Sample records for aberrant epigenetic reprogramming

  1. Epigenetic reprogramming in mammalian species after SCNT-based cloning.

    PubMed

    Niemann, Heiner

    2016-07-01

    The birth of "Dolly," the first mammal cloned from an adult mammary epithelial cell, abolished the decades-old scientific dogma implying that a terminally differentiated cell cannot be reprogrammed into a pluripotent embryonic state. The most dramatic epigenetic reprogramming occurs in SCNT when the expression profile of a differentiated cell is abolished and a new embryo-specific expression profile, involving 10,000 to 12,000 genes, and thus, most genes of the entire genome is established, which drives embryonic and fetal development. The initial release from somatic cell epigenetic constraints is followed by establishment of post-zygotic expression patterns, X-chromosome inactivation, and adjustment of telomere length. Somatic cell nuclear transfer may be associated with a variety of pathologic changes of the fetal and placental phenotype in a proportion of cloned offspring, specifically in ruminants, that are thought to be caused by aberrant epigenetic reprogramming. Improvements in our understanding of this dramatic epigenetic reprogramming event will be instrumental in realizing the great potential of SCNT for basic research and for important agricultural and biomedical applications. Here, current knowledge on epigenetic reprogramming after use of SCNT in livestock is reviewed, with emphasis on gene-specific and global DNA methylation, imprinting, X-chromosome inactivation, and telomere length restoration in early development. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling.

    PubMed

    Grzybek, Maciej; Golonko, Aleksandra; Walczak, Marta; Lisowski, Pawel

    2017-03-01

    The reprogramming of human induced pluripotent stem cells (hiPSCs) proceeds in a stepwise manner with reprogramming factors binding and epigenetic composition changes during transition to maintain the epigenetic landscape, important for pluripotency. There arises a question as to whether the aberrant epigenetic state after reprogramming leads to epigenetic defects in induced stem cells causing unpredictable long term effects in differentiated cells. In this review, we present a comprehensive view of epigenetic alterations accompanying reprogramming, cell maintenance and differentiation as factors that influence applications of hiPSCs in stem cell based technologies. We conclude that sample heterogeneity masks DNA methylation signatures in subpopulations of cells and thus believe that beside a genetic evaluation, extensive epigenomic screening should become a standard procedure to ensure hiPSCs state before they are used for genome editing and differentiation into neurons of interest. In particular, we suggest that exploitation of the single-cell composition of the epigenome will provide important insights into heterogeneity within hiPSCs subpopulations to fast forward development of reliable hiPSC-based analytical platforms in neurological disorders modelling and before completed hiPSC technology will be implemented in clinical approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Epigenetic reprogramming in plant sexual reproduction.

    PubMed

    Kawashima, Tomokazu; Berger, Frédéric

    2014-09-01

    Epigenetic reprogramming consists of global changes in DNA methylation and histone modifications. In mammals, epigenetic reprogramming is primarily associated with sexual reproduction and occurs during both gametogenesis and early embryonic development. Such reprogramming is crucial not only to maintain genomic integrity through silencing transposable elements but also to reset the silenced status of imprinted genes. In plants, observations of stable transgenerational inheritance of epialleles have argued against reprogramming. However, emerging evidence supports that epigenetic reprogramming indeed occurs during sexual reproduction in plants and that it has a major role in maintaining genome integrity and a potential contribution to epiallelic variation.

  4. Local epigenetic reprograming induced by G-quadruplex ligands

    PubMed Central

    Recolin, Bénédicte; Campbell, Beth C.; Maiter, Ahmed; Sale, Julian E.; Balasubramanian, Shankar

    2017-01-01

    DNA and histone modifications regulate transcriptional activity and thus represent valuable targets to reprogram the activity of genes. Current epigenetic therapies target the machinery that regulates these modifications, leading to global transcriptional reprogramming with the potential for extensive undesired effects. Epigenetic information can also be modified as a consequence of disrupting processive DNA replication. Here we demonstrate that impeding replication by small molecule-mediated stabilisation of G-quadruplex nucleic acid secondary structures triggers local epigenetic plasticity. We report the use of the BU-1 locus of chicken DT40 cells to screen for small molecules able to induce G-quadruplex-dependent transcriptional reprogramming. Further characterisation of the top hit compound revealed its ability to induce a dose-dependent inactivation of BU-1 expression in two steps, first loss of H3K4me3 and subsequently DNA cytosine methylation, changes that were heritable across cell divisions even after the compound was removed. Targeting DNA secondary structures thus represents a potentially new approach for locus-specific epigenetic reprogramming. PMID:29064488

  5. Local epigenetic reprogramming induced by G-quadruplex ligands

    NASA Astrophysics Data System (ADS)

    Guilbaud, Guillaume; Murat, Pierre; Recolin, Bénédicte; Campbell, Beth C.; Maiter, Ahmed; Sale, Julian E.; Balasubramanian, Shankar

    2017-11-01

    DNA and histone modifications regulate transcriptional activity and thus represent valuable targets to reprogram the activity of genes. Current epigenetic therapies target the machinery that regulates these modifications, leading to global transcriptional reprogramming with the potential for extensive undesired effects. Epigenetic information can also be modified as a consequence of disrupting processive DNA replication. Here, we demonstrate that impeding replication by small-molecule-mediated stabilization of G-quadruplex nucleic acid secondary structures triggers local epigenetic plasticity. We report the use of the BU-1 locus of chicken DT40 cells to screen for small molecules able to induce G-quadruplex-dependent transcriptional reprogramming. Further characterization of the top hit compound revealed its ability to induce a dose-dependent inactivation of BU-1 expression in two steps: the loss of H3K4me3 and then subsequent DNA cytosine methylation, changes that were heritable across cell divisions even after the compound was removed. Targeting DNA secondary structures thus represents a potentially new approach for locus-specific epigenetic reprogramming.

  6. Biophysical regulation of epigenetic state and cell reprogramming

    NASA Astrophysics Data System (ADS)

    Downing, Timothy L.; Soto, Jennifer; Morez, Constant; Houssin, Timothee; Fritz, Ashley; Yuan, Falei; Chu, Julia; Patel, Shyam; Schaffer, David V.; Li, Song

    2013-12-01

    Biochemical factors can help reprogram somatic cells into pluripotent stem cells, yet the role of biophysical factors during reprogramming is unknown. Here, we show that biophysical cues, in the form of parallel microgrooves on the surface of cell-adhesive substrates, can replace the effects of small-molecule epigenetic modifiers and significantly improve reprogramming efficiency. The mechanism relies on the mechanomodulation of the cells’ epigenetic state. Specifically, decreased histone deacetylase activity and upregulation of the expression of WD repeat domain 5 (WDR5)—a subunit of H3 methyltranferase—by microgrooved surfaces lead to increased histone H3 acetylation and methylation. We also show that microtopography promotes a mesenchymal-to-epithelial transition in adult fibroblasts. Nanofibrous scaffolds with aligned fibre orientation produce effects similar to those produced by microgrooves, suggesting that changes in cell morphology may be responsible for modulation of the epigenetic state. These findings have important implications in cell biology and in the optimization of biomaterials for cell-engineering applications.

  7. Extensive epigenetic reprogramming during the life cycle of Marchantia polymorpha.

    PubMed

    Schmid, Marc W; Giraldo-Fonseca, Alejandro; Rövekamp, Moritz; Smetanin, Dmitry; Bowman, John L; Grossniklaus, Ueli

    2018-01-25

    In plants, the existence and possible role of epigenetic reprogramming has been questioned because of the occurrence of stably inherited epialleles. Evidence suggests that epigenetic reprogramming does occur during land plant reproduction, but there is little consensus on the generality and extent of epigenetic reprogramming in plants. We studied DNA methylation dynamics during the life cycle of the liverwort Marchantia polymorpha. We isolated thalli and meristems from male and female gametophytes, archegonia, antherozoids, as well as sporophytes at early and late developmental stages, and compared their DNA methylation profiles. Of all cytosines tested for differential DNA methylation, 42% vary significantly in their methylation pattern throughout the life cycle. However, the differences are limited to few comparisons between specific stages of the life cycle and suggest four major epigenetic states specific to sporophytes, vegetative gametophytes, antherozoids, and archegonia. Further analyses indicated clear differences in the mechanisms underlying reprogramming in the gametophytic and sporophytic generations, which are paralleled by differences in the expression of genes involved in DNA methylation. Differentially methylated cytosines with a gain in methylation in antherozoids and archegonia are enriched in the CG and CHG contexts, as well as in gene bodies and gene flanking regions. In contrast, gain of DNA methylation during sporophyte development is mostly limited to the CHH context, LTR retrotransposons, DNA transposons, and repeats. We conclude that epigenetic reprogramming occurs at least twice during the life cycle of M. polymorpha and that the underlying mechanisms are likely different between the two events.

  8. Shifting behaviour: epigenetic reprogramming in eusocial insects.

    PubMed

    Patalano, Solenn; Hore, Timothy A; Reik, Wolf; Sumner, Seirian

    2012-06-01

    Epigenetic modifications are ancient and widely utilised mechanisms that have been recruited across fungi, plants and animals for diverse but fundamental biological functions, such as cell differentiation. Recently, a functional DNA methylation system was identified in the honeybee, where it appears to underlie queen and worker caste differentiation. This discovery, along with other insights into the epigenetics of social insects, allows provocative analogies to be drawn between insect caste differentiation and cellular differentiation, particularly in mammals. Developing larvae in social insect colonies are totipotent: they retain the ability to specialise as queens or workers, in a similar way to the totipotent cells of early embryos before they differentiate into specific cell lineages. Further, both differentiating cells and insect castes lose phenotypic plasticity by committing to their lineage, losing the ability to be readily reprogrammed. Hence, a comparison of the epigenetic mechanisms underlying lineage differentiation (and reprogramming) between cells and social insects is worthwhile. Here we develop a conceptual model of how loss and regain of phenotypic plasticity might be conserved for individual specialisation in both cells and societies. This framework forges a novel link between two fields of biological research, providing predictions for a unified approach to understanding the molecular mechanisms underlying biological complexity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Spermatogenesis disruption by dioxins: Epigenetic reprograming and windows of susceptibility.

    PubMed

    Pilsner, J Richard; Parker, Mikhail; Sergeyev, Oleg; Suvorov, Alexander

    2017-04-01

    Dioxins are a group of highly persistent chemicals that are generated as by-products of industrial and natural processes. Reduction in sperm counts is among the most sensitive endpoints of dioxin toxicity. The exact mechanism by which dioxins reduce sperm counts is not known. Recent data implicate the role of epididymal factors rather than disruption of spermatogenesis. Studies reviewed here demonstrate that dioxins induce the transfer of environmental conditions to the next generation via male germline following exposures during the window of epigenetic reprogramming of primordial germ cells. Increased incidence of birth defects in offspring of male veterans exposed to dioxin containing, Agent Orange, suggest that dioxins may induce epigenomic changes in male germ cells of adults during spermatogenesis. This is supported by recent animal data that show that environmental conditions can cause epigenetic dysregulation in sperm in the context of specific windows of epigenetic reprogramming during spermatogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Characterization of the Epigenetic Changes During Human Gonadal Primordial Germ Cells Reprogramming.

    PubMed

    Eguizabal, C; Herrera, L; De Oñate, L; Montserrat, N; Hajkova, P; Izpisua Belmonte, J C

    2016-09-01

    Epigenetic reprogramming is a central process during mammalian germline development. Genome-wide DNA demethylation in primordial germ cells (PGCs) is a prerequisite for the erasure of epigenetic memory, preventing the transmission of epimutations to the next generation. Apart from DNA demethylation, germline reprogramming has been shown to entail reprogramming of histone marks and chromatin remodelling. Contrary to other animal models, there is limited information about the epigenetic dynamics during early germ cell development in humans. Here, we provide further characterization of the epigenetic configuration of the early human gonadal PGCs. We show that early gonadal human PGCs are DNA hypomethylated and their chromatin is characterized by low H3K9me2 and high H3K27me3 marks. Similarly to previous observations in mice, human gonadal PGCs undergo dynamic chromatin changes concomitant with the erasure of genomic imprints. Interestingly, and contrary to mouse early germ cells, expression of BLIMP1/PRDM1 persists in through all gestational stages in human gonadal PGCs and is associated with nuclear lysine-specific demethylase-1. Our work provides important additional information regarding the chromatin changes associated with human PGCs development between 6 and 13 weeks of gestation in male and female gonads. Stem Cells 2016;34:2418-2428. © 2016 AlphaMed Press.

  11. Aging, Rejuvenation, and Epigenetic Reprogramming: Resetting the Aging Clock

    PubMed Central

    Rando, Thomas A.; Chang, Howard Y.

    2012-01-01

    The underlying cause of aging remains one of the central mysteries of biology. Recent studies in several different systems suggest that not only may the rate of aging be modified by environmental and genetic factors, but also that the aging clock can be reversed, restoring characteristics of youthfulness to aged cells and tissues. This Review focuses on the emerging biology of rejuvenation through the lens of epigenetic reprogramming. By defining youthfulness and senescence as epigenetic states, a framework for asking new questions about the aging process emerges. PMID:22265401

  12. Epigenetic regulation of cell fate reprogramming in aging and disease: A predictive computational model.

    PubMed

    Folguera-Blasco, Núria; Cuyàs, Elisabet; Menéndez, Javier A; Alarcón, Tomás

    2018-03-01

    Understanding the control of epigenetic regulation is key to explain and modify the aging process. Because histone-modifying enzymes are sensitive to shifts in availability of cofactors (e.g. metabolites), cellular epigenetic states may be tied to changing conditions associated with cofactor variability. The aim of this study is to analyse the relationships between cofactor fluctuations, epigenetic landscapes, and cell state transitions. Using Approximate Bayesian Computation, we generate an ensemble of epigenetic regulation (ER) systems whose heterogeneity reflects variability in cofactor pools used by histone modifiers. The heterogeneity of epigenetic metabolites, which operates as regulator of the kinetic parameters promoting/preventing histone modifications, stochastically drives phenotypic variability. The ensemble of ER configurations reveals the occurrence of distinct epi-states within the ensemble. Whereas resilient states maintain large epigenetic barriers refractory to reprogramming cellular identity, plastic states lower these barriers, and increase the sensitivity to reprogramming. Moreover, fine-tuning of cofactor levels redirects plastic epigenetic states to re-enter epigenetic resilience, and vice versa. Our ensemble model agrees with a model of metabolism-responsive loss of epigenetic resilience as a cellular aging mechanism. Our findings support the notion that cellular aging, and its reversal, might result from stochastic translation of metabolic inputs into resilient/plastic cell states via ER systems.

  13. BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei.

    PubMed

    Huang, Jiaojiao; Zhang, Hongyong; Yao, Jing; Qin, Guosong; Wang, Feng; Wang, Xianlong; Luo, Ailing; Zheng, Qiantao; Cao, Chunwei; Zhao, Jianguo

    2016-01-01

    Accumulating evidence suggests that faulty epigenetic reprogramming leads to the abnormal development of cloned embryos and results in the low success rates observed in all mammals produced through somatic cell nuclear transfer (SCNT). The aberrant methylation status of H3K9me and H3K9me2 has been reported in cloned mouse embryos. To explore the role of H3K9me2 and H3K9me in the porcine somatic cell nuclear reprogramming, BIX-01294, known as a specific inhibitor of G9A (histone-lysine methyltransferase of H3K9), was used to treat the nuclear-transferred (NT) oocytes for 14-16 h after activation. The results showed that the developmental competence of porcine SCNT embryos was significantly enhanced both in vitro (blastocyst rate 16.4% vs 23.2%, P<0.05) and in vivo (cloning rate 1.59% vs 2.96%) after 50 nm BIX-01294 treatment. BIX-01294 treatment significantly decreased the levels of H3K9me2 and H3K9me at the 2- and 4-cell stages, which are associated with embryo genetic activation, and increased the transcriptional expression of the pluripotency genes SOX2, NANOG and OCT4 in cloned blastocysts. Furthermore, the histone acetylation levels of H3K9, H4K8 and H4K12 in cloned embryos were decreased after BIX-01294 treatment. However, co-treatment of activated NT oocytes with BIX-01294 and Scriptaid rescued donor nuclear chromatin from decreased histone acetylation of H4K8 that resulted from exposure to BIX-01294 only and consequently improved the preimplantation development of SCNT embryos (blastocyst formation rates of 23.7% vs 21.5%). These results indicated that treatment with BIX-01294 enhanced the developmental competence of porcine SCNT embryos through improvements in epigenetic reprogramming and gene expression. © 2016 Society for Reproduction and Fertility.

  14. Xenopatients 2.0: reprogramming the epigenetic landscapes of patient-derived cancer genomes.

    PubMed

    Menendez, Javier A; Alarcón, Tomás; Corominas-Faja, Bruna; Cuyàs, Elisabet; López-Bonet, Eugeni; Martin, Angel G; Vellon, Luciano

    2014-01-01

    In the science-fiction thriller film Minority Report, a specialized police department called "PreCrime" apprehends criminals identified in advance based on foreknowledge provided by 3 genetically altered humans called "PreCogs". We propose that Yamanaka stem cell technology can be similarly used to (epi)genetically reprogram tumor cells obtained directly from cancer patients and create self-evolving personalized translational platforms to foresee the evolutionary trajectory of individual tumors. This strategy yields a large stem cell population and captures the cancer genome of an affected individual, i.e., the PreCog-induced pluripotent stem (iPS) cancer cells, which are immediately available for experimental manipulation, including pharmacological screening for personalized "stemotoxic" cancer drugs. The PreCog-iPS cancer cells will re-differentiate upon orthotopic injection into the corresponding target tissues of immunodeficient mice (i.e., the PreCrime-iPS mouse avatars), and this in vivo model will run through specific cancer stages to directly explore their biological properties for drug screening, diagnosis, and personalized treatment in individual patients. The PreCog/PreCrime-iPS approach can perform sets of comparisons to directly observe changes in the cancer-iPS cell line vs. a normal iPS cell line derived from the same human genetic background. Genome editing of PreCog-iPS cells could create translational platforms to directly investigate the link between genomic expression changes and cellular malignization that is largely free from genetic and epigenetic noise and provide proof-of-principle evidence for cutting-edge "chromosome therapies" aimed against cancer aneuploidy. We might infer the epigenetic marks that correct the tumorigenic nature of the reprogrammed cancer cell population and normalize the malignant phenotype in vivo. Genetically engineered models of conditionally reprogrammable mice to transiently express the Yamanaka stemness factors

  15. Environmentally Induced Transgenerational Epigenetic Reprogramming of Primordial Germ Cells and the Subsequent Germ Line

    PubMed Central

    Skinner, Michael K.; Haque, Carlos Guerrero-Bosagna M.; Nilsson, Eric; Bhandari, Ramji; McCarrey, John R.

    2013-01-01

    A number of environmental factors (e.g. toxicants) have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germ line are those associated with primordial germ cell development and subsequent fetal germline development. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation) progeny in regards to the primordial germ cell (PGC) epigenetic reprogramming of the F3 generation (i.e. great-grandchildren). The F3 generation germline transcriptome and epigenome (DNA methylation) were altered transgenerationally. Interestingly, disruptions in DNA methylation patterns and altered transcriptomes were distinct between germ cells at the onset of gonadal sex determination at embryonic day 13 (E13) and after cord formation in the testis at embryonic day 16 (E16). A larger number of DNA methylation abnormalities (epimutations) and transcriptional alterations were observed in the E13 germ cells than in the E16 germ cells. These observations indicate that altered transgenerational epigenetic reprogramming and function of the male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided. PMID:23869203

  16. Muscle tissue engineering and regeneration through epigenetic reprogramming and scaffold manipulation

    PubMed Central

    Tan, S.J.; Fang, J.Y.; Wu, Y.; Yang, Z.; Liang, G.; Han, B.

    2015-01-01

    Efficiency of cell-based tissue engineering and regenerative medicine has been limited by inadequate cellular responses to injury because of aging and poor controllability of cellular interactions. Since cell progression is under a tight epigenetic regulation, epigenetic modulators such as 5-azacytidine (5-Aza-CR) have been utilized to facilitate reprogramming and development of somatic cells in 2-dimensional (2-D) settings. Nonetheless, progression of a specific tissue lineage toward the terminal phenotype is dependent not only on the genomic potential, but also on the microenvironment cues that are beyond the capability of 2-D approaches. In this study, we investigated the combined effects of matrices of variable rigidities and the treatment with the epigenetic modulator 5-Aza-CR on reprogramming adipose-derived stromal cells (ADSCs) into myoblast-like cells by utilizing tunable transglutaminase cross-linked gelatin (Col-Tgel) in vitro and in vivo. Our experiments demonstrated that cellular plasticity and trans-differentiation were significantly enhanced when ADSCs were treated with an effective dose of 5-Aza-CR (1.25 to 12.5 ng) in the optimal myogenic matrix (15 ± 5 kPa Col-Tgel). Our findings suggest that both physical signals and chemical milieu are critical for the regulation of cellular responses. PMID:26548559

  17. Pluripotency, Differentiation, and Reprogramming: A Gene Expression Dynamics Model with Epigenetic Feedback Regulation

    PubMed Central

    Miyamoto, Tadashi; Furusawa, Chikara; Kaneko, Kunihiko

    2015-01-01

    Embryonic stem cells exhibit pluripotency: they can differentiate into all types of somatic cells. Pluripotent genes such as Oct4 and Nanog are activated in the pluripotent state, and their expression decreases during cell differentiation. Inversely, expression of differentiation genes such as Gata6 and Gata4 is promoted during differentiation. The gene regulatory network controlling the expression of these genes has been described, and slower-scale epigenetic modifications have been uncovered. Although the differentiation of pluripotent stem cells is normally irreversible, reprogramming of cells can be experimentally manipulated to regain pluripotency via overexpression of certain genes. Despite these experimental advances, the dynamics and mechanisms of differentiation and reprogramming are not yet fully understood. Based on recent experimental findings, we constructed a simple gene regulatory network including pluripotent and differentiation genes, and we demonstrated the existence of pluripotent and differentiated states from the resultant dynamical-systems model. Two differentiation mechanisms, interaction-induced switching from an expression oscillatory state and noise-assisted transition between bistable stationary states, were tested in the model. The former was found to be relevant to the differentiation process. We also introduced variables representing epigenetic modifications, which controlled the threshold for gene expression. By assuming positive feedback between expression levels and the epigenetic variables, we observed differentiation in expression dynamics. Additionally, with numerical reprogramming experiments for differentiated cells, we showed that pluripotency was recovered in cells by imposing overexpression of two pluripotent genes and external factors to control expression of differentiation genes. Interestingly, these factors were consistent with the four Yamanaka factors, Oct4, Sox2, Klf4, and Myc, which were necessary for the

  18. Regulation of the DNA Methylation Landscape in Human Somatic Cell Reprogramming by the miR-29 Family.

    PubMed

    Hysolli, Eriona; Tanaka, Yoshiaki; Su, Juan; Kim, Kun-Yong; Zhong, Tianyu; Janknecht, Ralf; Zhou, Xiao-Ling; Geng, Lin; Qiu, Caihong; Pan, Xinghua; Jung, Yong-Wook; Cheng, Jijun; Lu, Jun; Zhong, Mei; Weissman, Sherman M; Park, In-Hyun

    2016-07-12

    Reprogramming to pluripotency after overexpression of OCT4, SOX2, KLF4, and MYC is accompanied by global genomic and epigenomic changes. Histone modification and DNA methylation states in induced pluripotent stem cells (iPSCs) have been shown to be highly similar to embryonic stem cells (ESCs). However, epigenetic differences still exist between iPSCs and ESCs. In particular, aberrant DNA methylation states found in iPSCs are a major concern when using iPSCs in a clinical setting. Thus, it is critical to find factors that regulate DNA methylation states in reprogramming. Here, we found that the miR-29 family is an important epigenetic regulator during human somatic cell reprogramming. Our global DNA methylation and hydroxymethylation analysis shows that DNA demethylation is a major event mediated by miR-29a depletion during early reprogramming, and that iPSCs derived from miR-29a depletion are epigenetically closer to ESCs. Our findings uncover an important miRNA-based approach to generate clinically robust iPSCs. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Differential epigenetic reprogramming in response to specific endocrine therapies promotes cholesterol biosynthesis and cellular invasion

    PubMed Central

    Nguyen, Van T. M.; Barozzi, Iros; Faronato, Monica; Lombardo, Ylenia; Steel, Jennifer H.; Patel, Naina; Darbre, Philippa; Castellano, Leandro; Győrffy, Balázs; Woodley, Laura; Meira, Alba; Patten, Darren K.; Vircillo, Valentina; Periyasamy, Manikandan; Ali, Simak; Frige, Gianmaria; Minucci, Saverio; Coombes, R. Charles; Magnani, Luca

    2015-01-01

    Endocrine therapies target the activation of the oestrogen receptor alpha (ERα) via distinct mechanisms, but it is not clear whether breast cancer cells can adapt to treatment using drug-specific mechanisms. Here we demonstrate that resistance emerges via drug-specific epigenetic reprogramming. Resistant cells display a spectrum of phenotypical changes with invasive phenotypes evolving in lines resistant to the aromatase inhibitor (AI). Orthogonal genomics analysis of reprogrammed regulatory regions identifies individual drug-induced epigenetic states involving large topologically associating domains (TADs) and the activation of super-enhancers. AI-resistant cells activate endogenous cholesterol biosynthesis (CB) through stable epigenetic activation in vitro and in vivo. Mechanistically, CB sparks the constitutive activation of oestrogen receptors alpha (ERα) in AI-resistant cells, partly via the biosynthesis of 27-hydroxycholesterol. By targeting CB using statins, ERα binding is reduced and cell invasion is prevented. Epigenomic-led stratification can predict resistance to AI in a subset of ERα-positive patients. PMID:26610607

  20. The Dynamic Epigenetic Landscape of the Retina During Development, Reprogramming, and Tumorigenesis

    PubMed Central

    Aldiri, Issam; Xu, Beisi; Wang, Lu; Chen, Xiang; Hiler, Daniel; Griffiths, Lyra; Valentine, Marc; Shirinifard, Abbas; Thiagarajan, Suresh; Sablauer, Andras; Barabas, Marie-Elizabeth; Zhang, Jiakun; Johnson, Dianna; Frase, Sharon; Zhou, Xin; Easton, John; Zhang, Jinghui; Mardis, Elaine R.; Wilson, Richard K.; Downing, James R.; Dyer, Michael A.

    2017-01-01

    SUMMARY In the developing retina, multipotent neural progenitors undergo unidirectional differentiation in a precise spatiotemporal order. Here we profile the epigenetic and transcriptional changes that occur during retinogenesis in mice and humans. Although some progenitor genes and cell cycle genes were epigenetically silenced during retinogenesis, the most dramatic change was derepression of cell type–specific differentiation programs. We identified developmental stage–specific super-enhancers and showed that most epigenetic changes are conserved in humans and mice. To determine how the epigenome changes during tumorigenesis and reprogramming, we performed integrated epigenetic analysis of murine and human retinoblastomas and induced pluripotent stem cells (iPSCs) derived from murine rod photoreceptors. The retinoblastoma epigenome mapped to the developmental stage when retinal progenitors switch from neurogenic to a terminal patterns of cell division. The epigenome of retinoblastomas was more similar to that of normal retina than was that of retina-derived iPSCs, and we identified retina-specific epigenetic memory. PMID:28472656

  1. Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions

    PubMed Central

    Agnihotri, Sameer; Zadeh, Gelareh

    2016-01-01

    A defining hallmark of glioblastoma is altered tumor metabolism. The metabolic shift towards aerobic glycolysis with reprogramming of mitochondrial oxidative phosphorylation, regardless of oxygen availability, is a phenomenon known as the Warburg effect. In addition to the Warburg effect, glioblastoma tumor cells also utilize the tricarboxylic acid cycle/oxidative phosphorylation in a different capacity than normal tissue. Altered metabolic enzymes and their metabolites are oncogenic and not simply a product of tumor proliferation. Here we highlight the advantages of why tumor cells, including glioblastoma cells, require metabolic reprogramming and how tumor metabolism can converge on tumor epigenetics and unanswered questions in the field. PMID:26180081

  2. Epigenetic reprogramming - is deamination key to active DNA demethylation?

    PubMed Central

    Teperek-Tkacz, Marta; Pasque, Vincent; Gentsch, George; Ferguson-Smith, Anne C.

    2013-01-01

    DNA demethylation processes are important for reproduction being central in epigenetic reprogramming during embryonic and germ cell development. While the enzymes methylating DNA have been known for many years, identification of factors capable of mediating active DNA demethylation has been challenging. Recent findings suggest that cytidine deaminases may be key players in active DNA demethylation. One of the most investigated candidates is AID (activation-induced cytidine deaminase) best known for its role in generating secondary antibody diversity in B cells. We evaluate evidence for cytidine deaminases in DNA demethylation pathways in vertebrates and discuss possible models for their targeting and activity regulation. These findings are also considered alongside alternative demethylation pathways involving hydroxymethylation. PMID:21911441

  3. JMJD3 aids in reprogramming of bone marrow progenitor cells to hepatic phenotype through epigenetic activation of hepatic transcription factors

    PubMed Central

    Kochat, Veena; Equbal, Zaffar; Baligar, Prakash; Kumar, Vikash; Srivastava, Madhulika; Mukhopadhyay, Asok

    2017-01-01

    The strictly regulated unidirectional differentiation program in some somatic stem/progenitor cells has been found to be modified in the ectopic site (tissue) undergoing regeneration. In these cases, the lineage barrier is crossed by either heterotypic cell fusion or direct differentiation. Though studies have shown the role of coordinated genetic and epigenetic mechanisms in cellular development and differentiation, how the lineage fate of adult bone marrow progenitor cells (BMPCs) is reprogrammed during liver regeneration and whether this lineage switch is stably maintained are not clearly understood. In the present study, we wanted to decipher genetic and epigenetic mechanisms that involve in lineage reprogramming of BMPCs into hepatocyte-like cells. Here we report dynamic transcriptional change during cellular reprogramming of BMPCs to hepatocytes and dissect the epigenetic switch mechanism of BM cell-mediated liver regeneration after acute injury. Genome-wide gene expression analysis in BM-derived hepatocytes, isolated after 1 month and 5 months of transplantation, showed induction of hepatic transcriptional program and diminishing of donor signatures over the time. The transcriptional reprogramming of BM-derived cells was found to be the result of enrichment of activating marks (H3K4me3 and H3K9Ac) and loss of repressive marks (H3K27me3 and H3K9me3) at the promoters of hepatic transcription factors (HTFs). Further analyses showed that BMPCs possess bivalent histone marks (H3K4me3 and H3K27me3) at the promoters of crucial HTFs. H3K27 methylation dynamics at the HTFs was antagonistically regulated by EZH2 and JMJD3. Preliminary evidence suggests a role of JMJD3 in removal of H3K27me3 mark from promoters of HTFs, thus activating epigenetically poised hepatic genes in BMPCs prior to partial nuclear reprogramming. The importance of JMJD3 in reprogramming of BMPCs to hepatic phenotype was confirmed by inhibiting catalytic function of the enzyme using small molecule

  4. Zebularine and scriptaid significantly improve epigenetic reprogramming of yak fibroblasts and cloning efficiency.

    PubMed

    Xiong, Xianrong; Lan, Daoliang; Li, Jian; Zhong, Jincheng; Zi, Xiangdong; Ma, Li; Wang, Yong

    2013-08-01

    Abnormal epigenetic reprogramming of the donor nucleus after somatic cell nuclear transfer (SCNT) is thought to be the main cause of low cloning efficiency. Following SCNT, the donor nucleus often fails to express early embryonic genes and establish a normal embryonic pattern of chromatin modification. Therefore, in this study, we have attempted to improve epigenetic reprogramming of the donor nucleus and cloned embryos with Zebularine and Scriptaid. Yak fibroblasts were treated with 20 μM Zebularine alone or 20 μM Zebularine plus 0.5 μM Scriptaid for 24 h, whereas yak cloned embryos were treated exclusively with 0.5 μM Scriptaid for 12 h. There was no effect on cellular viability and proliferation after drug treatment. The treatment of fibroblasts with Zebularine or Zebularine plus Scriptaid increased histone acetylation of histone 3 lysine 9 (H3K9), but decreased the level of DNA methylation of Oct-4 and Sox-2 promoter regions. When donor cells were used after Zebularine plus Scriptaid treatment to reconstruct cloned embryos and then treated with Scriptaid, the developmental competence and cryosurvival of embryos were improved significantly. In addition, the relative expression of Oct-4 and Sox-2 were increased significantly. The expression levels of Dnmt-1 and Hdac-1 were significantly decreased when fibroblasts and cloned embryos were treated with Zebularine or Scriptaid. This work provides functional evidence that treatment with Zebularine and Scriptaid modifies the epigenetic status of yak fibroblasts, subsequently enhancing in vitro developmental potential and the quality of yak cloned embryos.

  5. Spin glass model for cell reprogramming

    NASA Astrophysics Data System (ADS)

    Pusuluri, Sai Teja; Castillo, Horacio E.

    2014-03-01

    Recent experiments show that differentiated cells can be reprogrammed to become pluripotent stem cells. The possible cell fates can be modeled as attractors in a dynamical system, the ``epigenetic landscape.'' Both cellular differentiation and reprogramming can be described in the landscape picture as motion from one attractor state to another attractor state. We use a simple model based on spin glass theory that can construct a simulated epigenetic landscape starting from the experimental genomic data. We modify the model to incorporate experimental reprogramming protocols. Our simulations successfully reproduce several reprogramming experiments. We probe the robustness of the results against random changes in the model, explore the importance of asymmetric interactions between transcription factors and study the importance of histone modification errors in reprogramming.

  6. Intrinsic and extrinsic molecular determinants or modulators for epigenetic remodeling and reprogramming of somatic cell-derived genome in mammalian nuclear-transferred oocytes and resultant embryos.

    PubMed

    Samiec, M; Skrzyszowska, M

    2018-03-01

    The efficiency of somatic cell cloning in mammals remains disappointingly low. Incomplete and aberrant reprogramming of epigenetic memory of somatic cell nuclei in preimplantation nuclear- transferred (NT) embryos is one of the most important factors that limit the cloning effectiveness. The extent of epigenetic genome-wide alterations, involving histone or DNA methylation and histone deacetylation, that are mediated by histone-lysine methyltransferases (HMTs) or DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) can be modulated/reversed via exogenous inhibitors of these enzymes throughout in vitro culture of nuclear donor cells, nuclear recipient oocytes and/or cloned embryos. The use of the artificial modifiers of epigenomically-conditioned gene expression leads to inhibition of both chromatin condensation and transcriptional silencing the genomic DNA of somatic cells that provide a source of nuclear donors for reconstruction of enucleated oocytes and generation of cloned embryos. The onset of chromatin decondensation and gene transcriptional activity is evoked both through specific/selective inactivating HMTs by BIX-01294 and through non-specific/non-selective blocking the activity of either DNMTs by 5-aza-2'-deoxycytidine, zebularine, S-adenosylhomocysteine or HDACs by trichostatin A, valproic acid, scriptaid, oxamflatin, sodium butyrate, m-carboxycinnamic acid bishydroxamide, panobinostat, abexinostat, quisinostat, dacinostat, belinostat and psammaplin A. Epigenomic modulation of nuclear donor cells, nuclear recipient cells and/or cloned embryos may facilitate and accelerate the reprogrammability for gene expression of donor cell nuclei that have been transplanted into a host ooplasm and subsequently underwent dedifferentiating and re-establishing the epigenetically dependent status of their transcriptional activity during pre- and postimplantation development of NT embryos. Nevertheless, a comprehensive additional work is necessary to determine

  7. Epigenetic regulation leading to induced pluripotency drives cancer development in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohnishi, Kotaro; Department of Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194; Semi, Katsunori

    Highlights: • Epigenetic regulation of failed reprogramming-associated cancer cells is discussed. • Similarity between pediatric cancer and reprogramming-associated cancer is discussed. • Concept for epigenetic cancer is discussed. - Abstract: Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by the transient expression of reprogramming factors. During the reprogramming process, somatic cells acquire the ability to undergo unlimited proliferation, which is also an important characteristic of cancer cells, while their underlying DNA sequence remains unchanged. Based on the characteristics shared between pluripotent stem cells and cancer cells, the potential involvement of the factors leading to reprogramming toward pluripotencymore » in cancer development has been discussed. Recent in vivo reprogramming studies provided some clues to understanding the role of reprogramming-related epigenetic regulation in cancer development. It was shown that premature termination of the in vivo reprogramming result in the development of tumors that resemble pediatric cancers. Given that epigenetic modifications play a central role during reprogramming, failed reprogramming-associated cancer development may have provided a proof of concept for epigenetics-driven cancer development in vivo.« less

  8. Reprogramming cancer cells: overview & current progress.

    PubMed

    Lim, Kian Lam; Teoh, Hoon Koon; Choong, Pei Feng; Teh, Hui Xin; Cheong, Soon Keng; Kamarul, Tunku

    2016-07-01

    Cancer is a disease with genetic and epigenetic origins, and the possible effects of reprogramming cancer cells using the defined sets of transcription factors remain largely uninvestigated. In the handful of publications available so far, findings have shown that reprogramming cancer cells changed the characteristics of the cells to differ from the parental cancer cells. These findings indicated the possibility of utilizing reprogramming technology to create a disease model in the laboratory to be used in studying the molecular pathogenesis or for drug screening of a particular cancer model. Despite numerous methods employed in generating induced pluripotent stem cells (iPSCs) from cancer cells only a few studies have successfully reprogrammed malignant human cells. In this review we will provide an overview on i) methods to reprogram cancer cells, ii) characterization of the reprogrammed cancer cells, and iii) the differential effects of reprogramming on malignancy, epigenetics and response of the cancer cells to chemotherapeutic agents. Continued technical progress in cancer cell reprogramming technology will be instrumental for more refined in vitro disease models and ultimately for the development of directed and personalized therapy for cancer patients in the future.

  9. Role of human oocyte-enriched factors in somatic cell reprograming.

    PubMed

    El-Gammal, Zaynab; AlOkda, Abdelrahman; El-Badri, Nagwa

    2018-06-08

    Cellular reprograming paves the way for creating functional patient-specific tissues to eliminate immune rejection responses by applying the same genetic profile. However, the epigenetic memory of a cell remains a challenge facing the current reprograming methods and does not allow transcription factors to bind properly. Because somatic cells can be reprogramed by transferring their nuclear contents into oocytes, introducing specific oocyte factors into differentiated cells is considered a promising approach for mimicking the reprograming process that occurs during fertilization. Mammalian metaphase II oocyte possesses a superior capacity to epigenetically reprogram somatic cell nuclei towards an embryonic stem cell-like state than the current factor-based reprograming approaches. This may be due to the presence of specific factors that are lacking in the current factor-based reprograming approaches. In this review, we focus on studies identifying human oocyte-enriched factors aiming to understand the molecular mechanisms mediating cellular reprograming. We describe the role of oocyte-enriched factors in metabolic switch, chromatin remodelling, and global epigenetic transformation. This is critical for improving the quality of resulting reprogramed cells, which is crucial for therapeutic applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Abnormalities in human pluripotent cells due to reprogramming mechanisms

    PubMed Central

    Ma, Hong; Morey, Robert; O’Neil, Ryan C.; He, Yupeng; Daughtry, Brittany; Schultz, Matthew D.; Hariharan, Manoj; Nery, Joseph R.; Castanon, Rosa; Sabatini, Karen; Thiagarajan, Rathi D.; Tachibana, Masahito; Kang, Eunju; Tippner-Hedges, Rebecca; Ahmed, Riffat; Gutierrez, Nuria Marti; Van Dyken, Crystal; Polat, Alim; Sugawara, Atsushi; Sparman, Michelle; Gokhale, Sumita; Amato, Paula; Wolf, Don P.; Ecker, Joseph R.; Laurent, Louise C.; Mitalipov, Shoukhrat

    2016-01-01

    Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the ‘gold standard’, they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies. PMID:25008523

  11. Oocyte extract improves epigenetic reprogramming of yak fibroblast cells and cloned embryo development.

    PubMed

    Xiong, X R; Li, J; Fu, M; Gao, C; Wang, Y; Zhong, J C

    2013-02-01

    The objective was to investigate the effects of bovine oocyte extract (BOE) on epigenetic reprogramming of yak fibroblast cells, based on their cell cycle status, histone acetylation, DNA methylation, gene expression, and cloned blastocyst formation. Permeabilization of yak fibroblasts after treatment with 10 or 50 μL of BOE (treated-S and treated-L groups, respectively) for 24 hours increased (P < 0.05) the cell population at the G(0)/G(1) phase (85.2 ± 2.3% and 89.6 ± 1.5%, respectively) compared with controls (75.4 ± 1.1%). Acetylation at lysine 9 of histone H3 was also higher (26.1 ± 1.4 and 33.5 ± 2.1) than in the control group (15.3 ± 1.6; P < 0.05). Moreover, BOE reduced methylation of the promoter regions of Oct-4 and Nanog (76.4% and 72.2%; and 35.6% and 30.0%, respectively) compared with the control group (92.1% and 47.8%; P < 0.05). In addition, the relative expression levels of HDAC-1, HADC-2, Dnmt-1, and Dnmt-3a were downregulated (P < 0.05) after yak fibroblasts were treated with BOE. Furthermore, when yak fibroblasts were used for interspecies somatic cell nuclear transfer after BOE treatment, 8-cell and blastocyst formation rates significantly exceeded those of the control. In conclusion, BOE induced epigenetic reprogramming of yak fibroblasts, making them suitable donors for yak interspecies somatic cell nuclear transfer. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  12. Initiation of epigenetic reprogramming of the X chromosome in somatic nuclei transplanted to a mouse oocyte.

    PubMed

    Bao, Siqin; Miyoshi, Naoki; Okamoto, Ikuhiro; Jenuwein, Thomas; Heard, Edith; Azim Surani, M

    2005-08-01

    The active and inactive X chromosomes have distinct epigenetic marks in somatic nuclei, which undergo reprogramming after transplantation into oocytes. We show that, despite the disappearance of Xist RNA coating in 30 min, the epigenetic memory of the inactive X persists with the precocious appearance of histone H3 trimethylation of lysine 27 (H3-3meK27), without the expected colocalization with Eed/Ezh2. Subsequently, Xist re-appears on the original inactive X, and the silent Xist on the active X undergoes re-activation, resulting in unusual biallelic Xist RNA domains. Despite this abnormal Xist expression pattern, colocalization of H3-3meK27 and Eed is thereafter confined to a single Xist domain, which is presumably on the original inactive X. These epigenetic events differ markedly from the kinetics of preferential paternal X inactivation in normal embryos. All the epigenetic marks on the X are apparently erased in the epiblast, suggesting that the oocyte and epiblast may have distinct properties for stepwise programming of the genome.

  13. Architecture of epigenetic reprogramming following Twist1-mediated epithelial-mesenchymal transition

    PubMed Central

    2013-01-01

    Background Epithelial-mesenchymal transition (EMT) is known to impart metastasis and stemness characteristics in breast cancer. To characterize the epigenetic reprogramming following Twist1-induced EMT, we characterized the epigenetic and transcriptome landscapes using whole-genome transcriptome analysis by RNA-seq, DNA methylation by digital restriction enzyme analysis of methylation (DREAM) and histone modifications by CHIP-seq of H3K4me3 and H3K27me3 in immortalized human mammary epithelial cells relative to cells induced to undergo EMT by Twist1. Results EMT is accompanied by focal hypermethylation and widespread global DNA hypomethylation, predominantly within transcriptionally repressed gene bodies. At the chromatin level, the number of gene promoters marked by H3K4me3 increases by more than one fifth; H3K27me3 undergoes dynamic genomic redistribution characterized by loss at half of gene promoters and overall reduction of peak size by almost half. This is paralleled by increased phosphorylation of EZH2 at serine 21. Among genes with highly altered mRNA expression, 23.1% switch between H3K4me3 and H3K27me3 marks, and those point to the master EMT targets and regulators CDH1, PDGFRα and ESRP1. Strikingly, Twist1 increases the number of bivalent genes by more than two fold. Inhibition of the H3K27 methyltransferases EZH2 and EZH1, which form part of the Polycomb repressive complex 2 (PRC2), blocks EMT and stemness properties. Conclusions Our findings demonstrate that the EMT program requires epigenetic remodeling by the Polycomb and Trithorax complexes leading to increased cellular plasticity. This suggests that inhibiting epigenetic remodeling and thus decrease plasticity will prevent EMT, and the associated breast cancer metastasis. PMID:24367927

  14. Piwil2 is reactivated by HPV oncoproteins and initiates cell reprogramming via epigenetic regulation during cervical cancer tumorigenesis.

    PubMed

    Feng, Dingqing; Yan, Keqin; Zhou, Ying; Liang, Haiyan; Liang, Jing; Zhao, Weidong; Dong, Zhongjun; Ling, Bin

    2016-10-04

    The human papillomavirus (HPV) oncoproteins E6 and E7 are risk factors that are primarily responsible for the initiation and progression of cervical cancer, and they play a key role in immortalization and transformation by reprogramming differentiating host epithelial cells. It is unclear how cervical epithelial cells transform into tumor-initiating cells (TICs). Here, we observed that the germ stem cell protein Piwil2 is expressed in pre-cancerous and malignant lesions of the cervix and cervical cancer cell lines with the exception of the non-HPV-infected C33a cell line. Knockdown of Piwil2 by shRNA led to a marked reduction in proliferation and colony formation, in vivo tumorigenicity, chemo-resistance, and the proportion of cancer stem-like cells. In contrast, Piwil2 overexpression induced malignant transformation of HaCaT cells and the acquisition of tumor-initiating capabilities. Gene-set enrichment analysis revealed embryonic stem cell (ESC) identity, malignant biological behavior, and specifically, activation targets of the cell reprogramming factors c-Myc, Klf4, Nanog, Oct4, and Sox2 in Piwil2-overexpressing HaCaT cells. We further confirmed that E6 and E7 reactivated Piwil2 and that E6 and E7 overexpression resulted in a similar gene-set enrichment pattern as Piwil2 overexpression in HaCaT cells. Moreover, Piwil2 overexpression or E6 and E7 activation induced H3K9 acetylation but reduced H3K9 trimethylation, which contributed to the epigenetic reprogramming and ESC signature maintenance, as predicted previously. Our study demonstrates that Piwil2, reactivated by the HPV oncoproteins E6 and E7, plays an essential role in the transformation of cervical epithelial cells to TICs via epigenetics-based cell reprogramming.

  15. Spin glass model for dynamics of cell reprogramming

    NASA Astrophysics Data System (ADS)

    Pusuluri, Sai Teja; Lang, Alex H.; Mehta, Pankaj; Castillo, Horacio E.

    2015-03-01

    Recent experiments show that differentiated cells can be reprogrammed to become pluripotent stem cells. The possible cell fates can be modeled as attractors in a dynamical system, the ``epigenetic landscape.'' Both cellular differentiation and reprogramming can be described in the landscape picture as motion from one attractor to another attractor. We perform Monte Carlo simulations in a simple model of the landscape. This model is based on spin glass theory and it can be used to construct a simulated epigenetic landscape starting from the experimental genomic data. We re-analyse data from several cell reprogramming experiments and compare with our simulation results. We find that the model can reproduce some of the main features of the dynamics of cell reprogramming.

  16. Reprogramming cancer cells: a novel approach for cancer therapy or a tool for disease-modeling?

    PubMed

    Yilmazer, Açelya; de Lázaro, Irene; Taheri, Hadiseh

    2015-12-01

    Chromatin dynamics have been the major focus of many physiological and pathological processes over the past 20 years. Epigenetic mechanisms have been shown to be reshaped during both cellular reprogramming and tumorigenesis. For this reason, cancer cell reprogramming can provide a powerful tool to better understand both regenerative and cancer-fate processes, with a potential to develop novel therapeutic approaches. Recent studies showed that cancer cells can be reprogrammed to a pluripotent state by the overexpression of reprogramming transcription factors. Activation of transcription factors and modification of chromatin regulators may result in the remodeling of epigenetic status and refueling of tumorigenicity in these reprogrammed cancer cells. However, studies focusing on cancer cell reprogramming are contradictory; some studies reported increased tumor progression whereas others showed that cellular reprogramming has a treatment potential for cancer. In this review, first, the current knowledge on the epigenetic mechanisms involved during cancer development and cellular reprogramming will be presented. Later, different reports and key factors about pluripotency-based reprogramming of cancer cells will be reviewed in detail. New insights will be provided on cancer biology and therapy in the light of cellular reprogramming. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. The RON Receptor Tyrosine Kinase Promotes Metastasis by Triggering MBD4-Dependent DNA Methylation Reprogramming

    PubMed Central

    Cunha, Stéphanie; Lin, Yi-Chun; Goossen, Elizabeth A.; DeVette, Christa I.; Albertella, Mark R.; Thomson, Stuart; Mulvihill, Mark J.; Welm, Alana L.

    2017-01-01

    SUMMARY Metastasis is the major cause of death in cancer patients, yet the genetic and epigenetic programs that drive metastasis are poorly understood. Here, we report an epigenetic reprogramming pathway that is required for breast cancer metastasis. Concerted differential DNA methylation is initiated by the activation of the RON receptor tyrosine kinase by its ligand, macrophage stimulating protein (MSP). Through PI3K signaling, RON/MSP promotes expression of the G:T mismatch-specific thymine glycosylase MBD4. RON/MSP and MBD4-dependent aberrant DNA methylation results in the misregulation of a specific set of genes. Knockdown of MBD4 reverses methylation at these specific loci and blocks metastasis. We also show that the MBD4 glycosylase catalytic residue is required for RON/MSP-driven metastasis. Analysis of human breast cancers revealed that this epigenetic program is significantly associated with poor clinical outcome. Furthermore, inhibition of Ron kinase activity with a pharmacological agent blocks metastasis of patient-derived breast tumor grafts in vivo. PMID:24388747

  18. Stress-triggered atavistic reprogramming (STAR) addiction: driving force behind head and neck cancer?

    PubMed Central

    Masuda, Muneyuki; Wakasaki, Takahiro; Toh, Satoshi

    2016-01-01

    Recent results of the Cancer Genome Atlas on head and neck squamous cell carcinoma (HNSCC) revealed that HNSCC lacked predominant gain-of-function mutations in oncogenes, whereas an essential role for epigenetics in oncogenesis has become apparent. In parallel, it has gained general acceptance that cancer is considered as complex adaptive system, which evolves responding environmental selective pressures. This somatic evolution appears to proceed concurrently with the acquisition of an atavistic pluripotent state (i.e., “stemness”), which is inducible by intrinsic epigenetic reprogramming program as demonstrated by induced pluripotent stem (iPS) cells. This Nobel prize-winning discovery has markedly accelerated and expanded cancer stem cell research from the point of epigenetic reprogramming. Taken together, we hypothesize that stress-triggered atavistic reprogramming (STAR) may be the major driving force of HNSCC evolution. In this perspective, we discuss the possible mechanisms of STAR in HNSCC, focusing on recent topics of epigenetic reprogramming in developmental and cancer cell biology. PMID:27429838

  19. Effect of the time interval between fusion and activation on epigenetic reprogramming and development of bovine somatic cell nuclear transfer embryos.

    PubMed

    Liu, Jun; Wang, Yongsheng; Su, Jianmin; Wang, Lijun; Li, Ruizhe; Li, Qian; Wu, Yongyan; Hua, Song; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2013-04-01

    Previous studies have shown that the time interval between fusion and activation (FA interval) play an important role in nuclear remodeling and in vitro development of somatic cell nuclear transfer (SCNT) embryos. However, the effects of FA interval on the epigenetic reprogramming and in vivo developmental competence of SCNT embryos remain unknown. In the present study, the effects of different FA intervals (0 h, 2 h, and 4 h) on the epigenetic reprogramming and developmental competence of bovine SCNT embryos were assessed. The results demonstrated that H3 lysine 9 (H3K9ac) levels decreased rapidly after fusion in all three groups. H3K9ac was practically undetectable 2 h after fusion in the 2-h and 4-h FA interval groups. However, H3K9ac was still evidently detectable in the 0-h FA interval group. The H3K9ac levels increased 10 h after fusion in all three groups, but were higher in the 2-h and 4-h FA interval groups than that in the 0-h FA interval group. The methylation levels of the satellite I region in day-7 blastocysts derived from the 2-h or 4-h FA interval groups was similar to that of in vitro fertilization blastocysts and is significantly lower than that of the 0-h FA interval group. SCNT embryos derived from 2-h FA interval group showed higher developmental competence than those from the 0-h and 4-h FA interval groups in terms of cleavage rate, blastocyst formation rate, apoptosis index, and pregnancy and calving rates. Hence, the FA interval is an important factor influencing the epigenetic reprogramming and developmental competence of bovine SCNT embryos.

  20. Epigenomic Reprogramming of the Developing Reproductive Tract and Disease Susceptibility in Adulthood

    PubMed Central

    Walker, Cheryl Lyn

    2014-01-01

    During development, epigenetic programs are “installed” on the genome that direct differentiation and normal tissue and organ function in adulthood. Consequently, development is also a period of susceptibility to reprogramming of the epigenome. Developmental reprogramming occurs when an adverse stimulus or insult interrupts the proper “install” of epigenetic programs during development, reprogramming normal physiological responses in such a way as to promote disease later in life. Some of the best examples of developmental reprogramming involve the reproductive tract, where early life exposures to environmental estrogens can increase susceptibility to benign and malignant tumors in adulthood including leiomyoma (fibroids), endometrial and prostate cancer. Although specific mechanism(s) by which environmental estrogens reprogram the developing epigenome were unknown, both DNA and histone methylation were considered likely targets for epigenetic reprogramming. We have now identified a mechanism by which developmental exposures to environmental estrogens reprogram the epigenome by inducing inappropriate activation of nongenomic estrogen receptor (ER) signaling. Activation of non-genomic ER signaling via the PI3K pathway activates the kinase AKT/PKB in the developing reproductive tract, which phosphorylates the histone lysine methyltransferase (HKMT) EZH2, the key “installer” of epigenetic histone H3 lysine 27 trimethylation (H3K27me3). AKT phosphorylation inactivates EZH2, decreasing levels of H3K27 methylation, a repressive mark that inhibits gene expression, in the developing uterus. As a result of this developmental reprogramming, many estrogen-responsive genes become hypersensitive to estrogen in adulthood, exhibiting elevated expression throughout the estrus cycle, and resulting in a “hyper-estrogenized” phenotype in the adult uterus that promotes development of hormone dependent tumors. PMID:21656660

  1. The specification and global reprogramming of histone epigenetic marks during gamete formation and early embryo development in C. elegans.

    PubMed

    Samson, Mark; Jow, Margaret M; Wong, Catherine C L; Fitzpatrick, Colin; Aslanian, Aaron; Saucedo, Israel; Estrada, Rodrigo; Ito, Takashi; Park, Sung-kyu Robin; Yates, John R; Chu, Diana S

    2014-10-01

    In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs), and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C. elegans, a species that lacks conserved DNA methylation pathways. The fate of these histone marks was then tracked using immunostaining. Proteomic analysis found that sperm harbor ∼2.4 fold lower levels of histone PTMs than embryos and revealed differences in classes of PTMs between sperm and embryos. Sperm chromatin repackaging involves the incorporation of the sperm-specific histone H2A variant HTAS-1, a widespread erasure of histone acetylation, and the retention of histone methylation at sites that mark the transcriptional history of chromatin domains during spermatogenesis. After fertilization, we show HTAS-1 and 6 histone PTM marks distinguish sperm and oocyte chromatin in the new embryo and characterize distinct paternal and maternal histone remodeling events during the oocyte-to-embryo transition. These include the exchange of histone H2A that is marked by ubiquitination, retention of HTAS-1, removal of the H2A variant HTZ-1, and differential reprogramming of histone PTMs. This work identifies novel and conserved features of paternal chromatin that are specified during spermatogenesis and processed in the embryo. Furthermore, our results show that different species, even those with diverged DNA packaging and imprinting strategies, use conserved histone modification and removal mechanisms to reprogram epigenetic information.

  2. Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine

    PubMed Central

    Burridge, Paul W.; Sharma, Arun; Wu, Joseph C.

    2016-01-01

    Regeneration or replacement of lost cardiomyocytes within the heart has the potential to revolutionize cardiovascular medicine. Numerous methodologies have been used to achieve this aim, including the engraftment of bone marrow- and heart-derived cells as well as the identification of modulators of adult cardiomyocyte proliferation. Recently, the conversion of human somatic cells into induced pluripotent stem cells and induced cardiomyocyte-like cells has transformed potential approaches toward this goal, and the engraftment of cardiac progenitors derived from human embryonic stem cells into patients is now feasible. Here we review recent advances in our understanding of the genetic and epigenetic control of human cardiogenesis, cardiac differentiation, and the induced reprogramming of somatic cells to cardiomyocytes. We also cover genetic programs for inducing the proliferation of endogenous cardiomyocytes and discuss the genetic state of cells used in cardiac regenerative medicine. PMID:26631515

  3. Combined positive effect of oocyte extracts and brilliant cresyl blue stained recipient cytoplasts on epigenetic reprogramming and gene expression in buffalo nuclear transfer embryos.

    PubMed

    Sadeesh, E M; Fozia, Shah; Meena, Kataria

    2017-04-01

    This study examined the effects of buffalo oocyte extracts (BOE) on donor cells reprogramming and molecular characterisation of oocytes screened via brilliant cresyl blue (BCB) staining and comparison of gene expression profiles of developmentally important genes in blastocysts from IVF and cloned derived from BOE treated donor cells with BCB selected recipient cytoplasts. Relative abundance (RA) of OCT4 and NANOG was increased (P < 0.05) and HDAC-1, DNMT-1, and DNMT-3A decreased (P < 0.05) in extract treated cells (ETCs). This ETCs dedifferentiated into neuron-like lineage under appropriate induction condition. The RA of NASP, EEF1A1, DNMT1, ODC1 and RPS27A was increased (P < 0.05) in BCB+ oocytes, whereas ATP5A1 and S100A10 increased (P < 0.05) in BCB- oocytes. Total cell number and RA of OCT4, NANOG, SOX2, DNMT1, IGF2, IGF2R, MNSOD, GLUT1, BAX and BCL2 in cloned blastocysts derived from BCB+ oocytes with ETC more closely followed that of IVF counterparts compared to BCB+ oocytes with extract untreated cell and BCB- oocytes with ETC derived blastocysts. In conclusion, BOE influenced epigenetic reprogramming of buffalo fibroblasts making them suitable donors for nuclear transfer (NT). BCB staining can be effectively used for selection of developmentally competent oocytes for NT. The combined effects of epigenetic reprogramming of donor nuclei by BOE and higher nuclear reprogramming capacity of BCB+ oocytes improve developmentally important gene expression in cloned blastocysts. Whether these improvements have long-term effects on buffalo calves born following embryo transfer remains unknown.

  4. Discovery and progress of direct cardiac reprogramming.

    PubMed

    Kojima, Hidenori; Ieda, Masaki

    2017-06-01

    Cardiac disease remains a major cause of death worldwide. Direct cardiac reprogramming has emerged as a promising approach for cardiac regenerative therapy. After the discovery of MyoD, a master regulator for skeletal muscle, other single cardiac reprogramming factors (master regulators) have been sought. Discovery of cardiac reprogramming factors was inspired by the finding that multiple, but not single, transcription factors were needed to generate induced pluripotent stem cells (iPSCs) from fibroblasts. We first reported a combination of cardiac-specific transcription factors, Gata4, Mef2c, and Tbx5 (GMT), that could convert mouse fibroblasts into cardiomyocyte-like cells, which were designated as induced cardiomyocyte-like cells (iCMs). Following our first report of cardiac reprogramming, many researchers, including ourselves, demonstrated an improvement in cardiac reprogramming efficiency, in vivo direct cardiac reprogramming for heart regeneration, and cardiac reprogramming in human cells. However, cardiac reprogramming in human cells and adult fibroblasts remains inefficient, and further efforts are needed. We believe that future research elucidating epigenetic barriers and molecular mechanisms of direct cardiac reprogramming will improve the reprogramming efficiency, and that this new technology has great potential for clinical applications.

  5. Epigenetic Research of Neurodegenerative Disorders Using Patient iPSC-Based Models

    PubMed Central

    2016-01-01

    Epigenetic mechanisms play a role in human disease but their involvement in pathologies from the central nervous system has been hampered by the complexity of the brain together with its unique cellular architecture and diversity. Until recently, disease targeted neural types were only available as postmortem materials after many years of disease evolution. Current in vitro systems of induced pluripotent stem cells (iPSCs) generated by cell reprogramming of somatic cells from patients have provided valuable disease models recapitulating key pathological molecular events. Yet whether cell reprogramming on itself implies a truly epigenetic reprogramming, the epigenetic mechanisms governing this process are only partially understood. Moreover, elucidating epigenetic regulation using patient-specific iPSC-derived neural models is expected to have a great impact to unravel the pathophysiology of neurodegenerative diseases and to hopefully expand future therapeutic possibilities. Here we will critically review current knowledge of epigenetic involvement in neurodegenerative disorders focusing on the potential of iPSCs as a promising tool for epigenetic research of these diseases. PMID:26697081

  6. A saga of cancer epigenetics: linking epigenetics to alternative splicing.

    PubMed

    Narayanan, Sathiya Pandi; Singh, Smriti; Shukla, Sanjeev

    2017-03-07

    The discovery of an increasing number of alternative splicing events in the human genome highlighted that ∼94% of genes generate alternatively spliced transcripts that may produce different protein isoforms with diverse functions. It is now well known that several diseases are a direct and indirect consequence of aberrant splicing events in humans. In addition to the conventional mode of alternative splicing regulation by ' cis ' RNA-binding sites and ' trans' RNA-binding proteins, recent literature provides enormous evidence for epigenetic regulation of alternative splicing. The epigenetic modifications may regulate alternative splicing by either influencing the transcription elongation rate of RNA polymerase II or by recruiting a specific splicing regulator via different chromatin adaptors. The epigenetic alterations and aberrant alternative splicing are known to be associated with various diseases individually, but this review discusses/highlights the latest literature on the role of epigenetic alterations in the regulation of alternative splicing and thereby cancer progression. This review also points out the need for further studies to understand the interplay between epigenetic modifications and aberrant alternative splicing in cancer progression. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  7. Induced Pluripotency and Epigenetic Reprogramming

    PubMed Central

    Hochedlinger, Konrad; Jaenisch, Rudolf

    2015-01-01

    SUMMARY Induced pluripotency defines the process by which somatic cells are converted into induced pluripotent stem cells (iPSCs) upon overexpression of a small set of transcription factors. In this article, we put transcription factor–induced pluripotency into a historical context, review current methods to generate iPSCs, and discuss mechanistic insights that have been gained into the process of reprogramming. In addition, we focus on potential therapeutic applications of induced pluripotency and emerging technologies to efficiently engineer the genomes of human pluripotent cells for scientific and therapeutic purposes. PMID:26626939

  8. Erasure and reestablishment of random allelic expression imbalance after epigenetic reprogramming

    PubMed Central

    Jeffries, Aaron Richard; Uwanogho, Dafe Aghogho; Cocks, Graham; Perfect, Leo William; Dempster, Emma; Mill, Jonathan; Price, Jack

    2016-01-01

    Clonal level random allelic expression imbalance and random monoallelic expression provides cellular heterogeneity within tissues by modulating allelic dosage. Although such expression patterns have been observed in multiple cell types, little is known about when in development these stochastic allelic choices are made. We examine allelic expression patterns in human neural progenitor cells before and after epigenetic reprogramming to induced pluripotency, observing that loci previously characterized by random allelic expression imbalance (0.63% of expressed genes) are generally reset to a biallelic state in induced pluripotent stem cells (iPSCs). We subsequently neuralized the iPSCs and profiled isolated clonal neural stem cells, observing that significant random allelic expression imbalance is reestablished at 0.65% of expressed genes, including novel loci not found to show allelic expression imbalance in the original parental neural progenitor cells. Allelic expression imbalance was associated with altered DNA methylation across promoter regulatory regions, with clones characterized by skewed allelic expression being hypermethylated compared to their biallelic sister clones. Our results suggest that random allelic expression imbalance is established during lineage commitment and is associated with increased DNA methylation at the gene promoter. PMID:27539784

  9. Epigenetic modification with trichostatin A does not correct specific errors of somatic cell nuclear transfer at the transcriptomic level; highlighting the non-random nature of oocyte-mediated reprogramming errors.

    PubMed

    Hosseini, Sayyed Morteza; Dufort, Isabelle; Nieminen, Julie; Moulavi, Fariba; Ghanaei, Hamid Reza; Hajian, Mahdi; Jafarpour, Farnoosh; Forouzanfar, Mohsen; Gourbai, Hamid; Shahverdi, Abdol Hossein; Nasr-Esfahani, Mohammad Hossein; Sirard, Marc-André

    2016-01-04

    The limited duration and compromised efficiency of oocyte-mediated reprogramming, which occurs during the early hours following somatic cell nuclear transfer (SCNT), may significantly interfere with epigenetic reprogramming, contributing to the high incidence of ill/fatal transcriptional phenotypes and physiological anomalies occurring later during pre- and post-implantation events. A potent histone deacetylase inhibitor, trichostatin A (TSA), was used to understand the effects of assisted epigenetic modifications on transcriptional profiles of SCNT blastocysts and to identify specific or categories of genes affected. TSA improved the yield and quality of in vitro embryo development compared to control (CTR-NT). Significance analysis of microarray results revealed that of 37,238 targeted gene transcripts represented on the microarray slide, a relatively small number of genes were differentially expressed in CTR-NT (1592 = 4.3 %) and TSA-NT (1907 = 5.1 %) compared to IVF embryos. For both SCNT groups, the majority of downregulated and more than half of upregulated genes were common and as much as 15 % of all deregulated transcripts were located on chromosome X. Correspondence analysis clustered CTR-NT and IVF transcriptomes close together regardless of the embryo production method, whereas TSA changed SCNT transcriptome to a very clearly separated cluster. Ontological classification of deregulated genes using IPA uncovered a variety of functional categories similarly affected in both SCNT groups with a preponderance of genes required for biological processes. Examination of genes involved in different canonical pathways revealed that the WNT and FGF pathways were similarly affected in both SCNT groups. Although TSA markedly changed epigenetic reprogramming of donor cells (DNA-methylation, H3K9 acetylation), reconstituted oocytes (5mC, 5hmC), and blastocysts (DNA-methylation, H3K9 acetylation), these changes did not recapitulate parallel marked changes in

  10. Pharmacological mimicking of caloric restriction elicits epigenetic reprogramming of differentiated cells to stem-like self-renewal states.

    PubMed

    Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro; Menendez, Javier A

    2010-10-01

    Networks of oncogenes and tumor suppressor genes that control cancer cell proliferation also regulate stem cell renewal and possibly stem cell aging. Because (de)differentiation processes might dictate tumor cells to retrogress to a more stem-like state in response to aging-relevant epigenetic and/or environmental players, we recently envisioned that cultured human cancer cells might be used as reliable models to test the ability of antiaging interventions for promoting the initiation and maintenance of self-renewing divisions. Cancer cell lines naturally bearing undetectable amounts of stem/progenitor-like cell populations were continuously cultured in the presence of the caloric restriction mimetic metformin for several months. Microarray technology was employed to profile expression of genes related to the identification, growth, and differentiation of stem cells. Detection of functionally related gene groups using a pathway analysis package provided annotated genetic signatures over- and underexpressed in response to pharmacological mimicking of caloric restriction. By following this methodological approach, we recently obtained data fitting a model in which, in response to chronic impairment of cellular bioenergetics imposed by metformin-induced mitochondrial uncoupling as assessed by the phosphorylation state of cAMP-response element binding protein (CREB), tumor cells can retrogress from a differentiated state to a more CD44(+) stem-like primitive state epigenetically governed by the Polycomb-group suppressor BMI1-a crucial "stemness" gene involved in the epigenetic maintenance of adult stem cells. These findings might provide a novel molecular avenue to investigate if antiaging benefits from caloric restriction mimetics might relate to their ability to epigenetically reprogram stemness while prolonging the capacity of stem-like cell states to proliferate, differentiate, and replace mature cells in adult aging tissues.

  11. Epigenetic events underlie the pathogenesis of sinonasal papillomas.

    PubMed

    Stephen, Josena K; Vaught, Lori E; Chen, Kang M; Sethi, Seema; Shah, Veena; Benninger, Michael S; Gardner, Glendon M; Schweitzer, Vanessa G; Khan, Mumtaz; Worsham, Maria J

    2007-10-01

    Benign inverted papillomas have been reported as monoclonal but lacking common genetic alterations identified in squamous cell carcinoma of the head and neck. Epigenetic changes alter the heritable state of gene expression and chromatin organization without change in DNA sequence. We investigated whether epigenetic events of aberrant promoter hypermethylation in genes known to be involved in squamous head and neck cancer underlie the pathogenesis of sinonasal papillomas. Ten formalin-fixed paraffin DNA samples from three inverted papilloma cases, two exophytic (everted) papilloma cases, and two cases with inverted and exophytic components were studied. DNA was obtained from microdissected areas of normal and papilloma areas and examined using a panel of 41 gene probes, designed to interrogate 35 unique genes for aberrant methylation status (22 genes) using the methylation-specific multiplex-ligation-specific polymerase assay. Methylation-specific PCR was employed to confirm aberrant methylation detected by the methylation-specific multiplex-ligation-specific polymerase assay. All seven cases indicated at least one epigenetic event of aberrant promoter hypermethylation. The CDKN2B gene was a consistent target of aberrant methylation in six of seven cases. Methylation-specific PCR confirmed hypermethylation of CDKN2B. Recurrent biopsies from two inverted papilloma cases had common epigenetic events. Promoter hypermethylation of CDKN2B was a consistent epigenetic event. Common epigenetic alterations in recurrent biopsies underscore a monoclonal origin for these lesions. Epigenetic events contribute to the underlying pathogenesis of benign inverted and exophytic papillomas. As a consistent target of aberrant promoter hypermethylation, CDKN2B may serve as an important epigenetic biomarker for gene reactivation studies.

  12. Dietary Epigenetics in Cancer and Aging

    PubMed Central

    Tollefsbol, Trygve O.

    2013-01-01

    Although epigenetic aberrations frequently occur in aging and cancer and form a core component of these conditions, perhaps the most useful aspect of epigenetic processes is that they are readily reversible. Unlike genetic effects that also play a role in cancer and aging, epigenetic aberrations can be relatively easily corrected. One of the most widespread approaches to the epigenetic alterations in cancer and aging is dietary control. This can be achieved not only through the quality of the diet, but also through the quantity of calories that are consumed. Many phytochemicals such as sulforaphane from cruciferous vegetables and green tea have anticancer epigenetic effects and are also efficacious for preventing or treating the epigenetic aberrations of other age-associated diseases besides cancer. Likewise, the quantity of calories that are consumed have proven to be advantageous in preventing cancer and extending the lifespan through control of epigenetic mediators. The purpose of this chapter is to review some of the most recent advances in the epigenetics of cancer and aging and to provide insights into advances being made with respect to dietary intervention into these biological processes that have vast health implications and high translational potential. PMID:24114485

  13. Epigenetics studies of fetal alcohol spectrum disorder: where are we now?

    PubMed Central

    Lussier, Alexandre A; Weinberg, Joanne; Kobor, Michael S

    2017-01-01

    Adverse in utero events can alter the development and function of numerous physiological systems, giving rise to lasting neurodevelopmental deficits. In particular, data have shown that prenatal alcohol exposure can reprogram neurobiological systems, altering developmental trajectories and resulting in increased vulnerability to adverse neurobiological, behavioral and health outcomes. Increasing evidence suggests that epigenetic mechanisms are potential mediators for the reprogramming of neurobiological systems, as they may provide a link between the genome, environmental conditions and neurodevelopmental outcomes. This review outlines the current state of epigenetic research in fetal alcohol spectrum disorder, highlighting the role of epigenetic mechanisms in the reprogramming of neurobiological systems by alcohol and as potential diagnostic tools for fetal alcohol spectrum disorder. We also present an assessment of the current limitations in studies of prenatal alcohol exposure, and highlight the future steps needed in the field. PMID:28234026

  14. Epigenetics studies of fetal alcohol spectrum disorder: where are we now?

    PubMed

    Lussier, Alexandre A; Weinberg, Joanne; Kobor, Michael S

    2017-03-01

    Adverse in utero events can alter the development and function of numerous physiological systems, giving rise to lasting neurodevelopmental deficits. In particular, data have shown that prenatal alcohol exposure can reprogram neurobiological systems, altering developmental trajectories and resulting in increased vulnerability to adverse neurobiological, behavioral and health outcomes. Increasing evidence suggests that epigenetic mechanisms are potential mediators for the reprogramming of neurobiological systems, as they may provide a link between the genome, environmental conditions and neurodevelopmental outcomes. This review outlines the current state of epigenetic research in fetal alcohol spectrum disorder, highlighting the role of epigenetic mechanisms in the reprogramming of neurobiological systems by alcohol and as potential diagnostic tools for fetal alcohol spectrum disorder. We also present an assessment of the current limitations in studies of prenatal alcohol exposure, and highlight the future steps needed in the field.

  15. Erasure and reestablishment of random allelic expression imbalance after epigenetic reprogramming.

    PubMed

    Jeffries, Aaron Richard; Uwanogho, Dafe Aghogho; Cocks, Graham; Perfect, Leo William; Dempster, Emma; Mill, Jonathan; Price, Jack

    2016-10-01

    Clonal level random allelic expression imbalance and random monoallelic expression provides cellular heterogeneity within tissues by modulating allelic dosage. Although such expression patterns have been observed in multiple cell types, little is known about when in development these stochastic allelic choices are made. We examine allelic expression patterns in human neural progenitor cells before and after epigenetic reprogramming to induced pluripotency, observing that loci previously characterized by random allelic expression imbalance (0.63% of expressed genes) are generally reset to a biallelic state in induced pluripotent stem cells (iPSCs). We subsequently neuralized the iPSCs and profiled isolated clonal neural stem cells, observing that significant random allelic expression imbalance is reestablished at 0.65% of expressed genes, including novel loci not found to show allelic expression imbalance in the original parental neural progenitor cells. Allelic expression imbalance was associated with altered DNA methylation across promoter regulatory regions, with clones characterized by skewed allelic expression being hypermethylated compared to their biallelic sister clones. Our results suggest that random allelic expression imbalance is established during lineage commitment and is associated with increased DNA methylation at the gene promoter. © 2016 Jeffries et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. Proper reprogramming of imprinted and non-imprinted genes in cloned cattle gametogenesis.

    PubMed

    Kaneda, Masahiro; Watanabe, Shinya; Akagi, Satoshi; Inaba, Yasushi; Geshi, Masaya; Nagai, Takashi

    2017-11-01

    Epigenetic abnormalities in cloned animals are caused by incomplete reprogramming of the donor nucleus during the nuclear transfer step (first reprogramming). However, during the second reprogramming step that occurs only in the germline cells, epigenetic errors not corrected during the first step are repaired. Consequently, epigenetic abnormalities in the somatic cells of cloned animals should be erased in their spermatozoa or oocytes. This is supported by the fact that offspring from cloned animals do not exhibit defects at birth or during postnatal development. To test this hypothesis in cloned cattle, we compared the DNA methylation level of two imprinted genes (H19 and PEG3) and three non-imprinted genes (XIST, OCT4 and NANOG) and two repetitive elements (Satellite I and Satellite II) in blood and sperm DNAs from cloned and non-cloned bulls. We found no differences between cloned and non-cloned bulls. We also analyzed the DNA methylation levels of four repetitive elements (Satellite I, Satellite II, Alpha-satellite and Art2) in oocytes recovered from cloned and non-cloned cows. Again, no significant differences were observed between clones and non-clones. These results suggested that imprinted and non-imprinted genes and repetitive elements were properly reprogramed during gametogenesis in cloned cattle; therefore, they contributed to the soundness of cloned cattle offspring. © 2017 Japanese Society of Animal Science.

  17. MUC1-C Oncoprotein Integrates a Program of EMT, Epigenetic Reprogramming and Immune Evasion in Human Carcinomas.

    PubMed

    Rajabi, Hasan; Kufe, Donald

    2017-08-01

    The MUC1 gene evolved in mammalian species to provide protection of epithelia. The transmembrane MUC1 C-terminal subunit (MUC1-C) signals stress to the interior of the epithelial cell and, when overexpressed as in most carcinomas, functions as an oncoprotein. MUC1-C induces the epithelial-mesenchymal transition (EMT) by activating the inflammatory NF-κB p65 pathway and, in turn, the EMT-transcriptional repressor ZEB1. Emerging evidence has indicated that MUC1-C drives a program integrating the induction of EMT with activation of stem cell traits, epigenetic reprogramming and immune evasion. This mini-review focuses on the potential importance of this MUC1-C program in cancer progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Cellular reprogramming dynamics follow a simple 1D reaction coordinate

    NASA Astrophysics Data System (ADS)

    Teja Pusuluri, Sai; Lang, Alex H.; Mehta, Pankaj; Castillo, Horacio E.

    2018-01-01

    Cellular reprogramming, the conversion of one cell type to another, induces global changes in gene expression involving thousands of genes, and understanding how cells globally alter their gene expression profile during reprogramming is an ongoing problem. Here we reanalyze time-course data on cellular reprogramming from differentiated cell types to induced pluripotent stem cells (iPSCs) and show that gene expression dynamics during reprogramming follow a simple 1D reaction coordinate. This reaction coordinate is independent of both the time it takes to reach the iPSC state as well as the details of the experimental protocol used. Using Monte-Carlo simulations, we show that such a reaction coordinate emerges from epigenetic landscape models where cellular reprogramming is viewed as a ‘barrier-crossing’ process between cell fates. Overall, our analysis and model suggest that gene expression dynamics during reprogramming follow a canonical trajectory consistent with the idea of an ‘optimal path’ in gene expression space for reprogramming.

  19. Epigenetic information in gametes: Gaming from before fertilization. Comment on ;Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition; by Qian Wang et al.

    NASA Astrophysics Data System (ADS)

    Shi, Junchao; Zhang, Xudong; Liu, Ying; Chen, Qi

    2017-03-01

    In their interesting article [1] Wang et al. proposed a mathematical model based on evolutionary game theory [2] to tackle the fundamental question in embryo development, that how sperm and egg interact with each other, through epigenetic processes, to form a zygote and direct successful embryo development. This work is based on the premise that epigenetic reprogramming (referring to the erasure and reconstruction of epigenetic marks, such as DNA methylation and histone modifications) after fertilization might be of paramount importance to maintain the normal development of embryos, a premise we fully agree, given the compelling experimental evidence reported [3]. Wang et al. have specifically chosen to employ the well-studied DNA methylation reprogramming process during mammalian early embryo development, as a basis to develop their mathematical model, namely epigenetic game theory (epiGame). They concluded that the DNA methylation pattern in mammalian early embryo could be formulated and quantified, and their model can be further used to quantify the interactions, such as competition and/or cooperation of expressed genes that maximize the fitness of embryos. The efforts by Wang et al. in quantitatively and systematically analyzing the beginning of life apparently hold value and represent a novel direction for future embryo development research from both theoretical and experimental biologists. On the other hand, we see their theory still at its infancy, because there are plenty more parameters to consider and there are spaces for debates, such as the cases of haploid embryo development [4]. Here, we briefly comment on the dynamic process of epigenetic reprogramming that goes beyond DNA methylation, a dynamic interplay that involves histone modifications, non-coding RNAs, transposable elements et al., as well as the potential input of the various types of 'hereditary' epigenetic information in the gametes - a game that has started before the fertilization.

  20. Environmental signals and transgenerational epigenetics

    PubMed Central

    Skinner, Michael K; Guerrero-Bosagna, Carlos

    2010-01-01

    The ability of an environmental factor or toxicant to promote a phenotype or disease state not only in the individual exposed, but also in subsequent progeny for multiple generations, is termed transgenerational inheritance. The majority of environmental agents do not promote genetic mutations or alterations in DNA sequence, but do have the capacity to alter the epigenome. Although most environmental exposures will influence somatic cells and not allow the transgenerational transmission of a phenotype, the ability of an environmental factor to reprogram the germline epigenome can promote a transgenerational inheritance of phenotypes and disease states. A limited number of critical developmental periods exist when environmental signals can produce a significant epigenetic reprogramming of the germline. In this review, the ability of environmental factors or toxicants to promote epigenetic transgenerational phenotypes is reviewed. PMID:20563319

  1. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    PubMed Central

    Rodriguez-Osorio, Nelida; Wang, Zhongde; Kasinathan, Poothappillai; Page, Grier P; Robl, James M; Memili, Erdogan

    2009-01-01

    Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT) is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT). Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively) have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF) than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively). However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research. PMID:19393066

  2. Reprogramming cellular identity for regenerative medicine

    PubMed Central

    Cherry, Anne B.C.; Daley, George Q.

    2012-01-01

    The choreographed development of over 200 distinct differentiated cell types from a single zygote is a complex and poorly understood process. Whereas development leads unidirectionally towards more restricted cell fates, recent work in cellular reprogramming has proven that striking conversions of one cellular identity into another can be engineered, promising countless applications in biomedical research and paving the way for modeling disease with patient-derived stem cells. To date, there has been little discussion of which disease models are likely to be most informative. We here review evidence demonstrating that because environmental influences and epigenetic signatures are largely erased during reprogramming, patient-specific models of diseases with strong genetic bases and high penetrance are likely to prove most informative in the near term. However, manipulating in vitro culture conditions may ultimately enable cell-based models to recapitulate gene-environment interactions. Here, we discuss the implications of the new reprogramming paradigm in biomedicine and outline how reprogramming of cell identities is enhancing our understanding of cell differentiation and prospects for cellular therapies and in vivo regeneration. PMID:22424223

  3. Trans-differentiation via Epigenetics: A New Paradigm in the Bone Regeneration.

    PubMed

    Cho, Young-Dan; Ryoo, Hyun-Mo

    2018-02-01

    In regenerative medicine, growing cells or tissues in the laboratory is necessary when damaged cells can not heal by themselves. Acquisition of the required cells from the patient's own cells or tissues is an ideal option without additive side effects. In this context, cell reprogramming methods, including the use of induced pluripotent stem cells (iPSCs) and trans-differentiation, have been widely studied in regenerative research. Both approaches have advantages and disadvantages, and the possibility of de-differentiation because of the epigenetic memory of iPSCs has strengthened the need for controlling the epigenetic background for successful cell reprogramming. Therefore, interest in epigenetics has increased in the field of regenerative medicine. Herein, we outline in detail the cell trans-differentiation method using epigenetic modification for bone regeneration in comparison to the use of iPSCs.

