Science.gov

Sample records for aberrant cxcl12 expression

  1. CXCR4, CXCL12 and the relative CXCL12-CXCR4 expression as prognostic factors in colon cancer.

    PubMed

    Stanisavljević, Luka; Aßmus, Jörg; Storli, Kristian Eeg; Leh, Sabine Maria; Dahl, Olav; Myklebust, Mette Pernille

    2016-06-01

    The CXCL12-CXCR4 axis is proposed to mediate metastasis formation. In this study, we examined CXCL12, CXCR4 and the relative CXCL12-CXCR4 expression as prognostic factors in two cohorts of colon cancer patients. Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to study CXCR4, CXCL12 and relative CXCL12-CXCR4 expression in tissue microarrays. Our study included totally 596 patients, 290 in cohort 1 and 306 in cohort 2. For tumour, node, metastasis (TNM) stage III, low nuclear expression of CXCR4 was a positive prognostic factor for 5-year disease-free survival (DFS) in cohort 1 (P = 0.007) and cohort 2 (P = 0.023). In multivariate analysis for stage III, nuclear expression of CXCR4 in cohort 1 was confirmed as a prognostic factor for DFS (hazard ratio (HR), 0.27; 95 % CI, 0.09 to 0.77). For TNM stage III, high cytoplasmic expression of CXCL12 was associated with better 5-year DFS in both cohorts (P = 0.006 and P = 0.006, respectively). We further validated the positive prognostic value of CXCL12 expression for 5-year DFS in stage III with ISH (P = 0.022). For TNM stage III, the relative CXCL12-CXCR4 expression (CXCL12 > CXCR4 vs CXCL12 = CXCR4 vs CXCL12 < CXCR4) was a prognostic factor for 5-year DFS in cohort 1 (92 % vs 46 % vs 31 %, respectively; P < 0.001) and cohort 2 (92 % vs 66 % vs 30 %, respectively; P = 0.006). In conclusion, CXCL12 and relative CXCL12-CXCR4 expression are independent prognostic factors for 5-year DFS in TNM stage III colon cancer. PMID:26678887

  2. CXCL12 expression by healthy and malignant ovarian epithelial cells

    PubMed Central

    2011-01-01

    Background CXCL12 has been widely reported to play a biologically relevant role in tumor growth and spread. In epithelial ovarian cancer (EOC), CXCL12 enhances tumor angiogenesis and contributes to the immunosuppressive network. However, its prognostic significance remains unclear. We thus compared CXCL12 status in healthy and malignant ovaries, to assess its prognostic value. Methods Immunohistochemistry was used to analyze CXCL12 expression in the reproductive tracts, including the ovaries and fallopian tubes, of healthy women, in benign and borderline epithelial tumors, and in a series of 183 tumor specimens from patients with advanced primary EOC enrolled in a multicenter prospective clinical trial of paclitaxel/carboplatin/gemcitabine-based chemotherapy (GINECO study). Univariate COX model analysis was performed to assess the prognostic value of clinical and biological variables. Kaplan-Meier methods were used to generate progression-free and overall survival curves. Results Epithelial cells from the surface of the ovary and the fallopian tubes stained positive for CXCL12, whereas the follicles within the ovary did not. Epithelial cells in benign, borderline and malignant tumors also expressed CXCL12. In EOC specimens, CXCL12 immunoreactivity was observed mostly in epithelial tumor cells. The intensity of the signal obtained ranged from strong in 86 cases (47%) to absent in 18 cases (<10%). This uneven distribution of CXCL12 did not reflect the morphological heterogeneity of EOC. CXCL12 expression levels were not correlated with any of the clinical parameters currently used to determine EOC prognosis or with HER2 status. They also had no impact on progression-free or overall survival. Conclusion Our findings highlight the previously unappreciated constitutive expression of CXCL12 on healthy epithelia of the ovary surface and fallopian tubes, indicating that EOC may originate from either of these epithelia. We reveal that CXCL12 production by malignant

  3. Placental development during early pregnancy: Effects of embryo origin on expression of chemokine ligand twelve (CXCL12).

    PubMed

    Quinn, K E; Reynolds, L P; Grazul-Bilska, A T; Borowicz, P P; Ashley, R L

    2016-07-01

    The aim was to localize chemokine ligand twelve (CXCL12) in sheep placental tissues during early gestation and after assisted reproductive technologies (ART). Uteri were collected from naturally (NAT) mated ewes and ewes receiving embryo transfer (ET), in vitro fertilization (IVF) or in vitro activation (IVA). CXCL12 was immunolocalized to endometrial stroma, glands, and trophoblast. Greater CXCL12 immunoreactivity was present in trophoblast on day 22 and 24 and in NAT ewes compared to IVF and IVA. Increased CXCL12 expression suggests CXCL12 promotes implantation and placentation. Decreased CXCL12 in IVF and IVA embryos, may compromise pregnancy establishment when utilizing ART methods. PMID:27324103

  4. Chemokine receptor CXCR4 and its ligand CXCL12 expressions and clinical significance in bladder cancer.

    PubMed

    Yang, D L; Xin, M M; Wang, J S; Xu, H Y; Huo, Q; Tang, Z R; Wang, H F

    2015-01-01

    It is well known that chemokine receptors and their ligands play important roles in mediating the invasion and metastasis of malignant tumors. This aim of this study was to investigate the expression and clinical significance of chemokine receptor CXCR4 and its ligand CXCL12 in bladder tumor tissues. Cancerous and adjacent normal bladder tissues were collected from 42 patients. The expressions of CXCR4 and CXCL12 proteins were then detected by immunohistochemistry, and the expressions of CXCR4 and CXCL12 mRNAs were detected by RT-PCR. Bladder cancer tissues showed higher positive expressions of CXCR4 and CXCL12 than those in normal bladder mucosal tissues (z = 7.332, 6.758, P < 0.001). Positive expressions of CXCR4 and CXCL12 were related to the differentiation degree and invasive depth of cancer tissues (z = 2.598-4.594, P < 0.05), but not to patient gender or age (z = 0.273-0.554, P > 0.05). The expression of CXCR4 was positively correlated to CXCL12 expression in bladder cancer tissues (r = 0.661, P < 0.05). RT-PCR revealed that CXCR4 and CXCL12 mRNAs were not expressed in normal tissues. Moreover, with increased depth of invasion, CXCR4 and CXCL12 mRNA expressions gradually increased in bladder cancer tissues and showed significant intergroup differences (F = 56.642, 67.928, P < 0.01). Taken together, these results indicate that the chemokine receptor CXCR4 and its ligand CXCL12 play important roles in the occurrence and development of bladder cancer. PMID:26782415

  5. Regulation of CXCL12 expression by canonical Wnt signaling in bone marrow stromal cells.

    PubMed

    Tamura, Masato; Sato, Mari M; Nashimoto, Masayuki

    2011-05-01

    CXCL12 (stromal cell-derived factor-1, SDF-1), produced by stromal and endothelial cells including cells of the bone marrow, binds to its receptor CXCR4 and this axis regulates hematopoietic cell trafficking. Recently, osteoclast precursor cells were found to express CXCR4 and a potential role for the CXCL12-CXCR4 axis during osteoclast precursor cell recruitment/retention and development was proposed as a regulator of bone resorption. We examined the role of canonical Wnt signaling in regulating the expression of CXCL12 in bone marrow stromal cells. In mouse stromal ST2 cells, CXCL12 mRNA was expressed, while its expression was reduced in Wnt3a over-expressing ST2 (Wnt3a-ST2) cells or by treatment with lithium chloride (LiCl). Wnt3a decreased CXCL12 levels in culture supernatants from mouse bone marrow stromal cells. The culture supernatant from Wnt3a-ST2 cells also reduced migratory activity of bone marrow-derived cells in a Transwell migration assay. Silencing of glycogen synthase kinase-3β decreased CXCL12 expression, suggesting that the canonical Wnt signaling pathway regulates CXCL12 expression. In a transfection assay, LiCl down-regulated the activity of a reporter gene, a 1.8kb fragment of the 5'-flanking region of the CXCL12 gene. These results show that canonical Wnt signaling regulates CXCL12 gene expression at the transcriptional level, and this is the first study linking chemokine expression to canonical Wnt signaling. PMID:21296678

  6. BMP2 Regulation of CXCL12 Cellular, Temporal, and Spatial Expression is Essential During Fracture Repair.

    PubMed

    Myers, Timothy J; Longobardi, Lara; Willcockson, Helen; Temple, Joseph D; Tagliafierro, Lidia; Ye, Ping; Li, Tieshi; Esposito, Alessandra; Moats-Staats, Billie M; Spagnoli, Anna

    2015-11-01

    The cellular and humoral responses that orchestrate fracture healing are still elusive. Here we report that bone morphogenic protein 2 (BMP2)-dependent fracture healing occurs through a tight control of chemokine C-X-C motif-ligand-12 (CXCL12) cellular, spatial, and temporal expression. We found that the fracture repair process elicited an early site-specific response of CXCL12(+)-BMP2(+) endosteal cells and osteocytes that was not present in unfractured bones and gradually decreased as healing progressed. Absence of a full complement of BMP2 in mesenchyme osteoprogenitors (BMP2(cKO/+)) prevented healing and led to a dysregulated temporal and cellular upregulation of CXCL12 expression associated with a deranged angiogenic response. Healing was rescued when BMP2(cKO/+) mice were systemically treated with AMD3100, an antagonist of CXCR4 and agonist for CXCR7 both receptors for CXCL12. We further found that mesenchymal stromal cells (MSCs), capable of delivering BMP2 at the endosteal site, restored fracture healing when transplanted into BMP2(cKO/+) mice by rectifying the CXCL12 expression pattern. Our in vitro studies showed that in isolated endosteal cells, BMP2, while inducing osteoblastic differentiation, stimulated expression of pericyte markers that was coupled with a decrease in CXCL12. Furthermore, in isolated BMP2(cKO/cKO) endosteal cells, high expression levels of CXCL12 inhibited osteoblastic differentiation that was restored by AMD3100 treatment or coculture with BMP2-expressing MSCs that led to an upregulation of pericyte markers while decreasing platelet endothelial cell adhesion molecule (PECAM). Taken together, our studies show that following fracture, a CXCL12(+)-BMP2(+) perivascular cell population is recruited along the endosteum, then a timely increase of BMP2 leads to downregulation of CXCL12 that is essential to determine the fate of the CXCL12(+)-BMP2(+) to osteogenesis while departing their supportive role to angiogenesis. Our findings have far

  7. BMP2 Regulation of CXCL12 Cellular, Temporal, and Spatial Expression is Essential During Fracture Repair

    PubMed Central

    Myers, Timothy J; Longobardi, Lara; Willcockson, Helen; Temple, Joseph D; Tagliafierro, Lidia; Ye, Ping; Li, Tieshi; Esposito, Alessandra; Moats-Staats, Billie M; Spagnoli, Anna

    2016-01-01

    The cellular and humoral responses that orchestrate fracture healing are still elusive. Here we report that bone morphogenic protein 2 (BMP2)-dependent fracture healing occurs through a tight control of chemokine C-X-C motif-ligand-12 (CXCL12) cellular, spatial, and temporal expression. We found that the fracture repair process elicited an early site-specific response of CXCL12+-BMP2+ endosteal cells and osteocytes that was not present in unfractured bones and gradually decreased as healing progressed. Absence of a full complement of BMP2 in mesenchyme osteoprogenitors (BMP2cKO/+) prevented healing and led to a dysregulated temporal and cellular upregulation of CXCL12 expression associated with a deranged angiogenic response. Healing was rescued when BMP2cKO/+ mice were systemically treated with AMD3100, an antagonist of CXCR4 and agonist for CXCR7 both receptors for CXCL12. We further found that mesenchymal stromal cells (MSCs), capable of delivering BMP2 at the endosteal site, restored fracture healing when transplanted into BMP2cKO/+ mice by rectifying the CXCL12 expression pattern. Our in vitro studies showed that in isolated endosteal cells, BMP2, while inducing osteoblastic differentiation, stimulated expression of pericyte markers that was coupled with a decrease in CXCL12. Furthermore, in isolated BMP2cKO/cKO endosteal cells, high expression levels of CXCL12 inhibited osteoblastic differentiation that was restored by AMD3100 treatment or coculture with BMP2-expressing MSCs that led to an upregulation of pericyte markers while decreasing platelet endothelial cell adhesion molecule (PECAM). Taken together, our studies show that following fracture, a CXCL12+-BMP2+ perivascular cell population is recruited along the endosteum, then a timely increase of BMP2 leads to downregulation of CXCL12 that is essential to determine the fate of the CXCL12+-BMP2+ to osteogenesis while departing their supportive role to angiogenesis. Our findings have far

  8. Expression and function of CXCL12/CXCR4/CXCR7 in thyroid cancer.

    PubMed

    Zhu, Xiaoli; Bai, Qianming; Lu, Yongming; Lu, Yiqiong; Zhu, Linlin; Zhou, Xiaoyan; Wu, Lijing

    2016-06-01

    The contribution of CXCL12/CXCR4/CXCR7 axis to cancer progression has been increasingly recognized. However, its role in thyroid cancer development remains unclear. The present study aimed to examine the expression and function of CXCL12 and its receptors in thyroid cancer. The expression of CXCL12/CXCR4/CXCR7 in human tissue specimens of papillary, follicular, medullary, and anaplastic thyroid carcinoma, follicular adenoma, Hashimoto's thyroiditis and nodular goiter were examined by immunohistochemistry using a tissue microarray. CXCR4 and CXCR7 were over-expressed in human thyroid cancer cells K1 by transduction of recombinant lentivirus. The effect of overexpression of CXCR4 and CXCR7 on K1 cell proliferation and invasion and the molecular mechanism underlying the effect were investigated. CXCL12 was exclusively expressed in papillary thyroid carcinoma tissue but absent in other types of thyroid malignancies and benign lesions. CXCR7 was widely expressed in the endothelial cells of all types of malignancy but only occasionally detected in benign lesions. CXCR4 was expressed in 62.5% of papillary thyroid carcinoma tissue specimens and in 30-40% of other types of malignancy, and it was either absent or weakly expressed in benign lesions. CXCL12 stimulated the invasion and migration of K1 cells overexpressing CXCR4, but did not affect K1 cells overexpressing CXCR7. K1 cell proliferation was not affected by overexpression of CXCR4 or CXCR7. Overexpression of CXCR4 in K1 cells significantly increased AKT and ERK phosphorylation and markedly induced the expression and activity of matrix metalloproteinase-2 (MMP‑2). Thus, CXCL12 may be an effective diagnostic marker for papillary thyroid carcinoma, and CXCL12/CXCR4/CXCR7 axis may contribute to thyroid cancer development by regulating cancer cell migration and invasion via AKT and ERK signaling and MMP-2 activation. PMID:27082011

  9. Expression and function of CXCL12/CXCR4/CXCR7 in thyroid cancer

    PubMed Central

    ZHU, XIAOLI; BAI, QIANMING; LU, YONGMING; LU, YIQIONG; ZHU, LINLIN; ZHOU, XIAOYAN; WU, LIJING

    2016-01-01

    The contribution of CXCL12/CXCR4/CXCR7 axis to cancer progression has been increasingly recognized. However, its role in thyroid cancer development remains unclear. The present study aimed to examine the expression and function of CXCL12 and its receptors in thyroid cancer. The expression of CXCL12/CXCR4/CXCR7 in human tissue specimens of papillary, follicular, medullary, and anaplastic thyroid carcinoma, follicular adenoma, Hashimoto's thyroiditis and nodular goiter were examined by immunohistochemistry using a tissue microarray. CXCR4 and CXCR7 were over-expressed in human thyroid cancer cells K1 by transduction of recombinant lentivirus. The effect of overexpression of CXCR4 and CXCR7 on K1 cell proliferation and invasion and the molecular mechanism underlying the effect were investigated. CXCL12 was exclusively expressed in papillary thyroid carcinoma tissue but absent in other types of thyroid malignancies and benign lesions. CXCR7 was widely expressed in the endothelial cells of all types of malignancy but only occasionally detected in benign lesions. CXCR4 was expressed in 62.5% of papillary thyroid carcinoma tissue specimens and in 30–40% of other types of malignancy, and it was either absent or weakly expressed in benign lesions. CXCL12 stimulated the invasion and migration of K1 cells overexpressing CXCR4, but did not affect K1 cells overexpressing CXCR7. K1 cell proliferation was not affected by overexpression of CXCR4 or CXCR7. Overexpression of CXCR4 in K1 cells significantly increased AKT and ERK phosphorylation and markedly induced the expression and activity of matrix metalloproteinase-2 (MMP-2). Thus, CXCL12 may be an effective diagnostic marker for papillary thyroid carcinoma, and CXCL12/CXCR4/CXCR7 axis may contribute to thyroid cancer development by regulating cancer cell migration and invasion via AKT and ERK signaling and MMP-2 activation. PMID:27082011

  10. PGE2-Induced CXCL12 Production and CXCR4 Expression Controls the Accumulation of Human MDSCs in Ovarian Cancer Environment

    PubMed Central

    Obermajer, Nataša; Muthuswamy, Ravikumar; Odunsi, Kunle; Edwards, Robert P.; Kalinski, Pawel

    2016-01-01

    Signals mediated by CXCL12 (SDF1) and its receptor CXCR4 are centrally involved in cancer progression, both directly by activating cancer cells and indirectly by inducing angiogenesis plus recruiting T regulatory and plasmacytoid dendritic immune cells. Here, we show that in ascites isolated from ovarian cancer patients, both CXCL12 and CXCR4 are controlled by the tumor-associated inflammatory mediator prostaglandin E2 (PGE2), which attracts myeloid-derived suppressor cells (MDSC) into the ascites microenvironment. In this setting, PGE2 was essential both for expression of functional CXCR4 in cancer-associated MDSCs and for production of its ligand CXCL12. Frequencies of CD11b+CD14+CD33+CXCR4+ MDSCs closely correlated with CXCL12 and PGE2 levels in patient ascites. MDSCs migrated toward ovarian cancer ascites in a CXCR4-dependent manner that required COX2 activity and autocrine PGE2 production. Inhibition of COX2 or the PGE2 receptors EP2/EP4 in MDSCs suppressed expression of CXCR4 and MDSC responsiveness to CXCL12 or ovarian cancer ascites. Similarly, COX2 inhibition also blocked CXCL12 production in the ovarian cancer environment and its ability to attract MDSCs. Together, our findings elucidate a central role for PGE2 in MDSC accumulation triggered by the CXCL12-CXCR4 pathway, providing a powerful rationale to target PGE2 signaling in ovarian cancer therapy. PMID:22025564

  11. Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS.

    PubMed

    Mueller, Andre Michael; Yoon, Bo Hyung; Sadiq, Saud Ahmed

    2014-08-15

    Hyaluronan (HA) may have proinflammatory roles in the context of CNS autoimmunity. It accumulates in demyelinated multiple sclerosis (MS) lesions, promotes antigen presentation, and enhances T-cell activation and proliferation. HA facilitates lymphocyte binding to vessels and CNS infiltration at the CNS vascular endothelium. Furthermore, HA signals through Toll-like receptors 2 and 4 to stimulate inflammatory gene expression. We assessed the role of HA in experimental autoimmune encephalomyelitis (EAE), an animal model of MS by administration of 4-methylumbelliferone (4MU), a well established inhibitor of HA synthesis. 4MU decreased hyaluronan synthesis in vitro and in vivo. It was protective in active EAE of C57Bl/6 mice, decreased spinal inflammatory infiltrates and spinal infiltration of Th1 cells, and increased differentiation of regulatory T-cells. In adoptive transfer EAE, feeding of 4MU to donor mice significantly decreased the encephalitogenicity of lymph node cells. The transfer of proteolipid protein (PLP)-stimulated lymph node cells to 4MU-fed mice resulted in a delayed EAE onset and delayed spinal T-cell infiltration. Expression of CXCL12, an anti-inflammatory chemokine, is reduced in MS patients in CSF cells and in spinal cord tissue during EAE. Hyaluronan suppressed production of CXCL12, whereas 4MU increased spinal CXCL12 in naive animals and during neuroinflammation. Neutralization of CXCR4, the most prominent receptor of CXCL12, by administration of AMD3100 diminished the protective impact of 4MU in adoptive transfer EAE. In conclusion, hyaluronan exacerbates CNS autoimmunity, enhances encephalitogenic T-cell responses, and suppresses the protective chemokine CXCL12 in CNS tissue. Inhibition of hyaluronan synthesis with 4MU protects against an animal model of MS and may represent an important therapeutic option in MS and other neuroinflammatory diseases. PMID:24973214

  12. Expression of SOCS1 and CXCL12 Proteins in Primary Breast Cancer Are Associated with Presence of Circulating Tumor Cells in Peripheral Blood1

    PubMed Central

    Smolkova, Bozena; Mego, Michal; Horvathova Kajabova, Viera; Cierna, Zuzana; Danihel, Ludovit; Sedlackova, Tatiana; Minarik, Gabriel; Zmetakova, Iveta; Krivulcik, Tomas; Gronesova, Paulina; Karaba, Marian; Benca, Juraj; Pindak, Daniel; Mardiak, Jozef; Reuben, James M.; Fridrichova, Ivana

    2016-01-01

    Circulating tumor cells (CTCs) are independent prognostic factors in the primary and metastatic breast cancer patients and play crucial role in hematogenous tumor dissemination. The aim of this study was to correlate the presence of CTCs in peripheral blood with the expression of proteins in tumor tissue that have a putative role in regulation of cell growth and metastatic potential. This prospective study included 203 primary breast cancer patients treated by definitive surgery. CTCs were detected by quantitative real-time PCR for the expression of epithelial (CK19) or epithelial-to-mesenchymal transition–inducing transcription factor genes (TWIST1, SNAIL1, SLUG, and ZEB1). Expression of APC, ADAM23, CXCL12, E-cadherin, RASSF1, SYK, TIMP3, BRMS1, and SOCS1 proteins in primary breast tumor tissue was evaluated by immunohistochemistry. CTCs with epithelial markers were found in 17 (9.2%) patients. Their occurrence was associated with inhibition of SOCS1 expression (odds ratio [OR] = 0.07; 95% confidence interval [CI], 0.03-0.13; P < .001). CTCs with positive epithelial-to-mesenchymal transition markers were detected in 30 (15.8%) patients; however, no association with analyzed protein expressions was found. Overall, CTCs were detected in 44 (22.9%) patients. Presence of any CTC marker was significantly associated with positive CXCL12 expression (OR = 3.08; 95% CI, 1.15-8.26; P = .025) and lack of SOCS1 expression (OR = 0.10; 95% CI, 0.04-0.25; P < .001) in patient’s tumor tissues. As both CXCL12 and SOCS1 proteins are involved in cytokine signaling, our results provide support for the hypothesis that aberrant signaling cross talk between cytokine and chemokine responses could have an important role in hematogenous dissemination of tumor cells in breast cancer.

  13. CXCR4 and CXCL12 are inversely expressed in colorectal cancer cells and modulate cancer cell migration, invasion and MMP-9 activation

    SciTech Connect

    Brand, Stephan . E-mail: stephan.brand@med.uni-muenchen.de; Dambacher, Julia; Beigel, Florian; Olszak, Torsten; Diebold, Joachim; Otte, Jan-Michel; Goeke, Burkhard; Eichhorst, Soeren T.

    2005-10-15

    Colorectal cancer (CRC) is characterized by a distinct metastatic pattern resembling chemokine-induced leukocyte trafficking. This prompted us to investigate expression, signal transduction and specific functions of the chemokine receptor CXCR4 in CRC cells and metastases. Using RT-PCR analysis and Western blotting, we demonstrated CXCR4 and CXCL12 expression in CRC and CRC metastases. Cell differentiation increases CXCL12 mRNA levels. Moreover, CXCR4 and its ligand are inversely expressed in CRC cell lines with high CXCR4 and low or not detectable CXCL12 expression. CXCL12 activates ERK-1/2, SAPK/JNK kinases, Akt and matrix metalloproteinase-9. These CXCL12-induced signals mediate reorganization of the actin cytoskeleton resulting in increased cancer cell migration and invasion. Moreover, CXCL12 increases vascular endothelial growth factor (VEGF) expression and cell proliferation but has no effect on CRC apoptosis. Therefore, the CXCL12/CXCR4 system is an important mediator of invasion and metastasis of CXCR4 expressing CRC cells.

  14. CXCL12 induces connective tissue growth factor expression in human lung fibroblasts through the Rac1/ERK, JNK, and AP-1 pathways.

    PubMed

    Lin, Chien-Huang; Shih, Chung-Huang; Tseng, Chih-Chieh; Yu, Chung-Chi; Tsai, Yuan-Jhih; Bien, Mauo-Ying; Chen, Bing-Chang

    2014-01-01

    CXCL12 (stromal cell-derived factor-1, SDF-1) is a potent chemokine for homing of CXCR4+ fibrocytes to injury sites of lung tissue, which contributes to pulmonary fibrosis. Overexpression of connective tissue growth factor (CTGF) plays a critical role in pulmonary fibrosis. In this study, we investigated the roles of Rac1, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CXCL12-induced CTGF expression in human lung fibroblasts. CXCL12 caused concentration- and time-dependent increases in CTGF expression and CTGF-luciferase activity. CXCL12-induced CTGF expression was inhibited by a CXCR4 antagonist (AMD3100), small interfering RNA of CXCR4 (CXCR4 siRNA), a dominant negative mutant of Rac1 (RacN17), a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor (PD98059), a JNK inhibitor (SP600125), a p21-activated kinase inhibitor (PAK18), c-Jun siRNA, and an AP-1 inhibitor (curcumin). Treatment of cells with CXCL12 caused activations of Rac1, Rho, ERK, and c-Jun. The CXCL12-induced increase in ERK phosphorylation was inhibited by RacN17. Treatment of cells with PD98059 and SP600125 both inhibited CXCL12-induced c-Jun phosphorylation. CXCL12 caused the recruitment of c-Jun and c-Fos binding to the CTGF promoter. Furthermore, CXCL12 induced an increase in α-smooth muscle actin (α-SMA) expression, a myofibroblastic phenotype, and actin stress fiber formation. CXCL12-induced actin stress fiber formation and α-SMA expression were respectively inhibited by AMD3100 and CTGF siRNA. Taken together, our results suggest that CXCL12, acting through CXCR4, activates the Rac/ERK and JNK signaling pathways, which in turn initiates c-Jun phosphorylation, and recruits c-Jun and c-Fos to the CTGF promoter and ultimately induces CTGF expression in human lung fibroblasts. Moreover, overexpression of CTGF mediates CXCL12-induced α-SMA expression. PMID:25121739

  15. Phenotypic and morphological properties of germinal center dark zone Cxcl12-expressing reticular cells (CRCs) 1,2

    PubMed Central

    Rodda, Lauren B.; Bannard, Oliver; Ludewig, Burkhard; Nagasawa, Takashi; Cyster, Jason G.

    2015-01-01

    The germinal center (GC) is divided into a dark zone (DZ) and a light zone (LZ). GC B cells must cycle between these zones to achieve efficient antibody affinity maturation. Follicular dendritic cells (FDCs) are well characterized for their role in supporting B cell antigen encounter in primary follicles and in the GC LZ. However, the properties of stromal cells supporting B cells in the DZ are relatively unexplored. Recent work identified a novel stromal population of Cxcl12-expressing reticular cells (CRCs) in murine GC DZs. Here we report that CRCs have diverse morphologies, appearing in ‘open’ and ‘closed’ networks, with variable distribution in lymphoid tissue GCs. CRCs are also present in splenic and peripheral lymph node primary follicles. Real-time two-photon microscopy of Peyer’s patch GCs demonstrates B cells moving in close association with CRC processes. CRCs are gp38+ with low to undetectable expression of FDC markers, but CRC-like cells in the DZ are lineage marked, along with FDCs and FRCs, by CD21-Cre and Ccl19-Cre directed fluorescent reporters. In contrast to FDCs, CRCs do not demonstrate dependence on lymphotoxin or TNF for chemokine expression or network morphology. CRC distribution in the DZ does require CXCR4 signaling, which is necessary for GC B cells to access the DZ and likely to interact with CRC processes. Our findings establish CRCs as a major stromal cell type in the GC DZ and suggest CRCs support critical activities of GC B cells in the DZ niche through Cxcl12 expression and direct cell-cell interactions. PMID:26453751

  16. CXC chemokine CXCL12 tissue expression and circulating levels in peptic ulcer patients with Helicobacter pylori infection.

    PubMed

    Bagheri, Vahid; Hassanshahi, Gholamhossein; Mirzaee, Vahid; Khorramdelazad, Hossein

    2016-09-01

    Helicobacter pylori (H. pylori) infection is among the most prevalent human infections. CXCL12 is a well-known CXC chemokine involved in inflammation and play major roles in angiogenesis. There is currently very limited data on the role of CXCL12 in peptic ulcer disease. Hence, we aimed to explore whether CXCL12 is involved in the pathogenesis of peptic ulcer induced by H. pylori. In this study, we enrolled 102 H. pylori-infected patients, including 51 with active ulcer (GA) and 51 with healing ulcer (GH). We also recruited 50 healthy subjects as control, which did not show any sign or symptoms of chronic inflammatory diseases, infection, or immune-related disorders. Endoscopy was performed to determine the stage of the disease. ELISA was used for detection of H. pylori infection and CXCL12 measurement. We also employed western blotting to detect CXCL12 in ulcerative lesions of H. pylori. Demographic data were also collected by questionnaire. Our results demonstrated that CXCL12 serum levels in GA group (151.8±18.31pg/mL) were significantly higher than those in GH (36.89±6.78pg/mL) and control groups (33.77±9.12pg/mL) (P<0.0001). However, we did not observe a significant difference between GH and control groups. Moreover, overexpression of CXCL12 in gastric lesions of patients in GA group was confirmed by Western blot analysis. According to the result of the present study, it could be concluded that CXCL12 is involved in the pathogenesis and healing of H. pylori-induced peptic ulcer. CXCL12 serum levels may also be used to distinguish between GA and GH phases of the disease. PMID:27269177

  17. CXCL12 controls over-invasion of trophoblasts via upregulating CD82 expression in DSCs at maternal-fetal interface of human early pregnancy in a paracrine manner.

    PubMed

    Li, Ming-Qing; Tang, Chuan-Lin; Du, Mei-Rong; Fan, Deng-Xuan; Zhao, Hong-Bo; Xu, Bing; Li, Da-Jin

    2011-03-01

    Tetraspanin CD82 has been identified as a potential contributor to controlling trophoblast invasiveness in human first-trimester pregnancy. However, it is unclear how the regulation of CD82 expression at maternal-fetal interface. The present study is to investigate the effect of the trophoblast-derived CXCL12 on CD82 expression in decidual stromal cells (DSCs) that in turn controls trophoblast cell invasiveness. In-cell Western was used to evaluate the expression of CD82 in DSCs. A co-culture model was established to investigate the reciprocal interaction between trophoblasts and DSCs via CXCL12/CXCR4 and CD82 expression. We found that both anti-CXCL12 and anti-CXCR4 neutralizing antibody can eliminate increase of CD82 expression in DSCs induced by the trophoblasts supernatant. Moreover, the invasiveness of trophoblasts pre-treated with anti-CXCR4 neutralizing antibody was significantly decreased. Interestingly, when DSCs were pre-treated with anti-CXCR4 neutralizing antibody, the trophoblasts invasiveness in the co-culture was enhanced, and thus anti-CXCR4 neutralizing antibody can reverse the decrease of trophoblasts invasiveness induced by CD82. The trophoblast cell-derived CXCL12 does not only increase the invasiveness in an autocrine manner, but also control the over-invasion of trophoblasts through promoting CD82 expression in DSCs in a paracrine manner, which maintains a physiological balance of human trophoblasts invasiveness via the cross-talk between trophoblasts and DSCs. PMID:21487523

  18. CXC Chemokine CXCL12 and Its Receptor CXCR4 in Tree Shrews (Tupaia belangeri): Structure, Expression and Function

    PubMed Central

    Meng, Shengke; Zhang, Lichao; Wang, Wenxue; Jiang, Zongmin; Yu, Min; Cui, Qinghua; Li, Meizhang

    2014-01-01

    Chemokines are small secreted proteins functionally involved in the immune system's regulation of lymphocyte migration across numerous mammalian species. Given its growing popularity in immunological models, we investigated the structure and function of chemokine CXCL12 protein in tree shrews. We found that CXCL12 and its receptor CXCR4 in tree shrew had structural similarities to their homologous human proteins. Phylogenetic analysis supports the view that tree shrew is evolutionarily-close to the primates. Our results also showed that the human recombinant CXCL12 protein directly enhanced the migration of tree shrew's lymphocytes in vitro, while AMD3100 enhanced the mobilization of hematopoietic progenitor cells (HPCs) from bone marrow into peripheral blood in tree shrew in vivo. Collectively, these findings suggested that chemokines in tree shrews may play the same or similar roles as those in humans, and that the tree shrew is a viable animal model for studying human immunological diseases. PMID:24858548

  19. CXCL14 antagonizes the CXCL12-CXCR4 signaling axis.

    PubMed

    Hara, Takahiko; Tanegashima, Kosuke

    2014-05-01

    CXCL12 and CXCL14 are evolutionarily conserved members of the CXC-type chemokine family. CXCL12 binds specifically to the G-protein-coupled receptor CXCR4 to induce the migration of primordial germ cells, hematopoietic stem cells, and inflammation-associated immune cells. In addition, CXCL12-CXCR4 signaling is often enhanced in malignant tumor cells and facilitates increased proliferation as well as metastasis. Although macrophage migration inhibitory factor and extracellular ubiquitin interact with CXCR4 as agonistic factors, CXCL12 was believed to be the sole chemokine ligand for CXCR4. However, a very recent report revealed that CXCL14 binds to CXCR4 with high affinity and efficiently inhibits CXCL12-mediated chemotaxis of hematopoietic progenitor and leukemia-derived cells. CXCL14 does not directly cross-compete with CXCL12 for the CXCR4 binding but instead inactivates CXCR4 via receptor internalization. Because both CXCL12 and CXCL14 are expressed during embryogenesis and brain development in mice, these two chemokines could function in an interactive fashion. We propose that the CXCL14 gene has been conserved from fish to man due to its role in fine-tuning the strength of CXCL12-mediated signal transduction. In addition to its biological implications, the above finding will be important for designing anti-cancer compounds targeting the CXCL12-CXCR4 signaling axis. In fact, a stabilized dimeric peptide containing the C-terminal 51-77 amino acid residues of CXCL14 has been shown to have stronger CXCL12 antagonistic activity than full-length CXCL14. PMID:25372750

  20. miR-137 acts as a tumor suppressor in papillary thyroid carcinoma by targeting CXCL12.

    PubMed

    Dong, Su; Jin, Meishan; Li, Ye; Ren, Peiyou; Liu, Jia

    2016-04-01

    Accumulating evidence has shown that aberrantly expressed microRNAs (miRs) are extensively involved in tumorigenesis. microRNA-137 (miR-137) has been reported as a tumor suppressor in various types of cancer. However, the biological function and underlying molecular mechanism of miR-137 in papillary thyroid carcinoma (PTC) remain largely unknown. Therefore, the present study aimed to investigate the expression pattern of miR-137 and its functional significance in PTC. Quantitative RT-PCR (qRT-PCR) assay showed that miR-137 expression was significantly downregulated in human PTC tissues, and its expression was significantly negatively correlated with tumor-node-metastasis (TNM) stage and lymph node metastasis. Functional assays showed that forced expression of miR-137 in PTC cells significantly inhibited proliferation, colony formation, migration and invasion in vitro. Importantly, on the basis of bioinformatic analysis and luciferase reporter assay, we found that miR-137 directly targeted the 3'-untranslated region (3'-UTR) of C-X-C motif chemokine 12 (also known as SDF-1) (CXCL12). qRT-PCR and western blot analysis further verified the results and demonstrated that miR-137 could downregulate CXCL12 expression in PTC cells. We also confirmed that CXCL12 expression was increased in PTC tissues and was inversely correlated with miR-137. In addition, our results also showed that downregulation of CXCL12 mimicked the effects of miR-137 overexpression, and upregulation of CXCL12 partially reversed the inhibitory effects of miR-137 in PTC cells. These results showed that miR-137 may function as a tumor suppressor in PTC by targeting CXCL12, suggesting that miR-137 may act as a potential target for PTC treatment. PMID:26847706

  1. Expression deregulation of mir31 and CXCL12 in two types of oral precancers and cancer: importance in progression of precancer and cancer.

    PubMed

    Chattopadhyay, Esita; Singh, Richa; Ray, Anindita; Roy, Roshni; De Sarkar, Navonil; Paul, Ranjan Rashmi; Pal, Mousumi; Aich, Ritesh; Roy, Bidyut

    2016-01-01

    Oral cancer generally progresses from precancerous lesions such as leukoplakia (LK), lichen planus (LP) and oral submucous fibrosis (OSMF). Since few of these precancers progress to cancers; it is worth to identify biological molecules that may play important roles in progression. Here, expression deregulation of 7 miRNAs (mir204, mir31, mir31*, mir133a, mir7, mir206 and mir1293) and their possible target genes in 23 cancers, 18 LK, 12 LP, 23 OSMF tissues compared to 20 healthy tissues was determined by qPCR method. Expression of mir7, mir31, mir31* and mir1293 was upregulated and that of mir133a, mir204 and mir206 was downregulated in cancer. Expression of most of these miRNAs was also upregulated in LK and LP tissues but not in OSMF. Expression deregulation of some of the target genes was also determined in cancer, LK and LP tissues. Significant upregulation of mir31 and downregulation of its target gene, CXCL12, in cancer, LK and LP tissues suggest their importance in progression of precancer to cancer. Expression upregulation of mir31 was also validated using GEO data sets. Although sample size is low, novelty of this work lies in studying expression deregulation of miRNAs and target genes in oral cancer and three types of precancerous lesions. PMID:27597234

  2. Expression deregulation of mir31 and CXCL12 in two types of oral precancers and cancer: importance in progression of precancer and cancer

    PubMed Central

    Chattopadhyay, Esita; Singh, Richa; Ray, Anindita; Roy, Roshni; De Sarkar, Navonil; Paul, Ranjan Rashmi; Pal, Mousumi; Aich, Ritesh; Roy, Bidyut

    2016-01-01

    Oral cancer generally progresses from precancerous lesions such as leukoplakia (LK), lichen planus (LP) and oral submucous fibrosis (OSMF). Since few of these precancers progress to cancers; it is worth to identify biological molecules that may play important roles in progression. Here, expression deregulation of 7 miRNAs (mir204, mir31, mir31*, mir133a, mir7, mir206 and mir1293) and their possible target genes in 23 cancers, 18 LK, 12 LP, 23 OSMF tissues compared to 20 healthy tissues was determined by qPCR method. Expression of mir7, mir31, mir31* and mir1293 was upregulated and that of mir133a, mir204 and mir206 was downregulated in cancer. Expression of most of these miRNAs was also upregulated in LK and LP tissues but not in OSMF. Expression deregulation of some of the target genes was also determined in cancer, LK and LP tissues. Significant upregulation of mir31 and downregulation of its target gene, CXCL12, in cancer, LK and LP tissues suggest their importance in progression of precancer to cancer. Expression upregulation of mir31 was also validated using GEO data sets. Although sample size is low, novelty of this work lies in studying expression deregulation of miRNAs and target genes in oral cancer and three types of precancerous lesions. PMID:27597234

  3. CXCL12 is a key regulator in tumor microenvironment of cervical cancer: an in vitro study.

    PubMed

    Yadav, Suresh Singh; Prasad, Shyam Babu; Prasad, Chandra Bhushan; Pandey, Lakshmi Kant; Pradhan, Satyajit; Singh, Sunita; Narayan, Gopeshwar

    2016-06-01

    CXCL12 is a small pro-inflammatory chemo-attractant cytokine which signals through chemokine receptor CXCR4. The importance of CXCL12/CXCR4 axis is coming to the fore in several divergent signaling pathway-initiating signals related to cell survival and/or proliferation and cancer metastasis. In the present study we have investigated whether deregulation in CXCR4 signaling (as a consequence of deregulated expression of CXCL12) modulate the metastatic potential of cervical carcinoma cells. We demonstrate that CXCL12 is frequently down regulated and its promoter is hypermethylated in cervical cancer cell lines and primary tumor biopsies. Exogenous treatment of cervical cancer cell lines (HeLa, SiHa and C-33A) with recombinant CXCL12 inhibited the metastasis promoting cell migration, cell invasion and anchorage independent cell growth events. Although this study will need further in vivo validation, our observations suggest that (a) silencing of CXCL12 in cervical cancer cells may be critical in migration and invasion, the key events in cancer cell metastases; (b) cervical cancer cells having down regulated CXCL12 are more prone to being attracted to CXCL12 expressed at secondary sites of metastases; and (c) CXCL12 inhibits anchorage independent cell growth via anoikis. These findings suggest the tumor suppressor functions of CXCL12 in cervical cancer. PMID:26970955

  4. Modulation of cocaine-induced activity by intracerebral administration of CXCL12.

    PubMed

    Trecki, J; Unterwald, E M

    2009-06-16

    The role of chemokines in immune function is clearly established. Recent evidence suggests that these molecules also play an important role in the central nervous system as modulators of neuronal activity. The chemokine CXCL12 has been identified in several regions of the adult rat brain including the substantia nigra, ventral tegmental area and caudate putamen. CXCR4, a receptor activated by CXCL12, is expressed by dopaminergic neurons in the substantia nigra. The present study tested the effects of intracranial injections of CXCL12 on cocaine-induced locomotion and stereotypic activity in adult male Sprague-Dawley rats. Results demonstrate that intracerebral ventricular administration of CXCL12 (25 ng/4 microl) 15 min prior to cocaine (20 mg/kg intraperitoneal (i.p.)) produced a significant potentiation of both ambulatory and stereotypic activity as compared to cocaine alone. The effects of CXCL12 were blocked by administration of the selective CXCR4 antagonist, AMD 3100. Administration of CXCL12 into specific brain regions was performed to further understand the site of action of CXCL12. Bilateral administration of CXCL12 (25 ng/0.5 microl) into the ventral tegmental area 15 min prior to cocaine (20 mg/kg i.p.) significantly potentiated cocaine-induced ambulatory activity, whereas microinjections of CXCL12 into the caudate putamen selectively increased stereotypy. Conversely, administration of CXCL12 into the lateral shell of the nucleus accumbens resulted in an inhibition of cocaine-stimulated ambulatory activity. No alterations in ambulatory or stereotypic activity were observed following CXCL12 administration into the core of the nucleus accumbens. These results demonstrate that CXCL12 can modulate the behavioral effects produced by cocaine in a brain region-specific manner. PMID:19303923

  5. CXCL12/CXCR4 axis induces proliferation and invasion in human endometrial cancer

    PubMed Central

    Liu, Pingping; Long, Ping; Huang, Yu; Sun, Fengyi; Wang, Zhenyan

    2016-01-01

    Objective: Since that we have previously found CXCL12/CXCR4, an important biological axis is highly transcribed in several cancer cells. We aim to investigate whether CXCL12/CXCR4 axis regulates critical processes in neoplastic transformation that affects endometrial cancer cell biology. Methods: The expression levels of CXCR4 were analyzed in human normal endometrial tissue, simple hyperplasia, atypical hyperplasia and endometrial cancer cells by immunohistochemistry and reverse transcriptase-polymerase chain reaction (RT-PCR). Serum CXCL12 was measured by Enzyme-Linked Immunosorbent Assay (ELISA) in Ishikawa endometrial cancer cell line. To study the biological function of CXCL12/CXCR4 in endometrial cancer, short interfering RNA silencing of CXCR4 was established to analyze the roles of CXCL12/CXCR4 in proliferation, migration, invasion and apoptosis of Ishikawa cells in vitro. Results: The expression level of CXCR4 in endometrial cancer tissue was higher as compared to atypical hyperplasia, simple hyperplasia and normal cycling endometrium cells. Ishikawa cells secreted CXCL12 spontaneously and continuously for 96 hrs in culture. The proliferation, migration and invasion of Ishikawa cells was significantly induced, and the apoptosis was significantly reduced by CXCL12 in combination with CXCR4. Moreover, CXCR4 silencing could significantly antagonize all these functions. Conclusions: CXCL12/CXCR4 axis plays an important role in the proliferation, invasion and metastasis of endometrial cancer, indicating that CXCR4 could be the target for the treatment of endometrial cancer. PMID:27186295

  6. SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis

    PubMed Central

    2011-01-01

    Background SLUG is a zinc-finger transcription factor of the Snail/Slug zinc-finger family that plays a role in migration and invasion of tumor cells. Mechanisms by which SLUG promotes migration and invasion in prostate cancers remain elusive. Methods Expression level of CXCR4 and CXCL12 was examined by Western blot, RT-PCR, and qPCR analyses. Forced expression of SLUG was mediated by retroviruses, and SLUG and CXCL12 was downregulated by shRNAs-expressing lentiviruses. Migration and invasion of prostate cancer were measured by scratch-wound assay and invasion assay, respectively. Research We demonstrated that forced expression of SLUG elevated CXCR4 and CXCL12 expression in human prostate cancer cell lines PC3, DU145, 22RV1, and LNCaP; conversely, reduced expression of SLUG by shRNA downregulated CXCR4 and CXCL12 expression at RNA and protein levels in prostate cancer cells. Furthermore, ectopic expression of SLUG increased MMP9 expression and activity in PC3, 22RV1, and DU-145 cells, and SLUG knockdown by shRNA downregulated MMP9 expression. We showed that CXCL12 is required for SLUG-mediated MMP9 expression in prostate cancer cells. Moreover, we found that migration and invasion of prostate cancer cells was increased by ectopic expression of SLUG and decreased by SLUG knockdown. Notably, knockdown of CXCL12 by shRNA impaired SLUG-mediated migration and invasion in prostate cancer cells. Lastly, our data suggest that CXCL12 and SLUG regulate migration and invasion of prostate cancer cells independent of cell growth. Conclusion We provide the first compelling evidence that upregulation of autocrine CXCL12 is a major mechanism underlying SLUG-mediated migration and invasion of prostate cancer cells. Our findings suggest that CXCL12 is a therapeutic target for prostate cancer metastasis. PMID:22074556

  7. Systemic inflammation induces anxiety disorder through CXCL12/CXCR4 pathway.

    PubMed

    Yang, L; Wang, M; Guo, Y Y; Sun, T; Li, Y J; Yang, Q; Zhang, K; Liu, S B; Zhao, M G; Wu, Y M

    2016-08-01

    It is evidenced that inflammation is involved in the pathogenesis of anxiety disorder, as well as the dysfunction of glutamate neurotransmission in the central nervous system (CNS). Chemokine CXCL12 has been reported taking part in the regulation of neurotransmitter release, however, the roles of CXCL12 in the development of anxiety are still unclear. In this study, we found that intraperitoneal (i.p) injection of lipopolysaccharide (LPS) induced anxiety-like behaviors in adult mice as measured by elevated plus-maze test (EPM) and open field test (OFT). Astrocytes were responsible for CXCL12 induction upon LPS challenge in hippocampus and amygdala, and microinjection of CXCL12 into amygdala induced mice anxiety-like behaviors. AMD3100, which is an antagonist for CXCL12 receptor CXCR4, prevented the anxiety behaviors induced by microinjection of CXCL12 into amygdala as well as injection i.p of LPS. Knockdown of CXCR4 expression in neurons using short hairpin RNAs (shRNAs) significantly blocked anxiety behaviors mediated by CXCL12 i.c injection. Furthermore, AMD3100 or shCXCR4 prevented the impairment of nesting ability induced by CXCL12 in mice. Whole-cell patch-clamp recordings in the neurons of basolateral amygdala (BLA) revealed that CXCL12 enhanced glutamatergic transmission by increasing sEPSC frequency in the amygdala. AMD3100 inhibited the excitatory glutamatergic neural transmission and involved in the development of anxiety through CXCR4. These findings provide direct evidence that alterations of CXCL12 in BLA play critical roles in the development of anxiety induced by systemic inflammation and that CXCR4 may be a potential therapeutic target for inflammation-induced anxiety. PMID:26952745

  8. mTORC2 mediates CXCL12-induced angiogenesis.

    PubMed

    Ziegler, Mary E; Hatch, Michaela M S; Wu, Nan; Muawad, Steven A; Hughes, Christopher C W

    2016-07-01

    The chemokine CXCL12, through its receptor CXCR4, positively regulates angiogenesis by promoting endothelial cell (EC) migration and tube formation. However, the relevant downstream signaling pathways in EC have not been defined. Similarly, the upstream activators of mTORC2 signaling in EC are also poorly defined. Here, we demonstrate for the first time that CXCL12 regulation of angiogenesis requires mTORC2 but not mTORC1. We find that CXCR4 signaling activates mTORC2 as indicated by phosphorylation of serine 473 on Akt and does so through a G-protein- and PI3K-dependent pathway. Significantly, independent disruption of the mTOR complexes by drugs or multiple independent siRNAs reveals that mTORC2, but not mTORC1, is required for microvascular sprouting in a 3D in vitro angiogenesis model. Importantly, in a mouse model, both tumor angiogenesis and tumor volume are significantly reduced only when mTORC2 is inhibited. Finally, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), which is a key regulator of glycolytic flux, is required for microvascular sprouting in vitro, and its expression is reduced in vivo when mTORC2 is targeted. Taken together, these findings identify mTORC2 as a critical signaling nexus downstream of CXCL12/CXCR4 that represents a potential link between mTORC2, metabolic regulation, and angiogenesis. PMID:27106789

  9. Evidence for the involvement of the CXCL12 system in the adaptation of skeletal muscles to physical exercise.

    PubMed

    Puchert, Malte; Adams, Volker; Linke, Axel; Engele, Jürgen

    2016-09-01

    The chemokine CXCL12 and its primary receptor, CXCR4, not only promote developmental myogenesis, but also muscle regeneration. CXCL12 chemoattracts CXCR4-positive satellite cells/blood-borne progenitors to the injured muscle, promotes myoblast fusion, partially with existing myofibers, and induces angiogenesis in regenerating muscles. Interestingly, the mechanisms underlying muscle regeneration are in part identical to those involved in muscular adaptation to intensive physical exercise. These similarities now prompted us to determine whether physical exercise would impact the CXCL12 system in skeletal muscle. We found that CXCL12 and CXCR4 are upregulated in the gastrocnemius muscle of rats that underwent a four-week period of constrained daily running exercise on a treadmill. Double-staining experiments confirmed that CXCL12 and CXCR4 are predominantly expressed in MyHC-positive muscle fibers. Moreover, these training-dependent increases in CXCL12 and CXCR4 expression also occurred in rats with surgical coronary artery occlusion, implying that the muscular CXCL12 system is still active in skeletal myopathy resulting from chronic heart failure. Expression of the second CXCL12 receptor, CXCR7, which presumably acts as a scavenger receptor in muscle, was not affected by training. Attempts to dissect the molecular events underlying the training-dependent effects of CXCL12 revealed that the CXCL12-CXCR4 axis activates anabolic mTOR-p70S6K signaling and prevents upregulation of the catabolic ubiquitin ligase MurF-1 in C2C12 myotubes, eventually increasing myotube diameters. Together, these findings point to a pivotal role of the CXCL12-CXCR4 axis in exercise-induced muscle maintenance and/or growth. PMID:27237374

  10. Crosstalk between astrocytic CXCL12 and microglial CXCR4 contributes to the development of neuropathic pain

    PubMed Central

    Luo, Xin; Tai, Wai L; Sun, Liting; Pan, Zhiqiang; Xia, Zhengyuan; Chung, Sookja K

    2016-01-01

    Background Chemokine axis chemokine C-X-C motif ligand 12/C-X-C chemokine receptor type 4 (CXCL12/CXCR4) is an emerging pain modulator, but mechanisms for its involvement in neuropathic pain remain unclear. Here, we aimed to study whether CXCL12/CXCR4 axis modulated the development of neuropathic pain via glial mechanisms. In this study, two mouse models of neuropathic pain, namely partial sciatic nerve ligation (pSNL) model and chronic post-ischemia pain (CPIP) model, were used. Results In the dorsal horn of L3–L5 segment of spinal cord, CXCL12 and CXCR4 were expressed in both astrocyte and microglia in normal mice. In the pSNL or CPIP model, the expression level of CXCL12 in the ipsilateral L3–L5 segment of mice spinal cord was increased in an astrocyte-dependent manner on post-operative day (POD) 3. Intrathecal administration of CXCL12 with AMD3100 (CXCR4 antagonist) or minocycline (microglia activation inhibitor), but not fluorocitrate (astrocyte activation inhibitor), reversed CXCL12-indued mechanical allodynia in naïve mice. In these models, AMD3100 and AMD3465 (CXCR4 antagonist), administered daily from 1 h before surgery and up to POD 3, attenuated the development of mechanical allodynia. Moreover, AMD3100 administered daily from 1 h before surgery and up to POD 3 downregulated mRNA levels of tumor necrosis factor alpha, interleukin 1β, and interleukin 6 in the ipsilateral L3–L5 segment of spinal cord in the pSNL and CPIP models on POD 3. Conclusion This study demonstrates the crosstalk between astrocytic CXCL12 and microglial CXCR4 in the pathogenesis of neuropathic pain using pSNL and CPIP models. Our results offer insights for the future research on CXCL12/CXCR4 axis and neuropathic pain therapy. PMID:27030717

  11. Prognostic significance of CXCL12, CXCR4, and CXCR7 in patients with breast cancer

    PubMed Central

    Wu, Wei; Qian, Liyuan; Chen, Xuedong; Ding, Boni

    2015-01-01

    Background: The chemokine CXCL12 and its receptors CXCR4 and CXCR7 play important roles in cancer invasion and metastasis. This study investigated the mRNA expressions of CXCL12, CXCR4, and CXCR7 to illustrate the role of these biomarkers in breast cancer metastasis and prognosis. Methods: The mRNA expressions of CXCL12, CXCR4, and CXCR7 in 115 primary breast cancer and regional lymph node specimens were detected by quantitative reverse-transcription polymerase chain reaction. Survival time was analyzed by Kaplan-Meier survival curves using log-rank test. Univariable and multivariable Cox regression analyses were performed to assess independent prognostic factors for survival. Results: The expression levels of CXCR4 and CXCR7 in breast cancer tissues were significantly higher than that in adjacent normal tissues (P=0.022 and P<0.001, respectively), while the expression level of CXCL12 in breast cancer tissues did not differ from that in adjacent normal tissues (P=0.156). Furthermore, CXCL12 exhibited significant differences in expression between primary tumor and lymph node metastasis tumor (P=0.039). CXCR4 and CXCR7 expressions in metastasis tumor were also higher, although no significant difference was observed (P=0.067 and P=0.054, respectively). Kaplan-Meier survival analysis revealed that patients exhibiting high CXCR4 and CXCR7 expression experienced a shorter survival period compared with those with low expression. When analyzed with a Cox regression model, the expressions of CXCL12, CXCR4 and CXCR7 were independent prognostic factors for overall survival. Conclusions: The mRNA expressions of CXCL12, CXCR4, and CXCR7 play important roles in the progression and metastasis of breast cancer and may act as predictive factors significantly affecting the prognosis. PMID:26722521

  12. The CXCL12/CXCR4 Axis Plays a Critical Role in Coronary Artery Development

    PubMed Central

    Ivins, Sarah; Chappell, Joel; Vernay, Bertrand; Suntharalingham, Jenifer; Martineau, Alexandrine; Mohun, Timothy J.; Scambler, Peter J.

