Science.gov

Sample records for aberrant gene expression

  1. Aberrant Gene Expression in Humans

    PubMed Central

    Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L.; Cai, James J.

    2015-01-01

    Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating complex traits and conditions. PMID:25617623

  2. Aberrant gene expression in humans.

    PubMed

    Zeng, Yong; Wang, Gang; Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L; Cai, James J

    2015-01-01

    Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating complex traits and conditions. PMID:25617623

  3. Gene expression analysis of aberrant signaling pathways in meningiomas

    PubMed Central

    TORRES-MARTÍN, MIGUEL; MARTINEZ-GLEZ, VICTOR; PEÑA-GRANERO, CAROLINA; ISLA, ALBERTO; LASSALETTA, LUIS; DE CAMPOS, JOSE M.; PINTO, GIOVANNY R.; BURBANO, ROMMEL R.; MELÉNDEZ, BÁRBARA; CASTRESANA, JAVIER S.; REY, JUAN A.

    2013-01-01

    Examining aberrant pathway alterations is one method for understanding the abnormal signals that are involved in tumorigenesis and tumor progression. In the present study, expression arrays were performed on tumor-related genes in meningiomas. The GE Array Q Series HS-006 was used to determine the expression levels of 96 genes that corresponded to six primary biological regulatory pathways in a series of 42 meningiomas, including 32 grade I, four recurrent grade I and six grade II tumors, in addition to three normal tissue controls. Results showed that 25 genes that were primarily associated with apoptosis and angiogenesis functions were downregulated and 13 genes frequently involving DNA damage repair functions were upregulated. In addition to the inactivation of the neurofibromin gene, NF2, which is considered to be an early step in tumorigenesis, variations of other biological regulatory pathways may play a significant role in the development of meningioma. PMID:23946817

  4. Aberrant expression of homeobox gene SIX1 in Hodgkin lymphoma

    PubMed Central

    Nagel, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A.F.

    2015-01-01

    In Hodgkin lymphoma (HL) we recently identified deregulated expression of homeobox genes MSX1 and OTX2 which are physiologically involved in development of the embryonal neural plate border region. Here, we examined in HL homeobox gene SIX1 an additional regulator of this embryonal region mediating differentiation of placodal precursors. SIX1 was aberrantly activated in 12 % of HL patient samples in silico, indicating a pathological role in a subset of this B-cell malignancy. In addition, SIX1 expression was detected in HL cell lines which were used as models to reveal upstream factors and target genes of this basic developmental regulator. We detected increased copy numbers of the SIX1 locus at chromosome 14q23 correlating with enhanced expression while chromosomal translocations were absent. Moreover, comparative expression profiling data and pertinent gene modulation experiments indicated that the WNT-signalling pathway and transcription factor MEF2C regulate SIX1 expression. Genes encoding the transcription factors GATA2, GATA3, MSX1 and SPIB – all basic lymphoid regulators - were identified as targets of SIX1 in HL. In addition, cofactors EYA1 and TLE4, respectively, contrastingly mediated activation and suppression of SIX1 target gene expression. Thus, the protein domain interfaces may represent therapeutic targets in SIX1-positive HL subsets. Collectively, our data reveal a gene regulatory network with SIX1 centrally deregulating lymphoid differentiation and support concordance of lymphopoiesis/lymphomagenesis and developmental processes in the neural plate border region. PMID:26473286

  5. Aberrant expression of homeobox gene SIX1 in Hodgkin lymphoma.

    PubMed

    Nagel, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G; MacLeod, Roderick A F

    2015-11-24

    In Hodgkin lymphoma (HL) we recently identified deregulated expression of homeobox genes MSX1 and OTX2 which are physiologically involved in development of the embryonal neural plate border region. Here, we examined in HL homeobox gene SIX1 an additional regulator of this embryonal region mediating differentiation of placodal precursors. SIX1 was aberrantly activated in 12 % of HL patient samples in silico, indicating a pathological role in a subset of this B-cell malignancy. In addition, SIX1 expression was detected in HL cell lines which were used as models to reveal upstream factors and target genes of this basic developmental regulator. We detected increased copy numbers of the SIX1 locus at chromosome 14q23 correlating with enhanced expression while chromosomal translocations were absent. Moreover, comparative expression profiling data and pertinent gene modulation experiments indicated that the WNT-signalling pathway and transcription factor MEF2C regulate SIX1 expression. Genes encoding the transcription factors GATA2, GATA3, MSX1 and SPIB - all basic lymphoid regulators - were identified as targets of SIX1 in HL. In addition, cofactors EYA1 and TLE4, respectively, contrastingly mediated activation and suppression of SIX1 target gene expression. Thus, the protein domain interfaces may represent therapeutic targets in SIX1-positive HL subsets. Collectively, our data reveal a gene regulatory network with SIX1 centrally deregulating lymphoid differentiation and support concordance of lymphopoiesis/lymphomagenesis and developmental processes in the neural plate border region. PMID:26473286

  6. Alzheimer's disease shares gene expression aberrations with purinergic dysregulation of HPRT deficiency (Lesch-Nyhan disease).

    PubMed

    Kang, Tae Hyuk; Friedmann, Theodore

    2015-03-17

    Transcriptomic studies of murine D3 embryonic stem (ES) cells deficient in the purinergic biosynthetic function hypoxanthine guanine phosphoribosyltransferase (HPRT) and undergoing dopaminergic neuronal differentiation has demonstrated a marked shift from neuronal to glial gene expression and aberrant expression of multiple genes also known to be aberrantly expressed in Alzheimer's and other CNS disorders. Such genetic dysregulations may indicate some shared pathogenic metabolic mechanisms in diverse CNS diseases. PMID:25636690

  7. Chromosomal aberrations and gene expression profiles in non-small cell lung cancer.

    PubMed

    Dehan, E; Ben-Dor, A; Liao, W; Lipson, D; Frimer, H; Rienstein, S; Simansky, D; Krupsky, M; Yaron, P; Friedman, E; Rechavi, G; Perlman, M; Aviram-Goldring, A; Izraeli, S; Bittner, M; Yakhini, Z; Kaminski, N

    2007-05-01

    Alterations in genomic content and changes in gene expression levels are central characteristics of tumors and pivotal to the tumorigenic process. We analyzed 23 non-small cell lung cancer (NSCLC) tumors by array comparative genomic hybridization (array CGH). Aberrant regions identified included well-characterized chromosomal aberrations such as amplifications of 3q and 8q and deletions of 3p21.31. Less frequently identified aberrations such as amplifications of 7q22.3-31.31 and 12p11.23-13.2, and previously unidentified aberrations such as deletion of 11q12.3-13.3 were also detected. To enhance our ability to identify key acting genes residing in these regions, we combined array CGH results with gene expression profiling performed on the same tumor samples. We identified a set of genes with concordant changes in DNA copy number and expression levels, i.e. overexpressed genes located in amplified regions and underexpressed genes located in deleted regions. This set included members of the Wnt/beta-catenin pathway, genes involved in DNA replication, and matrix metalloproteases (MMPs). Functional enrichment analysis of the genes both overexpressed and amplified revealed a significant enrichment for DNA replication and repair, and extracellular matrix component gene ontology annotations. We verified the changes in expressions of MCM2, MCM6, RUVBL1, MMP1, MMP12 by real-time quantitative PCR. Our results provide a high resolution map of copy number changes in non-small cell lung cancer. The joint analysis of array CGH and gene expression analysis highlights genes with concordant changes in expression and copy number that may be critical to lung cancer development and progression. PMID:17258348

  8. Integrated analysis of gene expression and genomic aberration data in osteosarcoma (OS).

    PubMed

    Xiong, Y; Wu, S; Du, Q; Wang, A; Wang, Z

    2015-11-01

    Cytogenetic analyses have revealed that complex karyotypes with numerous and highly variable genomic aberrations including single-nucleotide polymorphisms (SNPs) and copy number variants (CNVs), are observed in most of the conventional osteosarcomas (OSs). Several genome-wide studies have reported that the dysregulated expression of many genes is correlated with genomic aberrations in OS. We first compared OS gene expression in Gene Expression Omnibus (GEO) data sets and genomic aberrations in International Cancer Genome Consortium (ICGC) database to identify differentially expressed genes (DEGs) associated with SNPs or CNVs in OS. Then the function annotation of SNP- or CNV-associated DEGs was performed in terms of gene ontology analysis, pathway analysis and protein-protein interactions (PPIs). Finally, the expression of genes correlated with both SNPs and CNVs were confirmed by quantitative reverse-transcription PCR. Eight publicly available GEO data sets were obtained, and a set of 979 DEGs were identified (472 upregulated and 507 downregulated DEGs). Moreover, we obtained 1039 SNPs mapped in 938 genes, and 583 CNV sites mapped in 2915 genes. Comparing genomic aberrations and DGEs, we found 41 SNP-associated DEGs and 124 CNV-associated DEGs, in which 7 DGEs were associated with both SNPs and CNVs, including WWP1, EXT1, LDHB, C8orf59, PLEKHA5, CCT3 and VWF. The result of function annotation showed that ossification, bone development and skeletal system development were the significantly enriched terms of biological processes for DEGs. PPI network analysis showed that CCT3, COPS3 and WWP1 were the significant hub proteins. We conclude that these genes, including CCT3, COPS3 and WWP1 are candidate driver genes of importance in OS tumorigenesis. PMID:26427513

  9. Aberrant DNA methylation impacts gene expression and prognosis in breast cancer subtypes.

    PubMed

    Győrffy, Balázs; Bottai, Giulia; Fleischer, Thomas; Munkácsy, Gyöngyi; Budczies, Jan; Paladini, Laura; Børresen-Dale, Anne-Lise; Kristensen, Vessela N; Santarpia, Libero

    2016-01-01

    DNA methylation has a substantial impact on gene expression, affecting the prognosis of breast cancer (BC) patients dependent on molecular subtypes. In this study, we investigated the prognostic relevance of the expression of genes reported as aberrantly methylated, and the link between gene expression and DNA methylation in BC subtypes. The prognostic value of the expression of 144 aberrantly methylated genes was evaluated in ER+/HER2-, HER2+, and ER-/HER2- molecular BC subtypes, in a meta-analysis of two large transcriptomic cohorts of BC patients (n = 1,938 and n = 1,640). The correlation between gene expression and DNA methylation in distinct gene regions was also investigated in an independent dataset of 104 BCs. Survival and Pearson correlation analyses were computed for each gene separately. The expression of 48 genes was significantly associated with BC prognosis (p < 0.05), and 32 of these prognostic genes exhibited a direct expression-methylation correlation. The expression of several immune-related genes, including CD3D and HLA-A, was associated with both relapse-free survival (HR = 0.42, p = 3.5E-06; HR = 0.35, p = 1.7E-08) and overall survival (HR = 0.50, p = 5.5E-04; HR = 0.68, p = 4.5E-02) in ER-/HER2- BCs. On the overall, the distribution of both positive and negative expression-methylation correlation in distinct gene regions have different effects on gene expression and prognosis in BC subtypes. This large-scale meta-analysis allowed the identification of several genes consistently associated with prognosis, whose DNA methylation could represent a promising biomarker for prognostication and clinical stratification of patients with distinct BC subtypes. PMID:26174627

  10. From DNA Copy Number to Gene Expression: Local aberrations, Trisomies and Monosomies

    NASA Astrophysics Data System (ADS)

    Shay, Tal

    The goal of my PhD research was to study the effect of DNA copy number changes on gene expression. DNA copy number aberrations may be local, encompassing several genes, or on the level of an entire chromosome, such as trisomy and monosomy. The main dataset I studied was of Glioblastoma, obtained in the framework of a collaboration, but I worked also with public datasets of cancer and Down's Syndrome. The molecular basis of expression changes in Glioblastoma. Glioblastoma is the most common and aggressive type of primary brain tumors in adults. In collaboration with Prof. Hegi (CHUV, Switzerland), we analyzed a rich Glioblastoma dataset including clinical information, DNA copy number (array CGH) and expression profiles. We explored the correlation between DNA copy number and gene expression at the level of chromosomal arms and local genomic aberrations. We detected known amplification and over expression of oncogenes, as well as deletion and down-regulation of tumor suppressor genes. We exploited that information to map alterations of pathways that are known to be disrupted in Glioblastoma, and tried to characterize samples that have no known alteration in any of the studied pathways. Identifying local DNA aberrations of biological significance. Many types of tumors exhibit chromosomal losses or gains and local amplifications and deletions. A region that is aberrant in many tumors, or whose copy number change is stronger, is more likely to be clinically relevant, and not just a by-product of genetic instability. We developed a novel method that defines and prioritizes aberrations by formalizing these intuitions. The method scores each aberration by the fraction of patients harboring it, its length and its amplitude, and assesses the significance of the score by comparing it to a null distribution obtained by permutations. This approach detects genetic locations that are significantly aberrant, generating a 'genomic aberration profile' for each sample. The 'genomic aberration profile' is then combined with chromosomal arm status (gain/loss) to define a succinct genomic signature for each tumor. Unsupervised clustering of the samples based on these genomic signatures can reveal novel tumor subtypes. This approach was applied to datasets from three types of brain tumors: Glioblastoma, Medulloblastoma and Neuroblastoma, and identified a new subtype in Medulloblastoma, characterized by many chromosomal aberrations. Elucidating the transcriptional effect of monosomy and trisomy. Trisomy and monosomy are expected to impact the expression of genes that are located on the affected chromosome. Analysis of several cancer datasets revealed that not all the genes on the aberrant chromosome are affected by the change of copy number. Affected genes exhibit a wide range of expression changes with varying penetrance. Specifically, (1) The effect of trisomy is much more conserved among individuals than the effect of monosomy and (2) the expression level of a gene in the diploid is significantly correlated with the level of change between the diploid and the trisomy or monosomy.

  11. Implication of IRF4 Aberrant Gene Expression in the Acute Leukemias of Childhood

    PubMed Central

    Adamaki, Maria; Lambrou, George I.; Athanasiadou, Anastasia; Tzanoudaki, Marianna; Vlahopoulos, Spiros; Moschovi, Maria

    2013-01-01

    The most frequent targets of genetic alterations in human leukemias are transcription factor genes with essential functions in normal blood cell development. The Interferon Regulatory Factor 4 (IRF4) gene encodes a transcription factor important for key developmental stages of hematopoiesis, with known oncogenic implications in multiple myeloma, adult leukemias and lymphomas. Very few studies have reported an association of IRF4 with childhood malignancy, whereas high transcript levels have been observed in the more mature immunophenotype of ALL. Our aim was to investigate the expression levels of IRF4 in the diagnostic samples of pediatric leukemias and compare them to those of healthy controls, in order to determine aberrant gene expression and whether it extends to leukemic subtypes other than the relatively mature ALL subpopulation. Quantitative real-time RT-PCR methodology was used to investigate IRF4 expression in 58 children with acute leukemias, 4 leukemic cell lines and 20 healthy children. We show that aberrant IRF4 gene expression is implicated in a variety of leukemic subtypes; higher transcript levels appear in the more immature B-common ALL subtype and in T-cell than in B-cell leukemias, with the highest expression levels appearing in the AML group. Interestingly, we show that childhood leukemia, irrespective of subtype or cell maturation stage, is characterised by a minimum of approximately twice the amount of IRF4 gene expression encountered in healthy children. A statistically significant correlation also appeared to exist between high IRF4 expression and relapse. Our results show that ectopic expression of IRF4 follows the reverse expression pattern of what is encountered in normal B-cell development and that there might be a dose-dependency of childhood leukemia for aberrantly expressed IRF4, a characteristic that could be explored therapeutically. It is also suggested that high IRF4 expression might be used as an additional prognostic marker of relapse at diagnosis. PMID:23977280

  12. Aberrantly Expressed OTX Homeobox Genes Deregulate B-Cell Differentiation in Hodgkin Lymphoma

    PubMed Central

    Nagel, Stefan; Ehrentraut, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A. F.

    2015-01-01

    In Hodgkin lymphoma (HL) we recently reported that deregulated homeobox gene MSX1 mediates repression of the B-cell specific transcription factor ZHX2. In this study we investigated regulation of MSX1 in this B-cell malignancy. Accordingly, we analyzed expression and function of OTX homeobox genes which activate MSX1 transcription during embryonal development in the neural plate border region. Our data demonstrate that OTX1 and OTX2 are aberrantly expressed in both HL patients and cell lines. Moreover, both OTX loci are targeted by genomic gains in overexpressing cell lines. Comparative expression profiling and subsequent pathway modulations in HL cell lines indicated that aberrantly enhanced FGF2-signalling activates the expression of OTX2. Downstream analyses of OTX2 demonstrated transcriptional activation of genes encoding transcription factors MSX1, FOXC1 and ZHX1. Interestingly, examination of the physiological expression profile of ZHX1 in normal hematopoietic cells revealed elevated levels in T-cells and reduced expression in B-cells, indicating a discriminatory role in lymphopoiesis. Furthermore, two OTX-negative HL cell lines overexpressed ZHX1 in correlation with genomic amplification of its locus at chromosomal band 8q24, supporting the oncogenic potential of this gene in HL. Taken together, our data demonstrate that deregulated homeobox genes MSX1 and OTX2 respectively impact transcriptional inhibition of (B-cell specific) ZHX2 and activation of (T-cell specific) ZHX1. Thus, we show how reactivation of a specific embryonal gene regulatory network promotes disturbed B-cell differentiation in HL. PMID:26406991

  13. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes.

    PubMed

    Sveen, A; Kilpinen, S; Ruusulehto, A; Lothe, R A; Skotheim, R I

    2016-05-12

    Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations. PMID:26300000

  14. Redox-sensitive gene-regulatory events controlling aberrant matrix metalloproteinase-1 expression.

    PubMed

    Bartling, Toni R; Subbaram, Sita; Clark, Ryan R; Chandrasekaran, Akshaya; Kar, Supriya; Melendez, J Andres

    2014-09-01

    Aberrant matrix metalloproteinase-1 (MMP-1) expression contributes to the pathogenesis of many degenerative disease processes that are associated with increased oxidative damage or stress. We and others have established that shifts in steady-state H2O2 production resulting from enforced antioxidant gene expression, senescence, or UV irradiation control MMP-1 expression. Here we establish that histone deacetylase-2 (HDAC2) protein levels and its occupancy of the MMP-1 promoter are decreased in response to enforced manganese superoxide dismutase (Sod2) expression. Inhibition of HDAC activity further accentuates the redox-dependent expression of MMP-1. Sod2-dependent decreases in HDAC2 are associated with increases in a proteasome-sensitive pool of ubiquitinylated HDAC2 and MMP-1-specific histone H3 acetylation. Sod2 overexpression also enhanced recruitment of Ets-1, c-Jun, c-Fos, and the histone acetyltransferase PCAF to the distal and proximal regions of the MMP-1 promoter. Furthermore, the Sod2-dependent expression of MMP-1 can be reversed by silencing the transcriptional activator c-Jun. All of the above Sod2-dependent alterations are largely reversed by catalase coexpression, indicating that the redox control of MMP-1 is H2O2-dependent. These findings identify a novel redox regulation of MMP-1 transcription that involves site-specific promoter recruitment of both activating factors and chromatin-modifying enzymes, which converge to maximally drive MMP-1 gene expression. PMID:24973648

  15. Identification of Aberrant Chromosomal Regions in Human Breast Cancer Using Gene Expression Data and Related Gene Information

    PubMed Central

    Wang, Hong-Jiu; Zhou, Meng; Jia, Li; Sun, Jie; Shi, Hong-Bo; Liu, Shu-Lin; Wang, Zhen-Zhen

    2015-01-01

    Background Chromosomal instability is a hallmark of cancer. Chromosomal imbalances, like amplifications and deletions, influence the transcriptional activity of genes. These imbalances affect not only the expression of genes in the aberrant chromosomal regions, but also that of related genes, and may be relevant to the cancer status. Material/Methods Here, we used the 7 publicly available microarray studies in breast cancer tissues and propose a general and unsupervised method by using the gene expression data and related gene information to systematically identify aberrant chromosomal regions. This method aimed to identify the chromosomal regions where the genes and their related genes both show consistent changes in the expression levels. Such patterns have been reported to be associated with the chromosomal aberrations and may be used in cancer diagnosis. Results We compared 488 tumor and 222 normal samples from 7 microarray-based human breast cancer studies and detected the amplifications of 8q11.21, 14q32.11, 4q21.23, 18q11.2, Xq28, and the deletions of 3p24.1, 10q23.2 (BSCG1), 20p11.21, 9q21.13, and 1q41, which may be involved in the novel mechanisms of tumorigenesis. In addition, several known pathogenic genes, transcription factors (TFs), and microRNAs (miRNAs) associated with breast cancer were found. Conclusions This approach can be applied to other microarray studies, which provide a new and useful method for exploring chromosome structural variations in different types of diseases. PMID:26319982

  16. Regulation of MYC gene expression by aberrant Wnt/β-catenin signaling in colorectal cancer

    PubMed Central

    Rennoll, Sherri; Yochum, Gregory

    2015-01-01

    The Wnt/β-catenin signaling pathway controls intestinal homeostasis and mutations in components of this pathway are prevalent in human colorectal cancers (CRCs). These mutations lead to inappropriate expression of genes controlled by Wnt responsive DNA elements (WREs). T-cell factor/Lymphoid enhancer factor transcription factors bind WREs and recruit the β-catenin transcriptional co-activator to activate target gene expression. Deregulated expression of the c-MYC proto-oncogene (MYC) by aberrant Wnt/β-catenin signaling drives colorectal carcinogenesis. In this review, we discuss the current literature pertaining to the identification and characterization of WREs that control oncogenic MYC expression in CRCs. A common theme has emerged whereby these WREs often map distally to the MYC genomic locus and control MYC gene expression through long-range chromatin loops with the MYC proximal promoter. We propose that by determining which of these WREs is critical for CRC pathogenesis, novel strategies can be developed to treat individuals suffering from this disease. PMID:26629312

  17. Aberrant Gene Expression Profiles in Pluripotent Stem Cells Induced from Fibroblasts of a Klinefelter Syndrome Patient*

    PubMed Central

    Ma, Yu; Li, Chunliang; Gu, Junjie; Tang, Fan; Li, Chun; Li, Peng; Ping, Ping; Yang, Shi; Li, Zheng; Jin, Ying

    2012-01-01

    Klinefelter syndrome (KS) is the most common male chromosome aneuploidy. Its pathophysiology is largely unexplained due to the lack of adequate models. Here, we report the derivation of induced pluripotent stem cell (iPSCs) lines from a KS patient with a karyotype of 47, XXY. Derived KS-iPSCs meet all criteria of normal iPSCs with the potential for germ cell differentiation. Although X chromosome inactivation occurs in all KS-iPSCs, genome-wide transcriptome analysis identifies aberrantly expressed genes associated with the clinical features of KS. Our KS-iPSCs can serve as a cellular model for KS research. Identified genes may become biomarkers for early diagnosis or potential therapeutic targets for KS and significantly accelerate the understanding, diagnosis, and treatment of Klinefelter syndrome. PMID:23019320

  18. Analysis of genomic aberrations and gene expression profiling identifies novel lesions and pathways in myeloproliferative neoplasms.

    PubMed

    Rice, K L; Lin, X; Wolniak, K; Ebert, B L; Berkofsky-Fessler, W; Buzzai, M; Sun, Y; Xi, C; Elkin, P; Levine, R; Golub, T; Gilliland, D G; Crispino, J D; Licht, J D; Zhang, W

    2011-11-01

    Polycythemia vera (PV), essential thrombocythemia and primary myelofibrosis, are myeloproliferative neoplasms (MPNs) with distinct clinical features and are associated with the JAK2V617F mutation. To identify genomic anomalies involved in the pathogenesis of these disorders, we profiled 87 MPN patients using Affymetrix 250K single-nucleotide polymorphism (SNP) arrays. Aberrations affecting chr9 were the most frequently observed and included 9pLOH (n=16), trisomy 9 (n=6) and amplifications of 9p13.3-23.3 (n=1), 9q33.1-34.13 (n=1) and 9q34.13 (n=6). Patients with trisomy 9 were associated with elevated JAK2V617F mutant allele burden, suggesting that gain of chr9 represents an alternative mechanism for increasing JAK2V617F dosage. Gene expression profiling of patients with and without chr9 abnormalities (+9, 9pLOH), identified genes potentially involved in disease pathogenesis including JAK2, STAT5B and MAPK14. We also observed recurrent gains of 1p36.31-36.33 (n=6), 17q21.2-q21.31 (n=5) and 17q25.1-25.3 (n=5) and deletions affecting 18p11.31-11.32 (n=8). Combined SNP and gene expression analysis identified aberrations affecting components of a non-canonical PRC2 complex (EZH1, SUZ12 and JARID2) and genes comprising a 'HSC signature' (MLLT3, SMARCA2 and PBX1). We show that NFIB, which is amplified in 7/87 MPN patients and upregulated in PV CD34+ cells, protects cells from apoptosis induced by cytokine withdrawal. PMID:22829077

  19. Aberrant expression of the candidate tumor suppressor gene DAL-1 due to hypermethylation in gastric cancer

    PubMed Central

    Wang, Hao; Xu, Man; Cui, Xiaobo; Liu, Yixin; Zhang, Yi; Sui, Yu; Wang, Dong; Peng, Lei; Wang, Dexu; Yu, Jingcui

    2016-01-01

    By allelotyping for loss of heterozygosity (LOH), we previously identified a deletion region that harbors the candidate tumor suppressor gene DAL-1 at 18p11.3 in sporadic gastric cancers (GCs). The expression and function of DAL-1 in GCs remained unclear. Here, we demonstrated that the absence of or notable decreases in the expression of DAL-1 mRNA and protein was highly correlated with CpG hypermethylation of the DAL-1 promoter in primary GC tissues and in GC cell lines. Furthermore, abnormal DAL-1 subcellular localization was also observed in GC cells. Exogenous DAL-1 effectively inhibited cancer cell proliferation, migration, invasion and epithelial to mesenchymal transition (EMT); exogenous DAL-1 also promoted apoptosis in GC AGS cells. When endogenous DAL-1 was knocked down in GC HGC-27 cells, the cells appeared highly aggressive. Taken together, these findings provide solid evidence that aberrant expression of DAL-1 by hypermethylation in the promoter region results in tumor suppressor gene behavior that plays important roles in the malignancy of GCs. Understanding the role of it played in the molecular pathogenesis of GC, DAL-1 might be a potential biomarker for molecular diagnosis and evaluation of the GC. PMID:26923709

  20. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage

    PubMed Central

    2015-01-01

    Background Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. Methods This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. Results The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Conclusions Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study. PMID:26677731

  1. Aberrant Gene Expression Profile of Unaffected Colon Mucosa from Patients with Unifocal Colon Polyp

    PubMed Central

    Lian, Jingjing; Ma, Lili; Yang, Jiayin; Xu, Lili

    2015-01-01

    Background The aim of this study was to evaluate gene expression profiles in unaffected colon mucosa and polyp tissue from patients with unifocal colon polyp to investigate the potential mucosa impairment in normal-appearing colon mucosa from these patients. Material/Methods Colon polyp patients were prospectively recruited. We obtained colon biopsies from the normal-appearing sites and polyp tissue through colonoscopy. Gene expression analysis was performed using microarrays. Gene ontology and clustering were evaluated by bioinformatics. Results We detected a total of 711 genes (274 up-regulated and 437 down-regulated) in polyp tissue and 256 genes (170 up-regulated and 86 down-regulated) in normal-appearing colon mucosa, with at least a 3-fold of change compared to healthy controls. Heatmapping of the gene expression showed similar gene alteration patterns between unaffected colon mucosa and polyp tissue. Gene ontology analyses confirmed the overlapped molecular functions and pathways of altered gene expression between unaffected colon mucosa and polyp tissue from patients with unifocal colon polyp. The most significantly altered genes in normal-appearing tissues in polyp patients include immune response, external side of plasma membrane, nucleus, and cellular response to zinc ion. Conclusions Significant gene expression alterations exist in unaffected colon mucosa from patients with unifocal colon polyp. Unaffected colon mucosa and polyp tissue share great similarity and overlapping of altered gene expression profiles, indicating the potential possibility of recurrence of colon polyps due to underlying molecular abnormalities of colon mucosa in these patients. PMID:26675397

  2. Aberrant expression of Notch1, HES1, and DTX1 genes in glioblastoma formalin-fixed paraffin-embedded tissues.

    PubMed

    Narayanappa, Rajeswari; Rout, Pritilata; Aithal, Madhuri G S; Chand, Ashis Kumar

    2016-05-01

    Glioblastoma is the most common malignant brain tumor accounting for more than 54 % of all gliomas. Despite aggressive treatments, median survival remains less than 1 year. This might be due to the unavailability of effective molecular diagnostic markers and targeted therapy. Thus, it is essential to discover molecular mechanisms underlying disease by identifying dysregulated pathways involved in tumorigenesis. Notch signaling is one such pathway which plays an important role in determining cell fates. Since it is found to play a critical role in many cancers, we investigated the role of Notch genes in glioblastoma with an aim to identify biomarkers that can improve diagnosis. Using real-time PCR, we assessed the expression of Notch genes including receptors (Notch1, Notch2, Notch3, and Notch4), ligands (JAG1, JAG2, and DLL3), downstream targets (HES1 and HEY2), regulator Deltex1 (DTX1), inhibitor NUMB along with transcriptional co-activator MAML1, and a component of gamma-secretase complex APH1A in 15 formalin-fixed paraffin-embedded (FFPE) patient samples. Relative quantification was done by the 2(-ΔΔCt) method; the data are presented as fold change in gene expression normalized to an internal control gene and relative to the calibrator. The data revealed aberrant expression of Notch genes in glioblastoma compared to normal brain. More than 85 % of samples showed high Notch1 (P = 0.0397) gene expression and low HES1 (P = 0.011) and DTX1 (P = 0.0001) gene expression. Our results clearly show aberrant expression of Notch genes in glioblastoma which can be used as putative biomarkers together with histopathological observation to improve diagnosis, therapeutic strategies, and patient prognosis. PMID:26662803

  3. Association of epigenetic alterations in the human C7orf24 gene with the aberrant gene expression in malignant cells.

    PubMed

    Ohno, Yuji; Hattori, Akira; Yoshiki, Tatsuhiro; Kakeya, Hideaki

    2013-10-01

    Human chromosome 7 open reading frame 24 (C7orf24)/γ-glutamyl cyclotransferase has been suggested to be a potential diagnostic marker for several cancers, including carcinomas in the bladder urothelium, breast and endometrial epithelium. We here investigated the epigenetic regulation of the human C7orf24 promoter in normal diploid ARPE-19 and IMR-90 cells and in the MCF-7 and HeLa cancer cell lines to understand the transcriptional basis for the malignant-associated high expression of C7orf24. Chromatin immunoprecipitation analysis revealed that histone modifications associated with active chromatin were enriched in the proximal region but not in the distal region of the C7orf24 promoter in HeLa and MCF-7 cells. In contrast, elevated levels of histone modifications leading to transcriptional repression and accumulation of heterochromatin proteins in the C7orf24 promoter were observed in the ARPE-19 and IMR-90 cells, compared to the levels in HeLa and MCF-7 cancer cells. In parallel, the CpG island of the C7orf24 promoter was methylated to a greater extent in the normal cells than in the cancer cells. These results suggest that the transcriptional silencing of the C7orf24 gene in the non-malignant cells is elicited through heterochromatin formation in its promoter region; aberrant expression of C7orf24 associated with malignant alterations results from changes in chromatin dynamics. PMID:23853312

  4. Dietary fat and risk of colon and rectal cancer with aberrant MLH1 expression, APC or KRAS genes

    PubMed Central

    Lüchtenborg, Margreet; de Goeij, Anton F. P. M.; Brink, Mirian; van Muijen, Goos N. P.; de Bruïne, Adriaan P.; Goldbohm, R. Alexandra; van den Brandt, Piet A.

    2007-01-01

    Objective To investigate baseline fat intake and the risk of colon and rectal tumors lacking MLH1 (mutL homolog 1, colon cancer, nonpolyposis type 2) repair gene expression and harboring mutations in the APC (adenomatous polyposis coli) tumor suppressor gene and in the KRAS (v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) oncogene. Methods After 7.3 years of follow-up of the Netherlands Cohort Study (n = 120,852), adjusted incidence rate ratios (RR) and 95% confidence intervals (CI) were computed, based on 401 colon and 130 rectal cancer patients. Results Total, saturated and monounsaturated fat were not associated with the risk of colon or rectal cancer, or different molecular subgroups. There was also no association between polyunsaturated fat and the risk of overall or subgroups of rectal cancer. Linoleic acid, the most abundant polyunsaturated fatty acid in the diet, was associated with increased risk of colon tumors with only a KRAS mutation and no additional truncating APC mutation or lack of MLH1 expression (RR = 1.41, 95% CI 1.18–1.69 for one standard deviation (i.e., 7.5 g/day) increase in intake, p-trend over the quartiles of intake <0.001). Linoleic acid intake was not associated with risk of colon tumors without any of the gene defects, or with tumors harboring aberrations in either MLH1 or APC. Conclusion Linoleic acid intake is associated with colon tumors with an aberrant KRAS gene, but an intact APC gene and MLH1 expression, suggesting a unique etiology of tumors with specific genetic aberrations. PMID:17636402

  5. Aberrant expression of the CHFR prophase checkpoint gene in human B-cell non-Hodgkin lymphoma.

    PubMed

    Song, Aiqin; Ye, Junli; Zhang, Kunpeng; Yu, Hongsheng; Gao, Yanhua; Wang, Hongfang; Sun, Lirong; Xing, Xiaoming; Yang, Kun; Zhao, Min

    2015-05-01

    Checkpoint with FHA and Ring Finger (CHFR) is a checkpoint protein that reportedly initiates a cell cycle delay in response to microtubule stress during prophase in mitosis, which has become an interesting target for understanding cancer pathogenesis. Recently, aberrant methylation of the CHFR gene associated with gene silencing has been reported in several cancers. In the present study, we examined the expression of CHFR in B-cell non-Hodgkin lymphoma (B-NHL) in vitro and in vivo. Our results showed that the expression level of CHFR mRNA and protein was reduced in B-NHL tissue samples and B cell lines. Furthermore, CHFR methylation was detected in 39 of 122 B-NHL patients, which was not found in noncancerous reactive hyperplasia of lymph node (RH) tissues. CHFR methylation correlated with the reduced expression of CHFR, high International Prognostic Index (IPI) scores and later pathologic Ann Arbor stages of B-NHL. Treatment with demethylation reagent, 5-Aza-dC, could eliminate the hypermethylation of CHFR, enhance CHFR expression and cell apoptosis and inhibit the cell proliferation of Raji cells, which could be induced by high expression of CHFR in Raji cells. Our results indicated that aberrant methylation of CHFR may be associated with the pathogenesis, progression for B-NHL, which might be a novel molecular marker as prognosis and treatment for B-NHL. PMID:25798877

  6. Oligoamine analogues in combination with 2-difluoromethylornithine synergistically induce re-expression of aberrantly silenced tumour-suppressor genes

    PubMed Central

    Wu, Yu; Steinbergs, Nora; Murray-Stewart, Tracy; Marton, LaurenceJ.; Casero, RobertA.

    2011-01-01

    Epigenetic gene silencing is an important mechanism in the initiation and progression of cancer. Abnormal DNA CpG island hypermethylation and histone modifications are involved in aberrant silencing of tumour-suppressor genes. LSD1 (lysine-specific demethylase 1) was the first enzyme identified to specifically demethylate H3K4 (Lys4 of histone H3). Methylated H3K4 is an important mark associated with transcriptional activation. The flavin adenine dinucleotide-binding amine oxidase domain of LSD1 is homologous with two polyamine oxidases, SMO (spermine oxidase) and APAO (N1-acetylpolyamine oxidase). We have demonstrated previously that long-chain polyamine analogues, the oligoamines, are inhibitors of LSD1. In the present paper we report the synergistic effects of specific oligoamines in combination with DFMO (2-difluoromethylornithine), an inhibitor of ornithine decarboxylase, in human colorectal cancer cells. DFMO treatment depletes natural polyamines and increases the uptake of exogenous polyamines. The combination of oligoamines and DFMO results in a synergistic re-expression of aberrantly silenced tumour-suppressor genes, including SFRP2 (secreted frizzled-related protein 2), which encodes a Wnt signalling pathway antagonist and plays an anti-tumorigenic role in colorectal cancer. The treatment-induced re-expression of SFRP2 is associated with increased H3K4me2 (di-methyl H3K4) in the gene promoter. The combination of LSD1-inhibiting oligoamines and DFMO represents a novel approach to epigenetic therapy of cancer. PMID:22132744

  7. Aberrant expression of imprinted genes and their regulatory network in cloned cattle.

    PubMed

    Gong, Z-J; Zhou, Y-Y; Xu, M; Cai, Q; Li, H; Yan, J-B; Wang, J; Zhang, H-J; Fan, S-Y; Yuan, Q; Huang, S-Z; Zeng, F

    2012-09-01

    Domesticated animals cloned by somatic cell nuclear transfer (SCNT) generally have poor developmental competency, with many developmental abnormalities attributed to incomplete reprogramming of the nuclear genome and abnormal expression of genes important for regulation of growth and development. To investigate the molecular mechanism leading to the abnormalities of cloned animals, pathologic and histologic analyses were conducted on seven cloned cattle that were oversized at birth and had cardiac and pulmonary abnormalities. Quantitative reverse transcription (RT)-polymerase chain reaction (PCR) analysis of four imprinted genes IGF2, IGF2R, H19, and GRB10, as well as genes from related regulatory networks, were performed in liver, lung, kidney, and muscle to investigate disruption of expression. Expression of IGFBP2 was not detected in morphologically normal cloned cattle, but was detected in the liver, lung, kidney, and thymus of abnormal calves. Expression levels of IGF1 and imprinted genes IGF2 and H19 were substantially higher in these organs of abnormal cattle. In contrast, expression levels of GRB10, CTSD, and TRPV2 were substantially lower in abnormal cattle. Transcript abundance of IGFBP6 was higher in kidney, but lower in liver and lung. In conclusion, we inferred that altered expression of imprinted and related genes may be closely related to increased birth weight and pathologic changes in abnormal cloned cattle. PMID:22704394

  8. Evaluation of tumor suppressor gene expressions and aberrant methylation in the colon of cancer-induced rats: a pilot study.

    PubMed

    Polakova Vymetalkova, Veronika; Vannucci, Luca; Korenkova, Vlasta; Prochazka, Pavel; Slyskova, Jana; Vodickova, Ludmila; Rusnakova, Vendula; Bielik, Ludovit; Burocziova, Monika; Rossmann, Pavel; Vodicka, Pavel

    2013-10-01

    Altered expression and methylation pattern of tumor suppressor and DNA repair genes, in particular involved in mismatch repair (MMR) pathway, frequently occur in primary colorectal (CRC) tumors. However, little is known about (epi)genetic changes of these genes in precancerous and early stages of CRC. The aim of this pilot study was to analyze expression profile and promoter methylation status of important tumor suppressor and DNA repair genes in the early stages of experimentally induced colorectal carcinogenesis. Rats were treated with azoxymethane (AOM), dextran sodium sulphate (DSS) or with their combination, and sacrificed 1 or 4 months post-treatment period. The down-regulation of Apc expression in left colon, detectable in animals treated with DSS-AOM and sacrificed 1 month after the end of treatment, represents most early marker of the experimental colorectal carcinogenesis. Significantly reduced gene expressions were also found in 5 out of 7 studied MMR genes (Mlh1, Mlh3, Msh3 Pms1, Pms2), regarding the sequential administration of DSS-AOM at 4 months since the treatment. Strong down-regulation was also discovered for Apc, Apex1, Mgmt and TP53. Tumors developed in rectum-sigmoid region displayed significantly lower Apc and Pms2 expressions. The decreased expression of studied genes was not in any case associated with aberrant methylation of promoter region. Present data suggest that down-regulation of Apc and MMR genes are prerequisite for the development of CRC. In this study we addressed for the first time early functional alterations of tumor suppressor genes with underlying epigenetic mechanisms in experimentally induced CRC in rats. PMID:24065530

  9. Human small cell lung cancer cell lines expressing the proopiomelanocortin gene have aberrant glucocorticoid receptor function.

    PubMed Central

    Ray, D W; Littlewood, A C; Clark, A J; Davis, J R; White, A

    1994-01-01

    Some human small cell lung carcinomas (SCLC) secrete proopiomelanocortin (POMC) derived peptides, but in contrast to the pituitary, glucocorticoids fail to inhibit this hormone production. We have previously described an in vitro model using human SCLC cell lines that express POMC and are resistant to glucocorticoids. We have now identified the glucocorticoid receptor (GR) in the SCLC cell line COR L24 using a whole cell ligand binding assay (Kd = 5.7 nM; Bmax = 11 fmol/million cells), while another cell line, DMS 79, lacked significant glucocorticoid binding. To analyze GR function both positive (GMCO) and negative (TRE)3-tkCAT), glucocorticoid-regulated reporter gene constructs were transfected into COR L24 cells. In the SCLC cell line, neither hydrocortisone nor dexamethasone (500-2,000 nM) significantly induced chloramphenicol acetyltransferase expression from GMCO; in addition, they did not suppress chloramphenicol acetyltransferase expression from (TRE)3-tkCAT. Similar results were obtained with two other POMC-expressing SCLC cell lines. Expression of wild type GR in COR L24 cells restored glucocorticoid signaling, with marked induction of GMCO reporter gene expression by dexamethasone (9,100 +/- 910%; n = 3), and an estimated EC50 of 10 nM. This failure of the GR explains the resistance of the POMC gene to glucocorticoid inhibition and may have implications for cell growth in SCLC. Images PMID:8163665

  10. Aberrant Cosmc genes result in Tn antigen expression in human colorectal carcinoma cell line HT-29

    PubMed Central

    Yu, Xiaofeng; Du, Zhenzhen; Sun, Xuhong; Shi, Chuanqin; Zhang, Huaixiang; Hu, Tao

    2015-01-01

    The Tn antigen, which arises from mutation in the Cosmc gene is one of the most common tumor associated carbohydrate antigens. Cosmc resides in X24 encoded by a single gene and functions as a specific molecular chaperone for T-synthase. While the Tn antigen cannot be detected in normal cells, Cosmc mutations inactivate T-synthase and consequently result in Tn antigen expression within certain cancers. In addition to this Cosmc mutation-induced expression, the Tn antigen is also expressed in such cell lines as Jurkat T, LSC and LS174T. Whether the Cosmc mutation is present in the colon cancer cell line HT-29 is still unclear. Here, we isolate HT-29-Tn+ cells from HT-29 cells derived from a female colon cancer patient. These HT-29-Tn+ cells show a loss of the Cosmc gene coding sequence (CDS) leading to an absence of T-synthase activity and Tn antigen expression. Additionally, almost no methylation of Cosmc CpG islands was detected in HT-29-Tn+ as well as in HT-29-Tn- and Tn- tumor cells from male patients. In contrast, the methylation frequency of CpG island of Cosmc in normal female cells was ~50%. Only one active allele of Cosmc existed in HT-29-Tn+ and HT-29-Tn- cells as based upon detection of SNP sites. These results indicate that Tn antigens expression and T-synthase inactivity in HT-29-Tn+ cells can be related to the absence of CDS in Cosmc active alleles, while an inactive allele deletion of Cosmc in HT-29 cells has no influence on Cosmc function. PMID:26045765

  11. Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy

    PubMed Central

    Du, Hongqing; Cline, Melissa S.; Osborne, Robert J.; Tuttle, Daniel L.; Clark, Tyson A.; Donohue, John Paul; Hall, Megan P.; Shiue, Lily; Swanson, Maurice S.; Thornton, Charles A.; Ares, Manuel

    2009-01-01

    Myotonic dystrophy (DM1) is associated with expression of expanded CTG DNA repeats as RNA (CUGexp RNA). To test whether CUGexp RNA creates a global splicing defect, we compared skeletal muscle of two mouse DM1 models, one expressing a CTGexp transgene, and another homozygous for a defective Mbnl1 gene. Strong correlation in splicing changes for ~100 new Mbnl1-regulated exons indicates loss of Mbnl1 explains >80% of the splicing pathology due to CUGexp RNA. In contrast, only about half of mRNA level changes can be attributed to loss of Mbnl1, indicating CUGexp RNA has Mbnl1-independent effects, particularly on mRNAs for extracellular matrix (ECM) proteins. We propose that CUGexp RNA causes two separate effects: loss of Mbnl1 function, disrupting splicing, and loss of another function that disrupts ECM mRNA regulation, possibly mediated by MBNL2. These findings reveal unanticipated similarities between DM1 and other muscular dystrophies. PMID:20098426

  12. Aberrant gene expression of heparanase in ventricular hypertrophy induced by monocrotaline in rats.

    PubMed

    Ishiguro-Oonuma, Toshina; Suemoto, Masako; Okada, Muneyoshi; Yoshioka, Kazuki; Hara, Yukio; Hashizume, Kazuyoshi; Kizaki, Keiichiro

    2016-04-01

    The gene expression levels of heparanase, matrix metalloproteinase 2 (MMP2) and MMP9 were examined in ventricles after treatment with monocrotaline (MCT) to induce cardiac hypertrophy in rats. Rats received a single intraperitoneal injection of MCT (60 mg/kg) or saline. Twenty-five days after the injection, the right ventricle and lung wet weights were increased in MCT-treated rats compared with the control. Histological analysis revealed cardiomyocyte hypertrophy in the right ventricle of MCT-treated rats. Northern blot hybridization showed that heparanase and MMP2 expression increased significantly in the right and left ventricles of MCT-treated rats, whereas MMP9 was not induced. These findings indicate that heparanase and MMP2 might play an important role in the development of MCT-induced cardiac hypertrophy. PMID:26638897

  13. Aberrant gene expression of heparanase in ventricular hypertrophy induced by monocrotaline in rats

    PubMed Central

    ISHIGURO-OONUMA, Toshina; SUEMOTO, Masako; OKADA, Muneyoshi; YOSHIOKA, Kazuki; HARA, Yukio; HASHIZUME, Kazuyoshi; KIZAKI, Keiichiro

    2015-01-01

    The gene expression levels of heparanase, matrix metalloproteinase 2 (MMP2) and MMP9 were examined in ventricles after treatment with monocrotaline (MCT) to induce cardiac hypertrophy in rats. Rats received a single intraperitoneal injection of MCT (60 mg/kg) or saline. Twenty-five days after the injection, the right ventricle and lung wet weights were increased in MCT-treated rats compared with the control. Histological analysis revealed cardiomyocyte hypertrophy in the right ventricle of MCT-treated rats. Northern blot hybridization showed that heparanase and MMP2 expression increased significantly in the right and left ventricles of MCT-treated rats, whereas MMP9 was not induced. These findings indicate that heparanase and MMP2 might play an important role in the development of MCT-induced cardiac hypertrophy. PMID:26638897

  14. Do aberrant crypt foci have predictive value for the occurrence of colorectal tumours? Potential of gene expression profiling in tumours.

    PubMed

    Wijnands, M V W; van Erk, M J; Doornbos, R P; Krul, C A M; Woutersen, R A

    2004-10-01

    The effects of different dietary compounds on the formation of aberrant crypt foci (ACF) and colorectal tumours and on the expression of a selection of genes were studied in rats. Azoxymethane-treated male F344 rats were fed either a control diet or a diet containing 10% wheat bran (WB), 0.2% curcumin (CUR), 4% rutin (RUT) or 0.04% benzyl isothiocyanate (BIT) for 8 months. ACF were counted after 7, 15 and 26 weeks. Tumours were scored after 26 weeks and 8 months. We found that the WB and CUR diets inhibited the development of colorectal tumours. In contrast, the RUT and BIT diets rather enhanced (although not statistically significantly) colorectal carcinogenesis. In addition, the various compounds caused different effects on the development of ACF. In most cases the number or size of ACF was not predictive for the ultimate tumour yield. The expression of some tumour-related genes was significantly different in tumours from the control group as compared to tumours from the treated groups. It was concluded that WB and CUR, as opposed to RUT and BIT, protects against colorectal cancer and that ACF are unsuitable as biomarker for colorectal cancer. Effects of the different dietary compounds on metalloproteinase 1 (TIMP-1) expression correlated well with the effects of the dietary compounds on the ultimate tumour yield. PMID:15304309

  15. Sall4 is essential for stabilization, but not for pluripotency, of embryonic stem cells by repressing aberrant trophectoderm gene expression.

    PubMed

    Yuri, Shunsuke; Fujimura, Sayoko; Nimura, Keisuke; Takeda, Naoki; Toyooka, Yayoi; Fujimura, Yu-Ichi; Aburatani, Hiroyuki; Ura, Kiyoe; Koseki, Haruhiko; Niwa, Hitoshi; Nishinakamura, Ryuichi

    2009-04-01

    Sall4 is a mouse homolog of a causative gene of the autosomal dominant disorder Okihiro syndrome. We previously showed that the absence of Sall4 leads to lethality during peri-implantation and that Sall4-null embryonic stem (ES) cells proliferate poorly with intact pluripotency when cultured on feeder cells. Here, we report that, in the absence of feeder cells, Sall4-null ES cells express the trophectoderm marker Cdx2, but are maintained for a long period in an undifferentiated state with minimally affected Oct3/4 expression. Feeder-free Sall4-null ES cells contribute solely to the inner cell mass and epiblast in vivo, indicating that these cells still retain pluripotency and do not fully commit to the trophectoderm. These phenotypes could arise from derepression of the Cdx2 promoter, which is normally suppressed by Sall4 and the Mi2/NuRD HDAC complex. However, proliferation was impaired and G1 phase prolonged in the absence of Sall4, suggesting another role for Sall4 in cell cycle control. Although Sall1, also a Sall family gene, is known to genetically interact with Sall4 in vivo, Sall1-null ES cells have no apparent defects and no exacerbation is observed in ES cells lacking both Sall1 and Sall4, compared with Sall4-null cells. This suggests a unique role for Sall4 in ES cells. Thus, though Sall4 does not contribute to the central machinery of the pluripotency, it stabilizes ES cells by repressing aberrant trophectoderm gene expression. PMID:19350679

  16. Aberrant gene expression in mucosa adjacent to tumor reveals a molecular crosstalk in colon cancer

    PubMed Central

    2014-01-01

    Background A colorectal tumor is not an isolated entity growing in a restricted location of the body. The patient’s gut environment constitutes the framework where the tumor evolves and this relationship promotes and includes a complex and tight correlation of the tumor with inflammation, blood vessels formation, nutrition, and gut microbiome composition. The tumor influence in the environment could both promote an anti-tumor or a pro-tumor response. Methods A set of 98 paired adjacent mucosa and tumor tissues from colorectal cancer (CRC) patients and 50 colon mucosa from healthy donors (246 samples in total) were included in this work. RNA extracted from each sample was hybridized in Affymetrix chips Human Genome U219. Functional relationships between genes were inferred by means of systems biology using both transcriptional regulation networks (ARACNe algorithm) and protein-protein interaction networks (BIANA software). Results Here we report a transcriptomic analysis revealing a number of genes activated in adjacent mucosa from CRC patients, not activated in mucosa from healthy donors. A functional analysis of these genes suggested that this active reaction of the adjacent mucosa was related to the presence of the tumor. Transcriptional and protein-interaction networks were used to further elucidate this response of normal gut in front of the tumor, revealing a crosstalk between proteins secreted by the tumor and receptors activated in the adjacent colon tissue; and vice versa. Remarkably, Slit family of proteins activated ROBO receptors in tumor whereas tumor-secreted proteins transduced a cellular signal finally activating AP-1 in adjacent tissue. Conclusions The systems-level approach provides new insights into the micro-ecology of colorectal tumorogenesis. Disrupting this intricate molecular network of cell-cell communication and pro-inflammatory microenvironment could be a therapeutic target in CRC patients. PMID:24597571

  17. [Aberrant development of pollen in transgenic tobacco expressing bacterial iaaM gene driven by pollen- and tapetum-specific promoters].

    PubMed

    Ni, Di An; Yu, Xiao Hong; Wang, Ling Jian; Xu, Zhi Hong

    2002-03-01

    Microsporogenesis offers an ideal model for studying gene expression, cell division and cell to cell communication during development. The role of auxin in pollen development was investigated in transgenic tobacco plants expressing the coding region of the iaaM gene from Pseudomonas syringae, under control of the promoters Lat-52 (pollen-specific) or TA-29 (tapetum-specific). IAA level in anther of transgenic plants increased significantly, and transgenic plants displayed morphological aberrations not solely attributable to pollen development(such as adventitious root formation on stems, epinastic leaf growth, delayed flowering). These results suggest that expression of Lat-52 and TA-29 are not strictly limited to anther. Anther shape was changed and the number of pollen grains per anther was reduced, but grains could be stained with aceto-carmine. Almost all flowering plants were fertile, although the number of flowers per inflorescence was reduced compared with the wild-type ones. These results suggest that auxin plays an important role in pollen development, and over-expressing auxin synthesis gene could result in aberrant development of pollen. PMID:15344309

  18. Transplacental exposure to inorganic arsenic at a hepatocarcinogenic dose induces fetal gene expression changes in mice indicative of aberrant estrogen signaling and disrupted steroid metabolism

    SciTech Connect

    Liu Jie . E-mail: Liu6@niehs.nih.gov; Xie Yaxiong; Cooper, Ryan; Ducharme, Danica M.K.; Tennant, Raymond; Diwan, Bhalchandra A.; Waalkes, Michael P.

    2007-05-01

    Exposure to inorganic arsenic in utero in C3H mice produces hepatocellular carcinoma in male offspring when they reach adulthood. To help define the molecular events associated with the fetal onset of arsenic hepatocarcinogenesis, pregnant C3H mice were given drinking water containing 0 (control) or 85 ppm arsenic from day 8 to 18 of gestation. At the end of the arsenic exposure period, male fetal livers were removed and RNA isolated for microarray analysis using 22K oligo chips. Arsenic exposure in utero produced significant (p < 0.001) alterations in expression of 187 genes, with approximately 25% of aberrantly expressed genes related to either estrogen signaling or steroid metabolism. Real-time RT-PCR on selected genes confirmed these changes. Various genes controlled by estrogen, including X-inactive-specific transcript, anterior gradient-2, trefoil factor-1, CRP-ductin, ghrelin, and small proline-rich protein-2A, were dramatically over-expressed. Estrogen-regulated genes including cytokeratin 1-19 and Cyp2a4 were over-expressed, although Cyp3a25 was suppressed. Several genes involved with steroid metabolism also showed remarkable expression changes, including increased expression of 17{beta}-hydroxysteroid dehydrogenase-7 (HSD17{beta}7; involved in estradiol production) and decreased expression of HSD17{beta}5 (involved in testosterone production). The expression of key genes important in methionine metabolism, such as methionine adenosyltransferase-1a, betaine-homocysteine methyltransferase and thioether S-methyltransferase, were suppressed. Thus, exposure of mouse fetus to inorganic arsenic during a critical period in development significantly alters the expression of various genes encoding estrogen signaling and steroid or methionine metabolism. These alterations could disrupt genetic programming at the very early life stage, which could impact tumor formation much later in adulthood.

  19. Aberrant Expression of Shared Master-Key Genes Contributes to the Immunopathogenesis in Patients with Juvenile Spondyloarthritis

    PubMed Central

    Lamot, Lovro; Borovecki, Fran; Tambic Bukovac, Lana; Vidovic, Mandica; Perica, Marija; Gotovac, Kristina; Harjacek, Miroslav

    2014-01-01

    Association of juvenile spondyloarthritis (jSpA) with the HLA-B27 genotype is well established, but there is little knowledge of other genetic factors with a role in the development of the disease. To date, only a few studies have tried to find those associated genes by obtaining expression profiles, but with inconsistent results due to various patient selection criteria and methodology. The aim of the present study was to identify and confirm gene signatures and novel biomarkers in highly homogeneous cohorts of untreated and treated patients diagnosed with jSpA and other forms of juvenile idiopathic arthritis (JIA) according to ILAR criteria. For the purposes of the research, total RNA was isolated from whole blood of 45 children with jSpA and known HLA genotype, 11 children with oligo- and polyarticular forms of JIA, as well as 12 age and sex matched control participants without diagnosis of inflammatory disease. DNA microarray gene expression was performed in 11 patients with jSpA and in four healthy controls, along with bioinformatical analysis of retrieved data. Carefully selected differentially expressed genes where analyzed by qRT-PCR in all participants of the study. Microarray results and bioinformatical analysis revealed 745 differentially expressed genes involved in various inflammatory processes, while qRT-PCR analysis of selected genes confirmed data universality and specificity of expression profiles in jSpA patients. The present study indicates that jSpA could be a polygenic disease with a possible malfunction in antigen recognition and activation of immunological response, migration of inflammatory cells and regulation of the immune system. Among genes involved in these processes TLR4, NLRP3, CXCR4 and PTPN12 showed almost consistent expression in study patients diagnosed with jSpA. Those genes and their products could therefore potentially be used as novel biomarkers, possibly predictive of disease prognosis and response to therapy, or even as a target for new therapeutic approaches. PMID:25506924

  20. Further studies on aberrant gene expression associated with arsenic-induced malignant transformation in rat liver TRL1215 cells

    SciTech Connect

    Liu Jie . E-mail: Liu6@niehs.nih.gov; Benbrahim-Tallaa, Lamia; Qian Xun; Yu, Limei; Xie Yaxiong; Boos, Jennifer; Qu Wei; Waalkes, Michael P.

    2006-11-01

    Chronic arsenic exposure of rat liver epithelial TRL1215 cells induced malignant transformation in a concentration-dependent manner. To further define the molecular events of these arsenic-transformed cells (termed CAsE cells), gene expressions associated with arsenic carcinogenesis or influenced by methylation were examined. Real-time RT-PCR showed that at carcinogenic concentrations (500 nM, and to a less extent 250 nM of arsenite), the expressions of {alpha}-fetoprotein (AFP), Wilm's tumor protein-1 (WT-1), c-jun, c-myc, H-ras, c-met and hepatocyte growth factor, heme oxygenase-1, superoxide dismutase-1, glutathione-S-transferase-{pi} and metallothionein-1 (MT) were increased between 3 to 12-fold, while expressions of insulin-like growth factor II (IGF-II) and fibroblast growth factor receptor (FGFR1) were essentially abolished. These changes were not significant at the non-carcinogenic concentration (125 nM), except for IGF-II. The positive cell-cycle regulators cyclin D1 and PCNA were overexpressed in CAsE cells, while the negative regulators p21 and p16 were suppressed. Western-blot confirmed increases in AFP, WT-1, cyclin D1 and decreases in p16 and p21 protein in CAsE cells. The CAsE cells over-expressed MT but the demethylating agent 5-aza-deoxycytidine (5-aza-dC, 2.5 {mu}M, 72 h) stimulated further MT expression. 5-Aza-deoxycytidine restored the loss of expression of p21 in CAsE cells to control levels, but did not restore the expression of p16, IGF-II, or FGFR1, indicating the loss of expression of these genes is due to factors other than DNA methylation changes. Overall, an intricate variety of gene expression changes occur in arsenic-induced malignant transformation of liver cells including oncogene activation and alterations in expression of genes critical to growth regulation.

  1. Transplacental arsenic plus postnatal 12-O-teradecanoyl phorbol-13-acetate exposures associated with hepatocarcinogenesis induce similar aberrant gene expression patterns in male and female mouse liver

    SciTech Connect

    Liu Jie . E-mail: Liu6@niehs.nih.gov; Xie Yaxiong; Merrick, B. Alex; Shen Jun; Ducharme, Danica M.K.; Collins, Jennifer; Diwan, Bhalchandra A.; Logsdon, Daniel; Waalkes, Michael P.