  4. Boosters and barriers for direct cardiac reprogramming.

    PubMed

    Talkhabi, Mahmood; Zonooz, Elmira Rezaei; Baharvand, Hossein

    2017-06-01

    Heart disease is currently the most significant cause of morbidity and mortality worldwide, which accounts for approximately 33% of all deaths. Recently, a promising and alchemy-like strategy has been developed called direct cardiac reprogramming, which directly converts somatic cells such as fibroblasts to cardiac lineage cells such as cardiomyocytes (CMs), termed induced CMs or iCMs. The first in vitro cardiac reprogramming study, mediated by cardiac transcription factors (TFs)-Gata4, Tbx5 and Mef2C-, was not enough efficient to produce an adequate number of fully reprogrammed, functional iCMs. As a result, numerous combinations of cardiac TFs exist for direct cardiac reprogramming of mouse and human fibroblasts. However, the efficiency of direct cardiac reprogramming remains low. Recently, a number of cellular and molecular mechanisms have been identified to increase the efficiency of direct cardiac reprogramming and the quality of iCMs. For example, microgrooved substrate, cardiogenic growth factors [VEGF, FGF, BMP4 and Activin A], and an appropriate stoichiometry of TFs boost the direct cardiac reprogramming. On the other hand, serum, TGFβ signaling, activators of epithelial to mesenchymal transition, and some epigenetic factors (Bmi1 and Ezh2) are barriers for direct cardiac reprogramming. Manipulating these mechanisms by the application of boosters and removing barriers can increase the efficiency of direct cardiac reprogramming and possibly make iCMs reliable for cell-based therapy or other potential applications. In this review, we summarize the latest trends in cardiac TF- or miRNA-based direct cardiac reprogramming and comprehensively discuses all molecular and cellular boosters and barriers affecting direct cardiac reprogramming. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Factors associated with aberrant imprint methylation and oligozoospermia

    PubMed Central

    Kobayashi, Norio; Miyauchi, Naoko; Tatsuta, Nozomi; Kitamura, Akane; Okae, Hiroaki; Hiura, Hitoshi; Sato, Akiko; Utsunomiya, Takafumi; Yaegashi, Nobuo; Nakai, Kunihiko; Arima, Takahiro

    2017-01-01

    Disturbingly, the number of patients with oligozoospermia (low sperm count) has been gradually increasing in industrialized countries. Epigenetic alterations are believed to be involved in this condition. Recent studies have clarified that intrinsic and extrinsic factors can induce epigenetic transgenerational phenotypes through apparent reprogramming of the male germ line. Here we examined DNA methylation levels of 22 human imprinted loci in a total of 221 purified sperm samples from infertile couples and found methylation alterations in 24.8% of the patients. Structural equation model suggested that the cause of imprint methylation errors in sperm might have been environmental factors. More specifically, aberrant methylation and a particular lifestyle (current smoking, excess consumption of carbonated drinks) were associated with severe oligozoospermia, while aging probably affected this pathology indirectly through the accumulation of PCB in the patients. Next we examined the pregnancy outcomes for patients when the sperm had abnormal imprint methylation. The live-birth rate decreased and the miscarriage rate increased with the methylation errors. Our research will be useful for the prevention of methylation errors in sperm from infertile men, and sperm with normal imprint methylation might increase the safety of assisted reproduction technology (ART) by reducing methylation-induced diseases of children conceived via ART. PMID:28186187

  6. Transposable elements at the center of the crossroads between embryogenesis, embryonic stem cells, reprogramming, and long non-coding RNAs.

    PubMed

    Hutchins, Andrew Paul; Pei, Duanqing

    Transposable elements (TEs) are mobile genomic sequences of DNA capable of autonomous and non-autonomous duplication. TEs have been highly successful, and nearly half of the human genome now consists of various families of TEs. Originally thought to be non-functional, these elements have been co-opted by animal genomes to perform a variety of physiological functions ranging from TE-derived proteins acting directly in normal biological functions, to innovations in transcription factor logic and influence on epigenetic control of gene expression. During embryonic development, when the genome is epigenetically reprogrammed and DNA-demethylated, TEs are released from repression and show embryonic stage-specific expression, and in human and mouse embryos, intact TE-derived endogenous viral particles can even be detected. A similar process occurs during the reprogramming of somatic cells to pluripotent cells: When the somatic DNA is demethylated, TEs are released from repression. In embryonic stem cells (ESCs), where DNA is hypomethylated, an elaborate system of epigenetic control is employed to suppress TEs, a system that often overlaps with normal epigenetic control of ESC gene expression. Finally, many long non-coding RNAs (lncRNAs) involved in normal ESC function and those assisting or impairing reprogramming contain multiple TEs in their RNA. These TEs may act as regulatory units to recruit RNA-binding proteins and epigenetic modifiers. This review covers how TEs are interlinked with the epigenetic machinery and lncRNAs, and how these links influence each other to modulate aspects of ESCs, embryogenesis, and somatic cell reprogramming.

  7. LET-418/Mi2 and SPR-5/LSD1 cooperatively prevent somatic reprogramming of C. elegans germline stem cells.

    PubMed

    Käser-Pébernard, Stéphanie; Müller, Fritz; Wicky, Chantal

    2014-04-08

    Throughout their journey to forming new individuals, germline stem cells must remain totipotent, particularly by maintaining a specific chromatin structure. However, the place epigenetic factors occupy in this process remains elusive. So far, "sensitization" of chromatin by modulation of histone arrangement and/or content was believed to facilitate transcription-factor-induced germ cell reprogramming. Here, we demonstrate that the combined reduction of two epigenetic factors suffices to reprogram C. elegans germ cells. The histone H3K4 demethylase SPR-5/LSD1 and the chromatin remodeler LET-418/Mi2 function together in an early process to maintain germ cell status and act as a barrier to block precocious differentiation. This epigenetic barrier is capable of limiting COMPASS-mediated H3K4 methylation, because elevated H3K4me3 levels correlate with germ cell reprogramming in spr-5; let-418 mutants. Interestingly, germ cells deficient for spr-5 and let-418 mainly reprogram as neurons, suggesting that neuronal fate might be the first to be derepressed in early embryogenesis.

  8. A wide reprogramming of histone H3 modifications during male meiosis I in rice is dependent on the Argonaute protein MEL1.

    PubMed

    Liu, Hua; Nonomura, Ken-Ichi

    2016-10-01

    The roles of epigenetic mechanisms, including small-RNA-mediated silencing, in plant meiosis largely remain unclear, despite their importance in plant reproduction. This study unveiled that rice chromosomes are reprogrammed during the premeiosis-to-meiosis transition in pollen mother cells (PMCs). This large-scale meiotic chromosome reprogramming (LMR) continued throughout meiosis I, during which time H3K9 dimethylation (H3K9me2) was increased, and H3K9 acetylation and H3S10 phosphorylation were broadly decreased, with an accompanying immunostaining pattern shift of RNA polymerase II. LMR was dependent on the rice Argonaute protein, MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1), which is specifically expressed in germ cells prior to meiosis, because LMR was severely diminished in mel1 mutant anthers. Pivotal meiotic events, such as pre-synaptic centromere association, DNA double-strand break initiation and synapsis of homologous chromosomes, were also disrupted in this mutant. Interestingly, and as opposed to the LMR loss in most chromosomal regions, aberrant meiotic protein loading and hypermethylation of H3K9 emerged on the nucleolar organizing region in the mel1 PMCs. These results suggest that MEL1 plays important roles in epigenetic LMR to promote faithful homologous recombination and synapsis during rice meiosis. © 2016. Published by The Company of Biologists Ltd.

  9. Chiral Antioxidant-based Gold Nanoclusters Reprogram DNA Epigenetic Patterns

    PubMed Central

    Ma, Yue; Fu, Hualin; Zhang, Chunlei; Cheng, Shangli; Gao, Jie; Wang, Zhen; Jin, Weilin; Conde, João; Cui, Daxiang

    2016-01-01

    Epigenetic modifications sit ‘on top of’ the genome and influence DNA transcription, which can force a significant impact on cellular behavior and phenotype and, consequently human development and disease. Conventional methods for evaluating epigenetic modifications have inherent limitations and, hence, new methods based on nanoscale devices are needed. Here, we found that antioxidant (glutathione) chiral gold nanoclusters induce a decrease of 5-hydroxymethylcytosine (5hmC), which is an important epigenetic marker that associates with gene transcription regulation. This epigenetic change was triggered partially through ROS activation and oxidation generated by the treatment with glutathione chiral gold nanoclusters, which may inhibit the activity of TET proteins catalyzing the conversion of 5-methylcytosine (5mC) to 5hmC. In addition, these chiral gold nanoclusters can downregulate TET1 and TET2 mRNA expression. Alteration of TET-5hmC signaling will then affect several downstream targets and be involved in many aspects of cell behavior. We demonstrate for the first time that antioxidant-based chiral gold nanomaterials have a direct effect on epigenetic process of TET-5hmC pathways and reveal critical DNA demethylation patterns. PMID:27633378

  10. LET-418/Mi2 and SPR-5/LSD1 Cooperatively Prevent Somatic Reprogramming of C. elegans Germline Stem Cells

    PubMed Central

    Käser-Pébernard, Stéphanie; Müller, Fritz; Wicky, Chantal

    2014-01-01

    Summary Throughout their journey to forming new individuals, germline stem cells must remain totipotent, particularly by maintaining a specific chromatin structure. However, the place epigenetic factors occupy in this process remains elusive. So far, “sensitization” of chromatin by modulation of histone arrangement and/or content was believed to facilitate transcription-factor-induced germ cell reprogramming. Here, we demonstrate that the combined reduction of two epigenetic factors suffices to reprogram C. elegans germ cells. The histone H3K4 demethylase SPR-5/LSD1 and the chromatin remodeler LET-418/Mi2 function together in an early process to maintain germ cell status and act as a barrier to block precocious differentiation. This epigenetic barrier is capable of limiting COMPASS-mediated H3K4 methylation, because elevated H3K4me3 levels correlate with germ cell reprogramming in spr-5; let-418 mutants. Interestingly, germ cells deficient for spr-5 and let-418 mainly reprogram as neurons, suggesting that neuronal fate might be the first to be derepressed in early embryogenesis. PMID:24749077

  11. Using game theory to investigate the epigenetic control mechanisms of embryo development. Comment on: ;Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition; by Qian Wang et al.

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Zhang, Shaoxiang

    2017-03-01

    A body of research [1-7] has already shown that epigenetic reprogramming plays a critical role in maintaining the normal development of embryos. However, the mechanistic quantitation of the epigenetic interactions between sperms and oocytes and the related impact on embryo development are still not clear [6,7]. In this study, Wang et al., [8] develop a modeling framework that addresses this question by integrating game theory and the latest discoveries of the epigenetic control of embryo development.

  12. Direct Reprogramming of Human Fibroblasts toward a Cardiomyocyte-like State

    PubMed Central

    Fu, Ji-Dong; Stone, Nicole R.; Liu, Lei; Spencer, C. Ian; Qian, Li; Hayashi, Yohei; Delgado-Olguin, Paul; Ding, Sheng; Bruneau, Benoit G.; Srivastava, Deepak

    2013-01-01

    Summary Direct reprogramming of adult somatic cells into alternative cell types has been shown for several lineages. We previously showed that GATA4, MEF2C, and TBX5 (GMT) directly reprogrammed nonmyocyte mouse heart cells into induced cardiomyocyte-like cells (iCMs) in vitro and in vivo. However, GMT alone appears insufficient in human fibroblasts, at least in vitro. Here, we show that GMT plus ESRRG and MESP1 induced global cardiac gene-expression and phenotypic shifts in human fibroblasts derived from embryonic stem cells, fetal heart, and neonatal skin. Adding Myocardin and ZFPM2 enhanced reprogramming, including sarcomere formation, calcium transients, and action potentials, although the efficiency remained low. Human iCM reprogramming was epigenetically stable. Furthermore, we found that transforming growth factor β signaling was important for, and improved the efficiency of, human iCM reprogramming. These findings demonstrate that human fibroblasts can be directly reprogrammed toward the cardiac lineage, and lay the foundation for future refinements in vitro and in vivo. PMID:24319660

  13. Epigenetics and Colorectal Cancer

    PubMed Central

    Lao, Victoria Valinluck; Grady, William M.

    2012-01-01

    Colorectal cancer is a leading cause of cancer deaths in the world. It results from an accumulation of genetic and epigenetic changes in colon epithelial cells that transforms them into adenocarcinomas. There have been major advances in our understanding of cancer epigenetics over the last decade, particularly regarding aberrant DNA methylation. Assessment of the colon cancer epigenome has revealed that virtually all colorectal cancers have aberrantly methylated genes and the average colorectal cancer methylome has hundreds to thousands of abnormally methylated genes. As with gene mutations in the cancer genome, a subset of these methylated genes, called driver genes, is presumed to play a functional role in colorectal cancer. The assessment of methylated genes in colorectal cancers has also revealed a unique molecular subgroup of colorectal cancers called CpG Island Methylator Phenotype (CIMP) cancers; these tumors have a particularly high frequency of methylated genes. The advances in our understanding of aberrant methylation in colorectal cancer has led to epigenetic alterations being developed as clinical biomarkers for diagnostic, prognostic, and therapeutic applications. Progress in the assessment of epigenetic alterations in colorectal cancer and their clinical applications has shown that these alterations will be commonly used in the near future as molecular markers to direct the prevention and treatment of colorectal cancer. PMID:22009203

  14. Epigenetic silencing of the NR4A3 tumor suppressor, by aberrant JAK/STAT signaling, predicts prognosis in gastric cancer

    NASA Astrophysics Data System (ADS)

    Yeh, Chung-Min; Chang, Liang-Yu; Lin, Shu-Hui; Chou, Jian-Liang; Hsieh, Hsiao-Yen; Zeng, Li-Han; Chuang, Sheng-Yu; Wang, Hsiao-Wen; Dittner, Claudia; Lin, Cheng-Yu; Lin, Jora M. J.; Huang, Yao-Ting; Ng, Enders K. W.; Cheng, Alfred S. L.; Wu, Shu-Fen; Lin, Jiayuh; Yeh, Kun-Tu; Chan, Michael W. Y.

    2016-08-01

    While aberrant JAK/STAT signaling is crucial to the development of gastric cancer (GC), its effects on epigenetic alterations of its transcriptional targets remains unclear. In this study, by expression microarrays coupled with bioinformatic analyses, we identified a putative STAT3 target gene, NR4A3 that was downregulated in MKN28 GC daughter cells overexpressing a constitutively activated STAT3 mutant (S16), as compared to an empty vector control (C9). Bisulphite pyrosequencing and demethylation treatment showed that NR4A3 was epigenetically silenced by promoter DNA methylation in S16 and other GC cell lines including AGS cells, showing constitutive activation of STAT3. Subsequent experiments revealed that NR4A3 promoter binding by STAT3 might repress its transcription. Long-term depletion of STAT3 derepressed NR4A3 expression, by promoter demethylation, in AGS GC cells. NR4A3 re-expression in GC cell lines sensitized the cells to cisplatin, and inhibited tumor growth in vitro and in vivo, in an animal model. Clinically, GC patients with high NR4A3 methylation, or lower NR4A3 protein expression, had significantly shorter overall survival. Intriguingly, STAT3 activation significantly associated only with NR4A3 methylation in low-stage patient samples. Taken together, aberrant JAK/STAT3 signaling epigenetically silences a potential tumor suppressor, NR4A3, in gastric cancer, plausibly representing a reliable biomarker for gastric cancer prognosis.

  15. Using game theory to investigate the epigenetic control mechanisms of embryo development: Comment on: "Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition" by Qian Wang et al.

    PubMed

    Zhang, Le; Zhang, Shaoxiang

    2017-03-01

    A body of research [1-7] has already shown that epigenetic reprogramming plays a critical role in maintaining the normal development of embryos. However, the mechanistic quantitation of the epigenetic interactions between sperms and oocytes and the related impact on embryo development are still not clear [6,7]. In this study, Wang et al., [8] develop a modeling framework that addresses this question by integrating game theory and the latest discoveries of the epigenetic control of embryo development. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Cell reprogramming: Therapeutic potential and the promise of rejuvenation for the aging brain.

    PubMed

    López-León, Micaela; Outeiro, Tiago F; Goya, Rodolfo G

    2017-11-01

    Aging is associated with a progressive increase in the incidence of neurodegenerative diseases, with Alzheimer's (AD) and Parkinson's (PD) disease being the most conspicuous examples. Within this context, the absence of efficacious therapies for most age-related brain pathologies has increased the interest in regenerative medicine. In particular, cell reprogramming technologies have ushered in the era of personalized therapies that not only show a significant potential for the treatment of neurodegenerative diseases but also promise to make biological rejuvenation feasible. We will first review recent evidence supporting the emerging view that aging is a reversible epigenetic phenomenon. Next, we will describe novel reprogramming approaches that overcome some of the intrinsic limitations of conventional induced-pluripotent-stem-cell technology. One of the alternative approaches, lineage reprogramming, consists of the direct conversion of one adult cell type into another by transgenic expression of multiple lineage-specific transcription factors (TF). Another strategy, termed pluripotency factor-mediated direct reprogramming, uses universal TF to generate epigenetically unstable intermediates able to differentiate into somatic cell types in response to specific differentiation factors. In the third part we will review studies showing the potential relevance of the above approaches for the treatment of AD and PD. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A case of cellular alchemy: lineage reprogramming and its potential in regenerative medicine

    PubMed Central

    Asuelime, Grace E.; Shi, Yanhong

    2012-01-01

    The field of regenerative medicine is rapidly gaining momentum as an increasing number of reports emerge concerning the induced conversions observed in cellular fate reprogramming. While in recent years, much attention has been focused on the conversion of fate-committed somatic cells to an embryonic-like or pluripotent state, there are still many limitations associated with the applications of induced pluripotent stem cell reprogramming, including relatively low reprogramming efficiency, the times required for the reprogramming event to take place, the epigenetic instability, and the tumorigenicity associated with the pluripotent state. On the other hand, lineage reprogramming involves the conversion from one mature cell type to another without undergoing conversion to an unstable intermediate. It provides an alternative approach in regenerative medicine that has a relatively lower risk of tumorigenesis and increased efficiency within specific cellular contexts. While lineage reprogramming provides exciting potential, there is still much to be assessed before this technology is ready to be applied in a clinical setting. PMID:22371436

  18. Sex Determination in Ceratopteris richardii Is Accompanied by Transcriptome Changes That Drive Epigenetic Reprogramming of the Young Gametophyte.

    PubMed

    Atallah, Nadia M; Vitek, Olga; Gaiti, Federico; Tanurdzic, Milos; Banks, Jo Ann

    2018-05-02

    The fern Ceratopteris richardii is an important model for studies of sex determination and gamete differentiation in homosporous plants. Here we use RNA-seq to de novo assemble a transcriptome and identify genes differentially expressed in young gametophytes as their sex is determined by the presence or absence of the male-inducing pheromone called antheridiogen. Of the 1,163 consensus differentially expressed genes identified, the vast majority (1,030) are up-regulated in gametophytes treated with antheridiogen. GO term enrichment analyses of these DEGs reveals that a large number of genes involved in epigenetic reprogramming of the gametophyte genome are up-regulated by the pheromone. Additional hormone response and development genes are also up-regulated by the pheromone. This C. richardii gametophyte transcriptome and gene expression dataset will prove useful for studies focusing on sex determination and differentiation in plants. Copyright © 2018, G3: Genes, Genomes, Genetics.

  19. Irreversible barrier to the reprogramming of donor cells in cloning with mouse embryos and embryonic stem cells.

    PubMed

    Ono, Yukiko; Kono, Tomohiro

    2006-08-01

    Somatic cloning does not always result in ontogeny in mammals, and development is often associated with various abnormalities and embryo loss with a high frequency. This is considered to be due to aberrant gene expression resulting from epigenetic reprogramming errors. However, a fundamental question in this context is whether the developmental abnormalities reported to date are specific to somatic cloning. The aim of this study was to determine the stage of nuclear differentiation during development that leads to developmental abnormalities associated with embryo cloning. In order to address this issue, we reconstructed cloned embryos using four- and eight-cell embryos, morula embryos, inner cell mass (ICM) cells, and embryonic stem cells as donor nuclei and determined the occurrence of abnormalities such as developmental arrest and placentomegaly, which are common characteristics of all mouse somatic cell clones. The present analysis revealed that an acute decline in the full-term developmental competence of cloned embryos occurred with the use of four- and eight-cell donor nuclei (22.7% vs. 1.8%) in cases of standard embryo cloning and with morula and ICM donor nuclei (11.4% vs. 6.6%) in serial nuclear transfer. Histological observation showed abnormal differentiation and proliferation of trophoblastic giant cells in the placentae of cloned concepti derived from four-cell to ICM cell donor nuclei. Enlargement of placenta along with excessive proliferation of the spongiotrophoblast layer and glycogen cells was observed in the clones derived from morula embryos and ICM cells. These results revealed that irreversible epigenetic events had already started to occur at the four-cell stage. In addition, the expression of genes involved in placentomegaly is regulated at the blastocyst stage by irreversible epigenetic events, and it could not be reprogrammed by the fusion of nuclei with unfertilized oocytes. Hence, developmental abnormalities such as placentomegaly as

  20. Brief Report: Human Acute Myeloid Leukemia Reprogramming to Pluripotency Is a Rare Event and Selects for Patient Hematopoietic Cells Devoid of Leukemic Mutations.

    PubMed

    Lee, Jong-Hee; Salci, Kyle R; Reid, Jennifer C; Orlando, Luca; Tanasijevic, Borko; Shapovalova, Zoya; Bhatia, Mickie

    2017-09-01

    Induced pluripotent stem cell reprogramming has provided critical insights into disease processes by modeling the genetics and related clinical pathophysiology. Human cancer represents highly diverse genetics, as well as inter- and intra-patient heterogeneity, where cellular model systems capable of capturing this disease complexity would be invaluable. Acute myeloid leukemia (AML) represents one of most heterogeneous cancers and has been divided into genetic subtypes correlated with unique risk stratification over the decades. Here, we report our efforts to induce pluripotency from the heterogeneous population of human patients that represents this disease in the clinic. Using robust optimized reprogramming methods, we demonstrate that reprogramming of AML cells harboring leukemic genomic aberrations is a rare event with the exception of those with de novo mixed-lineage leukemia (MLL) mutations that can be reprogrammed and model drug responses in vitro. Our findings indicate that unlike hematopoietic cells devoid of genomic aberrations, AML cells harboring driver mutations are refractory to reprogramming. Expression of MLL fusion proteins in AML cells did not contribute to induced reprogramming success, which continued to select for patient derived cells devoid of AML patient-specific aberrations. Our study reveals that unanticipated blockades to achieving pluripotency reside within the majority of transformed AML patient cells. Stem Cells 2017;35:2095-2102. © 2017 AlphaMed Press.

  1. The Emerging Role of Epigenetics in Stroke

    PubMed Central

    Qureshi, Irfan A.; Mehler, Mark F.

    2013-01-01

    The transplantation of exogenous stem cells and the activation of endogenous neural stem and progenitor cells (NSPCs) are promising treatments for stroke. These cells can modulate intrinsic responses to ischemic injury and may even integrate directly into damaged neural networks. However, the neuroprotective and neural regenerative effects that can be mediated by these cells are limited and may even be deleterious. Epigenetic reprogramming represents a novel strategy for enhancing the intrinsic potential of the brain to protect and repair itself by modulating pathologic neural gene expression and promoting the recapitulation of seminal neural developmental processes. In fact, recent evidence suggests that emerging epigenetic mechanisms are critical for orchestrating nearly every aspect of neural development and homeostasis, including brain patterning, neural stem cell maintenance, neurogenesis and gliogenesis, neural subtype specification, and synaptic and neural network connectivity and plasticity. In this review, we survey the therapeutic potential of exogenous stem cells and endogenous NSPCs and highlight innovative technological approaches for designing, developing, and delivering epigenetic therapies for targeted reprogramming of endogenous pools of NSPCs, neural cells at risk, and dysfunctional neural networks to rescue and restore neurologic function in the ischemic brain. PMID:21403016

  2. Cellular reprogramming in skin cancer.

    PubMed

    Song, Ihn Young; Balmain, Allan

    2015-06-01

    Early primitive stem cells have long been viewed as the cancer cells of origin (tumor initiating target cells) due to their intrinsic features of self-renewal and longevity. However, emerging evidence suggests a surprising capacity for normal committed cells to function as reserve stem cells upon reprogramming as a consequence of tissue damage resulting in inflammation and wound healing. This results in an alternative concept positing that tumors may originate from differentiated cells that can re-acquire stem cell properties due to genetic or epigenetic reprogramming. It is likely that both models are correct, and that a continuum of potential cells of origin exists, ranging from early primitive stem cells to committed progenitor or even terminally differentiated cells. A combination of the nature of the target cell and the specific types of gene mutations introduced determine tumor cell lineage, as well as potential for malignant conversion. Evidence from mouse skin models of carcinogenesis suggests that initiated cells at different stages within a stem cell hierarchy have varying degrees of requirement for reprogramming (e.g. inflammation stimuli), depending on their degree of differentiation. This article will present evidence in favor of these concepts that has been developed from studies of several mouse models of skin carcinogenesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Esrrb Unlocks Silenced Enhancers for Reprogramming to Naive Pluripotency.

    PubMed

    Adachi, Kenjiro; Kopp, Wolfgang; Wu, Guangming; Heising, Sandra; Greber, Boris; Stehling, Martin; Araúzo-Bravo, Marcos J; Boerno, Stefan T; Timmermann, Bernd; Vingron, Martin; Schöler, Hans R

    2018-06-11

    Transcription factor (TF)-mediated reprogramming to pluripotency is a slow and inefficient process, because most pluripotency TFs fail to access relevant target sites in a refractory chromatin environment. It is still unclear how TFs actually orchestrate the opening of repressive chromatin during the long latency period of reprogramming. Here, we show that the orphan nuclear receptor Esrrb plays a pioneering role in recruiting the core pluripotency factors Oct4, Sox2, and Nanog to inactive enhancers in closed chromatin during the reprogramming of epiblast stem cells. Esrrb binds to silenced enhancers containing stable nucleosomes and hypermethylated DNA, which are inaccessible to the core factors. Esrrb binding is accompanied by local loss of DNA methylation, LIF-dependent engagement of p300, and nucleosome displacement, leading to the recruitment of core factors within approximately 2 days. These results suggest that TFs can drive rapid remodeling of the local chromatin structure, highlighting the remarkable plasticity of stable epigenetic information. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Retinoic Acid Inducible Gene 1 Protein (RIG1)-like Receptor Pathway is Required for Efficient Nuclear Reprogramming

    PubMed Central

    Sayed, Nazish; Ospino, Frank; Himmati, Farhan; Lee, Jieun; Chanda, Palas; Mocarski, Edward S.; Cooke, John P.

    2017-01-01

    We have revealed a critical role for innate immune signaling in nuclear reprogramming to pluripotency, and in the nuclear reprogramming required for somatic cell transdifferentiation. Activation of innate immune signaling causes global changes in the expression and activity of epigenetic modifiers to promote epigenetic plasticity. In our previous papers, we focused on the role of toll-like receptor 3 (TLR3) in this signaling pathway. Here we define the role of another innate immunity pathway known to participate in the response to viral RNA, the retinoic acid-inducible gene 1 receptor (RIG-1)-like receptor (RLR) pathway. This pathway is represented by the sensors of viral RNA, RIG-1, LGP2 and MDA5. We first found that TLR3 deficiency only causes a partial inhibition of nuclear reprogramming to pluripotency in mouse tail-tip fibroblasts, which motivated us to determine the contribution of RLR. We found that knockdown of iPS-1, the common adaptor protein for the RLR family, substantially reduced nuclear reprogramming induced by retroviral or by mmRNA expression of Oct 4, Sox2, KLF4 and cMYC (OSKM). Importantly a double knockdown of both RLR and TLR3 pathway led to a further decrease in iPSC colonies suggesting an additive effect of both these pathways on nuclear reprogramming. Furthermore, in murine embryonic fibroblasts expressing a dox-inducible cassette of the genes encoding OSKM, an RLR agonist increased the yield of iPSCs. Similarly, the RLR agonist enhanced nuclear reprogramming by cell permeant peptides of the Yamanaka factors. Finally, in the dox-inducible system, RLR activation promotes activating histone marks in the promoter region of pluripotency genes. To conclude, innate immune signaling mediated by RLR plays a critical role in nuclear reprogramming. Manipulation of innate immune signaling may facilitate nuclear reprogramming to achieve pluripotency. PMID:28276156

  5. Cellular trajectories and molecular mechanisms of iPSC reprogramming.

    PubMed

    Apostolou, Effie; Stadtfeld, Matthias

    2018-06-16

    The discovery of induced pluripotent stem cells (iPSCs) has solidified the concept of transcription factors as major players in controlling cell identity and provided a tractable tool to study how somatic cell identity can be dismantled and pluripotency established. A number of landmark studies have established hallmarks and roadmaps of iPSC formation by describing relative kinetics of transcriptional, protein and epigenetic changes, including alterations in DNA methylation and histone modifications. Recently, technological advancements such as single-cell analyses, high-resolution genome-wide chromatin assays and more efficient reprogramming systems have been used to challenge and refine our understanding of the reprogramming process. Here, we will outline novel insights into the molecular mechanisms underlying iPSC formation, focusing on how the core reprogramming factors OCT4, KLF4, SOX2 and MYC (OKSM) drive changes in gene expression, chromatin state and 3D genome topology. In addition, we will discuss unexpected consequences of reprogramming factor expression in in vitro and in vivo systems that may point towards new applications of iPSC technology. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Epigenetic Regulation in Prostate Cancer Progression.

    PubMed

    Ruggero, Katia; Farran-Matas, Sonia; Martinez-Tebar, Adrian; Aytes, Alvaro

    2018-01-01

    An important number of newly identified molecular alterations in prostate cancer affect gene encoding master regulators of chromatin biology epigenetic regulation. This review will provide an updated view of the key epigenetic mechanisms underlying prostate cancer progression, therapy resistance, and potential actionable mechanisms and biomarkers. Key players in chromatin biology and epigenetic master regulators has been recently described to be crucially altered in metastatic CRPC and tumors that progress to AR independency. As such, epigenetic dysregulation represents a driving mechanism in the reprograming of prostate cancer cells as they lose AR-imposed identity. Chromatin integrity and accessibility for transcriptional regulation are key features altered in cancer progression, and particularly relevant in nuclear hormone receptor-driven tumors like prostate cancer. Understanding how chromatin remodeling dictates prostate development and how its deregulation contributes to prostate cancer onset and progression may improve risk stratification and treatment selection for prostate cancer patients.

  7. Transgenerational Epigenetic Programming of the Embryonic Testis Transcriptome

    PubMed Central

    Anway, Matthew D.; Rekow, Stephen S.; Skinner, Michael K.

    2008-01-01

    Embryonic exposure to the endocrine disruptor vinclozolin during gonadal sex determination appears to promote an epigenetic reprogramming of the male germ-line that is associated with transgenerational adult onset disease states. Transgenerational effects on the embryonic day 16 (E16) testis demonstrated reproducible changes in the testis transcriptome for multiple generations (F1-F3). The expression of 196 genes were found to be influenced, with the majority of gene expression being decreased or silenced. Dramatic changes in the gene expression of methyltransferases during gonadal sex determination were observed in the F1 and F2 vinclozolin generation (E16) embryonic testis, but the majority returned to control generation levels by the F3 generation. The most dramatic effects were on the germ-line associated Dnmt3A and Dnmt3L isoforms. Observations demonstrate that an embryonic exposure to vinclozolin appears to promote an epigenetic reprogramming of the male germ-line that correlates with transgenerational alterations in the testis transcriptome in subsequent generations. PMID:18042343

  8. Single-Cell RNA-Seq Reveals Dynamic Early Embryonic-like Programs during Chemical Reprogramming.

    PubMed

    Zhao, Ting; Fu, Yao; Zhu, Jialiang; Liu, Yifang; Zhang, Qian; Yi, Zexuan; Chen, Shi; Jiao, Zhonggang; Xu, Xiaochan; Xu, Junquan; Duo, Shuguang; Bai, Yun; Tang, Chao; Li, Cheng; Deng, Hongkui

    2018-06-12

    Chemical reprogramming provides a powerful platform for exploring the molecular dynamics that lead to pluripotency. Although previous studies have uncovered an intermediate extraembryonic endoderm (XEN)-like state during this process, the molecular underpinnings of pluripotency acquisition remain largely undefined. Here, we profile 36,199 single-cell transcriptomes at multiple time points throughout a highly efficient chemical reprogramming system using RNA-sequencing and reconstruct their progression trajectories. Through identifying sequential molecular events, we reveal that the dynamic early embryonic-like programs are key aspects of successful reprogramming from XEN-like state to pluripotency, including the concomitant transcriptomic signatures of two-cell (2C) embryonic-like and early pluripotency programs and the epigenetic signature of notable genome-wide DNA demethylation. Moreover, via enhancing the 2C-like program by fine-tuning chemical treatment, the reprogramming process is remarkably accelerated. Collectively, our findings offer a high-resolution dissection of cell fate dynamics during chemical reprogramming and shed light on mechanistic insights into the nature of induced pluripotency. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Analysis of an epigenetic argument against human reproductive cloning.

    PubMed

    Nordgren, Anders

    2006-08-01

    Human reproductive cloning is a much disputed ethical issue. This technology is often condemned as being contrary to human dignity. However, there are also risk arguments. An ethical argument that is often put forward by scientists but seldom developed in more detail focuses on health risks in animal cloning. There is a high risk that animal clones exhibit abnormalities and these are increasingly believed to be due to errors in epigenetic reprogramming. The argument is that human reproductive cloning should not be carried out because human clones are also likely to exhibit abnormalities due to inappropriate epigenetic reprogramming. Different versions of this epigenetic argument are analysed, a categorical version and a non-categorical. The non-categorical version is suggested to be more well-considered. With regard to policy making on human reproductive cloning, the categorical version can be used to prescribe a permanent ban, while the non-categorical version can be used to prescribe a temporary ban. The implications of the precautionary principle--as interpreted in the European Union--are investigated. The conclusion is that it seems possible to support a temporary ban by reference to this principle.

  10. SFRP1 is a possible candidate for epigenetic therapy in non-small cell lung cancer.

    PubMed

    Taguchi, Y-H; Iwadate, Mitsuo; Umeyama, Hideaki

    2016-08-12

    Non-small cell lung cancer (NSCLC) remains a lethal disease despite many proposed treatments. Recent studies have indicated that epigenetic therapy, which targets epigenetic effects, might be a new therapeutic methodology for NSCLC. However, it is not clear which objects (e.g., genes) this treatment specifically targets. Secreted frizzled-related proteins (SFRPs) are promising candidates for epigenetic therapy in many cancers, but there have been no reports of SFRPs targeted by epigenetic therapy for NSCLC. This study performed a meta-analysis of reprogrammed NSCLC cell lines instead of the direct examination of epigenetic therapy treatment to identify epigenetic therapy targets. In addition, mRNA expression/promoter methylation profiles were processed by recently proposed principal component analysis based unsupervised feature extraction and categorical regression analysis based feature extraction. The Wnt/β-catenin signalling pathway was extensively enriched among 32 genes identified by feature extraction. Among the genes identified, SFRP1 was specifically indicated to target β-catenin, and thus might be targeted by epigenetic therapy in NSCLC cell lines. A histone deacetylase inhibitor might reactivate SFRP1 based upon the re-analysis of a public domain data set. Numerical computation validated the binding of SFRP1 to WNT1 to suppress Wnt signalling pathway activation in NSCLC. The meta-analysis of reprogrammed NSCLC cell lines identified SFRP1 as a promising target of epigenetic therapy for NSCLC.

  11. Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis.

    PubMed

    McDonald, Oliver G; Li, Xin; Saunders, Tyler; Tryggvadottir, Rakel; Mentch, Samantha J; Warmoes, Marc O; Word, Anna E; Carrer, Alessandro; Salz, Tal H; Natsume, Sonoko; Stauffer, Kimberly M; Makohon-Moore, Alvin; Zhong, Yi; Wu, Hao; Wellen, Kathryn E; Locasale, Jason W; Iacobuzio-Donahue, Christine A; Feinberg, Andrew P

    2017-03-01

    During the progression of pancreatic ductal adenocarcinoma (PDAC), heterogeneous subclonal populations emerge that drive primary tumor growth, regional spread, distant metastasis, and patient death. However, the genetics of metastases largely reflects that of the primary tumor in untreated patients, and PDAC driver mutations are shared by all subclones. This raises the possibility that an epigenetic process might operate during metastasis. Here we report large-scale reprogramming of chromatin modifications during the natural evolution of distant metastasis. Changes were targeted to thousands of large chromatin domains across the genome that collectively specified malignant traits, including euchromatin and large organized chromatin histone H3 lysine 9 (H3K9)-modified (LOCK) heterochromatin. Remarkably, distant metastases co-evolved a dependence on the oxidative branch of the pentose phosphate pathway (oxPPP), and oxPPP inhibition selectively reversed reprogrammed chromatin, malignant gene expression programs, and tumorigenesis. These findings suggest a model whereby linked metabolic-epigenetic programs are selected for enhanced tumorigenic fitness during the evolution of distant metastasis.

  12. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy.

    PubMed

    Wang, Zhihua; Zhang, Xiao-Jing; Ji, Yan-Xiao; Zhang, Peng; Deng, Ke-Qiong; Gong, Jun; Ren, Shuxun; Wang, Xinghua; Chen, Iris; Wang, He; Gao, Chen; Yokota, Tomohiro; Ang, Yen Sin; Li, Shen; Cass, Ashley; Vondriska, Thomas M; Li, Guangping; Deb, Arjun; Srivastava, Deepak; Yang, Huang-Tian; Xiao, Xinshu; Li, Hongliang; Wang, Yibin

    2016-10-01

    Epigenetic reprogramming is a critical process of pathological gene induction during cardiac hypertrophy and remodeling, but the underlying regulatory mechanisms remain to be elucidated. Here we identified a heart-enriched long noncoding (lnc)RNA, named cardiac-hypertrophy-associated epigenetic regulator (Chaer), which is necessary for the development of cardiac hypertrophy. Mechanistically, Chaer directly interacts with the catalytic subunit of polycomb repressor complex 2 (PRC2). This interaction, which is mediated by a 66-mer motif in Chaer, interferes with PRC2 targeting to genomic loci, thereby inhibiting histone H3 lysine 27 methylation at the promoter regions of genes involved in cardiac hypertrophy. The interaction between Chaer and PRC2 is transiently induced after hormone or stress stimulation in a process involving mammalian target of rapamycin complex 1, and this interaction is a prerequisite for epigenetic reprogramming and induction of genes involved in hypertrophy. Inhibition of Chaer expression in the heart before, but not after, the onset of pressure overload substantially attenuates cardiac hypertrophy and dysfunction. Our study reveals that stress-induced pathological gene activation in the heart requires a previously uncharacterized lncRNA-dependent epigenetic checkpoint.

  13. Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells.

    PubMed

    Biswas, Dhruba; Jiang, Peng

    2016-02-06

    The ability to generate transplantable neural cells in a large quantity in the laboratory is a critical step in the field of developing stem cell regenerative medicine for neural repair. During the last few years, groundbreaking studies have shown that cell fate of adult somatic cells can be reprogrammed through lineage specific expression of transcription factors (TFs)-and defined culture conditions. This key concept has been used to identify a number of potent small molecules that could enhance the efficiency of reprogramming with TFs. Recently, a growing number of studies have shown that small molecules targeting specific epigenetic and signaling pathways can replace all of the reprogramming TFs. Here, we provide a detailed review of the studies reporting the generation of chemically induced pluripotent stem cells (ciPSCs), neural stem cells (ciNSCs), and neurons (ciN). We also discuss the main mechanisms of actions and the pathways that the small molecules regulate during chemical reprogramming.

  14. [Genetic and epigenetic news in gerontology].

    PubMed

    Baranov, V S; Glotov, O S; Baranova, E V

    2014-01-01

    The overview represents the recent most conspicuous findings in aging studies. It includes new data on the whole genome association studies (GWAS) in big cohort of centenaries, recently found mutation protecting from Alzheimer disease, discovery of hypothalamus as a command center of human aging, very important data on the negative effect of common antioxidants in the treatment of lung cancer as well as new data concerning antiaging and anticancer effects of common drugs such as rapamycine and metformin. Substantial part of the review is devoted to the epigenetic problems of senescence and feasible impact of basic epigenetic mechanisms (methylation of DNA and histone proteins, DNA heterochromatization) in regulation of gene expression, long-term genome reprogramming during early childhood, and transgeneration transmission of epigenetic traits. The necessity of transition from molecular studies of dormant human genome (anatomy of human genome) to genome in action (dynamic genome) and thus with special emphasis to epigenetic medicine is stressed.

  15. MicroRNA in Metabolic Re-Programming and Their Role in Tumorigenesis

    PubMed Central

    Tomasetti, Marco; Amati, Monica; Santarelli, Lory; Neuzil, Jiri

    2016-01-01

    The process of metabolic re-programing is linked to the activation of oncogenes and/or suppression of tumour suppressor genes, which are regulated by microRNAs (miRNAs). The interplay between oncogenic transformation-driven metabolic re-programming and modulation of aberrant miRNAs further established their critical role in the initiation, promotion and progression of cancer by creating a tumorigenesis-prone microenvironment, thus orchestrating processes of evasion to apoptosis, angiogenesis and invasion/migration, as well metastasis. Given the involvement of miRNAs in tumour development and their global deregulation, they may be perceived as biomarkers in cancer of therapeutic relevance. PMID:27213336

  16. Epigenetic Alterations in Colorectal Cancer: Emerging Biomarkers

    PubMed Central

    Okugawa, Yoshinaga; Grady, William M.; Goel, Ajay

    2015-01-01

    Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. One of the fundamental processes driving the initiation and progression of CRC is the accumulation of a variety of genetic and epigenetic changes in colon epithelial cells. Over the past decade, major advances have been made in our understanding of cancer epigenetics, particularly regarding aberrant DNA methylation, microRNA (miRNA) and noncoding RNA deregulation, and alterations in histone modification states. Assessment of the colon cancer “epigenome” has revealed that virtually all CRCs have aberrantly methylated genes and altered miRNA expression. The average CRC methylome has hundreds to thousands of abnormally methylated genes and dozens of altered miRNAs. As with gene mutations in the cancer genome, a subset of these epigenetic alterations, called driver events, is presumed to have a functional role in CRC. In addition, the advances in our understanding of epigenetic alterations in CRC have led to these alterations being developed as clinical biomarkers for diagnostic, prognostic and therapeutic applications. Progress in this field suggests that these epigenetic alterations will be commonly used in the near future to direct the prevention and treatment of CRC. PMID:26216839

  17. The Real Culprit in Systemic Lupus Erythematosus: Abnormal Epigenetic Regulation

    PubMed Central

    Wu, Haijing; Zhao, Ming; Chang, Christopher; Lu, Qianjin

    2015-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple organs and the presence of anti-nuclear antibodies. The pathogenesis of SLE has been intensively studied but remains far from clear. B and T lymphocyte abnormalities, dysregulation of apoptosis, defects in the clearance of apoptotic materials, and various genetic and epigenetic factors are attributed to the development of SLE. The latest research findings point to the association between abnormal epigenetic regulation and SLE, which has attracted considerable interest worldwide. It is the purpose of this review to present and discuss the relationship between aberrant epigenetic regulation and SLE, including DNA methylation, histone modifications and microRNAs in patients with SLE, the possible mechanisms of immune dysfunction caused by epigenetic changes, and to better understand the roles of aberrant epigenetic regulation in the initiation and development of SLE and to provide an insight into the related therapeutic options in SLE. PMID:25988383

  18. Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1

    PubMed Central

    Moon, Jai-Hee; Heo, June Seok; Kim, Jun Sung; Jun, Eun Kyoung; Lee, Jung Han; Kim, Aeree; Kim, Jonggun; Whang, Kwang Youn; Kang, Yong-Kook; Yeo, Seungeun; Lim, Hee-Joung; Han, Dong Wook; Kim, Dong-Wook; Oh, Sejong; Yoon, Byung Sun; Schöler, Hans R; You, Seungkwon

    2011-01-01

    Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by the transcription factors Oct4, Sox2, and Klf4 in combination with c-Myc. Recently, Sox2 plus Oct4 was shown to reprogram fibroblasts and Oct4 alone was able to reprogram mouse and human neural stem cells (NSCs) into iPS cells. Here, we report that Bmi1 leads to the transdifferentiation of mouse fibroblasts into NSC-like cells, and, in combination with Oct4, can replace Sox2, Klf4 and c-Myc during the reprogramming of fibroblasts into iPS cells. Furthermore, activation of sonic hedgehog signaling (by Shh, purmorphamine, or oxysterol) compensates for the effects of Bmi1, and, in combination with Oct4, reprograms mouse embryonic and adult fibroblasts into iPS cells. One- and two-factor iPS cells are similar to mouse embryonic stem cells in their global gene expression profile, epigenetic status, and in vitro and in vivo differentiation into all three germ layers, as well as teratoma formation and germline transmission in vivo. These data support that converting fibroblasts with Bmi1 or activation of the sonic hedgehog pathway to an intermediate cell type that expresses Sox2, Klf4, and N-Myc allows iPS generation via the addition of Oct4. PMID:21709693

  19. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation

    PubMed Central

    Rodgers, Ali B.; Morgan, Christopher P.; Bronson, Stefanie L.; Revello, Sonia; Bale, Tracy L.

    2013-01-01

    Neuropsychiatric disease frequently presents with an underlying hypo- or hyper- reactivity of the HPA stress axis, suggesting an exceptional vulnerability of this circuitry to external perturbations. Parental lifetime exposures to environmental challenges are associated with increased offspring neuropsychiatric disease risk, and likely contribute to stress dysregulation. While maternal influences have been extensively examined, much less is known regarding the specific role of paternal factors. To investigate the potential mechanisms by which paternal stress may contribute to offspring hypothalamic-pituitary-adrenal (HPA) axis dysregulation, we exposed mice to six weeks of chronic stress prior to breeding. As epidemiological studies support variation in paternal germ cell susceptibility to reprogramming across the lifespan, male stress exposure occurred either throughout puberty or in adulthood. Remarkably, offspring of sires from both paternal stress groups displayed significantly reduced HPA axis stress responsivity. Gene set enrichment analyses in offspring stress regulating brain regions, the paraventricular nucleus (PVN) and the bed nucleus of stria terminalis (BNST), revealed global pattern changes in transcription suggestive of epigenetic reprogramming and consistent with altered offspring stress responsivity, including increased expression of glucocorticoid-responsive genes in the PVN. In examining potential epigenetic mechanisms of germ cell transmission, we found robust changes in sperm miRNA (miR) content, where nine specific miRs were significantly increased in both paternal stress groups. Overall, these results demonstrate that paternal experience across the lifespan can induce germ cell epigenetic reprogramming and impact offspring HPA stress axis regulation, and may therefore offer novel insight into factors influencing neuropsychiatric disease risk. PMID:23699511

  20. Epigenetic changes in solid and hematopoietic tumors.

    PubMed

    Toyota, Minoru; Issa, Jean-Pierre J

    2005-10-01

    There are three connected molecular mechanisms of epigenetic cellular memory in mammalian cells: DNA methylation, histone modifications, and RNA interference. The first two have now been firmly linked to neoplastic transformation. Hypermethylation of CpG-rich promoters triggers local histone code modifications resulting in a cellular camouflage mechanism that sequesters gene promoters away from transcription factors and results in stable silencing. This normally restricted mechanism is ubiquitously used in cancer to silence hundreds of genes, among which some critically contribute to the neoplastic phenotype. Virtually every pathway important to cancer formation is affected by this process. Methylation profiling of human cancers reveals tissue-specific epigenetic signatures, as well as tumor-specific signatures, reflecting in particular the presence of epigenetic instability in a subset of cancers affected by the CpG island methylator phenotype. Generally, methylation patterns can be traced to a tissue-specific, proliferation-dependent accumulation of aberrant promoter methylation in aging tissues, a process that can be accelerated by chronic inflammation and less well-defined mechanisms including, possibly, diet and genetic predisposition. The epigenetic machinery can also be altered in cancer by specific lesions in epigenetic effector genes, or by aberrant recruitment of these genes by mutant transcription factors and coactivators. Epigenetic patterns are proving clinically useful in human oncology via risk assessment, early detection, and prognostic classification. Pharmacologic manipulation of these patterns-epigenetic therapy-is also poised to change the way we treat cancer in the clinic.

  1. Epigenetics in focus: pathogenesis of myelodysplastic syndromes and the role of hypomethylating agents.

    PubMed

    Santini, Valeria; Melnick, Ari; Maciejewski, Jaroslaw P; Duprez, Estelle; Nervi, Clara; Cocco, Lucio; Ford, Kevin G; Mufti, Ghulam

    2013-11-01

    Dysregulation of cellular epigenetic machinery is considered a major pathogenetic determinant in many malignancies, including myelodysplastic syndromes (MDS). The importance of epigenetic dysfunction in MDS is reflected by the success of hypomethylating agents as standard of care for their treatment. Although these agents improve both survival and quality of life, knowledge gaps remain regarding the precise role of epigenetics in the pathogenesis of MDS and mechanisms by which hypomethylating agents exert their clinical effects. This article reviews the pathogenic role of epigenetic alterations in MDS, including the relationship between genetic and epigenetic abnormalities, and highlights emerging evidence that hypomethylating agents may reprogram the "methylome" while re-establishing hematopoiesis. Copyright © 2013. Published by Elsevier Ireland Ltd.

  2. Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Gosik, Kirk; Xing, Sujuan; Jiang, Libo; Sun, Lidan; Chinchilli, Vernon M.; Wu, Rongling

    2017-03-01

    Epigenetic reprogramming is thought to play a critical role in maintaining the normal development of embryos. How the methylation state of paternal and maternal genomes regulates embryogenesis depends on the interaction and coordination of the gametes of two sexes. While there is abundant research in exploring the epigenetic interactions of sperms and oocytes, a knowledge gap exists in the mechanistic quantitation of these interactions and their impact on embryo development. This review aims at formulating a modeling framework to address this gap through the integration and synthesis of evolutionary game theory and the latest discoveries of the epigenetic control of embryo development by next-generation sequencing. This framework, named epigenetic game theory or epiGame, views embryogenesis as an ecological system in which two highly distinct and specialized gametes coordinate through either cooperation or competition, or both, to maximize the fitness of embryos under Darwinian selection. By implementing a system of ordinary differential equations, epiGame quantifies the pattern and relative magnitude of the methylation effects on embryogenesis by the mechanisms of cooperation and competition. epiGame may gain new insight into reproductive biology and can be potentially applied to design personalized medicines for genetic disorder intervention.

  3. Coordination of m6A mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming

    PubMed Central

    Aguilo, Francesca; Zhang, Fan; Sancho, Ana; Fidalgo, Miguel; Di Cecilia, Serena; Vashisht, Ajay; Lee, Dung-Fang; Chen, Chih-Hung; Rengasamy, Madhumitha; Andino, Blanca; Jahouh, Farid; Roman, Angel; Krig, Sheryl R.; Wang, Rong; Zhang, Weijia; Wohlschlegel, James A.; Wang, Jianlong; Walsh, Martin J.

    2015-01-01

    SUMMARY Epigenetic and epitranscriptomic networks have important functions in maintaining pluripotency of embryonic stem cells (ESCs) and somatic cell reprogramming. However the mechanisms integrating the actions of these distinct networks are only partially understood. Here, we show that the chromatin-associated zinc finger protein 217 (ZFP217) coordinates epigenetic and epitranscriptomic regulation. ZFP217 interacts with several epigenetic regulators, activates transcription of key pluripotency genes, and modulates N6-methyladenosine (m6A) deposition on their transcripts by sequestering the enzyme m6A methyltransferase-like 3 (METTL3). Consistently, Zfp217 depletion compromises ESC self-renewal and somatic cell reprogramming, globally increases m6A RNA levels, and enhances m6A modification of Nanog, Sox2, Klf4, and c-Myc mRNAs, promoting their degradation. ZFP217 binds its own target gene mRNAs, which are also METTL3-associated, and is enriched at promoters of m6A-modified transcripts. Collectively, these findings shed light on how a transcription factor can tightly couple gene transcription to m6A RNA modification to insure ESC identity. PMID:26526723

  4. Epigenetics of reproductive infertility.

    PubMed

    Das, Laxmidhar; Parbin, Sabnam; Pradhan, Nibedita; Kausar, Chahat; Patra, Samir K

    2017-06-01

    Infertility is a complex pathophysiological condition. It may caused by specific or multiple physical and physiological factors, including abnormalities in homeostasis, hormonal imbalances and genetic alterations. In recent times various studies implicated that, aberrant epigenetic mechanisms are associated with reproductive infertility. There might be transgenerational effects associated with epigenetic modifications of gametes and studies suggest the importance of alterations in epigenetic modification at early and late stages of gametogenesis. To determine the causes of infertility it is necessary to understand the altered epigenetic modifications of associated gene and mechanisms involved therein. This review is devoted to elucidate the recent mechanistic advances in regulation of genes by epigenetic modification and emphasizes their possible role related to reproductive infertility. It includes environmental, nutritional, hormonal and physiological factors and influence of internal structural architecture of chromatin nucleosomes affecting DNA and histone modifications in both male and female gametes, early embryogenesis and offspring. Finally, we would like to emphasize that research on human infertility by gene knock out of epigenetic modifiers genes must be relied upon animal models.

  5. Zebrafish Discoveries in Cancer Epigenetics.

    PubMed

    Chernyavskaya, Yelena; Kent, Brandon; Sadler, Kirsten C

    2016-01-01

    The cancer epigenome is fundamentally different than that of normal cells. How these differences arise in and contribute to carcinogenesis is not known, and studies using model organisms such as zebrafish provide an opportunity to address these important questions. Modifications of histones and DNA comprise the complex epigenome, and these influence chromatin structure, genome stability and gene expression, all of which are fundamental to the cellular changes that cause cancer. The cancer genome atlas covers the wide spectrum of genetic changes associated with nearly every cancer type, however, this catalog is currently uni-dimensional. As the pattern of epigenetic marks and chromatin structure in cancer cells is described and overlaid on the mutational landscape, the map of the cancer genome becomes multi-dimensional and highly complex. Two major questions remain in the field: (1) how the epigenome becomes repatterned in cancer and (2) which of these changes are cancer-causing. Zebrafish provide a tractable in vivo system to monitor the epigenome during transformation and to identify epigenetic drivers of cancer. In this chapter, we review principles of cancer epigenetics and discuss recent work using zebrafish whereby epigenetic modifiers were established as cancer driver genes, thus providing novel insights into the mechanisms of epigenetic reprogramming in cancer.

  6. Epigenetics of prostate cancer.

    PubMed

    Li, Long-Cheng

    2007-05-01

    Prostate cancer is the most common type of cancer other than skin cancer and the second leading cause of cancer death in men in the United States. Its exact causes are unknown. Several risk factors have been associated with prostate cancer including age, race, family history and diet. Epigenetic mechanisms including DNA methylation and histone modifications are important means of gene regulation and play essential roles in diverse biological and disease processes. Recently, frequent epigenetic aberrations such as DNA hypo- and hypermethylation and altered histone acetylation and methylation have been observed in prostate cancer affecting the expression and function of a large array of genes, leading to tumorigenesis, tumor progression and metastasis. In this chapter, we examined the current literature regarding epigenetic changes in prostate cancer and discuss the clinical potential of cancer epigenetics for the diagnosis and treatment of this disease.

  7. Novel Epigenetic Reprogramming to Inhibit or Reverse EMT in Lung Cancer

    DTIC Science & Technology

    2017-09-01

    hypothesized that TGFβ links NRP2- dependent signaling to upregulation of EZH2, an epigenetic modifier, and that EMT results from gene expression changes...which makes this disease very difficult to treat. We hypothesized that TGFβ links NRP2- dependent signaling to upregulation of EZH2, an epigenetic...knockdown of NRP2a, NRP2b or both. 2) Over 10% of TGFβ responsive genes were dependent upon EZH2, and nearly all of these were modulated by genetic

  8. Unexplored Potentials of Epigenetic Mechanisms of Plants and Animals—Theoretical Considerations

    PubMed Central

    Seffer, Istvan; Nemeth, Zoltan; Hoffmann, Gyula; Matics, Robert; Seffer, A Gergely; Koller, Akos

    2013-01-01

    Morphological and functional changes of cells are important for adapting to environmental changes and associated with continuous regulation of gene expressions. Genes are regulated–in part–by epigenetic mechanisms resulting in alternating patterns of gene expressions throughout life. Epigenetic changes responding to the environmental and intercellular signals can turn on/off specific genes, but do not modify the DNA sequence. Most epigenetic mechanisms are evolutionary conserved in eukaryotic organisms, and several homologs of epigenetic factors are present in plants and animals. Moreover, in vitro studies suggest that the plant cytoplasm is able to induce a nuclear reassembly of the animal cell, whereas others suggest that the ooplasm is able to induce condensation of plant chromatin. Here, we provide an overview of the main epigenetic mechanisms regulating gene expression and discuss fundamental epigenetic mechanisms and factors functioning in both plants and animals. Finally, we hypothesize that animal genome can be reprogrammed by epigenetic factors from the plant protoplast. PMID:25512705

  9. X Chromosome of female cells shows dynamic changes in status during human somatic cell reprogramming.

    PubMed

    Kim, Kun-Yong; Hysolli, Eriona; Tanaka, Yoshiaki; Wang, Brandon; Jung, Yong-Wook; Pan, Xinghua; Weissman, Sherman Morton; Park, In-Hyun

    2014-06-03

    Induced pluripotent stem cells (iPSCs) acquire embryonic stem cell (ESC)-like epigenetic states, including the X chromosome. Previous studies reported that human iPSCs retain the inactive X chromosome of parental cells, or acquire two active X chromosomes through reprogramming. Most studies investigated the X chromosome states in established human iPSC clones after completion of reprogramming. Thus, it is still not fully understood when and how the X chromosome reactivation occurs during reprogramming. Here, we report a dynamic change in the X chromosome state throughout reprogramming, with an initial robust reactivation of the inactive X chromosome followed by an inactivation upon generation of nascent iPSC clones. iPSCs with two active X chromosomes or an eroded X chromosome arise in passaging iPSCs. These data provide important insights into the plasticity of the X chromosome of human female iPSCs and will be crucial for the future application of such cells in cell therapy and X-linked disease modeling.

  10. Targeting the Epigenome in Lung Cancer: Expanding Approaches to Epigenetic Therapy

    PubMed Central

    Jakopovic, Marko; Thomas, Anish; Balasubramaniam, Sanjeeve; Schrump, David; Giaccone, Giuseppe; Bates, Susan E.

    2013-01-01

    Epigenetic aberrations offer dynamic and reversible targets for cancer therapy; increasingly, alteration via overexpression, mutation, or rearrangement is found in genes that control the epigenome. Such alterations suggest a fundamental role in carcinogenesis. Here, we consider three epigenetic mechanisms: DNA methylation, histone tail modification and non-coding, microRNA regulation. Evidence for each of these in lung cancer origin or progression has been gathered, along with evidence that epigenetic alterations might be useful in early detection. DNA hypermethylation of tumor suppressor promoters has been observed, along with global hypomethylation and hypoacetylation, suggesting an important role for tumor suppressor gene silencing. These features have been linked as prognostic markers with poor outcome in lung cancer. Several lines of evidence have also suggested a role for miRNA in carcinogenesis and in outcome. Cigarette smoke downregulates miR-487b, which targets both RAS and MYC; RAS is also a target of miR-let-7, again downregulated in lung cancer. Together the evidence implicates epigenetic aberration in lung cancer and suggests that targeting these aberrations should be carefully explored. To date, DNA methyltransferase and histone deacetylase inhibitors have had minimal clinical activity. Explanations include the possibility that the agents are not sufficiently potent to invoke epigenetic reversion to a more normal state; that insufficient time elapses in most clinical trials to observe true epigenetic reversion; and that doses often used may provoke off-target effects such as DNA damage that prevent epigenetic reversion. Combinations of epigenetic therapies may address those problems. When epigenetic agents are used in combination with chemotherapy or targeted therapy it is hoped that downstream biological effects will provoke synergistic cytotoxicity. This review evaluates the challenges of exploiting the epigenome in the treatment of lung cancer

  11. p53 isoform Δ133p53 promotes efficiency of induced pluripotent stem cells and ensures genomic integrity during reprogramming.

    PubMed

    Gong, Lu; Pan, Xiao; Chen, Haide; Rao, Lingjun; Zeng, Yelin; Hang, Honghui; Peng, Jinrong; Xiao, Lei; Chen, Jun

    2016-11-22

    Human induced pluripotent stem (iPS) cells have great potential in regenerative medicine, but this depends on the integrity of their genomes. iPS cells have been found to contain a large number of de novo genetic alterations due to DNA damage response during reprogramming. Thus, to maintain the genetic stability of iPS cells is an important goal in iPS cell technology. DNA damage response can trigger tumor suppressor p53 activation, which ensures genome integrity of reprogramming cells by inducing apoptosis and senescence. p53 isoform Δ133p53 is a p53 target gene and functions to not only antagonize p53 mediated apoptosis, but also promote DNA double-strand break (DSB) repair. Here we report that Δ133p53 is induced in reprogramming. Knockdown of Δ133p53 results 2-fold decrease in reprogramming efficiency, 4-fold increase in chromosomal aberrations, whereas overexpression of Δ133p53 with 4 Yamanaka factors showes 4-fold increase in reprogamming efficiency and 2-fold decrease in chromosomal aberrations, compared to those in iPS cells induced only with 4 Yamanaka factors. Overexpression of Δ133p53 can inhibit cell apoptosis and promote DNA DSB repair foci formation during reprogramming. Our finding demonstrates that the overexpression of Δ133p53 not only enhances reprogramming efficiency, but also results better genetic quality in iPS cells.

  12. Genetics and epigenetics of liver cancer.

    PubMed

    Ozen, Cigdem; Yildiz, Gokhan; Dagcan, Alper Tunga; Cevik, Dilek; Ors, Aysegul; Keles, Umur; Topel, Hande; Ozturk, Mehmet

    2013-05-25

    Hepatocellular carcinoma (HCC) represents a major form of primary liver cancer in adults. Chronic infections with hepatitis B (HBV) and C (HCV) viruses and alcohol abuse are the major factors leading to HCC. This deadly cancer affects more than 500,000 people worldwide and it is quite resistant to conventional chemo- and radiotherapy. Genetic and epigenetic studies on HCC may help to understand better its mechanisms and provide new tools for early diagnosis and therapy. Recent literature on whole genome analysis of HCC indicated a high number of mutated genes in addition to well-known genes such as TP53, CTNNB1, AXIN1 and CDKN2A, but their frequencies are much lower. Apart from CTNNB1 mutations, most of the other mutations appear to result in loss-of-function. Thus, HCC-associated mutations cannot be easily targeted for therapy. Epigenetic aberrations that appear to occur quite frequently may serve as new targets. Global DNA hypomethylation, promoter methylation, aberrant expression of non-coding RNAs and dysregulated expression of other epigenetic regulatory genes such as EZH2 are the best-known epigenetic abnormalities. Future research in this direction may help to identify novel biomarkers and therapeutic targets for HCC. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression

    PubMed Central

    Feinberg, Andrew P.; Koldobskiy, Michael A.; Göndör, Anita

    2016-01-01

    This year is the tenth anniversary of the publication in this journal of a model suggesting the existence of ‘tumour progenitor genes’. These genes are epigenetically disrupted at the earliest stages of malignancies, even before mutations, and thus cause altered differentiation throughout tumour evolution. The past decade of discovery in cancer epigenetics has revealed a number of similarities between cancer genes and stem cell reprogramming genes, widespread mutations in epigenetic regulators, and the part played by chromatin structure in cellular plasticity in both development and cancer. In the light of these discoveries, we suggest here a framework for cancer epigenetics involving three types of genes: ‘epigenetic mediators’, corresponding to the tumour progenitor genes suggested earlier; ‘epigenetic modifiers’ of the mediators, which are frequently mutated in cancer; and ‘epigenetic modulators’ upstream of the modifiers, which are responsive to changes in the cellular environment and often linked to the nuclear architecture. We suggest that this classification is helpful in framing new diagnostic and therapeutic approaches to cancer. PMID:26972587

  14. Shaping epigenetic memory via genomic bookmarking

    PubMed Central

    Chiang, Michael; Colì, Davide; Papantonis, Argyris; Orlandini, Enzo; Cook, Peter R

    2018-01-01

    Abstract Reconciling the stability of epigenetic patterns with the rapid turnover of histone modifications and their adaptability to external stimuli is an outstanding challenge. Here, we propose a new biophysical mechanism that can establish and maintain robust yet plastic epigenetic domains via genomic bookmarking (GBM). We model chromatin as a recolourable polymer whose segments bear non-permanent histone marks (or colours) which can be modified by ‘writer’ proteins. The three-dimensional chromatin organisation is mediated by protein bridges, or ‘readers’, such as Polycomb Repressive Complexes and Transcription Factors. The coupling between readers and writers drives spreading of biochemical marks and sustains the memory of local chromatin states across replication and mitosis. In contrast, GBM-targeted perturbations destabilise the epigenetic patterns. Strikingly, we demonstrate that GBM alone can explain the full distribution of Polycomb marks in a whole Drosophila chromosome. We finally suggest that our model provides a starting point for an understanding of the biophysics of cellular differentiation and reprogramming. PMID:29190361

  15. RNA splicing and its connection with other regulatory layers in somatic cell reprogramming.

    PubMed

    Zavolan, Mihaela; Kanitz, Alexander

    2018-06-01

    Understanding how cell identity is established and maintained is one of the most exciting challenges of molecular biology today. Recent work has added a conserved layer of RNA splicing and other post-transcriptional regulatory processes to the transcriptional and epigenetic networks already known to cooperate in the establishment and maintenance of cell identity. Here we summarize these findings, highlighting specifically the multitude of splicing factors that can modulate the efficiency of somatic cell reprogramming. Distinct patterns of gene expression dynamics of these factors during reprogramming suggest that further improvements in efficiency could be obtained through optimal timing of overexpression or knockdown of individual regulators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition.

    PubMed

    Wang, Qian; Gosik, Kirk; Xing, Sujuan; Jiang, Libo; Sun, Lidan; Chinchilli, Vernon M; Wu, Rongling

    2017-03-01

    Epigenetic reprogramming is thought to play a critical role in maintaining the normal development of embryos. How the methylation state of paternal and maternal genomes regulates embryogenesis depends on the interaction and coordination of the gametes of two sexes. While there is abundant research in exploring the epigenetic interactions of sperms and oocytes, a knowledge gap exists in the mechanistic quantitation of these interactions and their impact on embryo development. This review aims at formulating a modeling framework to address this gap through the integration and synthesis of evolutionary game theory and the latest discoveries of the epigenetic control of embryo development by next-generation sequencing. This framework, named epigenetic game theory or epiGame, views embryogenesis as an ecological system in which two highly distinct and specialized gametes coordinate through either cooperation or competition, or both, to maximize the fitness of embryos under Darwinian selection. By implementing a system of ordinary differential equations, epiGame quantifies the pattern and relative magnitude of the methylation effects on embryogenesis by the mechanisms of cooperation and competition. epiGame may gain new insight into reproductive biology and can be potentially applied to design personalized medicines for genetic disorder intervention. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Epigenetic Therapeutics: A New Weapon in the War Against Cancer.

    PubMed

    Ahuja, Nita; Sharma, Anup R; Baylin, Stephen B

    2016-01-01

    The past 15 years have seen an explosion of discoveries related to the cellular regulation of phenotypes through epigenetic mechanisms. This regulation provides a software that packages DNA, without changing the primary base sequence, to establish heritable patterns of gene expression. In cancer, many aspects of the epigenome, controlled by DNA methylation, chromatin, and nucleosome positioning, are altered as one means by which tumor cells maintain abnormal states of self-renewal at the expense of normal maturation. Epigenetic and genetic abnormalities thus collaborate in cancer initiation and progression, as exemplified by frequent mutations in genes encoding proteins that control the epigenome. There is growing emphasis on using epigenetic therapies to reprogram neoplastic cells toward a normal state. Many agents targeting epigenetic regulation are under development and entering clinical trials. This review highlights the promise that epigenetic therapy, often in combination with other therapies, will become a potent tool for cancer management over the next decade.

  18. Design of small-molecule epigenetic modulators

    PubMed Central

    Pachaiyappan, Boobalan

    2013-01-01

    The field of epigenetics has expanded rapidly to reveal multiple new targets for drug discovery. The functional elements of the epigenomic machinery can be catagorized as writers, erasers and readers, and together these elements control cellular gene expression and homeostasis. It is increasingly clear that aberrations in the epigenome can underly a variety of diseases, and thus discovery of small molecules that modulate the epigenome in a specific manner is a viable approach to the discovery of new therapeutic agents. In this Digest, the components of epigenetic control of gene expression will be briefly summarized, and efforts to identify small molecules that modulate epigenetic processes will be described. PMID:24300735

  19. Epigenetic mechanisms in heart development and disease.

    PubMed

    Martinez, Shannalee R; Gay, Maresha S; Zhang, Lubo

    2015-07-01

    Suboptimal intrauterine development has been linked to predisposition to cardiovascular disease in adulthood, a concept termed 'developmental origins of health and disease'. Although the exact mechanisms underlying this developmental programming are unknown, a growing body of evidence supports the involvement of epigenetic regulation. Epigenetic mechanisms such as DNA methylation, histone modifications and micro-RNA confer added levels of gene regulation without altering DNA sequences. These modifications are relatively stable signals, offering possible insight into the mechanisms underlying developmental origins of health and disease. This review will discuss the role of epigenetic mechanisms in heart development as well as aberrant epigenetic regulation contributing to cardiovascular disease. Additionally, we will address recent advances targeting epigenetic mechanisms as potential therapeutic approaches to cardiovascular disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome

    USDA-ARS?s Scientific Manuscript database

    Aberrant epigenetic alterations in the genome such as DNA methylation and chromatin remodeling play a significant role in breast cancer development. Since epigenetic alterations are considered to be more easily reversible compared to genetic changes, epigenetic therapy is potentially very useful in ...

  1. Adolescent Alcohol Exposure: Burden of Epigenetic Reprogramming, Synaptic Remodeling, and Adult Psychopathology

    PubMed Central

    Kyzar, Evan J.; Floreani, Christina; Teppen, Tara L.; Pandey, Subhash C.

    2016-01-01

    Adolescence represents a crucial phase of synaptic maturation characterized by molecular changes in the developing brain that shape normal behavioral patterns. Epigenetic mechanisms play an important role in these neuromaturation processes. Perturbations of normal epigenetic programming during adolescence by ethanol can disrupt these molecular events, leading to synaptic remodeling and abnormal adult behaviors. Repeated exposure to binge levels of alcohol increases the risk for alcohol use disorder (AUD) and comorbid psychopathology including anxiety in adulthood. Recent studies in the field clearly suggest that adolescent alcohol exposure causes widespread and persistent changes in epigenetic, neurotrophic, and neuroimmune pathways in the brain. These changes are manifested by altered synaptic remodeling and neurogenesis in key brain regions leading to adult psychopathology such as anxiety and alcoholism. This review details the molecular mechanisms underlying adolescent alcohol exposure-induced changes in synaptic plasticity and the development of alcohol addiction-related phenotypes in adulthood. PMID:27303256

  2. Epigenetics in breast and prostate cancer.

    PubMed

    Wu, Yanyuan; Sarkissyan, Marianna; Vadgama, Jaydutt V

    2015-01-01

    Most recent investigations into cancer etiology have identified a key role played by epigenetics. Specifically, aberrant DNA and histone modifications which silence tumor suppressor genes or promote oncogenes have been demonstrated in multiple cancer models. While the role of epigenetics in several solid tumor cancers such as colorectal cancer are well established, there is emerging evidence that epigenetics also plays a critical role in breast and prostate cancer. In breast cancer, DNA methylation profiles have been linked to hormone receptor status and tumor progression. Similarly in prostate cancer, epigenetic patterns have been associated with androgen receptor status and response to therapy. The regulation of key receptor pathways and activities which affect clinical therapy treatment options by epigenetics renders this field high priority for elucidating mechanisms and potential targets. A new set of methylation arrays are now available to screen epigenetic changes and provide the cutting-edge tools needed to perform such investigations. The role of nutritional interventions affecting epigenetic changes particularly holds promise. Ultimately, determining the causes and outcomes from epigenetic changes will inform translational applications for utilization as biomarkers for risk and prognosis as well as candidates for therapy.

  3. Epigenetics in Breast and Prostate Cancer

    PubMed Central

    Wu, Yanyuan; Sarkissyan, Marianna; Vadgama, Jaydutt V.

    2015-01-01

    SUMMARY Most recent investigations into cancer etiology have identified a key role played by epigenetics. Specifically, aberrant DNA and histone modifications which silence tumor suppressor genes or promote oncogenes have been demonstrated in multiple cancer models. While the role of epigenetics in several solid tumor cancers such as colorectal cancer are well established, there is emerging evidence that epigenetics also plays a critical role in breast and prostate cancer. In breast cancer, DNA methylation profiles have been linked to hormone receptor status and tumor progression. Similarly in prostate cancer, epigenetic patterns have been associated with androgen receptor status and response to therapy. The regulation of key receptor pathways and activities which affect clinical therapy treatment options by epigenetics renders this field high priority for elucidating mechanisms and potential targets. A new set of methylation arrays are now available to screen epigenetic changes and provide the cuttingedge tools needed to perform such investigations. The role of nutritional interventions affecting epigenetic changes particularly holds promise. Ultimately, determining the causes and outcomes from epigenetic changes will inform translational applications for utilization as biomarkers for risk and prognosis as well as candidates for therapy. PMID:25421674

  4. An epigenetic view of developmental diseases: new targets, new therapies.

    PubMed

    Xie, Pei; Zang, Li-Qun; Li, Xue-Kun; Shu, Qiang

    2016-08-01

    Function of epigenetic modifications is one of the most competitive fields in life science. Over the past several decades, it has been revealed that epigenetic modifications play essential roles in development and diseases including developmental diseases. In the present review, we summarize the recent progress about the function of epigenetic regulation, especially DNA and RNA modifications in developmental diseases. Original research articles and literature reviews published in PubMed-indexed journals. DNA modifications including methylation and demethylation can regulate gene expression, and are involved in development and multiple diseases including Rett syndrome, Autism spectrum disorders, congenital heart disease and cancer, etc. RNA methylation and demethylation play important roles in RNA processing, reprogramming, circadian, and neuronal activity, and then modulate development. DNA and RNA modifications play important roles in development and diseases through regulating gene expression. Epigenetic components could serve as novel targets for the treatment of developmental diseases.

  5. Epigenetic regulation of gene expression in cancer: techniques, resources and analysis

    PubMed Central

    Kagohara, Luciane T; Stein-O’Brien, Genevieve L; Kelley, Dylan; Flam, Emily; Wick, Heather C; Danilova, Ludmila V; Easwaran, Hariharan; Favorov, Alexander V; Qian, Jiang; Gaykalova, Daria A; Fertig, Elana J

    2018-01-01

    Abstract Cancer is a complex disease, driven by aberrant activity in numerous signaling pathways in even individual malignant cells. Epigenetic changes are critical mediators of these functional changes that drive and maintain the malignant phenotype. Changes in DNA methylation, histone acetylation and methylation, noncoding RNAs, posttranslational modifications are all epigenetic drivers in cancer, independent of changes in the DNA sequence. These epigenetic alterations were once thought to be crucial only for the malignant phenotype maintenance. Now, epigenetic alterations are also recognized as critical for disrupting essential pathways that protect the cells from uncontrolled growth, longer survival and establishment in distant sites from the original tissue. In this review, we focus on DNA methylation and chromatin structure in cancer. The precise functional role of these alterations is an area of active research using emerging high-throughput approaches and bioinformatics analysis tools. Therefore, this review also describes these high-throughput measurement technologies, public domain databases for high-throughput epigenetic data in tumors and model systems and bioinformatics algorithms for their analysis. Advances in bioinformatics data that combine these epigenetic data with genomics data are essential to infer the function of specific epigenetic alterations in cancer. These integrative algorithms are also a focus of this review. Future studies using these emerging technologies will elucidate how alterations in the cancer epigenome cooperate with genetic aberrations during tumor initiation and progression. This deeper understanding is essential to future studies with epigenetics biomarkers and precision medicine using emerging epigenetic therapies. PMID:28968850

  6. Dissecting genomic imprinting and genetic conflict from a game theory prospective. Comment on: ;Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition; by Qian Wang et al.

    NASA Astrophysics Data System (ADS)

    Cui, Yuehua; Yang, Haitao

    2017-03-01

    Epigenetics typically refers to changes in the structure of a chromosome that affect gene activity and expression. Genomic imprinting is a special type of epigenetic phenomenon in which the expression of an allele depends on its parental origin. When an allele inherited from the mother (or father) is imprinted (i.e., silent), it is termed as maternal (or paternal) imprinting. Imprinting is often resulted from DNA methylation and tends to cluster together in the genome [1]. It has been shown to play a key role in many genetic disorders in humans [2]. Imprinting is heritable and undergoes a reprogramming process in gametes before and after fertilization [1]. Sometimes the reprogramming process is not reversible, leading to the loss of imprinting [3]. Although efforts have been made to experimentally or computationally infer imprinting genes, the underlying molecular mechanism that leads to unbalanced allelic expression is still largely unknown.

  7. Repressive but not activating epigenetic modifications are aberrant on the inactive X chromosome in live cloned cattle.

    PubMed

    Geng-Sheng, Cao; Yu, Gao; Kun, Wang; Fang-Rong, Ding; Ning, Li

    2009-08-01

    X inactivation is the process of a chromosome-wide silencing of the majority of genes on the X chromosome during early mammalian development. This process may be aberrant in cloned animals. Here we show that repressive modifications, such as methylation of DNA, and the presence of methylated histones, H3K9me2 and H3K27me3, exhibit distinct aberrance on the inactive X chromosome in live clones. In contrast, H3K4me3, an active gene marker, is obviously missing from the inactive X chromosome in all cattle studied. This suggests that the disappearance of active histone modifications (H3K4me3) seems to be more important for X inactivation than deposition of marks associated with heterochromatin (DNA methylation, H3K27me3 and H3K9me2). It also implies that even apparently normal clones may have subtle abnormalities in repressive, but not activating epigenetic modifications on the inactive X when they survive to term. We also found that the histone H3 methylations were enriched and co-localized at q21-31 of the active X chromosome, which may be associated with an abundance of LINE1 repeat elements. © 2009 The Authors. Journal compilation © 2009 Japanese Society of Developmental Biologists.

  8. Paramutation: the tip of an epigenetic iceberg?

    PubMed Central

    Suter, Catherine M.; Martin, David I.K.

    2009-01-01

    Paramutation describes the transfer of an acquired epigenetic state to an unlinked homologous locus, resulting in a meiotically heritable alteration in gene expression. Early investigations of paramutation characterized a mode of change and inheritance distinct from mendelian genetics, catalyzing the concept of the epigenome. Numerous examples of paramutation and paramutation-like phenomena have now emerged, with evidence that implicates small RNAs in the transfer and maintenance of epigenetic states. In animals piRNA-mediated retrotransposon suppression seems to drive a vast system of epigenetic inheritance with paramutation-like characteristics. The classic examples of paramutation might be merely informative aberrations of pervasive and broadly conserved mechanisms that use RNA to sense homology and target epigenetic modification. When viewed in this context, paramutation is only one aspect of a common and broadly distributed form of inheritance based on epigenetic states. PMID:19945764

  9. Radiation-Induced Epigenetic Alterations after Low and High LET Irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding the delayed, non-targeted effects of radiation including radiationinduced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET x-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappamore » B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. MiRNA shown to be altered in expression level after x-ray irradiation are involved in chromatin remodeling and DNA methylation. Different and higher incidence of epigenetic changes were observed after exposure to low LET x-rays than high LET Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This study also shows that the irradiated cells acquire epigenetic changes even though they are chromosomally stable suggesting that epigenetic aberrations may arise in the cell without initiating RIGI.« less

  10. Single-cell multimodal profiling reveals cellular epigenetic heterogeneity.

    PubMed

    Cheow, Lih Feng; Courtois, Elise T; Tan, Yuliana; Viswanathan, Ramya; Xing, Qiaorui; Tan, Rui Zhen; Tan, Daniel S W; Robson, Paul; Loh, Yuin-Han; Quake, Stephen R; Burkholder, William F

    2016-10-01

    Sample heterogeneity often masks DNA methylation signatures in subpopulations of cells. Here, we present a method to genotype single cells while simultaneously interrogating gene expression and DNA methylation at multiple loci. We used this targeted multimodal approach, implemented on an automated, high-throughput microfluidic platform, to assess primary lung adenocarcinomas and human fibroblasts undergoing reprogramming by profiling epigenetic variation among cell types identified through genotyping and transcriptional analysis.

  11. Exploiting Epigenetic Alterations in Prostate Cancer.

    PubMed

    Baumgart, Simon J; Haendler, Bernard

    2017-05-09

    Prostate cancer affects an increasing number of men worldwide and is a leading cause of cancer-associated deaths. Beside genetic mutations, many epigenetic alterations including DNA and histone modifications have been identified in clinical prostate tumor samples. They have been linked to aberrant activity of enzymes and reader proteins involved in these epigenetic processes, leading to the search for dedicated inhibitory compounds. In the wake of encouraging anti-tumor efficacy results in preclinical models, epigenetic modulators addressing different targets are now being tested in prostate cancer patients. In addition, the assessment of microRNAs as stratification biomarkers, and early clinical trials evaluating suppressor microRNAs as potential prostate cancer treatment are being discussed.

  12. Epigenetic Deregulation of MicroRNAs in Rhabdomyosarcoma and Neuroblastoma and Translational Perspectives

    PubMed Central

    Romania, Paolo; Bertaina, Alice; Bracaglia, Giorgia; Locatelli, Franco; Fruci, Doriana; Rota, Rossella

    2012-01-01

    Gene expression control mediated by microRNAs and epigenetic remodeling of chromatin are interconnected processes often involved in feedback regulatory loops, which strictly guide proper tissue differentiation during embryonal development. Altered expression of microRNAs is one of the mechanisms leading to pathologic conditions, such as cancer. Several lines of evidence pointed to epigenetic alterations as responsible for aberrant microRNA expression in human cancers. Rhabdomyosarcoma and neuroblastoma are pediatric cancers derived from cells presenting features of skeletal muscle and neuronal precursors, respectively, blocked at different stages of differentiation. Consistently, tumor cells express tissue markers of origin but are unable to terminally differentiate. Several microRNAs playing a key role during tissue differentiation are often epigenetically downregulated in rhabdomyosarcoma and neuroblastoma and behave as tumor suppressors when re-expressed. Recently, inhibition of epigenetic modulators in adult tumors has provided encouraging results causing re-expression of anti-tumor master gene pathways. Thus, a similar approach could be used to correct the aberrant epigenetic regulation of microRNAs in rhabdomyosarcoma and neuroblastoma. The present review highlights the current insights on epigenetically deregulated microRNAs in rhabdomyosarcoma and neuroblastoma and their role in tumorigenesis and developmental pathways. The translational clinical implications and challenges regarding modulation of epigenetic chromatin remodeling/microRNAs interconnections are also discussed. PMID:23443118

  13. Reprogramming T cell Lymphocytes to Induced Pluripotent Stem Cells

    NASA Astrophysics Data System (ADS)

    Bared, Kalia

    The discovery of induced pluripotent stem cells (iPSC) provided a novel technology for the study of development and pharmacology and complement embryonic stem cells (ES) for cell therapy applications. Though iPSC are derived from adult tissue they are comparable to ES cells in their behavior; multi-lineage differentiation and self-renewal. This makes iPSC research appealing because they can be studied in great detail and expanded in culture broadly. Fibroblasts were the first cell type reprogrammed to an iPSC using a retrovirus vector, since then alternative cell types including lymphocytes have been used to generate iPSC. Different types of vectors have also been developed to enhance iPSC formation and quality. However, specific T lymphocyte subsets have not been shown to reprogram to a pluripotent state to date. Here, we proposed to derive iPSC from peripheral blood effector and central memory T cells, reasoning that the resultant iPSC will maintain the epigenetic memory of a T lymphocyte, including the T cell receptor (TCR) gene rearrangement. This epigenetic memory will enable the differentiation and expansion of T cell iPSC into professional T cells containing a specific TCR. These could then be used for cell therapy to target specific antigens, as well as to improve culture techniques to expand T cells in vitro. We studied different gene delivery methods to derive iPSC from different types of T lymphocytes. We assessed the viability of viral transduction using flow cytometry to detect green fluorescent marker contained in the viral construct and quantitative real time polymerase chain reaction (qRT-PCR) to detect Oct4, Klf4, Sox2, and c-Myc gene expression. Our results demonstrate that the Sendai virus construct is the most feasible platform to reprogram T lymphocytes. We anticipate that this platform will provide an efficient and safe approach to derive iPSC from different T cell subsets, including memory T cells.