    2015-01-01

    Summary The chemokine CXCL12 and its receptor CXCR4 have many functions during embryonic and post-natal life. We used murine models to investigate the role of CXCL12/CXCR4 signaling in cardiac development and found that embryonic Cxcl12-null hearts lacked intra-ventricular coronary arteries (CAs) and exhibited absent or misplaced CA stems. We traced the origin of this phenotype to defects in the early stages of CA stem formation. CA stems derive from the peritruncal plexus, an encircling capillary network that invades the wall of the developing aorta. We showed that CXCL12 is present at high levels in the outflow tract, while peritruncal endothelial cells (ECs) express CXCR4. In the absence of CXCL12, ECs were abnormally localized and impaired in their ability to anastomose with the aortic lumen. We propose that CXCL12 is required for connection of peritruncal plexus ECs to the aortic endothelium and thus plays a vital role in CA formation. PMID:26017770

  13. SDF-1/CXCL12 modulates mitochondrial respiration of immature blood cells in a bi-phasic manner.

    PubMed

    Messina-Graham, Steven; Broxmeyer, Hal

    2016-05-01

    SDF-1/CXCL12 is a potent chemokine required for the homing and engraftment of hematopoietic stem and progenitor cells. Previous data from our group has shown that in an SDF-1/CXCL12 transgenic mouse model, lineage(-) Sca-1(+) c-Kit(+) (LSK) bone marrow cells have reduced mitochondrial membrane potential versus wild-type. These results suggested that SDF-1/CXCL12 may function to keep mitochondrial respiration low in immature blood cells in the bone marrow. Low mitochondrial metabolism helps to maintain low levels of reactive oxygen species (ROS), which can influence differentiation. To test whether SDF-1/CXCL12 regulates mitochondrial metabolism, we employed the human leukemia cell line HL-60, that expresses high levels of the SDF-1/CXCL12 receptor, CXCR4, as a model of hematopoietic progenitor cells in vitro. We treated HL-60 cells with SDF-1/CXCL12 for 2 and 24h. Oxygen consumption rates (OCR), mitochondrial-associated ATP production, mitochondrial mass, and mitochondrial membrane potential of HL-60 cells were significantly reduced at 2h and increased at 24h as compared to untreated control cells. These biphasic effects of SDF-1/CXCL12 were reproduced with lineage negative primary mouse bone marrow cells, suggesting a novel function of SDF-1/CXCL12 in modulating mitochondrial respiration by regulating mitochondrial oxidative phosphorylation, ATP production and mitochondrial content. PMID:27067482

  14. CXCL12 induces hepatic stellate cell contraction through a calcium-independent pathway.

    PubMed

    Saiman, Yedidya; Agarwal, Ritu; Hickman, DaShawn A; Fausther, Michel; El-Shamy, Ahmed; Dranoff, Jonathan A; Friedman, Scott L; Bansal, Meena B

    2013-09-01

    Liver fibrosis, with subsequent development of cirrhosis and ultimately portal hypertension, results in the death of patients with end-stage liver disease if liver transplantation is not performed. Hepatic stellate cells (HSCs), central mediators of liver fibrosis, resemble tissue pericytes and regulate intrahepatic blood flow by modulating pericapillary resistance. Therefore, HSCs can contribute to portal hypertension in patients with chronic liver disease (CLD). We have previously demonstrated that activated HSCs express functional chemokine receptor, CXCR4, and that receptor engagement by its ligand, CXCL12, which is increased in patients with CLD, leads to further stellate cell activation in a CXCR4-specific manner. We therefore hypothesized that CXCL12 promotes HSC contraction in a CXCR4-dependent manner. Stimulation of HSCs on collagen gel lattices with CXCL12 led to gel contraction and myosin light chain (MLC) phosphorylation, which was blocked by addition of AMD3100, a CXCR4 small molecule inhibitor. These effects were further mediated by the Rho kinase pathway since both Rho kinase knockdown or Y-27632, a Rho kinase inhibitor, blocked CXCL12 induced phosphorylation of MLC and gel contraction. BAPTA-AM, a calcium chelator, had no effect, indicating that this pathway is calcium sensitive but not calcium dependent. In conclusion, CXCL12 promotes stellate cell contractility in a predominantly calcium-independent fashion. Our data demonstrates a novel role of CXCL12 in stellate cell contraction and the availability of small molecule inhibitors of the CXCL12/CXCR4 axis justifies further investigation into its potential as therapeutic target for portal hypertension. PMID:23812037

  15. MIF and CXCL12 in Cardiovascular Diseases: Functional Differences and Similarities

    PubMed Central

    van der Vorst, Emiel P. C.; Döring, Yvonne; Weber, Christian

    2015-01-01

    Coronary artery disease (CAD) as part of the cardiovascular diseases is a pathology caused by atherosclerosis, a chronic inflammatory disease of the vessel wall characterized by a massive invasion of lipids and inflammatory cells into the inner vessel layer (intima) leading to the formation of atherosclerotic lesions; their constant growth may cause complications such as flow-limiting stenosis and plaque rupture, the latter triggering vessel occlusion through thrombus formation. Pathophysiology of CAD is complex and over the last years many players have entered the picture. One of the latter being chemokines (small 8–12 kDa cytokines) and their receptors, known to orchestrate cell chemotaxis and arrest. Here, we will focus on the chemokine CXCL12, also known as stromal cell-derived factor 1 (SDF-1) and the chemokine-like function chemokine, macrophage migration-inhibitory factor (MIF). Both are ubiquitously expressed and highly conserved proteins and play an important role in cell homeostasis, recruitment, and arrest through binding to their corresponding chemokine receptors CXCR4 (CXCL12 and MIF), ACKR3 (CXCL12), and CXCR2 (MIF). In addition, MIF also binds to the receptor CD44 and the co-receptor CD74. CXCL12 has mostly been studied for its crucial role in the homing of (hematopoietic) progenitor cells in the bone marrow and their mobilization into the periphery. In contrast to CXCL12, MIF is secreted in response to diverse inflammatory stimuli, and has been associated with a clear pro-inflammatory and pro-atherogenic role in multiple studies of patients and animal models. Ongoing research on CXCL12 points at a protective function of this chemokine in atherosclerotic lesion development. This review will focus on the role of CXCL12 and MIF and their differences and similarities in CAD of high risk patients. PMID:26257740

  16. The CXCL12γ Chemokine Displays Unprecedented Structural and Functional Properties that Make It a Paradigm of Chemoattractant Proteins

    PubMed Central

    Rueda, Patricia; Balabanian, Karl; Lagane, Bernard; Staropoli, Isabelle; Chow, Ken; Levoye, Angelique; Laguri, Cedric; Sadir, Rabia; Delaunay, Thierry; Izquierdo, Elena; Pablos, Jose Luis; Lendinez, Elena; Caruz, Antonio; Franco, Diego; Baleux, Françoise; Lortat-Jacob, Hugues; Arenzana-Seisdedos, Fernando

    2008-01-01

    The CXCL12γ chemokine arises by alternative splicing from Cxcl12, an essential gene during development. This protein binds CXCR4 and displays an exceptional degree of conservation (99%) in mammals. CXCL12γ is formed by a protein core shared by all CXCL12 isoforms, extended by a highly cationic carboxy-terminal (C-ter) domain that encompass four overlapped BBXB heparan sulfate (HS)-binding motifs. We hypothesize that this unusual domain could critically determine the biological properties of CXCL12γ through its interaction to, and regulation by extracellular glycosaminoglycans (GAG) and HS in particular. By both RT-PCR and immunohistochemistry, we mapped the localization of CXCL12γ both in mouse and human tissues, where it showed discrete differential expression. As an unprecedented feature among chemokines, the secreted CXCL12γ strongly interacted with cell membrane GAG, thus remaining mostly adsorbed on the plasmatic membrane upon secretion. Affinity chromatography and surface plasmon resonance allowed us to determine for CXCL12γ one of the higher affinity for HS (Kd = 0.9 nM) ever reported for a protein. This property relies in the presence of four canonical HS-binding sites located at the C-ter domain but requires the collaboration of a HS-binding site located in the core of the protein. Interestingly, and despite reduced agonist potency on CXCR4, the sustained binding of CXCL12γ to HS enabled it to promote in vivo intraperitoneal leukocyte accumulation and angiogenesis in matrigel plugs with much higher efficiency than CXCL12α. In good agreement, mutant CXCL12γ chemokines selectively devoid of HS-binding capacity failed to promote in vivo significant cell recruitment. We conclude that CXCL12γ features unique structural and functional properties among chemokines which rely on the presence of a distinctive C-ter domain. The unsurpassed capacity to bind to HS on the extracellular matrix would make CXCL12γ the paradigm of haptotactic proteins, which

  17. Emerging Targets in Pituitary Adenomas: Role of the CXCL12/CXCR4-R7 System

    PubMed Central

    Thellung, Stefano; Würth, Roberto; Gatto, Federico; Corsaro, Alessandro; Villa, Valentina; Nizzari, Mario; Albertelli, Manuela; Ferone, Diego; Florio, Tullio

    2014-01-01

    Chemokines are chemotactic regulators of immune surveillance in physiological and pathological conditions such as inflammation, infection, and cancer. Several chemokines and cognate receptors are constitutively expressed in the central nervous system, not only in glial and endothelial cells but also in neurons, controlling neurogenesis, neurite outgrowth, and axonal guidance during development. In particular, the chemokine CXCL12 and its receptors, CXCR4 and CXCR7, form a functional network that controls plasticity in different brain areas, influencing neurotransmission, neuromodulation, and cell migration, and the dysregulation of this chemokinergic axis is involved in several neurodegenerative, neuroinflammatory, and malignant diseases. CXCR4 primarily mediates the transduction of proliferative signals, while CXCR7 seems to be mainly responsible for scavenging CXCL12. Importantly, the multiple intracellular signalling generated by CXCL12 interaction with its receptors influences hypothalamic modulation of neuroendocrine functions, although a direct modulation of pituitary functioning via autocrine/paracrine mechanisms was also reported. Both CXCL12 and CXCR4 are constitutively overexpressed in pituitary adenomas and their signalling induces cell survival and proliferation, as well as hormonal hypersecretion. In this review we focus on the physiological and pathological functions of immune-related cyto- and chemokines, mainly focusing on the CXCL12/CXCR4-7 axis, and their role in pituitary tumorigenesis. Accordingly, we discuss the potential targeting of CXCR4 as novel pharmacological approach for pituitary adenomas. PMID:25484899

  18. Annexin 2 is a Regulator of SDF-1/CXCL12 Function in the Hematopoietic Stem Cell Endosteal Niche

    PubMed Central

    Jung, Younghun; Shiozawa, Yusuke; Wang, Jingcheng; Patel, Lalit R; Havens, Aaron M.; Song, Junhui; Krebsbach, Paul H.; Roodman, G. David; Taichman, Russell S.

    2010-01-01

    Objectives Previously we reported that annexin 2 (anxa2) plays an important role in hematopoietic stem cell (HSC) localization to the endosteal/osteoblastic marrow niche. The study explored the role that annexin 2 plays in presenting stromal derived factor-1 (SDF-1 or CXCL12) to HSCs. Materials and Methods Competitive long-term bone marrow transplant (CLT-BMT) assays were used to determine if HSC engraftment is altered in annexin 2-deficient animals. Colony-forming cell assays, CXCL12 Elisa, and real-time RT-PCR analyses were employed to determine stem or progenitor cell mobilization by G-CSF. Immunohistochemistry, immunoprecipitation, binding assays, and chemotactic assays were employed to determine if annexin 2 is associated with CXCL12. Degradation assays were also used to determine if annexin 2 and CXCL12 protect each other from proteolytic degradation. Results Anxa2−/− animals have fewer HSC in their marrows, and the HSCs in anxa2−/− animals express less CXCR4 and CXCR7 suggesting a cell intrinsic defect. Transplantation studies of wild-type marrow into anxa2−/− animals demonstrated a cell extrinsic defect in the anxa2−/− animals. CXCL12 binds directly to annexin 2, and this interaction facilitates the presentation of CXCL12 to HSCs. Yet the binding of CXCL12 to annexin 2 does not protect CXCL12 from proteolytic cleavage following stem or progenitor cell mobilization by G-CSF. Conclusions These results suggest that annexin 2 serves as an anchor for CXCL12 to help in the localization of HSCs to the niche. PMID:21108988

  19. PI3K{gamma} activation by CXCL12 regulates tumor cell adhesion and invasion

    SciTech Connect

    Monterrubio, Maria; Mellado, Mario; Carrera, Ana C.

    2009-10-16

    Tumor dissemination is a complex process, in which certain steps resemble those in leukocyte homing. Specific chemokine/chemokine receptor pairs have important roles in both processes. CXCL12/CXCR4 is the most commonly expressed chemokine/chemokine receptor pair in human cancers, in which it regulates cell adhesion, extravasation, metastatic colonization, angiogenesis, and proliferation. All of these processes require activation of signaling pathways that include G proteins, phosphatidylinositol-3 kinase (PI3K), JAK kinases, Rho GTPases, and focal adhesion-associated proteins. We analyzed these pathways in a human melanoma cell line in response to CXCL12 stimulation, and found that PI3K{gamma} regulates tumor cell adhesion through mechanisms different from those involved in cell invasion. Our data indicate that, following CXCR4 activation after CXCL12 binding, the invasion and adhesion processes are regulated differently by distinct downstream events in these signaling cascades.

  20. Downregulation of the CXCR4/CXCL12 axis blocks the activation of the Wnt/β-catenin pathway in human colon cancer cells.

    PubMed

    Song, Zhi-Yu; Gao, Zu-Hua; Chu, Jia-Hui; Han, Xiu-Zhen; Qu, Xian-Jun

    2015-04-01

    Chemokine CXCL12 is an extracellular chemokine, which binds to its cell surface receptor CXCR4. High expressions of CXCR4 and CXCL12 are associated with biological malignant potential in colon cancers. We aimed to investigate the roles of the CXCR4/CXCL12 axis in activation of the Wnt/β-catenin pathway in the development of colon cancers. Using colon cancer cell line, we performed the RNA interference assay to downregulate the expression of CXCR4. Cells were exposed to CXCL12 and their growth and metastatic activity were examined. Matrix metalloproteinases (MMPs) activity were analyzed by the gelatin zymography assay. Cell migration ability was estimated by assays of scratch wound and transwell chamber. The expression of CXCR4 and molecules relevant to the Wnt/β-catenin pathway were analyzed by the western blotting and real-time PCR assays. Human colon cancer HT-29 cells identified high expression of CXCR4. HT-29 cells highly responded to CXCL12 stimulation, showing the increase of cell proliferation, invasion and migration through the Matrigeal. The secretion and activity of MMP-2 and MMP-9 were also stimulated in HT-29 cells exposure to CXCL12. However, the CXCR4 knockdown HT-29 cells did not response to CXCL12 stimulation. We suggested that the activation of the CXCR4/CXCL12 axis be blocked in the CXCR4 knockdown cells. This study indicated that one key to the role of the CXCR4/CXCL12 axis is activation of the Wnt/β-catenin pathway. Downregulation of the CXCR4/CXCL12 axis thus reduces cancer growth and metastasis. Targeted therapy utilizing the CXCR4/CXCL12 axis could be an effective strategy for treatment of colon cancers. PMID:25960214

  1. CXCL12/CXCR4 axis regulates neovascularization and lymphangiogenesis in sutured corneas in mice

    PubMed Central

    DU, LING-LING; LIU, PING

    2016-01-01

    The present study aimed to determine the plausible functional role of chemokine (C-X-C motif) ligand 12 (CXCL12)/chemokine (C-X-C motif) receptor 4 (CXCR4) in inflammatory corneal hemangiogenesis and lymphangiogenesis in vivo. Corneal hemangiogenesis and lymphangiogenesis were induced by placing an 11-0 nylon suture in an intrastromal position. The expression levels of the vascular endothelial growth factor (VEGF) family, CXCL12 and CXCR4 in the corneas were investigated in the corneas using reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. Corneal hemangiogenic and lymphangiogenic responses were assessed by immunofluorescence using specific antibodies against cluster of differentiation 31 and lymphatic vessel endothelial hyaluronan receptor-1. Subconjunctival injection of AMD3100 to the sutured corneas was also performed. CXCL12/CXCR4 mRNA and protein expression levels increased markedly in suture-induced corneal neovascularization (CNV) and decreased with AMD3100 treatment. Hemangiogenesis and lymphangiogenesis were captured in images using immunofluorescence and were shown to be markedly increased with suture placement and reduced with AMD3100 treatment. VEGF-A/VEGFR-1 and VEGF-C/VEGFR-3 mRNA expression levels were upregulated in the suture placement and control groups, whereas the expression levels of all the factors were downregulated in the AMD3100 treatment group. The results from the present study demonstrated that CXCL12/CXCR4 interactions regulate hemangiogenesis and lymphangiogenesis in suture-induced CNV. AMD3100 may be a novel therapeutic target for the prevention of blindness. PMID:27121088

  2. The CXCR4-CXCL12 axis in Ewing sarcoma: promotion of tumor growth rather than metastatic disease

    PubMed Central

    2012-01-01

    Background Chemokine receptor CXCR4, together with its ligand CXCL12, plays critical roles in cancer progression, including growth, metastasis and angiogenesis. Ewing sarcoma is a sarcoma with poor prognosis despite current therapies, particularly for patients with advanced-stage disease. Lungs and bone (marrow), organs of predilection for (primary/metastatic) Ewing sarcoma, represent predominant CXCL12 sources. Methods To gain insight into the role of the CXCR4-CXCL12 axis in Ewing sarcoma, CXCR4, CXCL12 and hypoxia-inducible factor-1α protein expression was studied in therapy-naïve and metastatic tumors by immunohistochemistry. CXCR4 function was assessed in vitro, by flow cytometry and proliferation/ cell viability assays, in the presence of recombinant CXCL12 and/or CXCR4-antagonist AMD3100 or under hypoxic conditions. Results Whereas CXCR4 was predominantly expressed by tumor cells, CXCL12 was observed in both tumor and stromal areas. Survival analysis revealed an (expression level-dependent) negative impact of CXCR4 expression (p < 0.04). A role for the CXCR4-CXCL12 axis in Ewing sarcoma growth was suggested by our observations that i) CXCR4 expression correlated positively with tumor volume at diagnosis (p = 0.013), ii) CXCL12 was present within the microenvironment of virtually all cases, iii) CXCL12 induced proliferation of CXCR4-positive Ewing sarcoma cell lines, which could be abrogated by AMD3100. CXCR4 expression was not correlated with occurrence of metastatic disease. Also, therapy-naïve tumors demonstrated higher CXCR4 expression as compared to metastases (p = 0.027). Evaluation of in vivo hypoxia-inducible factor-1α expression and culture of cells under hypoxic conditions revealed no role for hypoxia in CXCR4 expression. Conclusions Together, our results imply a crucial role for the CXCR4-CXCL12 axis in auto- and/or paracrine growth stimulation. Integration of CXCR4-targeting strategies into first- and/or second-line treatment

  3. Dynamic Cross Talk between S1P and CXCL12 Regulates Hematopoietic Stem Cells Migration, Development and Bone Remodeling

    PubMed Central

    Golan, Karin; Kollet, Orit; Lapidot, Tsvee

    2013-01-01

    Hematopoietic stem cells (HSCs) are mostly retained in a quiescent non-motile mode in their bone marrow (BM) niches, shifting to a migratory cycling and differentiating state to replenish the blood with mature leukocytes on demand. The balance between the major chemo-attractants CXCL12, predominantly in the BM, and S1P, mainly in the blood, dynamically regulates HSC recruitment to the circulation versus their retention in the BM. During alarm situations, stress-signals induce a decrease in CXCL12 levels in the BM, while S1P levels are rapidly and transiently increased in the circulation, thus favoring mobilization of stem cells as part of host defense and repair mechanisms. Myeloid cytokines, including G-CSF, up-regulate S1P signaling in the BM via the PI3K pathway. Induced CXCL12 secretion from stromal cells via reactive oxygen species (ROS) generation and increased S1P1 expression and ROS signaling in HSCs, all facilitate mobilization. Bone turnover is also modulated by both CXCL12 and S1P, regulating the dynamic BM stromal microenvironment, osteoclasts and stem cell niches which all functionally express CXCL12 and S1P receptors. Overall, CXCL12 and S1P levels in the BM and circulation are synchronized to mutually control HSC motility, leukocyte production and osteoclast/osteoblast bone turnover during homeostasis and stress situations. PMID:24276423

  4. CXCL12 Influences the Development of Extramedullary Hematopoiesis in the Spleens of Myelofibrosis Patients

    PubMed Central

    Wang, Xiaoli; Cho, Sool Yeon; Hu, Cing Siang; Chen, Daniel; Roboz, John; Hoffman, Ronald

    2014-01-01

    Myelofibrosis (MF) is characterized by the constitutive mobilization of hematopoietic stem cells (HSC) and progenitor cells (HPC) and the establishment of extramedullary hematopoiesis (EMH). The mechanisms underlying this abnormal HSC/HPC trafficking pattern remain poorly understood. We demonstrated that both splenic and peripheral blood (PB) MF CD34+ cells equally share a defective ability to home to the marrow but not the spleens of NOD/SCID mice. This trafficking pattern could not be attributed to discordant expression of integrins or chemokine receptors other than the down-regulation of CXCR4 by both PB and splenic MF CD34+ cells. The number of both splenic MF CD34+ cells and HPCs that migrated towards splenic MF plasma was, however, significantly greater than the number that migrated towards PB MF plasma. The concentration of the intact HSC/HPC chemo-attractant, CXCL12, was greater in splenic MF plasma than PB MF plasma as quantified using mass spectrometry. Functionally inactive truncated products of CXCL12 which are the product of proteolytic degradation by serine proteases were detected at similar levels in both splenic and PB MF plasma. Treatment with an anti-CXCL12 neutralizing antibody resulted in a reduction in the degree of migration of splenic MF CD34+ cells towards both PB and splenic MF plasma validating the role of CXCL12 as a functional chemo-attractant. Our data indicate that the MF splenic microenvironment is characterized by increased levels of intact, functional CXCL12, which contributes to the localization of MF CD34+ cells to the spleen and the establishment of EMH. PMID:25461253

  5. CXCL12 Mediates Trophic Interactions between Endothelial and Tumor Cells in Glioblastoma

    PubMed Central

    Choe, Eun Joo; Woerner, B. Mark; Jackson, Erin; Sun, Tao; Leonard, Jeffrey; Piwnica-Worms, David; Rubin, Joshua B.

    2012-01-01

    Emerging evidence suggests endothelial cells (EC) play a critical role in promoting Glioblastoma multiforme (GBM) cell proliferation and resistance to therapy. The molecular basis for GBM-EC interactions is incompletely understood. We hypothesized that the chemokine CXCL12 and its receptor CXCR4 could mediate direct interactions between GBM cells and tumor-associated endothelial cells and that disruption of this interaction might be the molecular basis for the anti-tumor effects of CXCR4 antagonists. We investigated this possibility in vivo and in an in vitro co-culture model that incorporated extracellular matrix, primary human brain microvascular ECs (HBMECs) and either an established GBM cell line or primary GBM specimens. Depletion of CXCR4 in U87 GBM cells blocked their growth as intracranial xenografts indicating that tumor cell CXCR4 is required for tumor growth in vivo. In vitro, co-culture of either U87 cells or primary GBM cells with HBMECs resulted in their co-localization and enhanced GBM cell growth. Genetic manipulation of CXCL12 expression and pharmacological inhibition of its receptors CXCR4 and CXCR7 revealed that the localizing and trophic effects of endothelial cells on GBM cells were dependent upon CXCL12 and CXCR4. These findings indicate that the CXCL12/CXCR4 pathway directly mediates endothelial cell trophic function in GBMs and that inhibition of CXCL12-CXCR4 signaling may uniquely target this activity. Therapeutic disruption of endothelial cell trophic functions could complement the structural disruption of anti-angiogenic regimens and, in combination, might also improve the efficacy of radiation and chemotherapy in treating GBMs. PMID:22427929

  6. Platelet-derived CXCL12 regulates monocyte function, survival, differentiation into macrophages and foam cells through differential involvement of CXCR4–CXCR7

    PubMed Central

    Chatterjee, M; von Ungern-Sternberg, S N I; Seizer, P; Schlegel, F; Büttcher, M; Sindhu, N A; Müller, S; Mack, A; Gawaz, M

    2015-01-01

    Platelets store and release CXCL12 (SDF-1), which governs differentiation of hematopoietic progenitors into either endothelial or macrophage-foam cells. CXCL12 ligates CXCR4 and CXCR7 and regulates monocyte/macrophage functions. This study deciphers the relative contribution of CXCR4–CXCR7 in mediating the effects of platelet-derived CXCL12 on monocyte function, survival, and differentiation. CXCL12 and macrophage migration inhibitory factor (MIF) that ligate CXCR4–CXCR7 induced a dynamic bidirectional trafficking of the receptors, causing CXCR4 internalization and CXCR7 externalization during chemotaxis, thereby influencing relative receptor availability, unlike MCP-1. In vivo we found enhanced accumulation of platelets and platelet-macrophage co-aggregates in peritoneal fluid following induction of peritonitis in mice. The relative surface expression of CXCL12, CXCR4, and CXCR7 among infiltrated monocytes was also enhanced as compared with peripheral blood. Platelet-derived CXCL12 from collagen-adherent platelets and recombinant CXCL12 induced monocyte chemotaxis specifically through CXCR4 engagement. Adhesion of monocytes to immobilized CXCL12 and CXCL12-enriched activated platelet surface under static and dynamic arterial flow conditions were mediated primarily through CXCR7 and were counter-regulated by neutralizing platelet-derived CXCL12. Monocytes and culture-derived-M1–M2 macrophages phagocytosed platelets, with the phagocytic potential of culture-derived-M1 macrophages higher than M2 involving CXCR4–CXCR7 participation. CXCR7 was the primary receptor in promoting monocyte survival as exerted by platelet-derived CXCL12 against BH3-mimetic induced apoptosis (phosphatidylserine exposure, caspase-3 activation, loss of mitochondrial transmembrane potential). In co-culture experiments with platelets, monocytes predominantly differentiated into CD163+ macrophages, which was attenuated upon CXCL12 neutralization and CXCR4/CXCR7 blocking antibodies

  7. Aberrant Gene Expression in Humans

    PubMed Central

    Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L.; Cai, James J.

    2015-01-01

    Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating

  8. Upregulation of Chemokine CXCL12 in the Dorsal Root Ganglia and Spinal Cord Contributes to the Development and Maintenance of Neuropathic Pain Following Spared Nerve Injury in Rats.

    PubMed

    Bai, Liying; Wang, Xinru; Li, Zhisong; Kong, Cunlong; Zhao, Yonghui; Qian, Jun-Liang; Kan, Quancheng; Zhang, Wei; Xu, Ji-Tian

    2016-02-01

    Emerging evidence indicates that CXCL12/CXCR4 signaling is involved in chronic pain. However, few studies have systemically assessed its role in direct nerve injury-induced neuropathic pain and the underlying mechanism. Here, we determined that spared nerve injury (SNI) increased the expression of CXCL12 and its cognate receptor CXCR4 in lumbar 5 dorsal root ganglia (DRG) neurons and satellite glial cells. SNI also induced long-lasting upregulation of CXCL12 and CXCR4 in the ipsilateral L4-5 spinal cord dorsal horn, characterized by CXCL12 expression in neurons and microglia, and CXCR4 expression in neurons and astrocytes. Moreover, SNI-induced a sustained increase in TNF-α expression in the DRG and spinal cord. Intraperitoneal injection (i.p.) of the TNF-α synthesis inhibitor thalidomide reduced the SNI-induced mechanical hypersensitivity and inhibited the expression of CXCL12 in the DRG and spinal cord. Intrathecal injection (i.t.) of the CXCR4 antagonist AMD3100, both 30 min before and 7 days after SNI, reduced the behavioral signs of allodynia. Rats given an i.t. or i.p. bolus of AMD3100 on day 8 of SNI exhibited attenuated abnormal pain behaviors. The neuropathic pain established following SNI was also impaired by i.t. administration of a CXCL12-neutralizing antibody. Moreover, repetitive i.t. AMD3100 administration prevented the activation of ERK in the spinal cord. The mechanical hypersensitivity induced in naïve rats by i.t. CXCL12 was alleviated by pretreatment with the MEK inhibitor PD98059. Collectively, our results revealed that TNF-α might mediate the upregulation of CXCL12 in the DRG and spinal cord following SNI, and that CXCL12/CXCR4 signaling via ERK activation contributes to the development and maintenance of neuropathic pain. PMID:26781879

  9. CXCL12 genetic variants as prognostic markers in nasopharyngeal carcinoma

    PubMed Central

    Chen, Ruiwan; Xu, Yafei; Du, Xiaojing; Liu, Na; Li, Yingqin; He, Qingmei; Tang, Linglong; Mao, Yanping; Sun, Ying; Chen, Lei; Ma, Jun

    2015-01-01

    The chemokine receptor 4/chemokine ligand 12 (CXCR4/CXCL12) axis plays an important role in tumorigenesis, metastasis, and recurrence of tumors. Its single nucleotide polymorphisms (SNPs) are associated with patient survival in several types of cancer. However, the prognostic value of SNPs in nasopharyngeal carcinoma (NPC) has not been fully investigated. This retrospective study assessed the relationships between CXCR4 rs2228014 and CXCL12 rs1801157 polymorphisms and patient outcome in 222 patients newly diagnosed with NPC. The analysis found no significant correlation between the presence of both SNPs and clinicopathological factors. However, univariate analysis showed that N classification, clinical stage, and the CXCL12 rs1801157 polymorphism were significantly associated with distant metastasis-free survival (P=0.018, 0.028, and 0.013, respectively) and progression-free survival (P=0.007, 0.046, and 0.021, respectively). After adjusting clinicopathological factors, multivariate analysis identified CXCL12 rs1801157 as an independent prognostic factor for distant metastasis-free survival and progression-free survival (hazard ratio: 3.332; 95% confidence interval: 1.597–6.949; P=0.001 and hazard ratio: 2.665 95% confidence interval: 1.387–5.119; P=0.003, respectively). Our results suggest that CXCL12 rs1801157 AA genotype might serve as a potential prognostic factor in patients with NPC. PMID:26504400

  10. Relationship of the Chemokine, CXCL12, to Effects of Dietary Fat on Feeding-Related Behaviors and Hypothalamic Neuropeptide Systems

    PubMed Central

    Poon, Kinning; Barson, Jessica R.; Ho, Hui T.; Leibowitz, Sarah F.

    2016-01-01

    The intake of a high fat diet (HFD), in addition to stimulating orexigenic neuropeptides in the hypothalamus while promoting overeating and reducing locomotor behavior, is known to increase inflammatory mediators that modulate neuronal systems in the brain. To understand the involvement of chemokines in the effects of a HFD, we examined in rats whether HFD intake affects a specific chemokine, CXCL12, and its receptors, CXCR4 and CXCR7, in the hypothalamus together with the neuropeptides and whether CXCL12 itself acts similarly to a HFD in stimulating the neuropeptides and altering ingestion and locomotor behavior. Compared to low-fat chow, a HFD for 5 days significantly increased the expression of CXCL12 and its receptors, in both the paraventricular nucleus (PVN) where the neuropeptides enkephalin (ENK) and galanin were also stimulated and the perifornical lateral hypothalamus (PFLH) where orexin (OX) and melanin-concentrating hormone (MCH) were increased. In contrast, the HFD had no impact on expression of CXCL12 or its receptors in the arcuate nucleus (ARC) where the carbohydrate-related peptide, neuropeptide Y (NPY), was suppressed. Analysis of protein levels revealed a similar stimulatory effect of a HFD on CXCL12 levels in the PVN and PFLH, as well as in blood, and an increase in the number of CXCR4-positive cells in the PVN. In the ARC, in contrast, levels of CXCL12 and number of CXCR4-positive cells were too low to measure. When centrally administered, CXCL12 was found to have similar effects to a HFD. Injection of CXCL12 into the third cerebral ventricle immediately anterior to the hypothalamus significantly stimulated the ingestion of a HFD, reduced novelty-induced locomotor activity, and increased expression of ENK in the PVN where the CXCR4 receptors were dense. It had no impact, however, on NPY in the ARC or on OX and MCH in the PFLH where the CXCR4 receptors were not detected. These results, showing CXCL12 in the hypothalamus to be stimulated by a HFD

  11. CXCL12-CXCR7 axis is important for tumor endothelial cell angiogenic property.

    PubMed

    Yamada, Kenji; Maishi, Nako; Akiyama, Kosuke; Towfik Alam, Mohammad; Ohga, Noritaka; Kawamoto, Taisuke; Shindoh, Masanobu; Takahashi, Norihiko; Kamiyama, Toshiya; Hida, Yasuhiro; Taketomi, Akinobu; Hida, Kyoko

    2015-12-15

    We reported that tumor endothelial cells (TECs) differ from normal endothelial cells (NECs) in many aspects, such as gene expression profiles. Although CXCR7 is reportedly highly expressed in blood vessels of several tumors, its function in TECs is still unknown. To investigate this role, we isolated TECs from mouse tumor A375SM xenografts, and compared them with NECs from normal mouse dermis. After confirming CXCR7 upregulation in TECs, we analyzed its function using CXCR7 siRNA and CXCR7 inhibitor; CCX771. CXCR7 siRNA and CCX771 inhibited migration, tube formation and resistance to serum starvation in TECs but not in NECs. ERK1/2 phosphorylation was inhibited by CXCR7 knockdown in TECs. These results suggest that CXCR7 promotes angiogenesis in TECs via ERK1/2 phosphorylation. Using ELISA, we also detected CXCL12, a ligand of CXCR7, in conditioned medium from TECs, but not from NECs. CXCL12 neutralizing antibody significantly inhibited TEC random motility. VEGF stimulation upregulated CXCR7 expression in NECs, implying that VEGF mediates CXCR7 expression in endothelial cells. A CXCR7 inhibitor, CCX771 also inhibited tumor growth, lung metastasis and tumor angiogenesis in vivo. Taken together, the CXCL12-CXCR7 autocrine loop affects TEC proangiogenic properties, and could be the basis for an antiangiogenic therapy that specifically targets tumor blood vessels rather than normal vessels. PMID:26100110

  12. CXCL12/CXCR4 axis regulates neovascularization and lymphangiogenesis in sutured corneas in mice.

    PubMed

    Du, Ling-Ling; Liu, Ping

    2016-06-01

    The present study aimed to determine the plausible functional role of chemokine (C‑X‑C motif) ligand 12 (CXCL12/chemokine (C‑X‑C motif) receptor 4 (CXCR4) in inflammatory corneal hemangiogenesis and lymphangiogenesis in vivo. Corneal hemangiogenesis and lymphangiogenesis were induced by placing an 11‑0 nylon suture in an intrastromal position. The expression levels of the vascular endothelial growth factor (VEGF) family, CXCL12 and CXCR4 in the corneas were investigated in the corneas using reverse transcription‑quantitative polymerase chain reaction and immunohistochemistry. Corneal hemangiogenic and lymphangiogenic responses were assessed by immunofluorescence using specific antibodies against cluster of differentiation 31 and lymphatic vessel endothelial hyaluronan receptor‑1. Subconjunctival injection of AMD3100 to the sutured corneas was also performed. CXCL12/CXCR4 mRNA and protein expression levels increased markedly in suture‑induced corneal neovascularization (CNV) and decreased with AMD3100 treatment. Hemangiogenesis and lymphangiogenesis were captured in images using immunofluorescence and were shown to be markedly increased with suture placement and reduced with AMD3100 treatment. VEGF‑A/VEGFR‑1 and VEGF‑C/VEGFR‑3 mRNA expression levels were upregulated in the suture placement and control groups, whereas the expression levels of all the factors were downregulated in the AMD3100 treatment group. The results from the present study demonstrated that CXCL12/CXCR4 interactions regulate hemangiogenesis and lymphangiogenesis in suture‑induced CNV. AMD3100 may be a novel therapeutic target for the prevention of blindness. PMID:27121088

  13. Inflammatory CXCL12-CXCR4/CXCR7 axis mediates G-protein signaling pathway to influence the invasion and migration of nasopharyngeal carcinoma cells.

    PubMed

    Qiao, Naian; Wang, Lin; Wang, Tao; Li, Haiying

    2016-06-01

    This study explored whether the migration, invasion, and apoptosis of nasopharyngeal carcinoma (NPC) cells were affected by the CXCR4/CXCR7-CXCL12 axis and if this mechanism was related to G-protein signaling pathway. A total of 72 NPC patients admitted in our hospital between April 2013 and February 2015 were incorporated in this study. Immunohistochemistry was performed to compare the expression levels of CXCR4, CXCR7, and CXCL12 between NPC tissues and adjacent normal tissues. Then, the correlation analysis was implemented to assess the association among CXCR4, CXCR7, and CXCL12 expressions. Jellyfish glow protein experiment was carried out after the cultivation of CNE-2Z cell lines in order to observe the intracellular calcium mobilization resulted from G-protein activation contributed by CXCR4/CXCR7-CXCL12 axis. The impact of CXCR4/CXCR7-CXCL12 axis on the migration and invasion of NPC cells was explored using transwell experiments. Finally, the anti-apoptosis effects of CXCR4/CXCR7-CXCL12 axis on NPC cells were investigated by the splicing of poly ADP-ribose polymerase (PARP). Compared to NPC patients with low-grade (stage I-II) tumor node metastasis (TNM) and those without lymph node metastasis, the expression of CXCR4, CXCR7, and CXCL12 were significantly higher in NPC patients with high-grade (stage III-IV) TNM and those with lymph node metastasis (P < 0.05). Moreover, there was significant positive correlation between the expression level of CXCL12 and CXCR7 (r s = 0.484, P < 0.001) as well as the expression level of CXCL12 and CXCR4 (r s = 0.414, P < 0.001). As suggested by cellular experiments using CNE-2Z, the calcium mobilization degree induced by CXCR4-CXCL12 axis in activating G proteins seemed to be slightly more effective than that induced by CXCR4/CXCR7-CXCL12 axis, while the CXCR7-CXCL12 axis could hardly activate calcium mobilization. Furthermore, the transwell experiment showed that CXCR4/CXCR7-CXCL12 axis could exacerbate

  14. CXCL12 Regulates through JAK1 and JAK2 Formation of Productive Immunological Synapses.

    PubMed

    Cascio, Graciela; Martín-Cófreces, Noa B; Rodríguez-Frade, José Miguel; López-Cotarelo, Pilar; Criado, Gabriel; Pablos, José L; Rodríguez-Fernández, José Luis; Sánchez-Madrid, Francisco; Mellado, Mario

    2015-06-01

    The adaptive immune response requires interaction between T cells and APC to form a specialized structure termed the immune synapse (IS). Although the TCR is essential for IS organization, other factors such as chemokines participate in this process. In this study, we show that the chemokine CXCL12-mediated signaling contributes to correct IS organization and therefore influences T cell activation. CXCR4 downregulation or blockade on T cells caused defective actin polymerization at the contact site with APC, altered microtubule-organizing center polarization and the IS structure, and reduced T cell/APC contact duration. T cell activation was thus inhibited, as shown by reduced expression of CD25 and CD69 markers and of IL-2 mRNA levels. The results indicate that, through Gi and JAK1 and 2 kinases activation, CXCL12 signaling cooperates to build the IS and to maintain adhesive contacts between APC and T cells, required for continuous TCR signaling. PMID:25917087

  15. CXCL12/CXCR4 Axis Improves Migration of Neuroblasts Along Corpus Callosum by Stimulating MMP-2 Secretion After Traumatic Brain Injury in Rats.

    PubMed

    Mao, Weifeng; Yi, Xin; Qin, Jianbing; Tian, Meiling; Jin, Guohua

    2016-06-01

    To investigate the effect of CXCL12 on migration of neural precursor cells after traumatic brain injury (TBI). We randomly divided 48 rats into four groups: (1) the sham group, rats were performed craniotomy only, (2) the control group, saline were injected into the ipsilateral cortex after TBI, (3) the CXCL12 group, CXCL12 were injected into the ipsilateral cortex after TBI, and (4) the CXCL12 + AMD3100 group, CXCL12 and AMD3100 were mixed together and injected into the ipsilateral cortex after TBI. At 7 days after TBI, the brain tissues were subjected to immunofluorescent double-labeled staining with the antibodies of CXCR4/DCX, MMP-2/DCX, MMP-2/GFAP, MMP-2/NeuN. Western blot assay was used to measure the protein levels of MMP-2. Compared with the control group, the number of CXCR4/DCX and MMP-2 positive cells around the injured corpus callosum area were significantly increased in the CXCL12 treatment group. The area occupied by these cells expanded and the shape changed from chain distribution to radial. CXCL12 + AMD3100 treatment significantly decreased the number and distribution area of CXCR4/DCX and MMP-2 positive cells compared with the CXCL12 treatment and control group. The DCX positive cells could not form chain or radial distribution. The protein expressions of MMP-2 had the similar change trends as the results of immunofluorescent staining. MMP-2 could be secreted by DCX, GFAP and NeuN positive cells. CXCL12/CXCR4 axis can improve the migration of the neuroblasts along the corpus callosum by stimulating the MMP-2 secretion of different types of cells. PMID:26801174

  16. C-Terminal Engineering of CXCL12 and CCL5 Chemokines: Functional Characterization by Electrophysiological Recordings

    PubMed Central

    Petit-Hartlein, Isabelle; Sadir, Rabia; Revilloud, Jean; Caro, Lydia; Vivaudou, Michel; Fieschi, Franck; Moreau, Christophe; Vivès, Corinne

    2014-01-01

    Chemokines are chemotactic cytokines comprised of 70–100 amino acids. The chemokines CXCL12 and CCL5 are the endogenous ligands of the CXCR4 and CCR5 G protein-coupled receptors that are also HIV co-receptors. Biochemical, structural and functional studies of receptors are ligand-consuming and the cost of commercial chemokines hinders their use in such studies. Here, we describe methods for the expression, refolding, purification, and functional characterization of CXCL12 and CCL5 constructs incorporating C-terminal epitope tags. The model tags used were hexahistidines and Strep-Tag for affinity purification, and the double lanthanoid binding tag for fluorescence imaging and crystal structure resolution. The ability of modified and purified chemokines to bind and activate CXCR4 and CCR5 receptors was tested in Xenopus oocytes expressing the receptors, together with a Kir3 G-protein activated K+ channel that served as a reporter of receptor activation. Results demonstrate that tags greatly influence the biochemical properties of the recombinant chemokines. Besides, despite the absence of any evidence for CXCL12 or CCL5 C-terminus involvement in receptor binding and activation, we demonstrated unpredictable effects of tag insertion on the ligand apparent affinity and efficacy or on the ligand dissociation. These tagged chemokines should constitute useful tools for the selective purification of properly-folded chemokines receptors and the study of their native quaternary structures. PMID:24498095

  17. CXCL12/CXCR4 Axis Activation Mediates Prostate Myofibroblast Phenoconversion through Non-Canonical EGFR/MEK/ERK Signaling.

    PubMed

    Rodríguez-Nieves, José A; Patalano, Susan C; Almanza, Diego; Gharaee-Kermani, Mehrnaz; Macoska, Jill A

    2016-01-01

    Benign prostate hyperplasia (BPH), an enlargement of the prostate common in aging in men, is associated with urinary voiding dysfunction manifest as Lower Urinary Tract Symptoms (LUTS). Although inflammation and abnormal smooth muscle contractions are known to play key roles in the development of LUTS, tissue fibrosis may also be an important and previously unrecognized contributing factor. Tissue fibrosis arises from the unregulated differentiation of fibroblasts or other precursor cell types into myofibroblasts, which is usually accomplished by activation of the TGFβ/TGFβR axis. Previously we reported that the CXC-type chemokines, CXCL5, CXCL8 and CXCL12, which are up-regulated in the aging in the prostate, can drive this differentiation process as well in the absence of TGFβ. Based on this data we sought to elucidate the molecular mechanisms employed by CXCL12, and its receptor CXCR4, during prostate myofibroblast phenoconversion. The results of these studies suggest that CXCL12/CXCR4-mediated signaling events in prostate myofibroblast phenoconversion may proceed through non-canonical pathways that do not depend on TGFβ/TGFβR axis activation or Smad signaling. Here we report that CXCL12/CXCR4 axis activation promotes signaling through the EGFR and downstream MEK/ERK and PI3K/Akt pathways during myofibroblast phenoconversion, but not through TGFβ/TGFβR and downstream Smad signaling, in prostate fibroblasts undergoing myofibroblast phenoconversion. We document that EGFR transactivation is required for CXCL12-mediated signaling and expression of genes associate with myofibroblast phenoconversion (α-SMA, COL1a1). Our study successfully identified TGFβ/TGFβR-independent molecular mechanisms that promote CXCL12/CXCR4-induced myofibroblast phenoconversion. This information may be crucial for the development of novel therapies and potential biomarkers for prostatic fibrosis. PMID:27434301

  18. CXCL12/CXCR4 Axis Activation Mediates Prostate Myofibroblast Phenoconversion through Non-Canonical EGFR/MEK/ERK Signaling

    PubMed Central

    Rodríguez-Nieves, José A.; Patalano, Susan C.; Almanza, Diego; Gharaee-Kermani, Mehrnaz; Macoska, Jill A.

    2016-01-01

    Benign prostate hyperplasia (BPH), an enlargement of the prostate common in aging in men, is associated with urinary voiding dysfunction manifest as Lower Urinary Tract Symptoms (LUTS). Although inflammation and abnormal smooth muscle contractions are known to play key roles in the development of LUTS, tissue fibrosis may also be an important and previously unrecognized contributing factor. Tissue fibrosis arises from the unregulated differentiation of fibroblasts or other precursor cell types into myofibroblasts, which is usually accomplished by activation of the TGFβ/TGFβR axis. Previously we reported that the CXC-type chemokines, CXCL5, CXCL8 and CXCL12, which are up-regulated in the aging in the prostate, can drive this differentiation process as well in the absence of TGFβ. Based on this data we sought to elucidate the molecular mechanisms employed by CXCL12, and its receptor CXCR4, during prostate myofibroblast phenoconversion. The results of these studies suggest that CXCL12/CXCR4-mediated signaling events in prostate myofibroblast phenoconversion may proceed through non-canonical pathways that do not depend on TGFβ/TGFβR axis activation or Smad signaling. Here we report that CXCL12/CXCR4 axis activation promotes signaling through the EGFR and downstream MEK/ERK and PI3K/Akt pathways during myofibroblast phenoconversion, but not through TGFβ/TGFβR and downstream Smad signaling, in prostate fibroblasts undergoing myofibroblast phenoconversion. We document that EGFR transactivation is required for CXCL12-mediated signaling and expression of genes associate with myofibroblast phenoconversion (α-SMA, COL1a1). Our study successfully identified TGFβ/TGFβR-independent molecular mechanisms that promote CXCL12/CXCR4-induced myofibroblast phenoconversion. This information may be crucial for the development of novel therapies and potential biomarkers for prostatic fibrosis. PMID:27434301

  19. Functional consequences of perturbed CXCL12 signal processing: analyses of immature hematopoiesis in GRK6-deficient mice.

    PubMed

    Chudziak, Doreen; Spohn, Gabriele; Karpova, Darja; Dauber, Katrin; Wiercinska, Eliza; Miettinen, Johanna A; Papayannopoulou, Thalia; Bönig, Halvard

    2015-03-15

    Hematopoietic stem and progenitor cells (HSPCs) reside in bone marrow (BM) in an environment rich in CXCL12, the ligand for CXCR4, which is constitutively expressed on all immature hematopoietic cells in BM. This ligand-receptor pair critically controls HSPC retention and (relative) quiescence in BM. Interestingly, in a chemokine-abundant environment, CXCR4 surface expression and CXCL12 sensitivity of BM-residing HSPCs are continuously maintained. The mechanisms underlying this peculiar pattern of G-protein signal integration by BM-HSPCs are unknown. G-protein receptor kinases (GRKs) control receptor function by phosphorylating the intracellular domains upon ligand-induced activation, which results in receptor internalization and transient refractoriness. Using, therefore, a GRK6-deficient (GRK6(-/-)) mouse, we sought to address how perturbed ligand-induced CXCR4 (in)activation affects HSPC behavior in vitro and in vivo. In vitro, GRK6(-/-) HSPCs were characterized by hyper-responsiveness to CXCL12, as expected. In vivo, GRK6(-/-) immature hematopoiesis was characterized by a marked expansion of immature hematopoiesis in spleens and a modest repopulation defect in serial competitive transplantation. Enforced mobilization with granulocyte colony-stimulating factor (G-CSF) and AMD3100 was normal, as was hematopoietic regeneration after noncompetitive transplantation or pharmacological myelosuppression. These observations illustrate that GRK-mediated restriction of CXCR4 signal input after ligand engagement is largely dispensable for BM-resident HSPCs, which may explain how continuous CXCL12 responsiveness of BM-HSPCs can be maintained. PMID:25316534

  20. CXCL12-induced monocyte-endothelial interactions promote lymphocyte transmigration across an in vitro blood-brain barrier.