    2006-06-15

    Our prior work shows that in utero arsenic exposure alone is a complete transplacental carcinogen, producing hepatocellular carcinoma in adult male offspring but not in females. In a follow-up study to potentially promote arsenic-initiated tumors, mice were exposed to arsenic (85 ppm) from gestation day 8 to 18 and then exposed to 12-O-teradecanoyl phorbol-13-acetate (TPA), a well-known tumor promoter after weaning. The dermal application of TPA (2 {mu}g/0.1 ml acetone, twice/week for 21 weeks) after transplacental arsenic did not further increase arsenic-induced liver tumor formation in adult males but significantly increased liver tumor formation in adult females. Thus, for comparison, liver tumors and normal liver samples taken from adult male and female mice at necropsy were analyzed for aberrant gene/protein expression by microarray, real-time RT-PCR and Western blot analysis. Arsenic/TPA treatment resulted in increased expression of {alpha}-fetoprotein, k-ras, c-myc, estrogen receptor-{alpha}, cyclin D1, cdk2na, plasminogen activator inhibitor-1, cytokeratin-8, cytokeratin-18, glutathione S-transferases and insulin-like growth factor binding proteins in liver and liver tumors from both male and female mice. Arsenic/TPA also decreased the expression of BRCA1, betaine-homocysteine methyltransferase, CYP7B1, CYP2F2 and insulin-like growth factor-1 in normal and cancerous livers. Alterations in these gene products were associated with arsenic/TPA-induced liver tumors, regardless of sex. Thus, transplacental arsenic plus postnatal TPA exposure induced similar aberrant gene expression patterns in male and female mouse liver, which are persistent and potentially important to the mechanism of arsenic initiation of hepatocarcinogenesis.

  2. Aberrant expression of aldehyde dehydrogenase 1A (ALDH1A) subfamily genes in acute lymphoblastic leukaemia is a common feature of T-lineage tumours.

    PubMed

    Longville, Brooke A C; Anderson, Denise; Welch, Mathew D; Kees, Ursula R; Greene, Wayne K

    2015-01-01

    The class 1A aldehyde dehydrogenase (ALDH1A) subfamily of genes encode enzymes that function at the apex of the retinoic acid (RA) signalling pathway. We detected aberrant expression of ALDH1A genes, particularly ALDH1A2, in a majority (72%) of primary paediatric T cell acute lymphoblastic leukaemia (T-ALL) specimens. ALDH1A expression was almost exclusive to T-lineage, but not B-lineage, ALL. To determine whether ALDH1A expression may have relevance to T-ALL cell growth and survival, the effect of inhibiting ALDH1A function was measured on a panel of human ALL cell lines. This revealed that T-ALL proliferation had a higher sensitivity to modulation of ALDH1A activity and RA signalling as compared to ALL cell lines of B-lineage. Consistent with these findings, the genes most highly correlated with ALDH1A2 expression were involved in cell proliferation and apoptosis. Evidence that such genes may be targets of regulation via RA signalling initiated by ALDH1A activity was provided by the TNFRSF10B gene, encoding the apoptotic death receptor TNFRSF10B (also termed TRAIL-R2), which negatively correlated with ALDH1A2 and showed elevated transcription following treatment of T-ALL cell lines with the ALDH1A inhibitor citral (3,7-dimethyl-2,6-octadienal). These data indicate that ALDH1A expression is a common event in T-ALL and supports a role for these enzymes in the pathobiology of this disease. PMID:25208926

  3. Binding of 14-3-3 reader proteins to phosphorylated DNMT1 facilitates aberrant DNA methylation and gene expression

    PubMed Central

    Estève, Pierre-Olivier; Zhang, Guoqiang; Ponnaluri, V.K. Chaithanya; Deepti, Kanneganti; Chin, Hang Gyeong; Dai, Nan; Sagum, Cari; Black, Karynne; Corrêa, Ivan R.; Bedford, Mark T.; Cheng, Xiaodong; Pradhan, Sriharsa

    2016-01-01

    Mammalian DNA (cytosine-5) methyltransferase 1 (DNMT1) is essential for maintenance methylation. Phosphorylation of Ser143 (pSer143) stabilizes DNMT1 during DNA replication. Here, we show 14-3-3 is a reader protein of DNMT1pSer143. In mammalian cells 14-3-3 colocalizes and binds DNMT1pSer143 post-DNA replication. The level of DNMT1pSer143 increased with overexpression of 14-3-3 and decreased by its depletion. Binding of 14-3-3 proteins with DNMT1pSer143 resulted in inhibition of DNA methylation activity in vitro. In addition, overexpression of 14-3-3 in NIH3T3 cells led to decrease in DNMT1 specific activity resulting in hypomethylation of the genome that was rescued by transfection of DNMT1. Genes representing cell migration, mobility, proliferation and focal adhesion pathway were hypomethylated and overexpressed. Furthermore, overexpression of 14-3-3 also resulted in enhanced cell invasion. Analysis of TCGA breast cancer patient data showed significant correlation for DNA hypomethylation and reduced patient survival with increased 14-3-3 expressions. Therefore, we suggest that 14-3-3 is a crucial reader of DNMT1pSer143 that regulates DNA methylation and altered gene expression that contributes to cell invasion. PMID:26553800

  4. Chromatin-prebound Crm1 recruits Nup98-HoxA9 fusion to induce aberrant expression of Hox cluster genes.

    PubMed

    Oka, Masahiro; Mura, Sonoko; Yamada, Kohji; Sangel, Percival; Hirata, Saki; Maehara, Kazumitsu; Kawakami, Koichi; Tachibana, Taro; Ohkawa, Yasuyuki; Kimura, Hiroshi; Yoneda, Yoshihiro

    2016-01-01

    The nucleoporin Nup98 is frequently rearranged to form leukemogenic Nup98-fusion proteins with various partners. However, their function remains largely elusive. Here, we show that Nup98-HoxA9, a fusion between Nup98 and the homeobox transcription factor HoxA9, forms nuclear aggregates that frequently associate with facultative heterochromatin. We demonstrate that stable expression of Nup98-HoxA9 in mouse embryonic stem cells selectively induces the expression of Hox cluster genes. Genome-wide binding site analysis revealed that Nup98-HoxA9 is preferentially targeted and accumulated at Hox cluster regions where the export factor Crm1 is originally prebound. In addition, leptomycin B, an inhibitor of Crm1, disassembled nuclear Nup98-HoxA9 dots, resulting in the loss of chromatin binding of Nup98-HoxA9 and Nup98-HoxA9-mediated activation of Hox genes. Collectively, our results indicate that highly selective targeting of Nup98-fusion proteins to Hox cluster regions via prebound Crm1 induces the formation of higher order chromatin structures that causes aberrant Hox gene regulation. PMID:26740045

  5. Functional annotation of rare gene aberration drivers of pancreatic cancer

    PubMed Central

    Tsang, Yiu Huen; Dogruluk, Turgut; Tedeschi, Philip M.; Wardwell-Ozgo, Joanna; Lu, Hengyu; Espitia, Maribel; Nair, Nikitha; Minelli, Rosalba; Chong, Zechen; Chen, Fengju; Chang, Qing Edward; Dennison, Jennifer B.; Dogruluk, Armel; Li, Min; Ying, Haoqiang; Bertino, Joseph R.; Gingras, Marie-Claude; Ittmann, Michael; Kerrigan, John; Chen, Ken; Creighton, Chad J.; Eterovic, Karina; Mills, Gordon B.; Scott, Kenneth L.

    2016-01-01

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC). This approach reveals oncogenic activity for rare gene aberrations in genes including NAD Kinase (NADK), which regulates NADP(H) homeostasis and cellular redox state. We further validate mutant NADK, whose expression provides gain-of-function enzymatic activity leading to a reduction in cellular reactive oxygen species and tumorigenesis, and show that depletion of wild-type NADK in PDAC cell lines attenuates cancer cell growth in vitro and in vivo. These data indicate that annotating rare aberrations can reveal important cancer signalling pathways representing additional therapeutic targets. PMID:26806015

  6. Susceptibility to Heat Stress and Aberrant Gene Expression Patterns in Holocarboxylase Synthetase-deficient Drosophila melanogaster are Caused by Decreased Biotinylation of Histones, not of Carboxylases12

    PubMed Central

    Camporeale, Gabriela; Zempleni, Janos; Eissenberg, Joel C.

    2007-01-01

    Previously we discovered that holocarboxylase synthetase (HCS) is a chromatin-associated protein in Drosophila melanogaster, and that HCS deficiency alters chromatin structure and gene expression patterns, leading to decreased heat tolerance. The effects of HCS deficiency were attributed to decreased biotinylation of histones. However, HCS is known to mediate biotinylation of carboxylases in cytoplasm and mitochondria in addition to mediating biotinylation of histones. A challenge posed by the genetic analysis of HCS is to distinguish between the effects of decreased biotinylation of carboxylases from the effects of decreased histone biotinylation in the gene expression patterns and phenotypes observed in HCS-deficient flies. Here, we tested whether 3-methylcrotonyl-CoA carboxylase (MCC) mutant flies exhibit gene expression patterns and heat susceptibility similar to that in HCS-deficient Drosophila. Biotin transporter (SMVT) mutants were used to investigate effects of cellular biotin depletion on gene expression and heat susceptibility. Deficiencies of MCC and SMVT in mutant flies were confirmed by real-time PCR, streptavidin blotting of holocarboxylases, and analysis of MCC activities; expression of HCS and biotinylation of histones were not altered in MCC and SMVT mutants. Gene expression patterns in MCC and SMVT mutants were different from that seen with HCS-deficient flies, as judged by the abundance of mRNA coding for defective chorion 1, chitin binding peritrophin-A, dopamine receptor 2, and yolk protein 2. MCC mutants exhibited increased resistance to heat stress compared with wild-type flies. We conclude that gene expression patterns and phenotypes in HCS-deficient flies in previous studies are caused by decreased biotinylation of histones rather than MCC. PMID:17374649

  7. Susceptibility to heat stress and aberrant gene expression patterns in holocarboxylase synthetase-deficient Drosophila melanogaster are caused by decreased biotinylation of histones, not of carboxylases.

    PubMed

    Camporeale, Gabriela; Zempleni, Janos; Eissenberg, Joel C

    2007-04-01

    Previously, we discovered that holocarboxylase synthetase (HCS) is a chromatin-associated protein in Drosophila melanogaster and that HCS deficiency alters chromatin structure and gene expression patterns, leading to decreased heat tolerance. The effects of HCS deficiency were attributed to decreased biotinylation of histones. However, HCS is known to mediate biotinylation of carboxylases in cytoplasm and mitochondria in addition to mediating biotinylation of histones. A challenge posed by the genetic analysis of HCS is to distinguish between the effects of decreased biotinylation of carboxylases from the effects of decreased histone biotinylation in the gene expression patterns and phenotypes observed in HCS-deficient flies. Here, we tested whether 3-methylcrotonyl-CoA carboxylase (MCC) mutant flies exhibit gene expression patterns and heat susceptibility similar to that in HCS-deficient Drosophila. Biotin transporter [sodium-dependent multivitamin transporter (SMVT)] mutants were used to investigate effects of cellular biotin depletion on gene expression and heat susceptibility. Deficiencies of MCC and SMVT in mutant flies were confirmed by real-time PCR, streptavidin blotting of holocarboxylases, and analysis of MCC activities; expression of HCS and biotinylation of histones were not altered in MCC and SMVT mutants. Gene expression patterns in MCC and SMVT mutants were different from that seen with HCS-deficient flies, as judged by the abundance of mRNA coding for defective chorion 1, chitin-binding peritrophin-A, dopamine receptor 2, and yolk protein 2. MCC mutants exhibited increased resistance to heat stress compared with wild-type flies. We conclude that gene expression patterns and phenotypes in HCS-deficient flies in previous studies are caused by decreased biotinylation of histones rather than MCC. PMID:17374649

  8. The Aberrant Gene-End Transcription Signal of the Matrix M Gene of Human Parainfluenza Virus Type 3 Downregulates Fusion F Protein Expression and the F-Specific Antibody Response In Vivo

    PubMed Central

    Lingemann, Matthias; Surman, Sonja; Amaro-Carambot, Emérito; Schaap-Nutt, Anne; Collins, Peter L.

    2015-01-01

    ABSTRACT Human parainfluenza virus type 3 (HPIV3), a paramyxovirus, is a major viral cause of severe lower respiratory tract disease in infants and children. The gene-end (GE) transcription signal of the HPIV3 matrix (M) protein gene is identical to those of the nucleoprotein and phosphoprotein genes except that it contains an apparent 8-nucleotide insert. This was associated with an increased synthesis of a readthrough transcript of the M gene and the downstream fusion (F) protein gene. We hypothesized that this insert may function to downregulate the expression of F protein by interfering with termination/reinitiation at the M-F gene junction, thus promoting the production of M-F readthrough mRNA at the expense of monocistronic F mRNA. To test this hypothesis, two similar recombinant HPIV3 viruses from which this insert in the M-GE signal was removed were generated. The M-GE mutants exhibited a reduction in M-F readthrough mRNA and an increase in monocistronic F mRNA. This resulted in a substantial increase in F protein synthesis in infected cells as well as enhanced incorporation of F protein into virions. The efficiency of mutant virus replication was similar to that of wild-type (wt) HPIV3 both in vitro and in vivo. However, the F-protein-specific serum antibody response in hamsters was increased for the mutants compared to wt HPIV3. This study identifies a previously undescribed viral mechanism for attenuating the host adaptive immune response. Repairing the M-GE signal should provide a means to increase the antibody response to a live attenuated HPIV3 vaccine without affecting viral replication and attenuation. IMPORTANCE The HPIV3 M-GE signal was previously shown to contain an apparent 8-nucleotide insert that was associated with increased synthesis of a readthrough mRNA of the M gene and the downstream F gene. However, whether this had any significant effect on the synthesis of monocistronic F mRNA or F protein, virus replication, virion morphogenesis, and immunogenicity was unknown. Here, we show that the removal of this insert shifts F gene transcription from readthrough M-F mRNA to monocistronic F mRNA. This resulted in a substantial increase in the amount of F protein expressed in the cell and packaged in the virus particle. This did not affect virus replication but increased the F-specific antibody response in hamsters. Thus, in wild-type HPIV3, the aberrant M-GE signal operates a previously undescribed mechanism that reduces the expression of a major neutralization and protective antigen, resulting in reduced immunogenicity. This has implications for the design of live attenuated HPIV3 vaccines; specifically, the antibody response against F can be elevated by “repairing” the M-GE signal to achieve higher-level F antigen expression, with no effect on attenuation. PMID:25589643

  9. Identification of Aberrantly Expressed miRNAs in Gastric Cancer

    PubMed Central

    Liu, Dan; Hu, Xiaowei; Zhou, Hongfeng; Shi, Guangyue; Wu, Jin

    2014-01-01

    The noncoding components of the genome, including miRNA, can contribute to pathogenesis of gastric cancer. Their expression has been profiled in many human cancers, but there are a few published studies in gastric cancer. It is necessary to identify novel aberrantly expressed miRNAs in gastric cancer. In this study, the expression profile of 1891 miRNAs was analyzed using a miRCURY array LNA miRNA chip from three gastric cancer tissues and three normal tissues. The expression levels of 4 miRNAs were compared by real-time PCR between cancerous and normal tissues. We found that 31 miRNAs are upregulated in gastric cancer (P < 0.05) and 10 miRNAs have never been reported by other studies; 30 miRNA are downregulated (P < 0.05) in gastric cancer tissues. Gene ontology analysis revealed that those dysregulated miRNAs mainly take part in regulating cell proliferation. The levels of has-miR-105, -213∗, -514b, and -548n were tested by real-time PCR and have high levels in cancerous tissues. Here, we report a miRNA profile of gastric cancer and provide new perspective to understand this malignant disease. This novel information suggests the potential roles of these miRNAs in the diagnosis, prognosis biomarkers, or therapy targets of gastric cancer. PMID:24982669

  10. Transcriptionally repressed genes become aberrantly methylated and distinguish tumors of different lineages in breast cancer

    PubMed Central

    Sproul, Duncan; Nestor, Colm; Culley, Jayne; Dickson, Jacqueline H.; Dixon, J. Michael; Harrison, David J.; Meehan, Richard R.; Sims, Andrew H.; Ramsahoye, Bernard H.

    2011-01-01

    Aberrant promoter hypermethylation is frequently observed in cancer. The potential for this mechanism to contribute to tumor development depends on whether the genes affected are repressed because of their methylation. Many aberrantly methylated genes play important roles in development and are bivalently marked in ES cells, suggesting that their aberrant methylation may reflect developmental processes. We investigated this possibility by analyzing promoter methylation in 19 breast cancer cell lines and 47 primary breast tumors. In cell lines, we defined 120 genes that were significantly repressed in association with methylation (SRAM). These genes allowed the unsupervised segregation of cell lines into epithelial (EPCAM+ve) and mesenchymal (EPCAM−ve) lineages. However, the methylated genes were already repressed in normal cells of the same lineage, and >90% could not be derepressed by treatment with 5-aza-2′-deoxycytidine. The tumor suppressor genes APC and CDH1 were among those methylated in a lineage-specific fashion. As predicted by the epithelial nature of most breast tumors, SRAM genes that were methylated in epithelial cell lines were frequently aberrantly methylated in primary tumors, as were genes specifically repressed in normal epithelial cells. An SRAM gene expression signature also correctly identified the rare claudin-low and metaplastic tumors as having mesenchymal characteristics. Our findings implicate aberrant DNA methylation as a marker of cell lineage rather than tumor progression and suggest that, in most cases, it does not cause the repression with which it is associated. PMID:21368160

  11. Transcriptionally repressed genes become aberrantly methylated and distinguish tumors of different lineages in breast cancer.

    PubMed

    Sproul, Duncan; Nestor, Colm; Culley, Jayne; Dickson, Jacqueline H; Dixon, J Michael; Harrison, David J; Meehan, Richard R; Sims, Andrew H; Ramsahoye, Bernard H

    2011-03-15

    Aberrant promoter hypermethylation is frequently observed in cancer. The potential for this mechanism to contribute to tumor development depends on whether the genes affected are repressed because of their methylation. Many aberrantly methylated genes play important roles in development and are bivalently marked in ES cells, suggesting that their aberrant methylation may reflect developmental processes. We investigated this possibility by analyzing promoter methylation in 19 breast cancer cell lines and 47 primary breast tumors. In cell lines, we defined 120 genes that were significantly repressed in association with methylation (SRAM). These genes allowed the unsupervised segregation of cell lines into epithelial (EPCAM+ve) and mesenchymal (EPCAM-ve) lineages. However, the methylated genes were already repressed in normal cells of the same lineage, and >90% could not be derepressed by treatment with 5-aza-2'-deoxycytidine. The tumor suppressor genes APC and CDH1 were among those methylated in a lineage-specific fashion. As predicted by the epithelial nature of most breast tumors, SRAM genes that were methylated in epithelial cell lines were frequently aberrantly methylated in primary tumors, as were genes specifically repressed in normal epithelial cells. An SRAM gene expression signature also correctly identified the rare claudin-low and metaplastic tumors as having mesenchymal characteristics. Our findings implicate aberrant DNA methylation as a marker of cell lineage rather than tumor progression and suggest that, in most cases, it does not cause the repression with which it is associated. PMID:21368160

  12. Aberrant phenotype and transcriptome expression during fiber cell wall thickening caused by the mutation of the Im gene in immature fiber (im) mutant in Gossypium hirsutum L

    PubMed Central

    2014-01-01

    Background The immature fiber (im) mutant of Gossypium hirsutum L. is a special cotton fiber mutant with non-fluffy fibers. It has low dry weight and fineness of fibers due to developmental defects in fiber secondary cell wall (SCW). Results We compared the cellulose content in fibers, thickness of fiber cell wall and fiber transcriptional profiling during SCW development in im mutant and its near-isogenic wild-type line (NIL) TM-1. The im mutant had lower cellulose content and thinner cell walls than TM-1 at same fiber developmental stage. During 25 ~ 35 day post-anthesis (DPA), sucrose content, an important carbon source for cellulose synthesis, was also significantly lower in im mutant than in TM-1. Comparative analysis of fiber transcriptional profiling from 13 ~ 25 DPA indicated that the largest transcriptional variations between the two lines occurred at the onset of SCW development. TM-1 began SCW biosynthesis approximately at 16 DPA, whereas the same fiber developmental program in im mutant was delayed until 19 DPA, suggesting an asynchronous fiber developmental program between TM-1 and im mutant. Functional classification and enrichment analysis of differentially expressed genes (DEGs) between the two NILs indicated that genes associated with biological processes related to cellulose synthesis, secondary cell wall biogenesis, cell wall thickening and sucrose metabolism, respectively, were significantly up-regulated in TM-1. Twelve genes related to carbohydrate metabolism were validated by quantitative reverse transcription PCR (qRT-PCR) and confirmed a temporal difference at the earlier transition and SCW biosynthesis stages of fiber development between TM-1 and im mutant. Conclusions We propose that Im is an important regulatory gene influencing temporal differences in expression of genes related to fiber SCW biosynthesis. This study lays a foundation for cloning the Im gene, elucidating molecular mechanism of fiber SCW development and further genetic manipulation for the improvement of fiber fineness and maturity. PMID:24483163

  13. Review: Aberrant EVI1 expression in acute myeloid leukaemia.

    PubMed

    Hinai, Adil A; Valk, Peter J M

    2016-03-01

    Deregulated expression of the ecotropic virus integration site 1 (EVI1) gene is the molecular hallmark of therapy-resistantmyeloid malignancies bearing chromosomal inv(3)(q21q262) or t(3;3)(q21;q262) [hereafter referred to as inv(3)/t(3;3)] abnormalities. EVI1 is a haematopoietic stemness and transcription factor with chromatin remodelling activity. Interestingly, the EVI1 gene also shows overexpression in 6-11% of adult acute myeloid leukaemia (AML) cases that do not carry any 3q aberrations. Deregulated expression of EVI1 is strongly associated with monosomy 7 and 11q23 abnormalities, which are known to be associated with poor response to treatment. However, EVI1 overexpression has been revealed as an important independent adverse prognostic marker in adult AML and defines distinct risk categories in 11q23-rearranged AML. Recently, important progress has been made in the delineation of the mechanism by which EVI1 becomes deregulated in inv(3)/t(3;3) as well as the cooperating mutations in this specific subset of AML with dismal prognosis. PMID:26729571

  14. EG-16ABERRANT Myst4/Brpf1 SIGNALING MISDIRECTS REGIONAL NEUROGENESIS PROGRAMS, SUSTAINING EXPRESSION OF SELF-RENEWAL GENES IN PEDIATRIC BRAIN CANCERS

    PubMed Central

    Van Meter, Timothy E.; Khan, Asadullah; Fitzmartin, Kevin; Taylor, Michael D.; Mack, Stephen; Cote, Jacques

    2014-01-01

    The Myst family of acetyltransferase proteins has been shown to play important role in development and self-renewal, primarily through lysine acetylation on Histones H3 and H4. In neural development, Myst4 (Morf/KAT6B) has been found to be critical for self-renewal and for neuron generation in the developing nervous system and during adult neurogenesis. This chromatin modifier exists in a complex with Myst3 (Moz/KAT6A), the bromodomain factor Brpf1, which acts as a protein scaffold, targeting histone acetyltransferases to chromatin, as well as Inhibitor of Growth 5 (ING5) and Esa1-associated factor 6 (EAF6). Our laboratories have found alteration of these elements in pediatric brain cancers, suggesting a pathological role in abnormal neural progenitor growth. Exon-specific microarrays, DNA methylation studies and functional perturbation were performed to study the impact on tumor behavior. RNA interference in tumors and neural progenitors led to loss of H3K4acetylation in target genes and altered expression, including Spondin-1. Conversely, exogenous over-expression of targeting factors, such as Brpf1, enhanced expression of target genes, assessed by quantitative PCR analysis. Furthermore, expression of Myst3/4 and Brpf1 positively correlated with tumor malignancy markers in large patient cohorts, including Ki67, PCNA, and MELK, and with decreased overall survival. Assessment of direct functional relationships with tumor markers using ChIP-Seq approaches is currently being pursued to investigate direct Myst3/4/Brpf1-mediated promoter activity at known and novel target genes. These studies aim to elucidate the role of an important epigenetic mechanism in neurogenesis, the alteration of which may underlie global chromatin changes that contribute to tumor growth or initiation. Sustained progenitor growth may be suppressed by targeted therapies that disrupt these factors.

  15. Aberrant expression of microRNA-99a and its target gene mTOR associated with malignant progression and poor prognosis in patients with osteosarcoma

    PubMed Central

    Zhao, Jiali; Chen, Fengli; Zhou, Quan; Pan, Wei; Wang, Xinhong; Xu, Jin; Ni, Li; Yang, Huilin

    2016-01-01

    Background The mammalian target of rapamycin (mTOR) has been reported to act as a target gene of microRNA (miR)-99a in various cancer cells and identified as an independent prognostic marker of human osteosarcoma. The aim of this study was to investigate the clinical significance of miR-99a/mTOR axis in human osteosarcoma. Methods A total of 130 pairs of osteosarcoma and matched noncancerous bone tissues were used to detect the expression levels of miR-99a and mTOR mRNA by quantitative real-time polymerase chain reaction. Then, associations of miR-99a and/or mTOR expression with clinico-pathological features and prognosis of patients with osteosarcoma were statistically analyzed. Results The expression levels of miR-99a (tumor vs normal: 2.11±1.03 vs 4.69±1.21, P<0.001) and mTOR mRNA (tumor vs normal: 4.40±1.13 vs 1.74±0.85, P<0.001) in osteosarcoma tissues were, respectively, lower and higher than those in noncancerous bone tissues. The expression levels of miR-99a in osteosarcoma tissues were negatively correlated with those of mTOR mRNA. Additionally, miR-99a-low and/or mTOR-high expression were all significantly associated with advanced surgical stage, positive metastasis and recurrence, and poor response to chemotherapy (all P<0.05). Moreover, patients with osteosarcoma with miR-99a-low and/or mTOR-high expression had shorter overall and disease-free survivals than those in miR-99a-high and/or mTOR-low expression groups. Multivariate Cox analyses showed that miR-99a and/or mTOR expression were all independent prognostic factors of osteosarcoma. Conclusion Our data showed the crucial role of miR-99a/mTOR axis in the malignant progression of human osteosarcoma, implying that conjoined expression of miR-99a and mTOR may offer an attractive novel prognostic marker for this disease. PMID:27073323

  16. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    PubMed

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis. PMID:23103869

  17. Gene Fusions Associated with Recurrent Amplicons Represent a Class of Passenger Aberrations in Breast Cancer12

    PubMed Central

    Kalyana-Sundaram, Shanker; Shankar, Sunita; DeRoo, Scott; Iyer, Matthew K; Palanisamy, Nallasivam; Chinnaiyan, Arul M; Kumar-Sinha, Chandan

    2012-01-01

    Application of high-throughput transcriptome sequencing has spurred highly sensitive detection and discovery of gene fusions in cancer, but distinguishing potentially oncogenic fusions from random, passenger aberrations has proven challenging. Here we examine a distinctive group of gene fusions that involve genes present in the loci of chromosomal amplificationsa class of oncogenic aberrations that are widely prevalent in breast cancers. Integrative analysis of a panel of 14 breast cancer cell lines comparing gene fusions discovered by high-throughput transcriptome sequencing and genome-wide copy number aberrations assessed by array comparative genomic hybridization, led to the identification of 77 gene fusions, of which more than 60% were localized to amplicons including 17q12, 17q23, 20q13, chr8q, and others. Many of these fusions appeared to be recurrent or involved highly expressed oncogenic drivers, frequently fused with multiple different partners, but sometimes displaying loss of functional domains. As illustrative examples of the amplicon-associated gene fusions, we examined here a recurrent gene fusion involving the mediator of mammalian target of rapamycin signaling, RPS6KB1 kinase in BT-474, and the therapeutically important receptor tyrosine kinase EGFR in MDA-MB-468 breast cancer cell line. These gene fusions comprise a minor allelic fraction relative to the highly expressed full-length transcripts and encode chimera lacking the kinase domains, which do not impart dependence on the respective cells. Our study suggests that amplicon-associated gene fusions in breast cancer primarily represent a by-product of chromosomal amplifications, which constitutes a subset of passenger aberrations and should be factored accordingly during prioritization of gene fusion candidates. PMID:22952423

  18. Aberrant expression of the p53-inducible antiproliferative gene BTG2 in hepatocellular carcinoma is associated with overexpression of the cell cycle-related proteins.

    PubMed

    Zhang, Zhimin; Chen, Chuan; Wang, Ge; Yang, Zhixiang; San, Jinlu; Zheng, Jijun; Li, Qiong; Luo, Xizhong; Hu, Qing; Li, Zengpeng; Wang, Dong

    2011-09-01

    We previously reported that the abnormal BTG2 expression was related to genesis/development of hepatocellular carcinoma (HCC). The aim of this study was to evaluate the BTG2 expression in HCC compared with p53, cyclin D1, and cyclin E. For this purpose, modified diethylnitrosamine (DEN)-induced primary HCC rat model was established. Target proteins and mRNAs were measured by western blot and RT-PCR/northern blot, respectively. In rat liver, expression of BTG2 and other proteins was determined by western blot, and BTG2 mRNA in HCC/normal tissues was detected by high-flux tissue microarray (TMA) and in situ hybridization (ISH). BTG2 mRNA/protein expression was increased in fetal liver, 7701, and LO2 cell lines but decreased in HepG2 cells. BTG2/p53 were expressed early after DEN treatment, peaked at 5 weeks and decreased gradually thereafter. Cyclin-D1/Cyclin-E expression increased significantly with the tumor progression. BTG2 mRNA was expressed in 71.19% HCC by ISH and correlated with differentiation. Expression of p53/cyclin D1/cyclin E was positive in 82.35/94.12/76.47% BTG2 mRNA-negative tissues, respectively. BTG2 protein expression was lost in 32.2% (19/59) HCC tissues, and the mRNA/protein expression correlated significantly with the increasing tumor grade (P < 0.05). In conclusion, BTG2 expression is commonly impaired in HCC which may be a factor involved in deregulation of cyclin-D1/cyclin-E expression during hepatocarcinogenesis. PMID:21327578

  19. Genomic aberrations frequently alter chromatin regulatory genes in chordoma.

    PubMed

    Wang, Lu; Zehir, Ahmet; Nafa, Khedoudja; Zhou, Nengyi; Berger, Michael F; Casanova, Jacklyn; Sadowska, Justyna; Lu, Chao; Allis, C David; Gounder, Mrinal; Chandhanayingyong, Chandhanarat; Ladanyi, Marc; Boland, Patrick J; Hameed, Meera

    2016-07-01

    Chordoma is a rare primary bone neoplasm that is resistant to standard chemotherapies. Despite aggressive surgical management, local recurrence and metastasis is not uncommon. To identify the specific genetic aberrations that play key roles in chordoma pathogenesis, we utilized a genome-wide high-resolution SNP-array and next generation sequencing (NGS)-based molecular profiling platform to study 24 patient samples with typical histopathologic features of chordoma. Matching normal tissues were available for 16 samples. SNP-array analysis revealed nonrandom copy number losses across the genome, frequently involving 3, 9p, 1p, 14, 10, and 13. In contrast, copy number gain is uncommon in chordomas. Two minimum deleted regions were observed on 3p within a ∼8 Mb segment at 3p21.1-p21.31, which overlaps SETD2, BAP1 and PBRM1. The minimum deleted region on 9p was mapped to CDKN2A locus at 9p21.3, and homozygous deletion of CDKN2A was detected in 5/22 chordomas (∼23%). NGS-based molecular profiling demonstrated an extremely low level of mutation rate in chordomas, with an average of 0.5 mutations per sample for the 16 cases with matched normal. When the mutated genes were grouped based on molecular functions, many of the mutation events (∼40%) were found in chromatin regulatory genes. The combined copy number and mutation profiling revealed that SETD2 is the single gene affected most frequently in chordomas, either by deletion or by mutations. Our study demonstrated that chordoma belongs to the C-class (copy number changes) tumors whose oncogenic signature is non-random multiple copy number losses across the genome and genomic aberrations frequently alter chromatin regulatory genes. © 2016 Wiley Periodicals, Inc. PMID:27072194

  20. Aberrant LRP16 protein expression in primary neuroendocrine lung tumors

    PubMed Central

    Shao, Yun; Li, Xiaoying; Lu, Yali; Liu, Lin; Zhao, Po

    2015-01-01

    Background: The Leukemia related protein 16 gene (LRP16) localized on chromosome 11q12.1, is an important estrogen-responsive gene and a crucial regulator for NF-kB activation. LRP16 is frequently expressed in human cancers; however, the LRP16 gene remains unexplored in lung neuroendocrine tumors. The aim of this study was to investigate the role of LRP16 expression in primary lung neuroendocrine tumors. Methods: lung neuroendocrine tumors were analyzed for LRP16 gene expression by two-step non-biotin immunohistochemical method. Results: Fifty of ninety (55.6%) cases of neuroendocrine lung tumors tested were positive for LRP16 protein by immunohistochemistry. The expression of LRP16 was mainly located in cytoplasm and nucleus of tumor cells. LRP16 protein was corresponding to tumor type and clinical stage, as well as survival time. Conclusions: The results indicate that abnormal LRP16 expression is noted in neuroendocrine lung tumors and the expression can give insight into the pathogenesis of the disease. The LRP16 protein may serve as a potential marker in predicting prognosis of neuroendocrine lung tumors. PMID:26261536

  1. Aberrant Expression of COT Is Related to Recurrence of Papillary Thyroid Cancer

    PubMed Central

    Lee, Jandee; Jeong, Seonhyang; Park, Jae Hyun; Lee, Cho Rok; Ku, Cheol Ryong; Kang, Sang-Wook; Jeong, Jong Ju; Nam, Kee-Hyun; Shin, Dong Yeob; Lee, Eun Jig; Chung, Woong Youn; Jo, Young Suk

    2015-01-01

    Abstract Aberrant expression of Cancer Osaka Thyroid Oncogene mitogen-activated protein kinase kinase kinase 8 (COT) (MAP3K8) is a driver of resistance to B-RAF inhibition. However, the de novo expression and clinical implications of COT in papillary thyroid cancer (PTC) have not been investigated. The aim of this study is to investigate the expression of A-, B-, C-RAF, and COT in PTC (n = 167) and analyze the clinical implications of aberrant expression of these genes. Quantitative polymerase chain reaction (qPCR) and immunohistochemical staining (IHC) were performed on primary thyroid cancers. Expression of COT was compared with clinicopathological characteristics including recurrence-free survival. Datasets from public repository (NCBI) were subjected to Gene Set Enrichment Analysis (GSEA). qPCR data showed that the relative mRNA expression of A-, B-, C-RAF and COT of PTC were higher than normal tissues (all P < 0.01). In addition, the expression of COT mRNA in PTC showed positive correlation with A- (r = 0.4083, P < 0.001), B- (r = 0.2773, P = 0.0003), and C-RAF (r = 0.5954, P < 0.001). The mRNA expressions of A-, B,- and C-RAF were also correlated with each other (all P < 0.001). In IHC, the staining intensities of B-RAF and COT were higher in PTC than in normal tissue (P < 0.001). Interestingly, moderate-to-strong staining intensities of B-RAF and COT were more frequent in B-RAFV600E-positive PTC (P < 0.001, P = 0.013, respectively). In addition, aberrant expression of COT was related to old age at initial diagnosis (P = 0.045) and higher recurrence rate (P = 0.025). In multivariate analysis, tumor recurrence was persistently associated with moderate-to-strong staining of COT after adjusting for age, sex, extrathyroidal extension, multifocality, T-stage, N-stage, TNM stage, and B-RAFV600E mutation (odds ratio, 4.662; 95% confidence interval 1.066 − 21.609; P = 0.045). Moreover, moderate-to-strong COT expression in PTC was associated with shorter recurrence-free survival (mean follow-up duration, 14.2 ± 4.1 years; P = 0.0403). GSEA indicated that gene sets related to B-RAF-RAS (P < 0.0001, false discovery rate [FDR] q-value = 0.000) and thyroid differentiation (P = 0.048, FDR q-value = 0.05) scores were enriched in lower COT expression group and gene sets such as T-cell receptor signaling pathway and Toll-like receptor signaling pathway are coordinately upregulated in higher COT expression group (both, P < 0.0001, FDR q-value = 0.000). Aberrant expression of A-, B-, and C-RAF, and COT is frequent in PTC; increased expression of COT is correlated with recurrence of PTC. PMID:25674762

  2. Aberrant expression of COT is related to recurrence of papillary thyroid cancer.

    PubMed

    Lee, Jandee; Jeong, Seonhyang; Park, Jae Hyun; Lee, Cho Rok; Ku, Cheol Ryong; Kang, Sang-Wook; Jeong, Jong Ju; Nam, Kee-Hyun; Shin, Dong Yeob; Lee, Eun Jig; Chung, Woong Youn; Jo, Young Suk

    2015-02-01

    Aberrant expression of Cancer Osaka Thyroid Oncogene mitogen-activated protein kinase kinase kinase 8 (COT) (MAP3K8) is a driver of resistance to B-RAF inhibition. However, the de novo expression and clinical implications of COT in papillary thyroid cancer (PTC) have not been investigated.The aim of this study is to investigate the expression of A-, B-, C-RAF, and COT in PTC (n = 167) and analyze the clinical implications of aberrant expression of these genes.Quantitative polymerase chain reaction (qPCR) and immunohistochemical staining (IHC) were performed on primary thyroid cancers. Expression of COT was compared with clinicopathological characteristics including recurrence-free survival. Datasets from public repository (NCBI) were subjected to Gene Set Enrichment Analysis (GSEA).qPCR data showed that the relative mRNA expression of A-, B-, C-RAF and COT of PTC were higher than normal tissues (all P < 0.01). In addition, the expression of COT mRNA in PTC showed positive correlation with A- (r = 0.4083, P < 0.001), B- (r = 0.2773, P = 0.0003), and C-RAF (r = 0.5954, P < 0.001). The mRNA expressions of A-, B,- and C-RAF were also correlated with each other (all P < 0.001). In IHC, the staining intensities of B-RAF and COT were higher in PTC than in normal tissue (P < 0.001). Interestingly, moderate-to-strong staining intensities of B-RAF and COT were more frequent in B-RAF-positive PTC (P < 0.001, P = 0.013, respectively). In addition, aberrant expression of COT was related to old age at initial diagnosis (P = 0.045) and higher recurrence rate (P = 0.025). In multivariate analysis, tumor recurrence was persistently associated with moderate-to-strong staining of COT after adjusting for age, sex, extrathyroidal extension, multifocality, T-stage, N-stage, TNM stage, and B-RAF mutation (odds ratio, 4.662; 95% confidence interval 1.066 - 21.609; P = 0.045). Moreover, moderate-to-strong COT expression in PTC was associated with shorter recurrence-free survival (mean follow-up duration, 14.2 ± 4.1 years; P = 0.0403). GSEA indicated that gene sets related to B-RAF-RAS (P < 0.0001, false discovery rate [FDR] q-value = 0.000) and thyroid differentiation (P = 0.048, FDR q-value = 0.05) scores were enriched in lower COT expression group and gene sets such as T-cell receptor signaling pathway and Toll-like receptor signaling pathway are coordinately upregulated in higher COT expression group (both, P < 0.0001, FDR q-value = 0.000).Aberrant expression of A-, B-, and C-RAF, and COT is frequent in PTC; increased expression of COT is correlated with recurrence of PTC. PMID:25674762

  3. Aberrant methylation of imprinted genes is associated with negative hormone receptor status in invasive breast cancer.

    PubMed

    Barrow, Timothy M; Barault, Ludovic; Ellsworth, Rachel E; Harris, Holly R; Binder, Alexandra M; Valente, Allyson L; Shriver, Craig D; Michels, Karin B

    2015-08-01

    Epigenetic regulation of imprinted genes enables monoallelic expression according to parental origin, and its disruption is implicated in many cancers and developmental disorders. The expression of hormone receptors is significant in breast cancer because they are indicators of cancer cell growth rate and determine response to endocrine therapies. We investigated the frequency of aberrant events and variation in DNA methylation at nine imprinted sites in invasive breast cancer and examined the association with estrogen and progesterone receptor status. Breast tissue and blood from patients with invasive breast cancer (n = 38) and benign breast disease (n = 30) were compared with those from healthy individuals (n = 36), matched with the cancer patients by age at diagnosis, ethnicity, body mass index, menopausal status and familial history of cancer. DNA methylation and allele-specific expression were analyzed by pyrosequencing. Tumor-specific methylation changes at IGF2 DMR2 were observed in 59% of cancer patients, IGF2 DMR0 in 38%, DIRAS3 DMR in 36%, GRB10 ICR in 23%, PEG3 DMR in 21%, MEST ICR in 19%, H19 ICR in 18%, KvDMR in 8% and SNRPN/SNURF ICR in 4%. Variation in methylation was significantly greater in breast tissue from cancer patients compared with that in healthy individuals and benign breast disease. Aberrant methylation of three or more sites was significantly associated with negative estrogen-alpha (Fisher's exact test, p = 0.02) and progesterone-A (p = 0.02) receptor status. Aberrant events and increased variation in imprinted gene DNA methylation, therefore, seem to be frequent in invasive breast cancer and are associated with negative estrogen and progesterone receptor status, without loss of monoallelic expression. PMID:25560175

  4. Molecular weight abnormalities of the CTCF transcription factor: CTCF migrates aberrantly in SDS-PAGE and the size of the expressed protein is affected by the UTRs and sequences within the coding region of the CTCF gene.

    PubMed Central

    Klenova, E M; Nicolas, R H; U, S; Carne, A F; Lee, R E; Lobanenkov, V V; Goodwin, G H

    1997-01-01

    CTCF belongs to the Zn finger transcription factors family and binds to the promoter region of c-myc. CTCF is highly conserved between species, ubiquitous and localised in nuclei. The endogenous CTCF migrates as a 130 kDa (CTCF-130) protein on SDS-PAGE, however, the open reading frame (ORF) of the CTCF cDNA encodes only a 82 kDa protein (CTCF-82). In the present study we investigate this phenomenon and show with mass-spectra analysis that this occurs due to aberrant mobility of the CTCF protein. Another paradox is that our original cDNA, composed of the ORF and 3'-untranslated region (3'-UTR), produces a protein with the apparent molecular weight of 70 kDa (CTCF-70). This paradox has been found to be an effect of the UTRs and sequences within the coding region of the CTCF gene resulting in C-terminal truncation of CTCF-130. The potential attenuator has been identified and point-mutated. This restored the electrophoretic mobility of the CTCF protein to 130 kDa. CTCF-70, the aberrantly migrating CTCF N-terminus per se, is also detected in some cell types and therefore may have some biological implications. In particular, CTCF-70 interferes with CTCF-130 normal function, enhancing transactivation induced by CTCF-130 in COS6 cells. The mechanism of CTCF-70 action and other possible functions of CTCF-70 are discussed. PMID:9016583

  5. Current understanding of the functional roles of aberrantly expressed microRNAs in esophageal cancer

    PubMed Central

    Kestens, Christine; Siersema, Peter D; van Baal, Jantine WPM

    2016-01-01

    The incidence of esophageal cancer is rising, mostly because the increasing incidence of esophageal adenocarcinoma in Western countries. Despite improvements in diagnosis and treatment, the overall 5-year survival rates remain low. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate the expression of target genes. Recently, disease specific miRNAs have been identified, which act as tumor suppressors or oncogenes. In this review, we will summarize the current knowledge about the function of aberrantly expressed miRNAs in esophageal cancer. We selected 5 miRNAs (miRNA-21, -143, -145, -196a and let-7) based on the available literature, and described their potential role in regulating pathways that are deregulated in esophageal cancer. Finally we will highlight the current achievements of using and targeting miRNAs. Because these miRNAs likely have important regulatory roles in cancer development, they open a therapeutic window for new treatment modalities. PMID:26755856

  6. Aberrant expression and regulation of NR2F2 and CTNNB1 in uterine fibroids.

    PubMed

    Zaitseva, Marina; Holdsworth-Carson, Sarah J; Waldrip, Luke; Nevzorova, Julia; Martelotto, Luciano; Vollenhoven, Beverley J; Rogers, Peter A W

    2013-08-01

    Uterine fibroids are the most common benign tumour afflicting women of reproductive age. Despite the large healthcare burden caused by fibroids, there is only limited understanding of the molecular mechanisms that drive fibroid pathophysiology. Although a large number of genes are differentially expressed in fibroids compared with myometrium, it is likely that most of these differences are a consequence of the fibroid presence and are not causal. The aim of this study was to investigate the expression and regulation of NR2F2 and CTNNB1 based on their potential causal role in uterine fibroid pathophysiology. We used real-time quantitative RT-PCR, western blotting and immunohistochemistry to describe the expression of NR2F2 and CTNNB1 in matched human uterine fibroid and myometrial tissues. Primary myometrial and fibroid smooth muscle cell cultures were treated with progesterone and/or retinoic acid (RA) and sonic hedgehog (SHH) conditioned media to investigate regulatory pathways for these proteins. We showed that NR2F2 and CTNNB1 are aberrantly expressed in fibroid tissue compared with matched myometrium, with strong blood vessel-specific localisation. Although the SHH pathway was shown to be active in myometrial and fibroid primary cultures, it did not regulate NR2F2 or CTNNB1 mRNA expression. However, progesterone and RA combined regulated NR2F2 mRNA, but not CTNNB1, in myometrial but not fibroid primary cultures. In conclusion, we demonstrate aberrant expression and regulation of NR2F2 and CTNNB1 in uterine fibroids compared with normal myometrium, consistent with the hypothesis that these factors may play a causal role uterine fibroid development. PMID:23704310

  7. Aberrant expression of interferon regulatory factor 3 in human lung cancer

    SciTech Connect

    Tokunaga, Takayuki; Division of Surgical Oncology, Department of Translational Medical Science, Nagasaki University Graduate School of Biomedical Science, 1-12-4 Sakamoto, Nagasaki 852-8523 ; Naruke, Yuki; Shigematsu, Sayuri; Kohno, Tomoko; Yasui, Kiyoshi; Ma, Yuhua; Chua, Koon Jiew; Katayama, Ikuo; Nakamura, Takashi; Hishikawa, Yoshitaka; Koji, Takehiko; Yatabe, Yasushi; Nagayasu, Takeshi; Fujita, Takashi; Matsuyama, Toshifumi; The Global Center of Excellence Program at Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 ; and others

    2010-06-25

    We analyzed the subcellular distributions and gene structures of interferon regulatory factor 3 (IRF3) transcription factor in 50 cases of human primary lung cancer. The immunohistochemical analyses revealed substantially aberrant IRF3 expression specific to the cancer lesions (2 and 6 tumors with nuclear staining, and 4 and 5 tumors with negative staining, in adenocarcinoma and squamous cell carcinoma, respectively), while the morphologically normal region around the tumors exhibited only cytoplasmic staining. In addition, we determined the sequence of the entire IRF3 coding region, and found two novel variants with the amino acid changes (S{sup 175}(AGC) {yields} R{sup 175}(CGC) and A{sup 208}(GCC) {yields} D{sup 208}(GAC)). The R{sup 175} variant was also detected in a morphologically normal region around the nuclear staining squamous cell carcinoma, and exhibited almost the same functions as the wild type IRF3. On the other hand, the D{sup 208} variant, found in the negative staining squamous cell carcinoma cases, reduced the nuclear translocation in response to I{kappa}B kinase {epsilon} stimulation, as compared to the wild type IRF3, but the same variant was detected in the surrounding morphologically normal region. The aberrant expression of IRF3 and the novel D{sup 208} variant may provide clues to elucidate the etiology of primary lung cancer.

  8. GENE EXPRESSION NETWORKS

    EPA Science Inventory

    "Gene expression network" is the term used to describe the interplay, simple or complex, between two or more gene products in performing a specific cellular function. Although the delineation of such networks is complicated by the existence of multiple and subtle types of intera...

  9. Dopamine Signaling Leads to Loss of Polycomb Repression and Aberrant Gene Activation in Experimental Parkinsonism

    PubMed Central

    Lerdrup, Mads; Gomes, Ana-Luisa; Kryh, Hanna; Spigolon, Giada; Caboche, Jocelyne; Fisone, Gilberto; Hansen, Klaus

    2014-01-01

    Polycomb group (PcG) proteins bind to and repress genes in embryonic stem cells through lineage commitment to the terminal differentiated state. PcG repressed genes are commonly characterized by the presence of the epigenetic histone mark H3K27me3, catalyzed by the Polycomb repressive complex 2. Here, we present in vivo evidence for a previously unrecognized plasticity of PcG-repressed genes in terminally differentiated brain neurons of parkisonian mice. We show that acute administration of the dopamine precursor, L-DOPA, induces a remarkable increase in H3K27me3S28 phosphorylation. The induction of the H3K27me3S28p histone mark specifically occurs in medium spiny neurons expressing dopamine D1 receptors and is dependent on Msk1 kinase activity and DARPP-32-mediated inhibition of protein phosphatase-1. Chromatin immunoprecipitation (ChIP) experiments showed that increased H3K27me3S28p was accompanied by reduced PcG binding to regulatory regions of genes. An analysis of the genome wide distribution of L-DOPA-induced H3K27me3S28 phosphorylation by ChIP sequencing (ChIP-seq) in combination with expression analysis by RNA-sequencing (RNA-seq) showed that the induction of H3K27me3S28p correlated with increased expression of a subset of PcG repressed genes. We found that induction of H3K27me3S28p persisted during chronic L-DOPA administration to parkisonian mice and correlated with aberrant gene expression. We propose that dopaminergic transmission can activate PcG repressed genes in the adult brain and thereby contribute to long-term maladaptive responses including the motor complications, or dyskinesia, caused by prolonged administration of L-DOPA in Parkinson's disease. PMID:25254549

  10. Dopamine signaling leads to loss of Polycomb repression and aberrant gene activation in experimental parkinsonism.

    PubMed

    Sdersten, Erik; Feyder, Michael; Lerdrup, Mads; Gomes, Ana-Luisa; Kryh, Hanna; Spigolon, Giada; Caboche, Jocelyne; Fisone, Gilberto; Hansen, Klaus

    2014-09-01

    Polycomb group (PcG) proteins bind to and repress genes in embryonic stem cells through lineage commitment to the terminal differentiated state. PcG repressed genes are commonly characterized by the presence of the epigenetic histone mark H3K27me3, catalyzed by the Polycomb repressive complex 2. Here, we present in vivo evidence for a previously unrecognized plasticity of PcG-repressed genes in terminally differentiated brain neurons of parkisonian mice. We show that acute administration of the dopamine precursor, L-DOPA, induces a remarkable increase in H3K27me3S28 phosphorylation. The induction of the H3K27me3S28p histone mark specifically occurs in medium spiny neurons expressing dopamine D1 receptors and is dependent on Msk1 kinase activity and DARPP-32-mediated inhibition of protein phosphatase-1. Chromatin immunoprecipitation (ChIP) experiments showed that increased H3K27me3S28p was accompanied by reduced PcG binding to regulatory regions of genes. An analysis of the genome wide distribution of L-DOPA-induced H3K27me3S28 phosphorylation by ChIP sequencing (ChIP-seq) in combination with expression analysis by RNA-sequencing (RNA-seq) showed that the induction of H3K27me3S28p correlated with increased expression of a subset of PcG repressed genes. We found that induction of H3K27me3S28p persisted during chronic L-DOPA administration to parkisonian mice and correlated with aberrant gene expression. We propose that dopaminergic transmission can activate PcG repressed genes in the adult brain and thereby contribute to long-term maladaptive responses including the motor complications, or dyskinesia, caused by prolonged administration of L-DOPA in Parkinson's disease. PMID:25254549

  11. Frequent chromosomal aberrations and candidate genes in head and neck squamous cell carcinoma.

    PubMed

    Szyfter, Krzysztof; Wierzbicka, Malgorzata; Hunt, Jennifer L; Rinaldo, Alessandra; Rodrigo, Juan P; Takes, Robert P; Ferlito, Alfio

    2016-03-01

    The knowledge of the biology of head and neck squamous cell carcinoma (HNSCC) has had relatively little impact on the improvement in oncologic outcome up to date. However, the identification of oncogenes and tumor suppressor genes (TSGs) involved in cancer progression contributes to the understanding of the molecular pathways involved in oncogenesis and could contribute to individual risk assessment and provide tools for improvement of treatment and targets for therapy based on the alterations in these pathways. The aim of this article is to review the chromosomal aberrations commonly found in HNSCC, to identify the genes in these chromosomal regions suggested to act as (candidate) oncogenes or TSGs, and to discuss the molecular mechanisms modulating their expression. PMID:25355032

  12. GENE EXPRESSION PROFILING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA microarray technology is fast becoming a standard tool for gene expression analysis. The laboratory methods and protocols for array construction, processing, and hybridization are well established. Many of the initial plant genome sequencing projects are providing large sets of expressed seque...

  13. Gene expression in brain

    SciTech Connect

    Zomzely-Neurath, C.; Walker, W.

    1985-01-01

    This book contains 10 chapters. Some of the chapter titles are: Peptide Hormone Gene Expression in the Brain; Molecular Biology of the Mammalian Brain; Expression of Microtubule Proteins in Brain; and The Molecular Genetic Analysis of sn-Gylycerol-3-Phosphate Dehydrogenase Development in Mouse Cerebellum.

  14. Krüppel-Like factor 9 loss-of-expression in human endometrial carcinoma links altered expression of growth-regulatory genes with aberrant proliferative response to estrogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endometrial cancer is the most commonly diagnosed female genital tract malignancy. Krüppel-like Factor 9 (KLF9), a member of the evolutionarily conserved Sp-family of transcription factors, is expressed in uterine stroma and glandular epithelium where it affects cellular proliferation, differenti...

  15. A gene expression screen.

    PubMed Central

    Wang, Z; Brown, D D

    1991-01-01

    A gene expression screen identifies mRNAs that differ in abundance between two mRNA mixtures by a subtractive hybridization method. The two mRNA populations are converted to double-stranded cDNAs, fragmented, and ligated to linkers for polymerase chain reaction (PCR) amplification. The multiple cDNA fragments isolated from any given gene can be treated as alleles in a genetic screen. Probability analysis of the frequency with which multiple alleles are found provides an estimation of the total number of up- and down-regulated genes. We have applied this method to genes that are differentially expressed in amphibian tadpole tail tissue in the first 24 hr after thyroid hormone treatment, which ultimately induces tail resorption. We estimate that there are about 30 up-regulated genes; 16 have been isolated. Images PMID:1722336

  16. Increased APRIL Expression Induces IgA1 Aberrant Glycosylation in IgA Nephropathy.

    PubMed

    Zhai, Ya-Ling; Zhu, Li; Shi, Su-Fang; Liu, Li-Jun; Lv, Ji-Cheng; Zhang, Hong

    2016-03-01

    Aberrant glycosylated IgA1 molecules, mainly galactose-deficient IgA1 (Gd-IgA1), are important causal factors in IgA nephropathy; however, the underlying mechanism for the production of aberrantly glycosylated IgA1 is unknown. A recent genome-wide association study identified a novel IgAN susceptibility gene, TNFSF13, which encoded a proliferation-inducing ligand (APRIL) that promotes lymphocyte proliferation and IgA class switching. We aimed to explore the mechanism of APRIL's involvement in IgAN.We enrolled 166 patients with IgAN and 77 healthy controls and detected the plasma APRIL levels by the ELISA method, identified the mRNA expression of APRIL and its receptors by relative quantitative PCR, and confirmed by in vitro experiment.We identified increased plasma APRIL levels in IgAN, which was further proved by upregulated mRNA expression in B-lymphocytes from 27 IgAN patients. Analysis of the clinical characteristics of patients with IgAN showed that higher plasma APRIL level was associated with more severe clinical presentations (high proteinuria and low eGFR). The plasma APRIL level was positively correlated with Gd-IgA1 levels. Furthermore, exogenous APRIL could induce more production of Gd-IgA1 in cultured lymphocytes from patients with IgAN, compared with that from healthy controls. And, the relative higher expression of receptors of APRIL, that is, BCMA and TACI, in B-lymphocytes from IgAN patients were observed.Our findings implied that in patients with IgAN, increased APRIL is accompanied elevated expression of its receptors in B-lymphocytes, which induces overproduction of Gd-IgA1, ultimately contributing to the pathogenesis of IgAN. PMID:26986150

  17. Developmental genes significantly afflicted by aberrant promoter methylation and somatic mutation predict overall survival of late-stage colorectal cancer

    PubMed Central

    An, Ning; Yang, Xue; Cheng, Shujun; Wang, Guiqi; Zhang, Kaitai

    2015-01-01

    Carcinogenesis is an exceedingly complicated process, which involves multi-level dysregulations, including genomics (majorly caused by somatic mutation and copy number variation), DNA methylomics, and transcriptomics. Therefore, only looking into one molecular level of cancer is not sufficient to uncover the intricate underlying mechanisms. With the abundant resources of public available data in the Cancer Genome Atlas (TCGA) database, an integrative strategy was conducted to systematically analyze the aberrant patterns of colorectal cancer on the basis of DNA copy number, promoter methylation, somatic mutation and gene expression. In this study, paired samples in each genomic level were retrieved to identify differentially expressed genes with corresponding genetic or epigenetic dysregulations. Notably, the result of gene ontology enrichment analysis indicated that the differentially expressed genes with corresponding aberrant promoter methylation or somatic mutation were both functionally concentrated upon developmental process, suggesting the intimate association between development and carcinogenesis. Thus, by means of random walk with restart, 37 significant development-related genes were retrieved from a priori-knowledge based biological network. In five independent microarray datasets, Kaplan–Meier survival and Cox regression analyses both confirmed that the expression of these genes was significantly associated with overall survival of Stage III/IV colorectal cancer patients. PMID:26691761

  18. Aberrant Chloride Intracellular Channel 4 Expression Contributes to Endothelial Dysfunction in Pulmonary Arterial Hypertension

    PubMed Central

    Wojciak-Stothard, Beata; Abdul-Salam, Vahitha B.; Lao, Ka Hou; Tsang, Hilda; Irwin, David C.; Lisk, Christina; Loomis, Zoe; Stenmark, Kurt R.; Edwards, John C; Yuspa, Stuart H.; Howard, Luke S.; Edwards, Robert J.; Rhodes, Christopher J.; Gibbs, J Simon R.; Wharton, John; Zhao, Lan; Wilkins, Martin R.