  14. Shaping epigenetic memory via genomic bookmarking.

    PubMed

    Michieletto, Davide; Chiang, Michael; Colì, Davide; Papantonis, Argyris; Orlandini, Enzo; Cook, Peter R; Marenduzzo, Davide

    2018-01-09

    Reconciling the stability of epigenetic patterns with the rapid turnover of histone modifications and their adaptability to external stimuli is an outstanding challenge. Here, we propose a new biophysical mechanism that can establish and maintain robust yet plastic epigenetic domains via genomic bookmarking (GBM). We model chromatin as a recolourable polymer whose segments bear non-permanent histone marks (or colours) which can be modified by 'writer' proteins. The three-dimensional chromatin organisation is mediated by protein bridges, or 'readers', such as Polycomb Repressive Complexes and Transcription Factors. The coupling between readers and writers drives spreading of biochemical marks and sustains the memory of local chromatin states across replication and mitosis. In contrast, GBM-targeted perturbations destabilise the epigenetic patterns. Strikingly, we demonstrate that GBM alone can explain the full distribution of Polycomb marks in a whole Drosophila chromosome. We finally suggest that our model provides a starting point for an understanding of the biophysics of cellular differentiation and reprogramming. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. [Chronic stress and epigenetics. Relation between academic sciences and theology].

    PubMed

    Simon, Kornél

    2012-04-08

    The author gives a short account on the principles of Selye's stress theory, and discusses similarities and dissimilarities of acute and chronic stress. Both the external, and the internal environment, as well as the psycho-mental status are involved in the notion of the environment. Basic principles of epigenetics are reviewed: interaction between environment and genes, neuroendocrine and enzymatic mechanisms involved in silencing and activation of genes, notions of phenotypic plasticity, and epigenetic reprogramming are discussed. Epigenetic mechanisms of interrelation between pathological clinical states (diseases) and the characteristic phenotypes, causative role of psycho-mental status in evoking pathological somatic alterations, and the potential therapeutic consequences are briefly discussed. The etiological role of chronic, civilization stress in producing the worldwide increment of cardiovascular morbidity is cited, argumentation and criticism of the current therapeutical practice is discussed. The author concludes that recent advances in epigenetic knowledge seem to solve the controversy between the academic and theological sciences.

  16. Epileptogenesis: can the science of epigenetics give us answers?

    PubMed

    Lubin, Farah D

    2012-05-01

    Epigenetic mechanisms are regulatory processes that control gene expression changes involved in multiple aspects of neuronal function, including central nervous system development, synaptic plasticity, and memory. Recent evidence indicates that dysregulation of epigenetic mechanisms occurs in several human epilepsy syndromes. Despite this discovery of a potential role for epigenetic mechanisms in epilepsy, few studies have fully explored their contribution to the process of epilepsy development known as epileptogenesis. The purpose of this article is to discuss recent findings suggesting that the process of epileptogenesis may alter the epigenetic landscape, affecting the gene expression patterns observed in epilepsy. Future studies focused on a better characterization of these aberrant epigenetic mechanisms hold the promise of revealing novel treatment options for the prevention and even the reversal of epilepsy.

  17. Epigenetics in Prostate Cancer

    PubMed Central

    Albany, Costantine; Alva, Ajjai S.; Aparicio, Ana M.; Singal, Rakesh; Yellapragada, Sarvari; Sonpavde, Guru; Hahn, Noah M.

    2011-01-01

    Prostate cancer (PC) is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG) rich sequence islands within gene promoter regions is widespread during neoplastic transformation of prostate cells, suggesting that treatment-induced restoration of a “normal” epigenome could be clinically beneficial. Histone modification leads to altered tumor gene function by changing chromosome structure and the level of gene transcription. The reversibility of epigenetic aberrations and restoration of tumor suppression gene function have made them attractive targets for prostate cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases. PMID:22191037

  18. Epigenetics in prostate cancer.

    PubMed

    Albany, Costantine; Alva, Ajjai S; Aparicio, Ana M; Singal, Rakesh; Yellapragada, Sarvari; Sonpavde, Guru; Hahn, Noah M

    2011-01-01

    Prostate cancer (PC) is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG) rich sequence islands within gene promoter regions is widespread during neoplastic transformation of prostate cells, suggesting that treatment-induced restoration of a "normal" epigenome could be clinically beneficial. Histone modification leads to altered tumor gene function by changing chromosome structure and the level of gene transcription. The reversibility of epigenetic aberrations and restoration of tumor suppression gene function have made them attractive targets for prostate cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases.

  19. Chemical compound-based direct reprogramming for future clinical applications

    PubMed Central

    Takeda, Yukimasa; Harada, Yoshinori; Yoshikawa, Toshikazu; Dai, Ping

    2018-01-01

    Recent studies have revealed that a combination of chemical compounds enables direct reprogramming from one somatic cell type into another without the use of transgenes by regulating cellular signaling pathways and epigenetic modifications. The generation of induced pluripotent stem (iPS) cells generally requires virus vector-mediated expression of multiple transcription factors, which might disrupt genomic integrity and proper cell functions. The direct reprogramming is a promising alternative to rapidly prepare different cell types by bypassing the pluripotent state. Because the strategy also depends on forced expression of exogenous lineage-specific transcription factors, the direct reprogramming in a chemical compound-based manner is an ideal approach to further reduce the risk for tumorigenesis. So far, a number of reported research efforts have revealed that combinations of chemical compounds and cell-type specific medium transdifferentiate somatic cells into desired cell types including neuronal cells, glial cells, neural stem cells, brown adipocytes, cardiomyocytes, somatic progenitor cells, and pluripotent stem cells. These desired cells rapidly converted from patient-derived autologous fibroblasts can be applied for their own transplantation therapy to avoid immune rejection. However, complete chemical compound-induced conversions remain challenging particularly in adult human-derived fibroblasts compared with mouse embryonic fibroblasts (MEFs). This review summarizes up-to-date progress in each specific cell type and discusses prospects for future clinical application toward cell transplantation therapy. PMID:29739872

  20. Design of small molecule epigenetic modulators.

    PubMed

    Pachaiyappan, Boobalan; Woster, Patrick M

    2014-01-01

    The field of epigenetics has expanded rapidly to reveal multiple new targets for drug discovery. The functional elements of the epigenomic machinery can be categorized as writers, erasers and readers, and together these elements control cellular gene expression and homeostasis. It is increasingly clear that aberrations in the epigenome can underly a variety of diseases, and thus discovery of small molecules that modulate the epigenome in a specific manner is a viable approach to the discovery of new therapeutic agents. In this Digest, the components of epigenetic control of gene expression will be briefly summarized, and efforts to identify small molecules that modulate epigenetic processes will be described. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Evidence for alteration of EZH2, BMI1, and KDM6A and epigenetic reprogramming in human papillomavirus type 16 E6/E7-expressing keratinocytes.

    PubMed

    Hyland, Paula L; McDade, Simon S; McCloskey, Rachel; Dickson, Glenda J; Arthur, Ken; McCance, Dennis J; Patel, Daksha

    2011-11-01

    A number of epigenetic alterations occur in both the virus and host cellular genomes during human papillomavirus (HPV)-associated carcinogenesis, and investigations of such alterations, including changes in chromatin proteins and histone modifications, have the potential to lead to therapeutic epigenetic reversion. We report here that transformed HPV16 E6/E7-expressing primary human foreskin keratinocytes (HFKs) (E6/E7 cells) demonstrate increased expression of the PRC2 methyltransferase EZH2 at both the mRNA and protein levels but do not exhibit the expected increase in trimethylated H3K27 (H3K27me3) compared to normal keratinocytes. In contrast, these cells show a reduction in global H3K27me3 levels in vitro, as well as upregulation of the KDM6A demethylase. We further show for the first time that transformation with the HPV16 E6 and E7 oncogenes also results in an increase in phosphorylated EZH2 serine 21 (P-EZH2-Ser21), mediated by active Akt, and in a downregulation of the PRC1 protein BMI1 in these cells. High-grade squamous cervical intraepithelial lesions also showed a loss of H3K27me3 in the presence of increased expression of EZH2. Correlating with the loss of H3K27me3, E6/E7 cells exhibited derepression of specific EZH2-, KMD6A-, and BMI1-targeted HOX genes. These results suggest that the observed reduction in H3K27me3 may be due to a combination of reduced activities/levels of specific polycomb proteins and increases in demethylases. The dysregulation of multiple chromatin proteins resulting in the loss of global H3K27me3 and the transcriptional reprogramming in HPV16 E6/E7-infected cells could provide an epigenetic signature associated with risk and/or progression of HPV16-associated cancers, as well as the potential for epigenetic reversion in the future.

  2. Epigenetic Mechanisms: An Emerging Player in Plant-Microbe Interactions.

    PubMed

    Zhu, Qian-Hao; Shan, Wei-Xing; Ayliffe, Michael A; Wang, Ming-Bo

    2016-03-01

    Plants have developed diverse molecular and cellular mechanisms to cope with a lifetime of exposure to a variety of pathogens. Host transcriptional reprogramming is a central part of plant defense upon pathogen recognition. Recent studies link DNA methylation and demethylation as well as chromatin remodeling by posttranslational histone modifications, including acetylation, methylation, and ubiquitination, to changes in the expression levels of defense genes upon pathogen challenge. Remarkably these inducible defense mechanisms can be primed prior to pathogen attack by epigenetic modifications and this heightened resistance state can be transmitted to subsequent generations by inheritance of these modification patterns. Beside the plant host, epigenetic mechanisms have also been implicated in virulence development of pathogens. This review highlights recent findings and insights into epigenetic mechanisms associated with interactions between plants and pathogens, in particular bacterial and fungal pathogens, and demonstrates the positive role they can have in promoting plant defense.

  3. Using induced pluripotent stem cells to explore genetic and epigenetic variation associated with Alzheimer's disease.

    PubMed

    Imm, Jennifer; Kerrigan, Talitha L; Jeffries, Aaron; Lunnon, Katie

    2017-11-01

    It is thought that both genetic and epigenetic variation play a role in Alzheimer's disease initiation and progression. With the advent of somatic cell reprogramming into induced pluripotent stem cells it is now possible to generate patient-derived cells that are able to more accurately model and recapitulate disease. Furthermore, by combining this with recent advances in (epi)genome editing technologies, it is possible to begin to examine the functional consequence of previously nominated genetic variants and infer epigenetic causality from recently identified epigenetic variants. In this review, we explore the role of genetic and epigenetic variation in Alzheimer's disease and how the functional relevance of nominated loci can be investigated using induced pluripotent stem cells and (epi)genome editing techniques.

  4. Primer in Genetics and Genomics, Article 6: Basics of Epigenetic Control.

    PubMed

    Fessele, Kristen L; Wright, Fay

    2018-01-01

    The epigenome is a collection of chemical compounds that attach to and overlay the DNA sequence to direct gene expression. Epigenetic marks do not alter DNA sequence but instead allow or silence gene activity and the subsequent production of proteins that guide the growth and development of an organism, direct and maintain cell identity, and allow for the production of primordial germ cells (PGCs; ova and spermatozoa). The three main epigenetic marks are (1) histone modification, (2) DNA methylation, and (3) noncoding RNA, and each works in a different way to regulate gene expression. This article reviews these concepts and discusses their role in normal functions such as X-chromosome inactivation, epigenetic reprogramming during embryonic development and PGC production, and the clinical example of the imprinting disorders Angelman and Prader-Willi syndromes.

  5. Epigenetic modifications in multiple myeloma: recent advances on the role of DNA and histone methylation.

    PubMed

    Amodio, Nicola; D'Aquila, Patrizia; Passarino, Giuseppe; Tassone, Pierfrancesco; Bellizzi, Dina

    2017-01-01

    Multiple Myeloma (MM) is a clonal late B-cell disorder accounting for about 13% of hematological cancers and 1% of all neoplastic diseases. Recent studies on the molecular pathogenesis and biology of MM have highlighted a complex epigenomic landscape contributing to MM onset, prognosis and high individual variability. Areas covered: We describe here the current knowledge on epigenetic events characterizing MM initiation and progression, focusing on the role of DNA and histone methylation and on the most promising epi-therapeutic approaches targeting the methylation pathway. Expert opinion: Data published so far indicate that alterations of the epigenetic framework, which include aberrant global or gene/non-coding RNA specific methylation profiles, feature prominently in the pathobiology of MM. Indeed, the aberrant expression of components of the epigenetic machinery as well as the reversibility of the epigenetic marks make this pathway druggable, providing the basis for the design of epigenetic therapies against this still fatal malignancy.

  6. The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer.

    PubMed

    Chaligné, Ronan; Popova, Tatiana; Mendoza-Parra, Marco-Antonio; Saleem, Mohamed-Ashick M; Gentien, David; Ban, Kristen; Piolot, Tristan; Leroy, Olivier; Mariani, Odette; Gronemeyer, Hinrich; Vincent-Salomon, Anne; Stern, Marc-Henri; Heard, Edith

    2015-04-01

    Disappearance of the Barr body is considered a hallmark of cancer, although whether this corresponds to genetic loss or to epigenetic instability and transcriptional reactivation is unclear. Here we show that breast tumors and cell lines frequently display major epigenetic instability of the inactive X chromosome, with highly abnormal 3D nuclear organization and global perturbations of heterochromatin, including gain of euchromatic marks and aberrant distributions of repressive marks such as H3K27me3 and promoter DNA methylation. Genome-wide profiling of chromatin and transcription reveal modified epigenomic landscapes in cancer cells and a significant degree of aberrant gene activity from the inactive X chromosome, including several genes involved in cancer promotion. We demonstrate that many of these genes are aberrantly reactivated in primary breast tumors, and we further demonstrate that epigenetic instability of the inactive X can lead to perturbed dosage of X-linked factors. Taken together, our study provides the first integrated analysis of the inactive X chromosome in the context of breast cancer and establishes that epigenetic erosion of the inactive X can lead to the disappearance of the Barr body in breast cancer cells. This work offers new insights and opens up the possibility of exploiting the inactive X chromosome as an epigenetic biomarker at the molecular and cytological levels in cancer. © 2015 Chaligné et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Epigenetics and colorectal cancer pathogenesis.

    PubMed

    Bardhan, Kankana; Liu, Kebin

    2013-06-05

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.

  8. Epigenetics and Colorectal Cancer Pathogenesis

    PubMed Central

    Bardhan, Kankana; Liu, Kebin

    2013-01-01

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy. PMID:24216997

  9. Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells.

    PubMed

    Shipony, Zohar; Mukamel, Zohar; Cohen, Netta Mendelson; Landan, Gilad; Chomsky, Elad; Zeliger, Shlomit Reich; Fried, Yael Chagit; Ainbinder, Elena; Friedman, Nir; Tanay, Amos

    2014-09-04

    Stable maintenance of gene regulatory programs is essential for normal function in multicellular organisms. Epigenetic mechanisms, and DNA methylation in particular, are hypothesized to facilitate such maintenance by creating cellular memory that can be written during embryonic development and then guide cell-type-specific gene expression. Here we develop new methods for quantitative inference of DNA methylation turnover rates, and show that human embryonic stem cells preserve their epigenetic state by balancing antagonistic processes that add and remove methylation marks rather than by copying epigenetic information from mother to daughter cells. In contrast, somatic cells transmit considerable epigenetic information to progenies. Paradoxically, the persistence of the somatic epigenome makes it more vulnerable to noise, since random epimutations can accumulate to massively perturb the epigenomic ground state. The rate of epigenetic perturbation depends on the genomic context, and, in particular, DNA methylation loss is coupled to late DNA replication dynamics. Epigenetic perturbation is not observed in the pluripotent state, because the rapid turnover-based equilibrium continuously reinforces the canonical state. This dynamic epigenetic equilibrium also explains how the epigenome can be reprogrammed quickly and to near perfection after induced pluripotency.

  10. Elusive inheritance: Transgenerational effects and epigenetic inheritance in human environmental disease.

    PubMed

    Martos, Suzanne N; Tang, Wan-Yee; Wang, Zhibin

    2015-07-01

    Epigenetic mechanisms involving DNA methylation, histone modification, histone variants and nucleosome positioning, and noncoding RNAs regulate cell-, tissue-, and developmental stage-specific gene expression by influencing chromatin structure and modulating interactions between proteins and DNA. Epigenetic marks are mitotically inherited in somatic cells and may be altered in response to internal and external stimuli. The idea that environment-induced epigenetic changes in mammals could be inherited through the germline, independent of genetic mechanisms, has stimulated much debate. Many experimental models have been designed to interrogate the possibility of transgenerational epigenetic inheritance and provide insight into how environmental exposures influence phenotypes over multiple generations in the absence of any apparent genetic mutation. Unexpected molecular evidence has forced us to reevaluate not only our understanding of the plasticity and heritability of epigenetic factors, but of the stability of the genome as well. Recent reviews have described the difference between transgenerational and intergenerational effects; the two major epigenetic reprogramming events in the mammalian lifecycle; these two events making transgenerational epigenetic inheritance of environment-induced perturbations rare, if at all possible, in mammals; and mechanisms of transgenerational epigenetic inheritance in non-mammalian eukaryotic organisms. This paper briefly introduces these topics and mainly focuses on (1) transgenerational phenotypes and epigenetic effects in mammals, (2) environment-induced intergenerational epigenetic effects, and (3) the inherent difficulties in establishing a role for epigenetic inheritance in human environmental disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Genetic Determinants of Epigenetic Patterns: Providing Insight into Disease.

    PubMed

    Cazaly, Emma; Charlesworth, Jac; Dickinson, Joanne L; Holloway, Adele F

    2015-03-26

    The field of epigenetics and our understanding of the mechanisms that regulate the establishment, maintenance and heritability of epigenetic patterns continue to grow at a remarkable rate. This information is providing increased understanding of the role of epigenetic changes in disease, insight into the underlying causes of these epigenetic changes and revealing new avenues for therapeutic intervention. Epigenetic modifiers are increasingly being pursued as therapeutic targets in a range of diseases, with a number of agents targeting epigenetic modifications already proving effective in diseases such as cancer. Although it is well established that DNA mutations and aberrant expression of epigenetic modifiers play a key role in disease, attention is now turning to the interplay between genetic and epigenetic factors in complex disease etiology. The role of genetic variability in determining epigenetic profiles, which can then be modified by environmental and stochastic factors, is becoming more apparent. Understanding the interplay between genetic and epigenetic factors is likely to aid in identifying individuals most likely to benefit from epigenetic therapies. This goal is coming closer to realization because of continual advances in laboratory and statistical tools enabling improvements in the integration of genomic, epigenomic and phenotypic data.

  12. Bisphenol-A: Epigenetic Reprogramming and Effects on Reproduction and Behavior

    PubMed Central

    Mileva, Guergana; Baker, Stephanie L.; Konkle, Anne T.M.; Bielajew, Catherine

    2014-01-01

    Bisphenol A (BPA) is a synthetic compound used in the production of many polycarbonate plastics and epoxy resins. It is one of the most widely produced chemicals in the world today and is found in most canned goods, plastics, and even household dust. Exposure to BPA is almost universal: most people have measurable amounts of BPA in both urine and serum. BPA is similar in structure to estradiol and can bind to multiple targets both inside and outside the nucleus, in effect acting as an endocrine disruptor. Research on BPA exposure has accelerated in the past decade with findings suggesting that perinatal exposure to BPA can negatively impact both male and female reproduction, create alterations in behavior, and act as a carcinogen. BPA can have both short term and long term effects with the latter typically occurring through epigenetic mechanisms such as DNA methylation. This review will draw on both human and animal studies in an attempt to synthesize the literature and examine the effects of BPA exposure on reproduction, behavior, and carcinogenesis with a focus on the potential epigenetic mechanisms by which it acts. PMID:25054232

  13. The Role of Epigenetics in the Fibrotic Processes Associated with Glaucoma

    PubMed Central

    O'Brien, Colm

    2014-01-01

    Glaucoma is an optic neuropathy that affects 60 million people worldwide. The main risk factor for glaucoma is increased intraocular pressure (IOP), this is currently the only target for treatment of glaucoma. However, some patients show disease progression despite well-controlled IOP. Another possible therapeutic target is the extracellular matrix (ECM) changes in glaucoma. There is an accumulation of ECM in the lamina cribrosa (LC) and trabecular meshwork (TM) and upregulation of profibrotic factors such as transforming growth factor β (TGFβ), collagen1α1 (COL1A1), and α-smooth muscle actin (αSMA). One method of regulating fibrosis is through epigenetics; the study of heritable changes in gene function caused by mechanisms other than changes in the underlying DNA sequence. Epigenetic mechanisms have been shown to drive renal and pulmonary fibrosis by upregulating profibrotic factors. Hypoxia alters epigenetic mechanisms through regulating the cell's response and there is a hypoxic environment in the LC and TM in glaucoma. This review looks at the role that hypoxia plays in inducing aberrant epigenetic mechanisms and the role these mechanisms play in inducing fibrosis. Evidence suggests that a hypoxic environment in glaucoma may induce aberrant epigenetic mechanisms that contribute to disease fibrosis. These may prove to be relevant therapeutic targets in glaucoma. PMID:24800062

  14. Prenatal Nutritional Deficiency Reprogrammed Postnatal Gene Expression in Mammal Brains: Implications for Schizophrenia

    PubMed Central

    Xu, Jiawei; He, Guang; Zhu, Jingde; Zhou, Xinyao; St Clair, David; Wang, Teng; Xiang, Yuqian; Zhao, Qingzhu; Xing, Qinghe; Liu, Yun; Wang, Lei; Li, Qiaoli

    2015-01-01

    Background: Epidemiological studies have identified prenatal exposure to famine as a risk factor for schizophrenia, and animal models of prenatal malnutrition display structural and functional brain abnormalities implicated in schizophrenia. Methods: The offspring of the RLP50 rat, a recently developed animal model of prenatal famine malnutrition exposure, was used to investigate the changes of gene expression and epigenetic modifications in the brain regions. Microarray gene expression analysis was carried out in the prefrontal cortex and the hippocampus from 8 RLP50 offspring rats and 8 controls. MBD-seq was used to test the changes in DNA methylation in hippocampus depending on prenatal malnutrition exposure. Results: In the prefrontal cortex, offspring of RLP50 exhibit differences in neurotransmitters and olfactory-associated gene expression. In the hippocampus, the differentially-expressed genes are related to synaptic function and transcription regulation. DNA methylome profiling of the hippocampus also shows widespread but systematic epigenetic changes; in most cases (87%) this involves hypermethylation. Remarkably, genes encoded for the plasma membrane are significantly enriched for changes in both gene expression and DNA methylome profiling screens (p = 2.37×10–9 and 5.36×10–9, respectively). Interestingly, Mecp2 and Slc2a1, two genes associated with cognitive impairment, show significant down-regulation, and Slc2a1 is hypermethylated in the hippocampus of the RLP50 offspring. Conclusions: Collectively, our results indicate that prenatal exposure to malnutrition leads to the reprogramming of postnatal brain gene expression and that the epigenetic modifications contribute to the reprogramming. The process may impair learning and memory ability and result in higher susceptibility to schizophrenia. PMID:25522397

  15. Evidence for Alteration of EZH2, BMI1, and KDM6A and Epigenetic Reprogramming in Human Papillomavirus Type 16 E6/E7-Expressing Keratinocytes ▿

    PubMed Central

    Hyland, Paula L.; McDade, Simon S.; McCloskey, Rachel; Dickson, Glenda J.; Arthur, Ken; McCance, Dennis J.; Patel, Daksha

    2011-01-01

    A number of epigenetic alterations occur in both the virus and host cellular genomes during human papillomavirus (HPV)-associated carcinogenesis, and investigations of such alterations, including changes in chromatin proteins and histone modifications, have the potential to lead to therapeutic epigenetic reversion. We report here that transformed HPV16 E6/E7-expressing primary human foreskin keratinocytes (HFKs) (E6/E7 cells) demonstrate increased expression of the PRC2 methyltransferase EZH2 at both the mRNA and protein levels but do not exhibit the expected increase in trimethylated H3K27 (H3K27me3) compared to normal keratinocytes. In contrast, these cells show a reduction in global H3K27me3 levels in vitro, as well as upregulation of the KDM6A demethylase. We further show for the first time that transformation with the HPV16 E6 and E7 oncogenes also results in an increase in phosphorylated EZH2 serine 21 (P-EZH2-Ser21), mediated by active Akt, and in a downregulation of the PRC1 protein BMI1 in these cells. High-grade squamous cervical intraepithelial lesions also showed a loss of H3K27me3 in the presence of increased expression of EZH2. Correlating with the loss of H3K27me3, E6/E7 cells exhibited derepression of specific EZH2-, KMD6A-, and BMI1-targeted HOX genes. These results suggest that the observed reduction in H3K27me3 may be due to a combination of reduced activities/levels of specific polycomb proteins and increases in demethylases. The dysregulation of multiple chromatin proteins resulting in the loss of global H3K27me3 and the transcriptional reprogramming in HPV16 E6/E7-infected cells could provide an epigenetic signature associated with risk and/or progression of HPV16-associated cancers, as well as the potential for epigenetic reversion in the future. PMID:21865393

  16. Epigenetic Alterations in Human Papillomavirus-Associated Cancers

    PubMed Central

    Song, Christine; McLaughlin-Drubin, Margaret E.

    2017-01-01

    Approximately 15–20% of human cancers are caused by viruses, including human papillomaviruses (HPVs). Viruses are obligatory intracellular parasites and encode proteins that reprogram the regulatory networks governing host cellular signaling pathways that control recognition by the immune system, proliferation, differentiation, genomic integrity, and cell death. Given that key proteins in these regulatory networks are also subject to mutation in non-virally associated diseases and cancers, the study of oncogenic viruses has also been instrumental to the discovery and analysis of many fundamental cellular processes, including messenger RNA (mRNA) splicing, transcriptional enhancers, oncogenes and tumor suppressors, signal transduction, immune regulation, and cell cycle control. More recently, tumor viruses, in particular HPV, have proven themselves invaluable in the study of the cancer epigenome. Epigenetic silencing or de-silencing of genes can have cellular consequences that are akin to genetic mutations, i.e., the loss and gain of expression of genes that are not usually expressed in a certain cell type and/or genes that have tumor suppressive or oncogenic activities, respectively. Unlike genetic mutations, the reversible nature of epigenetic modifications affords an opportunity of epigenetic therapy for cancer. This review summarizes the current knowledge on epigenetic regulation in HPV-infected cells with a focus on those elements with relevance to carcinogenesis. PMID:28862667

  17. Human X chromosome inactivation and reactivation: implications for cell reprogramming and disease.

    PubMed

    Cantone, Irene; Fisher, Amanda G

    2017-11-05

    X-chromosome inactivation (XCI) is an exemplar of epigenetic regulation that is set up as pluripotent cells differentiate. Once established, XCI is stably propagated, but can be reversed in vivo or by pluripotent reprogramming in vitro Although reprogramming provides a useful model for inactive X (Xi) reactivation in mouse, the relative instability and heterogeneity of human embryonic stem (ES) cells and induced pluripotent stem cells hampers comparable progress in human. Here we review studies aimed at reactivating the human Xi using different reprogramming strategies. We outline our recent results using mouse ES cells to reprogramme female human fibroblasts by cell-cell fusion. We show that pluripotent reprogramming induces widespread and rapid chromatin remodelling in which the human Xi loses XIST and H3K27m3 enrichment and selected Xi genes become reactivated, ahead of mitotic division. Using RNA sequencing to map the extent of human Xi reactivation, and chromatin-modifying drugs to potentiate reactivation, we outline how this approach could be used to better design strategies to re-express human X-linked loci. As cell fusion induces the expression of human pluripotency genes that represent both the 'primed' and 'naive' states, this approach may also offer a fresh opportunity to segregate human pluripotent states with distinct Xi expression profiles, using single-cell-based approaches.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'. © 2017 The Author(s).

  18. MutS HOMOLOG1-Derived Epigenetic Breeding Potential in Tomato1[OPEN

    PubMed Central

    Kundariya, Hardik; Xu, Ying-Zhi; Sandhu, Ajay; Yu, Jiantao; Zhang, Mingfang

    2015-01-01

    Evidence is compelling in support of a naturally occurring epigenetic influence on phenotype expression in land plants, although discerning the epigenetic contribution is difficult. Agriculturally important attributes like heterosis, inbreeding depression, phenotypic plasticity, and environmental stress response are thought to have significant epigenetic components, but unequivocal demonstration of this is often infeasible. Here, we investigate gene silencing of a single nuclear gene, MutS HOMOLOG1 (MSH1), in the tomato (Solanum lycopersicum) ‘Rutgers’ to effect developmental reprogramming of the plant. The condition is heritable in subsequent generations independent of the MSH1-RNA interference transgene. Crossing these transgene-null, developmentally altered plants to the isogenic cv Rutgers wild type results in progeny lines that show enhanced, heritable growth vigor under both greenhouse and field conditions. This boosted vigor appears to be graft transmissible and is partially reversed by treatment with the methylation inhibitor 5-azacytidine, implying the influence of mobile, epigenetic factors and DNA methylation changes. These data provide compelling evidence for the feasibility of epigenetic breeding in a crop plant. PMID:25736208

  19. An Epigenetic Gateway to Brain Tumor Cell Identity

    PubMed Central

    Mack, Stephen C.; Hubert, Christopher G.; Miller, Tyler E.; Taylor, Michael D.; Rich, Jeremy N.

    2017-01-01

    Precise targeting of genetic lesions alone has been insufficient to extend brain tumor patient survival. Brain cancer cells are diverse in their genetic, metabolic, and microenvironmental compositions, accounting for their phenotypic heterogeneity and disparate responses to therapy. These factors converge at the level of the epigenome, representing a unified node that can be disrupted by pharmacologic inhibition. Aberrant epigenomes define many childhood and adult brain cancers, as demonstrated by widespread changes to DNA methylation patterns, redistribution of histone marks, and disruption of chromatin structure. In this review, we describe the convergence of genetic, metabolic, and micro-environmental factors upon mechanisms of epigenetic deregulation in brain cancer. We discuss how aberrant epigenetic pathways identified in brain tumors affect cell identity, cell state, and neoplastic transformation, in addition to the potential to exploit these alterations as novel therapeutic strategies for the treatment of brain cancer. PMID:26713744

  20. Scriptaid and 5-aza-2'deoxycytidine enhanced expression of pluripotent genes and in vitro developmental competence in interspecies Black-footed cat cloned embryos

    USGS Publications Warehouse

    Gómez, M. C.; Biancardi, M.N.; Jenkins, J.A.; Dumas, C.; Galiguis, J.; Wang, G.; Earle Pope, C.

    2012-01-01

    Somatic cell nuclear transfer offers the possibility of preserving endangered species including the black-footed cat, which is threatened with extinction. The effectiveness and efficiency of somatic cell nuclear transfer (SCNT) depends on a variety of factors, but 'inappropriate epigenetic reprogramming of the transplanted nucleus is the primary cause of the developmental failure of cloned embryos. Abnormal epigenetic events such as DNA methylation and histone modifications during SCNT perturb the expression of imprinted and pluripotent-related genes that, consequently, may result in foetal and neonatal abnormalities. We have demonstrated that pregnancies can be established after transfer of black-footed cat cloned embryos into domestic cat recipients, but none of the implanted embryos developed to term and the foetal failure has been associated to aberrant reprogramming in cloned embryos. There is growing evidence that modifying the epigenetic pattern of the chromatin template of both donor cells and reconstructed embryos with a combination of inhibitors of histone deacetylases and DNA methyltransferases results in enhanced gene reactivation and improved in vitro and in vivo developmental competence. Epigenetic modifications of the chromatin template of black-footed cat donor cells and reconstructed embryos with epigenetic-modifying compounds enhanced in vitro development, and regulated the expression of pluripotent genes, but these epigenetic modifications did not improve in vivo developmental competence.

  1. DNA Methylation in Embryo Development: Epigenetic Impact of ART (Assisted Reproductive Technologies).

    PubMed

    Canovas, Sebastian; Ross, Pablo J; Kelsey, Gavin; Coy, Pilar

    2017-11-01

    DNA methylation can be considered a component of epigenetic memory with a critical role during embryo development, and which undergoes dramatic reprogramming after fertilization. Though it has been a focus of research for many years, the reprogramming mechanism is still not fully understood. Recent results suggest that absence of maintenance at DNA replication is a major factor, and that there is an unexpected role for TET3-mediated oxidation of 5mC to 5hmC in guarding against de novo methylation. Base-resolution and genome-wide profiling methods are enabling more comprehensive assessments of the extent to which ART might impair DNA methylation reprogramming, and which sequence elements are most vulnerable. Indeed, as we also review here, studies showing the effect of culture media, ovarian stimulation or embryo transfer on the methylation pattern of embryos emphasize the need to face ART-associated defects and search for strategies to mitigate adverse effects on the health of ART-derived children. © 2017 WILEY Periodicals, Inc.

  2. Epigenetic processes in flowering plant reproduction.

    PubMed

    Wang, Guifeng; Köhler, Claudia

    2017-02-01

    Seeds provide up to 70% of the energy intake of the human population, emphasizing the relevance of understanding the genetic and epigenetic mechanisms controlling seed formation. In flowering plants, seeds are the product of a double fertilization event, leading to the formation of the embryo and the endosperm surrounded by maternal tissues. Analogous to mammals, plants undergo extensive epigenetic reprogramming during both gamete formation and early seed development, a process that is supposed to be required to enforce silencing of transposable elements and thus to maintain genome stability. Global changes of DNA methylation, histone modifications, and small RNAs are closely associated with epigenome programming during plant reproduction. Here, we review current knowledge on chromatin changes occurring during sporogenesis and gametogenesis, as well as early seed development in major flowering plant models. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans.

    PubMed

    Ventura-Juncá, Patricio; Irarrázaval, Isabel; Rolle, Augusto J; Gutiérrez, Juan I; Moreno, Ricardo D; Santos, Manuel J

    2015-12-18

    The advent of in vitro fertilization (IVF) in animals and humans implies an extraordinary change in the environment where the beginning of a new organism takes place. In mammals fertilization occurs in the maternal oviduct, where there are unique conditions for guaranteeing the encounter of the gametes and the first stages of development of the embryo and thus its future. During this period a major epigenetic reprogramming takes place that is crucial for the normal fate of the embryo. This epigenetic reprogramming is very vulnerable to changes in environmental conditions such as the ones implied in IVF, including in vitro culture, nutrition, light, temperature, oxygen tension, embryo-maternal signaling, and the general absence of protection against foreign elements that could affect the stability of this process. The objective of this review is to update the impact of the various conditions inherent in the use of IVF on the epigenetic profile and outcomes of mammalian embryos, including superovulation, IVF technique, embryo culture and manipulation and absence of embryo-maternal signaling. It also covers the possible transgenerational inheritance of the epigenetic alterations associated with assisted reproductive technologies (ART), including its phenotypic consequences as is in the case of the large offspring syndrome (LOS). Finally, the important scientific and bioethical implications of the results found in animals are discussed in terms of the ART in humans.

  4. Deterministic transfection drives efficient nonviral reprogramming and uncovers reprogramming barriers.

    PubMed

    Gallego-Perez, Daniel; Otero, Jose J; Czeisler, Catherine; Ma, Junyu; Ortiz, Cristina; Gygli, Patrick; Catacutan, Fay Patsy; Gokozan, Hamza Numan; Cowgill, Aaron; Sherwood, Thomas; Ghatak, Subhadip; Malkoc, Veysi; Zhao, Xi; Liao, Wei-Ching; Gnyawali, Surya; Wang, Xinmei; Adler, Andrew F; Leong, Kam; Wulff, Brian; Wilgus, Traci A; Askwith, Candice; Khanna, Savita; Rink, Cameron; Sen, Chandan K; Lee, L James

    2016-02-01

    Safety concerns and/or the stochastic nature of current transduction approaches have hampered nuclear reprogramming's clinical translation. We report a novel non-viral nanotechnology-based platform permitting deterministic large-scale transfection with single-cell resolution. The superior capabilities of our technology are demonstrated by modification of the well-established direct neuronal reprogramming paradigm using overexpression of the transcription factors Brn2, Ascl1, and Myt1l (BAM). Reprogramming efficiencies were comparable to viral methodologies (up to ~9-12%) without the constraints of capsid size and with the ability to control plasmid dosage, in addition to showing superior performance relative to existing non-viral methods. Furthermore, increased neuronal complexity could be tailored by varying BAM ratio and by including additional proneural genes to the BAM cocktail. Furthermore, high-throughput NEP allowed easy interrogation of the reprogramming process. We discovered that BAM-mediated reprogramming is regulated by AsclI dosage, the S-phase cyclin CCNA2, and that some induced neurons passed through a nestin-positive cell stage. In the field of regenerative medicine, the ability to direct cell fate by nuclear reprogramming is an important facet in terms of clinical application. In this article, the authors described their novel technique of cell reprogramming through overexpression of the transcription factors Brn2, Ascl1, and Myt1l (BAM) by in situ electroporation through nanochannels. This new technique could provide a platform for further future designs. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Epigenetics Advancing Personalized Nanomedicine in Cancer Therapy

    PubMed Central

    Liu, Shujun

    2012-01-01

    Personalized medicine aims to deliver the right drug to a right patient at the right time. It offers unique opportunities to integrate new technologies and concepts to disease prognosis, diagnosis and therapeutics. While selective personalized therapies are conceptually impressive, the majority of cancer therapies have dismal outcome. Such therapeutic failure could result from no response, drug resistance, disease relapse or severe side effect from improper drug delivery. Nanomedicine, the application of nanotechnology in medicine, has a potential to advance the identification of diagnostic and prognostic biomarkers and the delivery of right drug to disease sites. Epigenetic aberrations dynamically contribute to cancer pathogenesis. Given the individualized traits of epigenetic biomarkers, epigenetic considerations would significantly refine personalized nanomedicine. This review aims to dissect the interface of personalized medicine with nanomedicine and epigenetics. I will outline the progress and highlight challenges and areas that can be further explored perfecting the personalized health care. PMID:22921595

  6. Identification of Proteins Related to Epigenetic Regulation in the Malignant Transformation of Aberrant Karyotypic Human Embryonic Stem Cells by Quantitative Proteomics

    PubMed Central

    Sun, Yi; Yang, Yixuan; Zeng, Sicong; Tan, Yueqiu; Lu, Guangxiu; Lin, Ge

    2014-01-01

    Previous reports have demonstrated that human embryonic stem cells (hESCs) tend to develop genomic alterations and progress to a malignant state during long-term in vitro culture. This raises concerns of the clinical safety in using cultured hESCs. However, transformed hESCs might serve as an excellent model to determine the process of embryonic stem cell transition. In this study, ITRAQ-based tandem mass spectrometry was used to quantify normal and aberrant karyotypic hESCs proteins from simple to more complex karyotypic abnormalities. We identified and quantified 2583 proteins, and found that the expression levels of 316 proteins that represented at least 23 functional molecular groups were significantly different in both normal and abnormal hESCs. Dysregulated protein expression in epigenetic regulation was further verified in six pairs of hESC lines in early and late passage. In summary, this study is the first large-scale quantitative proteomic analysis of the malignant transformation of aberrant karyotypic hESCs. The data generated should serve as a useful reference of stem cell-derived tumor progression. Increased expression of both HDAC2 and CTNNB1 are detected as early as the pre-neoplastic stage, and might serve as prognostic markers in the malignant transformation of hESCs. PMID:24465727

  7. Pluripotent Conversion of Muscle Stem Cells Without Reprogramming Factors or Small Molecules.

    PubMed

    Bose, Bipasha; Shenoy P, Sudheer

    2016-02-01

    Muscle derived stem cells (MDSCs) are multipotent stem cells that can differentiate into several lineages including skeletal muscle precursor cells. Here, we show that MDSCs from myostatin null mice (Mstn (-/-) ) can be readily induced into pluripotent stem cells without using reprogramming factors. Microarray studies revealed a strong upregulation of markers like Leukemia Inhibitory factor (LIF) and Leukemia Inhibitory factor receptor (LIFR) in Mstn (-/-) MDSCs as compared to wild type MDSCs (WT-MDSCs). Furthermore when cultured in mouse embryonic stem cell media with LIF for 95 days, Mstn (-/-) MDSCs formed embryonic stem cell (ES) like colonies. We termed such ES like cells as the culture-induced pluripotent stem cells (CiPSC). CiPSCs from Mstn (-/-) MDSCs were phenotypically similar to ESCs, expressed high levels of Oct4, Nanog, Sox2 and SSEA-1, maintained a normal karyotype. Furthermore, CiPSCs formed embryoid bodies and teratomas when injected into immunocompromised mice. In addition, CiPSCs differentiated into somatic cells of all three lineages. We further show that culturing in ES cell media, resulted in hypermethylation and downregulation of BMP2 in Mstn(-/-) MDSCs. Western blot further confirmed a down regulation of BMP2 signaling in Mstn (-/-) MDSCs in supportive of pluripotent reprogramming. Given that down regulation of BMP2 has been shown to induce pluripotency in cells, we propose that lack of myostatin epigenetically reprograms the MDSCs to become pluripotent stem cells. Thus, here we report the successful establishment of ES-like cells from adult stem cells of the non-germline origin under culture-induced conditions without introducing reprogramming genes.

  8. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization

    PubMed Central

    Finley, Lydia W.S.; Carracedo, Arkaitz; Lee, Jaewon; Souza, Amanda; Egia, Ainara; Zhang, Jiangwen; Teruya-Feldstein, Julie; Moreira, Paula I.; Cardoso, Sandra M.; Clish, Clary B.; Pandolfi, Pier Paolo; Haigis, Marcia C.

    2011-01-01

    Summary Tumor cells exhibit aberrant metabolism characterized by high glycolysis even in the presence of oxygen. This metabolic reprogramming, known as the Warburg effect, provides tumor cells with the substrates required for biomass generation. Here, we show that the mitochondrial NAD-dependent deacetylase SIRT3 is a crucial regulator of the Warburg effect. Mechanistically, SIRT3 mediates metabolic reprogramming by destabilizing hypoxia-inducible factor-1α (HIF1α), a transcription factor that controls glycolytic gene expression. SIRT3 loss increases reactive oxygen species production, leading to HIF1α stabilization. SIRT3 expression is reduced in human breast cancers, and its loss correlates with the upregulation of HIF1α target genes. Finally, we find that SIRT3 overexpression represses glycolysis and proliferation in breast cancer cells, providing a metabolic mechanism for tumor suppression. PMID:21397863

  9. Blastomere biopsy influences epigenetic reprogramming during early embryo development, which impacts neural development and function in resulting mice.

    PubMed

    Wu, Yibo; Lv, Zhuo; Yang, Yang; Dong, Guoying; Yu, Yang; Cui, Yiqiang; Tong, Man; Wang, Liu; Zhou, Zuomin; Zhu, Hui; Zhou, Qi; Sha, Jiahao

    2014-05-01

    Blastomere biopsy is used in preimplantation genetic diagnosis; however, the long-term implications on the offspring are poorly characterized. We previously reported a high risk of memory defects in adult biopsied mice. Here, we assessed nervous function of aged biopsied mice and further investigated the mechanism of neural impairment after biopsy. We found that aged biopsied mice had poorer spatial learning ability, increased neuron degeneration, and altered expression of proteins involved in neural degeneration or dysfunction in the brain compared to aged control mice. Furthermore, the MeDIP assay indicated a genome-wide low methylation in the brains of adult biopsied mice when compared to the controls, and most of the genes containing differentially methylated loci in promoter regions were associated with neural disorders. When we further compared the genomic DNA methylation profiles of 7.5-days postconception (dpc) embryos between the biopsy and control group, we found the whole genome low methylation in the biopsied group, suggesting that blastomere biopsy was an obstacle to de novo methylation during early embryo development. Further analysis on mRNA profiles of 4.5-dpc embryos indicated that reduced expression of de novo methylation genes in biopsied embryos may impact de novo methylation. In conclusion, we demonstrate an abnormal neural development and function in mice generated after blastomere biopsy. The impaired epigenetic reprogramming during early embryo development may be the latent mechanism contributing to the impairment of the nervous system in the biopsied mice, which results in a hypomethylation status in their brains.

  10. Dynamic epigenetic regulation of glioblastoma tumorigenicity through LSD1 modulation of MYC expression

    PubMed Central

    Kozono, David; Li, Jie; Nitta, Masayuki; Sampetrean, Oltea; Gonda, David; Kushwaha, Deepa S.; Merzon, Dmitry; Ramakrishnan, Valya; Zhu, Shan; Zhu, Kaya; Matsui, Hiroko; Harismendy, Olivier; Hua, Wei; Mao, Ying; Kwon, Chang-Hyuk; Saya, Hideyuki; Nakano, Ichiro; Pizzo, Donald P.; VandenBerg, Scott R.; Chen, Clark C.

    2015-01-01

    The available evidence suggests that the lethality of glioblastoma is driven by small subpopulations of cells that self-renew and exhibit tumorigenicity. It remains unclear whether tumorigenicity exists as a static property of a few cells or as a dynamically acquired property. We used tumor-sphere and xenograft formation as assays for tumorigenicity and examined subclones isolated from established and primary glioblastoma lines. Our results indicate that glioblastoma tumorigenicity is largely deterministic, yet the property can be acquired spontaneously at low frequencies. Further, these dynamic transitions are governed by epigenetic reprogramming through the lysine-specific demethylase 1 (LSD1). LSD depletion increases trimethylation of histone 3 lysine 4 at the avian myelocytomatosis viral oncogene homolog (MYC) locus, which elevates MYC expression. MYC, in turn, regulates oligodendrocyte lineage transcription factor 2 (OLIG2), SRY (sex determining region Y)-box 2 (SOX2), and POU class 3 homeobox 2 (POU3F2), a core set of transcription factors required for reprogramming glioblastoma cells into stem-like states. Our model suggests epigenetic regulation of key transcription factors governs transitions between tumorigenic states and provides a framework for glioblastoma therapeutic development. PMID:26159421

  11. Epigenetic Disregulation in Oral Cancer

    PubMed Central

    Mascolo, Massimo; Siano, Maria; Ilardi, Gennaro; Russo, Daniela; Merolla, Francesco; De Rosa, Gaetano; Staibano, Stefania

    2012-01-01

    Squamous cell carcinoma of the oral region (OSCC) is one of the most common and highly aggressive malignancies worldwide, despite the fact that significant results have been achieved during the last decades in its detection, prevention and treatment. Although many efforts have been made to define the molecular signatures that identify the clinical outcome of oral cancers, OSCC still lacks reliable prognostic molecular markers. Scientific evidence indicates that transition from normal epithelium to pre-malignancy, and finally to oral carcinoma, depends on the accumulation of genetic and epigenetic alterations in a multistep process. Unlike genetic alterations, epigenetic changes are heritable and potentially reversible. The most common examples of such changes are DNA methylation, histone modification, and small non-coding RNAs. Although several epigenetic changes have been currently linked to OSCC initiation and progression, they have been only partially characterized. Over the last decade, it has been demonstrated that especially aberrant DNA methylation plays a critical role in oral cancer. The major goal of the present paper is to review the recent literature about the epigenetic modifications contribution in early and later phases of OSCC malignant transformation; in particular we point out the current evidence of epigenetic marks as novel markers for early diagnosis and prognosis as well as potential therapeutic targets in oral cancer. PMID:22408457

  12. Multigenerational Epigenetic Adaptation of the Hepatic Wound-Healing Response

    PubMed Central

    Zeybel, Müjdat; Hardy, Timothy; Wong, Yi K.; Mathers, John C.; Fox, Christopher R.; Gackowska, Agata; Oakley, Fiona; Burt, Alastair D.; Wilson, Caroline L.; Anstee, Quentin M.; Barter, Matt J.; Masson, Steven; Elsharkawy, Ahmed M.; Mann, Derek A.; Mann, Jelena

    2012-01-01

    We asked if ancestral liver damage leads to heritable reprogramming of hepatic wound-healing. We discovered that male rats with a history of liver damage transmit epigenetic suppressive adaptation of the fibrogenic component of wound-healing through male F1 and F2 generations. Underlying this adaptation was reduced generation of liver myofibroblasts, increased hepatic expression of antifibrogenic PPAR-γ and decreased expression of profibrogenic TGF-β1. Remodelling of DNA methylation and histone acetylation underpinned these alterations in gene expression. Sperm from rats with liver fibrosis were enriched for H2A.Z and H3K27me3 at PPAR-γ chromatin. These sperm chromatin modifications were transmittable by adaptive serum transfer from fibrotic rats and were induced in stem cells exposed to myofibroblast-conditioned media. A myofibroblast secreted soluble factor therefore stimulates heritable epigenetic signatures to sperm so as to adapt fibrogenesis in offspring. Humans with mild liver fibrosis display PPAR-γ promoter hypomethylation compared with severe fibrotics, thus lending support for epigenetic regulation of fibrosis. PMID:22941276

  13. Genetic and epigenetic alteration of the NF2 gene in sporadic meningiomas.

    PubMed

    Lomas, Jesus; Bello, M Josefa; Arjona, Dolores; Alonso, M Eva; Martinez-Glez, Victor; Lopez-Marin, Isabel; Amiñoso, Cinthia; de Campos, Jose M; Isla, Alberto; Vaquero, Jesus; Rey, Juan A

    2005-03-01

    The role of the NF2 gene in the development of meningiomas has recently been documented; inactivating mutations plus allelic loss at 22q, the site of this gene (at 22q12), have been identified in both sporadic and neurofibromatosis type 2-associated tumors. Although epigenetic inactivation through aberrant CpG island methylation of the NF2 5' flanking region has been documented in schwannoma (another NF2-associated neoplasm), data on participation of this epigenetic modification in meningiomas are not yet widely available. Using methylation-specific PCR (MSP) plus sequencing, we assessed the presence of aberrant promoter NF2 methylation in a series of 88 meningiomas (61 grade I, 24 grade II, and 3 grade III), in which the allelic constitution at 22q and the NF2 mutational status also were determined by RFLP/microsatellite and PCR-SSCP analyses. Chromosome 22 allelic loss, NF2 gene mutation, and aberrant NF2 promoter methylation were detected in 49%, 24%, and 26% of cases, respectively. Aberrant NF2 methylation with loss of heterozygosity (LOH) at 22q was found in five cases, and aberrant methylation with NF2 mutation in another; LOH 22q and the mutation were found in 16 samples. The aberrant methylation of the NF2 gene also was the sole alteration in 15 samples, most of which were from grade I tumors. These results indicate that aberrant NF2 hypermethylation may participate in the development of a significant proportion of sporadic meningiomas, primarily those of grade I.

  14. Aberrant TGFβ/SMAD4 signaling contributes to epigenetic silencing of a putative tumor suppressor, RunX1T1, in ovarian cancer

    PubMed Central

    Yang, Hui-Wen; Chou, Jian-Liang; Chen, Lin-Yu; Yeh, Chia-Ming; Chen, Yu-Hsin; Lin, Ru-Inn; Su, Her-Young; Chen, Gary CW; Deatherage, Daniel E; Huang, Yi-Wen; Yan, Pearlly S; Lin, Huey-Jen; Nephew, Kenneth P; Huang, Tim H-M; Lai, Hung-Cheng

    2011-01-01

    Aberrant TGFβ signaling pathway may alter the expression of down-stream targets and promotes ovarian carcinogenesis. However, the mechanism of this impairment is not fully understood. Our previous study identified RunX1T1 as a putative SMAD4 target in an immortalized ovarian surface epithelial cell line, IOSE. In this study, we report that transcription of RunX1T1 was confirmed to be positively regulated by SMAD4 in IOSE cells and epigenetically silenced in a panel of ovarian cancer cell lines by promoter hypermethylation and histone methylation at H3 lysine 9. SMAD4 depletion increased repressive histone modifications of RunX1T1 promoter without affecting promoter methylation in IOSE cells. Epigenetic treatment can restore RunX1T1 expression by reversing its epigenetic status in MCP 3 ovarian cancer cells. When transiently treated with a demethylating agent, the expression of RunX1T1 was partially restored in MCP 3 cells, but gradual re-silencing through promoter re-methylation was observed after the treatment. Interestingly, SMAD4 knockdown accelerated this re-silencing process, suggesting that normal TGFβ signaling is essential for the maintenance of RunX1T1 expression. In vivo analysis confirmed that hypermethylation of RunX1T1 was detected in 35.7% (34/95) of ovarian tumors with high clinical stages (p = 0.035) and in 83% (5/6) of primary ovarian cancer-initiating cells. Additionally, concurrent methylation of RunX1T1 and another SMAD4 target, FBXO32 which was previously found to be hypermethylated in ovarian cancer was observed in this same sample cohort (p < 0.05). Restoration of RunX1T1 inhibited cancer cell growth. Taken together, dysregulated TGFβ/SMAD4 signaling may lead to epigenetic silencing of a putative tumor suppressor, RunX1T1, during ovarian carcinogenesis. PMID:21540640

  15. The future of epigenetic therapy in solid tumours--lessons from the past.

    PubMed

    Azad, Nilofer; Zahnow, Cynthia A; Rudin, Charles M; Baylin, Stephen B

    2013-05-01

    The promise of targeting epigenetic abnormalities for cancer therapy has not been realized for solid tumours, although increasing evidence is demonstrating its worth in haematological malignancies. In fact, true clinical efficacy in haematopoietic-related neoplasms has only become evident at low doses of epigenetic-targeting drugs (namely, inhibitors of histone deacetylase and DNA methyltransferases). Describing data from preclinical studies and early clinical trial results, we hypothesize that in using low-dose epigenetic-modulating agents, tumour cells can be reprogrammed, which overrides any immediate cytotoxic and off-target effect observed at high dose. We suggest that such optimization of drug dosing and scheduling of currently available agents could give these agents a prominent place in cancer management--when used alone or in combination with other therapies. If so, optimal use of these known agents might also pave the way for the introduction of other agents that target the epigenome.

  16. The Epigenetics of Epilepsy and Its Progression.

    PubMed

    Hauser, Rebecca M; Henshall, David C; Lubin, Farah D

    2018-04-01

    Epilepsy is a common and devastating neurological disorder characterized by recurrent and unprovoked spontaneous seizures. One leading hypothesis for the development and progression of epilepsy is that large-scale changes in gene transcription and protein expression contribute to aberrant network restructuring and hyperexcitability, resulting in the genesis of repeated seizures. Current research shows that epigenetic mechanisms, including posttranslational alterations to the proteins around which DNA is coiled, chemical modifications to DNA, and the activity of various noncoding RNA molecules exert important influences on these gene networks in experimental epilepsy. Key findings from animal models have been replicated in humans using brain tissue obtained from living patients at the time of neurosurgical resection for pharmacoresistant epilepsy. These findings have spurred efforts to target epigenetic processes to disrupt or modify epilepsy in experimental models with varying degrees of success. In this review, we will (1) summarize the epigenetic mechanisms implicated in epileptogenesis and epilepsy, (2) explore the influence of metabolic factors on epigenetic mechanisms, and (3) assess the potential of using epigenetic markers to support diagnosis and prognosis. Translation of these findings may guide the development of molecular biomarkers and novel therapeutics for prevention or modification of epileptic disorders.

  17. Age-related epigenetic drift and phenotypic plasticity loss: implications in prevention of age-related human diseases

    PubMed Central

    Li, Yuanyuan; Tollefsbol, Trygve O

    2016-01-01

    Aging is considered as one of the most important developmental processes in organisms and is closely associated with global deteriorations of epigenetic markers such as aberrant methylomic patterns. This altered epigenomic state, referred to ‘epigenetic drift’, reflects deficient maintenance of epigenetic marks and contributes to impaired cellular and molecular functions in aged cells. Epigenetic drift-induced abnormal changes during aging are scantily repaired by epigenetic modulators. This inflexibility in the aged epigenome may lead to an age-related decline in phenotypic plasticity at the cellular and molecular levels due to epigenetic drift. This perspective aims to provide novel concepts for understanding epigenetic effects on the aging process and to provide insights into epigenetic prevention and therapeutic strategies for age-related human disease. PMID:27882781

  18. Genome-wide DNA methylation alterations of Alternanthera philoxeroides in natural and manipulated habitats: implications for epigenetic regulation of rapid responses to environmental fluctuation and phenotypic variation.

    PubMed

    Gao, Lexuan; Geng, Yupeng; Li, Bo; Chen, Jiakuan; Yang, Ji

    2010-11-01

    Alternanthera philoxeroides (alligator weed) is an invasive weed that can colonize both aquatic and terrestrial habitats. Individuals growing in different habitats exhibit extensive phenotypic variation but little genetic differentiation in its introduced range. The mechanisms underpinning the wide range of phenotypic variation and rapid adaptation to novel and changing environments remain uncharacterized. In this study, we examined the epigenetic variation and its correlation with phenotypic variation in plants exposed to natural and manipulated environmental variability. Genome-wide methylation profiling using methylation-sensitive amplified fragment length polymorphism (MSAP) revealed considerable DNA methylation polymorphisms within and between natural populations. Plants of different source populations not only underwent significant morphological changes in common garden environments, but also underwent a genome-wide epigenetic reprogramming in response to different treatments. Methylation alterations associated with response to different water availability were detected in 78.2% (169/216) of common garden induced polymorphic sites, demonstrating the environmental sensitivity and flexibility of the epigenetic regulatory system. These data provide evidence of the correlation between epigenetic reprogramming and the reversible phenotypic response of alligator weed to particular environmental factors. © 2010 Blackwell Publishing Ltd.

  19. Epigenetic modifiers in immunotherapy: a focus on checkpoint inhibitors.

    PubMed

    Terranova-Barberio, Manuela; Thomas, Scott; Munster, Pamela N

    2016-06-01

    Immune surveillance should be directed to suppress tumor development and progression, involving a balance of coinhibitory and costimulatory signals that amplify immune response without overwhelming the host. Immunotherapy confers durable clinical benefit in 'immunogenic tumors', whereas in other tumors the responses are modest. Thus, immune checkpoint inhibitors may need to be combined with strategies to boost immune response or increase the tumor immune profile. Epigenetic aberrations contribute significantly to carcinogenesis. Recent findings suggest that epigenetic drugs prime the immune response by increasing expression of tumor-associated antigens and immune-related genes, as well as modulating chemokines and cytokines involved in immune system activation. This review describes our current understanding regarding epigenetic and immunotherapy combination, focusing on immune response priming to checkpoint blockade.

  20. Heterozygous loss of TSC2 alters p53 signaling and human stem cell reprogramming.

    PubMed

    Armstrong, Laura C; Westlake, Grant; Snow, John P; Cawthon, Bryan; Armour, Eric; Bowman, Aaron B; Ess, Kevin C

    2017-12-01

    Tuberous sclerosis complex (TSC) is a pediatric disorder of dysregulated growth and differentiation caused by loss of function mutations in either the TSC1 or TSC2 genes, which regulate mTOR kinase activity. To study aberrations of early development in TSC, we generated induced pluripotent stem cells using dermal fibroblasts obtained from patients with TSC. During validation, we found that stem cells generated from TSC patients had a very high rate of integration of the reprogramming plasmid containing a shRNA against TP53. We also found that loss of one allele of TSC2 in human fibroblasts is sufficient to increase p53 levels and impair stem cell reprogramming. Increased p53 was also observed in TSC2 heterozygous and homozygous mutant human stem cells, suggesting that the interactions between TSC2 and p53 are consistent across cell types and gene dosage. These results support important contributions of TSC2 heterozygous and homozygous mutant cells to the pathogenesis of TSC and the important role of p53 during reprogramming. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Comparative Gene Expression Analyses Reveal Distinct Molecular Signatures between Differentially Reprogrammed Cardiomyocytes.

    PubMed

    Zhou, Yang; Wang, Li; Liu, Ziqing; Alimohamadi, Sahar; Yin, Chaoying; Liu, Jiandong; Qian, Li

    2017-09-26

    Cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) or directly reprogrammed from non-myocytes (induced cardiomyocytes [iCMs]) are promising sources for heart regeneration or disease modeling. However, the similarities and differences between iPSC-CMs and iCMs are still unknown. Here, we performed transcriptome analyses of beating iPSC-CMs and iCMs generated from cardiac fibroblasts (CFs) of the same origin. Although both iPSC-CMs and iCMs establish CM-like molecular features globally, iPSC-CMs exhibit a relatively hyperdynamic epigenetic status, whereas iCMs exhibit a maturation status that more closely resembles that of adult CMs. Based on gene expression of metabolic enzymes, iPSC-CMs primarily employ glycolysis, whereas iCMs utilize fatty acid oxidation as the main pathway. Importantly, iPSC-CMs and iCMs exhibit different cell-cycle status, alteration of which influenced their maturation. Therefore, our study provides a foundation for understanding the pros and cons of different reprogramming approaches. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Genome-Wide Methylome Analyses Reveal Novel Epigenetic Regulation Patterns in Schizophrenia and Bipolar Disorder

    PubMed Central

    Li, Yongsheng; Camarillo, Cynthia; Xu, Juan; Arana, Tania Bedard; Xiao, Yun; Zhao, Zheng; Chen, Hong; Ramirez, Mercedes; Zavala, Juan; Escamilla, Michael A.; Armas, Regina; Mendoza, Ricardo; Ontiveros, Alfonso; Nicolini, Humberto; Jerez Magaña, Alvaro Antonio; Rubin, Lewis P.; Li, Xia; Xu, Chun

    2015-01-01

    Schizophrenia (SZ) and bipolar disorder (BP) are complex genetic disorders. Their appearance is also likely informed by as yet only partially described epigenetic contributions. Using a sequencing-based method for genome-wide analysis, we quantitatively compared the blood DNA methylation landscapes in SZ and BP subjects to control, both in an understudied population, Hispanics along the US-Mexico border. Remarkably, we identified thousands of differentially methylated regions for SZ and BP preferentially located in promoters 3′-UTRs and 5′-UTRs of genes. Distinct patterns of aberrant methylation of promoter sequences were located surrounding transcription start sites. In these instances, aberrant methylation occurred in CpG islands (CGIs) as well as in flanking regions as well as in CGI sparse promoters. Pathway analysis of genes displaying these distinct aberrant promoter methylation patterns showed enhancement of epigenetic changes in numerous genes previously related to psychiatric disorders and neurodevelopment. Integration of gene expression data further suggests that in SZ aberrant promoter methylation is significantly associated with altered gene transcription. In particular, we found significant associations between (1) promoter CGIs hypermethylation with gene repression and (2) CGI 3′-shore hypomethylation with increased gene expression. Finally, we constructed a specific methylation analysis platform that facilitates viewing and comparing aberrant genome methylation in human neuropsychiatric disorders. PMID:25734057

  3. Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, Tbx5

    PubMed Central

    Chen, J.X.; Krane, M.; Deutsch, M. A.; Wang, L.; Rav-Acha, M.; Gregoire, S.; Engels, M. C.; Rajarajan, K.; Karra, R.; Abel, E. D.; Wu, J. C.; Milan, D.; Wu, S. M.

    2012-01-01

    Rationale Direct reprogramming of fibroblasts into cardiomyocytes is a novel strategy for cardiac regeneration. However, the key determinants involved in this process are unknown. Objective To assess the efficiency of direct fibroblast reprogramming via viral overexpression of GATA4, Mef2c, and Tbx5 (GMT). Methods and Results We induced GMT overexpression in murine tail tip fibroblasts (TTFs) and cardiac fibroblasts (CFs) from multiple lines of transgenic mice carrying different cardiomyocyte lineage reporters. We found that the induction of GMT overexpression in TTFs and CFs is inefficient at inducing molecular and electrophysiological phenotypes of mature cardiomyocytes. In addition, transplantation of GMT infected CFs into injured mouse hearts resulted in decreased cell survival with minimal induction of cardiomyocyte genes. Conclusions Significant challenges remain in our ability to convert fibroblasts into cardiomyocyte-like cells and a greater understanding of cardiovascular epigenetics is needed to increase the translational potential of this strategy. PMID:22581928

  4. A model for genetic and epigenetic regulatory networks identifies rare pathways for transcription factor induced pluripotency

    NASA Astrophysics Data System (ADS)

    Artyomov, Maxim; Meissner, Alex; Chakraborty, Arup

    2010-03-01

    Most cells in an organism have the same DNA. Yet, different cell types express different proteins and carry out different functions. This is because of epigenetic differences; i.e., DNA in different cell types is packaged distinctly, making it hard to express certain genes while facilitating the expression of others. During development, upon receipt of appropriate cues, pluripotent embryonic stem cells differentiate into diverse cell types that make up the organism (e.g., a human). There has long been an effort to make this process go backward -- i.e., reprogram a differentiated cell (e.g., a skin cell) to pluripotent status. Recently, this has been achieved by transfecting certain transcription factors into differentiated cells. This method does not use embryonic material and promises the development of patient-specific regenerative medicine, but it is inefficient. The mechanisms that make reprogramming rare, or even possible, are poorly understood. We have developed the first computational model of transcription factor-induced reprogramming. Results obtained from the model are consistent with diverse observations, and identify the rare pathways that allow reprogramming to occur. If validated, our model could be further developed to design optimal strategies for reprogramming and shed light on basic questions in biology.

  5. Role of Oxidative Stress in Epigenetic Modification in Endometriosis.

    PubMed

    Ito, Fuminori; Yamada, Yuki; Shigemitsu, Aiko; Akinishi, Mika; Kaniwa, Hiroko; Miyake, Ryuta; Yamanaka, Shoichiro; Kobayashi, Hiroshi

    2017-11-01

    Aberrant DNA methylation and histone modification are associated with an increased risk of reproductive disorders such as endometriosis. However, a cause-effect relationship between epigenetic mechanisms and endometriosis development has not been fully determined. This review provides current information based on oxidative stress in epigenetic modification in endometriosis. This article reviews the English-language literature on epigenetics, DNA methylation, histone modification, and oxidative stress associated with endometriosis in an effort to identify epigenetic modification that causes a predisposition to endometriosis. Oxidative stress, secondary to the influx of hemoglobin, heme, and iron during retrograde menstruation, is involved in the expression of CpG demethylases, ten-eleven translocation, and jumonji (JMJ). Ten-eleven translocation and JMJ recognize a wide range of endogenous DNA methyltransferases (DNMTs). The increased expression levels of DNMTs may be involved in the subsequent downregulation of the decidualization-related genes. This review supports the hypothesis that there are at least 2 distinct phases of epigenetic modification in endometriosis: the initial wave of iron-induced oxidative stress would be followed by the second big wave of epigenetic modulation of endometriosis susceptibility genes. We summarize the recent advances in our understanding of the underlying epigenetic mechanisms focusing on oxidative stress in endometriosis.

  6. Epigenetic impacts of endocrine disruptors in the brain☆

    PubMed Central

    Walker, Deena M.; Gore, Andrea C.

    2017-01-01

    The acquisition of reproductive competence is organized and activated by steroid hormones acting upon the hypothalamus during critical windows of development. This review describes the potential role of epigenetic processes, particularly DNA methylation, in the regulation of sexual differentiation of the hypothalamus by hormones. We examine disruption of these processes by endocrine-disrupting chemicals (EDCs) in an age-, sex-, and region-specific manner, focusing on how perinatal EDCs act through epigenetic mechanisms to reprogram DNA methylation and sex steroid hormone receptor expression throughout life. These receptors are necessary for brain sexual differentiation and their altered expression may underlie disrupted reproductive physiology and behavior. Finally, we review the literature on histone modifications and non-coding RNA involvement in brain sexual differentiation and their perturbation by EDCs. By putting these data into a sex and developmental context we conclude that perinatal EDC exposure alters the developmental trajectory of reproductive neuroendocrine systems in a sex-specific manner. PMID:27663243

  7. Pre-implantation alcohol exposure and developmental programming of FASD: an epigenetic perspective.

    PubMed

    Legault, Lisa-Marie; Bertrand-Lehouillier, Virginie; McGraw, Serge

    2018-04-01

    Exposure to alcohol during in-utero development can permanently change the developmental programming of physiological responses, thereby increasing the risk of neurological illnesses during childhood and later adverse health outcomes associated with fetal alcohol spectrum disorder (FASD). There is an increasing body of evidence indicating that exposure to alcohol during gestation triggers lasting epigenetic alterations in offspring, long after the initial insult; together, these studies support the role of epigenetics in FASD etiology. However, we still have little information about how ethanol interferes with the fundamental epigenetic reprogramming wave (e.g., erasure and re-establishment of DNA methylation marks) that characterizes pre-implantation embryo development. This review examines key epigenetic processes that occur during pre-implantation development and especially focus on the current knowledge regarding how prenatal exposure to alcohol during this period could affect the developmental programming of the early stage pre-implantation embryo. We will also outline the current limitations of studies examining the in-vivo and in-vitro effects of alcohol exposure on embryos and underline the next critical steps to be taken if we want to better understand the implicated mechanisms to strengthen the translational potential for epigenetic markers for non-invasive early detection, and the treatment of newborns that have higher risk of developing FASD.

  8. Endocrine control of epigenetic mechanisms in male reproduction.

    PubMed

    Ankolkar, Mandar; Balasinor, N H

    2016-01-01

    Endocrine control of reproduction is very well known and has been echoed by many research groups. However, recent developments point to the ability of toxic endocrine disrupting chemicals (EDC) to alter epigenetic information of the gametes which gets transferred to the developing embryo and affects the immediate reproductive outcome or even persists transgenerationally. These epigenetic aberrations contribute to the ensuing pathophysiology of reproductive disorders. Investigations of the female in cases of poor reproductive outcome have been the main strategy towards diagnosis. However, despite the male partner contributing half of his genome to the progeny, thorough investigations in the male have been ignored. Environmental pollutants are all pervading and are encountered in our day-to-day life. Many of these pollutants have potential to disrupt the endocrine system. Here, we discuss how the male gametes (spermatozoa) are susceptible to a myriad of epigenetic insults inflicted by exposure to endocrine disruptors and how important is the contribution of the epigenetic marks of the spermatozoa in healthy reproduction. We advocate that sperm epigenetics should be considered as a significant contributor to reproductive health and should be researched further and be subsequently included in routine diagnostic workup in cases of poor reproductive outcome.

  9. Plant hormone signaling in flowering: An epigenetic point of view.

    PubMed

    Campos-Rivero, Gerardo; Osorio-Montalvo, Pedro; Sánchez-Borges, Rafael; Us-Camas, Rosa; Duarte-Aké, Fátima; De-la-Peña, Clelia

    2017-07-01

    Reproduction is one of the most important phases in an organism's lifecycle. In the case of angiosperm plants, flowering provides the major developmental transition from the vegetative to the reproductive stage, and requires genetic and epigenetic reprogramming to ensure the success of seed production. Flowering is regulated by a complex network of genes that integrate multiple environmental cues and endogenous signals so that flowering occurs at the right time; hormone regulation, signaling and homeostasis are very important in this process. Working alone or in combination, hormones are able to promote flowering by epigenetic regulation. Some plant hormones, such as gibberellins, jasmonic acid, abscisic acid and auxins, have important effects on chromatin compaction mediated by DNA methylation and histone posttranslational modifications, which hints at the role that epigenetic regulation may play in flowering through hormone action. miRNAs have been viewed as acting independently from DNA methylation and histone modification, ignoring their potential to interact with hormone signaling - including the signaling of auxins, gibberellins, ethylene, jasmonic acid, salicylic acid and others - to regulate flowering. Therefore, in this review we examine new findings about interactions between epigenetic mechanisms and key players in hormone signaling to coordinate flowering. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. DNA methyltransferases and stress-related genes expression in zebrafish larvae after exposure to heat and copper during reprogramming of DNA methylation.

    PubMed

    Dorts, Jennifer; Falisse, Elodie; Schoofs, Emilie; Flamion, Enora; Kestemont, Patrick; Silvestre, Frédéric

    2016-10-12

    DNA methylation, a well-studied epigenetic mark, is important for gene regulation in adulthood and for development. Using genetic and epigenetic approaches, the present study aimed at evaluating the effects of heat stress and copper exposure during zebrafish early embryogenesis when patterns of DNA methylation are being established, a process called reprogramming. Embryos were exposed to 325 μg Cu/L from fertilization (<1 h post fertilization - hpf) to 4 hpf at either 26.5 °C or 34 °C, followed by incubation in clean water at 26.5 °C till 96 hpf. Significant increased mortality rates and delayed hatching were observed following exposure to combined high temperature and Cu. Secondly, both stressors, alone or in combination, significantly upregulated the expression of de novo DNA methyltransferase genes (dnmt3) along with no differences in global cytosine methylation level. Finally, Cu exposure significantly increased the expression of metallothionein (mt2) and heat shock protein (hsp70), the latter being also increased following exposure to high temperature. These results highlighted the sensitivity of early embryogenesis and more precisely of the reprogramming period to environmental challenges, in a realistic situation of combined stressors.

  11. Epigenetics of the antibody response

    PubMed Central

    Li, Guideng; Zan, Hong; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Epigenetic marks, such as DNA methylation, histone posttranslational modifications and microRNAs, are induced in B cells by the same stimuli that drive the antibody response. They play major roles in regulating somatic hypermutation (SHM), class switch DNA recombination (CSR) and differentiation to plasma cells or long-lived memory B cells. Histone modifications target the CSR and, possibly, SHM machinery to the immunoglobulin locus; they together with DNA methylation and microRNAs modulate the expression of critical elements of that machinery, such as AID, as well as factors central to plasma cell differentiation, such as Blimp-1. These inducible B cell-intrinsic epigenetic marks instruct the maturation of antibody responses. Their dysregulation plays an important role in aberrant antibody responses to foreign antigens, such as those of microbial pathogens, and self-antigens, such those targeted in autoimmunity, and B cell neoplasias. PMID:23643790

  12. Identification of secretaglobin Scgb2a1 as a target for developmental reprogramming by BPA in the rat prostate.

    PubMed

    Wong, Rebecca Lee Yean; Wang, Quan; Treviño, Lindsey S; Bosland, Maarten C; Chen, Jing; Medvedovic, Mario; Prins, Gail S; Kannan, Kurunthachalam; Ho, Shuk-Mei; Walker, Cheryl Lyn

    2015-01-01

    Secretoglobins are a superfamily of secreted proteins thought to participate in inflammation, tissue repair, and tumorigenesis. Secretoglobin family 2A member 1 (Scgb2a1) is a component of prostatein, a major androgen-binding protein secreted by the rat prostate. Using a rat model for developmental reprogramming of susceptibility to prostate carcinogenesis, we identified, by RNA-seq, that Scgb2a1 is significantly upregulated (>100-fold) in the prostate of adult rats neonatally exposed to bisphenol A (BPA), with increased gene expression confirmed by quantitative RT-PCR and chromatin immunoprecipitation for histone H3 lysine 9 acetylation. Bisulfite analysis of both CpG islands located within 10 kb of the Scgb2a1 promoter identified significant hypomethylation of the CpG island upstream of the transcription start site of this gene in the reprogrammed prostate. These data suggest that expression of Scgb2a1 in the adult prostate could be epigenetically reprogrammed by BPA exposure during prostate development, with potential implications for cancer risk and response to chemotherapeutics associated with prostatein binding.

  13. Therapeutic modulation of epigenetic drivers of drug resistance in ovarian cancer

    PubMed Central

    Zeller, Constanze; Brown, Robert

    2010-01-01

    Epigenetic changes in tumours are associated not only with cancer development and progression, but also with resistance to chemotherapy. Aberrant DNA methylation at CpG islands and associated epigenetic silencing are observed during the acquisition of drug resistance. However, it remains unclear whether all of the observed changes are drivers of drug resistance, causally associated with response of tumours to chemotherapy, or are passenger events representing chance DNA methylation changes. Systematic approaches that link DNA methylation and expression with chemosensitivity will be required to identify key drivers. Such drivers will be important prognostic or predicitive biomarkers, both to existing chemotherapies, but also to epigenetic therapies used to modulate drug resistance. PMID:21789144

  14. [Epigenetics of prostate cancer].

    PubMed

    Yi, Xiao-Ming; Zhou, Wen-Quan

    2010-07-01

    Prostate cancer is one of the most common malignant tumors in males, and its etiology and pathogenesis remain unclear. Epigenesis is involved in prostate cancer at all stages of the process, and closely related with its growth and metastasis. DNA methylation and histone modification are the most important manifestations of epigenetics in prostate cancer. The mechanisms of carcinogenesis of DNA methylation include whole-genome hypomethylation, aberrant local hypermethylation of promoters and genomic instability. DNA methylation is closely related to the process of prostate cancer, as in DNA damage repair, hormone response, tumor cell invasion/metastasis, cell cycle regulation, and so on. Histone modification causes corresponding changes in chromosome structure and the level of gene transcription, and it may affect the cycle, differentiation and apoptosis of cells, resulting in prostate cancer. Some therapies have been developed targeting the epigenetic changes in prostate cancer, including DNA methyltransferases and histone deacetylase inhibitors, and have achieved certain desirable results.

  15. Targeting the Metabolic Reprogramming That Controls Epithelial-to-Mesenchymal Transition in Aggressive Tumors

    PubMed Central

    Morandi, Andrea; Taddei, Maria Letizia; Chiarugi, Paola; Giannoni, Elisa

    2017-01-01

    The epithelial-to-mesenchymal transition (EMT) process allows the trans-differentiation of a cell with epithelial features into a cell with mesenchymal characteristics. This process has been reported to be a key priming event for tumor development and therefore EMT activation is now considered an established trait of malignancy. The transcriptional and epigenetic reprogramming that governs EMT has been extensively characterized and reviewed in the last decade. However, increasing evidence demonstrates a correlation between metabolic reprogramming and EMT execution. The aim of the current review is to gather the recent findings that illustrate this correlation to help deciphering whether metabolic changes are causative or just a bystander effect of EMT activation. The review is divided accordingly to the catabolic and anabolic pathways that characterize carbohydrate, aminoacid, and lipid metabolism. Moreover, at the end of each part, we have discussed a series of potential metabolic targets involved in EMT promotion and execution for which drugs are either available or that could be further investigated for therapeutic intervention. PMID:28352611

  16. [General concepts of epigenetics: Projections in paediatrics].

    PubMed

    Krause, Bernardo J; Castro-Rodríguez, José A; Uauy, Ricardo; Casanello, Paola

    2016-01-01

    Current evidence supports the notion that alterations in intrauterine growth and during the first years of life have a substantial effect on the risk for the development of chronic disease, which in some cases is even higher than those due to genetic factors. The persistence and reproducibility of the phenotypes associated with altered early development suggest the participation of mechanisms that would record environmental cues, generating a cellular reprogramming (i.e., epigenetic mechanisms). This review is an introduction to a series of five articles focused on the participation of epigenetic mechanisms in the development of highly prevalent chronic diseases (i.e., cardiovascular, metabolic, asthma/allergies and cancer) and their origins in the foetal and neonatal period. This series of articles aims to show the state of the art in this research area and present the upcoming clues and challenges, in which paediatricians have a prominent role, developing strategies for the prevention, early detection and follow-up. Copyright © 2016 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Hacking cell differentiation: transcriptional rerouting in reprogramming, lineage infidelity and metaplasia

    PubMed Central

    Regalo, Gonçalo; Leutz, Achim

    2013-01-01

    Initiating neoplastic cell transformation events are of paramount importance for the comprehension of regeneration and vanguard oncogenic processes but are difficult to characterize and frequently clinically overlooked. In epithelia, pre-neoplastic transformation stages are often distinguished by the appearance of phenotypic features of another differentiated tissue, termed metaplasia. In haemato/lymphopoietic malignancies, cell lineage ambiguity is increasingly recorded. Both, metaplasia and biphenotypic leukaemia/lymphoma represent examples of dysregulated cell differentiation that reflect a history of trans-differentiation and/or epigenetic reprogramming. Here we compare the similarity between molecular events of experimental cell trans-differentiation as an emerging therapeutic concept, with lineage confusion, as in metaplasia and dysplasia forecasting tumour development. PMID:23828660

  18. Epigenetic deregulation in chronic lymphocytic leukemia: Clinical and biological impact.

    PubMed

    Mansouri, Larry; Wierzbinska, Justyna Anna; Plass, Christoph; Rosenquist, Richard

    2018-02-07

    Deregulated transcriptional control caused by aberrant DNA methylation and/or histone modifications is a hallmark of cancer cells. In chronic lymphocytic leukemia (CLL), the most common adult leukemia, the epigenetic 'landscape' has added a new layer of complexity to our understanding of this clinically and biologically heterogeneous disease. Early studies identified aberrant DNA methylation, often based on single gene promoter analysis with both biological and clinical impact. Subsequent genome-wide profiling studies revealed differential DNA methylation between CLLs and controls and in prognostics subgroups of the disease. From these studies, it became apparent that DNA methylation in regions outside of promoters, such as enhancers, is important for the regulation of coding genes as well as for the regulation of non-coding RNAs. Although DNA methylation profiles are reportedly stable over time and in relation to therapy, a higher epigenetic heterogeneity or 'burden' is seen in more aggressive CLL subgroups, albeit as non-recurrent 'passenger' events. More recently, DNA methylation profiles in CLL analyzed in relation to differentiating normal B-cell populations revealed that the majority of the CLL epigenome reflects the epigenomes present in the cell of origin and that only a small fraction of the epigenetic alterations represents truly CLL-specific changes. Furthermore, CLL patients can be grouped into at least three clinically relevant epigenetic subgroups, potentially originating from different cells at various stages of differentiation and associated with distinct outcomes. In this review, we summarize the current understanding of the DNA methylome in CLL, the role of histone modifying enzymes, highlight insights derived from animal models and attempts made to target epigenetic regulators in CLL along with the future directions of this rapidly advancing field. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Biological computational approaches: new hopes to improve (re)programming robustness, regenerative medicine and cancer therapeutics.

    PubMed

    Ebrahimi, Behnam

    2016-01-01

    Hundreds of transcription factors (TFs) are expressed and work in each cell type, but the identity of the cells is defined and maintained through the activity of a small number of core TFs. Existing reprogramming strategies predominantly focus on the ectopic expression of core TFs of an intended fate in a given cell type regardless of the state of native/somatic gene regulatory networks (GRNs) of the starting cells. Interestingly, an important point is that how much products of the reprogramming, transdifferentiation and differentiation (programming) are identical to their in vivo counterparts. There is evidence that shows that direct fate conversions of somatic cells are not complete, with target cell identity not fully achieved. Manipulation of core TFs provides a powerful tool for engineering cell fate in terms of extinguishment of native GRNs, the establishment of a new GRN, and preventing installation of aberrant GRNs. Conventionally, core TFs are selected to convert one cell type into another mostly based on literature and the experimental identification of genes that are differentially expressed in one cell type compared to the specific cell types. Currently, there is not a universal standard strategy for identifying candidate core TFs. Remarkably, several biological computational platforms are developed, which are capable of evaluating the fidelity of reprogramming methods and refining existing protocols. The current review discusses some deficiencies of reprogramming technologies in the production of a pure population of authentic target cells. Furthermore, it reviews the role of computational approaches (e.g. CellNet, KeyGenes, Mogrify, etc.) in improving (re)programming methods and consequently in regenerative medicine and cancer therapeutics. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  20. Environmental perception and epigenetic memory: mechanistic insight through FLC

    PubMed Central

    Berry, Scott; Dean, Caroline

    2015-01-01

    Chromatin plays a central role in orchestrating gene regulation at the transcriptional level. However, our understanding of how chromatin states are altered in response to environmental and developmental cues, and then maintained epigenetically over many cell divisions, remains poor. The floral repressor gene FLOWERING LOCUS C (FLC) in Arabidopsis thaliana is a useful system to address these questions. FLC is transcriptionally repressed during exposure to cold temperatures, allowing studies of how environmental conditions alter expression states at the chromatin level. FLC repression is also epigenetically maintained during subsequent development in warm conditions, so that exposure to cold may be remembered. This memory depends on molecular complexes that are highly conserved among eukaryotes, making FLC not only interesting as a paradigm for understanding biological decision-making in plants, but also an important system for elucidating chromatin-based gene regulation more generally. In this review, we summarize our understanding of how cold temperature induces a switch in the FLC chromatin state, and how this state is epigenetically remembered. We also discuss how the epigenetic state of FLC is reprogrammed in the seed to ensure a requirement for cold exposure in the next generation. Significance Statement FLOWERING LOCUS C (FLC) regulation provides a paradigm for understanding how chromatin can be modulated to determine gene expression in a developmental context. This review describes our current mechanistic understanding of how FLC expression is genetically specified and epigenetically regulated throughout the plant life cycle, and how this determines plant life-history strategy. PMID:25929799

  1. Epigenetic Influences During the Periconception Period and Assisted Reproduction.

    PubMed

    Amoako, Akwasi A; Nafee, Tamer M; Ola, Bolarinde

    2017-01-01

    The periconception period starts 6 months before conception and lasts until the tenth week of gestation. In this chapter, we will focus on epigenetic modifications to DNA and gene expression within this period and during assisted reproduction. There are two critical times during the periconception window when significant epigenetic 'reprogramming' occur: one during gametogenesis and another during the pre-implantation embryonic stage. Furthermore, assisted conception treatments, laboratory protocols and culture media can affect the embryo development and birth weights in laboratory animals. There is, however, an ongoing debate as to whether epigenetic changes in humans, causing embryo mal-development, placenta dysfunction and birth defects, result from assisted reproductive technologies or are consequences of pre-existing medical and/or genetic conditions in the parents. The periconception period starts from ovarian folliculogenesis, through resumption of oogenesis, fertilisation, peri-implantation embryo development, embryogenesis until the end of organogenesis. In men, it is the period from spermatogenesis to epididymal sperm storage and fertilisation. Gametes and developing embryos are sensitive to environmental factors during this period, and epigenetic modifications can occur in response to adverse lifestyles and environmental factors. We now know that lifestyle factors such as advanced parentage age, obesity or undernutrition, smoking, excessive alcohol and caffeine intake and recreational drugs used during gamete production and embryogenesis could induce epigenetic alterations, which could impact adversely on pregnancy outcomes and health of the offspring. Furthermore, these can also result in a permanent and irreversible effect in a dose-dependent manner, which can be passed on to the future generations.

