248

Telomere Length Is Related to Alternative Splice Patterns of Telomerase in Thyroid Tumors  

PubMed Central

Telomere dysfunction and aberrant telomerase expression play important roles in tumorigenesis. In thyroid tumors, three possibly inhibitory splice variants of the active full-length isoform of human telomerase reverse transcriptase (hTERT) may be expressed. These variants might regulate telomerase activity and telomere length because it is the fraction of the full-length isoform, rather than the total transcript level, that correlates with enzymatic activity. Telomerase reactivation may be critical in the early stages of tumorigenesis, when progressive telomere shortening may be limiting cell viability. The aim of this study was to investigate the relationship between telomere length and hTERT splice variant expression patterns in benign and well-differentiated malignant thyroid tumors. Telomere lengths of 61 thyroid tumors were examined by fluorescence in situ hybridization, comparing tumors with adjacent normal thyroid tissue on the same slide. Expression patterns of hTERT splice variants were evaluated by quantitative and nested RT-PCR. Telomere length was inversely correlated with percentage of full-length hTERT expression rather than with total hTERT expression levels. Short telomeres and high fractions of full-length hTERT transcripts were associated with follicular and papillary thyroid carcinomas, whereas long telomeres and low levels of full-length hTERT were associated with benign thyroid nodules. Intermediate levels of full-length hTERT and telomere length were found in follicular variant of papillary thyroid carcinomas and follicular adenomas.

Wang, Yongchun; Meeker, Alan K.; Kowalski, Jeanne; Tsai, Hua-Ling; Somervell, Helina; Heaphy, Christopher; Sangenario, Lauren E.; Prasad, Nijaguna; Westra, William H.; Zeiger, Martha A.; Umbricht, Christopher B.

2011-01-01

249

Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing.  

PubMed

Neurexins are evolutionarily conserved presynaptic cell-adhesion molecules that are essential for normal synapse formation and synaptic transmission. Indirect evidence has indicated that extensive alternative splicing of neurexin mRNAs may produce hundreds if not thousands of neurexin isoforms, but no direct evidence for such diversity has been available. Here we use unbiased long-read sequencing of full-length neurexin (Nrxn)1?, Nrxn1?, Nrxn2?, Nrxn3?, and Nrxn3? mRNAs to systematically assess how many sites of alternative splicing are used in neurexins with a significant frequency, and whether alternative splicing events at these sites are independent of each other. In sequencing more than 25,000 full-length mRNAs, we identified a novel, abundantly used alternatively spliced exon of Nrxn1? and Nrxn3? (referred to as alternatively spliced sequence 6) that encodes a 9-residue insertion in the flexible hinge region between the fifth LNS (laminin-?, neurexin, sex hormone-binding globulin) domain and the third EGF-like sequence. In addition, we observed several larger-scale events of alternative splicing that deleted multiple domains and were much less frequent than the canonical six sites of alternative splicing in neurexins. All of the six canonical events of alternative splicing appear to be independent of each other, suggesting that neurexins may exhibit an even larger isoform diversity than previously envisioned and comprise thousands of variants. Our data are consistent with the notion that ?-neurexins represent extracellular protein-interaction scaffolds in which different LNS and EGF domains mediate distinct interactions that affect diverse functions and are independently regulated by independent events of alternative splicing. PMID:24639501

Treutlein, Barbara; Gokce, Ozgun; Quake, Stephen R; Südhof, Thomas C

2014-04-01

250

Self-splicing of a group IIC intron: 5? exon recognition and alternative 5? splicing events implicate the stem-loop motif of a transcriptional terminator  

PubMed Central

Bacterial IIC introns are a newly recognized subclass of group II introns whose ribozyme properties have not been characterized in detail. IIC introns are typically located downstream of transcriptional terminator motifs (inverted repeat followed by T's) or other inverted repeats in bacterial genomes. Here we have characterized the self-splicing activity of a IIC intron, B.h.I1, from Bacillus halodurans. B.h.I1 self-splices in vitro through hydrolysis to produce linear intron, but interestingly, additional unexpected products were formed that were highly dependent on ionic conditions. These products were determined to represent alternative splicing events at the 5? junction and cleavages throughout the RNA transcript. The alternative splicing and cleavage events occurred at cryptic splice sites containing stem–loop and IBS1 motifs, suggesting that the 5? exon is recognized by both elements. These results provide the first example of a group II intron that uses 5? splice sites nonadjacent to the ribozyme structure. Furthermore, the data suggest that IIC introns differ from IIA and IIB introns with respect to 5? exon definition, and that the terminator stem–loop substitutes in part for the missing IBS2–EBS2 (intron and exon binding sites 2) interaction.

Toor, Navtej; Robart, Aaron R.; Christianson, Joshua; Zimmerly, Steven

2006-01-01

251

Alternative splicing of the BSC1 gene generates tissue-specific isoforms in the German cockroach.  

PubMed

Voltage-gated sodium channels are integral transmembrane proteins responsible for the rapidly-rising phase of action potentials in most excitable cells. In mammals, the functional diversity and wide distribution of sodium channel proteins in various tissues and cell types are achieved mainly by selective expression of many distinct sodium channel genes. In the model insect, Drosophila melanogaster, however, only one confirmed sodium channel gene, para, and one putative sodium channel gene, DSC1, are known. We cloned and sequenced a DSC1 ortholog, BSC1, from the German cockroach, Blattella germanica. We found that the BSC1 transcript was present in a wide range of tissues, including nerve cord, muscle, gut, fat body and ovary, whereas the para transcript was detected only in nerve cord and muscle. Moreover, different tissues contained distinct alternatively spliced variants of BSC1, and two muscle-specific spliced variants are predicted to encode truncated proteins with only the first two of the four homologous domains. Therefore, alternative splicing and expression of distinct splicing variants in functionally different tissues may be a major mechanism by which insects increase BSC1 channel diversity in neuronal and non-neuronal tissues. PMID:11267908

Liu, Z; Chung, I; Dong, K

2001-04-27

252

Alternative Splicing and Transcriptome Profiling of Experimental Autoimmune Encephalomyelitis Using Genome-Wide Exon Arrays  

PubMed Central

Background Multiple Sclerosis (MS) is a chronic inflammatory disease causing demyelination and nerve loss in the central nervous system. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS that is widely used to investigate complex pathogenic mechanisms. Transcriptional control through isoform selection and mRNA levels determines pathway activation and ultimately susceptibility to disease. Methodology/Principal Findings We have studied the role of alternative splicing and differential expression in lymph node cells from EAE-susceptible Dark Agouti (DA) and EAE-resistant Piebald Virol Glaxo.AV1 (PVG) inbred rat strains using Affymetrix Gene Chip Rat Exon 1.0 ST Arrays. Comparing the two strains, we identified 11 differentially spliced and 206 differentially expressed genes at day 7 post-immunization, as well as 9 differentially spliced and 144 differentially expressed genes upon autoantigen re-stimulation. Functional clustering and pathway analysis implicate genes for glycosylation, lymphocyte activation, potassium channel activity and cellular differentiation in EAE susceptibility. Conclusions/Significance Our results demonstrate that alternative splicing occurs during complex disease and may govern EAE susceptibility. Additionally, transcriptome analysis not only identified previously defined EAE pathways regulating the immune system, but also novel mechanisms. Furthermore, several identified genes overlap known quantitative trait loci, providing novel causative candidate targets governing EAE.

Gillett, Alan; Maratou, Klio; Fewings, Chris; Harris, Robert A.; Jagodic, Maja; Aitman, Tim; Olsson, Tomas

2009-01-01

253

Alternative splicing during Arabidopsis flower development results in constitutive and stage-regulated isoforms  

PubMed Central

Alternative splicing (AS) is a process in eukaryotic gene expression, in which the primary transcript of a multi-exon gene is spliced into two or more different mature transcripts, thereby increasing proteome diversity. AS is often regulated differentially between different tissues or developmental stages. Recent studies suggested that up to 60% of intron-containing genes in Arabidopsis thaliana undergo AS. Yet little is known about this complicated and important process during floral development. To investigate the preferential expression of different isoforms of individual alternatively spliced genes, we used high throughput RNA-Seq technology to explore the transcriptomes of three floral development stages of Arabidopsis thaliana and obtained information of various AS events. We identified approximately 24,000 genes that were expressed at one or more of these stages, and found that nearly 25% of multi-exon genes had two or more spliced variants. This is less frequent than the previously reported 40–60% for multiple organs and stages of A. thaliana, indicating that many genes expressed in floral development function with a single predominant isoform. On the other hand, 1716 isoforms were differentially expressed between the three stages, suggesting that AS might still play important roles in stage transition during floral development. Moreover, 337 novel transcribed regions were identified and most of them have a single exon. Taken together, our analyses provide a comprehensive survey of AS in floral development and facilitate further genomic and genetic studies.

Wang, Haifeng; You, Chenjiang; Chang, Fang; Wang, Yingxiang; Wang, Lei; Qi, Ji; Ma, Hong

2014-01-01

254

Specific CLK Inhibitors from a Novel Chemotype for Regulation of Alternative Splicing  

PubMed Central

Summary There is a growing recognition of the importance of protein kinases in the control of alternative splicing. To define the underlying regulatory mechanisms, highly selective inhibitors are needed. Here, we report the discovery and characterization of the dichloroindolyl enaminonitrile KH-CB19, a potent and highly specific inhibitor of the CDC2-like kinase isoforms 1 and 4 (CLK1/CLK4). Cocrystal structures of KH-CB19 with CLK1 and CLK3 revealed a non-ATP mimetic binding mode, conformational changes in helix ?C and the phosphate binding loop and halogen bonding to the kinase hinge region. KH-CB19 effectively suppressed phosphorylation of SR (serine/arginine) proteins in cells, consistent with its expected mechanism of action. Chemical inhibition of CLK1/CLK4 generated a unique pattern of splicing factor dephosphorylation and had at low nM concentration a profound effect on splicing of the two tissue factor isoforms flTF (full-length TF) and asHTF (alternatively spliced human TF).

Fedorov, Oleg; Huber, Kilian; Eisenreich, Andreas; Filippakopoulos, Panagis; King, Oliver; Bullock, Alex N.; Szklarczyk, Damian; Jensen, Lars J.; Fabbro, Doriano; Trappe, Jorg; Rauch, Ursula; Bracher, Franz; Knapp, Stefan

2011-01-01

255

REMAS: a new regression model to identify alternative splicing events from exon array data  

PubMed Central

Background Alternative splicing (AS) is an important regulatory mechanism for gene expression and protein diversity in eukaryotes. Previous studies have demonstrated that it can be causative for, or specific to splicing-related diseases. Understanding the regulation of AS will be helpful for diagnostic efforts and drug discoveries on those splicing-related diseases. As a novel exon-centric microarray platform, exon array enables a comprehensive analysis of AS by investigating the expression of known and predicted exons. Identifying of AS events from exon array has raised much attention, however, new and powerful algorithms for exon array data analysis are still absent till now. Results Here, we considered identifying of AS events in the framework of variable selection and developed a regression method for AS detection (REMAS). Firstly, features of alternatively spliced exons were scaled by reasonably defined variables. Secondly, we designed a hierarchical model which can represent gene structure and transcriptional influence to exons, and the lasso type penalties were introduced in calculation because of huge variable size. Thirdly, an iterative two-step algorithm was developed to select alternatively spliced genes and exons. To avoid negative effects introduced by small sample size, we ranked genes as parameters indicating their AS capabilities in an iterative manner. After that, both simulation and real data evaluation showed that REMAS could efficiently identify potential AS events, some of which had been validated by RT-PCR or supported by literature evidence. Conclusion As a new lasso regression algorithm based on hierarchical model, REMAS has been demonstrated as a reliable and effective method to identify AS events from exon array data.

Zheng, Hao; Hang, Xingyi; Zhu, Ji; Qian, Minping; Qu, Wubin; Zhang, Chenggang; Deng, Minghua

2009-01-01

256

Alternative splicing expands the repertoire of dominant JAZ repressors of jasmonate signaling  

PubMed Central

SUMMARY Jasmonates (JAs) are fatty acid-derived signaling compounds that control diverse aspects of plant growth, development, and immunity. The F-box protein COI1 functions both as a receptor for jasmonoyl-L-isoleucine (JA-Ile) and as the component of an E3-ubiquitin ligase complex (SCFCOI1) that targets JAZ transcriptional regulators for degradation. A key feature of JAZ proteins is the C-terminal Jas motif that mediates JA-Ile-dependent interaction with COI1. Here, we show that most JAZ genes from evolutionarily diverse plants contain a conserved intron that splits the Jas motif into 20 N-terminal and 7 C-terminal (X5PY) amino acid submotifs. In most members of the Arabidopsis JAZ family, alternative splicing events involving retention of this intron generate proteins that are truncated before the X5PY sequence. In vitro pull-down and yeast two-hybrid assays indicate that these splice variants have reduced capacity to form stable complexes with COI1 in the presence of the bioactive stereoisomer of the hormone, (3R,7S)-JA-Ile. cDNA overexpression studies showed that some, but not all, truncated splice variants are dominant repressors of JA signaling. We also show that strong constitutive expression of an intron-containing JAZ10 genomic clone is sufficient to repress JA responses. These findings provide evidence for functional differences between JAZ isoforms, and establish a direct link between alternative splicing of JAZ pre-mRNA and dominant repression of JA signal output. We propose that production of dominant JAZ repressors by alternative splicing reduces the negative consequences associated with inappropriate or hyperactivation of the JA response pathway.

Chung, Hoo Sun; Cooke, Thomas F.; DePew, Cody L.; Patel, Lalita C.; Ogawa, Narihito; Kobayashi, Yuichi; Howe, Gregg A.

2010-01-01

257

Hypoxia-Induced Alternative Splicing in Endothelial Cells  

Microsoft Academic Search

BackgroundAdaptation to low oxygen by changing gene expression is vitally important for cell survival and tissue development. The sprouting of new blood vessels, initiated from endothelial cells, restores the oxygen supply of ischemic tissues. In contrast to the transcriptional response induced by hypoxia, which is mainly mediated by members of the HIF family, there are only few studies investigating alternative

Julia E. Weigand; Jes-Niels Boeckel; Pascal Gellert; Stefanie Dimmeler

2012-01-01

258

Modulation of Stat3 Alternative Splicing in Breast Cancer.  

National Technical Information Service (NTIS)

Stat3 is a transcription factor constitutively active in a large number of breast cancers and other tumors, where it works as a central player in the activation of multiple oncogenic pathways. We developed a method to modulate endogenous Stat3 alternative...

L. Cartegni

2010-01-01

259

Alternative splicing controls nuclear translocation of the cell cycle-regulated Nek2 kinase.  

PubMed

Nek2 is a cell cycle-regulated serine/threonine protein kinase that is up-regulated in human cancers. Functionally, it is implicated in control of centrosome separation and bipolar spindle formation in mitotic cells and chromatin condensation in meiotic cells. Two major splice variants have been described in vertebrates, Nek2A and Nek2B, that differ in their non-catalytic C termini. Recently, a third splice variant, Nek2C, was identified that lacks an eight-amino acid internal sequence within the C-terminal domain of Nek2A. This excision occurs at the same position as the Nek2A/Nek2B splice point. As predicted from their high degree of similarity, we show here that Nek2C shares many properties with Nek2A including kinase activity, dimerization, protein phosphatase 1 interaction, mitotic degradation, microtubule binding, and centrosome localization. Unexpectedly, though, the non-centrosomal pool of protein exhibits a marked difference in distribution for the three splice variants. Nek2C is mainly nuclear, Nek2B is mainly cytoplasmic, and Nek2A is evenly distributed within nuclei and cytoplasm. Mutagenesis experiments revealed a functional bipartite nuclear localization sequence (NLS) that spans the splice site leading to Nek2C having a strong NLS, Nek2A having a weak NLS, and Nek2B having no NLS. Finally, we identified a 28-kDa protein in nuclear extracts as a potential novel substrate of Nek2. Thus, alternative splicing provides an unusual mechanism for modulating Nek2 localization, enabling it to have both nuclear and cytoplasmic functions. PMID:17626005

Wu, Wenjuan; Baxter, Joanne E; Wattam, Samantha L; Hayward, Daniel G; Fardilha, Margarida; Knebel, Axel; Ford, Eleanor M; da Cruz e Silva, Edgar F; Fry, Andrew M

2007-09-01

260

Factor interactions with the simian virus 40 early pre-mRNA influence branch site selection and alternative splicing.  

PubMed

To study the interaction of splicing factors with the simian virus 40 early-region pre-RNA, which can be alternatively spliced to produce large T and small t mRNAs, we used an in vitro RNase protection assay that defines the 5' boundaries of factor-RNA interactions. Protection products reflecting factor interactions with the large T and small t 5' splice sites and with the multiple lariat branch site region were characterized. All protection products were detected very early in the splicing reaction, before the appearance of spliced RNAs. However, protection of the large T 5' splice site was detected well before small t 5' splice site and branch site protection products, which appeared simultaneously. Oligonucleotide-targeted degradation of small nuclear RNAs (snRNAs) revealed that protection of the branch site region, which occurred at multiple sites, required intact U2 snRNA and was enhanced by U1 snRNA, while protection of the large T and small t 5' splice sites required both U1 and U2 snRNAs. Analysis of several pre-RNAs containing mutations in the branch site region suggests that factor interactions involving the multiple copies of the branch site consensus determine the selection of branch points, which is an important factor in the selection of alternative splicing pathways. PMID:2546057

Noble, J C; Ge, H; Chaudhuri, M; Manley, J L

1989-05-01

261

Trans-splicing and alternative-tandem-cis-splicing: two ways by which mammalian cells generate a truncated SV40 T-antigen.  