    2014-01-01

    Background Chloride intracellular channel 4 (CLIC4) is highly expressed in the endothelium of remodelled pulmonary vessels and plexiform lesions of patients with pulmonary arterial hypertension (PAH). CLIC4 regulates vasculogenesis through endothelial tube formation. Aberrant CLIC4 expression may contribute to the vascular pathology of PAH. Methods and Results CLIC4 protein expression was increased in plasma and blood-derived endothelial cells from patients with idiopathic PAH (IPAH) and in the pulmonary vascular endothelium of 3 rat models of pulmonary hypertension. CLIC4 gene deletion markedly attenuated the development of chronic hypoxia-induced pulmonary hypertension in mice. Adenoviral overexpression of CLIC4 in cultured human pulmonary artery endothelial cells compromised pulmonary endothelial barrier function and enhanced their survival and angiogenic capacity, while CLIC4 shRNA had an inhibitory effect. Similarly, inhibition of CLIC4 expression in blood-derived endothelial cells from patients with IPAH attenuated the abnormal angiogenic behaviour that characterises these cells. The mechanism of CLIC4 effects involves p65-mediated activation of nuclear factor-κB, followed by stabilisation of hypoxia-inducible factor-1α and increased downstream production of vascular endothelial growth factor and endothelin-1. Conclusions Increased CLIC4 expression is an early manifestation and mediator of endothelial dysfunction in pulmonary hypertension. PMID:24503951

  19. Microarray expression profile analysis of aberrant long non-coding RNAs in esophageal squamous cell carcinoma.

    PubMed

    Yao, Juan; Huang, Jun-Xing; Lin, Mei; Wu, Zheng-Dong; Yu, Hong; Wang, Peng-Cheng; Ye, Jun; Chen, Ping; Wu, Jing; Zhao, Guo-Jun

    2016-06-01

    Increasing evidence indicates that long non-coding RNA (lncRNA) plays an important role in tumorigenesis. However, the function and regulatory mechanism of lncRNAs are still unclear in esophageal squamous cell carcinoma (ESCC). To address this challenge, we screened lncRNAs expression profiles in 3 pairs of ESCC and matched non-cancerous tissues by microarray assay and identified the relationship between lncRNAs expression in ESCC tissue and clinicopathological characteristics and prognosis of patients with ESCC. We found 182 lncRNAs that were significantly differently expressed in ESCC tissues versus the matched non-cancerous tissues. Gene ontology and pathway analysis results suggested that the primary biological processes of these genes were involved in extracellular matrix, immune responses, cell differentiation and cell proliferation. Through cis and trans analyzing, we found 4 lncRNAs (ENST00000480669, NONHSAT104436, NONHSAT126998 and NONHSAT112918) may play important roles in tumorigenesis of ESCC. The four lncRNAs were checked in 73 patients with ESCC. The results showed that they mainly related to tumor metastasis. Kaplan-Meier survival analysis showed that high expression of NONHSAT104436, NONHSAT126998 and low expression of ENST00000480669 were related to poor 3-year overall survival (P=0.003, 0.032 and 0.040, respectively). Multivariate analysis showed that NONHSAT104436 was an independent prognostic factor (P=0.017). Thus we concluded that, lncRNAs showed differently expression patterns in ESCC versus matched non-cancerous tissues, and aberrantly expressed lncRNA may play important roles in ESCC development and progression. Interestingly, the overexpression of NONHSAT104436 was tightly correlated with distant metastasis and, poor survival rate, which might indicate that NONHSAT104436 might play a very important part in ESCC tumor progression. PMID:27035335

  20. Observation of lens aberrations for high resolution electron microscopy II: simple expressions for optimal estimates.

    PubMed

    Saxton, W Owen

    2015-04-01

    This paper lists simple closed-form expressions estimating aberration coefficients (defocus, astigmatism, three-fold astigmatism, coma / misalignment, spherical aberration) on the basis of image shift or diffractogram shape measurements as a function of injected beam tilt. Simple estimators are given for a large number of injected tilt configurations, optimal in the sense of least-squares fitting of all the measurements, and so better than most reported previously. Standard errors are given for most, allowing different approaches to be compared. Special attention is given to the measurement of the spherical aberration, for which several simple procedures are given, and the effect of foreknowledge of this on other aberration estimates is noted. Details and optimal expressions are also given for a new and simple method of analysis, requiring measurements of the diffractogram mirror axis direction only, which are simpler to make than the focus and astigmatism measurements otherwise required. PMID:25728295

  1. Acquired Alterations of Hypothalamic Gene Expression of Insulin and Leptin Receptors and Glucose Transporters in Prenatally High-Glucose Exposed Three-Week Old Chickens Do Not Coincide with Aberrant Promoter DNA Methylation

    PubMed Central

    Ott, Raffael; Bogatyrev, Semen; Tzschentke, Barbara; Plagemann, Andreas

    2015-01-01

    Background Prenatal exposures may have a distinct impact for long-term health, one example being exposure to maternal ‘diabesity’ during pregnancy increasing offspring ‘diabesity’ risk. Malprogramming of the central nervous regulation of body weight, food intake and metabolism has been identified as a critical mechanism. While concrete disrupting factors still remain unclear, growing focus on acquired epigenomic alterations have been proposed. Due to the independent development from the mother, the chicken embryo provides a valuable model to distinctively establish causal factors and mechanisms. Aim The aim of this study was to determine the effects of prenatal hyperglycemia on postnatal hypothalamic gene expression and promoter DNA methylation in the chicken. Methods and Findings To temporarily induce high-glucose exposure in chicken embryos, 0.5 ml glucose solution (30 mmol/l) were administered daily via catheter into a vessel of the chorioallantoic egg membrane from days 14 to 17 of incubation. At three weeks of postnatal age, body weight, total body fat, blood glucose, mRNA expression (INSR, LEPR, GLUT1, GLUT3) as well as corresponding promoter DNA methylation were determined in mediobasal hypothalamic brain slices (Nucleus infundibuli hypothalami). Although no significant changes in morphometric and metabolic parameters were detected, strongly decreased mRNA expression occurred in all candidate genes. Surprisingly, however, no relevant alterations were observed in respective promoter methylation. Conclusion Prenatal hyperglycemia induces strong changes in later hypothalamic expression of INSR, LEPR, GLUT1, and GLUT3 mRNA. While the chicken provides an interesting approach for developmental malprogramming, the classical expression regulation via promoter methylation was not observed here. This may be due to alternative/interacting brain mechanisms or the thus far under-explored bird epigenome. PMID:25811618

  2. Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts.

    PubMed

    Scarfò, Irene; Pellegrino, Elisa; Mereu, Elisabetta; Kwee, Ivo; Agnelli, Luca; Bergaggio, Elisa; Garaffo, Giulia; Vitale, Nicoletta; Caputo, Manuel; Machiorlatti, Rodolfo; Circosta, Paola; Abate, Francesco; Barreca, Antonella; Novero, Domenico; Mathew, Susan; Rinaldi, Andrea; Tiacci, Enrico; Serra, Sara; Deaglio, Silvia; Neri, Antonino; Falini, Brunangelo; Rabadan, Raul; Bertoni, Francesco; Inghirami, Giorgio; Piva, Roberto

    2016-01-14

    Anaplastic large-cell lymphoma (ALCL) is a clinical and biological heterogeneous disease that includes systemic anaplastic lymphoma kinase (ALK)-positive and ALK-negative entities. To discover biomarkers and/or genes involved in ALK-negative ALCL pathogenesis, we applied the cancer outlier profile analysis algorithm to a gene expression profiling data set including 249 cases of T-cell non-Hodgkin lymphoma and normal T cells. Ectopic coexpression of ERBB4 and COL29A1 genes was detected in 24% of ALK-negative ALCL patients. RNA sequencing and 5' RNA ligase-mediated rapid amplification of complementary DNA ends identified 2 novel ERBB4-truncated transcripts displaying intronic transcription start sites. By luciferase assays, we defined that the expression of ERBB4-aberrant transcripts is promoted by endogenous intronic long terminal repeats. ERBB4 expression was confirmed at the protein level by western blot analysis and immunohistochemistry. Lastly, we demonstrated that ERBB4-truncated forms show oncogenic potentials and that ERBB4 pharmacologic inhibition partially controls ALCL cell growth and disease progression in an ERBB4-positive patient-derived tumorgraft model. In conclusion, we identified a new subclass of ALK-negative ALCL characterized by aberrant expression of ERBB4-truncated transcripts carrying intronic 5' untranslated regions. PMID:26463425

  3. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    SciTech Connect

    Chung, Eun Jee; Chun, Ji Na; Jung, Sun-Ah; Cho, Jin Won; Lee, Joon H.

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information towards understanding the pathogenesis of proliferative vitreoretinal diseases.

  4. ABERRANT PROMOTER METHYLATION OF MULTIPLE GENES IN SPUTUM FROM INDIVIDUALS EXPOSED TO SMOKY COAL EMISSIONS

    EPA Science Inventory

    Aberrant methylation in the promoter region of cancer-related genes leads to gene transcriptional inactivation and plays an integral role in lung tumorigenesis. Recent studies demonstrated that promoter methylation was detected not only in lung tumors from patients with lung canc...

  5. Phytochrome regulated gene expression.

    PubMed

    Tobin, E M; Kehoe, D M

    1994-10-01

    Light is used by plants as a signal for many physiological and developmental processes. Phytochrome is the most extensively studied family of photoreceptors that plants use to perceive the presence and quality of light in their environment. While the initial action of the phytochrome molecule is not yet known, one important kind of response, changes in the expression of specific nuclear genes, has been intensively investigated. Although phytochrome-regulated promoters are complex and can also respond to other signals, specific DNA elements that are involved in conferring phytochrome responsiveness have been identified. Potential signal transduction pathway components include G proteins, cyclic GMP and Ca2+/calmodulin. In addition, the study of transcription factors involved in phytochrome-regulated gene expression has yielded insights into some of the final steps of transcriptional regulation by phytochrome. PMID:7881073

  6. Direct gene expression analysis.

    PubMed

    Winter, Holger; Korn, Kerstin; Rigler, Rudolf

    2004-04-01

    The direct analysis of single biological molecules is getting increasingly important in basic as well as pharmaceutical research (e.g. for gene expression analysis). In particular single-molecule fluorescence detection provides exciting new opportunities to probe biochemical processes in unprecedented detail. Currently several academic and industrial research groups work on the development of single molecule detection based technologies in order to directly detect and analyze RNA and DNA molecules. As these developed methods are characterized as homogenous assays and obviate any amplification of the target or the signal, they provide clear advantages compared to methods like real-time PCR or DNA- arrays. In the following we describe a recently developed approach based on fluorescence correlation spectroscopy (FCS). This expression assay is based on gene-specific hybridization of two dye-labeled DNA probes to a selected target molecule (either DNA or RNA) in solution. The subsequent dual color cross-correlation analysis allows the quantification of the bio-molecule of interest in absolute numbers. Target concentrations of less than 10(-12) M can be easily monitored, covering the direct analysis of the expression levels of high, medium and low abundant genes. PMID:15078153

  7. Methylation of tumor suppressor genes is related with copy number aberrations in breast cancer

    PubMed Central

    Murria, Rosa; Palanca, Sarai; de Juan, Inmaculada; Egoavil, Cecilia; Alenda, Cristina; García-Casado, Zaida; Juan, María J; Sánchez, Ana B; Santaballa, Ana; Chirivella, Isabel; Segura, Ángel; Hervás, David; Llop, Marta; Barragán, Eva; Bolufer, Pascual

    2015-01-01

    This study investigates the relationship of promoter methylation in tumor suppressor genes with copy-number aberrations (CNA) and with tumor markers in breast cancer (BCs). The study includes 98 formalin fixed paraffin-embedded BCs in which promoter methylation of 24 tumour suppressor genes were assessed by Methylation-Specific Multiplex Ligation-dependent Probe Amplification (MS-MLPA), CNA of 20 BC related genes by MLPA and ER, PR, HER2, CK5/6, CK18, EGFR, Cadherin-E, P53, Ki-67 and PARP expression by immunohistochemistry (IHC). Cluster analysis classed BCs in two groups according to promoter methylation percentage: the highly-methylated group (16 BCs), containing mostly hyper-methylated genes, and the sparsely-methylated group (82 BCs) with hypo-methylated genes. ATM, CDKN2A, VHL, CHFR and CDKN2B showed the greatest differences in the mean methylation percentage between these groups. We found no relationship of the IHC parameters or pathological features with methylation status, except for Catherin-E (p = 0.008). However the highly methylated BCs showed higher CNA proportion than the sparsely methylated BCs (p < 0.001, OR = 1.62; IC 95% [1.26, 2.07]). CDC6, MAPT, MED1, PRMD14 and AURKA showed the major differences in the CNA percentage between the two groups, exceeding the 22%. Methylation in RASSF1, CASP8, DAPK1 and GSTP1 conferred the highest probability of harboring CNA. Our results show a new link between promoter methylation and CNA giving support to the importance of methylation events to establish new BCs subtypes. Our findings may be also of relevance in personalized therapy assessment, which could benefit the hyper methylated BC patients group. PMID:25628946

  8. Characterization of ETS Gene Aberrations in Select Histologic Variants of Prostate Carcinoma

    PubMed Central

    Han, Bo; Mehra, Rohit; Suleman, Khalid; Tomlins, Scott A.; Wang, Lei; Singhal, Nishi; Linetzky, Katherine A.; Palanisamy, Nallasivam; Zhou, Ming; Chinnaiyan, Arul M.; Shah, Rajal B.

    2009-01-01

    Histologic variants of prostate carcinoma account for 5-10% of the disease and are typically seen in association with conventional acinar carcinoma. These variants often differ from the latter in clinical, immunophenotypic, and biologic potential. Recently, recurrent gene fusions between the androgen-regulated gene TMPRSS2 and the ETS transcription factors ERG, ETV1, ETV4 or ETV5 have been identified in a majority of conventional prostate carcinomas. However, the frequency and significance of this critical molecular event is unknown in the histologic variants of prostate carcinoma. Here, we used break-apart fluorescence in situ hybridization to assess TMPRSS2 and ETS aberrations in a series of select histologic variants: foamy gland carcinoma (N=17), ductal adenocarcinoma (N=18), mucinous carcinoma (N=18), and small cell carcinoma (N=7). A histologic variation of acinar adenocarcinoma, demonstrating glomeruloid morphology (N=9), was also investigated. Overall, 55% of histologic variant or variation morphologies demonstrated ETS aberrations (ERG in 54% and ETV1 in 1%). TMPRSS2:ERG fusion was identified in 83% (15/18), 71% (5/7), 50% (9/18), 33% (3/9) and 29% (5/17) of mucinous, small cell, ductal, glomeruloid, and foamy gland prostate carcinomas, respectively. Previously, we reported that 100% of androgen-independent metastatic prostate carcinomas harboring TMPRSS2:ERG gene fusion were associated with interstitial deletion (Edel). Interestingly, ERG rearrangement in small cell carcinomas occurred exclusively through EDel, supporting the notion that TMPRSS2:ERG with Edel is an aggressive molecular subtype. SPINK-1, a biomarker expressed exclusively in a subset of ETS negative prostate carcinomas, was expressed in 6% of ETS negative histologic variants, specifically in ductal adenocarcinoma. Notably, 88% (43/49) variant morphologies in this cohort showed concordance of TMPRSS2:ERG fusion with associated conventional acinar type, suggesting that variant morphology is clonally related to the latter. Overall, our data provides insight into the origin, molecular mechanism and phenotypic association of ETS fusions in histologic variants of prostate carcinoma. PMID:19465903

  9. Gene Expression in Bone

    NASA Astrophysics Data System (ADS)

    D'Ambrogio, A.

    Skeletal system has two main functions, to provide mechanical integrity for both locomotion and protection and to play an important role in mineral homeostasis. There is extensive evidence showing loss of bone mass during long-term Space-Flights. The loss is due to a break in the equilibrium between the activity of osteoblasts (the cells that forms bone) and the activity of osteoclasts (the cells that resorbs bone). Surprisingly, there is scanty information about the possible altered gene expression occurring in cells that form bone in microgravity.(Just 69 articles result from a "gene expression in microgravity" MedLine query.) Gene-chip or microarray technology allows to screen thousands of genes at the same time: the use of this technology on samples coming from cells exposed to microgravity could provide us with many important informations. For example, the identification of the molecules or structures which are the first sensors of the mechanical stress derived from lack of gravity, could help in understanding which is the first event leading to bone loss due to long-term exposure to microgravity. Consequently, this structure could become a target for a custom-designed drug. It is evident that bone mass loss, observed during long-time stay in Space, represents an accelerated model of what happens in aging osteoporosis. Therefore, the discovery and design of drugs able to interfere with the bone-loss process, could help also in preventing negative physiological processes normally observed on Earth. Considering the aims stated above, my research is designed to:

  10. Flank Sequences of miR‐145/143 and Their Aberrant Expression in Vascular Disease: Mechanism and Therapeutic Application

    PubMed Central

    Liu, Xiaojun; Cheng, Yunhui; Yang, Jian; Qin, Shanshan; Chen, Xiuwei; Tang, Xiaojun; Zhou, Xiangyu; Krall, Thomas J.; Zhang, Chunxiang

    2013-01-01

    Background Many microRNAs (miRNAs) are downregulated in proliferative vascular disease. Thus, upregulation of these miRNAs has become a major focus of research activity. However, there is a critical barrier in gene therapy to upregulate some miRNAs such as miR‐145 and miR‐143 because of their significant downregulation by the unclear endogenous mechanisms under disease conditions. The purpose of this study was to determine the molecular mechanisms responsible for their downregulation and to overcome the therapeutic barrier. Methods and Results In cultured proliferative rat vascular smooth muscle cells (VSMCs) in vitro and in diseased rat and mouse arteries in vivo, we have identified that the impairment of pri‐miR‐145 into pre‐miR‐145 is the critical step related to the downregulation of miR‐145, in which the PI3‐kinase/Akt/p53 pathway is involved. We further identified that the flank sequences of pri‐miR‐145 are the critical structural components responsible for the aberrant miR‐145 expression. Switching of the flank sequence of downregulated miR‐145 and miR‐143 to the flank sequence of miR‐31 confers resistance to their downregulation. The genetically engineered miR‐145 (smart miR‐145) restored the downregulated miR‐145 in proliferative rat VSMCs and in rat carotid arteries with balloon injury and mouse atherosclerotic aortas and demonstrated much better therapeutic effects on the abnormal growth of VSMCs, expression of its target gene, KLF5 expression, VSMC marker gene expression, and vascular neointimal growth. Conclusions The flank sequences of miR‐145 and miR‐143 play a critical role in their aberrant expression in VSMCs and vascular walls. The genetically engineered “smart” miRNAs based on their flank sequences may have broadly therapeutic applications for many vascular diseases. PMID:24166492

  11. More light behind gene expression.

    PubMed

    Kianianmomeni, Arash

    2014-08-01

    Light-regulated gene expression, mediated by photoreceptors, acts as a multifaceted regulator to control the abundance of functional genes at different levels. Two recent genome-wide studies by Wu et al. and Liu et al. show that light controls gene expression at post-transcriptional and translational level through alternative splicing and translational regulation, respectively. PMID:24928178

  12. An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer

    PubMed Central

    2010-01-01

    Background Genomics has substantially changed our approach to cancer research. Gene expression profiling, for example, has been utilized to delineate subtypes of cancer, and facilitated derivation of predictive and prognostic signatures. The emergence of technologies for the high resolution and genome-wide description of genetic and epigenetic features has enabled the identification of a multitude of causal DNA events in tumors. This has afforded the potential for large scale integration of genome and transcriptome data generated from a variety of technology platforms to acquire a better understanding of cancer. Results Here we show how multi-dimensional genomics data analysis would enable the deciphering of mechanisms that disrupt regulatory/signaling cascades and downstream effects. Since not all gene expression changes observed in a tumor are causal to cancer development, we demonstrate an approach based on multiple concerted disruption (MCD) analysis of genes that facilitates the rational deduction of aberrant genes and pathways, which otherwise would be overlooked in single genomic dimension investigations. Conclusions Notably, this is the first comprehensive study of breast cancer cells by parallel integrative genome wide analyses of DNA copy number, LOH, and DNA methylation status to interpret changes in gene expression pattern. Our findings demonstrate the power of a multi-dimensional approach to elucidate events which would escape conventional single dimensional analysis and as such, reduce the cohort sample size for cancer gene discovery. PMID:20478067

  13. Interleukin-6 is responsible for aberrant B-cell receptor-mediated regulation of RAG expression in systemic lupus erythematosus

    PubMed Central

    Hillion, Sophie; Garaud, Soizic; Devauchelle, Valérie; Bordron, Anne; Berthou, Christian; Youinou, Pierre; Jamin, Christophe

    2007-01-01

    Defective regulation of secondary immunoglobulin V(D)J gene rearrangement promotes the production of autoantibodies in systemic lupus erythematosus (SLE). It remains unclear, however, whether the regulation of the recombination-activating genes RAG1 and RAG2 is effective in SLE. RAG1 and RAG2 messenger RNA expression was analysed before and after in vitro activation of sorted CD19+ CD5– B cells with anti-immunoglobulin M antibodies, in 20 SLE patients and 17 healthy controls. The expression of CDK2 and p27Kip1 regulators of the RAG2 protein, were examined. The levels of interleukin-6 (IL-6) and its influence on RAG regulation were also evaluated in vitro. SLE patients had increased frequency of RAG-positive B cells. B-cell receptor (BCR) engagement induced a shift in the frequency of κ- and λ-positive cells, associated with a persistence of RAG messenger RNA and the maintenance of RAG2 protein within the nucleus. While expression of the RAG2-negative regulator CDK2 was normal, the positive regulator p27Kip1 was up-regulated and enhanced by BCR engagement. This effect was the result of the aberrant production of IL-6 by SLE B cells. Furthermore, IL-6 receptor blockade led to a reduction in p27Kip1 expression, and allowed the translocation of RAG2 from the nucleus to the cytoplasm. Our study indicates that aberrant production of IL-6 contributes to the inability of SLE B cells to terminate RAG protein production. Therefore, we hypothesize that because of constitutive IL-6 signalling in association with BCR engagement, SLE B cells would become prone to secondary immunoglobulin gene rearrangements and autoantibody production. PMID:17608810

  14. Activated proliferation of B-cell lymphomas/leukemias with the SHP1 gene silencing by aberrant CpG methylation.

    PubMed

    Koyama, Maho; Oka, Takashi; Ouchida, Mamoru; Nakatani, Yoko; Nishiuchi, Ritsuo; Yoshino, Tadashi; Hayashi, Kazuhiko; Akagi, Tadaatsu; Seino, Yoshiki

    2003-12-01

    Previously we showed reduced protein and mRNA expression of the SHP1 gene in lymphoma/leukemia cell lines and patient specimens by Northern blot, RT-PCR, Western blot, and immunohistochemical analyses. In this study, aberrant methylation in the SHP1 gene promoter was detected in many B-cell leukemia/lymphoma cell lines as well as in patient specimens, including diffuse large B-cell lymphoma (methylation frequency 93%), MALT lymphoma (82%), mantle cell lymphoma (75%), plasmacytoma (100%) and follicular lymphoma (96%) by methylation-specific PCR, bisulfite sequencing, and restriction enzyme-mediated PCR analyses. The methylation frequency was significantly higher in high-grade MALT lymphoma cases (100%) than in low-grade MALT lymphoma cases (70%), which correlated well with the frequency of no expression of SHP1 protein in high-grade (80%) and low-grade MALT lymphoma (54%). It suggests that the SHP1 gene silencing with aberrant CpG methylation relates to the lymphoma progression. SHP1 protein expression was recovered in B-cell lines after the treatment of the demethylating reagent: 5-aza-2'-deoxycytidine. Transfection of the intact SHP1 gene to the hematopoietic cultured cells, which show no expression of the SHP1 gene, induced growth inhibition, indicating that gene silencing of the SHP1 gene by aberrant methylation plays an important role to get the growth advantage of the malignant lymphoma/leukemia cells. The extraordinarily high frequency (75 to 100%) of CpG methylation of the SHP1 gene in B-cell lymphoma/leukemia patient specimens indicates that the SHP1 gene silencing is one of the critical events to the onset of malignant lymphomas/leukemias as well as important implications for the diagnostic or prognostic markers and the target of gene therapy. These data support the possibility that the SHP1 gene is one of the tumor suppressor genes. PMID:14691303

  15. Aberrant DNA methylation at genes associated with a stem cell-like phenotype in cholangiocarcinoma tumors.

    PubMed

    Sriraksa, Ruethairat; Zeller, Constanze; Dai, Wei; Siddiq, Afshan; Walley, Andrew J; Limpaiboon, Temduang; Brown, Robert

    2013-12-01

    Genetic abnormalities of cholangiocarcinoma have been widely studied; however, epigenomic changes related to cholangiocarcinogenesis have been less well characterized. We have profiled the DNA methylomes of 28 primary cholangiocarcinoma and six matched adjacent normal tissues using Infinium's HumanMethylation27 BeadChips with the aim of identifying gene sets aberrantly and epigenetically regulated in this tumor type. Using a linear model for microarray data, we identified 1610 differentially methylated autosomal CpG sites, with 809 hypermethylated (representing 603 genes) and 801 hypomethylated (representing 712 genes) in cholangiocarcinoma versus adjacent normal tissues (false-discovery rate ≤ 0.05). Gene ontology and gene set enrichment analyses identified gene sets significantly associated with hypermethylation at linked CpG sites in cholangiocarcinoma including homeobox genes and target genes of PRC2, EED, SUZ12, and histone H3 trimethylation at lysine 27. We confirmed frequent hypermethylation at the homeobox genes HOXA9 and HOXD9 by bisulfite pyrosequencing in a larger cohort of cholangiocarcinoma (n = 102). Our findings indicate a key role for hypermethylation of multiple CpG sites at genes associated with a stem cell-like phenotype as a common molecular aberration in cholangiocarcinoma. These data have implications for cholangiocarcinogenesis, as well as possible novel treatment options using histone methyltransferase inhibitors. PMID:24089088

  16. Aberrant DNA methylation at genes associated with a stem cell-like phenotype in cholangiocarcinoma tumours

    PubMed Central

    Dai, Wei; Siddiq, Afshan; Walley, Andrew J; Limpaiboon, Temduang; Brown, Robert

    2013-01-01

    Genetic abnormalities of cholangiocarcinoma have been widely studied; however, epigenomic changes related to cholangiocarcinogenesis have been less well characterised. We have profiled the DNA methylomes of 28 primary cholangiocarcinoma and six matched adjacent normal tissues using Infinium’s HumanMethylation27 BeadChips with the aim of identifying gene sets aberrantly epigenetically regulated in this tumour type. Using a linear model for microarray data we identified 1610 differentially methylated autosomal CpG sites with 809 CpG sites (representing 603 genes) being hypermethylated and 801 CpG sites (representing 712 genes) being hypomethylated in cholangiocarcinoma versus adjacent normal tissues (false discovery rate ≤ 0.05). Gene ontology and gene set enrichment analyses identified gene sets significantly associated with hypermethylation at linked CpG sites in cholangiocarcinoma including homeobox genes and target genes of PRC2, EED, SUZ12 and histone H3 trimethylation at lysine 27. We confirmed frequent hypermethylation at the homeobox genes HOXA9 and HOXD9 by bisulfite pyrosequencing in a larger cohort of cholangiocarcinoma (n = 102). Our findings indicate a key role for hypermethylation of multiple CpG sites at genes associated with a stem cell-like phenotype as a common molecular aberration in cholangiocarcinoma. These data have implications for cholangiocarcinogenesis, as well as possible novel treatment options using histone methyltransferase inhibitors. PMID:24089088

  17. Evolution of Gene Expression after Gene Amplification

    PubMed Central

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-01-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat–maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  18. Aberrant expression of laminin-332 promotes cell proliferation and cyst growth in ARPKD.

    PubMed

    Vijayakumar, Soundarapandian; Dang, Suparna; Marinkovich, M Peter; Lazarova, Zelmira; Yoder, Bradley; Torres, Vicente E; Wallace, Darren P

    2014-03-15

    Basement membrane abnormalities have often been observed in kidney cysts of polycystic kidney disease (PKD) patients and animal models. There is an abnormal deposition of extracellular matrix molecules, including laminin-α3,β3,γ2 (laminin-332), in human autosomal dominant PKD (ADPKD). Knockdown of PKD1 paralogs in zebrafish leads to dysregulated synthesis of the extracellular matrix, suggesting that altered basement membrane assembly may be a primary defect in ADPKD. In this study, we demonstrate that laminin-332 is aberrantly expressed in cysts and precystic tubules of human autosomal recessive PKD (ARPKD) kidneys as well as in the kidneys of PCK rats, an orthologous ARPKD model. There was aberrant expression of laminin-γ2 as early as postnatal day 2 and elevated laminin-332 protein in postnatal day 30, coinciding with the formation and early growth of renal cysts in PCK rat kidneys. We also show that a kidney cell line derived from Oak Ridge polycystic kidney mice, another model of ARPKD, exhibited abnormal lumen-deficient and multilumen structures in Matrigel culture. These cells had increased proliferation rates and altered expression levels of laminin-332 compared with their rescued counterparts. A function-blocking polyclonal antibody to laminin-332 significantly inhibited their abnormal proliferation rates and rescued their aberrant phenotype in Matrigel culture. Furthermore, abnormal laminin-332 expression in cysts originating from collecting ducts and proximal tubules as well as in precystic tubules was observed in a human end-stage ADPKD kidney. Our results suggest that abnormal expression of laminin-332 contributes to the aberrant proliferation of cyst epithelial cells and cyst growth in genetic forms of PKD. PMID:24370592

  19. Aberrant expression of laminin-332 promotes cell proliferation and cyst growth in ARPKD

    PubMed Central

    Dang, Suparna; Marinkovich, M. Peter; Lazarova, Zelmira; Yoder, Bradley; Torres, Vicente E.; Wallace, Darren P.

    2013-01-01

    Basement membrane abnormalities have often been observed in kidney cysts of polycystic kidney disease (PKD) patients and animal models. There is an abnormal deposition of extracellular matrix molecules, including laminin-α3,β3,γ2 (laminin-332), in human autosomal dominant PKD (ADPKD). Knockdown of PKD1 paralogs in zebrafish leads to dysregulated synthesis of the extracellular matrix, suggesting that altered basement membrane assembly may be a primary defect in ADPKD. In this study, we demonstrate that laminin-332 is aberrantly expressed in cysts and precystic tubules of human autosomal recessive PKD (ARPKD) kidneys as well as in the kidneys of PCK rats, an orthologous ARPKD model. There was aberrant expression of laminin-γ2 as early as postnatal day 2 and elevated laminin-332 protein in postnatal day 30, coinciding with the formation and early growth of renal cysts in PCK rat kidneys. We also show that a kidney cell line derived from Oak Ridge polycystic kidney mice, another model of ARPKD, exhibited abnormal lumen-deficient and multilumen structures in Matrigel culture. These cells had increased proliferation rates and altered expression levels of laminin-332 compared with their rescued counterparts. A function-blocking polyclonal antibody to laminin-332 significantly inhibited their abnormal proliferation rates and rescued their aberrant phenotype in Matrigel culture. Furthermore, abnormal laminin-332 expression in cysts originating from collecting ducts and proximal tubules as well as in precystic tubules was observed in a human end-stage ADPKD kidney. Our results suggest that abnormal expression of laminin-332 contributes to the aberrant proliferation of cyst epithelial cells and cyst growth in genetic forms of PKD. PMID:24370592

  20. Aberrant Splicing of Estrogen Receptor, HER2, and CD44 Genes in Breast Cancer

    PubMed Central

    Inoue, Kazushi; Fry, Elizabeth A.

    2015-01-01

    Breast cancer (BC) is the most common cause of cancer-related death among women under the age of 50 years. Established biomarkers, such as hormone receptors (estrogen receptor [ER]/progesterone receptor) and human epidermal growth factor receptor 2 (HER2), play significant roles in the selection of patients for endocrine and trastuzumab therapies. However, the initial treatment response is often followed by tumor relapse with intrinsic resistance to the first-line therapy, so it has been expected to identify novel molecular markers to improve the survival and quality of life of patients. Alternative splicing of pre-messenger RNAs is a ubiquitous and flexible mechanism for the control of gene expression in mammalian cells. It provides cells with the opportunity to create protein isoforms with different, even opposing, functions from a single genomic locus. Aberrant alternative splicing is very common in cancer where emerging tumor cells take advantage of this flexibility to produce proteins that promote cell growth and survival. While a number of splicing alterations have been reported in human cancers, we focus on aberrant splicing of ER, HER2, and CD44 genes from the viewpoint of BC development. ERα36, a splice variant from the ER1 locus, governs nongenomic membrane signaling pathways triggered by estrogen and confers 4-hydroxytamoxifen resistance in BC therapy. The alternative spliced isoform of HER2 lacking exon 20 (Δ16HER2) has been reported in human BC; this isoform is associated with transforming ability than the wild-type HER2 and recapitulates the phenotypes of endocrine therapy-resistant BC. Although both CD44 splice isoforms (CD44s, CD44v) play essential roles in BC development, CD44v is more associated with those with favorable prognosis, such as luminal A subtype, while CD44s is linked to those with poor prognosis, such as HER2 or basal cell subtypes that are often metastatic. Hence, the detection of splice variants from these loci will provide keys to understand the pathogenesis, predict the prognosis, and choose specific therapies for BC. PMID:26692764

  1. Aberrant Splicing of Estrogen Receptor, HER2, and CD44 Genes in Breast Cancer.

    PubMed

    Inoue, Kazushi; Fry, Elizabeth A

    2015-01-01

    Breast cancer (BC) is the most common cause of cancer-related death among women under the age of 50 years. Established biomarkers, such as hormone receptors (estrogen receptor [ER]/progesterone receptor) and human epidermal growth factor receptor 2 (HER2), play significant roles in the selection of patients for endocrine and trastuzumab therapies. However, the initial treatment response is often followed by tumor relapse with intrinsic resistance to the first-line therapy, so it has been expected to identify novel molecular markers to improve the survival and quality of life of patients. Alternative splicing of pre-messenger RNAs is a ubiquitous and flexible mechanism for the control of gene expression in mammalian cells. It provides cells with the opportunity to create protein isoforms with different, even opposing, functions from a single genomic locus. Aberrant alternative splicing is very common in cancer where emerging tumor cells take advantage of this flexibility to produce proteins that promote cell growth and survival. While a number of splicing alterations have been reported in human cancers, we focus on aberrant splicing of ER, HER2, and CD44 genes from the viewpoint of BC development. ERα36, a splice variant from the ER1 locus, governs nongenomic membrane signaling pathways triggered by estrogen and confers 4-hydroxytamoxifen resistance in BC therapy. The alternative spliced isoform of HER2 lacking exon 20 (Δ16HER2) has been reported in human BC; this isoform is associated with transforming ability than the wild-type HER2 and recapitulates the phenotypes of endocrine therapy-resistant BC. Although both CD44 splice isoforms (CD44s, CD44v) play essential roles in BC development, CD44v is more associated with those with favorable prognosis, such as luminal A subtype, while CD44s is linked to those with poor prognosis, such as HER2 or basal cell subtypes that are often metastatic. Hence, the detection of splice variants from these loci will provide keys to understand the pathogenesis, predict the prognosis, and choose specific therapies for BC. PMID:26692764

  2. Association of a d-Alanyl-d-Alanine Carboxypeptidase Gene with the Formation of Aberrantly Shaped Cells during the Induction of Viable but Nonculturable Vibrio parahaemolyticus

    PubMed Central

    Hung, Wei-cheng; Jane, Wann-Neng

    2013-01-01

    Vibrio parahaemolyticus is a halophilic Gram-negative bacterium that causes human gastroenteritis. When the viable but nonculturable (VBNC) state of this bacterium was induced by incubation at 4°C in Morita minimal salt solution containing 0.5% NaCl, the rod-shaped cells became coccoid, and various aberrantly shaped intermediates were formed in the initial stage. This study examined the factors that influence the formation of these aberrantly shaped cells. The proportion of aberrantly shaped cells was not affected in a medium containing d-cycloserine (50 μg/ml) but was lower in a medium containing cephalosporin C (10 μg/ml) than in the control medium without antibiotics. The proportion of aberrantly shaped cells was higher in a culture medium that contained 0.5% NaCl than in culture media containing 1.0 or 1.5% NaCl. The expression of 15 of 17 selected genes associated with cell wall synthesis was enhanced, and the expression of VP2468 (dacB), which encodes d-alanyl-d-alanine carboxypeptidase, was enhanced the most. The proportion of aberrantly shaped cells was significantly lower in the dacB mutant strain than in the parent strain, but the proportion was restored in the presence of the complementary dacB gene. This study suggests that disturbance of the dynamics of cell wall synthesis by enhanced expression of the VP2468 gene is associated with the formation of aberrantly shaped cells in the initial stage of induction of VBNC V. parahaemolyticus cells under specific conditions. PMID:24056454

  3. SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers

    PubMed Central

    Li, Hui; Myeroff, Lois; Smiraglia, Dominic; Romero, Michael F.; Pretlow, Theresa P.; Kasturi, Lakshmi; Lutterbaugh, James; Rerko, Ronald M.; Casey, Graham; Issa, Jean-Pierre; Willis, Joseph; Willson, James K. V.; Plass, Christoph; Markowitz, Sanford D.

    2003-01-01

    We identify a gene, SLC5A8, and show it is a candidate tumor suppressor gene whose silencing by aberrant methylation is a common and early event in human colon neoplasia. Aberrant DNA methylation has been implicated as a component of an epigenetic mechanism that silences genes in human cancers. Using restriction landmark genome scanning, we performed a global search to identify genes that would be aberrantly methylated at high frequency in human colon cancer. From among 1,231 genomic NotI sites assayed, site 3D41 was identified as methylated in 11 of 12 colon cancers profiled. Site 3D41 mapped to exon 1 of SLC5A8, a transcript that we assembled. In normal colon mucosa we found that SLC5A8 exon 1 is unmethylated and SLC5A8 transcript is expressed. In contrast, SLC5A8 exon 1 proved to be aberrantly methylated in 59% of primary colon cancers and 52% of colon cancer cell lines. SLC5A8 exon 1 methylated cells were uniformly silenced for SLC5A8 expression, but reactivated expression on treatment with a demethylating drug, 5-azacytidine. Transfection of SLC5A8 suppressed colony growth in each of three SLC5A8-deficient cell lines, but showed no suppressive effect in any of three SLC5A8-proficient cell lines. SLC5A8 exon 1 methylation is an early event, detectable in colon adenomas, and in even earlier microscopic colonic aberrant crypt foci. Structural homology and functional testing demonstrated that SLC5A8 is a member of the family of sodium solute symporters, which are now added as a class of candidate colon cancer suppressor genes. PMID:12829793

  4. Method of controlling gene expression

    DOEpatents

    Peters, Norman K.; Frost, John W.; Long, Sharon R.

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  5. Interactions of DNA repair gene variants modulate chromosomal aberrations in healthy subjects.

    PubMed

    Vodicka, Pavel; Musak, Ludovit; Frank, Christoph; Kazimirova, Alena; Vymetalkova, Veronika; Barancokova, Magdalena; Smolkova, Bozena; Dzupinkova, Zuzana; Jiraskova, Katerina; Vodenkova, Sona; Kroupa, Michal; Osina, Oto; Naccarati, Alessio; Palitti, Fabrizio; Försti, Asta; Dusinska, Maria; Vodickova, Ludmila; Hemminki, Kari

    2015-11-01

    Human cancers are often associated with numerical and structural chromosomal instability. Structural chromosomal aberrations (CAs) in peripheral blood lymphocytes (PBL) arise as consequences of direct DNA damage or due to replication on a damaged DNA template. In both cases, DNA repair is critical and inter-individual differences in its capacity are probably due to corresponding genetic variations. We investigated functional variants in DNA repair genes (base and nucleotide excision repair, double-strand break repair) in relation to CAs, chromatid-type aberrations (CTAs) and chromosome-type aberrations (CSAs) in healthy individuals. Chromosomal damage was determined by conventional cytogenetic analysis. The genotyping was performed by both restriction fragment length polymorphism and TaqMan allelic discrimination assays. Multivariate logistic regression was applied for testing individual factors on CAs, CTAs and CSAs. Pair-wise genotype interactions of 11 genes were constructed for all possible pairs of single-nucleotide polymorphisms. Analysed individually, we observed significantly lower CTA frequencies in association with XPD Lys751Gln homozygous variant genotype [odds ratio (OR) 0.64, 95% confidence interval (CI) 0.48-0.85, P = 0.004; n = 1777]. A significant association of heterozygous variant genotype in RAD54L with increased CSA frequency (OR 1.96, 95% CI 1.01-4.02, P = 0.03) was determined in 282 subjects with available genotype. By addressing gene-gene interactions, we discovered 14 interactions significantly modulating CAs, 9 CTAs and 12 CSAs frequencies. Highly significant interactions included always pairs from two different pathways. Although individual variants in genes encoding DNA repair proteins modulate CAs only modestly, several gene-gene interactions in DNA repair genes evinced either enhanced or decreased CA frequencies suggesting that CAs accumulation requires complex interplay between different DNA repair pathways. PMID:26354780

  6. Potential Downstream Target Genes of Aberrant ETS Transcription Factors Are Differentially Affected in Ewing’s Sarcoma and Prostate Carcinoma

    PubMed Central

    Ribeiro, Franclim R.; Barros-Silva, João D.; Almeida, Mafalda; Costa, Vera L.; Cerveira, Nuno; Skotheim, Rolf I.; Lothe, Ragnhild A.; Henrique, Rui; Jerónimo, Carmen; Teixeira, Manuel R.

    2012-01-01

    FLI1 and ERG, the major ETS transcription factors involved in rearrangements in the Ewing’s sarcoma family of tumors (ESFT) and in prostate carcinomas (PCa), respectively, belong to the same subfamily, having 98% sequence identity in the DNA binding domain. We therefore decided to investigate whether the aberrant transcription factors in both malignancies have some common downstream targets. We crossed a publicly available list of all putative EWSR1-FLI1 target genes in ESFT with our microarray expression data on 24 PCa and 6 non-malignant prostate tissues (NPT) and choose four genes among the top-most differentially expressed between PCa with (PCa ERG+) and without (PCa ETS-) ETS fusion genes (HIST1H4L, KCNN2, ECRG4 and LDOC1), as well as four well-validated direct targets of the EWSR1-FLI1 chimeric protein in ESFT (NR0B1, CAV1, IGFBP3 and TGFBR2). Using quantitative expression analysis in 16 ESFT and seven alveolar rhabdomyosarcomas (ARMS), we were able to validate the four genes previously described as direct targets of the EWSR1-FLI1 oncoprotein, showing overexpression of CAV1 and NR0B1 and underexpression of IGFBP3 and TGFBR2 in ESFT as compared to ARMS. Although none of these four genes showed significant expression differences between PCa ERG+ and PCa ETS-, CAV1, IGFBP3 and TGFBR2 were less expressed in PCa in an independent series of 56 PCa and 15 NPT, as also observed for ECRG4 and LDOC1, suggesting a role in prostate carcinogenesis in general. On the other hand, we demonstrate for the first time that both HIST1H4L and KCNN2 are significantly overexpressed in PCa ERG+ and that ERG binds to the promoter of these genes. Conversely, KCNN2 was found underexpressed in ESFT relative to ARMS, suggesting that the EWSR1-ETS oncoprotein may have the opposite effect of ERG rearrangements in PCa. We conclude that aberrant ETS transcription factors modulate target genes differently in ESFT and PCa. PMID:23185447

  7. Enforced expression of Hoxa5 in haematopoietic stem cells leads to aberrant erythropoiesis in vivo

    PubMed Central

    Yang, Dan; Zhang, Xiangzhong; Dong, Yong; Liu, Xiaofei; Wang, Tongjie; Wang, Xiaoshan; Geng, Yang; Fang, Shumin; Zheng, Yi; Chen, Xiaoli; Chen, Jiekai; Pan, Guangjin; Wang, Jinyong

    2015-01-01

    Hoxa5 is preferentially expressed in haematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs), and is more highly expressed in expanding HSCs. To date, little is known regarding the role of Hoxa5 in HSCs and downstream progenitor cells in vivo. In this study, we show that increased expression of Hoxa5 in haematopoietic stem cells leads to aberrant erythropoiesis in vivo. Hoxa5 differentially modifies the cell cycle of HSCs and lineage committed progenitor cells, depending on the cellular context. Hoxa5 drives HSCs, but not MPPs, through the cell cycle and arrests erythroid progenitor cells in G0 phase. Although the HSC pool shrinks after overexpression of Hoxa5, HSCs sustain the abilities of self-renewal and multipotency. In vivo, Hoxa5 has two effects on erythropoiesis: it causes a predominance of mature erythroid lineage cells and the partial apoptosis of erythroid progenitors. RNA-seq indicates that multiple biological processes, including erythrocyte homeostasis, cell metabolism, and apoptosis, are modified by Hoxa5. The results of this study indicate that Hoxa5 is a key regulator of the HSC cell cycle, and the inappropriate expression of Hoxa5 in lineage-committed progenitor cells leads to aberrant erythropoiesis. PMID:25590986

  8. Aberrant phenotypic expression of CD15 and CD56 identifies poor prognostic acute promyelocytic leukemia patients.

    PubMed

    Breccia, Massimo; De Propris, Maria Stefania; Minotti, Clara; Stefanizzi, Caterina; Raponi, Sara; Colafigli, Gioia; Latagliata, Roberto; Guarini, Anna; Foà, Robin

    2014-02-01

    Limited information is available on the relationship between expression of some additional aberrant phenotypic features and outcome of acute promyelocytic leukemia (APL) patients. Here, we set out to assess the frequency of CD15 and CD56 expression, and their prognostic value in a large series of APL patients. One hundred and fourteen adult patients consecutively diagnosed with PML/RARα-positive APL and homogeneously treated with the AIDA induction schedule at a single institution were included in the study. Twelve (10.5%) and 9 (8%) of the 114 patients expressed CD15 and CD56, respectively. CD15 expression identified a subset of patients with a classic morphologic subtype (92%), a prevalent association with a bcr1 expression (67%) with an unexpectedly higher frequency of relapses (42% vs 20% for the CD15- patients, p=0.03) and a low overall survival (OS) (median OS at 5 years 58% vs 85% for the CD15- patients, p=0.01). CD56 expression was detected only in patients with a classic morphologic subtype, a prevalent bcr3 expression (67%), high incidence of differentiation syndrome (55%), higher frequency of relapse (34% vs 20% for the CD56- population, p=0.04) and a low OS (60% vs 85% for the CD56- population p=0.02). We hereby confirm the negative prognostic value of CD56 and we show that the same applies also to cases expressing CD15. These aberrant markers may be considered for the refinement of risk-adapted therapeutic strategies in APL patients. PMID:24296270

  9. Deletion and aberrant CpG island methylation of Caspase 8 gene in medulloblastoma.

    PubMed

    Gonzalez-Gomez, Pilar; Bello, M Josefa; Inda, M Mar; Alonso, M Eva; Arjona, Dolores; Amiñoso, Cinthia; Lopez-Marin, Isabel; de Campos, Jose M; Sarasa, Jose L; Castresana, Javier S; Rey, Juan A

    2004-09-01

    Aberrant methylation of promoter CpG islands in human genes is an alternative genetic inactivation mechanism that contributes to the development of human tumors. Nevertheless, few studies have analyzed methylation in medulloblastomas. We determined the frequency of aberrant CpG island methylation for Caspase 8 (CASP8) in a group of 24 medulloblastomas arising in 8 adult and 16 pediatric patients. Complete methylation of CASP8 was found in 15 tumors (62%) and one case displayed hemimethylation. Three samples amplified neither of the two primer sets for methylated or unmethylated alleles, suggesting that genomic deletion occurred in the 5' flanking region of CASP8. Our findings suggest that methylation commonly contributes to CASP8 silencing in medulloblastomas and that homozygous deletion or severe sequence changes involving the promoter region may be another mechanism leading to CASP8 inactivation in this neoplasm. PMID:15289853

  10. Profiling gene expression using onto-express.

    PubMed

    Khatri, Purvesh; Draghici, Sorin; Ostermeier, G Charles; Krawetz, Stephen A

    2002-02-01

    Gene expression profiles obtained through microarray or data mining analyses often exist as vast data strings. To interpret the biology of these genetic profiles, investigators must analyze this data in the context of other information such as the biological, biochemical, or molecular function of the translated proteins. This is particularly challenging for a human analyst because large quantities of less than relevant data often bury such information. To address this need we implemented an automated routine, called Onto-Express (http://vortex.cs.wayne.edu:8080), to systematically translate genetic fingerprints into functional profiles. Using strings of accession or cluster identification numbers, Onto-Express searches the public databases and returns tables that correlate expression profiles with the cytogenetic locations, biochemical and molecular functions, biological processes, cellular components, and cellular roles of the translated proteins. The profiles created by Onto-Express fundamentally increase the value of gene expression analyses by facilitating the translation of quantitative value sets to records that contain biological implications. PMID:11829497

  11. AMPK Promotes Aberrant PGC1β Expression To Support Human Colon Tumor Cell Survival

    PubMed Central

    Fisher, Kurt W.; Das, Binita; Kim, Hyun Seok; Clymer, Beth K.; Gehring, Drew; Smith, Deandra R.; Costanzo-Garvey, Diane L.; Fernandez, Mario R.; Brattain, Michael G.; Kelly, David L.; MacMillan, John

    2015-01-01

    A major goal of cancer research is the identification of tumor-specific vulnerabilities that can be exploited for the development of therapies that are selectively toxic to the tumor. We show here that the transcriptional coactivators peroxisome proliferator-activated receptor gamma coactivator 1β (PGC1β) and estrogen-related receptor α (ERRα) are aberrantly expressed in human colon cell lines and tumors. With kinase suppressor of Ras 1 (KSR1) depletion as a reference standard, we used functional signature ontology (FUSION) analysis to identify the γ1 subunit of AMP-activated protein kinase (AMPK) as an essential contributor to PGC1β expression and colon tumor cell survival. Subsequent analysis revealed that a subunit composition of AMPK (α2β2γ1) is preferred for colorectal cancer cell survival, at least in part, by stabilizing the tumor-specific expression of PGC1β. In contrast, PGC1β and ERRα are not detectable in nontransformed human colon epithelial cells, and depletion of the AMPKγ1 subunit has no effect on their viability. These data indicate that Ras oncogenesis relies on the aberrant activation of a PGC1β-dependent transcriptional pathway via a specific AMPK isoform. PMID:26351140

  12. Polymorphism in nucleotide excision repair gene XPC correlates with bleomycin-induced chromosomal aberrations.

    PubMed

    Laczmanska, Izabela; Gil, Justyna; Karpinski, Pawel; Stembalska, Agnieszka; Trusewicz, Alicja; Pesz, Karolina; Ramsey, David; Schlade-Bartusiak, Kamilla; Blin, Nikolaus; Sasiadek, Maria Malgorzata

    2007-10-01

    Chromosomal aberrations (CAs) are important genetic alterations in the development and progression of the majority of human cancers. The frequency with which such alterations occur depends to a large extent on polymorphisms of DNA-repair genes and in genes coding for xenobiotic metabolizing enzymes, which are involved in the processes of activation and inactivation of xenobiotics. The frequency of bleomycin (BLM)-induced CAs is an indirect measure of the effectiveness of DNA repair mechanisms, and a predictor of environment-related risk of cancer. Our study was conducted on the human peripheral blood lymphocytes of 82 healthy volunteers. The aim of the study was to elucidate whether the frequency of BLM-induced CAs is correlated with polymorphisms of selected genes involved in different mechanisms of DNA repair such as: XRCC1 [base excision repair]; XPA, XPC, XPG, XPD, XPF, ERCC1 [nucleotide excision repair], NBS1, RAD51, XRCC2, XRCC3, RAD51, and BRCA1 [homologous recombination], as well as in genes encoding xenobiotic metabolizing enzymes, such as CYP1A, CYP2E1, NAT2, GSTT1, and EPHX (mEH). Our study indicated that, of the polymorphisms studied, only XPC (exon 15 and intron 11) is associated with BLM-induced CAs, suggesting a role of the NER pathway in the repair of BLM-induced chromosomal aberrations. PMID:17685459

  13. Imprinted gene expression in hybrids: perturbed mechanisms and evolutionary implications

    PubMed Central

    Wolf, J B; Oakey, R J; Feil, R

    2014-01-01

    Diverse mechanisms contribute to the evolution of reproductive barriers, a process that is critical in speciation. Amongst these are alterations in gene products and in gene dosage that affect development and reproductive success in hybrid offspring. Because of its strict parent-of-origin dependence, genomic imprinting is thought to contribute to the aberrant phenotypes observed in interspecies hybrids in mammals and flowering plants, when the abnormalities depend on the directionality of the cross. In different groups of mammals, hybrid incompatibility has indeed been linked to loss of imprinting. Aberrant expression levels have been reported as well, including imprinted genes involved in development and growth. Recent studies in humans emphasize that genetic diversity within a species can readily perturb imprinted gene expression and phenotype as well. Despite novel insights into the underlying mechanisms, the full extent of imprinted gene perturbation still remains to be determined in the different hybrid systems. Here we review imprinted gene expression in intra- and interspecies hybrids and examine the evolutionary scenarios under which imprinting could contribute to hybrid incompatibilities. We discuss effects on development and reproduction and possible evolutionary implications. PMID:24619185

  14. Aberrant expression of hSef and Sprouty4 in endometrial adenocarcinoma

    PubMed Central

    ZHANG, HUI; GUO, QIUFEN; WANG, XIA; WANG, CHONG; ZHAO, XINGBO; LI, MINGJIANG

    2016-01-01

    Fibroblast growth factor (FGF) 2-mediated signaling of the mitogen-activated protein kinase/RAS/extracellular signal-regulated kinase 1/2 pathway is a critical modulator in angiogenesis and is therefore essential for the pathogenesis of endometrial carcinoma. Human similar expression to FGFs (hSef) and Sprouty4 have each been reported to be negative regulators of FGF signaling. The aim of the present study was to investigate the expression of hSef and Sprouty4 in human endometrial adenocarcinoma. Using immunohistochemistry analysis, the expression of hSef and Sprouty4 was detected in human endometrial adenocarcinomas. Increased hSef expression was found to be present in endometrial adenocarcinomas. In addition, decreased hSef expression was identified in the blood vessels of endometrial adenocarcinoma samples. However, the expression of Sprouty4 was downregulated in human endometrial adenocarcinoma. Aberrant expression of hSef and Sprouty4 are involved in the pathogenesis of human endometrial adenocarcinoma. PMID:26870165

  15. Aberrant expression of Sonic hedgehog signaling in Peutz-Jeghers syndrome.

    PubMed

    Xu, Xiaoping; Su, Juan; Li, Ran; Wang, Yadong; Zeng, Di; Wu, Baoping

    2016-04-01

    The SHH signaling pathway is critical for gastrointestinal development and organic patterning, and dysregulation of SHH pathway molecules has been detected in multiple gastrointestinal neoplasms. This study investigated the role of the SHH signaling pathway in PJS. Expression of SHH, PTCH, and GLI1 was examined by real-time PCR and immunohistochemistry in 20 normal tissues and 75 colorectal lesions (25 PJPs, 25 adenomas, and 25 adenocarcinomas). Expression of SHH, PTCH, and GLI1 mRNA was higher in PJPs than in normal tissue (P < .05) and gradually increased along the PJP-adenoma-adenocarcinoma sequence (P < .05). Immunostaining indicated that SHH expression was present in 60% of PJPs, 72% of adenomas, and 84% of carcinomas, whereas 68% of PJPs, 72% of adenomas, and 88% of carcinomas exhibited cytoplasmic expression of PTCH. Moreover, high GLI1 expression was detected in 56% of PJPs, 64% of adenomas, and 80% of carcinomas; and high nuclear expression of GLI1 was observed in 8 adenomas with atypia and 15 carcinomas. Increased SHH, PTCH, and GLI1 protein correlated positively with tumor grade (P = .012, P = .003, and P = .007, respectively), tumor depth (P = .024, P = .007, and P = .01), and lymph node metastasis (P = .05, P = .015, and P = .005). This study identified aberrant expression of SHH pathway molecules in PJS, and the findings may supply a novel mechanism for the development of PJ polyps. PMID:26997450

  16. Aberrant phenotypes and quantitative antigen expression in different subtypes of canine lymphoma by flow cytometry.

    PubMed

    Gelain, M E; Mazzilli, M; Riondato, F; Marconato, L; Comazzi, S

    2008-02-15

    Flow cytometry may be a useful tool to analyze lymphoma samples that are obtained from fine needle aspirations (FNA). This study aimed to determine if flow cytometric analysis add more objective and standardized information on the cellularity and morphology of lymphoma cells to conventional cytology. The typical immunophenotype of different lymphoma subtypes was assessed and leukocyte marker expression was evaluated to determine which antigens were more frequently over- or under-expressed in these lymphoma subtypes. Fifty FNA lymph node samples were evaluated from canine lymphomas. Thirty-one samples were identified to be of B-cell origin, sixteen were identified to be of T/NK-cell origin and three cases were classified as acute lymphoblastic leukaemia with lymph nodes involvement. The most common B-cell lymphoma subtypes were centroblastic lymphomas, whereas three cases were atypical and classified as B-large cell pleomorphic lymphomas. Among the T/NK lymphomas, small clear cells, large and small pleomorphic mixed cells, large granular lymphocytic cells and small pleomorphic cells were identified. Aberrant phenotypes and/or antigen under/over regulation was identified in thirty out of forty-seven lymphoma cases (64%; 18/31 B-cell=58% and 12/16 T-cell=75%). In B-cell lymphomas the most frequent finding was the diminished expression of CD79a (45%). CD34 expression was also observed in four cases (13%). Among T-cell lymphomas the prevalent unusual phenotype was the under-expression or absence of CD45 (25%). These findings reveal flow cytometry may be useful in confirming the diagnosis of lymphoma, as the technique allows one to add useful information about morphology of the neoplastic cells and identify antigenic markers and aberrant phenotypes. PMID:17981339

  17. Aberrant expression of SALL4 in acute B cell lymphoblastic leukemia: mechanism, function, and implication for a potential novel therapeutic target.

    PubMed

    Ueno, Shikiko; Lu, Jiayun; He, Jie; Li, Ailing; Zhang, Xiaoxian; Ritz, Jerome; Silberstein, Leslie E; Chai, Li

    2014-04-01

    Treatment for high-risk pediatric and adult acute B cell lymphoblastic leukemia (B-ALL) remains challenging. Exploring novel pathways in B-ALL could lead to new therapy. Our previous study has shown that stem cell factor SALL4 is aberrantly expressed in B-ALL, but its functional roles and the mechanism that accounts for its upregulation in B-ALL remain unexplored. To address this question, we first surveyed the existing B-ALL cell lines and primary patient samples for SALL4 expression. We then selected the B-ALL cell lines with the highest SALL4 expression for functional studies. RNA interference was used to downregulate SALL4 expression in these cell lines. When compared with control cells, SALL4 knockdown cells exhibited decreased cell proliferation, increased apoptosis in vitro, and decreased engraftment in a xenotransplant model in vivo. Gene expression analysis showed that in SALL4 knockdown B-ALL cells, multiple caspase members involved in cell apoptosis pathway were upregulated. Next, we explored the mechanisms of aberrant SALL4 expression in B-ALL. We found that hypomethylation of the SALL4 CpG islands was correlated with its high expression. Furthermore, treatment of low SALL4-expressing B-ALL cell lines with DNA methylation inhibitor led to demethylation of the SALL4 CpG and increased SALL4 expression. In summary, to our knowledge, we are the first to show that the aberrant expression of SALL4 in B-ALL is associated with hypomethylation, and that SALL4 plays a key role in B-ALL cell survival and could be a potential novel target in B-ALL treatment. PMID:24463278

  18. Aberrant cytoplasmic expression of the p16 protein in breast cancer is associated with accelerated tumour proliferation.

    PubMed Central

    Emig, R.; Magener, A.; Ehemann, V.; Meyer, A.; Stilgenbauer, F.; Volkmann, M.; Wallwiener, D.; Sinn, H. P.