  2. The epigenetic effects of assisted reproductive technologies: ethical considerations.

    PubMed

    Roy, M-C; Dupras, C; Ravitsky, V

    2017-08-01

    The use of assisted reproductive technologies (ART) has increased significantly, allowing many coping with infertility to conceive. However, an emerging body of evidence suggests that ART could carry epigenetic risks for those conceived through the use of these technologies. In accordance with the Developmental Origins of Health and Disease hypothesis, ART could increase the risk of developing late-onset diseases through epigenetic mechanisms, as superovulation, fertilization methods and embryo culture could impair the embryo's epigenetic reprogramming. Such epigenetic risks raise ethical issues for all stakeholders: prospective parents and children, health professionals and society. This paper focuses on ethical issues raised by the consideration of these risks when using ART. We apply two key ethical principles of North American bioethics (respect for autonomy and non-maleficence) and suggest that an ethical tension may emerge from conflicting duties to promote the reproductive autonomy of prospective parents on one hand, and to minimize risks to prospective children on the other. We argue that this tension is inherent to the entire enterprise of ART and thus cannot be addressed by individual clinicians in individual cases. We also consider the implications of the 'non-identity problem' in this context. We call for additional research that would allow a more robust evidence base for policy. We also call upon professional societies to provide clinicians with guidelines and educational resources to facilitate the communication of epigenetic risks associated with ART to patients, taking into consideration the challenges of communicating risk information whose validity is still uncertain.

  3. Parental tobacco smoke exposure: Epigenetics and the ...

    EPA Pesticide Factsheets

    Epigenetic programming is an important mechanism underlying the Developmental Origins of Health and Disease (DOHaD). Much of the research in this area has focused on maternal nutrition. Parental smoking has emerged as a prime example of how exposure to environmental toxicants during the preconceptional and in utero periods can have long-term effects on offspring health, and the role of the epigenome in these effects. Maternal smoking and exposure to second-hand smoke during pregnancy result in lower birth weight of offspring, and there is now clear evidence that these offspring are at elevated risk for overweight/obesity, type-2 diabetes, respiratory effects during adolescence and adulthood, and may be programmed for increased risk of nicotine addiction. Epigenetic analyses of placenta, cord blood and offspring buccal cells have consistently revealed altered DNA methylation of genes involved in developmental processes and xenobiotic metabolism, and these epigenetic changes are persistent. Animal studies with cigarette smoke and nicotine support these findings. Paternal preconceptional smoking has been positively related to childhood cancers, potentially linked to changes in the sperm epigenome. Germ cell specification and preimplantation development are periods of widespread erasure and reprogramming of DNA methylation, and as such are likely to be sensitive periods for environmental effects on the epigenome. Exposure to tobacco smoke during gametogenesis and in

  4. Epigenetic Basis of Neuronal and Synaptic Plasticity.

    PubMed

    Karpova, Nina N; Sales, Amanda J; Joca, Samia R

    2017-01-01

    Neuronal network and plasticity change as a function of experience. Altered neural connectivity leads to distinct transcriptional programs of neuronal plasticity-related genes. The environmental challenges throughout life may promote long-lasting reprogramming of gene expression and the development of brain disorders. The modifications in neuronal epigenome mediate gene-environmental interactions and are required for activity-dependent regulation of neuronal differentiation, maturation and plasticity. Here, we highlight the latest advances in understanding the role of the main players of epigenetic machinery (DNA methylation and demethylation, histone modifications, chromatin-remodeling enzymes, transposons, and non-coding RNAs) in activity-dependent and long- term neural and synaptic plasticity. The review focuses on both the transcriptional and post-transcriptional regulation of gene expression levels, including the processes of promoter activation, alternative splicing, regulation of stability of gene transcripts by natural antisense RNAs, and alternative polyadenylation. Further, we discuss the epigenetic aspects of impaired neuronal plasticity and the pathogenesis of neurodevelopmental (Rett syndrome, Fragile X Syndrome, genomic imprinting disorders, schizophrenia, and others), stressrelated (mood disorders) and neurodegenerative Alzheimer's, Parkinson's and Huntington's disorders. The review also highlights the pharmacological compounds that modulate epigenetic programming of gene expression, the potential treatment strategies of discussed brain disorders, and the questions that should be addressed during the development of effective and safe approaches for the treatment of brain disorders.

  5. Epigenetics of Peripheral B-Cell Differentiation and the Antibody Response

    PubMed Central

    Zan, Hong; Casali, Paolo

    2015-01-01

    Epigenetic modifications, such as histone post-translational modifications, DNA methylation, and alteration of gene expression by non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are heritable changes that are independent from the genomic DNA sequence. These regulate gene activities and, therefore, cellular functions. Epigenetic modifications act in concert with transcription factors and play critical roles in B cell development and differentiation, thereby modulating antibody responses to foreign- and self-antigens. Upon antigen encounter by mature B cells in the periphery, alterations of these lymphocytes epigenetic landscape are induced by the same stimuli that drive the antibody response. Such alterations instruct B cells to undergo immunoglobulin (Ig) class switch DNA recombination (CSR) and somatic hypermutation (SHM), as well as differentiation to memory B cells or long-lived plasma cells for the immune memory. Inducible histone modifications, together with DNA methylation and miRNAs modulate the transcriptome, particularly the expression of activation-induced cytidine deaminase, which is essential for CSR and SHM, and factors central to plasma cell differentiation, such as B lymphocyte-induced maturation protein-1. These inducible B cell-intrinsic epigenetic marks guide the maturation of antibody responses. Combinatorial histone modifications also function as histone codes to target CSR and, possibly, SHM machinery to the Ig loci by recruiting specific adaptors that can stabilize CSR/SHM factors. In addition, lncRNAs, such as recently reported lncRNA-CSR and an lncRNA generated through transcription of the S region that form G-quadruplex structures, are also important for CSR targeting. Epigenetic dysregulation in B cells, including the aberrant expression of non-coding RNAs and alterations of histone modifications and DNA methylation, can result in aberrant antibody responses to foreign antigens, such as those on microbial

  6. Obesity-Associated Alterations in Inflammation, Epigenetics, and Mammary Tumor Growth Persist in Formerly Obese Mice.

    PubMed

    Rossi, Emily L; de Angel, Rebecca E; Bowers, Laura W; Khatib, Subreen A; Smith, Laura A; Van Buren, Eric; Bhardwaj, Priya; Giri, Dilip; Estecio, Marcos R; Troester, Melissa A; Hair, Brionna Y; Kirk, Erin L; Gong, Ting; Shen, Jianjun; Dannenberg, Andrew J; Hursting, Stephen D

    2016-05-01

    Using a murine model of basal-like breast cancer, we tested the hypothesis that chronic obesity, an established breast cancer risk and progression factor in women, induces mammary gland epigenetic reprogramming and increases mammary tumor growth. Moreover, we assessed whether the obesity-induced epigenetic and protumor effects are reversed by weight normalization. Ovariectomized female C57BL/6 mice were fed a control diet or diet-induced obesity (DIO) regimen for 17 weeks, resulting in a normal weight or obese phenotype, respectively. Mice on the DIO regimen were then randomized to continue the DIO diet or were switched to the control diet, resulting in formerly obese (FOb) mice with weights comparable with control mice. At week 24, all mice were orthotopically injected with MMTV-Wnt-1 mouse mammary tumor cells. Mean tumor volume, serum IL6 levels, expression of proinflammatory genes in the mammary fat pad, and mammary DNA methylation profiles were similar in DIO and FOb mice and higher than in controls. Many of the genes found to have obesity-associated hypermethylation in mice were also found to be hypermethylated in the normal breast tissue of obese versus nonobese human subjects, and nearly all of these concordant genes remained hypermethylated after significant weight loss in the FOb mice. Our findings suggest that weight normalization may not be sufficient to reverse the effects of chronic obesity on epigenetic reprogramming and inflammatory signals in the microenvironment that are associated with breast cancer progression. Cancer Prev Res; 9(5); 339-48. ©2016 AACR. ©2016 American Association for Cancer Research.

  7. HDACis (class I), cancer stem cell, and phytochemicals: Cancer therapy and prevention implications.

    PubMed

    Bayat, Sahar; Shekari Khaniani, Mahmoud; Choupani, Jalal; Alivand, Mohammad Reza; Mansoori Derakhshan, Sima

    2018-01-01

    Epigenetics is independent of the sequence events that physically affect the condensing of chromatin and genes expression. The unique epigenetic memories of various cells trigger exclusive gene expression profiling. According to different studies, the aberrant epigenetic signatures and impaired gene expression profiles are master occurrences in cancer cells in which oncogene and tumor suppressor genes are affected. Owing to the facts that epigenetic modifications are performed earlier than expression and are reversible, the epigenetic reprogramming of cancer cells could be applied potentially for their prevention, control, and therapy. The disruption of the acetylation signature, as a master epigenetic change in cancers, is related to the expression and the activity of HDACs. In this context, class I HDACs play a significant role in the regulation of cell proliferation and cancer. More recently, cancer stem cell (CSC) has been introduced as a minority population of tumor that is responsible for invasiveness, drug resistance, and relapse of cancers. It is now believed that controlling CSC via epigenetic reprogramming such as targeting HDACs could be helpful in regulating the acetylation pattern of chromatin. Recently, a number of reports have introduced some phytochemicals as HDAC inhibitors. The use of phytochemicals with the HDAC inhibition property could be potentially efficient in overcoming the mentioned problems of CSCs. This review presents a perspective concerning HDAC-targeted phytochemicals to control CSC in tumors. Hopefully, this new route would have more advantages in therapeutic applications and prevention against cancer. Copyright © 2017. Published by Elsevier Masson SAS.

  8. Epigenetics in prostate cancer: biologic and clinical relevance.

    PubMed

    Jerónimo, Carmen; Bastian, Patrick J; Bjartell, Anders; Carbone, Giuseppina M; Catto, James W F; Clark, Susan J; Henrique, Rui; Nelson, William G; Shariat, Shahrokh F

    2011-10-01

    Prostate cancer (PCa) is one of the most common human malignancies and arises through genetic and epigenetic alterations. Epigenetic modifications include DNA methylation, histone modifications, and microRNAs (miRNA) and produce heritable changes in gene expression without altering the DNA coding sequence. To review progress in the understanding of PCa epigenetics and to focus upon translational applications of this knowledge. PubMed was searched for publications regarding PCa and DNA methylation, histone modifications, and miRNAs. Reports were selected based on the detail of analysis, mechanistic support of data, novelty, and potential clinical applications. Aberrant DNA methylation (hypo- and hypermethylation) is the best-characterized alteration in PCa and leads to genomic instability and inappropriate gene expression. Global and locus-specific changes in chromatin remodeling are implicated in PCa, with evidence suggesting a causative dysfunction of histone-modifying enzymes. MicroRNA deregulation also contributes to prostate carcinogenesis, including interference with androgen receptor signaling and apoptosis. There are important connections between common genetic alterations (eg, E twenty-six fusion genes) and the altered epigenetic landscape. Owing to the ubiquitous nature of epigenetic alterations, they provide potential biomarkers for PCa detection, diagnosis, assessment of prognosis, and post-treatment surveillance. Altered epigenetic gene regulation is involved in the genesis and progression of PCa. Epigenetic alterations may provide valuable tools for the management of PCa patients and be targeted by pharmacologic compounds that reverse their nature. The potential for epigenetic changes in PCa requires further exploration and validation to enable translation to the clinic. Copyright © 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  9. Epigenetic Effects of Cannabis Exposure.

    PubMed

    Szutorisz, Henrietta; Hurd, Yasmin L

    2016-04-01

    The past decade has witnessed a number of societal and political changes that have raised critical questions about the long-term impact of marijuana (Cannabis sativa) that are especially important given the prevalence of its abuse and that potential long-term effects still largely lack scientific data. Disturbances of the epigenome have generally been hypothesized as the molecular machinery underlying the persistent, often tissue-specific transcriptional and behavioral effects of cannabinoids that have been observed within one's lifetime and even into the subsequent generation. Here, we provide an overview of the current published scientific literature that has examined epigenetic effects of cannabinoids. Though mechanistic insights about the epigenome remain sparse, accumulating data in humans and animal models have begun to reveal aberrant epigenetic modifications in brain and the periphery linked to cannabis exposure. Expansion of such knowledge and causal molecular relationships could help provide novel targets for future therapeutic interventions. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Epigenetic Effects of Cannabis Exposure

    PubMed Central

    Szutorisz, Henrietta; Hurd, Yasmin L.

    2015-01-01

    The past decade has witnessed a number of societal and political changes that have raised critical questions about the long-term impact of marijuana (Cannabis sativa) that are especially important given the prevalence of its abuse and that potential long-term effects still largely lack scientific data. Disturbances of the epigenome have generally been hypothesized as the molecular machinery underlying the persistent, often tissue-specific transcriptional and behavioral effects of cannabinoids that have been observed within one’s lifetime and even into the subsequent generation. Here, we provide an overview of the current published scientific literature that examined epigenetic effects of cannabinoids. Though mechanistic insights about the epigenome remain sparse, accumulating data in humans and animal models have begun to reveal aberrant epigenetic modifications in brain and the periphery linked to cannabis exposure. Expansion of such knowledge and causal molecular relationships could help provide novel targets for future therapeutic interventions. PMID:26546076

  11. Hacking cell differentiation: transcriptional rerouting in reprogramming, lineage infidelity and metaplasia.

    PubMed

    Regalo, Gonçalo; Leutz, Achim

    2013-08-01

    Initiating neoplastic cell transformation events are of paramount importance for the comprehension of regeneration and vanguard oncogenic processes but are difficult to characterize and frequently clinically overlooked. In epithelia, pre-neoplastic transformation stages are often distinguished by the appearance of phenotypic features of another differentiated tissue, termed metaplasia. In haemato/lymphopoietic malignancies, cell lineage ambiguity is increasingly recorded. Both, metaplasia and biphenotypic leukaemia/lymphoma represent examples of dysregulated cell differentiation that reflect a history of trans-differentiation and/or epigenetic reprogramming. Here we compare the similarity between molecular events of experimental cell trans-differentiation as an emerging therapeutic concept, with lineage confusion, as in metaplasia and dysplasia forecasting tumour development. © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  12. Association of Smoking, Alcohol Use, and Betel Quid Chewing with Epigenetic Aberrations in Cancers.

    PubMed

    Wang, Tong-Hong; Hsia, Shih-Min; Shih, Yin-Hwa; Shieh, Tzong-Ming

    2017-06-06

    Numerous environmental factors such as diet, alcohol use, stress, and environmental chemicals are known to elicit epigenetic changes, leading to increased rates of cancers and other diseases. The incidence of head and neck cancer, one of the most common cancers in Taiwanese males, is increasing: oral cancer and nasopharyngeal carcinoma are ranked fourth and tenth respectively, among the top ten cancers in this group, and a major cause of cancer-related deaths in Taiwanese males. Previous studies have identified smoking, alcohol use, and betel quid chewing as the three major causes of head and neck cancers; these three social habits are commonly observed in Taiwanese males, resulting in an increasing morbidity rate of head and neck cancers in this population. In this literature review, we discuss the association between specific components of betel quid, alcohol, and tobacco, and the occurrence of head and neck cancers, lung cancer, gastrointestinal cancers, and urethral cancer. We focus on regulatory mechanisms at the epigenetic level and their oncogenic effects. The review further discusses the application of FDA-approved epigenetic drugs as therapeutic strategies against cancer.

  13. Neurological and Epigenetic Implications of Nutritional Deficiencies on Psychopathology: Conceptualization and Review of Evidence

    PubMed Central

    Liu, Jianghong; Zhao, Sophie R.; Reyes, Teresa

    2015-01-01

    In recent years, a role for epigenetic modifications in the pathophysiology of disease has received significant attention. Many studies are now beginning to explore the gene–environment interactions, which may mediate early-life exposure to risk factors, such as nutritional deficiencies and later development of behavioral problems in children and adults. In this paper, we review the current literature on the role of epigenetics in the development of psychopathology, with a specific focus on the potential for epigenetic modifications to link nutrition and brain development. We propose a conceptual framework whereby epigenetic modifications (e.g., DNA methylation) mediate the link between micro- and macro-nutrient deficiency early in life and brain dysfunction (e.g., structural aberration, neurotransmitter perturbation), which has been linked to development of behavior problems later on in life. PMID:26251900

  14. Assessing the risks of genotoxicity in the therapeutic development of induced pluripotent stem cells.

    PubMed

    Hong, So Gun; Dunbar, Cynthia E; Winkler, Thomas

    2013-02-01

    Induced pluripotent stem cells (iPSCs) have great potential for regenerative medicine as well as for basic and translational research. However, following the initial excitement over the enormous prospects of this technology, several reports uncovered serious concerns regarding its safety for clinical applications and reproducibility for laboratory applications such as disease modeling or drug screening. In particular, the genomic integrity of iPSCs is the focus of extensive research. Epigenetic remodeling, aberrant expression of reprogramming factors, clonal selection, and prolonged in vitro culture are potential pathways for acquiring genomic alterations. In this review, we will critically discuss current reprogramming technologies particularly in the context of genotoxicity, and the consequences of these alternations for the potential applications of reprogrammed cells. In addition, current strategies of genetic modification of iPSCs, as well as applicable suicide strategies to control the risk of iPSC-based therapies will be introduced.

  15. Reprogramming metabolism by targeting sirtuin 6 attenuates retinal degeneration

    PubMed Central

    Zhang, Lijuan; Du, Jianhai; Justus, Sally; Hsu, Chun-Wei; Bonet-Ponce, Luis; Wu, Wen-Hsuan; Tsai, Yi-Ting; Wu, Wei-Pu; Jia, Yading; Duong, Jimmy K.; Mahajan, Vinit B.; Lin, Chyuan-Sheng; Wang, Shuang; Hurley, James B.

    2016-01-01

    Retinitis pigmentosa (RP) encompasses a diverse group of Mendelian disorders leading to progressive degeneration of rods and then cones. For reasons that remain unclear, diseased RP photoreceptors begin to deteriorate, eventually leading to cell death and, consequently, loss of vision. Here, we have hypothesized that RP associated with mutations in phosphodiesterase-6 (PDE6) provokes a metabolic aberration in rod cells that promotes the pathological consequences of elevated cGMP and Ca2+, which are induced by the Pde6 mutation. Inhibition of sirtuin 6 (SIRT6), a histone deacetylase repressor of glycolytic flux, reprogrammed rods into perpetual glycolysis, thereby driving the accumulation of biosynthetic intermediates, improving outer segment (OS) length, enhancing photoreceptor survival, and preserving vision. In mouse retinae lacking Sirt6, effectors of glycolytic flux were dramatically increased, leading to upregulation of key intermediates in glycolysis, TCA cycle, and glutaminolysis. Both transgenic and AAV2/8 gene therapy–mediated ablation of Sirt6 in rods provided electrophysiological and anatomic rescue of both rod and cone photoreceptors in a preclinical model of RP. Due to the extensive network of downstream effectors of Sirt6, this study motivates further research into the role that these pathways play in retinal degeneration. Because reprogramming metabolism by enhancing glycolysis is not gene specific, this strategy may be applicable to a wide range of neurodegenerative disorders. PMID:27841758

  16. Targeting DNA Methyltranferases in Urological Tumors

    PubMed Central

    Marques-Magalhães, Ângela; Graça, Inês; Henrique, Rui; Jerónimo, Carmen

    2018-01-01

    Urological cancers are a heterogeneous group of malignancies accounting for a considerable proportion of cancer-related morbidity and mortality worldwide. Aberrant epigenetic traits, especially altered DNA methylation patterns constitute a hallmark of these tumors. Nonetheless, these alterations are reversible, and several efforts have been carried out to design and test several epigenetic compounds that might reprogram tumor cell phenotype back to a normal state. Indeed, several DNMT inhibitors are currently under evaluation for therapeutic efficacy in clinical trials. This review highlights the critical role of DNA methylation in urological cancers and summarizes the available data on pre-clinical assays and clinical trials with DNMT inhibitors in bladder, kidney, prostate, and testicular germ cell cancers. PMID:29706891

  17. Reprogramming cells with synthetic proteins

    PubMed Central

    Yang, Xiaoxiao; Malik, Vikas; Jauch, Ralf

    2015-01-01

    Conversion of one cell type into another cell type by forcibly expressing specific cocktails of transcription factors (TFs) has demonstrated that cell fates are not fixed and that cellular differentiation can be a two-way street with many intersections. These experiments also illustrated the sweeping potential of TFs to “read” genetically hardwired regulatory information even in cells where they are not normally expressed and to access and open up tightly packed chromatin to execute gene expression programs. Cellular reprogramming enables the modeling of diseases in a dish, to test the efficacy and toxicity of drugs in patient-derived cells and ultimately, could enable cell-based therapies to cure degenerative diseases. Yet, producing terminally differentiated cells that fully resemble their in vivo counterparts in sufficient quantities is still an unmet clinical need. While efforts are being made to reprogram cells nongenetically by using drug-like molecules, defined TF cocktails still dominate reprogramming protocols. Therefore, the optimization of TFs by protein engineering has emerged as a strategy to enhance reprogramming to produce functional, stable and safe cells for regenerative biomedicine. Engineering approaches focused on Oct4, MyoD, Sox17, Nanog and Mef2c and range from chimeric TFs with added transactivation domains, designer transcription activator-like effectors to activate endogenous TFs to reprogramming TFs with rationally engineered DNA recognition principles. Possibly, applying the complete toolkit of protein design to cellular reprogramming can help to remove the hurdles that, thus far, impeded the clinical use of cells derived from reprogramming technologies. PMID:25652623

  18. Targeting epigenetics for the treatment of prostate cancer: recent progress and future directions.

    PubMed

    Lin, Jianqing; Wang, Chenguang; Kelly, Wm Kevin

    2013-06-01

    Epigenetic aberrations contribute to prostate cancer carcinogenesis and disease progression. Efforts have been made to target DNA methyltransferase and histone deacetylases (HDACs) in prostate cancer and other solid tumors but have not had the success that was seen in the hematologic malignancies. Oral, less toxic, and more specific agents are being developed in solid tumors including prostate cancer. Combinations of epigenetic agents alone or with a targeted agent such as androgen receptor signaling inhibitors are promising approaches and will be discussed further. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Genome-Wide Epigenetic Studies in Human Disease: A Primer on -Omic Technologies

    PubMed Central

    Yan, Huihuang; Tian, Shulan; Slager, Susan L.; Sun, Zhifu; Ordog, Tamas

    2016-01-01

    Epigenetic information encoded in covalent modifications of DNA and histone proteins regulates fundamental biological processes through the action of chromatin regulators, transcription factors, and noncoding RNA species. Epigenetic plasticity enables an organism to respond to developmental and environmental signals without genetic changes. However, aberrant epigenetic control plays a key role in pathogenesis of disease. Normal epigenetic states could be disrupted by detrimental mutations and expression alteration of chromatin regulators or by environmental factors. In this primer, we briefly review the epigenetic basis of human disease and discuss how recent discoveries in this field could be translated into clinical diagnosis, prevention, and treatment. We introduce platforms for mapping genome-wide chromatin accessibility, nucleosome occupancy, DNA-binding proteins, and DNA methylation, primarily focusing on the integration of DNA methylation and chromatin immunoprecipitation–sequencing technologies into disease association studies. We highlight practical considerations in applying high-throughput epigenetic assays and formulating analytical strategies. Finally, we summarize current challenges in sample acquisition, experimental procedures, data analysis, and interpretation and make recommendations on further refinement in these areas. Incorporating epigenomic testing into the clinical research arsenal will greatly facilitate our understanding of the epigenetic basis of disease and help identify novel therapeutic targets. PMID:26721890

  20. Epigenetic and Epitranscriptomic Factors Make a Mark on Hematopoietic Stem Cell Development.

    PubMed

    Kasper, Dionna M; Nicoli, Stefania

    2018-03-01

    Blood specification is a highly dynamic process, whereby committed hemogenic endothelial cells (ECs) progressively transdifferentiate into multipotent, self-renewing hematopoietic stem cells (HSCs). Massive changes in gene expression must occur to switch cell identity, however the factors that mediate such an effect were a mystery until recently. This review summarizes the higher-order mechanisms involved in endothelial to hematopoietic reprogramming identified thus far. Accumulating evidence from mouse and zebrafish studies reveal that numerous chromatin-modifying (epigenetic) and RNA-modifying (epitranscriptomic) factors are required for the formation of HSCs from hemogenic endothelium. These genes function throughout the endothelial-hematopoietic transition, suggesting a dynamic interplay between 'epi'-machineries. Epigenetic and epitranscriptomic regulation are key mechanisms for reshaping global EC gene expression patterns to those that support HSC production. Future studies that capture modification dynamics should bring us closer to a complete understanding of how HSCs transition from hemogenic endothelium at the molecular level.

  1. Epigenetic control of cardiovascular health by nutritional polyphenols involves multiple chromatin-modifying writer-reader-eraser proteins.

    PubMed

    Declerck, Ken; Szarc vel Szic, Katarzyna; Palagani, Ajay; Heyninck, Karen; Haegeman, Guy; Morand, Christine; Milenkovic, Dragan; Vanden Berghe, Wim

    2016-01-01

    Nowadays, epigenetic mechanisms involving DNA methylation, histone modifications and microRNA regulation emerge as important players in cardiovascular disease (CVD). Epigenetics may provide the missing link between environment, genome and disease phenotype and be responsible for the strong interindividual variation in disease risk factors underlying CVD. Daily diet is known to have a major influence on both the development and the prevention of CVD. Interestingly, the dietary lifestyle of our (grand)parents and of us contributes to CVD risk by metabolic (re)programming of our epigenome in utero, after birth or during life. In contrast to genetic mutations, the plasticity of CVD related epigenetic changes makes them attractive candidates for nutritional prevention or pharmacological intervention. Although a growing number of epidemiologic studies have shown a link between the ingestion of nutritional polyphenols and cardiovascular health benefits, potential involvement of epigenetic mechanisms has been underexplored. In this review, we will give an overview of epigenetic alterations in atherosclerosis, with the focus on DNA and histone modifications by chromatin-modifying proteins. Finally, we illustrate that cocoa flavanols and other classes of dietary molecules may promote cardiovascular health by targeting multiple classes of chromatin writer-reader-eraser proteins related to histone acetylation-methylation and DNA methylation.

  2. Epigenetic mechanisms in experience-driven memory formation and behavior.

    PubMed

    Puckett, Rosemary E; Lubin, Farah D

    2011-10-01

    Epigenetic mechanisms have long been associated with the regulation of gene-expression changes accompanying normal neuronal development and cellular differentiation; however, until recently these mechanisms were believed to be statically quiet in the adult brain. Behavioral neuroscientists have now begun to investigate these epigenetic mechanisms as potential regulators of gene-transcription changes in the CNS subserving synaptic plasticity and long-term memory (LTM) formation. Experimental evidence from learning and memory animal models has demonstrated that active chromatin remodeling occurs in terminally differentiated postmitotic neurons, suggesting that these molecular processes are indeed intimately involved in several stages of LTM formation, including consolidation, reconsolidation and extinction. Such chromatin modifications include the phosphorylation, acetylation and methylation of histone proteins and the methylation of associated DNA to subsequently affect transcriptional gene readout triggered by learning. The present article examines how such learning-induced epigenetic changes contribute to LTM formation and influence behavior. In particular, this article is a survey of the specific epigenetic mechanisms that have been demonstrated to regulate gene expression for both transcription factors and growth factors in the CNS, which are critical for LTM formation and storage, as well as how aberrant epigenetic processing can contribute to psychological states such as schizophrenia and drug addiction. Together, the findings highlighted in this article support a novel role for epigenetic mechanisms in the adult CNS serving as potential key molecular regulators of gene-transcription changes necessary for LTM formation and adult behavior.

  3. Radiation-induced genomic instability: Are epigenetic mechanisms the missing link?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    Purpose: This review examines the evidence for the hypothesis that epigenetics are involved in the initiation and perpetuation of radiation-induced genomic instability (RIGI). Conclusion: In addition to the extensively studied targeted effects of radiation, it is now apparent that non-targeted delayed effects such as RIGI are also important post-irradiation outcomes. In RIGI, unirradiated progeny cells display phenotypic changes at delayed times after radiation of the parental cell. RIGI is thought to be important in the process of carcinogenesis, however, the mechanism by which this occurs remains to be elucidated. In the genomically unstable clones developed by Morgan and colleagues, radiation-inducedmore » mutations, double-strand breaks, or changes in mRNA levels alone could not account for the initiation or perpetuation of RIGI. Since changes in the DNA sequence could not fully explain the mechanism of RIGI, inherited epigenetic changes may be involved. Epigenetics are known to play an important role in many cellular processes and epigenetic aberrations can lead to carcinogenesis. Recent studies in the field of radiation biology suggest that the changes in methylation patterns may be involved in RIGI. Together these clues have led us to hypothesize that epigenetics may be the missing link in understanding the mechanism behind RIGI.« less

  4. Nanos promotes epigenetic reprograming of the germline by down-regulation of the THAP transcription factor LIN-15B

    PubMed Central

    Lee, Chih-Yung Sean; Lu, Tu

    2017-01-01

    Nanos RNA-binding proteins are required for germline development in metazoans, but the underlying mechanisms remain poorly understood. We have profiled the transcriptome of primordial germ cells (PGCs) lacking the nanos homologs nos-1 and nos-2 in C. elegans. nos-1nos-2 PGCs fail to silence hundreds of transcripts normally expressed in oocytes. We find that this misregulation is due to both delayed turnover of maternal transcripts and inappropriate transcriptional activation. The latter appears to be an indirect consequence of delayed turnover of the maternally-inherited transcription factor LIN-15B, a synMuvB class transcription factor known to antagonize PRC2 activity. PRC2 is required for chromatin reprogramming in the germline, and the transcriptome of PGCs lacking PRC2 resembles that of nos-1nos-2 PGCs. Loss of maternal LIN-15B restores fertility to nos-1nos-2 mutants. These findings suggest that Nanos promotes germ cell fate by downregulating maternal RNAs and proteins that would otherwise interfere with PRC2-dependent reprogramming of PGC chromatin. PMID:29111977

  5. Nanos promotes epigenetic reprograming of the germline by down-regulation of the THAP transcription factor LIN-15B.

    PubMed

    Lee, Chih-Yung Sean; Lu, Tu; Seydoux, Geraldine

    2017-11-07

    Nanos RNA-binding proteins are required for germline development in metazoans, but the underlying mechanisms remain poorly understood. We have profiled the transcriptome of primordial germ cells (PGCs) lacking the nanos homologs nos-1 and nos-2 in C. elegans. nos-1nos-2 PGCs fail to silence hundreds of transcripts normally expressed in oocytes. We find that this misregulation is due to both delayed turnover of maternal transcripts and inappropriate transcriptional activation. The latter appears to be an indirect consequence of delayed turnover of the maternally-inherited transcription factor LIN-15B, a synMuvB class transcription factor known to antagonize PRC2 activity. PRC2 is required for chromatin reprogramming in the germline, and the transcriptome of PGCs lacking PRC2 resembles that of nos-1nos-2 PGCs. Loss of maternal LIN-15B restores fertility to nos-1nos-2 mutants. These findings suggest that Nanos promotes germ cell fate by downregulating maternal RNAs and proteins that would otherwise interfere with PRC2-dependent reprogramming of PGC chromatin.

  6. Direct Reprogramming of Human Amniotic Fluid Stem Cells by OCT4 and Application in Repairing of Cerebral Ischemia Damage

    PubMed Central

    Qin, Mingde; Chen, Ruihua; Li, Hong; Liang, Hansi; Xue, Qun; Li, Fang; Chen, Ying; Zhang, Xueguang

    2016-01-01

    Amniotic fluid stem cells (AFSCs) are a type of fetal stem cell whose stemness encompasses both embryonic and adult stem cells, suggesting that they may be easily and efficiently reprogrammed into induced pluripotent stem cells (iPSCs). To further simplify the reprogramming process, the creation of AFSC-derived iPSCs using a single factor is desirable. Here we report the generation of one-factor human AFSC-iPSCs (AiPSCs) from human AFSCs by ectopic expression of the transcription factor OCT4. Just like human embryonic stem cells, AiPSCs exhibited similar epigenetic status, global gene expression profiles, teratoma formation and in vitro & in vivo pluripotency. Our results indicate that the OCT4 is necessary and sufficient to directly reprogram human AFSCs into pluripotent AiPSCs. Moreover, reflecting the similar memory characteristics of AFSCs and neural stem cells, we show that AiPSC membrane-derived vesicles (MVs) repair cerebral ischemia damage. We anticipate that the successful generation of one-factor AiPSCs will facilitate the creation of patient-specific pluripotent stem cells without the need for transgenic expression of oncogenes. Moreover, MVs from tissue-specific AiPSCs have potential in tissue repair, representing a novel application of iPSCs. PMID:27019637

  7. Aberrant cognitive phenotypes and altered hippocampal BDNF expression related to epigenetic modifications in mice lacking the post-synaptic scaffolding protein SHANK1: Implications for autism spectrum disorder.

    PubMed

    Sungur, A Özge; Jochner, Magdalena C E; Harb, Hani; Kılıç, Ayşe; Garn, Holger; Schwarting, Rainer K W; Wöhr, Markus

    2017-08-01

    Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders characterized by persistent deficits in social communication/interaction, together with restricted/repetitive patterns of behavior. ASD is among the most heritable neuropsychiatric conditions, and while available evidence points to a complex set of genetic factors, the SHANK gene family has emerged as one of the most promising candidates. Here, we assessed ASD-related phenotypes with particular emphasis on social behavior and cognition in Shank1 mouse mutants in comparison to heterozygous and wildtype littermate controls across development in both sexes. While social approach behavior was evident in all experimental conditions and social recognition was only mildly affected by genotype, Shank1 -/- null mutant mice were severely impaired in object recognition memory. This effect was particularly prominent in juveniles, not due to impairments in object discrimination, and replicated in independent mouse cohorts. At the neurobiological level, object recognition deficits were paralleled by increased brain-derived neurotrophic factor (BDNF) protein expression in the hippocampus of Shank1 -/- mice; yet BDNF levels did not differ under baseline conditions. We therefore investigated changes in the epigenetic regulation of hippocampal BDNF expression and detected an enrichment of histone H3 acetylation at the Bdnf promoter1 in Shank1 -/- mice, consistent with increased learning-associated BDNF. Together, our findings indicate that Shank1 deletions lead to an aberrant cognitive phenotype characterized by severe impairments in object recognition memory and increased hippocampal BDNF levels, possibly due to epigenetic modifications. This result supports the link between ASD and intellectual disability, and suggests epigenetic regulation as a potential therapeutic target. © 2017 Wiley Periodicals, Inc.

  8. The role of epigenetics in host-parasite coevolution: lessons from the model host insects Galleria mellonella and Tribolium castaneum.

    PubMed

    Vilcinskas, Andreas

    2016-08-01

    Recent studies addressing experimental host-parasite coevolution and transgenerational immune priming in insects provide evidence for heritable shifts in host resistance or parasite virulence. These rapid reciprocal adaptations may thus be transferred to offspring generations by either genetic changes or mechanisms that do not involve changes in the germline DNA sequence. Epigenetic inheritance refers to changes in gene expression that are heritable across generations and mediated by epigenetic modifications passed from parents to offspring. Highlighting the role of epigenetics in host-parasite coevolution, this review discusses the involvement of DNA methylation, histone acetylation/deacetylation and microRNAs in the interactions between bacterial or fungal parasites and model host insects such as the greater wax moth Galleria mellonella and the red flour beetle Tribolium castaneum. These epigenetic mechanisms are thought to participate in generation-spanning transcriptional reprogramming in the host insect, often linking immunity with developmentally related gene expression and contributing to the heredity of acquired adaptations. It is proposed that the interactions during host-parasite coevolution can therefore be expanded beyond reciprocal genetic changes to include reciprocal epigenetic changes. Epigenetics is thus a promising and prospering field in the context of host-parasite coevolution. Copyright © 2016 The Author. Published by Elsevier GmbH.. All rights reserved.

  9. (Bis)urea and (Bis)thiourea Inhibitors of Lysine-Specific Demethylase 1 as Epigenetic Modulators

    PubMed Central

    Sharma, Shiv K.; Wu, Yu; Steinbergs, Nora; Crowley, Michael L.; Hanson, Allison S.; Casero, Robert A.; Woster, Patrick M.

    2010-01-01

    The recently discovered enzyme lysine-specific demethylase 1 (LSD1) plays an important role in the epigenetic control of gene expression, and aberrant gene silencing secondary to LSD1 over expression is thought to contribute to the development of cancer. We recently reported a series of (bis)guanidines and (bis)biguanides that are potent inhibitors of LSD1, and induce the re-expression of aberrantly silenced tumor suppressor genes in tumor cells in vitro. We now report a series of isosteric ureas and thioureas that are also potent inhibitors of LSD1. These compounds induce increases in methylation at the histone 3 lysine 4 (H3K4) chromatin mark, a specific target of LSD1, in Calu-6 lung carcinoma cells. In addition, these analogues increase cellular levels of secreted frizzle-related proteins (SFRP) 2 and 5, and transcription factor GATA4. These compounds represent an important new series of epigenetic modulators with the potential for use as antitumor agents. PMID:20568780

  10. How to stomach an epigenetic insult: the gastric cancer epigenome.

    PubMed

    Padmanabhan, Nisha; Ushijima, Toshikazu; Tan, Patrick

    2017-08-01

    Gastric cancer is a deadly malignancy afflicting close to a million people worldwide. Patient survival is poor and largely due to late diagnosis and suboptimal therapies. Disease heterogeneity is a substantial obstacle, underscoring the need for precision treatment strategies. Studies have identified different subgroups of gastric cancer displaying not just genetic, but also distinct epigenetic hallmarks. Accumulating evidence suggests that epigenetic abnormalities in gastric cancer are not mere bystander events, but rather promote carcinogenesis through active mechanisms. Epigenetic aberrations, induced by pathogens such as Helicobacter pylori, are an early component of gastric carcinogenesis, probably preceding genetic abnormalities. This Review summarizes our current understanding of the gastric cancer epigenome, highlighting key advances in recent years in both tumours and pre-malignant lesions, made possible through targeted and genome-wide technologies. We focus on studies related to DNA methylation and histone modifications, linking these findings to potential therapeutic opportunities. Lessons learned from the gastric cancer epigenome might also prove relevant for other gastrointestinal cancers.

  11. Epigenetic Principles and Mechanisms Underlying Nervous System Functions in Health and Disease

    PubMed Central

    Mehler, Mark F.

    2009-01-01

    Epigenetics and epigenomic medicine encompass a new science of brain and behavior that are already providing unique insights into the mechanisms underlying brain development, evolution, neuronal and network plasticity and homeostasis, senescence, the etiology of diverse neurological diseases and neural regenerative processes. Epigenetic mechanisms include DNA methylation, histone modifications, nucleosome repositioning, higher-order chromatin remodeling, non-coding RNAs, and RNA and DNA editing. RNA is centrally involved in directing these processes, implying that the transcriptional state of the cell is the primary determinant of epigenetic memory. This transcriptional state can be modified by internal and external cues affecting gene expression and post-transcriptional processing, but also by RNA and DNA editing through activity-dependent intracellular transport and modulation of RNAs and RNA regulatory supercomplexes, and through trans-neuronal and systemic trafficking of functional RNA subclasses. These integrated processes promote dynamic reorganization of nuclear architecture and the genomic landscape to modulate functional gene and neural networks with complex temporal and spatial trajectories. Epigenetics represents the long sought after molecular interface mediating gene-environmental interactions during critical periods throughout the lifecycle. The discipline of environmental epigenomics has begun to identify combinatorial profiles of environmental stressors modulating the latency, initiation and progression of specific neurological disorders, and more selective disease biomarkers and graded molecular responses to emerging therapeutic interventions. Pharmacoepigenomic therapies will promote accelerated recovery of impaired and seemingly irrevocably lost cognitive, behavioral, sensorimotor functions through epigenetic reprogramming of endogenous regional neural stem cell fate decisions, targeted tissue remodeling and restoration of neural network

  12. Chronic schistosomiasis during pregnancy epigenetically reprograms T-cell differentiation in offspring of infected mothers.

    PubMed

    Klar, Kathrin; Perchermeier, Sophie; Bhattacharjee, Sonakshi; Harb, Hani; Adler, Thure; Istvanffy, Rouzanna; Loffredo-Verde, Eva; Oostendorp, Robert A; Renz, Harald; Prazeres da Costa, Clarissa

    2017-05-01

    Schistosomiasis is a nontransplacental helminth infection. Chronic infection during pregnancy suppresses allergic airway responses in offspring. We addressed the question whether in utero exposure to chronic schistosome infection (Reg phase) in mice affects B-cell and T-cell development. Therefore, we focused our analyses on T-cell differentiation capacity induced by epigenetic changes in promoter regions of signature cytokines in offspring. Here, we show that naïve T cells from offspring of schistosome infected female mice had a strong capacity to differentiate into T H 1 cells, whereas T H 2 differentiation was impaired. In accordance, reduced levels of histone acetylation of the IL-4 promoter regions were observed in naïve T cells. To conclude, our mouse model revealed distinct epigenetic changes within the naïve T-cell compartment affecting T H 2 and T H 1 cell differentiation in offspring of mothers with chronic helminth infection. These findings could eventually help understand how helminths alter T-cell driven immune responses induced by allergens, bacterial or viral infections, as well as vaccines. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Epigenetics in non-small cell lung cancer: from basics to therapeutics.

    PubMed

    Ansari, Junaid; Shackelford, Rodney E; El-Osta, Hazem

    2016-04-01

    Lung cancer remains the number one cause of cancer-related deaths worldwide with 221,200 estimated new cases and 158,040 estimated deaths in 2015. Approximately 80% of cases are non-small cell lung cancer (NSCLC). The diagnosis is usually made at an advanced stage where the prognosis is poor and therapeutic options are limited. The evolution of lung cancer is a multistep process involving genetic, epigenetic, and environmental factor interactions that result in the dysregulation of key oncogenes and tumor suppressor genes, culminating in activation of cancer-related signaling pathways. The past decade has witnessed the discovery of multiple molecular aberrations that drive lung cancer growth, among which are epidermal growth factor receptor (EGFR) mutations and translocations involving the anaplastic lymphoma kinase (ALK) gene. This has translated into therapeutic agent developments that target these molecular alterations. The absence of targetable mutations in 50% of NSCLC cases and targeted therapy resistance development underscores the importance for developing alternative therapeutic strategies for treating lung cancer. Among these strategies, pharmacologic modulation of the epigenome has been used to treat lung cancer. Epigenetics approaches may circumvent the problem of tumor heterogeneity by affecting the expression of multiple tumor suppression genes (TSGs), halting tumor growth and survival. Moreover, it may be effective for tumors that are not driven by currently recognized druggable mutations. This review summarizes the molecular pathology of lung cancer epigenetic aberrations and discusses current efforts to target the epigenome with different pharmacological approaches. Our main focus will be on hypomethylating agents, histone deacetylase (HDAC) inhibitors, microRNA modulations, and the role of novel epigenetic biomarkers. Last, we will address the challenges that face this old-new strategy in treating lung cancer.

  14. Novel epigenetic target therapy for prostate cancer: a preclinical study.

    PubMed

    Naldi, Ilaria; Taranta, Monia; Gherardini, Lisa; Pelosi, Gualtiero; Viglione, Federica; Grimaldi, Settimio; Pani, Luca; Cinti, Caterina

    2014-01-01

    Epigenetic events are critical contributors to the pathogenesis of cancer, and targeting epigenetic mechanisms represents a novel strategy in anticancer therapy. Classic demethylating agents, such as 5-Aza-2'-deoxycytidine (Decitabine), hold the potential for reprograming somatic cancer cells demonstrating high therapeutic efficacy in haematological malignancies. On the other hand, epigenetic treatment of solid tumours often gives rise to undesired cytotoxic side effects. Appropriate delivery systems able to enrich Decitabine at the site of action and improve its bioavailability would reduce the incidence of toxicity on healthy tissues. In this work we provide preclinical evidences of a safe, versatile and efficient targeted epigenetic therapy to treat hormone sensitive (LNCap) and hormone refractory (DU145) prostate cancers. A novel Decitabine formulation, based on the use of engineered erythrocyte (Erythro-Magneto-Hemagglutinin Virosomes, EMHVs) drug delivery system (DDS) carrying this drug, has been refined. Inside the EMHVs, the drug was shielded from the environment and phosphorylated in its active form. The novel magnetic EMHV DDS, endowed with fusogenic protein, improved the stability of the carried drug and exhibited a high efficiency in confining its delivery at the site of action in vivo by applying an external static magnetic field. Here we show that Decitabine loaded into EMHVs induces a significant tumour mass reduction in prostate cancer xenograft models at a concentration, which is seven hundred times lower than the therapeutic dose, suggesting an improved pharmacokinetics/pharmacodynamics of drug. These results are relevant for and discussed in light of developing personalised autologous therapies and innovative clinical approach for the treatment of solid tumours.

  15. Massive deregulation of miRNAs from nuclear reprogramming errors during trophoblast differentiation for placentogenesis in cloned pregnancy.

    PubMed

    Hossain, Md Munir; Tesfaye, Dawit; Salilew-Wondim, Dessie; Held, Eva; Pröll, Maren J; Rings, Franca; Kirfel, Gregor; Looft, Christian; Tholen, Ernst; Uddin, Jasim; Schellander, Karl; Hoelker, Michael

    2014-01-18

    Low efficiency of Somatic Cell Nuclear Transfer (NT) has been widely addressed with high incidence of placental abnormalities due to genetic and epigenetic modifications. MiRNAs are shown to be major regulators of such modifications. The present study has been carried out to identify the expression patterns of 377 miRNAs, their functional associations and mechanism of regulation in bovine placentas derived from artificial insemination (AI), in vitro production (IVP) and NT pregnancies. This study reveals a massive deregulation of miRNAs as chromosomal cluster or miRNA families without sex-linkage in NT and in-vitro derived IVP placentas. Cell specific localization miRNAs in blastocysts and expression profiling of embryos and placentas at different developmental stages identified that the major deregulation of miRNAs exhibited in placentas at day 50 of pregnancies is found to be less dependent on global DNA methylation, rather than on aberrant miRNA biogenesis molecules. Among them, aberrant AGO2 expression due to hypermethylation of its promoter was evident. Along with other factors, aberrant AGO2 expression was observed to be associated with multiple defects in trophoblast differentiation through deregulation of miRNAs mediated mechanisms. These aberrant miRNA activities might be associated with genetic and epigenetic modifications in abnormal placentogenesis due to maldifferentiation of early trophoblast cell lineage in NT and IVP pregnancies. This study provides the first insight into genome wide miRNA expression, their role in regulation of trophoblast differentiation as well as abnormal placental development in Somatic Cell Nuclear Transfer pregnancies to pave the way to improve the efficiency of cloning by nuclear transfer.

  16. Massive deregulation of miRNAs from nuclear reprogramming errors during trophoblast differentiation for placentogenesis in cloned pregnancy

    PubMed Central

    2014-01-01

    Background Low efficiency of Somatic Cell Nuclear Transfer (NT) has been widely addressed with high incidence of placental abnormalities due to genetic and epigenetic modifications. MiRNAs are shown to be major regulators of such modifications. The present study has been carried out to identify the expression patterns of 377 miRNAs, their functional associations and mechanism of regulation in bovine placentas derived from artificial insemination (AI), in vitro production (IVP) and NT pregnancies. Results This study reveals a massive deregulation of miRNAs as chromosomal cluster or miRNA families without sex-linkage in NT and in-vitro derived IVP placentas. Cell specific localization miRNAs in blastocysts and expression profiling of embryos and placentas at different developmental stages identified that the major deregulation of miRNAs exhibited in placentas at day 50 of pregnancies is found to be less dependent on global DNA methylation, rather than on aberrant miRNA biogenesis molecules. Among them, aberrant AGO2 expression due to hypermethylation of its promoter was evident. Along with other factors, aberrant AGO2 expression was observed to be associated with multiple defects in trophoblast differentiation through deregulation of miRNAs mediated mechanisms. Conclusion These aberrant miRNA activities might be associated with genetic and epigenetic modifications in abnormal placentogenesis due to maldifferentiation of early trophoblast cell lineage in NT and IVP pregnancies. This study provides the first insight into genome wide miRNA expression, their role in regulation of trophoblast differentiation as well as abnormal placental development in Somatic Cell Nuclear Transfer pregnancies to pave the way to improve the efficiency of cloning by nuclear transfer. PMID:24438674

  17. Totipotency, Pluripotency and Nuclear Reprogramming

    NASA Astrophysics Data System (ADS)

    Mitalipov, Shoukhrat; Wolf, Don

    Mammalian development commences with the totipotent zygote which is capable of developing into all the specialized cells that make up the adult animal. As development unfolds, cells of the early embryo proliferate and differentiate into the first two lineages, the pluripotent inner cell mass and the trophectoderm. Pluripotent cells can be isolated, adapted and propagated indefinitely in vitro in an undifferentiated state as embryonic stem cells (ESCs). ESCs retain their ability to differentiate into cells representing the three major germ layers: endoderm, mesoderm or ectoderm or any of the 200+ cell types present in the adult body. Since many human diseases result from defects in a single cell type, pluripotent human ESCs represent an unlimited source of any cell or tissue type for replacement therapy thus providing a possible cure for many devastating conditions. Pluripotent cells resembling ESCs can also be derived experimentally by the nuclear reprogramming of somatic cells. Reprogrammed somatic cells may have an even more important role in cell replacement therapies since the patient's own somatic cells can be used for reprogramming thereby eliminating immune based rejection of transplanted cells. In this review, we summarize two major approaches to reprogramming: (1) somatic cell nuclear transfer and (2) direct reprogramming using genetic manipulations.

  18. Epigenetics in Metastatic Breast Cancer: Its Regulation and Implications in Diagnosis, Prognosis and Therapeutics.

    PubMed

    Wu, Yuan Seng; Lee, Zhong Yang; Chuah, Lay-Hong; Mai, Chun Wai; Ngai, Siew Ching

    2018-04-30

    Despite advances in the treatment regimen, the high incidence rate of breast cancer (BC) deaths is mostly caused by metastasis. Recently, the aberrant epigenetic modifications, which involve DNA methylation, histone modifications and microRNA (miRNA) regulations become attractive targets to treat metastatic breast cancer (MBC). In this review, the epigenetic alterations of DNA methylation, histone modifications and miRNA regulations in regulating MBC is discussed. The preclinical and clinical trials of epigenetic drugs such as the inhibitor of DNA methyltransferase (DNMTi) and the inhibitor of histone deacetylase (HDACi), as a single or combined regimen with other epigenetic drug or standard chemotherapy drug to treat MBCs are discussed. The combined regimen of epigenetic drugs or with standard chemotherapy drugs enhance the therapeutic effect against MBC. Evidences that epigenetic changes could have implications in diagnosis, prognosis and therapeutics for MBC are also presented. Several genes have been identified as potential epigenetic biomarkers for diagnosis and prognosis, as well as therapeutic targets for MBC. Endeavors in clinical trials of epigenetic drugs against MBC should be continued although limited success has been achieved. Future discovery of epigenetic drugs from natural resources would be an attractive natural treatment regimen for MBC. Further research is warranted in translating research into clinical practice with the ultimate goal of treating MBC by epigenetic therapy in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. NRSF-dependent epigenetic mechanisms contribute to programming of stress-sensitive neurons by neonatal experience, promoting resilience.

    PubMed

    Singh-Taylor, A; Molet, J; Jiang, S; Korosi, A; Bolton, J L; Noam, Y; Simeone, K; Cope, J; Chen, Y; Mortazavi, A; Baram, T Z

    2018-03-01

    Resilience to stress-related emotional disorders is governed in part by early-life experiences. Here we demonstrate experience-dependent re-programming of stress-sensitive hypothalamic neurons, which takes place through modification of neuronal gene expression via epigenetic mechanisms. Specifically, we found that augmented maternal care reduced glutamatergic synapses onto stress-sensitive hypothalamic neurons and repressed expression of the stress-responsive gene, Crh. In hypothalamus in vitro, reduced glutamatergic neurotransmission recapitulated the repressive effects of augmented maternal care on Crh, and this required recruitment of the transcriptional repressor repressor element-1 silencing transcription factor/neuron restrictive silencing factor (NRSF). Increased NRSF binding to chromatin was accompanied by sequential repressive epigenetic changes which outlasted NRSF binding. chromatin immunoprecipitation-seq analyses of NRSF targets identified gene networks that, in addition to Crh, likely contributed to the augmented care-induced phenotype, including diminished depression-like and anxiety-like behaviors. Together, we believe these findings provide the first causal link between enriched neonatal experience, synaptic refinement and induction of epigenetic processes within specific neurons. They uncover a novel mechanistic pathway from neonatal environment to emotional resilience.

  20. Delayed transition to new cell fates during cellular reprogramming

    PubMed Central

    Cheng, Xianrui; Lyons, Deirdre C.; Socolar, Joshua E. S.; McClay, David R.

    2014-01-01

    In many embryos specification toward one cell fate can be diverted to a different cell fate through a reprogramming process. Understanding how that process works will reveal insights into the developmental regulatory logic that emerged from evolution. In the sea urchin embryo, cells at gastrulation were found to reprogram and replace missing cell types after surgical dissections of the embryo. Non-skeletogenic mesoderm (NSM) cells reprogrammed to replace missing skeletogenic mesoderm cells and animal caps reprogrammed to replace all endomesoderm. In both cases evidence of reprogramming onset was first observed at the early gastrula stage, even if the cells to be replaced were removed earlier in development. Once started however, the reprogramming occurred with compressed gene expression dynamics. The NSM did not require early contact with the skeletogenic cells to reprogram, but the animal cap cells gained the ability to reprogram early in gastrulation only after extended contact with the vegetal halves prior to that time. If the entire vegetal half was removed at early gastrula, the animal caps reprogrammed and replaced the vegetal half endomesoderm. If the animal caps carried morpholinos to either hox11/13b or foxA (endomesoderm specification genes), the isolated animal caps failed to reprogram. Together these data reveal that the emergence of a reprogramming capability occurs at early gastrulation in the sea urchin embryo and requires activation of early specification components of the target tissues. PMID:24780626

  1. Epigenetics of psoriatic disease: A systematic review and critical appraisal.

    PubMed

    Pollock, Remy A; Abji, Fatima; Gladman, Dafna D

    2017-03-01

    Psoriasis is an inflammatory disease of the skin that is sometimes accompanied by an auto-inflammatory arthritis called psoriatic arthritis (PsA). Psoriasis and PsA are multifactorial diseases that result from complex interactions of environmental and genetic risk factors. Epigenetic marks, which are labile chemical marks with diverse functions, form a layer of biological information that sits at the interface of genetics and the environment. Aberrant epigenetic regulation has been previously implicated in other rheumatological disorders. The purpose of this review is to summarize and critically evaluate the nascent literature on epigenetics in psoriasis and PsA. A systematic review yielded 52 primary articles after applying inclusion and exclusion criteria. Data were extracted using a standardized template and study quality assessed using a methodological quality checklist. Studies reflect a broad range of epigenetic sub-disciplines, the most common being DNA methylation, followed by the parent of origin effect or genomic imprinting, expression or activity of epigenetic modifying enzymes, and histone modifications. Epidemiological studies demonstrating excessive paternal transmission provided the earliest evidence of epigenetic deregulation in psoriatic disease, however few studies have examined its molecular mechanisms. Methylation studies evolved rapidly from low resolution global to targeted analyses of known psoriatic disease susceptibility loci such as HLA-C*0602. The recent explosion of epigenome-wide association studies has provided us with novel insights into psoriasis pathogenesis, and the mechanism of action of UVB, methotrexate, and anti-TNF therapies, as well as molecular signatures of psoriasis that may have clinical relevance. Finally, recent studies of pharmacological inhibitors of epigenetic modifier enzymes demonstrate their potential applicability as novel treatment modalities for psoriasis. Challenges of epigenetics research in psoriasis and Ps

  2. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage.

    PubMed

    Taguchi, Y-h

    2015-01-01

    Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study.

  3. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage

    PubMed Central

    2015-01-01

    Background Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. Methods This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. Results The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Conclusions Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study. PMID:26677731

  4. Direct reprogramming and biomaterials for controlling cell fate.

    PubMed

    Kim, Eunsol; Tae, Giyoong

    2016-01-01

    Direct reprogramming which changes the fate of matured cell is a very useful technique with a great interest recently. This approach can eliminate the drawbacks of direct usage of stem cells and allow the patient specific treatment in regenerative medicine. Overexpression of diverse factors such as general reprogramming factors or lineage specific transcription factors can change the fate of already differentiated cells. On the other hand, biomaterials can provide physical and topographical cues or biochemical cues on cells, which can dictate or significantly affect the differentiation of stem cells. The role of biomaterials on direct reprogramming has not been elucidated much, but will be potentially significant to improve the efficiency or specificity of direct reprogramming. In this review, the strategies for general direct reprogramming and biomaterials-guided stem cell differentiation are summarized with the addition of the up-to-date progress on biomaterials for direct reprogramming.

  5. Metabolome Profiling of Partial and Fully Reprogrammed Induced Pluripotent Stem Cells.

    PubMed

    Park, Soon-Jung; Lee, Sang A; Prasain, Nutan; Bae, Daekyeong; Kang, Hyunsu; Ha, Taewon; Kim, Jong Soo; Hong, Ki-Sung; Mantel, Charlie; Moon, Sung-Hwan; Broxmeyer, Hal E; Lee, Man Ryul

    2017-05-15

    Acquisition of proper metabolomic fate is required to convert somatic cells toward fully reprogrammed pluripotent stem cells. The majority of induced pluripotent stem cells (iPSCs) are partially reprogrammed and have a transcriptome different from that of the pluripotent stem cells. The metabolomic profile and mitochondrial metabolic functions required to achieve full reprogramming of somatic cells to iPSC status have not yet been elucidated. Clarification of the metabolites underlying reprogramming mechanisms should enable further optimization to enhance the efficiency of obtaining fully reprogrammed iPSCs. In this study, we characterized the metabolites of human fully reprogrammed iPSCs, partially reprogrammed iPSCs, and embryonic stem cells (ESCs). Using capillary electrophoresis time-of-flight mass spectrometry-based metabolomics, we found that 89% of analyzed metabolites were similarly expressed in fully reprogrammed iPSCs and human ESCs (hESCs), whereas partially reprogrammed iPSCs shared only 74% similarly expressed metabolites with hESCs. Metabolomic profiling analysis suggested that converting mitochondrial respiration to glycolytic flux is critical for reprogramming of somatic cells into fully reprogrammed iPSCs. This characterization of metabolic reprogramming in iPSCs may enable the development of new reprogramming parameters for enhancing the generation of fully reprogrammed human iPSCs.

  6. Stress, Epigenetics, and Alcoholism

    PubMed Central

    Moonat, Sachin; Pandey, Subhash C.

    2012-01-01

    Acute and chronic stressors have been associated with alterations in mood and increased anxiety that may eventually result in the development of stress-related psychiatric disorders. Stress and associated disorders, including anxiety, are key factors in the development of alcoholism because alcohol consumption can temporarily reduce the drinker’s dysphoria. One molecule that may help mediate the relationship between stress and alcohol consumption is brain-derived neurotrophic factor (BDNF), a protein that regulates the structure and function of the sites where two nerve cells interact and exchange nerve signals (i.e., synapses) and which is involved in numerous physiological processes. Aberrant regulation of BDNF signaling and alterations in synapse activity (i.e., synaptic plasticity) have been associated with the pathophysiology of stress-related disorders and alcoholism. Mechanisms that contribute to the regulation of genetic information without modification of the DNA sequence (i.e., epigenetic mechanisms) may play a role in the complex control of BDNF signaling and synaptic plasticity—for example, by modifying the structure of the DNA–protein complexes (i.e., chromatin) that make up the chromosomes and thereby modulating the expression of certain genes. Studies regarding the epigenetic control of BDNF signaling and synaptic plasticity provide a promising direction to understand the mechanisms mediating the interaction between stress and alcoholism. PMID:23584115

  7. Stress, epigenetics, and alcoholism.

    PubMed

    Moonat, Sachin; Pandey, Subhash C

    2012-01-01

    Acute and chronic stressors have been associated with alterations in mood and increased anxiety that may eventually result in the development of stress-related psychiatric disorders. Stress and associated disorders, including anxiety, are key factors in the development of alcoholism because alcohol consumption can temporarily reduce the drinker's dysphoria. One molecule that may help mediate the relationship between stress and alcohol consumption is brain-derived neurotrophic factor (BDNF), a protein that regulates the structure and function of the sites where two nerve cells interact and exchange nerve signals (i.e., synapses) and which is involved in numerous physiological processes. Aberrant regulation of BDNF signaling and alterations in synapse activity (i.e., synaptic plasticity) have been associated with the pathophysiology of stress-related disorders and alcoholism. Mechanisms that contribute to the regulation of genetic information without modification of the DNA sequence (i.e., epigenetic mechanisms) may play a role in the complex control of BDNF signaling and synaptic plasticity-for example, by modifying the structure of the DNA-protein complexes (i.e., chromatin) that make up the chromosomes and thereby modulating the expression of certain genes. Studies regarding the epigenetic control of BDNF signaling and synaptic plasticity provide a promising direction to understand the mechanisms mediating the interaction between stress and alcoholism.

  8. Epigenetic gene regulation in the adult mammalian brain: multiple roles in memory formation.

    PubMed

    Lubin, Farah D

    2011-07-01

    Brain-derived neurotrophic factor (bdnf) is one of numerous gene products necessary for long-term memory formation and dysregulation of bdnf has been implicated in the pathogenesis of cognitive and mental disorders. Recent work indicates that epigenetic-regulatory mechanisms including the markings of histone proteins and associated DNA remain labile throughout the life-span and represent an attractive molecular process contributing to gene regulation in the brain. In this review, important information will be discussed on epigenetics as a set of newly identified dynamic transcriptional mechanisms serving to regulate gene expression changes in the adult brain with particular emphasis on bdnf transcriptional readout in learning and memory formation. This review will also highlight evidence for the role of epigenetics in aberrant bdnf gene regulation in the pathogenesis of cognitive dysfunction associated with seizure disorders, Rett syndrome, Schizophrenia, and Alzheimer's disease. Such research offers novel concepts for understanding epigenetic transcriptional mechanisms subserving adult cognition and mental health, and furthermore promises novel avenues for therapeutic approach in the clinic. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Epigenetic mechanisms in non-alcoholic fatty liver disease: An emerging field.

    PubMed

    Gallego-Durán, Rocío; Romero-Gómez, Manuel

    2015-10-28

    Non-alcoholic fatty liver disease (NAFLD) is an emerging health concern in both developed and non-developed world, encompassing from simple steatosis to non-alcoholic steatohepatitis (NASH), cirrhosis and liver cancer. Incidence and prevalence of this disease are increasing due to the socioeconomic transition and change to harmful diet. Currently, gold standard method in NAFLD diagnosis is liver biopsy, despite complications and lack of accuracy due to sampling error. Further, pathogenesis of NAFLD is not fully understood, but is well-known that obesity, diabetes and metabolic derangements played a major role in disease development and progression. Besides, gut microbioma and host genetic and epigenetic background could explain considerable interindividual variability. Knowledge that epigenetics, heritable events not caused by changes in DNA sequence, contribute to development of diseases has been a revolution in the last few years. Recently, evidences are accumulating revealing the important role of epigenetics in NAFLD pathogenesis and in NASH genesis. Histone modifications, changes in DNA methylation and aberrant profiles or microRNAs could boost development of NAFLD and transition into clinical relevant status. PNPLA3 genotype GG has been associated with a more progressive disease and epigenetics could modulate this effect. The impact of epigenetic on NAFLD progression could deserve further applications on therapeutic targets together with future non-invasive methods useful for the diagnosis and staging of NAFLD.

  10. Deterministic direct reprogramming of somatic cells to pluripotency.

    PubMed

    Rais, Yoach; Zviran, Asaf; Geula, Shay; Gafni, Ohad; Chomsky, Elad; Viukov, Sergey; Mansour, Abed AlFatah; Caspi, Inbal; Krupalnik, Vladislav; Zerbib, Mirie; Maza, Itay; Mor, Nofar; Baran, Dror; Weinberger, Leehee; Jaitin, Diego A; Lara-Astiaso, David; Blecher-Gonen, Ronnie; Shipony, Zohar; Mukamel, Zohar; Hagai, Tzachi; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Tanay, Amos; Amit, Ido; Novershtern, Noa; Hanna, Jacob H

    2013-10-03

    Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.

  11. The impact of Polycomb group (PcG) and Trithorax group (TrxG) epigenetic factors in plant plasticity.

    PubMed

    de la Paz Sanchez, Maria; Aceves-García, Pamela; Petrone, Emilio; Steckenborn, Stefan; Vega-León, Rosario; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana; García-Ponce, Berenice

    2015-11-01

    Current advances indicate that epigenetic mechanisms play important roles in the regulatory networks involved in plant developmental responses to environmental conditions. Hence, understanding the role of such components becomes crucial to understanding the mechanisms underlying the plasticity and variability of plant traits, and thus the ecology and evolution of plant development. We now know that important components of phenotypic variation may result from heritable and reversible epigenetic mechanisms without genetic alterations. The epigenetic factors Polycomb group (PcG) and Trithorax group (TrxG) are involved in developmental processes that respond to environmental signals, playing important roles in plant plasticity. In this review, we discuss current knowledge of TrxG and PcG functions in different developmental processes in response to internal and environmental cues and we also integrate the emerging evidence concerning their function in plant plasticity. Many such plastic responses rely on meristematic cell behavior, including stem cell niche maintenance, cellular reprogramming, flowering and dormancy as well as stress memory. This information will help to determine how to integrate the role of epigenetic regulation into models of gene regulatory networks, which have mostly included transcriptional interactions underlying various aspects of plant development and its plastic response to environmental conditions. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. Transgenerational Epigenetic Programming of the Brain Transcriptome and Anxiety Behavior

    PubMed Central

    Skinner, Michael K.; Anway, Matthew D.; Savenkova, Marina I.; Gore, Andrea C.; Crews, David

    2008-01-01

    Embryonic exposure to the endocrine disruptor vinclozolin during gonadal sex determination promotes an epigenetic reprogramming of the male germ-line that is associated with transgenerational adult onset disease states. Further analysis of this transgenerational phenotype on the brain demonstrated reproducible changes in the brain transcriptome three generations (F3) removed from the exposure. The transgenerational alterations in the male and female brain transcriptomes were distinct. In the males, the expression of 92 genes in the hippocampus and 276 genes in the amygdala were transgenerationally altered. In the females, the expression of 1,301 genes in the hippocampus and 172 genes in the amygdala were transgenerationally altered. Analysis of specific gene sets demonstrated that several brain signaling pathways were influenced including those involved in axon guidance and long-term potentiation. An investigation of behavior demonstrated that the vinclozolin F3 generation males had a decrease in anxiety-like behavior, while the females had an increase in anxiety-like behavior. These observations demonstrate that an embryonic exposure to an environmental compound appears to promote a reprogramming of brain development that correlates with transgenerational sex-specific alterations in the brain transcriptomes and behavior. Observations are discussed in regards to environmental and transgenerational influences on the etiology of brain disease. PMID:19015723

  13. Epigenetic dysregulation of key developmental genes in radiation-induced rat mammary carcinomas.

    PubMed

    Daino, Kazuhiro; Nishimura, Mayumi; Imaoka, Tatsuhiko; Takabatake, Masaru; Morioka, Takamitsu; Nishimura, Yukiko; Shimada, Yoshiya; Kakinuma, Shizuko

    2018-02-13

    With the increase in the number of long-term cancer survivors worldwide, there is a growing concern about the risk of secondary cancers induced by radiotherapy. Epigenetic modifications of genes associated with carcinogenesis are attractive targets for the prevention of cancer owing to their reversible nature. To identify genes with possible changes in functionally relevant DNA methylation patterns in mammary carcinomas induced by radiation exposure, we performed microarray-based global DNA methylation and expression profiling in γ-ray-induced rat mammary carcinomas and normal mammary glands. The gene expression profiling identified dysregulation of developmentally related genes, including the downstream targets of polycomb repressive complex 2 (PRC2) and overexpression of enhancer of zeste homolog 2, a component of PRC2, in the carcinomas. By integrating expression and DNA methylation profiles, we identified ten hypermethylated and three hypomethylated genes that possibly act as tumor-suppressor genes and oncogenes dysregulated by aberrant DNA methylation; half of these genes encode developmental transcription factors. Bisulfite sequencing and quantitative PCR confirmed the dysregulation of the polycomb-regulated developmentally related transcription-factor genes Dmrt2, Hoxa7, Foxb1, Sox17, Lhx8, Gata3 and Runx1. Silencing of Hoxa7 was further verified by immunohistochemistry. These results suggest that, in radiation-induced mammary gland carcinomas, PRC2-mediated aberrant DNA methylation leads to dysregulation of developmentally related transcription-factor genes. Our findings provide clues to molecular mechanisms linking epigenetic regulation and radiation-induced breast carcinogenesis and underscore the potential of such epigenetic mechanisms as targets for cancer prevention. © 2018 UICC.

  14. Fluorescent tagged episomals for stoichiometric induced pluripotent stem cell reprogramming.

    PubMed

    Schmitt, Christopher E; Morales, Blanca M; Schmitz, Ellen M H; Hawkins, John S; Lizama, Carlos O; Zape, Joan P; Hsiao, Edward C; Zovein, Ann C

    2017-06-05

    Non-integrating episomal vectors have become an important tool for induced pluripotent stem cell reprogramming. The episomal vectors carrying the "Yamanaka reprogramming factors" (Oct4, Klf, Sox2, and L-Myc + Lin28) are critical tools for non-integrating reprogramming of cells to a pluripotent state. However, the reprogramming process remains highly stochastic, and is hampered by an inability to easily identify clones that carry the episomal vectors. We modified the original set of vectors to express spectrally separable fluorescent proteins to allow for enrichment of transfected cells. The vectors were then tested against the standard original vectors for reprogramming efficiency and for the ability to enrich for stoichiometric ratios of factors. The reengineered vectors allow for cell sorting based on reprogramming factor expression. We show that these vectors can assist in tracking episomal expression in individual cells and can select the reprogramming factor dosage. Together, these modified vectors are a useful tool for understanding the reprogramming process and improving induced pluripotent stem cell isolation efficiency.

  15. Strategies to re-express epigenetically silenced p15(INK4b) and p21(WAF1) genes in acute myeloid leukemia.

    PubMed

    Geyer, C Ronald

    2010-01-01

    p15(INK4B) and p21(WAF1) are TGF-β targets that are silenced in leukemia by epigenetic mechanisms involving DNA methylation and/or histone modifications. Mechanisms for establishing and maintaining epigenetic silencing of p15(INK4B) and p21(WAF1) are not well established. The reversible nature of epigenetic modifications has lead to the development of drugs that target DNA methyltransferases, histone deacetylases, and histone methyltransferases, which have been used to re-express aberrantly silenced genes in leukemia. Recently, non-coding RNA, referred to as natural antisense transcripts (NATs), have been implicated in the regulation of epigenetic modifications. Here, we review epigenetic mechanisms for silencing p15(INK4B) and p21(WAF1) and the role of NATs in this process. We also review epigenetic drugs and drug combinations used to re-express p15(INK4B) and p21(WAF1). Lastly, we discuss the potential use of NATs to target the activity of epigenetic drugs to specific genes and to permanently re-express epigenetically silenced genes.

  16. Marine Corps Budgetary Reprogramming Effectiveness

    DTIC Science & Technology

    2015-03-01

    infrastructure (Appropriations Act of Congress, 2008). The environmental restoration is a transfer account controlled by the DOD. Usually in the case of...at an average just over 11 percent and the Marine Corps encircle the backend of the DOD portion of reprogramming with the Marine Corps reprogramming...blue force tracker (BFT), radio systems, high mobility multipurpose wheeled vehicle (HMMWV), medium tactical vehicle replacement (MTVR), and

  17. Mitochondrial-Associated Cell Death Mechanisms Are Reset to an Embryonic-Like State in Aged Donor-Derived iPS Cells Harboring Chromosomal Aberrations

    PubMed Central

    Prigione, Alessandro; Hossini, Amir M.; Lichtner, Björn; Serin, Akdes; Fauler, Beatrix; Megges, Matthias; Lurz, Rudi; Lehrach, Hans; Zouboulis, Christos C.

    2011-01-01

    Somatic cells reprogrammed into induced pluripotent stem cells (iPSCs) acquire features of human embryonic stem cells (hESCs) and thus represent a promising source for cellular therapy of debilitating diseases, such as age-related disorders. However, reprogrammed cell lines have been found to harbor various genomic alterations. In addition, we recently discovered that the mitochondrial DNA of human fibroblasts also undergoes random mutational events upon reprogramming. Aged somatic cells might possess high susceptibility to nuclear and mitochondrial genome instability. Hence, concerns over the oncogenic potential of reprogrammed cells due to the lack of genomic integrity may hinder the applicability of iPSC-based therapies for age-associated conditions. Here, we investigated whether aged reprogrammed cells harboring chromosomal abnormalities show resistance to apoptotic cell death or mitochondrial-associated oxidative stress, both hallmarks of cancer transformation. Four iPSC lines were generated from dermal fibroblasts derived from an 84-year-old woman, representing the oldest human donor so far reprogrammed to pluripotency. Despite the presence of karyotype aberrations, all aged-iPSCs were able to differentiate into neurons, re-establish telomerase activity, and reconfigure mitochondrial ultra-structure and functionality to a hESC-like state. Importantly, aged-iPSCs exhibited high sensitivity to drug-induced apoptosis and low levels of oxidative stress and DNA damage, in a similar fashion as iPSCs derived from young donors and hESCs. Thus, the occurrence of chromosomal abnormalities within aged reprogrammed cells might not be sufficient to over-ride the cellular surveillance machinery and induce malignant transformation through the alteration of mitochondrial-associated cell death. Taken together, we unveiled that cellular reprogramming is capable of reversing aging-related features in somatic cells from a very old subject, despite the presence of genomic

  18. Cooperative STAT/NF-κB signaling regulates lymphoma metabolic reprogramming and aberrant GOT2 expression.

    PubMed

    Feist, Maren; Schwarzfischer, Philipp; Heinrich, Paul; Sun, Xueni; Kemper, Judith; von Bonin, Frederike; Perez-Rubio, Paula; Taruttis, Franziska; Rehberg, Thorsten; Dettmer, Katja; Gronwald, Wolfram; Reinders, Jörg; Engelmann, Julia C; Dudek, Jan; Klapper, Wolfram; Trümper, Lorenz; Spang, Rainer; Oefner, Peter J; Kube, Dieter

    2018-04-17

    Knowledge of stromal factors that have a role in the transcriptional regulation of metabolic pathways aside from c-Myc is fundamental to improvements in lymphoma therapy. Using a MYC-inducible human B-cell line, we observed the cooperative activation of STAT3 and NF-κB by IL10 and CpG stimulation. We show that IL10 + CpG-mediated cell proliferation of MYC low cells depends on glutaminolysis. By 13 C- and 15 N-tracing of glutamine metabolism and metabolite rescue experiments, we demonstrate that GOT2 provides aspartate and nucleotides to cells with activated or aberrant Jak/STAT and NF-κB signaling. A model of GOT2 transcriptional regulation is proposed, in which the cooperative phosphorylation of STAT3 and direct joint binding of STAT3 and p65/NF-κB to the proximal GOT2 promoter are important. Furthermore, high aberrant GOT2 expression is prognostic in diffuse large B-cell lymphoma underscoring the current findings and importance of stromal factors in lymphoma biology.

  19. Epigenetic Alteration of Donor Cells with Histone Deacetylase Inhibitor m-Carboxycinnamic Acid Bishydroxymide Improves the In Vitro Developmental Competence of Buffalo (Bubalus bubalis) Cloned Embryos.

    PubMed

    Agrawal, Himanshu; Selokar, Naresh Lalaji; Saini, Monika; Singh, Manoj Kumar; Chauhan, Manmohan Singh; Palta, Prabhat; Singla, Suresh Kumar; Manik, Radhey Sham

    2018-02-01

    Epigenetic reprogramming is an indispensable process during the course of mammalian development, but aberrant in cloned embryos. The aim of this study was to examine the effect of donor cell treatment with histone deacetylase (HDAC) inhibitor m-carboxycinnamic acid bishydroxymide (CBHA) on cloned embryo development and establish its optimal concentration. Different concentrations of CBHA (2.5, 5.0, 10.0, and 20.0 μM) were used to treat buffalo adult fibroblast cells for 24 hours and effect on cell proliferation, gene expression, and histone modifications was analyzed. Based on these experiments, the best concentration was chosen to determine the effect of enhanced gene activation mark on developmental rates. Among the different concentrations, CBHA at higher concentration (20 μM) shows the sign of apoptosis and stress as indicated by proliferation rate and gene expression data. CBHA treatment significantly decreased the activity of HDACs and increased the level of gene activation mark H3K9ac and H3K4me3, but could not alter the level of H3K27ac. Based on these experiments, 5 μM CBHA was chosen for treatment of donor cells used for the production of cloned embryos. There was no significant difference in cleavage rate between the control and CBHA treatment group (98.5% ± 1.5% vs. 99.0% ± 1.0%), whereas, blastocyst rate markedly improved (46.65% ± 1.94% vs. 57.18% ± 2.68%). The level of H3K9ac and H3K27me3 did not differ significantly in cloned blastocyst produced from either control or CBHA-treated cells. Altogether, these results suggested that donor cell treatment with CBHA supports the reprogramming process and improves the cloned preimplantation development.

  20. Epigenetic: A missing paradigm in cellular and molecular pathways of sulfur mustard lung: a prospective and comparative study

    PubMed Central

    Imani, Saber; Panahi, Yunes; Salimian, Jafar; Fu, Junjiang; Ghanei, Mostafa

    2015-01-01

    Sulfur mustard (SM, bis- (2-chloroethyl) sulphide) is a chemical warfare agent that causes DNA alkylation, protein modification and membrane damage. SM can trigger several molecular pathways involved in inflammation and oxidative stress, which cause cell necrosis and apoptosis, and loss of cells integrity and function. Epigenetic regulation of gene expression is a growing research topic and is addressed by DNA methylation, histone modification, chromatin remodeling, and noncoding RNAs expression. It seems SM can induce the epigenetic modifications that are translated into change in gene expression. Classification of epigenetic modifications long after exposure to SM would clarify its mechanism and paves a better strategy for the treatment of SM-affected patients. In this study, we review the key aberrant epigenetic modifications that have important roles in chronic obstructive pulmonary disease (COPD) and compared with mustard lung. PMID:26557960

  1. Small molecule-induced cellular fate reprogramming: promising road leading to Rome.

    PubMed

    Li, Xiang; Xu, Jun; Deng, Hongkui

    2018-05-29

    Cellular fate reprogramming holds great promise to generate functional cell types for replenishing new cells and restoring functional loss. Inspired by transcription factor-induced reprogramming, the field of cellular reprogramming has greatly advanced and developed into divergent streams of reprogramming approaches. Remarkably, increasing studies have shown the power and advantages of small molecule-based approaches for cellular fate reprogramming, which could overcome the limitations of conventional transgenic-based reprogramming. In this concise review, we discuss these findings and highlight the future potentiality with particular focus on this new trend of chemical reprogramming. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Comprehensive analyses of imprinted differentially methylated regions reveal epigenetic and genetic characteristics in hepatoblastoma

    PubMed Central

    2013-01-01

    Background Aberrant methylation at imprinted differentially methylated regions (DMRs) in human 11p15.5 has been reported in many tumors including hepatoblastoma. However, the methylation status of imprinted DMRs in imprinted loci scattered through the human genome has not been analyzed yet in any tumors. Methods The methylation statuses of 33 imprinted DMRs were analyzed in 12 hepatoblastomas and adjacent normal liver tissue by MALDI-TOF MS and pyrosequencing. Uniparental disomy (UPD) and copy number abnormalities were investigated with DNA polymorphisms. Results Among 33 DMRs analyzed, 18 showed aberrant methylation in at least 1 tumor. There was large deviation in the incidence of aberrant methylation among the DMRs. KvDMR1 and IGF2-DMR0 were the most frequently hypomethylated DMRs. INPP5Fv2-DMR and RB1-DMR were hypermethylated with high frequencies. Hypomethylation was observed at certain DMRs not only in tumors but also in a small number of adjacent histologically normal liver tissue, whereas hypermethylation was observed only in tumor samples. The methylation levels of long interspersed nuclear element-1 (LINE-1) did not show large differences between tumor tissue and normal liver controls. Chromosomal abnormalities were also found in some tumors. 11p15.5 and 20q13.3 loci showed the frequent occurrence of both genetic and epigenetic alterations. Conclusions Our analyses revealed tumor-specific aberrant hypermethylation at some imprinted DMRs in 12 hepatoblastomas with additional suggestion for the possibility of hypomethylation prior to tumor development. Some loci showed both genetic and epigenetic alterations with high frequencies. These findings will aid in understanding the development of hepatoblastoma. PMID:24373183

  3. Concise review: reprogramming strategies for cardiovascular regenerative medicine: from induced pluripotent stem cells to direct reprogramming.