PubMed Central

The early SV40 BstXI-BamHI (Bst/Bam) DNA fragment encodes exclusively for the second exon of the large T-antigen and contains the intact small t-antigen intron. Rat cells transformed by the p14T, a construct that carries the Bst/Bam DNA fragment as a tail-to-head tandem duplication, synthesize a truncated T-antigen (T1-antigen) without having a direct equivalent at the DNA level. Formation of the T1-mRNA occurs by means of two distinct mechanisms: alternative-tandem-cis-splicing and trans-splicing. To generate the T1-mRNA the cells utilize a cryptic 5' splice site, located within the second exon of the large T-antigen and the regular small t-antigen 3' splice site. Since these splice sites are in an inverted order two Bst/Bam transcripts are required to generate one T1-mRNA molecule. For alternative-tandem-cis-splicing the cells utilize a 4.4 kb pre-mRNA that contains the sequence of the entire Bst/Bam tandem repeat. The proximal Bst/Bam segment provides the 5' donor splice site and the distal segment the 3' acceptor site. This requires that the pre-mRNA not be cleaved after the RNA polymerase II has passed the polyadenylation signal of the proximal Bst/Bam DNA segment. Synthesis of the 4.4 kb pre-mRNA was demonstrable by RT-PCR but not by Northern blot analysis. For trans-splicing, the cells utilize two separate pre-mRNA molecules. One transcript provides the cryptic 5' splice donor site and the other the 3' splice acceptor site. To demonstrate this a three base pair deletion was introduced into the proximal Bst/Bam segment of the p14T DNA (p14Tdelta-3) as a marker, destroying the recognition site for Pf/MI restriction enzyme. This deletion allowed the differentiation between the proximal and distal Bst/Bam segment. RT-PCR analysis and DNA sequencing confirmed that the p14Tdelta-3 transformed cells generate the T1-mRNA by intra- and inter-molecular RNA splicing.

Eul, J; Graessmann, M; Graessmann, A

1996-01-01

262

Minor fibrillar collagens; variable regions alternative splicing, intrinsic disorder, and tyrosine sulfation  

PubMed Central

Minor fibrillar collagen types V and XI, are those less abundant than the fibrillar collagens types I, II and III. The alpha chains share a high degree of similarity with respect to protein sequence in all domains except the variable region. Genomic variation and, in some cases, extensive alternative splicing contribute to the unique sequence characteristics of the variable region. While unique expression patterns in tissues exist, the functions and biological relevance of the variable regions have not been elucidated. In this review, we summarize the existing knowledge about expression patterns and biological functions of the collagen types V and XI alpha chains. Analysis of biochemical similarities among the peptides encoded by each exon of the variable region suggest the potential for shared function. The alternative splicing, conservation of biochemical characteristics in light of low sequence conservation, and evidence for intrinsic disorder, suggests modulation of binding events between the surface of collagen fibrils and surrounding extracellular molecules as a shared function.

Fang, Ming; Jacob, Reed; McDougal, Owen; Oxford, Julia Thom

2012-01-01

263

ASTALAVISTA: dynamic and flexible analysis of alternative splicing events in custom gene datasets  

PubMed Central

In the process of establishing more and more complete annotations of eukaryotic genomes, a constantly growing number of alternative splicing (AS) events has been reported over the last decade. Consequently, the increasing transcript coverage also revealed the real complexity of some variations in the exon–intron structure between transcript variants and the need for computational tools to address ‘complex’ AS events. ASTALAVISTA (alternative splicing transcriptional landscape visualization tool) employs an intuitive and complete notation system to univocally identify such events. The method extracts AS events dynamically from custom gene annotations, classifies them into groups of common types and visualizes a comprehensive picture of the resulting AS landscape. Thus, ASTALAVISTA can characterize AS for whole transcriptome data from reference annotations (GENCODE, REFSEQ, ENSEMBL) as well as for genes selected by the user according to common functional/structural attributes of interest: http://genome.imim.es/astalavista

Foissac, Sylvain; Sammeth, Michael

2007-01-01

264

Borrelidin modulates the alternative splicing of VEGF in favour of anti-angiogenic isoforms  

PubMed Central

The polyketide natural product borrelidin 1 is a potent inhibitor of angiogenesis and spontaneous metastasis. Affinity biopanning of a phage display library of colon tumor cell cDNAs identified the tandem WW domains of spliceosome-associated protein formin binding protein 21 (FBP21) as a novel molecular target of borrelidin, suggesting that borrelidin may act as a modulator of alternative splicing. In support of this idea, 1, and its more selective analog 2, bound to purified recombinant WW domains of FBP21. They also altered the ratio of vascular endothelial growth factor (VEGF) isoforms in retinal pigmented endothelial (RPE) cells in favour of anti-angiogenic isoforms. Transfection of RPE cells with FBP21 altered the ratio in favour of pro-angiogenic VEGF isoforms, an effect inhibited by 2. These data implicate FBP21 in the regulation of alternative splicing and suggest the potential of borrelidin analogs as tools to deconvolute key steps of spliceosome function.

2012-01-01

265

Borrelidin modulates the alternative splicing of VEGF in favour of anti-angiogenic isoforms.  

PubMed

The polyketide natural product borrelidin 1 is a potent inhibitor of angiogenesis and spontaneous metastasis. Affinity biopanning of a phage display library of colon tumor cell cDNAs identified the tandem WW domains of spliceosome-associated protein formin binding protein 21 (FBP21) as a novel molecular target of borrelidin, suggesting that borrelidin may act as a modulator of alternative splicing. In support of this idea, 1, and its more selective analog 2, bound to purified recombinant WW domains of FBP21. They also altered the ratio of vascular endothelial growth factor (VEGF) isoforms in retinal pigmented endothelial (RPE) cells in favour of anti-angiogenic isoforms. Transfection of RPE cells with FBP21 altered the ratio in favour of pro-angiogenic VEGF isoforms, an effect inhibited by 2. These data implicate FBP21 in the regulation of alternative splicing and suggest the potential of borrelidin analogs as tools to deconvolute key steps of spliceosome function. PMID:22822423

Woolard, Jeanette; Vousden, William; Moss, Steven J; Krishnakumar, Arjun; Gammons, Melissa Vr; Nowak, David G; Dixon, Neil; Micklefield, Jason; Spannhoff, Astrid; Bedford, Mark T; Gregory, Matthew A; Martin, Christine J; Leadlay, Peter F; Zhang, Ming Q; Harper, Steven J; Bates, David O; Wilkinson, Barrie

2011-02-01

266

Human Mucin MUC1 RNA Undergoes Different Types of Alternative Splicing Resulting in Multiple Isoforms  

PubMed Central

MUC1 is a transmembrane mucin with important functions in normal and transformed cells carried out by the extracellular domain or the cytoplasmic tail. A characteristic feature of the MUC1 extracellular domain is the variable number of tandem repeats (VNTR) region. Alternative splicing may regulate MUC1 expression and possibly function. We developed an RT-PCR method for efficient isolation of MUC1 mRNA isoforms that allowed us to evaluate the extent of alternative splicing of MUC1 and elucidate some of the rules that govern this process. We cloned and analyzed 21, 24, and 36 isoforms from human tumor cell lines HeLa, MCF7, and Jurkat respectively, and 16 from normal activated human T cells. Among the 78 MUC1 isoforms we isolated, 76 are new and different cells showed varied MUC1 expression patterns. The VNTR region of exon 2 was recognized as an intron with a fixed 5? splice site but variable 3? splice sites. We also report that the 3506 A/G SNP in exon 2 can regulate 3? splice sites selection in intron 1 and produce different MUC1 short isoform proteins. Furthermore, the SNP A to G mutation was also observed in vivo, during de novo tumor formation in MUC1+/?KrasG12D/+PtenloxP/loxP mice. No specific functions have been associated with previously reported short isoforms. We now report that one new G SNP-associated isoform MUC1/Y-LSP, but not the A SNP-associated isoform MUC1/Y, inhibits tumor growth in immunocompetent but not immunocompromised mice.

Zhang, Lixin; Vlad, Anda; Milcarek, Christine; Finn, Olivera J

2012-01-01

267

Activity-dependent alternative splicing increases persistent sodium current and promotes seizure  

PubMed Central

Activity of voltage-gated Na channels (Nav) is modified by alternative splicing. However, whether altered splicing of human Nav’s contributes to epilepsy remains to be conclusively shown. We show here that altered splicing of the Drosophila Nav (paralytic, DmNav) contributes to seizure-like behaviour in identified seizure-mutants. We focus attention on a pair of mutually-exclusive alternate exons (termed K and L), which form part of the voltage sensor (S4) in domain III of the expressed channel. The presence of exon L results in a large, non-inactivating, persistent INap. Many forms of human epilepsy are associated with an increase in this current. In wildtype (WT) Drosophila larvae ~70-80% of DmNav transcripts contain exon L, the remainder contain exon K. Splicing of DmNav to include exon L is increased to ~100% in both the slamdance and easily-shocked seizure-mutants. This change to splicing is prevented by reducing synaptic activity levels through exposure to the antiepileptic phenytoin or the inhibitory transmitter GABA. Conversely, enhancing synaptic activity in WT, by feeding of picrotoxin, is sufficient to increase INap and promote seizure through increased inclusion of exon L to 100%. We also show that the underlying activity-dependent mechanism requires the presence of Pasilla, an RNA-binding protein. Finally, we use computational modelling to show that increasing INap is sufficient to potentiate membrane excitability consistent with a seizure phenotype. Thus, increased synaptic excitation favors inclusion of exon L which, in turn, further increases neuronal excitability. Thus, at least in Drosophila, this self-reinforcing cycle may promote the incidence of seizure.

Lin, Wei-Hsiang; Gunay, Cengiz; Marley, Richard; Prinz, Astrid A.; Baines, Richard A.

2012-01-01

268

Distinct functions of alternatively spliced isoforms encoded by zebrafish mef2ca and mef2cb  

PubMed Central

In mammals, an array of MEF2C proteins is generated by alternative splicing (AS), yet specific functions have not been ascribed to each isoform. Teleost fish possess two MEF2C paralogues, mef2ca and mef2cb. In zebrafish, the Mef2cs function to promote cardiomyogenic differentiation and myofibrillogenesis in nascent skeletal myofibers. We found that zebrafish mef2ca and mef2cb are alternatively spliced in the coding exons 4–6 region and these splice variants differ in their biological activity. Of the two, mef2ca is more abundantly expressed in developing skeletal muscle, its activity is tuned through zebrafish development by AS. By 24 hpf, we found the prevalent expression of the highly active full length protein in differentiated muscle in the somites. The splicing isoform of mef2ca that lacks exon 5 (mef2ca 4–6), encodes a protein that has 50% lower transcriptional activity, and is found mainly earlier in development, before muscle differentiation. mef2ca transcripts including exon 5 (mef2ca 4–5–6) are present early in the embryo. Over-expression of this isoform alters the expression of genes involved in early dorso-ventral patterning of the embryo such as chordin, nodal related 1 and goosecoid, and induces severe developmental defects. AS of mef2cb generates a long splicing isoform in the exon 5 region (Mef2cbL) that predominates during somitogenesis. Mef2cbL contains an evolutionarily conserved domain derived from exonization of a fragment of intron 5, which confers the ability to induce ectopic muscle in mesoderm upon over-expression of the protein. Taken together, the data show that AS is a significant regulator of Mef2c activity.

Ganassi, M.; Badodi, S.; Polacchini, A.; Baruffaldi, F.; Battini, R.; Hughes, S.M.; Hinits, Y.; Molinari, S.

2014-01-01

269

Distinct functions of alternatively spliced isoforms encoded by zebrafish mef2ca and mef2cb.  

PubMed

In mammals, an array of MEF2C proteins is generated by alternative splicing (AS), yet specific functions have not been ascribed to each isoform. Teleost fish possess two MEF2C paralogues, mef2ca and mef2cb. In zebrafish, the Mef2cs function to promote cardiomyogenic differentiation and myofibrillogenesis in nascent skeletal myofibers. We found that zebrafish mef2ca and mef2cb are alternatively spliced in the coding exons 4-6 region and these splice variants differ in their biological activity. Of the two, mef2ca is more abundantly expressed in developing skeletal muscle, its activity is tuned through zebrafish development by AS. By 24hpf, we found the prevalent expression of the highly active full length protein in differentiated muscle in the somites. The splicing isoform of mef2ca that lacks exon 5 (mef2ca 4-6), encodes a protein that has 50% lower transcriptional activity, and is found mainly earlier in development, before muscle differentiation. mef2ca transcripts including exon 5 (mef2ca 4-5-6) are present early in the embryo. Over-expression of this isoform alters the expression of genes involved in early dorso-ventral patterning of the embryo such as chordin, nodal related 1 and goosecoid, and induces severe developmental defects. AS of mef2cb generates a long splicing isoform in the exon 5 region (Mef2cbL) that predominates during somitogenesis. Mef2cbL contains an evolutionarily conserved domain derived from exonization of a fragment of intron 5, which confers the ability to induce ectopic muscle in mesoderm upon over-expression of the protein. Taken together, the data show that AS is a significant regulator of Mef2c activity. PMID:24844180

Ganassi, M; Badodi, S; Polacchini, A; Baruffaldi, F; Battini, R; Hughes, S M; Hinits, Y; Molinari, S

2014-07-01

270

Alternative splice variants of AID are not stoichiometrically present at the protein level in chronic lymphocytic leukemia.  

PubMed

Activation-induced deaminase (AID) is a DNA-mutating enzyme that mediates class-switch recombination as well as somatic hypermutation of antibody genes in B cells. Due to off-target activity, AID is implicated in lymphoma development by introducing genome-wide DNA damage and initiating chromosomal translocations such as c-myc/IgH. Several alternative splice transcripts of AID have been reported in activated B cells as well as malignant B cells such as chronic lymphocytic leukemia (CLL). As most commercially available antibodies fail to recognize alternative splice variants, their abundance in vivo, and hence their biological significance, has not been determined. In this study, we assessed the protein levels of AID splice isoforms by introducing an AID splice reporter construct into cell lines and primary CLL cells from patients as well as from WT and TCL1(tg) C57BL/6 mice (where TCL1 is T-cell leukemia/lymphoma 1). The splice construct is 5'-fused to a GFP-tag, which is preserved in all splice isoforms and allows detection of translated protein. Summarizing, we show a thorough quantification of alternatively spliced AID transcripts and demonstrate that the corresponding protein abundances, especially those of splice variants AID-ivs3 and AID-?E4, are not stoichiometrically equivalent. Our data suggest that enhanced proteasomal degradation of low-abundance proteins might be causative for this discrepancy. PMID:24668151

Rebhandl, Stefan; Huemer, Michael; Zaborsky, Nadja; Gassner, Franz Josef; Catakovic, Kemal; Felder, Thomas Klaus; Greil, Richard; Geisberger, Roland

2014-07-01

271

ASH2L : alternative splicing and downregulation during induced megakaryocytic differentiation of multipotential leukemia cell lines  

Microsoft Academic Search

Drosophila ash2 is a member of the trxG gene super family, some human homologues of which are involved in hematopoiesis and leukemia. We report here the identification of the human homologue of Drosophila ash2 and its alternative splicing isoform, ASH2L1 and ASH2L2. ASH2L proteins are 60% homologous to Drosophila ash2. ASH2L also has a zinc finger motif (C2C2) although it

Junhua Wang; Yan Zhou; Bin Yin; Guangwei Du; Xiaowei Huang; Guangtao Li; Yan Shen; Jiangang Yuan; Boqin Qiang

2001-01-01

272

Alternative splicing tends to avoid partial removals of protein-protein interaction sites  

PubMed Central

Background Anecdotal evidence of the involvement of alternative splicing (AS) in the regulation of protein-protein interactions has been reported by several studies. AS events have been shown to significantly occur in regions where a protein interaction domain or a short linear motif is present. Several AS variants show partial or complete loss of interface residues, suggesting that AS can play a major role in the interaction regulation by selectively targeting the protein binding sites. In the present study we performed a statistical analysis of the alternative splicing of a non-redundant dataset of human protein-protein interfaces known at molecular level to determine the importance of this way of modulation of protein-protein interactions through AS. Results Using a Cochran-Mantel-Haenszel chi-square test we demonstrated that the alternative splicing-mediated partial removal of both heterodimeric and homodimeric binding sites occurs at lower frequencies than expected, and this holds true even if we consider only those isoforms whose sequence is less different from that of the canonical protein and which therefore allow to selectively regulate functional regions of the protein. On the other hand, large removals of the binding site are not significantly prevented, possibly because they are associated to drastic structural changes of the protein. The observed protection of the binding sites from AS is not preferentially directed towards putative hot spot interface residues, and is widespread to all protein functional classes. Conclusions Our findings indicate that protein-protein binding sites are generally protected from alternative splicing-mediated partial removals. However, some cases in which the binding site is selectively removed exist, and here we discuss one of them.

2013-01-01

273

Real time PCR quantification of GFR?-2 alternatively spliced isoforms in murine brain and peripheral tissues  

Microsoft Academic Search

The neurotrophic factor neurturin (NTN) is structurally related to the glial-derived neurotrophic factor (GDNF) and has been shown to prevent the degeneration of dopaminergic neurons both in vitro and in vivo. The preferred receptor for NTN is the GDNF family receptor alpha 2 (GFR?-2). To date, three protein-coding alternatively spliced GFR?-2 isoforms (GFR?-2a, GFR?-2b, GFR?-2c) have been identified in mammalian

Heng-Phon Too

2003-01-01

274

Alternative Splicing of Exon 14 Determines Nuclear or Cytoplasmic Localisation of FMR1 Protein Isoforms  

Microsoft Academic Search

Impaired expression of the FMR1 gene is responsible for the fragile X mental retardation syndrome. The FMR1 gene encodes a cytoplasmic protein with RNA-binding properties. Its complex alternative splicing leads to sev- eral isoforms, whose abundance and specific functions in the cell are not known. We have cloned in expression vectors, cDNAs corresponding to several isoforms. Western blot comparison of

Annie Sittler; Didier Devys; Chantal Weber; Jean-Louis Mandel

1996-01-01

275

Identification and Characterization of an Alternatively Spliced Isoform of Mouse Langerin\\/CD207  

Microsoft Academic Search

The mouse homologue of human Langerin (CD207), a novel Langerhans cells (LC)-restricted C-type lectin that likely participates in antigen recognition and uptake, has been recently identified. In this study, we isolated the mouse Langerin cDNA from murine fetal skin-derived dendritic cells (FSDDC) by subtractive cloning and rapid amplification of cDNA ends (RACE). An alternatively spliced variant of mouse Langerin that

Elisabeth Riedl; Yayoi Tada; Mark C. Udey

2004-01-01

276

An alternatively spliced isoform of transcriptional repressor ATF3 and its induction by stress stimuli  

Microsoft Academic Search

Activating transcription factor 3 (ATF3) is a member of the ATF\\/CREB family of transcription factors and its expression is increased by various pathophysiological conditions and in several cancer cells. In this study, we describe two alternatively spliced ATF3?Zip mRNAs: ATF3?Zip2a and ATF3?Zip2b. Both variants encoded the same truncated protein of 135 amino acids, which lacked the leucine zipper domain and

Yoshinori Hashimoto; Chun Zhang; Junya Kawauchi; Issei Imoto; M imi T. Adachi; Johji Inazawa; Teruo Amagasa; Shigetaka Kitajima

2002-01-01

277

Tissue-specific expression of two alternatively spliced isoforms of the human insulin receptor protein  

Microsoft Academic Search

Two insulin receptor mRNA species are expressed in human tissues as a result of alternative splicing of exon 11. This event is regulated in a tissue-specific manner. To date, there is little information about the relative abundance of the two receptor protein isoforms on the cell surface. The aim of the present investigation was to assess whether the tissue-specific expression

G. Sesti; A. N. Tullio; R. D'Alfonso; M. L. Napolitano; M. A. Marini; P. Borboni; R. Longhi; L. Albonici; A. Fusco; A. M. Aglianò; V. Manzari; R. Lauro

1994-01-01

278

Alternative splicing in teleost fish genomes: same-species and cross-species analysis and comparisons  

Microsoft Academic Search

Alternative splicing (AS) is a mechanism by which the coding diversity of the genome can be greatly increased. Rates of AS\\u000a are known to vary according to the complexity of eukaryotic species potentially explaining the tremendous phenotypic diversity\\u000a among species with similar numbers of coding genes. Little is known, however, about the nature or rate of AS in teleost fish.