    1998-01-01

    The p16 protein plays an important role in the transition of cells into the G1 phase of the cell cycle. We have studied the prevalence of p16 protein expression in breast carcinomas in a prospective series of 368 invasive and 52 non-invasive malignancies, as well as in 88 locally recurring tumours and three tumour cell lines. p16 protein expression was evaluated immunohistochemically on paraffin sections using monoclonal and polyclonal anti-p16 antibodies, and by immunoblotting of tumour cell suspensions. Tumour cell lines were also subjected to polymerase chain reaction-single strand polymorphism (PCR-SSCP) analysis and direct DNA sequencing. The results were compared with established prognostic parameters, DNA flow cytometry and p53 protein expression. In 33 (9%) invasive and two (4%) intraductal carcinomas, a cytoplasmic accumulation of the p16 protein was seen. These cases were characterized by poor histological grade of differentiation, loss of of oestrogen receptors and progesterone receptors and frequent overexpression of the p53 protein. In addition, breast carcinomas with aberrant p16 expression demonstrated a high proliferative activity, with median S-phase fractions 74% higher than in the control group and the median Ki67 fractions elevated to 75%. A genetic alteration of the p16 gene was not detectable in three analysed cell lines with cytoplasmic p16 expression applying PCR-SSCP and direct DNA sequencing. These results indicate that cytoplasmic accumulation of the p16 protein identifies a subset of highly malignant breast carcinomas with accelerated tumour proliferation and other unfavourable parameters in breast cancer. The described protein accumulation is apparently not caused by an alteration of the p16 gene. Images Figure 1 Figure 4 PMID:9862580

  19. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus

    PubMed Central

    Graham, Deborah S Cunninghame; Pinder, Christopher L; Tombleson, Philip; Behrens, Timothy W; Martín, Javier; Fairfax, Benjamin P; Knight, Julian C; Chen, Lingyan; Replogle, Joseph; Syvänen, Ann-Christine; Rönnblom, Lars; Graham, Robert R; Wither, Joan E; Rioux, John D; Alarcón-Riquelme, Marta E; Vyse, Timothy J

    2015-01-01

    Systemic lupus erythematosus (SLE; OMIM 152700) is a genetically complex autoimmune disease characterized by loss of immune tolerance to nuclear and cell surface antigens. Previous genome-wide association studies (GWAS) had modest sample sizes, reducing their scope and reliability. Our study comprised 7,219 cases and 15,991 controls of European ancestry: a new GWAS, meta-analysis with a published GWAS and a replication study. We have mapped 43 susceptibility loci, including 10 novel associations. Assisted by dense genome coverage, imputation provided evidence for missense variants underpinning associations in eight genes. Other likely causal genes were established by examining associated alleles for cis-acting eQTL effects in a range of ex vivo immune cells. We found an over-representation (n=16) of transcription factors among SLE susceptibility genes. This supports the view that aberrantly regulated gene expression networks in multiple cell types in both the innate and adaptive immune response contribute to the risk of developing SLE. PMID:26502338

  20. Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes.

    PubMed

    Gerstung, Moritz; Pellagatti, Andrea; Malcovati, Luca; Giagounidis, Aristoteles; Porta, Matteo G Della; Jädersten, Martin; Dolatshad, Hamid; Verma, Amit; Cross, Nicholas C P; Vyas, Paresh; Killick, Sally; Hellström-Lindberg, Eva; Cazzola, Mario; Papaemmanuil, Elli; Campbell, Peter J; Boultwood, Jacqueline

    2015-01-01

    Cancer is a genetic disease, but two patients rarely have identical genotypes. Similarly, patients differ in their clinicopathological parameters, but how genotypic and phenotypic heterogeneity are interconnected is not well understood. Here we build statistical models to disentangle the effect of 12 recurrently mutated genes and 4 cytogenetic alterations on gene expression, diagnostic clinical variables and outcome in 124 patients with myelodysplastic syndromes. Overall, one or more genetic lesions correlate with expression levels of ~20% of all genes, explaining 20-65% of observed expression variability. Differential expression patterns vary between mutations and reflect the underlying biology, such as aberrant polycomb repression for ASXL1 and EZH2 mutations or perturbed gene dosage for copy-number changes. In predicting survival, genomic, transcriptomic and diagnostic clinical variables all have utility, with the largest contribution from the transcriptome. Similar observations are made on the TCGA acute myeloid leukaemia cohort, confirming the general trends reported here. PMID:25574665

  1. Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes

    PubMed Central

    Gerstung, Moritz; Pellagatti, Andrea; Malcovati, Luca; Giagounidis, Aristoteles; Porta, Matteo G Della; Jädersten, Martin; Dolatshad, Hamid; Verma, Amit; Cross, Nicholas C. P.; Vyas, Paresh; Killick, Sally; Hellström-Lindberg, Eva; Cazzola, Mario; Papaemmanuil, Elli; Campbell, Peter J.; Boultwood, Jacqueline

    2015-01-01

    Cancer is a genetic disease, but two patients rarely have identical genotypes. Similarly, patients differ in their clinicopathological parameters, but how genotypic and phenotypic heterogeneity are interconnected is not well understood. Here we build statistical models to disentangle the effect of 12 recurrently mutated genes and 4 cytogenetic alterations on gene expression, diagnostic clinical variables and outcome in 124 patients with myelodysplastic syndromes. Overall, one or more genetic lesions correlate with expression levels of ~20% of all genes, explaining 20–65% of observed expression variability. Differential expression patterns vary between mutations and reflect the underlying biology, such as aberrant polycomb repression for ASXL1 and EZH2 mutations or perturbed gene dosage for copy-number changes. In predicting survival, genomic, transcriptomic and diagnostic clinical variables all have utility, with the largest contribution from the transcriptome. Similar observations are made on the TCGA acute myeloid leukaemia cohort, confirming the general trends reported here. PMID:25574665

  2. Gene expression in breast cancer.

    PubMed

    Kaklamani, Virginia G; Gradishar, William J

    2006-03-01

    We now recognize that all breast cancers are not the same. Different characteristics in gene expression profiles result in differential clinical behavior. With the use of gene microarrays, different subtypes of breast cancer have been characterized. The basal subtype is characterized by high expression of keratins 5 and 17, laminin, and fatty acid-binding protein 7. The ERBB2+ subtype is characterized by high expression of genes in the ERBB2 amplicon. The luminal A subtype is characterized by the highest expression of the ER alpha gene. The luminal B and C subtypes have a lower expression of the ER cluster. The importance of these different subtypes lies in the fact that they differ in clinical outcome, with the basal and ERBB2+ subtypes having the worse prognosis and the luminal A group having the best prognosis. Different strategies for evaluating tumors in a clinical setting have been developed. Two such strategies are the 21-gene assay (Oncotype DX; Genomic Health, Redwood City, CA), which is currently in commercial use in the United States, and the 70-gene assay, which has been developed by a group in the Netherlands. These assays have been shown to predict clinical outcome and response to therapy. However, to date these gene assays have not been studied in a prospective manner. Over the next year, prospective clinical trials will be initiated using these predictive tools in the treatment of breast cancer. In the near future, clinical decisions will most likely be dictated by the genetic characteristics of the tumor, with the clinical characteristics becoming less important. Tailoring our treatment based on individual tumor characteristics will help us develop better therapeutic strategies and save many patients from receiving unnecessary toxic therapy. PMID:16455023

  3. Hematopoietic progenitors express neural genes.

    PubMed

    Goolsby, James; Marty, Marie C; Heletz, Dafna; Chiappelli, Joshua; Tashko, Gerti; Yarnell, Deborah; Fishman, Paul S; Dhib-Jalbut, Suhayl; Bever, Christopher T; Pessac, Bernard; Trisler, David

    2003-12-01

    Bone marrow, or cells selected from bone marrow, were reported recently to give rise to cells with a neural phenotype after in vitro treatment with neural-inducing factors or after delivery into the brain. However, we showed previously that untreated bone marrow cells express products of the neural myelin basic protein gene, and we demonstrate here that a subset of ex vivo bone marrow cells expresses the neurogenic transcription factor Pax-6 as well as neuronal genes encoding neurofilament H, NeuN (neuronal nuclear protein), HuC/HuD (Hu-antigen C/Hu-antigen D), and GAD65 (glutamic acid decarboxylase 65), as well as the oligodendroglial gene encoding CNPase (2',3' cyclic nucleotide 3'-phosphohydrolase). In contrast, astroglial glial fibrillary acidic protein (GFAP) was not detected. These cells also were CD34+, a marker of hematopoietic stem cells. Cultures of these highly proliferative CD34+ cells, derived from adult mouse bone marrow, uniformly displayed a phenotype comparable with that of hematopoietic progenitor cells (CD45+, CD34+, Sca-1+, AA4.1+, cKit+, GATA-2+, and LMO-2+). The neuronal and oligodendroglial genes expressed in ex vivo bone marrow also were expressed in all cultured CD34+ cells, and GFAP was not observed. After CD34+ cell transplantation into adult brain, neuronal or oligodendroglial markers segregated into distinct nonoverlapping cell populations, whereas astroglial GFAP appeared, in the absence of other neural markers, in a separate set of implanted cells. Thus, neuronal and oligodendroglial gene products are present in a subset of bone marrow cells, and the expression of these genes can be regulated in brain. The fact that these CD34+ cells also express transcription factors (Rex-1 and Oct-4) that are found in early development elicits the hypothesis that they may be pluripotent embryonic-like stem cells. PMID:14634211

  4. Aberrant 5′ splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization

    PubMed Central

    Buratti, Emanuele; Chivers, Martin; Královičová, Jana; Romano, Maurizio; Baralle, Marco; Krainer, Adrian R.; Vořechovský, Igor

    2007-01-01

    Despite a growing number of splicing mutations found in hereditary diseases, utilization of aberrant splice sites and their effects on gene expression remain challenging to predict. We compiled sequences of 346 aberrant 5′splice sites (5′ss) that were activated by mutations in 166 human disease genes. Mutations within the 5′ss consensus accounted for 254 cryptic 5′ss and mutations elsewhere activated 92 de novo 5′ss. Point mutations leading to cryptic 5′ss activation were most common in the first intron nucleotide, followed by the fifth nucleotide. Substitutions at position +5 were exclusively G>A transitions, which was largely attributable to high mutability rates of C/G>T/A. However, the frequency of point mutations at position +5 was significantly higher than that observed in the Human Gene Mutation Database, suggesting that alterations of this position are particularly prone to aberrant splicing, possibly due to a requirement for sequential interactions with U1 and U6 snRNAs. Cryptic 5′ss were best predicted by computational algorithms that accommodate nucleotide dependencies and not by weight-matrix models. Discrimination of intronic 5′ss from their authentic counterparts was less effective than for exonic sites, as the former were intrinsically stronger than the latter. Computational prediction of exonic de novo 5′ss was poor, suggesting that their activation critically depends on exonic splicing enhancers or silencers. The authentic counterparts of aberrant 5′ss were significantly weaker than the average human 5′ss. The development of an online database of aberrant 5′ss will be useful for studying basic mechanisms of splice-site selection, identifying splicing mutations and optimizing splice-site prediction algorithms. PMID:17576681

  5. Ion channel gene expression predicts survival in glioma patients

    PubMed Central

    Wang, Rong; Gurguis, Christopher I.; Gu, Wanjun; Ko, Eun A; Lim, Inja; Bang, Hyoweon; Zhou, Tong; Ko, Jae-Hong

    2015-01-01

    Ion channels are important regulators in cell proliferation, migration, and apoptosis. The malfunction and/or aberrant expression of ion channels may disrupt these important biological processes and influence cancer progression. In this study, we investigate the expression pattern of ion channel genes in glioma. We designate 18 ion channel genes that are differentially expressed in high-grade glioma as a prognostic molecular signature. This ion channel gene expression based signature predicts glioma outcome in three independent validation cohorts. Interestingly, 16 of these 18 genes were down-regulated in high-grade glioma. This signature is independent of traditional clinical, molecular, and histological factors. Resampling tests indicate that the prognostic power of the signature outperforms random gene sets selected from human genome in all the validation cohorts. More importantly, this signature performs better than the random gene signatures selected from glioma-associated genes in two out of three validation datasets. This study implicates ion channels in brain cancer, thus expanding on knowledge of their roles in other cancers. Individualized profiling of ion channel gene expression serves as a superior and independent prognostic tool for glioma patients. PMID:26235283

  6. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  7. Hunting for differentially expressed genes.

    PubMed

    Vedoy, C G; Bengtson, M H; Sogayar, M C

    1999-07-01

    Differentially expressed genes are usually identified by comparing steady-state mRNA concentrations. Several methods have been used for this purpose, including differential hybridization, cDNA subtraction, differential display and, more recently, DNA chips. Subtractive hybridization has significantly improved after the polymerase chain reaction was incorporated into the original method and many new protocols have been established. Recently, the availability of the wellknown coding sequences for some organisms has greatly facilitated gene expression analysis using high-density microarrays. Here, we describe some of these modifications and discuss the benefits and drawbacks of the various methods corresponding to the main advances in this field. PMID:10454747

  8. Clinical significance of aberrant mammalian target of rapamycin expression in stage IIIB colon cancer

    PubMed Central

    WEN, MEILING; LI, BAOXIU; CAO, XIAOFEI; WENG, CHENGYIN; WU, YONG; FANG, XISHENG; ZHANG, XIAOSHI; LIU, GUOLONG

    2014-01-01

    The aim of the present study was to investigate the significance of aberrant expression of mammalian target of rapamycin (mTOR) and the activated form of mTOR kinase, phosphorylated mTOR (pmTOR), in human stage IIIB colon cancer. The expression of mTOR and pmTOR was detected by immunohistochemistry in the tumor tissue of stage IIIB colon cancer patients. The association between the expression of mTOR, pmTOR and clinicopathological parameters of patients was analyzed. The positive expression of mTOR and pmTOR was observed to be higher in 75.5% (80/106) and 76.4% (81/106) of the 106 colon cancer specimens, compared with the adjacent normal tissues. The high level of pmTOR expression was found to be significantly higher in the invasive tumor front cells and resulted in a higher risk of mortality. The results suggested that mTOR and pmTOR may be promising clinical markers and present novel molecular targets for designing novel therapeutic strategies to treat this malignancy. PMID:25120661

  9. Reversible histone methylation regulates brain gene expression and behavior

    PubMed Central

    Xu, Jun; Andreassi, Megan

    2011-01-01

    Epigenetic chromatin remodeling, including reversible histone methylation, regulates gene transcription in brain development and synaptic plasticity. Aberrant chromatin modifications due to mutant chromatin enzymes or chemical exposures have been associated with neurological or psychiatric disorders such as mental retardation, schizophrenia, depression, and drug addiction. Some chromatin enzymes, such as histone demethylases JARID1C and UTX, are coded by X-linked genes which are not X-inactivated in females. The higher expression of JARID1C and UTX in females could contribute to sex differences in brain development and behavior. PMID:20816965

  10. Aberrant expression of maternal Plk1 and Dctn3 results in the developmental failure of human in-vivo- and in-vitro-matured oocytes

    PubMed Central

    Fan, Yong; Zhao, Hong-Cui; Liu, Jianqiao; Tan, Tao; Ding, Ting; Li, Rong; Zhao, Yue; Yan, Jie; Sun, Xiaofang; Yu, Yang; Qiao, Jie

    2015-01-01

    Fertilisation is the first step in embryonic development, and dynamic changes of key genes may potentially improve assisted reproduction techniques efficiency during this process. Here, we analysed genes that were differentially expressed between oocytes and zygotes and focused on cytokinesis-related genes. Plk1 and Dctn3 were identified as showing dramatic changes in expression during fertilisation and were suggested to play a key role in inducing aneuploidy in zygotes and 8-cell embryos. Moreover, we found that maternal Plk1 and Dctn3 were expressed at lower levels in in vitro matured oocytes, which may have contributed to the high ratio of resulting embryos with abnormal Plk1 and Dctn3 expression levels, thereby reducing the developmental competence of the resulting embryos. Furthermore, the overexpression of Dctn3 can silence Plk1 expression, which suggests a potential regulation mechanism. In conclusion, our present study showed that aberrant expression of Plk1 and Dctn3 increases embryo aneuploidy and developmental failure, particularly in in vitro matured oocytes. Our results facilitate a better understanding of the effects of oocyte maternal gene expression on embryonic development and can be used to improve the outcome of assisted reproduction techniques. PMID:25645239

  11. Aberrant expression of maternal Plk1 and Dctn3 results in the developmental failure of human in-vivo- and in-vitro-matured oocytes.

    PubMed

    Fan, Yong; Zhao, Hong-Cui; Liu, Jianqiao; Tan, Tao; Ding, Ting; Li, Rong; Zhao, Yue; Yan, Jie; Sun, Xiaofang; Yu, Yang; Qiao, Jie

    2015-01-01

    Fertilisation is the first step in embryonic development, and dynamic changes of key genes may potentially improve assisted reproduction techniques efficiency during this process. Here, we analysed genes that were differentially expressed between oocytes and zygotes and focused on cytokinesis-related genes. Plk1 and Dctn3 were identified as showing dramatic changes in expression during fertilisation and were suggested to play a key role in inducing aneuploidy in zygotes and 8-cell embryos. Moreover, we found that maternal Plk1 and Dctn3 were expressed at lower levels in in vitro matured oocytes, which may have contributed to the high ratio of resulting embryos with abnormal Plk1 and Dctn3 expression levels, thereby reducing the developmental competence of the resulting embryos. Furthermore, the overexpression of Dctn3 can silence Plk1 expression, which suggests a potential regulation mechanism. In conclusion, our present study showed that aberrant expression of Plk1 and Dctn3 increases embryo aneuploidy and developmental failure, particularly in in vitro matured oocytes. Our results facilitate a better understanding of the effects of oocyte maternal gene expression on embryonic development and can be used to improve the outcome of assisted reproduction techniques. PMID:25645239

  12. Neighboring Genes Show Correlated Evolution in Gene Expression

    PubMed Central

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  13. Vascular gene expression: a hypothesis

    PubMed Central

    Martínez-Navarro, Angélica C.; Galván-Gordillo, Santiago V.; Xoconostle-Cázares, Beatriz; Ruiz-Medrano, Roberto

    2013-01-01

    The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a “primitive” vascular tissue (a lycophyte), as well as from others that lack a true vascular tissue (a bryophyte), and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non-vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT, and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants. PMID:23882276

  14. Complexity of expressed CHIR genes.

    PubMed

    Viertlboeck, Birgit C; Gick, Claudia M; Schmitt, Ramona; Du Pasquier, Louis; Göbel, Thomas W

    2010-08-01

    The chicken leukocyte receptor complex (LRC) encodes an unprecedented number of chicken Ig-like receptor (CHIR) genes compared to the mammalian LRC. Although there are at least 100 CHIR genes in the LRC, only little information is available about the number and variability of expressed CHIR. Recently, we showed that CHIR with one Ig domain encode a variety of different affinity IgY receptors, which are highly variable in different chicken strains. The current report focused on expressed CHIR with two Ig domains. Oligonucleotides specific for conserved regions at the 5' end of Ig1 and 3' end of Ig2 were used on PBMC mRNA obtained from two individual chickens with different MHC haplotypes (M11, R11). Sequencing of 142 colonies of M11 and 117 of R11 yielded 98 and 70 different CHIR2D amino acid sequences, respectively. Comparing a total of 219 CHIR sequences, including also a genomic dataset from an LSL chicken, revealed a single amino acid sequence identical between all three chicken strains, and four sequence pairs either shared between M11 and R11 or between M11 and LSL. Calculating Wu-Kabat variability revealed three amino acid positions, which were highly variable and the analysis of synonymous/non-synonymous ratio indicated positive selection. This analysis of expressed CHIR genes in different chickens demonstrates an unusual polymorphism of expressed receptors, where only few are conserved between chickens. PMID:20347866

  15. Aberrant Hepatic Methionine Metabolism and Gene Methylation in the Pathogenesis and Treatment of Alcoholic Steatohepatitis

    PubMed Central

    Halsted, Charles H.; Medici, Valentina

    2012-01-01

    The pathogenesis of alcoholic steatohepatitis (ASH) involves ethanol-induced aberrations in hepatic methionine metabolism that decrease levels of S-adenosylmethionine (SAM), a compound which regulates the synthesis of the antioxidant glutathione and is the principal methyl donor in the epigenetic regulation of genes relevant to liver injury. The present paper describes the effects of ethanol on the hepatic methionine cycle, followed by evidence for the central role of reduced SAM in the pathogenesis of ASH according to clinical data and experiments in ethanol-fed animals and in cell models. The efficacy of supplemental SAM in the prevention of ASH in animal models and in the clinical treatment of ASH will be discussed. PMID:22007317

  16. Concomitant aberrant methylation of p15 and MGMT genes in acute myeloid leukemia: association with a particular immunophenotype of blast cells.

    PubMed

    Kraguljac Kurtović, Nada; Krajnović, Milena; Bogdanović, Andrija; Suvajdžić, Nada; Jovanović, Jelica; Dimitrijević, Bogomir; Colović, Milica; Krtolica, Koviljka

    2012-12-01

    In this study, methylation-specific polymerase chain reaction (MS-PCR) was used to define the methylation status of the target promoter sequences of p15 and MGMT genes in the group of 21 adult patients with acute myeloid leukemia (AML). The incidence of aberrant hypermethylation of p15 gene (71 %) was higher comparing to MGMT gene (33 %), whereas concomitant methylation of both genes had 24 % of the patients. Although the incidence of cytogenetic abnormalities between the groups with a different methylation status of p15 and/or MGMT genes was not significantly different, we observed general trend of clustering of abnormalities with adverse prognosis into groups with concomitant hypermethylation of both genes and only p15 gene. Also, we showed that AML patients with concomitant methylation of p15/MGMT genes had a higher proportion of leukemic blast cells characterized with specific expression of individual leukocyte surface antigens (CD117(+)/CD7(+)/CD34(+)/CD15(-)), indicating leukemic cells as early myeloid progenitors. Although we could not prove that hypermethylation of p15 and/or MGMT genes is predictive parameter for response to therapy and overall survival, we noticed that AML patients with comethylated p15/MGMT genes or methylated p15 gene exhibited a higher frequency of early death, lower frequency of complete remissions as well as a trend for shorter overall survival. Assessing of the methylation status of p15 and MGMT genes may allow stratification of patients with AML into distinct groups with potentially different prognosis. PMID:22772967

  17. Gene expression analysis of human otosclerotic stapedial footplates

    PubMed Central

    Ealy, Megan; Chen, Wenjie; Ryu, Gi-Yung; Yoon, Jae-Geun; Welling, D. Bradley; Hansen, Marlan; Madan, Anup; Smith, Richard J.H.

    2008-01-01

    Otosclerosis is a complex disease that results in a common form of conductive hearing loss due to impaired mobility of the stapes. Stapedial motion becomes compromised secondary to invasion of otosclerotic foci into the stapedio-vestibular joint. Although environmental factors and genetic causes have been implicated in this process, the pathogenesis of otosclerosis remains poorly understood. To identify molecular contributors to otosclerosis we completed a microarray study of otosclerotic stapedial footplates. Stapes footplate samples from otosclerosis and control patients were used in the analysis. One-hundred-and-ten genes were found to be differentially expressed in otosclerosis samples. Ontological analysis of differentially expressed genes in otosclerosis provides evidence for the involvement of a number of pathways in the disease process that include interleukin signaling, inflammation and signal transduction, suggesting that aberrant regulation of these pathways leads to abnormal bone remodeling. Functional analyses of genes from this study will enhance our understanding of the pathogenesis of this disease. PMID:18430532

  18. Aberrant Calreticulin Expression in Articular Cartilage of Dio2 Deficient Mice

    PubMed Central

    Bomer, Nils; Cornelis, Frederique M. F.; Ramos, Yolande F. M.; den Hollander, Wouter; Lakenberg, Nico; van der Breggen, Ruud; Storms, Lies; Slagboom, P. Eline; Lories, Rik J. U.; Meulenbelt, Ingrid

    2016-01-01

    Objective To identify intrinsic differences in cartilage gene expression profiles between wild-type- and Dio2-/--mice, as a mechanism to investigate factors that contribute to prolonged healthy tissue homeostasis. Methods Previously generated microarray-data (Illumina MouseWG-6 v2) of knee cartilage of wild-type and Dio2 -/- -mice were re-analyzed to identify differential expressed genes independent of mechanical loading conditions by forced treadmill-running. RT-qPCR and western blot analyses of overexpression and knockdown of Calr in mouse chondro-progenitor cells (ATDC5) were applied to assess the direct effect of differential Calr expression on cartilage deposition. Results Differential expression analyses of articular cartilage of Dio2-/- (N = 9) and wild-type-mice (N = 11) while applying a cutoff threshold (P < 0.05 (FDR) and FC > |1,5|) resulted in 1 probe located in Calreticulin (Calr) that was found significantly downregulated in Dio2-/- mice (FC = -1.731; P = 0.044). Furthermore, overexpression of Calr during early chondrogenesis in ATDC5 cells leads to decreased proteoglycan deposition and corresponding lower Aggrecan expression, whereas knocking down Calr expression does not lead to histological differences of matrix composition. Conclusion We here demonstrate that the beneficial homeostatic state of articular cartilage in Dio2-/- mice is accompanied with significant lower expression of Calr. Functional analyses further showed that upregulation of Calr expression could act as an initiator of cartilage destruction. The consistent association between Calr and Dio2 expression suggests that enhanced expression of these genes facilitate detrimental effects on cartilage integrity. PMID:27163789

  19. Chromosome aberrations and HEY1-NCOA2 fusion gene in a mesenchymal chondrosarcoma

    PubMed Central

    PANAGOPOULOS, IOANNIS; GORUNOVA, LUDMILA; BJERKEHAGEN, BODIL; BOYE, KJETIL; HEIM, SVERRE

    2014-01-01

    Mesenchymal chondrosarcomas are fast-growing tumors that account for 2–10% of primary chondrosarcomas. Cytogenetic information is restricted to 12 cases that did not show a specific aberration pattern. Recently, two fusion genes were described in mesenchymal chondrosarcomas: a recurrent HEY1-NCOA2 found in tumors that had not been cytogenetically characterized and an IRF2BP2-CDX1 found in a tumor carrying a t(1;5)(q42;q32) translocation as the sole chromosomal abnormality. Here, we present the cytogenetic and molecular genetic analysis of a mesenchymal chondrosarcoma in which the patient had two histologically indistinguishable tumor lesions, one in the neck and one in the thigh. An abnormal clone with the G-banding karyotype 46,XX,add(6)(q23),add(8)(p23),del(10)(p11),+12,−15[6] was found in the neck tumor whereas a normal karyotype, 46,XX, was found in the tumor of the thigh. RT-PCR and Sanger sequencing showed that exon 4 of HEY1 was fused to exon 13 of NCOA2 in the sample from the thigh lesion; we did not have spare material to perform a similar analysis of the neck tumor. Examining the published karyotypes we observed numerical or structural aberrations of chromosome 8 in the majority of the karyotyped mesenchymal chondrosarcomas. Chromosome 8 was also structurally affected in the present study. The pathogenetic mechanisms behind this nonrandom involvement are unknown, but the presence on 8q of two genes, HEY1 and NCOA2, now known to be involved in mesenchymal chondrosarcoma tumorigenesis is, of course, suggestive. PMID:24839999

  20. Genomic aberrations of the CACNA2D1 gene in three patients with epilepsy and intellectual disability.

    PubMed

    Vergult, Sarah; Dheedene, Annelies; Meurs, Alfred; Faes, Fran; Isidor, Bertrand; Janssens, Sandra; Gautier, Agnès; Le Caignec, Cédric; Menten, Björn

    2015-05-01

    Voltage-gated calcium channels have an important role in neurotransmission. Aberrations affecting genes encoding the alpha subunit of these channels have been associated with epilepsy and neuropsychiatric disorders such as autism or schizophrenia. Here we report three patients with a genomic aberration affecting the CACNA2D1 gene encoding the α2δ subunit of these voltage-gated calcium channels. All three patients present with epilepsy and intellectual disability pinpointing the CACNA2D1 gene as an interesting candidate gene for these clinical features. Besides these characteristics, patient 2 also presents with obesity with hyperinsulinism, which is very likely to be caused by deletion of the CD36 gene. PMID:25074461

  1. Gene expression throughout a vertebrate's embryogenesis

    PubMed Central

    2011-01-01

    Background Describing the patterns of gene expression during embryonic development has broadened our understanding of the processes and patterns that define morphogenesis. Yet gene expression patterns have not been described throughout vertebrate embryogenesis. This study presents statistical analyses of gene expression during all 40 developmental stages in the teleost Fundulus heteroclitus using four biological replicates per stage. Results Patterns of gene expression for 7,000 genes appear to be important as they recapitulate developmental timing. Among the 45% of genes with significant expression differences between pairs of temporally adjacent stages, significant differences in gene expression vary from as few as five to more than 660. Five adjacent stages have disproportionately more significant changes in gene expression (> 200 genes) relative to other stages: four to eight and eight to sixteen cell stages, onset of circulation, pre and post-hatch, and during complete yolk absorption. The fewest differences among adjacent stages occur during gastrulation. Yet, at stage 16, (pre-mid-gastrulation) the largest number of genes has peak expression. This stage has an over representation of genes in oxidative respiration and protein expression (ribosomes, translational genes and proteases). Unexpectedly, among all ribosomal genes, both strong positive and negative correlations occur. Similar correlated patterns of expression occur among all significant genes. Conclusions These data provide statistical support for the temporal dynamics of developmental gene expression during all stages of vertebrate development. PMID:21356103

  2. Gene Expression Studies in Mosquitoes

    PubMed Central

    Chen, Xlao-Guang; Mathur, Geetika; James, Anthony A.

    2009-01-01

    Research on gene expression in mosquitoes is motivated by both basic and applied interests. Studies of genes involved in hematophagy, reproduction, olfaction, and immune responses reveal an exquisite confluence of biological adaptations that result in these highly-successful life forms. The requirement of female mosquitoes for a bloodmeal for propagation has been exploited by a wide diversity of viral, protozoan and metazoan pathogens as part of their life cycles. Identifying genes involved in host-seeking, blood feeding and digestion, reproduction, insecticide resistance and susceptibility/refractoriness to pathogen development is expected to provide the bases for the development of novel methods to control mosquito-borne diseases. Advances in mosquito transgenesis technologies, the availability of whole genome sequence information, mass sequencing and analyses of transcriptomes and RNAi techniques will assist development of these tools as well as deepen the understanding of the underlying genetic components for biological phenomena characteristic of these insect species. PMID:19161831

  3. The Gene Expression Omnibus Database.

    PubMed

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome-protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/ . PMID:27008011

  4. Aberrant keratin 7 and 20 expression in triple-negative carcinoma of the breast.

    PubMed

    Kuroda, Hajime; Imai, Yasuo; Yamagishi, Hidetsugu; Ueda, Yoshihiko; Kuroso, Kazuko; Oishi, Yoko; Ohashi, Hitoshi; Yamashita, Akinori; Yashiro, Yoshiko; Fukushima, Hisaki

    2016-02-01

    Early studies characterizing the keratin (K) profile of various epithelial tissues indicated that breast carcinoma is K7 positive and K20 negative, but not all breast carcinomas show this profile. Triple-negative carcinoma (TNC) has been characterized by negativity for estrogen receptor (ER), progesterone receptor (PgR), and Her2/neu protein. TNC is more likely to metastasize to the viscera and present as a metastatic poorly different carcinoma. In our study, on the basis of immunohistochemical staining of ER, PgR, and Her2/neu, 75 of the 290 patients with invasive breast carcinoma were judged to have TNC. K20 expression was detected in 6 of 75 patients with TNC, and non-TNC was negative in all 215 cases (P = .0003). K7 expression was also detected in 72 of 75 TNC cases. However, non-TNC was negative in 26 of 215 cases, which was significant (P = .0457). An aberrant profile of K was observed in the TNC group, indicating that caution is needed in determining the site of primary tumors using immunohistochemical algorithms. It should be kept in mind that patients with TNC show highly variable K profiles in practical diagnosis. PMID:26670478

  5. Regulators of gene expression as biomarkers for prostate cancer

    PubMed Central

    Willard, Stacey S; Koochekpour, Shahriar

    2012-01-01

    Recent technological advancements in gene expression analysis have led to the discovery of a promising new group of prostate cancer (PCa) biomarkers that have the potential to influence diagnosis and the prediction of disease severity. The accumulation of deleterious changes in gene expression is a fundamental mechanism of prostate carcinogenesis. Aberrant gene expression can arise from changes in epigenetic regulation or mutation in the genome affecting either key regulatory elements or gene sequences themselves. At the epigenetic level, a myriad of abnormal histone modifications and changes in DNA methylation are found in PCa patients. In addition, many mutations in the genome have been associated with higher PCa risk. Finally, over- or underexpression of key genes involved in cell cycle regulation, apoptosis, cell adhesion and regulation of transcription has been observed. An interesting group of biomarkers are emerging from these studies which may prove more predictive than the standard prostate specific antigen (PSA) serum test. In this review, we discuss recent results in the field of gene expression analysis in PCa including the most promising biomarkers in the areas of epigenetics, genomics and the transcriptome, some of which are currently under investigation as clinical tests for early detection and better prognostic prediction of PCa. PMID:23226612

  6. Classification of genes based on gene expression analysis

    NASA Astrophysics Data System (ADS)

    Angelova, M.; Myers, C.; Faith, J.

    2008-05-01

    Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated.

  7. Classification of genes based on gene expression analysis

    SciTech Connect

    Angelova, M. Myers, C. Faith, J.

    2008-05-15

    Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated.

  8. Transcriptional stochasticity in gene expression.

    PubMed

    Lipniacki, Tomasz; Paszek, Pawel; Marciniak-Czochra, Anna; Brasier, Allan R; Kimmel, Marek

    2006-01-21

    Due to the small number of copies of molecular species involved, such as DNA, mRNA and regulatory proteins, gene expression is a stochastic phenomenon. In eukaryotic cells, the stochastic effects primarily originate in regulation of gene activity. Transcription can be initiated by a single transcription factor binding to a specific regulatory site in the target gene. Stochasticity of transcription factor binding and dissociation is then amplified by transcription and translation, since target gene activation results in a burst of mRNA molecules, and each mRNA copy serves as a template for translating numerous protein molecules. In the present paper, we explore a mathematical approach to stochastic modeling. In this approach, the ordinary differential equations with a stochastic component for mRNA and protein levels in a single cells yield a system of first-order partial differential equations (PDEs) for two-dimensional probability density functions (pdf). We consider the following examples: Regulation of a single auto-repressing gene, and regulation of a system of two mutual repressors and of an activator-repressor system. The resulting PDEs are approximated by a system of many ordinary equations, which are then numerically solved. PMID:16039671

  9. Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression.

    PubMed

    Jourdain, Alexis A; Boehm, Erik; Maundrell, Kinsey; Martinou, Jean-Claude

    2016-03-14

    In mitochondria, DNA replication, gene expression, and RNA degradation machineries coexist within a common nondelimited space, raising the question of how functional compartmentalization of gene expression is achieved. Here, we discuss the recently characterized "mitochondrial RNA granules," mitochondrial subdomains with an emerging role in the regulation of gene expression. PMID:26953349

  10. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status[S

    PubMed Central

    Li, Shengjie; Chen, Xi; Zhang, Hongjie; Liang, Xiangying; Xiang, Yang; Yu, Chaohui; Zen, Ke; Li, Youming; Zhang, Chen-Yu

    2009-01-01

    Despite years of effort, exact pathogenesis of nonalcoholic fatty liver disease (NAFLD) remains obscure. To gain an insight into the regulatory roles of microRNAs (miRNAs) in aberrant energy metabolic status and pathogenesis of NAFLD, we analyzed the expression of miRNAs in livers of ob/ob mice, streptozotocin (STZ)-induced type 1 diabetic mice, and normal C57BL/6 mice by miRNA microarray. Compared with normal C57BL/6 mice, ob/ob mice showed upregulation of eight miRNAs and downregulation of four miRNAs in fatty livers. Upregulation of miR-34a and downregulation of miR-122 was found in livers of STZ-induced diabetic mice. These results demonstrate that distinct miRNAs are strongly dysregulated in NAFLD and hyperglycemia. Comparison between miRNA expressions in livers of ob/ob mice and STZ-administered mice further revealed upregulation of four miRNAs and downregulation of two miRNAs in livers of ob/ob mice, indicating that these miRNAs may represent a molecular signature of NAFLD. A distinctive miRNA expression pattern was identified in ob/ob mouse liver, and hierarchical clustering of this pattern could clearly discriminate ob/ob mice from either normal C57BL/6 mice or STZ-administered mice. These findings suggest an important role of miRNAs in hepatic energy metabolism and implicate the participation of miRNAs in the pathophysiological processes of NAFLD. PMID:19372595

  11. Noise in eukaryotic gene expression

    NASA Astrophysics Data System (ADS)

    Blake, William J.; Krn, Mads; Cantor, Charles R.; Collins, J. J.

    2003-04-01

    Transcription in eukaryotic cells has been described as quantal, with pulses of messenger RNA produced in a probabilistic manner. This description reflects the inherently stochastic nature of gene expression, known to be a major factor in the heterogeneous response of individual cells within a clonal population to an inducing stimulus. Here we show in Saccharomyces cerevisiae that stochasticity (noise) arising from transcription contributes significantly to the level of heterogeneity within a eukaryotic clonal population, in contrast to observations in prokaryotes, and that such noise can be modulated at the translational level. We use a stochastic model of transcription initiation specific to eukaryotes to show that pulsatile mRNA production, through reinitiation, is crucial for the dependence of noise on transcriptional efficiency, highlighting a key difference between eukaryotic and prokaryotic sources of noise. Furthermore, we explore the propagation of noise in a gene cascade network and demonstrate experimentally that increased noise in the transcription of a regulatory protein leads to increased cell-cell variability in the target gene output, resulting in prolonged bistable expression states. This result has implications for the role of noise in phenotypic variation and cellular differentiation.

  12. Antisense expression increases gene expression variability and locus interdependency

    PubMed Central

    Xu, Zhenyu; Wei, Wu; Gagneur, Julien; Clauder-Münster, Sandra; Smolik, Miłosz; Huber, Wolfgang; Steinmetz, Lars M

    2011-01-01

    Genome-wide transcription profiling has revealed extensive expression of non-coding RNAs antisense to genes, yet their functions, if any, remain to be understood. In this study, we perform a systematic analysis of sense–antisense expression in response to genetic and environmental changes in yeast. We find that antisense expression is associated with genes of larger expression variability. This is characterized by more ‘switching off' at low levels of expression for genes with antisense compared to genes without, yet similar expression at maximal induction. By disrupting antisense transcription, we demonstrate that antisense expression confers an on-off switch on gene regulation for the SUR7 gene. Consistent with this, genes that must respond in a switch-like manner, such as stress–response and environment-specific genes, are enriched for antisense expression. In addition, our data provide evidence that antisense expression initiated from bidirectional promoters enables the spreading of regulatory signals from one locus to neighbouring genes. These results indicate a general regulatory effect of antisense expression on sense genes and emphasize the importance of antisense-initiating regions downstream of genes in models of gene regulation. PMID:21326235

  13. Identification of four soybean reference genes for gene expression normalization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene expression analysis requires the use of reference genes stably expressed independently of specific tissues or environmental conditions. Housekeeping genes (e.g., actin, tubulin, ribosomal, polyubiquitin and elongation factor 1-alpha) are commonly used as reference genes with the assumption tha...

  14. Glycosyltransferase Gene Expression Profiles Classify Cancer Types and Propose Prognostic Subtypes.

    PubMed

    Ashkani, Jahanshah; Naidoo, Kevin J

    2016-01-01

    Aberrant glycosylation in tumours stem from altered glycosyltransferase (GT) gene expression but can the expression profiles of these signature genes be used to classify cancer types and lead to cancer subtype discovery? The differential structural changes to cellular glycan structures are predominantly regulated by the expression patterns of GT genes and are a hallmark of neoplastic cell metamorphoses. We found that the expression of 210 GT genes taken from 1893 cancer patient samples in The Cancer Genome Atlas (TCGA) microarray data are able to classify six cancers; breast, ovarian, glioblastoma, kidney, colon and lung. The GT gene expression profiles are used to develop cancer classifiers and propose subtypes. The subclassification of breast cancer solid tumour samples illustrates the discovery of subgroups from GT genes that match well against basal-like and HER2-enriched subtypes and correlates to clinical, mutation and survival data. This cancer type glycosyltransferase gene signature finding provides foundational evidence for the centrality of glycosylation in cancer. PMID:27198045

  15. Seasonal Effects on Gene Expression

    PubMed Central

    Goldinger, Anita; Shakhbazov, Konstantin; Henders, Anjali K.; McRae, Allan F.; Montgomery, Grant W.; Powell, Joseph E.

    2015-01-01

    Many health conditions, ranging from psychiatric disorders to cardiovascular disease, display notable seasonal variation in severity and onset. In order to understand the molecular processes underlying this phenomenon, we have examined seasonal variation in the transcriptome of 606 healthy individuals. We show that 74 transcripts associated with a 12-month seasonal cycle were enriched for processes involved in DNA repair and binding. An additional 94 transcripts demonstrated significant seasonal variability that was largely influenced by blood cell count levels. These transcripts were enriched for immune function, protein production, and specific cellular markers for lymphocytes. Accordingly, cell counts for erythrocytes, platelets, neutrophils, monocytes, and CD19 cells demonstrated significant association with a 12-month seasonal cycle. These results demonstrate that seasonal variation is an important environmental regulator of gene expression and blood cell composition. Notable changes in leukocyte counts and genes involved in immune function indicate that immune cell physiology varies throughout the year in healthy individuals. PMID:26023781

  16. Altered expression of MGMT in high-grade gliomas results from the combined effect of epigenetic and genetic aberrations.

    PubMed

    Ramalho-Carvalho, João; Pires, Malini; Lisboa, Susana; Graça, Inês; Rocha, Patrícia; Barros-Silva, João Diogo; Savva-Bordalo, Joana; Maurício, Joaquina; Resende, Mário; Teixeira, Manuel R; Honavar, Mrinalini; Henrique, Rui; Jerónimo, Carmen

    2013-01-01

    MGMT downregulation in high-grade gliomas (HGG) has been mostly attributed to aberrant promoter methylation and is associated with increased sensitivity to alkylating agent-based chemotherapy. However, HGG harboring 10q deletions also benefit from treatment with alkylating agents. Because the MGMT gene is mapped at 10q26, we hypothesized that both epigenetic and genetic alterations might affect its expression and predict response to chemotherapy. To test this hypothesis, promoter methylation and mRNA levels of MGMT were determined by quantitative methylation-specific PCR (qMSP) or methylation-specific multiplex ligation dependent probe amplification (MS-MLPA) and quantitative RT-PCR, respectively, in a retrospective series of 61 HGG. MGMT/chromosome 10 copy number variations were determined by FISH or MS-MLPA analysis. Molecular findings were correlated with clinical parameters to assess their predictive value. Overall, MGMT methylation ratios assessed by qMSP and MS-MLPA were inversely correlated with mRNA expression levels (best coefficient value obtained with MS-MLPA). By FISH analysis in 68.3% of the cases there was loss of 10q26.1 and in 15% of the cases polysomy was demonstrated; the latter displayed the highest levels of transcript. When genetic and epigenetic data were combined, cases with MGMT promoter methylation and MGMT loss depicted the lowest transcript levels, although an impact in response to alkylating agent chemotherapy was not apparent. Cooperation between epigenetic (promoter methylation) and genetic (monosomy, locus deletion) changes affecting MGMT in HGG is required for effective MGMT silencing. Hence, evaluation of copy number alterations might add relevant prognostic and predictive information concerning response to alkylating agent-based chemotherapy. PMID:23505468

  17. Clustering analysis for gene expression data

    NASA Astrophysics Data System (ADS)

    Chen, Yidong; Ermolaeva, Olga; Bittner, Michael L.; Meltzer, Paul S.; Trent, Jeffrey M.; Dougherty, Edward R.; Batman, Sinan

    1999-05-01

    The recent development of cDNA microarray allows ready access to large amount gene expression patterns for many genetic materials. Gene expression of tissue samples can be quantitatively analyzed by hybridizing fluor-tagged mRNA to targets on a cDNA microarray. Ratios of average expression level arising from co-hybridized normal and pathological samples are extracted via image segmentation, thus the gene expression pattern are obtained. The gene expression in a given biological process may provide a fingerprint of the sample development, or response to certain treatment. We propose a K-mean based algorithm in which gene expression levels fluctuate in parallel will be clustered together. The resulting cluster suggests some functional relationships between genes, and some known genes belongs to a unique functional classes shall provide indication for unknown genes in the same clusters.

  18. Long noncoding RNA are aberrantly expressed in vivo in the cystic fibrosis bronchial epithelium.

    PubMed

    McKiernan, Paul J; Molloy, Kevin; Cryan, Sally A; McElvaney, Noel G; Greene, Catherine M

    2014-07-01

    Long non-coding RNAs (lncRNAs) have emerged recently as key regulatory molecules with diverse roles at almost every level of the regulation of gene expression. The roles of these RNAs in the pathogenesis of cystic fibrosis (CF); a lethal multisystem, autosomal recessive disorder have yet to be explored. Our aim was to examine the expression profile of lncRNA, in the airway epithelium of people with CF. We examined the expression of 30,586 lncRNAs by microarray (Human LncRNA Array v3.0, Arraystar, Inc.), in vivo in bronchial cells isolated from endobronchial brushings obtained from CF and non-CF individuals. In total, we identified 1,063 lncRNAs with differential expression between CF and non-CF individuals (fold change ≥3, p≤0.001). The microarray also contained probes for ∼26,109 protein coding transcripts, of which 720 were differentially expressed between CF and non-CF brush samples (fold change ≥3, p≤0.001). Confirmation of a selection of differentially expressed coding mRNA and lncRNA transcripts such as XIST and TLR8 was achieved using qRT-PCR. Gene ontology bioinformatics analysis highlighted that many processes over-represented in the CF bronchial epithelium are related to inflammation. These data show a significantly altered lncRNA and mRNA expression profile in CF bronchial cells in vivo. Dysregulation of some of these lncRNAs may play important roles in the chronic infection and inflammation that exists in the lungs of people with CF. PMID:24631641

  19. Structure and localization of genes encoding aberrant and normal epidermal growth factor receptor RNAs from A431 human carcinoma cells.

    PubMed Central

    Merlino, G T; Ishii, S; Whang-Peng, J; Knutsen, T; Xu, Y H; Clark, A J; Stratton, R H; Wilson, R K; Ma, D P; Roe, B A

    1985-01-01

    A431 cells have an amplification of the epidermal growth factor (EGF) receptor gene, the cellular homolog of the v-erb B oncogene, and overproduce an aberrant 2.9-kilobase RNA that encodes a portion of the EGF receptor. A cDNA (pE15) for the aberrant RNA was cloned, sequenced, and used to analyze genomic DNA blots from A431 and normal cells. These data indicate that the aberrant RNA is created by a gene rearrangement within chromosome 7, resulting in a fusion of the 5' portion of the EGF receptor gene to an unidentified region of genomic DNA. The unidentified sequences are amplified to about the same degree (20- to 30-fold) as the EGF receptor sequences. In situ hybridization to chromosomes from normal cells and A431 cells show that both the EGF receptor gene and the unidentified DNA are localized to the p14-p12 region of chromosome 7. By using cDNA fragments to probe DNA blots from mouse-A431 somatic cell hybrids, the rearranged receptor gene was shown to be associated with translocation chromosome M4. Images PMID:2991749

  20. Aberrant NF-KappaB Expression in Autism Spectrum Condition: A Mechanism for Neuroinflammation

    PubMed Central

    Young, Adam M. H.; Campbell, Elaine; Lynch, Sarah; Suckling, John; Powis, Simon J.

    2011-01-01

    Autism spectrum condition (ASC) is recognized as having an inflammatory component. Post-mortem brain samples from patients with ASC display neuroglial activation and inflammatory markers in cerebrospinal fluid, although little is known about the underlying molecular mechanisms. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a protein found in almost all cell types and mediates regulation of immune response by inducing the expression of inflammatory cytokines and chemokines, establishing a feedback mechanism that can produce chronic or excessive inflammation. This article describes immunodetection and immunofluorescence measurements of NF-κB in human post-mortem samples of orbitofrontal cortex tissue donated to two independent centers: London Brain Bank, Kings College London, UK (ASC: n = 3, controls: n = 4) and Autism Tissue Program, Harvard Brain Bank, USA (ASC: n = 6, controls: n = 5). The hypothesis was that concentrations of NF-κB would be elevated, especially in activated microglia in ASC, and pH would be concomitantly reduced (i.e., acidification). Neurons, astrocytes, and microglia all demonstrated increased extranuclear and nuclear translocated NF-κB p65 expression in brain tissue from ASC donors relative to samples from matched controls. These between-groups differences were increased in astrocytes and microglia relative to neurons, but particularly pronounced for highly mature microglia. Measurement of pH in homogenized samples demonstrated a 0.98-unit difference in means and a strong (F = 98.3; p = 0.00018) linear relationship to the expression of nuclear translocated NF-κB in mature microglia. Acridine orange staining localized pH reductions to lysosomal compartments. In summary, NF-κB is aberrantly expressed in orbitofrontal cortex in patients with ASC, as part of a putative molecular cascade leading to inflammation, especially of resident immune cells in brain regions associated with the behavioral and clinical symptoms of ASC. PMID:21629840

  1. Aberrant firing of replication origins potentially explains intragenic nonrecurrent rearrangements within genes, including the human DMD gene

    PubMed Central

    Ankala, Arunkanth; Kohn, Jordan N.; Hegde, Anisha; Meka, Arjun; Ephrem, Chin Lip Hon; Askree, Syed H.; Bhide, Shruti; Hegde, Madhuri R.

    2012-01-01

    Non-allelic homologous recombination (NAHR), non-homologous end joining (NHEJ), and microhomology-mediated replication-dependent recombination (MMRDR) have all been put forward as mechanisms to explain DNA rearrangements associated with genomic disorders. However, many nonrecurrent rearrangements in humans remain unexplained. To further investigate the mutation mechanisms of these copy number variations (CNVs), we performed breakpoint mapping analysis for 62 clinical cases with intragenic deletions in the human DMD gene (50 cases) and other known disease-causing genes (one PCCB, one IVD, one DBT, three PAH, one STK11, one HEXB, three DBT, one HRPT1, and one EMD cases). While repetitive elements were found in only four individual cases, three involving DMD and one HEXB gene, microhomologies (2–10 bp) were observed at breakpoint junctions in 56% and insertions ranging from 1 to 48 bp were seen in 16 of the total 62 cases. Among these insertions, we observed evidence for tandem repetitions of short segments (5–20 bp) of reference sequence proximal to the breakpoints in six individual DMD cases (six repeats in one, four repeats in three, two repeats in one, and one repeat in one case), strongly indicating attempts by the replication machinery to surpass the stalled replication fork. We provide evidence of a novel template slippage event during replication rescue. With a deeper insight into the complex process of replication and its rescue during origin failure, brought forward by recent studies, we propose a hypothesis based on aberrant firing of replication origins to explain intragenic nonrecurrent rearrangements within genes, including the DMD gene. PMID:22090376

  2. Expression of Aberrant Forms of AUXIN RESPONSE FACTOR8 Stimulates Parthenocarpy in Arabidopsis and Tomato1[W][OA

    PubMed Central

    Goetz, Marc; Hooper, Lauren C.; Johnson, Susan D.; Rodrigues, Julio Carlyle Macedo; Vivian-Smith, Adam; Koltunow, Anna M.

    2007-01-01

    Fruit initiation in Arabidopsis (Arabidopsis thaliana) is generally repressed until fertilization occurs. However, mutations in AUXIN RESPONSE FACTOR8 (ARF8) uncouple fruit initiation from fertilization, resulting in the formation of seedless, parthenocarpic fruit. Here we induced parthenocarpy in wild-type Arabidopsis by introducing either the mutant genomic (g) Atarf8-4 sequence or gAtARF8:β-glucuronidase translational fusion constructs by plant transformation. Silencing of endogenous AtARF8 transcription was not observed, indicating that the introduced, aberrant ARF8 transcripts were compromising the function of endogenous ARF8 and/or associated factors involved in suppressing fruit initiation. To analyze the role of ARF8 in tomato (Solanum lycopersicum) we initially emasculated 23 tomato cultivars to test for background parthenocarpy. Surprisingly, all had a predisposition to initiate fertilization-independent fruit growth. Expression of gAtarf8-4 in transgenic tomato (‘Monalbo’) resulted in a significant increase in the number and size of parthenocarpic fruit. Isolation of tomato ARF8 cDNA indicated significant sequence conservation with AtARF8. SlARF8 may therefore control tomato fruit initiation in a similar manner as AtARF8 does in Arabidopsis. Two SlARF8 cDNAs differing in size by 5 bp were found, both arising from the same gene. The smaller cDNA is a splice variant and is also present in Arabidopsis. We propose that low endogenous levels of the splice variant products might interfere with efficient formation/function of a complex repressing fruit initiation, thereby providing an explanation for the observed ovary expansion in tomato and also Arabidopsis after emasculation. Increasing the levels of aberrant Atarf8-4 transcripts may further destabilize formation/function of the complex in a dosage-dependent manner enhancing tomato parthenocarpic fruit initiation frequency and size and mimicking the parthenocarpic dehiscent silique phenotype found in homozygous Atarf8-4 mutants. Collectively these data suggest that similar mechanisms involving auxin signaling exist to inhibit parthenocarpic fruit set in tomato and Arabidopsis. PMID:17766399

  3. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  4. Pluripotency Genes and Their Functions in the Normal and Aberrant Breast and Brain.

    PubMed

    Seymour, Tracy; Twigger, Alecia-Jane; Kakulas, Foteini

    2015-01-01

    Pluripotent stem cells (PSCs) attracted considerable interest with the successful isolation of embryonic stem cells (ESCs) from the inner cell mass of murine, primate and human embryos. Whilst it was initially thought that the only PSCs were ESCs, in more recent years cells with similar properties have been isolated from organs of the adult, including the breast and brain. Adult PSCs in these organs have been suggested to be remnants of embryonic development that facilitate normal tissue homeostasis during repair and regeneration. They share certain characteristics with ESCs, such as an inherent capacity to self-renew and differentiate into cells of the three germ layers, properties that are regulated by master pluripotency transcription factors (TFs) OCT4 (octamer-binding transcription factor 4), SOX2 (sex determining region Y-box 2), and homeobox protein NANOG. Aberrant expression of these TFs can be oncogenic resulting in heterogeneous tumours fueled by cancer stem cells (CSC), which are resistant to conventional treatments and are associated with tumour recurrence post-treatment. Further to enriching our understanding of the role of pluripotency TFs in normal tissue function, research now aims to develop optimized isolation and propagation methods for normal adult PSCs and CSCs for the purposes of regenerative medicine, developmental biology, and disease modeling aimed at targeted personalised cancer therapies. PMID:26580604

  5. Aberrant silencing of the endocrine peptide gene tachykinin-1 in gastric cancer

    SciTech Connect

    David, Stefan; Kan, Takatsugu; Cheng, Yulan; Agarwal, Rachana; Jin, Zhe; Mori, Yuriko

    2009-01-16

    Tachykinin-1 (TAC1) is the precursor protein for neuroendocrine peptides, including substance P, and is centrally involved in gastric secretion, motility, mucosal immunity, and cell proliferation. Here we report aberrant silencing of TAC1 in gastric cancer (GC) by promoter hypermethylation. TAC1 methylation and mRNA expression in 47 primary GCs and 41 noncancerous gastric mucosae (NLs) were analyzed by utilizing real-time quantitative PCR-based assays. TAC1 methylation was more prevalent in GCs than in NLs: 21 (45%) of 47 GCs versus 6 (15%) of 41 NLs (p < 0.01). Microsatellite instability was also associated with TAC1 methylation in GCs. There was no significant association between TAC1 methylation and age, gender, stage, histological differentiation, or the presence of Helicobacter pylori. TAC1 mRNA was markedly downregulated in GCs relative to NLs. 5-Aza-2'-deoxycytidine-induced demethylation of the TAC1 promoter resulted in TAC1 mRNA upregulation. Further studies are indicated to elucidate the functional involvement of TAC1 in gastric carcinogenesis.

  6. Pluripotency Genes and Their Functions in the Normal and Aberrant Breast and Brain

    PubMed Central

    Seymour, Tracy; Twigger, Alecia-Jane; Kakulas, Foteini

    2015-01-01

    Pluripotent stem cells (PSCs) attracted considerable interest with the successful isolation of embryonic stem cells (ESCs) from the inner cell mass of murine, primate and human embryos. Whilst it was initially thought that the only PSCs were ESCs, in more recent years cells with similar properties have been isolated from organs of the adult, including the breast and brain. Adult PSCs in these organs have been suggested to be remnants of embryonic development that facilitate normal tissue homeostasis during repair and regeneration. They share certain characteristics with ESCs, such as an inherent capacity to self-renew and differentiate into cells of the three germ layers, properties that are regulated by master pluripotency transcription factors (TFs) OCT4 (octamer-binding transcription factor 4), SOX2 (sex determining region Y-box 2), and homeobox protein NANOG. Aberrant expression of these TFs can be oncogenic resulting in heterogeneous tumours fueled by cancer stem cells (CSC), which are resistant to conventional treatments and are associated with tumour recurrence post-treatment. Further to enriching our understanding of the role of pluripotency TFs in normal tissue function, research now aims to develop optimized isolation and propagation methods for normal adult PSCs and CSCs for the purposes of regenerative medicine, developmental biology, and disease modeling aimed at targeted personalised cancer therapies. PMID:26580604

  7. Gene Expression: Sizing it all up

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic architecture appears to be a largely unexplored component of gene expression. Although surely not the end of the story, we are learning that when it comes to gene expression, size is important. We have been surprised to find that certain patterns of expression, tissue-specific versus constit...