    PubMed

    Budniatzky, Inbar; Gepstein, Lior

    2014-04-01

    Myocardial cell-replacement therapies are emerging as novel therapeutic paradigms for myocardial repair but are hampered by the lack of sources of autologous human cardiomyocytes. The recent advances in stem cell biology and in transcription factor-based reprogramming strategies may provide exciting solutions to this problem. In the current review, we describe the different reprogramming strategies that can give rise to cardiomyocytes for regenerative medicine purposes. Initially, we describe induced pluripotent stem cell technology, a method by which adult somatic cells can be reprogrammed to yield pluripotent stem cells that could later be coaxed ex vivo to differentiate into cardiomyocytes. The generated induced pluripotent stem cell-derived cardiomyocytes could then be used for myocardial cell transplantation and tissue engineering strategies. We also describe the more recent direct reprogramming approaches that aim to directly convert the phenotype of one mature cell type (fibroblast) to another (cardiomyocyte) without going through a pluripotent intermediate cell type. The advantages and shortcomings of each strategy for cardiac regeneration are discussed, along with the hurdles that need to be overcome on the road to clinical translation.

  4. TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts.

    PubMed

    Bernstein, Diana L; Le Lay, John E; Ruano, Elena G; Kaestner, Klaus H

    2015-05-01

    Current strategies to alter disease-associated epigenetic modifications target ubiquitously expressed epigenetic regulators. This approach does not allow specific genes to be controlled in specific cell types; therefore, tools to selectively target epigenetic modifications in the desired cell type and strategies to more efficiently correct aberrant gene expression in disease are needed. Here, we have developed a method for directing DNA methylation to specific gene loci by conjugating catalytic domains of DNA methyltransferases (DNMTs) to engineered transcription activator-like effectors (TALEs). We demonstrated that these TALE-DNMTs direct DNA methylation specifically to the targeted gene locus in human cells. Further, we determined that minimizing direct nucleotide sequence repeats within the TALE moiety permits efficient lentivirus transduction, allowing easy targeting of primary cell types. Finally, we demonstrated that directed DNA methylation with a TALE-DNMT targeting the CDKN2A locus, which encodes the cyclin-dependent kinase inhibitor p16, decreased CDKN2A expression and increased replication of primary human fibroblasts, as intended. Moreover, overexpression of p16 in these cells reversed the proliferative phenotype, demonstrating the specificity of our epigenetic targeting. Together, our results demonstrate that TALE-DNMTs can selectively target specific genes and suggest that this strategy has potential application for the development of locus-specific epigenetic therapeutics.

  5. TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts

    PubMed Central

    Bernstein, Diana L.; Le Lay, John E.; Ruano, Elena G.; Kaestner, Klaus H.

    2015-01-01

    Current strategies to alter disease-associated epigenetic modifications target ubiquitously expressed epigenetic regulators. This approach does not allow specific genes to be controlled in specific cell types; therefore, tools to selectively target epigenetic modifications in the desired cell type and strategies to more efficiently correct aberrant gene expression in disease are needed. Here, we have developed a method for directing DNA methylation to specific gene loci by conjugating catalytic domains of DNA methyltransferases (DNMTs) to engineered transcription activator–like effectors (TALEs). We demonstrated that these TALE-DNMTs direct DNA methylation specifically to the targeted gene locus in human cells. Further, we determined that minimizing direct nucleotide sequence repeats within the TALE moiety permits efficient lentivirus transduction, allowing easy targeting of primary cell types. Finally, we demonstrated that directed DNA methylation with a TALE-DNMT targeting the CDKN2A locus, which encodes the cyclin-dependent kinase inhibitor p16, decreased CDKN2A expression and increased replication of primary human fibroblasts, as intended. Moreover, overexpression of p16 in these cells reversed the proliferative phenotype, demonstrating the specificity of our epigenetic targeting. Together, our results demonstrate that TALE-DNMTs can selectively target specific genes and suggest that this strategy has potential application for the development of locus-specific epigenetic therapeutics. PMID:25866970

  6. Testicular cancer from diagnosis to epigenetic factors

    PubMed Central

    Boccellino, Mariarosaria; Vanacore, Daniela; Zappavigna, Silvia; Cavaliere, Carla; Rossetti, Sabrina; D’Aniello, Carmine; Chieffi, Paolo; Amler, Evzen; Buonerba, Carlo; Di Lorenzo, Giuseppe; Di Franco, Rossella; Izzo, Alessandro; Piscitelli, Raffaele; Iovane, Gelsomina; Muto, Paolo; Botti, Gerardo; Perdonà, Sisto; Caraglia, Michele; Facchini, Gaetano

    2017-01-01

    Testicular cancer (TC) is one of the most common neoplasms that occurs in male and includes germ cell tumors (GCT), sex cord-gonadal stromal tumors and secondary testicular tumors. Diagnosis of TC involves the evaluation of serum tumor markers alpha-fetoprotein, human chorionic gonadotropin and lactate dehydrogenase, but clinically several types of immunohistochemical markers are more useful and more sensitive in GCT, but not in teratoma. These new biomarkers are genes expressed in primordial germ cells/gonocytes and embryonic pluripotency-related cells but not in normal adult germ cells and they include PLAP, OCT3/4 (POU5F1), NANOG, SOX2, REX1, AP-2γ (TFAP2C) and LIN28. Gene expression in GCT is regulated, at least in part, by DNA and histone modifications, and the epigenetic profile of these tumours is characterised by genome-wide demethylation. There are different epigenetic modifications in TG-subtypes that reflect the normal developmental switch in primordial germ cells from an under- to normally methylated genome. The main purpose of this review is to illustrate the findings of recent investigations in the classification of male genital organs, the discoveries in the use of prognostic and diagnostic markers and the epigenetic aberrations mainly affecting the patterns of DNA methylation/histone modifications of genes (especially tumor suppressors) and microRNAs (miRNAs). PMID:29262668

  7. Treatment of Donor Cells and Reconstructed Embryos with a Combination of Trichostatin-A and 5-aza-2'-Deoxycytidine Improves the Developmental Competence and Quality of Buffalo Embryos Produced by Handmade Cloning and Alters Their Epigenetic Status and Gene Expression.

    PubMed

    Saini, Monika; Selokar, Naresh L; Agrawal, Himanshu; Singla, Suresh Kumar; Chauhan, Manmohan Singh; Manik, Radheysham S; Palta, Prabhat

    2017-06-01

    The application of cloning technology on a large scale is limited by very low offspring rate primarily due to aberrant or incomplete epigenetic reprogramming. Trichostatin A (TSA), a histone deacetylase inhibitor, and 5-aza-2'-deoxycytidine (5-aza-dC), an inhibitor of DNA methyltransferases, are widely used for altering the epigenetic status of cloned embryos. We optimized the doses of these epigenetic modifiers for production of buffalo embryos by handmade cloning and examined whether combined treatment with these epigenetic modifiers offered any advantage over treatment with the individual epigenetic modifier. Irrespective of whether donor cells or reconstructed embryos or both were treated with 50 nM TSA +7.5 nM 5-aza-dC, (1) the blastocyst rate was significantly higher (71.6 ± 3.5, 68.3 ± 2.6, and 71.8 ± 2.4, respectively, vs. 43.1 ± 3.4 for controls, p < 0.05); (2) the apoptotic index was lower (5.4 ± 1.1, 9.5 ± 1.0, and 7.4 ± 1.3, respectively, vs. 19.5 ± 2.1 for controls, p < 0.05) and was similar to that of in vitro fertilization blastocysts (6.0 ± 0.8); (3) the global level of H3K18ac was higher (p < 0.01) and that of H3K27me3 lower (p < 0.05) than in controls and was similar among all treatment groups; and (4) the expression level of epigenetic-(HDAC1, DNMT1, and DNMT3a), pluripotency-(OCT4 and NANOG), and development-related (FGF4) genes, but not that of SOX2 and CDX2, was similar among all treatment groups. These results demonstrate that similar levels of beneficial effects can be obtained following treatment of either donor cells or reconstructed embryos or both with the combination of TSA +5-aza-dC. Therefore, there is no advantage in treating both donor cells and reconstructed embryos when the combination of TSA and 5-aza-dC is used.

  8. Epigenetic Reprogramming Strategies to Reverse Global Loss of 5-Hydroxymethylcytosine, a Prognostic Factor for Poor Survival in High-grade Serous Ovarian Cancer

    PubMed Central

    Tucker, Douglass W.; Getchell, Christopher R.; McCarthy, Eric T.; Ohman, Anders W.; Sasamoto, Naoko; Xu, Shuyun; Ko, Joo Yeon; Gupta, Mamta; Shafrir, Amy; Medina, Jamie E.; Lee, Jonathan J.; MacDonald, Lauren A.; Malik, Ammara; Hasselblatt, Kathleen T; Li, Wenjing; Zhang, Hong; Kaplan, Samuel J.; Murphy, George F.; Hirsch, Michelle S.; Liu, Joyce F.; Matulonis, Ursula A.; Terry, Kathryn L.; Lian, Christine G.; Dinulescu, Daniela M.

    2018-01-01

    Purpose A major challenge in platinum-based cancer therapy is the clinical management of chemoresistant tumors, which have a largely unknown pathogenesis at the level of epigenetic regulation. Experimental Design We evaluated the potential of using global loss of 5-hydroxymethylcytosine (5-hmC) levels as a novel diagnostic and prognostic epigenetic marker to better assess platinum-based chemotherapy response and clinical outcome in high-grade serous tumors (HGSOC), the most common and deadliest subtype of ovarian cancer. Furthermore, we identified a targetable pathway to reverse these epigenetic changes, both genetically and pharmacologically. Results This study shows that decreased 5-hmC levels are an epigenetic hallmark for malignancy and tumor progression in HGSOC. In addition, global 5-hmC loss is associated with a decreased response to platinum-based chemotherapy, shorter time to relapse, and poor overall survival in patients newly diagnosed with HGSOC. Interestingly, the rescue of 5-hmC loss restores sensitivity to platinum chemotherapy in vitro and in vivo, decreases the percentage of tumor cells with cancer stem cell markers, and increases overall survival in an aggressive animal model of platinum-resistant disease. Conclusions Consequently, a global analysis of patient 5-hmC levels should be included in future clinical trials, which use pretreatment with epigenetic adjuvants to elevate 5-hmC levels and improve the efficacy of current chemotherapies. Identifying prognostic epigenetic markers and altering chemotherapeutic regimens to incorporate DNMTi pretreatment in tumors with low 5-hmC levels could have important clinical implications for newly diagnosed HGSOC disease. PMID:29263182

  9. Advances in Reprogramming-Based Study of Neurologic Disorders

    PubMed Central

    Baldwin, Kristin K.

    2015-01-01

    The technology to convert adult human non-neural cells into neural lineages, through induced pluripotent stem cells (iPSCs), somatic cell nuclear transfer, and direct lineage reprogramming or transdifferentiation has progressed tremendously in recent years. Reprogramming-based approaches aimed at manipulating cellular identity have enormous potential for disease modeling, high-throughput drug screening, cell therapy, and personalized medicine. Human iPSC (hiPSC)-based cellular disease models have provided proof of principle evidence of the validity of this system. However, several challenges remain before patient-specific neurons produced by reprogramming can provide reliable insights into disease mechanisms or be efficiently applied to drug discovery and transplantation therapy. This review will first discuss limitations of currently available reprogramming-based methods in faithfully and reproducibly recapitulating disease pathology. Specifically, we will address issues such as culture heterogeneity, interline and inter-individual variability, and limitations of two-dimensional differentiation paradigms. Second, we will assess recent progress and the future prospects of reprogramming-based neurologic disease modeling. This includes three-dimensional disease modeling, advances in reprogramming technology, prescreening of hiPSCs and creating isogenic disease models using gene editing. PMID:25749371

  10. Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer

    PubMed Central

    Bultman, Scott J.

    2016-01-01

    Despite the success of colonoscopy screening, colorectal cancer (CRC) remains one of the most common and deadly cancers, and CRC incidence is rising in some countries where screening is not routine and populations have recently switched from traditional diets to western diets. Diet and energy balance influence CRC by multiple mechanisms. They modulate the composition and function of gut microbiota, which have a prodigious metabolic capacity and can produce oncometabolites or tumor-suppressive metabolites depending, in part, on which dietary factors and digestive components are present in the GI tract. Gut microbiota also have a profound effect on immune cells in the lamina propria, which influences inflammation and subsequently CRC. Nutrient availability, which is an outcome of diet and energy balance, determines the abundance of certain energy metabolites that are essential co-factors for epigenetic enzymes and therefore impinges upon epigenetic regulation of gene expression. Aberrant epigenetic marks accumulate during CRC, and epimutations that are selected for drive tumorigenesis by causing transcriptome profiles to diverge from the cell of origin. In some instances, the above mechanisms are intertwined as exemplified by dietary fiber being metabolized by colonic bacteria into butyrate, which is both a short-chain fatty acid (SCFA) and a histone deacetylase (HDAC) inhibitor that epigenetically upregulates tumor-suppressor genes in CRC cells and anti-inflammatory genes in immune cells. PMID:27138454

  11. DNA motifs associated with aberrant CpG island methylation.

    PubMed

    Feltus, F Alex; Lee, Eva K; Costello, Joseph F; Plass, Christoph; Vertino, Paula M

    2006-05-01

    Epigenetic silencing involving the aberrant methylation of promoter region CpG islands is widely recognized as a tumor suppressor silencing mechanism in cancer. However, the molecular pathways underlying aberrant DNA methylation remain elusive. Recently we showed that, on a genome-wide level, CpG island loci differ in their intrinsic susceptibility to aberrant methylation and that this susceptibility can be predicted based on underlying sequence context. These data suggest that there are sequence/structural features that contribute to the protection from or susceptibility to aberrant methylation. Here we use motif elicitation coupled with classification techniques to identify DNA sequence motifs that selectively define methylation-prone or methylation-resistant CpG islands. Motifs common to 28 methylation-prone or 47 methylation-resistant CpG island-containing genomic fragments were determined using the MEME and MAST algorithms (). The five most discriminatory motifs derived from methylation-prone sequences were found to be associated with CpG islands in general and were nonrandomly distributed throughout the genome. In contrast, the eight most discriminatory motifs derived from the methylation-resistant CpG islands were randomly distributed throughout the genome. Interestingly, this latter group tended to associate with Alu and other repetitive sequences. Used together, the frequency of occurrence of these motifs successfully discriminated methylation-prone and methylation-resistant CpG island groups with an accuracy of 87% after 10-fold cross-validation. The motifs identified here are candidate methylation-targeting or methylation-protection DNA sequences.

  12. Game theory in epigenetic reprogramming. Comment on: ;Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition; by Qian Wang et al.

    NASA Astrophysics Data System (ADS)

    Hsu, Fei-Man; Chen, Pao-Yang

    2017-03-01

    Von Neumann and Morgenstern published the Theory of Games and Economic Behavior in 1944, describing game theory as a model in which intelligent rational decision-makers manage to find their best strategies in conflict, cooperative or other mutualistic relationships to acquire the greatest benefit [1]. This model was subsequently incorporated in ecology to simulate the ;fitness; of a species during natural selection, designated evolutionary game theory (EGT) [2]. Wang et al. proposed ;epiGame;, taking paternal and maternal genomes as ;intelligent; players that compete, cooperate or both during embryogenesis to maximize the fitness of the embryo [3]. They further extended game theory to an individual or single cell environment. During early zygote development, DNA methylation is reprogrammed such that the paternal genome is demethylated before the maternal genome. After the reset, the blastocyst is re-methylated during embryogenesis. At that time, the paternal and maternal genomes have a conflict of interest related to the expression of their own genes. The proposed epiGame models such interactive regulation between the parental genomes to reach a balance for embryo development (equation (2)).

  13. Heterogeneity of osteosarcoma cell lines led to variable responses in reprogramming.

    PubMed

    Choong, Pei Feng; Teh, Hui Xin; Teoh, Hoon Koon; Ong, Han Kiat; Choo, Kong Bung; Sugii, Shigeki; Cheong, Soon Keng; Kamarul, Tunku

    2014-01-01

    Four osteosarcoma cell lines, Saos-2, MG-63, G-292 and U-2 OS, were reprogrammed to pluripotent state using Yamanaka factors retroviral transduction method. Embryonic stem cell (ESC)-like clusters started to appear between 15 to 20 days post transduction. Morphology of the colonies resembled that of ESC colonies with defined border and tightly-packed cells. The reprogrammed sarcomas expressed alkaline phosphatase and pluripotency markers, OCT4, SSEA4, TRA-1-60 and TRA-1-81, as in ESC up to Passage 15. All reprogrammed sarcomas could form embryoid body-like spheres when cultured in suspension in a low attachment dish for up to 10 days. Further testing on the directed differentiation capacity of the reprogrammed sarcomas showed all four reprogrammed sarcoma lines could differentiate into adipocytes while reprogrammed Saos-2-REP, MG-63-REP and G-292-REP could differentiate into osteocytes. Among the 4 osteosarcoma cell lines, U-2 OS reported the highest transduction efficiency but recorded the lowest reprogramming stability under long term culture. Thus, there may be intrinsic differences governing the variable responses of osteosarcoma cell lines towards reprogramming and long term culture effect of the reprogrammed cells. This is a first report to associate intrinsic factors in different osteosarcoma cell lines with variable reprogramming responses and effects on the reprogrammed cells after prolonged culture.

  14. Reprogramming Antagonizes the Oncogenicity of HOXA13-Long Noncoding RNA HOTTIP Axis in Gastric Cancer Cells.

    PubMed

    Wu, Deng-Chyang; Wang, Sophie S W; Liu, Chung-Jung; Wuputra, Kenly; Kato, Kohsuke; Lee, Yen-Liang; Lin, Ying-Chu; Tsai, Ming-Ho; Ku, Chia-Chen; Lin, Wen-Hsin; Wang, Shin-Wei; Kishikawa, Shotaro; Noguchi, Michiya; Wu, Chu-Chieh; Chen, Yi-Ting; Chai, Chee-Yin; Lin, Chen-Lung Steve; Kuo, Kung-Kai; Yang, Ya-Han; Miyoshi, Hiroyuki; Nakamura, Yukio; Saito, Shigeo; Nagata, Kyosuke; Lin, Chang-Shen; Yokoyama, Kazunari K

    2017-10-01

    Reprogramming of cancer cells into induced pluripotent stem cells (iPSCs) is a compelling idea for inhibiting oncogenesis, especially through modulation of homeobox proteins in this reprogramming process. We examined the role of various long noncoding RNAs (lncRNAs)-homeobox protein HOXA13 axis on the switching of the oncogenic function of bone morphogenetic protein 7 (BMP7), which is significantly lost in the gastric cancer cell derived iPS-like cells (iPSLCs). BMP7 promoter activation occurred through the corecruitment of HOXA13, mixed-lineage leukemia 1 lysine N-methyltransferase, WD repeat-containing protein 5, and lncRNA HoxA transcript at the distal tip (HOTTIP) to commit the epigenetic changes to the trimethylation of lysine 4 on histone H3 in cancer cells. By contrast, HOXA13 inhibited BMP7 expression in iPSLCs via the corecruitment of HOXA13, enhancer of zeste homolog 2, Jumonji and AT rich interactive domain 2, and lncRNA HoxA transcript antisense RNA (HOTAIR) to various cis-element of the BMP7 promoter. Knockdown experiments demonstrated that HOTTIP contributed positively, but HOTAIR regulated negatively to HOXA13-mediated BMP7 expression in cancer cells and iPSLCs, respectively. These findings indicate that the recruitment of HOXA13-HOTTIP and HOXA13-HOTAIR to different sites in the BMP7 promoter is crucial for the oncogenic fate of human gastric cells. Reprogramming with octamer-binding protein 4 and Jun dimerization protein 2 can inhibit tumorigenesis by switching off BMP7. Stem Cells 2017;35:2115-2128. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  15. Protein Arginine Methylation and Citrullination in Epigenetic Regulation

    PubMed Central

    2015-01-01

    The post-translational modification of arginine residues represents a key mechanism for the epigenetic control of gene expression. Aberrant levels of histone arginine modifications have been linked to the development of several diseases including cancer. In recent years, great progress has been made in understanding the physiological role of individual arginine modifications and their effects on chromatin function. The present review aims to summarize the structural and functional aspects of histone arginine modifying enzymes and their impact on gene transcription. We will discuss the potential for targeting these proteins with small molecules in a variety of disease states. PMID:26686581

  16. Epigenetic Effects of Environmental Chemicals Bisphenol A and Phthalates

    PubMed Central

    Singh, Sher; Li, Steven Shoei-Lung

    2012-01-01

    The epigenetic effects on DNA methylation, histone modification, and expression of non-coding RNAs (including microRNAs) of environmental chemicals such as bisphenol A (BPA) and phthalates have expanded our understanding of the etiology of human complex diseases such as cancers and diabetes. Multiple lines of evidence from in vitro and in vivo models have established that epigenetic modifications caused by in utero exposure to environmental toxicants can induce alterations in gene expression that may persist throughout life. Epigenetics is an important mechanism in the ability of environmental chemicals to influence health and disease, and BPA and phthalates are epigenetically toxic. The epigenetic effect of BPA was clearly demonstrated in viable yellow mice by decreasing CpG methylation upstream of the Agouti gene, and the hypomethylating effect of BPA was prevented by maternal dietary supplementation with a methyl donor like folic acid or the phytoestrogen genistein. Histone H3 was found to be trimethylated at lysine 27 by BPA effect on EZH2 in a human breast cancer cell line and mice. BPA exposure of human placental cell lines has been shown to alter microRNA expression levels, and specifically, miR-146a was strongly induced by BPA treatment. In human breast cancer MCF7 cells, treatment with the phthalate BBP led to demethylation of estrogen receptor (ESR1) promoter-associated CpG islands, indicating that altered ESR1 mRNA expression by BBP is due to aberrant DNA methylation. Maternal exposure to phthalate DEHP was also shown to increase DNA methylation and expression levels of DNA methyltransferases in mouse testis. Further, some epigenetic effects of BPA and phthalates in female rats were found to be transgenerational. Finally, the available new technologies for global analysis of epigenetic alterations will provide insight into the extent and patterns of alterations between human normal and diseased tissues. In vitro models such as human embryonic stem cells

  17. Epigenetic effects of environmental chemicals bisphenol A and phthalates.

    PubMed

    Singh, Sher; Li, Steven Shoei-Lung

    2012-01-01

    The epigenetic effects on DNA methylation, histone modification, and expression of non-coding RNAs (including microRNAs) of environmental chemicals such as bisphenol A (BPA) and phthalates have expanded our understanding of the etiology of human complex diseases such as cancers and diabetes. Multiple lines of evidence from in vitro and in vivo models have established that epigenetic modifications caused by in utero exposure to environmental toxicants can induce alterations in gene expression that may persist throughout life. Epigenetics is an important mechanism in the ability of environmental chemicals to influence health and disease, and BPA and phthalates are epigenetically toxic. The epigenetic effect of BPA was clearly demonstrated in viable yellow mice by decreasing CpG methylation upstream of the Agouti gene, and the hypomethylating effect of BPA was prevented by maternal dietary supplementation with a methyl donor like folic acid or the phytoestrogen genistein. Histone H3 was found to be trimethylated at lysine 27 by BPA effect on EZH2 in a human breast cancer cell line and mice. BPA exposure of human placental cell lines has been shown to alter microRNA expression levels, and specifically, miR-146a was strongly induced by BPA treatment. In human breast cancer MCF7 cells, treatment with the phthalate BBP led to demethylation of estrogen receptor (ESR1) promoter-associated CpG islands, indicating that altered ESR1 mRNA expression by BBP is due to aberrant DNA methylation. Maternal exposure to phthalate DEHP was also shown to increase DNA methylation and expression levels of DNA methyltransferases in mouse testis. Further, some epigenetic effects of BPA and phthalates in female rats were found to be transgenerational. Finally, the available new technologies for global analysis of epigenetic alterations will provide insight into the extent and patterns of alterations between human normal and diseased tissues. In vitro models such as human embryonic stem cells

  18. Direct Reprogramming of Murine Fibroblasts to Hematopoietic Progenitor Cells

    PubMed Central

    Batta, Kiran; Florkowska, Magdalena; Kouskoff, Valerie; Lacaud, Georges

    2014-01-01

    Summary Recent reports have shown that somatic cells, under appropriate culture conditions, could be directly reprogrammed to cardiac, hepatic, or neuronal phenotype by lineage-specific transcription factors. In this study, we demonstrate that both embryonic and adult somatic fibroblasts can be efficiently reprogrammed to clonal multilineage hematopoietic progenitors by the ectopic expression of the transcription factors ERG, GATA2, LMO2, RUNX1c, and SCL. These reprogrammed cells were stably expanded on stromal cells and possessed short-term reconstitution ability in vivo. Loss of p53 function facilitated reprogramming to blood, and p53−/− reprogrammed cells efficiently generated erythroid, megakaryocytic, myeloid, and lymphoid lineages. Genome-wide analyses revealed that generation of hematopoietic progenitors was preceded by the appearance of hemogenic endothelial cells expressing endothelial and hematopoietic genes. Altogether, our findings suggest that direct reprogramming could represent a valid alternative approach to the differentiation of embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) for disease modeling and autologous blood cell therapies. PMID:25466247

  19. Somatic cell reprogramming informed by the oocyte.

    PubMed

    Gonzalez-Munoz, Elena; Cibelli, Jose B

    2018-05-08

    The successful production of animals and embryonic stem cells (ESCs) using somatic cell nuclear transfer (SCNT) has demonstrated the unmatched nuclear reprogramming capacity of the oocyte and helped prove the degree of plasticity of differentiated cells. The introduction of transcription factors to generate induced pluripotent stem cells (iPSCs) displaced SCNT and, due to its ease of implementation, became the method of choice for cell reprogramming. Nonetheless, iPSC derivation remains inefficient and stochastic. This review article focuses on using the oocyte as a source of reprogramming factors, comparing the SCNT and iPSC mechanisms for remodeling chromatin and acquiring pluripotency.

  20. Hotspots of aberrant enhancer activity punctuate the colorectal cancer epigenome

    PubMed Central

    Cohen, Andrea J.; Saiakhova, Alina; Corradin, Olivia; Luppino, Jennifer M.; Lovrenert, Katreya; Bartels, Cynthia F.; Morrow, James J.; Mack, Stephen C.; Dhillon, Gursimran; Beard, Lydia; Myeroff, Lois; Kalady, Matthew F.; Willis, Joseph; Bradner, James E.; Keri, Ruth A.; Berger, Nathan A.; Pruett-Miller, Shondra M.; Markowitz, Sanford D.; Scacheri, Peter C.

    2017-01-01

    In addition to mutations in genes, aberrant enhancer element activity at non-coding regions of the genome is a key driver of tumorigenesis. Here, we perform epigenomic enhancer profiling of a cohort of more than forty genetically diverse human colorectal cancer (CRC) specimens. Using normal colonic crypt epithelium as a comparator, we identify enhancers with recurrently gained or lost activity across CRC specimens. Of the enhancers highly recurrently activated in CRC, most are constituents of super enhancers, are occupied by AP-1 and cohesin complex members, and originate from primed chromatin. Many activate known oncogenes, and CRC growth can be mitigated through pharmacologic inhibition or genome editing of these loci. Nearly half of all GWAS CRC risk loci co-localize to recurrently activated enhancers. These findings indicate that the CRC epigenome is defined by highly recurrent epigenetic alterations at enhancers which activate a common, aberrant transcriptional programme critical for CRC growth and survival. PMID:28169291

  1. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review

    PubMed Central

    Chappell, Grace; Pogribny, Igor P.; Guyton, Kathryn Z.; Rusyn, Ivan

    2016-01-01

    Accumulating evidence suggests that epigenetic alterations play an important role in chemically-induced carcinogenesis. Although the epigenome and genome may be equally important in carcinogenicity, the genotoxicity of chemical agents and exposure-related transcriptomic responses have been more thoroughly studied and characterized. To better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints. Specifically, we searched for publications reporting epigenetic effects for the 28 agents and occupations included in Monograph Volume 100F of the International Agency for the Research on Cancer (IARC) that were classified as “carcinogenic to humans” (Group 1) with strong evidence of genotoxic mechanisms of carcinogenesis. We identified a total of 158 studies that evaluated epigenetic alterations for 12 of these 28 carcinogenic agents and occupations (1,3-butadiene, 4-aminobiphenyl, aflatoxins, benzene, benzidine, benzo[a]pyrene, coke production, formaldehyde, occupational exposure as a painter, sulfur mustard, and vinyl chloride). Aberrant DNA methylation was most commonly studied, followed by altered expression of non-coding RNAs and histone changes (totaling 85, 59 and 25 studies, respectively). For 3 carcinogens (aflatoxins, benzene and benzo[a]pyrene), 10 or more studies reported epigenetic effects. However, epigenetic studies were sparse for the remaining 9 carcinogens; for 4 agents, only 1 or 2 published reports were identified. While further research is needed to better identify carcinogenesis-associated epigenetic perturbations for many potential carcinogens, published reports on specific epigenetic endpoints can be systematically identified and increasingly incorporated in cancer hazard assessments. PMID:27234561

  2. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review.

    PubMed

    Chappell, Grace; Pogribny, Igor P; Guyton, Kathryn Z; Rusyn, Ivan

    2016-01-01

    Accumulating evidence suggests that epigenetic alterations play an important role in chemically-induced carcinogenesis. Although the epigenome and genome may be equally important in carcinogenicity, the genotoxicity of chemical agents and exposure-related transcriptomic responses have been more thoroughly studied and characterized. To better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints. Specifically, we searched for publications reporting epigenetic effects for the 28 agents and occupations included in Monograph Volume 100F of the International Agency for the Research on Cancer (IARC) that were classified as "carcinogenic to humans" (Group 1) with strong evidence of genotoxic mechanisms of carcinogenesis. We identified a total of 158 studies that evaluated epigenetic alterations for 12 of these 28 carcinogenic agents and occupations (1,3-butadiene, 4-aminobiphenyl, aflatoxins, benzene, benzidine, benzo[a]pyrene, coke production, formaldehyde, occupational exposure as a painter, sulfur mustard, and vinyl chloride). Aberrant DNA methylation was most commonly studied, followed by altered expression of non-coding RNAs and histone changes (totaling 85, 59 and 25 studies, respectively). For 3 carcinogens (aflatoxins, benzene and benzo[a]pyrene), 10 or more studies reported epigenetic effects. However, epigenetic studies were sparse for the remaining 9 carcinogens; for 4 agents, only 1 or 2 published reports were identified. While further research is needed to better identify carcinogenesis-associated epigenetic perturbations for many potential carcinogens, published reports on specific epigenetic endpoints can be systematically identified and increasingly incorporated in cancer hazard assessments. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. AIM1 and LINE-1 Epigenetic Aberrations In Tumor and Serum Relate to Melanoma Progression and Disease Outcome

    PubMed Central

    Hoshimoto, Sojun; Kuo, Christine; Chong, Kelly; Takeshima, Ling; Takei, Yoshiki; Li, Michelle; Huang, Sharon; Sim, Myung-Shin; Morton, Donald L.; Hoon, Dave S.B.

    2012-01-01

    Aberrations in the methylation status of non-coding genomic repeat DNA sequences and specific gene promoter region are important epigenetic events in melanoma progression. Promoter methylation status in LINE-1 and Absent in melanoma-1(AIM1;6q21) associated with melanoma progression and disease outcome was assessed. LINE-1 and AIM1 methylation status was assessed in paraffin-embedded archival tissues(PEAT)(n=133) and melanoma patients’ serum(n=56). LINE-1 U-Index(hypomethylation) and AIM1 were analyzed in microdissected melanoma PEAT sections. The LINE-1 U-Index of melanoma(n=100) was significantly higher than that of normal skin(n=14) and nevi(n=12)(P=0.0004). LINE-1 U-Index level was elevated with increasing AJCC stage(P<0.0001). AIM1 promoter hypermethylation was found in higher frequency(P=0.005) in metastatic melanoma(65%) than in primary melanomas(38%). When analyzed, high LINE-1 U-Index and/or AIM1 methylation in melanomas were associated with disease-free survival(DFS) and overall survival(OS) in Stage I/II patients (P=0.017, 0.027; respectively). In multivariate analysis, melanoma AIM1 methylation status was a significant prognostic factor of OS(P=0.032). Furthermore, serum unmethylated LINE-1 was at higher levels in both stage III(n=20) and stage IV(n=36) patients compared to healthy donors(n=14)(P=0.022). Circulating methylated AIM1 was detected in patients’ serum and was predictive of OS in Stage IV patients (P=0.009). LINE-1 hypomethylation and AIM1 hypermethylation have prognostic utility in both melanoma patients’ tumors and serum. PMID:22402438

  4. Anakoinosis: Communicative Reprogramming of Tumor Systems - for Rescuing from Chemorefractory Neoplasia.

    PubMed

    Hart, Christina; Vogelhuber, Martin; Wolff, Daniel; Klobuch, Sebastian; Ghibelli, Lina; Foell, Jürgen; Corbacioglu, Selim; Rehe, Klaus; Haegeman, Guy; Thomas, Simone; Herr, Wolfgang; Reichle, Albrecht

    2015-08-01

    Disruptive technologies, such as communicative reprogramming (anakoinosis) with cellular therapies in situ for treating refractory metastatic cancer allow patient care to accelerate along a totally new trajectory and highlight what may well become the next sea change in the care of patients with many types of advanced neoplasia. Cellular therapy in situ consisted of repurposed drugs, pioglitazone plus all-trans retinoic acid or dexamethasone or interferon-alpha (dual transcriptional modulation) combined with metronomic low-dose chemotherapy or low-dose 5-azacytidine, plus/minus classic targeted therapy. The novel therapeutic tools for specifically designing communication processes within tumor diseases focus on redirecting (1) rationalizations of cancer hallmarks (constitution of single cancer hallmarks), (2) modular events, (3) the 'metabolism' of evolutionary processes (the sum of therapeutically and intrinsically inducible evolutionary processes) and (4) the holistic communicative context, which determines validity and denotation of tumor promoting communication lines. Published data on cellular therapies in situ (6 histologic tumor types, 144 patients, age 0.9-83 years) in castration-resistant prostate cancer, pretreated renal clear cell carcinoma, chemorefractory acute myelocytic leukemia, multiple myeloma > second-line, chemorefractory Hodgkin lymphoma or multivisceral Langerhans cell histiocytosis, outline the possibility for treating refractory metastatic cancer with the hope that this type of reprogrammed communication will be scalable with minimal toxicity. Accessibility to anakoinosis is a tumor inherent feature, and cellular therapy in situ addresses extrinsic and intrinsic drug resistance, by redirecting convergent organized communication tools, while been supported by quite different pattern of (molecular-)genetic aberrations.

  5. Vectorology and Factor Delivery in Induced Pluripotent Stem Cell Reprogramming

    PubMed Central

    2014-01-01

    Induced pluripotent stem cell (iPSC) reprogramming requires sustained expression of multiple reprogramming factors for a limited period of time (10–30 days). Conventional iPSC reprogramming was achieved using lentiviral or simple retroviral vectors. Retroviral reprogramming has flaws of insertional mutagenesis, uncontrolled silencing, residual expression and re-activation of transgenes, and immunogenicity. To overcome these issues, various technologies were explored, including adenoviral vectors, protein transduction, RNA transfection, minicircle DNA, excisable PiggyBac (PB) transposon, Cre-lox excision system, negative-sense RNA replicon, positive-sense RNA replicon, Epstein-Barr virus-based episomal plasmids, and repeated transfections of plasmids. This review provides summaries of the main vectorologies and factor delivery systems used in current reprogramming protocols. PMID:24625220

  6. Metabostemness: a new cancer hallmark.

    PubMed

    Menendez, Javier A; Alarcón, Tomás

    2014-01-01

    The acquisition of and departure from stemness in cancer tissues might not only be hardwired by genetic controllers, but also by the pivotal regulatory role of the cellular metabotype, which may act as a "starter dough" for cancer stemness traits. We have coined the term metabostemness to refer to the metabolic parameters causally controlling or functionally substituting the epitranscriptional orchestration of the genetic reprograming that redirects normal and tumor cells toward less-differentiated cancer stem cell (CSC) cellular states. Certain metabotypic alterations might operate as pivotal molecular events rendering a cell of origin susceptible to epigenetic rewiring required for the acquisition of aberrant stemness and, concurrently, of refractoriness to differentiation. The metabostemness attribute can remove, diminish, or modify the nature of molecular barriers present in Waddington's epigenetic landscapes, thus allowing differentiated cells to more easily (re)-enter into CSC cellular macrostates. Activation of the metabostemness trait can poise cells with chromatin states competent for rapid dedifferentiation while concomitantly setting the idoneous metabolic stage for later reprograming stimuli to finish the journey from non-cancerous into tumor-initiating cells. Because only a few permitted metabotypes will be compatible with the operational properties owned by CSC cellular states, the metabostemness property provides a new framework through which to pharmacologically resolve the apparently impossible problem of discovering drugs aimed to target the molecular biology of the cancer stemness itself. The metabostemness cancer hallmark generates a shifting oncology theory that should guide a new era of metabolo-epigenetic cancer precision medicine.

  7. Artificial acceleration of mammalian cell reprogramming by bacterial proteins.

    PubMed

    Ikeda, Takashi; Uchiyama, Ikuo; Iwasaki, Mio; Sasaki, Tetsuhiko; Nakagawa, Masato; Okita, Keisuke; Masui, Shinji

    2017-10-01

    The molecular mechanisms of cell reprogramming and differentiation involve various signaling factors. Small molecule compounds have been identified to artificially influence these factors through interacting cellular proteins. Although such small molecule compounds are useful to enhance reprogramming and differentiation and to show the mechanisms that underlie these events, the screening usually requires a large number of compounds to identify only a very small number of hits (e.g., one hit among several tens of thousands of compounds). Here, we show a proof of concept that xenospecific gene products can affect the efficiency of cell reprogramming to pluripotency. Thirty genes specific for the bacterium Wolbachia pipientis were forcibly expressed individually along with reprogramming factors (Oct4, Sox2, Klf4 and c-Myc) that can generate induced pluripotent stem cells in mammalian cells, and eight were found to affect the reprogramming efficiency either positively or negatively (hit rate 26.7%). Mechanistic analysis suggested one of these proteins interacted with cytoskeleton to promote reprogramming. Our results raise the possibility that xenospecific gene products provide an alternative way to study the regulatory mechanism of cell identity. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  8. Deoxynivalenol exposure induces autophagy/apoptosis and epigenetic modification changes during porcine oocyte maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jun; Wang, Qiao-Chu; Zhu, Cheng-Cheng

    Deoxynivalenol (DON) is a widespread trichothecene mycotoxin which contaminates agricultural staples and elicits a complex spectrum of toxic effects on humans and animals. It has been shown that DON impairs oocyte maturation, reproductive function and causes abnormal fetal development in mammals; however, the mechanisms remain unclear. In the present study, we investigate the possible reasons of the toxic effects of DON on porcine oocytes. Our results showed that DON significantly inhibited porcine oocyte maturation and disrupted meiotic spindle by reducing p-MAPK protein level, which caused retardation of cell cycle progression. In addition, up-regulated LC3 protein expression and aberrant Lamp2, LC3more » and mTOR mRNA levels were observed with DON exposure, together with Annexin V-FITC staining assay analysis, these results indicated that DON treatment induced autophagy/apoptosis in porcine oocytes. We also showed that DON exposure increased DNA methylation level in porcine oocytes through altering DNMT3A mRNA levels. Histone methylation levels were also changed showing with increased H3K27me3 and H3K4me2 protein levels, and mRNA levels of their relative methyltransferase genes, indicating that epigenetic modifications were affected. Taken together, our results suggested that DON exposure reduced porcine oocytes maturation capability through affecting cytoskeletal dynamics, cell cycle, autophagy/apoptosis and epigenetic modifications. - Highlights: • DON exposure disrupted meiotic spindle by reducing p-MAPK expression. • DON exposure caused retardation of cell cycle progression in porcine oocytes. • DON triggered autophagy and early-apoptosis in porcine oocytes. • DON exposure led to aberrant epigenetic modifications in porcine oocytes.« less

  9. Therapeutic cloning and cellular reprogramming.

    PubMed

    Rodriguez, Ramon M; Ross, Pablo J; Cibelli, Jose B

    2012-01-01

    Embryonic stem cells are capable of differentiating into any cell-type present in an adult organism, and constitute a renewable source of tissue for regenerative therapies. The transplant of allogenic stem cells is challenging due to the risk of immune rejection. Nevertheless, somatic cell reprogramming techniques allow the generation of isogenic embryonic stem cells, genetically identical to the patient. In this chapter we will discuss the cellular reprogramming techniques in the context of regenerative therapy and the biological and technical barriers that they will need to overcome before clinical use.

  10. Epigenetics of Huntington's Disease.

    PubMed

    Bassi, Silvia; Tripathi, Takshashila; Monziani, Alan; Di Leva, Francesca; Biagioli, Marta

    2017-01-01

    Huntington's disease (HD) is a genetic, fatal autosomal dominant neurodegenerative disorder typically occurring in midlife with symptoms ranging from chorea, to dementia, to personality disturbances (Philos Trans R Soc Lond Ser B Biol Sci 354:957-961, 1999). HD is inherited in a dominant fashion, and the underlying mutation in all cases is a CAG trinucleotide repeat expansion within exon 1 of the HD gene (Cell 72:971-983, 1993). The expanded CAG repeat, translated into a lengthened glutamine tract at the amino terminus of the huntingtin protein, affects its structural properties and functional activities. The effects are pleiotropic, as huntingtin is broadly expressed in different cellular compartments (i.e., cytosol, nucleus, mitochondria) as well as in all cell types of the body at all developmental stages, such that HD pathogenesis likely starts at conception and is a lifelong process (Front Neurosci 9:509, 2015). The rate-limiting mechanism(s) of neurodegeneration in HD still remains elusive: many different processes are commonly disrupted in HD cell lines and animal models, as well as in HD patient cells (Eur J Neurosci 27:2803-2820, 2008); however, epigenetic-chromatin deregulation, as determined by the analysis of DNA methylation, histone modifications, and noncoding RNAs, has now become a prevailing feature. Thus, the overarching goal of this chapter is to discuss the current status of the literature, reviewing how an aberrant epigenetic landscape can contribute to altered gene expression and neuronal dysfunction in HD.

  11. Multigenerational epigenetic adaptation of the hepatic wound-healing response.

    PubMed

    Zeybel, Müjdat; Hardy, Timothy; Wong, Yi K; Mathers, John C; Fox, Christopher R; Gackowska, Agata; Oakley, Fiona; Burt, Alastair D; Wilson, Caroline L; Anstee, Quentin M; Barter, Matt J; Masson, Steven; Elsharkawy, Ahmed M; Mann, Derek A; Mann, Jelena

    2012-09-01

    We investigated whether ancestral liver damage leads to heritable reprogramming of hepatic wound healing in male rats. We found that a history of liver damage corresponds with transmission of an epigenetic suppressive adaptation of the fibrogenic component of wound healing to the male F1 and F2 generations. Underlying this adaptation was less generation of liver myofibroblasts, higher hepatic expression of the antifibrogenic factor peroxisome proliferator-activated receptor γ (PPAR-γ) and lower expression of the profibrogenic factor transforming growth factor β1 (TGF-β1) compared to rats without this adaptation. Remodeling of DNA methylation and histone acetylation underpinned these alterations in gene expression. Sperm from rats with liver fibrosis were enriched for the histone variant H2A.Z and trimethylation of histone H3 at Lys27 (H3K27me3) at PPAR-γ chromatin. These modifications to the sperm chromatin were transmittable by adaptive serum transfer from fibrotic rats to naive rats and similar modifications were induced in mesenchymal stem cells exposed to conditioned media from cultured rat or human myofibroblasts. Thus, it is probable that a myofibroblast-secreted soluble factor stimulates heritable epigenetic signatures in sperm so that the resulting offspring better adapt to future fibrogenic hepatic insults. Adding possible relevance to humans, we found that people with mild liver fibrosis have hypomethylation of the PPARG promoter compared to others with severe fibrosis.

  12. Multi-step aberrant CpG island hyper-methylation is associated with the progression of adult T-cell leukemia/lymphoma.

    PubMed

    Sato, Hiaki; Oka, Takashi; Shinnou, Yoko; Kondo, Takami; Washio, Kana; Takano, Masayuki; Takata, Katsuyoshi; Morito, Toshiaki; Huang, Xingang; Tamura, Maiko; Kitamura, Yuta; Ohara, Nobuya; Ouchida, Mamoru; Ohshima, Koichi; Shimizu, Kenji; Tanimoto, Mitsune; Takahashi, Kiyoshi; Matsuoka, Masao; Utsunomiya, Atae; Yoshino, Tadashi

    2010-01-01

    Aberrant CpG island methylation contributes to the pathogenesis of various malignancies. However, little is known about the association of epigenetic abnormalities with multistep tumorigenic events in adult T cell leukemia/lymphoma (ATLL). To determine whether epigenetic abnormalities induce the progression of ATLL, we analyzed the methylation profiles of the SHP1, p15, p16, p73, HCAD, DAPK, hMLH-1, and MGMT genes by methylation specific PCR assay in 65 cases with ATLL patients. The number of CpG island methylated genes increased with disease progression and aberrant hypermethylation in specific genes was detected even in HTLV-1 carriers and correlated with progression to ATLL. The CpG island methylator phenotype (CIMP) was observed most frequently in lymphoma type ATLL and was also closely associated with the progression and crisis of ATLL. The high number of methylated genes and increase of CIMP incidence were shown to be unfavorable prognostic factors and correlated with a shorter overall survival by Kaplan-Meyer analysis. The present findings strongly suggest that the multistep accumulation of aberrant CpG methylation in specific target genes and the presence of CIMP are deeply involved in the crisis, progression, and prognosis of ATLL, as well as indicate the value of CpG methylation and CIMP for new diagnostic and prognostic biomarkers.

  13. Multi-Step Aberrant CpG Island Hyper-Methylation Is Associated with the Progression of Adult T–Cell Leukemia/Lymphoma

    PubMed Central

    Sato, Hiaki; Oka, Takashi; Shinnou, Yoko; Kondo, Takami; Washio, Kana; Takano, Masayuki; Takata, Katsuyoshi; Morito, Toshiaki; Huang, Xingang; Tamura, Maiko; Kitamura, Yuta; Ohara, Nobuya; Ouchida, Mamoru; Ohshima, Koichi; Shimizu, Kenji; Tanimoto, Mitsune; Takahashi, Kiyoshi; Matsuoka, Masao; Utsunomiya, Atae; Yoshino, Tadashi

    2010-01-01

    Aberrant CpG island methylation contributes to the pathogenesis of various malignancies. However, little is known about the association of epigenetic abnormalities with multistep tumorigenic events in adult T cell leukemia/lymphoma (ATLL). To determine whether epigenetic abnormalities induce the progression of ATLL, we analyzed the methylation profiles of the SHP1, p15, p16, p73, HCAD, DAPK, hMLH-1, and MGMT genes by methylation specific PCR assay in 65 cases with ATLL patients. The number of CpG island methylated genes increased with disease progression and aberrant hypermethylation in specific genes was detected even in HTLV-1 carriers and correlated with progression to ATLL. The CpG island methylator phenotype (CIMP) was observed most frequently in lymphoma type ATLL and was also closely associated with the progression and crisis of ATLL. The high number of methylated genes and increase of CIMP incidence were shown to be unfavorable prognostic factors and correlated with a shorter overall survival by Kaplan-Meyer analysis. The present findings strongly suggest that the multistep accumulation of aberrant CpG methylation in specific target genes and the presence of CIMP are deeply involved in the crisis, progression, and prognosis of ATLL, as well as indicate the value of CpG methylation and CIMP for new diagnostic and prognostic biomarkers. PMID:20019193

  14. Predicting aberrant CpG island methylation

    PubMed Central

    Feltus, F. A.; Lee, E. K.; Costello, J. F.; Plass, C.; Vertino, P. M.

    2003-01-01

    Epigenetic silencing associated with aberrant methylation of promoter region CpG islands is one mechanism leading to loss of tumor suppressor function in human cancer. Profiling of CpG island methylation indicates that some genes are more frequently methylated than others, and that each tumor type is associated with a unique set of methylated genes. However, little is known about why certain genes succumb to this aberrant event. To address this question, we used Restriction Landmark Genome Scanning to analyze the susceptibility of 1,749 unselected CpG islands to de novo methylation driven by overexpression of DNA cytosine-5-methyltransferase 1 (DNMT1). We found that although the overall incidence of CpG island methylation was increased in cells overexpressing DNMT1, not all loci were equally affected. The majority of CpG islands (69.9%) were resistant to de novo methylation, regardless of DNMT1 overexpression. In contrast, we identified a subset of methylation-prone CpG islands (3.8%) that were consistently hypermethylated in multiple DNMT1 overexpressing clones. Methylation-prone and methylation-resistant CpG islands were not significantly different with respect to size, C+G content, CpG frequency, chromosomal location, or promoter association. We used DNA pattern recognition and supervised learning techniques to derive a classification function based on the frequency of seven novel sequence patterns that was capable of discriminating methylation-prone from methylation-resistant CpG islands with 82% accuracy. The data indicate that CpG islands differ in their intrinsic susceptibility to de novo methylation, and suggest that the propensity for a CpG island to become aberrantly methylated can be predicted based on its sequence context. PMID:14519846

  15. Predicting aberrant CpG island methylation.

    PubMed

    Feltus, F A; Lee, E K; Costello, J F; Plass, C; Vertino, P M

    2003-10-14

    Epigenetic silencing associated with aberrant methylation of promoter region CpG islands is one mechanism leading to loss of tumor suppressor function in human cancer. Profiling of CpG island methylation indicates that some genes are more frequently methylated than others, and that each tumor type is associated with a unique set of methylated genes. However, little is known about why certain genes succumb to this aberrant event. To address this question, we used Restriction Landmark Genome Scanning to analyze the susceptibility of 1,749 unselected CpG islands to de novo methylation driven by overexpression of DNA cytosine-5-methyltransferase 1 (DNMT1). We found that although the overall incidence of CpG island methylation was increased in cells overexpressing DNMT1, not all loci were equally affected. The majority of CpG islands (69.9%) were resistant to de novo methylation, regardless of DNMT1 overexpression. In contrast, we identified a subset of methylation-prone CpG islands (3.8%) that were consistently hypermethylated in multiple DNMT1 overexpressing clones. Methylation-prone and methylation-resistant CpG islands were not significantly different with respect to size, C+G content, CpG frequency, chromosomal location, or promoter association. We used DNA pattern recognition and supervised learning techniques to derive a classification function based on the frequency of seven novel sequence patterns that was capable of discriminating methylation-prone from methylation-resistant CpG islands with 82% accuracy. The data indicate that CpG islands differ in their intrinsic susceptibility to de novo methylation, and suggest that the propensity for a CpG island to become aberrantly methylated can be predicted based on its sequence context.

  16. Epigenetic regulator RBP2 is critical for breast cancer progression and metastasis

    PubMed Central

    Cao, Jian; Liu, Zongzhi; Cheung, William K.C.; Zhao, Minghui; Chen, Sophia Y.; Chan, Siew Wee; Booth, Carmen J.; Nguyen, Don X.; Yan, Qin

    2014-01-01

    Summary Metastasis is a major clinical challenge for cancer treatment. Emerging evidence suggests that epigenetic aberrations contribute significantly to tumor formation and progression. However, the drivers and roles of such epigenetic changes in tumor metastasis are still poorly understood. Using bioinformatic analysis of human breast cancer gene expression datasets, we identified histone demethylase RBP2 as a putative mediator of metastatic progression. By using both human breast cancer cells and genetically engineered mice, we demonstrated that RBP2 is critical for breast cancer metastasis to the lung in multiple in vivo models. Mechanistically, RBP2 promotes metastasis as a pleiotropic positive regulator of many metastasis genes. In addition, RBP2 loss suppresses tumor formation in the MMTV-neu transgenic mice. These results suggest that therapeutically targeting RBP2 is a potential strategy to inhibit tumor progression and metastasis. PMID:24582965

  17. Epigenetic modulation of dental pulp stem cells: implications for regenerative endodontics.

    PubMed

    Duncan, H F; Smith, A J; Fleming, G J P; Cooper, P R

    2016-05-01

    Dental pulp stem cells (DPSCs) offer significant potential for use in regenerative endodontics, and therefore, identifying cellular regulators that control stem cell fate is critical to devising novel treatment strategies. Stem cell lineage commitment and differentiation are regulated by an intricate range of host and environmental factors of which epigenetic influence is considered vital. Epigenetic modification of DNA and DNA-associated histone proteins has been demonstrated to control cell phenotype and regulate the renewal and pluripotency of stem cell populations. The activities of the nuclear enzymes, histone deacetylases, are increasingly being recognized as potential targets for pharmacologically inducing stem cell differentiation and dedifferentiation. Depending on cell maturity and niche in vitro, low concentration histone deacetylase inhibitor (HDACi) application can promote dedifferentiation of several post-natal and mouse embryonic stem cell populations and conversely increase differentiation and accelerate mineralization in DPSC populations, whilst animal studies have shown an HDACi-induced increase in stem cell marker expression during organ regeneration. Notably, both HDAC and DNA methyltransferase inhibitors have also been demonstrated to dramatically increase the reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) for use in regenerative therapeutic procedures. As the regulation of cell fate will likely remain the subject of intense future research activity, this review aims to describe the current knowledge relating to stem cell epigenetic modification, focusing on the role of HDACi on alteration of DPSC phenotype, whilst presenting the potential for therapeutic application as part of regenerative endodontic regimens. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  18. Non-stochastic reprogramming from a privileged somatic cell state

    PubMed Central

    Guo, Shangqin; Zi, Xiaoyuan; Schulz, Vincent P.; Cheng, Jijun; Zhong, Mei; Koochaki, Sebastian H.J.; Megyola, Cynthia M.; Pan, Xinghua; Heydari, Kartoosh; Weissman, Sherman M.; Gallagher, Patrick G.; Krause, Diane S.; Fan, Rong; Lu, Jun

    2014-01-01

    SUMMARY Reprogramming somatic cells to induced pluripotency by Yamanaka factors is usually slow and inefficient, and is thought to be a stochastic process. We identified a privileged somatic cell state, from which acquisition of pluripotency could occur in a non-stochastic manner. Subsets of murine hematopoietic progenitors are privileged, whose progeny cells predominantly adopt the pluripotent fate with activation of endogenous Oct4 locus after 4–5 divisions in reprogramming conditions. Privileged cells display an ultrafast cell cycle of ~8 hours. In fibroblasts, a subpopulation cycling at a similar ultrafast speed is observed after 6 days of factor expression, and is increased by p53-knockdown. This ultrafast-cycling population accounts for >99% of the bulk reprogramming activity in wildtype or p53-knockdown fibroblasts. Our data demonstrate that the stochastic nature of reprogramming can be overcome in a privileged somatic cell state, and suggest that cell cycle acceleration toward a critical threshold is an important bottleneck for reprogramming. PMID:24486105

  19. Comparison and evaluation of gene therapy and epigenetic approaches for wound healing.

    PubMed

    Cutroneo, K R; Chiu, J F

    2000-01-01

    During the past decade considerable evidence has mounted concerning the importance of growth factors in the wound healing process both for cell replication and for stimulating reparative cells to synthesize and secrete extracellular matrix components. During normal wound healing the growth factor concentration has to be maintained at a certain level. If the growth factor concentration is too low, normal healing fails to occur. Whereas if the growth factor concentration is too high due to either over-expression of the growth factor or too much growth factor being applied to the wound, aberrant wound healing will occur. One approach for controlling the amount of growth factor at the wound site during normal healing is through gene therapy and the titration of gene dosage. However if a narrow window exists between the beneficial therapeutic effect and toxic effects with increasing gene dosage, an agent may be necessary to give in combination with gene therapy to regulate the over-expression of growth factor. In addition to genetic approaches to regulate wound healing, epigenetic approaches also exist. Antisense oligodeoxynucleotides have been shown to regulate wound repair in certain model systems and to determine the protein(s) necessary for normal wound healing. A novel approach to regulate the activity of collagen genes, thereby affecting fibrosis, is to use a sense oligodeoxynucleotide having the same sequence of the cis element which regulates the promoter activity of a particular collagen gene. This exogenous oligodeoxynucleotide will compete with the cis element in the collagen gene for the trans-acting factor which regulates promoter activity. These epigenetic approaches afford the opportunity to regulate over-expression of growth factor and therefore preclude the potential toxic effects of gene therapy. Both genetic and epigenetic approaches for regulating the wound healing process, either normal or aberrant wound healing, have certain advantages and

  20. Gene methylation in gastric cancer.

    PubMed

    Qu, Yiping; Dang, Siwen; Hou, Peng

    2013-09-23

    Gastric cancer is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide. Over 70% of new cases and deaths occur in developing countries. In the early years of the molecular biology revolution, cancer research mainly focuses on genetic alterations, including gastric cancer. Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer, including DNA methylation, histone modifications, nucleosome positioning, noncoding RNAs, and microRNAs. Aberrant DNA methylation in the promoter regions of gene, which leads to inactivation of tumor suppressor and other cancer-related genes in cancer cells, is the most well-defined epigenetic hallmark in gastric cancer. The advantages of gene methylation as a target for detection and diagnosis of cancer in biopsy specimens and non-invasive body fluids such as serum and gastric washes have led to many studies of application in gastric cancer. This review focuses on the most common and important phenomenon of epigenetics, DNA methylation, in gastric cancer and illustrates the impact epigenetics has had on this field. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  1. KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria

    PubMed Central

    Hayashi, Kaori; Sasamura, Hiroyuki; Nakamura, Mari; Azegami, Tatsuhiko; Oguchi, Hideyo; Sakamaki, Yusuke; Itoh, Hiroshi

    2014-01-01

    The transcription factor Kruppel-like factor 4 (KLF4) has the ability, along with other factors, to reprogram somatic cells into induced pluripotent stem (iPS) cells. Here, we determined that KLF4 is expressed in kidney glomerular podocytes and is decreased in both animal models and humans exhibiting a proteinuric. Transient restoration of KLF4 expression in podocytes of diseased glomeruli in vivo, either by gene transfer or transgenic expression, resulted in a sustained increase in nephrin expression and a decrease in albuminuria. In mice harboring podocyte-specific deletion of Klf4, adriamycin-induced proteinuria was substantially exacerbated, although these animals displayed minimal phenotypical changes prior to adriamycin administration. KLF4 overexpression in cultured human podocytes increased expression of nephrin and other epithelial markers and reduced mesenchymal gene expression. DNA methylation profiling and bisulfite genomic sequencing revealed that KLF4 expression reduced methylation at the nephrin promoter and the promoters of other epithelial markers; however, methylation was increased at the promoters of genes encoding mesenchymal markers, suggesting selective epigenetic regulation of podocyte gene expression. Together, these results suggest that KLF4 epigenetically modulates podocyte phenotype and function and that the podocyte epigenome can be targeted for direct intervention and reduction of proteinuria. PMID:24812666

  2. Epigenetic Programming of Synthesis, Release, and/or Receptor Expression of Common Mediators Participating in the Risk/Resilience for Comorbid Stress-Related Disorders and Coronary Artery Disease.

    PubMed

    Zapata-Martín Del Campo, Carlos Manuel; Martínez-Rosas, Martín; Guarner-Lans, Verónica

    2018-04-18

    Corticotrophin releasing factor, vasopressin, oxytocin, natriuretic hormones, angiotensin, neuregulins, some purinergic substances, and some cytokines contribute to the long-term modulation and restructuring of cardiovascular regulation networks and, at the same time, have relevance in situations of comorbid abnormal stress responses. The synthesis, release, and receptor expression of these mediators seem to be under epigenetic control since early stages of life, possibly underlying the comorbidity to coronary artery disease (CAD) and stress-related disorders (SRD). The exposure to environmental conditions, such as stress, during critical periods in early life may cause epigenetic programming modifying the development of pathways that lead to stable and long-lasting alterations in the functioning of these mediators during adulthood, determining the risk of or resilience to CAD and SRD. However, in contrast to genetic information, epigenetic marks may be dynamically altered throughout the lifespan. Therefore, epigenetics may be reprogrammed if the individual accepts the challenge to undertake changes in their lifestyle. Alternatively, epigenetics may remain fixed and/or even be inherited in the next generation. In this paper, we analyze some of the common neuroendocrine functions of these mediators in CAD and SRD and summarize the evidence indicating that they are under early programming to put forward the theoretical hypothesis that the comorbidity of these diseases might be epigenetically programmed and modified over the lifespan of the individual.

  3. Epigenetic Programming of Synthesis, Release, and/or Receptor Expression of Common Mediators Participating in the Risk/Resilience for Comorbid Stress-Related Disorders and Coronary Artery Disease

    PubMed Central

    Zapata-Martín del Campo, Carlos Manuel; Martínez-Rosas, Martín

    2018-01-01

    Corticotrophin releasing factor, vasopressin, oxytocin, natriuretic hormones, angiotensin, neuregulins, some purinergic substances, and some cytokines contribute to the long-term modulation and restructuring of cardiovascular regulation networks and, at the same time, have relevance in situations of comorbid abnormal stress responses. The synthesis, release, and receptor expression of these mediators seem to be under epigenetic control since early stages of life, possibly underlying the comorbidity to coronary artery disease (CAD) and stress-related disorders (SRD). The exposure to environmental conditions, such as stress, during critical periods in early life may cause epigenetic programming modifying the development of pathways that lead to stable and long-lasting alterations in the functioning of these mediators during adulthood, determining the risk of or resilience to CAD and SRD. However, in contrast to genetic information, epigenetic marks may be dynamically altered throughout the lifespan. Therefore, epigenetics may be reprogrammed if the individual accepts the challenge to undertake changes in their lifestyle. Alternatively, epigenetics may remain fixed and/or even be inherited in the next generation. In this paper, we analyze some of the common neuroendocrine functions of these mediators in CAD and SRD and summarize the evidence indicating that they are under early programming to put forward the theoretical hypothesis that the comorbidity of these diseases might be epigenetically programmed and modified over the lifespan of the individual. PMID:29670001

  4. Modulation of Enhancer Looping and Differential Gene Targeting by Epstein-Barr Virus Transcription Factors Directs Cellular Reprogramming

    PubMed Central

    McClellan, Michael J.; Wood, C. David; Ojeniyi, Opeoluwa; Cooper, Tim J.; Kanhere, Aditi; Arvey, Aaron; Webb, Helen M.; Palermo, Richard D.; Harth-Hertle, Marie L.; Kempkes, Bettina; Jenner, Richard G.; West, Michelle J.

    2013-01-01

    Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of

  5. Epigenetic perturbations in the pathogenesis of mustard toxicity; hypothesis and preliminary results

    PubMed Central

    Korkmaz, Ahmet; Yaren, Hakan; Kunak, Z. Ilker; Uysal, Bulent; Kurt, Bulent; Topal, Turgut; Kenar, Levent; Ucar, Ergun; Oter, Sukru

    2008-01-01

    Among the most readily available chemical warfare agents, sulfur mustard (SM), also known as mustard gas, has been the most widely used chemical weapon. SM causes debilitating effects that can leave an exposed individual incapacitated for days to months; therefore delayed SM toxicity is of much greater importance than its ability to cause lethality. Although not fully understood, acute toxicity of SM is related to reactive oxygen and nitrogen species, oxidative stress, DNA damage, poly(ADP-ribose) polymerase (PARP) activation and energy depletion within the affected cell. Therefore several antioxidants and PARP inhibitors show beneficial effects against acute SM toxicity. The delayed toxicity of SM however, currently has no clear mechanistic explanation. One third of the 100,000 Iranian casualties are still suffering from the detrimental effects of SM in spite of the extensive treatment. We, therefore, made an attempt whether epigenetic aberrations may contribute to pathogenesis of mustard poisoning. Preliminary evidence reveals that mechlorethamine (a nitrogen mustard derivative) exposure may not only cause oxidative stress, DNA damage, but epigenetic perturbations as well. Epigenetic refers to the study of changes that influence the phenotype without causing alteration of the genotype. It involves changes in the properties of a cell that are inherited but do not involve a change in DNA sequence. It is now known that in addition to mutations, epimutations contribute to a variety of human diseases. Under light of preliminary results, the current hypothesis will focus on epigenetic regulations to clarify mustard toxicity and the use of drugs to correct possible epigenetic defects. PMID:21218122

  6. Five classic articles in somatic cell reprogramming.

    PubMed

    Park, In-Hyun

    2010-09-01

    Research on somatic cell reprogramming has progressed significantly over the past few decades, from nuclear transfer into frogs' eggs in 1952 to the derivation of human-induced pluripotent stem (iPS) cells in the present day. In this article, I review five landmark papers that have laid the foundation for current efforts to apply somatic cell reprogramming in the clinic.

  7. Advances in reprogramming somatic cells to induced pluripotent stem cells.

    PubMed

    Patel, Minal; Yang, Shuying

    2010-09-01

    Traditionally, nuclear reprogramming of cells has been performed by transferring somatic cell nuclei into oocytes, by combining somatic and pluripotent cells together through cell fusion and through genetic integration of factors through somatic cell chromatin. All of these techniques changes gene expression which further leads to a change in cell fate. Here we discuss recent advances in generating induced pluripotent stem cells, different reprogramming methods and clinical applications of iPS cells. Viral vectors have been used to transfer transcription factors (Oct4, Sox2, c-myc, Klf4, and nanog) to induce reprogramming of mouse fibroblasts, neural stem cells, neural progenitor cells, keratinocytes, B lymphocytes and meningeal membrane cells towards pluripotency. Human fibroblasts, neural cells, blood and keratinocytes have also been reprogrammed towards pluripotency. In this review we have discussed the use of viral vectors for reprogramming both animal and human stem cells. Currently, many studies are also involved in finding alternatives to using viral vectors carrying transcription factors for reprogramming cells. These include using plasmid transfection, piggyback transposon system and piggyback transposon system combined with a non viral vector system. Applications of these techniques have been discussed in detail including its advantages and disadvantages. Finally, current clinical applications of induced pluripotent stem cells and its limitations have also been reviewed. Thus, this review is a summary of current research advances in reprogramming cells into induced pluripotent stem cells.

  8. Deterministic versus stochastic model of reprogramming: new evidence from cellular barcoding technique

    PubMed Central

    Yunusova, Anastasia M.; Fishman, Veniamin S.; Vasiliev, Gennady V.

    2017-01-01

    Factor-mediated reprogramming of somatic cells towards pluripotency is a low-efficiency process during which only small subsets of cells are successfully reprogrammed. Previous analyses of the determinants of the reprogramming potential are based on average measurements across a large population of cells or on monitoring a relatively small number of single cells with live imaging. Here, we applied lentiviral genetic barcoding, a powerful tool enabling the identification of familiar relationships in thousands of cells. High-throughput sequencing of barcodes from successfully reprogrammed cells revealed a significant number of barcodes from related cells. We developed a computer model, according to which a probability of synchronous reprogramming of sister cells equals 10–30%. We conclude that the reprogramming success is pre-established in some particular cells and, being a heritable trait, can be maintained through cell division. Thus, reprogramming progresses in a deterministic manner, at least at the level of cell lineages. PMID:28446707

  9. Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro.

    PubMed

    Qian, Li; Berry, Emily C; Fu, Ji-dong; Ieda, Masaki; Srivastava, Deepak

    2013-06-01

    Cardiac fibroblasts can be reprogrammed to cardiomyocyte-like cells by the introduction of three transcription factors: Gata4, Mef2c and Tbx5 (collectively referred to here as GMT). Resident cardiac fibroblasts can be converted in vivo into induced cardiomyocyte-like cells (iCMs) that closely resemble endogenous cardiomyocytes and electrically integrate with the host myocardium. In contrast, in vitro reprogramming yields many partially reprogrammed iCMs, with a few that reprogram fully into contracting myocytes (~3 out of 10,000 GMT-transduced cells). iCMs can be observed as early as 3 d after viral infection, and they continue to mature over 2 months before beating is observed. Despite the success of multiple groups, the inefficiency of in vitro reprogramming has made it challenging for others. However, given the advantages of in vitro iCMs for performing mechanistic studies and, if refined, for testing drugs or small molecules for personalized medicine and modeling cardiac disease in a dish, it is important to standardize the protocol to improve reproducibility and enhance the technology further. Here we describe a detailed step-by-step protocol for in vitro cardiac reprogramming using retroviruses encoding GMT.

  10. Epitranscriptional orchestration of genetic reprogramming is an emergent property of stress-regulated cardiac microRNAs

    PubMed Central

    Hu, Yuanxin; Matkovich, Scot J.; Hecker, Peter A.; Zhang, Yan; Edwards, John R.; Dorn, Gerald W.

    2012-01-01

    Cardiac stress responses are driven by an evolutionarily conserved gene expression program comprising dozens of microRNAs and hundreds of mRNAs. Functionalities of different individual microRNAs are being studied, but the overall purpose of interactions between stress-regulated microRNAs and mRNAs and potentially distinct roles for microRNA-mediated epigenetic and conventional transcriptional genetic reprogramming of the stressed heart are unknown. Here we used deep sequencing to interrogate microRNA and mRNA regulation in pressure-overloaded mouse hearts, and performed a genome-wide examination of microRNA–mRNA interactions during early cardiac hypertrophy. Based on abundance and regulatory patterns, cardiac microRNAs were categorized as constitutively expressed housekeeping, regulated homeostatic, or dynamic early stress-responsive microRNAs. Regulation of 62 stress-responsive cardiac microRNAs directly affected levels of only 66 mRNAs, but the global impact of microRNA-mediated epigenetic regulation was amplified by preferential targeting of mRNAs encoding transcription factors, kinases, and phosphatases exerting amplified secondary effects. Thus, an emergent cooperative property of stress-regulated microRNAs is orchestration of transcriptional and posttranslational events that help determine the stress-reactive cardiac phenotype. This global functionality explains how large end-organ effects can be induced through modest individual changes in target mRNA and protein content by microRNAs that sense and respond dynamically to a changing physiological milieu. PMID:23150554

  11. Chromatin reprogramming in breast cancer.

    PubMed

    Swinstead, Erin E; Paakinaho, Ville; Hager, Gordon

    2018-04-24

    Reprogramming of the chromatin landscape is a critical component to the transcriptional response in breast cancer. Effects of sex hormones such as estrogens and progesterone have been well described to have a critical impact on breast cancer proliferation. However, the complex network of the chromatin landscape, enhancer regions, and mode of function of steroid receptors (SRs) and other transcription factors (TFs), is an intricate web of signaling and functional processes that is still largely misunderstood at the mechanistic level. In this review, we describe what is currently known about the dynamic interplay between TFs with chromatin and the reprogramming of enhancer elements. Emphasis has been placed on characterizing the different modes of action of TFs in regulating enhancer activity, specifically, how different SRs target enhancer regions and reprogram chromatin in breast cancer cells. In addition, we discuss current techniques employed to study enhancer function at a genome-wide level. Further, we have noted recent advances in live cell imaging technology. These single cell approaches enable the coupling of population based assays with real-time studies to address many unsolved questions about SRs and chromatin dynamics in breast cancer.

  12. Copy number rather than epigenetic alterations are the major dictator of imprinted methylation in tumors.

    PubMed

    Martin-Trujillo, Alex; Vidal, Enrique; Monteagudo-Sa Nchez, Ana; Sanchez-Delgado, Marta; Moran, Sebastian; Hernandez Mora, Jose Ramon; Heyn, Holger; Guitart, Miriam; Esteller, Manel; Monk, David

    2017-09-07

    It has been postulated that imprinting aberrations are common in tumors. To understand the role of imprinting in cancer, we have characterized copy-number and methylation in over 280 cancer cell lines and confirm our observations in primary tumors. Imprinted differentially methylated regions (DMRs) regulate parent-of-origin monoallelic expression of neighboring transcripts in cis. Unlike single-copy CpG islands that may be prone to hypermethylation, imprinted DMRs can either loose or gain methylation during tumorigenesis. Here, we show that methylation profiles at imprinted DMRs often not represent genuine epigenetic changes but simply the accumulation of underlying copy-number aberrations (CNAs), which is independent of the genome methylation state inferred from cancer susceptible loci. Our results reveal that CNAs also influence allelic expression as loci with copy-number neutral loss-of-heterozygosity or amplifications may be expressed from the appropriate parental chromosomes, which is indicative of maintained imprinting, although not observed as a single expression foci by RNA FISH.Altered genomic imprinting is frequently reported in cancer. Here, the authors analyze copy number and methylation in cancer cell lines and primary tumors to show that imprinted methylation profiles represent the accumulation of copy number alteration, rather than epigenetic alterations.

  13. Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C.

    PubMed

    Lin, Zhaoyu; Liu, Fei; Shi, Peiliang; Song, Anying; Huang, Zan; Zou, Dayuan; Chen, Qin; Li, Jianxin; Gao, Xiang

    2018-02-26

    Changes in metabolic pathway preferences are key events in the reprogramming process of somatic cells to induced pluripotent stem cells (iPSCs). The optimization of metabolic conditions can enhance reprogramming; however, the detailed underlying mechanisms are largely unclear. By comparing the gene expression profiles of somatic cells, intermediate-phase cells, and iPSCs, we found that carnitine palmitoyltransferase (Cpt)1b, a rate-limiting enzyme in fatty acid oxidation, was significantly upregulated in the early stage of the reprogramming process. Mouse embryonic fibroblasts isolated from transgenic mice carrying doxycycline (Dox)-inducible Yamanaka factor constructs were used for reprogramming. Various fatty acid oxidation-related metabolites were added during the reprogramming process. Colony counting and fluorescence-activated cell sorting (FACS) were used to calculate reprogramming efficiency. Fatty acid oxidation-related metabolites were measured by liquid chromatography-mass spectrometry. Seahorse was used to measure the level of oxidative phosphorylation. We found that overexpression of cpt1b enhanced reprogramming efficiency. Furthermore, palmitoylcarnitine or acetyl-CoA, the primary and final products of Cpt1-mediated fatty acid oxidation, also promoted reprogramming. In the early reprogramming process, fatty acid oxidation upregulated oxidative phosphorylation and downregulated protein kinase C activity. Inhibition of protein kinase C also promoted reprogramming. We demonstrated that fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C activity in the early stage of the reprogramming process. This study reveals that fatty acid oxidation is crucial for the reprogramming efficiency.

  14. Epigenetic control of skull morphogenesis by histone deacetylase 8

    PubMed Central

    Haberland, Michael; Mokalled, Mayssa H.; Montgomery, Rusty L.; Olson, Eric N.

    2009-01-01

    Histone deacetylases (Hdacs) are transcriptional repressors with crucial roles in mammalian development. Here we provide evidence that Hdac8 specifically controls patterning of the skull by repressing a subset of transcription factors in cranial neural crest cells. Global deletion of Hdac8 in mice leads to perinatal lethality due to skull instability, and this is phenocopied by conditional deletion of Hdac8 in cranial neural crest cells. Hdac8 specifically represses the aberrant expression of homeobox transcription factors such as Otx2 and Lhx1. These findings reveal how the identity and patterning of vertebrate-specific portions of the skull are epigenetically controlled by a histone deacetylase. PMID:19605684

  15. Genomic pathway analysis reveals that EZH2 and HDAC4 represent mutually exclusive epigenetic pathways across human cancers

    PubMed Central

    2013-01-01

    aberrations in genes from the TGF and phosphatidylinositol pathways and HDAC4 activation with aberrations in inflammatory and chemokine related genes. Conclusion Gene expression patterns can reveal the activation level of epigenetic pathways. Epigenetic pathways define biologically relevant subsets of human cancers. EZH2 activation and HDAC4 activation correlate with growth factor signaling and inflammation, respectively, and represent two distinct states for cancer cells. This understanding may allow us to identify targetable drivers in these cancer subsets. PMID:24079712

  16. Epigenetic inactivation of TCF2 in ovarian cancer and various cancer cell lines

    PubMed Central

    Terasawa, K; Toyota, M; Sagae, S; Ogi, K; Suzuki, H; Sonoda, T; Akino, K; Maruyama, R; Nishikawa, N; Imai, K; Shinomura, Y; Saito, T; Tokino, T

    2006-01-01

    Transcription factor 2 gene (TCF2) encodes hepatocyte nuclear factor 1β (HNF1β), a transcription factor associated with development and metabolism. Mutation of TCF2 has been observed in renal cell cancer, and by screening aberrantly methylated genes, we have now identified TCF2 as a target for epigenetic inactivation in ovarian cancer. TCF2 was methylated in 53% of ovarian cancer cell lines and 26% of primary ovarian cancers, resulting in loss of the gene's expression. TCF2 expression was restored by treating cells with a methyltransferase inhibitor, 5-aza-2′deoxycitidine (5-aza-dC). In addition, chromatin immunoprecipitation showed deacetylation of histone H3 in methylated cells and, when combined with 5-aza-dC, the histone deacetylase inhibitor trichostatin A synergistically induced TCF2 expression. Epigenetic inactivation of TCF2 was also seen in colorectal, gastric and pancreatic cell lines, suggesting general involvement of epigenetic inactivation of TCF2 in tumorigenesis. Restoration of TCF2 expression induced expression of HNF4α, a transcriptional target of HNF1β, indicating that epigenetic silencing of TCF2 leads to alteration of the hepatocyte nuclear factor network in tumours. These results suggest that TCF2 is involved in the development of ovarian cancers and may represent a useful target for their detection and treatment. PMID:16479257

  17. BCG Vaccination Protects against Experimental Viral Infection in Humans through the Induction of Cytokines Associated with Trained Immunity.

    PubMed

    Arts, Rob J W; Moorlag, Simone J C F M; Novakovic, Boris; Li, Yang; Wang, Shuang-Yin; Oosting, Marije; Kumar, Vinod; Xavier, Ramnik J; Wijmenga, Cisca; Joosten, Leo A B; Reusken, Chantal B E M; Benn, Christine S; Aaby, Peter; Koopmans, Marion P; Stunnenberg, Hendrik G; van Crevel, Reinout; Netea, Mihai G

    2018-01-10

    The tuberculosis vaccine bacillus Calmette-Guérin (BCG) has heterologous beneficial effects against non-related infections. The basis of these effects has been poorly explored in humans. In a randomized placebo-controlled human challenge study, we found that BCG vaccination induced genome-wide epigenetic reprograming of monocytes and protected against experimental infection with an attenuated yellow fever virus vaccine strain. Epigenetic reprogramming was accompanied by functional changes indicative of trained immunity. Reduction of viremia was highly correlated with the upregulation of IL-1β, a heterologous cytokine associated with the induction of trained immunity, but not with the specific IFNγ response. The importance of IL-1β for the induction of trained immunity was validated through genetic, epigenetic, and immunological studies. In conclusion, BCG induces epigenetic reprogramming in human monocytes in vivo, followed by functional reprogramming and protection against non-related viral infections, with a key role for IL-1β as a mediator of trained immunity responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Krebs cycle dysfunction shapes epigenetic landscape of chromatin: novel insights into mitochondrial regulation of aging process.

    PubMed

    Salminen, Antero; Kaarniranta, Kai; Hiltunen, Mikko; Kauppinen, Anu

    2014-07-01

    Although there is a substantial literature that mitochondria have a crucial role in the aging process, the mechanism has remained elusive. The role of reactive oxygen species, mitochondrial DNA injuries, and a decline in mitochondrial quality control has been proposed. Emerging studies have demonstrated that Krebs cycle intermediates, 2-oxoglutarate (also known as α-ketoglutarate), succinate and fumarate, can regulate the level of DNA and histone methylation. Moreover, citrate, also a Krebs cycle metabolite, can enhance histone acetylation. Genome-wide screening studies have revealed that the aging process is linked to significant epigenetic changes in the chromatin landscape, e.g. global demethylation of DNA and histones and increase in histone acetylation. Interestingly, recent studies have revealed that the demethylases of DNA (TET1-3) and histone lysines (KDM2-7) are members of 2-oxoglutarate-dependent dioxygenases (2-OGDO). The 2-OGDO enzymes are activated by oxygen, iron and the major Krebs cycle intermediate, 2-oxoglutarate, whereas they are inhibited by succinate and fumarate. Considering the endosymbiont origin of mitochondria, it is not surprising that Krebs cycle metabolites can control the gene expression of host cell by modifying the epigenetic landscape of chromatin. It seems that age-related disturbances in mitochondrial metabolism can induce epigenetic reprogramming, which promotes the appearance of senescent phenotype and degenerative diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Rewriting the epigenetic code for tumor resensitization: a review.

    PubMed

    Oronsky, Bryan; Oronsky, Neil; Scicinski, Jan; Fanger, Gary; Lybeck, Michelle; Reid, Tony

    2014-10-01

    In cancer chemotherapy, one axiom, which has practically solidified into dogma, is that acquired resistance to antitumor agents or regimens, nearly inevitable in all patients with metastatic disease, remains unalterable and irreversible, rendering therapeutic rechallenge futile. However, the introduction of epigenetic therapies, including histone deacetylase inhibitors (HDACis) and DNA methyltransferase inhibitors (DNMTIs), provides oncologists, like computer programmers, with new techniques to "overwrite" the modifiable software pattern of gene expression in tumors and challenge the "one and done" treatment prescription. Taking the epigenetic code-as-software analogy a step further, if chemoresistance is the product of multiple nongenetic alterations, which develop and accumulate over time in response to treatment, then the possibility to hack or tweak the operating system and fall back on a "system restore" or "undo" feature, like the arrow icon in the Windows XP toolbar, reconfiguring the tumor to its baseline nonresistant state, holds tremendous promise for turning advanced, metastatic cancer from a fatal disease into a chronic, livable condition. This review aims 1) to explore the potential mechanisms by which a group of small molecule agents including HDACis (entinostat and vorinostat), DNMTIs (decitabine and 5-azacytidine), and redox modulators (RRx-001) may reprogram the tumor microenvironment from a refractory to a nonrefractory state, 2) highlight some recent findings, and 3) discuss whether the current "once burned forever spurned" paradigm in the treatment of metastatic disease should be revised to promote active resensitization attempts with formerly failed chemotherapies.

  20. Transgenerational Epigenetics: The Role of Maternal Effects in Cardiovascular Development

    PubMed Central

    Ho, Dao H.

    2014-01-01

    Transgenerational epigenetics, the study of non-genetic transfer of information from one generation to the next, has gained much attention in the past few decades due to the fact that, in many instances, epigenetic processes outweigh direct genetic processes in the manifestation of aberrant phenotypes across several generations. Maternal effects, or the influences of maternal environment, phenotype, and/or genotype on offsprings’ phenotypes, independently of the offsprings’ genotypes, are a subcategory of transgenerational epigenetics. Due to the intimate role of the mother during early development in animals, there is much interest in investigating the means by which maternal effects can shape the individual. Maternal effects are responsible for cellular organization, determination of the body axis, initiation and maturation of organ systems, and physiological performance of a wide variety of species and biological systems. The cardiovascular system is the first to become functional and can significantly influence the development of other organ systems. Thus, it is important to elucidate the role of maternal effects in cardiovascular development, and to understand its impact on adult cardiovascular health. Topics to be addressed include: (1) how and when do maternal effects change the developmental trajectory of the cardiovascular system to permanently alter the adult’s cardiovascular phenotype, (2) what molecular mechanisms have been associated with maternally induced cardiovascular phenotypes, and (3) what are the evolutionary implications of maternally mediated changes in cardiovascular phenotype? PMID:24813463

  1. Integrative Genome-Scale Analysis Identifies Epigenetic Mechanisms of Transcriptional Deregulation in Unfavorable Neuroblastomas.