Jianguo Lu; Eric Peatman; Wenqi Wang; Qing Yang; Jason Abernathy; Shaolin Wang; Huseyin Kucuktas; Zhanjiang Liu

2010-01-01

279

Differential expression of alternative splice variants of CTLA4 in Kuwaiti autoimmune disease patients.  

PubMed

Cytotoxic T lymphocyte associated antigen4 (CTLA4) is a candidate susceptibility gene for the study of autoimmune diseases. The present study sought to explore the expression profile of the CTLA4 gene in autoimmune patients, such as rheumatoid arthritis (RA), systemic lupus erythematous (SLE) and Hashimoto's thyroiditis (HT), compared to healthy controls (HCs). A total of 88 (22 RA, 22 SLE 22 HT, 22 HCs) age-, gender- and ethnicity-matched individuals were recruited. The hypersensitive capillary electrophoresis method was employed to detect the CTLA4 splice variants. PCRs of the patient's cDNA using CTLA4-specific primers followed by cloning and sequencing were used to distinguish the various splice variants. The biochemical properties of all known CTLA4 variants were analysed using the ExPASy and ESEfinder programmes. Six alternatively spliced variants of the CTLA4 gene were detected in this study. These included mCTLA4-672, sCTLA4-562, N-CTLA4-292, L-CTLA4-277, ssCTLA4-214 and K-CTLA4-142 bp. K-CTLA4-142 bp and N-CTLA4-292 bp represented two novel splice variants of the CTLA4 gene. A reduction in the frequency of mCTLA4-672 bp and sCTLA4-562 bp was observed in SLE and RA patients compared to healthy controls. The shortest splice variant, K-CTLA4-142 bp, was predominantly detected in all of the tested cohorts,while the decreased expression of the N-CTLA4-292 bp variant was observed in the autoimmune subjects. The exonic splice enhancer motifs of the SRp40 protein were found exactly at the splice junction of wCTLA4 (-ACAGAGC-, 2.7) and K-CTLA4 (-TGAAAAG-, 3.37), and that of the SRp55 protein was found at the splice junction of L-CTLA4 (-TGTGTG-, 2.82). Our study highlights the discrepancies in the expression spectrum of the CTLA4 gene in autoimmune patients and healthy subjects. The abnormal expression pattern of the CTLA4 gene in autoimmune patients suggests that in addition to allelic variation, the expression pattern of CTLA4 could contribute to autoimmunity. PMID:24498648

AlFadhli, Suad; Nizam, Rasheeba

2014-01-25

280

Protein phosphorylation plays an essential role in the regulation of alternative splicing and sex determination in Drosophila.  

PubMed

Alternative mRNA splicing directed by SR proteins and the splicing regulators TRA and TRA2 is an essential feature of Drosophila sex determination. These factors are highly phosphorylated, but the role of their phosphorylation in vivo is unclear. We show that mutations in the Drosophila LAMMER kinase, Doa, alter sexual differentiation and interact synergistically with tra and tra2 mutations. Doa mutations disrupt sex-specific splicing of doublesex pre-mRNA, a key regulator of sex determination, by affecting the phosphorylation of one or more proteins in the female-specific splicing enhancer complex. Examination of pre-mRNAs regulated similarly to dsx shows that the requirement for Doa is substrate specific. These results demonstrate that a SR protein kinase plays a specific role in developmentally regulated alternative splicing. PMID:9885562

Du, C; McGuffin, M E; Dauwalder, B; Rabinow, L; Mattox, W

1998-12-01

281

The role played by alternative splicing in antigenic variability in human endo-parasites  

PubMed Central

Endo-parasites that affect humans include Plasmodium, the causative agent of malaria, which remains one of the leading causes of death in human beings. Despite decades of research, vaccines to this and other endo-parasites remain elusive. This is in part due to the hyper-variability of the parasites surface proteins. Generally these surface proteins are encoded by a large family of genes, with only one being dominantly expressed at certain life stages. Another layer of complexity can be introduced through the alternative splicing of these surface proteins. The resulting isoforms may differ from each other with regard to cell localisation, substrate affinities and functions. They may even differ in structure to the extent that they are no longer recognised by the host’s immune system. In many cases this leads to changes in the N terminus of these proteins. The geographical localisation of endo-parasitic infections around the tropics and the highest incidences of HIV-1 infection in the same areas, adds a further layer of complexity as parasitic infections affect the host immune system resulting in higher HIV infection rates, faster disease progression, and an increase in the severity of infections and complications in HIV diagnosis. This review discusses some examples of parasite surface proteins that are alternatively spliced in trypanosomes, Plasmodium and the parasitic worm Schistosoma as well as what role alternate splicing may play in the interaction between HIV and these endo-parasites.

2014-01-01

282

ASPicDB: a database of annotated transcript and protein variants generated by alternative splicing  

PubMed Central

Alternative splicing is emerging as a major mechanism for the expansion of the transcriptome and proteome diversity, particularly in human and other vertebrates. However, the proportion of alternative transcripts and proteins actually endowed with functional activity is currently highly debated. We present here a new release of ASPicDB which now provides a unique annotation resource of human protein variants generated by alternative splicing. A total of 256?939 protein variants from 17?191 multi-exon genes have been extensively annotated through state of the art machine learning tools providing information of the protein type (globular and transmembrane), localization, presence of PFAM domains, signal peptides, GPI-anchor propeptides, transmembrane and coiled-coil segments. Furthermore, full-length variants can be now specifically selected based on the annotation of CAGE-tags and polyA signal and/or polyA sites, marking transcription initiation and termination sites, respectively. The retrieval can be carried out at gene, transcript, exon, protein or splice site level allowing the selection of data sets fulfilling one or more features settled by the user. The retrieval interface also enables the selection of protein variants showing specific differences in the annotated features. ASPicDB is available at http://www.caspur.it/ASPicDB/.

Martelli, Pier L.; D'Antonio, Mattia; Bonizzoni, Paola; Castrignano, Tiziana; D'Erchia, Anna M.; D'Onorio De Meo, Paolo; Fariselli, Piero; Finelli, Michele; Licciulli, Flavio; Mangiulli, Marina; Mignone, Flavio; Pavesi, Giulio; Picardi, Ernesto; Rizzi, Raffaella; Rossi, Ivan; Valletti, Alessio; Zauli, Andrea; Zambelli, Federico; Casadio, Rita; Pesole, Graziano

2011-01-01

283

MUTYH gene expression and alternative splicing in controls and polyposis patients.  

PubMed

Mutational loss of the human DNA repair gene MUTYH in the germline predisposes for colorectal polyposis and cancer, a recessively heritable disease called MUTYH-associated polyposis. The MUTYH gene shows heavy alternative splicing, but the transcripts relevant for biological function and cancer prevention have not been determined. This knowledge is required to assess the consequences that germline variants of unknown functional significance may have. We therefore quantified expression and investigated patterns of alternative splicing in control individuals, tissue samples, and carriers of two frequent germline alterations. MUTYH expression differed organ dependently, correlating with proliferative activity. Alternative first exons were used tissue specifically; transcripts for mitochondrial proteins predominated in muscle tissues, while ascending colon and testes showed the highest fractions of transcripts for nuclear proteins. Colon cancer cell lines produced predominant transcripts for nuclear protein. Exon skipping was frequent and governed by splice-site quality. Five transcripts were found to encode the biologically relevant products of the MUTYH gene. Carriers of the disease-causing mutation c.1187G>A (p.Gly396Asp) showed normal transcript composition, but the frequent single-nucleotide polymorphism rs3219468:G>C largely reduced one transcript species of MUTYH. Since this alteration decreases protein production of the gene, an increased cancer risk for compound heterozygous carriers is possible. PMID:22473953

Plotz, Guido; Casper, Markus; Raedle, Jochen; Hinrichsen, Inga; Heckel, Verena; Brieger, Angela; Trojan, Jörg; Zeuzem, Stefan

2012-07-01

284

Systematically differentiating functions for alternatively spliced isoforms through integrating RNA-seq data.  

PubMed

Integrating large-scale functional genomic data has significantly accelerated our understanding of gene functions. However, no algorithm has been developed to differentiate functions for isoforms of the same gene using high-throughput genomic data. This is because standard supervised learning requires 'ground-truth' functional annotations, which are lacking at the isoform level. To address this challenge, we developed a generic framework that interrogates public RNA-seq data at the transcript level to differentiate functions for alternatively spliced isoforms. For a specific function, our algorithm identifies the 'responsible' isoform(s) of a gene and generates classifying models at the isoform level instead of at the gene level. Through cross-validation, we demonstrated that our algorithm is effective in assigning functions to genes, especially the ones with multiple isoforms, and robust to gene expression levels and removal of homologous gene pairs. We identified genes in the mouse whose isoforms are predicted to have disparate functionalities and experimentally validated the 'responsible' isoforms using data from mammary tissue. With protein structure modeling and experimental evidence, we further validated the predicted isoform functional differences for the genes Cdkn2a and Anxa6. Our generic framework is the first to predict and differentiate functions for alternatively spliced isoforms, instead of genes, using genomic data. It is extendable to any base machine learner and other species with alternatively spliced isoforms, and shifts the current gene-centered function prediction to isoform-level predictions. PMID:24244129

Eksi, Ridvan; Li, Hong-Dong; Menon, Rajasree; Wen, Yuchen; Omenn, Gilbert S; Kretzler, Matthias; Guan, Yuanfang

2013-11-01

285

KISSPLICE: de-novo calling alternative splicing events from RNA-seq data  

PubMed Central

Background In this paper, we address the problem of identifying and quantifying polymorphisms in RNA-seq data when no reference genome is available, without assembling the full transcripts. Based on the fundamental idea that each polymorphism corresponds to a recognisable pattern in a De Bruijn graph constructed from the RNA-seq reads, we propose a general model for all polymorphisms in such graphs. We then introduce an exact algorithm, called KISSPLICE, to extract alternative splicing events. Results We show that KISSPLICE enables to identify more correct events than general purpose transcriptome assemblers. Additionally, on a 71 M reads dataset from human brain and liver tissues, KISSPLICE identified 3497 alternative splicing events, out of which 56% are not present in the annotations, which confirms recent estimates showing that the complexity of alternative splicing has been largely underestimated so far. Conclusions We propose new models and algorithms for the detection of polymorphism in RNA-seq data. This opens the way to a new kind of studies on large HTS RNA-seq datasets, where the focus is not the global reconstruction of full-length transcripts, but local assembly of polymorphic regions. KISSPLICE is available for download at http://alcovna.genouest.org/kissplice/.

2012-01-01

286

Mouse pseudouridine synthase 1: gene structure and alternative splicing of pre-mRNA.  

PubMed

Evidence for the alternative splicing of the message for mouse pseudouridine synthase 1 (mPus1p) was found when several expressed sequence tag clones were completely sequenced. The genomic DNA for the MPUS1 gene (6.9 kb) was cloned from a mouse genomic library; the gene contains seven exons, of which three are alternatively spliced. In addition, one of the internal exons (exon VI) is unusually large. RNase protection analysis confirmed that several alternatively spliced messages were present in mouse tissues and cells in culture. A Western blot of total cellular protein from mouse tissues and cultured cells was reacted with an antibody specific for mPus1p; at least three proteins were detected. One protein corresponds to the predicted molecular mass of mPus1p (44 kDa) and is the most abundant. The two other isoforms, one 2 kDa larger and one 7 kDa smaller than mPus1p, were differentially expressed. The cDNA species for the three isoforms were cloned into expression plasmids; the proteins were synthesized in vitro and tested for pseudouridine synthase activity. The two isoforms, one containing an insert of 18 amino acids in a region of the enzyme assumed to be critical for activity, and the other, which has a deletion of the protein coding potential of two exons, were both inactive on tRNA substrates that mPus1p modifies. PMID:11085940

Chen, J; Patton, J R

2000-12-01

287

The role played by alternative splicing in antigenic variability in human endo-parasites.  

PubMed

Endo-parasites that affect humans include Plasmodium, the causative agent of malaria, which remains one of the leading causes of death in human beings. Despite decades of research, vaccines to this and other endo-parasites remain elusive. This is in part due to the hyper-variability of the parasites surface proteins. Generally these surface proteins are encoded by a large family of genes, with only one being dominantly expressed at certain life stages. Another layer of complexity can be introduced through the alternative splicing of these surface proteins. The resulting isoforms may differ from each other with regard to cell localisation, substrate affinities and functions. They may even differ in structure to the extent that they are no longer recognised by the host's immune system. In many cases this leads to changes in the N terminus of these proteins. The geographical localisation of endo-parasitic infections around the tropics and the highest incidences of HIV-1 infection in the same areas, adds a further layer of complexity as parasitic infections affect the host immune system resulting in higher HIV infection rates, faster disease progression, and an increase in the severity of infections and complications in HIV diagnosis. This review discusses some examples of parasite surface proteins that are alternatively spliced in trypanosomes, Plasmodium and the parasitic worm Schistosoma as well as what role alternate splicing may play in the interaction between HIV and these endo-parasites. PMID:24472559

Hull, Rodney; Dlamini, Zodwa

2014-01-01

288

Mnk2 Alternative Splicing Modulates the p38-MAPK Pathway and Impacts Ras-Induced Transformation.  

PubMed

The kinase Mnk2 is a substrate of the MAPK pathway and phosphorylates the translation initiation factor eIF4E. In humans, MKNK2, the gene encoding for Mnk2, is alternatively spliced yielding two splicing isoforms with differing last exons: Mnk2a, which contains a MAPK-binding domain, and Mnk2b, which lacks it. We found that the Mnk2a isoform is downregulated in breast, lung, and colon tumors and is tumor suppressive. Mnk2a directly interacts with, phosphorylates, activates, and translocates p38?-MAPK into the nucleus, leading to activation of its target genes, increasing cell death and suppression of Ras-induced transformation. Alternatively, Mnk2b is pro-oncogenic and does not activate p38-MAPK, while still enhancing eIF4E phosphorylation. We further show that Mnk2a colocalization with p38?-MAPK in the nucleus is both required and sufficient for its tumor-suppressive activity. Thus, Mnk2a downregulation by alternative splicing is a tumor suppressor mechanism that is lost in some breast, lung, and colon tumors. PMID:24726367

Maimon, Avraham; Mogilevsky, Maxim; Shilo, Asaf; Golan-Gerstl, Regina; Obiedat, Akram; Ben-Hur, Vered; Lebenthal-Loinger, Ilana; Stein, Ilan; Reich, Reuven; Beenstock, Jonah; Zehorai, Eldar; Andersen, Claus L; Thorsen, Kasper; Orntoft, Torben F; Davis, Roger J; Davidson, Ben; Mu, David; Karni, Rotem

2014-04-24

289

Plasma proteomics, the Human Proteome Project, and cancer-associated alternative splice variant proteins.  

PubMed

This article addresses three inter-related subjects: the development of the Human Plasma Proteome Peptide Atlas, the launch of the Human Proteome Project, and the emergence of alternative splice variant transcripts and proteins as important features of evolution and pathogenesis. The current Plasma Peptide Atlas provides evidence on which peptides have been detected for every protein confidently identified in plasma; there are links to their spectra and their estimated abundance, facilitating the planning of targeted proteomics for biomarker studies. The Human Proteome Project (HPP) combines a chromosome-centric C-HPP with a biology and disease-driven B/D-HPP, upon a foundation of mass spectrometry, antibody, and knowledgebase resource pillars. The HPP aims to identify the approximately 7000 "missing proteins" and to characterize all proteins and their many isoforms. Success will enable the larger research community to utilize newly-available peptides, spectra, informative MS transitions, and databases for targeted analyses of priority proteins for each organ and disease. Among the isoforms of proteins, splice variants have the special feature of greatly enlarging protein diversity without enlarging the genome; evidence is accumulating of striking differential expression of splice variants in cancers. In this era of RNA-sequencing and advanced mass spectrometry, it is no longer sufficient to speak simply of increased or decreased expression of genes or proteins without carefully examining the splice variants in the protein mixture produced from each multi-exon gene. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge. PMID:24211518

Omenn, Gilbert S

2014-05-01

290

A High Throughput Assay to Identify Small Molecule Modulators of Alternative pre-mRNA Splicing  

PubMed Central

Alternative splicing (AS) is an efficient mechanism that involves the generation of transcriptome and protein diversity from a single gene. Defects in pre-mRNA splicing are an important cause of numerous diseases, including cancer. AS of pre-mRNA as a target for cancer therapy has not been well studied. We have reported previously that a splicing factor, polypyrimidine tract-binding protein (PTB) is overexpressed in ovarian tumors, compared to matched normal controls, and knockdown (KD) of PTB expression by shRNA impairs ovarian tumor cell growth, colony formation and invasiveness. Given the complexity of PTB’s molecular functions, a chemical method for controlling PTB activity might provide a therapeutic and experimental tool. However, no commercially available PTB inhibitors have yet been described. To expand our ability to find novel inhibitors, we developed a robust, fluorometric, cell-based high throughput screening HTS assay in 96-well plates that reports on the splicing activity of PTB. In an attempt to use the cells for large-scale chemical screens to identify PTB modulators, we established cell lines stably expressing the reporter gene. Our results suggest that this high throughput assay could be used to identify small molecule modulators of PTB activity. Based on these findings and the role that upregulated PTB has on cell proliferation and malignant properties of tumors targeting PTB for inhibition with small molecules offers a promising strategy for cancer therapy.