    PubMed

    Man, Shumei; Tucky, Barbara; Cotleur, Anne; Drazba, Judith; Takeshita, Yukio; Ransohoff, Richard M

    2012-02-01

    The accumulation of inflammatory cells in the brain parenchyma is a critical step in the pathogenesis of neuroinflammatory diseases such as multiple sclerosis (MS). Chemokines and adhesion molecules orchestrate leukocyte transmigration across the blood-brain barrier (BBB), but the dynamics of chemokine receptor expression during leukocyte transmigration are unclear. We describe an in vitro BBB model system using human brain microvascular endothelial cells that incorporates shear forces mimicking blood flow to elucidate how chemokine receptor expression is modulated during leukocyte transmigration. In the presence of the chemokine CXCL12, we examined modulation of its receptor CXCR4 on human T cells, B cells, and monocytes transmigrating across the BBB under flow conditions. CXCL12 stimulated transmigration of CD4(+) and CD8(+) T cells, CD19(+) B cells, and CD14(+) monocytes. Transmigration was blocked by CXCR4-neutralizing antibodies. Unexpectedly, CXCL12 selectively down-regulated CXCR4 on transmigrating monocytes, but not T cells. Monocytes underwent preferential CXCL12-mediated adhesion to the BBB in vitro compared with lymphocytes. These findings provide new insights into leukocyte-endothelial interactions at the BBB under conditions mimicking blood flow and suggest that in vitro BBB models may be useful for identifying chemokine receptors that could be modulated therapeutically to reduce neuroinflammation in diseases such as MS. PMID:22301555

  1. Impact of a CXCL12/CXCR4 Antagonist in Bleomycin (BLM) Induced Pulmonary Fibrosis and Carbon Tetrachloride (CCl4) Induced Hepatic Fibrosis in Mice

    PubMed Central

    Chow, Leola N.; Schreiner, Petra; Ng, Betina Y. Y.; Lo, Bernard; Hughes, Michael R.; Scott, R. Wilder; Gusti, Vionarica; Lecour, Samantha; Simonson, Eric; Manisali, Irina; Barta, Ingrid; McNagny, Kelly M.; Crawford, Jason; Webb, Murray; Underhill, T. Michael

    2016-01-01

    Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM)-induced pulmonary fibrosis and carbon tetrachloride (CCl4)-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely, in hepatic fibrosis, resident hepatic stellate cells (HSC), the key cell type in progression of fibrosis, upregulate CXCR4 expression in response to activation. Further, CXCL12 induces HSC proliferation and subsequent production of collagen I. In the current study, we evaluated AMD070, an orally bioavailable inhibitor of CXCL12/CXCR4 in alleviating BLM-induced pulmonary and CCl4-induced hepatic fibrosis in mice. Similar to other CXCR4 antagonists, treatment with AMD070 significantly increased leukocyte mobilization. However, in these two models of fibrosis, AMD070 had a negligible impact on extracellular matrix deposition. Interestingly, our results indicated that CXCL12/CXCR4 signaling has a role in improving mortality associated with BLM induced pulmonary injury, likely through dampening an early inflammatory response and/or vascular leakage. Together, these findings indicate that the CXCL12-CXCR4 signaling axis is not an effective target for reducing fibrosis. PMID:26998906

  2. Impact of a CXCL12/CXCR4 Antagonist in Bleomycin (BLM) Induced Pulmonary Fibrosis and Carbon Tetrachloride (CCl4) Induced Hepatic Fibrosis in Mice.

    PubMed

    Chow, Leola N; Schreiner, Petra; Ng, Betina Y Y; Lo, Bernard; Hughes, Michael R; Scott, R Wilder; Gusti, Vionarica; Lecour, Samantha; Simonson, Eric; Manisali, Irina; Barta, Ingrid; McNagny, Kelly M; Crawford, Jason; Webb, Murray; Underhill, T Michael

    2016-01-01

    Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM)-induced pulmonary fibrosis and carbon tetrachloride (CCl4)-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely, in hepatic fibrosis, resident hepatic stellate cells (HSC), the key cell type in progression of fibrosis, upregulate CXCR4 expression in response to activation. Further, CXCL12 induces HSC proliferation and subsequent production of collagen I. In the current study, we evaluated AMD070, an orally bioavailable inhibitor of CXCL12/CXCR4 in alleviating BLM-induced pulmonary and CCl4-induced hepatic fibrosis in mice. Similar to other CXCR4 antagonists, treatment with AMD070 significantly increased leukocyte mobilization. However, in these two models of fibrosis, AMD070 had a negligible impact on extracellular matrix deposition. Interestingly, our results indicated that CXCL12/CXCR4 signaling has a role in improving mortality associated with BLM induced pulmonary injury, likely through dampening an early inflammatory response and/or vascular leakage. Together, these findings indicate that the CXCL12-CXCR4 signaling axis is not an effective target for reducing fibrosis. PMID:26998906

  3. CXCR4 and CXCL12 down-regulation: a novel mechanism for the chemoprotection of 3,3'-diindolylmethane for breast and ovarian cancers.

    PubMed

    Hsu, Erin L; Chen, Natalie; Westbrook, Aya; Wang, Feng; Zhang, Ruixue; Taylor, Robert T; Hankinson, Oliver

    2008-06-28

    Cruciferous vegetables are thought to protect against numerous types of cancer. 3,3'-Diindolylmethane (DIM) is an acid-catalyzed product generated during the consumption of cruciferous vegetables and appears to be chemoprotective for breast cancer. The interaction between the chemokine receptor, CXCR4, and its unique ligand, CXCL12, is known to mediate the progression and metastasis of breast and other cancers. Organs to which these cancers metastasize secrete CXCL12, which binds to CXCR4 expressed on the surface of primary cancer cells. This process subsequently stimulates the invasive properties of the cancer cells and attracts them to the preferred organ sites of metastases. We have found that DIM down-regulates both CXCR4 and CXCL12 in MCF-7 and MDA-MB-231 breast cancer cells as well as in BG-1 ovarian cancer cells at the transcriptional level and in an estrogen-independent manner. We demonstrate that the potential of MDA-MB-231 and BG-1 cells for chemotaxis and invasion towards CXCL12, but not towards IL-6 or fetal bovine serum, respectively, is inhibited by DIM. Furthermore, we show that DIM down-regulates CXCR4 under hypoxia and CXCL12 under estradiol-inducing conditions. Our data suggest that one mechanism whereby DIM protects against breast, ovarian, and possibly other cancers is through the repression of CXCR4 and/or CXCL12, thereby lowering the invasive and metastatic potential of these cells. PMID:18378071

  4. Administration of a CXCL12 Analog in Endotoxemia Is Associated with Anti-Inflammatory, Anti-Oxidative and Cytoprotective Effects In Vivo

    PubMed Central

    2015-01-01

    Background The chemokine receptor CXCR4 is a multifunctional receptor which is activated by its natural ligand C-X-C motif chemokine 12 (CXCL12). As CXCR4 is part of the lipopolysaccharide sensing complex and CXCL12 analogs are not well characterized in inflammation, we aimed to uncover the systemic effects of a CXCL12 analog in severe systemic inflammation and to evaluate its impact on endotoxin induced organ damages by using a sublethal LPS dose. Methods The plasma stable CXCL12 analog CTCE-0214D was synthesized and administered subcutaneously shortly before LPS treatment. After 24 hours, mice were sacrificed and blood was obtained for TNF alpha, IFN gamma and blood glucose evaluation. Oxidative stress in the liver and spleen was assessed and liver biotransformation capacity was determined. Finally, CXCR4, CXCL12 and TLR4 expression patterns in liver, spleen and thymus tissue as well as the presence of different markers for apoptosis and oxidative stress were determined by means of immunohistochemistry. Results CTCE-0214D distinctly reduced the LPS mediated effects on TNF alpha, IFN gamma, ALAT and blood glucose levels. It attenuated oxidative stress in the liver and spleen tissue and enhanced liver biotransformation capacity unambiguously. Furthermore, in all three organs investigated, CTCE-0214D diminished the LPS induced expression of CXCR4, CXCL12, TLR4, NF-κB, cleaved caspase-3 and gp91 phox, whereas heme oxygenase 1 expression and activity was induced above average. Additionally, TUNEL staining revealed anti-apoptotic effects of CTCE-0214D. Conclusions In summary, CTCE-0214D displayed anti-inflammatory, anti-oxidative and cytoprotective features. It attenuated reactive oxygen species, induced heme oxygenase 1 activity and mitigated apoptosis. Thus, the CXCR4/CXCL12 axis seems to be a promising target in the treatment of acute systemic inflammation, especially when accompanied by a hepatic dysfunction and an excessive production of free radicals. PMID

  5. MicroRNA-135b suppresses extravillous trophoblast-derived HTR-8/SVneo cell invasion by directly down regulating CXCL12 under low oxygen conditions.

    PubMed

    Tamaru, Shunsuke; Mizuno, Yosuke; Tochigi, Hideno; Kajihara, Takeshi; Okazaki, Yasushi; Okagaki, Ryugo; Kamei, Yoshimasa; Ishihara, Osamu; Itakura, Atsuo

    2015-05-29

    The expression of numerous microRNAs (miRNAs) in the trophoblasts changes under low oxygen conditions. However, little is known regarding the regulation of the trophoblast invasion by miRNAs under low oxygen conditions. The aim of this study was to identify those miRNAs and their target genes associated with the trophoblast invasion under low oxygen conditions. Culturing the extravillous trophoblast (EVT) cell line, HTR-8/SVneo, at 2% oxygen as compared to 20% oxygen suppressed trophoblast invasion that correlated with increased expression of microRNA-135b (miR-135b) and decreased expression of the its predicted target gene CXCL12. Overexpression of miR-135b suppressed CXCL12 mRNA expression and invasion of HTR-8/SVneo cells. Adding a neutralizing antibody against CXCL12 to the culture medium suppressed HTR-8/SVneo cell invasion. Reporter assays showed that the 3'UTR sequence of CXCL12 was directly targeted by miR-135b. Our results suggest that miR-135b and CXCL12 play important roles in modulating the EVT invasion under low oxygen conditions. PMID:25896762

  6. Inhibition of CXCL12-mediated chemotaxis of Jurkat cells by direct immunotoxicants.

    PubMed

    Shao, Jia; Stout, Inge; Volger, Oscar L; Hendriksen, Peter J M; van Loveren, Henk; Peijnenburg, Ad A C M

    2016-07-01

    Directional migration of cells to specific locations is required in tissue development, wound healing, and immune responses. Immune cell migration plays a crucial role in both innate and adaptive immunity. Chemokines are small pro-inflammatory chemoattractants that control the migration of leukocytes. In addition, they are also involved in other immune processes such as lymphocyte development and immune pathology. In a previous toxicogenomics study using the Jurkat T cell line, we have shown that the model immunotoxicant TBTO inhibited chemotaxis toward the chemokine CXCL12. In the present work, we aimed at assessing a novel approach to detecting chemicals that affect the process of cell migration. For this, we first evaluated the effects of 31 chemicals on mRNA expression of genes that are known to be related to cell migration. With this analysis, seven immunotoxicants were identified as potential chemotaxis modulators, of which five (CoCl2 80 µM, MeHg 1 µM, ochratoxin A 10 µM, S9-treated ochratoxin A 10 µM, and TBTO 100 nM) were confirmed as chemotaxis inhibitor in an in vitro trans-well chemotaxis assay using the chemokine CXCL12. The transcriptome data of the five compounds together with previously obtained protein phosphorylation profiles for two out of five compounds (i.e., ochratoxin A and TBTO) revealed that the mechanisms behind the chemotaxis inhibition are different for these immunotoxicants. Moreover, the mTOR inhibitor rapamycin had no effect on the chemotaxis of Jurkat cells, indicating that the mTOR pathway is not involved in CXCL12-mediated chemotaxis of Jurkat cells, which is opposite to the findings on human primary T cells (Munk et al. in PLoS One 6(9):e24667, 2011). Thus, the results obtained from the chemotaxis assay conducted with Jurkat cells might not fully represent the results obtained with human primary T cells. Despite this difference, the present study indicated that some compounds may exert their immunotoxic effects through

  7. Recurrence of glioblastoma after radio-chemotherapy is associated with an angiogenic switch to the CXCL12-CXCR4 pathway

    PubMed Central

    Tabouret, Emeline; Tchoghandjian, Aurelie; Denicolai, Emilie; Delfino, Christine; Metellus, Philippe; Graillon, Thomas; Boucard, Celine; Nanni, Isabelle; Padovani, Laetitia; Ouafik, L'Houcine; Figarella-Branger, Dominique; Chinot, Olivier

    2015-01-01

    Angiogenesis is one of the key features of glioblastoma (GBM). Our objective was to explore the potential changes of angiogenic factors in GBM between initial diagnosis and recurrence after radiotherapy-temozolomide (RT/TMZ). Paired frozen tumors from both initial and recurrent surgery were available for 29 patients. Screening of genes expressions related to angiogenesis was performed using RT- PCR arrays on 10 first patients. Next, RNA expressions of the selected genes were analyzed on all samples. Protein expression was examined by immunohistochemistry. The anti-tumor effect of AMD3100 (anti-CXCR4) was tested in GBM explants. In the screening step, the initial-recurrence expression changes contributed to a selection of seven genes (VEGFA, VEGFR2, VEGFR1, CXCL12, CXCR4, uPA HIF1α). By quantitative RT-PCR, RNA expressions of CXCR4 (p = 0.029) and CXCL12 (p = 0.107) were increased while expressions of HIF1α (p = 0.009) and VEGFR2 (p = 0.081) were decreased at recurrence. Similarly, CXCL12 protein expression tended to increase (p = 0.096) while VEGFR2 staining was decreased (p = 0.004) at recurrence. An increase of anti-tumoral effect was observed with the combination of AMD3100 and RT/TMZ versus RT/TMZ alone in GB explants. Recurrence of GB after chemo-radiation could be associated with a switch of angiogenic pattern from VEGFR2-HIF1α to CXCL12-CXCR4 pathway, leading to new perspectives in angiogenic treatment PMID:25860928

  8. Recurrence of glioblastoma after radio-chemotherapy is associated with an angiogenic switch to the CXCL12-CXCR4 pathway.

    PubMed

    Tabouret, Emeline; Tchoghandjian, Aurelie; Denicolai, Emilie; Delfino, Christine; Metellus, Philippe; Graillon, Thomas; Boucard, Celine; Nanni, Isabelle; Padovani, Laetitia; Ouafik, L'Houcine; Figarella-Branger, Dominique; Chinot, Olivier

    2015-05-10

    Angiogenesis is one of the key features of glioblastoma (GBM). Our objective was to explore the potential changes of angiogenic factors in GBM between initial diagnosis and recurrence after radiotherapy-temozolomide (RT/TMZ). Paired frozen tumors from both initial and recurrent surgery were available for 29 patients. Screening of genes expressions related to angiogenesis was performed using RT- PCR arrays on 10 first patients. Next, RNA expressions of the selected genes were analyzed on all samples. Protein expression was examined by immunohistochemistry. The anti-tumor effect of AMD3100 (anti-CXCR4) was tested in GBM explants. In the screening step, the initial-recurrence expression changes contributed to a selection of seven genes (VEGFA, VEGFR2, VEGFR1, CXCL12, CXCR4, uPA HIF1α). By quantitative RT-PCR, RNA expressions of CXCR4 (p = 0.029) and CXCL12 (p = 0.107) were increased while expressions of HIF1α (p = 0.009) and VEGFR2 (p = 0.081) were decreased at recurrence. Similarly, CXCL12 protein expression tended to increase (p = 0.096) while VEGFR2 staining was decreased (p = 0.004) at recurrence. An increase of anti-tumoral effect was observed with the combination of AMD3100 and RT/TMZ versus RT/TMZ alone in GB explants. Recurrence of GB after chemo-radiation could be associated with a switch of angiogenic pattern from VEGFR2-HIF1α to CXCL12-CXCR4 pathway, leading to new perspectives in angiogenic treatment. PMID:25860928

  9. CXCL14 is a natural inhibitor of the CXCL12-CXCR4 signaling axis.

    PubMed

    Tanegashima, Kosuke; Suzuki, Kenji; Nakayama, Yuki; Tsuji, Kohei; Shigenaga, Akira; Otaka, Akira; Hara, Takahiko

    2013-06-19

    Activation of the CXCL12-CXCR4 pathway is crucial for the migration of hematopoietic stem cells, various immune cells, and malignant tumor cells. Here, we show that another CXC chemokine, CXCL14, specifically binds to CXCR4 with high affinity and inhibits the CXCL12-mediated chemotaxis of human leukemia-derived cell lines and CD34(+) hematopoietic progenitor cells. Thus, CXCL14 functions as a natural inhibitor of CXCL12. Our observations suggest that CXCL14 represents, along with CXCR7, molecules that co-evolved with the CXCL12-CXCR4 axis to modulate important physiological processes in development, stem cell maintenance, and immune responses. PMID:23669361

  10. Differential Estrogen-Regulation of CXCL12 Chemokine Receptors, CXCR4 and CXCR7, Contributes to the Growth Effect of Estrogens in Breast Cancer Cells

    PubMed Central

    Boudot, Antoine; Kerdivel, Gwenneg; Habauzit, Denis; Eeckhoute, Jerome; Le Dily, François; Flouriot, Gilles; Samson, Michel; Pakdel, Farzad

    2011-01-01

    CXCR4 and CXCR7 are the two receptors for the chemokine CXCL12, a key mediator of the growth effect of estrogens (E2) in estrogen receptor (ER)-positive breast cancers. In this study we examined E2-regulation of the CXCL12 axis components and their involvement in the growth of breast cancer cells. CXCR4 and CXCR7 were differentially regulated by E2 which enhanced the expression of both CXCL12 and CXCR4 but repressed the expression of CXCR7. Formaldehyde-associated isolation of regulatory elements (FAIRE) revealed that E2-mediated transcriptional regulation of these genes is linked to the control of the compaction state of chromatin at their promoters. This effect could be accomplished via several distal ER-binding sites in the regions surrounding these genes, all of which are located 20–250 kb from the transcription start site. Furthermore, individual down-regulation of CXCL12, CXCR4 or CXCR7 expression as well as the inhibition of their activity significantly decreases the rate of basal cell growth. In contrast, E2-induced cell growth was differentially affected. Unlike CXCR7, the inhibition of the expression or activity of either CXCL12 or CXCR4 significantly blunted the E2-mediated stimulation of cellular growth. Besides, CXCR7 over-expression increased the basal MCF-7 cell growth rate and decreased the growth effect of E2. These findings indicate that E2 regulation of the CXCL12 signaling axis is important for the E2-mediated growth effect of breast cancer cells. These data also provide support for distinct biological functions of CXCR4 and CXCR7 and suggest that targeting CXCR4 and/or CXCR7 would have distinct molecular effects on ER-positive breast tumors. PMID:21695171

  11. Functional Consequences of Perturbed CXCL12 Signal Processing: Analyses of Immature Hematopoiesis in GRK6-Deficient Mice

    PubMed Central

    Chudziak, Doreen; Spohn, Gabriele; Karpova, Darja; Dauber, Katrin; Wiercinska, Eliza; Miettinen, Johanna A.; Papayannopoulou, Thalia

    2015-01-01

    Hematopoietic stem and progenitor cells (HSPCs) reside in bone marrow (BM) in an environment rich in CXCL12, the ligand for CXCR4, which is constitutively expressed on all immature hematopoietic cells in BM. This ligand-receptor pair critically controls HSPC retention and (relative) quiescence in BM. Interestingly, in a chemokine-abundant environment, CXCR4 surface expression and CXCL12 sensitivity of BM-residing HSPCs are continuously maintained. The mechanisms underlying this peculiar pattern of G-protein signal integration by BM-HSPCs are unknown. G-protein receptor kinases (GRKs) control receptor function by phosphorylating the intracellular domains upon ligand-induced activation, which results in receptor internalization and transient refractoriness. Using, therefore, a GRK6-deficient (GRK6−/−) mouse, we sought to address how perturbed ligand-induced CXCR4 (in)activation affects HSPC behavior in vitro and in vivo. In vitro, GRK6−/− HSPCs were characterized by hyper-responsiveness to CXCL12, as expected. In vivo, GRK6−/− immature hematopoiesis was characterized by a marked expansion of immature hematopoiesis in spleens and a modest repopulation defect in serial competitive transplantation. Enforced mobilization with granulocyte colony-stimulating factor (G-CSF) and AMD3100 was normal, as was hematopoietic regeneration after noncompetitive transplantation or pharmacological myelosuppression. These observations illustrate that GRK-mediated restriction of CXCR4 signal input after ligand engagement is largely dispensable for BM-resident HSPCs, which may explain how continuous CXCL12 responsiveness of BM-HSPCs can be maintained. PMID:25316534

  12. Dual blockade of the pro-inflammatory chemokine CCL2 and the homeostatic chemokine CXCL12 is as effective as high dose cyclophosphamide in murine proliferative lupus nephritis.

    PubMed

    Devarapu, Satish Kumar; Kumar Vr, Santhosh; Rupanagudi, Khader Valli; Kulkarni, Onkar P; Eulberg, Dirk; Klussmann, Sven; Anders, Hans-Joachim

    2016-08-01

    Induction therapy of proliferative lupus nephritis still requires the use of unselective immunosuppressive drugs with significant toxicities. In search of more specific drugs with equal efficacy but fewer side effects we considered blocking pro-inflammatory chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2) and homeostatic chemokine stromal cell-derived factor-1 (SDF-1/CXCL12), which both contribute to the onset and progression of proliferative lupus nephritis yet through different mechanisms. We hypothesized that dual antagonism could be as potent on lupus nephritis as the unselective immunosuppressant cyclophosphamide (CYC). We estimated serum levels of CCL2 and CXCL12 in patients with SLE (n=99) and compared the results with healthy individuals (n=21). In order to prove our hypothesis we used l-enantiomeric RNA Spiegelmer® chemokine antagonists, i.e. the CCL2-specific mNOX-E36 and the CXCL12-specific NOX-A12 to treat female MRL/lpr mice from week 12 to 20 of age with either anti-CXCL12 or anti-CCL2 alone or both. SLE patients showed elevated serum levels of CCL2 but not of CXCL12. Female MRL/lpr mice treated with dual blockade showed significantly more effective than either monotherapy in preventing proteinuria, immune complex glomerulonephritis, and renal excretory failure and the results are at par with CYC treatment. Dual blockade reduced leukocyte counts and renal IL-6, IL-12p40, CCL-5, CCL-2 and CCR-2 mRNA expression. Dual blockade of CCL2 and CXCL12 can be as potent as CYC to suppress the progression of proliferative lupus nephritis probably because the respective chemokine targets mediate different disease pathomechanisms, i.e. systemic autoimmunity and peripheral tissue inflammation. PMID:27392463

  13. Altered chemotactic response to CXCL12 in patients carrying GATA2 mutations.

    PubMed

    Maciejewski-Duval, Anna; Meuris, Floriane; Bignon, Alexandre; Aknin, Marie-Laure; Balabanian, Karl; Faivre, Laurence; Pasquet, Marlène; Barlogis, Vincent; Fieschi, Claire; Bellanné-Chantelot, Christine; Donadieu, Jean; Schlecht-Louf, Géraldine; Marin-Esteban, Viviana; Bachelerie, Françoise

    2016-06-01

    GATA2 deficiency-formerly described as MonoMAC syndrome; dendritic cells, monocytes, B cells, and natural killer cell deficiency; familial myelodysplastic syndrome/acute myeloid leukemia; or Emberger syndrome-encompasses a range of hematologic and nonhematologic anomalies, mainly characterized by monocytopenia, B lymphopenia, natural killer cell cytopenia, neutropenia, immunodeficiency, and a high risk of developing acute myeloid leukemia. Herein, we present 7 patients with GATA2 deficiency recruited into the French Severe Chronic Neutropenia Registry, which enrolls patients with all kinds of congenital neutropenia. We performed extended immunophenotyping of their whole blood lymphocyte populations, together with the analysis of their chemotactic responses. Lymphopenia was recorded for B and CD4(+) T cells in 6 patients. Although only 3 patients displayed natural killer cell cytopenia, the CD56(bright) natural killer subpopulation was nearly absent in all 7 patients. Natural killer cells from 6 patients showed decreased CXCL12/CXCR4-dependent chemotaxis, whereas other lymphocytes, and most significantly B lymphocytes, displayed enhanced CXCL12-induced chemotaxis compared with healthy volunteers. Surface expression of CXCR4 was significantly diminished in the patients' natural killer cells, although the total expression of the receptor was found to be equivalent to that of natural killer cells from healthy individual controls. Together, these data reveal that GATA2 deficiency is associated with impaired membrane expression and chemotactic dysfunctions of CXCR4. These dysfunctions may contribute to the physiopathology of this deficiency by affecting the normal distribution of lymphocytes and thus potentially affecting the susceptibility of patients to associated infections. PMID:26710799

  14. Annexin A1 Is a Physiological Modulator of Neutrophil Maturation and Recirculation Acting on the CXCR4/CXCL12 Pathway.

    PubMed

    Machado, Isabel Daufenback; Spatti, Marina; Hastreiter, Araceli; Santin, José Roberto; Fock, Ricardo Ambrósio; Gil, Cristiane Damas; Oliani, Sonia Maria; Perretti, Mauro; Farsky, Sandra Helena Poliselli

    2016-11-01

    Neutrophil production and traffic in the body compartments is finely controlled, and the strong evidences support the role of CXCL12/CXCR4 pathway on neutrophil trafficking to and from the bone marrow (BM). We recently showed that the glucocorticoid-regulated protein, Annexin A1 (AnxA1) modulates neutrophil homeostasis and here we address the effects of AnxA1 on steady-state neutrophil maturation and trafficking. For this purpose, AnxA1(-/-) and Balb/C wild-type mice (WT) were donors of BM granulocytes and mesenchymal stem cells and blood neutrophils. In vivo treatments with the pharmacological AnxA1 mimetic peptide (Ac2-26) or the formyl peptide receptor (FPR) antagonist (Boc-2) were used to elucidate the pathway of AnxA1 action, and with the cytosolic glucocorticoid antagonist receptor RU 38486. Accelerated maturation of BM granulocytes was detected in AnxA1(-/-) and Boc2-treated WT mice, and was reversed by treatment with Ac2-26 in AnxA1(-/-) mice. AnxA1 and FPR2 were constitutively expressed in bone marrow granulocytes, and their expressions were reduced by treatment with RU38486. Higher numbers of CXCR4(+) neutrophils were detected in the circulation of AnxA1(-/-) or Boc2-treated WT mice, and values were rescued in Ac2-26-treated AnxA1(-/-) mice. Although circulating neutrophils of AnxA1(-/-) animals were CXCR4(+) , they presented reduced CXCL12-induced chemotaxis. Moreover, levels of CXCL12 were reduced in the bone marrow perfusate and in the mesenchymal stem cell supernatant from AnxA1(-/-) mice, and in vivo and in vitro CXCL12 expression was re-established after Ac2-26 treatment. Collectively, these data highlight AnxA1 as a novel determinant of neutrophil maturation and the mechanisms behind blood neutrophil homing to BM via the CXCL12/CXCR4 pathway. J. Cell. Physiol. 231: 2418-2427, 2016. © 2016 Wiley Periodicals, Inc. PMID:26892496

  15. CXCL12 Signaling in the Development of the Nervous System

    PubMed Central

    Mithal, Divakar S.; Banisadr, Ghazal; Miller, Richard J.

    2015-01-01

    Chemokines are small, secreted proteins that have been shown to be important regulators of leukocyte trafficking and inflammation. All the known effects of chemokines are transduced by action at a family of G protein coupled receptors. Two of these receptors, CCR5 and CXCR4, are also known to be the major cellular receptors for HIV-1. Consideration of the evolution of the chemokine family has demonstrated that the chemokine Stromal cell Derived Factor-1 or SDF1 (CXCL12) and its receptor CXCR4 are the most ancient members of the family and existed in animals prior to the development of a sophisticated immune system. Thus, it appears that the original function of chemokine signaling was in the regulation of stem cell trafficking and development. CXCR4 signaling is important in the development of many tissues including the nervous system. Here we discuss the manner in which CXCR4 signaling can regulate the development of different structures in the central and peripheral nervous systems and the different strategies employed to achieve these effects. PMID:22270883

  16. Small neutralizing molecules to inhibit actions of the chemokine CXCL12.

    PubMed

    Hachet-Haas, Muriel; Balabanian, Karl; Rohmer, François; Pons, Françoise; Franchet, Christel; Lecat, Sandra; Chow, Ken Y C; Dagher, Rania; Gizzi, Patrick; Didier, Bruno; Lagane, Bernard; Kellenberger, Esther; Bonnet, Dominique; Baleux, Françoise; Haiech, Jacques; Parmentier, Marc; Frossard, Nelly; Arenzana-Seisdedos, Fernando; Hibert, Marcel; Galzi, Jean-Luc

    2008-08-22

    The chemokine CXCL12 and the receptor CXCR4 play pivotal roles in normal vascular and neuronal development, in inflammatory responses, and in infectious diseases and cancer. For instance, CXCL12 has been shown to mediate human immunodeficiency virus-induced neurotoxicity, proliferative retinopathy and chronic inflammation, whereas its receptor CXCR4 is involved in human immunodeficiency virus infection, cancer metastasis and in the rare disease known as the warts, hypogammaglobulinemia, immunodeficiency, and myelokathexis (WHIM) syndrome. As we screened chemical libraries to find inhibitors of the interaction between CXCL12 and the receptor CXCR4, we identified synthetic compounds from the family of chalcones that reduce binding of CXCL12 to CXCR4, inhibit calcium responses mediated by the receptor, and prevent CXCR4 internalization in response to CXCL12. We found that the chemical compounds display an original mechanism of action as they bind to the chemokine but not to CXCR4. The highest affinity molecule blocked chemotaxis of human peripheral blood lymphocytes ex vivo. It was also active in vivo in a mouse model of allergic eosinophilic airway inflammation in which we detected inhibition of the inflammatory infiltrate. The compound showed selectivity for CXCL12 and not for CCL5 and CXCL8 chemokines and blocked CXCL12 binding to its second receptor, CXCR7. By analogy to the effect of neutralizing antibodies, this molecule behaves as a small organic neutralizing compound that may prove to have valuable pharmacological and therapeutic potential. PMID:18556651

  17. CXCL12-G801A polymorphism modulates risk of colorectal cancer in Taiwan

    PubMed Central

    Shi, Ming-Der; Chen, Jing-Hsien; Sung, Hsin-Te; Lee, Jung-Shin; Tsai, Li-Yu

    2013-01-01

    Introduction The chemokine CXCL12, designated stromal cell-derived factor-1 (SDF-1), plays a significant role in many cancer metastases. Previous studies have shown that CXCL12-G801A, a single nucleotide polymorphism (SNP) in the 3’ untranslated region, correlates with breast and lung cancer in Iran. The aim of this study was to evaluate the association of the gene variant CXCL12-G801A with colorectal cancer (CRC) in a Taiwanese cohort. Material and methods In this study, we used a denaturing high performance liquid chromatography (DHPLC) method to analyze the frequencies of CXCL12-G801A polymorphic variants between CRC patients (n = 258) and healthy controls (n = 300) in Taiwan. Results The SNP distribution was higher in CRC patients with TNM stage II (117/258) than healthy controls (52/300). We observed a significant increase in the G/A plus A/A genotype of the CXCL12-G801A polymorphism in CRC patients (45.35%) compared with healthy controls (17.33%). The analysis of allelic frequencies in both groups revealed that CRC patients have a higher frequency of A allele (23.45%) than healthy controls (8.67%). Furthermore, among older CRC patients, the frequency of the CXCL12-G801A genotype was significantly increased (p = 0.0148). Conclusions Our observations suggest that the CXCL12-G801A genotype may be associated with some clinical manifestations in CRC patients in Taiwan. PMID:24482642

  18. CXCR7 Mediates Neural Progenitor Cells Migration to CXCL12 Independent of CXCR4

    PubMed Central

    Chen, Qiang; Zhang, Min; Li, Yuju; Xu, Dongsheng; Wang, Yi; Song, Aihong; Zhu, Bing; Huang, Yunlong; Zheng, Jialin C.

    2016-01-01

    Neural progenitor cell (NPC) migration is an essential process for brain development, adult neurogenesis, and neuroregeneration after brain injury. Stromal cell-derived factor-1 (SDF-1, CXCL12) and its traditional receptor CXCR4 are well known to regulate NPC migration. However, the discovery of CXCR7, a newly identified CXCL12 receptor, adds to the dynamics of the existing CXCL12/CXCR4 pair. Antagonists for either CXCR4 or CXCR7 blocked CXCL12-mediated NPC migration in a transwell chemotaxis assay, suggesting that both receptors are required for CXCL12 action. We derived NPC cultures from Cxcr4 knockout (KO) mice and used transwell and stripe assays to determine the cell migration. NPCs derived from Cxcr4 KO mice polarized and migrated in response to CXCL12 gradient, suggesting that CXCR7 could serve as an independent migration receptor. Furthermore, Cxcr4 KO NPCs transplanted into the adult mouse striatum migrated in response to the adjacent injection of CXCL12, an effect that was blocked by a CXCR7 antagonist, suggesting that CXCR7 also mediates NPC migration in vivo. Molecular mechanism studies revealed that CXCR7 interact with Rac1 in the leading edge of the polarized NPCs in the absence of CXCR4. Both CXCR7 and Rac1 are required for extracellular signal-regulated kinases (ERK) 1/2 activation and subsequent NPC migration, indicating that CXCR7 could serve as a functional receptor in CXCL12-mediated NPC migration independent of CXCR4. Together these results reveal an essential role of CXCR7 for CXCL12-mediated NPC migration that will be important to understand neurogenesis during development and in adulthood. PMID:25833331

  19. Cell surface nucleolin is crucial in the activation of the CXCL12/CXCR4 signaling pathway.

    PubMed

    Yang, Xiangshan; Xu, Zhongfa; Li, Daotang; Cheng, Shaomei; Fan, Kaixi; Li, Chengjun; Li, Aiping; Zhang, Jing; Feng, Man

    2014-01-01

    Recently, CXCL12-CXCR4 has been focused on therapeutic strategies for papillary thyroid carcinoma (PTC) and other cancers. At the same time, cell surface nucleolin is also over-expressed in PTC and others. Interestingly, a few reports suggest that either CXCR4 or cell surface nucleolin is a co-receptor for HIV-1 entry into CD4+ T cells, which indicates that there is a relationship between CXCR4 and nucleolin. In this study, antibody and siRNA were used to identify effects of cell surface nucleolin and CXCR4 on cell signaling; soft-agar colony formation assay and Transwell assay were used to determine roles of nucleolin and CXCR4 in cell proliferation and migration. Importantly, co-immunoprecipitation was used to demonstrate the relationship between CXCR4 and nucleolin. Results showed CXCR4 and nucleolin were co-expressed in PTC cell line K1, B-CPAP, and TPC-1. Either cell surface nucleolin or CXCR4 was necessary to prompt extracellular signal-regulated kinase phosphorylation. When blocked, CXCR4 or nucleolin can significantly affect TPC-1 proliferation and migration (p < 0.01). Co-immunoprecipitation analysis identified that nucleolin can bind and interact with CXCR4 to activate CXCR4 signaling. This study suggests that nucleolin is crucial in the activation of CXCR4 signaling, which affects cell growth, migration, and invasiveness. Further, nucleolin may interact with other receptors. Our study also offers new ideas for cancer therapy. PMID:23918302

  20. Peritoneal Dissemination Requires an Sp1-Dependent CXCR4/CXCL12 Signaling Axis and Extracellular Matrix-Directed Spheroid Formation.

    PubMed

    Kasagi, Yuta; Harada, Yui; Morodomi, Yosuke; Iwai, Toshiki; Saito, Satoru; Yoshida, Kumi; Oki, Eiji; Saeki, Hiroshi; Ohgaki, Kippei; Sugiyama, Masahiko; Onimaru, Mitsuho; Maehara, Yoshihiko; Yonemitsu, Yoshikazu

    2016-01-15

    Peritonitis carcinomatosa is an advanced and intractable state of gastrointestinal and ovarian cancer, where mechanistic elucidation might enable the development of more effective therapies. Peritoneal dissemination of this type of malignancy has been generally thought to initiate from "milky spots" of primitive lymphoid tissues in the peritoneal cavity. In this study, we offer evidence challenging this idea, based on the finding that tumor implantation and directional dissemination was not required for the presence of milky spots, but rather SCF/CXCL12-expressing niche-like cells located at the border regions of perivascular adipose tissue. Interestingly, we found that peritoneal cavity lavage fluid, which specifically contains peritoneal collagen type IV and plasma fibronectin, dramatically facilitated spheroid formation of murine and human colon cancer cells. Spheroid formation strongly induced the expression of CXCR4 in an Sp1-dependent manner to promote niche-directed metastasis. Notably, disrupting sphere formation or inhibiting Sp1 activity was sufficient to suppress tumor dissemination and potentiated chemosensitivity to 5-fluorouracil. Our findings illuminate mechanisms of peritoneal cancer dissemination and highlight the Sp1/CXCR4/CXCL12 signaling axis as a rational target for the development of therapeutics to manage this intractable form of malignancy. PMID:26744523

  1. CXCL12-producing vascular endothelial niches control acute T cell leukemia maintenance

    PubMed Central

    Pitt, Lauren A.; Tikhonova, Anastasia N.; Hu, Hai; Trimarchi, Thomas; King, Bryan; Gong, Yixiao; Sanchez-Martin, Marta; Tsirigos, Aris; Littman, Dan R.; Ferrando, Adolfo; Morrison, Sean J.; Fooksman, David R.

    2015-01-01

    SUMMARY The role of the microenvironment in T cell acute lymphoblastic leukemia (T-ALL), or any acute leukemia, is poorly understood. Here we demonstrate that T-ALL cells are in direct, stable contact with CXCL12-producing bone marrow stroma. Cxcl12 deletion from vascular endothelial, but not perivascular, cells impeded tumor growth, suggesting a vascular niche for T-ALL. Moreover, genetic targeting of CXCR4 in murine T-ALL after disease onset led to rapid, sustained disease remission, and CXCR4 antagonism suppressed human T-ALL in primary xenografts. Loss of CXCR4 targeted key T-ALL regulators, including the MYC pathway, and decreased leukemia initiating cell activity in vivo. Our data identify a T-ALL niche, and suggest targeting CXCL12/CXCR4 signaling as a powerful therapeutic approach for T-ALL. PMID:26058075

  2. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis

    PubMed Central

    Cojoc, Monica; Peitzsch, Claudia; Trautmann, Franziska; Polishchuk, Leo; Telegeev, Gennady D; Dubrovska, Anna

    2013-01-01

    The chemokine CXCL12 (SDF-1) and its cell surface receptor CXCR4 were first identified as regulators of lymphocyte trafficking to the bone marrow. Soon after, the CXCL12/CXCR4 axis was proposed to regulate the trafficking of breast cancer cells to sites of metastasis. More recently, it was established that CXCR4 plays a central role in cancer cell proliferation, invasion, and dissemination in the majority of malignant diseases. The stem cell concept of cancer has revolutionized the understanding of tumorigenesis and cancer treatment. A growing body of evidence indicates that a subset of cancer cells, referred to as cancer stem cells (CSCs), plays a critical role in tumor initiation, metastatic colonization, and resistance to therapy. Although the signals generated by the metastatic niche that regulate CSCs are not yet fully understood, accumulating evidence suggests a key role of the CXCL12/CXCR4 axis. In this review we focus on physiological functions of the CXCL12/CXCR4 signaling pathway and its role in cancer and CSCs, and we discuss the potential for targeting this pathway in cancer management. PMID:24124379

  3. Cathepsin X is secreted by human osteoblasts, digests CXCL-12 and impairs adhesion of hematopoietic stem and progenitor cells to osteoblasts

    PubMed Central

    Staudt, Nicole D.; Aicher, Wilhelm K.; Kalbacher, Hubert; Stevanovic, Stefan; Carmona, Adriana K.; Bogyo, Matthew; Klein, Gerd

    2010-01-01

    Background Hematopoietic stem cells are retained within discrete bone marrow niches through the effects of cell adhesion molecules and chemokine gradients. However, a small proportion of hematopoietic stem cells can also be found trafficking in the peripheral blood. During induced stem cell mobilization a proteolytic microenvironment is generated, but whether proteases are also involved in physiological trafficking of hematopoietic stem cells is not known. In the present study we examined the expression, secretion and function of the cysteine protease cathepsin X by cells of the human bone marrow. Design and Methods Human osteoblasts, bone marrow stromal cells and hematopoietic stem and progenitor cells were analyzed for the secretion of cathepsin X by western blotting, active site labeling, immunofluorescence staining and activity assays. A possible involvement of cathepsin X in cell adhesion and CXCL-12-mediated cell migration was studied in functional assays. Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) analysis revealed the digestion mechanism of CXCL-12 by cathepsin X. Results Osteoblasts and stromal cells secrete cathepsin X, whereas hematopoietic stem and progenitor cells do not. Using a cathepsin X-selective substrate, we detected the catalytic activity of cathepsin X in cell culture supernatants of osteoblasts. Activated cathepsin X is able to reduce cellular adhesive interactions between CD34+ hematopoietic stem and progenitor cells and adherent osteoblasts. The chemokine CXCL-12, a highly potent chemoattractant for hematopoietic stem cells secreted by osteoblasts, is readily digested by cathepsin X. Conclusions The exo-peptidase cathepsin X has been identified as a new member of the group of CXCL-12-degrading enzymes secreted by non-hematopoietic bone marrow cells. Functional data indicate that cathepsin X can influence hematopoietic stem and progenitor cell trafficking in the bone marrow. PMID:20494937

  4. SDF-1/CXCL12 induces directional cell migration and spontaneous metastasis via a CXCR4/Gαi/mTORC1 axis

    PubMed Central

    Dillenburg-Pilla, Patricia; Patel, Vyomesh; Mikelis, Constantinos M.; Zárate-Bladés, Carlos Rodrigo; Doçi, Colleen L.; Amornphimoltham, Panomwat; Wang, Zhiyong; Martin, Daniel; Leelahavanichkul, Kantima; Dorsam, Robert T.; Masedunskas, Andrius; Weigert, Roberto; Molinolo, Alfredo A.; Gutkind, J. Silvio

    2015-01-01

    Multiple human malignancies rely on C-X-C motif chemokine receptor type 4 (CXCR4) and its ligand, SDF-1/CXCL12 (stroma cell–derived factor 1/C-X-C motif chemokine 12), to metastasize. CXCR4 inhibitors promote the mobilization of bone marrow stem cells, limiting their clinical application for metastasis prevention. We investigated the CXCR4-initiated signaling circuitry to identify new potential therapeutic targets. We used HeLa human cancer cells expressing high levels of CXCR4 endogenously. We found that CXCL12 promotes their migration in Boyden chamber assays and single cell tracking. CXCL12 activated mTOR (mechanistic target of rapamycin) potently in a pertussis-sensitive fashion. Inhibition of mTOR complex 1 (mTORC1) by rapamycin [drug concentration causing 50% inhibition (IC50) = 5 nM] and mTORC1/mTORC2 by Torin2 (IC50 = 6 nM), or by knocking down key mTORC1/2 components, Raptor and Rictor, respectively, decreased directional cell migration toward CXCL12. We developed a CXCR4-mediated spontaneous metastasis model by implanting HeLa cells in the tongue of SCID-NOD mice, in which 80% of the animals develop lymph node metastasis. It is surprising that mTORC1 disruption by Raptor knockdown was sufficient to reduce tumor growth by 60% and spontaneous metastasis by 72%, which were nearly abolished by rapamycin. In contrast, disrupting mTORC2 had no effect in tumor growth or metastasis compared with control short hairpin RNAs. These data suggest that mTORC1 may represent a suitable therapeutic target in human malignancies using CXCR4 for their metastatic spread.—Dillenburg-Pilla, P., Patel, V., Mikelis, C. M., Zárate-Bladés, C. R., Doçi, C. L., Amornphimoltham, P., Wang, Z., Martin, D., Leelahavanichkul, K., Dorsam, R. T., Masedunskas, A., Weigert, R., Molinolo, A. A, Gutkind, J. S. SDF-1/CXCL12 induces directional cell migration and spontaneous metastasis via a CXCR4/Gαi/mTORC1 axis. PMID:25466898

  5. Structural and Functional Basis of CXCL12 (stromal cell-derived factor-1 alpha) Binding to Heparin

    SciTech Connect

    Murphy,J.; Cho, Y.; Sachpatzidis, A.; Fan, C.; Hodsdon, M.; Lolis, E.

    2007-01-01

    CXCL12 (SDF-1a) and CXCR4 are critical for embryonic development and cellular migration in adults. These proteins are involved in HIV-1 infection, cancer metastasis, and WHIM disease. Sequestration and presentation of CXCL12 to CXCR4 by glycosaminoglycans (GAGs) is proposed to be important for receptor activation. Mutagenesis has identified CXCL12 residues that bind to heparin. However, the molecular details of this interaction have not yet been determined. Here we demonstrate that soluble heparin and heparan sulfate negatively affect CXCL12-mediated in vitro chemotaxis. We also show that a cluster of basic residues in the dimer interface is required for chemotaxis and is a target for inhibition by heparin. We present structural evidence for binding of an unsaturated heparin disaccharide to CXCL12 attained through solution NMR spectroscopy and x-ray crystallography. Increasing concentrations of the disaccharide altered the two-dimensional 1H-15N-HSQC spectra of CXCL12, which identified two clusters of residues. One cluster corresponds to {beta}-strands in the dimer interface. The second includes the amino-terminal loop and the a-helix. In the x-ray structure two unsaturated disaccharides are present. One is in the dimer interface with direct contacts between residues His25, Lys27, and Arg41 of CXCL12 and the heparin disaccharide. The second disaccharide contacts Ala20, Arg21, Asn30, and Lys64. This is the first x-ray structure of a CXC class chemokine in complex with glycosaminoglycans. Based on the observation of two heparin binding sites, we propose a mechanism in which GAGs bind around CXCL12 dimers as they sequester and present CXCL12 to CXCR4.