    PubMed

    Henrich, Kai-Oliver; Bender, Sebastian; Saadati, Maral; Dreidax, Daniel; Gartlgruber, Moritz; Shao, Chunxuan; Herrmann, Carl; Wiesenfarth, Manuel; Parzonka, Martha; Wehrmann, Lea; Fischer, Matthias; Duffy, David J; Bell, Emma; Torkov, Alica; Schmezer, Peter; Plass, Christoph; Höfer, Thomas; Benner, Axel; Pfister, Stefan M; Westermann, Frank

    2016-09-15

    The broad clinical spectrum of neuroblastoma ranges from spontaneous regression to rapid progression despite intensive multimodal therapy. This diversity is not fully explained by known genetic aberrations, suggesting the possibility of epigenetic involvement in pathogenesis. In pursuit of this hypothesis, we took an integrative approach to analyze the methylomes, transcriptomes, and copy number variations in 105 cases of neuroblastoma, complemented by primary tumor- and cell line-derived global histone modification analyses and epigenetic drug treatment in vitro We found that DNA methylation patterns identify divergent patient subgroups with respect to survival and clinicobiologic variables, including amplified MYCN Transcriptome integration and histone modification-based definition of enhancer elements revealed intragenic enhancer methylation as a mechanism for high-risk-associated transcriptional deregulation. Furthermore, in high-risk neuroblastomas, we obtained evidence for cooperation between PRC2 activity and DNA methylation in blocking tumor-suppressive differentiation programs. Notably, these programs could be re-activated by combination treatments, which targeted both PRC2 and DNA methylation. Overall, our results illuminate how epigenetic deregulation contributes to neuroblastoma pathogenesis, with novel implications for its diagnosis and therapy. Cancer Res; 76(18); 5523-37. ©2016 AACR. ©2016 American Association for Cancer Research.

  2. DNA methylation patterns in tissues from mid-gestation bovine foetuses produced by somatic cell nuclear transfer show subtle abnormalities in nuclear reprogramming.

    PubMed

    Couldrey, Christine; Lee, Rita Sf

    2010-03-07

    Cloning of cattle by somatic cell nuclear transfer (SCNT) is associated with a high incidence of pregnancy failure characterized by abnormal placental and foetal development. These abnormalities are thought to be due, in part, to incomplete re-setting of the epigenetic state of DNA in the donor somatic cell nucleus to a state that is capable of driving embryonic and foetal development to completion. Here, we tested the hypothesis that DNA methylation patterns were not appropriately established during nuclear reprogramming following SCNT. A panel of imprinted, non-imprinted genes and satellite repeat sequences was examined in tissues collected from viable and failing mid-gestation SCNT foetuses and compared with similar tissues from gestation-matched normal foetuses generated by artificial insemination (AI). Most of the genomic regions examined in tissues from viable and failing SCNT foetuses had DNA methylation patterns similar to those in comparable tissues from AI controls. However, statistically significant differences were found between SCNT and AI at specific CpG sites in some regions of the genome, particularly those associated with SNRPN and KCNQ1OT1, which tended to be hypomethylated in SCNT tissues. There was a high degree of variation between individuals in methylation levels at almost every CpG site in these two regions, even in AI controls. In other genomic regions, methylation levels at specific CpG sites were tightly controlled with little variation between individuals. Only one site (HAND1) showed a tissue-specific pattern of DNA methylation. Overall, DNA methylation patterns in tissues of failing foetuses were similar to apparently viable SCNT foetuses, although there were individuals showing extreme deviant patterns. These results show that SCNT foetuses that had developed to mid-gestation had largely undergone nuclear reprogramming and that the epigenetic signature at this stage was not a good predictor of whether the foetus would develop to term

  3. Overcoming reprogramming resistance of Fanconi anemia cells

    PubMed Central

    Müller, Lars U. W.; Milsom, Michael D.; Harris, Chad E.; Vyas, Rutesh; Brumme, Kristina M.; Parmar, Kalindi; Moreau, Lisa A.; Schambach, Axel; Park, In-Hyun; London, Wendy B.; Strait, Kelly; Schlaeger, Thorsten; DeVine, Alexander L.; Grassman, Elke; D'Andrea, Alan; Daley, George Q.

    2012-01-01

    Fanconi anemia (FA) is a recessive syndrome characterized by progressive fatal BM failure and chromosomal instability. FA cells have inactivating mutations in a signaling pathway that is critical for maintaining genomic integrity and protecting cells from the DNA damage caused by cross-linking agents. Transgenic expression of the implicated genes corrects the phenotype of hematopoietic cells, but previous attempts at gene therapy have failed largely because of inadequate numbers of hematopoietic stem cells available for gene correction. Induced pluripotent stem cells (iPSCs) constitute an alternate source of autologous cells that are amenable to ex vivo expansion, genetic correction, and molecular characterization. In the present study, we demonstrate that reprogramming leads to activation of the FA pathway, increased DNA double-strand breaks, and senescence. We also demonstrate that defects in the FA DNA-repair pathway decrease the reprogramming efficiency of murine and human primary cells. FA pathway complementation reduces senescence and restores the reprogramming efficiency of somatic FA cells to normal levels. Disease-specific iPSCs derived in this fashion maintain a normal karyotype and are capable of hematopoietic differentiation. These data define the role of the FA pathway in reprogramming and provide a strategy for future translational applications of patient-specific FA iPSCs. PMID:22371882

  4. Integrative Analysis Reveals Relationships of Genetic and Epigenetic Alterations in Osteosarcoma

    PubMed Central

    Skårn, Magne; Namløs, Heidi M.; Barragan-Polania, Ana H.; Cleton-Jansen, Anne-Marie; Serra, Massimo; Liestøl, Knut; Hogendoorn, Pancras C. W.; Hovig, Eivind; Myklebost, Ola; Meza-Zepeda, Leonardo A.

    2012-01-01

    Background Osteosarcomas are the most common non-haematological primary malignant tumours of bone, and all conventional osteosarcomas are high-grade tumours showing complex genomic aberrations. We have integrated genome-wide genetic and epigenetic profiles from the EuroBoNeT panel of 19 human osteosarcoma cell lines based on microarray technologies. Principal Findings The cell lines showed complex patterns of DNA copy number changes, where genomic copy number gains were significantly associated with gene-rich regions and losses with gene-poor regions. By integrating the datasets, 350 genes were identified as having two types of aberrations (gain/over-expression, hypo-methylation/over-expression, loss/under-expression or hyper-methylation/under-expression) using a recurrence threshold of 6/19 (>30%) cell lines. The genes showed in general alterations in either DNA copy number or DNA methylation, both within individual samples and across the sample panel. These 350 genes are involved in embryonic skeletal system development and morphogenesis, as well as remodelling of extracellular matrix. The aberrations of three selected genes, CXCL5, DLX5 and RUNX2, were validated in five cell lines and five tumour samples using PCR techniques. Several genes were hyper-methylated and under-expressed compared to normal osteoblasts, and expression could be reactivated by demethylation using 5-Aza-2′-deoxycytidine treatment for four genes tested; AKAP12, CXCL5, EFEMP1 and IL11RA. Globally, there was as expected a significant positive association between gain and over-expression, loss and under-expression as well as hyper-methylation and under-expression, but gain was also associated with hyper-methylation and under-expression, suggesting that hyper-methylation may oppose the effects of increased copy number for detrimental genes. Conclusions Integrative analysis of genome-wide genetic and epigenetic alterations identified dependencies and relationships between DNA copy number, DNA

  5. Metabostemness: A New Cancer Hallmark

    PubMed Central

    Menendez, Javier A.; Alarcón, Tomás

    2014-01-01

    The acquisition of and departure from stemness in cancer tissues might not only be hardwired by genetic controllers, but also by the pivotal regulatory role of the cellular metabotype, which may act as a “starter dough” for cancer stemness traits. We have coined the term metabostemness to refer to the metabolic parameters causally controlling or functionally substituting the epitranscriptional orchestration of the genetic reprograming that redirects normal and tumor cells toward less-differentiated cancer stem cell (CSC) cellular states. Certain metabotypic alterations might operate as pivotal molecular events rendering a cell of origin susceptible to epigenetic rewiring required for the acquisition of aberrant stemness and, concurrently, of refractoriness to differentiation. The metabostemness attribute can remove, diminish, or modify the nature of molecular barriers present in Waddington’s epigenetic landscapes, thus allowing differentiated cells to more easily (re)-enter into CSC cellular macrostates. Activation of the metabostemness trait can poise cells with chromatin states competent for rapid dedifferentiation while concomitantly setting the idoneous metabolic stage for later reprograming stimuli to finish the journey from non-cancerous into tumor-initiating cells. Because only a few permitted metabotypes will be compatible with the operational properties owned by CSC cellular states, the metabostemness property provides a new framework through which to pharmacologically resolve the apparently impossible problem of discovering drugs aimed to target the molecular biology of the cancer stemness itself. The metabostemness cancer hallmark generates a shifting oncology theory that should guide a new era of metabolo-epigenetic cancer precision medicine. PMID:25325014

  6. Epigenetic disorders and altered gene expression after use of Assisted Reproductive Technologies in domestic cattle

    PubMed Central

    Urrego, Rodrigo; Rodriguez-Osorio, Nélida; Niemann, Heiner

    2014-01-01

    The use of Assisted Reproductive Technologies (ARTs) in modern cattle breeding is an important tool for improving the production of dairy and beef cattle. A frequently employed ART in the cattle industry is in vitro production of embryos. However, bovine in vitro produced embryos differ greatly from their in vivo produced counterparts in many facets, including developmental competence. The lower developmental capacity of these embryos could be due to the stress to which the gametes and/or embryos are exposed during in vitro embryo production, specifically ovarian hormonal stimulation, follicular aspiration, oocyte in vitro maturation in hormone supplemented medium, sperm handling, gamete cryopreservation, and culture of embryos. The negative effects of some ARTs on embryo development could, at least partially, be explained by disruption of the physiological epigenetic profile of the gametes and/or embryos. Here, we review the current literature with regard to the putative link between ARTs used in bovine reproduction and epigenetic disorders and changes in the expression profile of embryonic genes. Information on the relationship between reproductive biotechnologies and epigenetic disorders and aberrant gene expression in bovine embryos is limited and novel approaches are needed to explore ways in which ARTs can be improved to avoid epigenetic disorders. PMID:24709985

  7. Landscaping plant epigenetics.

    PubMed

    McKeown, Peter C; Spillane, Charles

    2014-01-01

    The understanding of epigenetic mechanisms is necessary for assessing the potential impacts of epigenetics on plant growth, development and reproduction, and ultimately for the response of these factors to evolutionary pressures and crop breeding programs. This volume highlights the latest in laboratory and bioinformatic techniques used for the investigation of epigenetic phenomena in plants. Such techniques now allow genome-wide analyses of epigenetic regulation and help to advance our understanding of how epigenetic regulatory mechanisms affect cellular and genome function. To set the scene, we begin with a short background of how the field of epigenetics has evolved, with a particular focus on plant epigenetics. We consider what has historically been understood by the term "epigenetics" before turning to the advances in biochemistry, molecular biology, and genetics which have led to current-day definitions of the term. Following this, we pay attention to key discoveries in the field of epigenetics that have emerged from the study of unusual and enigmatic phenomena in plants. Many of these phenomena have involved cases of non-Mendelian inheritance and have often been dismissed as mere curiosities prior to the elucidation of their molecular mechanisms. In the penultimate section, consideration is given to how advances in molecular techniques are opening the doors to a more comprehensive understanding of epigenetic phenomena in plants. We conclude by assessing some opportunities, challenges, and techniques for epigenetic research in both model and non-model plants, in particular for advancing understanding of the regulation of genome function by epigenetic mechanisms.

  8. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions

    PubMed Central

    Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki

    2015-01-01

    Summary Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. PMID:26626177

  9. Understanding direct neuronal reprogramming-from pioneer factors to 3D chromatin.

    PubMed

    Ninkovic, Jovica; Götz, Magdalena

    2018-06-14

    Cell replacement therapies aim at reestablishment of neuronal circuits after brain injury, stroke or neurodegeneration. Recently, direct reprogramming of resident glial cells into the affected neuronal subtypes has become a feasible and promising option for central nervous system regeneration. Direct reprogramming relies on the implementation of a new transcriptional program defining the desired neuronal identity in fully differentiated glial cells implying the more or less complete down-regulation of the program for the former identity of the glial cell. Despite the enormous progress achieved in this regard with highly efficient in vivo reprogramming after injury, a number of hurdles still need to be resolved. One way to further improve direct neuronal reprogramming is to understand the molecular hurdles which we discuss with the focus on chromatin states of the starting versus the reprogrammed cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. m-carboxycinnamic acid bishydroxamide improves developmental competence, reduces apoptosis and alters epigenetic status and gene expression pattern in cloned buffalo (Bubalus bubalis) embryos.

    PubMed

    Agrawal, H; Selokar, N L; Saini, M; Singh, M K; Chauhan, M S; Palta, P; Singla, S K; Manik, R S

    2018-05-07

    Incomplete or aberrant reprogramming of nuclear genome is one of the major problems in somatic cell nuclear transfer. In this study, we studied the effect of histone deacetylase inhibitor m-carboxycinnamic acid bishydroxamide (CBHA) on in vitro development of buffalo embryos produced by Hand-made cloning. Cloned embryos were treated with CBHA (0, 5, 10, 20 or 50 μM) for 10 hr from the start of reconstruction till activation. At 10 μM, but not at other concentrations examined, CBHA increased (p < .05) the blastocyst rate (63.77 ± 3.97% vs 48.63 ± 3.55%) and reduced (p < .05) the apoptotic index of the cloned blastocysts (8.91 ± 1.94 vs 4.36 ± 1.08) compared to untreated controls, to levels similar to those in IVF blastocysts (4.78 ± 0.74). CBHA treatment, at all the concentrations examined, increased (p < .05) the global level of H3K9ac in cloned blastocysts than in untreated controls to that observed in IVF blastocysts. Treatment with CBHA (10 μM) decreased (p < .05) the global level of H3K27me3 in cloned blastocysts than in untreated controls but it was still higher (p < .05) than in IVF blastocysts. CBHA (10 μM) treatment increased (p < .05) the relative expression level of pluripotency-related genes OCT-4 and NANOG, and anti-apoptotic gene BCL-XL, and decreased (p < .05) that of pro-apoptotic gene BAX than in untreated controls but did not affect the relative expression level of apoptosis-related genes p53 and CASPASE3 and epigenetics-related genes DNMT1, DNMT3a and HDAC1. These results suggest that treatment of cloned embryos with 10 μM CBHA improves the blastocyst rate, reduces the level of apoptosis and alters the epigenetic status and gene expression pattern. © 2018 Blackwell Verlag GmbH.

  11. Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming.

    PubMed

    Mohamed, Tamer M A; Stone, Nicole R; Berry, Emily C; Radzinsky, Ethan; Huang, Yu; Pratt, Karishma; Ang, Yen-Sin; Yu, Pengzhi; Wang, Haixia; Tang, Shibing; Magnitsky, Sergey; Ding, Sheng; Ivey, Kathryn N; Srivastava, Deepak

    2017-03-07

    Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells in situ represents a promising strategy for cardiac regeneration. A combination of 3 cardiac transcription factors, Gata4, Mef2c, and Tbx5 (GMT), can convert fibroblasts into induced cardiomyocyte-like cells, albeit with low efficiency in vitro. We screened 5500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming. We found that a combination of the transforming growth factor-β inhibitor SB431542 and the WNT inhibitor XAV939 increased reprogramming efficiency 8-fold when added to GMT-overexpressing cardiac fibroblasts. The small molecules also enhanced the speed and quality of cell conversion; we observed beating cells as early as 1 week after reprogramming compared with 6 to 8 weeks with GMT alone. In vivo, mice exposed to GMT, SB431542, and XAV939 for 2 weeks after myocardial infarction showed significantly improved reprogramming and cardiac function compared with those exposed to only GMT. Human cardiac reprogramming was similarly enhanced on transforming growth factor-β and WNT inhibition and was achieved most efficiently with GMT plus myocardin. Transforming growth factor-β and WNT inhibitors jointly enhance GMT-induced direct cardiac reprogramming from cardiac fibroblasts in vitro and in vivo and provide a more robust platform for cardiac regeneration. © 2016 American Heart Association, Inc.

  12. Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming

    PubMed Central

    Mohamed, Tamer M. A.; Stone, Nicole R.; Berry, Emily C.; Radzinsky, Ethan; Huang, Yu; Pratt, Karishma; Ang, Yen-Sin; Yu, Pengzhi; Wang, Haixia; Tang, Shibing; Magnitsky, Sergey; Ding, Sheng; Ivey, Kathryn N.; Srivastava, Deepak

    2017-01-01

    Background Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells (iCMs) in situ represents a promising strategy for cardiac regeneration. A combination of three cardiac transcription factors, Gata4, Mef2c and Tbx5 (GMT), can convert fibroblasts into iCMs, albeit with low efficiency in vitro. Methods We screened 5,500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming. Results We found that a combination of the transforming growth factor (TGF)-β inhibitor SB431542 and the WNT inhibitor XAV939 increased reprogramming efficiency eight-fold when added to GMT-overexpressing cardiac fibroblasts. The small-molecules also enhanced the speed and the quality of cell conversion, as we observed beating cells as early as 1 week after reprogramming compared to 6–8 weeks with GMT alone. In vivo, mice exposed to GMT, SB431542, and XAV939 for 2 weeks after myocardial infarction showed significantly improved reprogramming and cardiac function compared to those exposed to only GMT. Human cardiac reprogramming was similarly enhanced upon TGF-β and WNT inhibition and was achieved most efficiently with GMT plus Myocardin. Conclusions Thus, TGF-β and WNT inhibitors jointly enhance GMT-induced direct cardiac reprogramming from cardiac fibroblasts in vitro and in vivo and provide a more robust platform for cardiac regeneration. PMID:27834668

  13. Epigenetics, eh! A meeting summary of the Canadian Conference on Epigenetics.

    PubMed

    Rodenhiser, David I; Bérubé, Nathalie G; Mann, Mellissa R W

    2011-10-01

    In May 2011, the Canadian Conference on Epigenetics: Epigenetics Eh! was held in London, Canada. The objectives of this conference were to showcase the breadth of epigenetic research on environment and health across Canada and to provide the catalyst to develop collaborative Canadian epigenetic research opportunities, similar to existing international epigenetic initiatives in the US and Europe. With ten platform sessions and two sessions with over 100 poster presentations, this conference featured cutting-edge epigenetic research, presented by Canadian and international principal investigators and their trainees in the field of epigenetics and chromatin dynamics. An EpigenART competition included ten artists, creating a unique opportunity for artists and scientists to interact and explore their individual interpretations of this scientific discipline. The conference provided a unique venue for a significant cross-section of Canadian epigenetic researchers from diverse disciplines to meet, interact, collaborate and strategize at the national level.

  14. Excessive Cellular Proliferation Negatively Impacts Reprogramming Efficiency of Human Fibroblasts

    PubMed Central

    Gupta, Manoj K.; Teo, Adrian Kee Keong; Rao, Tata Nageswara; Bhatt, Shweta; Kleinridders, Andre; Shirakawa, Jun; Takatani, Tomozumi; Hu, Jiang; De Jesus, Dario F.; Windmueller, Rebecca; Wagers, Amy J.

    2015-01-01

    The impact of somatic cell proliferation rate on induction of pluripotent stem cells remains controversial. Herein, we report that rapid proliferation of human somatic fibroblasts is detrimental to reprogramming efficiency when reprogrammed using a lentiviral vector expressing OCT4, SOX2, KLF4, and cMYC in insulin-rich defined medium. Human fibroblasts grown in this medium showed higher proliferation, enhanced expression of insulin signaling and cell cycle genes, and a switch from glycolytic to oxidative phosphorylation metabolism, but they displayed poor reprogramming efficiency compared with cells grown in normal medium. Thus, in contrast to previous studies, our work reveals an inverse correlation between the proliferation rate of somatic cells and reprogramming efficiency, and also suggests that upregulation of proteins in the growth factor signaling pathway limits the ability to induce pluripotency in human somatic fibroblasts. Significance The efficiency with which human cells can be reprogrammed is of interest to stem cell biology. In this study, human fibroblasts cultured in media containing different concentrations of growth factors such as insulin and insulin-like growth factor-1 exhibited variable abilities to proliferate, with consequences on pluripotency. This occurred in part because of changes in the expression of proteins involved in the growth factor signaling pathway, glycolysis, and oxidative phosphorylation. These findings have implications for efficient reprogramming of human cells. PMID:26253715

  15. A Blueprint for a Synthetic Genetic Feedback Controller to Reprogram Cell Fate.

    PubMed

    Del Vecchio, Domitilla; Abdallah, Hussein; Qian, Yili; Collins, James J

    2017-01-25

    To artificially reprogram cell fate, experimentalists manipulate the gene regulatory networks (GRNs) that maintain a cell's phenotype. In practice, reprogramming is often performed by constant overexpression of specific transcription factors (TFs). This process can be unreliable and inefficient. Here, we address this problem by introducing a new approach to reprogramming based on mathematical analysis. We demonstrate that reprogramming GRNs using constant overexpression may not succeed in general. Instead, we propose an alternative reprogramming strategy: a synthetic genetic feedback controller that dynamically steers the concentration of a GRN's key TFs to any desired value. The controller works by adjusting TF expression based on the discrepancy between desired and actual TF concentrations. Theory predicts that this reprogramming strategy is guaranteed to succeed, and its performance is independent of the GRN's structure and parameters, provided that feedback gain is sufficiently high. As a case study, we apply the controller to a model of induced pluripotency in stem cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Optical reprogramming with ultrashort femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  17. A comparison of non-integrating reprogramming methods

    PubMed Central

    Schlaeger, Thorsten M; Daheron, Laurence; Brickler, Thomas R; Entwisle, Samuel; Chan, Karrie; Cianci, Amelia; DeVine, Alexander; Ettenger, Andrew; Fitzgerald, Kelly; Godfrey, Michelle; Gupta, Dipti; McPherson, Jade; Malwadkar, Prerana; Gupta, Manav; Bell, Blair; Doi, Akiko; Jung, Namyoung; Li, Xin; Lynes, Maureen S; Brookes, Emily; Cherry, Anne B C; Demirbas, Didem; Tsankov, Alexander M; Zon, Leonard I; Rubin, Lee L; Feinberg, Andrew P; Meissner, Alexander; Cowan, Chad A; Daley, George Q

    2015-01-01

    Human induced pluripotent stem cells (hiPSCs1–3) are useful in disease modeling and drug discovery, and they promise to provide a new generation of cell-based therapeutics. To date there has been no systematic evaluation of the most widely used techniques for generating integration-free hiPSCs. Here we compare Sendai-viral (SeV)4, episomal (Epi)5 and mRNA transfection mRNA6 methods using a number of criteria. All methods generated high-quality hiPSCs, but significant differences existed in aneuploidy rates, reprogramming efficiency, reliability and workload. We discuss the advantages and shortcomings of each approach, and present and review the results of a survey of a large number of human reprogramming laboratories on their independent experiences and preferences. Our analysis provides a valuable resource to inform the use of specific reprogramming methods for different laboratories and different applications, including clinical translation. PMID:25437882

  18. Reprogramming: A Preventive Strategy in Hypertension Focusing on the Kidney

    PubMed Central

    Tain, You-Lin; Joles, Jaap A.

    2015-01-01

    Adulthood hypertension can be programmed in response to a suboptimal environment in early life. However, developmental plasticity also implies that one can prevent hypertension in adult life by administrating appropriate compounds during early development. We have termed this reprogramming. While the risk of hypertension has been assessed in many mother-child cohorts of human developmental programming, interventions necessary to prove causation and provide a reprogramming strategy are lacking. Since the developing kidney is particularly vulnerable to environmental insults and blood pressure is determined by kidney function, renal programming is considered key in developmental programming of hypertension. Common pathways, whereby both genetic and acquired developmental programming converge into the same phenotype, have been recognized. For instance, the same reprogramming interventions aimed at shifting nitric oxide (NO)-reactive oxygen species (ROS) balance, such as perinatal citrulline or melatonin supplements, can be protective in both genetic and developmentally programmed hypertension. Furthermore, a significantly increased expression of gene Ephx2 (soluble epoxide hydrolase) was noted in both genetic and acquired animal models of hypertension. Since a suboptimal environment is often multifactorial, such common reprogramming pathways are a practical finding for translation to the clinic. This review provides an overview of potential clinical applications of reprogramming strategies to prevent programmed hypertension. We emphasize the kidney in the following areas: mechanistic insights from human studies and animal models to interpret programmed hypertension; identified risk factors of human programmed hypertension from mother-child cohorts; and the impact of reprogramming strategies on programmed hypertension from animal models. It is critical that the observed effects on developmental reprogramming in animal models are replicated in human studies. PMID

  19. Epigenetics primer: why the clinician should care about epigenetics.

    PubMed

    Duarte, Julio D

    2013-12-01

    Epigenetics describes heritable alterations of gene expression that do not involve DNA sequence variation and are changeable throughout an organism's lifetime. Not only can epigenetic status influence drug response, but it can also be modulated by drugs. In this review, the three major epigenetic mechanisms are described: covalent DNA modification, histone protein modification, and regulation by noncoding RNA. Further, this review describes how drug therapy can influence, and be influenced by, these mechanisms. Drugs with epigenetic mechanisms are already in use, with many more likely to be approved within the next few years. As the understanding of epigenetic processes improves, so will the ability to use these data in the clinic to improve patient care. © 2013 Pharmacotherapy Publications, Inc.

  20. Epigenetics, microbiota, and intraocular inflammation: New paradigms of immune regulation in the eye.

    PubMed

    Wen, Xiaofeng; Hu, Xiao; Miao, Li; Ge, Xiaofei; Deng, Yuhua; Bible, Paul W; Wei, Lai

    2018-05-01

    Sight threatening immune responses that damage the eye characterize intraocular inflammatory diseases. These diseases including uveitis and age-related macular degeneration are worryingly common and quality of life shattering. Genetic studies in past decades significantly advanced our understanding of the etiology of these devastating diseases. Unfortunately, patient genetics alone failed to adequately explain disease origin, susceptibility, and progression. Non-genetic factors such as the epigenetic regulation of ocular diseases and the environmental factors triggering intraocular inflammation offer new insight into intraocular inflammatory disorders. Importantly, mounting evidence is signaling that dysbiosis of human microbiota leads to rapid epigenomic reprograming of host cells and results in the onset of many diseases. In this review, we discuss how epigenetic mechanisms and microbiota may cooperate to initiate and perpetuate ocular inflammation. Lastly, we propose that the discovery of intraocular microbiota presents a significant shift in thought affecting current approaches to the diagnosis, treatment, and prevention of intraocular inflammatory diseases such as uveitis and age-related macular degeneration. The geographical and genetic background difference in both disease presentation and genetic association of intraocular inflammatory diseases may be due to the variation of intraocular microbiota. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions.

    PubMed

    Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki

    2015-12-08

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Epigenetic rejuvenation.

    PubMed

    Manukyan, Maria; Singh, Prim B

    2012-05-01

    Induced pluripotent stem (iPS) cells have provided a rational means of obtaining histo-compatible tissues for 'patient-specific' regenerative therapies (Hanna et al. 2010; Yamanaka & Blau 2010). Despite the obvious potential of iPS cell-based therapies, there are certain problems that must be overcome before these therapies can become safe and routine (Ohi et al. 2011; Pera 2011). As an alternative, we have recently explored the possibility of using 'epigenetic rejuvenation', where the specialized functions of an old cell are rejuvenated in the absence of any change in its differentiated state (Singh & Zacouto 2010). The mechanism(s) that underpin 'epigenetic rejuvenation' are unknown and here we discuss model systems, using key epigenetic modifiers, which might shed light on the processes involved. Epigenetic rejuvenation has advantages over iPS cell techniques that are currently being pursued. First, the genetic and epigenetic abnormalities that arise through the cycle of dedifferentiation of somatic cells to iPS cells followed by redifferentiation of iPS cells into the desired cell type are avoided (Gore et al. 2011; Hussein et al. 2011; Pera 2011): epigenetic rejuvenation does not require passage through the de-/redifferentiation cycle. Second, because the aim of epigenetic rejuvenation is to ensure that the differentiated cell type retains its specialized function it makes redundant the question of transcriptional memory that is inimical to iPS cell-based therapies (Ohi et al. 2011). Third, to produce unrelated cell types using the iPS technology takes a long time, around three weeks, whereas epigenetic rejuvenation of old cells will take only a matter of days. Epigenetic rejuvenation provides the most safe, rapid and cheap route to successful regenerative medicine. © 2012 The Authors. Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  3. Algorithm for cellular reprogramming.

    PubMed

    Ronquist, Scott; Patterson, Geoff; Muir, Lindsey A; Lindsly, Stephen; Chen, Haiming; Brown, Markus; Wicha, Max S; Bloch, Anthony; Brockett, Roger; Rajapakse, Indika

    2017-11-07

    The day we understand the time evolution of subcellular events at a level of detail comparable to physical systems governed by Newton's laws of motion seems far away. Even so, quantitative approaches to cellular dynamics add to our understanding of cell biology. With data-guided frameworks we can develop better predictions about, and methods for, control over specific biological processes and system-wide cell behavior. Here we describe an approach for optimizing the use of transcription factors (TFs) in cellular reprogramming, based on a device commonly used in optimal control. We construct an approximate model for the natural evolution of a cell-cycle-synchronized population of human fibroblasts, based on data obtained by sampling the expression of 22,083 genes at several time points during the cell cycle. To arrive at a model of moderate complexity, we cluster gene expression based on division of the genome into topologically associating domains (TADs) and then model the dynamics of TAD expression levels. Based on this dynamical model and additional data, such as known TF binding sites and activity, we develop a methodology for identifying the top TF candidates for a specific cellular reprogramming task. Our data-guided methodology identifies a number of TFs previously validated for reprogramming and/or natural differentiation and predicts some potentially useful combinations of TFs. Our findings highlight the immense potential of dynamical models, mathematics, and data-guided methodologies for improving strategies for control over biological processes. Copyright © 2017 the Author(s). Published by PNAS.

  4. Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Taylor J.; Wozniak, Ryan J.; Arizona Cancer Center, University of Arizona, Tucson, AZ 85724

    2009-02-15

    Arsenic is a human carcinogen with exposure associated with cancer of the lung, skin, and bladder. Many potential mechanisms have been implicated as playing a role in the process of arsenical-induced malignancy including the perturbation of signaling pathways and aberrant epigenetic regulation. We initiated studies to examine the role of a member of the non-canonical WNT signaling pathway, WNT5A, in UROtsa cells and arsenite [URO-ASSC] and monomethylarsonous acid [URO-MSC] malignantly transformed variants. We present data herein that suggest that WNT5A is transcriptionally activated during arsenical-induced malignant transformation. This WNT5A transcriptional activation is correlated with the enrichment of permissive histone modificationsmore » and the reduction of repressive modifications in the WNT5A promoter region. The epigenetic activation of WNT5A expression and acetylation of its promoter remain after the removal of the arsenical, consistent with the maintenance of an anchorage independent growth phenotype in these cells. Additionally, treatment with epigenetic modifying drugs supports a functional role for these epigenetic marks in controlling gene expression. Reduction of WNT5A using lentiviral shRNA greatly attenuated the ability of these cells to grow in an anchorage independent fashion. Extension of our model into human bladder cancer cell lines indicates that each of the cell lines examined also express WNT5A. Taken together, these data suggest that the epigenetic remodeling of the WNT5A promoter is correlated with its transcriptional activation and this upregulation likely participates in arsenical-induced malignant transformation.« less

  5. Developmental Programming of Adult Disease: Reprogramming by Melatonin?

    PubMed

    Tain, You-Lin; Huang, Li-Tung; Hsu, Chien-Ning

    2017-02-16

    Adult-onset chronic non-communicable diseases (NCDs) can originate from early life through so-called the "developmental origins of health and disease" (DOHaD) or "developmental programming". The DOHaD concept offers the "reprogramming" strategy to shift the treatment from adulthood to early life, before clinical disease is apparent. Melatonin, an endogenous indoleamine produced by the pineal gland, has pleiotropic bioactivities those are beneficial in a variety of human diseases. Emerging evidence support that melatonin is closely inter-related to other proposed mechanisms contributing to the developmental programming of a variety of chronic NCDs. Recent animal studies have begun to unravel the multifunctional roles of melatonin in many experimental models of developmental programming. Even though some progress has been made in research on melatonin as a reprogramming strategy to prevent DOHaD-related NCDs, future human studies should aim at filling the translational gap between animal models and clinical trials. Here, we review several key themes on the reprogramming effects of melatonin in DOHaD research. We have particularly focused on the following areas: mechanisms of developmental programming; the interrelationship between melatonin and mechanisms underlying developmental programming; pathophysiological roles of melatonin in pregnancy and fetal development; and insight provided by animal models to support melatonin as a reprogramming therapy. Rates of NCDs are increasing faster than anticipated all over the world. Hence, there is an urgent need to understand reprogramming mechanisms of melatonin and to translate experimental research into clinical practice for halting a growing list of DOHaD-related NCDs.

  6. Obesity-related DNA methylation at imprinted genes in human sperm: Results from the TIEGER study.

    PubMed

    Soubry, Adelheid; Guo, Lisa; Huang, Zhiqing; Hoyo, Cathrine; Romanus, Stephanie; Price, Thomas; Murphy, Susan K

    2016-01-01

    Epigenetic reprogramming in mammalian gametes resets methylation marks that regulate monoallelic expression of imprinted genes. In males, this involves erasure of the maternal methylation marks and establishment of paternal-specific methylation to appropriately guide normal development. The degree to which exogenous factors influence the fidelity of methylation reprogramming is unknown. We previously found an association between paternal obesity and altered DNA methylation in umbilical cord blood, suggesting that the father's endocrine, nutritional, or lifestyle status could potentiate intergenerational heritable epigenetic abnormalities. In these analyses, we examine the relationship between male overweight/obesity and DNA methylation status of imprinted gene regulatory regions in the gametes. Linear regression models were used to compare sperm DNA methylation percentages, quantified by bisulfite pyrosequencing, at 12 differentially methylated regions (DMRs) from 23 overweight/obese and 44 normal weight men. Our study population included 69 volunteers from The Influence of the Environment on Gametic Epigenetic Reprogramming (TIEGER) study, based in NC, USA. After adjusting for age and fertility patient status, semen from overweight or obese men had significantly lower methylation percentages at the MEG3 (β = -1.99; SE = 0.84; p = 0.02), NDN (β = -1.10; SE = 0.47; p = 0.02), SNRPN (β = -0.65; SE = 0.27; p = 0.02), and SGCE/PEG10 (β = -2.5; SE = 1.01; p = 0.01) DMRs. Our data further suggest a slight increase in DNA methylation at the MEG3-IG DMR (β = +1.22; SE = 0.59; p = 0.04) and H19 DMR (β = +1.37; SE = 0.62; p = 0.03) in sperm of overweight/obese men. Our data support that male overweight/obesity status is traceable in the sperm epigenome. Further research is needed to understand the effect of such changes and the point of origin of DNA methylation differences between lean and

  7. Epigenetic Drug Repositioning for Alzheimer's Disease Based on Epigenetic Targets in Human Interactome.

    PubMed

    Chatterjee, Paulami; Roy, Debjani; Rathi, Nitin

    2018-01-01

    Epigenetics has emerged as an important field in drug discovery. Alzheimer's disease (AD), the leading neurodegenerative disorder throughout the world, is shown to have an epigenetic basis. Currently, there are very few effective epigenetic drugs available for AD. In this work, for the first time we have proposed 14 AD repositioning epigenetic drugs and identified their targets from extensive human interactome. Interacting partners of the AD epigenetic proteins were identified from the extensive human interactome to construct Epigenetic Protein-Protein Interaction Network (EP-PPIN). Epigenetic Drug-Target Network (EP-DTN) was constructed with the drugs associated with the proteins of EP-PPIN. Regulation of non-coding RNAs associated with the target proteins of these drugs was also studied. AD related target proteins, epigenetic targets, enriched pathways, and functional categories of the proposed repositioning drugs were also studied. The proposed 14 AD epigenetic repositioning drugs have overlapping targets and miRs with known AD epigenetic targets and miRs. Furthermore, several shared functional categories and enriched pathways were obtained for these drugs with FDA approved epigenetic drugs and known AD drugs. The findings of our work might provide insight into future AD epigenetic-therapeutics.

  8. Epigenetic effects of prenatal estradiol-17β exposure on the reproductive system of pigs.

    PubMed

    Kradolfer, David; Flöter, Veronika L; Bick, Jochen T; Fürst, Rainer W; Rode, Kristina; Brehm, Ralph; Henning, Heiko; Waberski, Dagmar; Bauersachs, Stefan; Ulbrich, Susanne E

    2016-07-15

    There is growing evidence that early life exposure to endocrine disrupting chemicals might increase the risk for certain adult onset diseases, in particular reproductive health problems and hormone dependent cancers. Studies in rodents suggest that perinatal exposure to even low doses of estrogenic substances can cause adverse effects, including epigenetic reprogramming of the prostate and increased formation of precancerous lesions. We analyzed the effects of an in utero exposure to the strongest natural estrogen, estradiol-17β, in a pig model. Two different low and one high dose of estradiol-17β (0.05, 10 and 1000 μg/kg body weight/day) were orally applied to gilts during pregnancy and potential effects on the reproductive system of the offspring were analyzed. No significant effects on sperm vitality parameters and testes size were observed in adult boars. However, prenatal exposure to the high dose decreased absolute, but not relative weight of the testes in prepubertal piglets. RNA sequencing revealed significantly regulated genes of the prepubertal prostate, while testes and uteri were not affected. Notably, we found an increased prostate expression of CCDC80 and a decreased ADH1C expression in the low dose treatment groups. BGN and SPARC, two genes associated with prostate tumor progression, were as well more abundant in exposed animals. Strikingly, the gene body DNA methylation level of BGN was accordingly increased in the high dose group. Thus, while only prenatal exposure to a high dose of estrogen altered testes development and local DNA methylation of the prostate, even low dose exposure had significant effects on gene expression in the prostate of prepubertal piglet offspring. The relevance of these distinct, but subtle transcriptional changes following low dose treatment lacking a clear phenotype calls for further long-term investigations. An epigenetic reprogramming of the pig prostate due to prenatal estrogen cannot be neglected. Copyright

  9. Prediction of epigenetically regulated genes in breast cancer cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines,more » which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in

  10. Prediction of epigenetically regulated genes in breast cancer cell lines.

    PubMed

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria E H; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-06-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profiles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profiles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fixed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically significant negative correlation between methylation profiles and gene expression in the

  11. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming.

    PubMed

    Mitani, Yasuyuki; Vagnozzi, Ronald J; Millay, Douglas P

    2017-01-01

    Knowledge regarding cellular fusion and nuclear reprogramming may aid in cell therapy strategies for skeletal muscle diseases. An issue with cell therapy approaches to restore dystrophin expression in muscular dystrophy is obtaining a sufficient quantity of cells that normally fuse with muscle. Here we conferred fusogenic activity without transdifferentiation to multiple non-muscle cell types and tested dystrophin restoration in mouse models of muscular dystrophy. We previously demonstrated that myomaker, a skeletal muscle-specific transmembrane protein necessary for myoblast fusion, is sufficient to fuse 10T 1/2 fibroblasts to myoblasts in vitro. Whether myomaker-mediated heterologous fusion is functional in vivo and whether the newly introduced nonmuscle nuclei undergoes nuclear reprogramming has not been investigated. We showed that mesenchymal stromal cells, cortical bone stem cells, and tail-tip fibroblasts fuse to skeletal muscle when they express myomaker. These cells restored dystrophin expression in a fraction of dystrophin-deficient myotubes after fusion in vitro. However, dystrophin restoration was not detected in vivo although nuclear reprogramming of the muscle-specific myosin light chain promoter did occur. Despite the lack of detectable dystrophin reprogramming by immunostaining, this study indicated that myomaker could be used in nonmuscle cells to induce fusion with muscle in vivo, thereby providing a platform to deliver therapeutic material.-Mitani, Y., Vagnozzi, R. J., Millay, D. P. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming. © FASEB.

  12. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming

    PubMed Central

    Mitani, Yasuyuki; Vagnozzi, Ronald J.; Millay, Douglas P.

    2017-01-01

    Knowledge regarding cellular fusion and nuclear reprogramming may aid in cell therapy strategies for skeletal muscle diseases. An issue with cell therapy approaches to restore dystrophin expression in muscular dystrophy is obtaining a sufficient quantity of cells that normally fuse with muscle. Here we conferred fusogenic activity without transdifferentiation to multiple non–muscle cell types and tested dystrophin restoration in mouse models of muscular dystrophy. We previously demonstrated that myomaker, a skeletal muscle–specific transmembrane protein necessary for myoblast fusion, is sufficient to fuse 10T 1/2 fibroblasts to myoblasts in vitro. Whether myomaker-mediated heterologous fusion is functional in vivo and whether the newly introduced nonmuscle nuclei undergoes nuclear reprogramming has not been investigated. We showed that mesenchymal stromal cells, cortical bone stem cells, and tail-tip fibroblasts fuse to skeletal muscle when they express myomaker. These cells restored dystrophin expression in a fraction of dystrophin-deficient myotubes after fusion in vitro. However, dystrophin restoration was not detected in vivo although nuclear reprogramming of the muscle-specific myosin light chain promoter did occur. Despite the lack of detectable dystrophin reprogramming by immunostaining, this study indicated that myomaker could be used in nonmuscle cells to induce fusion with muscle in vivo, thereby providing a platform to deliver therapeutic material.—Mitani, Y., Vagnozzi, R. J., Millay, D. P. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming. PMID:27825107

  13. Epigenetic determinants of space radiation-induced cognitive dysfunction

    PubMed Central

    Acharya, Munjal M.; Baddour, Al Anoud D.; Kawashita, Takumi; Allen, Barrett D.; Syage, Amber R.; Nguyen, Thuan H.; Yoon, Nicole; Giedzinski, Erich; Yu, Liping; Parihar, Vipan K.; Baulch, Janet E.

    2017-01-01

    Among the dangers to astronauts engaging in deep space missions such as a Mars expedition is exposure to radiations that put them at risk for severe cognitive dysfunction. These radiation-induced cognitive impairments are accompanied by functional and structural changes including oxidative stress, neuroinflammation, and degradation of neuronal architecture. The molecular mechanisms that dictate CNS function are multifaceted and it is unclear how irradiation induces persistent alterations in the brain. Among those determinants of cognitive function are neuroepigenetic mechanisms that translate radiation responses into altered gene expression and cellular phenotype. In this study, we have demonstrated a correlation between epigenetic aberrations and adverse effects of space relevant irradiation on cognition. In cognitively impaired irradiated mice we observed increased 5-methylcytosine and 5-hydroxymethylcytosine levels in the hippocampus that coincided with increased levels of the DNA methylating enzymes DNMT3a, TET1 and TET3. By inhibiting methylation using 5-iodotubercidin, we demonstrated amelioration of the epigenetic effects of irradiation. In addition to protecting against those molecular effects of irradiation, 5-iodotubercidin restored behavioral performance to that of unirradiated animals. The findings of this study establish the possibility that neuroepigenetic mechanisms significantly contribute to the functional and structural changes that affect the irradiated brain and cognition. PMID:28220892

  14. Reversible Reprogramming of Circulating Memory T Follicular Helper Cell Function during Chronic HIV Infection

    PubMed Central

    Cubas, Rafael; van Grevenynghe, Julien; Wills, Saintedym; Kardava, Lela; Santich, Brian H.; Buckner, Clarisa M.; Muir, Roshell; Tardif, Virginie; Nichols, Carmen; Procopio, Francesco; He, Zhong; Metcalf, Talibah; Ghneim, Khader; Locci, Michela; Ancuta, Petronella; Routy, Jean-Pierre; Trautmann, Lydie; Li, Yuxing; McDermott, Adrian B.; Koup, Rick A.; Petrovas, Constantinos; Migueles, Steven A.; Connors, Mark; Tomaras, Georgia D.; Moir, Susan; Crotty, Shane

    2015-01-01

    Despite the overwhelming benefits of antiretroviral therapy (ART) in curtailing viral load in HIV-infected individuals, ART does not fully restore cellular and humoral immunity. HIV-infected individuals under ART show reduced responses to vaccination and infections and are unable to mount an effective antiviral immune response upon ART cessation. Many factors contribute to these defects, including persistent inflammation, especially in lymphoid tissues, where T follicular helper (Tfh) cells instruct and help B cells launch an effective humoral immune response. In this study we investigated the phenotype and function of circulating memory Tfh cells as a surrogate of Tfh cells in lymph nodes and found significant impairment of this cell population in chronically HIV-infected individuals, leading to reduced B cell responses. We further show that these aberrant memory Tfh cells exhibit an IL-2–responsive gene signature and are more polarized toward a Th1 phenotype. Treatment of functional memory Tfh cells with IL-2 was able to recapitulate the detrimental reprogramming. Importantly, this defect was reversible, as interfering with the IL-2 signaling pathway helped reverse the abnormal differentiation and improved Ab responses. Thus, reversible reprogramming of memory Tfh cells in HIV-infected individuals could be used to enhance Ab responses. Altered microenvironmental conditions in lymphoid tissues leading to altered Tfh cell differentiation could provide one explanation for the poor responsiveness of HIV-infected individuals to new Ags. This explanation has important implications for the development of therapeutic interventions to enhance HIV- and vaccine-mediated Ab responses in patients under ART. PMID:26546609

  15. Cell reprogramming modelled as transitions in a hierarchy of cell cycles

    NASA Astrophysics Data System (ADS)

    Hannam, Ryan; Annibale, Alessia; Kühn, Reimer

    2017-10-01

    We construct a model of cell reprogramming (the conversion of fully differentiated cells to a state of pluripotency, known as induced pluripotent stem cells, or iPSCs) which builds on key elements of cell biology viz. cell cycles and cell lineages. Although reprogramming has been demonstrated experimentally, much of the underlying processes governing cell fate decisions remain unknown. This work aims to bridge this gap by modelling cell types as a set of hierarchically related dynamical attractors representing cell cycles. Stages of the cell cycle are characterised by the configuration of gene expression levels, and reprogramming corresponds to triggering transitions between such configurations. Two mechanisms were found for reprogramming in a two level hierarchy: cycle specific perturbations and a noise induced switching. The former corresponds to a directed perturbation that induces a transition into a cycle-state of a different cell type in the potency hierarchy (mainly a stem cell) whilst the latter is a priori undirected and could be induced, e.g. by a (stochastic) change in the cellular environment. These reprogramming protocols were found to be effective in large regimes of the parameter space and make specific predictions concerning reprogramming dynamics which are broadly in line with experimental findings.

  16. Genetic and epigenetic mechanisms in the pathogenesis of neurofibromatosis type I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metheny, L.J.; Amedeo, M.S.; Cappione, J.

    Neurofibromatosis type I (NF1) is a common genetic disease which leads to a variety of clinical features affecting cells of neural crest origin. In the period since the NF1 gene was isolated 1991, our understanding of the genetics of NF1 has increased remarkably. One of the most striking aspects of NF1 genetics is its complexity, both in terms of gene organization and expression. The gene is large and, when mutated, gives rise to diverse manifestations. A growing body of data suggests that mutations in the NF1 gene alone may not be responsible for all of the features of this disease.more » Epigenetic mechanisms, those which affect the NF1 transcript, play a role in the normal expression of the NF1 gene. Therefore, aberrations in those epigenetic processes are most likely pathogenic. Herein we summarize salient aspects of the vast body of NF1 literature and provide some insights into the myriad of regulatory mechanisms that may go awry in the genesis of this common but complex disease. 58 refs., 3 figs.« less

  17. Comparative methylome analysis in solid tumors reveals aberrant methylation at chromosome 6p in nasopharyngeal carcinoma.

    PubMed

    Dai, Wei; Cheung, Arthur Kwok Leung; Ko, Josephine Mun Yee; Cheng, Yue; Zheng, Hong; Ngan, Roger Kai Cheong; Ng, Wai Tong; Lee, Anne Wing Mui; Yau, Chun Chung; Lee, Victor Ho Fu; Lung, Maria Li

    2015-07-01

    Altered patterns of DNA methylation are key features of cancer. Nasopharyngeal carcinoma (NPC) has the highest incidence in Southern China. Aberrant methylation at the promoter region of tumor suppressors is frequently reported in NPC; however, genome-wide methylation changes have not been comprehensively investigated. Therefore, we systematically analyzed methylome data in 25 primary NPC tumors and nontumor counterparts using a high-throughput approach with the Illumina HumanMethylation450 BeadChip. Comparatively, we examined the methylome data of 11 types of solid tumors collected by The Cancer Genome Atlas (TCGA). In NPC, the hypermethylation pattern was more dominant than hypomethylation and the majority of de novo methylated loci were within or close to CpG islands in tumors. The comparative methylome analysis reveals hypermethylation at chromosome 6p21.3 frequently occurred in NPC (false discovery rate; FDR=1.33 × 10(-9) ), but was less obvious in other types of solid tumors except for prostate and Epstein-Barr virus (EBV)-positive gastric cancer (FDR<10(-3) ). Bisulfite pyrosequencing results further confirmed the aberrant methylation at 6p in an additional patient cohort. Evident enrichment of the repressive mark H3K27me3 and active mark H3K4me3 derived from human embryonic stem cells were found at these regions, indicating both DNA methylation and histone modification function together, leading to epigenetic deregulation in NPC. Our study highlights the importance of epigenetic deregulation in NPC. Polycomb Complex 2 (PRC2), responsible for H3K27 trimethylation, is a promising therapeutic target. A key genomic region on 6p with aberrant methylation was identified. This region contains several important genes having potential use as biomarkers for NPC detection. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  18. Epigenetic targeting of the Nanog pathway and signaling networks during chemical carcinogenesis.

    PubMed

    Tommasi, Stella; Zheng, Albert; Yoon, Jae-In; Besaratinia, Ahmad

    2014-08-01

    Chemical carcinogenesis has long been synonymous with genotoxicity, which entails DNA damage, genetic mutations and chromosomal abnormalities. The present study investigates a paradigm-shifting model in which epigenetic changes are key contributors to chemical carcinogenesis. Using genome-wide microarray-based analysis followed by conventional validation assays, we have progressively chronicled changes in the epigenetic landscape, as reflected in the patterns of DNA methylation, in the target organ of tumorigenesis in mice treated in vivo with a prototype chemical carcinogen (benzo[a]pyrene). Here, we demonstrate characteristic CpG island gain/loss of methylation and demethylation of repetitive DNA elements in carcinogen-treated mice, dependent on tumor progression. Alterations of the DNA methylome are accompanied by silencing of major DNA methyltransferases. Members of the Nanog pathway that establishes and maintains pluripotency in embryonic stem cells and possibly triggers uncontrolled proliferation of neoplastic cells are preferential targets of aberrant DNA methylation and concomitant gene dysregulation during chemical carcinogenesis. Several components of the MEK/ERK, JAK/STAT3, PI3K/AKT, WNT/β- catenin and Shh signaling cascades, which are known to modulate Nanog expression, also show concurrent changes in the patterns of DNA methylation and gene expression. Our data support an epigenetic model of chemical carcinogenesis and suggest that surveillance of the epigenetic landscape, particularly at the loci and in the pathways identified in this study, may have utility for early detection and monitoring of the progression of malignancy. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Epigenetic reprogramming governs EcSOD expression during human mammary epithelial cell differentiation, tumorigenesis and metastasis

    PubMed Central

    Teoh-Fitzgerald, ML; Fitzgerald, MP; Zhong, W; Askeland, RW; Domann, FE

    2013-01-01

    Expression of the antioxidant enzyme EcSOD in normal human mammary epithelial cells was not recognized until recently. Although expression of EcSOD was not detectable in non-malignant human mammary epithelial cells (HMEC) cultured in conventional two-dimensional (2D) culture conditions, EcSOD protein expression was observed in normal human breast tissues, suggesting that the 2D-cultured condition induces a repressive status of EcSOD gene expression in HMEC. With the use of laminin-enriched extracellular matrix (lrECM), we were able to detect expression of EcSOD when HMEC formed polarized acinar structures in a 3D-culture condition. Repression of the EcSOD-gene expression was again seen when the HMEC acini were sub-cultured as a monolayer, implying that lrECM-induced acinar morphogenesis is essential in EcSOD-gene activation. We have further shown the involvement of DNA methylation in regulating EcSOD expression in HMEC under these cell culture conditions. EcSOD mRNA expression was strongly induced in the 2D-cultured HMEC after treatment with a DNA methyltransferase inhibitor. In addition, epigenetic analyses showed a decrease in the degree of CpG methylation in the EcSOD promoter in the 3D versus 2D-cultured HMEC. More importantly, >80% of clinical mammary adenocarcinoma samples showed significantly decreased EcSOD mRNA and protein expression levels compared with normal mammary tissues and there is an inverse correlation between the expression levels of EcSOD and the clinical stages of breast cancer. Combined bisulfite restriction analysis analysis of some of the tumors also revealed an association of DNA methylation with the loss of EcSOD expression in vivo. Furthermore, overexpression of EcSOD inhibited breast cancer metastasis in both the experimental lung metastasis model and the syngeneic mouse model. This study suggests that epigenetic silencing of EcSOD may contribute to mammary tumorigenesis and that restoring the extracellular superoxide scavenging

  20. Targeting HER2 Aberrations in Non-Small Cell Lung Cancer with Osimertinib.

    PubMed

    Liu, Shengwu; Li, Shuai; Hai, Josephine; Wang, Xiaoen; Chen, Ting; Quinn, Max M; Gao, Peng; Zhang, Yanxi; Ji, Hongbin; Cross, Darren A E; Wong, Kwok-Kin

    2018-01-03

    Purpose: HER2 (or ERBB2 ) aberrations, including both amplification and mutations, have been classified as oncogenic drivers that contribute to 2% to 6% of lung adenocarcinomas. HER2 amplification is also an important mechanism for acquired resistance to EGFR tyrosine kinase inhibitors (TKI). However, due to limited preclinical studies and clinical trials, currently there is still no available standard of care for lung cancer patients with HER2 aberrations. To fulfill the clinical need for targeting HER2 in patients with non-small cell lung cancer (NSCLC), we performed a comprehensive preclinical study to evaluate the efficacy of a third-generation TKI, osimertinib (AZD9291). Experimental Design: Three genetically modified mouse models (GEMM) mimicking individual HER2 alterations in NSCLC were generated, and osimertinib was tested for its efficacy against these HER2 aberrations in vivo Results: Osimertinib treatment showed robust efficacy in HER2 wt overexpression and EGFR del19/HER2 models, but not in HER2 exon 20 insertion tumors. Interestingly, we further identified that combined treatment with osimertinib and the BET inhibitor JQ1 significantly increased the response rate in HER2 -mutant NSCLC, whereas JQ1 single treatment did not show efficacy. Conclusions: Overall, our data indicated robust antitumor efficacy of osimertinib against multiple HER2 aberrations in lung cancer, either as a single agent or in combination with JQ1. Our study provides a strong rationale for future clinical trials using osimertinib either alone or in combination with epigenetic drugs to target aberrant HER2 in patients with NSCLC. Clin Cancer Res; 24(11); 1-11. ©2018 AACR. See related commentary by Cappuzzo and Landi, p. 2470 . ©2018 American Association for Cancer Research.

  1. Epigenetic regulation of the oxytocin receptor is associated with neural response during selective social attention.

    PubMed

    Puglia, Meghan H; Connelly, Jessica J; Morris, James P

    2018-06-15

    Aberrant attentional biases to social stimuli have been implicated in a number of disorders including autism and social anxiety disorder. Oxytocin, a naturally-occurring mammalian hormone and neuromodulator involved in regulating social behavior, has been proposed to impact basic biological systems that facilitate the detection of and orientation to social information. Here, we investigate a role for naturally-occurring variability in the endogenous oxytocinergic system in regulating neural response during attention to social information. Participants performed a selective social attention task while undergoing fMRI, provided a blood sample for epigenetic analysis, and completed self-report measures of social functioning. We find that a functional epigenetic modification to the oxytocin receptor, OXTR methylation, is associated with increased neural response within and decreased functional coupling between regions of the salience and attentional control networks during selective social attention. We also show that subclinical variability in autistic and social anxiety traits moderates this epigenetic regulation of neural response. These data offer a mechanistic explanation to a growing literature associating social behavior and disorder with epigenetic modification to OXTR by suggesting that OXTR methylation reflects a decrease in the extent to which social information automatically captures attention. We highlight the importance that treatment efficacy be considered in relation to individual differences in molecular makeup, and that future studies aimed at uncovering biomarkers of disorder carefully consider measurement at both the biological and phenotypic level.

  2. Epigenetic alterations mediate iPSC normalization of DNA-repair expression and TNR stability in Huntington's disease.

    PubMed

    Mollica, Peter A; Zamponi, Martina; Reid, John A; Sharma, Deepak K; White, Alyson E; Ogle, Roy C; Bruno, Robert D; Sachs, Patrick C

    2018-06-13

    Huntington's disease (HD) is a rare autosomal dominant neurodegenerative disorder caused by a cytosine-adenine-guanine (CAG) trinucleotide repeat (TNR) expansion within the HTT gene. The mechanisms underlying HD-associated cellular dysfunction during pluripotency and neurodevelopment, are poorly understood. Here we tested the hypothesis that hypomethylation during cellular reprogramming leads to up-regulation of DNA repair genes and stabilization of TNRs in HD cells. We sought to determine how the HD TNR region is affected by global epigenetic changes through cellular reprogramming and early neurodifferentiation. We find that early-stage HD-affected neural stem cells (NSCs) contain increased levels of global 5-hydroxymethylation (5-hmC) and normalized DNA repair gene expression. We confirm TNR stability is induced during pluripotency, and maintained in HD-NSCs. We also identify up-regulation of 5-hmC catalyzing ten-eleven translocation (TET1/2) proteins, and show their knockdown leads to a corresponding decrease in select DNA repair gene expression. We further confirm decreased expression of TET regulating miR-29 family members in HD-NSCs. Our findings demonstrate that mechanisms involved in pluripotency recover the selected DNA repair gene expression and stabilizes pathogenic TNRs in HD. © 2018. Published by The Company of Biologists Ltd.

  3. Obesity: epigenetic aspects.

    PubMed

    Kaushik, Prashant; Anderson, James T

    2016-06-01

    Epigenetics, defined as inheritable and reversible phenomena that affect gene expression without altering the underlying base pair sequence has been shown to play an important role in the etiopathogenesis of obesity. Obesity is associated with extensive gene expression changes in tissues throughout the body. Epigenetics is emerging as perhaps the most important mechanism through which the lifestyle-choices we make can directly influence the genome. Considerable epidemiological, experimental and clinical data have been amassed showing that the risk of developing disease in later life is dependent on early life conditions, mainly operating within the normative range of developmental exposures. In addition to the 'maternal' interactions, there has been increasing interest in the epigenetic mechanisms through which 'paternal' influences on offspring development can be achieved. Nutrition, among many other environmental factors, is a key player that can induce epigenetic changes not only in the directly exposed organisms but also in subsequent generations through the transgenerational inheritance of epigenetic traits. Overall, significant progress has been made in the field of epigenetics and obesity and the first potential epigenetic markers for obesity that could be detected at birth have been identified. Fortunately, epigenetic phenomena are dynamic and rather quickly reversible with intensive lifestyle changes. This is a very promising and sustainable resolution to the obesity pandemic.

  4. MeCP2 deficiency in Rett syndrome causes epigenetic aberrations at the PWS/AS imprinting center that affects UBE3A expression.

    PubMed

    Makedonski, Kirill; Abuhatzira, Liron; Kaufman, Yotam; Razin, Aharon; Shemer, Ruth

    2005-04-15

    Rett syndrome (RS) is a severe and progressive neurodevelopmental disorder caused by heterozygous mutations in the X-linked methyl CpG binding protein 2 (MeCP2) gene. MeCP2 is a nuclear protein that binds specifically to methylated DNA and functions as a general transcription repressor in the context of chromatin remodeling complexes. RS shares clinical features with those of Angelman syndrome (AS), an imprinting neurodevelopmental disorder. In AS patients, the maternally expressed copy of UBE3A that codes for the ubiquitin protein ligase 3A (E6-AP) is repressed. The similar phenotype of these two syndromes led us to hypothesize that part of the RS phenotype is due to MeCP2-associated silencing of UBE3A. Indeed, UBE3A mRNA and protein are shown here to be significantly reduced in human and mouse MECP2 deficient brains. This reduced UBE3A level was associated with biallelic production of the UBE3A antisense RNA. In addition, MeCP2 deficiency resulted in elevated histone H3 acetylation and H3(K4) methylation and reduced H3(K9) methylation at the PWS/AS imprinting center, with no effect on DNA methylation or SNRPN expression. We conclude, therefore, that MeCP2 deficiency causes epigenetic aberrations at the PWS imprinting center. These changes in histone modifications result in loss of imprinting of the UBE3A antisense gene in the brain, increase in UBE3A antisense RNA level and, consequently reduction in UBE3A production.

  5. Epigenetic Mechanisms Regulate Innate Immunity against Uropathogenic and Commensal-Like Escherichia coli in the Surrogate Insect Model Galleria mellonella.

    PubMed

    Heitmueller, Miriam; Billion, André; Dobrindt, Ulrich; Vilcinskas, Andreas; Mukherjee, Krishnendu

    2017-10-01

    Innate-immunity-related genes in humans are activated during urinary tract infections (UTIs) caused by pathogenic strains of Escherichia coli but are suppressed by commensals. Epigenetic mechanisms play a pivotal role in the regulation of gene expression in response to environmental stimuli. To determine whether epigenetic mechanisms can explain the different behaviors of pathogenic and commensal bacteria, we infected larvae of the greater wax moth, Galleria mellonella , a widely used model insect host, with a uropathogenic E. coli (UPEC) strain that causes symptomatic UTIs in humans or a commensal-like strain that causes asymptomatic bacteriuria (ABU). Infection with the UPEC strain (CFT073) was more lethal to larvae than infection with the attenuated ABU strain (83972) due to the recognition of each strain by different Toll-like receptors, ultimately leading to differential DNA/RNA methylation and histone acetylation. We used next-generation sequencing and reverse transcription (RT)-PCR to correlate epigenetic changes with the induction of innate-immunity-related genes. Transcriptomic analysis of G. mellonella larvae infected with E. coli strains CFT073 and 83972 revealed strain-specific variations in the class and expression levels of genes encoding antimicrobial peptides, cytokines, and enzymes controlling DNA methylation and histone acetylation. Our results provide evidence for the differential epigenetic regulation of transcriptional reprogramming by UPEC and ABU strains of E. coli in G. mellonella larvae, which may be relevant to understanding the different behaviors of these bacterial strains in the human urinary tract. Copyright © 2017 American Society for Microbiology.

  6. S-phase Synchronization Facilitates the Early Progression of Induced-Cardiomyocyte Reprogramming through Enhanced Cell-Cycle Exit.

    PubMed

    Bektik, Emre; Dennis, Adrienne; Pawlowski, Gary; Zhou, Chen; Maleski, Danielle; Takahashi, Satoru; Laurita, Kenneth R; Deschênes, Isabelle; Fu, Ji-Dong

    2018-05-04

    Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) holds a great promise for regenerative medicine and has been studied in several major directions. However, cell-cycle regulation, a fundamental biological process, has not been investigated during iCM-reprogramming. Here, our time-lapse imaging on iCMs, reprogrammed by Gata4, Mef2c, and Tbx5 (GMT) monocistronic retroviruses, revealed that iCM-reprogramming was majorly initiated at late-G1- or S-phase and nearly half of GMT-reprogrammed iCMs divided soon after reprogramming. iCMs exited cell cycle along the process of reprogramming with decreased percentage of 5-ethynyl-20-deoxyuridine (EdU)⁺/α-myosin heavy chain (αMHC)-GFP⁺ cells. S-phase synchronization post-GMT-infection could enhance cell-cycle exit of reprogrammed iCMs and yield more GFP high iCMs, which achieved an advanced reprogramming with more expression of cardiac genes than GFP low cells. However, S-phase synchronization did not enhance the reprogramming with a polycistronic-viral vector, in which cell-cycle exit had been accelerated. In conclusion, post-infection synchronization of S-phase facilitated the early progression of GMT-reprogramming through a mechanism of enhanced cell-cycle exit.

  7. LIF-activated Jak signaling determines Esrrb expression during late-stage reprogramming

    PubMed Central

    Huang, Delun; Wang, Ling; Duan, Jingyue; Huang, Chang; Tian, Xiuchun (Cindy); Zhang, Ming

    2018-01-01

    ABSTRACT The regulatory process of naïve-state induced pluripotent stem cell (iPSC) generation is not well understood. Leukemia inhibitory factor (LIF)-activated Janus kinase/signal transducer and activator of transcription 3 (Jak/Stat3) is the master regulator for naïve-state pluripotency achievement and maintenance. The estrogen-related receptor beta (Esrrb) serves as a naïve-state marker gene regulating self-renewal of embryonic stem cells (ESCs). However, the interconnection between Esrrb and LIF signaling for pluripotency establishment in reprogramming is unclear. We screened the marker genes critical for complete reprogramming during mouse iPSC generation, and identified genes including Esrrb that are responsive to LIF/Jak pathway signaling. Overexpression of Esrrb resumes the reprogramming halted by inhibition of Jak activity in partially reprogrammed cells (pre-iPSCs), and leads to the generation of pluripotent iPSCs. We further show that neither overexpression of Nanog nor stimulation of Wnt signaling, two upstream regulators of Esrrb in ESCs, stimulates the expression of Esrrb in reprogramming when LIF or Jak activity is blocked. Our study demonstrates that Esrrb is a specific reprogramming factor regulated downstream of the LIF/Jak signaling pathway. These results shed new light on the regulatory role of LIF pathway on complete pluripotency establishment during iPSC generation. PMID:29212799

  8. Reprogramming MHC specificity by CRISPR-Cas9-assisted cassette exchange

    PubMed Central

    Kelton, William; Waindok, Ann Cathrin; Pesch, Theresa; Pogson, Mark; Ford, Kyle; Parola, Cristina; Reddy, Sai T.

    2017-01-01

    The development of programmable nucleases has enabled the application of new genome engineering strategies for cellular immunotherapy. While targeted nucleases have mostly been used to knock-out or knock-in genes in immune cells, the scarless exchange of entire immunogenomic alleles would be of great interest. In particular, reprogramming the polymorphic MHC locus could enable the creation of matched donors for allogeneic cellular transplantation. Here we show a proof-of-concept for reprogramming MHC-specificity by performing CRISPR-Cas9-assisted cassette exchange. Using murine antigen presenting cell lines (RAW264.7 macrophages), we demonstrate that the generation of Cas9-induced double-stranded breaks flanking the native MHC-I H2-Kd locus led to exchange of an orthogonal H2-Kb allele. MHC surface expression allowed for easy selection of reprogrammed cells by flow cytometry, thus obviating the need for additional selection markers. MHC-reprogrammed cells were fully functional as they could present H2-Kd-restricted peptide and activate cognate T cells. Finally, we investigated the role of various donor template formats on exchange efficiency, discovering that templates that underwent in situ linearization resulted in the highest MHC-reprogramming efficiency. These findings highlight a potential new approach for the correcting of MHC mismatches in cellular transplantation. PMID:28374766

  9. TET1 Depletion Induces Aberrant CpG Methylation in Colorectal Cancer Cells

    PubMed Central

    Yamamoto, Eiichiro; Harada, Taku; Aoki, Hironori; Maruyama, Reo; Toyota, Mutsumi; Sasaki, Yasushi; Sugai, Tamotsu; Tokino, Takashi; Nakase, Hiroshi

    2016-01-01

    Aberrant DNA methylation is commonly observed in colorectal cancer (CRC), but the underlying mechanism is not fully understood. 5-hydroxymethylcytosine levels and TET1 expression are both reduced in CRC, while epigenetic silencing of TET1 is reportedly associated with the CpG island methylator phenotype. In the present study, we aimed to clarify the relationship between loss of TET1 and aberrant DNA methylation in CRC. Stable TET1 knockdown clones were established using Colo320DM cells, which express high levels of TET1, and HCT116 cells, which express TET1 at a level similar to that in normal colonic tissue. Infinium HumanMethylation450 BeadChip assays revealed increased levels of 5-methylcytosine at more than 10,000 CpG sites in TET1-depleted Colo320DM cells. Changes in DNA methylation were observed at various positions within the genome, including promoters, gene bodies and intergenic regions, and the altered methylation affected expression of a subset of genes. By contrast, TET1 knockdown did not significantly affect DNA methylation in HCT116 cells. However, TET1 depletion was associated with attenuated effects of 5-aza-2’-deoxycytidine on gene expression profiles in both cell lines. These results suggest that loss of TET1 may induce aberrant DNA methylation and may attenuate the effect of 5-aza-2’-deoxycytidine in CRC cells. PMID:27977763

  10. The Zebrafish Models to Explore Genetic and Epigenetic Impacts on Evolutionary Developmental Origins of Aging

    PubMed Central

    Kishi, Shuji

    2014-01-01

    Can we reset, reprogram, rejuvenate or reverse the organismal aging process? Certain genetic manipulations could at least reset and reprogram epigenetic dynamics beyond phenotypic plasticity and elasticity in cells, which can be further manipulated into organisms. However, in a whole complex aging organism, how can we rejuvenate intrinsic resources and infrastructures in an intact/noninvasive manner? The incidence of diseases increases exponentially with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but essentially inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena to rejuvenate over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states based on diverse epigenotypes, in response to intrinsic or extrinsic environmental cues and genetic perturbations. We hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds and windows of plasticity and its robustness by molecular genetic and chemical epigenetic approaches, we have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during their embryonic and/or larval stages (“embryonic/larval senescence”). Subsequently, at least some of these mutant animals were found to show shortened lifespan, while some others would be expected to live longer in adulthoods. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other

  11. Interplay between the miRNome and the epigenetic machinery: Implications in health and disease.

    PubMed

    Poddar, Shagun; Kesharwani, Devesh; Datta, Malabika

    2017-11-01

    Epigenetics refers to functionally relevant genomic changes that do not involve changes in the basic nucleotide sequence. Majorly, these are of two types: DNA methylation and histone modifications. Small RNA molecules called miRNAs are often thought to mediate post-transcriptional epigenetic changes by mRNA degradation or translational attenuation. While DNA methylation and histone modifications have their own independent effects on various cellular events, several reports are suggestive of an obvious interplay between these phenomena and the miRNA regulatory program within the cell. Several miRNAs like miR-375, members of miR-29 family, miR-34, miR-200, and others are regulated by DNA methylation and histone modifications in various types of cancers and metabolic diseases. On the other hand, miRNAs like miR-449a, miR-148, miR-101, miR-214, and miR-128 target members of the epigenetic machinery and their dysregulation leads to diverse cellular aberrations. In spite of being independent cellular events, emergence of such reports that suggest a connection between DNA methylation, histone modification, and miRNA function in several diseases indicate that this connecting axis offers a valuable target with great therapeutic potential that might be exploited for disease management. We review the current status of crosstalk between the major epigenetic modifications and the miRNA machinery and discuss this in the context of health and disease. © 2017 Wiley Periodicals, Inc.

  12. Epigenetics meets endocrinology

    PubMed Central

    Zhang, Xiang; Ho, Shuk-Mei

    2014-01-01

    Although genetics determines endocrine phenotypes, it cannot fully explain the great variability and reversibility of the system in response to environmental changes. Evidence now suggests that epigenetics, i.e. heritable but reversible changes in gene function without changes in nucleotide sequence, links genetics and environment in shaping endocrine function. Epigenetic mechanisms, including DNA methylation, histone modification, and microRNA, partition the genome into active and inactive domains based on endogenous and exogenous environmental changes and developmental stages, creating phenotype plasticity that can explain interindividual and population endocrine variability. We will review the current understanding of epigenetics in endocrinology, specifically, the regulation by epigenetics of the three levels of hormone action (synthesis and release, circulating and target tissue levels, and target-organ responsiveness) and the epigenetic action of endocrine disruptors. We will also discuss the impacts of hormones on epigenetics. We propose a three-dimensional model (genetics, environment, and developmental stage) to explain the phenomena related to progressive changes in endocrine functions with age, the early origin of endocrine disorders, phenotype discordance between monozygotic twins, rapid shifts in disease patterns among populations experiencing major lifestyle changes such as immigration, and the many endocrine disruptions in contemporary life. We emphasize that the key for understanding epigenetics in endocrinology is the identification, through advanced high-throughput screening technologies, of plasticity genes or loci that respond directly to a specific environmental stimulus. Investigations to determine whether epigenetic changes induced by today's lifestyles or environmental `exposures' can be inherited and are reversible should open doors for applying epigenetics to the prevention and treatment of endocrine disorders. PMID:21322125

  13. NF-κB activation impairs somatic cell reprogramming in ageing.

    PubMed

    Soria-Valles, Clara; Osorio, Fernando G; Gutiérrez-Fernández, Ana; De Los Angeles, Alejandro; Bueno, Clara; Menéndez, Pablo; Martín-Subero, José I; Daley, George Q; Freije, José M P; López-Otín, Carlos

    2015-08-01

    Ageing constitutes a critical impediment to somatic cell reprogramming. We have explored the regulatory mechanisms that constitute age-associated barriers, through derivation of induced pluripotent stem cells (iPSCs) from individuals with premature or physiological ageing. We demonstrate that NF-κB activation blocks the generation of iPSCs in ageing. We also show that NF-κB repression occurs during cell reprogramming towards a pluripotent state. Conversely, ageing-associated NF-κB hyperactivation impairs the generation of iPSCs by eliciting the reprogramming repressor DOT1L, which reinforces senescence signals and downregulates pluripotency genes. Genetic and pharmacological NF-κB inhibitory strategies significantly increase the reprogramming efficiency of fibroblasts from Néstor-Guillermo progeria syndrome and Hutchinson-Gilford progeria syndrome patients, as well as from normal aged donors. Finally, we demonstrate that DOT1L inhibition in vivo extends lifespan and ameliorates the accelerated ageing phenotype of progeroid mice, supporting the interest of studying age-associated molecular impairments to identify targets of rejuvenation strategies.

  14. Heart repair by reprogramming non-myocytes with cardiac transcription factors

    PubMed Central

    Song, Kunhua; Nam, Young-Jae; Luo, Xiang; Qi, Xiaoxia; Tan, Wei; Huang, Guo N.; Acharya, Asha; Smith, Christopher L.; Tallquist, Michelle D.; Neilson, Eric G.; Hill, Joseph A.; Bassel-Duby, Rhonda; Olson, Eric N.

    2012-01-01

    The adult mammalian heart possesses little regenerative potential following injury. Fibrosis due to activation of cardiac fibroblasts impedes cardiac regeneration and contributes to loss of contractile function, pathological remodeling and susceptibility to arrhythmias. Cardiac fibroblasts account for a majority of cells in the heart and represent a potential cellular source for restoration of cardiac function following injury through phenotypic reprogramming to a myocardial cell fate. Here we show that four transcription factors, GATA4, Hand2, MEF2C and Tbx5 can cooperatively reprogram adult mouse tail-tip and cardiac fibroblasts into beating cardiac-like myocytes in vitro. Forced expression of these factors in dividing non-cardiomyocytes in mice reprograms these cells into functional cardiac-like myocytes, improves cardiac function and reduces adverse ventricular remodeling following myocardial infarction. Our results suggest a strategy for cardiac repair through reprogramming fibroblasts resident in the heart with cardiogenic transcription factors or other molecules. PMID:22660318

  15. Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson's disease patients.

    PubMed

    Fernández-Santiago, Rubén; Carballo-Carbajal, Iria; Castellano, Giancarlo; Torrent, Roger; Richaud, Yvonne; Sánchez-Danés, Adriana; Vilarrasa-Blasi, Roser; Sánchez-Pla, Alex; Mosquera, José Luis; Soriano, Jordi; López-Barneo, José; Canals, Josep M; Alberch, Jordi; Raya, Ángel; Vila, Miquel; Consiglio, Antonella; Martín-Subero, José I; Ezquerra, Mario; Tolosa, Eduardo

    2015-12-01

    The epigenomic landscape of Parkinson's disease (PD) remains unknown. We performed a genomewide DNA methylation and a transcriptome studies in induced pluripotent stem cell (iPSC)-derived dopaminergic neurons (DAn) generated by cell reprogramming of somatic skin cells from patients with monogenic LRRK2-associated PD (L2PD) or sporadic PD (sPD), and healthy subjects. We observed extensive DNA methylation changes in PD DAn, and of RNA expression, which were common in L2PD and sPD. No significant methylation differences were present in parental skin cells, undifferentiated iPSCs nor iPSC-derived neural cultures not-enriched-in-DAn. These findings suggest the presence of molecular defects in PD somatic cells which manifest only upon differentiation into the DAn cells targeted in PD. The methylation profile from PD DAn, but not from controls, resembled that of neural cultures not-enriched-in-DAn indicating a failure to fully acquire the epigenetic identity own to healthy DAn in PD. The PD-associated hypermethylation was prominent in gene regulatory regions such as enhancers and was related to the RNA and/or protein downregulation of a network of transcription factors relevant to PD (FOXA1, NR3C1, HNF4A, and FOSL2). Using a patient-specific iPSC-based DAn model, our study provides the first evidence that epigenetic deregulation is associated with monogenic and sporadic PD. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  16. Reprogramming of Somatic Cells Towards Pluripotency by Cell Fusion.

    PubMed

    Malinowski, Andrzej R; Fisher, Amanda G

    2016-01-01

    Pluripotent reprogramming can be dominantly induced in a somatic nucleus upon fusion with a pluripotent cell such as embryonic stem (ES) cell. Cell fusion between ES cells and somatic cells results in the formation of heterokaryons, in which the somatic nuclei begin to acquire features of the pluripotent partner. The generation of interspecies heterokaryons between mouse ES- and human somatic cells allows an experimenter to distinguish the nuclear events occurring specifically within the reprogrammed nucleus. Therefore, cell fusion provides a simple and rapid approach to look at the early nuclear events underlying pluripotent reprogramming. Here, we describe a polyethylene glycol (PEG)-mediated cell fusion protocol to generate interspecies heterokaryons and intraspecies hybrids between ES cells and B lymphocytes or fibroblasts.

  17. Epigenetic stress responses induce muscle stem-cell ageing by Hoxa9 developmental signals.

    PubMed

    Schwörer, Simon; Becker, Friedrich; Feller, Christian; Baig, Ali H; Köber, Ute; Henze, Henriette; Kraus, Johann M; Xin, Beibei; Lechel, André; Lipka, Daniel B; Varghese, Christy S; Schmidt, Manuel; Rohs, Remo; Aebersold, Ruedi; Medina, Kay L; Kestler, Hans A; Neri, Francesco; von Maltzahn, Julia; Tümpel, Stefan; Rudolph, K Lenhard

    2016-12-15

    The functionality of stem cells declines during ageing, and this decline contributes to ageing-associated impairments in tissue regeneration and function. Alterations in developmental pathways have been associated with declines in stem-cell function during ageing, but the nature of this process remains poorly understood. Hox genes are key regulators of stem cells and tissue patterning during embryogenesis with an unknown role in ageing. Here we show that the epigenetic stress response in muscle stem cells (also known as satellite cells) differs between aged and young mice. The alteration includes aberrant global and site-specific induction of active chromatin marks in activated satellite cells from aged mice, resulting in the specific induction of Hoxa9 but not other Hox genes. Hoxa9 in turn activates several developmental pathways and represents a decisive factor that separates satellite cell gene expression in aged mice from that in young mice. The activated pathways include most of the currently known inhibitors of satellite cell function in ageing muscle, including Wnt, TGFβ, JAK/STAT and senescence signalling. Inhibition of aberrant chromatin activation or deletion of Hoxa9 improves satellite cell function and muscle regeneration in aged mice, whereas overexpression of Hoxa9 mimics ageing-associated defects in satellite cells from young mice, which can be rescued by the inhibition of Hoxa9-targeted developmental pathways. Together, these data delineate an altered epigenetic stress response in activated satellite cells from aged mice, which limits satellite cell function and muscle regeneration by Hoxa9-dependent activation of developmental pathways.

  18. Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells.

    PubMed

    Klawitter, Sabine; Fuchs, Nina V; Upton, Kyle R; Muñoz-Lopez, Martin; Shukla, Ruchi; Wang, Jichang; Garcia-Cañadas, Marta; Lopez-Ruiz, Cesar; Gerhardt, Daniel J; Sebe, Attila; Grabundzija, Ivana; Merkert, Sylvia; Gerdes, Patricia; Pulgarin, J Andres; Bock, Anja; Held, Ulrike; Witthuhn, Anett; Haase, Alexandra; Sarkadi, Balázs; Löwer, Johannes; Wolvetang, Ernst J; Martin, Ulrich; Ivics, Zoltán; Izsvák, Zsuzsanna; Garcia-Perez, Jose L; Faulkner, Geoffrey J; Schumann, Gerald G

    2016-01-08

    Human induced pluripotent stem cells (hiPSCs) are capable of unlimited proliferation and can differentiate in vitro to generate derivatives of the three primary germ layers. Genetic and epigenetic abnormalities have been reported by Wissing and colleagues to occur during hiPSC derivation, including mobilization of engineered LINE-1 (L1) retrotransposons. However, incidence and functional impact of endogenous retrotransposition in hiPSCs are yet to be established. Here we apply retrotransposon capture sequencing to eight hiPSC lines and three human embryonic stem cell (hESC) lines, revealing endogenous L1, Alu and SINE-VNTR-Alu (SVA) mobilization during reprogramming and pluripotent stem cell cultivation. Surprisingly, 4/7 de novo L1 insertions are full length and 6/11 retrotransposition events occurred in protein-coding genes expressed in pluripotent stem cells. We further demonstrate that an intronic L1 insertion in the CADPS2 gene is acquired during hiPSC cultivation and disrupts CADPS2 expression. These experiments elucidate endogenous retrotransposition, and its potential consequences, in hiPSCs and hESCs.

  19. Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells

    PubMed Central

    Klawitter, Sabine; Fuchs, Nina V.; Upton, Kyle R.; Muñoz-Lopez, Martin; Shukla, Ruchi; Wang, Jichang; Garcia-Cañadas, Marta; Lopez-Ruiz, Cesar; Gerhardt, Daniel J.; Sebe, Attila; Grabundzija, Ivana; Merkert, Sylvia; Gerdes, Patricia; Pulgarin, J. Andres; Bock, Anja; Held, Ulrike; Witthuhn, Anett; Haase, Alexandra; Sarkadi, Balázs; Löwer, Johannes; Wolvetang, Ernst J.; Martin, Ulrich; Ivics, Zoltán; Izsvák, Zsuzsanna; Garcia-Perez, Jose L.; Faulkner, Geoffrey J.; Schumann, Gerald G.

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) are capable of unlimited proliferation and can differentiate in vitro to generate derivatives of the three primary germ layers. Genetic and epigenetic abnormalities have been reported by Wissing and colleagues to occur during hiPSC derivation, including mobilization of engineered LINE-1 (L1) retrotransposons. However, incidence and functional impact of endogenous retrotransposition in hiPSCs are yet to be established. Here we apply retrotransposon capture sequencing to eight hiPSC lines and three human embryonic stem cell (hESC) lines, revealing endogenous L1, Alu and SINE-VNTR-Alu (SVA) mobilization during reprogramming and pluripotent stem cell cultivation. Surprisingly, 4/7 de novo L1 insertions are full length and 6/11 retrotransposition events occurred in protein-coding genes expressed in pluripotent stem cells. We further demonstrate that an intronic L1 insertion in the CADPS2 gene is acquired during hiPSC cultivation and disrupts CADPS2 expression. These experiments elucidate endogenous retrotransposition, and its potential consequences, in hiPSCs and hESCs. PMID:26743714

  20. Detection of type 2 diabetes related modules and genes based on epigenetic networks

    PubMed Central

    2014-01-01

    Background Type 2 diabetes (T2D) is one of the most common chronic metabolic diseases characterized by insulin resistance and the decrease of insulin secretion. Genetic variation can only explain part of the heritability of T2D, so there need new methods to detect the susceptibility genes of the disease. Epigenetics could establish the interface between the environmental factor and the T2D Pathological mechanism. Results Based on the network theory and by combining epigenetic characteristics with human interactome, the weighted human DNA methylation network (WMPN) was constructed, and a T2D-related subnetwork (TMSN) was obtained through T2D-related differentially methylated genes. It is found that TMSN had a T2D specific network structure that non-fatal metabolic disease causing genes were often located in the topological and functional periphery of network. Combined with chromatin modifications, the weighted chromatin modification network (WCPN) was built, and a T2D-related chromatin modification pattern subnetwork was obtained by the TMSN gene set. TCSN had a densely connected network community, indicating that TMSN and TCSN could represent a collection of T2D-related epigenetic dysregulated sub-pathways. Using the cumulative hypergeometric test, 24 interplay modules of DNA methylation and chromatin modifications were identified. By the analysis of gene expression in human T2D islet tissue, it is found that there existed genes with the variant expression level caused by the aberrant DNA methylation and (or) chromatin modifications, which might affect and promote the development of T2D. Conclusions Here we have detected the potential interplay modules of DNA methylation and chromatin modifications for T2D. The study of T2D epigenetic networks provides a new way for understanding the pathogenic mechanism of T2D caused by epigenetic disorders. PMID:24565181

  1. Epigenetics: ambiguities and implications.

    PubMed

    Stotz, Karola; Griffiths, Paul

    2016-12-01

    Everyone has heard of 'epigenetics', but the term means different things to different researchers. Four important contemporary meanings are outlined in this paper. Epigenetics in its various senses has implications for development, heredity, and evolution, and also for medicine. Concerning development, it cements the vision of a reactive genome strongly coupled to its environment. Concerning heredity, both narrowly epigenetic and broader 'exogenetic' systems of inheritance play important roles in the construction of phenotypes. A thoroughly epigenetic model of development and evolution was Waddington's aim when he introduced the term 'epigenetics' in the 1940s, but it has taken the modern development of molecular epigenetics to realize this aim. In the final sections of the paper we briefly outline some further implications of epigenetics for medicine and for the nature/nurture debate.