  8. Alteration of gene expression in rat colon mucosa after exercise.

    PubMed

    Buehlmeyer, K; Doering, F; Daniel, H; Kindermann, B; Schulz, T; Michna, H

    2008-01-01

    The development of colon cancer is highly influenced by lifestyle factors such as nutrition and physical inactivity. Detailed biological mechanisms are thus far unclear. The purpose of this study was to investigate the effects of regular treadmill exercise on gene expression in rat colon mucosa. For this purpose, 6-week-old male Wistar rats completed a stress-free voluntary treadmill exercise period of 12 weeks. Sedentary rats served as a control group. In the colon mucosa, steady-state mRNA expression levels of approximately 10,000 genes were compared between both groups by micro-array analysis (MWG rat 10K array). A total of 8846 mRNAs were detected above background level. Regular exercise led to a decreased expression of 47 genes at a threshold-factor of 2.0. Three genes were found to be up-regulated in the exercise group. The identified genes encode proteins involved in signal transduction (n=11), transport (n=8), immune system (n=7), cytoskeleton (n=6), protein targeting (n=6), metabolism (n=5), transcription (n=3) and vascularization (n=2). Among the genes regulated by regular exercise, the betaine-homocysteine methyltransferase 2 (BHMT2) seems to be of particular interest. Physical activity may protect against aberrant methylation by repressing the BHMT2 gene and thus contribute to a decreased risk of developing colon cancer. We have also identified vascular endothelial growth factor (VEGF), angiopoietin-2 (ANG-2) and calcium-independent phospholipase a2 (iPL-A2), all of them with markedly reduced transcript levels in the mucosa of active rats. In summary, our experiment presents the first gene expression pattern in rat colon mucosa following regular treadmill activity and represents an important step in understanding the molecular mechanisms responsible for the preventive effect of physical activity on the development of colon cancer. PMID:18342145

  9. Differential gene detection incorporating common expression patterns

    NASA Astrophysics Data System (ADS)

    Oba, Shigeyuki; Ishii, Shin

    2009-12-01

    In detection of differentially expressed (DE) genes between different groups of samples based on a high-throughput expression measurement system, we often use a classical statistical testing based on a simple assumption that the expression of a certain DE gene in one group is higher or lower in average than that in the other group. Based on this simple assumption, the theory of optimal discovery procedure (ODP) (Storey, 2005) provided an optimal thresholding function for DE gene detection. However, expression patterns of DE genes over samples may have such a structure that is not exactly consistent with group labels assigned to the samples. Appropriate treatment of such a structure can increase the detection ability. Namely, genes showing similar expression patterns to other biologically meaningful genes can be regarded as statistically more significant than those showing expression patterns independent of other genes, even if differences in mean expression levels are comparable. In this study, we propose a new statistical thresholding function based on a latent variable model incorporating expression patterns together with the ODP theory. The latent variable model assumes hidden common signals behind expression patterns over samples and the ODP theory is extended to involve the latent variables. When applied to several gene expression data matrices which include cluster structures or 'cancer outlier' structures, the newly-proposed thresholding functions showed prominently better detection performance of DE genes than the original ODP thresholding function did. We also demonstrate how the proposed methods behave through analyses of real breast cancer and lymphoma datasets.

  10. Impact of sodium arsenite on chromosomal aberrations with respect to polymorphisms of detoxification and DNA repair genes.

    PubMed

    Azizian-Farsani, Fatemeh; Rafiei, Gholamreza; Saadat, Mostafa

    2014-01-01

    Arsenic compounds can increase production of reactive oxygen species. Reactive oxygen species can induce double-strand breaks in DNA, which is a cause of chromosome aberrations (CAs). This study was conducted to determine the association between arsenic exposure and polymorphisms of genes involved in detoxification (glutathione S-transferase T1 [GSTT1], glutathione S-transferase M1 [GSTM1], glutathione S-transferase O2 [GSTO2], catalase [CAT], and NAD(P)H quinone oxidoreductase1 [NQO1]) as well as nonhomologous end joining DNA repair genes (XRCC4, XRCC5, and XRCC6) with induction of chromosomal aberrations. The participants consisted of 123 healthy males who were genotyped using polymerase chain reaction-based methods. Primary cultures of whole blood were treated with sodium arsenite (NaAsO(2); iAs(III); at final concentration 1 µmol/L), mitomycin C (at final concentration 60 ηg/mL; as positive control), or untreated. For each culture, mitotic index (MI), chromatid breaks (CBs), CAs, and total percentage of aberrant cells were determined. The levels of CB and percentage of aberrant cells were significantly higher in the TT genotype of CAT (C-262T polymorphism) than the CC genotype. The CB value in samples with GSTM1 active genotype was significantly higher than the null genotype. The MI in samples with TT genotype of NQO1 (C609T polymorphism) was significantly higher than MI in samples having CC and CT genotypes. There was no association between MI, CB, CA, and percentage of aberrant cells and polymorphisms of XRCC4, XRCC5, and XRCC6. PMID:25395496

  11. HPVbase – a knowledgebase of viral integrations, methylation patterns and microRNAs aberrant expression: As potential biomarkers for Human papillomaviruses mediated carcinomas

    PubMed Central

    Kumar Gupta, Amit; Kumar, Manoj

    2015-01-01

    Human papillomaviruses (HPVs) are extremely associated with different carcinomas. Despite consequential accomplishments, there is still need to establish more promising biomarkers to discriminate cancerous progressions. Therefore, we have developed HPVbase (http://crdd.osdd.net/servers/hpvbase/), a comprehensive resource for three major efficacious cancer biomarkers i.e. integration and breakpoint events, HPVs methylation patterns and HPV mediated aberrant expression of distinct host microRNAs (miRNAs). It includes clinically important 1257 integrants and integration sites from different HPV types i.e. 16, 18, 31, 33 and 45 associated with distinct histological conditions. An inclusive HPV integrant and breakpoints browser was designed to provide easy browsing and straightforward analysis. Our study also provides 719 major quantitative HPV DNA methylation observations distributed in 5 distinct HPV genotypes from higher to lower in numbers namely HPV 16 (495), HPV 18 (113), HPV45 (66), HPV 31 (34) and HPV 33 (11). Additionally, we have curated and compiled clinically significant aberrant expression profile of 341 miRNAs including their target genes in distinct carcinomas, which can be utilized for miRNA therapeutics. A user-friendly web interface has been developed for easy data retrieval and analysis. We foresee that HPVbase an integrated and multi-comparative platform would facilitate reliable cancer diagnostics and prognosis. PMID:26205472

  12. HPVbase--a knowledgebase of viral integrations, methylation patterns and microRNAs aberrant expression: As potential biomarkers for Human papillomaviruses mediated carcinomas.

    PubMed

    Kumar Gupta, Amit; Kumar, Manoj

    2015-01-01

    Human papillomaviruses (HPVs) are extremely associated with different carcinomas. Despite consequential accomplishments, there is still need to establish more promising biomarkers to discriminate cancerous progressions. Therefore, we have developed HPVbase (http://crdd.osdd.net/servers/hpvbase/), a comprehensive resource for three major efficacious cancer biomarkers i.e. integration and breakpoint events, HPVs methylation patterns and HPV mediated aberrant expression of distinct host microRNAs (miRNAs). It includes clinically important 1257 integrants and integration sites from different HPV types i.e. 16, 18, 31, 33 and 45 associated with distinct histological conditions. An inclusive HPV integrant and breakpoints browser was designed to provide easy browsing and straightforward analysis. Our study also provides 719 major quantitative HPV DNA methylation observations distributed in 5 distinct HPV genotypes from higher to lower in numbers namely HPV 16 (495), HPV 18 (113), HPV45 (66), HPV 31 (34) and HPV 33 (11). Additionally, we have curated and compiled clinically significant aberrant expression profile of 341 miRNAs including their target genes in distinct carcinomas, which can be utilized for miRNA therapeutics. A user-friendly web interface has been developed for easy data retrieval and analysis. We foresee that HPVbase an integrated and multi-comparative platform would facilitate reliable cancer diagnostics and prognosis. PMID:26205472

  13. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2008-06-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  14. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  15. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  16. Mutual information analysis as a tool to assess the role of aneuploidy in the generation of cancer-associated differential gene expression patterns.

    PubMed

    Klus, G T; Song, A; Schick, A; Wahde, M; Szallasi, Z

    2001-01-01

    Most human tumors are characterized by: (1) an aberrant set of chromosomes, a state termed aneuploidy; (2) an aberrant gene expression pattern; and (3) an aberrant phenotype of uncontrolled growth. One of the goals of cancer research is to establish causative relationships between these three important characteristics. In this paper we were searching for evidence that aneuploidy is a major cause of differential gene expression. We describe how mutual information analysis of cancer-associated gene expression patterns could be exploited to answer this question. In addition to providing general guidelines, we have applied the proposed analysis to a recently published breast cancer-associated gene expression matrix. The results derived from this particular data set provided preliminary evidence that mutual information analysis may become a useful tool to investigate the link between differential gene expression and aneuploidy. PMID:11262960

  17. Aberrant expression of miR-127, miR-21 and miR-16 in placentas of deceased cloned sheep.

    PubMed

    Ni, Wei; You, Shuang; Cao, Yang; Li, Cunyuan; Wei, Junchuang; Wang, Dawei; Qiao, Jun; Zhao, Xinxia; Hu, Shengwei; Quan, Renzhe

    2016-04-01

    Placental deficiencies are associated with developmental abnormalities of animal produced by somatic cell nuclear transfer (SCNT). It is reported that aberrant expression of microRNAs (miRNAs) in the common placenta is associated with fetal growth restriction and placental deficiencies. However, an understanding of the expression and function of miRNAs in the placentas of cloned animal is lacking. In this study, we characterized the expression of five growth-associated miRNAs (miR-127, miR-16, miR-21, miR-93 and miR-182) in placentas of deceased transgenic cloned sheep (deceased group, n=7), live transgenic cloned sheep (live group, n=5) and conventionally produced sheep (control group, n=10). Expression levels of miR-127 (P<0.01), miR-21 (P<0.01) and miR-16 (P<0.05) were significantly up-regulated in the placentas of deceased group compared to that of control group. In contrast, the expression of these miRNAs was largely normal in the placentas of live group, except for the expression of miR-21. Furthermore, we confirmed that retrotransposon-like gene (Rtl1), a key gene in placental development, was down-regulated by miR-127 as a target in placenta cells. Our results suggested that the abnormal expression of miR-127, miR-21 and miR-16 in placentas of deceased sheep, through dysregulation of target genes, may result in developmental deficiencies of transgenic cloned sheep. PMID:27033933

  18. Gene expression in major depressive disorder.

    PubMed

    Jansen, R; Penninx, B W J H; Madar, V; Xia, K; Milaneschi, Y; Hottenga, J J; Hammerschlag, A R; Beekman, A; van der Wee, N; Smit, J H; Brooks, A I; Tischfield, J; Posthuma, D; Schoevers, R; van Grootheest, G; Willemsen, G; de Geus, E J; Boomsma, D I; Wright, F A; Zou, F; Sun, W; Sullivan, P F

    2016-03-01

    The search for genetic variants underlying major depressive disorder (MDD) has not yet provided firm leads to its underlying molecular biology. A complementary approach is to study gene expression in relation to MDD. We measured gene expression in peripheral blood from 1848 subjects from The Netherlands Study of Depression and Anxiety. Subjects were divided into current MDD (N=882), remitted MDD (N=635) and control (N=331) groups. MDD status and gene expression were measured again 2 years later in 414 subjects. The strongest gene expression differences were between the current MDD and control groups (129 genes at false-discovery rate, FDR<0.1). Gene expression differences across MDD status were largely unrelated to antidepressant use, inflammatory status and blood cell counts. Genes associated with MDD were enriched for interleukin-6 (IL-6)-signaling and natural killer (NK) cell pathways. We identified 13 gene expression clusters with specific clusters enriched for genes involved in NK cell activation (downregulated in current MDD, FDR=5.8 × 10(-5)) and IL-6 pathways (upregulated in current MDD, FDR=3.2 × 10(-3)). Longitudinal analyses largely confirmed results observed in the cross-sectional data. Comparisons of gene expression results to the Psychiatric Genomics Consortium (PGC) MDD genome-wide association study results revealed overlap with DVL3. In conclusion, multiple gene expression associations with MDD were identified and suggest a measurable impact of current MDD state on gene expression. Identified genes and gene clusters are enriched with immune pathways previously associated with the etiology of MDD, in line with the immune suppression and immune activation hypothesis of MDD. PMID:26008736

  19. Analysis of Gene Expression Patterns Using Biclustering.

    PubMed

    Roy, Swarup; Bhattacharyya, Dhruba K; Kalita, Jugal K

    2016-01-01

    Mining microarray data to unearth interesting expression profile patterns for discovery of in silico biological knowledge is an emerging area of research in computational biology. A group of functionally related genes may have similar expression patterns under a set of conditions or at some time points. Biclustering is an important data mining tool that has been successfully used to analyze gene expression data for biologically significant cluster discovery. The purpose of this chapter is to introduce interesting patterns that may be observed in expression data and discuss the role of biclustering techniques in detecting interesting functional gene groups with similar expression patterns. PMID:26350227

  20. Hematopoietic expression of oncogenic BRAF promotes aberrant growth of monocyte-lineage cells resistant to PLX4720

    PubMed Central

    Kamata, Tamihiro; Dankort, David; Kang, Jing; Giblett, Susan; Pritchard, Catrin A.; McMahon, Martin; Leavitt, Andrew D.

    2013-01-01

    Mutational activation of BRAF leading to expression of the BRAFV600E oncoprotein was recently identified in a high percentage of specific hematopoietic neoplasms in monocyte/histiocyte and mature B-cell lineages. Although BRAFV600E is a driver oncoprotein and pharmacological target in solid tumors such as melanoma, lung and thyroid cancer, it remains unknown whether BRAFV600E is an appropriate therapeutic target in hematopoietic neoplasms. To address this critical question, we generated a mouse model expressing inducible BRAFV600E in the hematopoietic system, and evaluated the efficacy of pathway-targeted therapeutics against primary hematopoietic cells. In this model, BRAFV600E expression conferred cytokine-independent growth to monocyte/macrophage-lineage progenitors leading to aberrant in vivo and in vitro monocyte/macrophage expansion. Furthermore, transplantation of BRAFV600E-expressing bone marrow cells promoted an in vivo pathology most notable for monocytosis in hematopoietic tissues and visceral organs. In vitro analysis revealed that MEK inhibition, but not RAF inhibition, effectively suppressed cytokine-independent clonal growth of monocyte/macrophage-lineage progenitors. However, combined RAF and PI3K inhibition effectively inhibited cytokine-independent colony formation, suggesting autocrine PI3K pathway activation. Taken together, these results provide evidence that constitutively activated BRAFV600E drives aberrant proliferation of monocyte-lineage cells. This study supports the development of pathway-targeted therapeutics in the treatment of BRAFV600E-expressing hematopoietic neoplasms in the monocyte/histiocyte lineage. PMID:24152792

  1. Gene expression. MicroRNA control of protein expression noise.

    PubMed

    Schmiedel, Jörn M; Klemm, Sandy L; Zheng, Yannan; Sahay, Apratim; Blüthgen, Nils; Marks, Debora S; van Oudenaarden, Alexander

    2015-04-01

    MicroRNAs (miRNAs) repress the expression of many genes in metazoans by accelerating messenger RNA degradation and inhibiting translation, thereby reducing the level of protein. However, miRNAs only slightly reduce the mean expression of most targeted proteins, leading to speculation about their role in the variability, or noise, of protein expression. We used mathematical modeling and single-cell reporter assays to show that miRNAs, in conjunction with increased transcription, decrease protein expression noise for lowly expressed genes but increase noise for highly expressed genes. Genes that are regulated by multiple miRNAs show more-pronounced noise reduction. We estimate that hundreds of (lowly expressed) genes in mouse embryonic stem cells have reduced noise due to substantial miRNA regulation. Our findings suggest that miRNAs confer precision to protein expression and thus offer plausible explanations for the commonly observed combinatorial targeting of endogenous genes by multiple miRNAs, as well as the preferential targeting of lowly expressed genes. PMID:25838385

  2. Protein expression profile of celiac disease patient with aberrant T cell by two-dimensional difference gel electrophoresis.

    PubMed

    De Re, Valli; Simula, Maria Paola; Caggiari, Laura; Ortz, Nicoletta; Spina, Michele; Da Ponte, Alessandro; De Appolonia, Leandro; Dolcetti, Riccardo; Canzonieri, Vincenzo; Cannizzaro, Renato

    2007-08-01

    One complication of celiac disease (CD) is refractory CD. These patients frequently show aberrant intraepithelial T cell clones and an increasing risk of evolution into enteropathy-associated T cell lymphoma (EATL). There is debate in the literature whether these cases are actually a smoldering lymphoma from the outset. The mechanism inducing T cell proliferation and prognosis remains unknown. Recently, alemtuzumab has been proposed as a promising new approach to treat these patients. Only few single cases have been tested presently, nevertheless, in all of them a clinical improvement has been observed, while intraepithelial lymphocytes (IELs) effectively targeted by alemtuzumab are still a debated issue. Using 2D-DIGE, we found hyperexpressed proteins specifically associated with aberrant T cell in a patient with CD by comparing the protein expression with that of patients with CD and polyclonal T cell or with that of control subjects (patients with polyclonal T cell and no CD). Proteins with a higher expression in duodenal biopsy of the patient with aberrant T cell were identified as IgM, apolipoprotein C-III, and Charcot-Leyden crystal proteins. These preliminary data allow hypothesizing different clinical effects of alemtuzumab in patients with CD, since besides the probable effect of alemtuzumab on T cell, it could effect inflammatory-associated CD52(+) IgM(+)B cell and eosinophils cells, known to produce IgM and Charcot-Leyden crystal proteins, which we demonstrated to be altered in this patient. Results also emphasize the possible association of apolipoprotein with aberrant T cell proliferation. PMID:17785332

  3. DNA Copy Number Aberrations, and Human Papillomavirus Status in Penile Carcinoma. Clinico-Pathological Correlations and Potential Driver Genes

    PubMed Central

    Lambros, Maryou; Stankiewicz, Elzbieta; Ng, Charlotte K. Y.; Weigelt, Britta; Rajab, Ramzi; Tinwell, Brendan; Corbishley, Cathy; Watkin, Nick; Berney, Dan; Reis-Filho, Jorge S.

    2016-01-01

    Penile squamous cell carcinoma is a rare disease, in which somatic genetic aberrations have yet to be characterized. We hypothesized that gene copy aberrations might correlate with human papillomavirus status and clinico-pathological features. We sought to determine the spectrum of gene copy number aberrations in a large series of PSCCs and to define their correlations with human papillomavirus, histopathological subtype, and tumor grade, stage and lymph node status. Seventy formalin-fixed, paraffin embedded penile squamous cell carcinomas were centrally reviewed by expert uropathologists. DNA was extracted from micro-dissected samples, subjected to PCR-based human papillomavirus assessment and genotyping (INNO-LiPA human papillomavirus Genotyping Extra Assay) and microarray-based comparative genomic hybridization using a 32K Bacterial Artificial Chromosome array platform. Sixty-four samples yielded interpretable results. Recurrent gains were observed in chromosomes 1p13.3-q44 (88%), 3p12.3-q29 (86%), 5p15.33-p11 (67%) and 8p12-q24.3 (84%). Amplifications of 5p15.33-p11 and 11p14.1-p12 were found in seven (11%) and four (6%) cases, respectively. Losses were observed in chromosomes 2q33-q37.3 (86%), 3p26.3-q11.1 (83%) and 11q12.2-q25 (81%). Although many losses and gains were similar throughout the cohort, there were small significant differences observed at specific loci, between human papillomavirus positive and negative tumors, between tumor types, and tumor grade and nodal status. These results demonstrate that despite the diversity of genetic aberrations in penile squamous cell carcinomas, there are significant correlations between the clinico-pathological data and the genetic changes that may play a role in disease natural history and progression and highlight potential driver genes, which may feature in molecular pathways for existing therapeutic agents. PMID:26901676

  4. Control of Stochasticity in Eukaryotic Gene Expression

    PubMed Central

    Raser, Jonathan M.; O'Shea, Erin K.

    2005-01-01

    Noise, or random fluctuations, in gene expression may produce variability in cellular behavior. To measure the noise intrinsic to eukaryotic gene expression, we quantified the differences in expression of two alleles in a diploid cell. We found that such noise is gene-specific and not dependent on the regulatory pathway or absolute rate of expression. We propose a model in which the balance between promoter activation and transcription influences the variability in messenger RNA levels. To confirm the predictions of our model, we identified both cis- and trans-acting mutations that alter the noise of gene expression. These mutations suggest that noise is an evolvable trait that can be optimized to balance fidelity and diversity in eukaryotic gene expression. PMID:15166317

  5. Profiling Gene Expression in Germinating Brassica Roots.

    PubMed

    Park, Myoung Ryoul; Wang, Yi-Hong; Hasenstein, Karl H

    2014-01-01

    Based on previously developed solid-phase gene extraction (SPGE) we examined the mRNA profile in primary roots of Brassica rapa seedlings for highly expressed genes like ACT7 (actin7), TUB (tubulin1), UBQ (ubiquitin), and low expressed GLK (glucokinase) during the first day post-germination. The assessment was based on the mRNA load of the SPGE probe of about 2.1 ng. The number of copies of the investigated genes changed spatially along the length of primary roots. The expression level of all genes differed significantly at each sample position. Among the examined genes ACT7 expression was most even along the root. UBQ was highest at the tip and root-shoot junction (RS). TUB and GLK showed a basipetal gradient. The temporal expression of UBQ was highest in the MZ 9 h after primary root emergence and higher than at any other sample position. Expressions of GLK in EZ and RS increased gradually over time. SPGE extraction is the result of oligo-dT and oligo-dA hybridization and the results illustrate that SPGE can be used for gene expression profiling at high spatial and temporal resolution. SPGE needles can be used within two weeks when stored at 4 °C. Our data indicate that gene expression studies that are based on the entire root miss important differences in gene expression that SPGE is able to resolve for example growth adjustments during gravitropism. PMID:24563578

  6. Gene Expression Profiling of Gastric Cancer

    PubMed Central

    Marimuthu, Arivusudar; Jacob, Harrys K.C.; Jakharia, Aniruddha; Subbannayya, Yashwanth; Keerthikumar, Shivakumar; Kashyap, Manoj Kumar; Goel, Renu; Balakrishnan, Lavanya; Dwivedi, Sutopa; Pathare, Swapnali; Dikshit, Jyoti Bajpai; Maharudraiah, Jagadeesha; Singh, Sujay; Sameer Kumar, Ghantasala S; Vijayakumar, M.; Veerendra Kumar, Kariyanakatte Veeraiah; Premalatha, Chennagiri Shrinivasamurthy; Tata, Pramila; Hariharan, Ramesh; Roa, Juan Carlos; Prasad, T.S.K; Chaerkady, Raghothama; Kumar, Rekha Vijay; Pandey, Akhilesh

    2015-01-01

    Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent’s whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma. PMID:27030788

  7. Gene expression module discovery using gibbs sampling.

    PubMed

    Wu, Chang-Jiun; Fu, Yutao; Murali, T M; Kasif, Simon

    2004-01-01

    Recent advances in high throughput profiling of gene expression have catalyzed an explosive growth in functional genomics aimed at the elucidation of genes that are differentially expressed in various tissue or cell types across a range of experimental conditions. These studies can lead to the identification of diagnostic genes, classification of genes into functional categories, association of genes with regulatory pathways, and clustering of genes into modules that are potentially co-regulated by a group of transcription factors. Traditional clustering methods such as hierarchical clustering or principal component analysis are difficult to deploy effectively for several of these tasks since genes rarely exhibit similar expression pattern across a wide range of conditions. Bi-clustering of gene expression data is a promising methodology for identification of gene groups that show a coherent expression profile across a subset of conditions. This methodology can be a first step towards the discovery of co-regulated and co-expressed genes or modules. Although bi-clustering (also called block clustering) was introduced in statistics in 1974 few robust and efficient solutions exist for extracting gene expression modules in microarray data. In this paper, we propose a simple but promising new approach for bi-clustering based on a Gibbs sampling paradigm. Our algorithm is implemented in the program GEMS (Gene Expression Module Sampler). GEMS has been tested on synthetic data generated to evaluate the effect of noise on the performance of the algorithm as well as on published leukemia datasets. In our preliminary studies comparing GEMS with other bi-clustering software we show that GEMS is a reliable, flexible and computationally efficient approach for bi-clustering gene expression data. PMID:15712126

  8. Aberrant Epigenetic and Genetic Marks Are Seen in Myelodysplastic Leukocytes and Reveal Dock4 as a Candidate Pathogenic Gene on Chromosome 7q*

    PubMed Central

    Zhou, Li; Opalinska, Joanna; Sohal, Davendra; Yu, Yiting; Mo, Yongkai; Bhagat, Tushar; Abdel-Wahab, Omar; Fazzari, Melissa; Figueroa, Maria; Alencar, Cristina; Zhang, Jinghang; Kambhampati, Suman; Parmar, Simrit; Nischal, Sangeeta; Hueck, Christoph; Suzuki, Masako; Freidman, Ellen; Pellagatti, Andrea; Boultwood, Jacqueline; Steidl, Ulrich; Sauthararajah, Yogen; Yajnik, Vijay; Mcmahon, Christine; Gore, Steven D.; Platanias, Leonidas C.; Levine, Ross; Melnick, Ari; Wickrema, Amittha; Greally, John M.; Verma, Amit

    2011-01-01

    Myelodysplastic syndromes (MDS) are characterized by abnormal and dysplastic maturation of all blood lineages. Even though epigenetic alterations have been seen in MDS marrow progenitors, very little is known about the molecular alterations in dysplastic peripheral blood cells. We analyzed the methylome of MDS leukocytes by the HELP assay and determined that it was globally distinct from age-matched controls and was characterized by numerous novel, aberrant hypermethylated marks that were located mainly outside of CpG islands and preferentially affected GTPase regulators and other cancer-related pathways. Additionally, array comparative genomic hybridization revealed that novel as well as previously characterized deletions and amplifications could also be visualized in peripheral blood leukocytes, thus potentially reducing the need for bone marrow samples for future studies. Using integrative analysis, potentially pathogenic genes silenced by genetic deletions and aberrant hypermethylation in different patients were identified. DOCK4, a GTPase regulator located in the commonly deleted 7q31 region, was identified by this unbiased approach. Significant hypermethylation and reduced expression of DOCK4 in MDS bone marrow stem cells was observed in two large independent datasets, providing further validation of our findings. Finally, DOCK4 knockdown in primary marrow CD34+ stem cells led to decreased erythroid colony formation and increased apoptosis, thus recapitulating the bone marrow failure seen in MDS. These findings reveal widespread novel epigenetic alterations in myelodysplastic leukocytes and implicate DOCK4 as a pathogenic gene located on the 7q chromosomal region. PMID:21532034

  9. Chromosomal aberrations, profiles of expression of growth-related markers including galectins and environmental hazards in relation to the incidence of chondroid pulmonary hamartomas.

    PubMed

    Kayser, Klaus; Dünnwald, Delia; Kazmierczak, Bernd; Bullerdiek, Jörn; Kaltner, Herbert; Zick, Yehiel; André, Sabine; Gabius, Hans-Joachim

    2003-01-01

    This prospective study includes 103 cases of chondroid pulmonary hamartomas, resected over a period of nearly six years. Genes encoding proteins of the high motility group (HMGI-C, (Y), chromosomes 12q15 and 6p21) were analyzed cytogenetically. Furthermore, we examined the expression of growth-regulatory markers, including galectins-1, -3, -8, heparin-binding lectin (HBL), calcyclin (S100A6) and macrophage migration inhibitory factor (MIF), as well as that of Ki-67 (MIB-1). Syntactic structure analysis was applied to automated classification of stained histological slides and for the detection of topological properties in hamartomas and disease-free lung. These data were set in relation to clinical features, including environmental hazards, smoking habit, and the occurrence of heart-lung disease. Men and women contributed to the study in 61 and 42 cases, respectively. Smoking was frequent (75% men and 54% women), with a mean tobacco consumption of 36 pack years. Aberrations affecting exclusively the HMGI-C gene and the HGMI(Y) gene were seen in 46 cases (44.7%) and in 22 cases (21.3%), respectively. Both genes were affected in only one case. Abnormalities most frequently occurred in chromosomal bands 6p12 and 12q14. Genetic aberrations were significantly increased in men exposed to environmental (occupational) risk factors, excluding smoking (p < 0.05), and in tumors larger than average hamartomas. There were significant differences in staining profiles, particularly for calcyclin and MIF. The mean proliferation index was Nv = 9.9 +/- 6.4%; structural entropy was similar in all markers applied. Owing to their remarkably high values (from 142 to 148), these data were in contrast to a low current of entropy seen in most markers applied. The staining profile identified several markers that delimited cell positivity from normal parenchymal cells. These results contribute to the definition of biochemical characteristics in hamartomas and can be useful for distinguishing them from chronic degenerative disorders. PMID:14621194

  10. Widespread ectopic expression of olfactory receptor genes

    PubMed Central

    Feldmesser, Ester; Olender, Tsviya; Khen, Miriam; Yanai, Itai; Ophir, Ron; Lancet, Doron

    2006-01-01

    Background Olfactory receptors (ORs) are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information. PMID:16716209

  11. Adipocyte differentiation and gene expression.

    PubMed

    Ntambi, J M; Young-Cheul, K

    2000-12-01

    The major function of adipocytes is to store triacylglycerol in periods of energy excess and to mobilize this energy during times of deprivation. The short-term control of these lipogenic and lipolytic processes is carefully modulated by hormonal signals from the bloodstream, which provide an inventory of the body's metabolic state. Long-term changes in fat storage needs are accomplished by altering both the size and number of fat cells within the body because terminally differentiated adipocytes cannot divide. Alterations in the number of fat cells within the body must be accomplished by the differentiation of preadipocytes, which act as the renewable source of adipocytes. Our understanding of the events that occur during preadipocyte differentiation has advanced considerably in the last few years and has relied mainly on the use of tissue culture models of adipogenesis. This article will discuss the various models used for studying the preadipocyte differentiation process, with the mouse 3T3-L1 cell culture line described in detail. We focus on those genetic events that link effectors to induction of adipocyte gene expression. PMID:11110885

  12. Gene Expression Studies in Lygus lineolaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genes are expressed in insect cells, as in all living organisms, by transcription of DNA into RNA followed by translation of RNA into proteins. The intricate patterns of differential gene expression in time and space directly influence the development and function of every aspect of the organism. Wh...

  13. Arabidopsis gene expression patterns during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  14. Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma

    PubMed Central

    Vincent, Audrey; Omura, Noriyuki; Hong, Seung-Mo; Jaffe, Andrew; Eshleman, James; Goggins, Michael

    2011-01-01

    Purpose The goal of this study was to comprehensively identify CpG island methylation alterations between pancreatic cancers and normal pancreata and their associated gene expression alterations. Experimental Design We employed Methylated CpG island Amplification followed by CpG island Microarray, a method previously validated for its accuracy and reproducibility, to analyze the methylation profile of 27800 CpG islands covering 21MB of the human genome in nine pairs of pancreatic cancer versus normal pancreatic epithelial tissues as well as in three matched pairs of pancreatic cancer versus lymphoid tissues from the same individual. Results This analysis identified 1658 known loci that were commonly differentially methylated in pancreatic cancer compared to normal pancreas. By integrating the pancreatic DNA methylation status with the gene expression profiles of the same samples before and after treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine, and the Histone Deacetylase inhibitor, Trichostatin A, we identified dozens of aberrantly methylated and differentially expressed genes in pancreatic cancers including a more comprehensive list of hypermethylated and silenced genes that have not been previously described as targets for aberrant methylation in cancer. Conclusion We expect that the identification of aberrantly hypermethylated and silenced genes will have diagnostic, prognostic and therapeutic applications. PMID:21610144

  15. Gearbox gene expression and growth rate.

    PubMed

    Aldea, M; Garrido, T; Tormo, A

    1993-07-01

    Regulation of gene expression in prokaryotic cells usually takes place at the level of transcription initiation. Different forms of RNA polymerase recognizing specific promoters are engaged in the control of many prokaryotic regulons. This also seems to be the case for some Escherichia coli genes that are induced at low growth rates and by nutrient starvation. Their gene products are synthesized at levels inversely proportional to growth rate, and this mode of regulation has been termed gearbox gene expression. This kind of growth-rate modulation is exerted by specific transcriptional initiation signals, the gearbox promoters, and some of them depend on a putative new σ factor (RpoS). Gearbox promoters drive expression of morphogenetic and cell division genes at constant levels per cell and cycle to meet the demands of cell division and septum formation. A mechanism is proposed that could sense the growth rate of the cell to alter gene expression by the action of specific σ factors. PMID:24420108

  16. Ectopic expression of embryonic stem cell and other developmental genes in cutaneous T-cell lymphoma

    PubMed Central

    Litvinov, Ivan V; Netchiporouk, Elena; Cordeiro, Brendan; Zargham, Hanieh; Pehr, Kevin; Gilbert, Martin; Zhou, Youwen; Moreau, Linda; Woetmann, Anders; Ødum, Niels; Kupper, Thomas S; Sasseville, Denis

    2014-01-01

    Cutaneous T-cell lymphoma (CTCL) is a potentially devastating malignancy. The pathogenesis of this cancer remains poorly elucidated. Previous studies focused on analysis of expression and function of known oncogenes and tumor suppressor genes. However, emerging reports highlight that it is also important to analyze the expression of genes that are ectopically expressed in CTCL (e.g., embryonic stem cell genes (ESC), cancer testis (CT) genes, etc.). Currently, it is not known whether ESC genes are expressed in CTCL. In the current work, we analyze by RT-PCR the expression of 26 ESC genes, many of which are known to regulate pluripotency and promote cancer stem cell-like phenotype, in a historic cohort of 60 patients from Boston and in a panel of 11 patient-derived CTCL cell lines and compare such expression to benign inflammatory dermatoses that often clinically mimic CTCL. Our findings document that many critical ESC genes including NANOG, SOX2, OCT4 (POU5F1) and their upstream and downstream signaling members are expressed in CTCL. Similarly, polycomb repressive complex 2 (PRC2) genes (i.e., EZH2, EED, and SUZ12) are also expressed in CTCL lesional skin. Furthermore, select ESC genes (OCT4, EED, TCF3, THAP11, CHD7, TIP60, TRIM28) are preferentially expressed in CTCL samples when compared to benign skin biopsies. Our work suggests that ESC genes are ectopically expressed together with CT genes, thymocyte development genes and B cell-specific genes and may be working in concert to promote tumorigenesis. Specifically, while ESC genes may be promoting cancer stem cell-like phenotype, CT genes may be contributing to aneuploidy and genomic instability by producing aberrant chromosomal translocations. Further analysis of ESC expression and function in this cancer will greatly enhance our fundamental understanding of CTCL and will help us identify novel therapeutic targets. PMID:25941598

  17. Genetics of human gene expression: mapping DNA variants that influence gene expression

    PubMed Central

    Cheung, Vivian G.; Spielman, Richard S.

    2010-01-01

    There is extensive natural variation in human gene expression. As quantitative phenotypes, expression levels of genes are heritable. Genetic linkage and association mapping have identified cis- and trans-acting DNA variants that influence expression levels of human genes. New insights into human gene regulation are emerging from genetic analyses of gene expression in cells at rest and following exposure to stimuli. The integration of these genetic mapping results with data from co-expression networks is leading to a better understanding of how expression levels of individual genes are regulated and how genes interact with each other. These findings are important for basic understanding of gene regulation and of diseases that result from disruption of normal gene regulation. PMID:19636342

  18. Aberrant light directly impairs mood and learning through melanopsin-expressing neurons.

    PubMed

    LeGates, Tara A; Altimus, Cara M; Wang, Hui; Lee, Hey-Kyoung; Yang, Sunggu; Zhao, Haiqing; Kirkwood, Alfredo; Weber, E Todd; Hattar, Samer

    2012-11-22

    The daily solar cycle allows organisms to synchronize their circadian rhythms and sleep-wake cycles to the correct temporal niche. Changes in day-length, shift-work, and transmeridian travel lead to mood alterations and cognitive function deficits. Sleep deprivation and circadian disruption underlie mood and cognitive disorders associated with irregular light schedules. Whether irregular light schedules directly affect mood and cognitive functions in the context of normal sleep and circadian rhythms remains unclear. Here we show, using an aberrant light cycle that neither changes the amount and architecture of sleep nor causes changes in the circadian timing system, that light directly regulates mood-related behaviours and cognitive functions in mice. Animals exposed to the aberrant light cycle maintain daily corticosterone rhythms, but the overall levels of corticosterone are increased. Despite normal circadian and sleep structures, these animals show increased depression-like behaviours and impaired hippocampal long-term potentiation and learning. Administration of the antidepressant drugs fluoxetine or desipramine restores learning in mice exposed to the aberrant light cycle, suggesting that the mood deficit precedes the learning impairments. To determine the retinal circuits underlying this impairment of mood and learning, we examined the behavioural consequences of this light cycle in animals that lack intrinsically photosensitive retinal ganglion cells. In these animals, the aberrant light cycle does not impair mood and learning, despite the presence of the conventional retinal ganglion cells and the ability of these animals to detect light for image formation. These findings demonstrate the ability of light to influence cognitive and mood functions directly through intrinsically photosensitive retinal ganglion cells. PMID:23151476

  19. Stratified gene expression analysis identifies major amyotrophic lateral sclerosis genes.

    PubMed

    Jones, Ashley R; Troakes, Claire; King, Andrew; Sahni, Vibhu; De Jong, Simone; Bossers, Koen; Papouli, Efterpi; Mirza, Muddassar; Al-Sarraj, Safa; Shaw, Christopher E; Shaw, Pamela J; Kirby, Janine; Veldink, Jan H; Macklis, Jeffrey D; Powell, John F; Al-Chalabi, Ammar

    2015-05-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of motor neurons resulting in progressive paralysis. Gene expression studies of ALS only rarely identify the same gene pathways as gene association studies. We hypothesized that analyzing tissues by matching on degree of disease severity would identify different patterns of gene expression from a traditional case-control comparison. We analyzed gene expression changes in 4 postmortem central nervous system regions, stratified by severity of motor neuron loss. An overall comparison of cases (n = 6) and controls (n = 3) identified known ALS gene, SOX5, as showing differential expression (log2 fold change = 0.09, p = 5.5 × 10(-5)). Analyses stratified by disease severity identified expression changes in C9orf72 (p = 2.77 × 10(-3)), MATR3 (p = 3.46 × 10(-3)), and VEGFA (p = 8.21 × 10(-4)), all implicated in ALS through genetic studies, and changes in other genes in pathways involving RNA processing and immune response. These findings suggest that analysis of gene expression stratified by disease severity can identify major ALS genes and may be more efficient than traditional case-control comparison. PMID:25801576

  20. Aplysia californica neurons express microinjected neuropeptide genes.

    PubMed Central

    DesGroseillers, L; Cowan, D; Miles, M; Sweet, A; Scheller, R H

    1987-01-01

    Neuropeptide genes are expressed in specific subsets of large polyploid neurons in Aplysia californica. We have defined the transcription initiation sites of three of these neuropeptide genes (the R14, L11, and ELH genes) and determined the nucleotide sequence of the promoter regions. The genes contain the usual eucaryotic promoter signals as well as other structures of potential regulatory importance, including inverted and direct repeats. The L11 and ELH genes, which are otherwise unrelated, have homology in the promoter regions, while the R14 promoter was distinct. When cloned plasmids were microinjected into Aplysia neurons in organ culture, transitions between supercoiled, relaxed circular, and linear DNAs occurred along with ligation into high-molecular-weight species. About 20% of the microinjected neurons expressed the genes. The promoter region of the R14 gene functioned in expression of the microinjected DNA in all cells studied. When both additional 5' and 3' sequences were included, the gene was specifically expressed only in R14, suggesting that the specificity of expression is generated by a multicomponent repression system. Finally, the R14 peptide could be expressed in L11, demonstrating that it is possible to alter the transmitter phenotype of these neurons by introduction of cloned genes. Images PMID:3670293

  1. Regulatable liver expression of the rabbit apolipoprotein B mRNA-editing enzyme catalytic polypeptide 1 (APOBEC-1) in mice lacking endogenous APOBEC-1 leads to aberrant hyperediting.

    PubMed Central

    Hersberger, Martin; Patarroyo-White, Susannah; Qian, Xiaobing; Arnold, Kay S; Rohrer, Lucia; Balestra, Maureen E; Innerarity, Thomas L

    2003-01-01

    Apolipoprotein (apo) B mRNA editing is the deamination of C(6666) to uridine, which results in translation of the apoB-48 protein instead of the genomically encoded apoB-100. ApoB-48-containing lipoproteins are cleared more rapidly from plasma and are less atherogenic than apoB-100-containing low-density lipoproteins (LDLs). In humans, the intestine predominantly produces apoB-48 whereas the liver secretes apoB-100 only. To evaluate a potential therapeutic use for liver-induced apoB mRNA editing in humans, we investigated the efficiency and safety of transgenic expression of apoB mRNA-editing enzyme catalytic polypeptide 1 (APOBEC-1) in the absence of endogenous editing in the mouse model. Here we show that regulatable tetO-mediated APOBEC-1 expression in the livers of gene-targeted mice lacking endogenous APOBEC-1 results in 30% apoB mRNA editing. In a time-course experiment, the expression of tetO-APOBEC-1 mRNA was suppressed within 2 days after mice were fed doxycycline and apoB mRNA editing and apoB-48 formation were suppressed within 4 days. However, tetO-APOBEC-1 expression resulted in regulatable aberrant hyperediting of several cytidines downstream of C(6666) in apoB mRNA and in novel APOBEC-1 target 1 (NAT1) mRNA. Several of the cytidines in apoB mRNA were hyperedited to a level similar to that of C(6666), although editing at C(6666) was lower than that in wild-type mice. These results demonstrate that even moderate APOBEC-1 expression can lead to hyperediting, limiting the single-gene approach for gene therapy with APOBEC-1. PMID:12374571

  2. Aberrant promoter methylation and silencing of the RASSF1A gene in pediatric tumors and cell lines.

    TOXLINE Toxicology Bibliographic Information

    Harada K; Toyooka S; Maitra A; Maruyama R; Toyooka KO; Timmons CF; Tomlinson GE; Mastrangelo D; Hay RJ; Minna JD; Gazdar AF

    2002-06-20

    Aberrant promoter methylation of tumor suppressor genes has not been fully investigated in pediatric tumors. Therefore, we examined the methylation status of nine genes (p16(INK4A), MGMT, GSTP1, RASSF1A, APC, DAPK, RARbeta, CDH1 and CDH13) in 175 primary pediatric tumors and 23 tumor cell lines using methylation-specific PCR. We studied the major forms of pediatric tumors--Wilms' tumor, neuroblastoma, hepatoblastoma, medulloblastoma, rhabdomyosarcoma, osteosarcoma, Ewing's sarcoma, retinoblastoma and acute leukemia. The most frequently methylated gene in both primary tumors and cell lines was RASSF1A (40, 86%, respectively). However, the rates of RASSF1A methylation in individual tumor types varied from 0 to 88%. RASSF1A methylation was tumor specific and was absent in adjacent non-malignant tissues. Methylation of the other genes was relatively rare in tumors and non-malignant tissues (less than 5%). Neuroblastoma patients with methylation of RASSF1A were significantly older than patients without methylation (P=0.008). There was no relationship between methylation status and other clinico-pathologic parameters. We treated six cell lines lacking RASSF1A mRNA with 5-aza-2'deoxycytidine to examine the relationship between methylation and transcriptional silencing. In five of six cell lines, restoration of RASSF1A mRNA was confirmed by RT-PCR. Our findings indicate that aberrant promoter methylation of RASSF1A may contribute to the pathogenesis of many different forms of pediatric tumors.

  3. The biology and clinical significance of acquired genomic copy number aberrations and recurrent gene mutations in chronic lymphocytic leukemia

    PubMed Central

    Malek, SN

    2013-01-01

    Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world and remains incurable with conventional chemotherapy treatment approaches. CLL as a disease entity is defined by a relatively parsimonious set of diagnostic criteria and therefore likely constitutes an umbrella term for multiple related illnesses. Of the enduring fundamental biological processes that affect the biology and clinical behavior of CLL, few are as central to the pathogenesis of CLL as recurrent acquired genomic copy number aberrations (aCNA) and recurrent gene mutations. Here, a state-of-the-art overview of the pathological anatomy of the CLL genome is presented, including detailed descriptions of the anatomy of aCNA and gene mutations. Data from SNP array profiling and large-scale sequencing of large CLL cohorts, as well as stimulated karyotyping, are discussed. This review is organized by discussions of the anatomy, underlying pathomechanisms and clinical significance of individual genomic lesions and recurrent gene mutations. Finally, gaps in knowledge regarding the biological and clinical effects of recurrent genomic aberrations or gene mutations on CLL are outlined to provide critical stimuli for future research. PMID:23001040

  4. Gender differences in the induction of chromosomal aberrations and gene mutations in rodent germ cells

    SciTech Connect

    Adler, Ilse-Dore; Carere, Angelo; Eichenlaub-Ritter, Ursula

    2007-05-15

    Germ cell mutagenicity testing provides experimental data to quantify genetic risk for exposed human populations. The majority of tests are performed with exposure of males, and female data are relatively rare. The reason for this paucity lies in the differences between male and female germ cell biology. Male germ cells are produced throughout reproductive life and all developmental stages can be ascertained by appropriate breeding schemes. In contrast, the female germ cell pool is limited, meiosis begins during embryogenesis and oocytes are arrested over long periods of time until maturation processes start for small numbers of oocytes during the oestrus cycle in mature females. The literature data are reviewed to point out possible gender differences of germ cells to exogenous agents such as chemicals or ionizing radiation. From the limited information, it can be concluded that male germ cells are more sensitive than female germ cells to the induction of chromosomal aberrations and gene mutations. However, exceptions are described which shed doubt on the extrapolation of experimental data from male rodents to the genetic risk of the human population. Furthermore, the female genome may be more sensitive to mutation induction during peri-conceptional stages compared to the male genome of the zygote. With few exceptions, germ cell experiments have been carried out under high acute exposure to optimize the effects and to compensate for the limited sample size in animal experiments. Human exposure to environmental agents, on the other hand, is usually chronic and involves low doses. Under these conditions, gender differences may become apparent that have not been studied so far. Additionally, data are reviewed that suggest a false impression of safety when responses are negative under high acute exposure of male rodents while a mutational response is induced by low chronic exposure. The classical (morphological) germ cell mutation tests are not performed anymore because they are animal and time consuming. Nevertheless, information is needed to place genetic risk extrapolations on more solid grounds and thereby to prevent an increased genetic burden to future generations. It is pointed out that modern molecular methodologies are available now to experimentally address the open questions.

  5. Methodological Limitations in Determining Astrocytic Gene Expression

    PubMed Central

    Peng, Liang; Guo, Chuang; Wang, Tao; Li, Baoman; Gu, Li; Wang, Zhanyou

    2013-01-01

    Traditionally, astrocytic mRNA and protein expression are studied by in situ hybridization (ISH) and immunohistochemically. This led to the concept that astrocytes lack aralar, a component of the malate-aspartate-shuttle. At least similar aralar mRNA and protein expression in astrocytes and neurons isolated by fluorescence-assisted cell sorting (FACS) reversed this opinion. Demonstration of expression of other astrocytic genes may also be erroneous. Literature data based on morphological methods were therefore compared with mRNA expression in cells obtained by recently developed methods for determination of cell-specific gene expression. All Na,K-ATPase-α subunits were demonstrated by immunohistochemistry (IHC), but there are problems with the cotransporter NKCC1. Glutamate and GABA transporter gene expression was well determined immunohistochemically. The same applies to expression of many genes of glucose metabolism, whereas a single study based on findings in bacterial artificial chromosome (BAC) transgenic animals showed very low astrocytic expression of hexokinase. Gene expression of the equilibrative nucleoside transporters ENT1 and ENT2 was recognized by ISH, but ENT3 was not. The same applies to the concentrative transporters CNT2 and CNT3. All were clearly expressed in FACS-isolated cells, followed by biochemical analysis. ENT3 was enriched in astrocytes. Expression of many nucleoside transporter genes were shown by microarray analysis, whereas other important genes were not. Results in cultured astrocytes resembled those obtained by FACS. These findings call for reappraisal of cellular nucleoside transporter expression. FACS cell yield is small. Further development of cell separation methods to render methods more easily available and less animal and cost consuming and parallel studies of astrocytic mRNA and protein expression by ISH/IHC and other methods are necessary, but new methods also need to be thoroughly checked. PMID:24324456

  6. Gene Expression Noise, Fitness Landscapes, and Evolution

    NASA Astrophysics Data System (ADS)

    Charlebois, Daniel

    The stochastic (or noisy) process of gene expression can have fitness consequences for living organisms. For example, gene expression noise facilitates the development of drug resistance by increasing the time scale at which beneficial phenotypic states can be maintained. The present work investigates the relationship between gene expression noise and the fitness landscape. By incorporating the costs and benefits of gene expression, we track how the fluctuation magnitude and timescale of expression noise evolve in simulations of cell populations under stress. We find that properties of expression noise evolve to maximize fitness on the fitness landscape, and that low levels of expression noise emerge when the fitness benefits of gene expression exceed the fitness costs (and that high levels of noise emerge when the costs of expression exceed the benefits). The findings from our theoretical/computational work offer new hypotheses on the development of drug resistance, some of which are now being investigated in evolution experiments in our laboratory using well-characterized synthetic gene regulatory networks in budding yeast. Nserc Postdoctoral Fellowship (Grant No. PDF-453977-2014).

  7. Diverse involvement of isoforms and gene aberrations of Akt in human lung carcinomas.

    PubMed

    Dobashi, Yoh; Tsubochi, Hiroyoshi; Matsubara, Hirochika; Inoue, Jun; Inazawa, Johji; Endo, Shunsuke; Ooi, Akishi

    2015-06-01

    Emerging evidence confirms a central role of Akt in cancer. To evaluate the relative contribution of deregulated Akt and their clinicopathological significance in lung carcinomas, overexpression, activation of Akt and AKT gene increases were investigated. Immunohistochemical staining for 108 cases revealed overexpression of total Akt, Akt1, Akt2 and Akt3 in 61.1, 47.2, 40.7 and 23.1%, respectively, and phosphorylated Akt in 42.6% of cases. Expression of total Akt, Akt2 and Akt3 were frequently observed in small cell carcinoma, but phosphorylated Akt and Akt1 were more frequently observed in squamous cell carcinoma. FISH analysis to evaluate gene increases of AKT1-3 revealed amplification of AKT1 in 4.2% and AKT1 increase by polysomy of chromosome 14 in 27.3% of cases. For AKT2, amplification was observed in 3.2% and polysomy of chromosome 19 in 26.3% of cases. AKT3 increase was observed in 40.0% of cases only by polysomy of chromosome 1. Although "FISH-positive" AKT1 and AKT2 gene increases (amplification/high-level polysomy) were found exclusively in the cases overexpressing total Akt, Akt1 or Akt2, respectively, AKT3 increase was irrelevant of Akt3 expression. Statistically, expressions of Akt2, p-Akt and cytoplasmic-p-Akt were correlated with lymph node metastasis (P = 0.0479, P = 0.0371 and P = 0.0310, respectively). Although AKT1 and AKT2 gene increase showed positive correlation with, or trend towards a positive correlation with tumor size (P = 0.0430, P = 0.0590, respectively), AKT3 did not. In conclusion, Akt isoforms are differentially involved in the pathological phenotype of lung carcinoma in a diverse manner. Because abnormality of Akt1/AKT1 and Akt2/AKT2 correlated with clinicopathological profiles, Akt1/2-specific targeting may open a novel therapeutic window for the group showing Akt deregulation. PMID:25855050

  8. Excision of Uracil from Transcribed DNA Negatively Affects Gene Expression*

    PubMed Central

    Lühnsdorf, Bork; Epe, Bernd; Khobta, Andriy

    2014-01-01

    Uracil is an unavoidable aberrant base in DNA, the repair of which takes place by a highly efficient base excision repair mechanism. The removal of uracil from the genome requires a succession of intermediate products, including an abasic site and a single strand break, before the original DNA structure can be reconstituted. These repair intermediates are harmful for DNA replication and also interfere with transcription under cell-free conditions. However, their relevance for cellular transcription has not been proved. Here we investigated the influence of uracil incorporated into a reporter vector on gene expression in human cells. The expression constructs contained a single uracil opposite an adenine (to mimic dUTP misincorporation during DNA synthesis) or a guanine (imitating a product of spontaneous cytosine deamination). We found no evidence for a direct transcription arrest by uracil in either of the two settings because the vectors containing the base modification exhibited unaltered levels of enhanced GFP reporter gene expression at early times after delivery to cells. However, the gene expression showed a progressive decline during subsequent hours. In the case of U:A pairs, this effect was retarded significantly by knockdown of UNG1/2 but not by knockdown of SMUG1 or thymine-DNA glycosylase uracil-DNA glycosylases, proving that it is base excision by UNG1/2 that perturbs transcription of the affected gene. By contrast, the decline of expression of the U:G constructs was not influenced by either UNG1/2, SMUG1, or thymine-DNA glycosylase knockdown, strongly suggesting that there are substantial mechanistic or kinetic differences between the processing of U:A and U:G lesions in cells. PMID:24951587

  9. Aberrant expression of peroxiredoxin 1 and its clinical implications in liver cancer

    PubMed Central

    Sun, Yu-Lin; Cai, Jian-Qiang; Liu, Fang; Bi, Xin-Yu; Zhou, Lan-Ping; Zhao, Xiao-Hang

    2015-01-01

    AIM: To investigate the expression characteristics of peroxiredoxin 1 (PRDX1) mRNA and protein in liver cancer cell lines and tissues. METHODS: The RNA sequencing data from 374 patients with liver cancer were obtained from The Cancer Genome Atlas. The expression and clinical characteristics of PRDX1 mRNA were analyzed in this dataset. The Kaplan-Meier and Cox regression survival analysis was performed to determine the relationship between PRDX1 levels and patient survival. Subcellular fractionation and Western blotting were used to demonstrate the expression of PRDX1 protein in six liver cancer cell lines and 29 paired fresh tissue specimens. After bioinformatics prediction, a putative post-translational modification form of PRDX1 was observed using immunofluorescence under confocal microscopy and immunoprecipitation analysis in liver cancer cells. RESULTS: The mRNA of PRDX1 gene was upregulated about 1.3-fold in tumor tissue compared with the adjacent non-tumor control (P = 0.005). Its abundance was significantly higher in men than women (P < 0.001). High levels of PRDX1 mRNA were associated with a shorter overall survival time (P = 0.04) but not with recurrence-free survival. The Cox regression analysis demonstrated that patients with high PRDX1 mRNA showed about 1.9-fold increase of risk for death (P = 0.03). In liver cancer cells, PRDX1 protein was strongly expressed with multiple different bands. PRDX1 in the cytosol fraction existed near the theoretical molecular weight, whereas two higher molecular weight bands were present in the membrane/organelle and nuclear fractions. Importantly, the theoretical PRDX1 band was increased, whereas the high molecular weight form was decreased in tumor tissues. Subsequent experiments revealed that the high molecular weight bands of PRDX1 might result from the post-translational modification by small ubiquitin-like modifier-1 (SUMO1). CONCLUSION: PRDX1 was overexpressed in the tumor tissues of liver cancer and served as an independent poor prognostic factor for overall survival. PRDX1 can be modified by SUMO to play specific roles in hepatocarcinogenesis. PMID:26478675

  10. Gene Expression Profiling of Solitary Fibrous Tumors

    PubMed Central

    Bertucci, Franois; Bouvier-Labit, Corinne; Finetti, Pascal; Metellus, Philippe; Adelaide, Jos; Mokhtari, Karima; Figarella-Branger, Dominique; Decouvelaere, Anne-Valrie; Miquel, Catherine; Coindre, Jean-Michel; Birnbaum, Daniel

    2013-01-01

    Background Solitary fibrous tumors (SFTs) are rare spindle-cell tumors. Their cell-of-origin and molecular basis are poorly known. They raise several clinical problems. Differential diagnosis may be difficult, prognosis is poorly apprehended by histoclinical features, and no effective therapy exists for advanced stages. Methods We profiled 16 SFT samples using whole-genome DNA microarrays and analyzed their expression profiles with publicly available profiles of 36 additional SFTs and 212 soft tissue sarcomas (STSs). Immunohistochemistry was applied to validate the expression of some discriminating genes. Results SFTs displayed whole-genome expression profiles more homogeneous and different from STSs, but closer to genetically-simple than genetically-complex STSs. The SFTs/STSs comparison identified a high percentage (?30%) of genes as differentially expressed, most of them without any DNA copy number alteration. One of the genes most overexpressed in SFTs encoded the ALDH1 stem cell marker. Several upregulated genes and associated ontologies were also related to progenitor/stem cells. SFTs also overexpressed genes encoding therapeutic targets such as kinases (EGFR, ERBB2, FGFR1, JAK2), histone deacetylases, or retinoic acid receptors. Their overexpression was found in all SFTs, regardless the anatomical location. Finally, we identified a 31-gene signature associated with the mitotic count, containing many genes related to cell cycle/mitosis, including AURKA. Conclusion We established a robust repertoire of genes differentially expressed in SFTs. Certain overexpressed genes could provide new diagnostic (ALDH1A1), prognostic (AURKA) and/or therapeutic targets. PMID:23734203

  11. Dynamism in gene expression across multiple studies

    PubMed Central

    Morgan, Alexander A.; Dudley, Joel T.; Deshpande, Tarangini

    2010-01-01

    In this study we develop methods of examining gene expression dynamics, how and when genes change expression, and demonstrate their application in a meta-analysis involving over 29,000 microarrays. By defining measures across many experimental conditions, we have a new way of characterizing dynamics, complementary to measures looking at changes in absolute variation or breadth of tissues showing expression. We show conservation in overall patterns of dynamism across three species (human, mouse, and rat) and show associations with known disease-related genes. We discuss the enriched functional properties of the sets of genes showing different patterns of dynamics and show that the differences in expression dynamics is associated with the variety of different transcription factor regulatory sites. These results can influence thinking about the selection of genes for microarray design and the analysis of measurements of mRNA expression variation in a global context of expression dynamics across many conditions, as genes that are rarely differentially expressed between experimental conditions may be the subject of increased scrutiny when they significantly vary in expression between experimental subsets. PMID:19920211

  12. Noise Minimisation in Gene Expression Switches

    PubMed Central

    Monteoliva, Diana; McCarthy, Christina B.; Diambra, Luis

    2013-01-01

    Gene expression is subject to stochastic variation which leads to fluctuations in the rate of protein production. Recently, a study in yeast at a genomic scale showed that, in some cases, gene expression variability alters phenotypes while, in other cases, these remain unchanged despite fluctuations in the expression of other genes. These studies suggested that noise in gene expression is a physiologically relevant trait and, to prevent harmful stochastic variation in the expression levels of some genes, it can be subject to minimisation. However, the mechanisms for noise minimisation are still unclear. In the present work, we analysed how noise expression depends on the architecture of the cis-regulatory system, in particular on the number of regulatory binding sites. Using analytical calculations and stochastic simulations, we found that the fluctuation level in noise expression decreased with the number of regulatory sites when regulatory transcription factors interacted with only one other bound transcription factor. In contrast, we observed that there was an optimal number of binding sites when transcription factors interacted with many bound transcription factors. This finding suggested a new mechanism for preventing large fluctuations in the expression of genes which are sensitive to the concentration of regulators. PMID:24376783

  13. Transition from two to one integument in Prunus species: expression pattern of INNER NO OUTER (INO), ABERRANT TESTA SHAPE (ATS) and ETTIN (ETT).

    PubMed

    Lora, Jorge; Hormaza, José I; Herrero, Maria

    2015-10-01

    While gymnosperm ovules have one integument, in most angiosperms two integuments surround the ovules. Unitegmic ovules have arisen independently several times during the evolution of angiosperms, but the ultimate genetic cause of the presence of a single integument remains elusive. We compared species of the genus Prunus that have different numbers of integuments: bitegmic species, such as Prunus armeniaca (apricot) and Prunus persica (peach), and unitegmic species, such as Prunus incisa, analyzing the expression pattern of genes that are involved in integument development in Arabidopsis thaliana: INNER NO OUTER (INO), ABERRANT TESTA SHAPE (ATS) and ETTIN (ETT). Bitegmic and unitegmic species showed similar INO expression patterns, indicative of the conservation of an outer integument. However, expression of ETT, which occurs in the boundary of the outer and inner integuments, was altered in unitegmic ovules, which showed lack of ETT expression. These results strongly suggest that the presence of a single integument could be attributable to the amalgamation of two integuments and support the role of ETT in the fusion of the outer and inner integuments in unitegmic ovules, a situation that could be widespread in other unitegmic species of angiosperms. PMID:25991552

  14. Nucleosome repositioning underlies dynamic gene expression.

    PubMed

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions. PMID:26966245

  15. Gene expression in the Parkinson's disease brain

    PubMed Central

    Lewis, Patrick A.; Cookson, Mark R.