  6. Dimeric peptides of the C-terminal region of CXCL14 function as CXCL12 inhibitors.

    PubMed

    Tanegashima, Kosuke; Tsuji, Kohei; Suzuki, Kenji; Shigenaga, Akira; Otaka, Akira; Hara, Takahiko

    2013-11-29

    We recently reported that CXCL14 binds to CXCR4 with high affinity and inhibits CXCL12-mediated chemotaxis. Here we found that the C-terminal 51-77 amino acid residues of CXCL14 are responsible for CXCR4 binding. A disulfide dimer peptide of CXCL14(51-77) bound to CXCR4 with comparable affinity to full length CXCL14, and exhibited CXCL12 inhibitor activity. CXCR4 was efficiently internalized upon binding of dimeric CXCL14(51-77), thereby being reduced on the cell surface. Substitution of 5 amino acid residues in combination with the use of an oxime linker for dimerization increased the solubility and chemical stability of the dimeric CXCL14(51-77). PMID:24161674

  7. Role of CXCL12 and CXCR4 in normal cerebellar development and medulloblastoma.

    PubMed

    Ozawa, Patricia Midori Murobushi; Ariza, Carolina Batista; Ishibashi, Cintya Mayumi; Fujita, Thiago Cezar; Banin-Hirata, Bruna Karina; Oda, Julie Massayo Maeda; Watanabe, Maria Angelica Ehara

    2016-01-01

    Chemokines and its receptors have significant impact on physiological and pathological processes and studies concerning their association with tumor biology are subject of great interest in scientific community. CXCL12/CXCR4 axis has been widely studied due to its significant role in tumor microenvironment, but it is also important to development and maintenance of tissues and organs, for example, in the brain and cerebellum. Studies have demonstrated that CXCL12 and CXCR4 are required for normal cerebellar development and that dysfunction in this pathway may be involved with medulloblastoma pathogenesis. In this context, a new molecular subgroup has been suggested based on the importance of the association between CXCR4 overexpression and sonic hedgehog subgroup. Treatment using CXCR4 antagonists showed significant results, evidencing the important role and possible therapeutic capacity of CXCR4 in MB. This review summarizes studies on MB cell biology, focusing on a chemokine-receptor axis, CXCL12/CXCR4, that may have implications for treatment strategies once it can improve life expectancy and reduce neurocognitive sequelae of patients with this neoplasia. PMID:25400097

  8. Circulating progenitor epithelial cells traffic via CXCR4/CXCL12 in response to airway injury.

    PubMed

    Gomperts, Brigitte N; Belperio, John A; Rao, P Nagesh; Randell, Scott H; Fishbein, Michael C; Burdick, Marie D; Strieter, Robert M

    2006-02-01

    Recipient airway epithelial cells are found in human sex-mismatched lung transplants, implying that circulating progenitor epithelial cells contribute to the repair of the airway epithelium. Markers of circulating progenitor epithelial cells and mechanisms for their trafficking remain to be elucidated. We demonstrate that a population of progenitor epithelial cells exists in the bone marrow and the circulation of mice that is positive for the early epithelial marker cytokeratin 5 (CK5) and the chemokine receptor CXCR4. We used a mouse model of sex-mismatched tracheal transplantation and found that CK5+ circulating progenitor epithelial cells contribute to re-epithelialization of the airway and re-establishment of the pseudostratified epithelium. The presence of CXCL12 in tracheal transplants provided a mechanism for CXCR4+ circulating progenitor epithelial cell recruitment to the airway. Depletion of CXCL12 resulted in the epithelium defaulting to squamous metaplasia, which was derived solely from the resident tissue progenitor epithelial cells. Our findings demonstrate that CK5+CXCR4+ cells are markers of circulating progenitor epithelial cells in the bone marrow and circulation and that CXCR4/CXCL12-mediated recruitment of circulating progenitor epithelial cells is necessary for the re-establishment of a normal pseudostratified epithelium after airway injury. These findings support a novel paradigm for the development of squamous metaplasia of the airway epithelium and for developing therapeutic strategies for circulating progenitor epithelial cells in airway diseases. PMID:16424223

  9. Aberrant expression of hormone receptors in adrenal Cushing's syndrome.

    PubMed

    Christopoulos, Stavroula; Bourdeau, Isabelle; Lacroix, André

    2004-01-01

    In recent years, a novel understanding of the pathophysiology of adrenal Cushing's syndrome has emerged. The ectopic or aberrant expression of G-protein-coupled hormone receptors in the adrenal cortex was found to play a central role in the regulation of cortisol secretion in ACTH-independent macronodular adrenal hyperplasia (AIMAH) and in some unilateral adrenal adenomas. Various aberrant receptors, functionally coupled to steroidogenesis, have been reported: GIP, vasopressin, beta-adrenergic, LH/hCG, and serotonin receptors have been best characterized, but angiotensin, leptin, glucagon, IL-1 and TSH receptors have also been described. The molecular mechanisms responsible for the aberrant expression of these receptors are currently unknown. One or many of these aberrant receptors are present in most cases of AIMAH and in some cases of adrenal adenomas with overt or sub-clinical secretion of cortisol. Clinical protocols to screen for such aberrant receptors have been developed and should be performed in all patients with AIMAH. The identification of such aberrant regulation of steroidogenesis in AIMAH provides the novel opportunity to treat some of these patients with pharmacological agents that either suppress the endogenous ligand or block the aberrant receptor, thus avoiding bilateral adrenalectomy. PMID:16010457

  10. The CXCL12/CXCR4 axis is involved in the maintenance of Th2 bias at the maternal/fetal interface in early human pregnancy

    PubMed Central

    Piao, Hai-Lan; Tao, Yu; Zhu, Rui; Wang, Song-Cun; Tang, Chuan-Ling; Fu, Qiang; Du, Mei-Rong; Li, Da-Jin

    2012-01-01

    The regulatory mechanism of Th2 bias at the maternal/fetal interface remains unclear. In this study, we characterized cytokine production in decidual stromal cells (DSCs), decidual immune cells (DICs) and embryo-derived trophoblast cells, and investigated the regulation of CXCL12/CXCR4 interaction on Th2 bias at the maternal/fetal interface in early human pregnancy. We found differential production of Th1-type and Th2-type cytokines by trophoblasts, DSCs and DICs. The secretion of these cytokines varied in different cell cocultures, conduced to Th2 bias. Flow cytometry showed that coculture of trophoblasts with DSCs and DICs significantly increased IL-4 and IL-10 production in trophoblasts, and IL-10 production in DSCs. However, the coculture of trophoblasts with DSCs and DICs significantly increased interferon (IFN)-γ expression in DSCs, and tumor-necrosis factor (TNF)-α expression in DICs. No change was seen in Th1-type cytokine production in trophoblasts, and in Th2-type cytokine production in DICs in all cocultures. Furthermore, pre-treatment with anti-CXCR4 neutralizing antibody upregulated the production of the Th1-type cytokines IFN-γ and TNF-α, and downregulated the production of the Th2-type cytokines IL-4 and IL-10, in trophoblasts, DSCs, DICs or their cocultures. Interestingly, rhCXCL12 inhibited production of the Th1-type cytokine TNF-α and enhanced the expression of the Th2-type cytokines such as IL-4 and IL-10 in DICs; this effect was abrogated by anti-CXCR4 antibody. Our present study has elucidated the individual contributions of component cells to the shaping of Th2 bias, and uncovered a complicated cross-talk via the CXCL12/CXCR4 signal at the maternal/fetal interface in early human pregnancy. PMID:22885527

  11. CXCR4/CXCL12/CXCR7 axis is functional in neuroendocrine tumors and signals on mTOR

    PubMed Central

    Guadagno, Elia; Tafuto, Salvatore; del Basso de Caro, Marialaura; Botti, Giovanni; Pezzullo, Luciano; Aria, Massimo; Ramundo, Valeria; Tatangelo, Fabiana; Losito, Nunzia Simona; Ieranò, Caterina; D'Alterio, Crescenzo; Izzo, Francesco; Ciliberto, Gennaro; Colao, Annamaria; Faggiano, Antongiulio; Scala, Stefania

    2016-01-01

    Objective To evaluate the possible crosstalk between C-X-C chemokine receptor 4 (CXCR4)/C-X-C motif chemokine 12 (CXCL12)/C-X-C chemokine receptor 7 (CXCR7) axis with the mammalian target of rapamycin (mTOR) pathway in neuroendocrine tumors (NETs). Methods Sixty-one human NETs were included into the study. CXCR4/CXCL12/CXCR7 axis and mTOR pathway were assessed by qRT-PCR and immunohistochemistry (IHC). The effect of mTOR inhibitor, RAD001, was evaluated on CXCR4 pathway through proliferation and p-Erk and p-AKT induction. Results: CXCR4/CXCL12/CXCR7 axis and p-mTOR were found to be active and correlated with grading, Ki67 index and tumor stage. mTOR pathway activation significantly correlated with poor prognosis. In human NET cells, CXCL12 induced mTOR signalling while AMD3100 (CXCR4-antagonist) impaired it. The mTOR-antagonist, RAD001, impaired the CXCL12-dependent induction of CXCR4 downstream effectors. Combination of AMD3100 and RAD001 potentiate cell growth inhibition. Conclusions CXCR4/CXCL12/CXCR7 axis is active in NETs and signals on mTOR. CXCR4 might be considered a prognostic factor in NETs. Combined treatment with AMD3100 and RAD001 may provide clinical benefits in NET patients with drug-resistant. PMID:26934559

  12. Heterologous Quaternary Structure of CXCL12 and its Relationship to the CC Chemokine Family

    SciTech Connect

    Murphy, J.; Yuan, H; Kong, Y; Xiong, Y; Lolis, E

    2010-01-01

    X-ray crystallographic studies reveal that CXCL12 is able to form multiple dimer types, a traditional CXC dimer and a 'CC-like' form. Phylogenetic analysis of all known human chemokines demonstrates CXCL12 is more closely related to the CC chemokine class than other CXC chemokines. These observations indicate that CXCL12 contains genomic and structural elements characteristic of both CXC and CC chemokines.Chemokines are members of a superfamily of proteins involved in the migration of cells to the proper anatomical position during embryonic development or in response to infection or stress during an immune response. There are two major (CC and CXC) and two minor (CX3C and XC) families based on the sequence around the first conserved cysteine. The topology of all structures is essentially identical with a flexible N-terminal region of 3-8 amino acids, a 10-20 residue N-terminal loop, a short 3{sub 10}-helix, three {beta}-strands, and a {alpha}-helix. The major consequence of the subtle difference between the families occurs at the oligomeric level. Monomers of the CC, CXC, and CX3C families form dimers in a family-specific manner. The XCL1 chemokine is a monomer that can interconvert between two folded states. All chemokines activate GPCRs according to family-specificity, however there are a few examples of chemokines crossing the family boundary to function as antagonists. A two-stage mechanism for chemokine activation of GPCRs has been proposed. The N-terminal region of the receptor interacts with the chemokine, followed by receptor activation by the chemokine N-terminal region. Monomeric chemokines have been demonstrated to be the active form for receptor function. There are numerous examples of both chemokines and their receptors forming dimers. While family-specific dimerization may be an attractive explanation for why specific chemokines only activate GPCRs within their own family, the role of dimers in the function of chemokines has not been resolved. Given

  13. CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment

    PubMed Central

    Würth, Roberto; Bajetto, Adriana; Harrison, Jeffrey K.; Barbieri, Federica; Florio, Tullio

    2014-01-01

    Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells. Glioblastoma (GBM) is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascribed to high growth rate, invasiveness to normal brain, marked angiogenesis, ability to escape the immune system and resistance to standard of care therapies. Tumor molecular and cellular heterogeneity severely hinders GBM therapeutic improvement. In particular, a subpopulation of chemo- and radio-therapy resistant tumorigenic cancer stem–like cells (CSCs) is believed to be the main responsible for tumor cell dissemination to the brain. GBM cells display heterogeneous expression levels of CXCR4 and CXCR7 that are overexpressed in CSCs, representing a molecular correlate for the invasive potential of GBM. The microenvironment contribution in GBM development is increasingly emphasized. An interplay exists between CSCs, differentiated GBM cells, and the microenvironment, mainly through secreted chemokines (e.g., CXCL12) causing recruitment of fibroblasts, endothelial, mesenchymal and inflammatory cells to the tumor, via specific receptors such as CXCR4. This review covers recent developments on the role of CXCL12/CXCR4–CXCR7 networks in GBM progression and the potential translational impact of their targeting. The biological and molecular understanding of the heterogeneous GBM cell behavior, phenotype and signaling is still limited. Progress in the identification of chemokine-dependent mechanisms that affect GBM cell survival, trafficking and chemo-attractive functions, opens new perspectives for development of more specific therapeutic approaches that include chemokine

  14. Primordial germ cell migration in the chick and mouse embryo: the role of the chemokine SDF-1/CXCL12.

    PubMed

    Stebler, Jürg; Spieler, Derek; Slanchev, Krasimir; Molyneaux, Kathleen A; Richter, Ulrike; Cojocaru, Vlad; Tarabykin, Victor; Wylie, Chris; Kessel, Michael; Raz, Erez

    2004-08-15

    As in many other animals, the primordial germ cells (PGCs) in avian and reptile embryos are specified in positions distinct from the positions where they differentiate into sperm and egg. Unlike in other organism however, in these embryos, the PGCs use the vascular system as a vehicle to transport them to the region of the gonad where they exit the blood vessels and reach their target. To determine the molecular mechanisms governing PGC migration in these species, we have investigated the role of the chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) in guiding the cells towards their target in the chick embryo. We show that sdf-1 mRNA is expressed in locations where PGCs are found and towards which they migrate at the time they leave the blood vessels. Ectopically expressed chicken SDF-1alpha led to accumulation of PGCs at those positions. This analysis, as well as analysis of gene expression and PGC behavior in the mouse embryo, suggest that in both organisms, SDF-1 functions during the second phase of PGC migration, and not at earlier phases. These findings suggest that SDF-1 is required for the PGCs to execute the final migration steps as they transmigrate through the blood vessel endothelium of the chick or the gut epithelium of the mouse. PMID:15282153

  15. Stromal-derived factor-1α/CXCL12-CXCR4 chemotactic pathway promotes perineural invasion in pancreatic cancer

    PubMed Central

    Xu, Qinhong; Wang, Zheng; Chen, Xin; Duan, Wanxing; Lei, Jianjun; Zong, Liang; Li, Xuqi; Sheng, Liang; Ma, Jiguang; Han, Liang; Li, Wei; Zhang, Lun; Guo, Kun; Ma, Zhenhua; Wu, Zheng; Wu, Erxi; Ma, Qingyong

    2015-01-01

    Perineural invasion (PNI) is considered as an alternative route for the metastatic spread of pancreatic cancer cells; however, the molecular changes leading to PNI are still poorly understood. In this study, we show that the CXCL12/CXCR4 axis plays a pivotal role in the neurotropism of pancreatic cancer cells to local peripheral nerves. Immunohistochemical staining results revealed that CXCR4 elevation correlated with PNI in 78 pancreatic cancer samples. Both in vitro and in vivo PNI models were applied to investigate the function of the CXCL12/CXCR4 signaling in PNI progression and pathogenesis. The results showed that the activation of the CXCL12/CXCR4 axis significantly increased pancreatic cancer cells invasion and promoted the outgrowth of the dorsal root ganglia. CXCL12 derived from the peripheral nerves stimulated the invasion and chemotactic migration of CXCR4-positive cancer cells in a paracrine manner, eventually leading to PNI. In vivo analyses revealed that the abrogation of the activated signaling inhibited tumor growth and invasion of the sciatic nerve toward the spinal cord. These data indicate that the CXCL12/CXCR4 axis may be a novel therapeutic target to prevent the perineural dissemination of pancreatic cancer. PMID:25605248

  16. Stromal-Cell-Derived Factor-1 (SDF-1)/CXCL12 as Potential Target of Therapeutic Angiogenesis in Critical Leg Ischaemia

    PubMed Central

    Ho, Teik K.; Shiwen, X.; Abraham, D.; Tsui, J.; Baker, D.

    2012-01-01

    In the Western world, peripheral vascular disease (PVD) has a high prevalence with high morbidity and mortality. In a large percentage of these patients, lower limb amputation is still required. Studies of ischaemic skeletal muscle disclosed evidence of endogenous angiogenesis and adaptive skeletal muscle metabolic changes in response to hypoxia. Chemokines are potent chemoattractant cytokines that regulate leukocyte trafficking in homeostatic and inflammatory processes. More than 50 different chemokines and 20 different chemokine receptors have been cloned. The chemokine stromal-cell-derived factor-1 (SDF-1 aka CXCL12) is a constitutively expressed and inducible chemokine that regulates multiple physiological processes, including embryonic development and organ homeostasis. The biologic effects of SDF-1 are mediated by chemokine receptor CXCR4, a 352 amino acid rhodopsin-like transmembrane-specific G protein-coupled receptor (GPCR). There is evidence that the administration of SDF-1 increases blood flow and perfusion via recruitment of endothelial progenitor cells (EPCs). This review will focus on the role of the SDF-1/CXCR4 system in the pathophysiology of PVD and discuss their potential as therapeutic targets for PVD. PMID:22462026

  17. MEIS1-mediated transactivation of synaptotagmin-like 1 promotes CXCL12/CXCR4 signaling and leukemogenesis

    PubMed Central

    Yokoyama, Takashi; Nakatake, Mayuka; Kuwata, Takeshi; Couzinet, Arnaud; Goitsuka, Ryo; Tsutsumi, Shuichi; Aburatani, Hiroyuki; Valk, Peter J.M.; Delwel, Ruud

    2016-01-01

    The TALE-class homeoprotein MEIS1 specifically collaborates with HOXA9 to drive myeloid leukemogenesis. Although MEIS1 alone has only a moderate effect on cell proliferation in vitro, it is essential for the development of HOXA9-induced leukemia in vivo. Here, using murine models of leukemogenesis, we have shown that MEIS1 promotes leukemic cell homing and engraftment in bone marrow and enhances cell-cell interactions and cytokine-mediated cell migration. We analyzed global DNA binding of MEIS1 in leukemic cells as well as gene expression alterations in MEIS1-deficent cells and identified synaptotagmin-like 1 (Sytl1, also known as Slp1) as the MEIS1 target gene that cooperates with Hoxa9 in leukemogenesis. Replacement of SYTL1 in MEIS1-deficent cells restored both cell migration and engraftment. Further analysis revealed that SYTL1 promotes cell migration via activation of the CXCL12/CXCR4 axis, as SYTL1 determines intracellular trafficking of CXCR4. Together, our results reveal that MEIS1, through induction of SYTL1, promotes leukemogenesis and supports leukemic cell homing and engraftment, facilitating interactions between leukemic cells and bone marrow stroma. PMID:27018596

  18. Macrophage Migration Inhibitory Factor-CXCR4 Receptor Interactions: EVIDENCE FOR PARTIAL ALLOSTERIC AGONISM IN COMPARISON WITH CXCL12 CHEMOKINE.

    PubMed

    Rajasekaran, Deepa; Gröning, Sabine; Schmitz, Corinna; Zierow, Swen; Drucker, Natalie; Bakou, Maria; Kohl, Kristian; Mertens, André; Lue, Hongqi; Weber, Christian; Xiao, Annie; Luker, Gary; Kapurniotu, Aphrodite; Lolis, Elias; Bernhagen, Jürgen

    2016-07-22

    An emerging number of non-chemokine mediators are found to bind to classical chemokine receptors and to elicit critical biological responses. Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that exhibits chemokine-like activities through non-cognate interactions with the chemokine receptors CXCR2 and CXCR4, in addition to activating the type II receptor CD74. Activation of the MIF-CXCR2 and -CXCR4 axes promotes leukocyte recruitment, mediating the exacerbating role of MIF in atherosclerosis and contributing to the wealth of other MIF biological activities. Although the structural basis of the MIF-CXCR2 interaction has been well studied and was found to engage a pseudo-ELR and an N-like loop motif, nothing is known about the regions of CXCR4 and MIF that are involved in binding to each other. Using a genetic strain of Saccharomyces cerevisiae that expresses a functional CXCR4 receptor, site-specific mutagenesis, hybrid CXCR3/CXCR4 receptors, pharmacological reagents, peptide array analysis, chemotaxis, fluorescence spectroscopy, and circular dichroism, we provide novel molecular information about the structural elements that govern the interaction between MIF and CXCR4. The data identify similarities with classical chemokine-receptor interactions but also provide evidence for a partial allosteric agonist compared with CXCL12 that is possible due to the two binding sites of CXCR4. PMID:27226569

  19. Analgesic efficacy of buprenorphine in the presence of high levels of SDF-1α/CXCL12 in the brain.

    PubMed

    Benamar, Khalid; Palma, Jonathan; Cowan, Alan; Geller, Ellen B; Adler, Martin W

    2011-04-01

    Although morphine is often the best option for treating acute and chronic severe pain, its analgesic activity can be blocked in situations in which there are elevated levels of chemokines. Indeed, recently we have shown that elevated brain levels of the chemokine stromal cell-derived growth factor-1alpha (SDF-1α/CXCL12, the ligand of the HIV co-receptor CXCR4) diminish the antinociceptive effect of morphine. The purpose of the present study was to investigate whether such an effect is restricted to morphine or extends to other opioid medications such as buprenorphine. A sterilized stainless-steel C313G guide cannula was implanted into the periaqueductal grey (PAG), a brain region critical to the processing of pain signals, and a primary site of action of many analgesic compounds. The cold-water (-3°C) tail-flick test (CWT) was used to measure antinociception. Rats were pretreated with SDF-1α/CXCL12 administered into the PAG, and the antinociceptive actions of buprenorphine were measured. Direct infusion of SDF-1α/CXCL12 into the PAG failed to alter the antinociceptive action of buprenorphine. The presence of SDF-1α/CXCL12 in the PAG differentially alters the antinociceptive function of opioid medications. While it was able to diminish the antinociception induced by morphine (Adler et al., 2006), SDF-1α/CXCL12 did not affect the buprenorphine-induced antinociception. Buprenorphine appears to be more effective in the presence of high levels of SDF-1α/CXCL12 in the brain (which frequently occurs during neuroinflammatory conditions). PMID:21112161

  20. CXCR4/CXCL12 in Non-Small-Cell Lung Cancer Metastasis to the Brain

    PubMed Central

    Cavallaro, Sebastiano

    2013-01-01

    Lung cancer represents the leading cause of cancer-related mortality throughout the world. Patients die of local progression, disseminated disease, or both. At least one third of the people with lung cancer develop brain metastases at some point during their disease, even often before the diagnosis of lung cancer is made. The high rate of brain metastasis makes lung cancer the most common type of tumor to spread to the brain. It is critical to understand the biologic basis of brain metastases to develop novel diagnostic and therapeutic approaches. This review will focus on the emerging data supporting the involvement of the chemokine CXCL12 and its receptor CXCR4 in the brain metastatic evolution of non-small-cell lung cancer (NSCLC) and the pharmacological tools that may be used to interfere with this signaling axis. PMID:23322021

  1. E-cadherin Is Critical for Collective Sheet Migration and Is Regulated by the Chemokine CXCL12 Protein During Restitution*

    PubMed Central

    Hwang, Soonyean; Zimmerman, Noah P.; Agle, Kimberle A.; Turner, Jerrold R.; Kumar, Suresh N.; Dwinell, Michael B.

    2012-01-01

    Chemokines and other immune mediators enhance epithelial barrier repair. The intestinal barrier is established by highly regulated cell-cell contacts between epithelial cells. The goal of these studies was to define the role for the chemokine CXCL12 in regulating E-cadherin during collective sheet migration during epithelial restitution. Mechanisms regulating E-cadherin were investigated using Caco2BBE and IEC-6 model epithelia. Genetic knockdown confirmed a critical role for E-cadherin in in vitro restitution and in vivo wound repair. During restitution, both CXCL12 and TGF-β1 tightened the monolayer by decreasing the paracellular space between migrating epithelial cells. However, CXCL12 differed from TGF-β1 by stimulating the significant increase in E-cadherin membrane localization during restitution. Chemokine-stimulated relocalization of E-cadherin was paralleled by an increase in barrier integrity of polarized epithelium during restitution. CXCL12 activation of its cognate receptor CXCR4 stimulated E-cadherin localization and monolayer tightening through Rho-associated protein kinase activation and F-actin reorganization. These data demonstrate a key role for E-cadherin in intestinal epithelial restitution. PMID:22549778

  2. New insights into the role of stromal cell-derived factor 1 (SDF-1/CXCL12) in the pathophysiology of multiple sclerosis.

    PubMed

    Khorramdelazad, Hossein; Bagheri, Vahid; Hassanshahi, Gholamhossein; Zeinali, Masoud; Vakilian, Alireza

    2016-01-15

    The etiology of several autoimmune diseases, including multiple sclerosis (MS) is still not clarified. MS is defined as an autoimmune disease with clinical features of a chronic, inflammatory, and demyelinating autoimmune disorder, which affects the central nervous system. Phases of remission and relapse are the major course of the disease, which could be exacerbated in terms of both severity and duration. As a subfamily of the cytokines, chemokines act as chemoattractants for a wide variety of cells, including immune cells. CXCL12, which is an important member of the CXC subfamily, has been widely explored in the hematopoietic system. In the peripheral immune system, CXCL12/CXCR4 performs pleiotropic functions. CXCL12 is a highly effective chemoattractant for lymphocytes and monocytes but not neutrophils. CXCL12 is present in the cerebrospinal fluid (CSF) of patients with MS and other inflammatory neurological disorders. The aim of this study is to summarize recent findings regarding the relationship between CXCL12 and MS. PMID:26711573

  3. Aberrant expression of a chemokinetic glycoprotein in psoriatic skin.

    PubMed

    Rajaraman, S; Schmalsteig, F C; Brysk, M M; Hendrick, S J; Solomon, A R

    1987-05-01

    Clinically involved and uninvolved skin samples of 6 psoriatic patients, 4 samples each of normal skin specimens, basal cell carcinoma and keratoacanthoma were studied by an indirect immunofluorescence technique. The monospecific antibody used in this study was directed against a 30 kD glycoprotein, normally expressed by the terminally differentiated corneocytes. Functional characterization of this glycoprotein was evaluated by neutrophil cell movement assays. The involved and uninvolved skin of psoriatic patients expressed the 30 kD glycoprotein not only in the stratum corneum but in all the viable epidermal layers as well. Functional studies revealed this glycoprotein to be a potent chemokinetic molecule. These results suggest that the 30 kD glycoprotein is an intrinsic chemokinetic molecule of the terminally differentiated corneocytes, and its precocious and aberrant expression in psoriatic epidermis is potentially responsible for some of the pathophysiologic aspects of psoriasis. PMID:3302266

  4. Gene expression analysis of aberrant signaling pathways in meningiomas

    PubMed Central

    TORRES-MARTÍN, MIGUEL; MARTINEZ-GLEZ, VICTOR; PEÑA-GRANERO, CAROLINA; ISLA, ALBERTO; LASSALETTA, LUIS; DE CAMPOS, JOSE M.; PINTO, GIOVANNY R.; BURBANO, ROMMEL R.; MELÉNDEZ, BÁRBARA; CASTRESANA, JAVIER S.; REY, JUAN A.

    2013-01-01

    Examining aberrant pathway alterations is one method for understanding the abnormal signals that are involved in tumorigenesis and tumor progression. In the present study, expression arrays were performed on tumor-related genes in meningiomas. The GE Array Q Series HS-006 was used to determine the expression levels of 96 genes that corresponded to six primary biological regulatory pathways in a series of 42 meningiomas, including 32 grade I, four recurrent grade I and six grade II tumors, in addition to three normal tissue controls. Results showed that 25 genes that were primarily associated with apoptosis and angiogenesis functions were downregulated and 13 genes frequently involving DNA damage repair functions were upregulated. In addition to the inactivation of the neurofibromin gene, NF2, which is considered to be an early step in tumorigenesis, variations of other biological regulatory pathways may play a significant role in the development of meningioma. PMID:23946817

  5. Gene expression analysis of aberrant signaling pathways in meningiomas.

    PubMed

    Torres-Martín, Miguel; Martinez-Glez, Victor; Peña-Granero, Carolina; Isla, Alberto; Lassaletta, Luis; DE Campos, Jose M; Pinto, Giovanny R; Burbano, Rommel R; Meléndez, Bárbara; Castresana, Javier S; Rey, Juan A

    2013-07-01

    Examining aberrant pathway alterations is one method for understanding the abnormal signals that are involved in tumorigenesis and tumor progression. In the present study, expression arrays were performed on tumor-related genes in meningiomas. The GE Array Q Series HS-006 was used to determine the expression levels of 96 genes that corresponded to six primary biological regulatory pathways in a series of 42 meningiomas, including 32 grade I, four recurrent grade I and six grade II tumors, in addition to three normal tissue controls. Results showed that 25 genes that were primarily associated with apoptosis and angiogenesis functions were downregulated and 13 genes frequently involving DNA damage repair functions were upregulated. In addition to the inactivation of the neurofibromin gene, NF2, which is considered to be an early step in tumorigenesis, variations of other biological regulatory pathways may play a significant role in the development of meningioma. PMID:23946817

  6. Aberrant expression of homeobox gene SIX1 in Hodgkin lymphoma

    PubMed Central

    Nagel, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A.F.

    2015-01-01

    In Hodgkin lymphoma (HL) we recently identified deregulated expression of homeobox genes MSX1 and OTX2 which are physiologically involved in development of the embryonal neural plate border region. Here, we examined in HL homeobox gene SIX1 an additional regulator of this embryonal region mediating differentiation of placodal precursors. SIX1 was aberrantly activated in 12 % of HL patient samples in silico, indicating a pathological role in a subset of this B-cell malignancy. In addition, SIX1 expression was detected in HL cell lines which were used as models to reveal upstream factors and target genes of this basic developmental regulator. We detected increased copy numbers of the SIX1 locus at chromosome 14q23 correlating with enhanced expression while chromosomal translocations were absent. Moreover, comparative expression profiling data and pertinent gene modulation experiments indicated that the WNT-signalling pathway and transcription factor MEF2C regulate SIX1 expression. Genes encoding the transcription factors GATA2, GATA3, MSX1 and SPIB – all basic lymphoid regulators - were identified as targets of SIX1 in HL. In addition, cofactors EYA1 and TLE4, respectively, contrastingly mediated activation and suppression of SIX1 target gene expression. Thus, the protein domain interfaces may represent therapeutic targets in SIX1-positive HL subsets. Collectively, our data reveal a gene regulatory network with SIX1 centrally deregulating lymphoid differentiation and support concordance of lymphopoiesis/lymphomagenesis and developmental processes in the neural plate border region. PMID:26473286

  7. Living cell imaging and Rac1-GTP levels of CXCL12-treated migrating neural progenitor cells in stripe assay.

    PubMed

    Zhang, Min; Song, Aihong; Lai, Siqiang; Qiu, Lisha; Huang, Yunlong; Chen, Qiang; Zhu, Bing; Xu, Dongsheng; Zheng, Jialin C

    2015-12-01

    This data article contains three figures and three videos related to the research article entitled "Applications of Stripe Assay in the Study of CXCL12-mediated Neural Progenitor Cell Migration and Polarization" Zhang et al. (2015) [1], which uses stripe assay to study mouse neural progenitor cell (NPC) migration and polarization. The current article describes the neurosphere method used to culture NPCs. NPCs in neurospheres and monolayer were characterized using immunocytochemistry method with antibodies against two classic NPC markers: nestin and SOX2. The article also describes method to obtain sufficient protein lysates from NPCs in the stripe assay. When protein lysates were subjected to Rac1 affinity precipitation, Rac1-GTP was detected in the pull-down samples. In addition, the articles provides live cell imaging data to better understand CXCL12-mediated cellular migration and polarization. PMID:26693502

  8. Concise Review: CXCR4/CXCL12 Signaling in Immature Hematopoiesis--Lessons From Pharmacological and Genetic Models.

    PubMed

    Karpova, Darja; Bonig, Halvard

    2015-08-01

    Dominant, although nonexclusive roles of CXCR4 and its chief ligand CXCL12 in bone marrow (BM) retention and preservation of the relative quiescence of hematopoietic stem/progenitor cells (HSPCs), along with their involvement in human immunodeficiency virus infection, in trafficking of mature hematopoietic cells to sites of inflammation and in orderly migration of nonhematopoietic cells during embryogenesis, explain the significant interest of the scientific community in the mode of action of this receptor-ligand pair. In this focused review, we seek to distil from the large body of information that has become available over the years some of the key findings about the role of CXCR4/CXCL12 in normal immature hematopoiesis. It is hoped that understanding the mechanistic insights gained there from will help generate hypotheses about potential avenues in which cancer/leukemia cell behavior can be modified by interference with this pathway. PMID:25966814

  9. CXCL12 rs266085 and TNF-α rs1799724 polymorphisms and susceptibility to cervical cancer in a Chinese population

    PubMed Central

    Yin, Geping; Zhu, Tongyu; Li, Juan; Wu, Aifang; Liang, Jing; Zhi, Yuanyuan

    2015-01-01

    Further research is required to identify single nucleotide polymorphisms (SNPs) associated with cervical cancer. The aim of this study was to assess the association of TNF-α/rs1799724 and CXCL12/rs266085 polymorphisms with susceptibility to cervical cancer in Han Chinese population in Shandong Province. 348 patients with cervical squamous cell carcinoma, including CIS (121) and invasive carcinoma (227), and 351 healthy controls. Genomic DNA was isolated from peripheral blood and genotyping for TNF-α/rs1799724 and CXCL12/rs266085 was carried out using TaqMan SNP Genotyping Assays. TNF-α/rs1799724 polymorphism showed the C-allele was less prevalent among cases as compared to controls (74.3% vs. 92.0%), while the T-allele was more prevalent among cases (P=0.000, OR=3.99, 95% C.I.: 2.90-5.51). CXCL12/rs266085 polymorphism showed the C-allele was less prevalent among cases as compared to controls (41.2% vs. 49.7%), while the T-allele was more prevalent among cases (P=0.001, OR=1.41, 95% C.I.: 1.14-1.74). The genotype and allele frequencies of these two SNPs did not differ between CIS and invasive squamous cell carcinoma (P>0.05). Moreover, the allele frequencies of rs1799724 were significantly different between controls without or with HPV infection (P<0.05). Neither the genotype nor allele frequencies of rs266085 were statistically different between HPV-negative and positive controls. TNF-α/rs1799724 and CXCL12/rs266085 polymorphisms are associated with cervical cancer. C->T polymorphism of these two SNPs and HPV infection are linked to high risk for cervical cancer. PMID:26191295

  10. Beneficial effect of the CXCL12-3'A variant for patients undergoing hematopoietic stem cell transplantation from unrelated donors.

    PubMed

    Bogunia-Kubik, Katarzyna; Mizia, Sylwia; Polak, Małgorzata; Gronkowska, Anna; Nowak, Jacek; Kyrcz-Krzemień, Sławomira; Markiewicz, Mirosław; Dzierżak-Mietła, Monika; Koclęga, Anna; Sędzimirska, Mariola; Suchnicki, Krzysztof; Duda, Dorota; Lange, Janusz; Mordak-Domagała, Monika; Kościńska, Katarzyna; Jędrzejczak, Wiesław Wiktor; Kaczmarek, Beata; Hellmann, Andrzej; Kucharska, Agnieszka; Kowalczyk, Jerzy; Drabko, Katarzyna; Warzocha, Krzysztof; Hałaburda, Kazimierz; Tomaszewska, Agnieszka; Mika-Witkowska, Renata; Witkowska, Agnieszka; Goździk, Jolanta; Mordel, Anna; Wysoczańska, Barbara; Jaskula, Emilia; Lange, Andrzej

    2015-12-01

    The present study aimed to assess the impact of the CXCL12 gene polymorphism (rs1801157) on clinical outcome of hematopoietic stem cell transplantation from unrelated donors. Toxic complications were less frequent among patients transplanted from donors carrying the CXCL12-3'-A allele (42/79 vs. 105/151, p=0.014 and 24/79 vs. 73/151, p=0.009, for grade II-IV and III-IV, respectively). Logistic regression analyses confirmed a role of donor A allele (OR=0.509, p=0.022 and OR=0.473, p=0.013 for grade II-IV and III-IV toxicity). In addition, age of recipients (OR=0.980, p=0.036 and OR=0.981, p=0.040, respectively) was independently protective while female to male transplantation and HLA compatibility were not significant. The incidence of aGvHD (grades I-IV) was lower in patients having A allele (52/119 vs. 113/204, p=0.043) and AA homozygous genotype (6/25 vs. 159/298, p=0.005). Independent associations of both genetic markers with a decreased risk of aGvHD were also seen in multivariate analyses (A allele: OR=0.591, p=0.030; AA homozygosity: OR=0.257, p=0.006) in which HLA compatibility seemed to play less protective role (p<0.1) while recipient age and donor-recipient gender relation were not significant. Moreover, CXCL12-3'-A-positive patients were less prone to early HHV-6 reactivation (2/34 vs. 19/69, p=0.026). The presence of the CXCL12-3'-A variant was found to facilitate outcome of unrelated HSCT. PMID:25982843

  11. Improving chemotherapeutic efficiency in acute myeloid leukemia treatments by chemically synthesized peptide interfering with CXCR4/CXCL12 axis

    PubMed Central

    Li, Xiaojin; Guo, Hua; Duan, Hongyang; Yang, Yanlian; Meng, Jie; Liu, Jian; Wang, Chen; Xu, Haiyan

    2015-01-01

    Bone marrow stroma can protect acute myeloid leukemia (AML) cells against chemotherapeutic agents and provide anti-apoptosis and chemoresistance signals through secreting chemokine CXCL12 to activate its receptor CXCR4 on AML cells, resulting in minimal residual leukemia and relapse. Therefore disrupting the CXCR4/CXCL12 axis with antagonists is of great significance for improving chemosensitivity and decreasing relapse rate. In a previous study, we reported a novel synthetic peptide E5 with its remarkable effect on inhibiting CXCR4/CXCL12-mediated adhesion and migration of AML cells. Here we presented E5’s capacity of enhancing the therapeutic efficiency of various chemotherapeutics on AML in vitro and in vivo. Results showed that E5 can diminish bone marrow stromal cell-provided protection to leukemia cells, significantly increasing the apoptosis induced by various chemotherapeutics in multiple AML cell lines. In an AML mouse xenograft model, E5 induced 1.84-fold increase of circulating AML cells out of protective stroma niche. Combined with vincristine or cyclophosphamide, E5 inhibited infiltration of AML cells into bone marrow, liver and spleen, as well as prolonged the lifespan of AML mice compared with mice treated with chemotherapy alone. In addition, E5 presented no toxicity in vivo according to the histological analysis and routine clinical parameters of serum analysis. PMID:26538086

  12. Identification of Aberrantly Expressed miRNAs in Gastric Cancer

    PubMed Central

    Liu, Dan; Hu, Xiaowei; Zhou, Hongfeng; Shi, Guangyue; Wu, Jin

    2014-01-01

    The noncoding components of the genome, including miRNA, can contribute to pathogenesis of gastric cancer. Their expression has been profiled in many human cancers, but there are a few published studies in gastric cancer. It is necessary to identify novel aberrantly expressed miRNAs in gastric cancer. In this study, the expression profile of 1891 miRNAs was analyzed using a miRCURY array LNA miRNA chip from three gastric cancer tissues and three normal tissues. The expression levels of 4 miRNAs were compared by real-time PCR between cancerous and normal tissues. We found that 31 miRNAs are upregulated in gastric cancer (P < 0.05) and 10 miRNAs have never been reported by other studies; 30 miRNA are downregulated (P < 0.05) in gastric cancer tissues. Gene ontology analysis revealed that those dysregulated miRNAs mainly take part in regulating cell proliferation. The levels of has-miR-105, -213∗, -514b, and -548n were tested by real-time PCR and have high levels in cancerous tissues. Here, we report a miRNA profile of gastric cancer and provide new perspective to understand this malignant disease. This novel information suggests the potential roles of these miRNAs in the diagnosis, prognosis biomarkers, or therapy targets of gastric cancer. PMID:24982669

  13. Aberrant expression of RUNX3 in patients with immune thrombocytopenia.

    PubMed

    Qiao, Jianlin; Liu, Yun; Wu, Yulu; Li, Xiaoqian; Zhu, Feng; Xia, Yuan; Yao, Haina; Chu, Peipei; Li, Hongchun; Ma, Ping; Li, Depeng; Li, Zhenyu; Xu, Kailin; Zeng, Lingyu

    2015-09-01

    Immune thrombocytopenia (ITP) is an autoimmune disease, characterized by dysregulation of cellular immunity. Previous studies demonstrated that immune imbalance between Th1 and Th2 was associated with the pathogenesis of ITP. Runt-related transcription factor 3 (RUNX3) is a member of the runt domain-containing family of transcription factors and plays an important role in the regulation of T cell differentiation into Th1 cells. Whether RUNX3 was involved in the pathogenesis of ITP remains unclear. In this study, 47 active ITP patients, 18 ITP with remission and 26 age and gender matched healthy control were included. Peripheral blood mononuclear cells (PBMCs) were isolated from ITP and control for isolation of RNA and plasma which were used to measure mRNA level of RUNX3 and T-box transcription factor (T-bet) by quantitative real-time PCR and interferon γ (IFN-γ) plasma level by ELISA. Meanwhile, protein was also extracted from PBMCs for Western blot analysis of RUNX3 expression. Our results showed a significantly higher expression of RUNX3, T-bet and plasma level of IFN-γ in active ITP patients compared to control. No differences were observed between ITP with remission and control. Furthermore, a positive correlation of RUNX3 with T-bet was found in active ITP patients. In conclusion, aberrant expression of RUNX3 was associated with the pathogenesis of ITP and therapeutically targeting it might be a novel approach in ITP treatment. PMID:26093269

  14. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4.

    PubMed

    Schiraldi, Milena; Raucci, Angela; Muñoz, Laura Martínez; Livoti, Elsa; Celona, Barbara; Venereau, Emilie; Apuzzo, Tiziana; De Marchis, Francesco; Pedotti, Mattia; Bachi, Angela; Thelen, Marcus; Varani, Luca; Mellado, Mario; Proudfoot, Amanda; Bianchi, Marco Emilio; Uguccioni, Mariagrazia

    2012-03-12

    After tissue damage, inflammatory cells infiltrate the tissue and release proinflammatory cytokines. HMGB1 (high mobility group box 1), a nuclear protein released by necrotic and severely stressed cells, promotes cytokine release via its interaction with the TLR4 (Toll-like receptor 4) receptor and cell migration via an unknown mechanism. We show that HMGB1-induced recruitment of inflammatory cells depends on CXCL12. HMGB1 and CXCL12 form a heterocomplex, which we characterized by nuclear magnetic resonance and surface plasmon resonance, that acts exclusively through CXCR4 and not through other HMGB1 receptors. Fluorescence resonance energy transfer data show that the HMGB1-CXCL12 heterocomplex promotes different conformational rearrangements of CXCR4 from that of CXCL12 alone. Mononuclear cell recruitment in vivo into air pouches and injured muscles depends on the heterocomplex and is inhibited by AMD3100 and glycyrrhizin. Thus, inflammatory cell recruitment and activation both depend on HMGB1 via different mechanisms. PMID:22370717

  15. EGFR-L858R mutant enhances lung adenocarcinoma cell invasive ability and promotes malignant pleural effusion formation through activation of the CXCL12-CXCR4 pathway

    PubMed Central

    Tsai, Meng-Feng; Chang, Tzu-Hua; Wu, Shang-Gin; Yang, Hsiao-Yin; Hsu, Yi-Chiung; Yang, Pan-Chyr; Shih, Jin-Yuan

    2015-01-01

    Malignant pleural effusion (MPE) is a common clinical problem in non-small cell lung carcinoma (NSCLC) patients; however, the underlying mechanisms are still largely unknown. Recent studies indicate that the frequency of the L858R mutant form of the epidermal growth factor receptor (EGFR-L858R) is higher in lung adenocarcinoma with MPE than in surgically resected specimens, suggesting that lung adenocarcinoma cells harboring this mutation tend to invade the adjacent pleural cavity. The purpose of this study was to clarify the relationship between the EGFR-L858R mutation and cancer cell invasion ability and to investigate the molecular mechanisms involved in the formation of MPE. We found that expression of EGFR-L858R in lung cancer cells resulted in up-regulation of the CXCR4 in association with increased cancer cell invasive ability and MPE formation. Ectopic expression of EGFR-L858R in lung cancer cells acted through activation of ERK signaling pathways to induce the expression of CXCR4. We also indicated that Inhibition of CXCR4 with small interfering RNA, neutralizing antibody, or receptor antagonist significantly suppressed the EGFR-L858R–dependent cell invasion. These results suggest that targeting the production of CXCR4 and blocking the CXCL12-CXCR4 pathway might be effective strategies for treating NSCLCs harboring a specific type of EGFR mutation. PMID:26338423

  16. Alzheimer's disease shares gene expression aberrations with purinergic dysregulation of HPRT deficiency (Lesch-Nyhan disease).

    PubMed

    Kang, Tae Hyuk; Friedmann, Theodore

    2015-03-17

    Transcriptomic studies of murine D3 embryonic stem (ES) cells deficient in the purinergic biosynthetic function hypoxanthine guanine phosphoribosyltransferase (HPRT) and undergoing dopaminergic neuronal differentiation has demonstrated a marked shift from neuronal to glial gene expression and aberrant expression of multiple genes also known to be aberrantly expressed in Alzheimer's and other CNS disorders. Such genetic dysregulations may indicate some shared pathogenic metabolic mechanisms in diverse CNS diseases. PMID:25636690

  17. Delayed Healing of Sickle Cell Ulcers Is due to Impaired Angiogenesis and CXCL12 Secretion in Skin Wounds.

    PubMed

    Nguyen, Van Tuan; Nassar, Dany; Batteux, Fréderic; Raymond, Karine; Tharaux, Pierre-Louis; Aractingi, Sélim

    2016-02-01

    Leg ulcers are a major complication of sickle cell disease that occur in 2.5-40% of patients. Leg ulcers are responsible for frequent complications because they are often long-lasting and are highly resistant to therapy. Although their occurrence is associated with hyperhemolysis, the mechanisms underlying sickle cell ulcers remain poorly understood. In this study, we show that skin wound healing is severely altered in old SAD sickle cell mice but is normal in young animals, consistent with reports in humans. Alterations of wound healing were associated with impaired blood and lymphatic angiogenesis in the wound beds and poor endothelial progenitor cell mobilization from the bone marrow. CXCL12 secretion by keratinocytes and inflammatory cells was low in the wounds of SAD mice. Local therapy with endothelial progenitor cells or recombinant CXCL12 injections restored wound angiogenesis and rescued the healing defect together with mobilization of circulating endothelial progenitor cells. To our knowledge, this is a previously unreported study of the cellular and molecular mechanisms of sickle cell ulcers in a murine model that provides promising therapeutic perspectives for clinical trials. PMID:26967481

  18. White matter tracts for the trafficking of neural progenitor cells characterized by cellular MRI and immunohistology: the role of CXCL12/CXCR4 signaling.

    PubMed

    Chen, Chiao-Chi V; Hsu, Yi-Hua; Jayaseema, D M; Chen, Jeou-Yuan Joanne; Hueng, Dueng-Yuan; Chang, Chen

    2015-07-01

    White matter tracts are important for the trafficking of neural progenitor cells (NPCs) in both normal and pathological conditions, but the underlying mechanism is not clear. The directionality of white matter is advantageous for molecules or cells to distribute over a long distance, but this feature is unlikely solely responsible for efficient migration. The present study hypothesizes that the efficient migration of NPCs into white matter is under the influences of neurochemical attraction—CXCL12/CXCR4 signaling, a major mechanism underlying the targeted migration of NPCs. To test this view, the present study investigated the effects of CXCL12 administration into the corpus callosum (CC) on the migratory behavior of transplanted NPCs. A living animal tracking platform based on MRI and a magnetic cell labeling technique was employed. The NPCs were magnetically labeled and then transplanted at the right end of the CC. CXCL12 was infused continuously at the left end. Migration of NPCs was monitored repeatedly over a 7-day course using 3D gradient echo T2*-weighted imaging. It was found that, CXCL12 induced NPCs to migrate up to 1,881 μm from the graft whereas the spontaneous migration was mere 200 μm. CXCL12 induced migration that was nine times as efficient in the speed. The results indicate that the CXCL12/CXCR4 signaling may be a mechanism via which NPCs efficiently migrate along the white matter tracts. The study also presents a potential strategy for facilitating the targeted migration in NPC therapy for brain disorders. PMID:24771246

  19. The Novel CXCL12γ Isoform Encodes an Unstructured Cationic Domain Which Regulates Bioactivity and Interaction with Both Glycosaminoglycans and CXCR4

    PubMed Central

    Laguri, Cédric; Baleux, Françoise; Gans, Pierre; Arenzana-Seisdedos, Fernando; Lortat-Jacob, Hugues

    2007-01-01

    Background CXCL12α, a chemokine that importantly promotes the oriented cell migration and tissue homing of many cell types, regulates key homeostatic functions and pathological processes through interactions with its cognate receptor (CXCR4) and heparan sulfate (HS). The alternative splicing of the cxcl12 gene generates a recently identified isoform, CXCL12γ, which structure/function relationships remain unexplored. The high occurrence of basic residues that characterize this isoform suggests however that it could feature specific regulation by HS. Methodology/Principal Findings Using surface plasmon resonance and NMR spectroscopy, as well as chemically and recombinantly produced chemokines, we show here that CXCL12γ first 68 amino acids adopt a structure closely related to the well described α isoform, followed by an unfolded C-terminal extension of 30 amino acids. Remarkably, 60 % of these residues are either lysine or arginine, and most of them are clustered in typical HS binding sites. This provides the chemokine with the highest affinity for HP ever observed (Kd = 0.9 nM), and ensures a strong retention of the chemokine at the cell surface. This was due to the unique combination of two cooperative binding sites, one strictly required, found in the structured domain of the protein, the other one being the C-terminus which essentially functions by enhancing the half life of the complexes. Importantly, this peculiar C-terminus also regulates the balance between HS and CXCR4 binding, and consequently the biological activity of the chemokine. Conclusions/Significance Together these data describe an unusual binding process that gives rise to an unprecedented high affinity between a chemokine and HS. This shows that the γ isoform of CXCL12, which features unique structural and functional properties, is optimized to ensure its strong retention at the cell surface. Thus, depending on the chemokine isoform to which it binds, HS could differentially orchestrate

  20. Engineering NK Cells Modified With an EGFRvIII-specific Chimeric Antigen Receptor to Overexpress CXCR4 Improves Immunotherapy of CXCL12/SDF-1α-secreting Glioblastoma.