  2. Epigenetic regulation of EFEMP1 in prostate cancer: biological relevance and clinical potential

    PubMed Central

    Almeida, Mafalda; Costa, Vera L; Costa, Natália R; Ramalho-Carvalho, João; Baptista, Tiago; Ribeiro, Franclim R; Paulo, Paula; Teixeira, Manuel R; Oliveira, Jorge; Lothe, Ragnhild A; Lind, Guro E; Henrique, Rui; Jerónimo, Carmen

    2014-01-01

    Epigenetic alterations are common in prostate cancer (PCa) and seem to contribute decisively to its initiation and progression. Moreover, aberrant promoter methylation is a promising biomarker for non-invasive screening. Herein, we sought to characterize EFEMP1 as biomarker for PCa, unveiling its biological relevance in prostate carcinogenesis. Microarray analyses of treated PCa cell lines and primary tissues enabled the selection of differentially methylated genes, among which EFEMP1 was further validated by MSP and bisulfite sequencing. Assessment of biomarker performance was accomplished by qMSP. Expression analysis of EFEMP1 and characterization of histone marks were performed in tissue samples and cancer cell lines to determine the impact of epigenetic mechanisms on EFEMP1 transcriptional regulation. Phenotypic assays, using transfected cell lines, permitted the evaluation of EFEMP1’s role in PCa development. EFEMP1 methylation assay discriminated PCa from normal prostate tissue (NPT; P < 0.001, Kruskall–Wallis test) and renal and bladder cancers (96% sensitivity and 98% specificity). EFEMP1 transcription levels inversely correlated with promoter methylation and histone deacetylation, suggesting that both epigenetic mechanisms are involved in gene regulation. Phenotypic assays showed that EFEMP1 de novo expression reduces malignant phenotype of PCa cells. EFEMP1 promoter methylation is prevalent in PCa and accurately discriminates PCa from non-cancerous prostate tissues and other urological neoplasms. This epigenetic alteration occurs early in prostate carcinogenesis and, in association with histone deacetylation, progressively leads to gene down-regulation, fostering cell proliferation, invasion and evasion of apoptosis. PMID:25211630

  3. Differentially expressed microRNAs in lung adenocarcinoma invert effects of copy number aberrations of prognostic genes

    PubMed Central

    Tokar, Tomas; Pastrello, Chiara; Ramnarine, Varune R.; Zhu, Chang-Qi; Craddock, Kenneth J.; Pikor, Larrisa A.; Vucic, Emily A.; Vary, Simon; Shepherd, Frances A.; Tsao, Ming-Sound; Lam, Wan L.; Jurisica, Igor

    2018-01-01

    In many cancers, significantly down- or upregulated genes are found within chromosomal regions with DNA copy number alteration opposite to the expression changes. Generally, this paradox has been overlooked as noise, but can potentially be a consequence of interference of epigenetic regulatory mechanisms, including microRNA-mediated control of mRNA levels. To explore potential associations between microRNAs and paradoxes in non-small-cell lung cancer (NSCLC) we curated and analyzed lung adenocarcinoma (LUAD) data, comprising gene expressions, copy number aberrations (CNAs) and microRNA expressions. We integrated data from 1,062 tumor samples and 241 normal lung samples, including newly-generated array comparative genomic hybridization (aCGH) data from 63 LUAD samples. We identified 85 “paradoxical” genes whose differential expression consistently contrasted with aberrations of their copy numbers. Paradoxical status of 70 out of 85 genes was validated on sample-wise basis using The Cancer Genome Atlas (TCGA) LUAD data. Of these, 41 genes are prognostic and form a clinically relevant signature, which we validated on three independent datasets. By meta-analysis of results from 9 LUAD microRNA expression studies we identified 24 consistently-deregulated microRNAs. Using TCGA-LUAD data we showed that deregulation of 19 of these microRNAs explains differential expression of the paradoxical genes. Our results show that deregulation of paradoxical genes is crucial in LUAD and their expression pattern is maintained epigenetically, defying gene copy number status. PMID:29507679

  4. BRDT is an essential epigenetic regulator for proper chromatin organization, silencing of sex chromosomes and crossover formation in male meiosis

    PubMed Central

    Oh, Min Young; Garyn, Corey

    2018-01-01

    The double bromodomain and extra-terminal domain (BET) proteins are critical epigenetic readers that bind to acetylated histones in chromatin and regulate transcriptional activity and modulate changes in chromatin structure and organization. The testis-specific BET member, BRDT, is essential for the normal progression of spermatogenesis as mutations in the Brdt gene result in complete male sterility. Although BRDT is expressed in both spermatocytes and spermatids, loss of the first bromodomain of BRDT leads to severe defects in spermiogenesis without overtly compromising meiosis. In contrast, complete loss of BRDT blocks the progression of spermatocytes into the first meiotic division, resulting in a complete absence of post-meiotic cells. Although BRDT has been implicated in chromatin remodeling and mRNA processing during spermiogenesis, little is known about its role in meiotic processes. Here we report that BRDT is an essential regulator of chromatin organization and reprograming during prophase I of meiosis. Loss of BRDT function disrupts the epigenetic state of the meiotic sex chromosome inactivation in spermatocytes, affecting the synapsis and silencing of the X and Y chromosomes. We also found that BRDT controls the global chromatin organization and histone modifications of the chromatin attached to the synaptonemal complex. Furthermore, the homeostasis of crossover formation and localization during pachynema was altered, underlining a possible epigenetic mechanism by which crossovers are regulated and differentially established in mammalian male genomes. Our observations reveal novel findings about the function of BRDT in meiosis and provide insight into how epigenetic regulators modulate the progression of male mammalian meiosis and the formation of haploid gametes. PMID:29513658

  5. [Nutritional epigenetics and epigenetic effects of human breast milk].

    PubMed

    Lukoyanova, O L; Borovik, T E

    The article provides an overview of the current literature on nutritional epigenetics. There are currently actively studied hypothesis that nutrition especially in early life or in critical periods of the development, may have a role in modulating gene expression, and, therefore, have later effects on health in adults. Nutritional epigenetics concerns knowledge about the possible effects of nutrients on gene expression. Human breast milk is well-known for its ability in preventing necrotizing enterocolitis, infectious diseases, and also non-communicable diseases, such as obesity and related disorders. This paper discusses about presumed epigenetic effects of human breast milk and some its components. While evidence suggests that a direct relationship may exist of some components of human breast milk with epigenetic changes, the mechanisms involved are stillunclear.

  6. Identification of SSEA-1 expressing enhanced reprogramming (SEER) cells in porcine embryonic fibroblasts

    PubMed Central

    Li, Dong; Secher, Jan O.; Mashayekhi, Kaveh; Nielsen, Troels T.; Hyttel, Poul; Freude, Kristine K.

    2017-01-01

    ABSTRACT Previous research has shown that a subpopulation of cells within cultured human dermal fibroblasts, termed multilineage-differentiating stress enduring (Muse) cells, are preferentially reprogrammed into induced pluripotent stem cells. However, controversy exists over whether these cells are the only cells capable of being reprogrammed from a heterogeneous population of fibroblasts. Similarly, there is little research to suggest such cells may exist in embryonic tissues or other species. To address if such a cell population exists in pigs, we investigated porcine embryonic fibroblast populations (pEFs) and identified heterogeneous expression of several key cell surface markers. Strikingly, we discovered a small population of stage-specific embryonic antigen 1 positive cells (SSEA-1+) in Danish Landrace and Göttingen minipig pEFs, which were absent in the Yucatan pEFs. Furthermore, reprogramming of SSEA-1+ sorted pEFs led to higher reprogramming efficiency. Subsequent transcriptome profiling of the SSEA-1+ vs. the SSEA-1neg cell fraction revealed highly comparable gene signatures. However several genes that were found to be upregulated in the SSEA-1+ cells were similarly expressed in mesenchymal stem cells (MSCs). We therefore termed these cells SSEA-1 Expressing Enhanced Reprogramming (SEER) cells. Interestingly, SEER cells were more effective at differentiating into osteocytes and chondrocytes in vitro. We conclude that SEER cells are more amenable for reprogramming and that the expression of mesenchymal stem cell genes is advantageous in the reprogramming process. This data provides evidence supporting the elite theory and helps to delineate which cell types and specific genes are important for reprogramming in the pig. PMID:28426281

  7. Two decades of leukemia oncoprotein epistasis: the MLL1 paradigm for epigenetic deregulation in leukemia

    PubMed Central

    Li, Bin E.; Ernst, Patricia

    2015-01-01

    MLL1, located on human chromosome 11, is disrupted in distinct recurrent chromosomal translocations in several leukemia subsets. Studying the MLL1 gene and its oncogenic variants has provided a paradigm for understanding cancer initiation and maintenance through aberrant epigenetic gene regulation. Here we review the historical development of model systems to recapitulate oncogenic MLL1-rearrangement (MLL-r) alleles encoding mixed-lineage leukemia fusion proteins (MLL-FPs) or internal gene rearrangement products. These largely mouse and human cell/xenograft systems have been generated and used to understand how MLL-r alleles affect diverse pathways to result in a highly penetrant, drug-resistant leukemia. The particular features of the animal models influenced the conclusions of mechanisms of transformation. We discuss significant downstream enablers, inhibitors, effectors, and collaborators of MLL-r leukemia, including molecules that directly interact with MLL-FPs and endogenous mixed-lineage leukemia protein, direct target genes of MLL-FPs, and other pathways that have proven to be influential in supporting or suppressing the leukemogenic activity of MLL-FPs. The use of animal models has been complemented with patient sample, genome-wide analyses to delineate the important genomic and epigenomic changes that occur in distinct subsets of MLL-r leukemia. Collectively, these studies have resulted in rapid progress toward developing new strategies for targeting MLL-r leukemia and general cell-biological principles that may broadly inform targeting aberrant epigenetic regulators in other cancers. PMID:25264566

  8. Epigenetic mechanisms in anti-cancer actions of bioactive food components – the implications in cancer prevention

    PubMed Central

    Stefanska, B; Karlic, H; Varga, F; Fabianowska-Majewska, K; Haslberger, AG

    2012-01-01

    The hallmarks of carcinogenesis are aberrations in gene expression and protein function caused by both genetic and epigenetic modifications. Epigenetics refers to the changes in gene expression programming that alter the phenotype in the absence of a change in DNA sequence. Epigenetic modifications, which include amongst others DNA methylation, covalent modifications of histone tails and regulation by non-coding RNAs, play a significant role in normal development and genome stability. The changes are dynamic and serve as an adaptation mechanism to a wide variety of environmental and social factors including diet. A number of studies have provided evidence that some natural bioactive compounds found in food and herbs can modulate gene expression by targeting different elements of the epigenetic machinery. Nutrients that are components of one-carbon metabolism, such as folate, riboflavin, pyridoxine, cobalamin, choline, betaine and methionine, affect DNA methylation by regulating the levels of S-adenosyl-L-methionine, a methyl group donor, and S-adenosyl-L-homocysteine, which is an inhibitor of enzymes catalyzing the DNA methylation reaction. Other natural compounds target histone modifications and levels of non-coding RNAs such as vitamin D, which recruits histone acetylases, or resveratrol, which activates the deacetylase sirtuin and regulates oncogenic and tumour suppressor micro-RNAs. As epigenetic abnormalities have been shown to be both causative and contributing factors in different health conditions including cancer, natural compounds that are direct or indirect regulators of the epigenome constitute an excellent approach in cancer prevention and potentially in anti-cancer therapy. PMID:22536923

  9. Hyperglycaemia attenuates in vivo reprogramming of pancreatic exocrine cells to beta cells in mice

    PubMed Central

    Cavelti-Weder, Claudia; Li, Weida; Zumsteg, Adrian; Stemann-Andersen, Marianne; Zhang, Yuemei; Yamada, Takatsugu; Wang, Max; Lu, Jiaqi; Jermendy, Agnes; Bee, Yong Mong; Bonner-Weir, Susan; Weir, Gordon C.; Zhou, Qiao

    2016-01-01

    Aims/hypothesis Reprogramming of pancreatic exocrine to insulin-producing cells by viral delivery of the genes encoding transcription factors neurogenin-3 (Ngn3), pancreas/duodenum homeobox protein 1 (Pdx1) and MafA is an efficient method for reversing diabetes in murine models. The variables that modulate reprogramming success are currently ill-defined. Methods Here, we assess the impact of glycaemia on in vivo reprogramming in a mouse model of streptozotocin-induced beta cell ablation, using subsequent islet transplantation or insulin pellet implantation for creation of groups with differing levels of glycaemia before viral delivery of transcription factors. Results We observed that hyperglycaemia significantly impaired reprogramming of exocrine to insulin-producing cells in their quantity, differentiation status and function. With hyperglycaemia, the reprogramming of acinar towards beta cells was less complete. Moreover, inflammatory tissue changes within the exocrine pancreas including macrophage accumulation were found, which may represent the tissue’s response to clear the pancreas from insufficiently reprogrammed cells. Conclusions/interpretation Our findings shed light on normoglycaemia as a prerequisite for optimal reprogramming success in a diabetes model, which might be important in other tissue engineering approaches and disease models, potentially facilitating their translational applications. PMID:26693711

  10. Hyperglycaemia attenuates in vivo reprogramming of pancreatic exocrine cells to beta cells in mice.

    PubMed

    Cavelti-Weder, Claudia; Li, Weida; Zumsteg, Adrian; Stemann-Andersen, Marianne; Zhang, Yuemei; Yamada, Takatsugu; Wang, Max; Lu, Jiaqi; Jermendy, Agnes; Bee, Yong Mong; Bonner-Weir, Susan; Weir, Gordon C; Zhou, Qiao

    2016-03-01

    Reprogramming of pancreatic exocrine to insulin-producing cells by viral delivery of the genes encoding transcription factors neurogenin-3 (Ngn3), pancreas/duodenum homeobox protein 1 (Pdx1) and MafA is an efficient method for reversing diabetes in murine models. The variables that modulate reprogramming success are currently ill-defined. Here, we assess the impact of glycaemia on in vivo reprogramming in a mouse model of streptozotocin-induced beta cell ablation, using subsequent islet transplantation or insulin pellet implantation for creation of groups with differing levels of glycaemia before viral delivery of transcription factors. We observed that hyperglycaemia significantly impaired reprogramming of exocrine to insulin-producing cells in their quantity, differentiation status and function. With hyperglycaemia, the reprogramming of acinar towards beta cells was less complete. Moreover, inflammatory tissue changes within the exocrine pancreas including macrophage accumulation were found, which may represent the tissue's response to clear the pancreas from insufficiently reprogrammed cells. Our findings shed light on normoglycaemia as a prerequisite for optimal reprogramming success in a diabetes model, which might be important in other tissue engineering approaches and disease models, potentially facilitating their translational applications.

  11. Epigenetics and epilepsy.

    PubMed

    Pulido Fontes, L; Quesada Jimenez, P; Mendioroz Iriarte, M

    2015-03-01

    Epigenetics is the study of heritable modifications in gene expression that do not change the DNA nucleotide sequence. Some of the most thoroughly studied epigenetic mechanisms at present are DNA methylation, post-transcriptional modifications of histones, and the effect of non-coding RNA molecules. Gene expression is regulated by means of these mechanisms and disruption of these molecular pathways may elicit development of diseases. We describe the main epigenetic regulatory mechanisms and review the most recent literature about epigenetic mechanisms and how those mechanisms are involved in different epileptic syndromes. Identifying the epigenetic mechanisms involved in epilepsy is a promising line of research that will deliver more in-depth knowledge of epilepsy pathophysiology and treatments. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  12. DNA methylation patterns in tissues from mid-gestation bovine foetuses produced by somatic cell nuclear transfer show subtle abnormalities in nuclear reprogramming

    PubMed Central

    2010-01-01

    Background Cloning of cattle by somatic cell nuclear transfer (SCNT) is associated with a high incidence of pregnancy failure characterized by abnormal placental and foetal development. These abnormalities are thought to be due, in part, to incomplete re-setting of the epigenetic state of DNA in the donor somatic cell nucleus to a state that is capable of driving embryonic and foetal development to completion. Here, we tested the hypothesis that DNA methylation patterns were not appropriately established during nuclear reprogramming following SCNT. A panel of imprinted, non-imprinted genes and satellite repeat sequences was examined in tissues collected from viable and failing mid-gestation SCNT foetuses and compared with similar tissues from gestation-matched normal foetuses generated by artificial insemination (AI). Results Most of the genomic regions examined in tissues from viable and failing SCNT foetuses had DNA methylation patterns similar to those in comparable tissues from AI controls. However, statistically significant differences were found between SCNT and AI at specific CpG sites in some regions of the genome, particularly those associated with SNRPN and KCNQ1OT1, which tended to be hypomethylated in SCNT tissues. There was a high degree of variation between individuals in methylation levels at almost every CpG site in these two regions, even in AI controls. In other genomic regions, methylation levels at specific CpG sites were tightly controlled with little variation between individuals. Only one site (HAND1) showed a tissue-specific pattern of DNA methylation. Overall, DNA methylation patterns in tissues of failing foetuses were similar to apparently viable SCNT foetuses, although there were individuals showing extreme deviant patterns. Conclusion These results show that SCNT foetuses that had developed to mid-gestation had largely undergone nuclear reprogramming and that the epigenetic signature at this stage was not a good predictor of whether the

  13. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts

    PubMed Central

    Doi, Akiko; Park, In-Hyun; Wen, Bo; Murakami, Peter; Aryee, Martin J; Irizarry, Rafael; Herb, Brian; Ladd-Acosta, Christine; Rho, Junsung; Loewer, Sabine; Miller, Justine; Schlaeger, Thorsten; Daley, George Q; Feinberg, Andrew P

    2010-01-01

    Induced pluripotent stem (iPS) cells are derived by epigenetic reprogramming, but their DNA methylation patterns have not yet been analyzed on a genome-wide scale. Here, we find substantial hypermethylation and hypomethylation of cytosine-phosphate-guanine (CpG) island shores in nine human iPS cell lines as compared to their parental fibroblasts. The differentially methylated regions (DMRs) in the reprogrammed cells (denoted R-DMRs) were significantly enriched in tissue-specific (T-DMRs; 2.6-fold, P < 10−4) and cancer-specific DMRs (C-DMRs; 3.6-fold, P < 10−4). Notably, even though the iPS cells are derived from fibroblasts, their R-DMRs can distinguish between normal brain, liver and spleen cells and between colon cancer and normal colon cells. Thus, many DMRs are broadly involved in tissue differentiation, epigenetic reprogramming and cancer. We observed colocalization of hypomethylated R-DMRs with hypermethylated C-DMRs and bivalent chromatin marks, and colocalization of hypermethylated R-DMRs with hypomethylated C-DMRs and the absence of bivalent marks, suggesting two mechanisms for epigenetic reprogramming in iPS cells and cancer. PMID:19881528

  14. Efficient Direct Lineage Reprogramming of Fibroblasts into Induced Cardiomyocytes Using Nanotopographical Cues.

    PubMed

    Yoo, Junsang; Chang, Yujung; Kim, Hongwon; Baek, Soonbong; Choi, Hwan; Jeong, Gun-Jae; Shin, Jaein; Kim, Hongnam; Kim, Byung-Soo; Kim, Jongpil

    2017-03-01

    Induced cardiomyocytes (iCMs) generated via direct lineage reprogramming offer a novel therapeutic target for the study and treatment of cardiac diseases. However, the efficiency of iCM generation is significantly low for therapeutic applications. Here, we show an efficient direct conversion of somatic fibroblasts into iCMs using nanotopographic cues. Compared with flat substrates, the direct conversion of fibroblasts into iCMs on nanopatterned substrates resulted in a dramatic increase in the reprogramming efficiency and maturation of iCM phenotypes. Additionally, enhanced reprogramming by substrate nanotopography was due to changes in the activation of focal adhesion kinase and specific histone modifications. Taken together, these results suggest that nanotopographic cues can serve as an efficient stimulant for direct lineage reprogramming into iCMs.

  15. Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos.

    PubMed

    Kang, Eunju; Wu, Guangming; Ma, Hong; Li, Ying; Tippner-Hedges, Rebecca; Tachibana, Masahito; Sparman, Michelle; Wolf, Don P; Schöler, Hans R; Mitalipov, Shoukhrat

    2014-05-01

    Successful mammalian cloning using somatic cell nuclear transfer (SCNT) into unfertilized, metaphase II (MII)-arrested oocytes attests to the cytoplasmic presence of reprogramming factors capable of inducing totipotency in somatic cell nuclei. However, these poorly defined maternal factors presumably decline sharply after fertilization, as the cytoplasm of pronuclear-stage zygotes is reportedly inactive. Recent evidence suggests that zygotic cytoplasm, if maintained at metaphase, can also support derivation of embryonic stem (ES) cells after SCNT, albeit at low efficiency. This led to the conclusion that critical oocyte reprogramming factors present in the metaphase but not in the interphase cytoplasm are 'trapped' inside the nucleus during interphase and effectively removed during enucleation. Here we investigated the presence of reprogramming activity in the cytoplasm of interphase two-cell mouse embryos (I2C). First, the presence of candidate reprogramming factors was documented in both intact and enucleated metaphase and interphase zygotes and two-cell embryos. Consequently, enucleation did not provide a likely explanation for the inability of interphase cytoplasm to induce reprogramming. Second, when we carefully synchronized the cell cycle stage between the transplanted nucleus (ES cell, fetal fibroblast or terminally differentiated cumulus cell) and the recipient I2C cytoplasm, the reconstructed SCNT embryos developed into blastocysts and ES cells capable of contributing to traditional germline and tetraploid chimaeras. Last, direct transfer of cloned embryos, reconstructed with ES cell nuclei, into recipients resulted in live offspring. Thus, the cytoplasm of I2C supports efficient reprogramming, with cell cycle synchronization between the donor nucleus and recipient cytoplasm as the most critical parameter determining success. The ability to use interphase cytoplasm in SCNT could aid efforts to generate autologous human ES cells for regenerative

  16. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein.

    PubMed

    Li, Yuanyuan; Chen, Huaping; Hardy, Tabitha M; Tollefsbol, Trygve O

    2013-01-01

    Breast cancer is one of the most lethal diseases in women; however, the precise etiological factors are still not clear. Genistein (GE), a natural isoflavone found in soybean products, is believed to be a potent chemopreventive agent for breast cancer. One of the most important mechanisms for GE inhibition of breast cancer may involve its potential in impacting epigenetic processes allowing reversal of aberrant epigenetic events during breast tumorigenesis. To investigate epigenetic regulation for GE impedance of breast tumorigenesis, we monitored epigenetic alterations of several key tumor-related genes in an established breast cancer transformation system. Our results show that GE significantly inhibited cell growth in a dose-dependent manner in precancerous breast cells and breast cancer cells, whereas it exhibited little effect on normal human mammary epithelial cells. Furthermore, GE treatment increased expression of two crucial tumor suppressor genes, p21(WAF1) (p21) and p16(INK4a) (p16), although it decreased expression of two tumor promoting genes, BMI1 and c-MYC. GE treatment led to alterations of histone modifications in the promoters of p21 and p16 as well as the binding ability of the c-MYC-BMI1 complex to the p16 promoter contributing to GE-induced epigenetic activation of these tumor suppressor genes. In addition, an orally-fed GE diet prevented breast tumorigenesis and inhibited breast cancer development in breast cancer mice xenografts. Our results suggest that genistein may repress early breast tumorigenesis by epigenetic regulation of p21 and p16 by impacting histone modifications as well as the BMI1-c-MYC complex recruitment to the regulatory region in the promoters of these genes. These studies will facilitate more effective use of soybean product in breast cancer prevention and also help elucidate the mechanisms during the process of early breast tumorigenesis.

  17. Bisphenol A Exposure Disrupts Genomic Imprinting in the Mouse

    PubMed Central

    Susiarjo, Martha; Sasson, Isaac; Mesaros, Clementina; Bartolomei, Marisa S.

    2013-01-01

    Exposure to endocrine disruptors is associated with developmental defects. One compound of concern, to which humans are widely exposed, is bisphenol A (BPA). In model organisms, BPA exposure is linked to metabolic disorders, infertility, cancer, and behavior anomalies. Recently, BPA exposure has been linked to DNA methylation changes, indicating that epigenetic mechanisms may be relevant. We investigated effects of exposure on genomic imprinting in the mouse as imprinted genes are regulated by differential DNA methylation and aberrant imprinting disrupts fetal, placental, and postnatal development. Through allele-specific and quantitative real-time PCR analysis, we demonstrated that maternal BPA exposure during late stages of oocyte development and early stages of embryonic development significantly disrupted imprinted gene expression in embryonic day (E) 9.5 and 12.5 embryos and placentas. The affected genes included Snrpn, Ube3a, Igf2, Kcnq1ot1, Cdkn1c, and Ascl2; mutations and aberrant regulation of these genes are associated with imprinting disorders in humans. Furthermore, the majority of affected genes were expressed abnormally in the placenta. DNA methylation studies showed that BPA exposure significantly altered the methylation levels of differentially methylated regions (DMRs) including the Snrpn imprinting control region (ICR) and Igf2 DMR1. Moreover, exposure significantly reduced genome-wide methylation levels in the placenta, but not the embryo. Histological and immunohistochemical examinations revealed that these epigenetic defects were associated with abnormal placental development. In contrast to this early exposure paradigm, exposure outside of the epigenetic reprogramming window did not cause significant imprinting perturbations. Our data suggest that early exposure to common environmental compounds has the potential to disrupt fetal and postnatal health through epigenetic changes in the embryo and abnormal development of the placenta. PMID

  18. Epigenetic mechanisms underlying cognitive impairment and Alzheimer disease hallmarks in 5XFAD mice.

    PubMed

    Griñán-Ferré, Christian; Sarroca, Sara; Ivanova, Aleksandra; Puigoriol-Illamola, Dolors; Aguado, Fernando; Camins, Antoni; Sanfeliu, Coral; Pallàs, Mercè

    2016-04-01

    5XFAD is an early-onset mouse transgenic model of Alzheimer disease (AD). Up to now there are no studies that focus on the epigenetic changes produced as a result of Aβ-42 accumulation and the possible involvement in the different expression of related AD-genes. Under several behavioral and cognition test, we found impairment in memory and psychoemotional changes in female 5XFAD mice in reference to wild type that worsens with age. Cognitive changes correlated with alterations on protein level analysis and gene expression of markers related with tau aberrant phosphorylation, amyloidogenic pathway (APP, BACE1), Oxidative Stress (iNOS, Aldh2) and inflammation (astrogliosis, TNF-α and IL-6); no changes were found in non-amyloidogenic pathway indicators such as ADAM10. Epigenetics changes as higher CpG methylation and transcriptional changes in DNA methyltransferases (DNMTs) family were found. Dnmt1 increases in younger 5XFAD and Dnmt3a and b high levels in the oldest transgenic mice. Similar pattern was found with histone methyltransferases such as Jarid1a andG9a. Histone deacetylase 2 (Hdac2) or Sirt6, both related with cognition and memory, presented a similar pattern. Taken together, these hallmarks presented by the 5XFAD model prompted its use in assessing different potential therapeutic interventions based on epigenetic targets after earlier amyloid deposition.

  19. Emergence of the Noncoding Cancer Genome: A Target of Genetic and Epigenetic Alterations.

    PubMed

    Zhou, Stanley; Treloar, Aislinn E; Lupien, Mathieu

    2016-11-01

    The emergence of whole-genome annotation approaches is paving the way for the comprehensive annotation of the human genome across diverse cell and tissue types exposed to various environmental conditions. This has already unmasked the positions of thousands of functional cis-regulatory elements integral to transcriptional regulation, such as enhancers, promoters, and anchors of chromatin interactions that populate the noncoding genome. Recent studies have shown that cis-regulatory elements are commonly the targets of genetic and epigenetic alterations associated with aberrant gene expression in cancer. Here, we review these findings to showcase the contribution of the noncoding genome and its alteration in the development and progression of cancer. We also highlight the opportunities to translate the biological characterization of genetic and epigenetic alterations in the noncoding cancer genome into novel approaches to treat or monitor disease. The majority of genetic and epigenetic alterations accumulate in the noncoding genome throughout oncogenesis. Discriminating driver from passenger events is a challenge that holds great promise to improve our understanding of the etiology of different cancer types. Advancing our understanding of the noncoding cancer genome may thus identify new therapeutic opportunities and accelerate our capacity to find improved biomarkers to monitor various stages of cancer development. Cancer Discov; 6(11); 1215-29. ©2016 AACR. ©2016 American Association for Cancer Research.

  20. A C9ORF72 BAC mouse model recapitulates key epigenetic perturbations of ALS/FTD.

    PubMed

    Esanov, Rustam; Cabrera, Gabriela Toro; Andrade, Nadja S; Gendron, Tania F; Brown, Robert H; Benatar, Michael; Wahlestedt, Claes; Mueller, Christian; Zeier, Zane

    2017-06-12

    Amyotrophic Lateral Sclerosis (ALS) is a fatal and progressive neurodegenerative disorder with identified genetic causes representing a significant minority of all cases. A GGGGCC hexanucleotide repeat expansion (HRE) mutation within the C9ORF72 gene has recently been identified as the most frequent known cause of ALS. The expansion leads to partial heterochromatinization of the locus, yet mutant RNAs and dipeptide repeat proteins (DPRs) are still produced in sufficient quantities to confer neurotoxicity. The levels of these toxic HRE products positively correlate with cellular toxicity and phenotypic severity across multiple disease models. Moreover, the degree of epigenetic repression inversely correlates with some facets of clinical presentation in C9-ALS patients. Recently, bacterial artificial chromosomes (BAC) have been used to generate transgenic mice that harbor the HRE mutation, complementing other relevant model systems such as patient-derived induced pluripotent stem cells (iPSCs). While epigenetic features of the HRE have been investigated in various model systems and post-mortem tissues, epigenetic dysregulation at the expanded locus in C9-BAC mice remains unexplored. Here, we sought to determine whether clinically relevant epigenetic perturbations caused by the HRE are mirrored in a C9-BAC mouse model. We used complementary DNA methylation assessment and immunoprecipitation methods to demonstrate that epigenetic aberrations caused by the HRE, such as DNA and histone methylation, are recapitulated in the C9-BAC mice. Strikingly, we found that cytosine hypermethylation within the promoter region of the human transgene occurred in a subset of C9-BAC mice similar to what is observed in patient populations. Moreover, we show that partial heterochromatinization of the C9 HRE occurs during the first weeks of the mouse lifespan, indicating age-dependent epigenetic repression. Using iPSC neurons, we found that preventing R-loop formation did not impede

  1. Oligoamine analogues in combination with 2-difluoromethylornithine synergistically induce re-expression of aberrantly silenced tumour-suppressor genes

    PubMed Central

    Wu, Yu; Steinbergs, Nora; Murray-Stewart, Tracy; Marton, Laurence J.; Casero, Robert A.

    2011-01-01

    Epigenetic gene silencing is an important mechanism in the initiation and progression of cancer. Abnormal DNA CpG island hypermethylation and histone modifications are involved in aberrant silencing of tumour-suppressor genes. LSD1 (lysine-specific demethylase 1) was the first enzyme identified to specifically demethylate H3K4 (Lys4 of histone H3). Methylated H3K4 is an important mark associated with transcriptional activation. The flavin adenine dinucleotide-binding amine oxidase domain of LSD1 is homologous with two polyamine oxidases, SMO (spermine oxidase) and APAO (N1-acetylpolyamine oxidase). We have demonstrated previously that long-chain polyamine analogues, the oligoamines, are inhibitors of LSD1. In the present paper we report the synergistic effects of specific oligoamines in combination with DFMO (2-difluoromethylornithine), an inhibitor of ornithine decarboxylase, in human colorectal cancer cells. DFMO treatment depletes natural polyamines and increases the uptake of exogenous polyamines. The combination of oligoamines and DFMO results in a synergistic re-expression of aberrantly silenced tumour-suppressor genes, including SFRP2 (secreted frizzled-related protein 2), which encodes a Wnt signalling pathway antagonist and plays an anti-tumorigenic role in colorectal cancer. The treatment-induced re-expression of SFRP2 is associated with increased H3K4me2 (di-methyl H3K4) in the gene promoter. The combination of LSD1-inhibiting oligoamines and DFMO represents a novel approach to epigenetic therapy of cancer. PMID:22132744

  2. Reprogramming human gallbladder cells into insulin-producing β-like cells

    PubMed Central

    Benedetti, Eric; Wang, Yuhan; Pelz, Carl; Schug, Jonathan; Kaestner, Klaus H.; Grompe, Markus

    2017-01-01

    The gallbladder and cystic duct (GBCs) are parts of the extrahepatic biliary tree and share a common developmental origin with the ventral pancreas. Here, we report on the very first genetic reprogramming of patient-derived human GBCs to β-like cells for potential autologous cell replacement therapy for type 1 diabetes. We developed a robust method for large-scale expansion of human GBCs ex vivo. GBCs were reprogrammed into insulin-producing pancreatic β-like cells by a combined adenoviral-mediated expression of hallmark pancreatic endocrine transcription factors PDX1, MAFA, NEUROG3, and PAX6 and differentiation culture in vitro. The reprogrammed GBCs (rGBCs) strongly induced the production of insulin and pancreatic endocrine genes and these responded to glucose stimulation in vitro. rGBCs also expressed an islet-specific surface marker, which was used to enrich for the most highly reprogrammed cells. More importantly, global mRNA and microRNA expression profiles and protein immunostaining indicated that rGBCs adopted an overall β-like state and these rGBCs engrafted in immunodeficient mice. Furthermore, comparative global expression analyses identified putative regulators of human biliary to β cell fate conversion. In summary, we have developed, for the first time, a reliable and robust genetic reprogramming and culture expansion of primary human GBCs—derived from multiple unrelated donors—into pancreatic β-like cells ex vivo, thus showing that human gallbladder is a potentially rich source of reprogrammable cells for autologous cell therapy in diabetes. PMID:28813430

  3. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis.

    PubMed

    Creasey, Kate M; Zhai, Jixian; Borges, Filipe; Van Ex, Frederic; Regulski, Michael; Meyers, Blake C; Martienssen, Robert A

    2014-04-17

    In plants, post-transcriptional gene silencing (PTGS) is mediated by DICER-LIKE 1 (DCL1)-dependent microRNAs (miRNAs), which also trigger 21-nucleotide secondary short interfering RNAs (siRNAs) via RNA-DEPENDENT RNA POLYMERASE 6 (RDR6), DCL4 and ARGONAUTE 1 (AGO1), whereas transcriptional gene silencing (TGS) of transposons is mediated by 24-nucleotide heterochromatic (het)siRNAs, RDR2, DCL3 and AGO4 (ref. 4). Transposons can also give rise to abundant 21-nucleotide 'epigenetically activated' small interfering RNAs (easiRNAs) in DECREASED DNA METHYLATION 1 (ddm1) and DNA METHYLTRANSFERASE 1 (met1) mutants, as well as in the vegetative nucleus of pollen grains and in dedifferentiated plant cell cultures. Here we show that easiRNAs in Arabidopsis thaliana resemble secondary siRNAs, in that thousands of transposon transcripts are specifically targeted by more than 50 miRNAs for cleavage and processing by RDR6. Loss of RDR6, DCL4 or DCL1 in a ddm1 background results in loss of 21-nucleotide easiRNAs and severe infertility, but 24-nucleotide hetsiRNAs are partially restored, supporting an antagonistic relationship between PTGS and TGS. Thus miRNA-directed easiRNA biogenesis is a latent mechanism that specifically targets transposon transcripts, but only when they are epigenetically reactivated during reprogramming of the germ line. This ancient recognition mechanism may have been retained both by transposons to evade long-term heterochromatic silencing and by their hosts for genome defence.

  4. Nutritional epigenetics

    USDA-ARS?s Scientific Manuscript database

    This chapter is intended to provide a timely overview of the current state of research at the intersection of nutrition and epigenetics. I begin by describing epigenetics and molecular mechanisms of eigenetic regulation, then highlight four classes of nutritional exposures currently being investiga...

  5. Epigenetics and Cellular Metabolism

    PubMed Central

    Xu, Wenyi; Wang, Fengzhong; Yu, Zhongsheng; Xin, Fengjiao

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well. PMID:27695375

  6. Transcriptional Mechanisms of Proneural Factors and REST in Regulating Neuronal Reprogramming of Astrocytes

    PubMed Central

    Masserdotti, Giacomo; Gillotin, Sébastien; Sutor, Bernd; Drechsel, Daniela; Irmler, Martin; Jørgensen, Helle F.; Sass, Steffen; Theis, Fabian J.; Beckers, Johannes; Berninger, Benedikt; Guillemot, François; Götz, Magdalena

    2015-01-01

    Summary Direct lineage reprogramming induces dramatic shifts in cellular identity, employing poorly understood mechanisms. Recently, we demonstrated that expression of Neurog2 or Ascl1 in postnatal mouse astrocytes generates glutamatergic or GABAergic neurons. Here, we take advantage of this model to study dynamics of neuronal cell fate acquisition at the transcriptional level. We found that Neurog2 and Ascl1 rapidly elicited distinct neurogenic programs with only a small subset of shared target genes. Within this subset, only NeuroD4 could by itself induce neuronal reprogramming in both mouse and human astrocytes, while co-expression with Insm1 was required for glutamatergic maturation. Cultured astrocytes gradually became refractory to reprogramming, in part by the repressor REST preventing Neurog2 from binding to the NeuroD4 promoter. Notably, in astrocytes refractory to Neurog2 activation, the underlying neurogenic program remained amenable to reprogramming by exogenous NeuroD4. Our findings support a model of temporal hierarchy for cell fate change during neuronal reprogramming. PMID:26119235

  7. Behavioral epigenetics

    PubMed Central

    Lester, Barry M.; Tronick, Edward; Nestler, Eric; Abel, Ted; Kosofsky, Barry; Kuzawa, Christopher W.; Marsit, Carmen J.; Maze, Ian; Meaney, Michael J.; Monteggia, Lisa M.; Reul, Johannes M. H. M.; Skuse, David H.; Sweatt, J. David; Wood, Marcelo A.

    2013-01-01

    Sponsored by the New York Academy of Sciences, the Warren Alpert Medical School of Brown University and the University of Massachusetts Boston, “Behavioral Epigenetics” was held on October 29–30, 2010 at the University of Massachusetts Boston Campus Center, Boston, Massachusetts. This meeting featured speakers and panel discussions exploring the emerging field of behavioral epigenetics, from basic biochemical and cellular mechanisms to the epigenetic modulation of normative development, developmental disorders, and psychopathology. This report provides an overview of the research presented by leading scientists and lively discussion about the future of investigation at the behavioral epigenetic level. PMID:21615751

  8. Constitutional Epi/Genetic Conditions: Genetic, Epigenetic, and Environmental Factors

    PubMed Central

    Schenkel, Laila C.; Rodenhiser, David; Siu, Victoria; McCready, Elizabeth; Ainsworth, Peter; Sadikovic, Bekim

    2016-01-01

    There are more than 4,000 phenotypes for which the molecular basis is at least partly known. Though defects in primary DNA structure constitute a major cause of these disorders, epigenetic disruption is emerging as an important alternative mechanism in the etiology of a broad range of congenital and developmental conditions. These include epigenetic defects caused by either localized (in cis) genetic alterations or more distant (in trans) genetic events but can also include environmental effects. Emerging evidence suggests interplay between genetic and environmental factors in the epigenetic etiology of several constitutional “epi/genetic” conditions. This review summarizes our broadening understanding of how epigenetics contributes to pediatric disease by exploring different classes of epigenomic disorders. It further challenges the simplistic dogma of “DNA encodes RNA encodes protein” to best understand the spectrum of factors that can influence genetic traits in a pediatric population. PMID:28180025

  9. Aberrant Epigenetic Alterations of Glutathione-S-Transferase P1 in Age-Related Nuclear Cataract.

    PubMed

    Chen, Jia; Zhou, Jing; Wu, Jian; Zhang, Guowei; Kang, Lihua; Ben, Jindong; Wang, Yong; Qin, Bai; Guan, Huaijin

    2017-03-01

    Oxidative damage of lens tissue contributes to the formation of age-related cataract. Pi-class glutathione-S-transferase (GSTP1) plays a role in the removal of oxidative adducts by transferring them to glutathione. To assess epigenetic regulation of GSTP1 and its potential role in age-related nuclear cataract (ARNC) pathogenesis, we evaluated GSTP1 mRNA expression, methylation, and chromatin modifications in lenses from ARNC patients. The mRNA and protein of lens GSTP1 were assayed by relative quantitative real-time polymerase chain reaction (qRT-PCR) and Western blots. Methylation of the GSTP1 promoter was determined by bisulfite genomic sequencing. Chromatin modification was detected by chromatin immunoprecipitation. DNA methyltransferase (DNMT) and histone deacetylase (HDAC) activities were also assayed by enzyme-linked immunosorbent assay (ELISA)-like reaction. To assess the effect of DNA methylation on the mRNA expression of GSTP1, human lens epithelium HLE-B3 cells were treated with the demethylation compound 5-aza-dC, followed by qRT-PCR assay. GSTP1 mRNA and protein levels were significantly reduced in lens epithelium and cortex of ARNC cases versus age-matched controls. The changes corresponded to hypermethylation of the GSTP1 promoter CpG islands. The loss of GSTP1 mRNA and protein and the increased DNA promoter methylation might be correlated with the severity of the ARNC. ARNC lenses also had lower acetylation of histone proteins H3, H4, and lower methylation of H3K4, and higher methylation of H3K9. Histone modifications were not correlated with the severity of the ARNCs. DNMT and HDAC were elevated in lenses from ARNCs compared with controls. Demethylation treatment of HLE-B3 cells with 5-aza-dC enhanced the expression of GSTP1. Epigenetic alteration of GSTP1 regulates its expression in lens epithelial and cortical tissues. These changes likely contribute to the pathogenesis of ARNC.

  10. IFN-α potentiates the direct and immune-mediated antitumor effects of epigenetic drugs on both metastatic and stem cells of colorectal cancer.

    PubMed

    Buoncervello, Maria; Romagnoli, Giulia; Buccarelli, Mariachiara; Fragale, Alessandra; Toschi, Elena; Parlato, Stefania; Lucchetti, Donatella; Macchia, Daniele; Spada, Massimo; Canini, Irene; Sanchez, Massimo; Falchi, Mario; Musella, Martina; Biffoni, Mauro; Belardelli, Filippo; Capone, Imerio; Sgambato, Alessandro; Vitiani, Lucia Ricci; Gabriele, Lucia

    2016-05-03

    Epigenetic alterations, including dysregulated DNA methylation and histone modifications, govern the progression of colorectal cancer (CRC). Cancer cells exploit epigenetic regulation to control cellular pathways, including apoptotic and metastatic signals. Since aberrations in epigenome can be pharmacologically reversed by DNA methyltransferase and histone deacetylase inhibitors, epigenetics in combination with standard agents are currently envisaged as a new therapeutic frontier in cancer, expected to overcome drug resistance associated with current treatments. In this study, we challenged this idea and demonstrated that the combination of azacitidine and romidepsin with IFN-α owns a high therapeutic potential, targeting the most aggressive cellular components of CRC, such as metastatic cells and cancer stem cells (CSCs), via tight control of key survival and death pathways. Moreover, the antitumor efficacy of this novel pharmacological approach is associated with induction of signals of immunogenic cell death. Of note, a previously undisclosed key role of IFN-α in inducing both antiproliferative and pro-apoptotic effects on CSCs of CRC was also found. Overall, these findings open a new frontier on the suitability of IFN-α in association with epigenetics as a novel and promising therapeutic approach for CRC management.

  11. IFN-α potentiates the direct and immune-mediated antitumor effects of epigenetic drugs on both metastatic and stem cells of colorectal cancer

    PubMed Central

    Buoncervello, Maria; Fragale, Alessandra; Toschi, Elena; Parlato, Stefania; Lucchetti, Donatella; Macchia, Daniele; Spada, Massimo; Canini, Irene; Sanchez, Massimo; Falchi, Mario; Musella, Martina; Biffoni, Mauro; Belardelli, Filippo; Capone, Imerio; Sgambato, Alessandro; Vitiani, Lucia Ricci; Gabriele, Lucia

    2016-01-01

    Epigenetic alterations, including dysregulated DNA methylation and histone modifications, govern the progression of colorectal cancer (CRC). Cancer cells exploit epigenetic regulation to control cellular pathways, including apoptotic and metastatic signals. Since aberrations in epigenome can be pharmacologically reversed by DNA methyltransferase and histone deacetylase inhibitors, epigenetics in combination with standard agents are currently envisaged as a new therapeutic frontier in cancer, expected to overcome drug resistance associated with current treatments. In this study, we challenged this idea and demonstrated that the combination of azacitidine and romidepsin with IFN-α owns a high therapeutic potential, targeting the most aggressive cellular components of CRC, such as metastatic cells and cancer stem cells (CSCs), via tight control of key survival and death pathways. Moreover, the antitumor efficacy of this novel pharmacological approach is associated with induction of signals of immunogenic cell death. Of note, a previously undisclosed key role of IFN-α in inducing both antiproliferative and pro-apoptotic effects on CSCs of CRC was also found. Overall, these findings open a new frontier on the suitability of IFN-α in association with epigenetics as a novel and promising therapeutic approach for CRC management. PMID:27028869

  12. Actin stress in cell reprogramming

    PubMed Central

    Guo, Jun; Wang, Yuexiu; Sachs, Frederick; Meng, Fanjie

    2014-01-01

    Cell mechanics plays a role in stem cell reprogramming and differentiation. To understand this process better, we created a genetically encoded optical probe, named actin–cpstFRET–actin (AcpA), to report forces in actin in living cells in real time. We showed that stemness was associated with increased force in actin. We reprogrammed HEK-293 cells into stem-like cells using no transcription factors but simply by softening the substrate. However, Madin-Darby canine kidney (MDCK) cell reprogramming required, in addition to a soft substrate, Harvey rat sarcoma viral oncogene homolog expression. Replating the stem-like cells on glass led to redifferentiation and reduced force in actin. The actin force probe was a FRET sensor, called cpstFRET (circularly permuted stretch sensitive FRET), flanked by g-actin subunits. The labeled actin expressed efficiently in HEK, MDCK, 3T3, and bovine aortic endothelial cells and in multiple stable cell lines created from those cells. The viability of the cell lines demonstrated that labeled actin did not significantly affect cell physiology. The labeled actin distribution was similar to that observed with GFP-tagged actin. We also examined the stress in the actin cross-linker actinin. Actinin force was not always correlated with actin force, emphasizing the need for addressing protein specificity when discussing forces. Because actin is a primary structural protein in animal cells, understanding its force distribution is central to understanding animal cell physiology and the many linked reactions such as stress-induced gene expression. This new probe permits measuring actin forces in a wide range of experiments on preparations ranging from isolated proteins to transgenic animals. PMID:25422450

  13. Frequency of WT1 and 11p15 constitutional aberrations and phenotypic correlation in childhood Wilms tumour patients.

    PubMed

    Segers, H; Kersseboom, R; Alders, M; Pieters, R; Wagner, A; van den Heuvel-Eibrink, M M

    2012-11-01

    In 9-17% of Wilms tumour patients a predisposing syndrome is present, in particular WT1-associated syndromes and overgrowth syndromes. Constitutional WT1 mutations or epigenetic changes on chromosome 11p15 have also been described in Wilms tumour patients without phenotypic abnormalities. Thus, the absence of phenotypic abnormalities does not exclude the presence of a genetic predisposition, suggesting that more Wilms tumour patients may have a constitutional abnormality. Therefore, we investigated the frequency of constitutional aberrations in combination with phenotype. Clinical genetic assessment, as well as molecular analysis of WT1 and locus 11p15 was offered to a single-centre cohort of 109 childhood Wilms tumour patients. Twelve patients (11%) had a WT1 aberration and eight patients (8%) had an 11p15 aberration. Of the 12 patients with a WT1 aberration, four had WAGR syndrome (Wilms tumor, aniridia, genitourinary malformations and mental retardation), one had Denys-Drash syndrome, four had genitourinary anomalies without other syndromic features and three had bilateral disease with stromal-predominant histology at young age without congenital anomalies. Of the eight patients with an 11p15 aberration, four had Beckwith-Wiedemann syndrome (BWS), two had minor features of BWS and two had no stigmata of BWS or hemihypertrophy. Constitutional WT1 or 11p15 aberrations are frequent in Wilms tumour patients and careful clinical assessment can identify the majority of these patients. Therefore, we would recommend offering clinical genetic counselling to all Wilms tumour patients, as well as molecular analysis to patients with clinical signs of a syndrome or with features that may indicate a constitutional WT1 or 11p15 aberration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes

    PubMed Central

    Qian, Li; Huang, Yu; Spencer, C. Ian; Foley, Amy; Vedantham, Vasanth; Liu, Lei; Conway, Simon J.; Fu, Ji-dong; Srivastava, Deepak

    2012-01-01

    SUMMARY The reprogramming of adult cells into pluripotent cells or directly into alternative adult cell types holds great promise for regenerative medicine. We reported that cardiac fibroblasts, which represent 50% of the cells in the mammalian heart, can be directly reprogrammed to adult cardiomyocyte-like cells in vitro by the addition of Gata4, Mef2c and Tbx5 (GMT). Here, we use genetic lineage-tracing to show that resident non-myocytes in the murine heart can be reprogrammed into cardiomyocyte-like cells in vivo by local delivery of GMT after coronary ligation. Induced cardiomyocytes became bi-nucleate, assembled sarcomeres and had cardiomyocyte-like gene expression. Analysis of single cells revealed ventricular cardiomyocyte-like action potentials, beating upon electrical stimulation, and evidence of electrical coupling. In vivo delivery of GMT decreased infarct size and modestly attenuated cardiac dysfunction up to 3 months after coronary ligation. Delivery of the pro-angiogenic and fibroblast activating peptide, Thymosin β4, along with GMT, resulted in further improvements in scar area and cardiac function. These findings demonstrate that cardiac fibroblasts can be reprogrammed into cardiomyocyte-like cells in their native environment for potential regenerative purposes. PMID:22522929

  15. Aging and reprogramming: a two-way street

    PubMed Central

    Mahmoudi, Salah; Brunet, Anne

    2012-01-01

    Aging is accompanied by the functional decline of cells, tissues, and organs, as well as a striking increase in a wide range of diseases. The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) opens new avenues for the aging field and has important applications for therapeutic treatments of age-related diseases. Here we review emerging studies on how aging and age-related pathways influence iPSC generation and property. We discuss the exciting possibility that reverting to a pluripotent stem cell stage erases several deficits associated with aging and will provide new strategies for rejuvenation. Finally, we argue that reprogramming provides a unique opportunity to model aging and perhaps exceptional longevity. PMID:23146768

  16. Extended Self-Renewal and Accelerated Reprogramming in the Absence of Kdm5b

    PubMed Central

    Hu, Gangqing; Yu, Zu-Xi; Liu, Chengyu

    2013-01-01

    Embryonic stem (ES) cell pluripotency is thought to be regulated in part by H3K4 methylation. However, it is unclear how H3K4 demethylation contributes to ES cell function and participates in induced pluripotent stem (iPS) cell reprogramming. Here, we show that KDM5B, which demethylates H3K4, is important for ES cell differentiation and presents a barrier to the reprogramming process. Depletion of Kdm5b leads to an extension in the self-renewal of ES cells in the absence of LIF. Transcriptome analysis revealed the persistent expression of pluripotency genes and underexpression of developmental genes during differentiation in the absence of Kdm5b, suggesting that KDM5B plays a key role in cellular fate changes. We also observed accelerated reprogramming of differentiated cells in the absence of Kdm5b, demonstrating that KDM5B is a barrier to the reprogramming process. Expression analysis revealed that mesenchymal master regulators associated with the epithelial-to-mesenchymal transition (EMT) are downregulated during reprogramming in the absence of Kdm5b. Moreover, global analysis of H3K4me3/2 revealed that enhancers of fibroblast genes are rapidly deactivated in the absence of Kdm5b, and genes associated with EMT lose H3K4me3/2 during the early reprogramming process. These findings provide functional insight into the role for KDM5B in regulating ES cell differentiation and as a barrier to the reprogramming process. PMID:24100015

  17. Epigenetics and Bruxism: Possible Role of Epigenetics in the Etiology of Bruxism.

    PubMed

    Čalić, Aleksandra; Peterlin, Borut

    2015-01-01

    Bruxism is defined as a repetitive jaw muscle activity characterized by clenching or grinding of the teeth and/or bracing or thrusting of the mandible. There are two distinct circadian phenotypes for bruxism: sleep bruxism (SB) and awake bruxism, which are considered separate entities due to the putative difference in their etiology and phenotypic variance. The detailed etiology of bruxism so far remains unknown. Recent theories suggest the central regulation of certain pathophysiological or psychological pathways. Current proposed causes of bruxism appear to be a combination of genetic and environmental (G×E) factors, with epigenetics providing a robust framework for investigating G×E interactions, and their involvement in bruxism makes it a suitable candidate for epigenetic research. Both types of bruxism are associated with certain epigenetically determined disorders, such as Rett syndrome (RTT), Prader-Willi syndrome (PWS), and Angelman syndrome (AS), and these associations suggest a mechanistic link between epigenetic deregulation and bruxism. The present article reviews the possible role of epigenetic mechanisms in the etiology of both types of bruxism based on the epigenetic pathways involved in the pathophysiology of RTT, PWS, and AS, and on other epigenetic disruptions associated with risk factors for bruxism, including sleep disorders, altered stress response, and psychopathology.

  18. Chromatin modifiers and the promise of epigenetic therapy in acute leukemia

    PubMed Central

    Greenblatt, Sarah M.; Nimer, Stephen D.

    2017-01-01

    Hematopoiesis is a tightly regulated process involving the control of gene expression that directs the transition from hematopoietic stem and progenitor cells to terminally differentiated blood cells. In leukemia, the processes directing self-renewal, differentiation, and progenitor cell expansion are disrupted, leading to the accumulation of immature, non-functioning malignant cells. Insights into these processes have come in stages, based upon technological advances in genetic analyses, bioinformatics, and biological sciences. The first cytogenetic studies of leukemic cells identified chromosomal translocations that generate oncogenic fusion proteins, and most commonly affect regulators of transcription. This was followed by the discovery of recurrent somatic mutations in genes encoding regulators of the signal transduction pathways that control cell proliferation and survival. Recently, studies of global changes in methylation and gene expression have led to the understanding that the output of transcriptional regulators and the proliferative signaling pathways, are ultimately influenced by chromatin structure. Candidate gene, whole genome, and whole exome sequencing studies have identified recurrent somatic mutations in genes encoding epigenetic modifiers in both acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL). In contrast to the two hit model of leukemogenesis, emerging evidence suggests that these epigenetic modifiers represent a class of mutations that are critical to the development of leukemia and affect the regulation of various other oncogenic pathways. In this review, we discuss the range of recurrent, somatic mutations in epigenetic modifiers found in leukemia and how these modifiers relate to the classical leukemogenic pathways that lead to impaired cell differentiation and aberrant self-renewal and proliferation. PMID:24609046

  19. Developmental Programming of Adult Disease: Reprogramming by Melatonin?

    PubMed Central

    Tain, You-Lin; Huang, Li-Tung; Hsu, Chien-Ning

    2017-01-01

    Adult-onset chronic non-communicable diseases (NCDs) can originate from early life through so-called the “developmental origins of health and disease” (DOHaD) or “developmental programming”. The DOHaD concept offers the “reprogramming” strategy to shift the treatment from adulthood to early life, before clinical disease is apparent. Melatonin, an endogenous indoleamine produced by the pineal gland, has pleiotropic bioactivities those are beneficial in a variety of human diseases. Emerging evidence support that melatonin is closely inter-related to other proposed mechanisms contributing to the developmental programming of a variety of chronic NCDs. Recent animal studies have begun to unravel the multifunctional roles of melatonin in many experimental models of developmental programming. Even though some progress has been made in research on melatonin as a reprogramming strategy to prevent DOHaD-related NCDs, future human studies should aim at filling the translational gap between animal models and clinical trials. Here, we review several key themes on the reprogramming effects of melatonin in DOHaD research. We have particularly focused on the following areas: mechanisms of developmental programming; the interrelationship between melatonin and mechanisms underlying developmental programming; pathophysiological roles of melatonin in pregnancy and fetal development; and insight provided by animal models to support melatonin as a reprogramming therapy. Rates of NCDs are increasing faster than anticipated all over the world. Hence, there is an urgent need to understand reprogramming mechanisms of melatonin and to translate experimental research into clinical practice for halting a growing list of DOHaD-related NCDs. PMID:28212315

  20. Determination of aberration center of Ronchigram for automated aberration correctors in scanning transmission electron microscopy.

    PubMed

    Sannomiya, Takumi; Sawada, Hidetaka; Nakamichi, Tomohiro; Hosokawa, Fumio; Nakamura, Yoshio; Tanishiro, Yasumasa; Takayanagi, Kunio

    2013-12-01

    A generic method to determine the aberration center is established, which can be utilized for aberration calculation and axis alignment for aberration corrected electron microscopes. In this method, decentering induced secondary aberrations from inherent primary aberrations are minimized to find the appropriate axis center. The fitness function to find the optimal decentering vector for the axis was defined as a sum of decentering induced secondary aberrations with properly distributed weight values according to the aberration order. Since the appropriate decentering vector is determined from the aberration values calculated at an arbitrary center axis, only one aberration measurement is in principle required to find the center, resulting in /very fast center search. This approach was tested for the Ronchigram based aberration calculation method for aberration corrected scanning transmission electron microscopy. Both in simulation and in experiments, the center search was confirmed to work well although the convergence to find the best axis becomes slower with larger primary aberrations. Such aberration center determination is expected to fully automatize the aberration correction procedures, which used to require pre-alignment of experienced users. This approach is also applicable to automated aperture positioning. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Epigenetics of bone diseases.

    PubMed

    Michou, Laetitia

    2017-12-12

    Histone deacetylation, DNA methylation, and micro-RNAs (miRNAs) are the three main epigenetic mechanisms that regulate gene expression. All the physiological processes involved in bone remodeling are tightly regulated by epigenetic factors. This review discusses the main epigenetic modifications seen in tumoral and non-tumoral bone diseases, with emphasis on miRNAs. The role for epigenetic modifications of gene expression in the most common bone diseases is illustrated by drawing on the latest publications in the field. In multifactorial bone diseases such as osteoporosis, many epigenetic biomarkers, either alone or in combination, have been associated with bone mineral density or suggested to predict osteoporotic fractures. In addition, treatments designed to modulate bone remodeling by selectively targeting the function of specific miRNAs are being evaluated. Advances in the understanding of epigenetic regulation shed new light on the pathophysiology of other non-tumoral bone diseases, including genetic conditions inherited on a Mendelian basis. Finally, in the area of primary and metastatic bone tumors, the last few years have witnessed considerable progress in elucidating the epigenetic regulation of oncogenesis and its local interactions with bone tissue. These new data may allow the development of epigenetic outcome predictors, which are in very high demand, and of innovative therapeutic agents acting via miRNA modulation. Copyright © 2017 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  2. Laterally confined growth of cells induces nuclear reprogramming in the absence of exogenous biochemical factors.

    PubMed

    Roy, Bibhas; Venkatachalapathy, Saradha; Ratna, Prasuna; Wang, Yejun; Jokhun, Doorgesh Sharma; Nagarajan, Mallika; Shivashankar, G V

    2018-05-22

    Cells in tissues undergo transdifferentiation programs when stimulated by specific mechanical and biochemical signals. While seminal studies have demonstrated that exogenous biochemical factors can reprogram somatic cells into pluripotent stem cells, the critical roles played by mechanical signals in such reprogramming process have not been well documented. In this paper, we show that laterally confined growth of fibroblasts on micropatterned substrates induces nuclear reprogramming with high efficiency in the absence of any exogenous reprogramming factors. We provide compelling evidence on the induction of stem cell-like properties using alkaline phosphatase assays and expression of pluripotent markers. Early onset of reprogramming was accompanied with enhanced nuclear dynamics and changes in chromosome intermingling degrees, potentially facilitating rewiring of the genome. Time-lapse analysis of promoter occupancy by immunoprecipitation of H3K9Ac chromatin fragments revealed that epithelial, proliferative, and reprogramming gene promoters were progressively acetylated, while mesenchymal promoters were deacetylated by 10 days. Consistently, RNA sequencing analysis showed a systematic progression from mesenchymal to stem cell transcriptome, highlighting pathways involving mechanisms underlying nuclear reprogramming. We then demonstrated that these mechanically reprogrammed cells could be maintained as stem cells and can be redifferentiated into multiple lineages with high efficiency. Importantly, we also demonstrate the induction of cancer stemness properties in MCF7 cells grown in such laterally confined conditions. Collectively, our results highlight an important generic property of somatic cells that, when grown in laterally confined conditions, acquire stemness. Such mechanical reprogramming of somatic cells demonstrated here has important implications in tissue regeneration and disease models. Copyright © 2018 the Author(s). Published by PNAS.

  3. The Effect of Substrate Topography on Direct Reprogramming of Fibroblasts to Induced Neurons

    PubMed Central

    Kulangara, Karina; Adler, Andrew F.; Wang, Hong; Chellappan, Malathi; Hammett, Ellen; Yasuda, Ryohei; Leong, Kam W.

    2014-01-01

    Cellular reprogramming holds tremendous potential for cell therapy and regenerative medicine. Recently, fibroblasts have been directly converted into induced neurons (iNs) by overexpression of the neuronal transcription factors Ascl1, Brn2 and Myt1L. Hypothesizing that cell-topography interactions could influence the fibroblast-to-neuron reprogramming process, we investigated the effects of various topographies on iNs produced by direct reprogramming. Final iN purity and conversion efficiency were increased on micrograting substrates. Neurite branching was increased on microposts and decreased on microgratings, with a simplified dendritic arbor characterized by the reduction of MAP2+ neurites. Neurite outgrowth increased significantly on various topographies. DNA microarray analysis detected 20 differentially expressed genes in iNs reprogrammed on smooth versus microgratings, and quantitative PCR (qPCR) confirmed the upregulation of Vip and downregulation of Thy1 and Bmp5 on microgratings. Electrophysiology and calcium imaging verified the functionality of these iNs. This study demonstrates the potential of applying topographical cues to optimize cellular reprogramming. PMID:24709523

  4. Overcoming the hurdles for a reproducible generation of human functionally mature reprogrammed neurons.

    PubMed

    Broccoli, Vania; Rubio, Alicia; Taverna, Stefano; Yekhlef, Latefa

    2015-06-01

    The advent of cell reprogramming technologies has widely disclosed the possibility to have direct access to human neurons for experimental and biomedical applications. Human pluripotent stem cells can be instructed in vitro to generate specific neuronal cell types as well as different glial cells. Moreover, new approaches of direct neuronal cell reprogramming can strongly accelerate the generation of different neuronal lineages. However, genetic heterogeneity, reprogramming fidelity, and time in culture of the starting cells can still significantly bias their differentiation efficiency and quality of the neuronal progenies. In addition, reprogrammed human neurons exhibit a very slow pace in gaining a full spectrum of functional properties including physiological levels of membrane excitability, sustained and prolonged action potential firing, mature synaptic currents and synaptic plasticity. This delay poses serious limitations for their significance as biological experimental model and screening platform. We will discuss new approaches of neuronal cell differentiation and reprogramming as well as methods to accelerate the maturation and functional activity of the converted human neurons. © 2015 by the Society for Experimental Biology and Medicine.

  5. Reprogramming mouse fibroblasts into engraftable myeloerythroid and lymphoid progenitors

    PubMed Central

    Cheng, Hui; Ang, Heather Yin-Kuan; A. EL Farran, Chadi; Li, Pin; Fang, Hai Tong; Liu, Tong Ming; Kong, Say Li; Chin, Michael Lingzi; Ling, Wei Yin; Lim, Edwin Kok Hao; Li, Hu; Huber, Tara; Loh, Kyle M.; Loh, Yuin-Han; Lim, Bing

    2016-01-01

    Recent efforts have attempted to convert non-blood cells into hematopoietic stem cells (HSCs) with the goal of generating blood lineages de novo. Here we show that hematopoietic transcription factors Scl, Lmo2, Runx1 and Bmi1 can convert a developmentally distant lineage (fibroblasts) into ‘induced hematopoietic progenitors' (iHPs). Functionally, iHPs generate acetylcholinesterase+ megakaryocytes and phagocytic myeloid cells in vitro and can also engraft immunodeficient mice, generating myeloerythoid and B-lymphoid cells for up to 4 months in vivo. Molecularly, iHPs transcriptionally resemble native Kit+ hematopoietic progenitors. Mechanistically, reprogramming factor Lmo2 implements a hematopoietic programme in fibroblasts by rapidly binding to and upregulating the Hhex and Gfi1 genes within days. Moreover the reprogramming transcription factors also require extracellular BMP and MEK signalling to cooperatively effectuate reprogramming. Thus, the transcription factors that orchestrate embryonic hematopoiesis can artificially reconstitute this programme in developmentally distant fibroblasts, converting them into engraftable blood progenitors. PMID:27869129

  6. Reprogramming Human Retinal Pigmented Epithelial Cells to Neurons Using Recombinant Proteins

    PubMed Central

    Hu, Qirui; Chen, Renwei; Teesalu, Tambet; Ruoslahti, Erkki

    2014-01-01

    Somatic cells can be reprogrammed to an altered lineage by overexpressing specific transcription factors. To avoid introducing exogenous genetic material into the genome of host cells, cell-penetrating peptides can be used to deliver transcription factors into cells for reprogramming. Position-dependent C-end rule (CendR) cell- and tissue-penetrating peptides provide an alternative to the conventional cell-penetrating peptides, such as polyarginine. In this study, we used a prototypic, already active CendR peptide, RPARPAR, to deliver the transcription factor SOX2 to retinal pigmented epithelial (RPE) cells. We demonstrated that RPE cells can be directly reprogrammed to a neuronal fate by introduction of SOX2. Resulting neuronal cells expressed neuronal marker mRNAs and proteins and downregulated expression of RPE markers. Cells produced extensive neurites and developed synaptic machinery capable of dye uptake after depolarization with potassium. The RPARPAR-mediated delivery of SOX2 alone was sufficient to allow cell lineage reprogramming of both fetal and stem cell-derived RPE cells to become functional neurons. PMID:25298373

  7. Significant improvement of pig cloning efficiency by treatment with LBH589 after somatic cell nuclear transfer.

    PubMed

    Jin, Jun-Xue; Li, Suo; Gao, Qing-Shan; Hong, Yu; Jin, Long; Zhu, Hai-Ying; Yan, Chang-Guo; Kang, Jin-Dan; Yin, Xi-Jun

    2013-10-01

    The low success rate of animal cloning by somatic cell nuclear transfer (SCNT) associates with epigenetic aberrancy, including the abnormal acetylation of histones. Altering the epigenetic status by histone deacetylase inhibitors (HDACi) enhances the developmental potential of SCNT embryos. In the current study, we examined the effects of LBH589 (panobinostat), a novel broad-spectrum HDACi, on the nuclear reprogramming and development of pig SCNT embryos in vitro. In experiment 1, we compared the in vitro developmental competence of nuclear transfer embryos treated with different concentrations of LBH589. Embryos treated with 50 nM LBH589 for 24 hours showed a significant increase in the rate of blastocyst formation compared with the control or embryos treated with 5 or 500 nM LBH589 (32.4% vs. 11.8%, 12.1%, and 10.0%, respectively, P < 0.05). In experiment 2, we examined the in vitro developmental competence of nuclear transfer embryos treated with 50 nM LBH589 for various intervals after activation and 6-dimethylaminopurine. Embryos treated for 24 hours had higher rates of blastocyst formation than the other groups. In experiment 3, when the acetylation of H4K12 was examined in SCNT embryos treated for 6 hours with 50 nM LBH589 by immunohistochemistry, the staining intensities of these proteins in LBH589-treated SCNT embryos were significantly higher than in the control. In experiment 4, LBH589-treated nuclear transfer and control embryos were transferred into surrogate mothers, resulting in three (100%) and two (66.7%) pregnancies, respectively. In conclusion, LBH589 enhances the nuclear reprogramming and developmental potential of SCNT embryos by altering the epigenetic status and expression, and increasing blastocyst quality. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  8. Epigenetic modifications in prostate cancer.

    PubMed

    Ngollo, Marjolaine; Dagdemir, Aslihan; Karsli-Ceppioglu, Seher; Judes, Gaelle; Pajon, Amaury; Penault-Llorca, Frederique; Boiteux, Jean-Paul; Bignon, Yves-Jean; Guy, Laurent; Bernard-Gallon, Dominique J

    2014-01-01

    Prostate cancer is the most common cancer in men and the second leading cause of cancer deaths in men in France. Apart from the genetic alterations in prostate cancer, epigenetics modifications are involved in the development and progression of this disease. Epigenetic events are the main cause in gene regulation and the three most epigenetic mechanisms studied include DNA methylation, histone modifications and microRNA expression. In this review, we summarized epigenetic mechanisms in prostate cancer. Epigenetic drugs that inhibit DNA methylation, histone methylation and histone acetylation might be able to reactivate silenced gene expression in prostate cancer. However, further understanding of interactions of these enzymes and their effects on transcription regulation in prostate cancer is needed and has become a priority in biomedical research. In this study, we summed up epigenetic changes with emphasis on pharmacologic epigenetic target agents.

  9. Epigenetic Reprogramming of the Type III Interferon Response Potentiates Antiviral Activity and Suppresses Tumor Growth

    PubMed Central

    Ding, Siyuan; Khoury-Hanold, William; Iwasaki, Akiko; Robek, Michael D.

    2014-01-01

    Type III interferon (IFN-λ) exhibits potent antiviral activity similar to IFN-α/β, but in contrast to the ubiquitous expression of the IFN-α/β receptor, the IFN-λ receptor is restricted to cells of epithelial origin. Despite the importance of IFN-λ in tissue-specific antiviral immunity, the molecular mechanisms responsible for this confined receptor expression remain elusive. Here, we demonstrate that the histone deacetylase (HDAC) repression machinery mediates transcriptional silencing of the unique IFN-λ receptor subunit (IFNLR1) in a cell-type-specific manner. Importantly, HDAC inhibitors elevate receptor expression and restore sensitivity to IFN-λ in previously nonresponsive cells, thereby enhancing protection against viral pathogens. In addition, blocking HDAC activity renders nonresponsive cell types susceptible to the pro-apoptotic activity of IFN-λ, revealing the combination of HDAC inhibitors and IFN-λ to be a potential antitumor strategy. These results demonstrate that the type III IFN response may be therapeutically harnessed by epigenetic rewiring of the IFN-λ receptor expression program. PMID:24409098

  10. Generation of Patient-Specific induced Pluripotent Stem Cell from Peripheral Blood Mononuclear Cells by Sendai Reprogramming Vectors.

    PubMed

    Quintana-Bustamante, Oscar; Segovia, Jose C

    2016-01-01

    Induced pluripotent stem cells (iPSC) technology has changed preclinical research since their generation was described by Shinya Yamanaka in 2006. iPSCs are derived from somatic cells after being reprogrammed back to an embryonic state by specific combination of reprogramming factors. These reprogrammed cells resemble all the characteristic of embryonic stem cells (ESC). The reprogramming technology is even more valuable to research diseases biology and treatment by opening gene and cell therapies in own patient's iPSC. Patient-specific iPSC can be generated from a large variety of patient cells by any of the myriad of reprogramming platforms described. Here, we describe the generation of patient-specific iPSC from patient peripheral blood mononuclear cells by Sendai Reprogramming vectors.

  11. Reprogramming Enhancers to Drive Metastasis.

    PubMed

    Mostoslavsky, Raul; Bardeesy, Nabeel

    2017-08-24

    Acquired molecular changes can promote the spreading of primary tumor cells to distant tissues. In this issue of Cell, Roe et al. show that metastatic progression of pancreatic cancer involves large-scale enhancer reprogramming by Foxa1, which activates transcriptional program specifying early endodermal stem cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. DNA methylation at a bovine alpha satellite I repeat CpG site during development following fertilization and somatic cell nuclear transfer.

    PubMed

    Couldrey, Christine; Wells, David N

    2013-01-01

    Incomplete epigenetic reprogramming is postulated to contribute to the low developmental success following somatic cell nuclear transfer (SCNT). Here, we describe the epigenetic reprogramming of DNA methylation at an alpha satellite I CpG site (αsatI-5) during development of cattle generated either by artificial insemination (AI) or in vitro fertilization (IVF) and SCNT. Quantitative methylation analysis identified that SCNT donor cells were highly methylated at αsatI-5 and resulting SCNT blastocysts showed significantly more methylation than IVF blastocysts. At implantation, no difference in methylation was observed between SCNT and AI in trophoblast tissue at αsatI-5, however, SCNT embryos were significantly hyper-methylated compared to AI controls at this time point. Following implantation, DNA methylation at αsatI-5 decreased in AI but not SCNT placental tissues. In contrast to placenta, the proportion of methylation at αsatI-5 remained high in adrenal, kidney and muscle tissues during development. Differences in the average proportion of methylation were smaller in somatic tissues than placental tissues but, on average, SCNT somatic tissues were hyper-methylated at αsatI-5. Although sperm from all bulls was less methylated than somatic tissues at αsatI-5, on average this site remained hyper-methylated in sperm from cloned bulls compared with control bulls. This developmental time course confirms that epigenetic reprogramming does occur, at least to some extent, following SCNT. However, the elevated methylation levels observed in SCNT blastocysts and cellular derivatives implies that there is either insufficient time or abundance of appropriate reprogramming factors in oocytes to ensure complete reprogramming. Incomplete reprogramming at this CpG site may be a contributing factor to low SCNT success rates, but more likely represents the tip of the iceberg in terms of incompletely reprogramming. Until protocols ensure the epigenetic signature of a

  13. DNA Methylation at a Bovine Alpha Satellite I Repeat CpG Site during Development following Fertilization and Somatic Cell Nuclear Transfer

    PubMed Central

    Couldrey, Christine; Wells, David N.

    2013-01-01

    Incomplete epigenetic reprogramming is postulated to contribute to the low developmental success following somatic cell nuclear transfer (SCNT). Here, we describe the epigenetic reprogramming of DNA methylation at an alpha satellite I CpG site (αsatI-5) during development of cattle generated either by artificial insemination (AI) or in vitro fertilization (IVF) and SCNT. Quantitative methylation analysis identified that SCNT donor cells were highly methylated at αsatI-5 and resulting SCNT blastocysts showed significantly more methylation than IVF blastocysts. At implantation, no difference in methylation was observed between SCNT and AI in trophoblast tissue at αsatI-5, however, SCNT embryos were significantly hyper-methylated compared to AI controls at this time point. Following implantation, DNA methylation at αsatI-5 decreased in AI but not SCNT placental tissues. In contrast to placenta, the proportion of methylation at αsatI-5 remained high in adrenal, kidney and muscle tissues during development. Differences in the average proportion of methylation were smaller in somatic tissues than placental tissues but, on average, SCNT somatic tissues were hyper-methylated at αsatI-5. Although sperm from all bulls was less methylated than somatic tissues at αsatI-5, on average this site remained hyper-methylated in sperm from cloned bulls compared with control bulls. This developmental time course confirms that epigenetic reprogramming does occur, at least to some extent, following SCNT. However, the elevated methylation levels observed in SCNT blastocysts and cellular derivatives implies that there is either insufficient time or abundance of appropriate reprogramming factors in oocytes to ensure complete reprogramming. Incomplete reprogramming at this CpG site may be a contributing factor to low SCNT success rates, but more likely represents the tip of the iceberg in terms of incompletely reprogramming. Until protocols ensure the epigenetic signature of a

  14. Epigenetic and epistatic interactions between serotonin transporter and brain-derived neurotrophic factor genetic polymorphism: insights in depression.

    PubMed

    Ignácio, Z M; Réus, G Z; Abelaira, H M; Quevedo, J

    2014-09-05

    Epidemiological studies have shown significant results in the interaction between the functions of brain-derived neurotrophic factor (BDNF) and 5-HT in mood disorders, such as major depressive disorder (MDD). The latest research has provided convincing evidence that gene transcription of these molecules is a target for epigenetic changes, triggered by stressful stimuli that starts in early childhood and continues throughout life, which are subsequently translated into structural and functional phenotypes culminating in depressive disorders. The short variants of 5-HTTLPR and BDNF-Met are seen as forms which are predisposed to epigenetic aberrations, which leads individuals to a susceptibility to environmental adversities, especially when subjected to stress in early life. Moreover, the polymorphic variants also feature epistatic interactions in directing the functional mechanisms elicited by stress and underlying the onset of depressive disorders. Also emphasized are works which show some mediators between stress and epigenetic changes of the 5-HTT and BDNF genes, such as the hypothalamic-pituitary-adrenal (HPA) axis and the cAMP response element-binding protein (CREB), which is a cellular transcription factor. Both the HPA axis and CREB are also involved in epistatic interactions between polymorphic variants of 5-HTTLPR and Val66Met. This review highlights some research studying changes in the epigenetic patterns intrinsic to genes of 5-HTT and BDNF, which are related to lifelong environmental adversities, which in turn increases the risks of developing MDD. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Genetic and epigenetic regulatory mechanisms of the oxytocin receptor gene (OXTR) and the (clinical) implications for social behavior.

    PubMed

    Tops, Sanne; Habel, Ute; Radke, Sina

    2018-03-12

    Oxytocin and the oxytocin receptor (OXTR) play an important role in a large variety of social behaviors. The oxytocinergic system interacts with environmental cues and is highly dependent on interindividual factors. Deficits in this system have been linked to mental disorders associated with social impairments, such as autism spectrum disorder (ASD). This review focuses on the modulation of social behavior by alterations in two domains of the oxytocinergic system. We discuss genetic and epigenetic regulatory mechanisms and alterations in these mechanisms that were found to have clinical implications for ASD. We propose possible explanations how these alterations affect the biological pathways underlying the aberrant social behavior and point out avenues for future research. We advocate the need for integration studies that combine multiple measures covering a broad range of social behaviors and link these to genetic and epigenetic profiles. Copyright © 2018. Published by Elsevier Inc.

  16. In vivo reprogramming for heart regeneration: A glance at efficiency, environmental impacts, challenges and future directions.

    PubMed

    Ebrahimi, Behnam

    2017-07-01

    Replacing dying or diseased cells of a tissue with new ones that are converted from patient's own cells is an attractive strategy in regenerative medicine. In vivo reprogramming is a novel strategy that can circumvent the hurdles of autologous/allogeneic cell injection therapies. Interestingly, studies have demonstrated that direct injection of cardiac transcription factors or specific miRNAs into the infarct border zone of murine hearts following myocardial infarction converts resident cardiac fibroblasts into functional cardiomyocytes. Moreover, in vivo cardiac reprogramming not only drives cardiac tissue regeneration, but also improves cardiac function and survival rate after myocardial infarction. Thanks to the influence of cardiac microenvironment and the same developmental origin, cardiac fibroblasts seem to be more amenable to reprogramming toward cardiomyocyte fate than other cell sources (e.g. skin fibroblasts). Thus, reprogramming of cardiac fibroblasts to functional induced cardiomyocytes in the cardiac environment holds great promises for induced regeneration and potential clinical purposes. Application of small molecules in future studies may represent a major advancement in this arena and pharmacological reprogramming would convey reprogramming technology to the translational medicine paradigm. This study reviews accomplishments in the field of in vitro and in vivo mouse cardiac reprogramming and then deals with strategies for the enhancement of the efficiency and quality of the process. Furthermore, it discusses challenges ahead and provides suggestions for future research. Human cardiac reprogramming is also addressed as a foundation for possible application of in vivo cardiac reprogramming for human heart regeneration in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Identification and Successful Negotiation of a Metabolic Checkpoint in Direct Neuronal Reprogramming.

    PubMed

    Gascón, Sergio; Murenu, Elisa; Masserdotti, Giacomo; Ortega, Felipe; Russo, Gianluca L; Petrik, David; Deshpande, Aditi; Heinrich, Christophe; Karow, Marisa; Robertson, Stephen P; Schroeder, Timm; Beckers, Johannes; Irmler, Martin; Berndt, Carsten; Angeli, José P Friedmann; Conrad, Marcus; Berninger, Benedikt; Götz, Magdalena

    2016-03-03

    Despite the widespread interest in direct neuronal reprogramming, the mechanisms underpinning fate conversion remain largely unknown. Our study revealed a critical time point after which cells either successfully convert into neurons or succumb to cell death. Co-transduction with Bcl-2 greatly improved negotiation of this critical point by faster neuronal differentiation. Surprisingly, mutants with reduced or no affinity for Bax demonstrated that Bcl-2 exerts this effect by an apoptosis-independent mechanism. Consistent with a caspase-independent role, ferroptosis inhibitors potently increased neuronal reprogramming by inhibiting lipid peroxidation occurring during fate conversion. Genome-wide expression analysis confirmed that treatments promoting neuronal reprogramming elicit an anti-oxidative stress response. Importantly, co-expression of Bcl-2 and anti-oxidative treatments leads to an unprecedented improvement in glial-to-neuron conversion after traumatic brain injury in vivo, underscoring the relevance of these pathways in cellular reprograming irrespective of cell type in vitro and in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Metabolic Reprogramming and Oncogenesis: One Hallmark, Many Organelles.

    PubMed

    Costa, A S H; Frezza, C

    2017-01-01

    The process of tumorigenesis can be described by a series of molecular features, among which alteration of cellular metabolism has recently emerged. This metabolic rewiring fulfills the energy and biosynthetic demands of fast proliferating cancer cells and amplifies their metabolic repertoire to survive and proliferate in the poorly oxygenated and nutrient-deprived tumor microenvironment. During the last decade, the complex reprogramming of cancer cell metabolism has been widely investigated, revealing cancer-specific metabolic alterations. These include dysregulation of glucose and glutamine metabolism, alterations of lipid synthesis and oxidation, and a complex rewiring of mitochondrial function. However, mitochondria are not the only metabolically active organelles within the cell, and other organelles, including lysosomes, peroxisomes, and endoplasmic reticulum, harbor components of the metabolic network. Of note, dysregulation of the function of these organelles is increasingly recognized in cancer cells. However, to what extent these organelles contribute to the metabolic reprogramming of cancer is not fully understood. In this review, we describe the main metabolic functions of these organelles and provide insights into how they communicate to orchestrate a coordinated metabolic reprogramming during transformation. © 2017 Elsevier Inc. All rights reserved.