Arslan, Ahmet Dirim; He, Xiaolong; Wang, Minxiu; Rumschlag-Booms, Emily; Rong, Lijun; Beck, William T.

2012-01-01

291

Review: Alternative Splicing (AS) of Genes As An Approach for Generating Protein Complexity  

PubMed Central

Prior to the completion of the human genome project, the human genome was thought to have a greater number of genes as it seemed structurally and functionally more complex than other simpler organisms. This along with the belief of “one gene, one protein”, were demonstrated to be incorrect. The inequality in the ratio of gene to protein formation gave rise to the theory of alternative splicing (AS). AS is a mechanism by which one gene gives rise to multiple protein products. Numerous databases and online bioinformatic tools are available for the detection and analysis of AS. Bioinformatics provides an important approach to study mRNA and protein diversity by various tools such as expressed sequence tag (EST) sequences obtained from completely processed mRNA. Microarrays and deep sequencing approaches also aid in the detection of splicing events. Initially it was postulated that AS occurred only in about 5% of all genes but was later found to be more abundant. Using bioinformatic approaches, the level of AS in human genes was found to be fairly high with 35-59% of genes having at least one AS form. Our ability to determine and predict AS is important as disorders in splicing patterns may lead to abnormal splice variants resulting in genetic diseases. In addition, the diversity of proteins produced by AS poses a challenge for successful drug discovery and therefore a greater understanding of AS would be beneficial.

Roy, Bishakha; Haupt, Larisa M; Griffiths, Lyn R

2013-01-01

292

An alternatively spliced cadherin-11 enhances human breast cancer cell invasion.  

PubMed

Although reduced levels of the epithelial cell adhesion molecule E-cadherin are often associated with poorly differentiated breast cancers, recent studies show that expression of other cadherins such as N-cadherin, P-cadherin, and the mesenchymal cadherin-11 is actually elevated in invasive breast cancers and cell lines. Cadherin-11 is unique among cadherins in that it exists as two alternatively spliced forms that are expressed together in the same cell. We now show that expression of wild-type cadherin-11, with or without coexpression of the COOH-terminal truncated splice variant, promotes epithelial differentiation of the cadherin-negative SKBR3 cell line. Exogenous wild-type cadherin-11 association with and membrane recruitment of beta-catenin and p120 are unaffected by coexpression of the truncated variant. Cadherin-11-expressing cells exhibit modest changes in cell proliferation and no change in anchorage-independent growth. However, coexpression of wild-type cadherin-11 and the splice variant promotes a dramatic increase in the ability of SKBR3 cells and E-cadherin-positive MCF7 cells to traverse Matrigel-coated filters. Biochemical studies indicate that the truncated variant may be secreted from the cell and/or enter a detergent-insoluble compartment. These data suggest that the presence of the cadherin-11 splice variant promotes invasion of cadherin-11-positive breast cancer cells. PMID:12438268

Feltes, Carolyn M; Kudo, Akira; Blaschuk, Orest; Byers, Stephen W

2002-11-15

293

hnRNP A1 and secondary structure coordinate alternative splicing of Mag.  

PubMed

Myelin-associated glycoprotein (MAG) is a major component of myelin in the vertebrate central nervous system. MAG is present in the periaxonal region of the myelin structure, where it interacts with neuronal proteins to inhibit axon outgrowth and protect neurons from degeneration. Two alternatively spliced isoforms of Mag mRNA have been identified. The mRNA encoding the shorter isoform, known as S-MAG, contains a termination codon in exon 12, while the mRNA encoding the longer isoform, known as L-MAG, skips exon 12 and produces a protein with a longer C-terminal region. L-MAG is required in the central nervous system. How inclusion of Mag exon 12 is regulated is not clear. In a previous study, we showed that heteronuclear ribonucleoprotein A1 (hnRNP A1) contributes to Mag exon 12 skipping. Here, we show that hnRNP A1 interacts with an element that overlaps the 5' splice site of Mag exon 12. The element has a reduced ability to interact with the U1 snRNP compared with a mutant that improves the splice site consensus. An evolutionarily conserved secondary structure is present surrounding the element. The structure modulates interaction with both hnRNP A1 and U1. Analysis of splice isoforms produced from a series of reporter constructs demonstrates that the hnRNP A1-binding site and the secondary structure both contribute to exclusion of Mag exon 12. PMID:23704325

Zearfoss, N Ruth; Johnson, Emily S; Ryder, Sean P

2013-07-01

294

20-hydroxyecdysone mediates non-canonical regulation of mosquito vitellogenins through alternative splicing.  

PubMed

Vitellogenesis is one of the most well-studied physiological processes in mosquitoes. Expression of mosquito vitellogenin genes is classically described as being restricted to female adult reproduction. We report premature vitellogenin transcript expression in three vector mosquitoes: Culex tarsalis, Aedes aegypti and Anopheles gambiae. Vitellogenins expressed during non-reproductive stages are alternatively spliced to retain their first intron and encode premature termination codons. We show that intron retention results in transcript degradation by translation-dependent nonsense-mediated mRNA decay. This is probably an example of regulated unproductive splicing and translation (RUST), a mechanism known to regulate gene expression in numerous organisms but which has never been described in mosquitoes. We demonstrate that the hormone 20-hydroxyecdysone (20E) is responsible for regulating post-transcriptional splicing of vitellogenin. After exposure of previtellogenic fat bodies to 20E, vitellogenin expression switches from a non-productive intron-retaining transcript to a spliced protein-coding transcript. This effect is independent of factors classically known to influence transcription, such as juvenile hormone-mediated competence and amino acid signalling through the target of rapamycin pathway. Non-canonical regulation of vitellogenesis through RUST is a novel role for the multifunctional hormone 20E, and may have important implications for general patterns of gene regulation in mosquitoes. PMID:24720618

Provost-Javier, K N; Rasgon, J L

2014-08-01

295

ELAV, a Drosophila neuron-specific protein, mediates the generation of an alternatively spliced neural protein isoform  

Microsoft Academic Search

Background Tissue-specific alternative pre-mRNA splicing is a widely used mechanism for gene regulation and the generation of different protein isoforms, but relatively little is known about the factors and mechanisms that mediate this process. Tissue-specific RNA-binding proteins could mediate alternative pre-mRNA splicing. In Drosophila melanogaster, the RNA-binding protein encoded by the elav (embryonic lethal abnormal visual system) gene is a

Sandhya P. Koushika; Michael J. Lisbin; Kalpana White

1996-01-01

296

Extensive alternative splicing and dual promoter usage generates TCF-1 protein isoforms with differential transcription control properties  

Microsoft Academic Search

Previously, we reported the isolation of cDNA clones representing four alternative splice forms of TCF-1, a T-cell-specific transcription factor. In the present study, Western blotting (immunoblotting) yielded a multi- tude of TCF-1 proteins ranging from 25 to 55 kDa, a pattern not simply explained from the known splice alternatives. Subsequent cDNA cloning, PCR amplification, and analysis by rapid amplification of

M. van de Wetering; JAN CASTROP; VLADIMIR KORINEK; J. C. Clevers

1996-01-01

297

Alternative Splicing Regulation of Cancer-Related Pathways in Caenorhabditis elegans: An In Vivo Model System with a Powerful Reverse Genetics Toolbox  

PubMed Central

Alternative splicing allows for the generation of protein diversity and fine-tunes gene expression. Several model systems have been used for the in vivo study of alternative splicing. Here we review the use of the nematode Caenorhabditis elegans to study splicing regulation in vivo. Recent studies have shown that close to 25% of genes in the worm genome undergo alternative splicing. A big proportion of these events are functional, conserved, and under strict regulation either across development or other conditions. Several techniques like genome-wide RNAi screens and bichromatic reporters are available for the study of alternative splicing in worms. In this review, we focus, first, on the main studies that have been performed to dissect alternative splicing in this system and later on examples from genes that have human homologs that are implicated in cancer. The significant advancement towards understanding the regulation of alternative splicing and cancer that the C. elegans system has offered is discussed.

Barberan-Soler, Sergio; Ragle, James Matthew

2013-01-01

298

Induction of soluble AChE expression via alternative splicing by chemical stress in Drosophila melanogaster.  

PubMed

Various molecular forms of acetylcholinesterase (AChE) have been characterized in insects. Post-translational modification is known to be a major mechanism for the molecular diversity of insect AChE. However, multiple forms of Drosophila melanogaster AChE (DmAChE) were recently suggested to be generated via alternative splicing (Kim and Lee, 2013). To confirm alternative splicing as the mechanism for generating the soluble form of DmAChE, we generated a transgenic fly strain carrying the cDNA of DmAChE gene (Dm_ace) that predominantly expressed a single transcript variant encoding the membrane-anchored dimer. 3' RACE (rapid amplification of cDNA ends) and western blotting were performed to compare Dm_ace transcript variants and DmAChE forms between wild-type and transgenic strains. Various Dm_ace transcripts and DmAChE molecular forms were observed in wild-type flies, whereas the transgenic fly predominantly expressed Dm_ace transcript variant encoding the membrane-anchored dimer. This supports alternative splicing as the major determinant in the generation of multiple forms of DmAChE. In addition, treatment with DDVP as a chemical stress induced the expression of the Dm_ace splice variant without the glycosylphosphatidylinositol anchor site in a dose-dependent manner and, accordingly, the soluble form of DmAChE in wild-type flies. In contrast, little soluble DmAChE was expressed in the transgenic fly upon exposure to DDVP. DDVP bioassays revealed that transgenic flies, which were unable to express a sufficient amount of soluble monomeric DmAChE, were more sensitive to DDVP compared to wild-type flies, suggesting that the soluble monomer may exert non-neuronal functions, such as chemical defense against xenobiotics. PMID:24637386

Kim, Young Ho; Kwon, Deok Ho; Ahn, Hyo Min; Koh, Young Ho; Lee, Si Hyeock

2014-05-01

299

Identify Alternative Splicing Events Based on Position-Specific Evolutionary Conservation  

PubMed Central

The evolution of eukaryotes is accompanied by the increased complexity of alternative splicing which greatly expands genome information. One of the greatest challenges in the post-genome era is a complete revelation of human transcriptome with consideration of alternative splicing. Here, we introduce a comparative genomics approach to systemically identify alternative splicing events based on the differential evolutionary conservation between exons and introns and the high-quality annotation of the ENCODE regions. Specifically, we focus on exons that are included in some transcripts but are completely spliced out for others and we call them conditional exons. First, we characterize distinguishing features among conditional exons, constitutive exons and introns. One of the most important features is the position-specific conservation score. There are dramatic differences in conservation scores between conditional exons and constitutive exons. More importantly, the differences are position-specific. For flanking intronic regions, the differences between conditional exons and constitutive exons are also position-specific. Using the Random Forests algorithm, we can classify conditional exons with high specificities (97% for the identification of conditional exons from intron regions and 95% for the classification of known exons) and fair sensitivities (64% and 32% respectively). We applied the method to the human genome and identified 39,640 introns that actually contain conditional exons and classified 8,813 conditional exons from the current RefSeq exon list. Among those, 31,673 introns containing conditional exons and 5,294 conditional exons classified from known exons cannot be inferred from RefSeq, UCSC or Ensembl annotations. Some of these de novo predictions were experimentally verified.

Chen, Liang; Zheng, Sika

2008-01-01

300

The role of evolutionarily conserved sequences in alternative splicing at the 3' end of Drosophila melanogaster myosin heavy chain RNA.  

PubMed Central

Exon 18 of the muscle myosin heavy chain gene (Mhc) of Drosophila melanogaster is excluded from larval transcripts but included in most adult transcripts. To identify cis-acting elements regulating this alternative RNA splicing, we sequenced the 3' end of Mhc from the distantly related species D. virilis. Three noncoding regions are conserved: (1) the nonconsensus splice junctions at either end of exon 18; (2) exon 18 itself; and (3) a 30-nucleotide, pyrimidine-rich sequence located about 40 nt upstream of the 3' splice site of exon 18. We generated transgenic flies expressing Mhc mini-genes designed to test the function of these regions. Improvement of both splice sites of adult-specific exon 18 toward the consensus sequence switches the splicing pattern to include exon 18 in all larval transcripts. Thus nonconsensus splice junctions are critical to stage-specific exclusion of this exon. Deletion of nearly all of exon 18 does not affect stage-specific utilization. However, splicing of transcripts lacking the conserved pyrimidine sequence is severely disrupted in adults. Disruption is not rescued by insertion of a different polypyrimidine tract, suggesting that the conserved pyrimidine-rich sequence interacts with tissue-specific splicing factors to activate utilization of the poor splice sites of exon 18 in adult muscle.

Hodges, D; Cripps, R M; O'Connor, M E; Bernstein, S I

1999-01-01

301

Alternative Splicing in the Voltage-Gated Sodium Channel DmNav Regulates Activation, Inactivation, and Persistent Current  

PubMed Central

Diversity in neuronal signaling is a product not only of differential gene expression, but also of alternative splicing. However, although recognized, the precise contribution of alternative splicing in ion channel transcripts to channel kinetics remains poorly understood. Invertebrates, with their smaller genomes, offer attractive models to examine the contribution of splicing to neuronal function. In this study we report the sequencing and biophysical characterization of alternative splice variants of the sole voltage-gated Na+ gene (DmNav, paralytic), in late-stage embryos of Drosophila melanogaster. We identify 27 unique splice variants, based on the presence of 15 alternative exons. Heterologous expression, in Xenopus oocytes, shows that alternative exons j, e, and f primarily influence activation kinetics: when present, exon f confers a hyperpolarizing shift in half-activation voltage (V1/2), whereas j and e result in a depolarizing shift. The presence of exon h is sufficient to produce a depolarizing shift in the V1/2 of steady-state inactivation. The magnitude of the persistent Na+ current, but not the fast-inactivating current, in both oocytes and Drosophila motoneurons in vivo is directly influenced by the presence of either one of a pair of mutually exclusive, membrane-spanning exons, termed k and L. Transcripts containing k have significantly smaller persistent currents compared with those containing L. Finally, we show that transcripts lacking all cytoplasmic alternatively spliced exons still produce functional channels, indicating that splicing may influence channel kinetics not only through change to protein structure, but also by allowing differential modification (i.e., phosphorylation, binding of cofactors, etc.). Our results provide a functional basis for understanding how alternative splicing of a voltage-gated Na+ channel results in diversity in neuronal signaling.

Lin, Wei-Hsiang; Wright, Duncan E.; Muraro, Nara I.; Baines, Richard A.

2009-01-01

302

Cyclic AMP-dependent Protein Kinase Regulates the Alternative Splicing of Tau Exon 10  

PubMed Central

Hyperphosphorylation and deposition of tau into neurofibrillary tangles is a hallmark of Alzheimer disease (AD). Alternative splicing of tau exon 10 generates tau isoforms containing three or four microtubule binding repeats (3R-tau and 4R-tau), which are equally expressed in adult human brain. Dysregulation of exon 10 causes neurofibrillary degeneration. Here, we report that cyclic AMP-dependent protein kinase, PKA, phosphorylates splicing factor SRSF1, modulates its binding to tau pre-mRNA, and promotes tau exon 10 inclusion in cultured cells and in vivo in rat brain. PKA-C?, but not PKA-C?, interacts with SRSF1 and elevates SRSF1-mediated tau exon 10 inclusion. In AD brain, the decreased level of PKA-C? correlates with the increased level of 3R-tau. These findings suggest that a down-regulation of PKA dysregulates the alternative splicing of tau exon 10 and contributes to neurofibrillary degeneration in AD by causing an imbalance in 3R-tau and 4R-tau expression.

Shi, Jianhua; Qian, Wei; Yin, Xiaomin; Iqbal, Khalid; Grundke-Iqbal, Inge; Gu, Xiaosong; Ding, Fei; Gong, Cheng-Xin; Liu, Fei

2011-01-01

303

The distribution of phosphorylated SR proteins and alternative splicing are regulated by RANBP2  

PubMed Central

The mammalian cell nucleus is functionally compartmentalized into various substructures. Nuclear speckles, also known as interchromatin granule clusters, are enriched with SR splicing factors and are implicated in gene expression. Here we report that nuclear speckle formation is developmentally regulated; in certain cases phosphorylated SR proteins are absent from the nucleus and are instead localized at granular structures in the cytoplasm. To investigate how the nuclear architecture is formed, we performed a phenotypic screen of HeLa cells treated with a series of small interfering RNAs. Depletion of Ran-binding protein 2 induced cytoplasmic intermediates of nuclear speckles in G1 phase. Detailed analyses of these structures suggested that a late step in the sequential nuclear entry of mitotic interchromatin granule components was disrupted and that phosphorylated SR proteins were sequestered in an SR protein kinase–dependent manner. As a result, the cells had an imbalanced subcellular distribution of phosphorylated and hypophosphorylated SR proteins, which affected alternative splicing patterns. This study demonstrates that the speckled distribution of phosphorylated pre-mRNA processing factors is regulated by the nucleocytoplasmic transport system in mammalian cells and that it is important for alternative splicing.

Saitoh, Noriko; Sakamoto, Chiyomi; Hagiwara, Masatoshi; Agredano-Moreno, Lourdes T.; Jimenez-Garcia, Luis Felipe; Nakao, Mitsuyoshi

2012-01-01

304

Alternative splicing of a single transcription factor drives selfish reproductive behavior in honeybee workers (Apis mellifera)  

PubMed Central

In eusocial insects the production of daughters is generally restricted to mated queens, and unmated workers are functionally sterile. The evolution of this worker sterility has been plausibly explained by kin selection theory [Hamilton W (1964) J Theor Biol 7:1–52], and many traits have evolved to prevent conflict over reproduction among the females in an insect colony. In honeybees (Apis mellifera), worker reproduction is regulated by the queen, brood pheromones, and worker policing. However, workers of the Cape honeybee, Apis mellifera capensis, can evade this control and establish themselves as social parasites by activating their ovaries, parthenogenetically producing diploid female offspring (thelytoky) and producing queen-like amounts of queen pheromones. All these traits have been shown to be strongly influenced by a single locus on chromosome 13 [Lattorff HMG, et al. (2007) Biol Lett 3:292–295]. We screened this region for candidate genes and found that alternative splicing of a gene homologous to the gemini transcription factor of Drosophila controls worker sterility. Knocking out the critical exon in a series of RNAi experiments resulted in rapid worker ovary activation—one of the traits characteristic of the social parasites. This genetic switch may be controlled by a short intronic splice enhancer motif of nine nucleotides attached to the alternative splice site. The lack of this motif in parasitic Cape honeybee clones suggests that the removal of nine nucleotides from the altruistic worker genome may be sufficient to turn a honeybee from an altruistic worker into a parasite.