    PubMed

    Müller, Nadja; Michen, Susanne; Tietze, Stefanie; Töpfer, Katrin; Schulte, Alexander; Lamszus, Katrin; Schmitz, Marc; Schackert, Gabriele; Pastan, Ira; Temme, Achim

    2015-06-01

    Natural killer (NK) cells are promising effector cells for adjuvant immunotherapy of cancer. So far, several preclinical studies have shown the feasibility of gene-engineered NK cells, which upon expression of chimeric antigen receptors (CARs) are redirected to otherwise NK cell-resistant tumors. Yet, we reasoned that the efficiency of an immunotherapy using CAR-modified NK cells critically relies on efficient migration to the tumor site and might be improved by the engraftment of a receptor specific for a chemokine released by the tumor. On the basis of the DNAX-activation protein 12 (DAP12), a signaling adapter molecule involved in signal transduction of activating NK cell receptors, we constructed an epidermal growth factor variant III (EGFRvIII)-CAR, designated MR1.1-DAP12 which confers specific cytotoxicity of NK cell towards EGFRvIII glioblastoma cells in vitro and to established subcutaneous U87-MG tumor xenografts. So far, infusion of NK cells with expression of MR1.1-DAP12 caused a moderate but significantly delayed tumor growth and increased median survival time when compared with NK cells transduced with an ITAM-defective CAR. Notably, the further genetic engineering of these EGFRvIII-specific NK cells with the chemokine receptor CXCR4 conferred a specific chemotaxis to CXCL12/SDF-1α secreting U87-MG glioblastoma cells. Moreover, the administration of such NK cells resulted in complete tumor remission in a number of mice and a significantly increased survival when compared with the treatment of xenografts with NK cells expressing only the EGFRvIII-specific CAR or mock control. We conclude that chemokine receptor-engineered NK cells with concomitant expression of a tumor-specific CAR are a promising tool to improve adoptive tumor immunotherapy. PMID:25962108

  1. Engineering NK cells modified with an EGFRvIII-specific chimeric antigen receptor to overexpress CXCR4 improves immunotherapy of CXCL12/SDF-1α-secreting glioblastoma

    PubMed Central

    Müller, Nadja; Michen, Susanne; Tietze, Stefanie; Töpfer, Katrin; Schulte, Alexander; Lamszus, Katrin; Schmitz, Marc; Schackert, Gabriele; Pastan, Ira; Temme, Achim

    2015-01-01

    NK cells are promising effector cells for adjuvant immunotherapy of cancer. So far, several preclinical studies have shown the feasibility of gene-engineered NK cells, which upon expression of chimeric antigen receptors (CARs) are redirected to otherwise NK-cell resistant tumors. Yet, we reasoned that the efficiency of an immunotherapy using CAR-modified NK cells critically relies on efficient migration to the tumor site and might be improved by the engraftment of a receptor specific for a chemokine released by the tumor. Based on the DNAX-activation protein 12 (DAP12), a signaling adapter molecule involved in signal transduction of activating NK cell receptors, we constructed an EGFRvIII-CAR, designated MR1.1-DAP12 which confers specific cytotoxicity of NK cell towards EGFRvIII+ glioblastoma cells in vitro and to established subcutaneous U87-MGEGFRvIII tumor xenografts. So far, infusion of NK cells with expression of MR1.1-DAP12 caused a moderate but significantly delayed tumor growth and increased median survival time when compared to NK cells transduced with an ITAM-defective CAR. Notably, the further genetic engineering of these EGFRvIII-specific NK cells with the chemokine receptor CXCR4 conferred a specific chemotaxis to CXCL12/SDF-1α secreting U87-MG glioblastoma cells. Moreover, the administration of such NK cells resulted in complete tumor remission in a number of mice and a significantly increased survival when compared to the treatment of xenografts with NK cells expressing only the EGFRvIII-specific CAR or mock control. We conclude that chemokine receptor engineered NK cells with concomitant expression of a tumor-specific CAR are a promising tool to improve adoptive tumor immunotherapy. PMID:25962108

  2. Observation of lens aberrations for high resolution electron microscopy II: simple expressions for optimal estimates.

    PubMed

    Saxton, W Owen

    2015-04-01

    This paper lists simple closed-form expressions estimating aberration coefficients (defocus, astigmatism, three-fold astigmatism, coma / misalignment, spherical aberration) on the basis of image shift or diffractogram shape measurements as a function of injected beam tilt. Simple estimators are given for a large number of injected tilt configurations, optimal in the sense of least-squares fitting of all the measurements, and so better than most reported previously. Standard errors are given for most, allowing different approaches to be compared. Special attention is given to the measurement of the spherical aberration, for which several simple procedures are given, and the effect of foreknowledge of this on other aberration estimates is noted. Details and optimal expressions are also given for a new and simple method of analysis, requiring measurements of the diffractogram mirror axis direction only, which are simpler to make than the focus and astigmatism measurements otherwise required. PMID:25728295

  3. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4

    PubMed Central

    Schiraldi, Milena; Raucci, Angela; Muñoz, Laura Martínez; Livoti, Elsa; Celona, Barbara; Venereau, Emilie; Apuzzo, Tiziana; De Marchis, Francesco; Pedotti, Mattia; Bachi, Angela; Thelen, Marcus; Varani, Luca; Mellado, Mario; Proudfoot, Amanda; Bianchi, Marco Emilio

    2012-01-01

    After tissue damage, inflammatory cells infiltrate the tissue and release proinflammatory cytokines. HMGB1 (high mobility group box 1), a nuclear protein released by necrotic and severely stressed cells, promotes cytokine release via its interaction with the TLR4 (Toll-like receptor 4) receptor and cell migration via an unknown mechanism. We show that HMGB1-induced recruitment of inflammatory cells depends on CXCL12. HMGB1 and CXCL12 form a heterocomplex, which we characterized by nuclear magnetic resonance and surface plasmon resonance, that acts exclusively through CXCR4 and not through other HMGB1 receptors. Fluorescence resonance energy transfer data show that the HMGB1–CXCL12 heterocomplex promotes different conformational rearrangements of CXCR4 from that of CXCL12 alone. Mononuclear cell recruitment in vivo into air pouches and injured muscles depends on the heterocomplex and is inhibited by AMD3100 and glycyrrhizin. Thus, inflammatory cell recruitment and activation both depend on HMGB1 via different mechanisms. PMID:22370717

  4. CCL3 and CXCL12 production in vitro by dental pulp fibroblasts from permanent and deciduous teeth stimulated by Porphyromonas gingivalis LPS

    PubMed Central

    SIPERT, Carla Renata; MORANDINI, Ana Carolina de Faria; MODENA, Karin Cristina da Silva; DIONÍSIO, Thiago José; MACHADO, Maria Aparecida Andrade Moreira; de OLIVEIRA, Sandra Helena Penha; CAMPANELLI, Ana Paula; SANTOS, Carlos Ferreira

    2013-01-01

    Objective: The aim of this study was to compare the production of the chemokines CCL3 and CXCL12 by cultured dental pulp fibroblasts from permanent (PDPF) and deciduous (DDPF) teeth under stimulation by Porphyromonas gingivalis LPS (PgLPS). Material and Methods: Primary culture of fibroblasts from permanent (n=3) and deciduous (n=2) teeth were established using an explant technique. After the fourth passage, fibroblasts were stimulated by increasing concentrations of PgLPS (0 - 10 µg/mL) at 1, 6 and 24 h. The cells were tested for viability through MTT assay, and production of the chemokines CCL3 and CXCL12 was determined through ELISA. Comparisons among samples were performed using One-way ANOVA for MTT assay and Two-way ANOVA for ELISA results. Results: Cell viability was not affected by the antigen after 24 h of stimulation. PgLPS induced the production of CCL3 by dental pulp fibroblasts at similar levels for both permanent and deciduous pulp fibroblasts. Production of CXCL12, however, was significantly higher for PDPF than DDPF at 1 and 6 h. PgLPS, in turn, downregulated the production of CXCL12 by PDPF but not by DDPF. Conclusion: These data suggest that dental pulp fibroblasts from permanent and deciduous teeth may present a differential behavior under PgLPS stimulation. PMID:23739851

  5. A genome-wide map of aberrantly expressed chromosomal islands in colorectal cancer

    PubMed Central

    Staub, Eike; Gröne, Jörn; Mennerich, Detlev; Röpcke, Stefan; Klamann, Irina; Hinzmann, Bernd; Castanos-Velez, Esmeralda; Mann, Benno; Pilarsky, Christian; Brümmendorf, Thomas; Weber, Birgit; Buhr, Heinz-Johannes; Rosenthal, André

    2006-01-01

    Background Cancer development is accompanied by genetic phenomena like deletion and amplification of chromosome parts or alterations of chromatin structure. It is expected that these mechanisms have a strong effect on regional gene expression. Results We investigated genome-wide gene expression in colorectal carcinoma (CRC) and normal epithelial tissues from 25 patients using oligonucleotide arrays. This allowed us to identify 81 distinct chromosomal islands with aberrant gene expression. Of these, 38 islands show a gain in expression and 43 a loss of expression. In total, 7.892 genes (25.3% of all human genes) are located in aberrantly expressed islands. Many chromosomal regions that are linked to hereditary colorectal cancer show deregulated expression. Also, many known tumor genes localize to chromosomal islands of misregulated expression in CRC. Conclusion An extensive comparison with published CGH data suggests that chromosomal regions known for frequent deletions in colon cancer tend to show reduced expression. In contrast, regions that are often amplified in colorectal tumors exhibit heterogeneous expression patterns: even show a decrease of mRNA expression. Because for several islands of deregulated expression chromosomal aberrations have never been observed, we speculate that additional mechanisms (like abnormal states of regional chromatin) also have a substantial impact on the formation of co-expression islands in colorectal carcinoma. PMID:16982006

  6. Exploiting aberrant mRNA expression in autism for gene discovery and diagnosis.

    PubMed

    Guan, Jinting; Yang, Ence; Yang, Jizhou; Zeng, Yong; Ji, Guoli; Cai, James J

    2016-07-01

    Autism spectrum disorder (ASD) is characterized by substantial phenotypic and genetic heterogeneity, which greatly complicates the identification of genetic factors that contribute to the disease. Study designs have mainly focused on group differences between cases and controls. The problem is that, by their nature, group difference-based methods (e.g., differential expression analysis) blur or collapse the heterogeneity within groups. By ignoring genes with variable within-group expression, an important axis of genetic heterogeneity contributing to expression variability among affected individuals has been overlooked. To this end, we develop a new gene expression analysis method-aberrant gene expression analysis, based on the multivariate distance commonly used for outlier detection. Our method detects the discrepancies in gene expression dispersion between groups and identifies genes with significantly different expression variability. Using this new method, we re-visited RNA sequencing data generated from post-mortem brain tissues of 47 ASD and 57 control samples. We identified 54 functional gene sets whose expression dispersion in ASD samples is more pronounced than that in controls, as well as 76 co-expression modules present in controls but absent in ASD samples due to ASD-specific aberrant gene expression. We also exploited aberrantly expressed genes as biomarkers for ASD diagnosis. With a whole blood expression data set, we identified three aberrantly expressed gene sets whose expression levels serve as discriminating variables achieving >70 % classification accuracy. In summary, our method represents a novel discovery and diagnostic strategy for ASD. Our findings may help open an expression variability-centered research avenue for other genetically heterogeneous disorders. PMID:27131873

  7. Deciphering causal and statistical relations of molecular aberrations and gene expressions in NCI-60 cell lines

    PubMed Central

    2011-01-01

    Background Cancer cells harbor a large number of molecular alterations such as mutations, amplifications and deletions on DNA sequences and epigenetic changes on DNA methylations. These aberrations may dysregulate gene expressions, which in turn drive the malignancy of tumors. Deciphering the causal and statistical relations of molecular aberrations and gene expressions is critical for understanding the molecular mechanisms of clinical phenotypes. Results In this work, we proposed a computational method to reconstruct association modules containing driver aberrations, passenger mRNA or microRNA expressions, and putative regulators that mediate the effects from drivers to passengers. By applying the module-finding algorithm to the integrated datasets of NCI-60 cancer cell lines, we found that gene expressions were driven by diverse molecular aberrations including chromosomal segments' copy number variations, gene mutations and DNA methylations, microRNA expressions, and the expressions of transcription factors. In-silico validation indicated that passenger genes were enriched with the regulator binding motifs, functional categories or pathways where the drivers were involved, and co-citations with the driver/regulator genes. Moreover, 6 of 11 predicted MYB targets were down-regulated in an MYB-siRNA treated leukemia cell line. In addition, microRNA expressions were driven by distinct mechanisms from mRNA expressions. Conclusions The results provide rich mechanistic information regarding molecular aberrations and gene expressions in cancer genomes. This kind of integrative analysis will become an important tool for the diagnosis and treatment of cancer in the era of personalized medicine. PMID:22051105

  8. Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins

    PubMed Central

    Ostler, KR; Davis, EM; Payne, SL; Gosalia, BB; Expósito-Céspedes, J; Le Beau, MM; Godley, LA

    2008-01-01

    Cancer cells display an altered distribution of DNA methylation relative to normal cells. Certain tumor suppressor gene promoters are hypermethylated and transcriptionally inactivated, whereas repetitive DNA is hypomethylated and transcriptionally active. Little is understood about how the abnormal DNA methylation patterns of cancer cells are established and maintained. Here, we identify over 20 DNMT3B transcripts from many cancer cell lines and primary acute leukemia cells that contain aberrant splicing at the 5′ end of the gene, encoding truncated proteins lacking the C-terminal catalytic domain. Many of these aberrant transcripts retain intron sequences. Although the aberrant transcripts represent a minority of the DNMT3B transcripts present, Western blot analysis demonstrates truncated DNMT3B isoforms in the nuclear protein extracts of cancer cells. To test if expression of a truncated DNMT3B protein could alter the DNA methylation patterns within cells, we expressed DNMT3B7, the most frequently expressed aberrant transcript, in 293 cells. DNMT3B7-expressing 293 cells have altered gene expression as identified by microarray analysis. Some of these changes in gene expression correlate with altered DNA methylation of corresponding CpG islands. These results suggest that truncated DNMT3B proteins could play a role in the abnormal distribution of DNA methylation found in cancer cells. PMID:17353906

  9. Aberrant expression of signaling proteins in essential thrombocythemia.

    PubMed

    Hui, Wuhan; Ye, Fei; Zhang, Wei; Liu, Congyan; Cui, Miao; Li, Wei; Xu, Juan; Zhang, David Y

    2013-09-01

    Dysregulated expression of signaling proteins may contribute to the pathophysiology of essential thrombocythemia (ET). This study aimed to characterize protein expression in ET and to correlate the dysregulated proteins with phenotypes and prognosis of ET patients. The expression of 128 proteins in peripheral blood neutrophils from 74 ET patients was assessed and compared with those from 29 healthy subjects and 35 polycythemia vera (PV) patients using protein pathway array. Fifteen proteins were differentially expressed between ET patients and normal controls. These dysregulated proteins were involved in the signaling pathways related with apoptosis and inflammation. Our results showed a significant overlap in protein expression between ET patients with JAK2V617F mutation and PV patients. In addition, nine proteins were associated with JAK2V617F mutation status in ET patients. Furthermore, estrogen receptor beta (ERβ) and Stat3 were independent risk factors for subsequent thrombosis during follow-up on multivariable analysis. Our study shows a broad dysregulation of signaling protein in ET patients, suggesting their roles in ET pathogenesis. The expression levels of ERβ and Stat3 could be promising predictors of subsequent thrombosis in ET patients. PMID:23639951

  10. From DNA Copy Number to Gene Expression: Local aberrations, Trisomies and Monosomies

    NASA Astrophysics Data System (ADS)

    Shay, Tal

    The goal of my PhD research was to study the effect of DNA copy number changes on gene expression. DNA copy number aberrations may be local, encompassing several genes, or on the level of an entire chromosome, such as trisomy and monosomy. The main dataset I studied was of Glioblastoma, obtained in the framework of a collaboration, but I worked also with public datasets of cancer and Down's Syndrome. The molecular basis of expression changes in Glioblastoma. Glioblastoma is the most common and aggressive type of primary brain tumors in adults. In collaboration with Prof. Hegi (CHUV, Switzerland), we analyzed a rich Glioblastoma dataset including clinical information, DNA copy number (array CGH) and expression profiles. We explored the correlation between DNA copy number and gene expression at the level of chromosomal arms and local genomic aberrations. We detected known amplification and over expression of oncogenes, as well as deletion and down-regulation of tumor suppressor genes. We exploited that information to map alterations of pathways that are known to be disrupted in Glioblastoma, and tried to characterize samples that have no known alteration in any of the studied pathways. Identifying local DNA aberrations of biological significance. Many types of tumors exhibit chromosomal losses or gains and local amplifications and deletions. A region that is aberrant in many tumors, or whose copy number change is stronger, is more likely to be clinically relevant, and not just a by-product of genetic instability. We developed a novel method that defines and prioritizes aberrations by formalizing these intuitions. The method scores each aberration by the fraction of patients harboring it, its length and its amplitude, and assesses the significance of the score by comparing it to a null distribution obtained by permutations. This approach detects genetic locations that are significantly aberrant, generating a 'genomic aberration profile' for each sample. The 'genomic

  11. Aberrant ADAM10 expression correlates with osteosarcoma progression

    PubMed Central

    2014-01-01

    Background Osteosarcoma is the most common type of bone cancer and is notorious for its rapid progression. The Notch signaling pathway has recently been shown to be involved in osteosarcoma. As a major sheddase of Notch receptors, ADAM10 has been implicated in many types of cancers, but its role in osteosarcoma has not been investigated. Previous studies have shown that the expression of CD31 was significantly elevated in metastatic osteosarcoma; however, its expression in nonmetastatic groups is not known. In addition, the mysterious multinucleated giant cell in giant cell-rich osteosarcoma was previously regarded as an osteoclast-like cell, but its exact identity is unclear. Method Tissue chip samples from 40 cases of nonmetastatic osteosarcoma were stained for cytoplasmic ADAM10, activated Notch1 and CD31. Osteoclasts in tumor sections were also stained for tartrate-resistant acid phosphatase (TRAP). Results Immunofluorescence staining revealed that ADAM10 expression significantly increased with the progression of osteosarcoma as well as in osteoblastic osteosarcoma, whereas the expression of the Notch intracellular domain (NICD) and CD31 was not significantly altered between different pathological stages. In addition, multinucleated giant cells in giant cell-rich osteosarcoma were also found to coexpress CD31, ADAM10 and NICD, but were negative for TRAP staining. Conclusions Our results highlight the importance of ADAM10 in the progression of osteosarcoma and suggest that the protein might be a potential therapeutic target in osteosarcoma treatment. This study also demonstrates that the multinucleated giant cell is an angiogenic tumor cell, rather than an osteoclast, and involves ADAM10/Notch1 signaling activation. PMID:24548763

  12. Aberrant expression of RAB1A in human tongue cancer

    PubMed Central

    Shimada, K; Uzawa, K; Kato, M; Endo, Y; Shiiba, M; Bukawa, H; Yokoe, H; Seki, N; Tanzawa, H

    2005-01-01

    This study was designed to identify specific gene expression changes in tongue squamous cell carcinomas (TSCCs) compared with normal tissues using in-house cDNA microarray that comprised of 2304 full-length cDNAs from a cDNA library prepared from normal oral tissues, primary oral cancers, and oral cancer cell lines. The genes identified by our microarray system were further analysed at the mRNA or protein expression level in a series of clinical samples by real-time quantitative reverse transcriptase–polymerase chain reaction (qRT–PCR) analysis and imuunohositochemistry. The microarray analysis identified a total of 16 genes that were significantly upregulated in common among four TSCC specimens. Consistent with the results of the microarray, increased mRNA levels of selected genes with known molecular functions were found in the four TSCCs. Among genes identified, Rab1a, a member of the Ras oncogene family, was further analysed for its protein expression in 54 TSCCs and 13 premalignant lesions. We found a high prevalence of Rab1A-overexpression not only in TSCCs (98%) but also in premalignant lesions (93%). Thus, our results suggest that rapid characterisation of the target gene(s) for TSCCs can be accomplished using our in-house cDNA microarray analysis combined with the qRT–PCR and immunohistochemistry, and that the Rab1A is a potential biomarker of tongue carcinogenesis. PMID:15870709

  13. The poor recovery of neuromyelitis optica spectrum disorder is associated with a lower level of CXCL12 in the human brain.

    PubMed

    Kang, Hao; Cao, Shanshan; Chen, Tingjun; Jiang, Zhaocai; Liu, Zihao; Li, Zhaohui; Wei, Yangang; Ai, Nanping; Xu, Quangang; Lin, Qing; Wei, Shihui

    2015-12-15

    Neuromyelitis optica spectrum disorders (NMOSDs) are blindness-causing neuritis. In NMOSD patients, NMO-IgG evokes astrocytopathy that in turn causes demyelination. While measurement of NMO-IgG titer will help neurologists make the diagnosis of NMOSDs, it is not sufficient to evaluate the severity of astrocytopathy. In this study, we compared the different levels of an astrocyte biomarker in cerebrospinal fluid of NMOSD patients with good or poor recovery, and then linked their differences to the changes in remyelinating promoter (CXCL12) levels. Our results indicate that NMO-IgG down-regulated CXCL12 and impaired the remyelinating process, this may be a mechanism contributing to the poor recovery of NMOSDs. PMID:26616871

  14. Interference with the CXCL12/CXCR4 axis as potential antitumor strategy: superiority of a sulfated galactofucan from the brown alga Saccharina latissima and fucoidan over heparins.

    PubMed

    Schneider, Tino; Ehrig, Karina; Liewert, Inga; Alban, Susanne

    2015-08-01

    The present study demonstrates that fucose-containing sulfated polysaccharides (FCSP) from brown algae interfere with the CXCL12/CXCR4 axis in human Burkitt's lymphoma cells by binding CXCL12 and thereby blocking both CXCL12-induced CXCR4 receptor activation and downstream effects like migration and secretion of matrix metalloproteinase-9. This mode of action is currently considered as promising strategy for tumor therapy and may contribute to the known in vivo antitumor, antimetastatic and antiangiogenic activity of FCSP. In terms of the inhibition of the CXCR4 activation, FCSP from Saccharina latissima (S.l.-FCSP) proved to be more active than a commercial "Fucoidan" from Fucus vesiculosus, and both FCSP were superior to heparins by more than one order of magnitude. Fractionation of S.l.-FCSP revealed that its main fraction is composed of a homogeneous, higher sulfated galactofucan (S.l.-SGF) which consistently exhibited stronger activities and can therefore be considered as the active ingredient of S.l.-FCSP. By subjecting Fucoidan to the same fractionation procedure, the inhibitory activity of the obtained purified Fucoidan on the CXCL12/CXCR4 axis tended to be weaker and its antioxidant and antiproliferative effects were lost. This was probably due to the separation of contaminants including phenolic compounds, whose content additionally showed marked batch-to-batch variability. Regarding the need of standardized, well-characterized FCSP preparations for any potential medical application, our results indicate that S.l.-SGF is a promising candidate for further investigations and that S. latissima may be a more appropriate source of FCSP than F. vesiculosus or other algae species with high contents of co-extractable compounds. PMID:25878069

  15. Pantethine Alters Lipid Composition and Cholesterol Content of Membrane Rafts, With Down-Regulation of CXCL12-Induced T Cell Migration.

    PubMed

    van Gijsel-Bonnello, Manuel; Acar, Niyazi; Molino, Yves; Bretillon, Lionel; Khrestchatisky, Michel; de Reggi, Max; Gharib, Bouchra

    2015-10-01

    Pantethine, a natural low-molecular-weight thiol, shows a broad activity in a large range of essential cellular pathways. It has been long known as a hypolipidemic and hypocholesterolemic agent. We have recently shown that it exerts a neuroprotective action in mouse models of cerebral malaria and Parkinson's disease through multiple mechanisms. In the present study, we looked at its effects on membrane lipid rafts that serve as platforms for molecules engaged in cell activity, therefore providing a target against inappropriate cell response leading to a chronic inflammation. We found that pantethine-treated cells showed a significant change in raft fatty acid composition and cholesterol content, with ultimate downregulation of cell adhesion, CXCL12-driven chemotaxis, and transendothelial migration of various T cell types, including human Jurkat cell line and circulating effector T cells. The mechanisms involved include the alteration of the following: (i) CXCL12 binding to its target cells; (ii) membrane dynamics of CXCR4 and CXCR7, the two CXCL12 receptors; and (iii) cell redox status, a crucial determinant in the regulation of the chemokine system. In addition, we considered the linker for activation of T cells molecule to show that pantethine effects were associated with the displacement from the rafts of the acylated signaling molecules which had their palmitoylation level reduced.. In conclusion, the results presented here, together with previously published findings, indicate that due to its pleiotropic action, pantethine can downregulate the multifaceted process leading to pathogenic T cell activation and migration. PMID:25728249

  16. Short Communication: CXCL12 rs1029153 Polymorphism Is Associated with the Sustained Virological Response in HIV/Hepatitis C Virus-Coinfected Patients on Hepatitis C Virus Therapy.

    PubMed

    Pineda-Tenor, Daniel; Jiménez-Sousa, María A; Rallón, Norma; Berenguer, Juan; Soriano, Vicente; Aldámiz-Echevarria, Teresa; García-Álvarez, Mónica; Diez, Cristina; Fernández-Rodríguez, Amanda; Benito, Jose Miguel; Resino, Salvador

    2016-03-01

    The immune response against HIV and hepatitis C virus (HCV) infection partly depends on chemokine-mediated recruitment of specific T cells. CXCL12 polymorphisms have been associated with AIDS progression and survival, but there are no data related to HCV infection. The aim of this study was to determine whether CXCL12 polymorphisms are related so as to achieve sustained virological response (SVR) after HCV therapy with pegylated-interferon-alpha/ribavirin (pegIFN-α/ribavirin) in HIV/HCV-coinfected patients. We carried out a retrospective study in 319 naive patients who started HCV treatment. The CXCL12 (rs266093, rs1029153, and rs1801157) and IL28B (rs12980275) polymorphisms were genotyped by using the GoldenGate assay. Genetic data were analyzed under an additive inheritance model. The overall rates of the SVR were 54.9% (175/319) and 41.5% (90/217) in GT1/4 patients and 83.2% (84/101) in GT2/3 patients. Patients with a favorable CXCL12 rs1029153 T allele had higher SVR rates than patients with the rs1029153 CC genotype (44% CC, 49% CT, and 61.3% TT; p = 0.025). No significant results for the rs266093 and rs1801157 polymorphisms were found. Patients harboring the favorable rs1029153 T allele had significantly increased odds of achieving SVR [adjusted odds ratio (aOR) = 1.55; 95% confidence interval (95% CI) = 1.01; 2.40; p = 0.047]. Moreover, no significant association was found when the study population was stratified by HCV genotype (data not shown), possibly due to the low number of patients in each group. In conclusion, in this study we found that the favorable CXCL12 rs1029153 T allele seems to be related so as to achieve an SVR in HIV/HCV-coinfected patients on pegIFN-α/ribavirin therapy. PMID:26499461

  17. The role of SRC1 and SRC2 in steroid-induced SDF1 expression in normal and ectopic endometrium.

    PubMed

    Shi, Xiu; Xu, Wei; Dai, Hui-Hua; Sun, Ying; Wang, Xiu-Li

    2014-06-01

    To compare the expression patterns of steroid receptor coactivators (SRCs) and steroid-induced stromal cell-derived factor 1 (CXCL12 (SDF1)) in normal and ectopic endometrium and to explore the roles of NCOA1 (SRC1) and NCOA2 (SRC2) in the steroid-induced CXCL12 expression in normal and ectopic endometrial stromal cells (ESCs). The NCOA1, NCOA2, NCOA3 (SRC3), and CXCL12 (SDF1)α mRNA levels in normal and ectopic endometrium were analyzed by quantitative real-time PCR. Steroid-induced CXCL12 expression was detected by the ELISA method and the chemotactic activity of conditioned supernatant to monocyte was assessed by the Boyden chamber method before and after the silencing of NCOA1 or NCOA2 with siRNA in normal and ectopic ESCs. The expression of NCOA1 and CXCL12 in ectopic endometrium was significantly greater than that in normal endometrium in the secretory phase. Progesterone (P4) was able to significantly inhibit estradiol (E2)-stimulated CXCL12 expression in normal and ectopic ESCs. The inhibitory rate of P4 in ectopic ESCs at 72 and 96 h was significantly lower than that in normal ESCs. Silencing of NCOA1 but not NCOA2 significantly reduced the E2-induced CXCL12 expression in normal and ectopic ESCs. The ability of P4 to inhibit E2-induced CXCL12 expression and monocyte chemotaxis in normal and ectopic ESCs was significantly attenuated when NCOA2 was silenced. NCOA1 plays a necessary role in E2-induced CXCL12 expression and NCOA2 is required for P4 to inhibit the E2-induced CXCL12 production in normal and ectopic endometrium. PMID:24586072

  18. Aberrant expression of laminin-332 promotes cell proliferation and cyst growth in ARPKD.

    PubMed

    Vijayakumar, Soundarapandian; Dang, Suparna; Marinkovich, M Peter; Lazarova, Zelmira; Yoder, Bradley; Torres, Vicente E; Wallace, Darren P

    2014-03-15

    Basement membrane abnormalities have often been observed in kidney cysts of polycystic kidney disease (PKD) patients and animal models. There is an abnormal deposition of extracellular matrix molecules, including laminin-α3,β3,γ2 (laminin-332), in human autosomal dominant PKD (ADPKD). Knockdown of PKD1 paralogs in zebrafish leads to dysregulated synthesis of the extracellular matrix, suggesting that altered basement membrane assembly may be a primary defect in ADPKD. In this study, we demonstrate that laminin-332 is aberrantly expressed in cysts and precystic tubules of human autosomal recessive PKD (ARPKD) kidneys as well as in the kidneys of PCK rats, an orthologous ARPKD model. There was aberrant expression of laminin-γ2 as early as postnatal day 2 and elevated laminin-332 protein in postnatal day 30, coinciding with the formation and early growth of renal cysts in PCK rat kidneys. We also show that a kidney cell line derived from Oak Ridge polycystic kidney mice, another model of ARPKD, exhibited abnormal lumen-deficient and multilumen structures in Matrigel culture. These cells had increased proliferation rates and altered expression levels of laminin-332 compared with their rescued counterparts. A function-blocking polyclonal antibody to laminin-332 significantly inhibited their abnormal proliferation rates and rescued their aberrant phenotype in Matrigel culture. Furthermore, abnormal laminin-332 expression in cysts originating from collecting ducts and proximal tubules as well as in precystic tubules was observed in a human end-stage ADPKD kidney. Our results suggest that abnormal expression of laminin-332 contributes to the aberrant proliferation of cyst epithelial cells and cyst growth in genetic forms of PKD. PMID:24370592

  19. The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival.

    PubMed

    Molyneaux, Kathleen A; Zinszner, Hélène; Kunwar, Prabhat S; Schaible, Kyle; Stebler, Jürg; Sunshine, Mary Jean; O'Brien, William; Raz, Erez; Littman, Dan; Wylie, Chris; Lehmann, Ruth

    2003-09-01

    In mouse embryos, germ cells arise during gastrulation and migrate to the early gonad. First, they emerge from the primitive streak into the region of the endoderm that forms the hindgut. Later in development, a second phase of migration takes place in which they migrate out of the gut to the genital ridges. There, they co-assemble with somatic cells to form the gonad. In vitro studies in the mouse, and genetic studies in other organisms, suggest that at least part of this process is in response to secreted signals from other tissues. Recent genetic evidence in zebrafish has shown that the interaction between stromal cell-derived factor 1 (SDF1) and its G-protein-coupled receptor CXCR4, already known to control many types of normal and pathological cell migrations, is also required for the normal migration of primordial germ cells. We show that in the mouse, germ cell migration and survival requires the SDF1/CXCR4 interaction. First, migrating germ cells express CXCR4, whilst the body wall mesenchyme and genital ridges express the ligand SDF1. Second, the addition of exogenous SDF1 to living embryo cultures causes aberrant germ cell migration from the gut. Third, germ cells in embryos carrying targeted mutations in CXCR4 do not colonize the gonad normally. However, at earlier stages in the hindgut, germ cells are unaffected in CXCR4(-/-) embryos. Germ cell counts at different stages suggest that SDF1/CXCR4 interaction also mediates germ cell survival. These results show that the SDF1/CXCR4 interaction is specifically required for the colonization of the gonads by primordial germ cells, but not for earlier stages in germ cell migration. This demonstrates a high degree of evolutionary conservation of part of the mechanism, but also an area of evolutionary divergence. PMID:12900445

  20. Aberrantly Expressed lncRNAs in Primary Varicose Great Saphenous Veins

    PubMed Central

    Wang, Jing; Chen, Guo-Jun; Xu, Liang; Xie, Duan-Yang; Yuan, Tian-You; Zhang, Da-Sheng; Zhang, Hong; Chen, Yi-Han

    2014-01-01

    Long non-coding RNAs (lncRNAs) are key regulatory molecules involved in a variety of biological processes and human diseases. However, the pathological effects of lncRNAs on primary varicose great saphenous veins (GSVs) remain unclear. The purpose of the present study was to identify aberrantly expressed lncRNAs involved in the prevalence of GSV varicosities and predict their potential functions. Using microarray with 33,045 lncRNA and 30,215 mRNA probes, 557 lncRNAs and 980 mRNAs that differed significantly in expression between the varicose great saphenous veins and control veins were identified in six pairs of samples. These lncRNAs were sub-grouped and mRNAs expressed at different levels were clustered into several pathways with six focused on metabolic pathways. Quantitative real-time PCR replication of nine lncRNAs was performed in 32 subjects, validating six lncRNAs (AF119885, AK021444, NR_027830, G36810, NR_027927, uc.345-). A coding-non-coding gene co-expression network revealed that four of these six lncRNAs may be correlated with 11 mRNAs and pathway analysis revealed that they may be correlated with another 8 mRNAs associated with metabolic pathways. In conclusion, aberrantly expressed lncRNAs for GSV varicosities were here systematically screened and validated and their functions were predicted. These findings provide novel insight into the physiology of lncRNAs and the pathogenesis of varicose veins for further investigation. These aberrantly expressed lncRNAs may serve as new therapeutic targets for varicose veins. The Human Ethnics Committee of Shanghai East Hospital, Tongji University School of Medicine approved the study (NO.: 2011-DF-53). PMID:24497937

  1. Early fibroblast progenitor cell migration to the AngII-exposed myocardium is not CXCL12 or CCL2 dependent as previously thought.

    PubMed

    Falkenham, Alec; Sopel, Mryanda; Rosin, Nicole; Lee, Tim D G; Issekutz, Thomas; Légaré, Jean-Francois

    2013-08-01

    Fibroblast progenitor cells (fibrocytes) are important to the development of myocardial fibrosis and are suggested to migrate to the heart via CXCL12 and chemokine ligand (CCL) 2. We hypothesized that if these chemokines are recruiting fibrocytes, disrupting their signaling will reduce early (3-day) fibrocyte infiltration and, consequently, fibrosis in the myocardium. C57/Bl6 and CCR2(-/-) mice were infused with saline or angiotensin (Ang) II, with or without CXC receptor 4 blockade (AMD3100). Hearts were assessed for chemokine up-regulation, immunofluorescence, and histological features. AngII caused early myocardial up-regulation of CXCL12 and CCL2, which corresponded to significant myocardial infiltration and fibrosis compared with controls. Animals receiving AMD3100 and/or with the genotype CCR2(-/-) failed to demonstrate reductions in infiltrate or fibrosis after 3 days of AngII, and AngII + AMD3100 animals showed exacerbated fibrocyte infiltration and fibrosis compared with AngII alone. CCR2(-/-) mice demonstrated significant reductions in myocardial fibrosis relative to wild type, but this was after 28 days of AngII infusion and was the result of reduced infiltrating cell proliferation. An alternative CCR2 ligand, CCL12, was found to be increasing infiltrating cell proliferation in the heart after AngII infusion, which we confirmed in vitro. In conclusion, early fibrocyte recruitment cannot be inhibited through modulating CXCL12 or CCL2, as previously thought. Ablating CCR2 signaling did confer myocardial fibrosis reductions, but these benefits were not observed until much later and were likely the result of modulated proliferation through ablating the CCL12-CCR2 interaction. PMID:23731726

  2. Aberrant phenotypic expression of CD15 and CD56 identifies poor prognostic acute promyelocytic leukemia patients.

    PubMed

    Breccia, Massimo; De Propris, Maria Stefania; Minotti, Clara; Stefanizzi, Caterina; Raponi, Sara; Colafigli, Gioia; Latagliata, Roberto; Guarini, Anna; Foà, Robin

    2014-02-01

    Limited information is available on the relationship between expression of some additional aberrant phenotypic features and outcome of acute promyelocytic leukemia (APL) patients. Here, we set out to assess the frequency of CD15 and CD56 expression, and their prognostic value in a large series of APL patients. One hundred and fourteen adult patients consecutively diagnosed with PML/RARα-positive APL and homogeneously treated with the AIDA induction schedule at a single institution were included in the study. Twelve (10.5%) and 9 (8%) of the 114 patients expressed CD15 and CD56, respectively. CD15 expression identified a subset of patients with a classic morphologic subtype (92%), a prevalent association with a bcr1 expression (67%) with an unexpectedly higher frequency of relapses (42% vs 20% for the CD15- patients, p=0.03) and a low overall survival (OS) (median OS at 5 years 58% vs 85% for the CD15- patients, p=0.01). CD56 expression was detected only in patients with a classic morphologic subtype, a prevalent bcr3 expression (67%), high incidence of differentiation syndrome (55%), higher frequency of relapse (34% vs 20% for the CD56- population, p=0.04) and a low OS (60% vs 85% for the CD56- population p=0.02). We hereby confirm the negative prognostic value of CD56 and we show that the same applies also to cases expressing CD15. These aberrant markers may be considered for the refinement of risk-adapted therapeutic strategies in APL patients. PMID:24296270

  3. Aberrant Expression of COT Is Related to Recurrence of Papillary Thyroid Cancer

    PubMed Central

    Lee, Jandee; Jeong, Seonhyang; Park, Jae Hyun; Lee, Cho Rok; Ku, Cheol Ryong; Kang, Sang-Wook; Jeong, Jong Ju; Nam, Kee-Hyun; Shin, Dong Yeob; Lee, Eun Jig; Chung, Woong Youn; Jo, Young Suk

    2015-01-01

    Abstract Aberrant expression of Cancer Osaka Thyroid Oncogene mitogen-activated protein kinase kinase kinase 8 (COT) (MAP3K8) is a driver of resistance to B-RAF inhibition. However, the de novo expression and clinical implications of COT in papillary thyroid cancer (PTC) have not been investigated. The aim of this study is to investigate the expression of A-, B-, C-RAF, and COT in PTC (n = 167) and analyze the clinical implications of aberrant expression of these genes. Quantitative polymerase chain reaction (qPCR) and immunohistochemical staining (IHC) were performed on primary thyroid cancers. Expression of COT was compared with clinicopathological characteristics including recurrence-free survival. Datasets from public repository (NCBI) were subjected to Gene Set Enrichment Analysis (GSEA). qPCR data showed that the relative mRNA expression of A-, B-, C-RAF and COT of PTC were higher than normal tissues (all P < 0.01). In addition, the expression of COT mRNA in PTC showed positive correlation with A- (r = 0.4083, P < 0.001), B- (r = 0.2773, P = 0.0003), and C-RAF (r = 0.5954, P < 0.001). The mRNA expressions of A-, B,- and C-RAF were also correlated with each other (all P < 0.001). In IHC, the staining intensities of B-RAF and COT were higher in PTC than in normal tissue (P < 0.001). Interestingly, moderate-to-strong staining intensities of B-RAF and COT were more frequent in B-RAFV600E-positive PTC (P < 0.001, P = 0.013, respectively). In addition, aberrant expression of COT was related to old age at initial diagnosis (P = 0.045) and higher recurrence rate (P = 0.025). In multivariate analysis, tumor recurrence was persistently associated with moderate-to-strong staining of COT after adjusting for age, sex, extrathyroidal extension, multifocality, T-stage, N-stage, TNM stage, and B-RAFV600E mutation (odds ratio, 4.662; 95% confidence interval 1.066 − 21.609; P = 0.045). Moreover, moderate

  4. Aberrant expression of COT is related to recurrence of papillary thyroid cancer.

    PubMed

    Lee, Jandee; Jeong, Seonhyang; Park, Jae Hyun; Lee, Cho Rok; Ku, Cheol Ryong; Kang, Sang-Wook; Jeong, Jong Ju; Nam, Kee-Hyun; Shin, Dong Yeob; Lee, Eun Jig; Chung, Woong Youn; Jo, Young Suk

    2015-02-01

    Aberrant expression of Cancer Osaka Thyroid Oncogene mitogen-activated protein kinase kinase kinase 8 (COT) (MAP3K8) is a driver of resistance to B-RAF inhibition. However, the de novo expression and clinical implications of COT in papillary thyroid cancer (PTC) have not been investigated.The aim of this study is to investigate the expression of A-, B-, C-RAF, and COT in PTC (n = 167) and analyze the clinical implications of aberrant expression of these genes.Quantitative polymerase chain reaction (qPCR) and immunohistochemical staining (IHC) were performed on primary thyroid cancers. Expression of COT was compared with clinicopathological characteristics including recurrence-free survival. Datasets from public repository (NCBI) were subjected to Gene Set Enrichment Analysis (GSEA).qPCR data showed that the relative mRNA expression of A-, B-, C-RAF and COT of PTC were higher than normal tissues (all P < 0.01). In addition, the expression of COT mRNA in PTC showed positive correlation with A- (r = 0.4083, P < 0.001), B- (r = 0.2773, P = 0.0003), and C-RAF (r = 0.5954, P < 0.001). The mRNA expressions of A-, B,- and C-RAF were also correlated with each other (all P < 0.001). In IHC, the staining intensities of B-RAF and COT were higher in PTC than in normal tissue (P < 0.001). Interestingly, moderate-to-strong staining intensities of B-RAF and COT were more frequent in B-RAF-positive PTC (P < 0.001, P = 0.013, respectively). In addition, aberrant expression of COT was related to old age at initial diagnosis (P = 0.045) and higher recurrence rate (P = 0.025). In multivariate analysis, tumor recurrence was persistently associated with moderate-to-strong staining of COT after adjusting for age, sex, extrathyroidal extension, multifocality, T-stage, N-stage, TNM stage, and B-RAF mutation (odds ratio, 4.662; 95% confidence interval 1.066 - 21.609; P = 0.045). Moreover, moderate-to-strong COT expression in PTC

  5. AMPK Promotes Aberrant PGC1β Expression To Support Human Colon Tumor Cell Survival

    PubMed Central

    Fisher, Kurt W.; Das, Binita; Kim, Hyun Seok; Clymer, Beth K.; Gehring, Drew; Smith, Deandra R.; Costanzo-Garvey, Diane L.; Fernandez, Mario R.; Brattain, Michael G.; Kelly, David L.; MacMillan, John

    2015-01-01

    A major goal of cancer research is the identification of tumor-specific vulnerabilities that can be exploited for the development of therapies that are selectively toxic to the tumor. We show here that the transcriptional coactivators peroxisome proliferator-activated receptor gamma coactivator 1β (PGC1β) and estrogen-related receptor α (ERRα) are aberrantly expressed in human colon cell lines and tumors. With kinase suppressor of Ras 1 (KSR1) depletion as a reference standard, we used functional signature ontology (FUSION) analysis to identify the γ1 subunit of AMP-activated protein kinase (AMPK) as an essential contributor to PGC1β expression and colon tumor cell survival. Subsequent analysis revealed that a subunit composition of AMPK (α2β2γ1) is preferred for colorectal cancer cell survival, at least in part, by stabilizing the tumor-specific expression of PGC1β. In contrast, PGC1β and ERRα are not detectable in nontransformed human colon epithelial cells, and depletion of the AMPKγ1 subunit has no effect on their viability. These data indicate that Ras oncogenesis relies on the aberrant activation of a PGC1β-dependent transcriptional pathway via a specific AMPK isoform. PMID:26351140

  6. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma

    PubMed Central

    Grosso, Ana R; Leite, Ana P; Carvalho, Sílvia; Matos, Mafalda R; Martins, Filipa B; Vítor, Alexandra C; Desterro, Joana MP; Carmo-Fonseca, Maria; de Almeida, Sérgio F

    2015-01-01

    Aberrant expression of cancer genes and non-canonical RNA species is a hallmark of cancer. However, the mechanisms driving such atypical gene expression programs are incompletely understood. Here, our transcriptional profiling of a cohort of 50 primary clear cell renal cell carcinoma (ccRCC) samples from The Cancer Genome Atlas (TCGA) reveals that transcription read-through beyond the termination site is a source of transcriptome diversity in cancer cells. Amongst the genes most frequently mutated in ccRCC, we identified SETD2 inactivation as a potent enhancer of transcription read-through. We further show that invasion of neighbouring genes and generation of RNA chimeras are functional outcomes of transcription read-through. We identified the BCL2 oncogene as one of such invaded genes and detected a novel chimera, the CTSC-RAB38, in 20% of ccRCC samples. Collectively, our data highlight a novel link between transcription read-through and aberrant expression of oncogenes and chimeric transcripts that is prevalent in cancer. DOI: http://dx.doi.org/10.7554/eLife.09214.001 PMID:26575290

  7. Aberrantly Expressed OTX Homeobox Genes Deregulate B-Cell Differentiation in Hodgkin Lymphoma

    PubMed Central

    Nagel, Stefan; Ehrentraut, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A. F.

    2015-01-01

    In Hodgkin lymphoma (HL) we recently reported that deregulated homeobox gene MSX1 mediates repression of the B-cell specific transcription factor ZHX2. In this study we investigated regulation of MSX1 in this B-cell malignancy. Accordingly, we analyzed expression and function of OTX homeobox genes which activate MSX1 transcription during embryonal development in the neural plate border region. Our data demonstrate that OTX1 and OTX2 are aberrantly expressed in both HL patients and cell lines. Moreover, both OTX loci are targeted by genomic gains in overexpressing cell lines. Comparative expression profiling and subsequent pathway modulations in HL cell lines indicated that aberrantly enhanced FGF2-signalling activates the expression of OTX2. Downstream analyses of OTX2 demonstrated transcriptional activation of genes encoding transcription factors MSX1, FOXC1 and ZHX1. Interestingly, examination of the physiological expression profile of ZHX1 in normal hematopoietic cells revealed elevated levels in T-cells and reduced expression in B-cells, indicating a discriminatory role in lymphopoiesis. Furthermore, two OTX-negative HL cell lines overexpressed ZHX1 in correlation with genomic amplification of its locus at chromosomal band 8q24, supporting the oncogenic potential of this gene in HL. Taken together, our data demonstrate that deregulated homeobox genes MSX1 and OTX2 respectively impact transcriptional inhibition of (B-cell specific) ZHX2 and activation of (T-cell specific) ZHX1. Thus, we show how reactivation of a specific embryonal gene regulatory network promotes disturbed B-cell differentiation in HL. PMID:26406991

  8. Aberrant expression of hSef and Sprouty4 in endometrial adenocarcinoma

    PubMed Central

    ZHANG, HUI; GUO, QIUFEN; WANG, XIA; WANG, CHONG; ZHAO, XINGBO; LI, MINGJIANG

    2016-01-01

    Fibroblast growth factor (FGF) 2-mediated signaling of the mitogen-activated protein kinase/RAS/extracellular signal-regulated kinase 1/2 pathway is a critical modulator in angiogenesis and is therefore essential for the pathogenesis of endometrial carcinoma. Human similar expression to FGFs (hSef) and Sprouty4 have each been reported to be negative regulators of FGF signaling. The aim of the present study was to investigate the expression of hSef and Sprouty4 in human endometrial adenocarcinoma. Using immunohistochemistry analysis, the expression of hSef and Sprouty4 was detected in human endometrial adenocarcinomas. Increased hSef expression was found to be present in endometrial adenocarcinomas. In addition, decreased hSef expression was identified in the blood vessels of endometrial adenocarcinoma samples. However, the expression of Sprouty4 was downregulated in human endometrial adenocarcinoma. Aberrant expression of hSef and Sprouty4 are involved in the pathogenesis of human endometrial adenocarcinoma. PMID:26870165

  9. Aberrant expression of Sonic hedgehog signaling in Peutz-Jeghers syndrome.

    PubMed

    Xu, Xiaoping; Su, Juan; Li, Ran; Wang, Yadong; Zeng, Di; Wu, Baoping

    2016-04-01

    The SHH signaling pathway is critical for gastrointestinal development and organic patterning, and dysregulation of SHH pathway molecules has been detected in multiple gastrointestinal neoplasms. This study investigated the role of the SHH signaling pathway in PJS. Expression of SHH, PTCH, and GLI1 was examined by real-time PCR and immunohistochemistry in 20 normal tissues and 75 colorectal lesions (25 PJPs, 25 adenomas, and 25 adenocarcinomas). Expression of SHH, PTCH, and GLI1 mRNA was higher in PJPs than in normal tissue (P < .05) and gradually increased along the PJP-adenoma-adenocarcinoma sequence (P < .05). Immunostaining indicated that SHH expression was present in 60% of PJPs, 72% of adenomas, and 84% of carcinomas, whereas 68% of PJPs, 72% of adenomas, and 88% of carcinomas exhibited cytoplasmic expression of PTCH. Moreover, high GLI1 expression was detected in 56% of PJPs, 64% of adenomas, and 80% of carcinomas; and high nuclear expression of GLI1 was observed in 8 adenomas with atypia and 15 carcinomas. Increased SHH, PTCH, and GLI1 protein correlated positively with tumor grade (P = .012, P = .003, and P = .007, respectively), tumor depth (P = .024, P = .007, and P = .01), and lymph node metastasis (P = .05, P = .015, and P = .005). This study identified aberrant expression of SHH pathway molecules in PJS, and the findings may supply a novel mechanism for the development of PJ polyps. PMID:26997450

  10. Aberrant expression of interferon regulatory factor 3 in human lung cancer

    SciTech Connect

    Tokunaga, Takayuki; Naruke, Yuki; Shigematsu, Sayuri; Kohno, Tomoko; Yasui, Kiyoshi; Ma, Yuhua; Chua, Koon Jiew; Katayama, Ikuo; Nakamura, Takashi; Hishikawa, Yoshitaka; Koji, Takehiko; Yatabe, Yasushi; Nagayasu, Takeshi; Fujita, Takashi; Matsuyama, Toshifumi; and others

    2010-06-25

    We analyzed the subcellular distributions and gene structures of interferon regulatory factor 3 (IRF3) transcription factor in 50 cases of human primary lung cancer. The immunohistochemical analyses revealed substantially aberrant IRF3 expression specific to the cancer lesions (2 and 6 tumors with nuclear staining, and 4 and 5 tumors with negative staining, in adenocarcinoma and squamous cell carcinoma, respectively), while the morphologically normal region around the tumors exhibited only cytoplasmic staining. In addition, we determined the sequence of the entire IRF3 coding region, and found two novel variants with the amino acid changes (S{sup 175}(AGC) {yields} R{sup 175}(CGC) and A{sup 208}(GCC) {yields} D{sup 208}(GAC)). The R{sup 175} variant was also detected in a morphologically normal region around the nuclear staining squamous cell carcinoma, and exhibited almost the same functions as the wild type IRF3. On the other hand, the D{sup 208} variant, found in the negative staining squamous cell carcinoma cases, reduced the nuclear translocation in response to I{kappa}B kinase {epsilon} stimulation, as compared to the wild type IRF3, but the same variant was detected in the surrounding morphologically normal region. The aberrant expression of IRF3 and the novel D{sup 208} variant may provide clues to elucidate the etiology of primary lung cancer.