  19. Commentary: "re-programming or selecting adult stem cells?".

    PubMed

    Trosko, James E

    2008-01-01

    The recent observations that embryonic stemness-associated genes could assist in the "de-differentiation" of adult skin fibroblast cells to "embryonic-like stem cells", using the "somatic cell nuclear transfer" techniques, have been interpreted as indicating a "re-programming" of genes. These reports have demonstrated a "proof of principle" approach to by-pass many, but not all, of the ethical, scientific and medical limitations of the "therapeutic cloning" of embryonic stem cells from embryos. However, while the interpretation that real "re-programming" of all those somatic fibroblastic differentiation genes might be correct, there does exists an alternative hypothesis of these exciting results. Based on the fact that multipotent adult stem cells exist in most, if not all, adult organs, the possibility exists that all these recent "re-programming" results, using the somatic nuclear transfer techniques, actually were the results of transferred rare nuclear material from the adult stem cells residing in the skin of the mouse, monkey and human samples. An examination of the rationale for this challenging hypothesis has been drawn from the hypothesis of the "stem cell theory of cancer", as well as from the field of human adult stem cells research.

  20. A critical role for AID in the initiation of reprogramming to induced pluripotent stem cells

    PubMed Central

    Bhutani, Nidhi; Decker, Matthew N.; Brady, Jennifer J.; Bussat, Rose T.; Burns, David M.; Corbel, Stephane Y.; Blau, Helen M.

    2013-01-01

    Mechanistic insights into the reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs) are limited, particularly for early acting molecular regulators. Here we use an acute loss of function approach to demonstrate that activation-induced deaminase (AID) activity is necessary for the initiation of reprogramming to iPSCs. While AID is well known for antibody diversification, it has also recently been shown to have a role in active DNA demethylation in reprogramming toward pluripotency and development. These findings suggested a potential role for AID in iPSC generation, yet, iPSC yield from AID-knockout mouse fibroblasts was similar to that of wild-type (WT) fibroblasts. We reasoned that an acute loss of AID function might reveal effects masked by compensatory mechanisms during development, as reported for other proteins. Accordingly, we induced an acute reduction (>50%) in AID levels using 4 different shRNAs and determined that reprogramming to iPSCs was significantly impaired by 79 ± 7%. The deaminase activity of AID was critical, as coexpression of WT but not a catalytic mutant AID rescued reprogramming. Notably, AID was required only during a 72-h time window at the onset of iPSC reprogramming. Our findings show a critical role for AID activity in the initiation of reprogramming to iPSCs.—Bhutani, N., Decker, M. N., Brady, J. J., Bussat, R. T., Burns, D. M., Corbel, S. Y., Blau, H. M. A critical role for AID in the initiation of reprogramming to induced pluripotent stem cells. PMID:23212122

  1. Current reprogramming systems in regenerative medicine: from somatic cells to induced pluripotent stem cells.

    PubMed

    Hu, Chenxia; Li, Lanjuan

    2016-01-01

    Induced pluripotent stem cells (iPSCs) paved the way for research fields including cell therapy, drug screening, disease modeling and the mechanism of embryonic development. Although iPSC technology has been improved by various delivery systems, direct transduction and small molecule regulation, low reprogramming efficiency and genomic modification steps still inhibit its clinical use. Improvements in current vectors and the exploration of novel vectors are required to balance efficiency and genomic modification for reprogramming. Herein, we set out a comprehensive analysis of current reprogramming systems for the generation of iPSCs from somatic cells. By clarifying advantages and disadvantages of the current reprogramming systems, we are striding toward an effective route to generate clinical grade iPSCs.

  2. Scrutinizing the epigenetics revolution

    PubMed Central

    Meloni, Maurizio; Testa, Giuseppe

    2014-01-01

    Epigenetics is one of the most rapidly expanding fields in the life sciences. Its rise is frequently framed as a revolutionary turn that heralds a new epoch both for gene-based epistemology and for the wider discourse on life that pervades knowledge-intensive societies of the molecular age. The fundamentals of this revolution remain however to be scrutinized, and indeed the very contours of what counts as ‘epigenetic' are often blurred. This is reflected also in the mounting discourse on the societal implications of epigenetics, in which vast expectations coexist with significant uncertainty about what aspects of this science are most relevant for politics or policy alike. This is therefore a suitable time to reflect on the directions that social theory could most productively take in the scrutiny of this revolution. Here we take this opportunity in both its scholarly and normative dimension, that is, proposing a roadmap for social theorizing on epigenetics that does not shy away from, and indeed hopefully guides, the framing of its most socially relevant outputs. To this end, we start with an epistemological reappraisal of epigenetic discourse that valorizes the blurring of meanings as a critical asset for the field and privileged analytical entry point. We then propose three paths of investigation. The first looks at the structuring elements of controversies and visions around epigenetics. The second probes the mutual constitution between the epigenetic reordering of living phenomena and the normative settlements that orient individual and collective responsibilities. The third highlights the material import of epigenetics and the molecularization of culture that it mediates. We suggest that these complementary strands provide both an epistemically and socially self-reflective framework to advance the study of epigenetics as a molecular juncture between nature and nurture and thus as the new critical frontier in the social studies of the life sciences. PMID

  3. Epigenetic regulation in dental pulp inflammation

    PubMed Central

    Hui, T; Wang, C; Chen, D; Zheng, L; Huang, D; Ye, L

    2016-01-01

    Dental caries, trauma, and other possible factors could lead to injury of the dental pulp. Dental infection could result in immune and inflammatory responses mediated by molecular and cellular events and tissue breakdown. The inflammatory response of dental pulp could be regulated by genetic and epigenetic events. Epigenetic modifications play a fundamental role in gene expression. The epigenetic events might play critical roles in the inflammatory process of dental pulp injury. Major epigenetic events include methylation and acetylation of histones and regulatory factors, DNA methylation, and small non-coding RNAs. Infections and other environmental factors have profound effects on epigenetic modifications and trigger diseases. Despite growing evidences of literatures addressing the role of epigenetics in the field of medicine and biology, very little is known about the epigenetic pathways involved in dental pulp inflammation. This review summarized the current knowledge about epigenetic mechanisms during dental pulp inflammation. Progress in studies of epigenetic alterations during inflammatory response would provide opportunities for the development of efficient medications of epigenetic therapy for pulpitis. PMID:26901577

  4. Reprogramming retinal neurons and standardized quantification of their differentiation in 3-dimensional retinal cultures

    PubMed Central

    Hiler, Daniel J.; Barabas, Marie E.; Griffiths, Lyra M.; Dyer, Michael A.

    2017-01-01

    Postmitotic differentiated neurons are among the most difficult cells to reprogram into induced pluripotent stem cells (iPSCs) because they have poor viability when cultured as dissociated cells. Other protocols to reprogram postmitotic neurons have required the inactivation of the p53 tumor suppressor. We describe a method that does not require p53 inactivation and induces reprogramming in cells purified from the retinae of reprogrammable mice in aggregates with wild-type retinal cells. After the first 10 days of reprogramming, the aggregates are then dispersed and plated on irradiated feeder cells to propagate and isolate individual iPSC clones. The reprogramming efficiency of different neuronal populations at any stage of development can be quantitated using this protocol. Reprogramming retinal neurons with this protocol will take 56 days, and these retina-derived iPSCs can undergo retinal differentiation to produce retinae in 34 days. In addition, we describe a quantitative assessment of retinal differentiation from these neuron-derived iPSCs called STEM-RET. The procedure quantitates eye field specification, optic cup formation, and retinal differentiation in 3-dimensional cultures using molecular, cellular and morphological criteria. An advanced level of cell culture experience is required to carry out this protocol. PMID:27658012

  5. Robust Differentiation of mRNA-Reprogrammed Human Induced Pluripotent Stem Cells Toward a Retinal Lineage.

    PubMed

    Sridhar, Akshayalakshmi; Ohlemacher, Sarah K; Langer, Kirstin B; Meyer, Jason S

    2016-04-01

    The derivation of human induced pluripotent stem cells (hiPSCs) from patient-specific sources has allowed for the development of novel approaches to studies of human development and disease. However, traditional methods of generating hiPSCs involve the risks of genomic integration and potential constitutive expression of pluripotency factors and often exhibit low reprogramming efficiencies. The recent description of cellular reprogramming using synthetic mRNA molecules might eliminate these shortcomings; however, the ability of mRNA-reprogrammed hiPSCs to effectively give rise to retinal cell lineages has yet to be demonstrated. Thus, efforts were undertaken to test the ability and efficiency of mRNA-reprogrammed hiPSCs to yield retinal cell types in a directed, stepwise manner. hiPSCs were generated from human fibroblasts via mRNA reprogramming, with parallel cultures of isogenic human fibroblasts reprogrammed via retroviral delivery of reprogramming factors. New lines of mRNA-reprogrammed hiPSCs were established and were subsequently differentiated into a retinal fate using established protocols in a directed, stepwise fashion. The efficiency of retinal differentiation from these lines was compared with retroviral-derived cell lines at various stages of development. On differentiation, mRNA-reprogrammed hiPSCs were capable of robust differentiation to a retinal fate, including the derivation of photoreceptors and retinal ganglion cells, at efficiencies often equal to or greater than their retroviral-derived hiPSC counterparts. Thus, given that hiPSCs derived through mRNA-based reprogramming strategies offer numerous advantages owing to the lack of genomic integration or constitutive expression of pluripotency genes, such methods likely represent a promising new approach for retinal stem cell research, in particular, those for translational applications. In the current report, the ability to derive mRNA-reprogrammed human induced pluripotent stem cells (hi

  6. Epigenetics: a new frontier in dentistry.

    PubMed

    Williams, S D; Hughes, T E; Adler, C J; Brook, A H; Townsend, G C

    2014-06-01

    In 2007, only four years after the completion of the Human Genome Project, the journal Science announced that epigenetics was the 'breakthrough of the year'. Time magazine placed it second in the top 10 discoveries of 2009. While our genetic code (i.e. our DNA) contains all of the information to produce the elements we require to function, our epigenetic code determines when and where genes in the genetic code are expressed. Without the epigenetic code, the genetic code is like an orchestra without a conductor. Although there is now a substantial amount of published research on epigenetics in medicine and biology, epigenetics in dental research is in its infancy. However, epigenetics promises to become increasingly relevant to dentistry because of the role it plays in gene expression during development and subsequently potentially influencing oral disease susceptibility. This paper provides a review of the field of epigenetics aimed specifically at oral health professionals. It defines epigenetics, addresses the underlying concepts and provides details about specific epigenetic molecular mechanisms. Further, we discuss some of the key areas where epigenetics is implicated, and review the literature on epigenetics research in dentistry, including its relevance to clinical disciplines. This review considers some implications of epigenetics for the future of dental practice, including a 'personalized medicine' approach to the management of common oral diseases. © 2014 Australian Dental Association.

  7. Genetic Mutations and Epigenetic Modifications: Driving Cancer and Informing Precision Medicine

    PubMed Central

    Coyle, Krysta Mila; Boudreau, Jeanette E.

    2017-01-01

    Cancer treatment is undergoing a significant revolution from “one-size-fits-all” cytotoxic therapies to tailored approaches that precisely target molecular alterations. Precision strategies for drug development and patient stratification, based on the molecular features of tumors, are the next logical step in a long history of approaches to cancer therapy. In this review, we discuss the history of cancer treatment from generic natural extracts and radical surgical procedures to site-specific and combinatorial treatment regimens, which have incrementally improved patient outcomes. We discuss the related contributions of genetics and epigenetics to cancer progression and the response to targeted therapies and identify challenges and opportunities for the success of precision medicine. The identification of patients who will benefit from targeted therapies is more complex than simply identifying patients whose tumors harbour the targeted aberration, and intratumoral heterogeneity makes it difficult to determine if a precision therapy is successful during treatment. This heterogeneity enables tumors to develop resistance to targeted approaches; therefore, the rational combination of therapeutic agents will limit the threat of acquired resistance to therapeutic success. By incorporating the view of malignant transformation modulated by networks of genetic and epigenetic interactions, molecular strategies will enable precision medicine for effective treatment across cancer subtypes. PMID:28685150

  8. CD44 Is a Negative Cell Surface Marker for Pluripotent Stem Cell Identification during Human Fibroblast Reprogramming

    PubMed Central

    Vaz, Candida; Tanavde, Vivek; Lakshmipathy, Uma

    2014-01-01

    Induced pluripotent stem cells (iPSCs) are promising tools for disease research and cell therapy. One of the critical steps in establishing iPSC lines is the early identification of fully reprogrammed colonies among unreprogrammed fibroblasts and partially reprogrammed intermediates. Currently, colony morphology and pluripotent stem cell surface markers are used to identify iPSC colonies. Through additional clonal characterization, we show that these tools fail to distinguish partially reprogrammed intermediates from fully reprogrammed iPSCs. Thus, they can lead to the selection of suboptimal clones for expansion. A subsequent global transcriptome analysis revealed that the cell adhesion protein CD44 is a marker that differentiates between partially and fully reprogrammed cells. Immunohistochemistry and flow cytometry confirmed that CD44 is highly expressed in the human parental fibroblasts used for the reprogramming experiments. It is gradually lost throughout the reprogramming process and is absent in fully established iPSCs. When used in conjunction with pluripotent cell markers, CD44 staining results in the clear identification of fully reprogrammed cells. This combination of positive and negative surface markers allows for easier and more accurate iPSC detection and selection, thus reducing the effort spent on suboptimal iPSC clones. PMID:24416407

  9. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia.

    PubMed

    Hattori, Ayuna; Tsunoda, Makoto; Konuma, Takaaki; Kobayashi, Masayuki; Nagy, Tamas; Glushka, John; Tayyari, Fariba; McSkimming, Daniel; Kannan, Natarajan; Tojo, Arinobu; Edison, Arthur S; Ito, Takahiro

    2017-05-25

    Reprogrammed cellular metabolism is a common characteristic observed in various cancers. However, whether metabolic changes directly regulate cancer development and progression remains poorly understood. Here we show that BCAT1, a cytosolic aminotransferase for branched-chain amino acids (BCAAs), is aberrantly activated and functionally required for chronic myeloid leukaemia (CML) in humans and in mouse models of CML. BCAT1 is upregulated during progression of CML and promotes BCAA production in leukaemia cells by aminating the branched-chain keto acids. Blocking BCAT1 gene expression or enzymatic activity induces cellular differentiation and impairs the propagation of blast crisis CML both in vitro and in vivo. Stable-isotope tracer experiments combined with nuclear magnetic resonance-based metabolic analysis demonstrate the intracellular production of BCAAs by BCAT1. Direct supplementation with BCAAs ameliorates the defects caused by BCAT1 knockdown, indicating that BCAT1 exerts its oncogenic function through BCAA production in blast crisis CML cells. Importantly, BCAT1 expression not only is activated in human blast crisis CML and de novo acute myeloid leukaemia, but also predicts disease outcome in patients. As an upstream regulator of BCAT1 expression, we identified Musashi2 (MSI2), an oncogenic RNA binding protein that is required for blast crisis CML. MSI2 is physically associated with the BCAT1 transcript and positively regulates its protein expression in leukaemia. Taken together, this work reveals that altered BCAA metabolism activated through the MSI2-BCAT1 axis drives cancer progression in myeloid leukaemia.

  10. Interpreting Chromosome Aberration Spectra

    NASA Technical Reports Server (NTRS)

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-01-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH ( multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.

  11. Epigenetic Regulation of Myeloid Cells

    PubMed Central

    IVASHKIV, LIONEL B.; PARK, SUNG HO

    2017-01-01

    Epigenetic regulation in myeloid cells is crucial for cell differentiation and activation in response to developmental and environmental cues. Epigenetic control involves posttranslational modification of DNA or chromatin, and is also coupled to upstream signaling pathways and transcription factors. In this review, we summarize key epigenetic events and how dynamics in the epigenetic landscape of myeloid cells shape the development, immune activation, and innate immune memory. PMID:27337441

  12. Imprints and DPPA3 are bypassed during pluripotency- and differentiation-coupled methylation reprogramming in testicular germ cell tumors

    PubMed Central

    Killian, J. Keith; Dorssers, Lambert C.J.; Trabert, Britton; Gillis, Ad J.M.; Cook, Michael B.; Wang, Yonghong; Waterfall, Joshua J.; Stevenson, Holly; Smith, William I.; Noyes, Natalia; Retnakumar, Parvathy; Stoop, J. Hans; Oosterhuis, J. Wolter; Meltzer, Paul S.; McGlynn, Katherine A.; Looijenga, Leendert H.J.

    2016-01-01

    Testicular germ cell tumors (TGCTs) share germline ancestry but diverge phenotypically and clinically as seminoma (SE) and nonseminoma (NSE), the latter including the pluripotent embryonal carcinoma (EC) and its differentiated derivatives, teratoma (TE), yolk sac tumor (YST), and choriocarcinoma. Epigenomes from TGCTs may illuminate reprogramming in both normal development and testicular tumorigenesis. Herein we investigate pure-histological forms of 130 TGCTs for conserved and subtype-specific DNA methylation, including analysis of relatedness to pluripotent stem cell (ESC, iPSC), primordial germ cell (PGC), and differentiated somatic references. Most generally, TGCTs conserve PGC-lineage erasure of maternal and paternal genomic imprints and DPPA3 (also known as STELLA); however, like ESCs, TGCTs show focal recurrent imprinted domain hypermethylation. In this setting of shared physiologic erasure, NSEs harbor a malignancy-associated hypermethylation core, akin to that of a diverse cancer compendium. Beyond these concordances, we found subtype epigenetic homology with pluripotent versus differentiated states. ECs demonstrate a striking convergence of both CpG and CpH (non-CpG) methylation with pluripotent states; the pluripotential methyl-CpH signature crosses species boundaries and is distinct from neuronal methyl-CpH. EC differentiation to TE and YST entails reprogramming toward the somatic state, with loss of methyl-CpH but de novo methylation of pluripotency loci such as NANOG. Extreme methyl-depletion among SE reflects the PGC methylation nadir. Adjacent to TGCTs, benign testis methylation profiles are determined by spermatogenetic proficiency measured by Johnsen score. In sum, TGCTs share collective entrapment in a PGC-like state of genomic-imprint and DPPA3 erasure, recurrent hypermethylation of cancer-associated targets, and subtype-dependent pluripotent, germline, or somatic methylation. PMID:27803193

  13. The ambiguous nature of epigenetic responsibility.

    PubMed

    Dupras, Charles; Ravitsky, Vardit

    2016-08-01

    Over the past decade, epigenetic studies have been providing further evidence of the molecular interplay between gene expression and its health outcomes on one hand, and the physical and social environments in which individuals are conceived, born and live on the other. As knowledge of epigenetic programming expands, a growing body of literature in social sciences and humanities is exploring the implications of this new field of study for contemporary societies. Epigenetics has been mobilised to support political claims, for instance, with regard to collective obligations to address socio-environmental determinants of health. The idea of a moral 'epigenetic responsibility' has been proposed, meaning that individuals and/or governments should be accountable for the epigenetic programming of children and/or citizens. However, these discussions have largely overlooked important biological nuances and ambiguities inherent in the field of epigenetics. In this paper, we argue that the identification and assignment of moral epigenetic responsibilities should reflect the rich diversity and complexity of epigenetic mechanisms, and not rely solely on a gross comparison between epigenetics and genetics. More specifically, we explore how further investigation of the ambiguous notions of epigenetic normality and epigenetic plasticity should play a role in shaping this emerging debate. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Epigenetic-induced alterations in sex-ratios in response to climate change: An epigenetic trap?

    PubMed

    Consuegra, Sofia; Rodríguez López, Carlos M

    2016-10-01

    We hypothesize that under the predicted scenario of climate change epigenetically mediated environmental sex determination could become an epigenetic trap. Epigenetically regulated environmental sex determination is a mechanism by which species can modulate their breeding strategies to accommodate environmental change. Growing evidence suggests that epigenetic mechanisms may play a key role in phenotypic plasticity and in the rapid adaptation of species to environmental change, through the capacity of organisms to maintain a non-genetic plastic memory of the environmental and ecological conditions experienced by their parents. However, inherited epigenetic variation could also be maladaptive, becoming an epigenetic trap. This is because environmental sex determination can alter sex ratios by increasing the survival of one of the sexes at the expense of negative fitness consequences for the other, which could lead not only to the collapse of natural populations, but also have an impact in farmed animal and plant species. © 2016 WILEY Periodicals, Inc.

  15. Effects of mechanical stimulation on the reprogramming of somatic cells into human-induced pluripotent stem cells.

    PubMed

    Kim, Young Mi; Kang, Yun Gyeong; Park, So Hee; Han, Myung-Kwan; Kim, Jae Ho; Shin, Ji Won; Shin, Jung-Woog

    2017-06-08

    Mechanical stimuli play important roles in the proliferation and differentiation of adult stem cells. However, few studies on their effects on induced pluripotent stem cells (iPSCs) have been published. Human dermal fibroblasts were seeded onto flexible membrane-bottom plates, and infected with retrovirus expressing the four reprogramming factors OCT4, SOX2, KLF, and c-MYC (OSKM). The cells were subjected to equiaxial stretching (3% or 8% for 2, 4, or 7 days) and seeded on feeder cells (STO). The reprogramming into iPSCs was evaluated by the expression of pluripotent markers, in vitro differentiation into three germ layers, and teratoma formation. Equiaxial stretching enhanced reprogramming efficiency without affecting the viral transduction rate. iPSCs induced by transduction of four reprogramming factors and application of equiaxial stretching had characteristics typical of iPSCs in terms of pluripotency and differentiation potentials. This is the first study to show that mechanical stimuli can increase reprogramming efficiency. However, it did not enhance the infection rate, indicating that mechanical stimuli, defined as stretching in this study, have positive effects on reprogramming rather than on infection. Additional studies should evaluate the mechanism underlying the modulation of reprogramming of somatic cells into iPSCs.

  16. Epigenetic repression of HOXB cluster in oral cancer cell lines.

    PubMed

    Xavier, Flávia Caló Aquino; Destro, Maria Fernanda de Souza Setubal; Duarte, Carina Magalhães Esteves; Nunes, Fabio Daumas

    2014-08-01

    Aberrant DNA methylation is a fundamental transcriptional control mechanism in carcinogenesis. The expression of homeobox genes is usually controlled by an epigenetic mechanism, such as the methylation of CpG islands in the promoter region. The aim of this study was to describe the differential methylation pattern of HOX genes in oral squamous cell carcinoma (OSCC) cell lines and transcript status in a group of hypermethylated and hypomethylated genes. Quantitative analysis of DNA methylation was performed on two OSCC cell lines (SCC4 and SCC9) using a method denominated Human Homeobox Genes EpiTect Methyl qPCR Arrays, which allowed fast, precise methylation detection of 24 HOX specific genes without bisulfite conversion. Methylation greater than 50% was detected in HOXA11, HOXA6, HOXA7, HOXA9, HOXB1, HOXB2, HOXB3, HOXB4, HOXB5, HOXB6, HOXC8 and HOXD10. Both cell lines demonstrated similar hypermethylation status for eight HOX genes. A similar pattern of promoter hypermethylation and hypomethylation was demonstrated for the HOXB cluster and HOXA cluster, respectively. Moreover, the hypermethylation profile of the HOXB cluster, especially HOXB4, was correlated with decreased transcript expression, which was restored following treatment with 5-aza-2'-deoxycytidine. The homeobox methylation profile in OSCC cell lines is consistent with an epigenetic biomarker. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Epigenetics in women's health care.

    PubMed

    Pozharny, Yevgeniya; Lambertini, Luca; Clunie, Garfield; Ferrara, Lauren; Lee, Men-Jean

    2010-01-01

    Epigenetics refers to structural modifications to genes that do not change the nucleotide sequence itself but instead control and regulate gene expression. DNA methylation, histone modification, and RNA regulation are some of the mechanisms involved in epigenetic modification. Epigenetic changes are believed to be a result of changes in an organism's environment that result in fixed and permanent changes in most differentiated cells. Some environmental changes that have been linked to epigenetic changes include starvation, folic acid, and various chemical exposures. There are periods in an organism's life cycle in which the organism is particularly susceptible to epigenetic influences; these include fertilization, gametogenesis, and early embryo development. These are also windows of opportunity for interventions during the reproductive life cycle of women to improve maternal-child health. New data suggest that epigenetic influences might be involved in the regulation of fetal development and the pathophysiology of adult diseases such as cancer, diabetes, obesity, and neurodevelopmental disorders. Various epigenetic mechanisms may also be involved in the pathogenesis of preeclampsia and intrauterine growth restriction. Additionally, environmental exposures are being held responsible for causing epigenetic changes that lead to a disease process. Exposure to heavy metals, bioflavonoids, and endocrine disruptors, such as bisphenol A and phthalates, has been shown to affect the epigenetic memory of an organism. Their long-term effects are unclear at this point, but many ongoing studies are attempting to elucidate the pathophysiological effects of such gene-environment interactions. (c) 2010 Mount Sinai School of Medicine.

  18. Factors affecting the persistence of drug-induced reprogramming of the cancer methylome

    PubMed Central

    Bell, Joshua S. K.; Kagey, Jacob D.; Barwick, Benjamin G.; Dwivedi, Bhakti; McCabe, Michael T.; Kowalski, Jeanne; Vertino, Paula M.

    2016-01-01

    ABSTRACT Aberrant DNA methylation is a critical feature of cancer. Epigenetic therapy seeks to reverse these changes to restore normal gene expression. DNA demethylating agents, including 5-aza-2′-deoxycytidine (DAC), are currently used to treat certain leukemias, and can sensitize solid tumors to chemotherapy and immunotherapy. However, it has been difficult to pin the clinical efficacy of these agents to specific demethylation events, and the factors that contribute to the durability of response remain largely unknown. Here we examined the genome-wide kinetics of DAC-induced DNA demethylation and subsequent remethylation after drug withdrawal in breast cancer cells. We find that CpGs differ in both their susceptibility to demethylation and propensity for remethylation after drug removal. DAC-induced demethylation was most apparent at CpGs with higher initial methylation levels and further from CpG islands. Once demethylated, such sites exhibited varied remethylation potentials. The most rapidly remethylating CpGs regained >75% of their starting methylation within a month of drug withdrawal. These sites had higher pretreatment methylation levels, were enriched in gene bodies, marked by H3K36me3, and tended to be methylated in normal breast cells. In contrast, a more resistant class of CpG sites failed to regain even 20% of their initial methylation after 3 months. These sites had lower pretreatment methylation levels, were within or near CpG islands, marked by H3K79me2 or H3K4me2/3, and were overrepresented in sites that become aberrantly hypermethylated in breast cancers. Thus, whereas DAC-induced demethylation affects both endogenous and aberrantly methylated sites, tumor-specific hypermethylation is more slowly regained, even as normal methylation promptly recovers. Taken together, these data suggest that the durability of DAC response is linked to its selective ability to stably reset at least a portion of the cancer methylome. PMID:27082926

  19. Maternal dietary manganese protects chick embryos against maternal heat stress via epigenetic-activated antioxidant and anti-apoptotic abilities.

    PubMed

    Zhu, Yongwen; Lu, Lin; Liao, Xiudong; Li, Wenxiang; Zhang, Liyang; Ji, Cheng; Lin, Xi; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang

    2017-10-27

    Maternal heat stress induced the aberrant epigenetic patterns resulting in the abnormal development of offspring embryos. It is unclear whether maternal dietary manganese supplementation as an epigenetic modifier could protect the chick embryonic development against maternal heat stress via epigenetic mechanisms. To test this hypothesis using an avian model, a completely randomized design with a 2 (maternal normal and high environmental temperatures of 21 and 32°C, respectively) × 3 (maternal dietary manganese sources, the control diet without manganese supplementation and the control diet + 120 mg/kg as either inorganic or organic manganese) factorial arrangement was adopted. Maternal environmental hyperthermia increased mRNA expressions of heat shock proteins 90 and 70, cyclin-dependent kinase 6 and B-cell CLL/lymphoma 2-associated X protein displaying oxidative damage and apoptosis in the embryonic heart. Maternal environmental hyperthermia impaired the embryonic development associated with the alteration of epigenetic status, as evidenced by global DNA hypomethylation and histone 3 lysine 9 hypoacetylation in the embryonic heart. Maternal dietary manganese supplementation increased the heart anti-apoptotic gene B-cell CLL/lymphoma 2 expressions under maternal environmental hyperthermia and manganese superoxide dismutase enzyme activity in the embryonic heart. Maternal dietary organic Mn supplementation effectively eliminated the impairment of maternal environmental hyperthermia on the embryonic development. Maternal dietary manganese supplementation up-regulated manganese superoxide dismutase mRNA expression by reducing DNA methylation and increasing histone 3 lysine 9 acetylation of its promoter. It is suggested that maternal dietary manganese addition could protect the chick embryonic development against maternal heat stress via enhancing epigenetic-activated antioxidant and anti-apoptotic abilities.

  20. Epigenetic dysregulation in cognitive disorders.

    PubMed

    Gräff, Johannes; Mansuy, Isabelle M

    2009-07-01

    Epigenetic mechanisms are not only essential for biological functions requiring stable molecular changes such as the establishment of cell identity and tissue formation, they also constitute dynamic intracellular processes for translating environmental stimuli into modifications in gene expression. Over the past decade it has become increasingly clear that both aspects of epigenetic mechanisms play a pivotal role in complex brain functions. Evidence from patients with neurodegenerative and neurodevelopmental disorders such as Alzheimer's disease and Rett syndrome indicated that epigenetic mechanisms and chromatin remodeling need to be tightly controlled for proper cognitive functions, and their dysregulation can have devastating consequences. However, because they are dynamic, epigenetic mechanisms are also potentially reversible and may provide powerful means for pharmacological intervention. This review outlines major cognitive disorders known to be associated with epigenetic dysregulation, and discusses the potential of 'epigenetic medicine' as a promising cure.

  1. Aberrant DNA Methylation as a Biomarker and a Therapeutic Target of Cholangiocarcinoma.

    PubMed

    Nakaoka, Toshiaki; Saito, Yoshimasa; Saito, Hidetsugu

    2017-05-23

    Cholangiocarcinoma is an epithelial malignancy arising in the region between the intrahepatic bile ducts and the ampulla of Vater at the distal end of the common bile duct. The effect of current chemotherapy regimens against cholangiocarcinoma is limited, and the prognosis of patients with cholangiocarcinoma is poor. Aberrant DNA methylation and histone modification induce silencing of tumor suppressor genes and chromosomal instability during carcinogenesis. Studies have shown that the tumor suppressor genes and microRNAs (miRNAs) including MLH1 , p14 , p16 , death-associated protein kinase ( DAPK ), miR-370 and miR-376c are frequently methylated in cholangiocarcinoma. Silencing of these tumor suppressor genes and miRNAs plays critical roles in the initiation and progression of cholangiocarcinoma. In addition, recent studies have demonstrated that DNA methylation inhibitors induce expression of endogenous retroviruses and exert the anti-tumor effect of via an anti-viral immune response. Aberrant DNA methylation of tumor suppressor genes and miRNAs could be a powerful biomarker for the diagnosis and treatment of cholangiocarcinoma. Epigenetic therapy with DNA methylation inhibitors holds considerable promise for the treatment of cholangiocarcinoma through the reactivation of tumor suppressor genes and miRNAs as well as the induction of an anti-viral immune response.

  2. Aberrant DNA Methylation as a Biomarker and a Therapeutic Target of Cholangiocarcinoma

    PubMed Central

    Nakaoka, Toshiaki; Saito, Yoshimasa; Saito, Hidetsugu

    2017-01-01

    Cholangiocarcinoma is an epithelial malignancy arising in the region between the intrahepatic bile ducts and the ampulla of Vater at the distal end of the common bile duct. The effect of current chemotherapy regimens against cholangiocarcinoma is limited, and the prognosis of patients with cholangiocarcinoma is poor. Aberrant DNA methylation and histone modification induce silencing of tumor suppressor genes and chromosomal instability during carcinogenesis. Studies have shown that the tumor suppressor genes and microRNAs (miRNAs) including MLH1, p14, p16, death-associated protein kinase (DAPK), miR-370 and miR-376c are frequently methylated in cholangiocarcinoma. Silencing of these tumor suppressor genes and miRNAs plays critical roles in the initiation and progression of cholangiocarcinoma. In addition, recent studies have demonstrated that DNA methylation inhibitors induce expression of endogenous retroviruses and exert the anti-tumor effect of via an anti-viral immune response. Aberrant DNA methylation of tumor suppressor genes and miRNAs could be a powerful biomarker for the diagnosis and treatment of cholangiocarcinoma. Epigenetic therapy with DNA methylation inhibitors holds considerable promise for the treatment of cholangiocarcinoma through the reactivation of tumor suppressor genes and miRNAs as well as the induction of an anti-viral immune response. PMID:28545228

  3. Epigenetics and obesity.

    PubMed

    Campión, Javier; Milagro, Fermin; Martínez, J Alfredo

    2010-01-01

    The etiology of obesity is multifactorial, involving complex interactions among the genetic makeup, neuroendocrine status, fetal programming, and different unhealthy environmental factors, such as sedentarism or inadequate dietary habits. Among the different mechanisms causing obesity, epigenetics, defined as the study of heritable changes in gene expression that occur without a change in the DNA sequence, has emerged as a very important determinant. Experimental evidence concerning dietary factors influencing obesity development through epigenetic mechanisms has been described. Thus, identification of those individuals who present with changes in DNA methylation profiles, certain histone modifications, or other epigenetically related processes could help to predict their susceptibility to gain or lose weight. Indeed, research concerning epigenetic mechanisms affecting weight homeostasis may play a role in the prevention of excessive fat deposition, the prediction of the most appropriate weight reduction plan, and the implementation of newer therapeutic approaches. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Analysis of the Ambient Particulate Matter-induced Chromosomal Aberrations Using an In Vitro System.

    PubMed

    Miousse, Isabelle R; Koturbash, Igor; Chalbot, Marie-Cécile; Hauer-Jensen, Martin; Kavouras, Ilias; Pathak, Rupak

    2016-12-21

    Exposure to particulate matter (PM) is a major world health concern, which may damage various cellular components, including the nuclear genetic material. To assess the impact of PM on nuclear genetic integrity, structural chromosomal aberrations are scored in the metaphase spreads of mouse RAW264.7 macrophage cells. PM is collected from ambient air with a high volume total suspended particles sampler. The collected material is solubilized and filtered to retain the water-soluble, fine portion. The particles are characterized for chemical composition by nuclear magnetic resonance (NMR) spectroscopy. Different concentrations of particle suspension are added onto an in vitro culture of RAW264.7 mouse macrophages for a total exposure time of 72 hr, along with untreated control cells. At the end of exposure, the culture is treated with colcemid to arrest cells in metaphase. Cells are then harvested, treated with hypotonic solution, fixed in acetomethanol, dropped onto glass slides and finally stained with Giemsa solution. Slides are examined to assess the structural chromosomal aberrations (CAs) in metaphase spreads at 1,000X magnification using a bright-field microscope. 50 to 100 metaphase spread are scored for each treatment group. This technique is adapted for the detection of structural chromosomal aberrations (CAs), such as chromatid-type breaks, chromatid-type exchanges, acentric fragments, dicentric and ring chromosomes, double minutes, endoreduplication, and Robertsonian translocations in vitro after exposure to PM. It is a powerful method to associate a well-established cytogenetic endpoint to epigenetic alterations.

  5. The Epigenetics of Kidney Cancer and Bladder Cancer

    PubMed Central

    Hoffman, Amanda M.; Cairns, Paul

    2012-01-01

    Summary This review focuses on the epigenetic alterations of aberrant promoter hypermethylation of genes, histone modifications or RNA interference in cancer cells. The current knowledge of hypermethylation of allele(s) in classical tumor suppressor genes in inherited and sporadic cancer, candidate tumor suppressor and other cancer genes is summarized gene by gene. Global and array-based studies of tumor cell hypermethylation are discussed. The importance of standardization of scoring of the methylation status of a gene is highlighted. The histone marks associated with hypermethylated genes, and the microRNAs with dysregulated expression, in kidney or bladder tumor cells are also discussed. Kidney cancer has the highest mortality rate of the genitourinary cancers. There are management issues with the high recurrence rate of superficial bladder cancer while muscle invasive bladder cancer has a poor prognosis. These clinical problems are the basis for translational application of gene hypermethylation to the diagnosis and prognosis of kidney and bladder cancer. PMID:22126150

  6. Epigenetic transgenerational inheritance of somatic transcriptomes and epigenetic control regions

    PubMed Central

    2012-01-01

    Background Environmentally induced epigenetic transgenerational inheritance of adult onset disease involves a variety of phenotypic changes, suggesting a general alteration in genome activity. Results Investigation of different tissue transcriptomes in male and female F3 generation vinclozolin versus control lineage rats demonstrated all tissues examined had transgenerational transcriptomes. The microarrays from 11 different tissues were compared with a gene bionetwork analysis. Although each tissue transgenerational transcriptome was unique, common cellular pathways and processes were identified between the tissues. A cluster analysis identified gene modules with coordinated gene expression and each had unique gene networks regulating tissue-specific gene expression and function. A large number of statistically significant over-represented clusters of genes were identified in the genome for both males and females. These gene clusters ranged from 2-5 megabases in size, and a number of them corresponded to the epimutations previously identified in sperm that transmit the epigenetic transgenerational inheritance of disease phenotypes. Conclusions Combined observations demonstrate that all tissues derived from the epigenetically altered germ line develop transgenerational transcriptomes unique to the tissue, but common epigenetic control regions in the genome may coordinately regulate these tissue-specific transcriptomes. This systems biology approach provides insight into the molecular mechanisms involved in the epigenetic transgenerational inheritance of a variety of adult onset disease phenotypes. PMID:23034163

  7. Dnd1-mediated epigenetic control of teratoma formation in mouse

    PubMed Central

    Gu, Wei; Mochizuki, Kentaro; Otsuka, Kei; Hamada, Ryohei; Takehara, Asuka

    2018-01-01

    ABSTRACT Spontaneous testicular teratoma develops from primordial germ cells (PGCs) in embryos; however, the molecular mechanisms underlying teratoma formation are not fully understood. Mutation of the dead-end 1 (Dnd1) gene, which encodes an RNA-binding protein, drastically enhances teratoma formation in the 129/Sv mouse strain. To elucidate the mechanism of Dnd1 mutation-induced teratoma formation, we focused on histone H3 lysine 27 (H3K27) trimethylation (me3), and found that the levels of H3K27me3 and its responsible methyltransferase, enhancer of zeste homolog 2 (Ezh2), were decreased in the teratoma-forming cells of Dnd1 mutant embryos. We also showed that Dnd1 suppressed miR-26a-mediated inhibition of Ezh2 expression, and that Dnd1 deficiency resulted in decreased H3K27me3 of a cell-cycle regulator gene, Ccnd1. In addition, Ezh2 expression or Ccnd1 deficiency repressed the reprogramming of PGCs into pluripotent stem cells, which mimicked the conversion of embryonic germ cells into teratoma-forming cells. These results revealed an epigenetic molecular linkage between Dnd1 and the suppression of testicular teratoma formation. PMID:29378702

  8. Privileged Communication Embryonic Development Following Somatic Cell Nuclear Transfer Impeded by Persisting Histone Methylation

    PubMed Central

    Matoba, Shogo; Liu, Yuting; Lu, Falong; Iwabuchi, Kumiko A.; Shen, Li; Inoue, Azusa; Zhang, Yi

    2014-01-01

    SUMMARY Mammalian oocytes can reprogram somatic cells into a totipotent state enabling animal cloning through somatic cell nuclear transfer (SCNT). However, the majority of SCNT embryos fail to develop to term due to undefined reprogramming defects. Here we identify histone H3 lysine 9 trimethylation (H3K9me3) of donor cell genome as a major epigenetic barrier for efficient reprogramming by SCNT. Comparative transcriptome analysis identified reprogramming resistant regions (RRRs) that are expressed normally at 2-cell mouse embryos generated by IVF but not SCNT. RRRs are enriched for H3K9me3 in donor somatic cells, and its removal by ectopic expression of the H3K9me3 demethylase Kdm4d not only reactivates the majority of RRRs, but also greatly improves SCNT efficiency. Furthermore, use of donor somatic nuclei depleted of H3K9 methyltransferases markedly improves SCNT efficiency. Our study thus identifies H3K9me3 as a critical epigenetic barrier in SCNT-mediated reprogramming and provides a promising approach for improving mammalian cloning efficiency. PMID:25417163

  9. c-MYC independent nuclear reprogramming favors cardiogenic potential of induced pluripotent stem cells

    PubMed Central

    Martinez-Fernandez, Almudena; Nelson, Timothy J.; Ikeda, Yasuhiro; Terzic, Andre

    2010-01-01

    Induced pluripotent stem cell (iPS) technology has launched a new platform in regenerative medicine aimed at deriving unlimited replacement tissue from autologous sources through somatic cell reprogramming using stemness factor sets. In this way, authentic cardiomyocytes have been obtained from iPS and recently demonstrated in proof-of-principle studies to repair infarcted heart. Optimizing the cardiogenic potential of iPS progeny would ensure a maximized yield of bioengineered cardiac tissue. Here, we reprogrammed fibroblasts in the presence or absence of c-MYC to determine if the acquired cardiogenicity is sensitive to the method of nuclear reprogramming. Using lentiviral constructs that expressed stemness factors SOX2, OCT4, and KLF4 with or without c-MYC, iPS clones generated through fibroblast reprogramming demonstrated indistinguishable characteristics for 5 days of differentiation with similar cell morphology, growth rates, and chimeric embryo integration. However, 4-factor c-MYC dependent nuclear reprogramming produced iPS progeny that consistently prolonged the expression of pluripotent Oct-4 and Fgf4 genes and repressed cardiac differentiation. In contrast, 3-factor c-MYC-less iPS clones efficiently up-regulated pre-cardiac (CXCR4, Flk-1, and Mesp1/2) and cardiac (Nkx2.5, Mef2c, and Myocardin) gene expression patterns. In fact, 3-factor iPS progeny demonstrated early and robust cardiogenesis during in vitro differentiation with consistent beating activity, sarcomere maturation, and rhythmical intracellular calcium dynamics. Thus, nuclear reprogramming independent of c-MYC enhances production of pluripotent stem cells with innate cardiogenic potential. PMID:20221419

  10. Epigenetic heterogeneity affects the risk of relapse in children with t(8;21)RUNX1-RUNX1T1-rearranged AML.

    PubMed

    Zampini, Matteo; Tregnago, Claudia; Bisio, Valeria; Simula, Luca; Borella, Giulia; Manara, Elena; Zanon, Carlo; Zonta, Francesca; Serafin, Valentina; Accordi, Benedetta; Campello, Silvia; Buldini, Barbara; Pession, Andrea; Locatelli, Franco; Basso, Giuseppe; Pigazzi, Martina

    2018-05-01

    The somatic translocation t(8;21)(q22;q22)/RUNX1-RUNX1T1 is one of the most frequent rearrangements found in children with standard-risk acute myeloid leukemia (AML). Despite the favorable prognostic role of this aberration, we recently observed a higher than expected frequency of relapse. Here, we employed an integrated high-throughput approach aimed at identifying new biological features predicting relapse among 34 t(8;21)-rearranged patients. We found that the DNA methylation status of patients who suffered from relapse was peculiarly different from that of children maintaining complete remission. The epigenetic signature, made up of 337 differentially methylated regions, was then integrated with gene and protein expression profiles, leading to a network, where cell-to-cell adhesion and cell-motility pathways were found to be aberrantly activated in relapsed patients. We identified most of these factors as RUNX1-RUNX1T1 targets, with Ras Homolog Family Member (RHOB) overexpression being the core of this network. We documented how RHOB re-organized the actin cytoskeleton through its downstream ROCK-LIMK-COFILIN axis: this increases blast adhesion by stress fiber formation, and reduces mitochondrial apoptotic cell death after chemotherapy treatment. Altogether, our data show an epigenetic heterogeneity within t(8;21)-rearranged AML patients at diagnosis able to influence the program of the chimeric transcript, promoting blast re-emergence and progression to relapse.

  11. Regulation of tumour related genes by dynamic epigenetic alteration at enhancer regions in gastric epithelial cells infected by Epstein-Barr virus.

    PubMed

    Okabe, Atsushi; Funata, Sayaka; Matsusaka, Keisuke; Namba, Hiroe; Fukuyo, Masaki; Rahmutulla, Bahityar; Oshima, Motohiko; Iwama, Atsushi; Fukayama, Masashi; Kaneda, Atsushi

    2017-08-11

    Epstein-Barr virus (EBV) infection is associated with tumours such as Burkitt lymphoma, nasopharyngeal carcinoma, and gastric cancer. We previously showed that EBV(+) gastric cancer presents an extremely high-methylation epigenotype and this aberrant DNA methylation causes silencing of multiple tumour suppressor genes. However, the mechanisms that drive EBV infection-mediated tumorigenesis, including other epigenomic alteration, remain unclear. We analysed epigenetic alterations induced by EBV infection especially at enhancer regions, to elucidate their contribution to tumorigenesis. We performed ChIP sequencing on H3K4me3, H3K4me1, H3K27ac, H3K27me3, and H3K9me3 in gastric epithelial cells infected or not with EBV. We showed that repressive marks were redistributed after EBV infection, resulting in aberrant enhancer activation and repression. Enhancer dysfunction led to the activation of pathways related to cancer hallmarks (e.g., resisting cell death, disrupting cellular energetics, inducing invasion, evading growth suppressors, sustaining proliferative signalling, angiogenesis, and tumour-promoting inflammation) and inactivation of tumour suppressive pathways. Deregulation of cancer-related genes in EBV-infected gastric epithelial cells was also observed in clinical EBV(+) gastric cancer specimens. Our analysis showed that epigenetic alteration associated with EBV-infection may contribute to tumorigenesis through enhancer activation and repression.

  12. Human Ocular Epithelial Cells Endogenously Expressing SOX2 and OCT4 Yield High Efficiency of Pluripotency Reprogramming.

    PubMed

    Poon, Ming-Wai; He, Jia; Fang, Xiaowei; Zhang, Zhao; Wang, Weixin; Wang, Junwen; Qiu, Fangfang; Tse, Hung-Fat; Li, Wei; Liu, Zuguo; Lian, Qizhou

    2015-01-01

    A variety of pluripotency reprogramming frequencies from different somatic cells has been observed, indicating cell origin is a critical contributor for efficiency of pluripotency reprogramming. Identifying the cell sources for efficient induced pluripotent stem cells (iPSCs) generation, and defining its advantages or disadvantages on reprogramming, is therefore important. Human ocular tissue-derived conjunctival epithelial cells (OECs) exhibited endogenous expression of reprogramming factors OCT4A (the specific OCT 4 isoform on pluripotency reprogramming) and SOX2. We therefore determined whether OECs could be used for high efficiency of iPSCs generation. We compared the endogenous expression levels of four pluripotency factors and the pluripotency reprograming efficiency of human OECs with that of ocular stromal cells (OSCs). Real-time PCR, microarray analysis, Western blotting and immunostaining assays were employed to compare OECiPSCs with OSCiPSCs on molecular bases of reprogramming efficiency and preferred lineage-differentiation potential. Using the traditional KMOS (KLF4, C-MYC, OCT4 and SOX2) reprogramming protocol, we confirmed that OECs, endogenously expressing reprogramming factors OCT4A and SOX2, yield very high efficiency of iPSCs generation (~1.5%). Furthermore, higher efficiency of retinal pigmented epithelial differentiation (RPE cells) was observed in OECiPSCs compared to OSCiPSCs or skin fibroblast iMR90iPSCs. The findings in this study suggest that conjunctival-derived epithelial (OECs) cells can be easier converted to iPSCs than conjunctival-derived stromal cells (OSCs). This cell type may also have advantages in retinal pigmented epithelial differentiation.

  13. Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes

    PubMed Central

    Zhou, Huanyu; Dickson, Matthew E.; Kim, Min Soo; Bassel-Duby, Rhonda; Olson, Eric N.

    2015-01-01

    Conversion of fibroblasts to functional cardiomyocytes represents a potential approach for restoring cardiac function after myocardial injury, but the technique thus far has been slow and inefficient. To improve the efficiency of reprogramming fibroblasts to cardiac-like myocytes (iCMs) by cardiac transcription factors [Gata4, Hand2, Mef2c, and Tbx5 (GHMT)], we screened 192 protein kinases and discovered that Akt/protein kinase B dramatically accelerates and amplifies this process in three different types of fibroblasts (mouse embryo, adult cardiac, and tail tip). Approximately 50% of reprogrammed mouse embryo fibroblasts displayed spontaneous beating after 3 wk of induction by Akt plus GHMT. Furthermore, addition of Akt1 to GHMT evoked a more mature cardiac phenotype for iCMs, as seen by enhanced polynucleation, cellular hypertrophy, gene expression, and metabolic reprogramming. Insulin-like growth factor 1 (IGF1) and phosphoinositol 3-kinase (PI3K) acted upstream of Akt whereas the mitochondrial target of rapamycin complex 1 (mTORC1) and forkhead box o3 (Foxo3a) acted downstream of Akt to influence fibroblast-to-cardiomyocyte reprogramming. These findings provide insights into the molecular basis of cardiac reprogramming and represent an important step toward further application of this technique. PMID:26354121

  14. Mesenchymal Cell Reprogramming in Experimental MPLW515L Mouse Model of Myelofibrosis.

    PubMed

    Han, Ying; Yue, Lanzhu; Wei, Max; Ren, Xiubao; Shao, Zonghong; Zhang, Ling; Levine, Ross L; Epling-Burnette, Pearlie K

    2017-01-01

    Myelofibrosis is an indicator of poor prognosis in myeloproliferative neoplasms (MPNs), but the precise mechanism(s) contributing to extracellular matrix remodeling and collagen deposition in the bone marrow (BM) niche remains unanswered. In this study, we isolated mesenchymal stromal cells (MSCs) from mice transplanted with wild-type thrombopoietin receptor (MPLWT) and MPLW515L retroviral-transduced bone marrow. Using MSCs derived from MPLW515-transplant recipients, excessive collagen deposition was maintained in the absence of the virus and neoplastic hematopoietic cells suggested that the MSCs were reprogrammed in vivo. TGFβ production by malignant megakaryocytes plays a definitive role promoting myelofibrosis in MPNs. However, TGFβ was equally expressed by MSCs derived from MPLWT and MPLW515L expressing mice and the addition of neutralizing anti-TGFβ antibody only partially reduced collagen secretion in vitro. Interestingly, profibrotic MSCs displayed increased levels of pSmad3 and pSTAT3 suggesting that inflammatory mediators cooperating with the TGFβ-receptor signaling may maintain the aberrant phenotype ex vivo. FGFb is a known suppressor of TGFβ signaling. Reduced collagen deposition by FGFb-treated MSCs derived from MPLW515L mice suggests that the activating pathway is vulnerable to this suppressive mediator. Therefore, our findings have implications for the future investigation of therapies to reverse fibrosis in MPNs.

  15. Mesenchymal Cell Reprogramming in Experimental MPLW515L Mouse Model of Myelofibrosis

    PubMed Central

    Wei, Max; Ren, Xiubao; Shao, Zonghong; Zhang, Ling; Levine, Ross L.; Epling-Burnette, Pearlie K.

    2017-01-01

    Myelofibrosis is an indicator of poor prognosis in myeloproliferative neoplasms (MPNs), but the precise mechanism(s) contributing to extracellular matrix remodeling and collagen deposition in the bone marrow (BM) niche remains unanswered. In this study, we isolated mesenchymal stromal cells (MSCs) from mice transplanted with wild-type thrombopoietin receptor (MPLWT) and MPLW515L retroviral-transduced bone marrow. Using MSCs derived from MPLW515-transplant recipients, excessive collagen deposition was maintained in the absence of the virus and neoplastic hematopoietic cells suggested that the MSCs were reprogrammed in vivo. TGFβ production by malignant megakaryocytes plays a definitive role promoting myelofibrosis in MPNs. However, TGFβ was equally expressed by MSCs derived from MPLWT and MPLW515L expressing mice and the addition of neutralizing anti-TGFβ antibody only partially reduced collagen secretion in vitro. Interestingly, profibrotic MSCs displayed increased levels of pSmad3 and pSTAT3 suggesting that inflammatory mediators cooperating with the TGFβ-receptor signaling may maintain the aberrant phenotype ex vivo. FGFb is a known suppressor of TGFβ signaling. Reduced collagen deposition by FGFb-treated MSCs derived from MPLW515L mice suggests that the activating pathway is vulnerable to this suppressive mediator. Therefore, our findings have implications for the future investigation of therapies to reverse fibrosis in MPNs. PMID:28135282

  16. [Epigenetics in atherosclerosis].

    PubMed

    Guardiola, Montse; Vallvé, Joan C; Zaina, Silvio; Ribalta, Josep

    2016-01-01

    The association studies based on candidate genes carried on for decades have helped in visualizing the influence of the genetic component in complex diseases such as atherosclerosis, also showing the interaction between different genes and environmental factors. Even with all the knowledge accumulated, there is still some way to go to decipher the individual predisposition to disease, and if we consider the great influence that environmental factors play in the development and progression of atherosclerosis, epigenetics is presented as a key element in trying to expand our knowledge on individual predisposition to atherosclerosis and cardiovascular disease. Epigenetics can be described as the discipline that studies the mechanisms of transcriptional regulation, independent of changes in the sequence of DNA, and mostly induced by environmental factors. This review aims to describe what epigenetics is and how epigenetic mechanisms are involved in atherosclerosis. Copyright © 2015 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  17. Epigenetic drug discovery for Alzheimer's disease.

    PubMed

    Cacabelos, Ramón; Torrellas, Clara

    2014-09-01

    It is assumed that epigenetic modifications are reversible and could potentially be targeted by pharmacological and dietary interventions. Epigenetic drugs are gaining particular interest as potential candidates for the treatment of Alzheimer's disease (AD). This article covers relevant information from over 50 different epigenetic drugs including: DNA methyltransferase inhibitors; histone deacetylase inhibitors; histone acetyltransferase modulators; histone methyltransferase inhibitors; histone demethylase inhibitors; non-coding RNAs (microRNAs) and dietary regimes. The authors also review the pharmacoepigenomics and the pharmacogenomics of epigenetic drugs. The readers will gain insight into i) the classification of epigenetic drugs; ii) the mechanisms by which these drugs might be useful in AD; iii) the pharmacological properties of selected epigenetic drugs; iv) pharmacoepigenomics and the influence of epigenetic drugs on genes encoding CYP enzymes, transporters and nuclear receptors; and v) the genes associated with the pharmacogenomics of anti-dementia drugs. Epigenetic drugs reverse epigenetic changes in gene expression and might open future avenues in AD therapeutics. Unfortunately, clinical trials with this category of drugs are lacking in AD. The authors highlight the need for pharmacogenetic and pharmacoepigenetic studies to properly evaluate any efficacy and safety issues.

  18. Reprogrammed mouse astrocytes retain a "memory" of tissue origin and possess more tendencies for neuronal differentiation than reprogrammed mouse embryonic fibroblasts.

    PubMed

    Tian, Changhai; Wang, Yongxiang; Sun, Lijun; Ma, Kangmu; Zheng, Jialin C

    2011-02-01

    Direct reprogramming of a variety of somatic cells with the transcription factors Oct4 (also called Pou5f1), Sox2 with either Klf4 and Myc or Lin28 and Nanog generates the induced pluripotent stem cells (iPSCs) with marker similarity to embryonic stem cells. However, the difference between iPSCs derived from different origins is unclear. In this study, we hypothesized that reprogrammed cells retain a "memory" of their origins and possess additional potential of related tissue differentiation. We reprogrammed primary mouse astrocytes via ectopic retroviral expression of OCT3/4, Sox2, Klf4 and Myc and found the iPSCs from mouse astrocytes expressed stem cell markers and formed teratomas in SCID mice containing derivatives of all three germ layers similar to mouse embryonic stem cells besides semblable morphologies. To test our hypothesis, we compared embryonic bodies (EBs) formation and neuronal differentiation between iPSCs from mouse embryonic fibroblasts (MEFsiPSCs) and iPSCs from mouse astrocytes (mAsiPSCs). We found that mAsiPSCs grew slower and possessed more potential for neuronal differentiation compared to MEFsiPSCs. Our results suggest that mAsiPSCs retain a "memory" of the central nervous system, which confers additional potential upon neuronal differentiation.

  19. Epigenetic regulation in obesity.

    PubMed

    Drummond, Elaine M; Gibney, Eileen R

    2013-07-01

    Research suggests that 65% of variation in obesity is genetic. However, much of the known genetic associations have little known function and their effect size small, thus the gene-environment interaction, including epigenetic influences on gene expression, is suggested to be an important factor in the susceptibilty to obesity. This review will explore the potential of epigenetic markers to influence expression of genes associated with obesity. Epigenetic changes in utero are known to have direct implications on the phenotype of the offspring. More recently work has focused on how such epigenetic changes continue to regulate risk of obesity from infancy through to adulthood. Work has shown that, for example, hypomethylation of the MC4 gene causes an increase in expression, and has a direct impact on appetite and intake, and thus influences risk of obesity. Similar influences are also seen in other aspects of obesity including inflammation and adiposity. Maternal diet during foetal development has many epigenetic implications, which affect the offspring's risk factors for obesity during childhood and adulthood, and even in subsequent generations. Genes associated with risk of obesity, are susceptible to epigenetic mutations, which have subsequent effects on disease mechanisms, such as appetite and impaired glucose and insulin tolerance.

  20. The political implications of epigenetics.

    PubMed

    Robison, Shea K

    2016-01-01

    Epigenetics, which is just beginning to attract public attention and policy discussion, challenges conventional understanding of gene-environment interaction and intergenerational inheritance and perhaps much more besides. Does epigenetics challenge modern political ideologies? I analyzed the narratives of obesity and epigenetics recently published in the more liberal New York Times and the more conservative Wall Street Journal. For the years 2010 through 2014, 50 articles on obesity and 29 articles on epigenetics were identified, and elements in their causal narratives were quantitatively analyzed using a well described narrative policy framework. The narratives on obesity aligned with the two newspapers' reputed ideologies. However, the narratives on epigenetics aligned with neither ideology but freely mixed liberal and conservative elements. This small study may serve as a starting point for broader studies of epigenetics as it comes to affect political ideologies and, in turn, public policies. The narrative mix reported here could yet prove vulnerable to ideological capture, or, more optimistically, could portend the emergence of a "third-way" narrative using epigenetics to question atomistic individualism and allowing for less divisiveness in public-health domains such as obesity.

  1. The danger of epigenetics misconceptions (epigenetics and stuff…).

    PubMed

    Georgel, Philippe T

    2015-12-01

    Within the past two decades, the fields of chromatin structure and function and transcription regulation research started to fuse and overlap, as evidence mounted to support a very strong regulatory role in gene expression that was associated with histone post-translational modifications, DNA methylation, as well as various chromatin-associated proteins (the pillars of the "Epigenetics" building). The fusion and convergence of these complementary fields is now often simply referred to as "Epigenetics". During these same 20 years, numerous new research groups have started to recognize the importance of chromatin composition, conformation, and its plasticity. However, as the field started to grow exponentially, its growth came with the spreading of several important misconceptions, which have unfortunately led to improper or hasty conclusions. The goal of this short "opinion" piece is to attempt to minimize future misinterpretations of experimental results and ensure that the right sets of experiment are used to reach the proper conclusion, at least as far as epigenetic mechanisms are concerned.

  2. Environment, diet and CpG island methylation: epigenetic signals in gastrointestinal neoplasia.

    PubMed

    Johnson, Ian T; Belshaw, Nigel J

    2008-04-01

    The epithelial surfaces of the mammalian alimentary tract are characterised by very high rates of cell proliferation and DNA synthesis, and in humans they are highly susceptible to cancer. The role of somatic mutations as drivers of carcinogenesis in the alimentary tract is well established, but the importance of gene silencing by epigenetic mechanisms is increasingly recognised. Methylation of CpG islands is an important component of the epigenetic code that regulates gene expression during development and normal cellular differentiation, and a number of genes are well known to become abnormally methylated during the development of tumours of the oesophagus, stomach and colorectum. Aberrant patterns of DNA methylation develop as a result of pathological processes such as chronic inflammation, and in response to various dietary factors, including imbalances in the supply of methyl donors, particularly folates, and exposure to DNA methyltransferase inhibitors, which include polyphenols and possibly isothiocyanates from plant foods. However the importance of these environmental interactions in human health and disease remains to be established. Recent moves to modify the exposure of human populations to folate, by mandatory supplementation of cereal foods, emphasise the importance of understanding the susceptibility of the human epigenome to dietary and other environmental effects.

  3. Conference Scene: epigenetics eh! The first formal meeting of the Canadian epigenetics community.

    PubMed

    Underhill, Alan; Hendzel, Michael J

    2011-08-01

    In recognition of Canada's longstanding interest in epigenetics - and a particular linguistic interjection - the inaugural 'Epigenetics, Eh!' conference was held between 4-7 May 2011 in London, Ontario. The meeting struck an excellent balance between Canadian and international leaders in epigenetic research while also providing a venue to showcase up-and-coming talent. Almost without exception, presentations touched on the wide-ranging and severe consequences of epigenetic dysfunction, as well as current and emerging therapeutic opportunities. While gaining a deeper understanding of how DNA and histone modifications, together with multiple classes of ncRNAs, act to functionalize our genome, participants were also provided with a glimpse of the astounding complexity of chromatin structure, challenging existing dogma.

  4. Tracing anti-cancer and cancer-promoting actions of all-trans retinoic acid in breast cancer to a RARα epigenetic mechanism of mammary epithelial cell fate.

    PubMed

    Rossetti, Stefano; Ren, MingQiang; Visconti, Nicolo; Corlazzoli, Francesca; Gagliostro, Vincenzo; Somenzi, Giulia; Yao, Jin; Sun, Yijun; Sacchi, Nicoletta

    2016-12-27

    A hallmark of cancer cells is the ability to evade the growth inhibitory/pro-apoptotic action of physiological all-trans retinoic acid (RA) signal, the bioactive derivative of Vitamin A. However, as we and others reported, RA can also promote cancer cell growth and invasion. Here we show that anticancer and cancer-promoting RA actions in breast cancer have roots in a mechanism of mammary epithelial cell morphogenesis that involves both transcriptional (epigenetic) and non-transcriptional RARα (RARA) functions. We found that the mammary epithelial cell-context specific degree of functionality of the RARA transcriptional (epigenetic) component of this mechanism, by tuning the effects of the non-transcriptional RARA component, determines different cell fate decisions during mammary morphogenesis. Indeed, factors that hamper the RARA epigenetic function make physiological RA drive aberrant morphogenesis via non-transcriptional RARA, thus leading to cell transformation. Remarkably, also the cell context-specific degree of functionality of the RARA epigenetic component retained by breast cancer cells is critical to determine cell fate decisions in response to physiological as well as supraphysiological RA variation. Overall this study supports the proof of principle that the epigenetic functional plasticity of the mammary epithelial cell RARA mechanism, which is essential for normal morphogenetic processes, is necessary to deter breast cancer onset/progression consequent to the insidious action of physiological RA.

  5. Increased reprogramming of human fetal hepatocytes compared with adult hepatocytes in feeder-free conditions.

    PubMed

    Hansel, Marc C; Gramignoli, Roberto; Blake, William; Davila, Julio; Skvorak, Kristen; Dorko, Kenneth; Tahan, Veysel; Lee, Brian R; Tafaleng, Edgar; Guzman-Lepe, Jorge; Soto-Gutierrez, Alejandro; Fox, Ira J; Strom, Stephen C

    2014-01-01

    Hepatocyte transplantation has been used to treat liver disease. The availability of cells for these procedures is quite limited. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) may be a useful source of hepatocytes for basic research and transplantation if efficient and effective differentiation protocols were developed and problems with tumorigenicity could be overcome. Recent evidence suggests that the cell of origin may affect hiPSC differentiation. Thus, hiPSCs generated from hepatocytes may differentiate back to hepatocytes more efficiently than hiPSCs from other cell types. We examined the efficiency of reprogramming adult and fetal human hepatocytes. The present studies report the generation of 40 hiPSC lines from primary human hepatocytes under feeder-free conditions. Of these, 37 hiPSC lines were generated from fetal hepatocytes, 2 hiPSC lines from normal hepatocytes, and 1 hiPSC line from hepatocytes of a patient with Crigler-Najjar syndrome, type 1. All lines were confirmed reprogrammed and expressed markers of pluripotency by gene expression, flow cytometry, immunocytochemistry, and teratoma formation. Fetal hepatocytes were reprogrammed at a frequency over 50-fold higher than adult hepatocytes. Adult hepatocytes were only reprogrammed with six factors, while fetal hepatocytes could be reprogrammed with three (OCT4, SOX2, NANOG) or four factors (OCT4, SOX2, NANOG, LIN28 or OCT4, SOX2, KLF4, C-MYC). The increased reprogramming efficiency of fetal cells was not due to increased transduction efficiency or vector toxicity. These studies confirm that hiPSCs can be generated from adult and fetal hepatocytes including those with genetic diseases. Fetal hepatocytes reprogram much more efficiently than adult hepatocytes, although both could serve as useful sources of hiPSC-derived hepatocytes for basic research or transplantation.

  6. Significance of epigenetics for understanding brain development, brain evolution and behaviour.

    PubMed

    Keverne, E B

    2014-04-04

    Two major environmental developments have occurred in mammalian evolution which have impacted on the genetic and epigenetic regulation of brain development. The first of these was viviparity and development of the placenta which placed a considerable burden of time and energy investment on the matriline, and which resulted in essential hypothalamic modifications. Maternal feeding, maternal care, parturition, milk letdown and the suspension of fertility and sexual behaviour are all determined by the maternal hypothalamus and have evolved to meet foetal needs under the influence of placental hormones. Viviparity itself provided a new environmental variable for selection pressures to operate via the co-existence over three generations of matrilineal genomes (mother, developing offspring and developing oocytes) in one individual. Also of importance for the matriline has been the evolution of epigenetic marks (imprint control regions) which are heritable and undergo reprogramming primarily in the oocyte to regulate imprinted gene expression according to parent of origin. Imprinting of autosomal genes has played a significant role in mammalian evolutionary development, particularly that of the hypothalamus and placenta. Indeed, many imprinted genes that are co-expressed in the placenta and hypothalamus play an important role in the co-adapted functioning of these organs. Thus the action and interaction of two genomes (maternal and foetal) have provided a template for transgenerational selection pressures to operate in shaping the mothering capabilities of each subsequent generation. The advanced aspects of neocortical brain evolution in primates have emancipated much of behaviour from the determining effects of hormonal action. Thus in large brain primates, most of the sexual behaviour is not reproductive hormone dependent and maternal care can and does occur outside the context of pregnancy and parturition. The neocortex has evolved to be adaptable and while the adapted

  7. Epigenetic Determinism in Science and Society.

    PubMed

    Waggoner, Miranda R; Uller, Tobias

    2015-04-03

    The epigenetic "revolution" in science cuts across many disciplines, and it is now one of the fastest growing research areas in biology. Increasingly, claims are made that epigenetics research represents a move away from the genetic determinism that has been prominent both in biological research and in understandings of the impact of biology on society. We discuss to what extent an epigenetic framework actually supports these claims. We show that, in contrast to the received view, epigenetics research is often couched in language as deterministic as genetics research in both science and the popular press. We engage the rapidly emerging conversation about the impact of epigenetics on public discourse and scientific practice, and we contend that the notion of epigenetic determinism - or the belief that epigenetic mechanisms determine the expression of human traits and behaviors - matters for understandings of the influence of biology and society on population health.

  8. Engrampigenetics: Epigenetics of engram memory cells.

    PubMed

    Ripoli, Cristian

    2017-05-15

    For long time, the epidemiology of late-onset sporadic Alzheimer's disease (AD) risk factors has centered on adult life-style. Recent studies have, instead, focused on the role of early life experiences in progression of such disease especially in the context of prenatal and postnatal life. Although no single unfavorable environmental event has been shown to be neither necessary nor sufficient for AD development, it is possible that the sum of several environmentally induced effects, over time, contribute to its pathophysiology through epigenetic mechanisms. Indeed, epigenetic changes are influenced by environmental factors and have been proposed to play a role in multifactorial pathologies such as AD. At the same time, recent findings suggest that epigenetic mechanisms are one method that neurons use to translate transient stimuli into stable memories. Thus, the characteristics of epigenetics being a critical link between the environment and genes and playing a crucial role in memory formation make candidate epigenetic mechanisms a natural substrate for AD research. Indeed, independent groups have reported several epigenetically dysregulated genes in AD models; however, the role of epigenetic mechanisms in AD has remained elusive owing to contradictory results. Here, I propose that restricting the analysis of epigenetic changes specifically to subpopulations of neurons (namely, engram memory cells) might be helpful in understanding the role of the epigenetic process in the memory-related specific epigenetic code and might constitute a new template for therapeutic interventions against AD. Copyright © 2016. Published by Elsevier B.V.

  9. Epigenetic changes in headache.

    PubMed

    Cámara, M S; Martín Bujanda, M; Mendioroz Iriarte, M

    2017-12-23

    Multiple factors, including both genetic and environmental mechanisms, appear to play a role in the aetiology of headache. An interesting area of study is the possible involvement of epigenetic mechanisms in headache development and the transformation to chronic headache, and the potential role of these factors as a therapeutic target. We performed a literature review of the involvement of different epigenetic mechanisms in headache, mainly using the Medline/PubMed database. To this end, we used the following English search terms: headache, migraine, epigenetics, DNA methylation, histones, non-coding RNA, and miRNA. A total of 15 English-language publications related to the above terms were obtained. There is limited but consistent evidence of the relationship between epigenetics and headache; it is therefore essential to continue research of epigenetic changes in headache. This may help to understand the pathophysiology of headache and even to identify candidate biomarkers and new, more effective, therapeutic targets. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Direct In Vivo Reprogramming with Sendai Virus Vectors Improves Cardiac Function after Myocardial Infarction.

    PubMed

    Miyamoto, Kazutaka; Akiyama, Mizuha; Tamura, Fumiya; Isomi, Mari; Yamakawa, Hiroyuki; Sadahiro, Taketaro; Muraoka, Naoto; Kojima, Hidenori; Haginiwa, Sho; Kurotsu, Shota; Tani, Hidenori; Wang, Li; Qian, Li; Inoue, Makoto; Ide, Yoshinori; Kurokawa, Junko; Yamamoto, Tsunehisa; Seki, Tomohisa; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2018-01-04

    Direct cardiac reprogramming holds great promise for regenerative medicine. We previously generated directly reprogrammed induced cardiomyocyte-like cells (iCMs) by overexpression of Gata4, Mef2c, and Tbx5 (GMT) using retrovirus vectors. However, integrating vectors pose risks associated with insertional mutagenesis and disruption of gene expression and are inefficient. Here, we show that Sendai virus (SeV) vectors expressing cardiac reprogramming factors efficiently and rapidly reprogram both mouse and human fibroblasts into integration-free iCMs via robust transgene expression. SeV-GMT generated 100-fold more beating iCMs than retroviral-GMT and shortened the duration to induce beating cells from 30 to 10 days in mouse fibroblasts. In vivo lineage tracing revealed that the gene transfer of SeV-GMT was more efficient than retroviral-GMT in reprogramming resident cardiac fibroblasts into iCMs in mouse infarct hearts. Moreover, SeV-GMT improved cardiac function and reduced fibrosis after myocardial infarction. Thus, efficient, non-integrating SeV vectors may serve as a powerful system for cardiac regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. (Re-)programming of subtype specific cardiomyocytes.

    PubMed

    Hausburg, Frauke; Jung, Julia Jeannine; Hoch, Matti; Wolfien, Markus; Yavari, Arash; Rimmbach, Christian; David, Robert

    2017-10-01

    Adult cardiomyocytes (CMs) possess a highly restricted intrinsic regenerative potential - a major barrier to the effective treatment of a range of chronic degenerative cardiac disorders characterized by cellular loss and/or irreversible dysfunction and which underlies the majority of deaths in developed countries. Both stem cell programming and direct cell reprogramming hold promise as novel, potentially curative approaches to address this therapeutic challenge. The advent of induced pluripotent stem cells (iPSCs) has introduced a second pluripotent stem cell source besides embryonic stem cells (ESCs), enabling even autologous cardiomyocyte production. In addition, the recent achievement of directly reprogramming somatic cells into cardiomyocytes is likely to become of great importance. In either case, different clinical scenarios will require the generation of highly pure, specific cardiac cellular-subtypes. In this review, we discuss these themes as related to the cardiovascular stem cell and programming field, including a focus on the emergent topic of pacemaker cell generation for the development of biological pacemakers and in vitro drug testing. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The Role of Sulforaphane in Epigenetic Mechanisms, Including Interdependence between Histone Modification and DNA Methylation

    PubMed Central

    Kaufman-Szymczyk, Agnieszka; Majewski, Grzegorz; Lubecka-Pietruszewska, Katarzyna; Fabianowska-Majewska, Krystyna

    2015-01-01

    Carcinogenesis as well as cancer progression result from genetic and epigenetic changes of the genome that leads to dysregulation of transcriptional activity of genes. Epigenetic mechanisms in cancer cells comprise (i) post-translation histone modification (i.e., deacetylation and methylation); (ii) DNA global hypomethylation; (iii) promoter hypermethylation of tumour suppressor genes and genes important for cell cycle regulation, cell differentiation and apoptosis; and (iv) posttranscriptional regulation of gene expression by noncoding microRNA. These epigenetic aberrations can be readily reversible and responsive to both synthetic agents and natural components of diet. A source of one of such diet components are cruciferous vegetables, which contain high levels of a number of glucosinolates and deliver, after enzymatic hydrolysis, sulforaphane and other bioactive isothiocyanates, that are involved in effective up-regulation of transcriptional activity of certain genes and also in restoration of active chromatin structure. Thus a consumption of cruciferous vegetables, treated as a source of isothiocyanates, seems to be potentially useful as an effective cancer preventive factor or as a source of nutrients improving efficacy of standard chemotherapies. In this review an attempt is made to elucidate the role of sulforaphane in regulation of gene promoter activity through a direct down-regulation of histone deacetylase activity and alteration of gene promoter methylation in indirect ways, but the sulforaphane influence on non-coding micro-RNA will not be a subject of this review. PMID:26703571

  13. Epigenetic Determinism in Science and Society

    PubMed Central

    Waggoner, Miranda R.; Uller, Tobias

    2015-01-01

    The epigenetic “revolution” in science cuts across many disciplines, and it is now one of the fastest growing research areas in biology. Increasingly, claims are made that epigenetics research represents a move away from the genetic determinism that has been prominent both in biological research and in understandings of the impact of biology on society. We discuss to what extent an epigenetic framework actually supports these claims. We show that, in contrast to the received view, epigenetics research is often couched in language as deterministic as genetics research in both science and the popular press. We engage the rapidly emerging conversation about the impact of epigenetics on public discourse and scientific practice, and we contend that the notion of epigenetic determinism – or the belief that epigenetic mechanisms determine the expression of human traits and behaviors – matters for understandings of the influence of biology and society on population health. PMID:26217167

  14. Transdifferentiation and reprogramming: Overview of the processes, their similarities and differences.

    PubMed

    Cieślar-Pobuda, Artur; Knoflach, Viktoria; Ringh, Mikael V; Stark, Joachim; Likus, Wirginia; Siemianowicz, Krzysztof; Ghavami, Saeid; Hudecki, Andrzej; Green, Jason L; Łos, Marek J

    2017-07-01

    Reprogramming, or generation of induced pluripotent stem (iPS) cells (functionally similar to embryonic stem cells or ES cells) by the use of transcription factors (typically: Oct3/4, Sox2, c-Myc, Klf4) called "Yamanaka factors" (OSKM), has revolutionized regenerative medicine. However, factors used to induce stemness are also overexpressed in cancer. Both, ES cells and iPS cells cause teratoma formation when injected to tissues. This raises a safety concern for therapies based on iPS derivates. Transdifferentiation (lineage reprogramming, or -conversion), is a process in which one mature, specialized cell type changes into another without entering a pluripotent state. This process involves an ectopic expression of transcription factors and/or other stimuli. Unlike in the case of reprogramming, tissues obtained by this method do not carry the risk of subsequent teratomagenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. [Epigenetics of schizophrenia: a review].

    PubMed

    Rivollier, F; Lotersztajn, L; Chaumette, B; Krebs, M-O; Kebir, O

    2014-10-01

    Schizophrenia is a frequent and disabling disease associated with heterogeneous psychiatric phenotypes. It emerges during childhood, adolescence or young adulthood and has dramatic consequences for the affected individuals, causing considerable familial and social burden, as well as increasing health expenses. Although some progress has been made in the understanding of their physiopathology, many questions remain unsolved, and the disease is still poorly understood. The prevailing hypothesis regarding psychotic disorders proposes that a combination of genetic and/or environmental factors, during critical periods of brain development increases the risk for these illnesses. Epigenetic regulations, such as DNA methylation, can mediate gene x environment interactions at the level of the genome and may provide a potential substrate to explain the variability in symptom severity and family heritability. Initially, epigenetics was used to design mitotic and meiotic changes in gene transcription that could not be attributed to genetic mutations. It referred later to changes in the epigenome not transmitted through the germline. Thus, epigenetics refers to a wide range of molecular mechanisms including DNA methylation of cytosine residues in CpG dinucleotides and post-translational histone modifications. These mechanisms alter the way the transcriptional factors bind the DNA, modulating its expression. Prenatal and postnatal environmental factors may affect these epigenetics factors, having responsability in long-term DNA transcription, and influencing the development of psychiatric disorders. The object of this review is to present the state of knowledge in epigenetics of schizophrenia, outlining the most recent findings in the matter. We did so using Pubmed, researching words such as 'epigenetics', 'epigenetic', 'schizophrenia', 'psychosis', 'psychiatric'. This review summarizes evidences mostly for two epigenetic mechanisms: DNA methylation and post

  16. Cellular reprogramming through mitogen-activated protein kinases.

    PubMed

    Lee, Justin; Eschen-Lippold, Lennart; Lassowskat, Ines; Böttcher, Christoph; Scheel, Dierk

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554) in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins) as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression-including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding, and degradation) steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes.

  17. Epigenetics and lifestyle

    PubMed Central

    Alegría-Torres, Jorge Alejandro; Baccarelli, Andrea; Bollati, Valentina

    2013-01-01

    The concept of “lifestyle” includes different factors such as nutrition, behavior, stress, physical activity, working habits, smoking and alcohol consumption. Increasing evidence shows that environmental and lifestyle factors may influence epigenetic mechanisms, such as DNA methylation, histone acetylation and microRNA expression. Several lifestyle factors have been identified that might modify epigenetic patterns, such as diet, obesity, physical activity, tobacco smoking, alcohol consumption, environmental pollutants, psychological stress, and working on night shifts. Most studies conducted so far have been centered on DNA methylation, whereas only a few investigations have studied lifestyle factors in relation to histone modifications and miRNAs. Here, we review current evidence indicating that lifestyle factors might affect human health via epigenetic mechanisms. PMID:22122337

  18. Epigenetics and lifestyle.

    PubMed

    Alegría-Torres, Jorge Alejandro; Baccarelli, Andrea; Bollati, Valentina

    2011-06-01

    The concept of 'lifestyle' includes different factors such as nutrition, behavior, stress, physical activity, working habits, smoking and alcohol consumption. Increasing evidence shows that environmental and lifestyle factors may influence epigenetic mechanisms, such as DNA methylation, histone acetylation and miRNA expression. It has been identified that several lifestyle factors such as diet, obesity, physical activity, tobacco smoking, alcohol consumption, environmental pollutants, psychological stress and working on night shifts might modify epigenetic patterns. Most of the studies conducted so far have been centered on DNA methylation, whereas only a few investigations have studied lifestyle factors in relation to histone modifications and miRNAs. This article reviews current evidence indicating that lifestyle factors might affect human health via epigenetic mechanisms.

  19. SCL, LMO1 and Notch1 Reprogram Thymocytes into Self-Renewing Cells

    PubMed Central

    Rojas-Sutterlin, Shanti; Herblot, Sabine; Hébert, Josée; Sauvageau, Guy; Lemieux, Sébastien; Lécuyer, Eric; Veiga, Diogo F. T.; Hoang, Trang

    2014-01-01

    The molecular determinants that render specific populations of normal cells susceptible to oncogenic reprogramming into self-renewing cancer stem cells are poorly understood. Here, we exploit T-cell acute lymphoblastic leukemia (T-ALL) as a model to define the critical initiating events in this disease. First, thymocytes that are reprogrammed by the SCL and LMO1 oncogenic transcription factors into self-renewing pre-leukemic stem cells (pre-LSCs) remain non-malignant, as evidenced by their capacities to generate functional T cells. Second, we provide strong genetic evidence that SCL directly interacts with LMO1 to activate the transcription of a self-renewal program coordinated by LYL1. Moreover, LYL1 can substitute for SCL to reprogram thymocytes in concert with LMO1. In contrast, inhibition of E2A was not sufficient to substitute for SCL, indicating that thymocyte reprogramming requires transcription activation by SCL-LMO1. Third, only a specific subset of normal thymic cells, known as DN3 thymocytes, is susceptible to reprogramming. This is because physiological NOTCH1 signals are highest in DN3 cells compared to other thymocyte subsets. Consistent with this, overexpression of a ligand-independent hyperactive NOTCH1 allele in all immature thymocytes is sufficient to sensitize them to SCL-LMO1, thereby increasing the pool of self-renewing cells. Surprisingly, hyperactive NOTCH1 cannot reprogram thymocytes on its own, despite the fact that NOTCH1 is activated by gain of function mutations in more than 55% of T-ALL cases. Rather, elevating NOTCH1 triggers a parallel pathway involving Hes1 and Myc that dramatically enhances the activity of SCL-LMO1 We conclude that the acquisition of self-renewal and the genesis of pre-LSCs from thymocytes with a finite lifespan represent a critical first event in T-ALL. Finally, LYL1 and LMO1 or LMO2 are co-expressed in most human T-ALL samples, except the cortical T subtype. We therefore anticipate that the self-renewal network

  20. Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, Taisuke; Nagamatsu, Go, E-mail: gonag@sc.itc.keio.ac.jp; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012

    2011-04-08

    Highlights: {yields} iPS cells were induced with a fluorescence monitoring system. {yields} ATM-deficient tail-tip fibroblasts exhibited quite a low reprogramming efficiency. {yields} iPS cells obtained from ATM-deficient cells had pluripotent cell characteristics. {yields} ATM-deficient iPS cells had abnormal chromosomes, which were accumulated in culture. -- Abstract: During cell division, one of the major features of somatic cell reprogramming by defined factors, cells are potentially exposed to DNA damage. Inactivation of the tumor suppressor gene p53 raised reprogramming efficiency but resulted in an increased number of abnormal chromosomes in established iPS cells. Ataxia-telangiectasia mutated (ATM), which is critical in the cellularmore » response to DNA double-strand breaks, may also play an important role during reprogramming. To clarify the function of ATM in somatic cell reprogramming, we investigated reprogramming in ATM-deficient (ATM-KO) tail-tip fibroblasts (TTFs). Although reprogramming efficiency was greatly reduced in ATM-KO TTFs, ATM-KO iPS cells were successfully generated and showed the same proliferation activity as WT iPS cells. ATM-KO iPS cells had a gene expression profile similar to ES cells and WT iPS cells, and had the capacity to differentiate into all three germ layers. On the other hand, ATM-KO iPS cells accumulated abnormal genome structures upon continuous passages. Even with the abnormal karyotype, ATM-KO iPS cells retained pluripotent cell characteristics for at least 20 passages. These data indicate that ATM does participate in the reprogramming process, although its role is not essential.« less