Jarosch, Antje; Stolle, Eckart; Crewe, Robin M.; Moritz, Robin F. A.

2011-01-01

305

Alternative splicing and promoter use in the human GABRA2 gene.  

PubMed

GABA(A) receptors mediate the majority of the fast synaptic inhibition in the mammalian brain. They are the targets of several important drugs, including benzodiazepines, which are used as anxiolytics, sedatives, anti-convulsants, and in the treatment of alcohol withdrawal symptoms. Non-coding variations in GABRA2, the gene encoding the alpha2 subunit, are associated with the risk for alcoholism, suggesting that regulatory differences are important. GABRA2 mRNAs from whole human brain and from three brain regions were examined for evidence of alternative splicing using reverse transcription-PCR and DNA sequencing. A complex pattern of alternative splicing and alternative promoter use of the human GABRA2 mRNA was demonstrated. There are four major isoforms consisting of combinations of two alternative 5' and 3' exons, as well as minor isoforms lacking exon 4 or exon 8. The alternative 5' exons each lie downstream of a functional promoter sequence, as shown by transient transfection assays. The promoter activities of naturally occurring haplotypes differed, indicating genetic differences in gene expression. PMID:15950776

Tian, Huijun; Chen, Hui-Ju; Cross, Tiffeny H; Edenberg, Howard J

2005-06-13

306

Distinct Types of Disorder in the Human Proteome: Functional Implications for Alternative Splicing  

PubMed Central

Intrinsically disordered regions have been associated with various cellular processes and are implicated in several human diseases, but their exact roles remain unclear. We previously defined two classes of conserved disordered regions in budding yeast, referred to as “flexible” and “constrained” conserved disorder. In flexible disorder, the property of disorder has been positionally conserved during evolution, whereas in constrained disorder, both the amino acid sequence and the property of disorder have been conserved. Here, we show that flexible and constrained disorder are widespread in the human proteome, and are particularly common in proteins with regulatory functions. Both classes of disordered sequences are highly enriched in regions of proteins that undergo tissue-specific (TS) alternative splicing (AS), but not in regions of proteins that undergo general (i.e., not tissue-regulated) AS. Flexible disorder is more highly enriched in TS alternative exons, whereas constrained disorder is more highly enriched in exons that flank TS alternative exons. These latter regions are also significantly more enriched in potential phosphosites and other short linear motifs associated with cell signaling. We further show that cancer driver mutations are significantly enriched in regions of proteins associated with TS and general AS. Collectively, our results point to distinct roles for TS alternative exons and flanking exons in the dynamic regulation of protein interaction networks in response to signaling activity, and they further suggest that alternatively spliced regions of proteins are often functionally altered by mutations responsible for cancer.

Michaut, Magali; Sun, Mark; Irimia, Manuel; Bellay, Jeremy; Myers, Chad L.; Blencowe, Benjamin J.; Kim, Philip M.

2013-01-01

307

Complex Alternative Splicing of the Smarca2 Gene Suggests the Importance of Smarca2-B Variants  

PubMed Central

BRM is an ATPase component of the SWI/SNF complex that regulates chromatin remodeling and cell proliferation and is considered a tumor suppressor. In this study we characterized transcripts from the Smarca2 gene that encodes the BRM protein. We found that the human Smarca2 gene (hSmarca2), like its mouse counterpart (mSmarca2), also initiated a short transcript from intron 27 of the long transcript. We name the long and short transcripts as Smarca2-a and Smarca2-b, respectively. Like its human counterpart, mSmarca2-a also underwent alternative splicing at the 54-bp exon 29. The hSmarca2-b had two alternative initiation sites and underwent alternative splicing at three different 3' sites of exon 1 and at exons 2, 3 and/or 5. We identified nine hSmarca2-b mRNA variants that might produce five different proteins. mSmarca2-b also underwent alternative splicing at exon 3 and/or exon 5, besides alternatively retaining part of intron 1 in exon 1. Smarca2-b was expressed more abundantly than Smarca2-a in many cell lines and was more sensitive to serum starvation. Moreover, cyclin D1 also regulated the expression of both Smarca2-a and Smarca2-b in a complex manner. These data suggest that the functions of the Smarca2 gene may be very complex, not just simply inhibiting cell proliferation, and in certain situations may be elicited mainly by expressing the much less known Smarca2-b, not the better studied Smarca2-a and its products BRM proteins.

Yang, Min; Sun, Yuan; Ma, Ling; Wang, Chenguang; Wu, Jian-min; Bi, Anding; Liao, D. Joshua

2011-01-01

308

Human growth hormone DNA sequence and mRNA structure: possible alternative splicing.  

PubMed Central

We have determined the complete sequence of the human growth hormone (hGH) gene and the position of the mature 5' end of the hGH mRNA within the sequence. Comparison of this sequence with that of a cloned hGH cDNA shows that the gene is interrupted by four intervening sequences. S1 mapping shows that one of these intervening sequences has two different 3' splice sites. These alternate splicing pathways generate hGH peptides of different sizes which are found in normal pituitaries. Comparison of sequences near the 5' end of the hGH mRNA with a similar region of the alpha subunit of the human glycoprotein hormones reveals an unexpected region of homology between these otherwise unrelated peptide hormones. Images

DeNoto, F M; Moore, D D; Goodman, H M

1981-01-01

309

The functional role of alternative splicing of Ca(2+)-activated K+ channels in auditory hair cells.  

PubMed

Turtle auditory hair cells are frequency tuned by the activity of large-conductance calcium-activated potassium (KCa) channels, the frequency range being dictated primarily by the channel kinetics. Seven alternatively spliced isoforms of the KCa channel alpha-subunit, resulting from exon insertion at two splice sites, were isolated from turtle hair cells. These, when expressed in Xenopus oocytes, produced KCa channels with a range of apparent calcium sensitivities and channel kinetics. However, most expressed channels were less calcium sensitive than the hair cells' native KCa channels. Coexpression of alpha-subunit with a bovine beta-subunit substantially increased the channel's calcium sensitivity while markedly slowing its kinetics, but kinetic differences between isoforms were preserved. These data suggest a molecular mechanism for hair cell frequency tuning involving differential expression of different KCa channel alpha-subunits in conjunction with an expression gradient of a regulatory beta-subunit. PMID:10414307

Jones, E M; Gray-Keller, M; Art, J J; Fettiplace, R

1999-04-30

310

Whole genome exon arrays identify differential expression of alternatively spliced, cancer-related genes in lung cancer  

Microsoft Academic Search

Alternative processing of pre-mRNA transcripts is a major source of protein diversity in eukaryotes and has been implicated in several disease processes including cancer. In this study we have performed a genome wide analysis of alternative splicing events in lung adenocarcinoma. We found that 2369 of the 17800 core Refseq genes appear to have alternative transcripts that are differentially expressed

Liqiang Xi; Andrew Feber; Vanita Gupta; Maoxin Wu; Andrew D. Bergemann; Rodney J. Landreneau; Virginia R. Litle; Arjun Pennathur; James D. Luketich; Tony E. Godfrey

2008-01-01

311

Complex changes in alternative pre-mRNA splicing play a central role in the Epithelial-Mesenchymal Transition (EMT)  

PubMed Central

The epithelial to mesenchymal transition (EMT) is an important developmental process that is also implicated in disease pathophysiology, such as cancer progression and metastasis. A wealth of literature in recent years has identified important transcriptional regulators and large-scale changes in gene expression programs that drive the phenotypic changes that occur during the EMT. However, in the past couple of years it has become apparent that extensive changes in alternative splicing also play a profound role in shaping the changes in cell behavior that characterize the EMT. While long known splicing switches in FGFR2 and p120-catenin provided hints of a larger program of EMT-associated alternative splicing, the recent identification of the epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2) began to reveal this genome-wide post-transcriptional network. Several studies have now demonstrated the truly vast extent of this alternative splicing program. The global switches in splicing associated with the EMT add an important additional layer of post-transcriptional control that works in harmony with transcriptional and epigenetic regulation to effect complex changes in cell shape, polarity, and behavior that mediate transitions between epithelial and mesenchymal cell states. Future challenges include the need to investigate the functional consequences of these splicing switches at both the individual gene as well as systems level.

Warzecha, Claude C.; Carstens, Russ P.

2012-01-01

312

Genome-wide prediction of cis-acting RNA elements regulating tissue-specific pre-mRNA alternative splicing  

PubMed Central

Background Human genes undergo various patterns of pre-mRNA splicing across different tissues. Such variation is primarily regulated by trans-acting factors that bind on exonic and intronic cis-acting RNA elements (CAEs). Here we report a computational method to mechanistically identify cis-acting RNA elements that contribute to the tissue-specific alternative splicing pattern. This method is an extension of our previous model, SplicingModeler, which predicts the significant CAEs that contribute to the splicing differences between two tissues. In this study, we introduce tissue-specific functional levels estimation step, which allows evaluating regulatory functions of predicted CAEs that are involved in more than two tissues. Results Using a publicly available Affymetrix Genechip® Human Exon Array dataset, our method identifies 652 cis-acting RNA elements (CAEs) across 11 human tissues. About one third of predicted CAEs can be mapped to the known RBP (RNA binding protein) binding sites or match with other predicted exonic splicing regulator databases. Interestingly, the vast majority of predicted CAEs are in intronic regulatory regions. A noticeable exception is that many exonic elements are found to regulate the alternative splicing between cerebellum and testes. Most identified elements are found to contribute to the alternative splicing between two tissues, while some are important in multiple tissues. This suggests that genome-wide alternative splicing patterns are regulated by a combination of tissue-specific cis-acting elements and "general elements" whose functional activities are important but differ across multiple tissues. Conclusion In this study, we present a model-based computational approach to identify potential cis-acting RNA elements by considering the exon splicing variation as the combinatorial effects of multiple cis-acting regulators. This methodology provides a novel evaluation on the functional levels of cis-acting RNA elements by estimating their tissue-specific functions on various tissues.

Wang, Xin; Wang, Kejun; Radovich, Milan; Wang, Yue; Wang, Guohua; Feng, Weixing; Sanford, Jeremy R; Liu, Yunlong

2009-01-01

313

Control of fibroblast fibronectin expression and alternative splicing via the PI3K/Akt/mTOR pathway  

SciTech Connect

Fibronectin (FN), a ubiquitous glycoprotein that plays critical roles in physiologic and pathologic conditions, undergoes alternative splicing which distinguishes plasma FN (pFN) from cellular FN (cFN). Although both pFN and cFN can be incorporated into the extracellular matrix, a distinguishing feature of cFN is the inclusion of an alternatively spliced exon termed EDA (for extra type III domain A). The molecular steps involved in EDA splicing are well-characterized, but pathways influencing EDA splicing are less clear. We have previously found an obligate role for inhibition of the tumor suppressor phosphatase and tensin homologue on chromosome 10 (PTEN), the primary regulator of the PI3K/Akt pathway, in fibroblast activation. Here we show TGF-{beta}, a potent inducer of both EDA splicing and fibroblast activation, inhibits PTEN expression and activity in mesenchymal cells, corresponding with enhanced PI3K/Akt signaling. In pten{sup -/-} fibroblasts, which resemble activated fibroblasts, inhibition of Akt attenuated FN production and decreased EDA alternative splicing. Moreover, inhibition of mammalian target of rapamycin (mTOR) in pten{sup -/-} cells also blocked FN production and EDA splicing. This effect was due to inhibition of Akt-mediated phosphorylation of the primary EDA splicing regulatory protein SF2/ASF. Importantly, FN silencing in pten{sup -/-} cells resulted in attenuated proliferation and migration. Thus, our results demonstrate that the PI3K/Akt/mTOR axis is instrumental in FN transcription and alternative splicing, which regulates cell behavior.

White, Eric S., E-mail: docew@umich.edu [Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI (United States); Sagana, Rommel L.; Booth, Adam J.; Yan, Mei; Cornett, Ashley M.; Bloomheart, Christopher A.; Tsui, Jessica L.; Wilke, Carol A.; Moore, Bethany B. [Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI (United States)] [Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI (United States); Ritzenthaler, Jeffrey D.; Roman, Jesse [Department of Medicine, University of Louisville School of Medicine, Louisville, KY (United States)] [Department of Medicine, University of Louisville School of Medicine, Louisville, KY (United States); Muro, Andres F. [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy)] [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy)

2010-10-01

314

CADM1 is expressed as multiple alternatively spliced functional and dysfunctional isoforms in human mast cells  

PubMed Central

Cell adhesion molecule 1 (CADM1) is implicated in the pathogenesis of several diseases and is responsible for adhesion and survival of mast cells (MCs). Differential expression of CADM1 isoforms was found in different species. We previously cloned SP4, SP1, SP6 and a dysfunctional isoform from human lung MCs (HLMCs) and the MC line HMC-1. The aim of this study was to identify all isoforms expressed in human MCs. The functional isoforms SP4, SP1, SP6 and SP3, with alternative splicing between exons 7/11, were detected in human MCs by RT-PCR. Two dysfunctional isoforms with alternative splicing of cryptic exons A and B between exons 1/2, leading to premature termination of translation, were found in ?40% of MC specimens. Sequencing of genomic DNA showed that splicing of cryptic exon B did not result from specific SNPs within this exon or its putative splice branch point. Highly glycosylated CADM1 (?105 kDa) was detected by western blotting, but an extracellular domain (?95 kDa) was found only in the culture medium from HLMCs, but not HMC-1 cells, indicating differential protein expression. Transfection of SP1 and SP6, but not SP4, reduced adhesion of HMC-1 cells to human lung fibroblasts but not airway smooth muscle cells. Hence, dysfunctional and functional CADM1 isoforms are found in human MCs. The longer SP1 and SP6 were most evident in differentiated HLMCs and displayed differential adhesion compared to SP4. These multiple isoforms are likely to contribute to MC function in both health and disease.

Moiseeva, Elena P.; Leyland, Mark L.; Bradding, Peter

2013-01-01

315

Prolyl 4-hydroxylase genes are subjected to alternative splicing in roots of maize seedlings under waterlogging  

PubMed Central

Background In animals, prolyl 4-hydroxylases (P4Hs) are regarded as oxygen sensors under hypoxia stress, but little is known about their role in the response to waterlogging in maize. Methods A comprehensive genome-wide analysis of P4H genes of maize (zmP4H genes) was carried out, including gene structures, phylogeny, protein motifs, chromosomal locations and expression patterns under waterlogging. Key Results Nine zmP4H genes were identified in maize, of which five were alternatively spliced into at least 19 transcripts. Different alternative splicing (AS) events were revealed in different inbred lines, even for the same gene, possibly because of organ and developmental specificities or different stresses. The signal strength of splice sites was strongly correlated with selection of donor and receptor sites, and ambiguous junction sites due to small direct repeats at the exon/intron junction frequently resulted in the selection of unconventional splicing sites. Eleven out of 14 transcripts resulting from AS harboured a premature termination codon, rendering them potential candidates for nonsense-mediated RNA degradation. Reverse transcription–PCR (RT–PCR) indicated that zmP4H genes displayed different expression patterns under waterlogging. The diverse transcripts generated from AS were expressed at different levels, suggesting that zmP4H genes were under specific control by post-transcriptional regulation under waterlogging stress in the line HZ32. Conclusions Our results provide a framework for future dissection of the function of the emerging zmP4H family and suggest that AS might have an important role in the regulation of the expression profile of this gene family under waterlogging stress.

Zou, Xiling; Jiang, Yuanyuan; Zheng, Yonglian; Zhang, Meidong; Zhang, Zuxin

2011-01-01

316

Transcriptomic Analysis of PNN- and ESRP1-Regulated Alternative Pre-mRNA Splicing in Human Corneal Epithelial Cells  

PubMed Central

Purpose. We investigated the impact of PININ (PNN) and epithelial splicing regulatory protein 1 (ESRP1) on alternative pre-mRNA splicing in the corneal epithelial context. Methods. Isoform-specific RT-PCR assays were performed on wild-type and Pnn knockout mouse cornea. Protein interactions were examined by deconvolution microscopy and co-immunoprecipitation. For genome-wide alternative splicing study, immortalized human corneal epithelial cells (HCET) harboring doxycycline-inducible shRNA against PNN or ESRP1 were created. Total RNA was isolated from four biological replicates of control and knockdown HCET cells, and subjected to hGlue3_0 transcriptome array analysis. Results. Pnn depletion in developing mouse corneal epithelium led to disrupted alternative splicing of multiple ESRP-regulated epithelial-type exons. In HCET cells, ESRP1 and PNN displayed close localization in and around nuclear speckles, and their physical association in protein complexes was identified. Whole transcriptome array analysis on ESRP1 or PNN knockdown HCET cells revealed clear alterations in transcript profiles and splicing patterns of specific subsets of genes. Separate RT-PCR validation assays confirmed successfully specific changes in exon usage of several representative splice variants, including PAX6(5a), FOXJ3, ARHGEF11, and SLC37A2. Gene ontologic analyses on ESRP1- or PNN-regulated alternative exons suggested their roles in epithelial phenotypes, such as cell morphology and movement. Conclusions. Our data suggested that ESRP1 and PNN modulate alternative splicing of a specific subset of target genes, but not general splicing events, in HCET cells to maintain or enhance epithelial characteristics.

Joo, Jeong-Hoon; Correia, Greg P.; Li, Jian-Liang; Lopez, Maria-Cecilia; Baker, Henry V.; Sugrue, Stephen P.

2013-01-01

317

The emerging role of pre-messenger RNA splicing in stress responses: sending alternative messages and silent messengers.  

PubMed

Alternative splicing (AS) of pre-messenger RNAs is a major process contributing to both transcriptome and proteome diversity in various physiological and pathological situations. There is also accumulating evidence that various stresses impact on AS. In particular, recent analyses of the transcriptome reveal large numbers of AS events that are regulated by genotoxic stress inducers like radiations and chemotherapeutic agents. Many AS events have the potential to affect the relative production of protein isoforms with different activities, as shown in the case of several genes involved in apoptosis. There is also increasing evidence that stresses induce "non-productive" splice variants, leading to a decrease in gene expression levels or preventing increases in protein levels despite transcriptional stimulation. This is typically achieved by the production of splice variants that are subject to nonsense-mediated decay. In addition, recent studies suggest that pre-mRNA splicing efficiency or fidelity may be altered by stresses. For example, various genotoxic agents induce multiple exon skipping in MDM2 transcripts, thereby preventing the production of the main p53-ubiquitin ligase and favoring p53 activity in response to genotoxic agents. In terms of mechanisms, stresses can impact on pre-mRNA splicing by inducing post-translational modifications and subcellular redistribution of splicing factors, or by targeting the communication between the splicing and transcription machineries. Altogether, these data suggest that splicing regulatory networks play a key role in the cellular responses triggered by stresses. PMID:21712650

Dutertre, Martin; Sanchez, Gabriel; Barbier, Jérôme; Corcos, Laurent; Auboeuf, Didier

2011-01-01

318

Alternative splicing by participation of the group II intron ORF in extremely halotolerant and alkaliphilic Oceanobacillus iheyensis.  