  11. Regulation of MYC gene expression by aberrant Wnt/β-catenin signaling in colorectal cancer

    PubMed Central

    Rennoll, Sherri; Yochum, Gregory

    2015-01-01

    The Wnt/β-catenin signaling pathway controls intestinal homeostasis and mutations in components of this pathway are prevalent in human colorectal cancers (CRCs). These mutations lead to inappropriate expression of genes controlled by Wnt responsive DNA elements (WREs). T-cell factor/Lymphoid enhancer factor transcription factors bind WREs and recruit the β-catenin transcriptional co-activator to activate target gene expression. Deregulated expression of the c-MYC proto-oncogene (MYC) by aberrant Wnt/β-catenin signaling drives colorectal carcinogenesis. In this review, we discuss the current literature pertaining to the identification and characterization of WREs that control oncogenic MYC expression in CRCs. A common theme has emerged whereby these WREs often map distally to the MYC genomic locus and control MYC gene expression through long-range chromatin loops with the MYC proximal promoter. We propose that by determining which of these WREs is critical for CRC pathogenesis, novel strategies can be developed to treat individuals suffering from this disease. PMID:26629312

  12. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage

    PubMed Central

    2015-01-01

    Background Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. Methods This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. Results The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Conclusions Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study. PMID:26677731

  13. CD7 aberrant expression led to a lineage switch at relapsed childhood acute pre-B lymphoblastic leukemia.

    PubMed

    Fallah Azad, Vahid; Hedayati Asl, Amir Abbas; Tashvighi, Maryam; Niktoreh Mofrad, Naghmeh; Haghighi, Mansoureh; Mehrvar, Azim

    2016-03-01

    Immunophenotypic changes and lineage switch between diagnosis and relapse in acute lymphoblastic leukemia are uncommon and accompanied by poor outcomes. In this report, a 12-year-old boy with diagnosis of pre-B ALL with an aberrant expression of CD 7 is described. Patient was treated with the ALL-BFM 2000 protocol and suffered an episode of relapse with a lineage switch from pre-B ALL to T cell ALL. This report concludes that presence of aberrant expression of CD7 at diagnosis of pre-B ALL can have prognostic value of lineage switch to T cell ALL at relapse. PMID:26242204

  14. Aberrant Expression and Secretion of Heat Shock Protein 90 in Patients with Bullous Pemphigoid

    PubMed Central

    Tukaj, Stefan; Kleszczyński, Konrad; Vafia, Katerina; Groth, Stephanie; Meyersburg, Damian; Trzonkowski, Piotr; Ludwig, Ralf J.; Zillikens, Detlef; Schmidt, Enno; Fischer, Tobias W.; Kasperkiewicz, Michael

    2013-01-01

    The cell stress chaperone heat shock protein 90 (Hsp90) has been implicated in inflammatory responses and its inhibition has proven successful in different mouse models of autoimmune diseases, including epidermolysis bullosa acquisita. Here, we investigated expression levels and secretory responses of Hsp90 in patients with bullous pemphigoid (BP), the most common subepidermal autoimmune blistering skin disease. In comparison to healthy controls, the following observations were made: (i) Hsp90 was highly expressed in the skin of BP patients, whereas its serum levels were decreased and inversely associated with IgG autoantibody levels against the NC16A immunodominant region of the BP180 autoantigen, (ii) in contrast, neither aberrant levels of circulating Hsp90 nor any correlation of this protein with serum autoantibodies was found in a control cohort of autoimmune bullous disease patients with pemphigus vulgaris, (iii) Hsp90 was highly expressed in and restrictedly released from peripheral blood mononuclear cells of BP patients, and (iv) Hsp90 was potently induced in and restrictedly secreted from human keratinocyte (HaCaT) cells by BP serum and isolated anti-BP180 NC16A IgG autoantibodies, respectively. Our results reveal an upregulated Hsp90 expression at the site of inflammation and an autoantibody-mediated dysregulation of the intracellular and extracellular distribution of this chaperone in BP patients. These findings suggest that Hsp90 may play a pathophysiological role and represent a novel potential treatment target in BP. PMID:23936217

  15. Aberrant Expression of Posterior HOX Genes in Well Differentiated Histotypes of Thyroid Cancers

    PubMed Central

    Cantile, Monica; Scognamiglio, Giosuè; La Sala, Lucia; La Mantia, Elvira; Scaramuzza, Veronica; Valentino, Elena; Tatangelo, Fabiana; Losito, Simona; Pezzullo, Luciano; Chiofalo, Maria Grazia; Fulciniti, Franco; Franco, Renato; Botti, Gerardo

    2013-01-01

    Molecular etiology of thyroid cancers has been widely studied, and several molecular alterations have been identified mainly associated with follicular and papillary histotypes. However, the molecular bases of the complex pathogenesis of thyroid carcinomas remain poorly understood. HOX genes regulate normal embryonic development, cell differentiation and other critical processes in eukaryotic cell life. Several studies have shown that HOX genes play a role in neoplastic transformation of several human tissues. In particular, the genes belonging to HOX paralogous group 13 seem to hold a relevant role in both tumor development and progression. We have identified a significant prognostic role of HOX D13 in pancreatic cancer and we have recently showed the strong and progressive over-expression of HOX C13 in melanoma metastases and deregulation of HOX B13 expression in bladder cancers. In this study we have investigated, by immunohistochemisty and quantitative Real Time PCR, the HOX paralogous group 13 genes/proteins expression in thyroid cancer evolution and progression, also evaluating its ability to discriminate between main histotypes. Our results showed an aberrant expression, both at gene and protein level, of all members belonging to paralogous group 13 (HOX A13, HOX B13, HOX C13 and HOX D13) in adenoma, papillary and follicular thyroid cancers samples. The data suggest a potential role of HOX paralogous group 13 genes in pathogenesis and differential diagnosis of thyroid cancers. PMID:24189220

  16. Long noncoding RNA are aberrantly expressed in human papillary thyroid carcinoma

    PubMed Central

    YANG, MEILIU; TIAN, JINLI; GUO, XIN; YANG, YING; GUAN, RUHUA; QIU, MINGYUE; LI, YUKAI; SUN, XUELING; ZHEN, YANFENG; ZHANG, YAZHONG; CHEN, CHUNYOU; LI, YANBING; FANG, HUI

    2016-01-01

    Long noncoding RNAs (lncRNAs) have emerged as key regulatory molecules at almost every level of gene expression regulation. The altered expression of lncRNAs is a characteristic of numerous types of cancer, and lncRNAs have been demonstrated to promote the development, invasion and metastasis of tumors through various mechanisms. However, the role of lncRNAs in papillary thyroid carcinoma (PTC) remain unclear. In the present study, differentially expressed lncRNAs and mRNAs were detected by human lncRNA microarray in three pairs of PTC and adjacent noncancerous samples. The microarray results revealed that 675 lncRNAs and 751 mRNAs were abnormally expressed in the three PTC samples compared with adjacent noncancerous samples (fold change ≥2.0; P<0.05). To validate the microarray results, 8 differentially expressed lncRNAs were randomly selected for quantitative polymerase chain reaction (qPCR). The results of qPCR were consistent with the microarray data; the 8 lncRNAs had an aberrant expression in the PTC samples compared with the adjacent noncancerous samples. Gene ontology and pathway analysis indicated that there were 7 downregulated pathways and 29 upregulated pathways in PTC. LncRNA classification and subgroup analysis revealed 7 pairs of enhancer-like lncRNA-mRNA, 9 pairs of antisense lncRNA-mRNA and 45 pairs of lncRNA-mRNA were differentially expressed between PTC and their paired noncancerous samples. In conclusion, the present study identified a series of novel PTC-associated lncRNAs. Further study with these lncRNAs is instrumental for the identification of novel target molecules that could lead to improved diagnosis and treatment for PTC. PMID:27347178

  17. Microarray expression profile analysis of aberrant long non-coding RNAs in esophageal squamous cell carcinoma.

    PubMed

    Yao, Juan; Huang, Jun-Xing; Lin, Mei; Wu, Zheng-Dong; Yu, Hong; Wang, Peng-Cheng; Ye, Jun; Chen, Ping; Wu, Jing; Zhao, Guo-Jun

    2016-06-01

    Increasing evidence indicates that long non-coding RNA (lncRNA) plays an important role in tumorigenesis. However, the function and regulatory mechanism of lncRNAs are still unclear in esophageal squamous cell carcinoma (ESCC). To address this challenge, we screened lncRNAs expression profiles in 3 pairs of ESCC and matched non-cancerous tissues by microarray assay and identified the relationship between lncRNAs expression in ESCC tissue and clinicopathological characteristics and prognosis of patients with ESCC. We found 182 lncRNAs that were significantly differently expressed in ESCC tissues versus the matched non-cancerous tissues. Gene ontology and pathway analysis results suggested that the primary biological processes of these genes were involved in extracellular matrix, immune responses, cell differentiation and cell proliferation. Through cis and trans analyzing, we found 4 lncRNAs (ENST00000480669, NONHSAT104436, NONHSAT126998 and NONHSAT112918) may play important roles in tumorigenesis of ESCC. The four lncRNAs were checked in 73 patients with ESCC. The results showed that they mainly related to tumor metastasis. Kaplan-Meier survival analysis showed that high expression of NONHSAT104436, NONHSAT126998 and low expression of ENST00000480669 were related to poor 3-year overall survival (P=0.003, 0.032 and 0.040, respectively). Multivariate analysis showed that NONHSAT104436 was an independent prognostic factor (P=0.017). Thus we concluded that, lncRNAs showed differently expression patterns in ESCC versus matched non-cancerous tissues, and aberrantly expressed lncRNA may play important roles in ESCC development and progression. Interestingly, the overexpression of NONHSAT104436 was tightly correlated with distant metastasis and, poor survival rate, which might indicate that NONHSAT104436 might play a very important part in ESCC tumor progression. PMID:27035335

  18. Immunohistochemical expression of aberrant Notch-1 signaling in vitiligo: an implication for pathogenesis.

    PubMed

    Seleit, Iman; Bakry, Ola Ahmed; Abdou, Asmaa Gaber; Dawoud, Noha Mohammed

    2014-06-01

    The etiopathogenetic mechanisms leading to pigment loss in vitiligo are not fully understood. Notch signaling is required for development and maintenance of melanocyte lineage and acts as a key component among keratinocyte-melanocyte interactions. The current study aimed to investigate the possible role of Notch signaling and its effect on the whole melanocyte lineage in vitiligo and correlating it with the different clinicopathologic parameters. Using immunohistochemical technique, Notch-1 expression was evaluated in 50 lesional and 20 perilesional biopsies of patients with vitiligo in comparison with 20 normal skin biopsies as a control group. Lesional biopsies were stained with human melanoma black-45 and tyrosinase-related protein-2 to demonstrate the melanocyte lineage. Membranous and/or nuclear expression of Notch-1 was in favor of control and perilesional skin, whereas cytoplasmic expression appeared only in vitiliginous lesions (P < .05). Membranous and/or nuclear expression of Notch-1 was significantly associated with epidermal human melanoma black-45 positivity (P = .01) and percentage of expression in both epidermis (P = .02) and hair follicles (P = .03) of lesional skin. Cytoplasmic pattern of Notch-1 expression in epidermis was significantly found in lesions with white hair (P = .04) and in cases with marked keratinocyte vacuolization (P = .03). Segmental and acrofacial vitiligo were associated with mild to moderate Notch-1 intensity, whereas generalized vitiligo was associated with strong intensity of expression (P = .02). In conclusion, Notch-1 signaling is inactivated in vitiligo with consequent loss of epidermal and/or follicular active melanocytes. Aberrant Notch signaling in vitiliginous white hair and acral and segmental vitiligo may be the cause of their treatment resistance. PMID:24560443

  19. Phenotypic heterogeneity and aberrant markers expression in T-cell leukemia.

    PubMed

    Babusíková, O; Glasová, M; Koníková, E; Kusenda, J; Cáp, J; Gyárfás, J; Koubek, K

    1998-01-01

    For exact determination of lineage assessment there is a need of surface membrane and intracellular (cytoplasmic and nuclear) immunophenotyping performed by flow cytometry. We evaluated in detail the results of surface and intracellular immunophenotyping of 34 T-ALL cases. The great heterogeneity of T-cell differentiation markers has been observed which did not allow relevant subclassification of T-ALL according to the existing subclassification schemes and the proposed three-stage model of physiological T-cell differentiation. Therefore, a simplified classification based on the CD3 marker expression either on cell membrane or in cytoplasm has been created with allocation of T-ALL into two main phenotypic groups. From 34 in detail examined T-ALL cases a great deal-27 (79%) belonged to an immature phenotype (Stage I) and only 7 (21%) expressed more mature phenotype (Stage II). Simultaneously the presence of atypical/aberrant T-cell phenotypes has been studied. We showed that in T-ALL it was possible to specify some cases with leukemia-associated phenotype with coexistence of atypical markers which are absent in nonleukemic cells. In a majority of cases early B-lineage marker (CD10) and in a smaller proportion of them non-lineage associated marker (CD34) were observed. Myeloid marker CD13 was observed in one case of the immature T-ALL, together with CD10 and CD34. As these atypical markers were present through all differentiation stages of T-ALL we obtained a strong evidence that they might represent an abnormal rather than an immature phenotype. The prognostic significance of T-ALL subtypes and aberrant markers coexpression have been discussed. Simultaneously it was shown that quantitative immunofluorescence could provide an additional important diagnostic marker also in T-ALL cases. PMID:9717523

  20. Analysis of genomic aberrations and gene expression profiling identifies novel lesions and pathways in myeloproliferative neoplasms

    PubMed Central

    Rice, K L; Lin, X; Wolniak, K; Ebert, B L; Berkofsky-Fessler, W; Buzzai, M; Sun, Y; Xi, C; Elkin, P; Levine, R; Golub, T; Gilliland, D G; Crispino, J D; Licht, J D; Zhang, W

    2011-01-01

    Polycythemia vera (PV), essential thrombocythemia and primary myelofibrosis, are myeloproliferative neoplasms (MPNs) with distinct clinical features and are associated with the JAK2V617F mutation. To identify genomic anomalies involved in the pathogenesis of these disorders, we profiled 87 MPN patients using Affymetrix 250K single-nucleotide polymorphism (SNP) arrays. Aberrations affecting chr9 were the most frequently observed and included 9pLOH (n=16), trisomy 9 (n=6) and amplifications of 9p13.3–23.3 (n=1), 9q33.1–34.13 (n=1) and 9q34.13 (n=6). Patients with trisomy 9 were associated with elevated JAK2V617F mutant allele burden, suggesting that gain of chr9 represents an alternative mechanism for increasing JAK2V617F dosage. Gene expression profiling of patients with and without chr9 abnormalities (+9, 9pLOH), identified genes potentially involved in disease pathogenesis including JAK2, STAT5B and MAPK14. We also observed recurrent gains of 1p36.31–36.33 (n=6), 17q21.2–q21.31 (n=5) and 17q25.1–25.3 (n=5) and deletions affecting 18p11.31–11.32 (n=8). Combined SNP and gene expression analysis identified aberrations affecting components of a non-canonical PRC2 complex (EZH1, SUZ12 and JARID2) and genes comprising a ‘HSC signature' (MLLT3, SMARCA2 and PBX1). We show that NFIB, which is amplified in 7/87 MPN patients and upregulated in PV CD34+ cells, protects cells from apoptosis induced by cytokine withdrawal. PMID:22829077

  1. Aberrant Expression of Anaplastic Lymphoma Kinase in Ovarian Carcinoma Independent of Gene Rearrangement.

    PubMed

    Tang, Shaoxian; Yang, Fei; Du, Xiang; Lu, Yongming; Zhang, Ling; Zhou, Xiaoyan

    2016-07-01

    Ovarian carcinoma is the leading cause of death from gynecologic malignancies. The oncogenic role of anaplastic lymphoma kinase (ALK) is well characterized in many hematopoietic and solid tumors. ALK expression in ovarian carcinoma has been reported but the exact status of ALK protein and its association with clinicopathologic features requires further investigation. ALK expression was determined by immunohistochemistry in 110 primary ovarian carcinomas, including 85 cases of serous carcinoma and 25 cases of mucinous carcinoma. Fluorescence in situ hybridization (FISH) and real-time reverse transcription polymerase chain reaction (RT-PCR) were used for evaluating ALK translocation in ALK-positive ovarian carcinomas. Among 110 ovarian carcinomas, 23 (20.9%) cases were ALK positive by immunohistochemistry. All ALK-positive cases were ovarian high-grade serous carcinoma. ALK expression was detected in 23/85 (27.1%) ovarian serous carcinoma and 0/25 (0%) in ovarian mucinous carcinoma. None of the 23 ALK IHC-positive cases harbored ALK gene translocations by FISH or RT-PCR. ALK protein expression was associated with patient age, tumor stage, and histologic type. Specifically, the probability of ALK protein expression was significantly higher in high-grade serous carcinomas in older patients (above 50 y) with advanced disease (FIGO stage III and IV) compared with the low-grade serous and mucinous carcinomas in younger patients with relatively early disease. In conclusion, aberrant ALK expression is observed in ovarian serous carcinoma but not in mucinous carcinoma, is independent of gene translocation, and might be associated with progression and prognosis. PMID:27271776

  2. The aberrant expression of MEG3 regulated by UHRF1 predicts the prognosis of hepatocellular carcinoma.

    PubMed

    Zhuo, Han; Tang, Junwei; Lin, Zhe; Jiang, Runqiu; Zhang, Xudong; Ji, Jie; Wang, Ping; Sun, Beicheng

    2016-02-01

    MEG3 as a tumor suppressor has been reported to be linked with pathogenesis of malignancies including hepatocellular carcinoma (HCC). However, the mechanism of MEG3 in HCC still remains unclear. In our study, the aberrant decreased level of MEG3 in 72 tumor tissues obtained from HCC patients and cell lines was examined by using real-time PCR. The inhibition affection in proliferation and inducing affection in apoptosis was further confirmed in vivo and vitro, we also demonstrated that MEG3 regulates HCC cell proliferation and apoptosis partially via the accumulation of p53. Besides, the hypermethylation of MEG3 in promoter region was identified by bisulfite sequencing while MEG3 increased with the inhibition of methylation. Subsequently, UHRF1, a new identified oncogene which is required for DNA methylation and recruits, was investigated. A negative correlation of MEG3 and UHRF1 expression was verified in primary HCC tissues. Down-regulation of UHRF1 induced MEG3 expression in HCC cell lines, which could be reversed by the up-regulation of UHRF1. In addition, up-regulation of MEG3 in HCC cells partially diminished the promotion of proliferation induced by UHRF1. Moreover, Kaplan-Meier analysis demonstrated that the patients with low expression of MEG3 indicated worse overall and relapse-free survivals compared with high expression of MEG3. Cox proportional hazards analyses showed that MEG3 expression was an independent prognostic factor for HCC patients. In conclusion, we demonstrated MEG3, acting as a potential biomarker in predicting the prognosis of HCC, was regulated by UHRF1 via recruiting DNMT1 and regulated p53 expression. PMID:25641194

  3. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes.

    PubMed

    Sveen, A; Kilpinen, S; Ruusulehto, A; Lothe, R A; Skotheim, R I

    2016-05-12

    Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations. PMID:26300000

  4. Aberrant expression of the candidate tumor suppressor gene DAL-1 due to hypermethylation in gastric cancer

    PubMed Central

    Wang, Hao; Xu, Man; Cui, Xiaobo; Liu, Yixin; Zhang, Yi; Sui, Yu; Wang, Dong; Peng, Lei; Wang, Dexu; Yu, Jingcui

    2016-01-01

    By allelotyping for loss of heterozygosity (LOH), we previously identified a deletion region that harbors the candidate tumor suppressor gene DAL-1 at 18p11.3 in sporadic gastric cancers (GCs). The expression and function of DAL-1 in GCs remained unclear. Here, we demonstrated that the absence of or notable decreases in the expression of DAL-1 mRNA and protein was highly correlated with CpG hypermethylation of the DAL-1 promoter in primary GC tissues and in GC cell lines. Furthermore, abnormal DAL-1 subcellular localization was also observed in GC cells. Exogenous DAL-1 effectively inhibited cancer cell proliferation, migration, invasion and epithelial to mesenchymal transition (EMT); exogenous DAL-1 also promoted apoptosis in GC AGS cells. When endogenous DAL-1 was knocked down in GC HGC-27 cells, the cells appeared highly aggressive. Taken together, these findings provide solid evidence that aberrant expression of DAL-1 by hypermethylation in the promoter region results in tumor suppressor gene behavior that plays important roles in the malignancy of GCs. Understanding the role of it played in the molecular pathogenesis of GC, DAL-1 might be a potential biomarker for molecular diagnosis and evaluation of the GC. PMID:26923709

  5. Aberrantly Expressed Genes in HaCaT Keratinocytes Chronically Exposed to Arsenic Trioxide

    PubMed Central

    Udensi, Udensi K.; Cohly, Hari H.P.; Graham-Evans, Barbara E.; Ndebele, Kenneth; Garcia-Reyero, Natàlia; Nanduri, Bindu; Tchounwou, Paul B.; Isokpehi, Raphael D.

    2011-01-01

    Inorganic arsenic is a known environmental toxicant and carcinogen of global public health concern. Arsenic is genotoxic and cytotoxic to human keratinocytes. However, the biological pathways perturbed in keratinocytes by low chronic dose inorganic arsenic are not completely understood. The objective of the investigation was to discover the mechanism of arsenic carcinogenicity in human epidermal keratinocytes. We hypothesize that a combined strategy of DNA microarray, qRT-PCR and gene function annotation will identify aberrantly expressed genes in HaCaT keratinocyte cell line after chronic treatment with arsenic trioxide. Microarray data analysis identified 14 up-regulated genes and 21 down-regulated genes in response to arsenic trioxide. The expression of 4 up-regulated genes and 1 down-regulated gene were confirmed by qRT-PCR. The up-regulated genes were AKR1C3 (Aldo-Keto Reductase family 1, member C3), IGFL1 (Insulin Growth Factor-Like family member 1), IL1R2 (Interleukin 1 Receptor, type 2), and TNFSF18 (Tumor Necrosis Factor [ligand] SuperFamily, member 18) and down-regulated gene was RGS2 (Regulator of G-protein Signaling 2). The observed over expression of TNFSF18 (167 fold) coupled with moderate expression of IGFL1 (3.1 fold), IL1R2 (5.9 fold) and AKR1C3 (9.2 fold) with a decreased RGS2 (2.0 fold) suggests that chronic arsenic exposure could produce sustained levels of TNF with modulation by an IL-1 analogue resulting in chronic immunologic insult. A concomitant decrease in growth inhibiting gene (RGS2) and increase in AKR1C3 may contribute to chronic inflammation leading to metaplasia, which may eventually lead to carcinogenicity in the skin keratinocytes. Also, increased expression of IGFL1 may trigger cancer development and progression in HaCaT keratinocytes. PMID:21461292

  6. Aberrant PD-L1 expression through 3'-UTR disruption in multiple cancers.

    PubMed

    Kataoka, Keisuke; Shiraishi, Yuichi; Takeda, Yohei; Sakata, Seiji; Matsumoto, Misako; Nagano, Seiji; Maeda, Takuya; Nagata, Yasunobu; Kitanaka, Akira; Mizuno, Seiya; Tanaka, Hiroko; Chiba, Kenichi; Ito, Satoshi; Watatani, Yosaku; Kakiuchi, Nobuyuki; Suzuki, Hiromichi; Yoshizato, Tetsuichi; Yoshida, Kenichi; Sanada, Masashi; Itonaga, Hidehiro; Imaizumi, Yoshitaka; Totoki, Yasushi; Munakata, Wataru; Nakamura, Hiromi; Hama, Natsuko; Shide, Kotaro; Kubuki, Yoko; Hidaka, Tomonori; Kameda, Takuro; Masuda, Kyoko; Minato, Nagahiro; Kashiwase, Koichi; Izutsu, Koji; Takaori-Kondo, Akifumi; Miyazaki, Yasushi; Takahashi, Satoru; Shibata, Tatsuhiro; Kawamoto, Hiroshi; Akatsuka, Yoshiki; Shimoda, Kazuya; Takeuchi, Kengo; Seya, Tsukasa; Miyano, Satoru; Ogawa, Seishi

    2016-06-16

    Successful treatment of many patients with advanced cancer using antibodies against programmed cell death 1 (PD-1; also known as PDCD1) and its ligand (PD-L1; also known as CD274) has highlighted the critical importance of PD-1/PD-L1-mediated immune escape in cancer development. However, the genetic basis for the immune escape has not been fully elucidated, with the exception of elevated PD-L1 expression by gene amplification and utilization of an ectopic promoter by translocation, as reported in Hodgkin and other B-cell lymphomas, as well as stomach adenocarcinoma. Here we show a unique genetic mechanism of immune escape caused by structural variations (SVs) commonly disrupting the 3' region of the PD-L1 gene. Widely affecting multiple common human cancer types, including adult T-cell leukaemia/lymphoma (27%), diffuse large B-cell lymphoma (8%), and stomach adenocarcinoma (2%), these SVs invariably lead to a marked elevation of aberrant PD-L1 transcripts that are stabilized by truncation of the 3'-untranslated region (UTR). Disruption of the Pd-l1 3'-UTR in mice enables immune evasion of EG7-OVA tumour cells with elevated Pd-l1 expression in vivo, which is effectively inhibited by Pd-1/Pd-l1 blockade, supporting the role of relevant SVs in clonal selection through immune evasion. Our findings not only unmask a novel regulatory mechanism of PD-L1 expression, but also suggest that PD-L1 3'-UTR disruption could serve as a genetic marker to identify cancers that actively evade anti-tumour immunity through PD-L1 overexpression. PMID:27281199

  7. Molecular characterization of the mouse involuted thymus: aberrations in expression of transcription regulators in thymocyte and epithelial compartments.

    PubMed

    Ortman, Crystal L; Dittmar, Kimberly A; Witte, Pamela L; Le, Phong T

    2002-07-01

    Despite playing a critical role in the development of naive T cells, the thymus is involuted with age. Whether a single age-associated defect or multiple aberrations contribute to thymic involution remains controversial. Here, we determined molecular aberrations in the thymocyte and epithelium compartments of the aging thymus. We demonstrated that total thymocyte numbers declined with a stepwise kinetics; clear demarcations occurred at 1.5, 3, 12 and 22 months of age. By quantitative PCR, a 2.4-fold reduction in the copies of signal joint TCR-excised circle (sjTREC)/10(5) thymocytes was first detected at 3 months; no further reduction observed thereafter. Nevertheless, the combined reductions in thymocyte numbers and sjTREC/10(5) cells caused a 7-fold decrease in sjTREC/thymus by 3 months, 21-fold by 18 months and 72-fold by 22 months as compared to 1 month. We showed aberration in expression of E2A, a transcription regulator critical for TCR beta rearrangement. While E2A expression declined 3-fold by 3 months and 18-fold by 7 months, expression of LMO2, a negative regulator of E2A activities, increased 5-fold by 18 months. Interestingly, expression of pre-T alpha and its transcriptional regulator HEB were not reduced with age. Furthermore, keratin-8 expression, specific for cortical thymic epithelium, declined 3-fold by 7 months and remained stable thereafter. In contrast, Foxn1 expression was reduced 3-fold by 3 months, 16-fold by 12 months and 37-fold by 18 months. IL-7 expression was not reduced until 7 months and reached 15-fold reduction by 22 months. Thus, the data demonstrate that thymic involution results not from a single defect, but culminates from an array of molecular aberrations in both the developing thymocytes and thymic epithelials. PMID:12096041

  8. Breast cancer-associated high-order SNP-SNP interaction of CXCL12/CXCR4-related genes by an improved multifactor dimensionality reduction (MDR-ER).

    PubMed

    Fu, Ou-Yang; Chang, Hsueh-Wei; Lin, Yu-Da; Chuang, Li-Yeh; Hou, Ming-Feng; Yang, Cheng-Hong

    2016-09-01

    In association studies, the combined effects of single nucleotide polymorphism (SNP)-SNP interactions and the problem of imbalanced data between cases and controls are frequently ignored. In the present study, we used an improved multifactor dimensionality reduction (MDR) approach namely MDR-ER to detect the high order SNP‑SNP interaction in an imbalanced breast cancer data set containing seven SNPs of chemokine CXCL12/CXCR4 pathway genes. Most individual SNPs were not significantly associated with breast cancer. After MDR‑ER analysis, six significant SNP‑SNP interaction models with seven genes (highest cross‑validation consistency, 10; classification error rates, 41.3‑21.0; and prediction error rates, 47.4‑55.3) were identified. CD4 and VEGFA genes were associated in a 2‑loci interaction model (classification error rate, 41.3; prediction error rate, 47.5; odds ratio (OR), 2.069; 95% bootstrap CI, 1.40‑2.90; P=1.71E‑04) and it also appeared in all the best 2‑7‑loci models. When the loci number increased, the classification error rates and P‑values decreased. The powers in 2‑7‑loci in all models were >0.9. The minimum classification error rate of the MDR‑ER‑generated model was shown with the 7‑loci interaction model (classification error rate, 21.0; OR=15.282; 95% bootstrap CI, 9.54‑23.87; P=4.03E‑31). In the epistasis network analysis, the overall effect with breast cancer susceptibility was identified and the SNP order of impact on breast cancer was identified as follows: CD4 = VEGFA > KITLG > CXCL12 > CCR7 = MMP2 > CXCR4. In conclusion, the MDR‑ER can effectively and correctly identify the best SNP‑SNP interaction models in an imbalanced data set for breast cancer cases. PMID:27461876

  9. Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations

    PubMed Central

    Dorrance, Adrienne M.; Liu, Shujun; Yuan, Weifeng; Becknell, Brian; Arnoczky, Kristy J.; Guimond, Martin; Strout, Matthew P.; Feng, Lan; Nakamura, Tatsuya; Yu, Li; Rush, Laura J.; Weinstein, Michael; Leone, Gustavo; Wu, Lizhao; Ferketich, Amy; Whitman, Susan P.; Marcucci, Guido; Caligiuri, Michael A.

    2006-01-01

    We previously identified a rearrangement of mixed-lineage leukemia (MLL) gene (also known as ALL-1, HRX, and HTRX1), consisting of an in-frame partial tandem duplication (PTD) of exons 5 through 11 in the absence of a partner gene, occurring in approximately 4%–7% of patients with acute myeloid leukemia (AML) and normal cytogenetics, and associated with a poor prognosis. The mechanism by which the MLL PTD contributes to aberrant hematopoiesis and/or leukemia is unknown. To examine this, we generated a mouse knockin model in which exons 5 through 11 of the murine Mll gene were targeted to intron 4 of the endogenous Mll locus. MllPTD/WT mice exhibit an alteration in the boundaries of normal homeobox (Hox) gene expression during embryogenesis, resulting in axial skeletal defects and increased numbers of hematopoietic progenitor cells. MllPTD/WT mice overexpress Hoxa7, Hoxa9, and Hoxa10 in spleen, BM, and blood. An increase in histone H3/H4 acetylation and histone H3 lysine 4 (Lys4) methylation within the Hoxa7 and Hoxa9 promoters provides an epigenetic mechanism by which this overexpression occurs in vivo and an etiologic role for MLL PTD gain of function in the genesis of AML. PMID:16981007

  10. Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato.

    PubMed

    Goetz, Marc; Hooper, Lauren C; Johnson, Susan D; Rodrigues, Julio Carlyle Macedo; Vivian-Smith, Adam; Koltunow, Anna M

    2007-10-01

    Fruit initiation in Arabidopsis (Arabidopsis thaliana) is generally repressed until fertilization occurs. However, mutations in AUXIN RESPONSE FACTOR8 (ARF8) uncouple fruit initiation from fertilization, resulting in the formation of seedless, parthenocarpic fruit. Here we induced parthenocarpy in wild-type Arabidopsis by introducing either the mutant genomic (g) Atarf8-4 sequence or gAtARF8:beta-glucuronidase translational fusion constructs by plant transformation. Silencing of endogenous AtARF8 transcription was not observed, indicating that the introduced, aberrant ARF8 transcripts were compromising the function of endogenous ARF8 and/or associated factors involved in suppressing fruit initiation. To analyze the role of ARF8 in tomato (Solanum lycopersicum) we initially emasculated 23 tomato cultivars to test for background parthenocarpy. Surprisingly, all had a predisposition to initiate fertilization-independent fruit growth. Expression of gAtarf8-4 in transgenic tomato ('Monalbo') resulted in a significant increase in the number and size of parthenocarpic fruit. Isolation of tomato ARF8 cDNA indicated significant sequence conservation with AtARF8. SlARF8 may therefore control tomato fruit initiation in a similar manner as AtARF8 does in Arabidopsis. Two SlARF8 cDNAs differing in size by 5 bp were found, both arising from the same gene. The smaller cDNA is a splice variant and is also present in Arabidopsis. We propose that low endogenous levels of the splice variant products might interfere with efficient formation/function of a complex repressing fruit initiation, thereby providing an explanation for the observed ovary expansion in tomato and also Arabidopsis after emasculation. Increasing the levels of aberrant Atarf8-4 transcripts may further destabilize formation/function of the complex in a dosage-dependent manner enhancing tomato parthenocarpic fruit initiation frequency and size and mimicking the parthenocarpic dehiscent silique phenotype found in

  11. Comparison of chromosomal aberrations detected by fluorescence in situ hybridization with clinical parameters, DNA ploidy and Ki 67 expression in renal cell carcinoma.

    PubMed Central

    Wada, Y.; Igawa, M.; Shiina, H.; Shigeno, K.; Yokogi, H.; Urakami, S.; Yoneda, T.; Maruyama, R.

    1998-01-01

    To evaluate the significance of chromosomal aberrations in renal cell carcinoma, fluorescence in situ hybridization (FISH) was used to determine its prevalence and correlation with clinical parameters of malignancy. In addition, correlation of chromosomal aberration with Ki 67 expression was analysed. We performed FISH with chromosome-specific DNA probes, and the signal number of pericentromeric sequences on chromosomes 3, 7, 9 and 17 was detected within interphase nuclei in touch preparations from tumour specimen. The incidence of loss of chromosome 3 was significantly higher than those of chromosomes 7, 9 and 17 (P < 0.001, P = 0.03 and P < 0.001 respectively). Hyperdiploid aberration of chromosomes 3 and 17 was significantly correlated with tumour stage (P = 0.03, P = 0.02 respectively), whereas hyperdiploid aberration of chromosome 9 was associated with nuclear grade (P = 0.04). Disomy of chromosome 7 was correlated with venous involvement (P = 0.04). Ki 67 expression was significantly associated with hyperdiploid aberration of chromosome 17 (P = 0.01), but not with aberration of chromosome 3. There was a significant relationship between hyperdiploid aberration of chromosome 7 and Ki 67 expression (P = 0.01). In conclusions, gain of chromosome 17 may reflect tumour development, and aberration of chromosome 7 may affect metastatic potential of malignancy, whereas loss of chromosome 3 may be associated with early stage of tumour development in renal cell carcinoma. PMID:9667682

  12. Aberrant expression of the CHFR prophase checkpoint gene in human B-cell non-Hodgkin lymphoma.

    PubMed

    Song, Aiqin; Ye, Junli; Zhang, Kunpeng; Yu, Hongsheng; Gao, Yanhua; Wang, Hongfang; Sun, Lirong; Xing, Xiaoming; Yang, Kun; Zhao, Min

    2015-05-01

    Checkpoint with FHA and Ring Finger (CHFR) is a checkpoint protein that reportedly initiates a cell cycle delay in response to microtubule stress during prophase in mitosis, which has become an interesting target for understanding cancer pathogenesis. Recently, aberrant methylation of the CHFR gene associated with gene silencing has been reported in several cancers. In the present study, we examined the expression of CHFR in B-cell non-Hodgkin lymphoma (B-NHL) in vitro and in vivo. Our results showed that the expression level of CHFR mRNA and protein was reduced in B-NHL tissue samples and B cell lines. Furthermore, CHFR methylation was detected in 39 of 122 B-NHL patients, which was not found in noncancerous reactive hyperplasia of lymph node (RH) tissues. CHFR methylation correlated with the reduced expression of CHFR, high International Prognostic Index (IPI) scores and later pathologic Ann Arbor stages of B-NHL. Treatment with demethylation reagent, 5-Aza-dC, could eliminate the hypermethylation of CHFR, enhance CHFR expression and cell apoptosis and inhibit the cell proliferation of Raji cells, which could be induced by high expression of CHFR in Raji cells. Our results indicated that aberrant methylation of CHFR may be associated with the pathogenesis, progression for B-NHL, which might be a novel molecular marker as prognosis and treatment for B-NHL. PMID:25798877

  13. Hematopoietic expression of oncogenic BRAF promotes aberrant growth of monocyte-lineage cells resistant to PLX4720

    PubMed Central

    Kamata, Tamihiro; Dankort, David; Kang, Jing; Giblett, Susan; Pritchard, Catrin A.; McMahon, Martin; Leavitt, Andrew D.

    2013-01-01

    Mutational activation of BRAF leading to expression of the BRAFV600E oncoprotein was recently identified in a high percentage of specific hematopoietic neoplasms in monocyte/histiocyte and mature B-cell lineages. Although BRAFV600E is a driver oncoprotein and pharmacological target in solid tumors such as melanoma, lung and thyroid cancer, it remains unknown whether BRAFV600E is an appropriate therapeutic target in hematopoietic neoplasms. To address this critical question, we generated a mouse model expressing inducible BRAFV600E in the hematopoietic system, and evaluated the efficacy of pathway-targeted therapeutics against primary hematopoietic cells. In this model, BRAFV600E expression conferred cytokine-independent growth to monocyte/macrophage-lineage progenitors leading to aberrant in vivo and in vitro monocyte/macrophage expansion. Furthermore, transplantation of BRAFV600E-expressing bone marrow cells promoted an in vivo pathology most notable for monocytosis in hematopoietic tissues and visceral organs. In vitro analysis revealed that MEK inhibition, but not RAF inhibition, effectively suppressed cytokine-independent clonal growth of monocyte/macrophage-lineage progenitors. However, combined RAF and PI3K inhibition effectively inhibited cytokine-independent colony formation, suggesting autocrine PI3K pathway activation. Taken together, these results provide evidence that constitutively activated BRAFV600E drives aberrant proliferation of monocyte-lineage cells. This study supports the development of pathway-targeted therapeutics in the treatment of BRAFV600E-expressing hematopoietic neoplasms in the monocyte/histiocyte lineage. PMID:24152792

  14. Protein expression profile of celiac disease patient with aberrant T cell by two-dimensional difference gel electrophoresis.

    PubMed

    De Re, Valli; Simula, Maria Paola; Caggiari, Laura; Ortz, Nicoletta; Spina, Michele; Da Ponte, Alessandro; De Appolonia, Leandro; Dolcetti, Riccardo; Canzonieri, Vincenzo; Cannizzaro, Renato

    2007-08-01

    One complication of celiac disease (CD) is refractory CD. These patients frequently show aberrant intraepithelial T cell clones and an increasing risk of evolution into enteropathy-associated T cell lymphoma (EATL). There is debate in the literature whether these cases are actually a smoldering lymphoma from the outset. The mechanism inducing T cell proliferation and prognosis remains unknown. Recently, alemtuzumab has been proposed as a promising new approach to treat these patients. Only few single cases have been tested presently, nevertheless, in all of them a clinical improvement has been observed, while intraepithelial lymphocytes (IELs) effectively targeted by alemtuzumab are still a debated issue. Using 2D-DIGE, we found hyperexpressed proteins specifically associated with aberrant T cell in a patient with CD by comparing the protein expression with that of patients with CD and polyclonal T cell or with that of control subjects (patients with polyclonal T cell and no CD). Proteins with a higher expression in duodenal biopsy of the patient with aberrant T cell were identified as IgM, apolipoprotein C-III, and Charcot-Leyden crystal proteins. These preliminary data allow hypothesizing different clinical effects of alemtuzumab in patients with CD, since besides the probable effect of alemtuzumab on T cell, it could effect inflammatory-associated CD52(+) IgM(+)B cell and eosinophils cells, known to produce IgM and Charcot-Leyden crystal proteins, which we demonstrated to be altered in this patient. Results also emphasize the possible association of apolipoprotein with aberrant T cell proliferation. PMID:17785332

  15. Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts.

    PubMed

    Scarfò, Irene; Pellegrino, Elisa; Mereu, Elisabetta; Kwee, Ivo; Agnelli, Luca; Bergaggio, Elisa; Garaffo, Giulia; Vitale, Nicoletta; Caputo, Manuel; Machiorlatti, Rodolfo; Circosta, Paola; Abate, Francesco; Barreca, Antonella; Novero, Domenico; Mathew, Susan; Rinaldi, Andrea; Tiacci, Enrico; Serra, Sara; Deaglio, Silvia; Neri, Antonino; Falini, Brunangelo; Rabadan, Raul; Bertoni, Francesco; Inghirami, Giorgio; Piva, Roberto

    2016-01-14

    Anaplastic large-cell lymphoma (ALCL) is a clinical and biological heterogeneous disease that includes systemic anaplastic lymphoma kinase (ALK)-positive and ALK-negative entities. To discover biomarkers and/or genes involved in ALK-negative ALCL pathogenesis, we applied the cancer outlier profile analysis algorithm to a gene expression profiling data set including 249 cases of T-cell non-Hodgkin lymphoma and normal T cells. Ectopic coexpression of ERBB4 and COL29A1 genes was detected in 24% of ALK-negative ALCL patients. RNA sequencing and 5' RNA ligase-mediated rapid amplification of complementary DNA ends identified 2 novel ERBB4-truncated transcripts displaying intronic transcription start sites. By luciferase assays, we defined that the expression of ERBB4-aberrant transcripts is promoted by endogenous intronic long terminal repeats. ERBB4 expression was confirmed at the protein level by western blot analysis and immunohistochemistry. Lastly, we demonstrated that ERBB4-truncated forms show oncogenic potentials and that ERBB4 pharmacologic inhibition partially controls ALCL cell growth and disease progression in an ERBB4-positive patient-derived tumorgraft model. In conclusion, we identified a new subclass of ALK-negative ALCL characterized by aberrant expression of ERBB4-truncated transcripts carrying intronic 5' untranslated regions. PMID:26463425

  16. Aberrant light directly impairs mood and learning through melanopsin-expressing neurons.

    PubMed

    LeGates, Tara A; Altimus, Cara M; Wang, Hui; Lee, Hey-Kyoung; Yang, Sunggu; Zhao, Haiqing; Kirkwood, Alfredo; Weber, E Todd; Hattar, Samer

    2012-11-22

    The daily solar cycle allows organisms to synchronize their circadian rhythms and sleep-wake cycles to the correct temporal niche. Changes in day-length, shift-work, and transmeridian travel lead to mood alterations and cognitive function deficits. Sleep deprivation and circadian disruption underlie mood and cognitive disorders associated with irregular light schedules. Whether irregular light schedules directly affect mood and cognitive functions in the context of normal sleep and circadian rhythms remains unclear. Here we show, using an aberrant light cycle that neither changes the amount and architecture of sleep nor causes changes in the circadian timing system, that light directly regulates mood-related behaviours and cognitive functions in mice. Animals exposed to the aberrant light cycle maintain daily corticosterone rhythms, but the overall levels of corticosterone are increased. Despite normal circadian and sleep structures, these animals show increased depression-like behaviours and impaired hippocampal long-term potentiation and learning. Administration of the antidepressant drugs fluoxetine or desipramine restores learning in mice exposed to the aberrant light cycle, suggesting that the mood deficit precedes the learning impairments. To determine the retinal circuits underlying this impairment of mood and learning, we examined the behavioural consequences of this light cycle in animals that lack intrinsically photosensitive retinal ganglion cells. In these animals, the aberrant light cycle does not impair mood and learning, despite the presence of the conventional retinal ganglion cells and the ability of these animals to detect light for image formation. These findings demonstrate the ability of light to influence cognitive and mood functions directly through intrinsically photosensitive retinal ganglion cells. PMID:23151476

  17. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    SciTech Connect

    Tsujiuchi, Toshifumi . E-mail: ttujiuch@life.kindai.ac.jp; Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Mori, Toshio; Honoki, Kanya; Fukushima, Nobuyuki

    2006-10-27

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells.

  18. Comparison of methods to identify aberrant expression patterns in individual patients: augmenting our toolkit for precision medicine

    PubMed Central

    2013-01-01

    Background Patient-specific aberrant expression patterns in conjunction with functional screening assays can guide elucidation of the cancer genome architecture and identification of therapeutic targets. Since most statistical methods for expression analysis are focused on differences between experimental groups, the performance of approaches for patient-specific expression analyses are currently less well characterized. A comparison of methods for the identification of genes that are dysregulated relative to a single sample in a given set of experimental samples, to our knowledge, has not been performed. Methods We systematically evaluated several methods including variations on the nearest neighbor based outlying degree method, as well as the Zscore and a robust variant for their suitability to detect patient-specific events. The methods were assessed using both simulations and expression data from a cohort of pediatric acute B lymphoblastic leukemia patients. Results We first assessed power and false discovery rates using simulations and found that even under optimal conditions, high effect sizes (>4 unit differences) were necessary to have acceptable power for any method (>0.9) though high false discovery rates (>0.1) were pervasive across simulation conditions. Next we introduced a technical factor into the simulation and found that performance was reduced for all methods and that using weights with the outlying degree could provide performance gains depending on the number of samples and genes affected by the technical factor. In our use case that highlights the integration of functional assays and aberrant expression in a patient cohort (the identification of gene dysregulation events associated with the targets from a siRNA screen), we demonstrated that both the outlying degree and the Zscore can successfully identify genes dysregulated in one patient sample. However, only the outlying degree can identify genes dysregulated across several patient samples

  19. Aberrant expression of Notch1, HES1, and DTX1 genes in glioblastoma formalin-fixed paraffin-embedded tissues.

    PubMed

    Narayanappa, Rajeswari; Rout, Pritilata; Aithal, Madhuri G S; Chand, Ashis Kumar

    2016-05-01

    Glioblastoma is the most common malignant brain tumor accounting for more than 54 % of all gliomas. Despite aggressive treatments, median survival remains less than 1 year. This might be due to the unavailability of effective molecular diagnostic markers and targeted therapy. Thus, it is essential to discover molecular mechanisms underlying disease by identifying dysregulated pathways involved in tumorigenesis. Notch signaling is one such pathway which plays an important role in determining cell fates. Since it is found to play a critical role in many cancers, we investigated the role of Notch genes in glioblastoma with an aim to identify biomarkers that can improve diagnosis. Using real-time PCR, we assessed the expression of Notch genes including receptors (Notch1, Notch2, Notch3, and Notch4), ligands (JAG1, JAG2, and DLL3), downstream targets (HES1 and HEY2), regulator Deltex1 (DTX1), inhibitor NUMB along with transcriptional co-activator MAML1, and a component of gamma-secretase complex APH1A in 15 formalin-fixed paraffin-embedded (FFPE) patient samples. Relative quantification was done by the 2(-ΔΔCt) method; the data are presented as fold change in gene expression normalized to an internal control gene and relative to the calibrator. The data revealed aberrant expression of Notch genes in glioblastoma compared to normal brain. More than 85 % of samples showed high Notch1 (P = 0.0397) gene expression and low HES1 (P = 0.011) and DTX1 (P = 0.0001) gene expression. Our results clearly show aberrant expression of Notch genes in glioblastoma which can be used as putative biomarkers together with histopathological observation to improve diagnosis, therapeutic strategies, and patient prognosis. PMID:26662803

  20. Flank Sequences of miR‐145/143 and Their Aberrant Expression in Vascular Disease: Mechanism and Therapeutic Application

    PubMed Central

    Liu, Xiaojun; Cheng, Yunhui; Yang, Jian; Qin, Shanshan; Chen, Xiuwei; Tang, Xiaojun; Zhou, Xiangyu; Krall, Thomas J.; Zhang, Chunxiang

    2013-01-01

    Background Many microRNAs (miRNAs) are downregulated in proliferative vascular disease. Thus, upregulation of these miRNAs has become a major focus of research activity. However, there is a critical barrier in gene therapy to upregulate some miRNAs such as miR‐145 and miR‐143 because of their significant downregulation by the unclear endogenous mechanisms under disease conditions. The purpose of this study was to determine the molecular mechanisms responsible for their downregulation and to overcome the therapeutic barrier. Methods and Results In cultured proliferative rat vascular smooth muscle cells (VSMCs) in vitro and in diseased rat and mouse arteries in vivo, we have identified that the impairment of pri‐miR‐145 into pre‐miR‐145 is the critical step related to the downregulation of miR‐145, in which the PI3‐kinase/Akt/p53 pathway is involved. We further identified that the flank sequences of pri‐miR‐145 are the critical structural components responsible for the aberrant miR‐145 expression. Switching of the flank sequence of downregulated miR‐145 and miR‐143 to the flank sequence of miR‐31 confers resistance to their downregulation. The genetically engineered miR‐145 (smart miR‐145) restored the downregulated miR‐145 in proliferative rat VSMCs and in rat carotid arteries with balloon injury and mouse atherosclerotic aortas and demonstrated much better therapeutic effects on the abnormal growth of VSMCs, expression of its target gene, KLF5 expression, VSMC marker gene expression, and vascular neointimal growth. Conclusions The flank sequences of miR‐145 and miR‐143 play a critical role in their aberrant expression in VSMCs and vascular walls. The genetically engineered “smart” miRNAs based on their flank sequences may have broadly therapeutic applications for many vascular diseases. PMID:24166492

  1. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    SciTech Connect

    Chung, Eun Jee; Chun, Ji Na; Jung, Sun-Ah; Cho, Jin Won; Lee, Joon H.

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  2. Potassium channel ether à go-go1 is aberrantly expressed in human liposarcoma and promotes tumorigenesis.

    PubMed

    Wu, Jin; Zhong, Daixing; Wei, Yujian; Wu, Xinyu; Kang, Liangqi; Ding, Zhenqi

    2014-01-01

    The ether à go-go1 (Eag1) channel is overexpressed in a variety of cancers. However, the expression and function of Eag1 in liposarcoma are poorly understood. In the present study, the mRNA expression of Eag1 in different adipose tissue samples was examined by real-time PCR. Then, the protein expression of Eag1 in 131 different adipose tissues from 109 patients was detected by immunohistochemistry. Next, the associations between Eag1 expression and clinicopathological features of liposarcoma were analyzed. In addition, the effects of Eag1 on liposarcoma cell proliferation and cycle were evaluated by CCK-8, colony formation, xenograft mouse model, and flow cytometry, respectively. Finally, the activation of p38 mitogen-activated protein kinase (MAPK) was detected by Western blot analysis to explain the detailed mechanisms of oncogenic potential of Eag1 in liposarcoma. It was found that Eag1 was aberrantly expressed in over 67% liposarcomas, with a higher frequency than in lipoma, hyperplasia, inflammation, and normal adipose tissues. However, Eag1 expression was not correlated with clinicopathological features of liposarcoma. Eag1 inhibitor imipramine or Eag1-shRNA significantly suppressed the proliferation of liposarcoma cells in vitro and in vivo, accompanying with accumulation of cells in the G1 phase. These results suggest that Eag1 plays an important role in regulating the proliferation and cell cycle of liposarcoma cells and might be a potential therapeutic target for liposarcoma. PMID:25136578

  3. Potassium Channel Ether à go-go1 Is Aberrantly Expressed in Human Liposarcoma and Promotes Tumorigenesis

    PubMed Central

    Wu, Jin; Zhong, Daixing; Wei, Yujian; Wu, Xinyu; Kang, Liangqi; Ding, Zhenqi

    2014-01-01

    The ether à go-go1 (Eag1) channel is overexpressed in a variety of cancers. However, the expression and function of Eag1 in liposarcoma are poorly understood. In the present study, the mRNA expression of Eag1 in different adipose tissue samples was examined by real-time PCR. Then, the protein expression of Eag1 in 131 different adipose tissues from 109 patients was detected by immunohistochemistry. Next, the associations between Eag1 expression and clinicopathological features of liposarcoma were analyzed. In addition, the effects of Eag1 on liposarcoma cell proliferation and cycle were evaluated by CCK-8, colony formation, xenograft mouse model, and flow cytometry, respectively. Finally, the activation of p38 mitogen-activated protein kinase (MAPK) was detected by Western blot analysis to explain the detailed mechanisms of oncogenic potential of Eag1 in liposarcoma. It was found that Eag1 was aberrantly expressed in over 67% liposarcomas, with a higher frequency than in lipoma, hyperplasia, inflammation, and normal adipose tissues. However, Eag1 expression was not correlated with clinicopathological features of liposarcoma. Eag1 inhibitor imipramine or Eag1-shRNA significantly suppressed the proliferation of liposarcoma cells in vitro and in vivo, accompanying with accumulation of cells in the G1 phase. These results suggest that Eag1 plays an important role in regulating the proliferation and cell cycle of liposarcoma cells and might be a potential therapeutic target for liposarcoma. PMID:25136578

  4. Aberrant activation-induced cytidine deaminase expression in Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia.

    PubMed

    Shi, Yang; Zhao, Xiaoxian; Durkin, Lisa; Rogers, Heesun Joyce; Hsi, Eric D

    2016-06-01

    Activation-induced cytidine deaminase (AID) is expressed in germinal center B cells and plays a critical role in somatic hypermutation and class-switch recombination of immunoglobulin genes. Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) carries a poor prognosis and is specifically treated with tyrosine kinase inhibitors. Interestingly, AID has been shown to be aberrantly expressed and functional in Ph+ ALL and is thought to contribute to genetic instability. We hypothesized that AID might be detectable in routinely processed bone marrow biopsies by immunohistochemistry (IHC) and assist in identifying Ph+ ALL. We found that AID was expressed in 26 (70%) of 37 cases of Ph+ ALL but only 1 (2.9%) of 38 cases of Ph- ALL cases. There was a significant difference in AID expression between these 2 ALL groups (P < .001, Fisher exact test). The expression of AID was confirmed by RT-PCR (reverse-transcriptase polymerase chain reaction) and correlated with IHC scoring. AID protein is expressed in a large proportion of Ph+ ALL cases at levels detectable by IHC in clinical samples and might be useful to rapidly identify cases likely to have a BCR/ABL1 fusion. PMID:26980048

  5. Junctional Adhesion Molecule-A Is Highly Expressed on Human Hematopoietic Repopulating Cells and Associates with the Key Hematopoietic Chemokine Receptor CXCR4.

    PubMed

    Chang, Chao-Hui; Hale, Sarah J; Cox, Charlotte V; Blair, Allison; Kronsteiner, Barbara; Grabowska, Rita; Zhang, Youyi; Cook, David; Khoo, Cheen P; Schrader, Jack B; Kabuga, Suranahi Buglass; Martin-Rendon, Enca; Watt, Suzanne M

    2016-06-01

    Hematopoietic stem/progenitor cells (HSPCs) reside in specialized bone marrow microenvironmental niches, with vascular elements (endothelial/mesenchymal stromal cells) and CXCR4-CXCL12 interactions playing particularly important roles for HSPC entry, retention, and maintenance. The functional effects of CXCL12 are dependent on its local concentration and rely on complex HSPC-niche interactions. Two Junctional Adhesion Molecule family proteins, Junctional Adhesion Molecule-B (JAM)-B and JAM-C, are reported to mediate HSPC-stromal cell interactions, which in turn regulate CXCL12 production by mesenchymal stromal cells (MSCs). Here, we demonstrate that another JAM family member, JAM-A, is most highly expressed on human hematopoietic stem cells with in vivo repopulating activity (p < .01 for JAM-A(high) compared to JAM-A(Int or Low) cord blood CD34(+) cells). JAM-A blockade, silencing, and overexpression show that JAM-A contributes significantly (p < .05) to the adhesion of human HSPCs to IL-1β activated human bone marrow sinusoidal endothelium. Further studies highlight a novel association of JAM-A with CXCR4, with these molecules moving to the leading edge of the cell upon presentation with CXCL12 (p < .05 compared to no CXCL12). Therefore, we hypothesize that JAM family members differentially regulate CXCR4 function and CXCL12 secretion in the bone marrow niche. Stem Cells 2016;34:1664-1678. PMID:26866290

  6. Trichostatin A specifically improves the aberrant expression of transcription factor genes in embryos produced by somatic cell nuclear transfer

    PubMed Central

    Inoue, Kimiko; Oikawa, Mami; Kamimura, Satoshi; Ogonuki, Narumi; Nakamura, Toshinobu; Nakano, Toru; Abe, Kuniya; Ogura, Atsuo

    2015-01-01

    Although mammalian cloning by somatic cell nuclear transfer (SCNT) has been established in various species, the low developmental efficiency has hampered its practical applications. Treatment of SCNT-derived embryos with histone deacetylase (HDAC) inhibitors can improve their development, but the underlying mechanism is still unclear. To address this question, we analysed gene expression profiles of SCNT-derived 2-cell mouse embryos treated with trichostatin A (TSA), a potent HDAC inhibitor that is best used for mouse cloning. Unexpectedly, TSA had no effect on the numbers of aberrantly expressed genes or the overall gene expression pattern in the embryos. However, in-depth investigation by gene ontology and functional analyses revealed that TSA treatment specifically improved the expression of a small subset of genes encoding transcription factors and their regulatory factors, suggesting their positive involvement in de novo RNA synthesis. Indeed, introduction of one of such transcription factors, Spi-C, into the embryos at least partially mimicked the TSA-induced improvement in embryonic development by activating gene networks associated with transcriptional regulation. Thus, the effects of TSA treatment on embryonic gene expression did not seem to be stochastic, but more specific than expected, targeting genes that direct development and trigger zygotic genome activation at the 2-cell stage. PMID:25974394

  7. Trichostatin A specifically improves the aberrant expression of transcription factor genes in embryos produced by somatic cell nuclear transfer.