    2012-01-01

    The study of gene expression has undergone a transformation in the past decade as the benefits of the sequencing of the human genome have made themselves felt. Increasingly, genome wide approaches are being applied to the analysis of gene expression in human disease as a route to understanding the underlying pathogenic mechanisms. In this review, we will summarise current state of gene expression studies of the brain in Parkinson's disease, and examine how these techniques can be used to gain an insight into aetiology of this devastating disorder. PMID:22173063

  16. miRNAs in multiple myeloma – a survival relevant complex regulator of gene expression

    PubMed Central

    Seckinger, Anja; MeiΔner, Tobias; Moreaux, Jérôme; Benes, Vladimir; Hillengass, Jens; Castoldi, Mirco; Zimmermann, Jürgen; Ho, Anthony D.; Jauch, Anna; Goldschmidt, Hartmut; Klein, Bernard; Hose, Dirk

    2015-01-01

    Purpose microRNAs regulate gene-expression in biological and pathophysiological processes, including multiple myeloma. Here we address i) What are the number and magnitude of changes in miRNA-expression between normal plasma cells and myeloma- or MGUS-samples, and the latter two? ii) What is the biological relevance and how does miRNA-expression impact on gene-expression? iii) Is there a prognostic significance, and what is its background? Experimental design Ninety-two purified myeloma-, MGUS-, normal plasma cell- and myeloma cell line-samples were investigated using miChip-arrays interrogating 559 human miRNAs. Impact on gene-expression was assessed by Affymetrix DNA-microarrays in two cohorts of myeloma patients (n = 677); chromosomal aberrations were assessed by iFISH, survival for 592 patients undergoing up-front high-dose chemotherapy. Results Compared to normal plasma cells, 67/559 miRNAs (12%) with fold changes of 4.6 to −3.1 are differentially expressed in myeloma-, 20 (3.6%) in MGUS-samples, and three (0.5%) between MGUS and myeloma. Expression of miRNAs is associated with proliferation, chromosomal aberrations, tumor mass, and gene expression-based risk-scores. This holds true for target-gene signatures of regulated mRNAs. miRNA-expression confers prognostic significance for event-free and overall survival, as do respective target-gene signatures. Conclusions The myeloma-miRNome confers a pattern of small changes of individual miRNAs impacting on gene-expression, biological functions, and survival. PMID:26472281

  17. Modeling gene expression networks using fuzzy logic.

    PubMed

    Du, Pan; Gong, Jian; Syrkin Wurtele, Eve; Dickerson, Julie A

    2005-12-01

    Gene regulatory networks model regulation in living organisms. Fuzzy logic can effectively model gene regulation and interaction to accurately reflect the underlying biology. A new multiscale fuzzy clustering method allows genes to interact between regulatory pathways and across different conditions at different levels of detail. Fuzzy cluster centers can be used to quickly discover causal relationships between groups of coregulated genes. Fuzzy measures weight expert knowledge and help quantify uncertainty about the functions of genes using annotations and the gene ontology database to confirm some of the interactions. The method is illustrated using gene expression data from an experiment on carbohydrate metabolism in the model plant Arabidopsis thaliana. Key gene regulatory relationships were evaluated using information from the gene ontology database. A new regulatory relationship concerning trehalose regulation of carbohydrate metabolism was also discovered in the extracted network. PMID:16366260

  18. Regulation of tobacco acetolactate synthase gene expression.

    PubMed Central

    Keeler, S J; Sanders, P; Smith, J K; Mazur, B J

    1993-01-01

    Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of isoleucine, leucine, and valine. The previous cloning of two tobacco (Nicotiana tabacum) ALS genes (SurA and SurB) has allowed transcript accumulation from these genes to be monitored. mRNA blot analysis of ALS transcripts showed a message size of 2.2 kb. Quantitation of the levels of ALS messages in tobacco organs indicated that there was 3- to 4-fold variation in the levels of expression of the ALS genes in different organs. This variability correlated with the developmental stage of the samples, with the highest levels of expression found in developing organs. In situ hybridizations of anti-mRNA probes to plant sections established that ALS messages are most prevalent in metabolically active and dividing cells of roots, stems, and floral tissue. Using RNase protection assays, the transcriptional start sites of the ALS genes were determined, and the expression levels of the two tobacco ALS genes were then followed separately. Both tobacco ALS genes are expressed in a coordinated manner in all tobacco organs examined, with the SurB gene being consistently expressed at higher levels than the SurA gene. PMID:8278521

  19. Transcription factor oscillations induce differential gene expressions.

    PubMed

    Wee, Keng Boon; Yio, Wee Kheng; Surana, Uttam; Chiam, Keng Hwee

    2012-06-01

    Intracellular protein levels of diverse transcription factors (TFs) vary periodically with time. However, the effects of TF oscillations on gene expression, the primary role of TFs, are poorly understood. In this study, we determined these effects by comparing gene expression levels induced in the presence and in the absence of TF oscillations under same mean intracellular protein level of TF. For all the nonlinear TF transcription kinetics studied, an oscillatory TF is predicted to induce gene expression levels that are distinct from a nonoscillatory TF. The conditions dictating whether TF oscillations induce either higher or lower average gene expression levels were elucidated. Subsequently, the predicted effects from an oscillatory TF, which follows sigmoid transcription kinetics, were applied to demonstrate how oscillatory dynamics provide a mechanism for differential target gene transactivation. Generally, the mean TF concentration at which oscillations occur relative to the promoter binding affinity of a target gene determines whether the gene is up- or downregulated whereas the oscillation amplitude amplifies the magnitude of the differential regulation. Notably, the predicted trends of differential gene expressions induced by oscillatory NF-κB and glucocorticoid receptor match the reported experimental observations. Furthermore, the biological function of p53 oscillations is predicted to prime the cell for death upon DNA damage via differential upregulation of apoptotic genes. Lastly, given N target genes, an oscillatory TF can generate between (N-1) and (2N-1) distinct patterns of differential transactivation. This study provides insights into the mechanism for TF oscillations to induce differential gene expressions, and underscores the importance of TF oscillations in biological regulations. PMID:22713556

  20. Transcription Factor Oscillations Induce Differential Gene Expressions

    PubMed Central

    Wee, Keng Boon; Yio, Wee Kheng; Surana, Uttam; Chiam, Keng Hwee

    2012-01-01

    Intracellular protein levels of diverse transcription factors (TFs) vary periodically with time. However, the effects of TF oscillations on gene expression, the primary role of TFs, are poorly understood. In this study, we determined these effects by comparing gene expression levels induced in the presence and in the absence of TF oscillations under same mean intracellular protein level of TF. For all the nonlinear TF transcription kinetics studied, an oscillatory TF is predicted to induce gene expression levels that are distinct from a nonoscillatory TF. The conditions dictating whether TF oscillations induce either higher or lower average gene expression levels were elucidated. Subsequently, the predicted effects from an oscillatory TF, which follows sigmoid transcription kinetics, were applied to demonstrate how oscillatory dynamics provide a mechanism for differential target gene transactivation. Generally, the mean TF concentration at which oscillations occur relative to the promoter binding affinity of a target gene determines whether the gene is up- or downregulated whereas the oscillation amplitude amplifies the magnitude of the differential regulation. Notably, the predicted trends of differential gene expressions induced by oscillatory NF-κB and glucocorticoid receptor match the reported experimental observations. Furthermore, the biological function of p53 oscillations is predicted to prime the cell for death upon DNA damage via differential upregulation of apoptotic genes. Lastly, given N target genes, an oscillatory TF can generate between (N – 1) and (2N – 1) distinct patterns of differential transactivation. This study provides insights into the mechanism for TF oscillations to induce differential gene expressions, and underscores the importance of TF oscillations in biological regulations. PMID:22713556

  1. The aberrantly expressed miR-193b-3p contributes to preeclampsia through regulating transforming growth factor-β signaling

    PubMed Central

    Zhou, Xinyao; Li, Qiaoli; Xu, Jiawei; Zhang, Xiaojing; Zhang, Huijuan; Xiang, Yuqian; Fang, Chuantao; Wang, Teng; Xia, Shihui; Zhang, Qiang; Xing, Qinghe; He, Lin; Wang, Lei; Xu, Mingqing; Zhao, Xinzhi

    2016-01-01

    Preeclampsia (PE) is a leading cause of maternal mortality worldwide. Several studies have detected some differentially expressed microRNAs in the preeclamptic placenta, but few of the identified microRNAs demonstrated consistent findings among different research studies. In this study, high-throughput microRNA sequencing (HTS) of 9 preeclamptic and 9 normal placentas was performed. Seventeen microRNAs were identified to be up-regulated, and 8 down-regulated in preeclamptic placentas. Eight differentially expressed microRNAs except one identified in our study were determined to be consistent with at least one previous study, while sixteen were newly found. We performed qRT-PCR with independent 22 preeclamptic placentas and 20 control placentas to verify the differentially expressed microRNAs, and ten microRNAs were validated. The predicted target genes of the aberrantly expressed miR-193b-3p were enriched in the following gene ontology categories: cell motility and migration, cell proliferation and angiogenesis. We also found that miR-193b-3p significantly decreased the migration and invasion of trophoblast (HTR-8/SVneo) cells and that miR-193b-3p could regulate trophoblasts migration and invasion through binding onto the 3′UTR target site of TGF-β2. In conclusion, we identified a list of differentially expressed microRNAs in PE placentas by HTS and provided preliminary evidence for the role of miR-193b-3p in the pathogenesis of preeclampsia. PMID:26822621

  2. The aberrantly expressed miR-193b-3p contributes to preeclampsia through regulating transforming growth factor-β signaling.

    PubMed

    Zhou, Xinyao; Li, Qiaoli; Xu, Jiawei; Zhang, Xiaojing; Zhang, Huijuan; Xiang, Yuqian; Fang, Chuantao; Wang, Teng; Xia, Shihui; Zhang, Qiang; Xing, Qinghe; He, Lin; Wang, Lei; Xu, Mingqing; Zhao, Xinzhi

    2016-01-01

    Preeclampsia (PE) is a leading cause of maternal mortality worldwide. Several studies have detected some differentially expressed microRNAs in the preeclamptic placenta, but few of the identified microRNAs demonstrated consistent findings among different research studies. In this study, high-throughput microRNA sequencing (HTS) of 9 preeclamptic and 9 normal placentas was performed. Seventeen microRNAs were identified to be up-regulated, and 8 down-regulated in preeclamptic placentas. Eight differentially expressed microRNAs except one identified in our study were determined to be consistent with at least one previous study, while sixteen were newly found. We performed qRT-PCR with independent 22 preeclamptic placentas and 20 control placentas to verify the differentially expressed microRNAs, and ten microRNAs were validated. The predicted target genes of the aberrantly expressed miR-193b-3p were enriched in the following gene ontology categories: cell motility and migration, cell proliferation and angiogenesis. We also found that miR-193b-3p significantly decreased the migration and invasion of trophoblast (HTR-8/SVneo) cells and that miR-193b-3p could regulate trophoblasts migration and invasion through binding onto the 3'UTR target site of TGF-β2. In conclusion, we identified a list of differentially expressed microRNAs in PE placentas by HTS and provided preliminary evidence for the role of miR-193b-3p in the pathogenesis of preeclampsia. PMID:26822621

  3. Candidate reference genes for gene expression studies in water lily.

    PubMed

    Luo, Huolin; Chen, Sumei; Wan, Hongjian; Chen, Fadi; Gu, Chunsun; Liu, Zhaolei

    2010-09-01

    The selection of an appropriate reference gene(s) is a prerequisite for the proper interpretation of quantitative Real-Time polymerase chain reaction data. We report the evaluation of eight candidate reference genes across various tissues and treatments in the water lily by the two software packages geNorm and NormFinder. Across all samples, clathrin adaptor complexes medium subunit (AP47) and actin 11 (ACT11) emerged as the most suitable reference genes. Across different tissues, ACT11 and elongation factor 1-alpha (EF1alpha) exhibited a stable expression pattern. ACT11 and AP47 also stably expressed in roots subjected to various treatments, but in the leaves of the same plants the most stably expressed genes were ubiquitin-conjugating enzyme 16 (UBC16) and ACT11. PMID:20452325

  4. Changes in gene expression following EMF exposure

    SciTech Connect

    Woloschak, G.E.; Paunesku, T.; Chang-Liu, C.M.; Loberg, L.; Gauger, J.; McCormick, D.

    1997-10-01

    Experiments were designed to examine the effects of electromagnetic field (EMF) exposure on specific gene expression, an effect that can be deleterious, beneficial, or neutral, depending on the long-term consequences; however, the proof of a reproducible, quantitative biological effect (such as change in gene expression) will lead to latter experiments aimed at determining the relative contribution of these changes to cellular consequences. Past work by ourselves and by others has shown that measures of gene expression are extremely sensitive indicators of the cellular and biological effects of ionizing radiation, with transcriptional changes being detected by exposure of cells to doses of {gamma}-rays as low as 0.01 cGy that have no pronounced cellular consequences. On the basis of this work, the authors hypothesized that measures of gene expression will be equally sensitive to EMF effects on cells.

  5. Regulation of Gene Expression in Protozoa Parasites

    PubMed Central

    Gomez, Consuelo; Esther Ramirez, M.; Calixto-Galvez, Mercedes; Medel, Olivia; Rodríguez, Mario A.

    2010-01-01

    Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis. PMID:20204171

  6. Optogenetic Control of Gene Expression in Drosophila

    PubMed Central

    Chan, Yick-Bun; Alekseyenko, Olga V.; Kravitz, Edward A.

    2015-01-01

    To study the molecular mechanism of complex biological systems, it is important to be able to artificially manipulate gene expression in desired target sites with high precision. Based on the light dependent binding of cryptochrome 2 and a cryptochrome interacting bHLH protein, we developed a split lexA transcriptional activation system for use in Drosophila that allows regulation of gene expression in vivo using blue light or two-photon excitation. We show that this system offers high spatiotemporal resolution by inducing gene expression in tissues at various developmental stages. In combination with two-photon excitation, gene expression can be manipulated at precise sites in embryos, potentially offering an important tool with which to examine developmental processes. PMID:26383635

  7. Dynamic modeling of gene expression data

    NASA Technical Reports Server (NTRS)

    Holter, N. S.; Maritan, A.; Cieplak, M.; Fedoroff, N. V.; Banavar, J. R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small.

  8. Expression of Polarity Genes in Human Cancer

    PubMed Central

    Lin, Wan-Hsin; Asmann, Yan W; Anastasiadis, Panos Z

    2015-01-01

    Polarity protein complexes are crucial for epithelial apical–basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function. PMID:25991909

  9. Regulation of gene expression in osteoblasts.

    PubMed

    Jensen, Eric D; Gopalakrishnan, Rajaram; Westendorf, Jennifer J

    2010-01-01

    In recent years, much progress has been made in understanding the factors that regulate the gene expression program that underlies the induction, proliferation, differentiation, and maturation of osteoblasts. A large and growing number of transcription factors make important contributions to the precise control of osteoblast formation and function. It has become increasingly clear that these diverse transcription factors and the signals that regulate their activity cannot be viewed as discrete, separate signaling pathways. Rather, they form a highly interconnected, cooperative network that permits gene expression to be closely regulated. There has also been a substantial increase in our understanding of the mechanistic control of gene expression by cofactors such as acetyltransferases and histone deacetylases. The purpose of this review is to highlight recent progress in understanding the major transcription factors and epigenetic coregulators, including histone deacetylases and microRNAs, involved in osteoblastogenesis and the mechanisms that determine their functions as regulators of gene expression. PMID:20087883

  10. Regulation of meiotic gene expression in plants

    PubMed Central

    Zhou, Adele; Pawlowski, Wojciech P.

    2014-01-01

    With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been assembled. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa), wheat (Triticum aestivum), petunia (Petunia hybrida), sunflower (Helianthus annuus), and maize (Zea mays). Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs that might be involved in the regulation of meiotic transcription patterns. PMID:25202317

  11. Nucleosomal promoter variation generates gene expression noise

    PubMed Central

    Brown, Christopher R.; Boeger, Hinrich

    2014-01-01

    Gene product molecule numbers fluctuate over time and between cells, confounding deterministic expectations. The molecular origins of this noise of gene expression remain unknown. Recent EM analysis of single PHO5 gene molecules of yeast indicated that promoter molecules stochastically assume alternative nucleosome configurations at steady state, including the fully nucleosomal and nucleosome-free configuration. Given that distinct configurations are unequally conducive to transcription, the nucleosomal variation of promoter molecules may constitute a source of gene expression noise. This notion, however, implies an untested conjecture, namely that the nucleosomal variation arises de novo or intrinsically (i.e., that it cannot be explained as the result of the promoter’s deterministic response to variation in its molecular surroundings). Here, we show—by microscopically analyzing the nucleosome configurations of two juxtaposed physically linked PHO5 promoter copies—that the configurational variation, indeed, is intrinsically stochastic and thus, a cause of gene expression noise rather than its effect. PMID:25468975

  12. Mining Gene Expression Data of Multiple Sclerosis

    PubMed Central

    Zhu, Zhenli; Huang, Zhengliang; Li, Ke

    2014-01-01

    Objectives Microarray produces a large amount of gene expression data, containing various biological implications. The challenge is to detect a panel of discriminative genes associated with disease. This study proposed a robust classification model for gene selection using gene expression data, and performed an analysis to identify disease-related genes using multiple sclerosis as an example. Materials and methods Gene expression profiles based on the transcriptome of peripheral blood mononuclear cells from a total of 44 samples from 26 multiple sclerosis patients and 18 individuals with other neurological diseases (control) were analyzed. Feature selection algorithms including Support Vector Machine based on Recursive Feature Elimination, Receiver Operating Characteristic Curve, and Boruta algorithms were jointly performed to select candidate genes associating with multiple sclerosis. Multiple classification models categorized samples into two different groups based on the identified genes. Models’ performance was evaluated using cross-validation methods, and an optimal classifier for gene selection was determined. Results An overlapping feature set was identified consisting of 8 genes that were differentially expressed between the two phenotype groups. The genes were significantly associated with the pathways of apoptosis and cytokine-cytokine receptor interaction. TNFSF10 was significantly associated with multiple sclerosis. A Support Vector Machine model was established based on the featured genes and gave a practical accuracy of ∼86%. This binary classification model also outperformed the other models in terms of Sensitivity, Specificity and F1 score. Conclusions The combined analytical framework integrating feature ranking algorithms and Support Vector Machine model could be used for selecting genes for other diseases. PMID:24932510

  13. Amino acid regulation of gene expression.

    PubMed Central

    Fafournoux, P; Bruhat, A; Jousse, C

    2000-01-01

    The impact of nutrients on gene expression in mammals has become an important area of research. Nevertheless, the current understanding of the amino acid-dependent control of gene expression is limited. Because amino acids have multiple and important functions, their homoeostasis has to be finely maintained. However, amino-acidaemia can be affected by certain nutritional conditions or various forms of stress. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. The aim of the present review is to examine the role of amino acids in regulating mammalian gene expression and protein turnover. It has been reported that some genes involved in the control of growth or amino acid metabolism are regulated by amino acid availability. For instance, limitation of several amino acids greatly increases the expression of the genes encoding insulin-like growth factor binding protein-1, CHOP (C/EBP homologous protein, where C/EBP is CCAAT/enhancer binding protein) and asparagine synthetase. Elevated mRNA levels result from both an increase in the rate of transcription and an increase in mRNA stability. Several observations suggest that the amino acid regulation of gene expression observed in mammalian cells and the general control process described in yeast share common features. Moreover, amino acid response elements have been characterized in the promoters of the CHOP and asparagine synthetase genes. Taken together, the results discussed in the present review demonstrate that amino acids, by themselves, can, in concert with hormones, play an important role in the control of gene expression. PMID:10998343

  14. Amino acid regulation of gene expression.

    PubMed

    Fafournoux, P; Bruhat, A; Jousse, C

    2000-10-01

    The impact of nutrients on gene expression in mammals has become an important area of research. Nevertheless, the current understanding of the amino acid-dependent control of gene expression is limited. Because amino acids have multiple and important functions, their homoeostasis has to be finely maintained. However, amino-acidaemia can be affected by certain nutritional conditions or various forms of stress. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. The aim of the present review is to examine the role of amino acids in regulating mammalian gene expression and protein turnover. It has been reported that some genes involved in the control of growth or amino acid metabolism are regulated by amino acid availability. For instance, limitation of several amino acids greatly increases the expression of the genes encoding insulin-like growth factor binding protein-1, CHOP (C/EBP homologous protein, where C/EBP is CCAAT/enhancer binding protein) and asparagine synthetase. Elevated mRNA levels result from both an increase in the rate of transcription and an increase in mRNA stability. Several observations suggest that the amino acid regulation of gene expression observed in mammalian cells and the general control process described in yeast share common features. Moreover, amino acid response elements have been characterized in the promoters of the CHOP and asparagine synthetase genes. Taken together, the results discussed in the present review demonstrate that amino acids, by themselves, can, in concert with hormones, play an important role in the control of gene expression. PMID:10998343

  15. Homeobox genes expressed during echinoderm arm regeneration.

    PubMed

    Ben Khadra, Yousra; Said, Khaled; Thorndyke, Michael; Martinez, Pedro

    2014-04-01

    Regeneration in echinoderms has proved to be more amenable to study in the laboratory than the more classical vertebrate models, since the smaller genome size and the absence of multiple orthologs for different genes in echinoderms simplify the analysis of gene function during regeneration. In order to understand the role of homeobox-containing genes during arm regeneration in echinoderms, we isolated the complement of genes belonging to the Hox class that are expressed during this process in two major echinoderm groups: asteroids (Echinaster sepositus and Asterias rubens) and ophiuroids (Amphiura filiformis), both of which show an extraordinary capacity for regeneration. By exploiting the sequence conservation of the homeobox, putative orthologs of several Hox genes belonging to the anterior, medial, and posterior groups were isolated. We also report the isolation of a few Hox-like genes expressed in the same systems. PMID:24309817

  16. Perspectives: Gene Expression in Fisheries Management

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Pavey, Scott A.

    2010-01-01

    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  17. Polyunsaturated fatty acids and gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose of review. This review focuses on the effect(s) of n-3 polyunsaturated fatty acids (PUFA) on gene transcription as determined from data generated using cDNA microarrays. Introduced within the past decade, this methodology allows detection of the expression of thousands of genes simultaneo...

  18. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis

    PubMed Central

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  19. Gene expression profiles of giant hairy naevi

    PubMed Central

    Dasu, M R K; Barrow, R E; Hawkins, H K; McCauley, R L

    2004-01-01

    Background: Congenital neomelanocytic naevi appear in nearly 1% of newborns. Giant hairy naevi (GHN) are uncommon lesions covering large areas of the body. They are of concern because they have the potential to transform into malignant melanomas. Aims: To describe gene expression profiles of GHN and nearby normal skin from patients with GHN and normal control skin (from patients with cleft lip/palate). Methods: Tissues from three patients with GHN and two normal controls were studied for differences in gene expression profiles. Total RNA was isolated from normal skin near the hairy naevus, GHN, and skin from normal controls. The RNA samples were subjected to probe labelling, hybridisation to chips, and image acquisition according to the standard Affymetrix protocol. Results: There were 227 genes affected across all samples, as determined by DNA microarray analysis. There was increased expression of 22 genes in GHN compared with nearby normal skin. Decreased expression was noted in 73 genes. In addition, there was increased expression of 36 genes in normal skin near GHN compared with normal control skin, and decreased expression of five genes. Categories of genes affected were those encoding structural proteins, proteins related to developmental processes, cell death associated proteins, transcription factors, growth factors, stress response modulators, and collagen associated proteins. Changes in mRNA expression were checked by reverse transcription polymerase chain reaction. Conclusions: Genetic profiles of GHN may provide insight into their pathogenesis, including their potential for malignant transformation. Such information may be useful in improving the understanding and management of these lesions. PMID:15280407

  20. Phytochrome-regulated Gene Expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent compre...

  1. Control of gene expression in trypanosomes.

    PubMed Central

    Vanhamme, L; Pays, E

    1995-01-01

    Trypanosomes are protozoan agents of major parasitic diseases such as Chagas' disease in South America and sleeping sickness of humans and nagana disease of cattle in Africa. They are transmitted to mammalian hosts by specific insect vectors. Their life cycle consists of a succession of differentiation and growth phases requiring regulated gene expression to adapt to the changing extracellular environment. Typical of such stage-specific expression is that of the major surface antigens of Trypanosoma brucei, procyclin in the procyclic (insect) form and the variant surface glycoprotein (VSG) in the bloodstream (mammalian) form. In trypanosomes, the regulation of gene expression is effected mainly at posttranscriptional levels, since primary transcription of most of the genes occurs in long polycistronic units and is constitutive. The transcripts are processed by transsplicing and polyadenylation under the influence of intergenic polypyrimidine tracts. These events show some developmental regulation. Untranslated sequences of the mRNAs seem to play a prominent role in the stage-specific control of individual gene expression, through a modulation of mRNA abundance. The VSG and procyclin transcription units exhibit particular features that are probably related to the need for a high level of expression. The promoters and RNA polymerase driving the expression of these units resemble those of the ribosomal genes. Their mutually exclusive expression is ensured by controls operating at several levels, including RNA elongation. Antigenic variation in the bloodstream is achieved through DNA rearrangements or alternative activation of the telomeric VSG gene expression sites. Recent discoveries, such as the existence of a novel nucleotide in telomeric DNA and the generation of point mutations in VSG genes, have shed new light on the mechanisms and consequences of antigenic variation. PMID:7603410

  2. Transcriptome Meta-Analysis of Lung Cancer Reveals Recurrent Aberrations in NRG1 and Hippo Pathway Genes

    PubMed Central

    Dhanasekaran, Saravana M.; Balbin, O. Alejandro; Chen, Guoan; Nadal, Ernest; Kalyana-Sundaram, Shanker; Pan, Jincheng; Veeneman, Brendan; Cao, Xuhong; Malik, Rohit; Vats, Pankaj; Wang, Rui; Huang, Stephanie; Zhong, Jinjie; Jing, Xiaojun; Iyer, Matthew; Wu, Yi-Mi; Harms, Paul W.; Lin, Jules; Reddy, Rishindra; Brennan, Christine; Palanisamy, Nallasivam; Chang, Andrew C.; Truini, Anna; Truini, Mauro; Robinson, Dan R.; Beer, David G.; Chinnaiyan, Arul M.

    2014-01-01

    Lung cancer is emerging as a paradigm for disease molecular subtyping, facilitating targeted therapy based on driving somatic alterations. Here, we perform transcriptome analysis of 153 samples representing lung adenocarcinomas, squamous cell carcinomas, large cell lung cancer, adenoid cystic carcinomas and cell lines. By integrating our data with The Cancer Genome Atlas and published sources, we analyze 753 lung cancer samples for gene fusions and other transcriptomic alterations. We show that higher numbers of gene fusions is an independent prognostic factor for poor survival in lung cancer. Our analysis confirms the recently reported CD74-NRG1 fusion and suggests that NRG1, NF1 and Hippo pathway fusions may play important roles in tumors without known driver mutations. In addition, we observe exon skipping events in c-MET, which are attributable to splice site mutations. These classes of genetic aberrations may play a significant role in the genesis of lung cancers lacking known driver mutations. PMID:25531467

  3. Aberrant expression of myeloperoxidase in astrocytes promotes phospholipid oxidation and memory deficits in a mouse model of Alzheimer disease.

    PubMed

    Maki, Richard A; Tyurin, Vladimir A; Lyon, Robert C; Hamilton, Ronald L; DeKosky, Steven T; Kagan, Valerian E; Reynolds, Wanda F

    2009-01-30

    Myeloperoxidase (MPO) is expressed in Alzheimer disease (AD) but not normal aged brain. A functional -463G/A MPO promoter polymorphism has been associated with AD risk through as yet unidentified mechanisms. Here we report that human MPO-463G allele, but not MPO-463A or mouse MPO, is strongly expressed in astrocytes and deposited in plaques in huMPO transgenic mice crossed to the APP23 model. MPO is similarly expressed in astrocytes in human AD tissue. In cortical homogenates of the MPOG-APP23 model, MPO expression correlated with increased levels of a lipid peroxidation product, 4-hydroxynonenal. Fluorescence high-performance liquid chromatography and electrospray ionization mass spectroscopy identified selective accumulation of phospholipid hydroperoxides in two classes of anionic phospholipids, phosphatidylserine (PS-OOH) and phosphatidylinositol (PI-OOH). The same molecular species of PS-OOH and PI-OOH were elevated in human AD brains as compared with non-demented controls. Augmented lipid peroxidation in MPOG-APP23 mice correlated with greater memory deficits. We suggest that aberrant huMPO expression in astrocytes leads to a specific pattern of phospholipid peroxidation and neuronal dysfunction contributing to AD. PMID:19059911

  4. Application of multidisciplinary analysis to gene expression.

    SciTech Connect

    Wang, Xuefel; Kang, Huining; Fields, Chris; Cowie, Jim R.; Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy; Mosquera-Caro, Monica P.; Xu, Yuexian; Martin, Shawn Bryan; Helman, Paul; Andries, Erik; Ar, Kerem; Potter, Jeffrey; Willman, Cheryl L.; Murphy, Maurice H.

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from microarrays, we have made progress by combining very different analytic approaches.

  5. Heterelogous expression of plant genes.

    PubMed

    Yesilirmak, Filiz; Sayers, Zehra

    2009-01-01

    Heterologous expression allows the production of plant proteins in an organism which is simpler than the natural source. This technology is widely used for large-scale purification of plant proteins from microorganisms for biochemical and biophysical analyses. Additionally expression in well-defined model organisms provides insights into the functions of proteins in complex pathways. The present review gives an overview of recombinant plant protein production methods using bacteria, yeast, insect cells, and Xenopus laevis oocytes and discusses the advantages of each system for functional studies and protein characterization. PMID:19672459

  6. Heterelogous Expression of Plant Genes

    PubMed Central

    Yesilirmak, Filiz; Sayers, Zehra

    2009-01-01

    Heterologous expression allows the production of plant proteins in an organism which is simpler than the natural source. This technology is widely used for large-scale purification of plant proteins from microorganisms for biochemical and biophysical analyses. Additionally expression in well-defined model organisms provides insights into the functions of proteins in complex pathways. The present review gives an overview of recombinant plant protein production methods using bacteria, yeast, insect cells, and Xenopus laevis oocytes and discusses the advantages of each system for functional studies and protein characterization. PMID:19672459

  7. Reference Gene Screening for Analyzing Gene Expression Across Goat Tissue

    PubMed Central

    Zhang, Yu; Zhang, Xiao-Dong; Liu, Xing; Li, Yun-Sheng; Ding, Jian-Ping; Zhang, Xiao-Rong; Zhang, Yun-Hai

    2013-01-01

    Real-time quantitative PCR (qRT-PCR) is one of the important methods for investigating the changes in mRNA expression levels in cells and tissues. Selection of the proper reference genes is very important when calibrating the results of real-time quantitative PCR. Studies on the selection of reference genes in goat tissues are limited, despite the economic importance of their meat and dairy products. We used real-time quantitative PCR to detect the expression levels of eight reference gene candidates (18S, TBP, HMBS, YWHAZ, ACTB, HPRT1, GAPDH and EEF1A2) in ten tissues types sourced from Boer goats. The optimal reference gene combination was selected according to the results determined by geNorm, NormFinder and Bestkeeper software packages. The analyses showed that tissue is an important variability factor in genes expression stability. When all tissues were considered, 18S, TBP and HMBS is the optimal reference combination for calibrating quantitative PCR analysis of gene expression from goat tissues. Dividing data set by tissues, ACTB was the most stable in stomach, small intestine and ovary, 18S in heart and spleen, HMBS in uterus and lung, TBP in liver, HPRT1 in kidney and GAPDH in muscle. Overall, this study provided valuable information about the goat reference genes that can be used in order to perform a proper normalisation when relative quantification by qRT-PCR studies is undertaken. PMID:25049756

  8. Modeling gene expression in time and space.

    PubMed

    Rué, Pau; Garcia-Ojalvo, Jordi

    2013-01-01

    Cell populations rarely exhibit gene-expression profiles that are homogeneous in time and space. In the temporal domain, dynamical behaviors such as oscillations and pulses of protein production pervade cell biology, underlying phenomena as diverse as circadian rhythmicity, cell cycle control, stress and damage responses, and stem-cell pluripotency. In multicellular populations, spatial heterogeneities are crucial for decision making and development, among many other functions. Cells need to exquisitely coordinate this temporal and spatial variation to survive. Although the spatiotemporal character of gene expression is challenging to quantify experimentally at the level of individual cells, it is beneficial from the modeling viewpoint, because it provides strong constraints that can be probed by theoretically analyzing mathematical models of candidate gene and protein circuits. Here, we review recent examples of temporal dynamics and spatial patterning in gene expression to show how modeling such phenomenology can help us unravel the molecular mechanisms of cellular function. PMID:23527779

  9. Nonsense-mediated RNA decay – a switch and dial for regulating gene expression

    PubMed Central

    Smith, Jenna E.; Baker, Kristian E.

    2015-01-01

    Nonsense-mediated RNA decay (NMD) represents an established quality control checkpoint for gene expression that protects cells from consequences of gene mutations and errors during RNA biogenesis that lead to premature termination during translation. Characterization of NMD-sensitive transcriptomes has revealed, however, that NMD targets not only aberrant transcripts but also a broad array of mRNA isoforms expressed from many endogenous genes. NMD is thus emerging as a master regulator that drives both fine and coarse adjustments in steady-state RNA levels in the cell. Importantly, while NMD activity is subject to autoregulation as a means to maintain homeostasis, modulation of the pathway by external cues providesa means to reprogram gene expression and drive important biological processes. Finally, the unanticipated observation that transcripts predicted to lack protein-coding capacity are also sensitive to this translation-dependent surveillance mechanism implicates NMD in regulating RNA function in new and diverse ways. PMID:25820233

  10. Differential gene expression during multistage carcinogenesis

    SciTech Connect

    Bowden, G.T. ); Krieg, P. )

    1991-06-01

    The use of the mouse skin multistage model of carcinogenesis has aided our understanding of critical target genes in chemical carcinogenesis. The mutagenic activation of the Harvey-ras proto-oncogene has been found to be an early event associated with the initiation of mouse skin tumors by the polycyclic aromatic hydrocarbon 7,12 dimethylbenz(a)anthracene and the pure initiator ethyl carbamate (urethane). In contrast to chemical initiation of mouse skin tumors, ionizing radiation-initiated malignant skin tumors have been shown to possess distinct non-ras transforming gene(s). Differential screening of cDNA libraries made from chemically initiated malignant skin tumors has been used to identify a number of cellular gene transcripts that are overexpressed during mouse skin tumor progression. These differentially expressed genes include {beta}-actin, ubiquitin, a hyperproliferative keratin (K6), a gene whose product is a member of a fatty acid or lipid-binding protein family, and a gene called transin or stromelysin. The overexpression of the stromelysin gene, which encodes a metalloproteinase that degrades proteins in the basement membrane, is hypothesized to play a functional role in malignant tumor cell invasion and metastasis. The authors believe that the cloning, identification, and characterization of gene sequences that are differentially expressed during tumor progression could lead to the discovery of gene products that either play functional roles in skin tumor progression or in the maintenance of various progressive tumor phenotypes.

  11. Regulation of gene expression in human tendinopathy

    PubMed Central

    2011-01-01

    Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics. PMID:21539748

  12. Paternally expressed genes predominate in the placenta.

    PubMed

    Wang, Xu; Miller, Donald C; Harman, Rebecca; Antczak, Douglas F; Clark, Andrew G

    2013-06-25

    The discovery of genomic imprinting through studies of manipulated mouse embryos indicated that the paternal genome has a major influence on placental development. However, previous research has not demonstrated paternal bias in imprinted genes. We applied RNA sequencing to trophoblast tissue from reciprocal hybrids of horse and donkey, where genotypic differences allowed parent-of-origin identification of most expressed genes. Using this approach, we identified a core group of 15 ancient imprinted genes, of which 10 were paternally expressed. An additional 78 candidate imprinted genes identified by RNA sequencing also showed paternal bias. Pyrosequencing was used to confirm the imprinting status of six of the genes, including the insulin receptor (INSR), which may play a role in growth regulation with its reciprocally imprinted ligand, histone acetyltransferase-1 (HAT1), a gene involved in chromatin modification, and lymphocyte antigen 6 complex, locus G6C, a newly identified imprinted gene in the major histocompatibility complex. The 78 candidate imprinted genes displayed parent-of-origin expression bias in placenta but not fetus, and most showed less than 100% silencing of the imprinted allele. Some displayed variability in imprinting status among individuals. This variability results in a unique epigenetic signature for each placenta that contributes to variation in the intrauterine environment and thus presents the opportunity for natural selection to operate on parent-of-origin differential regulation. Taken together, these features highlight the plasticity of imprinting in mammals and the central importance of the placenta as a target tissue for genomic imprinting. PMID:23754418

  13. Noise minimization in eukaryotic gene expression

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  14. Aberrant expressions of c-KIT and DOG-1 in mucinous and nonmucinous colorectal carcinomas and relation to clinicopathologic features and prognosis.

    PubMed

    Foda, Abd Al-Rahman Mohammad; Mohamed, Mie Ali

    2015-10-01

    c-KIT and DOG-1 are 2 highly expressed proteins in gastrointestinal stromal tumors. Few studies had investigated c-KIT, but not DOG-1, expression in colorectal carcinoma (CRC). This study aims to investigate expressions of c-KIT and DOG-1 in colorectal mucinous carcinoma and nonmucinous carcinoma using manual tissue microarray technique. In this work, we studied tumor tissue specimens from 150 patients with colorectal mucinous (MA) and nonmucinous adenocarcinoma (NMA). High-density manual tissue microarrays were constructed using modified mechanical pencil tip technique, and immunohistochemistry for c-KIT and DOG-1 was done. We found that aberrant c-KIT expression was detected in 12 cases (8%); 6 cases (4%) showed strong expression. Aberrant DOG-1 expression was detected in 15 cases (10%); among them, only 4 cases (2.7%) showed strong expression. Nonmucinous adenocarcinoma showed a significantly high expression of c-KIT, but not DOG-1, than MA. Aberrant c-KIT and DOG-1 expressions were significantly unrelated but were associated with excessive microscopic abscess formation. Neither c-KIT nor DOG-1 expression showed a significant impact on disease-free survival or overall survival. In conclusion, aberrant c-KIT and DOG-1 expressions in CRC are rare events, either in NMA or MA. Nonmucinous adenocarcinoma showed a significantly higher expression of c-KIT, but not DOG-1, than MA. The expressions of both in CRC are significantly unrelated but are associated with microscopic abscess formation. Neither c-KIT nor DOG-1 expression showed a significant impact on disease-free survival or overall survival. So, c-KIT and DOG-1 immunostaining is not a cost-effective method of identifying patients with CRC who may benefit from treatment with tyrosine kinase inhibitors. PMID:26272691

  15. Mapping of sex-linked genes onto the genome sequence using various aberrations of the Z chromosome in Bombyx mori.

    PubMed

    Fujii, Tsuguru; Abe, Hiroaki; Katsuma, Susumu; Mita, Kazuei; Shimada, Toru

    2008-12-01

    Many strains of Bombyx mori carry chromosomal aberrations, and they are useful resources for integration between phenotypes and genomic sequences. We compared the molecular structures of three kinds of Z chromosomes, i.e., two strains with chromosome deletions and one strain with translocation involving the Z chromosome. Using polymerase chain reaction markers, we showed that: (1) the Z(1) chromosome lacks more than 6Mb, including the proximal end; (2) the Z(Vg) chromosome lacks 1.5Mb in the interstitial portion; and (3) the +(od)p(Sa)+(p)W carries a 0.6-Mb Z-derived fragment surrounding the +(od) gene. The breakpoint junctions of these deletions and a translocation were precisely determined. Through deletion mapping, we narrowed down the regions where distinct oily (od), vestigial (Vg), and muscle dystrophy (Md) are located and identified a candidate gene for od. A retroposon-mediated deletion in BmBLOS2--the Bombyx gene homologous to human "biogenesis of lysosome-related organelles complex-1, subunit 2''--was detected in the od mutant. Although the genes responsible for Vg and Md were not definitively identified, we propose the candidate genes on the basis of their locations and phenotypes. PMID:19216995

  16. Early gene expression changes with rush immunotherapy

    PubMed Central

    2011-01-01

    Background To examine whether whole genome expression profiling could reveal changes in mRNA expression of peripheral blood mononuclear cells (PBMC) from allergic patients undergoing rush immunotherapy (RIT) that might be manifest within the first few months of treatment. Methods For this study, PBMC from three allergic patients undergoing RIT were assessed at four timepoints: prior to RIT, at 1 week and 7 week post-RIT, during build-up and at 4 months, after establishment of a maintenance dose. PBMC mRNA gene expression changes over time were determined by oligonucleotide microarrays using the Illumina Human-6 BeadChip Platform, which simultaneously interrogates expression profiles of > 47,000 transcripts. Differentially expressed genes were identified using well-established statistical analysis for microarrays. In addition, we analyzed peripheral blood basophil high-affinity IgE receptor (Fc epsilon RI) expression and T-regulatory cell frequency as detected by expression of CD3+CD4+CD25bright cells at each timepoint using flow cytometry. Results In comparing the initial 2 timepoints with the final 2 timepoints and analyzing for genes with ?1.5-fold expression change (p less than or equal to 0.05, BH-FDR), we identified 507 transcripts. At a 2-fold change (p less than or equal to 0.05, BH-FDR), we found 44 transcripts. Of these, 28 were up-regulated and 16 were down-regulated genes. From these datasets, we have identified changes in immunologically relevant genes from both the innate and adaptive response with upregulation of expressed genes for molecules including IL-1?, IL-8, CD40L, BTK and BCL6. At the 4 month timepoint, we noted a downward trend in Fc epsilon RI expression in each of the three patients and increased allergen-specific IgG4 levels. No change was seen in the frequency of peripheral T-regulatory cells expressed over the four timepoints. Conclusions We observed significant changes in gene expression early in peripheral blood samples from allergic patients undergoing RIT. Moreover, serum levels for allergen specific IgG4 also increased over the course of treatment. These studies suggest that RIT induces rapid and dynamic alterations in both innate and adaptive immunity which can be observed in the periphery of allergic patients. These alterations could be directly related to the therapeutic shift in the allergen-specific class of immunoglobulin. PMID:21961521

  17. The haematopoietic specific signal transducer Vav1 is aberrantly expressed in lung cancer and plays a role in tumourigenesis.

    PubMed

    Lazer, Galit; Idelchuk, Yulia; Schapira, Vered; Pikarsky, Eli; Katzav, Shulamit

    2009-09-01

    Lung cancer is the leading cause of cancer death worldwide. The spectrum of aberrations affecting signalling pathways in lung cancer pathogenesis has not been fully elucidated. Physiological expression of Vav1 is restricted to the haematopoietic system, where its best-known function is as a GDP/GTP nucleotide exchange factor for Rho/RacGTPases, an activity strictly controlled by tyrosine phosphorylation downstream of cell surface receptors. Here we find Vav1 expression in 42% of 78 lung cancer cell lines analysed. Moreover, immunohistochemical analysis of primary human lung cancer tissue samples revealed Vav1 expression in 26/59 malignant samples, including adenocarcinoma, squamous cell carcinoma and bronchioloalveolar carcinoma. Stronger Vav1 staining was associated with larger tumour size. siRNA-mediated knockdown of Vav1 in lung cancer cells reduced proliferation in agar and tumour growth in nude mice, while control siRNA had no effect, suggesting that Vav1 plays a critical role in the tumorigenicity of lung cancer cells. Vav1 is tyrosine-phosphorylated in lung cancer cells following activation by the growth factors EGF and TGFalpha, suggesting its participation in signalling events in these cells. Depletion of Vav1 reduced Rac-GTP activation and decreased expression of TGFalpha, an autocrine growth factor. These data suggest that Vav1 plays a role in the neoplastic process in lung cancer, identifying it as a potential therapeutic target for lung cancer therapy. PMID:19533802

  18. Chromosomal aberrations in environmentally exposed population in relation to metabolic and DNA repair genes polymorphisms.

    PubMed

    Sram, Radim J; Beskid, Olena; Binkova, Blanka; Chvatalova, Irena; Lnenickova, Zdena; Milcova, Alena; Solansky, Ivo; Tulupova, Elena; Bavorova, Hana; Ocadlikova, Dana; Farmer, Peter B

    2007-07-01

    The capital city of Prague is one of the most polluted localities of the Czech Republic. Therefore, the effect of exposure to carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) adsorbed onto respirable air particles (<2.5mum) on chromosomal aberrations was studied in a group of policemen (males, aged 22-50 years) working in the downtown area of Prague and spending daily >8h outdoors (N=53). Age- and sex-matched healthy volunteers spending >90% daily time indoors were chosen as controls (N=52). Ambient air particles (PM10, PM2.5) and c-PAHs were monitored using versatile air pollution sampler (VAPS), and personal exposure was evaluated using personal samplers during working shift. Chromosomal aberrations were analyzed by conventional cytogenetic analysis and fluorescent in situ hybridization (FISH). Urinary cotinine plasma levels of vitamins A, E and C, folate, total cholesterol, HDL, LDL cholesterols and triglycerides were also analyzed as possible effect modifiers. Genotypes CYP1A1*2A, CYP1A1*2C, GSTM1, GSTP1, GSTT1, EPHX1, NAT2, hOGG1, XRCC1, XPD, p53 BstI, p53 MspI, MTHFR677, and MS2656 were determined by PCR-based RFLP assays. The following levels of air pollution were recorded during the study period (mean from HiVol sampling): PM10 62.6microg/m(3), c-PAHs 24.7ng/m(3), B[a]P 3.50ng/m(3). The conventional cytogenetic analysis did not reveal any differences between the group of policemen exposed to the ambient air pollution and the control group. The cytogenetic analysis by FISH analysis used the whole chromosome painting probes for chromosomes #1 and #4 (Cambio, UK). It detected a significant increase in all studied endpoints in the policemen compared to controls (% AB.C.=0.33+/-0.25 versus 0.24+/-0.18, p<0.05, F(G)/100=1.72+/-1.57 versus 1.25+/-1.11, p<0.05, AB/1000 (aberrations/1000 cells)=5.58+/-4.62 versus 3.90+/-3.06, p<0.05). CYP1A1*2C (Ile/Ile), XPD 23 (Lys/Lys), and XPD 6 (CC) genotypes were associated with an increase of aberrant cells by conventional method. Factors associated with an increased level of translocations by FISH included age, smoking, B[a]P-like DNA adducts (corresponding to the exposure of c-PAHs), folate, polymorphisms of CYP1A1*2C, GSTP1, EPHX1, p53 MspI and MTHFR. Ambient air exposure to c-PAHs significantly increased FISH cytogenetic parameters in nonsmoking policemen. We may conclude that FISH indicates that the city policemen in Prague represent a group of increased genotoxic risk. This is the first study that has reported a relationship between DNA adducts (biomarker of exposure) and chromosomal aberrations by FISH (biomarker of effect). PMID:17418242

  19. Aminoglycoside uptake increased by tet gene expression.

    PubMed Central

    Merlin, T L; Davis, G E; Anderson, W L; Moyzis, R K; Griffith, J K

    1989-01-01

    The expression of extrachromosomal tet genes not only confers tetracycline resistance but also increases the susceptibilities of gram-negative bacteria to commonly used aminoglycoside antibiotics. We investigated the possibility that tet expression increases aminoglycoside susceptibility by increasing bacterial uptake of aminoglycoside. Studies of [3H]gentamicin uptake in paired sets of Escherichia coli HB101 and Salmonella typhimurium LT2 expressing and not expressing tet showed that tet expression accelerates energy-dependent [3H]gentamicin uptake. Increased [3H]gentamicin uptake was accompanied by decreased bacterial protein synthesis and bacterial growth. Increased aminoglycoside uptake occurred whether tet expression was constitutive or induced, whether the tet gene was class B or C, and whether the tet gene was plasmid borne or integrated into the bacterial chromosome. tet expression produced no measurable change in membrane potential, suggesting that tet expression increases aminoglycoside uptake either by increasing the availability of specific carriers or by lowering the minimum membrane potential that is necessary for uptake. PMID:2684011

  20. Regulatory mechanisms for floral homeotic gene expression.

    PubMed

    Liu, Zhongchi; Mara, Chloe

    2010-02-01

    Proper regulation of floral homeotic gene (or ABCE gene) expression ensures the development of floral organs in the correct number, type, and precise spatial arrangement. This review summarizes recent advances on the regulation of floral homeotic genes, highlighting the variety and the complexity of the regulatory mechanisms involved. As flower development is one of the most well characterized developmental processes in higher plants, it facilitates the discovery of novel regulatory mechanisms. To date, mechanisms for the regulation of floral homeotic genes range from transcription to post-transcription, from activators to repressors, and from microRNA- to ubiquitin-mediated post-transcriptional regulation. Region-specific activation of floral homeotic genes is dependent on the integration of a flower-specific activity provided by LEAFY (LFY) and a region- and stage-specific activating function provided by one of the LFY cofactors. Two types of regulatory loops, the feed-forward and the feedback loop, provide properly timed gene activation and subsequent maintenance and refinement in proper spatial and temporal domains of ABCE genes. Two different microRNA/target modules may have been independently recruited in different plant species to regulate C gene expression. Additionally, competition among different MADS box proteins for common interacting partners may represent a mechanism in whorl boundary demarcation. Future work using systems approaches and the development of non-model plants will provide integrated views on floral homeotic gene regulation and insights into the evolution of morphological diversity in flowering plants. PMID:19922812

  1. Decreased expression and aberrant methylation of RASSF5A correlates with malignant progression of gastric cardia adenocarcinoma.

    PubMed

    Han, Lijie; Dong, Zhiming; Wang, Cong; Guo, Yanli; Shen, Supeng; Kuang, Gang; Guo, Wei

    2015-12-01

    Due to alternative splicing and differential promoter usage, RASSF5 exists in at least three isoforms, RASSF5A, RASSF5B, and RASSF5C. Expression and epigenetic inactivation of different transcripts of RASSF5 in gastric cardia adenocarcinoma (GCA) progression have not been evaluated. Quantitative real-time RT-PCR and immunohistochemistry (IHC) methods were used respectively to detect the role of RASSF5A, RASSF5B, and RASSF5C in 132 GCA cases and BS-MSP method was used to clarify the critical CpG sites of RASSF5A. Expression of RASSF5A and RASSF5C transcripts were easily detectable in all normal gastric cardia epithelial tissues; however, expression of RASSF5B was rare detected in normal gastric cardia epithelial tissues and tumor tissues. Both RASSF5A and RASSF5C expression were frequently downregulated in GCA tumor tissues and RASSF5A was more commonly down-regulated compared to RASSF5C. Abnormal reduction of RASSF5A was more commonly observed in advanced stage and poor differentiated tumors. The methylation frequency of CpG island 1 region of RASSF5A in GCA tumor tissues was significantly higher than that in corresponding normal tissues and was inversely correlated with RASSF5A expression. Aberrant promoter methylation of RASSF5C was not found in GCA. RASSF5A methylation and protein expression were independently associated with GCA patients' survival. These results indicate that down-regulation of RASSF5A and RASSF5C expression is a tumor-specific phenomenon and RASSF5A may be a more common target for inactivation in GCA. Inactivation of RASSF5A through CpG island 1 methylation may play an important role in GCA carcinogenesis and may serve as a prognostic biomarker for GCA. PMID:25420558

  2. The filamentous fungal gene expression database (FFGED).

    PubMed

    Zhang, Zhang; Townsend, Jeffrey P

    2010-03-01

    Filamentous fungal gene expression assays provide essential information for understanding systemic cellular regulation. To aid research on fungal gene expression, we constructed a novel, comprehensive, free database, the filamentous fungal gene expression database (FFGED), available at http://bioinfo.townsend.yale.edu. FFGED features user-friendly management of gene expression data, which are assorted into experimental metadata, experimental design, raw data, normalized details, and analysis results. Data may be submitted in the process of an experiment, and any user can submit multiple experiments, thus classifying the FFGED as an "active experiment" database. Most importantly, FFGED functions as a collective and collaborative platform, by connecting each experiment with similar related experiments made public by other users, maximizing data sharing among different users, and correlating diverse gene expression levels under multiple experimental designs within different experiments. A clear and efficient web interface is provided with enhancement by AJAX (Asynchronous JavaScript and XML) and through a collection of tools to effectively facilitate data submission, sharing, retrieval and visualization. PMID:20025988

  3. The Filamentous Fungal Gene Expression Database (FFGED)

    PubMed Central

    Zhang, Zhang; Townsend, Jeffrey P.

    2010-01-01

    Filamentous fungal gene expression assays provide essential information for understanding systemic cellular regulation. To aid research on fungal gene expression, we constructed a novel, comprehensive, free database, the Filamentous Fungal Gene Expression Database (FFGED), available at http://bioinfo.townsend.yale.edu. FFGED features user-friendly management of gene expression data, which are assorted into experimental metadata, experimental design, raw data, normalized details, and analysis results. Data may be submitted in the process of an experiment, and any user can submit multiple experiments, thus classifying the FFGED as an “active experiment” database. Most importantly, FFGED functions as a collective and collaborative platform, by connecting each experiment with similar related experiments made public by other users, maximizing data sharing among different users, and correlating diverse gene expression levels under multiple experimental designs within different experiments. A clear and efficient web interface is provided with enhancement by AJAX (Asynchronous JavaScript and XML) and through a collection of tools to effectively facilitate data submission, sharing, retrieval and visualization. PMID:20025988

  4. Gene expression following acute morphine administration.

    PubMed

    Loguinov, A V; Anderson, L M; Crosby, G J; Yukhananov, R Y

    2001-08-28

    The long-term response to neurotropic drugs depends on drug-induced neuroplasticity and underlying changes in gene expression. However, alterations in neuronal gene expression can be observed even following single injection. To investigate the extent of these changes, gene expression in the medial striatum and lumbar part of the spinal cord was monitored by cDNA microarray following single injection of morphine. Using robust and resistant linear regression (MM-estimator) with simultaneous prediction confidence intervals, we detected differentially expressed genes. By combining the results with cluster analysis, we have found that a single morphine injection alters expression of two major groups of genes, for proteins involved in mitochondrial respiration and for cytoskeleton-related proteins. RNAs for these proteins were mostly downregulated both in the medial striatum and in lumbar part of the spinal cord. These transitory changes were prevented by coadministration of the opioid antagonist naloxone. Data indicate that microarray analysis by itself is useful in describing the effect of well-known substances on the nervous system and provides sufficient information to propose a potentially novel pathway mediating its activity. PMID:11526201

  5. Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype

    PubMed Central

    Fahrenkrog, Birthe; Martinelli, Valérie; Nilles, Nadine; Fruhmann, Gernot; Chatel, Guillaume; Juge, Sabine; Sauder, Ursula; Di Giacomo, Danika; Mecucci, Cristina; Schwaller, Jürg

    2016-01-01

    Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML). In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD) transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE), in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α). Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis. PMID:27031510

  6. Expression of myriapod pair rule gene orthologs

    PubMed Central

    2011-01-01

    Background Segmentation is a hallmark of the arthropods; most knowledge about the molecular basis of arthropod segmentation comes from work on the fly Drosophila melanogaster. In this species a hierarchic cascade of segmentation genes subdivides the blastoderm stepwise into single segment wide regions. However, segmentation in the fly is a derived feature since all segments form virtually simultaneously. Conversely, in the vast majority of arthropods the posterior segments form one at a time from a posterior pre-segmental zone. The pair rule genes (PRGs) comprise an important level of the Drosophila segmentation gene cascade and are indeed the first genes that are expressed in typical transverse stripes in the early embryo. Information on expression and function of PRGs outside the insects, however, is scarce. Results Here we present the expression of the pair rule gene orthologs in the pill millipede Glomeris marginata (Myriapoda: Diplopoda). We find evidence that these genes are involved in segmentation and that components of the hierarchic interaction of the gene network as found in insects may be conserved. We further provide evidence that segments are formed in a single-segment periodicity rather than in pairs of two like in another myriapod, the centipede Strigamia maritima. Finally we show that decoupling of dorsal and ventral segmentation in Glomeris appears already at the level of the PRGs. Conclusions Although the pair rule gene network is partially conserved among insects and myriapods, some aspects of PRG interaction are, as suggested by expression pattern analysis, convergent, even within the Myriapoda. Conserved expression patterns of PRGs in insects and myriapods, however, may represent ancestral features involved in segmenting the arthropod ancestor. PMID:21352542

  7. Gene expression in human brown adipose tissue.

    PubMed

    Svensson, Per-Arne; Jerns, Margareta; Sjholm, Kajsa; Hoffmann, Jenny M; Nilsson, Bengt E; Hansson, Magnus; Carlsson, Lena M S

    2011-02-01

    Brown adipose tissue (BAT) has profound effects on body weight and metabolism in rodents. Recent reports show that human adults have significant amounts of BAT. Our aim was to study the gene expression profile of human BAT. Biopsies of adipose tissue with brown-red color and subcutaneous white adipose tissue (WAT) were obtained from 24 patients undergoing surgery in the thyroid region. Intrascapular BAT and epididymal WAT biopsies were obtained from 10 mice. Expression was analyzed by DNA microarray, real-time PCR and immunohistochemistry. Using the expression of the brown adipocyte-specific gene uncoupling protein 1 (UCP1) as a marker, approximately half of the human brown-red adipose tissue biopsies taken in the thyroid region contained BAT, and the presence of cells with brown adipocyte morphology was also verified by histology. Microarray analysis of 9 paired human BAT and WAT samples showed that 17 genes had at least a 4-fold higher expression in BAT compared to WAT and five of them (CKMT1, KCNK3, COBL, HMGCS2, TGM2) were verified using real-time PCR (P<0.05 for all). In addition, immunohistochemistry showed that the UCP1, KCNK3 and CKMT1 proteins are expressed in brown adipocytes. Except for UCP1 and KCNK3, the genes overexpressed in human BAT were not overexpressed in mouse BAT compared to mouse WAT. Our analysis identified genes that are differentially expressed in human BAT compared to WAT. The results also show that there are species-specific differences in BAT gene expression and this emphasizes the need for further molecular characterization of human BAT to clarify the mechanisms involved in regulated heat production in humans. PMID:21125211

  8. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  9. Human AZU-1 gene, variants thereof and expressed gene products

    DOEpatents

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  10. Loss of the repressor REST in uterine fibroids promotes aberrant G protein-coupled receptor 10 expression and activates mammalian target of rapamycin pathway

    PubMed Central

    Varghese, Binny V.; Koohestani, Faezeh; McWilliams, Michelle; Colvin, Arlene; Gunewardena, Sumedha; Kinsey, William H.; Nowak, Romana A.; Nothnick, Warren B.; Chennathukuzhi, Vargheese M.