PubMed

Group II introns inserted into genes often undergo splicing at unexpected sites, and participate in the transcription of host genes. We identified five copies of a group II intron, designated Oi.Int, in the genome of an extremely halotolerant and alkaliphilic bacillus, Oceanobacillus iheyensis. The Oi.Int4 differs from the Oi.Int3 at four bases. The ligated exons of the Oi.Int4 could not be detected by RT-PCR assays in vivo or in vitro although group II introns can generally self-splice in vitro without the involvement of an intron-encoded open reading frame (ORF). In the Oi.Int4 mutants with base substitutions within the ORF, ligated exons were detected by in vitro self-splicing. It was clear that the ligation of exons during splicing is affected by the sequence of the intron-encoded ORF since the splice sites corresponded to the joining sites of the intron. In addition, the mutant introns showed unexpected multiple products with alternative 5' splice sites. These findings imply that alternative 5' splicing which causes a functional change of ligated exons presumably has influenced past adaptations of O. iheyensis to various environmental changes. PMID:21487203

Chee, Gab-Joo; Takami, Hideto

2011-01-01

319

ASPIC: a web resource for alternative splicing prediction and transcript isoforms characterization  

PubMed Central

Alternative splicing (AS) is now emerging as a major mechanism contributing to the expansion of the transcriptome and proteome complexity of multicellular organisms. The fact that a single gene locus may give rise to multiple mRNAs and protein isoforms, showing both major and subtle structural variations, is an exceptionally versatile tool in the optimization of the coding capacity of the eukaryotic genome. The huge and continuously increasing number of genome and transcript sequences provides an essential information source for the computational detection of genes AS pattern. However, much of this information is not optimally or comprehensively used in gene annotation by current genome annotation pipelines. We present here a web resource implementing the ASPIC algorithm which we developed previously for the investigation of AS of user submitted genes, based on comparative analysis of available transcript and genome data from a variety of species. The ASPIC web resource provides graphical and tabular views of the splicing patterns of all full-length mRNA isoforms compatible with the detected splice sites of genes under investigation as well as relevant structural and functional annotation. The ASPIC web resource—available at —is dynamically interconnected with the Ensembl and Unigene databases and also implements an upload facility.

Castrignano, Tiziana; Rizzi, Raffaella; Talamo, Ivano Giuseppe; De Meo, Paolo D'Onorio; Anselmo, Anna; Bonizzoni, Paola; Pesole, Graziano

2006-01-01

320

ASPIC: a web resource for alternative splicing prediction and transcript isoforms characterization.  

PubMed

Alternative splicing (AS) is now emerging as a major mechanism contributing to the expansion of the transcriptome and proteome complexity of multicellular organisms. The fact that a single gene locus may give rise to multiple mRNAs and protein isoforms, showing both major and subtle structural variations, is an exceptionally versatile tool in the optimization of the coding capacity of the eukaryotic genome. The huge and continuously increasing number of genome and transcript sequences provides an essential information source for the computational detection of genes AS pattern. However, much of this information is not optimally or comprehensively used in gene annotation by current genome annotation pipelines. We present here a web resource implementing the ASPIC algorithm which we developed previously for the investigation of AS of user submitted genes, based on comparative analysis of available transcript and genome data from a variety of species. The ASPIC web resource provides graphical and tabular views of the splicing patterns of all full-length mRNA isoforms compatible with the detected splice sites of genes under investigation as well as relevant structural and functional annotation. The ASPIC web resource-available at http://www.caspur.it/ASPIC/--is dynamically interconnected with the Ensembl and Unigene databases and also implements an upload facility. PMID:16845044

Castrignanò, Tiziana; Rizzi, Raffaella; Talamo, Ivano Giuseppe; De Meo, Paolo D'Onorio; Anselmo, Anna; Bonizzoni, Paola; Pesole, Graziano

2006-07-01

321

Novel alternative splice variants of chicken NPAS3 are expressed in the developing central nervous system.  

PubMed

We report isolation of novel splice variants of chicken Neuronal Per-Arnt-Sim domain protein 3 (cNPAS3) gene distinct from the previously predicted cNPAS3 at the 5' end. Newly identified cNPAS3 splice variants feature N-terminus coding sequences with high degrees of homology to human NPAS3 (hNAPS3). We also show that the alternative splicing pattern of NPAS3 is conserved between chicken and human. RNA in situ hybridization indicated that the expression of cNPAS3 in the developing central nervous system (CNS) is limited to the ventricular zone and only partially overlaps with that of chicken Reelin (cReelin), the only known regulatory target gene of NPAS3 in the adult brain. Overexpression of cNPAS3 by in ovo electroporation had little effect on the expression of Sox2, a marker for neural precursors, or of Isl1/2, a marker for early differentiating motor neurons. Taken together with the little effect of cNPAS3 overexpression on cReelin, it is noted that the function of NPAS3 in the developing CNS remains to be determined. Still, identification of proper cDNA sequences for cNPAS3 should represent a solid beginning of the understanding process. PMID:23962688

Shin, Jiheon; Kim, Jaesang

2013-11-10

322

E2F1 controls alternative splicing pattern of genes involved in apoptosis through upregulation of the splicing factor SC35.  

PubMed

The transcription factor E2F1 has a key function during S phase progression and apoptosis. It has been well-demonstrated that the apoptotic function of E2F1 involves its ability to transactivate pro-apoptotic target genes. Alternative splicing of pre-mRNAs also has an important function in the regulation of apoptosis. In this study, we identify the splicing factor SC35, a member of the Ser-Rich Arg (SR) proteins family, as a new transcriptional target of E2F1. We demonstrate that E2F1 requires SC35 to switch the alternative splicing profile of various apoptotic genes such as c-flip, caspases-8 and -9 and Bcl-x, towards the expression of pro-apoptotic splice variants. Finally, we provide evidence that E2F1 upregulates SC35 in response to DNA-damaging agents and show that SC35 is required for apoptosis in response to these drugs. Taken together, these results demonstrate that E2F1 controls pre-mRNA processing events to induce apoptosis and identify the SC35 SR protein as a key direct E2F1-target in this setting. PMID:18806759

Merdzhanova, G; Edmond, V; De Seranno, S; Van den Broeck, A; Corcos, L; Brambilla, C; Brambilla, E; Gazzeri, S; Eymin, B

2008-12-01

323

Differential regulation of alternative 3{prime} splicing of {epsilon} messenger RNA variants  

SciTech Connect

Alternative 3{prime} splicing of the one active human {epsilon} heavy chain gene results in variants of {epsilon} mRNA encoding distinct IgE proteins. The same relative amounts of these {epsilon} mRNA variants were produced by non-atopic donor B cells when driven in a variety of T-dependent or T-independent systems. The most abundant variants were those for classic secreted {epsilon} and a novel secreted form (CH4-M2{double_prime}). In contrast, cells from subjects with high levels of serum IgE secondary to parasitic infection or atopy spontaneously produced higher relative levels of the CH4-M2{prime} {epsilon} mRNA variant, lower relative amounts of both the membrane and CH4-M2{double_prime} secreted variants, and very low levels of the CH4{prime}-CH5 variant. The existence of and corresponding changes in levels of the CH4-M2{prime}-enclosed secreted protein were demonstrated. IL-10 induced this same differential expression of {epsilon} splice variants in vitro when used to costimulate IL-4 plus CD40-driven B cells and could differentially enhance the production of CH4-M2{prime} protein by established IgE-secreting cell lines. Inhibition of IgE by cross-linking the low affinity IgE receptor (CD23) decreased the levels of {epsilon} mRNA and resulted in a distinct pattern of {epsilon} mRNA characterized by a dramatic decrease in CH4-M2{prime} splice variant. IL-6, IL-2, or IFN-{gamma} did not change the {epsilon} mRNA pattern. Overall, the absolute and relative amounts of the different {epsilon} mRNA splice variants produced appear to be controlled in a differentiation-related fashion.

Diaz-Sanchez, D.; Zhang, K.; Saxon, A. [Univ. of California School of Medicine, Los Angeles, CA (United States)] [and others

1995-08-15

324

T Cell Activation Regulates CD6 Alternative Splicing by Transcription Dynamics and SRSF1.  

PubMed

The T cell-surface glycoprotein CD6 is a modulator of cellular responses and has been implicated in several autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and psoriasis. During Ag presentation, CD6 is targeted to the immunological synapse in a ligand binding-dependent manner, in which CD6 domain 3 directly contacts CD166, expressed on the APC. T cell activation results in the induction of CD6?d3, an alternatively spliced isoform that lacks the ligand-binding domain and thus no longer localizes at the immunological synapse. In this study, we investigated the molecular mechanisms regulating the expression of CD6?d3 upon human primary T cell activation. Using chromatin immunoprecipitation, we observed an increase in RNA polymerase II occupancy along the CD6 gene and augmented CD6 transcription. We showed that activation leads to transcription-related chromatin modifications, revealed by higher CD6 acetylation levels. Modulation of chromatin conformation using a histone deacetylase inhibitor that increases transcription rate causes an increase of exon 5 skipping. We further showed that the splicing factor SRSF1 binds to a regulatory element in CD6 intron 4, activating exon 5 splicing and promoting exon 5 inclusion. Concomitant with T cell activation-induced exon 5 skipping, we observed a downregulation of SRSF1. Using RNA immunoprecipitation, we showed that in activated T cells, SRSF1 recruitment to the CD6 transcript is impaired by increased chromatin acetylation levels. We propose that upon T cell activation, SRSF1 becomes limiting, and its function in CD6 exon 5 splicing is countered by an increase in CD6 transcription, dependent on chromatin acetylation. PMID:24890719

da Glória, Vânia G; Martins de Araújo, Mafalda; Mafalda Santos, Ana; Leal, Rafaela; de Almeida, Sérgio F; Carmo, Alexandre M; Moreira, Alexandra

2014-07-01

325

Alternative splicing resulting in nonsense-mediated mRNA decay: what is the meaning of nonsense?  

Microsoft Academic Search

Alternative splicing (AS) strongly affects gene expres- sion by generating protein isoform diversity. However, up to one-third of human AS events create a premature termination codon that would cause the resulting mRNA to be degraded by nonsense-mediated mRNA decay (NMD). The extent to which such events represent func- tionally selected post-transcriptional gene control, as opposed to noise in the splicing

Nicholas J. McGlincy; Christopher W. J. Smith

2008-01-01

326

Structure and Expression of Phosphoenolpyruvate Carboxylase Kinase Genes in Solanaceae. A Novel Gene Exhibits Alternative Splicing1  

PubMed Central

Phosphorylation of phosphoenolpyruvate carboxylase (PEPc; EC 4.1.1.31) plays an important role in the control of central metabolism in higher plants. Two PPCK (PEPc kinase) genes have been identified in tomato (Lycopersicon esculentum cv Alicante), hereafter termed LePPCK1 and LePPCK2. The function of the gene products has been confirmed by transcription of full-length cDNAs, translation, and in vitro assay of kinase activity. Previously studied PPCK genes contain a single intron. LePPCK2 also contains a novel second intron that exhibits alternative splicing. The correctly spliced transcript encodes a functional PEPc kinase, whereas unspliced or incorrectly spliced transcripts encode a truncated, inactive protein. The relative abundance of the transcripts depends on tissue and conditions. Expression of LePPCK2 was markedly increased during fruit ripening. In ripe Alicante fruit, the locule and seeds contained only the correctly spliced LePPCK2 transcripts, whereas in ripe fruit of the tomato greenflesh mutant, they contained correctly and incorrectly spliced transcripts. Potato (Solanum tuberosum) contains genes that are very similar to LePPCK1, and LePPCK2; StPPCK2 exhibits alternative splicing. Aubergine (Solanum melongena) and tobacco (Nicotiana tabacum) also contain a PPCK2 gene; the sequence of the alternatively spliced intron is highly conserved between all four species. The data suggest that the two PPCK genes have different roles in tissue-specific regulation of PEPc and that the alternative splicing of PPCK2 transcripts is functionally significant.

Marsh, Justin T.; Sullivan, Stuart; Hartwell, James; Nimmo, Hugh G.

2003-01-01

327

Alternative splicing of the tuberous sclerosis 2 (TSC2) gene in human and mouse tissues  

SciTech Connect

The recently isolated gene for tuberous sclerosis 2 (TSC2) encodes a 5.5.kb transcript that is widely expressed. The TSC2 gene product, named tuberin, is a 1784-amino-acid protein that shows a small stretch of homology to the GTPase activating protein rap1GAP. We have detected a novel variant of the TSC2 mRNA lacking 129 nucleotides, predicting an in-frame deletion of 43 amino acids spanning codons 946-988 of tuberin. This 129-bp deletion precisely corresponds to exon 25 of the TSC2 gene suggesting that alternative splicing leads to production of two forms of transcripts designated isoforms 1 and 2. Further molecular analysis revealed a third isoform exhibiting a deletion of 44 amino acids spanning codons 946-989 of tuberin. Amino acid 989 is a Ser residue encoded by the first codon of exon 26. The two isoforms also exist in newborn and adult mouse tissues, reinforcing the potential functional importance of these alternatively spliced products. These alternative isoforms should have implications for efforts aimed at identifying mutations in TSC patients. The distinct polypeptides encoded by the TSC2 gene may have different targets as well as functions involved in the regulation of cell growth. 26 refs., 4 figs.

Xu, Lin; Sterner, C.; Maheshwar, M.M. [and others] [and others

1995-06-10

328

Skipping of Exons by Premature Termination of Transcription and Alternative Splicing within Intron-5 of the Sheep SCF Gene: A Novel Splice Variant  

PubMed Central

Stem cell factor (SCF) is a growth factor, essential for haemopoiesis, mast cell development and melanogenesis. In the hematopoietic microenvironment (HM), SCF is produced either as a membrane-bound (?) or soluble (+) forms. Skin expression of SCF stimulates melanocyte migration, proliferation, differentiation, and survival. We report for the first time, a novel mRNA splice variant of SCF from the skin of white merino sheep via cloning and sequencing. Reverse transcriptase (RT)-PCR and molecular prediction revealed two different cDNA products of SCF. Full-length cDNA libraries were enriched by the method of rapid amplification of cDNA ends (RACE-PCR). Nucleotide sequencing and molecular prediction revealed that the primary 1519 base pair (bp) cDNA encodes a precursor protein of 274 amino acids (aa), commonly known as ‘soluble’ isoform. In contrast, the shorter (835 and/or 725 bp) cDNA was found to be a ‘novel’ mRNA splice variant. It contains an open reading frame (ORF) corresponding to a truncated protein of 181 aa (vs 245 aa) with an unique C-terminus lacking the primary proteolytic segment (28 aa) right after the D175G site which is necessary to produce ‘soluble’ form of SCF. This alternative splice (AS) variant was explained by the complete nucleotide sequencing of splice junction covering exon 5-intron (5)-exon 6 (948 bp) with a premature termination codon (PTC) whereby exons 6 to 9/10 are skipped (Cassette Exon, CE 6–9/10). We also demonstrated that the Northern blot analysis at transcript level is mediated via an intron-5 splicing event. Our data refine the structure of SCF gene; clarify the presence (+) and/or absence (?) of primary proteolytic-cleavage site specific SCF splice variants. This work provides a basis for understanding the functional role and regulation of SCF in hair follicle melanogenesis in sheep beyond what was known in mice, humans and other mammals.

Saravanaperumal, Siva Arumugam; Pediconi, Dario; Renieri, Carlo; La Terza, Antonietta

2012-01-01

329

A novel protein derived from the MUC1 gene by alternative splicing and frameshifting.  

PubMed

Genes that have been designated the name "MUC" code for proteins comprising mucin domains. These proteins may be involved in barrier and protective functions. The first such gene to be characterized and sequenced is the MUC1 gene. Here we report a novel small protein derived from the MUC1 gene by alternative splicing that does not contain the hallmark of mucin proteins, the mucin domain. This protein termed MUC1/ZD retains the same N-terminal MUC1 sequences as all of the other known MUC1 protein isoforms. The common N-terminal sequences comprise the signal peptide and a subsequent stretch of 30 amino acids. In contrast, the MUC1/ZD C-terminal 43 amino acids are novel and result from a reading frameshift engendered by a splicing event that forms MUC1/ZD. The expression of MUC1/ZD at the protein level in human tissues is demonstrated by Western blotting, immunohistochemistry, immunoprecipitation, and an ELISA. Utilization was made of affinity-purified MUC1/ZD-specific polyclonal antibodies as well as two different monoclonal antibodies that are monospecific for the MUC1/ZD protein. The MUC1/ZD protein is expressed in tissues as an oligomeric complex composed of monomers linked by disulfide bonds contributed by MUC1/ZD cysteine residues. MUC1/ZD protein expression did not parallel that of the tandem-repeat array-containing MUC1 protein. Results presented here demonstrate for the first time the expression of a novel MUC1 protein isoform MUC1/ZD, which is generated by an alternative splicing event that both deletes the tandem-repeat array and leads to a C-terminal reading frameshift. PMID:15623537

Levitin, Fiana; Baruch, Amos; Weiss, Mordechai; Stiegman, Keren; Hartmann, Mor-Li; Yoeli-Lerner, Merav; Ziv, Ravit; Zrihan-Licht, Sheila; Shina, Sima; Gat, Andrea; Lifschitz, Beatrice; Simha, Moshe; Stadler, Yona; Cholostoy, Alina; Gil, Benny; Greaves, David; Keydar, Iafa; Zaretsky, Joseph; Smorodinsky, Nechama; Wreschner, Daniel H

2005-03-18

330

High diversification of CD94 by alternative splicing in New World primates.  