    PubMed

    Inoue, Kimiko; Oikawa, Mami; Kamimura, Satoshi; Ogonuki, Narumi; Nakamura, Toshinobu; Nakano, Toru; Abe, Kuniya; Ogura, Atsuo

    2015-01-01

    Although mammalian cloning by somatic cell nuclear transfer (SCNT) has been established in various species, the low developmental efficiency has hampered its practical applications. Treatment of SCNT-derived embryos with histone deacetylase (HDAC) inhibitors can improve their development, but the underlying mechanism is still unclear. To address this question, we analysed gene expression profiles of SCNT-derived 2-cell mouse embryos treated with trichostatin A (TSA), a potent HDAC inhibitor that is best used for mouse cloning. Unexpectedly, TSA had no effect on the numbers of aberrantly expressed genes or the overall gene expression pattern in the embryos. However, in-depth investigation by gene ontology and functional analyses revealed that TSA treatment specifically improved the expression of a small subset of genes encoding transcription factors and their regulatory factors, suggesting their positive involvement in de novo RNA synthesis. Indeed, introduction of one of such transcription factors, Spi-C, into the embryos at least partially mimicked the TSA-induced improvement in embryonic development by activating gene networks associated with transcriptional regulation. Thus, the effects of TSA treatment on embryonic gene expression did not seem to be stochastic, but more specific than expected, targeting genes that direct development and trigger zygotic genome activation at the 2-cell stage. PMID:25974394

  8. Aberrant expression of nuclear HDAC3 and cytoplasmic CDH1 predict a poor prognosis for patients with pancreatic cancer

    PubMed Central

    Yuan, Cuncun; Yang, Haiyan; Wang, Lei; Wang, Liwei

    2016-01-01

    Previous studies showed that aberrant CDH1 or/and HDAC3 localization is essential for the progression of some human cancers. Here, we investigate the prognostic significance of aberrant CDH1 and HDAC3 localization in 84 pancreatic cancer patients. Our results show that increases in both membrane and cytoplasmic CDH1 correlate with lymph node metastasis (P = 0.026 and P < 0.001, respectively) and clinical stage (P = 0.020 and P < 0.001, respectively). Increased nuclear HDAC3 correlates with lymph node metastasis (P < 0.001) and advanced clinical stage (P < 0.001), but increased cytoplasmic HDAC3 does not (P > 0.05). Multivariate analysis showed that nuclear HDAC3 and cytoplasmic CDH1 (P = 0.001 and P = 0.010, respectively), as well as tumor differentiation (P = 0.009) are independent prognostic factors. Most importantly, patients with high co-expression of nuclear HDAC3 and cytoplasmic CDH1 had shorter survival times (P < 0.001), more frequent lymph node metastasis (P < 0.001), and advanced clinical stage (P < 0.001). Our studies provide convincing evidence that nuclear HDAC3 and cytoplasmic CDH1 have independent prognostic value in pancreatic cancer and provide novel targets for prognostic therapeutics. PMID:26918727

  9. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression.

    PubMed

    Li, Min; Zhang, Yuqing; Liu, Zijuan; Bharadwaj, Uddalak; Wang, Hao; Wang, Xinwen; Zhang, Sheng; Liuzzi, Juan P; Chang, Shou-Mei; Cousins, Robert J; Fisher, William E; Brunicardi, F Charles; Logsdon, Craig D; Chen, Changyi; Yao, Qizhi

    2007-11-20

    Zinc is an essential trace element and catalytic/structural component used by many metalloenzymes and transcription factors. Recent studies indicate a possible correlation of zinc levels with the cancer risk; however, the exact role of zinc and zinc transporters in cancer progression is unknown. We have observed that a zinc transporter, ZIP4 (SLC39A4), was substantially overexpressed in 16 of 17 (94%) clinical pancreatic adenocarcinoma specimens compared with the surrounding normal tissues, and ZIP4 mRNA expression was significantly higher in human pancreatic cancer cells than human pancreatic ductal epithelium (HPDE) cells. This indicates that aberrant ZIP4 up-regulation may contribute to the pancreatic cancer pathogenesis and progression. We studied the effects of ZIP4 overexpression in pancreatic cancer cell proliferation in vitro and pancreatic cancer progression in vivo. We found that forced expression of ZIP4 increased intracellular zinc levels, increased cell proliferation by 2-fold in vitro, and significantly increased tumor volume by 13-fold in the nude mice model with s.c. xenograft compared with the control cells. In the orthotopic nude mice model, overexpression of ZIP4 not only increased the primary tumor weight (7.2-fold), it also increased the peritoneal dissemination and ascites incidence. Moreover, increased cell proliferation and higher zinc content were also observed in the tumor tissues that overexpressed ZIP4. These data reveal an important outcome of aberrant ZIP4 expression in contributing to pancreatic cancer pathogenesis and progression. It may suggest a therapeutic strategy whereby ZIP4 is targeted to control pancreatic cancer growth. PMID:18003899

  10. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression

    PubMed Central

    Li, Min; Zhang, Yuqing; Liu, Zijuan; Bharadwaj, Uddalak; Wang, Hao; Wang, Xinwen; Zhang, Sheng; Liuzzi, Juan P.; Chang, Shou-Mei; Cousins, Robert J.; Fisher, William E.; Brunicardi, F. Charles; Logsdon, Craig D.; Chen, Changyi; Yao, Qizhi

    2007-01-01

    Zinc is an essential trace element and catalytic/structural component used by many metalloenzymes and transcription factors. Recent studies indicate a possible correlation of zinc levels with the cancer risk; however, the exact role of zinc and zinc transporters in cancer progression is unknown. We have observed that a zinc transporter, ZIP4 (SLC39A4), was substantially overexpressed in 16 of 17 (94%) clinical pancreatic adenocarcinoma specimens compared with the surrounding normal tissues, and ZIP4 mRNA expression was significantly higher in human pancreatic cancer cells than human pancreatic ductal epithelium (HPDE) cells. This indicates that aberrant ZIP4 up-regulation may contribute to the pancreatic cancer pathogenesis and progression. We studied the effects of ZIP4 overexpression in pancreatic cancer cell proliferation in vitro and pancreatic cancer progression in vivo. We found that forced expression of ZIP4 increased intracellular zinc levels, increased cell proliferation by 2-fold in vitro, and significantly increased tumor volume by 13-fold in the nude mice model with s.c. xenograft compared with the control cells. In the orthotopic nude mice model, overexpression of ZIP4 not only increased the primary tumor weight (7.2-fold), it also increased the peritoneal dissemination and ascites incidence. Moreover, increased cell proliferation and higher zinc content were also observed in the tumor tissues that overexpressed ZIP4. These data reveal an important outcome of aberrant ZIP4 expression in contributing to pancreatic cancer pathogenesis and progression. It may suggest a therapeutic strategy whereby ZIP4 is targeted to control pancreatic cancer growth. PMID:18003899

  11. Aberrant expressions of c-KIT and DOG-1 in mucinous and nonmucinous colorectal carcinomas and relation to clinicopathologic features and prognosis.

    PubMed

    Foda, Abd Al-Rahman Mohammad; Mohamed, Mie Ali

    2015-10-01

    c-KIT and DOG-1 are 2 highly expressed proteins in gastrointestinal stromal tumors. Few studies had investigated c-KIT, but not DOG-1, expression in colorectal carcinoma (CRC). This study aims to investigate expressions of c-KIT and DOG-1 in colorectal mucinous carcinoma and nonmucinous carcinoma using manual tissue microarray technique. In this work, we studied tumor tissue specimens from 150 patients with colorectal mucinous (MA) and nonmucinous adenocarcinoma (NMA). High-density manual tissue microarrays were constructed using modified mechanical pencil tip technique, and immunohistochemistry for c-KIT and DOG-1 was done. We found that aberrant c-KIT expression was detected in 12 cases (8%); 6 cases (4%) showed strong expression. Aberrant DOG-1 expression was detected in 15 cases (10%); among them, only 4 cases (2.7%) showed strong expression. Nonmucinous adenocarcinoma showed a significantly high expression of c-KIT, but not DOG-1, than MA. Aberrant c-KIT and DOG-1 expressions were significantly unrelated but were associated with excessive microscopic abscess formation. Neither c-KIT nor DOG-1 expression showed a significant impact on disease-free survival or overall survival. In conclusion, aberrant c-KIT and DOG-1 expressions in CRC are rare events, either in NMA or MA. Nonmucinous adenocarcinoma showed a significantly higher expression of c-KIT, but not DOG-1, than MA. The expressions of both in CRC are significantly unrelated but are associated with microscopic abscess formation. Neither c-KIT nor DOG-1 expression showed a significant impact on disease-free survival or overall survival. So, c-KIT and DOG-1 immunostaining is not a cost-effective method of identifying patients with CRC who may benefit from treatment with tyrosine kinase inhibitors. PMID:26272691

  12. CXCR7 Controls Competition for Recruitment of β-Arrestin 2 in Cells Expressing Both CXCR4 and CXCR7

    PubMed Central

    Coggins, Nathaniel L.; Trakimas, Danielle; Chang, S. Laura; Ehrlich, Anna; Ray, Paramita; Luker, Kathryn E.

    2014-01-01

    Chemokine CXCL12 promotes growth and metastasis of more than 20 different human cancers, as well as pathogenesis of other common diseases. CXCL12 binds two different receptors, CXCR4 and CXCR7, both of which recruit and signal through the cytosolic adapter protein β-arrestin 2. Differences in CXCL12-dependent recruitment of β-arrestin 2 in cells expressing one or both receptors remain poorly defined. To quantitatively investigate parameters controlling association of β-arrestin 2 with CXCR4 or CXCR7 in cells co-expressing both receptors, we used a systems biology approach combining real-time, multi-spectral luciferase complementation imaging with computational modeling. Cells expressing only CXCR4 maintain low basal association with β-arrestin 2, and CXCL12 induces a rapid, transient increase in this interaction. In contrast, cells expressing only CXCR7 have higher basal association with β-arrestin 2 and exhibit more gradual, prolonged recruitment of β-arrestin 2 in response to CXCL12. We developed and fit a data-driven computational model for association of either CXCR4 or CXCR7 with β-arrestin 2 in cells expressing only one type of receptor. We then experimentally validated model predictions that co-expression of CXCR4 and CXCR7 on the same cell substantially decreases both the magnitude and duration of CXCL12-regulated recruitment of β-arrestin 2 to CXCR4. Co-expression of both receptors on the same cell only minimally alters recruitment of β-arrestin 2 to CXCR7. In silico experiments also identified β-arrestin 2 as a limiting factor in cells expressing both receptors, establishing that CXCR7 wins the “competition” with CXCR4 for CXCL12 and recruitment of β-arrestin 2. These results reveal how competition for β-arrestin 2 controls integrated responses to CXCL12 in cells expressing both CXCR4 and CXCR7. These results advance understanding of normal and pathologic functions of CXCL12, which is critical for developing effective strategies to target

  13. Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype

    PubMed Central

    Fahrenkrog, Birthe; Martinelli, Valérie; Nilles, Nadine; Fruhmann, Gernot; Chatel, Guillaume; Juge, Sabine; Sauder, Ursula; Di Giacomo, Danika; Mecucci, Cristina; Schwaller, Jürg

    2016-01-01

    Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML). In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD) transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE), in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α). Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis. PMID:27031510

  14. Aberrant splicing and truncated-protein expression due to a newly identified XPA gene mutation.

    PubMed

    Sato, M; Nishigori, C; Yagi, T; Takebe, H

    1996-02-15

    A group A xeroderma pigmentosum (XPA) patient, XP2NI, is a compound heterozygote with a newly identified G to C transversion at the last nucleotide in exon 5 in one chromosome, and with the known splicing mutation in intron 3 in another chromosome in the XPA gene. XP2NI had mild skin symptoms and the cells were slightly less sensitive to UV radiation than the cells of typical severe XPA patients who have the splicing mutation in intron 3 homozygously. Reverse transcriptase (RT)-PCR and sequencing of the PCR products revealed that the mutation in exon 5 resulted in producing three types of aberrant mRNA, lacking 7 nucleotides at the end of exon 5, lacking entire exon 5, and lacking exons 3, 4 and 5. A significant amount of a truncated type of protein was produced in XP2NI cells, and the size of the protein indicated that it should have been translated from the mRNA, lacking the 7 nucleotides and retained one of the zinc-finger domains required for the DNA repair activity. The clinical mildness of XP2NI may be due to the residual DNA repair activity of the truncated XPA protein, while no XPA protein was detected in the XPA cells with the homozygous intron 3 splicing mutation. PMID:8596539

  15. Aberrant DKK3 Expression in the Oral Leukoplakia and Oral Submucous Fibrosis: A Comparative Immunohistochemical Study

    PubMed Central

    Al-dhohrah, T.; Mashrah, M.; Yao, Z.; Huang, J.

    2016-01-01

    We aimed to assess and compare the expression of Dickkopf homolog 3 (DKK3), a possible tumor suppressor gene (TSG), in oral leukoplakia (OLK) and oral submucous fibrosis (OSF) using immunohistochemistry. Seventy-five cases of normal oral mucosa (NOM), OLK, OSF, and squamous cell carcinoma (OSCC) were studied. DKK3 was expressed in all cases of NOM, OLK and OSCC. There was steady increases in the percentage of the positive cells progressing toward OSCC. The expression was localized in the cytoplasm and cell membrane of cell affected by OLK with mild dysplasia and OLK with severe dysplasia. No significant association was observed between DKK3 expression and dysplastic status of OLK. Loss of DKK3 expression was observed in 15 of 30 cases in the OSF group, which was significantly associated with histological grade of OSF (P<0.0001). The percentage of positive cells gradually declined with the increasing severity of epithelial atrophy. A significant difference (P<0.01) was observed when comparing DKK3 expression among different groups of OLK and OSF cases. DKK3 may have diverse expressions in oral premalignant lesions. Loss of DKK3 expression in dysplastic/advanced stage of OSF may imply a high risk of progression to oral cancer. PMID:27349317

  16. Aberrant Calreticulin Expression in Articular Cartilage of Dio2 Deficient Mice

    PubMed Central

    Bomer, Nils; Cornelis, Frederique M. F.; Ramos, Yolande F. M.; den Hollander, Wouter; Lakenberg, Nico; van der Breggen, Ruud; Storms, Lies; Slagboom, P. Eline; Lories, Rik J. U.; Meulenbelt, Ingrid

    2016-01-01

    Objective To identify intrinsic differences in cartilage gene expression profiles between wild-type- and Dio2-/--mice, as a mechanism to investigate factors that contribute to prolonged healthy tissue homeostasis. Methods Previously generated microarray-data (Illumina MouseWG-6 v2) of knee cartilage of wild-type and Dio2 -/- -mice were re-analyzed to identify differential expressed genes independent of mechanical loading conditions by forced treadmill-running. RT-qPCR and western blot analyses of overexpression and knockdown of Calr in mouse chondro-progenitor cells (ATDC5) were applied to assess the direct effect of differential Calr expression on cartilage deposition. Results Differential expression analyses of articular cartilage of Dio2-/- (N = 9) and wild-type-mice (N = 11) while applying a cutoff threshold (P < 0.05 (FDR) and FC > |1,5|) resulted in 1 probe located in Calreticulin (Calr) that was found significantly downregulated in Dio2-/- mice (FC = -1.731; P = 0.044). Furthermore, overexpression of Calr during early chondrogenesis in ATDC5 cells leads to decreased proteoglycan deposition and corresponding lower Aggrecan expression, whereas knocking down Calr expression does not lead to histological differences of matrix composition. Conclusion We here demonstrate that the beneficial homeostatic state of articular cartilage in Dio2-/- mice is accompanied with significant lower expression of Calr. Functional analyses further showed that upregulation of Calr expression could act as an initiator of cartilage destruction. The consistent association between Calr and Dio2 expression suggests that enhanced expression of these genes facilitate detrimental effects on cartilage integrity. PMID:27163789

  17. Aberrant large tumor suppressor 2 (LATS2) gene expression correlates with EGFR mutation and survival in lung adenocarcinomas

    PubMed Central

    Luo, Susan Y.; Sit, Ko-Yung; Sihoe, Alan D.L.; Suen, Wai-Sing; Au, Wing-Kuk; Tang, Ximing; Ma, Edmond S.K.; Chan, Wai-Kong; Wistuba, Ignacio I.; Minna, John D.; Tsao, George S.W.; Lam, David C.L.

    2015-01-01

    Background Large tumor suppressor 2 (LATS2) gene is a putative tumor suppressor gene with potential roles in regulation of cell proliferation and apoptosis in lung cancer. The aim of this study is to explore the association of aberrant LATS2 expression with EGFR mutation and survival in lung adenocarcinoma (AD), and the effects of LATS2 silencing in both lung AD cell lines. Methods LATS2 mRNA and protein expression in resected lung AD were correlated with demographic characteristics, EGFR mutation and survival. LATS2-specific siRNA was transfected into four EGFR wild-type (WT) and three EGFR mutant AD cell lines and the changes in LATS2 expression and relevant signaling molecules before and after LATS2 knockdown were assayed. Results Fifty resected lung AD were included (M:F = 23:27, smokers:non-smokers = 19:31, EGFR mutant:wild-type = 21:29) with LATS2 mRNA levels showed no significant difference between gender, age, smoking and pathological stages while LATS2 immunohistochemical staining on an independent set of 79 lung AD showed similar trend. LATS2 mRNA level was found to be a significant independent predictor for survival status (disease-free survival RR = 0.217; p = 0.003; Overall survival RR = 0.238; p = 0.036). siRNA-mediated suppression of LATS2 expression resulted in augmentation of ERK phosphorylation in EGFR wild-type AD cell lines with high basal LATS2 expression, discriminatory modulation of Akt signaling between EGFR wild-type and mutant cells, and induction of p53 accumulation in AD cell lines with low baseline p53 levels. Conclusions LATS2 expression level is predictive of survival in patients with resected lung AD. LATS2 may modulate and contribute to tumor growth via different signaling pathways in EGFR mutant and wild-type tumors. PMID:24976335

  18. Aberrant Mucin5B expression in lung adenocarcinomas detected by iTRAQ labeling quantitative proteomics and immunohistochemistry

    PubMed Central

    2013-01-01

    Background Lung cancer is the number one cause of cancer-related deaths in the United States and worldwide. The complex protein changes and/or signature of protein expression in lung cancer, particularly in non-small cell lung cancer (NSCLC) has not been well defined. Although several studies have investigated the protein profile in lung cancers, the knowledge is far from complete. Among early studies, mucin5B (MUC5B) has been suggested to play an important role in the tumor progression. MUC5B is the major gel-forming mucin in the airway. In this study, we investigated the overall protein profile and MUC5B expression in lung adenocarcinomas, the most common type of NSCLCs. Methods Lung adenocarcinoma tissue in formalin-fixed paraffin-embedded (FFPE) blocks was collected and microdissected. Peptides from 8 tumors and 8 tumor-matched normal lung tissue were extracted and labeled with 8-channel iTRAQ reagents. The labeled peptides were identified and quantified by LC-MS/MS using an LTQ Orbitrap Velos mass spectrometer. MUC5B expression identified by iTRAQ labeling was further validated using immunohistochemistry (IHC) on tumor tissue microarray (TMA). Results A total of 1288 peptides from 210 proteins were identified and quantified in tumor tissues. Twenty-two proteins showed a greater than 1.5-fold differences between tumor and tumor-matched normal lung tissues. Fifteen proteins, including MUC5B, showed significant changes in tumor tissues. The aberrant expression of MUC5B was further identified in 71.1% of lung adenocarcinomas in the TMA. Discussions A subset of tumor-associated proteins was differentially expressed in lung adenocarcinomas. The differential expression of MUC5B in lung adenocarcinomas suggests its role as a potential biomarker in the detection of adenocarcinomas. PMID:24176033

  19. Aberrant NRP-1 expression serves as predicator of metastatic endometrial and lung cancers

    PubMed Central

    Okon, Imoh S.; Ding, Ye; Coughlan, Kathleen A.; Wang, Qiongxin; Song, Ping; Benbrook, Doris M.; Zou, Ming-Hui

    2016-01-01

    Neuropilin-1 (NRP-1) has emerged as an important driver of tumor-promoting phenotypes of human malignancies. However, incomplete knowledge exists as to how this single-pass transmembrane receptor mediates pleiotropic tumor-promoting functions. The purpose of this study was to evaluate NRP-1 expression and metastatic properties in 94 endometrial cancer and matching serum specimens and in a lung cancer cell line. We found that NRP-1 expression significantly correlated with increased tumoral expression of vascular endothelial growth factor 2 (VEGFR2) and serum levels of hepatocyte growth factor (HGF) and cell growth-stimulating factor (C-GSF). Tumoral NRP-1 also was positively associated with expression of NEDD9, a pro-metastatic protein. In the highly metastatic lung cancer cell line (H1792), stable LKB1 depletion caused increased migration in vitro and accentuated NRP-1 and NEDD9 expression in vivo. Our findings demonstrate that perturbed expression of these targets correlate with metastatic potential of endometrial and lung tumors, providing clinically-relevant biomarker applications for diagnostic and therapeutic targeting. PMID:26701889

  20. Aberrant Gene Expression Profile of Unaffected Colon Mucosa from Patients with Unifocal Colon Polyp

    PubMed Central

    Lian, Jingjing; Ma, Lili; Yang, Jiayin; Xu, Lili

    2015-01-01

    Background The aim of this study was to evaluate gene expression profiles in unaffected colon mucosa and polyp tissue from patients with unifocal colon polyp to investigate the potential mucosa impairment in normal-appearing colon mucosa from these patients. Material/Methods Colon polyp patients were prospectively recruited. We obtained colon biopsies from the normal-appearing sites and polyp tissue through colonoscopy. Gene expression analysis was performed using microarrays. Gene ontology and clustering were evaluated by bioinformatics. Results We detected a total of 711 genes (274 up-regulated and 437 down-regulated) in polyp tissue and 256 genes (170 up-regulated and 86 down-regulated) in normal-appearing colon mucosa, with at least a 3-fold of change compared to healthy controls. Heatmapping of the gene expression showed similar gene alteration patterns between unaffected colon mucosa and polyp tissue. Gene ontology analyses confirmed the overlapped molecular functions and pathways of altered gene expression between unaffected colon mucosa and polyp tissue from patients with unifocal colon polyp. The most significantly altered genes in normal-appearing tissues in polyp patients include immune response, external side of plasma membrane, nucleus, and cellular response to zinc ion. Conclusions Significant gene expression alterations exist in unaffected colon mucosa from patients with unifocal colon polyp. Unaffected colon mucosa and polyp tissue share great similarity and overlapping of altered gene expression profiles, indicating the potential possibility of recurrence of colon polyps due to underlying molecular abnormalities of colon mucosa in these patients. PMID:26675397

  1. Aberrantly expressed microRNAs in the context of bladder tumorigenesis

    PubMed Central

    Lee, Jong-Young; Ryu, Dong-Sung; Kim, Wun-Jae

    2016-01-01

    MicroRNAs (miRNAs), small noncoding RNAs 19–22 nucleotides in length, play a major role in negative regulation of gene expression at the posttranscriptional level. Several miRNAs act as tumor suppressors or oncogenes that control cell differentiation, proliferation, apoptosis, or angiogenesis during tumorigenesis. To date, 19 research groups have published large-scale expression profiles that identified 261 miRNAs differentially expressed in bladder cancer, of which 76 were confirmed to have consistent expression patterns by two or more groups. These consistently expressed miRNAs participated in regulation of multiple biological processes and factors, including axon guidance, cancer-associated proteoglycans, and the ErbB and transforming growth factorbeta signaling pathways. Because miRNAs can be released from cancer cells into urine via secreted particles, we propose that miRNAs differentially expressed between tissue and urine could serve as predictors of bladder cancer, and could thus be exploited for noninvasive diagnosis. PMID:27326408

  2. Aberrantly expressed microRNAs in the context of bladder tumorigenesis.

    PubMed

    Lee, Jong-Young; Ryu, Dong-Sung; Kim, Wun-Jae; Kim, Seong-Jin

    2016-06-01

    MicroRNAs (miRNAs), small noncoding RNAs 19-22 nucleotides in length, play a major role in negative regulation of gene expression at the posttranscriptional level. Several miRNAs act as tumor suppressors or oncogenes that control cell differentiation, proliferation, apoptosis, or angiogenesis during tumorigenesis. To date, 19 research groups have published large-scale expression profiles that identified 261 miRNAs differentially expressed in bladder cancer, of which 76 were confirmed to have consistent expression patterns by two or more groups. These consistently expressed miRNAs participated in regulation of multiple biological processes and factors, including axon guidance, cancer-associated proteoglycans, and the ErbB and transforming growth factorbeta signaling pathways. Because miRNAs can be released from cancer cells into urine via secreted particles, we propose that miRNAs differentially expressed between tissue and urine could serve as predictors of bladder cancer, and could thus be exploited for noninvasive diagnosis. PMID:27326408

  3. Aberration of miRNAs Expression in Leukocytes from Sporadic Amyotrophic Lateral Sclerosis

    PubMed Central

    Chen, YongPing; Wei, QianQian; Chen, XuePing; Li, ChunYu; Cao, Bei; Ou, RuWei; Hadano, Shinji; Shang, Hui-Fang

    2016-01-01

    Background: Accumulating evidence indicates that miRNAs play an important role in the development of amyotrophic lateral sclerosis (ALS). Most of previous studies on miRNA dysregulation in ALS focused on the alterative expression in ALS animal model or in limited samples from European patients with ALS. In the present study, the miRNA expression profiles were investigated in Chinese ALS patients to explore leukocytes miRNAs as a potential biomarker for the diagnosis of ALS. Methods: We analyzed the expression profiles of 1733 human mature miRNAs using microarray technology in leukocytes obtained from 5 patients with sporadic ALS (SALS) and 5 healthy controls. An independent group of 83 SALS patients, 24 Parkinson's disease (PD) patients and 61 controls was used for validation by real-time polymerase chain reaction assay. Area under the receiver operating characteristic curve (AUC) was used to evaluate diagnostic accuracy. In addition, target genes and signaling information of validated differential expression miRNAs were predicted using Bioinformatics. Results: Eleven miRNAs, including four over-expressed and seven under-expressed miRNAs detected in SALS patients compared to healthy controls were selected for validation. Four under-expressed microRNAs, including hsa-miR-183, hsa-miR-193b, hsa-miR-451, and hsa-miR-3935, were confirmed in validation stage by comparison of 83 SALS patients and 61 HCs. Moreover, we identified a miRNA panel (hsa-miR-183, hsa-miR-193b, hsa-miR-451, and hsa-miR-3935) having a high diagnostic accuracy of SALS (AUC 0.857 for the validation group). However, only hsa-miR-183 was significantly lower in SALS patients than that in PD patients and in HCs, while no differences were found between PD patients and HCs. By bioinformatics analysis, we obtained a large number of target genes and signaling information that are linked to neurodegeneration. Conclusion: This study provided evidence of abnormal miRNA expression patterns in the peripheral

  4. Aberrant expression of proPTPRN2 in cancer cells confers resistance to apoptosis

    PubMed Central

    Sorokin, Alexey V.; Nair, Binoj C.; Wei, Yongkun; Aziz, Kathryn E.; Evdokimova, Valentina; Hung, Mien-Chie; Chen, Junjie

    2015-01-01

    The protein tyrosine phosphatase receptor PTPRN2 is expressed predominantly in endocrine and neuronal cells where it functions in exocytosis. We found that its immature isoform proPTPRN2 is overexpressed in various cancers including breast cancer. High proPTPRN2 expression was associated strongly with lymph node-positive breast cancer and poor clinical outcome. Loss of proPTPRN2 in breast cancer cells promoted apoptosis and blocked tumor formation in mice, while enforced expression of proPTPRN2 in non-transformed human mammary epithelial cells exerted a converse effect. Mechanistic investigations suggested that ProPTPRN2 elicited these effects through direct interaction with TRAF2, a hub scaffold protein for multiple kinase cascades including ones that activate NF-kB. Overall our results suggest PTPRN2 as a novel candidate biomarker and therapeutic target in breast cancer. PMID:25877877

  5. Aberrant expression of pim-3 promotes proliferation and migration of ovarian cancer cells.

    PubMed

    Zhuang, Hao; Zhao, Man-Yin; Hei, Kai-Wen; Yang, Bai-Cai; Sun, Li; Du, Xue; Li, Yong-Mei

    2015-01-01

    Pim kinase-3(Pim-3), a member of serine/threonine protein kinases, has been implicated in multiple human cancers and involved in Myc-induced tumorigenesis. However, little is known regarding its expression and biological function in human ovarian cancer. In this study we showed that the clinical significance and biological functions of Pim-3 in ovarian cancer and found that higher Pim-3 mRNA level are detected in ovarian cancer tissues than those in normal ovarian tissues. There are significant correlations between higher Pim-3 expression levels with the FIGO stage, histopathological subtypes, and distant metastasis in ovarian cancer patients. Lentivirus-mediated gene overexpression of Pim-3 significantly promotes the proliferation and migration of SKOV3 cell lines. Furthermore, MACC1 and Pim-3 expression were significantly correlated in human ovarian cancer cells, and overexpression of Pim-3 in ovary cancer cells increased MACC1 mRNA and protein expression. The data indicate that Pim-3 acts as a putative oncogene in ovary cancer and could be a viable diagnostic and therapeutic target for ovarian cancer. PMID:25921139

  6. Benzene-Induced Aberrant miRNA Expression Profile in Hematopoietic Progenitor Cells in C57BL/6 Mice

    PubMed Central

    Wei, Haiyan; Zhang, Juan; Tan, Kehong; Sun, Rongli; Yin, Lihong; Pu, Yuepu

    2015-01-01

    Benzene is a common environmental pollutant that causes hematological alterations. MicroRNAs (miRNAs) may play a role in benzene-induced hematotoxicity. In this study, C57BL/6 mice showed significant hematotoxicity after exposure to 150 mg/kg benzene for 4 weeks. Benzene exposure decreased not only the number of cells in peripheral blood but also hematopoietic progenitor cells in the bone marrow. Meanwhile, RNA from Lin− cells sorted from the bone marrow was applied to aberrant miRNA expression profile using Illumina sequencing. We found that 5 miRNAs were overexpressed and 45 miRNAs were downregulated in the benzene exposure group. Sequencing results were confirmed through qRT-PCR. Furthermore, we also identified five miRNAs which significantly altered in Lin−c-Kit+ cells obtained from benzene-exposed mice, including mmu-miR-34a-5p; mmu-miR-342-3p; mmu-miR-100-5p; mmu-miR-181a-5p; and mmu-miR-196b-5p. In summary, we successfully established a classical animal model to induce significant hematotoxicity by benzene injection. Benzene exposure may cause severe hematotoxicity not only to blood cells in peripheral circulation but also to hematopoietic cells in bone marrow. Benzene exposure also alters miRNA expression in hematopoietic progenitor cells. This study suggests that benzene induces alteration in hematopoiesis and hematopoiesis-associated miRNAs. PMID:26569237

  7. Viral insertion in Evi12 causes expression of aberrant Grp94 mRNAs containing the viral gag myristylation motif

    SciTech Connect

    Akker, Eric van den; Aarts, Lambertus H.J.; Delwel, Ruud

    2007-09-30

    Ecotropic Virus Integration site 12 (Evi12) is a common virus insertion site (cVIS) in retrovirally induced murine models of leukemia and lymphoma, suggesting an important role for this locus in these hematopoietic disorders. Evi12 is located near the promoter of the ER chaperone protein and Hsp90 family member Grp94. Here we show that viral insertion in Evi12 results in the expression of aberrant Grp94 transcripts in Cas-Br-MuLV as well as in AKXD induced hematopoietic tumors, demonstrating that Grp94 is a common viral target gene. While most transcripts encode for truncated forms of Grp94, transcripts containing viral gag sequences were detected in the leukemia cell line NFS107. Interestingly, these fusion transcripts encode for myristylated viral-Grp94 fusion proteins that localize to the plasma membrane. Combined with recent evidence that myristylated forms of Hsp90 transform cells, our data suggest that myristylation of target genes may be an important mechanism in retrovirally mediated oncogenesis. Since retroviral insertion in Evi12 also affects the expression of a recently identified novel gene Grp94 neighboring nucleotidase (Gnn), located at the other side of Evi12, it appears that proviral insertion can lead to deregulation of two genes present in the same locus.

  8. Association of epigenetic alterations in the human C7orf24 gene with the aberrant gene expression in malignant cells.

    PubMed

    Ohno, Yuji; Hattori, Akira; Yoshiki, Tatsuhiro; Kakeya, Hideaki

    2013-10-01

    Human chromosome 7 open reading frame 24 (C7orf24)/γ-glutamyl cyclotransferase has been suggested to be a potential diagnostic marker for several cancers, including carcinomas in the bladder urothelium, breast and endometrial epithelium. We here investigated the epigenetic regulation of the human C7orf24 promoter in normal diploid ARPE-19 and IMR-90 cells and in the MCF-7 and HeLa cancer cell lines to understand the transcriptional basis for the malignant-associated high expression of C7orf24. Chromatin immunoprecipitation analysis revealed that histone modifications associated with active chromatin were enriched in the proximal region but not in the distal region of the C7orf24 promoter in HeLa and MCF-7 cells. In contrast, elevated levels of histone modifications leading to transcriptional repression and accumulation of heterochromatin proteins in the C7orf24 promoter were observed in the ARPE-19 and IMR-90 cells, compared to the levels in HeLa and MCF-7 cancer cells. In parallel, the CpG island of the C7orf24 promoter was methylated to a greater extent in the normal cells than in the cancer cells. These results suggest that the transcriptional silencing of the C7orf24 gene in the non-malignant cells is elicited through heterochromatin formation in its promoter region; aberrant expression of C7orf24 associated with malignant alterations results from changes in chromatin dynamics. PMID:23853312

  9. Subgroup J avian leukosis virus infection of chicken dendritic cells induces apoptosis via the aberrant expression of microRNAs

    PubMed Central

    Liu, Di; Dai, Manman; Zhang, Xu; Cao, Weisheng; Liao, Ming

    2016-01-01

    Subgroup J avian leukosis virus (ALV-J) is an oncogenic retrovirus that causes immunosuppression and enhances susceptibility to secondary infection. The innate immune system is the first line of defense in preventing bacterial and viral infections, and dendritic cells (DCs) play important roles in innate immunity. Because bone marrow is an organ that is susceptible to ALV-J, the virus may influence the generation of bone marrow-derived DCs. In this study, DCs cultured in vitro were used to investigate the effects of ALV infection. The results revealed that ALV-J could infect these cells during the early stages of differentiation, and infection of DCs with ALV-J resulted in apoptosis. miRNA sequencing data of uninfected and infected DCs revealed 122 differentially expressed miRNAs, with 115 demonstrating upregulation after ALV-J infection and the other 7 showing significant downregulation. The miRNAs that exhibited the highest levels of upregulation may suppress nutrient processing and metabolic function. These results indicated that ALV-J infection of chicken DCs could induce apoptosis via aberrant microRNA expression. These results provide a solid foundation for the further study of epigenetic influences on ALV-J-induced immunosuppression. PMID:26830017

  10. Thymosin beta-10 is aberrantly expressed in pancreatic cancer and induces JNK activation.

    PubMed

    Li, Min; Zhang, Yuqing; Zhai, Qihui; Feurino, Louis W; Fisher, William E; Chen, Changyi; Yao, Qizhi

    2009-03-01

    Thymosin beta-10 (T beta 10) has been shown to be associated with several cancers; however, its role in pancreatic cancer is not understood. The expression of T beta 10 was determined by immunohistochemistry and real-time polymerase chain reaction. The phosphorylation of JNK and the cytokine secretion was determined by using the Bio-Plex phosphoprotein and cytokines assays. Pancreatic cancer tissues and cells expressed higher amounts of T beta 10 than normal surrounding tissues and human pancreatic duct epithelial cells. Exogenous T beta 10 caused the phosphorylation of JNK and increased the secretion of cytokines interleukin (IL)-7 and IL-8 in BxPC-3 cells. T beta 10 might be a promising marker and a novel therapeutic target for pancreatic cancer. PMID:19194824

  11. Aberrant Mer receptor tyrosine kinase expression contributes to leukemogenesis in acute myeloid leukemia

    PubMed Central

    Lee-Sherick, A B; Eisenman, K M; Sather, S; McGranahan, A; Armistead, P M; McGary, C S; Hunsucker, S A; Schlegel, J; Martinson, H; Cannon, C; Keating, A K; Earp, H S; Liang, X; DeRyckere, D; Graham, D K

    2013-01-01

    Acute myeloid leukemia (AML) continues to be extremely difficult to treat successfully, and the unacceptably low overall survival rates mandate that we assess new potential therapies to ameliorate poor clinical response to conventional therapy. Abnormal tyrosine kinase activation in AML has been associated with poor prognosis and provides strategic targets for novel therapy development. We found that Mer receptor tyrosine kinase was over-expressed in a majority of pediatric (29/36, 80%) and adult (10/10, 100%) primary AML patient blasts at the time of diagnosis, and 100% of patient samples at the time of relapse. Mer was also found to be expressed in 12 of 14 AML cell lines (86%). In contrast, normal bone marrow myeloid precursors expressed little to no Mer. Following AML cell line stimulation with Gas6, a Mer ligand, we observed activation of prosurvival and proliferative signaling pathways, including phosphorylation of ERK1/2, p38, MSK1, CREB, ATF1, AKT and STAT6. To assess the phenotypic role of Mer in AML, two independent short-hairpin RNA (shRNA) constructs were used to decrease Mer expression in the AML cell lines Nomo-1 and Kasumi-1. Reduction of Mer protein levels significantly increased rates of myeloblast apoptosis two to threefold in response to serum starvation. Furthermore, myeloblasts with knocked-down Mer demonstrated decreased colony formation by 67–87%, relative to control cell lines (P<0.01). NOD-SCID-gamma mice transplanted with Nomo-1 myeloblasts with reduced levels of Mer had a significant prolongation in survival compared with mice transplanted with the parental or control cell lines (median survival 17 days in parental and control cell lines, versus 32–36 days in Mer knockdown cell lines, P<0.0001). These data suggest a role for Mer in acute myeloid leukemogenesis and indicate that targeted inhibition of Mer may be an effective therapeutic strategy in pediatric and adult AML. PMID:23474756

  12. Aberrant Mer receptor tyrosine kinase expression contributes to leukemogenesis in acute myeloid leukemia.

    PubMed

    Lee-Sherick, A B; Eisenman, K M; Sather, S; McGranahan, A; Armistead, P M; McGary, C S; Hunsucker, S A; Schlegel, J; Martinson, H; Cannon, C; Keating, A K; Earp, H S; Liang, X; DeRyckere, D; Graham, D K

    2013-11-14

    Acute myeloid leukemia (AML) continues to be extremely difficult to treat successfully, and the unacceptably low overall survival rates mandate that we assess new potential therapies to ameliorate poor clinical response to conventional therapy. Abnormal tyrosine kinase activation in AML has been associated with poor prognosis and provides strategic targets for novel therapy development. We found that Mer receptor tyrosine kinase was over-expressed in a majority of pediatric (29/36, 80%) and adult (10/10, 100%) primary AML patient blasts at the time of diagnosis, and 100% of patient samples at the time of relapse. Mer was also found to be expressed in 12 of 14 AML cell lines (86%). In contrast, normal bone marrow myeloid precursors expressed little to no Mer. Following AML cell line stimulation with Gas6, a Mer ligand, we observed activation of prosurvival and proliferative signaling pathways, including phosphorylation of ERK1/2, p38, MSK1, CREB, ATF1, AKT and STAT6. To assess the phenotypic role of Mer in AML, two independent short-hairpin RNA (shRNA) constructs were used to decrease Mer expression in the AML cell lines Nomo-1 and Kasumi-1. Reduction of Mer protein levels significantly increased rates of myeloblast apoptosis two to threefold in response to serum starvation. Furthermore, myeloblasts with knocked-down Mer demonstrated decreased colony formation by 67-87%, relative to control cell lines (P<0.01). NOD-SCID-gamma mice transplanted with Nomo-1 myeloblasts with reduced levels of Mer had a significant prolongation in survival compared with mice transplanted with the parental or control cell lines (median survival 17 days in parental and control cell lines, versus 32-36 days in Mer knockdown cell lines, P<0.0001). These data suggest a role for Mer in acute myeloid leukemogenesis and indicate that targeted inhibition of Mer may be an effective therapeutic strategy in pediatric and adult AML. PMID:23474756

  13. Aberrant esophageal HLA-DR expression in a high percentage of patients with Crohn's disease.

    PubMed

    Oberhuber, G; Püspök, A; Peck-Radosavlevic, M; Kutilek, M; Lamprecht, A; Chott, A; Vogelsang, H; Stolte, M

    1999-08-01

    Esophageal histology is not well studied in patients with Crohn's disease (CD). We, therefore, analyzed the histologic and immunohistologic appearance of esophageal mucosa in CD. Biopsy specimens taken from the esophagus of 57 consecutive patients with known CD of the large and/or small bowel, of 200 Crohn's-free controls, of 15 cases with ulcerative colitis, and of 5 cases with viral esophagitis were evaluated. In controls, most patients had either HLA-DR negative esophageal epithelium or showed focal or diffuse basal staining. HLA-DR expression of all epithelial layers (transepithelial staining) was observed in only four (2%) control subjects, in one case with herpes esophagitis, but not in patients with ulcerative colitis. In contrast, transepithelial HLA-DR expression was found in 19 (33%) patients with CD (p < 0.0001). In CD patients, it was associated with a significantly increased epithelial content in T-cells (CD3+, TIA-1+, granzyme B+), B-cells (CD79a+), natural killer cells (CD57+), and macrophages (CD68+). There was no correlation with either histological findings elsewhere in the upper gastrointestinal tract or with laboratory findings, symptoms, CDAI, or medication. Transepithelial esophageal HLA-DR expression is common in CD. Immunohistochemistry may prove useful in supporting the histologic diagnosis of CD in staging procedures, for initial diagnosis as well as in doubtful cases. PMID:10435568

  14. Aberrant splicing and altered spatial expression patterns in fruitless mutants of Drosophila melanogaster.

    PubMed Central

    Goodwin, S F; Taylor, B J; Villella, A; Foss, M; Ryner, L C; Baker, B S; Hall, J C

    2000-01-01

    The fruitless (fru) gene functions in Drosophila males to establish the potential for male sexual behaviors. fru encodes a complex set of sex-specific and sex-nonspecific mRNAs through the use of multiple promoters and alternative pre-mRNA processing. The male-specific transcripts produced from the distal (P1) fru promoter are believed to be responsible for its role in specifying sexual behavior and are only expressed in a small fraction of central nervous system (CNS) cells. To understand the molecular etiology of fruitless mutant phenotypes, we compared wild-type and mutant transcription patterns. These experiments revealed that the fru(2), fru(3), fru(4), and fru(sat) mutations, which are due to P-element inserts, alter the pattern of sex-specific and sex-nonspecific fru RNAs. These changes arise in part from the P-element insertions containing splice acceptor sites that create alternative processing pathways. In situ hybridization revealed no alterations in the locations of cells expressing the P1-fru-promoter-derived transcripts in fru(2), fru(3), fru(4), and fru(sat) pharate adults. For the fru(1) mutant (which is due to an inversion breakpoint near the P1 promoter), Northern analyses revealed no significant changes in fru transcript patterns. However, in situ hybridization revealed anomalies in the level and distribution of P1-derived transcripts: in fru(1) males, fewer P1-expressing neurons are found in regions of the dorsal lateral protocerebrum and abdominal ganglion compared to wild-type males. In other regions of the CNS, expression of these transcripts appears normal in fru(1) males. The loss of fruitless expression in these regions likely accounts for the striking courtship abnormalities exhibited by fru(1) males. Thus, we suggest that the mutant phenotypes in fru(2), fru(3), fru(4), and fru(sat) animals are due to a failure to appropriately splice P1 transcripts, whereas the mutant phenotype of fru(1) animals is due to the reduction or absence of P1

  15. Mouse neutrophils lacking lamin B receptor expression exhibit aberrant development and lack critical functional responses

    PubMed Central

    Gaines, Peter; Tien, Chiung W.; Olins, Ada L.; Olins, Donald E.; Shultz, Leonard D.; Carney, Lisa; Berliner, Nancy

    2008-01-01

    Objective The capacity of neutrophils to eradicate bacterial infections is dependent on normal development and the activation of functional responses, which include chemotaxis and the generation of oxygen radicals during the respiratory burst. A unique feature of the neutrophil is its highly lobulated nucleus, which is thought to facilitate chemotaxis but may also play a role in other critical neutrophil functions. Nuclear lobulation is dependent on the expression of the inner nuclear envelope protein, the lamin B receptor (LBR), mutations of which cause hypolobulated neutrophil nuclei in human Pelger-Huët anomaly (PHA) and the "ichthyosis" (ic) phenotype in mice. In this study we have investigated roles for LBR in mediating neutrophil development and the activation of multiple neutrophil functions, including chemotaxis and the respiratory burst. Materials and Methods A progenitor EML cell line was generated from an ic/ic mouse, and derived cells that lacked LBR expression were induced to mature neutrophils and then examined for abnormal morphology and functional responses. Results Neutrophils derived from EML-ic/ic cells exhibited nuclear hypolobulation identical to that observed in ichthyosis mice. The ic/ic neutrophils also displayed abnormal chemotaxis, supporting the notion that nuclear segmentation augments neutrophil extravasation. Furthermore, promyelocytic forms of ic/ic cells displayed decreased proliferative responses and produced a deficient respiratory burst upon terminal maturation. Conclusions Our studies of promyelocytes that lack LBR expression have identified roles for LBR in regulating not only the morphologic maturation of the neutrophil nucleus but also proliferative and functional responses that are critical to innate immunity. PMID:18550262

  16. Aberrant expression of peroxiredoxin 1 and its clinical implications in liver cancer

    PubMed Central

    Sun, Yu-Lin; Cai, Jian-Qiang; Liu, Fang; Bi, Xin-Yu; Zhou, Lan-Ping; Zhao, Xiao-Hang

    2015-01-01

    AIM: To investigate the expression characteristics of peroxiredoxin 1 (PRDX1) mRNA and protein in liver cancer cell lines and tissues. METHODS: The RNA sequencing data from 374 patients with liver cancer were obtained from The Cancer Genome Atlas. The expression and clinical characteristics of PRDX1 mRNA were analyzed in this dataset. The Kaplan-Meier and Cox regression survival analysis was performed to determine the relationship between PRDX1 levels and patient survival. Subcellular fractionation and Western blotting were used to demonstrate the expression of PRDX1 protein in six liver cancer cell lines and 29 paired fresh tissue specimens. After bioinformatics prediction, a putative post-translational modification form of PRDX1 was observed using immunofluorescence under confocal microscopy and immunoprecipitation analysis in liver cancer cells. RESULTS: The mRNA of PRDX1 gene was upregulated about 1.3-fold in tumor tissue compared with the adjacent non-tumor control (P = 0.005). Its abundance was significantly higher in men than women (P < 0.001). High levels of PRDX1 mRNA were associated with a shorter overall survival time (P = 0.04) but not with recurrence-free survival. The Cox regression analysis demonstrated that patients with high PRDX1 mRNA showed about 1.9-fold increase of risk for death (P = 0.03). In liver cancer cells, PRDX1 protein was strongly expressed with multiple different bands. PRDX1 in the cytosol fraction existed near the theoretical molecular weight, whereas two higher molecular weight bands were present in the membrane/organelle and nuclear fractions. Importantly, the theoretical PRDX1 band was increased, whereas the high molecular weight form was decreased in tumor tissues. Subsequent experiments revealed that the high molecular weight bands of PRDX1 might result from the post-translational modification by small ubiquitin-like modifier-1 (SUMO1). CONCLUSION: PRDX1 was overexpressed in the tumor tissues of liver cancer and served as an

  17. Myelodysplastic syndrome macrophages have aberrant iron storage and heme oxygenase-1 expression.

    PubMed

    Nybakken, Grant; Gratzinger, Dita

    2016-08-01

    Iron overload and transfusion dependance portend poor risk in myelodysplastic syndromes (MDS); bone marrow macrophages store iron and limit oxidative damage through heme oxygenase-1 (HO1). We assessed iron stores and macrophage HO1 expression in MDS using image analysis of intact diagnostic bone marrow biopsies and qualitative scoring of marrow aspirate iron among 129 cytopenic patients, 67 with MDS and 62 similarly aged patients with benign cytopenias. Using double immunofluorescence and sequential iron and immunohistochemistry staining, we showed that marrow iron colocalizes with HO1 and H-ferritin to CD163 + macrophages. Marrow iron was elevated in MDS independent of transfusion status, a finding of potential utility in distinguishing benign cytopenia from MDS. Among MDS patients only, CD163 + macrophage density and HO1 and H-ferritin expression by CD163 + macrophages increased in tandem with marrow iron. High HO1 was significantly associated with shorter overall survival among MDS patients independent of IPSSR and history of transfusion. PMID:26758041

  18. Premature lethality, hyperactivity, and aberrant phosphorylation in transgenic mice expressing a constitutively active form of Fyn

    PubMed Central

    Xia, Di; Götz, Jürgen

    2014-01-01

    The kinase Fyn, the microtubule-associated protein tau and the peptide amyloid-β (Aβ) constitute a toxic triad in Alzheimer's disease (AD). Tau's subcellular localization is mainly regulated by phosphorylation whereas Fyn's localization is dictated by palmitoylation targeting it to the plasma membrane in a reversible manner. We have previously shown that tau is required for Fyn to be targeted to the dendritic spine. We had also shown that a truncated form of tau (Δtau) that accumulates in the cell soma is capable of trapping Fyn and preventing it from entering the spine. Here we determined that palmitoylation is required for Fyn's membrane and spine localization. We further evaluated the functional consequences of neuronal over-expression of the constitutively active Y531F mutant form of Fyn (FynCA) in transgenic mice. We found that the FynCA transgenic mice displayed a reduced weight, a massively reduced lifespan and a high level of hyperactivity. The lifespan of the FynCA mice was only slightly extended by crossing them with Δtau transgenic mice, possibly reflecting differences in expression patterns of the transgenes and high levels of transgenic FynCA compared to endogenous Fyn. Analysis of synaptosomes revealed that FynCA accumulated at high levels in the spine, resulting in increased levels of the NMDA receptor subunit NR2b phosphorylated at residue Y1472. Tau was strongly phosphorylated at the AT8 epitope S202/T205 as shown by Western blot and immunohistochemistry indicating that an increased tyrosine kinase activity of Fyn has down-stream consequences for serine/threonine-directed phosphorylation. PMID:24860422

  19. Endometrial CXCL13 Expression Is Cycle Regulated in Humans and Aberrantly Expressed in Humans and Rhesus Macaques With Endometriosis

    PubMed Central

    Franasiak, Jason M.; Burns, Katherine A.; Slayden, Ov; Yuan, Lingwen; Fritz, Marc A.; Korach, Kenneth S.; Lessey, Bruce A.

    2014-01-01

    C-X-C ligand 13 (CXCL13), a regulator of mucosal immunity, is secreted by human endometrial epithelium and may be involved in embryo implantation. However, cyclic expression of human endometrial CXCL13 in health and disease is not well studied. This study examines cycle stage-specific endometrial CXCL13 expression in normal humans when compared to those with biopsy-confirmed, stage 1 to 4 endometriosis using real-time reverse transcriptase, real-time polymerase chain reaction and immunohistochemistry. Eutopic endometrial CXCL13 expression was also compared between normal, control Rhesus macaques, and macaques with advanced endometriosis. In healthy women, CXLC13 messenger RNA expression was minimal in the proliferative phase and maximal in the secretory phase. However, in the presence of endometriosis, proliferative-phase endometrial expression markedly increased in both humans and rhesus subjects (P < .05). The cross-species and cross-stage concordance suggests a pathophysiologic role for CXCL13 in endometriosis and its use as a biomarker for disease. PMID:25031316

  20. Aberrant Expression of Novel Cytokine IL-38 and Regulatory T Lymphocytes in Childhood Asthma.

    PubMed

    Chu, Man; Chu, Ida M T; Yung, Edmund C M; Lam, Christopher W K; Leung, Ting F; Wong, Gary W K; Wong, Chun K

    2016-01-01

    We investigated the expression of novel anti-inflammatory interleukin (IL)-38 and regulatory T (Treg) lymphocytes in childhood asthma patients. The protein and mRNA expression level of IL-38, periostin, peripheral CD4⁺CD25⁺CD134⁺ T lymphocytes as well as CD4⁺CD25(high)FoxP3⁺ and CD4⁺CD25(high)CD127(-) Treg lymphocytes from 40 asthmatic patients and 20 normal control (NC) subjects were studied using ELISA, qPCR and flow cytometry. Serum and supernatant cytokines/chemokines were determined by multiplex assay. Serum IL-38, IL-5, IL-17, IL-6, interferon-γ, periostin, IL-1β and IL-13 concentrations were significantly higher in asthmatic patients with or without steroid treatment than those in controls (all p < 0.05). The percentages of both CD4⁺CD25(high)FoxP3⁺ and CD4⁺CD25(high)CD127(-) Treg lymphocytes were markedly decreased in asthmatic patients with and without steroid treatment than those in controls (all p < 0.05). The elevated IL-38 concentration negatively correlated with the percentage of Treg lymphocytes in asthmatic patients with high level (>40 ng/mL) of periostin (p < 0.05). Although the comparable mRNA levels of IL-38 and its receptor IL-36R were found between patients and controls, the mRNA level of IL-38 positively correlated with IL-36R and negatively correlated with IL-10 in all asthmatic patients (both p < 0.05). The percentage of CD4⁺CD25⁺CD134⁺ activated T lymphocytes was also significantly higher in asthmatic patients with steroid treatment than those in controls (p < 0.05). This cross-sectional study demonstrated that the overexpression of circulating IL-38 may play a role in the immunopathogenesis in asthma. PMID:27438823

  1. Aberrant microRNA expression in peripheral plasma and mononuclear cells as specific blood-based biomarkers in schizophrenia patients.