    2013-01-01

    Uterine fibroids (leiomyomas) are the most common tumors of the female reproductive tract, occurring in up to 77% of reproductive-aged women, yet molecular pathogenesis remains poorly understood. A role for atypically activated mammalian target of rapamycin (mTOR) pathway in the pathogenesis of uterine fibroids has been suggested in several studies. We identified that G protein-coupled receptor 10 [GPR10, a putative signaling protein upstream of the phosphoinositide 3-kinaseprotein kinase B/AKTmammalian target of rapamycin (PI3K/AKTmTOR) pathway] is aberrantly expressed in uterine fibroids. The activation of GPR10 by its cognate ligand, prolactin releasing peptide, promotes PI3KAKTmTOR pathways and cell proliferation specifically in cultured primary leiomyoma cells. Additionally, we report that RE1 suppressing transcription factor/neuron-restrictive silencing factor (REST/NRSF), a known tumor suppressor, transcriptionally represses GPR10 in the normal myometrium, and that the loss of REST in fibroids permits GPR10 expression. Importantly, mice overexpressing human GPR10 in the myometrium develop myometrial hyperplasia with excessive extracellular matrix deposition, a hallmark of uterine fibroids. We demonstrate previously unrecognized roles for GPR10 and its upstream regulator REST in the pathogenesis of uterine fibroids. Importantly, we report a unique genetically modified mouse model for a gene that is misexpressed in uterine fibroids. PMID:23284171

  11. Physiological characterization and genetic modifiers of aberrant root thigmomorphogenesis in mutants of Arabidopsis thaliana MILDEW LOCUS O genes.

    PubMed

    Bidzinski, Przemyslaw; Noir, Sandra; Shahi, Shermineh; Reinstädler, Anja; Gratkowska, Dominika Marta; Panstruga, Ralph

    2014-12-01

    Root architecture and growth patterns are plant features that are still poorly understood. When grown under in vitro conditions, seedlings with mutations in Arabidopsis thaliana genes MLO4 or MLO11 exhibit aberrant root growth patterns upon contact with hard surfaces, exemplified as tight root spirals. We used a set of physiological assays and genetic tools to characterize this thigmomorphogenic defect in detail. We observed that the mlo4/mlo11-associated root curling phenotype is not recapitulated in a set of mutants with altered root growth patterns or architecture. We further found that mlo4/mlo11-conditioned root curling is not dependent upon light and endogenous flavonoids, but is pH-sensitive and affected by exogenous calcium levels. Based upon the latter two characteristics, mlo4-associated root coiling appears to be mechanistically different from the natural strong root curvature of the Arabidopsis ecotype Landsberg erecta. Gravistimulation reversibly overrides the aberrant thigmomorphogenesis of mlo4 seedlings. Mutants with dominant negative defects in α-tubulin modulate the extent and directionality of mlo4/mlo11-conditioned root coils, whereas mutants defective in polar auxin transport (axr4, aux1) or gravitropism (pgm1) completely suppress the mlo4 root curling phenotype. Our data implicate a joint contribution of calcium signalling, pH regulation, microtubular function, polar auxin transport and gravitropism in root thigmomorphogenesis. PMID:24738718

  12. Gene expression analysis of flax seed development

    PubMed Central

    2011-01-01

    Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise even low-expressed genes such as those encoding transcription factors. This has allowed us to delineate the spatio-temporal aspects of gene expression underlying the biosynthesis of a number of important seed constituents in flax. Flax belongs to a taxonomic group of diverse plants and the large sequence database will allow for evolutionary studies as well. PMID:21529361

  13. Gene co-expression networks shed light into diseases of brain iron accumulation.

    PubMed

    Bettencourt, Conceição; Forabosco, Paola; Wiethoff, Sarah; Heidari, Moones; Johnstone, Daniel M; Botía, Juan A; Collingwood, Joanna F; Hardy, John; Milward, Elizabeth A; Ryten, Mina; Houlden, Henry

    2016-03-01

    Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention. PMID:26707700

  14. Gene co-expression networks shed light into diseases of brain iron accumulation

    PubMed Central

    Bettencourt, Conceição; Forabosco, Paola; Wiethoff, Sarah; Heidari, Moones; Johnstone, Daniel M.; Botía, Juan A.; Collingwood, Joanna F.; Hardy, John; Milward, Elizabeth A.; Ryten, Mina; Houlden, Henry

    2016-01-01

    Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention. PMID:26707700

  15. Polyandry and sex-specific gene expression

    PubMed Central

    Mank, Judith E.; Wedell, Nina; Hosken, David J.

    2013-01-01

    Polyandry is widespread in nature, and has important evolutionary consequences for the evolution of sexual dimorphism and sexual conflict. Although many of the phenotypic consequences of polyandry have been elucidated, our understanding of the impacts of polyandry and mating systems on the genome is in its infancy. Polyandry can intensify selection on sexual characters and generate more intense sexual conflict. This has consequences for sequence evolution, but also for sex-biased gene expression, which acts as a link between mating systems, sex-specific selection and the evolution of sexual dimorphism. We discuss this and the remarkable confluence of sexual-conflict theory and patterns of gene expression, while also making predictions about transcription patterns, mating systems and sexual conflict. Gene expression is a key link in the genotype–phenotype chain, and although in its early stages, understanding the sexual selection–transcription relationship will provide significant insights into this critical association. PMID:23339238

  16. Redox signaling: globalization of gene expression

    PubMed Central

    Oh, Jeong-Il; Kaplan, Samuel

    2000-01-01

    Here we show that the extent of electron flow through the cbb3 oxidase of Rhodobacter sphaeroides is inversely related to the expression levels of those photosynthesis genes that are under control of the PrrBA two-component activation system: the greater the electron flow, the stronger the inhibitory signal generated by the cbb3 oxidase to repress photosynthesis gene expression. Using site-directed mutagenesis, we show that intramolecular electron transfer within the cbb3 oxidase is involved in signal generation and transduction and this signal does not directly involve the intervention of molecular oxygen. In addition to the cbb3 oxidase, the redox state of the quinone pool controls the transcription rate of the puc operon via the AppA–PpsR antirepressor–repressor system. Together, these interacting regulatory circuits are depicted in a model that permits us to understand the regulation by oxygen and light of photosynthesis gene expression in R.sphaeroides. PMID:10944106

  17. Polyandry and sex-specific gene expression.

    PubMed

    Mank, Judith E; Wedell, Nina; Hosken, David J

    2013-03-01

    Polyandry is widespread in nature, and has important evolutionary consequences for the evolution of sexual dimorphism and sexual conflict. Although many of the phenotypic consequences of polyandry have been elucidated, our understanding of the impacts of polyandry and mating systems on the genome is in its infancy. Polyandry can intensify selection on sexual characters and generate more intense sexual conflict. This has consequences for sequence evolution, but also for sex-biased gene expression, which acts as a link between mating systems, sex-specific selection and the evolution of sexual dimorphism. We discuss this and the remarkable confluence of sexual-conflict theory and patterns of gene expression, while also making predictions about transcription patterns, mating systems and sexual conflict. Gene expression is a key link in the genotype-phenotype chain, and although in its early stages, understanding the sexual selection-transcription relationship will provide significant insights into this critical association. PMID:23339238

  18. Interstitial collagenase gene expression in colonic neoplasia.

    PubMed Central

    Gray, S. T.; Yun, K.; Motoori, T.; Kuys, Y. M.

    1993-01-01

    Tumor invasion and metastasis are complex phenomena believed to be facilitated by the disruption of collagen and elastin fibers in the extracellular matrix. Interstitial collagenase gene expression was studied in colonic adenocarcinoma and adenoma using in situ hybridization. The data indicated that three cell types within the tumor stroma expressed collagenase transcripts; they were eosinophils, fibroblasts, and vascular endothelium. In all 12 adenocarcinomas, a high to moderate level of expression was seen in 1 to 5% of eosinophils and in occasional fibroblasts, whereas these cell types in non-neoplastic mucosa adjacent to tumor showed no detectable expression. Two adenocarcinomas showed expression in hyperplastic endothelium in vascularized granulation tissue. Two out of three adenomas showed expression in eosinophils and fibroblasts at a reduced level. Tissue inhibitor of metalloproteinase-1 gene expression was, however, negligible in all tissue examined. These results suggest that interstitial collagenase gene activation in the tumor stroma, especially eosinophils, may have an important role in tumor invasion and metastasis. Images Figure 1 Figure 2 Figure 3 PMID:8362969

  19. Gene expression profiles in irradiated cancer cells

    NASA Astrophysics Data System (ADS)

    Minafra, L.; Bravat, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  20. Gene expression profiles in irradiated cancer cells

    SciTech Connect

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-26

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  1. Anaerobic Gene Expression in Staphylococcus aureus▿ †

    PubMed Central

    Fuchs, Stephan; Pané-Farré, Jan; Kohler, Christian; Hecker, Michael; Engelmann, Susanne

    2007-01-01

    An investigation of gene expression in Staphylococcus aureus after a switch from aerobic to anaerobic growth was initiated by using the proteomic and transcriptomic approaches. In the absence of external electron acceptors like oxygen or nitrate, an induction of glycolytic enzymes was observed. At the same time the amount of tricarboxylic acid cycle enzymes was very low. NAD is regenerated by mixed acid and butanediol fermentation, as indicated by an elevated synthesis level of fermentation enzymes like lactate dehydrogenases (Ldh1 and Ldh2), alcohol dehydrogenases (AdhE and Adh), α-acetolactate decarboxylase (BudA1), acetolactate synthase (BudB), and acetoin reductase (SACOL0111) as well as an accumulation of fermentation products as lactate and acetate. Moreover, the transcription of genes possibly involved in secretion of lactate (SACOL2363) and formate (SACOL0301) was found to be induced. The formation of acetyl-coenzyme A or acetyl-phosphate might be catalyzed by pyruvate formate lyase, whose synthesis was found to be strongly induced as well. Although nitrate was not present, the expression of genes related to nitrate respiration (NarH, NarI, and NarJ) and nitrate reduction (NirD) was found to be upregulated. Of particular interest, oxygen concentration might affect the virulence properties of S. aureus by regulating the expression of some virulence-associated genes such as pls, hly, splC and splD, epiG, and isaB. To date, the mechanism of anaerobic gene expression in S. aureus has not been fully characterized. In addition to srrA the mRNA levels of several other regulatory genes with yet unknown functions (e.g., SACOL0201, SACOL2360, and SACOL2658) were found to be upregulated during anaerobic growth, indicating a role in the regulation of anaerobic gene expression. PMID:17384184

  2. Expression of p25, an aberrant cyclin-dependent kinase 5 activator, stimulates basal secretion in PC12 cells.

    PubMed

    Son, Mi-Young; Chung, Sul-Hee

    2010-01-01

    Although alterations in the functions of neurotransmitter systems have been implicated in the pathology of Alzheimer's disease (AD), the mechanisms that give rise to these alterations are not well understood. The amount of p25, an aberrant cleavage product of p35 that activates cyclin-dependent kinase 5 (Cdk5), is elevated in AD brains. The role of Cdk5 in neurotransmitter release has been well established. In this study, we examined whether p25 was linked to altered neurotransmitter release in AD. Transient or stable expression of p25 significantly increased basal secretion of human growth hormone (hGH) or neurotransmitter in PC12 cells. Expression of a p25 phosphorylation-deficient mutant, T138A, inhibited basal hGH secretion relative to the p25 wild type, suggesting the involvement of Thr138 phosphorylation in secretion. The expression and activity of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), a key protease in the generation of beta-amyloid, are increased in AD brains. Our previous studies indicated that overexpression of BACE1 enhanced basal secretion of hGH in PC12 cells. Transient coexpression of p25 and BACE1 further stimulated spontaneous basal secretion. These results indicate a novel role for p25 in the secretory pathway and suggest that elevated levels of p25 and BACE1 in AD brains may contribute to altered neurotransmitter pathology of AD through enhancing spontaneous basal secretion. PMID:20033852

  3. Microarray analysis of gene expression in parthenotes and in vitro-derived goat embryos.

    PubMed

    Singh, Renu; Kumar, Kuldeep; Mahapatra, P S; Kumar, Manish; Agarwal, Pranjali; Bhure, S K; Malakar, Dhruba; Bhanja, S K; Bag, Sadhan

    2014-04-01

    The present work was carried out to investigate the global gene expression profile to search differentially expressed candidate transcripts between parthenogenetic and in vitro-fertilized (IVF) caprine morula. For this study, total RNA was isolated from diploid parthenogenetic and IVF embryos, and complementary DNA was synthesized. Microarray and relative real-time polymerase chain reaction analysis were performed to check global gene expression profile and validation, respectively. According to the microarray analysis, the total number of upregulated (UR) and downregulated (DR) genes was 613 and 220, respectively in diploid parthenogenetic morula as compared with IVF morula. The number of genes showing about two-, two- to five-, five- to 10-, 10- to 20-, and above 20-fold UR and DR genes was 147, 229, 122, 59, and 56 and 94, 73, 18, 13, and 22, respectively. Five UR genes validated (PTEN, PHF3, CTNNB1, SELK, and NPDC1) and all of them were significantly higher in parthenotes, which was in accordance with microarray results, whereas the expression of DR (AURKC and KLF15) genes were downregulated in parthenotes as observed in microarray results but the difference was not significant (P < 0.05). In conclusion, our findings demonstrate differential expression of a large number of genes in parthenotes compared with IVF embryos, which may be the reason for aberrant parthenogenetic embryo development in caprine species. PMID:24507961

  4. Aberrant NEAT1 expression is associated with clinical outcome in high grade glioma patients.

    PubMed

    He, Chengbiao; Jiang, Bing; Ma, Jianrong; Li, Qiaoyu

    2016-03-01

    Long noncoding RNA (lncRNA) NEAT1 has been reported to play critical roles in various human tumor entities and related to the survival of patients with malignancies. However, little is known about the role of lncRNA NEAT1 in glioma patients. The aim of this study was to investigate the expression of NEAT1 in human glioma and its correlation with clinicopathological features and prognosis in human glioma; we analyzed the relationship of lncRNA NEAT1 expression with clinicopathological characteristics and prognosis in glioma patients. In our results, the relative level of NEAT1 expression was higher in cancer tissues compared with adjacent noncancerous tissues (p < 0.001). High NEAT1 expression was observed to be closely correlated with larger tumor size (p = 0.023), higher WHO grade (p = 0.005), and recurrence (p = 0.011). Kaplan-Meier curves showed that patients with high NEAT1 expression showed unfavorable overall survival (OS) than the low NEAT1 expression group (p = 0.002). Multivariate analysis results revealed that NEAT1 overexpression was an independent prognostic factor for OS in addition to postoperative chemoradiotherapy and WHO grade. Moreover, high NEAT1 expression in patients with stage III~IV disease and postoperative chemoradiotherapy conferred unfavorable OS (stage III~IV p = 0.002, postoperative chemoradiotherapy p = 0.000). This study supports NEAT1 as a potential prognostic predictor with its high expression in cancer tissues and its association with carcinogenesis and progression in glioma. PMID:26582084

  5. Visualizing Gene Expression In Situ

    SciTech Connect

    Burlage, R.S.

    1998-11-02

    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  6. Sp1 regulates human huntingtin gene expression.

    PubMed

    Wang, Ruitao; Luo, Yawen; Ly, Philip T T; Cai, Fang; Zhou, Weihui; Zou, Haiyan; Song, Weihong

    2012-06-01

    Huntington's disease (HD) is a hereditary neurodegenerative disorder resulting from the expansion of a polyglutamine tract in the huntingtin protein. The expansion of cytosine-adenine-guanine repeats results in neuronal loss in the striatum and cortex. Mutant huntingtin (HTT) may cause toxicity via a range of different mechanisms. Recent studies indicate that impairment of wild-type HTT function may also contribute to HD pathogenesis. However, the mechanisms regulating HTT expression have not been well defined. In this study, we cloned 1,795 bp of the 5' flanking region of the human huntingtin gene (htt) and identified a 106-bp fragment containing the transcription start site as the minimal region necessary for promoter activity. Sequence analysis reveals several putative regulatory elements including Sp1, NF-κB, HIF, CREB, NRSF, P53, YY1, AP1, and STAT in the huntingtin promoter. We found functional Sp1 response elements in the huntingtin promoter region. The expression of Sp1 enhanced huntingtin gene transcription and the inhibition of Sp1-mediated transcriptional activation reduced huntingtin gene expression. These results suggest that Sp1 plays an important role in the regulation of the human huntingtin gene expression at the mRNA and protein levels. Our study suggests that the dysregulation of Sp1-mediated huntingtin transcription, combining with mutant huntingtin's detrimental effect on other Sp1-mediated downstream gene function, may contribute to the pathogenesis of HD. PMID:22399227

  7. Monoallelic gene expression and mammalian evolution.

    PubMed

    Keverne, Barry

    2009-12-01

    Monoallelic gene expression has played a significant role in the evolution of mammals enabling the expansion of a vast repertoire of olfactory receptor types and providing increased sensitivity and diversity. Monoallelic expression of immune receptor genes has also increased diversity for antigen recognition, while the same mechanism that marks a single allele for preferential rearrangement also provides a distinguishing feature for directing hypermutations. Random monoallelic expression of the X chromosome is necessary to balance gene dosage across sexes. In marsupials only the maternal X chromosome is expressed, while in eutherian mammals the paternal X genes are silenced in the developing placenta and early blastocyst. These examples of epigenetic gene regulation commonly employ asynchrony of replication, the binding of polycomb proteins and antisense RNA, and histone modifications to chromatin structure. The same is true for genomic imprinting which among vertebrates is unique to mammals and represents a special kind of epigenetic modification that is heritable according to parent of origin. Genomic imprinting pervades many aspects of mammalian growth and evolution but in particular has played a significant role in the co-adaptive evolution of the mother and foetus. PMID:19921658

  8. GATA transcription factors regulate LHβ gene expression.

    PubMed

    Lo, Ann; Zheng, Weiming; Gong, Yimei; Crochet, John R; Halvorson, Lisa M

    2011-08-01

    The GATA family of transcription factors are critical determinants of cell differentiation as well as regulation of adult gene expression throughout the reproductive axis. Within the anterior pituitary gland, GATA factors have been shown to increase glycoprotein α-subunit gene promoter activity; however, nothing has been known about the impact of these factors on expression of the gonadotropin β-subunits. In this study, we demonstrate expression of both GATA2 and GATA4 in primary mouse gonadotropes and the gonadotrope cell line, LβT2. Based on the transient transfection in fibroblast cells, GATA factors increase LH β-subunit gene (LHβ) promoter activity alone and in synergy with the orphan nuclear receptors steroidogenic factor-1 (SF-1) and liver receptor homologue-1 (LRH-1). The GATA response was localized to a DNA regulatory region at position -101 in the rat LHβ gene promoter which overlaps with a previously described cis-element for pituitary homeobox-1 (Pitx1) and is flanked by two SF-1/LRH-1 regulatory sites. As determined by gel shift, GATA and Pitx1 can compete for binding to this element. Furthermore, mutation analysis revealed a requirement for both the GATA/Pitx1 and the SF-1/LRH-1 cis-elements in order to achieve synergy. These studies identify a novel role for GATA transcription factors in the pituitary and reveal additional molecular mechanisms by which precise modulation of LHβ gene expression can be achieved. PMID:21571865

  9. Reversible Photoregulation of Gene Expression and Translation.

    PubMed

    Ogasawara, Shinzi

    2016-01-01

    Several methods for controlling gene expression by light illumination have been reported. Most of these methods control transcription by regulating the interaction between DNA and transcription factors. The use of a photolabile protecting compound (cage compound) is another promising approach for controlling gene expression, although typically in an irreversible manner. We here describe a new approach for reversibly controlling translation using a photoresponsive 8-styryl cap (8ST-cap) that can be reversibly isomerized by illumination with light of a specific wavelength. PMID:26965115

  10. Facilitated diffusion buffers noise in gene expression

    NASA Astrophysics Data System (ADS)

    Schoech, Armin P.; Zabet, Nicolae Radu

    2014-09-01

    Transcription factors perform facilitated diffusion [three-dimensional (3D) diffusion in the cytosol and 1D diffusion on the DNA] when binding to their target sites to regulate gene expression. Here, we investigated the influence of this binding mechanism on the noise in gene expression. Our results showed that, for biologically relevant parameters, the binding process can be represented by a two-state Markov model and that the accelerated target finding due to facilitated diffusion leads to a reduction in both the mRNA and the protein noise.

  11. Clustering of High Throughput Gene Expression Data

    PubMed Central

    Pirim, Harun; Ekşioğlu, Burak; Perkins, Andy; Yüceer, Çetin

    2012-01-01

    High throughput biological data need to be processed, analyzed, and interpreted to address problems in life sciences. Bioinformatics, computational biology, and systems biology deal with biological problems using computational methods. Clustering is one of the methods used to gain insight into biological processes, particularly at the genomics level. Clearly, clustering can be used in many areas of biological data analysis. However, this paper presents a review of the current clustering algorithms designed especially for analyzing gene expression data. It is also intended to introduce one of the main problems in bioinformatics - clustering gene expression data - to the operations research community. PMID:23144527

  12. Mechanical Feedback and Arrest in Gene Expression

    NASA Astrophysics Data System (ADS)

    Sevier, Stuart; Levine, Herbert

    The ability to watch biochemical events at the single-molecule level has increasingly revealed that stochasticity plays a leading role in many biological phenomena. One important and well know example is the noisy, ``bursty'' manner of transcription. Recent experiments have revealed relationships between the level and noise in gene expression hinting at deeper stochastic connections. In this talk we will discuss how the mechanical nature of transcription can explain this relationship and examine the limits that the physical aspects of transcription place on gene expression.

  13. Aberrant over-expression of COX-1 intersects multiple pro-tumorigenic pathways in high-grade serous ovarian cancer

    PubMed Central

    Wilson, Andrew J.; Fadare, Oluwole; Beeghly-Fadiel, Alicia; Son, Deok-Soo; Liu, Qi; Zhao, Shilin; Saskowski, Jeanette; Uddin, Md. Jashim; Daniel, Cristina; Crews, Brenda; Lehmann, Brian D.; Pietenpol, Jennifer A.; Crispens, Marta A.; Marnett, Lawrence J.; Khabele, Dineo

    2015-01-01

    Cyclooxygenase-1 (COX-1) is implicated in ovarian cancer. However, patterns of COX expression and function have been unclear and controversial. In this report, patterns of COX-1 and COX-2 gene expression were obtained from RNA-seq data through The Cancer Genome Atlas. Our analysis revealed markedly higher COX-1 mRNA expression than COX-2 in high-grade serous ovarian cancers (HGSOC) and higher COX-1 expression in HGSOC tumors than 10 other tumor types. High expression of COX-1 in HGSOC tumors was confirmed in an independent tissue microarray. In contrast, lower or similar expression of COX-1 compared to COX-2 was observed in endometrioid, mucinous and clear cell tumors. Stable COX-1 knockdown in HGSOC-representative OVCAR-3 ovarian cancer cells reduced gene expression in multiple pro-tumorigenic pathways. Functional cell viability, clonogenicity, and migration/invasion assays were consistent with transcriptomic changes. These effects were reversed by stable over-expression of COX-1 in SKOV-3 cells. Our results demonstrate a distinct pattern of COX-1 over-expression in HGSOC tumors and strong association of COX-1 with multiple pro-tumorigenic pathways in ovarian cancer cells. These findings provide additional insight into the role of COX-1 in human ovarian cancer and support further development of methods to selectively target COX-1 in the management of HGSOC tumors. PMID:25972361

  14. Genes differentially expressed in titanium implant healing.

    PubMed

    Ogawa, T; Nishimura, I

    2006-06-01

    Bone generation occurs around titanium implants; however, its underlying mechanisms are unknown. We hypothesized that molecular determinants distinct from those undertaking normal bone healing regulate osseointegration. Using differential display-polymerase chain-reaction in the male rat model, we isolated 3 genes that are differentially expressed in bone healing with implants, but not in osteotomy healing. A homology search indicated that these 3 genes are apolipoprotein E, prolyl 4-hydroxylase alpha-subunit, and an unknown transcript. Differential expression of these genes was remarkable during early healing stages up to week 2, and accelerated with rough acid-etched surfaces compared with machined surfaces. The differential expression was confirmed in the female rats, with enhanced expression for the acid-etched surfaces. The osseointegration-unfavorable condition created by gonadal estrogen deficiency reduced the level of differential expression. This study provides evidence that selected gene transcripts are induced by titanium implants under regulatory control strongly associated with the nature of osseointegration. PMID:16723657

  15. Regulation of gene expression by retinoids.

    PubMed

    Amann, P M; Eichmüller, S B; Schmidt, J; Bazhin, A V

    2011-01-01

    Vitamin A serves as substrate for the biosynthesis of several derivates (retinoids) which are important for cell growth and cell differentiation as well as for vision. Retinoic acid is the major physiologically active form of vitamin A regulating the expression of different genes. At present, hundreds of genes are known to be regulated by retinoic acid. This regulation is very complex and is, in turn, regulated on many levels. To date, two families of retinoid nuclear receptors have been identified: retinoic acid receptors and retinoid X receptors, which are members of the steroid hormone receptor superfamily of ligand-activated transcription factors. In order to regulate gene expression, all-trans retinal needs to be oxidized to retinoic acid. All-trans retinal, in turn, can be produced during oxidation of all-trans retinol or in a retinol-independent metabolic pathway through cleavage of β-carotene with all-trans retinal as an intermediate metabolite. Recently it has been shown that not only retinoic acid is an active form of vitamin A, but also that all-trans retinal can play an important role in gene regulation. In this review we comprehensively summarize recent literature on regulation of gene expression by retinoids, biochemistry of retinoid receptors, and molecular mechanisms of retinoid-mediated effects on gene regulation. PMID:21366525

  16. DNA Copy Number Analysis in Gastrointestinal Stromal Tumors Using Gene Expression Microarrays

    PubMed Central

    Antonescu, Cristina R.; Wu, Kai; Xing, Guoliang Leon; Cao, Manqiu; Turpaz, Yaron; Leversha, Margaret A.; Hubbell, Earl; Maki, Robert G.; Miyada, C. Garrett; Pillai, Raji

    2008-01-01

    We report a method, Expression-Microarray Copy Number Analysis (ECNA) for the detection of copy number changes using Affymetrix Human Genome U133 Plus 2.0 arrays, starting with as little as 5 ng input genomic DNA. An analytical approach was developed using DNA isolated from cell lines containing various X-chromosome numbers, and validated with DNA from cell lines with defined deletions and amplifications in other chromosomal locations. We applied this method to examine the copy number changes in DNA from 5 frozen gastrointestinal stromal tumors (GIST). We detected known copy number aberrations consistent with previously published results using conventional or BAC-array CGH, as well as novel changes in GIST tumors. These changes were concordant with results from Affymetrix 100K human SNP mapping arrays. Gene expression data for these GIST samples had previously been generated on U133A arrays, allowing us to explore correlations between chromosomal copy number and RNA expression levels. One of the novel aberrations identified in the GIST samples, a previously unreported gain on 1q21.1 containing the PEX11B gene, was confirmed in this study by FISH and was also shown to have significant differences in expression pattern when compared to a control sample. In summary, we have demonstrated the use of gene expression microarrays for the detection of genomic copy number aberrations in tumor samples. This method may be used to study copy number changes in other species for which RNA expression arrays are available, e.g. other mammals, plants, etc., and for which SNPs have not yet been mapped. PMID:19259404

  17. Aberrant expression of Golgi protein 73 is indicative of a poor outcome in hepatocellular carcinoma.

    PubMed

    Jiang, Kai; Li, Wei; Shang, Shuxin; Sun, Lu; Guo, Kun; Zhang, Shu; Liu, Yinkun

    2016-04-01

    Golgi protein 73 (GP73), a resident Golgi type-II membrane protein, is often upregulated in hepatocytes. In the present study, shRNA-mediated suppression of GP73 expression in hepatocellular carcinoma (HCC) cell lines (MHCC97H, HCCLM3) resulted in a significant inhibition of cell motility and invasion and also led to the regression of epithelial-mesenchymal transition phenotypes. In contrast, overexpression of GP73 in the SMMC7721 cell line retrieved the expression of EMT markers, and promoted cell motility and invasion. High expression of GP73 was also found in HCC tissues with metastasis, as detected by western blot and immunohistochemistry analyses. Kaplan-Meier survival analysis showed that the survival of patients with high GP73 expression was significantly poorer than that of patients with low GP73 expression (p=0.027). Our findings demonstrated an important role of GP73 in HCC metastasis, and indicated that GP73 is a candidate target for HCC therapy. PMID:26820712

  18. Aberrant expression of B-lymphocyte stimulator by B chronic lymphocytic leukemia cells: a mechanism for survival.

    PubMed

    Novak, Anne J; Bram, Richard J; Kay, Neil E; Jelinek, Diane F

    2002-10-15

    B-cell chronic lymphocytic leukemia (B-CLL) is defined by the accumulation of CD5(+) B cells in the periphery and bone marrow. This disease is not characterized by highly proliferative cells but rather by the presence of leukemic cells with significant resistance to apoptosis and, therefore, prolonged survival. B-lymphocyte stimulator (BLyS) is a newly identified tumor necrosis factor (TNF) family member shown to be critical for maintenance of normal B-cell development and homeostasis and it shares significant homology with another TNF superfamily member, APRIL. The striking effects of BLyS on normal B-cell maintenance and survival raises the possibility that it may be involved in pathogenesis and maintenance of hematologic malignancies, including B-CLL. In this study, we investigated the status of APRIL and BLyS expression, as well as their receptors, in this disease. All B-CLL patient cells studied expressed one or more of 3 known receptors for BLyS; however, the pattern of expression was variable. In addition, we demonstrate for the first time that B-CLL cells from a subset of patients aberrantly express BLyS and APRIL mRNA, whereas these molecules were not detectable in normal B cells. Furthermore, we provide in vitro evidence that BLyS protects B-CLL cells from apoptosis and enhances cell survival. Because these molecules are key regulators of B-cell homeostasis and tumor progression, leukemic cell autocrine expression of BLyS and APRIL may be playing an important role in the pathogenesis of this disease. PMID:12351410

  19. Sequence and gene expression evolution of paralogous genes in willows

    PubMed Central

    Harikrishnan, Srilakshmy L.; Pucholt, Pascal; Berlin, Sofia

    2015-01-01

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows. PMID:26689951

  20. Sequence and gene expression evolution of paralogous genes in willows.

    PubMed

    Harikrishnan, Srilakshmy L; Pucholt, Pascal; Berlin, Sofia

    2015-01-01

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows. PMID:26689951

  1. Lessons from a decade of integrating cancer copy number alterations with gene expression profiles

    PubMed Central

    Huang, Norman; Li, Cheng

    2012-01-01

    Over the last decade, multiple functional genomic datasets studying chromosomal aberrations and their downstream effects on gene expression have accumulated for several cancer types. A vast majority of them are in the form of paired gene expression profiles and somatic copy number alterations (CNA) information on the same patients identified using microarray platforms. In response, many algorithms and software packages are available for integrating these paired data. Surprisingly, there has been no serious attempt to review the currently available methodologies or the novel insights brought using them. In this work, we discuss the quantitative relationships observed between CNA and gene expression in multiple cancer types and biological milestones achieved using the available methodologies. We discuss the conceptual evolution of both, the step-wise and the joint data integration methodologies over the last decade. We conclude by providing suggestions for building efficient data integration methodologies and asking further biological questions. PMID:21949216

  2. Differential testicular gene expression in seasonal fertility

    PubMed Central

    Maywood, Elizabeth S.; Chahad-Ehlers, Samira; Garabette, Martine L.; Pritchard, Claire; Underhill, Phillip; Greenfield, Andrew; Ebling, Francis J. P.; Kyriacou, Charalambos P.; Hastings, Michael H.; Reddy, Akhilesh B.

    2012-01-01

    Spermatogenesis is an essential precursor for successful sexual reproduction. Recently, there has been an expansion in our knowledge of the genes associated with particular stages of normal, physiological testicular development and pubertal activation. What has been lacking, however, is an understanding of those genes that are involved in specifically regulating sperm production, rather than in maturation and elaboration of the testis as an organ. By utilising the reversible (seasonal) fertility of the Syrian hamster as a model system, we sought to discover genes which are specifically involved in turning off sperm production and not in tissue specification and/or maturation. Using gene expression microarrays and in situ hybridisation in hamsters and genetically infertile mice, we have identified a variety of known and novel factors involved in reversible, transcriptional, translational and post-translational control of testicular function, as well those involved in cell division and macromolecular metabolism. The novel genes uncovered could be potential targets for therapies against fertility disorders. PMID:19346449

  3. Transgenic control of perforin gene expression

    SciTech Connect

    Lichtenheld, M.G.; Podack, E.R.; Levy, R.B.

    1995-03-01

    Perforin is a pore-forming effector molecule of CTL and NK cells. To characterize perforin gene expression and its transcriptional control mechanisms in vivo, expression of a cell surface tag, i.e., human CD4, was driven by 5.1 kb of the murin perforin 5{prime} flanking and promoter region in transgenic mice. Six out of seven transgenic lines expressed the perforin-tag hybrid gene at low to intermediate levels, depending on the integration site. Transgene expression occurred in all cells that physiologically are able to express perforin. At the whole organ level, significant amounts of transgenic mRNA and endogenous perforin mRNA were co-expressed in the lymphoid organs, as well as in the lung, the ileum, the oviduct/uterus, and the bone marrow. At the single cell level, the perforin tag was present on NK cells and on CD8{sup +}, as well as on CD4{sup +} cells. Also targeted were Thy-1.2{sup +} {gamma}{delta} T cells, but not Thy-1.2{sup -} {gamma}{delta} T cells, B cells, nor monocytes. During thymic T cell development, transgene expression occurred in double negative (CD4{sup -}CD8{sup -}) thymocytes and was detected at all subsequent stages, but exceeded the expression levels of the endogenous gene in the thymus. In conclusion, the analyzed perforin 5{prime} flanking and promoter region contains important cis-acting sequences that restrict perforin expression to T cells and NK cells, and therefore provides a unique tool for manipulating T cell and/or Nk cell-mediated immune responses in transgenic mice. On the other hand, the normal control of perforin gene expression involves at least one additional negative control mechanism that was not mediated by the transgenic promoter and upstream region. This control restricts perforin gene expression in thymically developing T cells and in most resting peripheral T cells, but can be released upon T cell activation. 43 refs., 7 figs., 1 tab.

  4. Aberrant Expression of proPTPRN2 in Cancer Cells Confers Resistance to Apoptosis.

    PubMed

    Sorokin, Alexey V; Nair, Binoj C; Wei, Yongkun; Aziz, Kathryn E; Evdokimova, Valentina; Hung, Mien-Chie; Chen, Junjie

    2015-05-01

    The protein tyrosine phosphatase receptor PTPRN2 is expressed predominantly in endocrine and neuronal cells, where it functions in exocytosis. We found that its immature isoform proPTPRN2 is overexpressed in various cancers, including breast cancer. High proPTPRN2 expression was associated strongly with lymph node-positive breast cancer and poor clinical outcome. Loss of proPTPRN2 in breast cancer cells promoted apoptosis and blocked tumor formation in mice, whereas enforced expression of proPTPRN2 in nontransformed human mammary epithelial cells exerted a converse effect. Mechanistic investigations suggested that ProPTPRN2 elicited these effects through direct interaction with TRAF2, a hub scaffold protein for multiple kinase cascades, including ones that activate NF-κB. Overall, our results suggest PTPRN2 as a novel candidate biomarker and therapeutic target in breast cancer. PMID:25877877

  5. Conditional Gene Expression in Mycobacterium abscessus

    PubMed Central

    Cortes, Mélanie; Singh, Anil Kumar; Gaillard, Jean-Louis; Nassif, Xavier; Herrmann, Jean-Louis

    2011-01-01

    Mycobacterium abscessus is an emerging human pathogen responsible for lung infections, skin and soft-tissue infections and disseminated infections in immunocompromised patients. It may exist either as a smooth (S) or rough (R) morphotype, the latter being associated with increased pathogenicity in various models. Genetic tools for homologous recombination and conditional gene expression are desperately needed to allow the study of M. abscessus virulence. However, descriptions of knock-out (KO) mutants in M. abscessus are rare, with only one KO mutant from an S strain described so far. Moreover, of the three major tools developed for homologous recombination in mycobacteria, only the one based on expression of phage recombinases is working. Several conditional gene expression tools have recently been engineered for Mycobacterium tuberculosis and Mycobacterium smegmatis, but none have been tested yet in M. abscessus. Based on previous experience with genetic tools allowing homologous recombination and their failure in M. abscessus, we evaluated the potential interest of a conditional gene expression approach using a system derived from the two repressors system, TetR/PipOFF. After several steps necessary to adapt TetR/PipOFF for M. abscessus, we have shown the efficiency of this system for conditional expression of an essential mycobacterial gene, fadD32. Inhibition of fadD32 was demonstrated for both the S and R isotypes, with marginally better efficiency for the R isotype. Conditional gene expression using the dedicated TetR/PipOFF system vectors developed here is effective in S and R M. abscessus, and may constitute an interesting approach for future genetic studies in this pathogen. PMID:22195042

  6. Aberrant DNA methylation of drug metabolism and transport genes in nodular goiter

    PubMed Central

    2011-01-01

    The genes encoding drug-metabolizing enzymes and transporters play an important role in maintaining the normal life processes of human body. Their disorder or defect will lead to the occurrence and development of various diseases. Currently, most of studies have focused on genetic variations in these genes, however, in the present study, we analyzed promoter methylation of 11 drug metabolism and transport genes in a cohort of nodular goiter and normal thyroid tissues using methylation-specific PCR (MSP). Our data first revealed a distinct methylation profiling in drug metabolism and transport genes between nodular goiter and normal thyroid tissues, particularly ABCB4, CYP1B1 and CYP24A1 and SLC1A2. Given these genes contribute to the development and progression of various diseases, such as multidrug resistance and tumorigenesis, these epigenetic events may thus play a critical role in the pathogenesis of nodular goiter. PMID:21988780

  7. The Maize aberrant pollen transmission 1 Gene Is a SABRE/KIP Homolog Required for Pollen Tube Growth

    PubMed Central

    Xu, Zhennan; Dooner, Hugo K.

    2006-01-01

    Maize (Zea mays) pollen tubes grow in the styles at a rate of >1 ?m/sec. We describe here a gene required to attain that striking rate. The aberrant pollen transmission 1 (apt1) gene of maize was identified by an Ac-tagged mutation that displayed a severe pollen transmission deficit in heterozygotes. Rare apt1 homozygotes can be recovered, aided by phenotypic selection for Ac homozygotes. Half of the pollen in heterozygotes and most of the pollen in homozygotes germinate short and twisted pollen tubes. The apt1 gene is 26 kb long, makes an 8.6-kb pollen-specific transcript spliced from 22 exons, and encodes a protein of 2607 amino acids. The APT1 protein is homologous to SABRE and KIP, Arabidopsis proteins of unknown function involved in the elongation of root cortex cells and pollen tubes, respectively. Subcellular localization analysis demonstrates that APT1 colocalizes with a Golgi protein marker in growing tobacco pollen tubes. We hypothesize that the APT1 protein is involved in membrane trafficking and is required for the high secretory demands of tip growth in pollen tubes. The apt1-m1(Ac) mutable allele is an excellent tool for selecting Ac transpositions because of the strong negative selection pressure operating against the parental Ac site. PMID:16299389

  8. Metallothionein gene expression in renal cell carcinoma

    PubMed Central

    Pal, Deeksha; Sharma, Ujjawal; Singh, Shrawan Kumar; Mandal, Arup Kumar; Prasad, Rajendra

    2014-01-01

    Introduction: Metallothioneins (MTs) are a group of low-molecular weight, cysteine-rich proteins. In general, MT is known to modulate three fundamental processes: (1) the release of gaseous mediators such as hydroxyl radical or nitric oxide, (2) apoptosis and (3) the binding and exchange of heavy metals such as zinc, cadmium or copper. Previous studies have shown a positive correlation between the expression of MT with invasion, metastasis and poor prognosis in various cancers. Most of the previous studies primarily used immunohistochemistry to analyze localization of MT in renal cell carcinoma (RCC). No information is available on the gene expression of MT2A isoform in different types and grades of RCC. Materials and Methods: In the present study, total RNA was isolated from 38 histopathologically confirmed cases of RCC of different types and grades. Corresponding adjacent normal renal parenchyma was taken as control. Real-time polymerase chain reaction (RT PCR) analysis was done for the MT2A gene expression using ?-actin as an internal control. All statistical calculations were performed using SPSS software. Results: The MT2A gene expression was found to be significantly increased (P < 0.01) in clear cell RCC in comparison with the adjacent normal renal parenchyma. The expression of MT2A was two to three-fold higher in sarcomatoid RCC, whereas there was no change in papillary and collecting duct RCC. MT2A gene expression was significantly higher in lower grade (grades I and II, P < 0.05), while no change was observed in high-grade tumor (grade III and IV) in comparison to adjacent normal renal tissue. Conclusion: The first report of the expression of MT2A in different types and grades of RCC and also these data further support the role of MT2A in tumorigenesis. PMID:25097305

  9. Aberrant Expression of NF-κB in Liver Fluke Associated Cholangiocarcinoma: Implications for Targeted Therapy

    PubMed Central

    Seubwai, Wunchana; Wongkham, Chaisiri; Puapairoj, Anucha; Khuntikeo, Narong; Pugkhem, Ake; Hahnvajanawong, Chariya; Chaiyagool, Jariya; Umezawa, Kazuo; Okada, Seiji; Wongkham, Sopit

    2014-01-01

    Background Up-regulation and association of nuclear factor kappa B (NF-κB) with carcinogenesis and tumor progression has been reported in several malignancies. In the current study, expression of NF-κB in cholangiocarcinoma (CCA) patient tissues and its clinical significance were determined. The possibility of using NF-κB as the therapeutic target of CCA was demonstrated. Methodology Expression of NF-κB in CCA patient tissues was determined using immunohistochemistry. Dehydroxymethylepoxyquinomicin (DHMEQ), a specific NF-κB inhibitor, was used to inhibit NF-κB action. Cell growth was determined using an MTT assay, and cell apoptosis was shown by DNA fragmentation, flow cytometry and immunocytofluorescent staining. Effects of DHMEQ on growth and apoptosis were demonstrated in CCA cell lines and CCA-inoculated mice. DHMEQ-induced apoptosis in patient tissues using a histoculture drug response assay was quantified by TUNEL assay. Principal Findings Normal bile duct epithelia rarely expressed NF-κB (subunits p50, p52 and p65), whereas all CCA patient tissues (n  =  48) over-expressed all NF-κB subunits. Inhibiting NF-κB action by DHMEQ significantly inhibited growth of human CCA cell lines in a dose- and time-dependent manner. DHMEQ increased cell apoptosis by decreasing the anti-apoptotic protein expressions–Bcl-2, XIAP–and activating caspase pathway. DHMEQ effectively reduced tumor size in CCA-inoculated mice and induced cell apoptosis in primary histocultures of CCA patient tissues. Conclusions NF-κB was over-expressed in CCA tissues. Inhibition of NF-κB action significantly reduced cell growth and enhanced cell apoptosis. This study highlights NF-κB as a molecular target for CCA therapy. PMID:25170898

  10. Annotation of gene function in citrus using gene expression information and co-expression networks

    PubMed Central

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. Results We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Conclusions Integration of citrus gene co-expression networks, functional enrichment analysis and gene expression information provide opportunities to infer gene function in citrus. We present a publicly accessible tool, Network Inference for Citrus Co-Expression (NICCE, http://citrus.adelaide.edu.au/nicce/home.aspx), for the gene co-expression analysis in citrus. PMID:25023870

  11. The frustrated gene: origins of eukaryotic gene expression.

    PubMed

    Madhani, Hiten D

    2013-11-01

    Eukarytotic gene expression is frustrated by a series of steps that are generally not observed in prokaryotes and are therefore not essential for the basic chemistry of transcription and translation. Their evolution may have been driven by the need to defend against parasitic nucleic acids. PMID:24209615

  12. Multiple Stochastic Point Processes in Gene Expression

    NASA Astrophysics Data System (ADS)

    Murugan, Rajamanickam

    2008-04-01

    We generalize the idea of multiple-stochasticity in chemical reaction systems to gene expression. Using Chemical Langevin Equation approach we investigate how this multiple-stochasticity can influence the overall molecular number fluctuations. We show that the main sources of this multiple-stochasticity in gene expression could be the randomness in transcription and translation initiation times which in turn originates from the underlying bio-macromolecular recognition processes such as the site-specific DNA-protein interactions and therefore can be internally regulated by the supra-molecular structural factors such as the condensation/super-coiling of DNA. Our theory predicts that (1) in case of gene expression system, the variances ( ?) introduced by the randomness in transcription and translation initiation-times approximately scales with the degree of condensation ( s) of DNA or mRNA as ? ? s -6. From the theoretical analysis of the Fano factor as well as coefficient of variation associated with the protein number fluctuations we predict that (2) unlike the singly-stochastic case where the Fano factor has been shown to be a monotonous function of translation rate, in case of multiple-stochastic gene expression the Fano factor is a turn over function with a definite minimum. This in turn suggests that the multiple-stochastic processes can also be well tuned to behave like a singly-stochastic point processes by adjusting the rate parameters.

  13. Digital gene expression signatures for maize development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-wide expression signatures detect specific perturbations in developmental programs and contribute to functional resolution of key regulatory networks. In maize (Zea mays) inflorescences, mutations in the RAMOSA (RA) genes affect determinacy of axillary meristems and thus alter branching patt...

  14. The Low Noise Limit in Gene Expression

    PubMed Central

    Dar, Roy D.; Razooky, Brandon S.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.

    2015-01-01

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can–and in the case of E. coli does–control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. These results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes. PMID:26488303

  15. Expression of mouse metallothionein genes in tobacco

    SciTech Connect

    Maiti, I.B.; Yeargan, R.; Wagner, G.J.; Hunt, A.G. )

    1990-05-01

    We have expressed a mouse metallothionein (NT) gene in tobacco under control of the cauliflower mosaic virus (CaMV) 35S promoter and a pea ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) gene promoter. Seedlings in which MT gene expression is driven by the 35S promoter are resistant to toxic levels of cadmium. Mature plants carrying the 35S-MT gene accumulate less Cd in their leaves when exposed to low levels of Cd in laboratory growth conditions. Plants with the rbcS-MT construction express this gene in a light-regulated and tissue-specific manner, as expected. Moreover, the MT levels in leaves in these plants are about 20% of those seen in 35S-MT plants. These plants are currently being tested for Cd resistance. In addition, a small field evaluation of 35S-MT lines for Cd levels is being evaluated. These experiments will address the possibility of using MTs to alter Cd levels in crop species.

  16. Aberrant Promoter Methylation of Multiple Genes during Pathogenesis of Bladder Cancer

    PubMed Central

    Brait, Mariana; Begum, Shahnaz; Carvalho, Andr L.; Dasgupta, Santanu; Vettore, Andr L.; Czerniak, Bogdan; Caballero, Otvia L.; Westra, William H.; Sidransky, David; Hoque, Mohammad Obaidul

    2009-01-01

    Purpose The aims of our study were to elucidate the role of methylation of a large panel of genes during multistage pathogenesis of bladder cancer and to correlate our findings with patient age and other clinicopathologic features. Experimental Design We studied the methylation status of 21 genes by quantitative methylation-specific PCR in an evaluation set of 25 tumor and 5 normal samples. Based on methylation frequency in tumors and normals in gene evaluation set, we selected 7 candidate genes and tested an independent set of 93 tumors and 26 normals. The presence or absence of methylation was evaluated for an association with cancer using cross-tabulations and ?2 or Fishers exact tests as appropriate. All statistical tests were two-sided. Results Most primary tumors (89 of 93, 96%) had methylation of one or more genes of independent set; 53 (57%) CCNA1, 29 (31%) MINT1, 36 (39%) CRBP, 53 (57%) CCND2, 66 (71%) PGP9.5, 60 (65%) CALCA, and 78 (84%) AIM1. Normal uroepithelium samples from 26 controls revealed no methylation of the CCNA1 and MINT1 genes, whereas methylation of CRBP, CCND2, PGP9.5, and CALCA was detected at low levels. All the 7 genes in independent set were tightly correlated with each other and 3 of these genes showed increased methylation frequencies in bladder cancer with increasing age. PGP9.5 and AIM1 methylation correlated with primary tumor invasion. Conclusion Our results indicate that the methylation profile of novel genes in bladder cancers correlates with clinicopathologic features of poor prognosis and is an age-related phenomenon. PMID:18843024

  17. Subgroup J avian leukosis virus infection of chicken dendritic cells induces apoptosis via the aberrant expression of microRNAs.

    PubMed

    Liu, Di; Dai, Manman; Zhang, Xu; Cao, Weisheng; Liao, Ming

    2016-01-01

    Subgroup J avian leukosis virus (ALV-J) is an oncogenic retrovirus that causes immunosuppression and enhances susceptibility to secondary infection. The innate immune system is the first line of defense in preventing bacterial and viral infections, and dendritic cells (DCs) play important roles in innate immunity. Because bone marrow is an organ that is susceptible to ALV-J, the virus may influence the generation of bone marrow-derived DCs. In this study, DCs cultured in vitro were used to investigate the effects of ALV infection. The results revealed that ALV-J could infect these cells during the early stages of differentiation, and infection of DCs with ALV-J resulted in apoptosis. miRNA sequencing data of uninfected and infected DCs revealed 122 differentially expressed miRNAs, with 115 demonstrating upregulation after ALV-J infection and the other 7 showing significant downregulation. The miRNAs that exhibited the highest levels of upregulation may suppress nutrient processing and metabolic function. These results indicated that ALV-J infection of chicken DCs could induce apoptosis via aberrant microRNA expression. These results provide a solid foundation for the further study of epigenetic influences on ALV-J-induced immunosuppression. PMID:26830017

  18. Subgroup J avian leukosis virus infection of chicken dendritic cells induces apoptosis via the aberrant expression of microRNAs

    PubMed Central

    Liu, Di; Dai, Manman; Zhang, Xu; Cao, Weisheng; Liao, Ming

    2016-01-01

    Subgroup J avian leukosis virus (ALV-J) is an oncogenic retrovirus that causes immunosuppression and enhances susceptibility to secondary infection. The innate immune system is the first line of defense in preventing bacterial and viral infections, and dendritic cells (DCs) play important roles in innate immunity. Because bone marrow is an organ that is susceptible to ALV-J, the virus may influence the generation of bone marrow-derived DCs. In this study, DCs cultured in vitro were used to investigate the effects of ALV infection. The results revealed that ALV-J could infect these cells during the early stages of differentiation, and infection of DCs with ALV-J resulted in apoptosis. miRNA sequencing data of uninfected and infected DCs revealed 122 differentially expressed miRNAs, with 115 demonstrating upregulation after ALV-J infection and the other 7 showing significant downregulation. The miRNAs that exhibited the highest levels of upregulation may suppress nutrient processing and metabolic function. These results indicated that ALV-J infection of chicken DCs could induce apoptosis via aberrant microRNA expression. These results provide a solid foundation for the further study of epigenetic influences on ALV-J-induced immunosuppression. PMID:26830017

  19. Benzene-Induced Aberrant miRNA Expression Profile in Hematopoietic Progenitor Cells in C57BL/6 Mice

    PubMed Central

    Wei, Haiyan; Zhang, Juan; Tan, Kehong; Sun, Rongli; Yin, Lihong; Pu, Yuepu

    2015-01-01

    Benzene is a common environmental pollutant that causes hematological alterations. MicroRNAs (miRNAs) may play a role in benzene-induced hematotoxicity. In this study, C57BL/6 mice showed significant hematotoxicity after exposure to 150 mg/kg benzene for 4 weeks. Benzene exposure decreased not only the number of cells in peripheral blood but also hematopoietic progenitor cells in the bone marrow. Meanwhile, RNA from Lin− cells sorted from the bone marrow was applied to aberrant miRNA expression profile using Illumina sequencing. We found that 5 miRNAs were overexpressed and 45 miRNAs were downregulated in the benzene exposure group. Sequencing results were confirmed through qRT-PCR. Furthermore, we also identified five miRNAs which significantly altered in Lin−c-Kit+ cells obtained from benzene-exposed mice, including mmu-miR-34a-5p; mmu-miR-342-3p; mmu-miR-100-5p; mmu-miR-181a-5p; and mmu-miR-196b-5p. In summary, we successfully established a classical animal model to induce significant hematotoxicity by benzene injection. Benzene exposure may cause severe hematotoxicity not only to blood cells in peripheral circulation but also to hematopoietic cells in bone marrow. Benzene exposure also alters miRNA expression in hematopoietic progenitor cells. This study suggests that benzene induces alteration in hematopoiesis and hematopoiesis-associated miRNAs. PMID:26569237

  20. Bioinformatics analysis of the gene expression profile of hepatocellular carcinoma: preliminary results

    PubMed Central

    Li, Jia

    2016-01-01

    Aim of the study To analyse the expression profile of hepatocellular carcinoma compared with normal liver by using bioinformatics methods. Material and methods In this study, we analysed the microarray expression data of HCC and adjacent normal liver samples from the Gene Expression Omnibus (GEO) database to screen for differentially expressed genes. Then, functional analyses were performed using GenCLiP analysis, Gene Ontology categories, and aberrant pathway identification. In addition, we used the CMap database to identify small molecules that can induce HCC. Results Overall, 2721 differentially expressed genes (DEGs) were identified. We found 180 metastasis-related genes and constructed co-occurrence networks. Several significant pathways, including the transforming growth factor β (TGF-β) signalling pathway, were identified as closely related to these DEGs. Some candidate small molecules (such as betahistine) were identified that might provide a basis for developing HCC treatments in the future. Conclusions Although we functionally analysed the differences in the gene expression profiles of HCC and normal liver tissues, our study is essentially preliminary, and it may be premature to apply our results to clinical trials. Further research and experimental testing are required in future studies. PMID:27095935

  1. Gene expression during normal and FSHD myogenesis

    PubMed Central

    2011-01-01

    Background Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contraction of an array of tandem 3.3-kb repeats (D4Z4) at 4q35. Within each repeat unit is a gene, DUX4, that can encode a protein containing two homeodomains. A DUX4 transcript derived from the last repeat unit in a contracted array is associated with pathogenesis but it is unclear how. Methods Using exon-based microarrays, the expression profiles of myogenic precursor cells were determined. Both undifferentiated myoblasts and myoblasts differentiated to myotubes derived from FSHD patients and controls were studied after immunocytochemical verification of the quality of the cultures. To further our understanding of FSHD and normal myogenesis, the expression profiles obtained were compared to those of 19 non-muscle cell types analyzed by identical methods. Results Many of the ~17,000 examined genes were differentially expressed (> 2-fold, p < 0.01) in control myoblasts or myotubes vs. non-muscle cells (2185 and 3006, respectively) or in FSHD vs. control myoblasts or myotubes (295 and 797, respectively). Surprisingly, despite the morphologically normal differentiation of FSHD myoblasts to myotubes, most of the disease-related dysregulation was seen as dampening of normal myogenesis-specific expression changes, including in genes for muscle structure, mitochondrial function, stress responses, and signal transduction. Other classes of genes, including those encoding extracellular matrix or pro-inflammatory proteins, were upregulated in FSHD myogenic cells independent of an inverse myogenesis association. Importantly, the disease-linked DUX4 RNA isoform was detected by RT-PCR in FSHD myoblast and myotube preparations only at extremely low levels. Unique insights into myogenesis-specific gene expression were also obtained. For example, all four Argonaute genes involved in RNA-silencing were significantly upregulated during normal (but not FSHD) myogenesis relative to non-muscle cell types. Conclusions DUX4's pathogenic effect in FSHD may occur transiently at or before the stage of myoblast formation to establish a cascade of gene dysregulation. This contrasts with the current emphasis on toxic effects of experimentally upregulated DUX4 expression at the myoblast or myotube stages. Our model could explain why DUX4's inappropriate expression was barely detectable in myoblasts and myotubes but nonetheless linked to FSHD. PMID:21951698

  2. Gene expression variation and expression quantitative trait mapping of human chromosome 21 genes.

    PubMed

    Deutsch, Samuel; Lyle, Robert; Dermitzakis, Emmanouil T; Attar, Homa; Subrahmanyan, Lakshman; Gehrig, Corinne; Parand, Leila; Gagnebin, Maryline; Rougemont, Jacques; Jongeneel, C Victor; Antonarakis, Stylianos E

    2005-12-01

    Inter-individual differences in gene expression are likely to account for an important fraction of phenotypic differences, including susceptibility to common disorders. Recent studies have shown extensive variation in gene expression levels in humans and other organisms, and that a fraction of this variation is under genetic control. We investigated the patterns of gene expression variation in a 25 Mb region of human chromosome 21, which has been associated with many Down syndrome (DS) phenotypes. Taqman real-time PCR was used to measure expression variation of 41 genes in lymphoblastoid cells of 40 unrelated individuals. For 25 genes found to be differentially expressed, additional analysis was performed in 10 CEPH families to determine heritabilities and map loci harboring regulatory variation. Seventy-six percent of the differentially expressed genes had significant heritabilities, and genomewide linkage analysis led to the identification of significant eQTLs for nine genes. Most eQTLs were in trans, with the best result (P=7.46 x 10(-8)) obtained for TMEM1 on chromosome 12q24.33. A cis-eQTL identified for CCT8 was validated by performing an association study in 60 individuals from the HapMap project. SNP rs965951 located within CCT8 was found to be significantly associated with its expression levels (P=2.5 x 10(-5)) confirming cis-regulatory variation. The results of our study provide a representative view of expression variation of chromosome 21 genes, identify loci involved in their regulation and suggest that genes, for which expression differences are significantly larger than 1.5-fold in control samples, are unlikely to be involved in DS-phenotypes present in all affected individuals. PMID:16251198

  3. Integrating heterogeneous gene expression data for gene regulatory network modelling.

    PubMed

    Srbu, Alina; Ruskin, Heather J; Crane, Martin

    2012-06-01

    Gene regulatory networks (GRNs) are complex biological systems that have a large impact on protein levels, so that discovering network interactions is a major objective of systems biology. Quantitative GRN models have been inferred, to date, from time series measurements of gene expression, but at small scale, and with limited application to real data. Time series experiments are typically short (number of time points of the order of ten), whereas regulatory networks can be very large (containing hundreds of genes). This creates an under-determination problem, which negatively influences the results of any inferential algorithm. Presented here is an integrative approach to model inference, which has not been previously discussed to the authors' knowledge. Multiple heterogeneous expression time series are used to infer the same model, and results are shown to be more robust to noise and parameter perturbation. Additionally, a wavelet analysis shows that these models display limited noise over-fitting within the individual datasets. PMID:21948152

  4. Relationship of eukaryotic DNA replication to committed gene expression: general theory for gene control.

    PubMed Central

    Villarreal, L P

    1991-01-01

    The historic arguments for the participation of eukaryotic DNA replication in the control of gene expression are reconsidered along with more recent evidence. An earlier view in which gene commitment was achieved with stable chromatin structures which required DNA replication to reset expression potential (D. D. Brown, Cell 37:359-365, 1984) is further considered. The participation of nonspecific stable repressor of gene activity (histones and other chromatin proteins), as previously proposed, is reexamined. The possible function of positive trans-acting factors is now further developed by considering evidence from DNA virus models. It is proposed that these positive factors act to control the initiation of replicon-specific DNA synthesis in the S phase (early or late replication timing). Stable chromatin assembles during replication into potentially active (early S) or inactive (late S) states with prevailing trans-acting factors (early) or repressing factors (late) and may asymmetrically commit daughter templates. This suggests logical schemes for programming differentiation based on replicons and trans-acting initiators. This proposal requires that DNA replication precede major changes in gene commitment. Prior evidence against a role for DNA replication during terminal differentiation is reexamined along with other results from terminal differentiation of lower eukaryotes. This leads to a proposal that DNA replication may yet underlie terminal gene commitment, but that for it to do so there must exist two distinct modes of replication control. In one mode (mitotic replication) replicon initiation is tightly linked to the cell cycle, whereas the other mode (terminal replication) initiation is not cell cycle restricted, is replicon specific, and can lead to a terminally differentiated state. Aberrant control of mitotic and terminal modes of DNA replication may underlie the transformed state. Implications of a replicon basis for chromatin structure-function and the evolution of metazoan organisms are considered. Images PMID:1943999

  5. Regulation of methane genes and genome expression

    SciTech Connect

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein, designated TFE, that had sequences in common with the eukaryotic general transcription factor TFIIE, stimulated archaeal transcription initiation and that the archaeal TATA-box binding protein (TBP) remained attached to the promoter region whereas the transcription factor TFB dissociated from the template DNA following initiation. DNA sequences that directed the localized assembly of archaeal histones into archaeal nucleosomes were identified, and we established that transcription by an archaeal RNA polymerase was slowed but not blocked by archaeal nucleosomes. We developed a new protocol to purify archaeal RNA polymerases and with this enzyme and additional improvements to the in vitro transcription system, we established the template requirements for archaeal transcription termination, investigated the activities of proteins predicted to be methane gene regulators, and established how TrpY, a novel archaeal regulator of expression of the tryptophan biosynthetic operon functions in M. thermautotrophicus. This also resulted in the discovery that almost all M. thermautotrophicus mutants isolated as spontaneously resistant to 5-methyl tryptophan (5MTR) had mutations in trpY and were therefore 5MTR through de-repressed trp operon expression. This established a very simple, practical procedure to determine and quantify the DNA sequence changes that result from exposure of this Archaeon to any experimental mutagenesis protocol. Following the discovery that the Thermococcus kodakaraensis was amenable to genetic manipulation, we established this technology at OSU and subsequently added plasmid expression, a reporter system and additional genetic selections to the T. kodakaraensis genetic toolbox. We established that transcription and translation are coupled in this Archaeon, and by combining in vitro transcription and in vivo genetics, we documented that both TFB1 and TFB2 support transcription initiation in T. kodakaraensis. We quantified the roles of ribosome binding sequences and alternative initiation codons in translation initiation, established that polarity exists in archaeal operon expression, and that oligoT-rich sequences terminate archaeal transcription in vitro and in vivo. Results of research supported by this grant have been reported in 41 primary peer-reviewed publications, and in 30 invited reviews and symposium contributions.