PubMed

CD94 forms heterodimers with NKG2A, -C, or -E to constitute lectin-like natural killer cell receptors for MHC-E. Its structure differs from other C-type lectins in that the second ?-helix is replaced by a loop that forms the interacting interface with the NKG2 molecules. Although CD94 has remained highly conserved mammals, several alternative splicing variants have been detected in some species. To evaluate the prevalence and significance of this phenomenon, we have cloned and sequenced CD94 cDNAs in six species of New World primates from the Cebidae and Atelidae families. Full-length sequences had a mean similarity of 96 % amongst New World primates and of 90 % to the human orthologue, with little variation in the residues interacting with NKG2 or MHC-E molecules. Despite this high conservation, a total of 14 different splice variants were identified, half of which were shared by two or more primate species. Homology-based modeling of the C-type lectin domain showed that most isoforms folded stably, although they had modifications that prevented its interaction with NKG2 and MHC-E. Two isoforms were predicted to replace the typical CD94 loop by a second ?-helix, evidencing a domain fold transition from a CD94 structure to a canonical C-type lectin. These two structures were more similar to members of the CLEC lectin family than to the native CD94. Thus, CD94 has remained conserved in primates to maintain functional interactions with NKG2 and MHC-E, while at the same time has diversified by alternative splicing potentially providing additional functional scenarios. PMID:23370862

Galindo, John A; Cadavid, Luis F

2013-04-01

331

Runx1 exon 6-related alternative splicing isoforms differentially regulate hematopoiesis in mice.  

PubMed

RUNX1 is an important transcription factor for hematopoiesis. There are multiple alternatively spliced isoforms of RUNX1. The best known isoforms are RUNX1a from use of exon 7A and RUNX1b and c from use of exon 7B. RUNX1a has unique functions due to its lack of C-terminal regions common to RUNX1b and c. Here, we report that the ortholog of human RUNX1a was only found in primates. Furthermore, we characterized 3 Runx1 isoforms generated by exon 6 alternative splicing. Runx1bEx6(-) (Runx1b without exon 6) and a unique mouse Runx1bEx6e showed higher colony-forming activity than the full-length Runx1b (Runx1bEx6(+)). They also facilitated the transactivation of Runx1bEx6(+). To gain insight into in vivo functions, we analyzed a knock-in (KI) mouse model that lacks isoforms Runx1b/cEx6(-) and Runx1bEx6e. KI mice had significantly fewer lineage-Sca1(+)c-Kit(+) cells, short-term hematopoietic stem cells (HSCs) and multipotent progenitors than controls. In vivo competitive repopulation assays demonstrated a sevenfold difference of functional HSCs between wild-type and KI mice. Together, our results show that Runx1 isoforms involving exon 6 support high self-renewal capacity in vitro, and their loss results in reduction of the HSC pool in vivo, which underscore the importance of fine-tuning RNA splicing in hematopoiesis. PMID:24771859

Komeno, Yukiko; Yan, Ming; Matsuura, Shinobu; Lam, Kentson; Lo, Miao-Chia; Huang, Yi-Jou; Tenen, Daniel G; Downing, James R; Zhang, Dong-Er

2014-06-12

332

Quantification of type II procollagen splice forms using Alternative Transcript-qPCR (AT-qPCR)  

PubMed Central

During skeletal development, the onset of chondrogenic differentiation is marked by expression of the ?1(II) procollagen Col2a1) gene. Exon 2 of Col2a1 codes for a cysteine-rich von Willebrand factor C-like domain. Chondroprogenitors express the exon 2-containing IIA and IID splice forms by utilizing adjacent 5? splice sites separated by 3 base pairs. There is a shift to expression of the shorter, exon 2-lacking IIB splice form with further differentiation. Alternative splicing analysis of Col2a1 splice forms has often relied upon semi-quantitative PCR, using a single set of PCR primers to amplify multiple splice forms. We show that this widely used method is inaccurate due to mismatched amplification efficiency of different-sized PCR products. We have developed the TaqMan®-based AT-qPCR (Alternative Transcript-qPCR) assay to more accurately quantify alternatively spliced mRNA, and demonstrate the measurement of Col2a1 splice form expression in differentiating ATDC5 cells in vitro and in wild type mouse embryonic and postnatal cartilage in vivo. The AT-qPCR assay is based on the use of a multiple amplicon standard (MAS) plasmid, containing a chemically synthesized cluster of splice site-spanning PCR amplicons, to quantify alternative splice forms by standard curve-based qPCR. The MAS plasmid designed for Col2a1 also contained an 18S rRNA amplicon for sample normalization, and an amplicon corresponding to a region spanning exon 52-53 to measure total Col2a1 mRNA. In mouse E12.5 to P70 cartilage, we observed the expected switch between the IIA and IIB splice forms; no IID or IIC splice products were observed. However, in the ATDC5 cultures, predominant expression of the IIA and IID splice forms was found at all times in culture. Additionally, we observed that the sum of the IIA, IIB and IID splice forms comprises only a small fraction of Col2a1 transcripts containing the constitutive exon 52-53 junction. We conclude from our results that the majority of ATDC5 cells in the assay described in this study remained as chondroprogenitors during culture in standard differentiation conditions, and that additional Col2a1 transcripts may be present. The validity of this novel AT-qPCR assay was confirmed by demonstrating the expected Col2a1 isoform expression patterns in vivo in developing mouse cartilage. The ability to measure true levels of procollagen type II splice forms will provide better monitoring of chondrocyte differentiation in other model systems. In addition, the AT-qPCR assay described here could be applied to any gene of interest to detect and quantify known and predicted alternative splice forms and can be scaled up for high throughput assays.

McAlinden, Audrey; Shim, Kyu-Hwan; Wirthlin, Louisa; Ravindran, Soumya; Hering, Thomas M.

2012-01-01

333

Genomic organisation and alternative splicing of mouse and human thioredoxin reductase 1 genes  

PubMed Central

Background Thioredoxin reductase (TR) is a redox active protein involved in many cellular processes as part of the thioredoxin system. Presently there are three recognised forms of mammalian thioredoxin reductase designated as TR1, TR3 and TGR, that represent the cytosolic, mitochondrial and novel forms respectively. In this study we elucidated the genomic organisation of the mouse (Txnrd1) and human thioredoxin reductase 1 genes (TXNRD1) through library screening, restriction mapping and database mining. Results The human TXNRD1 gene spans 100 kb of genomic DNA organised into 16 exons and the mouse Txnrd1 gene has a similar exon/intron arrangement. We also analysed the alternative splicing patterns displayed by the mouse and human thioredoxin reductase 1 genes and mapped the different mRNA isoforms with respect to genomic organisation. These isoforms differ at the 5' end and encode putative proteins of different molecular mass. Genomic DNA sequences upstream of mouse exon 1 were compared to the human promoter to identify conserved elements. Conclusions The human and mouse thioredoxin reductase 1 gene organisation is highly conserved and both genes exhibit alternative splicing at the 5' end. The mouse and human promoters share some conserved sequences.

Osborne, Simone A; Tonissen, Kathryn F

2001-01-01

334

Transcriptional regulation and alternative splicing cooperate in muscle fiber-type specification in flies and mammals  

PubMed Central

Muscles coordinate body movements throughout the animal kingdom. Each skeletal muscle is built of large, multi-nucleated cells, called myofibers, which are classified into several functionally distinct types. The typical fiber-type composition of each muscle arises during development, and in mammals is extensively adjusted in response to postnatal exercise. Understanding how functionally distinct muscle fiber-types arise is important for unraveling the molecular basis of diseases from cardiomyopathies to muscular dystrophies. In this review, we focus on recent advances in Drosophila and mammals in understanding how muscle fiber-type specification is controlled by the regulation of transcription and alternative splicing. We illustrate the cooperation of general myogenic transcription factors with muscle fiber-type specific transcriptional regulators as a basic principle for fiber-type specification, which is conserved from flies to mammals. We also examine how regulated alternative splicing of sarcomeric proteins in both flies and mammals can directly instruct the physiological and biophysical differences between fiber-types. Thus, research in Drosophila can provide important mechanistic insight into muscle fiber specification, which is relevant to homologous processes in mammals and to the pathology of muscle diseases.

Spletter, Maria L.; Schnorrer, Frank

2014-01-01

335

Transcription factor BACH1 is recruited to the nucleus by its novel alternative spliced isoform.  

PubMed

The transcription factor Bach1 is a member of a novel family of broad complex, tramtrack, bric-a-brac/poxvirus and zinc finger (BTB/POZ) basic region leucine zipper factors. Bach1 forms a heterodimer with MafK, a member of the small Maf protein family (MafF, MafG, and MafK), which recognizes the NF-E2/Maf recognition element, a cis-regulatory motif containing a 12-O-tetradecanoylphorbol-13-acetate-responsive element. Here we describe the gene structure of human BACH1, including a newly identified promoter and an alternatively RNA-spliced truncated form of BACH1, designated BACH1t, abundantly transcribed in human testis. The alternate splicing originated from the usage of a novel exon located 5.6 kilobase pairs downstream of the exon encoding the leucine zipper domain, and produced a protein that contained the conserved BTB/POZ, Cap'n collar, and basic region domains, but lacked the leucine zipper domain essential for NF-E2/Maf recognition element binding. Subcellular localization studies using green fluorescent protein as a reporter showed that full-length BACH1 localized to the cytoplasm, whereas BACH1t accumulated in the nucleus. Interestingly, coexpression of BACH1 and BACH1t demonstrated interaction between the molecules and the induction of nuclear import of BACH1. These results suggested that BACH1t recruits BACH1 to the nucleus through BTB domain-mediated interaction. PMID:11069897

Kanezaki, R; Toki, T; Yokoyama, M; Yomogida, K; Sugiyama, K; Yamamoto, M; Igarashi, K; Ito, E

2001-03-01

336

Novel Fatty Acid Desaturase 3 (FADS3) Transcripts Generated By Alternative Splicing  

PubMed Central

Fatty acid desaturase 1 and 2 (FADS1 and FADS2) code for the key desaturase enzymes involved in the biosynthesis of long chain polyunsaturated fatty acids in mammals. FADS3 shares close sequence homology to FADS1 and FADS2 but the function of its gene product remains unknown. Alternative transcripts (AT) generated by alternative splicing (AS) are increasingly recognized as an important mechanism enabling a single gene to code for multiple gene products. We report the first AT of a FADS gene, FADS3, generated by AS. Aided by ORF Finder, we identified putative coding regions of eight AT for FADS3 with 1.34 kb (classical splicing), 1.14 (AT1), 0.77 (AT2), 1.25 (AT3), 0.51 (AT4), 0.74 (AT6), and 1.11 (AT7). In addition we identified a 0.51 kb length transcript (AT5) that has a termination codon within intron 8–9. The expression of each AT was analyzed in baboon neonate tissues and in differentiated and undifferentiated human SK-N-SH neuroblastoma cells. FADS3 AT are expressed in 12 neonate baboon tissues and showed reciprocal increases and decreases in expression changes in response to human neuronal cell differentiation. FADS3 AT, conserved in primates and under metabolic control in human cells, are a putative mediator of LCPUFA biosynthesis and/or regulation.

Park, Woo Jung; Kothapalli, Kumar SD; Reardon, Holly T; Kim, Luke Y.; Brenna, J. Thomas

2009-01-01

337

Identification and characterization of novel alternative splice variants of human SAMD11.  

PubMed

Sterile alpha motif domain-containing 11 (SAMD11) is evolutionarily conserved from zebrafish to human. Mouse Samd11 is predominantly expressed in developing retinal photoreceptors and the adult pineal gland, and its transcription is directly regulated by the cone-rod homeodomain protein Crx. However, there has been little research on human SAMD11. To investigate the function of human SAMD11, we first cloned its coding sequence (CDS) and identified up to 45 novel alternative splice variants (ASVs). Mouse Samd11 ASVs were also identified by aligning the mouse Samd11 expressed sequence tags (ESTs) with the annotated sequence. However, the range of expression and transcriptional regulation of SAMD11 differs between human and mouse. Human SAMD11 was found to be widely expressed in many cell lines and ocular tissues and its transcription was not regulated by CRX, OTX2 or NR2E3 proteins. Furthermore, functional analysis indicated that human SAMD11 could promote cell proliferation slightly. In conclusion, this study elucidated the basic characteristics of human SAMD11 and revealed that, although the occurrence of alternative splicing of SAMD11 was conserved, the function of SAMD11 may vary in different species. PMID:23978614

Jin, Guorong; Long, Chongde; Liu, Weiwei; Tang, Yan; Zhu, Yujuan; Zhou, Xin; Ai, Yang; Zhang, Qingjiong; Shen, Huangxuan

2013-11-10

338

Transcriptional regulation and alternative splicing cooperate in muscle fiber-type specification in flies and mammals.  

PubMed

Muscles coordinate body movements throughout the animal kingdom. Each skeletal muscle is built of large, multi-nucleated cells, called myofibers, which are classified into several functionally distinct types. The typical fiber-type composition of each muscle arises during development, and in mammals is extensively adjusted in response to postnatal exercise. Understanding how functionally distinct muscle fiber-types arise is important for unraveling the molecular basis of diseases from cardiomyopathies to muscular dystrophies. In this review, we focus on recent advances in Drosophila and mammals in understanding how muscle fiber-type specification is controlled by the regulation of transcription and alternative splicing. We illustrate the cooperation of general myogenic transcription factors with muscle fiber-type specific transcriptional regulators as a basic principle for fiber-type specification, which is conserved from flies to mammals. We also examine how regulated alternative splicing of sarcomeric proteins in both flies and mammals can directly instruct the physiological and biophysical differences between fiber-types. Thus, research in Drosophila can provide important mechanistic insight into muscle fiber specification, which is relevant to homologous processes in mammals and to the pathology of muscle diseases. PMID:24145055

Spletter, Maria L; Schnorrer, Frank

2014-02-01

339

Human liver glucokinase gene: Cloning and sequence determination of two alternatively spliced cDNAs  

SciTech Connect

A human liver glucokinase was isolated from a liver cDNA library. This cDNA (hLGLK1) appeared to be full length as its size was consistent with a single 2.8-kilobase (kb) glucokinase mRNA on Northern blot analysis of liver poly(A){sup +}RNA. The cDNA contained an open reading frame of 1392 bp that predicted a protein of 464 amino acids and a molecular mass of 52 kDa; this protein has 97% identity to rat liver glucokinase. Fourteen residues on the amino terminus of the predicted human liver glucokinase, however, differed completely from those of the predicted rat liver enzyme and could be explained by alternative splicing of a 124-bp cassette exon in human cDNA. A second glucokinase cDNA (hLGLK2), missing the 124-bp cassette exon, was isolated by PCR amplification of human liver cDNA. These results suggested that the alternative splicing of a cassette exon in hLGLK1 resulted in an mRNA with an upstream initiator codon and reduced function. The relative biological activity of the two isoforms of human glucokinase and their possible developmental and/or metabolic regulation remain to be determined.

Tanizawa, Yukio; Koranyi, L.I.; Welling, C.M.; Permutt, M.A. (Washington Univ., St. Louis, MO (United States))

1991-08-15

340

Alternative splicing: A missing piece in the puzzle of intron gain  

PubMed Central

Spliceosomal introns, a hallmark of eukaryotic gene organization, were an unexpected discovery. After three decades, crucial issues such as when and how introns first appeared in evolution remain unsettled. An issue yet to be answered is how intron positions arise de novo. Phylogenetic investigations concur that intron positions continue to emerge, at least in some lineages. Yet genomic scans for the sources of introns occupying new positions have been fruitless. Two alternative solutions to this paradox are: (i) formation of new intron positions halted before the recent past and (ii) it continues to occur, but through processes different from those generally assumed. One process generally dismissed is intron sliding—the relocation of a preexisting intron over short distances—because of supposed associated deleterious effects. The puzzle of intron gain arises owing to a pervasive operational definition of introns, which sees them as precisely demarcated segments of the genome separated from the neighboring nonintronic DNA by unmovable limits. Intron homology is defined as position homology. Recent studies of pre-mRNA processing indicate that this assumption needs to be revised. We incorporate recent advances on the evolutionarily frequent process of alternative splicing, by which exons of primary transcripts are spliced in different patterns, into a new model of intron sliding that accounts for the diversity of intron positions. We posit that intron positional diversity is driven by two overlapping processes: (i) background process of continuous relocation of preexisting introns by sliding and (ii) spurts of extensive gain/loss of new intron sequences.

Tarrio, Rosa; Ayala, Francisco J.; Rodriguez-Trelles, Francisco

2008-01-01

341

Understanding alternative splicing of Cav1.2 calcium channels for a new approach towards individualized medicine.  

PubMed

Calcium channel blockers (CCBs) are widely used to treat cardiovascular diseases such as hypertension, angina pectoris, hypertrophic cardiomyopathy, and supraventricular tachycardia. CCBs selectively inhibit the inward flow of calcium ions through voltage-gated calcium channels, particularly Cav1.2, that are expressed in the cardiovascular system. Changes to the molecular structure of Cav1.2 channels could affect sensitivity of the channels to blockade by CCBs. Recently, extensive alternative splicing was found in Cav1.2 channels that generated wide phenotypic variations. Cardiac and smooth muscles express slightly different, but functionally important Cav1.2 splice variants. Alternative splicing could also modulate the gating properties of the channels and giving rise to different responses to inhibition by CCBs. Importantly, alternative splicing of Cav1.2 channels may play an important role to influence the outcome of many cardiovascular disorders. Therefore, the understanding of how alternative splicing impacts Cav1.2 channels pharmacology in various diseases and different organs may provide the possibility for individualized therapy with minimal side effects. PMID:23554629

Liao, Ping; Soong, Tuck Wah

2010-05-01

342

Drosophila Muscleblind Is Involved in troponin T Alternative Splicing and Apoptosis  

PubMed Central

Background Muscleblind-like proteins (MBNL) have been involved in a developmental switch in the use of defined cassette exons. Such transition fails in the CTG repeat expansion disease myotonic dystrophy due, in part, to sequestration of MBNL proteins by CUG repeat RNA. Four protein isoforms (MblA-D) are coded by the unique Drosophila muscleblind gene. Methodology/Principal Findings We used evolutionary, genetic and cell culture approaches to study muscleblind (mbl) function in flies. The evolutionary study showed that the MblC protein isoform was readily conserved from nematods to Drosophila, which suggests that it performs the most ancestral muscleblind functions. Overexpression of MblC in the fly eye precursors led to an externally rough eye morphology. This phenotype was used in a genetic screen to identify five dominant suppressors and 13 dominant enhancers including Drosophila CUG-BP1 homolog aret, exon junction complex components tsunagi and Aly, and pro-apoptotic genes Traf1 and reaper. We further investigated Muscleblind implication in apoptosis and splicing regulation. We found missplicing of troponin T in muscleblind mutant pupae and confirmed Muscleblind ability to regulate mouse fast skeletal muscle Troponin T (TnnT3) minigene splicing in human HEK cells. MblC overexpression in the wing imaginal disc activated apoptosis in a spatially restricted manner. Bioinformatics analysis identified a conserved FKRP motif, weakly resembling a sumoylation target site, in the MblC-specific sequence. Site-directed mutagenesis of the motif revealed no change in activity of mutant MblC on TnnT3 minigene splicing or aberrant binding to CUG repeat RNA, but altered the ability of the protein to form perinuclear aggregates and enhanced cell death-inducing activity of MblC overexpression. Conclusions/Significance Taken together our genetic approach identify cellular processes influenced by Muscleblind function, whereas in vivo and cell culture experiments define Drosophila troponin T as a new Muscleblind target, reveal a potential involvement of MblC in programmed cell death and recognize the FKRP motif as a putative regulator of MblC function and/or subcellular location in the cell.