    PubMed

    Sun, Xin-yang; Lu, Jim; Zhang, Liang; Song, Hong-tao; Zhao, Lin; Fan, Hui-min; Zhong, Ai-fang; Niu, Wei; Guo, Zhong-min; Dai, Yun-hua; Chen, Chao; Ding, Yan-fen; Zhang, Li-yi

    2015-03-01

    Findings from multiple studies on microRNA (miRNA) expression profiling in schizophrenia patients have produced conflicting results. In order to investigate miRNA as specific biomarkers in the peripheral plasma and peripheral blood mononuclear cells (PBMC) of schizophrenia patients, expression levels of the nine most frequently reported schizophrenia-associated miRNA (miR-30e, miR-34a, miR-181b, miR-195, miR-346, miR-432, miR-7, miR-132 and miR-212) were examined in the peripheral plasma and PBMC in 25 schizophrenia patients and 13 healthy controls using quantitative real-time reverse transcription polymerase chain reaction. We observed significantly increased expressions of miR-132, miR-195, miR-30e and miR-7 in plasma samples (p<0.05 to p<0.001), and miR-212, miR-34a and miR-30e in PBMC samples (p<0.05 to p<0.01). Receiver operating characteristic curve analysis revealed that the area under the curve (AUC) of miR-30e in plasma was 0.767 (95% confidence interval [CI] 0.608-0.926) with sensitivity and specificity of 90.90% and 60.00% respectively, and the AUC of miR-30e in PBMC was 0.756 (95% CI 0.584-0.929) with sensitivity and specificity of 81.80% and 68.00%, respectively. Logistic regression analysis demonstrated that miR-30e in plasma was more sensitive to differentiate schizophrenia patients from normal controls than miR-30e in PBMC. Our findings indicate that miRNA expression is more significant in plasma than in PBMC, and suggest that miR-30e in plasma may be a more sensitive biomarker for schizophrenia diagnosis, although its aberrant expression can be detected in both plasma and PBMC. PMID:25487174

  2. Expression of Aberrant Forms of AUXIN RESPONSE FACTOR8 Stimulates Parthenocarpy in Arabidopsis and Tomato1[W][OA

    PubMed Central

    Goetz, Marc; Hooper, Lauren C.; Johnson, Susan D.; Rodrigues, Julio Carlyle Macedo; Vivian-Smith, Adam; Koltunow, Anna M.

    2007-01-01

    Fruit initiation in Arabidopsis (Arabidopsis thaliana) is generally repressed until fertilization occurs. However, mutations in AUXIN RESPONSE FACTOR8 (ARF8) uncouple fruit initiation from fertilization, resulting in the formation of seedless, parthenocarpic fruit. Here we induced parthenocarpy in wild-type Arabidopsis by introducing either the mutant genomic (g) Atarf8-4 sequence or gAtARF8:β-glucuronidase translational fusion constructs by plant transformation. Silencing of endogenous AtARF8 transcription was not observed, indicating that the introduced, aberrant ARF8 transcripts were compromising the function of endogenous ARF8 and/or associated factors involved in suppressing fruit initiation. To analyze the role of ARF8 in tomato (Solanum lycopersicum) we initially emasculated 23 tomato cultivars to test for background parthenocarpy. Surprisingly, all had a predisposition to initiate fertilization-independent fruit growth. Expression of gAtarf8-4 in transgenic tomato (‘Monalbo’) resulted in a significant increase in the number and size of parthenocarpic fruit. Isolation of tomato ARF8 cDNA indicated significant sequence conservation with AtARF8. SlARF8 may therefore control tomato fruit initiation in a similar manner as AtARF8 does in Arabidopsis. Two SlARF8 cDNAs differing in size by 5 bp were found, both arising from the same gene. The smaller cDNA is a splice variant and is also present in Arabidopsis. We propose that low endogenous levels of the splice variant products might interfere with efficient formation/function of a complex repressing fruit initiation, thereby providing an explanation for the observed ovary expansion in tomato and also Arabidopsis after emasculation. Increasing the levels of aberrant Atarf8-4 transcripts may further destabilize formation/function of the complex in a dosage-dependent manner enhancing tomato parthenocarpic fruit initiation frequency and size and mimicking the parthenocarpic dehiscent silique phenotype found in

  3. Peripheral neuropathy in the twitcher mouse: accumulation of extracellular matrix in the endoneurium and aberrant expression of ion channels.

    PubMed

    Kagitani-Shimono, Kuriko; Mohri, Ikuko; Yagi, Takashi; Taniike, Masako; Suzuki, Kinuko

    2008-05-01

    Globoid cell leukodystrophy (GLD; Krabbe's disease), caused by a genetic galactosylceramidase deficiency, affects both the central and peripheral nervous systems (CNS and PNS). Allogenic hematopoietic stem-cell transplantation (HSCT) has been beneficial for clinical improvement of this disease. However, recent reports by Siddiqi et al. suggested that none of their transplanted patients achieved complete normalization of their peripheral nerve function, despite the well-documented remyelination of the CNS and PNS in the treated patients. We hypothesized that the PNS dysfunction in GLD is due to altered Schwann cell-axon interactions, resulting in structural abnormalities of the node of Ranvier and aberrant expression of ion channels caused by demyelination and that the persistence of this altered interaction is responsible for the dysfunction of the PNS after HSCT. Since there has not been any investigation of the Schwann cell-axonal relationship in twitcher mice, an authentic model of GLD, we first investigated structural abnormalities, focusing on the node of Ranvier in untreated twitcher mice, and compared the results with those obtained after receiving bone marrow transplantation (BMT). As expected, we found numerous supernumerary Schwann cells that formed structurally abnormal nodes of Ranvier. Similar findings, though at somewhat variable extent, were detected in mice treated with BMT. Activated supernumerary Schwann cells expressed GFAP immunoreactivity and generated Alcian blue-positive extracellular matrix (ECM) in the endoneurial space. The processes of these supernumerary Schwann cells often covered and obliterated the nodal regions. Furthermore, the distribution of Na(+) channel immunoreactivity was diffuse without the concentration at the nodes of Ranvier as seen in wild-type mice. Neither K(+) channels nor Neurexin IV/ Caspr/ Paranoidin (NCP-1) were detected in the twi/twi sciatic nerve. The results of our study suggest the importance of normalization

  4. Aberrant expression of anaplastic lymphoma kinase in lung adenocarcinoma: Analysis of circulating free tumor RNA using one-step reverse transcription-polymerase chain reaction.

    PubMed

    Bruno, Rossella; Giordano, Mirella; Giannini, Riccardo; Alì, Greta; Puppo, Gianfranco; Ribechini, Alessandro; Chella, Antonio; Fontanini, Gabriella

    2016-09-01

    Lung adenocarcinoma patients harboring anaplastic lymphoma kinase (ALK) gene rearrangements respond well to approved ALK inhibitors. However, to date, limited evidence is available regarding whether using circulating free tumor mRNA to identify aberrant ALK expression is possible, and its feasibility remains to be clearly addressed. The present study evaluated ALK expression by a one-step reverse transcription‑polymerase chain reaction (PCR) assay on the circulating free tumor mRNA from 12 lung adenocarcinoma patients. Additionally, the present study tested for ALK rearrangements by fluorescence in situ hybridization (FISH) and immunohistochemistry. A molecular genetic characterization was performed on tumor tissues and plasma samples. Aberrant ALK expression was detected in 2/12 patients using mRNA purified from plasma specimens and the results agreed with the FISH and immunohistochemistry findings of solid biopsy samples. The detection of aberrant ALK expression on circulating free tumor RNA may be feasible using a one‑step real‑time PCR assay and may be particularly helpful when a solid biopsy sample is not available. PMID:27430882

  5. Polarization Aberrations

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1990-01-01

    The analysis of the polarization characteristics displayed by optical systems can be divided into two categories: geometrical and physical. Geometrical analysis calculates the change in polarization of a wavefront between pupils in an optical instrument. Physical analysis propagates the polarized fields wherever the geometrical analysis is not valid, i.e., near the edges of stops, near images, in anisotropic media, etc. Polarization aberration theory provides a starting point for geometrical design and facilitates subsequent optimization. The polarization aberrations described arise from differences in the transmitted (or reflected) amplitudes and phases at interfaces. The polarization aberration matrix (PAM) is calculated for isotropic rotationally symmetric systems through fourth order and includes the interface phase, amplitude, linear diattenuation, and linear retardance aberrations. The exponential form of Jones matrices used are discussed. The PAM in Jones matrix is introduced. The exact calculation of polarization aberrations through polarization ray tracing is described. The report is divided into three sections: I. Rotationally Symmetric Optical Systems; II. Tilted and Decentered Optical Systems; and Polarization Analysis of LIDARs.

  6. Pattern of CXCR7 Gene Expression in Mouse Brain Under Normal and Inflammatory Conditions.

    PubMed

    Banisadr, Ghazal; Podojil, Joseph R; Miller, Stephen D; Miller, Richard J

    2016-03-01

    The chemokine stromal cell-derived factor-1 (SDF-1)/CXCL12 acting via its G-protein coupled receptor (GPCR) CXCR4 has been implicated in neurogenesis, neuromodulation, brain inflammation, HIV-1 encephalopathy and tumor growth. CXCR7 was identified as an alternate receptor for SDF-1/CXCL12. Characterization of CXCR7-deficient mice demonstrated a role for CXCR7 in fetal endothelial biology, cardiac development, and B-cell localization. Despite its ligand binding properties, CXCR7 does not seem to signal like a conventional GPCR. It has been suggested that CXCR7 may not function alone but in combination with CXCR4. Here, we investigated the regional localization of CXCR7 receptors in adult mouse brain using CXCR7-EGFP transgenic mice. We found that the receptors were expressed in various brain regions including olfactory bulb, cerebral cortex, hippocampus, subventricular zone (SVZ), hypothalamus and cerebellum. Extensive CXCR7 expression was associated with cerebral blood vessels. Using cell type specific markers, CXCR7 expression was found in neurons, astrocytes and oligodendrocyte progenitors. GAD-expressing neurons exhibited CXCR7 expression in the hippocampus. Expression of CXCR7 in the dentate gyrus included cells that expressed nestin, GFAP and cells that appeared to be immature granule cells. In mice with Experimental Autoimmune Encephalomyelitis (EAE), CXCR7 was expressed by migrating oligodendrocyte progenitors in the SVZ. We then compared the distribution of SDF-1/CXCL12 and CXCR7 using bitransgenic mice expressing both CXCR7-EGFP and SDF-1-mRFP. Enhanced expression of SDF-1/CXCL12 and CXCR7 was observed in the corpus callosum, SVZ and cerebellum. Overall, the expression of CXCR7 in normal and pathological nervous system suggests CXCR4-independent functions of SDF-1/CXCL12 mediated through its interaction with CXCR7. PMID:25997895

  7. Role of Plasmacytoid Dendritic Cells for Aberrant Class II Expression in Exocrine Glands from Estrogen-Deficient Mice of Healthy Background

    PubMed Central

    Arakaki, Rieko; Nagaoka, Ai; Ishimaru, Naozumi; Yamada, Akiko; Yoshida, Satoko; Hayashi, Yoshio

    2009-01-01

    Although it has been well documented that aberrant major histocompatibility complex class II molecules may contribute to the development of autoimmune disorders, the precise mechanisms responsible for their tissue-specific expression remain unknown. Here we show that estrogen deficiency induces aberrant class II major histocompatibility complex expression in exocrine glands via interactions between epithelial cells and plasmacytoid dendritic cells. Relatively modest but functionally significant expression levels of major histocompatibility complex class II and class II transactivator molecules were observed in the exocrine glands of ovariectomized (Ovx) C57BL/6 (B6) mice, but were not seen in the exocrine glands of control B6 mice. We observed that the salivary dendritic cells adjacent to the apoptotic epithelial cells positive for terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, were activated in Ovx mice, but were not activated in control mice. We obtained evidence that the salivary gland cells express both interferon regulatory factor-1 and class II transactivator type IV molecules in Ovx mice. Salivary gland cells from Ovx mice were also capable of inducing the activation of antigen-specific T cells from OT-II transgenic mice. These findings indicate that estrogen deficiency initiates class II transactivator type IV mRNA expression in exocrine glands via interactions between epithelial cells and plasmacytoid dendritic cells, suggesting that plasmacytoid dendritic cells play a pivotal role in gender-based autoimmune disorders in postmenopausal women. PMID:19359524

  8. Aberrant CpG methylation of the TFAP2A gene constitutes a mechanism for loss of TFAP2A expression in human metastatic melanoma

    PubMed Central

    Hallberg, Andrea R; Vorrink, Sabine U; Hudachek, Danielle R; Cramer-Morales, Kimberly; Milhem, Mohammed M; Cornell, Robert A; Domann, Frederick E

    2014-01-01

    Metastatic melanoma is a deadly treatment-resistant form of skin cancer whose global incidence is on the rise. During melanocyte transformation and melanoma progression the expression profile of many genes changes. Among these, a gene implicated in several steps of melanocyte development, TFAP2A, is frequently silenced; however, the molecular mechanism of TFAP2A silencing in human melanoma remains unknown. In this study, we measured TFAP2A mRNA expression in primary human melanocytes compared to 11 human melanoma samples by quantitative real-time RT-PCR. In addition, we assessed CpG DNA methylation of the TFAP2A promoter in these samples using bisulfite sequencing. Compared to primary melanocytes, which showed high TFAP2A mRNA expression and no promoter methylation, human melanoma samples showed decreased TFAP2A mRNA expression and increased promoter methylation. We further show that increased CpG methylation correlates with decreased TFAP2A mRNA expression. Using The Cancer Genome Atlas, we further identified TFAP2A as a gene displaying among the most decreased expression in stage 4 melanomas vs. non-stage 4 melanomas, and whose CpG methylation was frequently associated with lack of mRNA expression. Based on our data, we conclude that TFAP2A expression in human melanomas can be silenced by aberrant CpG methylation of the TFAP2A promoter. We have identified aberrant CpG DNA methylation as an epigenetic mark associated with TFAP2A silencing in human melanoma that could have significant implications for the therapy of human melanoma using epigenetic modifying drugs. PMID:25625848

  9. Frequent aberrant expression of the human ether à go-go (hEAG1) potassium channel in head and neck cancer: pathobiological mechanisms and clinical implications.

    PubMed

    Menéndez, Sofía Tirados; Villaronga, María Angeles; Rodrigo, Juan P; Alvarez-Teijeiro, Saúl; García-Carracedo, Darío; Urdinguio, Rocío G; Fraga, Mario F; Pardo, Luis A; Viloria, Cristina Gutiérrez; Suárez, Carlos; García-Pedrero, Juana María

    2012-10-01

    Compelling evidence indicates that the human ether-à-go-go voltage-gated potassium channels (hEAG1) may represent new valuable membrane therapeutic targets and diagnostic/prognostic biomarkers in various cancers. This study is the first to investigate the expression of hEAG1 potassium channel subunit in both primary tumors and HNSCC-derived cell lines to ascertain its clinical and biological role in tumor progression. Our findings demonstrate that hEAG1 is frequently aberrantly expressed in a high percentage of primary tumors (83 %, 45/54 cases) and HNSCC-derived cell lines (83 %, 10/12 cell lines). hEAG1 expression increased during HNSCC progression and was more frequent in advanced tumors. Strikingly, hEAG1 expression was also detected in a notable proportion (39 %, 17/44 cases) of patient-matched normal adjacent mucosa, whereas no expression was detected in normal epithelia from non-oncologic patients without exposure to tobacco carcinogens. In an attempt to identify the underlying mechanisms of aberrant hEAG1 expression in HNSCC, we found that hEAG1 gene copy gain occurred at a low frequency (15 %, 13/88 cases) in primary tumors but was not observed in early stages of HNSCC tumorigenesis. Furthermore, this study provides original evidence supporting the involvement of histone acetylation (i.e., H3Ac and H4K16Ac activating marks) in the regulation of hEAG1 expression in HNSCC. In addition, functional studies in HNSCC cells further revealed that hEAG1 expression is a biologically relevant feature that promotes cell proliferation and invasion, although independently of its ion-conducting function. Our findings strongly support the notion that hEAG1 may represent a promising candidate as tumor marker and membrane therapeutic target for HNSCC treatment. PMID:22466864

  10. High-resolution detection of recurrent aberrations in lung adenocarcinomas by array comparative genomic hybridization and expression analysis of selective genes by quantitative PCR.

    PubMed

    Zhu, Hong; Wong, Maria Pik; Tin, Vicky

    2014-06-01

    Genomic abnormalities are the hallmark of cancers and may harbor potential candidate genes important for cancer development and progression. We performed array comparative genomic hybridization (array CGH) on 36 cases of primary lung adenocarcinoma (AD) using an array containing 2621 BAC or PAC clones spanning the genome at an average interval of 1 Mb. Array CGH identified the commonest aberrations consisting of DNA gains within 1p, 1q, 5p, 5q, 7p, 7q, 8q, 11q, 12p, 13q, 16p, 17q, 20q, and losses with 6q, 9p, 10q and 18q. High-level copy gains involved mainly 7p21-p15 and 20q13.3. Dual color fluorescence in situ hybridization (FISH) was performed on a selective locus for validation of array CGH results. Genomic aberrations were compared with different clinicopathological features and a trend of higher number of aberrations in tumors with aggressive phenotypes and current tobacco exposure was identified. According to array CGH data, 23 candidate genes were selected for quantitative PCR (qPCR) analysis. The concordance observed between the genomic and expression changes in most of the genes suggested that they could be candidate cancer-related genes that contributed to the development of lung AD. PMID:24728343

  11. Stromal cell-derived factor-1{alpha} (SDF-1{alpha}/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation

    SciTech Connect

    Porcile, Carola; Bajetto, Adriana . E-mail: bajetto@cba.unige.it; Barbieri, Federica; Barbero, Simone; Bonavia, Rudy; Biglieri, Marianna; Pirani, Paolo; Florio, Tullio . E-mail: florio@cba.unige.it; Schettini, Gennaro

    2005-08-15

    Ovarian cancer (OC) is the leading cause of death in gynecologic diseases in which there is evidence for a complex chemokine network. Chemokines are a family of proteins that play an important role in tumor progression influencing cell proliferation, angiogenic/angiostatic processes, cell migration and metastasis, and, finally, regulating the immune cells recruitment into the tumor mass. We previously demonstrated that astrocytes and glioblastoma cells express both the chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1), and that SDF-1{alpha} treatment induced cell proliferation, supporting the hypothesis that chemokines may play an important role in tumor cells' growth in vitro. In the present study, we report that CXCR4 and SDF-1 are expressed in OC cell lines. We demonstrate that SDF-1{alpha} induces a dose-dependent proliferation in OC cells, by the specific interaction with CXCR4 and a biphasic activation of ERK1/2 and Akt kinases. Our results further indicate that CXCR4 activation induces EGF receptor (EGFR) phosphorylation that in turn was linked to the downstream intracellular kinases activation, ERK1/2 and Akt. In addition, we provide evidence for cytoplasmic tyrosine kinase (c-Src) involvement in the SDF-1/CXCR4-EGFR transactivation. These results suggest a possible important 'cross-talk' between SDF-1/CXCR4 and EGFR intracellular pathways that may link signals of cell proliferation in ovarian cancer.

  12. Expression of the Chemokine Receptors CXCR3, CXCR4, CXCR7 and Their Ligands in Rhabdomyosarcoma.

    PubMed

    San-Miguel, Teresa; Pinto, Sandra; Navarro, Lara; Callaghan, Robert C; Monteagudo, Carlos; López-Ginés, Concha; Cerdá-Nicolás, Miguel; Gil-Benso, Rosario

    2015-09-01

    Rhabdomyosarcomas (RMS) are soft tissue malignant tumors of childhood and adolescents. The mechanisms underlying their aggressiveness are still poorly understood. Chemokines are chemotactic proteins involved in pathological processes that have been intensely studied in several types of cancers because of their influence in migration, angiogenesis, or metastases. We analyzed the expression of the chemokine receptors CXCR3, CXCR4 and CXCR7 and their ligands CXCL9, CXCL10, CXCL11 and CXCL12, in 15 RMS samples derived from nine patients. Expression was measured in tumors and primary cultures of RMS by Real-Time Polymerase Chain Reaction, immunostaining and flow cytometry. Our results show that these receptors are widely expressed in RMS. A significant difference between CXCL12/CXCR4, CXCL12/CXCR7, CXCL11/CXCR7 expression ratios was found in alveolar versus embryonal RMS and similarly between CXCL12/CXCR4 and CXCL11/CXCR3 ratios in primary versus recurrent tumors. These findings suggest a possible association between the interrelation of chemokine/chemokine-receptor and an aggressive biological behavior in RMS. PMID:26037167

  13. An ATF/CREB binding motif is required for aberrant constitutive expression of the MHC class II DR alpha promoter and activation by SV40 T-antigen.

    PubMed Central

    Cox, P M; Goding, C R

    1992-01-01

    Constitutive expression of major histocompatibility complex class II (MHC II) antigens normally occurs in B-lymphocytes and antigen presenting cells of the monocyte/macrophage lineage. However, many malignant tumours and transformed cells express these proteins aberrantly. We demonstrate here that the MHC II DR alpha promoter is constitutively active both in the SV40 large T antigen transformed cell line, COS, and in CV1 cells from which they are derived. As an approach to understanding the molecular mechanisms underlying aberrant DR alpha expression we have examined the cis- and trans-acting requirements for DR alpha transcription in these cell types. Electrophoretic mobility shift assays showed that the region immediately 3' to the X-box was bound by a member of the ATF/CREB family of transcription factors. Using deletions and point mutations in the DR alpha promoter we demonstrate that, in contrast to B-cells, the octamer motif and conserved X- and Y-boxes make only a minor contribution to promoter function while single point mutations in the ATF/CREB motif reduced transcription up to 20-fold. In addition, we show that the DR alpha promoter is activated by SV40 large T-antigen and that activation requires an intact ATF/CREB motif. Similar data were obtained using B16 melanoma cells. These results suggest that the ATF/CREB motif may be a target for transcription deregulation in several transformed cell types. Images PMID:1329030

  14. Expression of a dynamin 2 mutant associated with Charcot-Marie-Tooth disease leads to aberrant actin dynamics and lamellipodia formation.

    PubMed

    Yamada, Hiroshi; Kobayashi, Kinue; Zhang, Yubai; Takeda, Tetsuya; Takei, Kohji

    2016-08-15

    Specific mutations in dynamin 2 are linked to Charcot-Marie-Tooth disease (CMT), an inherited peripheral neuropathy. However, the effects of these mutations on dynamin function, particularly in relation to the regulation of the actin cytoskeleton remain unclear. Here, selected CMT-associated dynamin mutants were expressed to examine their role in the pathogenesis of CMT in U2OS cells. Ectopic expression of the dynamin CMT mutants 555Δ3 and K562E caused an approximately 50% decrease in serum stimulation-dependent lamellipodia formation; however, only K562E caused aberrations in the actin cytoskeleton. Immunofluorescence analysis showed that the K562E mutation resulted in the disappearance of radially aligned actin bundles and the simultaneous appearance of F-actin clusters. Live-cell imaging analyses showed F-actin polymers of decreased length assembled into immobile clusters in K562E-expressing cells. The K562E dynamin mutant colocalized with the F-actin clusters, whereas its colocalization with clathrin-coated pit marker proteins was decreased. Essentially the same results were obtained using another cell line, HeLa and NG108-15 cells. The present study is the first to show the association of dynamin CMT mutations with aberrant actin dynamics and lamellipodia, which may contribute to defective endocytosis and myelination in Schwann cells in CMT. PMID:27328317

  15. HPVbase--a knowledgebase of viral integrations, methylation patterns and microRNAs aberrant expression: As potential biomarkers for Human papillomaviruses mediated carcinomas.

    PubMed

    Kumar Gupta, Amit; Kumar, Manoj

    2015-01-01

    Human papillomaviruses (HPVs) are extremely associated with different carcinomas. Despite consequential accomplishments, there is still need to establish more promising biomarkers to discriminate cancerous progressions. Therefore, we have developed HPVbase (http://crdd.osdd.net/servers/hpvbase/), a comprehensive resource for three major efficacious cancer biomarkers i.e. integration and breakpoint events, HPVs methylation patterns and HPV mediated aberrant expression of distinct host microRNAs (miRNAs). It includes clinically important 1257 integrants and integration sites from different HPV types i.e. 16, 18, 31, 33 and 45 associated with distinct histological conditions. An inclusive HPV integrant and breakpoints browser was designed to provide easy browsing and straightforward analysis. Our study also provides 719 major quantitative HPV DNA methylation observations distributed in 5 distinct HPV genotypes from higher to lower in numbers namely HPV 16 (495), HPV 18 (113), HPV45 (66), HPV 31 (34) and HPV 33 (11). Additionally, we have curated and compiled clinically significant aberrant expression profile of 341 miRNAs including their target genes in distinct carcinomas, which can be utilized for miRNA therapeutics. A user-friendly web interface has been developed for easy data retrieval and analysis. We foresee that HPVbase an integrated and multi-comparative platform would facilitate reliable cancer diagnostics and prognosis. PMID:26205472

  16. HPVbase – a knowledgebase of viral integrations, methylation patterns and microRNAs aberrant expression: As potential biomarkers for Human papillomaviruses mediated carcinomas

    PubMed Central

    Kumar Gupta, Amit; Kumar, Manoj

    2015-01-01

    Human papillomaviruses (HPVs) are extremely associated with different carcinomas. Despite consequential accomplishments, there is still need to establish more promising biomarkers to discriminate cancerous progressions. Therefore, we have developed HPVbase (http://crdd.osdd.net/servers/hpvbase/), a comprehensive resource for three major efficacious cancer biomarkers i.e. integration and breakpoint events, HPVs methylation patterns and HPV mediated aberrant expression of distinct host microRNAs (miRNAs). It includes clinically important 1257 integrants and integration sites from different HPV types i.e. 16, 18, 31, 33 and 45 associated with distinct histological conditions. An inclusive HPV integrant and breakpoints browser was designed to provide easy browsing and straightforward analysis. Our study also provides 719 major quantitative HPV DNA methylation observations distributed in 5 distinct HPV genotypes from higher to lower in numbers namely HPV 16 (495), HPV 18 (113), HPV45 (66), HPV 31 (34) and HPV 33 (11). Additionally, we have curated and compiled clinically significant aberrant expression profile of 341 miRNAs including their target genes in distinct carcinomas, which can be utilized for miRNA therapeutics. A user-friendly web interface has been developed for easy data retrieval and analysis. We foresee that HPVbase an integrated and multi-comparative platform would facilitate reliable cancer diagnostics and prognosis. PMID:26205472

  17. Aberrant markers expression in T- and B-lymphoid and myeloid leukemia cells of different differentiation stages.

    PubMed

    Babusíková, O; Koníková, E; Kusenda, J; Koubek, K

    1999-01-01

    The aim of the study was to ascertain if in T acute lymphoblastic leukemia (T-ALL), B acute lymphoblastic leukemia (B-ALL) and acute myeloid leukemia (AML) of different differentiation stages the coexistence of aberrant markers correlate with the degree of leukemic blasts maturation. We evaluated the results of surface and intracellular markers in 42 T-ALL, 86 B-ALL and 71 AML cases. A large panel of monoclonal antibodies (MoAbs) against T-cell, B-cell, myeloid cell and non-lineage specific structures has been used. Patients had dual-color flow cytometric immunophenotyping performed by FACStar flow cytometer. The correct immunological diagnosis of followed new cases before any treatment has been performed and simultaneously the presence of atypical/aberrant phenotypes has been studied and correlated with leukemia cells differentiation stage. A great deal of T-ALL and AML, in opposite to B-ALL cases, revealed a high proportion of atypical phenotypes (55, 75 and 36%, respectively), which are absent in nonleukemic cells. We found out that these atypical phenotypes were present in T-ALL, AML (not clearly in B-ALL) through all differentiation stages and so we obtained an evidence that they might represent an abnormal/atypical rather than an immature phenotype, as it was postulated till now by several authors. PMID:10665842

  18. Tipping the balance between good and evil: aberrant 14-3-3ζ expression drives oncogenic TGF-β signaling in metastatic breast cancers.

    PubMed

    Morrison, Chevaun D; Schiemann, William P

    2015-01-01

    Transforming growth factor beta (TGF-β) readily suppresses the development of early-stage breast cancers, an activity that gives way to tumor promotion in their late-stage counterparts. The molecular mechanisms underlying this mysterious switch in TGF-β function remain murky. In addressing this conundrum, Xu et al. observed aberrant 14-3-3ζ expression to prevent the formation of tumor-suppressive Smad2/3:p53 complexes, while simultaneously driving the generation of oncogenic Smad2/3:Gli2 complexes. Once formed, Smad2/3:Gli2 complexes stimulate the expression of parathyroid hormone-related protein necessary for breast cancer metastasis to bone. This viewpoint highlights 14-3-3ζ as an essential driver of oncogenic signaling by Smad2/3 and TGF-β in metastatic breast cancers. PMID:26160166

  19. Transplacental arsenic plus postnatal 12-O-teradecanoyl phorbol-13-acetate exposures associated with hepatocarcinogenesis induce similar aberrant gene expression patterns in male and female mouse liver

    SciTech Connect

    Liu Jie . E-mail: Liu6@niehs.nih.gov; Xie Yaxiong; Merrick, B. Alex; Shen Jun; Ducharme, Danica M.K.; Collins, Jennifer; Diwan, Bhalchandra A.; Logsdon, Daniel; Waalkes, Michael P.

    2006-06-15

    Our prior work shows that in utero arsenic exposure alone is a complete transplacental carcinogen, producing hepatocellular carcinoma in adult male offspring but not in females. In a follow-up study to potentially promote arsenic-initiated tumors, mice were exposed to arsenic (85 ppm) from gestation day 8 to 18 and then exposed to 12-O-teradecanoyl phorbol-13-acetate (TPA), a well-known tumor promoter after weaning. The dermal application of TPA (2 {mu}g/0.1 ml acetone, twice/week for 21 weeks) after transplacental arsenic did not further increase arsenic-induced liver tumor formation in adult males but significantly increased liver tumor formation in adult females. Thus, for comparison, liver tumors and normal liver samples taken from adult male and female mice at necropsy were analyzed for aberrant gene/protein expression by microarray, real-time RT-PCR and Western blot analysis. Arsenic/TPA treatment resulted in increased expression of {alpha}-fetoprotein, k-ras, c-myc, estrogen receptor-{alpha}, cyclin D1, cdk2na, plasminogen activator inhibitor-1, cytokeratin-8, cytokeratin-18, glutathione S-transferases and insulin-like growth factor binding proteins in liver and liver tumors from both male and female mice. Arsenic/TPA also decreased the expression of BRCA1, betaine-homocysteine methyltransferase, CYP7B1, CYP2F2 and insulin-like growth factor-1 in normal and cancerous livers. Alterations in these gene products were associated with arsenic/TPA-induced liver tumors, regardless of sex. Thus, transplacental arsenic plus postnatal TPA exposure induced similar aberrant gene expression patterns in male and female mouse liver, which are persistent and potentially important to the mechanism of arsenic initiation of hepatocarcinogenesis.

  20. Expression of H type 1 antigen of ABO histo-blood group in normal colon and aberrant expressions of H type 2 and H type 3/4 antigens in colon cancer.

    PubMed

    Fujitani, N; Liu, Y; Toda, S; Shirouzu, K; Okamura, T; Kimura, H

    2000-05-01

    We have immunohistochemically examined the distribution of the H antigens of type 1, type 2 and type 3/4 chains of the ABO(H) histo-blood group system in human normal colon and in colon cancer using three monoclonal antibodies specific for each of the H type 1/2, H type 2, and the H type 3/4 chain. We unexpectedly found that mucosa of the normal colon from secretors but not that from nonsecretors expressed only H type 1 and did not express H type 2 or H type 3/4. The H type 1 was expressed in goblet cells. Positive goblet cells expressing H type 1 were decreased in number progressively from the proximal colon to the rectum. In tumors, 4 (57%) of 7 cancer tissues of the proximal colon from secretors expressed no H type 1, whereas all 8 cancer tissues of the distal colon from secretors expressed H type 1. The aberrant expressions of H type 2 and H type 3/4 (47 and 67%, respectively) were found in cancer tissues from both the proximal and the distal colon. Tumors from nonsecretors did not express any H antigens. Our results suggested that the expression of H type 1 in the normal colon and the aberrant expressions of H type 2 and H type 3/4 in colon cancer tissues were regulated by FUT2-encoded Se type alpha(1,2)fucosyltransferase. However, UEA-I-positive substance(s) rather than H type 2 were uniquely expressed throughout the normal colon and in colon cancers from both secretors and nonsecretors. PMID:11261842

  1. Transplacental exposure to inorganic arsenic at a hepatocarcinogenic dose induces fetal gene expression changes in mice indicative of aberrant estrogen signaling and disrupted steroid metabolism

    SciTech Connect

    Liu Jie . E-mail: Liu6@niehs.nih.gov; Xie Yaxiong; Cooper, Ryan; Ducharme, Danica M.K.; Tennant, Raymond; Diwan, Bhalchandra A.; Waalkes, Michael P.

    2007-05-01

    Exposure to inorganic arsenic in utero in C3H mice produces hepatocellular carcinoma in male offspring when they reach adulthood. To help define the molecular events associated with the fetal onset of arsenic hepatocarcinogenesis, pregnant C3H mice were given drinking water containing 0 (control) or 85 ppm arsenic from day 8 to 18 of gestation. At the end of the arsenic exposure period, male fetal livers were removed and RNA isolated for microarray analysis using 22K oligo chips. Arsenic exposure in utero produced significant (p < 0.001) alterations in expression of 187 genes, with approximately 25% of aberrantly expressed genes related to either estrogen signaling or steroid metabolism. Real-time RT-PCR on selected genes confirmed these changes. Various genes controlled by estrogen, including X-inactive-specific transcript, anterior gradient-2, trefoil factor-1, CRP-ductin, ghrelin, and small proline-rich protein-2A, were dramatically over-expressed. Estrogen-regulated genes including cytokeratin 1-19 and Cyp2a4 were over-expressed, although Cyp3a25 was suppressed. Several genes involved with steroid metabolism also showed remarkable expression changes, including increased expression of 17{beta}-hydroxysteroid dehydrogenase-7 (HSD17{beta}7; involved in estradiol production) and decreased expression of HSD17{beta}5 (involved in testosterone production). The expression of key genes important in methionine metabolism, such as methionine adenosyltransferase-1a, betaine-homocysteine methyltransferase and thioether S-methyltransferase, were suppressed. Thus, exposure of mouse fetus to inorganic arsenic during a critical period in development significantly alters the expression of various genes encoding estrogen signaling and steroid or methionine metabolism. These alterations could disrupt genetic programming at the very early life stage, which could impact tumor formation much later in adulthood.

  2. Aberrant expression of miR-153 is associated with overexpression of hypoxia-inducible factor-1α in refractory epilepsy

    PubMed Central

    Li, Yaohua; Huang, Cheng; Feng, Peimin; Jiang, Yanping; Wang, Wei; Zhou, Dong; Chen, Lei

    2016-01-01

    Evidence suggest that overexpression of hypoxia-inducible factor-1α (HIF-1α) is linked to multidrug resistance of epilepsy. Here we explored whether aberrant expression of HIF-1α is regulated by miRNAs. Genome-wide microRNA expression profiling was performed on temporal cortex resected from mesial temporal lobe epilepsy (mTLE) patients and age-matched controls. miRNAs that are putative regulator of HIF-1α were predicted via target scan and confirmed by real-time quantitative polymerase chain reaction (RT-qPCR). Mimics or miRNA morpholino inhibitors were transfected in astrocytes and luciferase reporter assay was applied to detect HIF-11α expression. Microarray profiling identified down-regulated miR-153 as a putative regulator of HIF-1α in temporal cortex resected from surgical mTLE patients. RT-qPCR confirmed down-regulation of miR-153 in plasma of mTLE patients in an independent validation cohort. Knockdown of miR-153 significantly enhanced expression of HIF-1α while forced expression of miR-153 dramatically inhibited HIF-1α expression in pharmacoresistant astrocyte model. Luciferase assay established that miR-153 might inhibit HIF-1α expression via directly targeting two binding sites in the 3′UTR region of HIF-1α transcript. These data suggest that down-regulation of miR-153 may contribute to enhanced expression of HIF-1α in mTLE and serve as a novel biomarker and treatment target for epilepsy. PMID:27554040

  3. Aberrant expression of microRNAs as biomarker for schizophrenia: from acute state to partial remission, and from peripheral blood to cortical tissue.

    PubMed

    Lai, C-Y; Lee, S-Y; Scarr, E; Yu, Y-H; Lin, Y-T; Liu, C-M; Hwang, T-J; Hsieh, M H; Liu, C-C; Chien, Y-L; Udawela, M; Gibbons, A S; Everall, I P; Hwu, H-G; Dean, B; Chen, W J

    2016-01-01

    Based on our previous finding of a seven-miRNA (hsa-miR-34a, miR-449a, miR-564, miR-432, miR-548d, miR-572 and miR-652) signature as a potential biomarker for schizophrenia, this study aimed to examine if hospitalization could affect expressions of these miRNAs. We compared their expression levels between acute state and partial remission state in people with schizophrenia (n=48) using quantitative PCR method. Further, to examine whether the blood and brain show similar expression patterns, the expressions of two miRNAs (hsa-miR-34a and hsa-miR-548d) were examined in the postmortem brain tissue of people with schizophrenia (n=25) and controls (n=27). The expression level of the seven miRNAs did not alter after ~2 months of hospitalization with significant improvement in clinical symptoms, suggesting the miRNAs could be traits rather than state-dependent markers. The aberrant expression seen in the blood of hsa-miR-34a and hsa-miR-548d were not present in the brain samples, but this does not discount the possibility that the peripheral miRNAs could be clinically useful biomarkers for schizophrenia. Unexpectedly, we found an age-dependent increase in hsa-miR-34a expressions in human cortical (Brodmann area 46 (BA46)) but not subcortical region (caudate putamen). The correlation between hsa-miR-34a expression level in BA46 and age was much stronger in the controls than in the cases, and the corresponding correlation in the blood was only seen in the cases. The association between the miRNA dysregulations, the disease predisposition and aging warrants further investigation. Taken together, this study provides further insight on the candidate peripheral miRNAs as stable biomarkers for the diagnostics of schizophrenia. PMID:26784971

  4. Violacein inhibits matrix metalloproteinase mediated CXCR4 expression: potential anti-tumor effect in cancer invasion and metastasis.

    PubMed

    Platt, Derek; Amara, Suneetha; Mehta, Toral; Vercuyssee, Koen; Myles, Elbert L; Johnson, Terrance; Tiriveedhi, Venkataswarup

    2014-12-01

    Matrix metalloproteinases (MMP-2 and -9) play an important role in the tumor metastasis through cleavage of proinflammatory cytokines. Violacein a small molecule produced by Chromobacterium violaceum and has been implicated with anti-cancer effects. In this study we investigated the molecular basis of violacein mediated downregulation of CXCL12/CXCR4, chemokine-receptor ligand interaction. Zymography analysis demonstrated that violacein significantly inhibited the cytokine (TNFα and TGFβ) mediated MMP-2 activation in MCF-7 breast cancer cell line. MMP-2 plays a critical role in the secretion of inflammatory chemokine, CXCL12, involved in cell migration and cancer metastasis. ELISA analysis demonstrated that violacein inhibited the secretion of CXCL12 from the activated MCF-7 cells. Further, we show that MMP-2/-9 act synergistically at two distinct steps towards the membrane expression of the tumor metastasis chemokine receptor, CXCR4. Violacein efficiently downregulated the CXCR4 membrane expression through MMP-9 inhibition. Taken together, these studies demonstrate a unique anti-tumor mechanism of action of violacein through reduction of CXCL12/CXCR4 interaction. These studies could offer a novel venue for violacein in cancer therapy. PMID:25450700

  5. Transition from two to one integument in Prunus species: expression pattern of INNER NO OUTER (INO), ABERRANT TESTA SHAPE (ATS) and ETTIN (ETT).

    PubMed

    Lora, Jorge; Hormaza, José I; Herrero, Maria

    2015-10-01

    While gymnosperm ovules have one integument, in most angiosperms two integuments surround the ovules. Unitegmic ovules have arisen independently several times during the evolution of angiosperms, but the ultimate genetic cause of the presence of a single integument remains elusive. We compared species of the genus Prunus that have different numbers of integuments: bitegmic species, such as Prunus armeniaca (apricot) and Prunus persica (peach), and unitegmic species, such as Prunus incisa, analyzing the expression pattern of genes that are involved in integument development in Arabidopsis thaliana: INNER NO OUTER (INO), ABERRANT TESTA SHAPE (ATS) and ETTIN (ETT). Bitegmic and unitegmic species showed similar INO expression patterns, indicative of the conservation of an outer integument. However, expression of ETT, which occurs in the boundary of the outer and inner integuments, was altered in unitegmic ovules, which showed lack of ETT expression. These results strongly suggest that the presence of a single integument could be attributable to the amalgamation of two integuments and support the role of ETT in the fusion of the outer and inner integuments in unitegmic ovules, a situation that could be widespread in other unitegmic species of angiosperms. PMID:25991552

  6. Aberrant expression of miR-127, miR-21 and miR-16 in placentas of deceased cloned sheep.

    PubMed

    Ni, Wei; You, Shuang; Cao, Yang; Li, Cunyuan; Wei, Junchuang; Wang, Dawei; Qiao, Jun; Zhao, Xinxia; Hu, Shengwei; Quan, Renzhe

    2016-04-01

    Placental deficiencies are associated with developmental abnormalities of animal produced by somatic cell nuclear transfer (SCNT). It is reported that aberrant expression of microRNAs (miRNAs) in the common placenta is associated with fetal growth restriction and placental deficiencies. However, an understanding of the expression and function of miRNAs in the placentas of cloned animal is lacking. In this study, we characterized the expression of five growth-associated miRNAs (miR-127, miR-16, miR-21, miR-93 and miR-182) in placentas of deceased transgenic cloned sheep (deceased group, n=7), live transgenic cloned sheep (live group, n=5) and conventionally produced sheep (control group, n=10). Expression levels of miR-127 (P<0.01), miR-21 (P<0.01) and miR-16 (P<0.05) were significantly up-regulated in the placentas of deceased group compared to that of control group. In contrast, the expression of these miRNAs was largely normal in the placentas of live group, except for the expression of miR-21. Furthermore, we confirmed that retrotransposon-like gene (Rtl1), a key gene in placental development, was down-regulated by miR-127 as a target in placenta cells. Our results suggested that the abnormal expression of miR-127, miR-21 and miR-16 in placentas of deceased sheep, through dysregulation of target genes, may result in developmental deficiencies of transgenic cloned sheep. PMID:27033933

  7. Hyaluronan suppresses prostate tumor cell proliferation through diminished expression of N-cadherin and aberrant growth factor receptor signaling

    SciTech Connect

    Bharadwaj, Alamelu G.; Goodrich, Nathaniel P.; McAtee, Caitlin O.; Haferbier, Katie; Oakley, Gregory G.; Wahl, James K.; Simpson, Melanie A.

    2011-05-01

    Hyaluronan (HA) production has been functionally implicated in prostate tumorigenesis and metastasis. We previously used prostate tumor cells overexpressing the HA synthesizing enzyme HAS3 or the clinically relevant hyaluronidase Hyal1 to show that excess HA production suppresses tumor growth, while HA turnover accelerates spontaneous metastasis from the prostate. Here, we examined pathways responsible for effects of HAS3 and Hyal1 on tumor cell phenotype. Detailed characterization of cell cycle progression revealed that expression of Hyal1 accelerated cell cycle re-entry following synchronization, whereas HAS3 alone delayed entry. Hyal1 expressing cells exhibited a significant reduction in their ability to sustain ERK phosphorylation upon stimulation by growth factors, and in their expression of the cyclin-dependent kinase inhibitor p21. In contrast, HAS3 expressing cells showed prolonged ERK phosphorylation and increased expression of both p21 and p27, in asynchronous and synchronized cultures. Changes in cell cycle regulatory proteins were accompanied by HA-induced suppression of N-cadherin, while E-cadherin expression and {beta}-catenin expression and distribution remained unchanged. Our results are consistent with a model in which excess HA synthesis suppresses cell proliferation by promoting homotypic E-cadherin mediated cell-cell adhesion, consequently signaling to elevate cell cycle inhibitor expression and suppress G1- to S-phase transition.

  8. Illumina Sequencing Reveals Aberrant Expression of MicroRNAs and Their Variants in Whitefish (Coregonus lavaretus) Liver after Exposure to Microcystin-LR.

    PubMed

    Brzuzan, Paweł; Florczyk, Maciej; Łakomiak, Alicja; Woźny, Maciej

    2016-01-01

    Molecular analyses show that challenging fish with microcystin-LR (MC-LR) causes perturbations of microRNA (miRNA) signaling. However, the significance and scope of these alterations is currently unknown. To address this issue, we studied miRNA gene expression in the liver of juvenile whitefish, C. lavaretus, during 28 days of exposure to a subacute dose of MC-LR (100 μg·kg-1 body mass). Using genomic resources of Atlantic salmon (AGKD03), the mature miRNA library of Atlantic salmon (miRBase-21) and bioinformatics tools (sRNAbench), we discovered and annotated a total of 377 distinct mature miRNAs belonging to 93 families of evolutionary conserved miRNAs, as well as 24 novel mature miRNA candidates that were mapped to 14 distinct S. salar miRNA precursors. miRNA-Seq transcriptome profiling of liver tissues revealed differential miRNA expression in control and treated fish at 14 days (73 miRNAs were modulated) and at 28 days (83 miRNAs) of the treatment, subsequently validated by qPCR for nine selected differentially expressed miRNAs. Additional qPCR study confirmed the miRNA-Seq data and revealed consistent, aberrant miRNAs expression profile in the later phase of MC-LR hepatotoxicity (7-28 d). Functional annotation analysis revealed that the aberrantly expressed miRNAs have target genes involved in cytoskeletal remodeling, cell metabolism, cell cycle regulation and apoptosis; dysregulation of these processes in liver cells leads to cirrhosis and hepatocellular carcinoma in humans. To enable deeper insight into the molecular responses of liver cells in fish exposed to MC-LR, we expanded the miRNAome analysis by inclusion of miRNA variants (isomiRs) profiles, and we showed that the isomiR profiles of liver specific MiR122, and a few other miRNAs, correlated with MC-LR treatment. Given the importance of isomiRs for disease biology in mammals, we believe that further research focused on the miRNA isoforms will bring us closer to better understanding the molecular

  9. Illumina Sequencing Reveals Aberrant Expression of MicroRNAs and Their Variants in Whitefish (Coregonus lavaretus) Liver after Exposure to Microcystin-LR

    PubMed Central

    Brzuzan, Paweł; Florczyk, Maciej; Łakomiak, Alicja; Woźny, Maciej

    2016-01-01

    Molecular analyses show that challenging fish with microcystin-LR (MC-LR) causes perturbations of microRNA (miRNA) signaling. However, the significance and scope of these alterations is currently unknown. To address this issue, we studied miRNA gene expression in the liver of juvenile whitefish, C. lavaretus, during 28 days of exposure to a subacute dose of MC-LR (100 μg·kg-1 body mass). Using genomic resources of Atlantic salmon (AGKD03), the mature miRNA library of Atlantic salmon (miRBase-21) and bioinformatics tools (sRNAbench), we discovered and annotated a total of 377 distinct mature miRNAs belonging to 93 families of evolutionary conserved miRNAs, as well as 24 novel mature miRNA candidates that were mapped to 14 distinct S. salar miRNA precursors. miRNA-Seq transcriptome profiling of liver tissues revealed differential miRNA expression in control and treated fish at 14 days (73 miRNAs were modulated) and at 28 days (83 miRNAs) of the treatment, subsequently validated by qPCR for nine selected differentially expressed miRNAs. Additional qPCR study confirmed the miRNA-Seq data and revealed consistent, aberrant miRNAs expression profile in the later phase of MC-LR hepatotoxicity (7–28 d). Functional annotation analysis revealed that the aberrantly expressed miRNAs have target genes involved in cytoskeletal remodeling, cell metabolism, cell cycle regulation and apoptosis; dysregulation of these processes in liver cells leads to cirrhosis and hepatocellular carcinoma in humans. To enable deeper insight into the molecular responses of liver cells in fish exposed to MC-LR, we expanded the miRNAome analysis by inclusion of miRNA variants (isomiRs) profiles, and we showed that the isomiR profiles of liver specific MiR122, and a few other miRNAs, correlated with MC-LR treatment. Given the importance of isomiRs for disease biology in mammals, we believe that further research focused on the miRNA isoforms will bring us closer to better understanding the molecular

  10. Malignant Peripheral Nerve Sheath Tumor Invasion Requires Aberrantly Expressed Epidermal Growth Factor (EGF) Receptors and is Variably Enhanced by Multiple EGF Family Ligands

    PubMed Central

    Byer, Stephanie J.; Brossier, Nicole M.; Peavler, Lafe T.; Eckert, Jenell M.; Watkins, Stacey; Roth, Kevin A.; Carroll, Steven L.

    2013-01-01

    Aberrant epidermal growth factor receptor (EGFR) expression promotes the pathogenesis of malignant peripheral nerve sheath tumors (MPNSTs), the most common malignancy associated with neurofibromatosis type 1, but the mechanisms by which EGFR expression promotes MPNST pathogenesis are poorly understood. We hypothesized that inappropriately expressed EGFRs promote MPNST invasion and found that these kinases are concentrated in MPNST invadopodia in vitro. EGFR knockdown inhibited the migration of unstimulated MPNST cells in vitro and exogenous EGF further enhanced MPNST migration in a substrate-specific manner, promoting migration on laminin and, to a lesser extent, collagen. Thus, in this setting, EGF acts as a chemotactic factor. We also found that the 7 known EGFR ligands (EGF, betacellulin, epiregulin, heparin-binding EGF, transforming growth factor α [TGFα], amphiregulin, and epigen) variably enhanced MPNST migration in a concentration-dependent manner, with TGFα being particularly potent. With the exception of epigen, these factors similarly promoted the migration of non-neoplastic Schwann cells. Although transcripts encoding all 7 EGFR ligands were detected in human MPNST cells and tumor tissues, only TGFα was consistently overexpressed and was found to colocalize with EGFR in situ. These data indicate that constitutive EGFR activation, potentially driven by autocrine or paracrine TGFα signaling, promotes the aggressive invasive behavior characteristic of MPNSTs. PMID:23399900