Vicente-Crespo, Marta; Pascual, Maya; Fernandez-Costa, Juan M.; Garcia-Lopez, Amparo; Monferrer, Lidon; Miranda, M. Eugenia; Zhou, Lei; Artero, Ruben D.

2008-01-01

343

The human XPC DNA repair gene: arrangement, splice site information content and influence of a single nucleotide polymorphism in a splice acceptor site on alternative splicing and function  

PubMed Central

XPC DNA repair gene mutations result in the cancer-prone disorder xeroderma pigmentosum. The XPC gene spans 33 kb and has 16 exons (82–882 bp) and 15 introns (0.08–5.4 kb). A 1.6 kb intron was found within exon 5. Sensitive real- time quantitative reverse transcription–polymerase chain reaction methods were developed to measure full-length XPC mRNA (the predominant form) and isoforms that skipped exons 4, 7 or 12. Exon 7 was skipped in ?0.07% of XPC mRNAs, consistent with the high information content of the exon 7 splice acceptor and donor sites (12.3 and 10.4 bits). In contrast, exon 4 was skipped in ?0.7% of the XPC mRNAs, consistent with the low information content of the exon 4 splice acceptor (–0.1 bits). A new common C/A single nucleotide polymorphism in the XPC intron 11 splice acceptor site (58% C in 97 normals) decreased its information content from 7.5 to 5.1 bits. Fibroblasts homozygous for A/A had significantly higher levels (?2.6-fold) of the XPC mRNA isoform that skipped exon 12 than those homozygous for C/C. This abnormally spliced XPC mRNA isoform has diminished DNA repair function and may contribute to cancer susceptibility.

Khan, Sikandar G.; Muniz-Medina, Vanessa; Shahlavi, Tala; Baker, Carl C.; Inui, Hiroki; Ueda, Takahiro; Emmert, Steffen; Schneider, Thomas D.; Kraemer, Kenneth H.

2002-01-01

344

Loss of Pnn expression attenuates expression levels of SR family splicing factors and modulates alternative pre-mRNA splicing in vivo  

SciTech Connect

SR and SR-related proteins have been implicated as trans-acting factors that play an important role in splice selection and are involved at specific stages of spliceosome formation. A well-established property of SR protein splicing factors is their ability to influence selection of alternative splice sites in a concentration-dependent manner. Identification of molecules that regulate SR family protein expression is therefore of vital importance in RNA biology. Here we report that depletion of Pnn expression, a SR-related protein with functions involved in pre-mRNA splicing and mRNA export, induces reduced expression of a subset of cellular proteins, especially that of SR family proteins, including SC35, SRm300, SRp55, and SRp40, but not that of other nuclear proteins, such as p53, Mdm2, and ki67. Knocking down Pnn expression was achieved in vitro by siRNA transfection. Expression levels of SR and SR-related proteins in Pnn-depleted cells as compared to those in control cells were evaluated by immunofluorescent staining and Western blot with specific antibodies. In addition, we also demonstrate that loss of Pnn expression could modulate splice site selection of model reporter gene in vivo. Our finding is significant in terms of regulation of SR protein cellular concentration because it reveals that Pnn may play a general role in the control of the cellular amount of family SR proteins through down-regulation of its own expression, thereby providing us with a better understanding of the cellular mechanism by which Pnn fulfills its biological function.

Chiu Yali [Epithelial Biology Laboratory, Department of Anatomy, Chang Gung University Medical College, Taoyuan 333, Taiwan (China); Ouyang Pin [Epithelial Biology Laboratory, Department of Anatomy, Chang Gung University Medical College, Taoyuan 333, Taiwan (China) and Transgenic Mice Core-Laboratory, Chang Gung University Medical College, Taoyuan 333, Taiwan (China)]. E-mail: ouyang@mail.cgu.edu.tw

2006-03-10

345

Alternatively spliced protein arginine methyltransferase 1 isoform PRMT1v2 promotes the survival and invasiveness of breast cancer cells  

PubMed Central

Protein arginine methylation is catalyzed by protein arginine methyltransferases (PRMTs) and plays an important role in many cellular processes. Aberrant PRMT expression has been observed in several common cancer types; however, their precise contribution to the cell transformation process is not well understood. We previously reported that the PRMT1 gene generates several alternatively spliced isoforms, and our initial biochemical characterization of these isoforms revealed that they exhibit distinct substrate specificity and subcellular localization. We focus here on the PRMT1v2 isoform, which is the only predominantly cytoplasmic isoform, and we have found that its relative expression is increased in breast cancer cell lines and tumors. Specific depletion of PRMT1v2 using RNA interference caused a significant decrease in cancer cell survival due to an induction of apoptosis. Furthermore, depletion of PRMT1v2 in an aggressive cancer cell line significantly decreased cell invasion. We also demonstrate that PRMT1v2 overexpression in a non-aggressive cancer cell line was sufficient to render them more invasive. Importantly, this novel activity is specific to PRMT1v2, as overexpression of other isoforms did not enhance invasion. Moreover, this activity requires both proper subcellular localization and methylase activity. Lastly, PRMT1v2 overexpression altered cell morphology and reduced cell-cell adhesion, a phenomenon that we convincingly linked with reduced ?-catenin protein expression. Overall, we demonstrate a specific role for PRMT1v2 in breast cancer cell survival and invasion, underscoring the importance of identifying and characterizing the distinct functional differences between PRMT1 isoforms.

Baldwin, R. Mitchell; Morettin, Alan; Paris, Genevieve; Goulet, Isabelle; Cote, Jocelyn

2012-01-01

346

A correlation with exon expression approach to identify cis-regulatory elements for tissue-specific alternative splicing  

PubMed Central

Correlation of motif occurrences with gene expression intensity is an effective strategy for elucidating transcriptional cis-regulatory logic. Here we demonstrate that this approach can also identify cis-regulatory elements for alternative pre-mRNA splicing. Using data from a human exon microarray, we identified 56 cassette exons that exhibited higher transcript-normalized expression in muscle than in other normal adult tissues. Intron sequences flanking these exons were then analyzed to identify candidate regulatory motifs for muscle-specific alternative splicing. Correlation of motif parameters with gene-normalized exon expression levels was examined using linear regression and linear splines on RNA words and degenerate weight matrices, respectively. Our unbiased analysis uncovered multiple candidate regulatory motifs for muscle-specific splicing, many of which are phylogenetically conserved among vertebrate genomes. The most prominent downstream motifs were binding sites for Fox1- and CELF-related splicing factors, and a branchpoint-like element acuaac; pyrimidine-rich elements resembling PTB-binding sites were most significant in upstream introns. Intriguingly, our systematic study indicates a paucity of novel muscle-specific elements that are dominant in short proximal intronic regions. We propose that Fox and CELF proteins play major roles in enforcing the muscle-specific alternative splicing program, facilitating expression of unique isoforms of cytoskeletal proteins critical to muscle cell function.

Das, Debopriya; Clark, Tyson A.; Schweitzer, Anthony; Yamamoto, Miki; Marr, Henry; Arribere, Josh; Minovitsky, Simon; Poliakov, Alexander; Dubchak, Inna; Blume, John E.; Conboy, John G.

2007-01-01

347

A G-RICH ELEMENT FORMS A G-QUADRUPLEX AND REGULATES BACE1 mRNA ALTERNATIVE SPLICING  

PubMed Central

?-site APP cleaving enzyme 1 (BACE1) is the transmembrane aspartyl protease that catalyzes the first cleavage step in the proteolysis of the amyloid ?-protein precursor (APP) to the amyloid ?-protein (A?), a process involved in the pathogenesis of Alzheimer disease. BACE1 pre-mRNA undergoes complex alternative splicing, the regulation of which is not well understood. We identified a G-rich sequence within exon 3 of BACE1 involved in controlling splice site selection. Mutation of the G-rich sequence decreased use of the normal 5? splice site of exon 3, which leads to full-length and proteolytically active BACE1, and increased use of an alternative splice site, which leads to a shorter, essentially inactive isoform. Nuclease protection assays, nuclear magnetic resonance, and circular dichroism spectroscopy revealed that this sequence folds into a G-quadruplex structure. Several proteins were identified as capable of binding to the G-rich sequence, and one of these, heterogeneous nuclear ribonucleoprotein H (hnRNP H), was found to regulate BACE1 exon 3 alternative splicing and in a manner dependent on the G-rich sequence. Knockdown of hnRNP H led to a decrease in the full-length BACE1 mRNA isoform as well as a decrease in A? production from APP, suggesting new possibilities for therapeutic approaches to AD.

Fisette, Jean-Francois; Montagna, Daniel R.; Mihailescu, Mihaela-Rita; Wolfe, Michael S.

2012-01-01

348

EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer  

PubMed Central

SUMMARY Alternative splicing contributes to diverse aspects of cancer pathogenesis including altered cellular metabolism, but the specificity of the process or its consequences are not well understood. We characterized genome-wide alternative splicing induced by the activating EGFRvIII mutation in glioblastoma (GBM). EGFRvIII upregulates the heterogeneous nuclear ribonucleoprotein (hnRNP) A1 splicing factor, promoting glycolytic gene expression and conferring significantly shorter survival in patients. HnRNPA1 promotes splicing of a transcript encoding the Myc-interacting partner Max, generating Delta Max, an enhancer of Myc-dependent transformation. Delta Max, but not full length Max, rescues Myc-dependent glycolytic gene expression upon induced EGFRvIII loss, and correlates with hnRNPA1 expression and downstream Myc-dependent gene transcription in patients. Finally, Delta Max is shown to promote glioma cell proliferation in vitro and augment EGFRvIII expressing GBM growth in vivo. These results demonstrate an important role for alternative splicing in GBM and identify Delta Max as a mediator of Myc-dependent tumor cell metabolism.

Babic, Ivan; Anderson, Erik S.; Tanaka, Kazuhiro; Guo, Deliang; Masui, Kenta; Li, Bing; Zhu, Shaojun; Gu, Yuchao; Villa, Genaro; Akhavan, David; Nathanson, David; Gini, Beatrice; Mareninov, Sergey; Li, Rui; Espindola C., Carolina; Kurdistani, Siavash K.; Eskin, Ascia; Nelson, Stanley F.; Yong, William H.; Cavenee, Webster K.; Cloughesy, Timothy F.; Christofk, Heather R.; Black, Douglas L.; Mischel, Paul S.

2013-01-01

349

EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer.  

PubMed

Alternative splicing contributes to diverse aspects of cancer pathogenesis including altered cellular metabolism, but the specificity of the process or its consequences are not well understood. We characterized genome-wide alternative splicing induced by the activating EGFRvIII mutation in glioblastoma (GBM). EGFRvIII upregulates the heterogeneous nuclear ribonucleoprotein (hnRNP) A1 splicing factor, promoting glycolytic gene expression and conferring significantly shorter survival in patients. HnRNPA1 promotes splicing of a transcript encoding the Myc-interacting partner Max, generating Delta Max, an enhancer of Myc-dependent transformation. Delta Max, but not full-length Max, rescues Myc-dependent glycolytic gene expression upon induced EGFRvIII loss, and correlates with hnRNPA1 expression and downstream Myc-dependent gene transcription in patients. Finally, Delta Max is shown to promote glioma cell proliferation in vitro and augment EGFRvIII expressing GBM growth in vivo. These results demonstrate an important role for alternative splicing in GBM and identify Delta Max as a mediator of Myc-dependent tumor cell metabolism. PMID:23707073

Babic, Ivan; Anderson, Erik S; Tanaka, Kazuhiro; Guo, Deliang; Masui, Kenta; Li, Bing; Zhu, Shaojun; Gu, Yuchao; Villa, Genaro R; Akhavan, David; Nathanson, David; Gini, Beatrice; Mareninov, Sergey; Li, Rui; Camacho, Carolina Espindola; Kurdistani, Siavash K; Eskin, Ascia; Nelson, Stanley F; Yong, William H; Cavenee, Webster K; Cloughesy, Timothy F; Christofk, Heather R; Black, Douglas L; Mischel, Paul S

2013-06-01

350

Alternative 5' exons and differential splicing regulate expression of protein 4.1R isoforms with distinct n-termini  

SciTech Connect

Among the alternative pre-mRNA splicing events that characterize protein 4.1R gene expression, one involving exon 2' plays a critical role in regulating translation initiation and N-terminal protein structure. Exon 2' encompasses translation initiation site AUG1 and is located between alternative splice acceptor sites at the 5' end of exon 2; its inclusion or exclusion from mature 4.1R mRNA regulates expression of longer or shorter isoforms of 4.1R protein, respectively. The current study reports unexpected complexity in the 5' region of the 4.1R gene that directly affects alternative splicing of exon 2'. Three mutually exclusive alternative 5' exons, designated 1A, 1B, and 1C, were identified far upstream of exon 2 in both mouse and human genomes; all three are associated with strong transcriptional promoters in the flanking genomic sequence. Importantly, exons 1A and 1B splice differentially with respect to exon 2', generating transcripts with different 5' ends and distinct N-terminal protein coding capacity. Exon 1A-type transcripts splice so as to exclude exon 2' and therefore utilize the downstream AUG2 for translation of 80kD 4.1R protein, whereas exon 1B transcripts include exon 2' and initiate at AUG1 to synthesize 135kD isoforms. RNA blot analyses revealed that 1A transcripts increase in abundance in late erythroblasts, consistent with the previously demonstrated upregulation of 80kD 4.1R during terminal erythroid differentiation. Together these results suggest that synthesis of structurally distinct 4.1R protein isoforms in various cell types is regulated by a novel mechanism requiring coordination between upstream transcription initiation events and downstream alternative splicing events.

Parra, Marilyn K.; Gee, Sherry L.; Koury, Mark J.; Mohandas, Narla; Conboy, John G.

2003-03-25

351

Alternative splicing for the alpha1 subunit of soluble guanylate cyclase.  

PubMed Central

Soluble guanylate cyclase (sGC), the receptor for nitric oxide, is a heterodimer consisting of alpha and beta subunits. We investigated the mRNA species for the alpha(1) subunit in human brain, heart, artery and immortalized B-lymphocytes. Three mRNA species were identified in these tissues. The major mRNA species contained the full expression sequence of the alpha(1) subunit. Two other types of mRNA were detected in which 5' sequences were deleted by splicing (506-590 and 412-590). Each of these deletions included the predicted translation start site, indicating that translation of these two alternatively spliced RNA species does not result in the production of full-length alpha(1) subunits. The relative amounts of the two mRNA species with deletions of the translation start site differed significantly between cell lines of immortalized B-lymphocytes from different individuals. sGC enzymic activity was significantly decreased in cellular extracts from cell lines with high proportions of mRNA species containing the deletion 506-590 when compared with extracts from cell lines that contained mostly mRNA without this deletion.

Ritter, D; Taylor, J F; Hoffmann, J W; Carnaghi, L; Giddings, S J; Zakeri, H; Kwok, P Y

2000-01-01

352

Alternative mRNA Splicing Produces a Novel Biologically Active Short Isoform of PGC-1?*  

PubMed Central

The transcriptional co-activator PGC-1? regulates functional plasticity in adipose tissue by linking sympathetic input to the transcriptional program of adaptive thermogenesis. We report here a novel truncated form of PGC-1? (NT-PGC-1?) produced by alternative 3? splicing that introduces an in-frame stop codon into PGC-1? mRNA. The expressed protein includes the first 267 amino acids of PGC-1? and 3 additional amino acids from the splicing insert. NT-PGC-1? contains the transactivation and nuclear receptor interaction domains but is missing key domains involved in nuclear localization, interaction with other transcription factors, and protein degradation. Expression and subcellular localization of NT-PGC-1? are dynamically regulated in the context of physiological signals that regulate full-length PGC-1?, but the truncated domain structure conveys unique properties with respect to protein-protein interactions, protein stability, and recruitment to target gene promoters. Therefore, NT-PGC-1? is a co-expressed, previously unrecognized form of PGC-1? with functions that are both unique from and complementary to PGC-1?.

Zhang, Yubin; Huypens, Peter; Adamson, Aaron W.; Chang, Ji Suk; Henagan, Tara M.; Boudreau, Anik; Lenard, Natalie R.; Burk, David; Klein, Johannes; Perwitz, Nina; Shin, Jeho; Fasshauer, Mathias; Kralli, Anastasia; Gettys, Thomas W.

2009-01-01

353

Alternative Splicing of MBD2 Supports Self-Renewal in Human Pluripotent Stem Cells.  

PubMed

Alternative RNA splicing (AS) regulates proteome diversity, including isoform-specific expression of several pluripotency genes. Here, we integrated global gene expression and proteomic analyses and identified a molecular signature suggesting a central role for AS in maintaining human pluripotent stem cell (hPSC) self-renewal. We demonstrate that the splicing factor SFRS2 is an OCT4 target gene required for pluripotency. SFRS2 regulates AS of the methyl-CpG binding protein MBD2, whose isoforms play opposing roles in maintenance of and reprogramming to pluripotency. Although both MDB2a and MBD2c are enriched at the OCT4 and NANOG promoters, MBD2a preferentially interacts with repressive NuRD chromatin remodeling factors and promotes hPSC differentiation, whereas overexpression of MBD2c enhances reprogramming of fibroblasts to pluripotency. The miR-301 and miR-302 families provide additional regulation by targeting SFRS2 and MDB2a. These data suggest that OCT4, SFRS2, and MBD2 participate in a positive feedback loop, regulating proteome diversity in support of hPSC self-renewal and reprogramming. PMID:24813856

Lu, Yu; Loh, Yuin-Han; Li, Hu; Cesana, Marcella; Ficarro, Scott B; Parikh, Jignesh R; Salomonis, Nathan; Toh, Cheng-Xu Delon; Andreadis, Stelios T; Luckey, C John; Collins, James J; Daley, George Q; Marto, Jarrod A

2014-07-01

354