  6. Methods to improve cardiac gene therapy expression.

    PubMed

    Scimia, Maria Cecilia; Sydnes, Kate E; Zuppo, Daniel A; Koch, Walter J

    2014-11-01

    Gene therapy strategies are becoming a valuable approach for the treatment of heart failure. Some trials are ongoing and others are being organized. Vascular access in clinical experimentation is still the chosen modality of delivery, but many other approaches are in research and development. A successful gene therapy strategy involves not only the choice of the right vector and gene, but also the correct delivery strategy that allows for transduction of the highest percentage of cardiomyocytes, limited spilling of virus into other organs and the possibility to correlate the amount of injected virus to the rate of the expression within the cardiac tissue. The authors will first concentrate on clarifying what the barriers are that the virus has to overcome in order to reach the nuclei of the target organs and methodologies that have been tested to improve the range of expression. PMID:25340284

  7. Alu elements as regulators of gene expression

    PubMed Central

    Hsler, Julien; Strub, Katharina

    2006-01-01

    Alu elements are the most abundant repetitive elements in the human genome; they emerged 65 million years ago from a 5? to 3? fusion of the 7SL RNA gene and amplified throughout the human genome by retrotransposition to reach the present number of more than one million copies. Over the last years, several lines of evidence demonstrated that these elements modulate gene expression at the post-transcriptional level in at least three independent manners. They have been shown to be involved in alternative splicing, RNA editing and translation regulation. These findings highlight how the genome adapted to these repetitive elements by assigning them important functions in regulation of gene expression. Alu elements should therefore be considered as a large reservoir of potential regulatory functions that have been actively participating in primate evolution. PMID:17020921

  8. Fluid Mechanics, Arterial Disease, and Gene Expression

    PubMed Central

    Tarbell, John M.; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow–induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs. PMID:25360054

  9. Comparative gene expression of intestinal metabolizing enzymes.

    PubMed

    Shin, Ho-Chul; Kim, Hye-Ryoung; Cho, Hee-Jung; Yi, Hee; Cho, Soo-Min; Lee, Dong-Goo; Abd El-Aty, A M; Kim, Jin-Suk; Sun, Duxin; Amidon, Gordon L

    2009-11-01

    The purpose of this study was to compare the expression profiles of drug-metabolizing enzymes in the intestine of mouse, rat and human. Total RNA was isolated from the duodenum and the mRNA expression was measured using Affymetrix GeneChip oligonucleotide arrays. Detected genes from the intestine of mouse, rat and human were ca. 60% of 22690 sequences, 40% of 8739 and 47% of 12559, respectively. Total genes of metabolizing enzymes subjected in this study were 95, 33 and 68 genes in mouse, rat and human, respectively. Of phase I enzymes, the mouse exhibited abundant gene expressions for Cyp3a25, Cyp4v3, Cyp2d26, followed by Cyp2b20, Cyp2c65 and Cyp4f14, whereas, the rat showed higher expression profiles of Cyp3a9, Cyp2b19, Cyp4f1, Cyp17a1, Cyp2d18, Cyp27a1 and Cyp4f6. However, the highly expressed P450 enzymes were CYP3A4, CYP3A5, CYP4F3, CYP2C18, CYP2C9, CYP2D6, CYP3A7, CYP11B1 and CYP2B6 in the human. For phase II enzymes, glucuronosyltransferase Ugt1a6, glutathione S-transferases Gstp1, Gstm3 and Gsta2, sulfotransferase Sult1b1 and acyltransferase Dgat1 were highly expressed in the mouse. The rat revealed predominant expression of glucuronosyltransferases Ugt1a1 and Ugt1a7, sulfotransferase Sult1b1, acetyltransferase Dlat and acyltransferase Dgat1. On the other hand, in human, glucuronosyltransferases UGT2B15 and UGT2B17, glutathione S-transferases MGST3, GSTP1, GSTA2 and GSTM4, sulfotransferases ST1A3 and SULT1A2, acetyltransferases SAT1 and CRAT, and acyltransferase AGPAT2 were dominantly detected. Therefore, current data indicated substantial interspecies differences in the pattern of intestinal gene expression both for P450 enzymes and phase II drug-metabolizing enzymes. This genomic database is expected to improve our understanding of interspecies variations in estimating intestinal prehepatic clearance of oral drugs. PMID:19746353

  10. Aberrant expression of MUC1 mucin in pediatric inflammatory bowel disease.

    PubMed

    Furr, Anna E; Ranganathan, Sarangarajan; Finn, Olivera J

    2010-01-01

    Mucin 1 (MUC1) glycoprotein is normally expressed at low levels on the luminal side of healthy colonic epithelial cells. In colon cancer and other epithelial tumors, MUC1 is overexpressed and hypoglycosylated. Antibodies specific for this "tumor form" of MUC1 are found in cancer patients. We hypothesized that MUC1 expression might be altered in chronic inflammation, such as in inflammatory bowel disease (IBD). Furthermore, we hypothesized that these alterations might induce antibody responses. The aims of this study were to characterize MUC1 expression in IBD and to examine whether pediatric patients with IBD have an MUC1-specific antibody. Colon biopsies were examined for MUC1 expression by immunochemistry using anti-MUC1 antibodies that detect normal or abnormal forms of MUC1. Sera were analyzed by Enzyme Linked Immunosorbent Assay (ELISA) for evidence of anti-MUC1 antibody. We found marked overexpression of MUC1 in IBD, most of which was hypoglycosylated. On colon specimens from healthy age-matched controls, we found low levels of luminal MUC1 and no alteration in its glycosylation. We detected antibody to MUC1 in sera of IBD patients as well as controls, and in a limited number of IBD samples examined longitudinally, we could correlate the rise and fall of antibody levels with clinical disease severity. MUC1 is overexpressed and hypoglycosylated in pediatric IBD and may play an important role in the pathogenesis of IBD, and thus warrants further study as a potential therapeutic target. Similarly, antibodies to MUC1 may influence IBD and should be explored as potential diagnostic or prognostic markers. PMID:19025220

  11. Split-signal FISH for detection of chromosome aberrations.

    PubMed

    van Dongen, J J M; van der Burg, M; Langerak, A W

    2005-01-01

    Chromosome aberrations are frequently observed in hematopoietic malignancies. These aberrations can deregulate expression of an oncogene, resulting in aberrant expression or overexpression, or they can form leukemia-specific chimeric fusion proteins. Detection of chromosome aberrations is an important tool for classification of the malignancy and for the definition of risk groups, which need different treatment protocols. We developed rapid and sensitive split-signal fluorescent in situ hybridization (FISH) assays for frequently occuring chromosome aberrations. The split-signal FISH approach uses two differentially labeled probes, located in one gene at opposite sites of the breakpoint region. In normal karyotypes, two co-localized green/red signals are visible, but a translocation results in a split of one of the co-localized signals. Split-signal FISH has three main advantages over the classical fusion-signal FISH approach, which uses of two labeled probes located in two genes. First, the detection of a chromosome aberration is independent of the involved partner gene. Second, split-signal FISH allows the identification of the partner gene or chromosome region if metaphase spreads are present, and finally it reduces false-positivity. PMID:16188640

  12. Repression of gene expression by oxidative stress.

    PubMed Central

    Morel, Y; Barouki, R

    1999-01-01

    Gene expression is modulated by both physiological signals (hormones, cytokines, etc.) and environmental stimuli (physical parameters, xenobiotics, etc.). Oxidative stress appears to be a key pleiotropic modulator which may be involved in either pathway. Indeed, reactive oxygen species (ROS) have been described as second messengers for several growth factors and cytokines, but have also been shown to rise following cellular insults such as xenobiotic metabolism or enzymic deficiency. Extensive studies on the induction of stress-response genes by oxidative stress have been reported. In contrast, owing to the historical focus on gene induction, less attention has been paid to gene repression by ROS. However, a growing number of studies have shown that moderate (i.e. non-cytotoxic) oxidative stress specifically down-regulates the expression of various genes. In this review, we describe the alteration of several physiological functions resulting from oxidative-stress-mediated inhibition of gene transcription. We will then focus on the repressive oxidative modulation of various transcription factors elicited by ROS. PMID:10477257

  13. B cells from patients with Graves’ disease aberrantly express the IGF-1 receptor

    PubMed Central

    Douglas, Raymond S.; Naik, Vibharavi; Hwang, Catherine J.; Afifiyan, Nikoo F.; Gianoukakis, Andrew G.; Sand, Daniel; Kamat, Shweta; Smith, Terry J.

    2008-01-01

    Graves’ disease (GD) is an autoimmune process involving the thyroid and connective tissues in the orbit and pretibial skin. Activating anti-thyrotropin receptor Abs are responsible for hyperthyroidism in GD. But neither these auto-Abs nor the receptor they are directed against have been convincingly implicated in the connective tissue manifestations. Insulin-like growth factor-1 receptor (IGF-1R)-bearing fibroblasts over-populate connective tissues in GD and when ligated with IgGs from these patients, express the T cell chemoattractants, IL-16 and RANTES. Disproportionately large fractions of peripheral blood T cells also express IGF-1R in patients with GD, and may account, at least in part, for expansion of IGF-1R+ memory T cells. We now report a similarly skewed B cell population exhibiting the IGF-1R+ phenotype from the blood, orbit and bone marrow of patients with GD. This expression profile exhibits durability in culture and is maintained or increased with CpG activation. Moreover, IGF-1R+ B cells produce pathogenic antibodies against the thyroid stimulating hormone receptor. In lymphocytes from patients with GD, IGF-1 enhanced IgG (p<0.05) production and increased B cell expansion (p<0.02) in vitro while those from control donors failed to respond. These findings suggest a potentially important role for IGF-1R display by B lymphocytes in patients with GD in supporting their expansion and abnormal immunoglobulin production. PMID:18832736

  14. Loss of keratin K2 expression causes aberrant aggregation of K10, hyperkeratosis, and inflammation.

    PubMed

    Fischer, Heinz; Langbein, Lutz; Reichelt, Julia; Praetzel-Wunder, Silke; Buchberger, Maria; Ghannadan, Minoo; Tschachler, Erwin; Eckhart, Leopold

    2014-10-01

    Keratin K2 is one of the most abundant structural proteins of the epidermis; however, its biological significance has remained elusive. Here we show that suprabasal type II keratins, K1 and K2, are expressed in a mutually exclusive manner at different body sites of the mouse, with K2 being confined to the ear, sole, and tail skin. Deletion of K2 caused acanthosis and hyperkeratosis of the ear and the tail epidermis, corneocyte fragility, increased transepidermal water loss, and local inflammation in the ear skin. The loss of K2 was partially compensated by upregulation of K1 expression. However, a significant portion of K2-deficient suprabasal keratinocytes lacked a regular cytoskeleton and developed massive aggregates of the type I keratin, K10. Aggregate formation, but not hyperkeratosis, was suppressed by the deletion of both K2 and K10, whereas deletion of K10 alone caused clumping of K2 in ear skin. Taken together, this study demonstrates that K2 is a necessary and sufficient binding partner of K10 at distinct body sites of the mouse and that unbalanced expression of these keratins results in aggregate formation. PMID:24751727

  15. Aberrant esophageal HLA-DR expression in a high percentage of patients with Crohn's disease.

    PubMed

    Oberhuber, G; Püspök, A; Peck-Radosavlevic, M; Kutilek, M; Lamprecht, A; Chott, A; Vogelsang, H; Stolte, M

    1999-08-01

    Esophageal histology is not well studied in patients with Crohn's disease (CD). We, therefore, analyzed the histologic and immunohistologic appearance of esophageal mucosa in CD. Biopsy specimens taken from the esophagus of 57 consecutive patients with known CD of the large and/or small bowel, of 200 Crohn's-free controls, of 15 cases with ulcerative colitis, and of 5 cases with viral esophagitis were evaluated. In controls, most patients had either HLA-DR negative esophageal epithelium or showed focal or diffuse basal staining. HLA-DR expression of all epithelial layers (transepithelial staining) was observed in only four (2%) control subjects, in one case with herpes esophagitis, but not in patients with ulcerative colitis. In contrast, transepithelial HLA-DR expression was found in 19 (33%) patients with CD (p < 0.0001). In CD patients, it was associated with a significantly increased epithelial content in T-cells (CD3+, TIA-1+, granzyme B+), B-cells (CD79a+), natural killer cells (CD57+), and macrophages (CD68+). There was no correlation with either histological findings elsewhere in the upper gastrointestinal tract or with laboratory findings, symptoms, CDAI, or medication. Transepithelial esophageal HLA-DR expression is common in CD. Immunohistochemistry may prove useful in supporting the histologic diagnosis of CD in staging procedures, for initial diagnosis as well as in doubtful cases. PMID:10435568

  16. Aberrant cerebellar development of transgenic mice expressing dominant-negative thyroid hormone receptor in cerebellar Purkinje cells.

    PubMed

    Yu, Lu; Iwasaki, Toshiharu; Xu, Ming; Lesmana, Ronny; Xiong, Yu; Shimokawa, Noriaki; Chin, William W; Koibuchi, Noriyuki

    2015-04-01

    To study the role of the thyroid hormone (TH) in cerebellar development, we generated transgenic mice expressing a dominant-negative TH receptor (TR) in cerebellar Purkinje cells. A mutant human TRβ1 (G345R), which binds to the TH-response element but cannot bind to T3, was subcloned into exon 4 of the full-length L7/Pcp-2 gene, which is specifically expressed in Purkinje and retinal rod bipolar cells. The transgene was specifically expressed in Purkinje cells in the postnatal cerebellum. Purkinje cell dendrite arborization was significantly delayed in the transgenic mice. Surprisingly, granule cell migration was also significantly delayed. In the primary cerebellar culture, TH-induced Purkinje cell dendrite arborization was also suppressed. In quantitative real-time RT-PCR analysis, the expression levels of several TH-responsive genes were altered. The expression levels of inositol trisphosphate receptor type 1 and retinoic acid receptor-related orphan receptorα mRNAs, which are mainly expressed in Purkinje cells, and brain-derived neurotrophic factor mRNA, which is expressed in both Purkinje and granule cells, were significantly decreased. The expression levels of neurotrophin-3 and hairless mRNAs, which are mainly expressed in granule cells, and myelin basic protein mRNA, which is mainly expressed in oligodendrocytes, were also decreased. The motor coordination of transgenic mice was significantly disrupted. These results indicate that TH action through its binding to TR in Purkinje cells is required for the normal cerebellar development. TH action through TR in Purkinje cells is also important for the development of other subsets of cerebellar cells such as granule cells and oligodendrocytes. PMID:25603044

  17. Coevolution of gene expression among interacting proteins

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  18. The Implication of Aberrant GM-CSF Expression in Decidual Cells in the Pathogenesis of Preeclampsia

    PubMed Central

    Huang, S. Joseph; Zenclussen, Ana C.; Chen, Chie-Pein; Basar, Murat; Yang, Hui; Arcuri, Felice; Li, Min; Kocamaz, Erdogan; Buchwalder, Lynn; Rahman, Mizanur; Kayisli, Umit; Schatz, Frederick; Toti, Paolo; Lockwood, Charles J.

    2010-01-01

    Preeclampsia is characterized by an exaggerated systemic inflammatory state as well as shallow placentation. In the decidual implantation site, preeclampsia is accompanied by an excessive number of both macrophages and dendritic cells as well as their recruiting chemokines, which have been implicated in the impairment of endovascular trophoblast invasion. Granulocyte-macrophage colony–stimulating factor is known to regulate the differentiation of both macrophages and dendritic cells, prompting both in vivo and in vitro evaluation of granulocyte-macrophage colony-stimulating factor expression in human decidua as well as in a mouse model of preeclampsia. This study revealed increased granulocyte-macrophage colony–stimulating factor expression levels in preeclamptic decidua. Moreover, both tumor necrosis factor-α and interleukin-1 β, cytokines that are implicated in the genesis of preeclampsia, markedly up-regulated granulocyte-macrophage colony-stimulating factor production in cultured first-trimester human decidual cells. The conditioned media of these cultures promoted the differentiation of both macrophages and dendritic cells from a monocyte precursor. Evaluation of a murine model of preeclampsia revealed that the decidua of affected animals displayed higher levels of immunoreactive granulocyte-macrophage colony–stimulating factor as well as increased numbers of both macrophages and dendritic cells when compared to control animals. Because granulocyte-macrophage colony–stimulating factor is a potent inducer of differentiation and activation of both macrophages and dendritic cells, these findings suggest that this factor plays a crucial role in the pathogenesis of preeclampsia. PMID:20829438

  19. Endometrial CXCL13 Expression Is Cycle Regulated in Humans and Aberrantly Expressed in Humans and Rhesus Macaques With Endometriosis

    PubMed Central

    Franasiak, Jason M.; Burns, Katherine A.; Slayden, Ov; Yuan, Lingwen; Fritz, Marc A.; Korach, Kenneth S.; Lessey, Bruce A.

    2014-01-01

    C-X-C ligand 13 (CXCL13), a regulator of mucosal immunity, is secreted by human endometrial epithelium and may be involved in embryo implantation. However, cyclic expression of human endometrial CXCL13 in health and disease is not well studied. This study examines cycle stage-specific endometrial CXCL13 expression in normal humans when compared to those with biopsy-confirmed, stage 1 to 4 endometriosis using real-time reverse transcriptase, real-time polymerase chain reaction and immunohistochemistry. Eutopic endometrial CXCL13 expression was also compared between normal, control Rhesus macaques, and macaques with advanced endometriosis. In healthy women, CXLC13 messenger RNA expression was minimal in the proliferative phase and maximal in the secretory phase. However, in the presence of endometriosis, proliferative-phase endometrial expression markedly increased in both humans and rhesus subjects (P < .05). The cross-species and cross-stage concordance suggests a pathophysiologic role for CXCL13 in endometriosis and its use as a biomarker for disease. PMID:25031316

  20. Salt induced gene expression in Prosopis farcta

    SciTech Connect

    Heimer, I.M.; Golan, A.; Lips, H.

    1987-04-01

    The authors hypothesize that in facultative halophytes, the genes which impart salt tolerance are expressed when the plants are exposed to salt. As a first step towards possible identification of these genes, they examined salt induced changes of gene expression in the facultative halophyte Prosopis farcta at the protein level, by SDS-PAGE. Exposure to salt of aseptically grown, two-week old seedlings, was carried out in one of two ways: (1) a one step transfer of seedlings from medium without salt to that with the indicated concentrations followed by 5 hr or 24 hr incubation periods. During the last 2 hrs of each incubation period the seedlings were pulse-labelled with /sup 35/S Sulfate or L-Methionine; (2) a gradual increase of the salt concentration at 50 mM increments at 2-4 day intervals. Two days after reaching the desired salt concentration, the seedlings were pulse-labelled for 2 hrs with /sup 35/S sulfate or L-methionine. Protein from roots were extracted and analyzed. Polypeptides were visualized by staining with coomassie blue or by fluorography. Qualitative as well as quantitative changes of gene expression as induced by salt could be observed. Their significance regarding salt tolerance will be discussed.

  1. Gene expression regulation in roots under drought.

    PubMed

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots. PMID:26663562

  2. Gene expression profiling analysis of hepatocellular carcinoma

    PubMed Central

    2013-01-01

    Background Primary hepatocellular carcinoma (HCC) is one of the most common malignancies in the world. However, the molecular pathogenesis of HCC is not well-understood, and the prognosis for patients with HCC remains very poor. Methods To disclose detailed genetic mechanisms in hepatocellular carcinoma (HCC) with a view toward development of novel therapeutic targets, we analyzed expression profiles HCCs and their corresponding noncancerous tissues by using bioinformatics method. Results In this paper, we report the identification of genes whose expression has been altered and the changed bio-pathways during hepatocarcinogenesis. Hepatoma cells infect intracellular and intercellular signal transduction through Focal adhesion and cause abnormal expression of important intracellular signaling pathway. In addition, it is worth mentioning that some small molecules still restored to the state similar to normal cells, such as bambuterol and lovastatin. This member gene set would serve as a pool of lead gene targets for the identification and development of novel diagnostic and therapeutic biomarkers to greatly improve the clinical management of HCC patients with different risks of recurrence after curative partial hepatectomy. Conclusions The study has great significance for gene therapy and pharmacotherapy and provides a new treatment entry point and a potential new clinical drug for HCC patients. PMID:24229431

  3. Globin gene expression in somatic cell hybrids.

    PubMed

    Anderson, W F; Chiang, Y L; Sanders-Haigh, L; Ley, T J

    1983-01-01

    Fusions between somatic cell lines have previously yielded evidence for the existence of trans-acting gene regulatory factors. For this reason, we developed a cell line containing a "locked in" human 11-X translocation chromosome (containing the beta-globin-like gene cluster) in MEL cells. The human 11-X chromosome is stably integrated in the "M11-X" cell line, and single-copy human gamma and beta genes are present. After induction with HMBA, M11-X cells produced 500 copies per cell of correctly initiated, processed, and terminated human beta-globin mRNA; authentic human beta-globin chains were also produced at a low level. Despite the presence of normally arranged human gamma-globin genes, no gamma-globin mRNA could be detected after HMBA induction. However, cytosine residues near the gamma-globin gene promoters are completely methylated in these cells, suggesting that the gamma-globin genes may be repressed in part by DNA methylation. The pattern of human globin gene expression in M11-X cells may be affected by methylation and/or by trans-acting factors produced by these tetraploid cells. PMID:6320217

  4. A switch region inversion contributes to the aberrant rearrangement of a mu immunoglobulin heavy chain gene in MPC-11 cells.

    PubMed Central

    Greenberg, R; Lang, R B; Diamond, M S; Marcu, K B

    1982-01-01

    We describe the unique features of an aberrantly rearranged mu immunoglobulin heavy chain gene isolated from MPC-11 cells (a gamma 2b producing Balb/c plasmacytoma). A novel rearrangement has occurred 1.5 Kb 5' of the MPC-11 mu gene (denoted 18b mu) resulting in the deletion of the majority of the repetitive switch region (S mu) and 5' flanking DNA including the Joining (JH) sequences. The remainder (275 bp) of the S mu repeat has undergone a complete sequence inversion. DNA sequences 5' of the inverted S mu sequence do not resemble Variable (VH), Diversity (D), JH or their conserved flanking sequences. A DNA sequence localized 5' of the inverted S mu sequence, (p18b mu-1.4) detects a small family of homologous sequences in Balb/c DNA. The 18b mu-1.4 like sequences lack homology to S mu, exhibit flanking sequence polymorphisms in 5 out of 6 inbred mouse strains and undergo partial or complete deletion in 5 out of 10 plasmacytomas tested. Two 18b mu-1.4 homologous sequences display a higher copy number in C57Bl/6, AL/N and CAL9 mouse strains. Images PMID:6296790

  5. Control of gene expression by glucocorticoid hormones.

    PubMed Central

    Rousseau, G G

    1984-01-01

    Glucocorticoids control the expression of a small number of transcriptionally active genes by increasing or decreasing mRNA concentration. Either effect can result from a transcriptional or a post-transcriptional mechanism. Induction of mouse mammary tumour virus RNA results from a stimulation of transcription initiation and depends on the presence of defined regions in proviral DNA. These regions bind the glucocorticoid receptor and behave functionally as proto-enhancers. Glucocorticoid-inducible genes can retain their sensitivity to the hormone after transfer to a heterologous cell by transfection techniques. Non-inducible genes can become inducible when linked to the promoter region of an inducible gene. The mechanisms by which the receptor-steroid complex stimulates or inhibits transcription or influences mRNA stability are unknown. Receptor binding to nucleic acids appears to be a necessary but not sufficient condition. It is likely that the receptor also interacts with chromatin proteins. This might lead to a catalytic modification of these proteins, resulting in a modulation of gene expression. Development of glucocorticoid-sensitive, biochemically defined, cell-free transcription systems should provide a tool to delineate the molecular determinants of this essential regulatory mechanism. PMID:6095813

  6. Gene expression profiling analysis of lung adenocarcinoma.

    PubMed

    Xu, H; Ma, J; Wu, J; Chen, L; Sun, F; Qu, C; Zheng, D; Xu, S

    2016-03-01

    The present study screened potential genes related to lung adenocarcinoma, with the aim of further understanding disease pathogenesis. The GSE2514 dataset including 20 lung adenocarcinoma and 19 adjacent normal tissue samples from 10 patients with lung adenocarcinoma aged 45-73 years was downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) between the two groups were screened using the t-test. Potential gene functions were predicted using functional and pathway enrichment analysis, and protein-protein interaction (PPI) networks obtained from the STRING database were constructed with Cytoscape. Module analysis of PPI networks was performed through MCODE in Cytoscape. In total, 535 upregulated and 465 downregulated DEGs were identified. These included ATP5D, UQCRC2, UQCR11 and genes encoding nicotinamide adenine dinucleotide (NADH), which are mainly associated with mitochondrial ATP synthesis coupled electron transport, and which were enriched in the oxidative phosphorylation pathway. Other DEGs were associated with DNA replication (PRIM1, MCM3, and RNASEH2A), cell surface receptor-linked signal transduction and the enzyme-linked receptor protein signaling pathway (MAPK1, STAT3, RAF1, and JAK1), and regulation of the cytoskeleton and phosphatidylinositol signaling system (PIP5K1B, PIP5K1C, and PIP4K2B). Our findings suggest that DEGs encoding subunits of NADH, PRIM1, MCM3, MAPK1, STAT3, RAF1, and JAK1 might be associated with the development of lung adenocarcinoma. PMID:26840709

  7. Gene expression profiling analysis of lung adenocarcinoma

    PubMed Central

    Xu, H.; Ma, J.; Wu, J.; Chen, L.; Sun, F.; Qu, C.; Zheng, D.; Xu, S.

    2016-01-01

    The present study screened potential genes related to lung adenocarcinoma, with the aim of further understanding disease pathogenesis. The GSE2514 dataset including 20 lung adenocarcinoma and 19 adjacent normal tissue samples from 10 patients with lung adenocarcinoma aged 45-73 years was downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) between the two groups were screened using the t-test. Potential gene functions were predicted using functional and pathway enrichment analysis, and protein-protein interaction (PPI) networks obtained from the STRING database were constructed with Cytoscape. Module analysis of PPI networks was performed through MCODE in Cytoscape. In total, 535 upregulated and 465 downregulated DEGs were identified. These included ATP5D, UQCRC2, UQCR11 and genes encoding nicotinamide adenine dinucleotide (NADH), which are mainly associated with mitochondrial ATP synthesis coupled electron transport, and which were enriched in the oxidative phosphorylation pathway. Other DEGs were associated with DNA replication (PRIM1, MCM3, and RNASEH2A), cell surface receptor-linked signal transduction and the enzyme-linked receptor protein signaling pathway (MAPK1, STAT3, RAF1, and JAK1), and regulation of the cytoskeleton and phosphatidylinositol signaling system (PIP5K1B, PIP5K1C, and PIP4K2B). Our findings suggest that DEGs encoding subunits of NADH, PRIM1, MCM3, MAPK1, STAT3, RAF1, and JAK1 might be associated with the development of lung adenocarcinoma. PMID:26840709

  8. Gene expression in proliferating human erythroid cells.

    PubMed

    Gubin, A N; Njoroge, J M; Bouffard, G G; Miller, J L

    1999-07-15

    A complete understanding of human erythropoiesis will require a robust description of transcriptional activity in hematopoietic cells that proliferate and differentiate in response to erythropoietin (EPO). For this purpose, we cultured peripheral blood mononuclear cells in the presence or in the absence of EPO and examined the transcriptional profile of those cells arising only in response to EPO. A distinct population of CD71( +) cells that demonstrated an average of six additional doublings in suspension culture and erythroid colony formation in methylcellulose was isolated. Suppression subtractive hybridization of mRNA isolated from those cells permitted the identification of transcribed genes. A summary of 719 expressed sequence tags (ESTs) describing 505 independent transcripts is provided here with a full analysis of each EST available at http://hembase.niddk.nih.gov. Several transcripts that matched genes previously reported in the context of erythroid differentiation including 4 cell surface proteins were expressed at this developmental stage. Active chromatin remodeling was suggested by the identification of 4 histone proteins, 4 high-mobility group proteins, 13 transcription factors, and 6 genes involved in DNA recombination and repair. Numerous genes associated with leukemic translocations were also recognized including topoisomerases I and II, nucleophosmin, Translin, EGR1, dek, pim-1, TFG, and MLL. In addition to known transcripts, 44 novel EST were discovered. This transcriptional profile provides the first genomic-scale description of gene activity in erythroid progenitor cells. PMID:10409428

  9. Gestation Related Gene Expression of the Endocannabinoid Pathway in Rat Placenta

    PubMed Central

    Vaswani, Kanchan; Chan, Hsiu-Wen; Peiris, Hassendrini N.; Dekker Nitert, Marloes; Wood Bradley, Ryan J.; Armitage, James A.; Rice, Gregory E.; Mitchell, Murray D.

    2015-01-01

    Mammalian placentation is a vital facet of the development of a healthy and viable offspring. Throughout gestation the placenta changes to accommodate, provide for, and meet the demands of a growing fetus. Gestational gene expression is a crucial part of placenta development. The endocannabinoid pathway is activated in the placenta and decidual tissues throughout pregnancy and aberrant endocannabinoid signaling during the period of placental development has been associated with pregnancy disorders. In this study, the gene expression of eight endocannabinoid system enzymes was investigated throughout gestation. Rat placentae were obtained at E14.25, E15.25, E17.25, and E20, RNA was extracted, and microarray was performed. Gene expression of enzymes Faah, Mgll, Plcd4, Pld1, Nat1, Daglα, and Ptgs2 was studied (cohort 1, microarray). Biological replication of the results was performed by qPCR (cohort 2). Four genes showed differential expression (Mgll, Plcd4, Ptgs2, and Pld1), from mid to late gestation. Genes positively associated with gestational age were Ptgs2, Mgll, and Pld1, while Plcd4 was downregulated. This is the first comprehensive study that has investigated endocannabinoid pathway gene expression during rat pregnancy. This study provides the framework for future studies that investigate the role of endocannabinoid system during pregnancy. PMID:26229240

  10. Functional annotation of rare gene aberration drivers of pancreatic cancer | Office of Cancer Genomics

    Cancer.gov

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC).

  11. Potential translational targets revealed by linking mouse grooming behavioral phenotypes to gene expression using public databases

    PubMed Central

    Roth, Andrew; Kyzar, Evan; Cachat, Jonathan; Stewart, Adam Michael; Green, Jeremy; Gaikwad, Siddharth; O’Leary, Timothy P.; Tabakoff, Boris; Brown, Richard E.; Kalueff, Allan V.

    2014-01-01

    Rodent self-grooming is an important, evolutionarily conserved behavior, highly sensitive to pharmacological and genetic manipulations. Mice with aberrant grooming phenotypes are currently used to model various human disorders. Therefore, it is critical to understand the biology of grooming behavior, and to assess its translational validity to humans. The present in-silico study used publicly available gene expression and behavioral data obtained from several inbred mouse strains in the open-field, light-dark box, elevated plus- and elevated zero-maze tests. As grooming duration differed between strains, our analysis revealed several candidate genes with significant correlations between gene expression in the brain and grooming duration. The Allen Brain Atlas, STRING, GoMiner and Mouse Genome Informatics databases were used to functionally map and analyze these candidate mouse genes against their human orthologs, assessing the strain ranking of their expression and the regional distribution of expression in the mouse brain. This allowed us to identify an interconnected network of candidate genes (which have expression levels that correlate with grooming behavior), display altered patterns of expression in key brain areas related to grooming, and underlie important functions in the brain. Collectively, our results demonstrate the utility of large-scale, high-throughput data-mining and in-silico modeling for linking genomic and behavioral data, as well as their potential to identify novel neural targets for complex neurobehavioral phenotypes, including grooming. PMID:23123364

  12. Altered Expression of Polycomb Group Genes in Glioblastoma Multiforme

    PubMed Central

    Li, Gang; Warden, Charles; Zou, Zhaoxia; Neman, Josh; Krueger, Joseph S.; Jain, Alisha; Jandial, Rahul; Chen, Mike

    2013-01-01

    The Polycomb group (PcG) proteins play a critical role in histone mediated epigenetics which has been implicated in the malignant evolution of glioblastoma multiforme (GBM). By systematically interrogating The Cancer Genome Atlas (TCGA), we discovered widespread aberrant expression of the PcG members in GBM samples compared to normal brain. The most striking differences were upregulation of EZH2, PHF19, CBX8 and PHC2 and downregulation of CBX7, CBX6, EZH1 and RYBP. Interestingly, changes in EZH2, PHF19, CBX7, CBX6 and EZH1 occurred progressively as astrocytoma grade increased. We validated the aberrant expression of CBX6, CBX7, CBX8 and EZH2 in GBM cell lines by Western blotting and qRT-PCR, and further the aberrant expression of CBX6 in GBM tissue samples by immunohistochemical staining. To determine if there was functional significance to the diminished CBX6 levels in GBM, CBX6 was overexpressed in GBM cells resulting in decreased proliferative capacity. In conclusion, aberrant expression of PcG proteins in GBMs may play a role in the development or maintenance of the malignancy. PMID:24260522

  13. FBXW7-mutated colorectal cancer cells exhibit aberrant expression of phosphorylated-p53 at Serine-15.

    PubMed

    Li, Ningning; Lorenzi, Federica; Kalakouti, Eliana; Normatova, Makhliyo; Babaei-Jadidi, Roya; Tomlinson, Ian; Nateri, Abdolrahman S

    2015-04-20

    FBXW7 mutations occur in a variety of human cancers including colorectal cancer (CRC). Elucidating its mechanism of action has become crucial for cancer therapy; however, it is also complicated by the fact that FBXW7 can influence many pathways due to its role as an E3-ubiquitin ligase in proteasome degradation. FBXW7 and TP53 are tumour suppressors intensively implicated in colorectal carcinogenesis. Deletion mutations in these two genes in animal models mark the progression from adenoma to carcinoma. Although still largely unknown, the last defense mechanism against CRC at the molecular level could be through a synergistic effect of the two genes. The underlying mechanism requires further investigation. In our laboratory, we have used a phospho-kinase profiler array to illustrate a potential molecular link between FBXW7 and p53 in CRC cells. In vitro and in vivo assessments demonstrated aberrant induction of phosphorylated p53 at Serine 15 [phospho-p53(Ser15)] in human FBXW7-deficient CRC cells as compared to their FBXW7-wild-type counterparts. FBXW7 loss in HCT116 cells promoted resistance to oxaliplatin. Immunoblotting data further confirmed that reduction of phospho-p53(Ser15) may contribute to the decreased efficacy of therapy in FBXW7-mutated CRC cells. The findings may suggest the applicability of phospho-p53(Ser15) as an indicative marker of FBXW7-mutations. Phospho-p53(Ser15) regulation by FBXW7 E3-ligase activity could provide important clues for understanding FBXW7 behavior in tumour progression and grounds for its clinical applicability thereafter. PMID:25860929

  14. Analysis of the transcriptional regulation of cancer-related genes by aberrant DNA methylation of the cis-regulation sites in the promoter region during hepatocyte carcinogenesis caused by arsenic

    PubMed Central

    Miao, Zhuang; Wu, Lin; Lu, Ming; Meng, Xianzhi; Gao, Bo; Qiao, Xin; Zhang, Weihui; Xue, Dongbo

    2015-01-01

    Liver is the major organ for arsenic methylation metabolism and may be the potential target of arsenic-induced cancer. In this study, normal human liver cell was treated with arsenic trioxide, and detected using DNA methylation microarray. Some oncogenes, tumor suppressor genes, transcription factors (TF), and tumor-associated genes (TAG) that have aberrant DNA methylation have been identified. However, simple functional studies of genes adjacent to aberrant methylation sites cannot well reflect the regulatory relationship between DNA methylation and gene transcription during the pathogenesis of arsenic-induced liver cancer, whereas a further analysis of the cis-regulatory elements and their trans-acting factors adjacent to DNA methylation can more precisely reflect the relationship between them. MYC and MAX (MYC associated factor X) were found to participating cell cycle through a bioinformatics analysis. Additionally, it was found that the hypomethylation of cis-regulatory sites in the MYC promoter region and the hypermethylation of cis-regulatory sites in the MAX promoter region result in the up-regulation of MYC mRNA expression and the down-regulation of MAX mRNA, which increased the hepatocyte carcinogenesis tendency. PMID:26046465

  15. Gene expression in Pseudomonas aeruginosa swarming motility

    PubMed Central

    2010-01-01

    Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14). Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center). Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to swarm center cells, tendril tip populations of a swarming colony displays general down-regulation of genes associated with virulence and up-regulation of genes involved in energy metabolism. These results allow us to propose a model where tendril tip cells function as «scouts» whose main purpose is to rapidly spread on uncolonized surfaces while swarm center population are in a state allowing a permanent settlement of the colonized area (biofilm-like). PMID:20961425

  16. Engineering Genes for Predictable Protein Expression

    PubMed Central

    Gustafsson, Claes; Minshull, Jeremy; Govindarajan, Sridhar; Ness, Jon; Villalobos, Alan; Welch, Mark

    2013-01-01

    The DNA sequence used to encode a polypeptide can have dramatic effects on its expression. Lack of readily available tools has until recently inhibited meaningful experimental investigation of this phenomenon. Advances in synthetic biology and the application of modern engineering approaches now provide the tools for systematic analysis of the sequence variables affecting heterologous expression of recombinant proteins. We here discuss how these new tools are being applied and how they circumvent the constraints of previous approaches, highlighting some of the surprising and promising results emerging from the developing field of gene engineering. PMID:22425659

  17. A novel circadianly expressed Drosophila melanogaster gene dependent on the period gene for its rhythmic expression.

    PubMed Central

    Van Gelder, R N; Krasnow, M A

    1996-01-01

    The Drosophila melanogaster period (per) gene is required for expression of endogenous circadian rhythms of locomotion and eclosion. per mRNA is expressed with a circadian rhythm that is dependent on Per protein; this feedback loop has been proposed to be essential to the central circadian pacemaker. This model would suggest the Per protein also controls the circadian expression of other genetic loci to generate circadian behavior and physiology. In this paper we describe Dreg-5, a gene whose mRNA is expressed in fly heads with a circadian rhythm nearly identical to that of the per gene. Dreg-5 mRNA continues to cycle in phase with that of per mRNA in conditions of total darkness and also when the daily feeding time is altered. Like per mRNA, Dreg-5 mRNA is not expressed rhythmically in per null mutant flies. Dreg-5 encodes a novel 298 residue protein and Dreg-5 protein isoforms also oscillate in abundance with a circadian rhythm. The phase of Dreg-5 protein oscillation, however, is different from that of Per protein expression, suggesting that Dreg-5 and per have common translational but different post-translational control mechanisms. These results demonstrate that the per gene is capable of modulating the rhythmic expression of other genes; this activity may form the basis of the output of circadian rhythmicity in Drosophila. Images PMID:8612586

  18. Aberrant TRPV1 Expression in Heat Hyperalgesia Associated with Trigeminal Neuropathic Pain

    PubMed Central

    Urano, Hiroko; Ara, Toshiaki; Fujinami, Yoshiaki; Hiraoka, B. Yukihiro

    2012-01-01

    Trigeminal neuropathic pain is a facial pain syndrome associated with trigeminal nerve injury. However, the mechanism of trigeminal neuropathic pain is poorly understood. This study aimed to determine the role of transient receptor potential vanilloid 1 (TRPV1) in heat hyperalgesia in a trigeminal neuropathic pain model. We evaluated nociceptive responses to mechanical and heat stimuli using a partial infraorbital nerve ligation (pIONL) model. Withdrawal responses to mechanical and heat stimuli to vibrissal pads (VP) were assessed using von Frey filaments and a thermal stimulator equipped with a heat probe, respectively. Changes in withdrawal responses were measured after subcutaneous injection of the TRP channel antagonist capsazepine. In addition, the expression of TRPV1 in the trigeminal ganglia was examined. Mechanical allodynia and heat hyperalgesia were observed in VP by pIONL. Capsazepine suppressed heat hyperalgesia but not mechanical allodynia. The number of TRPV1-positive neurons in the trigeminal ganglia was significantly increased in the large-diameter-cell group. These results suggest that TRPV1 plays an important role in the heat hyperalgesia observed in the pIONL model. PMID:23091405

  19. Combinatorial engineering for heterologous gene expression

    PubMed Central

    Zwick, Friederike; Lale, Rahmi; Valla, Svein

    2013-01-01

    Tools for strain engineering with predictable outcome are of crucial importance for the nascent field of synthetic biology. The success of combining different DNA biological parts is often restricted by poorly understood factors deriving from the complexity of the systems. We have previously identified variants for different regulatory elements of the expression cassette XylS/Pm. When such elements are combined they act in a manner consistent with their individual behavior, as long as they affect different functions, such as transcription and translation. Interestingly, sequence context does not seem to influence the final outcome significantly. Expression of reporter gene bla could be increased up to 75 times at the protein level by combining three variants in one cassette. For other tested reporter genes similar results were obtained, except that the stimulatory effect was quantitatively less. Combination of individually characterized DNA parts thus stands as suitable method to achieve a desired phenotype. PMID:23644416

  20. Combinatorial engineering for heterologous gene expression.

    PubMed

    Zwick, Friederike; Lale, Rahmi; Valla, Svein

    2013-01-01

    Tools for strain engineering with predictable outcome are of crucial importance for the nascent field of synthetic biology. The success of combining different DNA biological parts is often restricted by poorly understood factors deriving from the complexity of the systems. We have previously identified variants for different regulatory elements of the expression cassette XylS/Pm. When such elements are combined they act in a manner consistent with their individual behavior, as long as they affect different functions, such as transcription and translation. Interestingly, sequence context does not seem to influence the final outcome significantly. Expression of reporter gene bla could be increased up to 75 times at the protein level by combining three variants in one cassette. For other tested reporter genes similar results were obtained, except that the stimulatory effect was quantitatively less. Combination of individually characterized DNA parts thus stands as suitable method to achieve a desired phenotype. PMID:23644416

  1. Tilapia metallothionein genes: PCR-cloning and gene expression studies.

    PubMed

    Cheung; Pok Lap, Andrew; Kwok Lim Lam, Vincent; Chan, King Ming

    2005-12-20

    Genomic PCR reactions were performed to isolate gene sequences of tilapia metallothionein (tiMT) from Oreochromis mossambicus and Oreochromis aureus. Two AP1 binding sites, four metal responsive elements, and a TATA box are the major cis-acting elements identified in the 800-bp 5' flanking region of the tiMTs obtained in this study. The tiMT gene promoter cloned from O. aureus was characterized in vitro using PLHC-1 cell-line, a hepatocellular carcinoma of a desert topminnow (Poecciliopsis lucida), following the administrations of Cd2+, Co2+, Cu2+, Ni2+, Pb2+ and Zn2+. Only Cd2+, Pb2+ and Zn2+ were able to induce the transcription of tiMT gene promoter in PLHC-1 cells in a dose-dependent manner. Zn2+ had the highest fold induction of tiMT gene promoter activity. Deletion mutants were tested for their abilities to drive the transcription of reporter gene following Cd2+ and Zn2+ administrations. However, Cu2+ and Ni2+ also induced the production of hepatic MT mRNA in vivo. Northern blot analysis showed that liver gave the highest fold induction of MT gene expression following the administration of heavy metal ions. These data indicated that hepatic MT mRNA level in tilapia is a potential sensitive biomarker of exposure to various metal ions including Cu2+, Cd2+, Ni2+, Pb2+, Hg2+ and Zn2+ ions. PMID:16309756

  2. Structure, expression and functions of MTA genes.

    PubMed

    Kumar, Rakesh; Wang, Rui-An

    2016-05-15

    Metastatic associated proteins (MTA) are integrators of upstream regulatory signals with the ability to act as master coregulators for modifying gene transcriptional activity. The MTA family includes three genes and multiple alternatively spliced variants. The MTA proteins neither have their own enzymatic activity nor have been shown to directly interact with DNA. However, MTA proteins interact with a variety of chromatin remodeling factors and complexes with enzymatic activities for modulating the plasticity of nucleosomes, leading to the repression or derepression of target genes or other extra-nuclear and nucleosome remodeling and histone deacetylase (NuRD)-complex independent activities. The functions of MTA family members are driven by the steady state levels and subcellular localization of MTA proteins, the dynamic nature of modifying signals and enzymes, the structural features and post-translational modification of protein domains, interactions with binding proteins, and the nature of the engaged and resulting features of nucleosomes in the proximity of target genes. In general, MTA1 and MTA2 are the most upregulated genes in human cancer and correlate well with aggressive phenotypes, therapeutic resistance, poor prognosis and ultimately, unfavorable survival of cancer patients. Here we will discuss the structure, expression and functions of the MTA family of genes in the context of cancer cells. PMID:26869315

  3. Gene Expression Signatures of Coronary Heart Disease

    PubMed Central

    Joehanes, Roby; Ying, Saixia; Huan, Tianxiao; Johnson, Andrew D.; Raghavachari, Nalini; Wang, Richard; Liu, Poching; Woodhouse, Kimberly A.; Sen, Shurjo K.; Tanriverdi, Kahraman; Courchesne, Paul; Freedman, Jane E.; O'Donnell, Christopher J.; Levy, Daniel; Munson, Peter J.

    2013-01-01

    Objective To identify transcriptomic biomarkers of coronary heart disease (CHD) in 188 CHD cases and 188 age- and sex-matched controls who were participants in the Framingham Heart Study. Approach and results A total of 35 genes were differentially expressed in CHD cases vs. controls at FDR<0.5 including GZMB, TMEM56 and GUK1. Cluster analysis revealed three gene clusters associated with CHD, two linked to increased erythrocyte production and a third to reduced natural killer (NK) and T cell activity in CHD cases. Exon-level results corroborated and extended the gene-level results. Alternative splicing analysis suggested that GUK1 and 38 other genes were differentially spliced in CHD cases vs. controls. Gene ontology analysis linked ubiquitination and T-cell-related pathways with CHD. Conclusion Two bioinformatically defined groups of genes show consistent associations with CHD. Our findings are consistent with the hypotheses that hematopoesis is up-regulated in CHD, possibly reflecting a compensatory mechanism, and that innate immune activity is disrupted in CHD or altered by its treatment. Transcriptomic signatures may be useful in identifying pathways associated with CHD and point toward novel therapeutic targets for its treatment and prevention. PMID:23539218

  4. Computational Model of the Modulation of Gene Expression Following DNA Damage

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Dicello, J. F.; Nikjoo, H.; Cherubini, R.

    2002-01-01

    High linear energy transfer (LET) radiation, such as heavy ions or neutrons, has an increased biological effectiveness compared to X rays for gene mutation, genomic instability, and carcinogenesis. In the traditional paradigm, mutations or chromosomal aberrations are causative of late effects. However, in recent years experimental evidence has demonstrated the important role of the description of the modification of gene expression by radiation in understanding the mechanisms of radiation action. In this report, approaches are discussed to the mathematical description of mRNA and protein expression kinetics following DNA damage. Several hypotheses for models of radiation modulation of protein expression are discussed including possible non-linear processes that evolve from the linear dose responses that follow the initial DNA damage produced by radiation.

  5. Gene expression: RNA interference in adult mice

    NASA Astrophysics Data System (ADS)

    McCaffrey, Anton P.; Meuse, Leonard; Pham, Thu-Thao T.; Conklin, Douglas S.; Hannon, Gregory J.; Kay, Mark A.

    2002-07-01

    RNA interference is an evolutionarily conserved surveillance mechanism that responds to double-stranded RNA by sequence-specific silencing of homologous genes. Here we show that transgene expression can be suppressed in adult mice by synthetic small interfering RNAs and by small-hairpin RNAs transcribed in vivo from DNA templates. We also show the therapeutic potential of this technique by demonstrating effective targeting of a sequence from hepatitis C virus by RNA interference in vivo.

  6. Gene expression during normal and malignant differentiation

    SciTech Connect

    Andersson, L.C.; Gahmberg, C.G.; Ekblom, P.

    1985-01-01

    This book contains 18 selections. Some of the titles are: Exploring Carcinogenesis with Retroviral and Cellular Oncogenes; Retroviruses, Oncogenes and Evolution; HTLV and Human Neoplasi; Modes of Activation of cMyc Oncogene in B and T Lymphoid Tumors; The Structure and Function of the Epidermal Growth Factor Receptor: Its Relationship to the Protein Product of the V-ERB-B Oncogene; and Expression of Human Retrovirus Genes in Normal and Neoplastic Epithelial Cells.

  7. Alveolar Macrophage Gene Expression is altered in the Setting of Alcohol Use Disorders

    PubMed Central

    Burnham, Ellen L.; Phang, Tzu Lip; House, Robert; Vandivier, R. William; Moss, Marc; Gaydos, Jeanette

    2010-01-01

    Background Alcohol use disorders (AUDs) are associated with an increased susceptibility to a variety of common and devastating pulmonary diseases including community- and hospital-acquired pneumonias, as well as the acute respiratory distress syndrome (ARDS). Alveolar macrophages play an important role in preventing the development of these disorders through maintaining lung sterility and resolving lung inflammation. Although alcohol exposure has been associated with aberrant alveolar macrophage function in animal models, the clinical relevance of these observations in humans is not established. Therefore, we sought to determine the effects of AUDs on human alveolar macrophage gene expression. Methods Whole genome microarray analysis was performed on alveolar macrophages obtained by bronchoalveolar lavage from a test cohort of subjects with AUDs (n=7), and controls (n=7) who were pair-matched on age, gender, and smoking. Probe set expression differences in this cohort were validated by real time reverse transcription-polymerase chain reaction (RT RT-PCR). Functional analysis with web-based bioinformatics tools was utilized with microarray data to assess differentially expressed candidate genes (p<0.01) based on alcohol consumption. Alveolar macrophage mRNA samples from a second cohort of subjects with AUDs (n=7) and controls (n=7) were used to confirm gene expression differences related to AUDs. Results: In both the test and confirmatory cohorts, AUDs were associated with upregulation of alveolar macrophage gene expression related to apoptosis, including perforin-1, granzyme A, and CXCR4 (fusin). Pathways governing the regulation of progression through cell cycle and immune response were also affected, as was upregulation of gene expression for mitochondrial superoxide dismutase. Overall, 12 genes’ expression was affected by AUDs independent of smoking. Conclusions AUDs are associated with unique changes in human alveolar macrophage gene expression. Novel therapies targeting alveolar macrophage gene expression in the setting of AUDs may prove to be clinically useful in limiting susceptibility for pulmonary disorders in these individuals. PMID:21121937

  8. Expression profiling the human septin gene family.

    PubMed

    Hall, Peter A; Jung, Kenneth; Hillan, Kenneth J; Russell, S E Hilary

    2005-07-01

    The septins are an evolutionarily conserved family of GTP-binding proteins involved in diverse processes including vesicle trafficking, apoptosis, remodelling of the cytoskeleton, infection, neurodegeneration, and neoplasia. The present paper reports a comprehensive study of septin gene expression by DNA microarray methods in 10 360 samples of normal, diseased, and tumour tissues. A novel septin, SEPT13, has been identified and is shown to be related to SEPT7. It is shown that SEPT13 and the other known human septins are expressed in all tissue types but some show high expression in lymphoid (SEPT1, 6, 9, and 12) or brain tissues (SEPT2, 3, 4, 5, 7, 8, and 11). For a given septin, some isoforms are highly expressed in the brain and others are not. For example, SEPT8_v2 and v1, 1* and 3 are highly expressed in the brain and cluster with SEPT2, 3, 4, 5, 7, and 11. However, a probe set specific for SEPT8_v1 with low brain expression clusters away from this set. Similarly, SEPT4 has lymphoid and non-lymphoid forms; SEPT2 has lymphoid and central nervous system (CNS) forms; and SEPT6 and SEPT9 are elevated in lymphoid tissues but both have forms that cluster away from the lymphoid forms. Perturbation of septin expression was widespread in disease and tumours of the various tissues examined, particularly for conditions of the CNS, where alterations in all 13 septin genes were identified. This analysis provides a comprehensive catalogue of the septin family in health and disease. It is a key step in understanding the role of septins in physiological and pathological states and provides insight into the complexity of septin biology. PMID:15915442

  9. Aberrant Expression of Bacterial Pattern Recognition Receptor NOD2 of Basophils and Microbicidal Peptides in Atopic Dermatitis.

    PubMed

    Wong, Chun-Kwok; Chu, Ida Miu-Ting; Hon, Kam-Lun; Tsang, Miranda Sin-Man; Lam, Christopher Wai-Kei

    2016-01-01

    Atopic dermatitis (AD) is a chronically relapsing inflammatory skin disease, associated with basophil infiltration into skin lesions and Staphylococcus aureus (S. aureus)-induced inflammation. Pattern recognition receptors (PRRs), including microbicidal peptide human neutrophil α-defensins (HNP) and dermcidin, can exert immunomodulating activity in innate immunity and skin inflammation. We investigated the plasma concentration of HNP and dermcidin, the expression of bacterial toll-like receptor (TLR) and nucleotide-binding oligomerization domain (NOD)-like receptors of basophils and plasma concentration and ex vivo induction of AD-related inflammatory cytokines and chemokines using ELISA and flow cytometry, in AD patients and control subjects. Plasma concentrations of HNP, dermcidin and AD-related Th2 chemokines CCL17, CCL22 and CCL27 were significantly elevated in AD patients compared with controls (all p < 0.05). Plasma concentrations of CCL27 and CCL22 were found to correlate positively with SCORing atopic dermatitis (SCORAD), objective SCORAD, % area affected, lichenification and disease intensity, and CCL27 also correlated positively with pruritus in AD patients (all p < 0.05). Protein expressions of NOD2 but not TLR2 of basophils were significantly down-regulated in AD patients compared with controls (p = 0.001). Correspondingly, there were lower ex vivo % inductions of allergic inflammatory tumor necrosis factor-α, IL-6 and CXCL8 from peripheral blood mononuclear cells upon NOD2 ligand S. aureus derived muramyl dipeptide stimulation in AD patients comparing with controls. The aberrant activation of bacterial PRRs of basophils and anti-bacterial innate immune response should be related with the allergic inflammation of AD. PMID:27077833

  10. Attenuating gene expression (AGE) for vaccine development

    PubMed Central

    Pascual, David W; Suo, Zhiyong; Cao, Ling; Avci, Recep; Yang, Xinghong

    2013-01-01

    Live attenuated vaccines are adept in stimulating protective immunity. Methods for generating such vaccines have largely adopted strategies used with Salmonella enterica. Yet, when similar strategies were tested in other gram-negative bacteria, the virulence factors or genes responsible to incapacitate Salmonella often failed in providing the desired outcome. Consequently, conventional live vaccines rely on prior knowledge of the pathogen’s virulence factors to successfully attenuate them. This can be problematic since such bacterial pathogens normally harbor thousands of genes. To circumvent this problem, we found that overexpression of bacterial appendages, e.g., fimbriae, capsule, and flagella, could successfully attenuate wild-type (wt) Salmonella enterica serovar Typhimurium. Further analysis revealed these attenuated Salmonella strains conferred protection against wt S. Typhimurium challenge as effectively as genetically defined Salmonella vaccines. We refer to this strategy as attenuating gene expression (AGE), a simple efficient approach in attenuating bacterial pathogens, greatly facilitating the construction of live vaccines. PMID:23652809

  11. Protein kinase C control of gene expression.

    PubMed

    Ventura, C; Maioli, M

    2001-01-01

    Gene expression is fashioned at multiple interconnected levels and is controlled by a complex interplay between nucleosomal assembly, the establishment of multifaceted transcriptional motifs, and the temporal and spatial organization of chromatin in loops and domains. Protein phosphorylation is one of the most versatile posttranslational modifications used in eukaryotic cells and plays a crucial role in the continuous remodeling of different transcriptional regulators. The protein kinase C (PKC) family of serine-threonine kinases encompasses 12 different isozymes that have been shown to transduce a myriad of signals mediated by phospholipid hydrolysis as a consequence of the activation of G protein-coupled receptors, tyrosine kinase receptors, and nonreceptor tyrosine kinases. Although the analysis of PKC activity in many systems has provided crucial insights to its biological function, unraveling the molecular mechanisms that underlie isozyme-specific modulation of gene expression within the complexity of genome structure and function remains a challenging issue. This review focuses on recent advances in PKC-dependent regulation of gene expression within the context of the dynamic linkages involving nuclear architecture and transcription. Implications of isozyme-specific phosphorylation of selected members of transcription factors are also discussed. Future perspectives disclosed by recently available methods for large-scale transcriptional profiling are also outlined. PMID:11693964

  12. Identifying Driver Genes in Cancer by Triangulating Gene Expression, Gene Location, and Survival Data

    PubMed Central

    Rouam, Sigrid; Miller, Lance D; Karuturi, R Krishna Murthy

    2014-01-01

    Driver genes are directly responsible for oncogenesis and identifying them is essential in order to fully understand the mechanisms of cancer. However, it is difficult to delineate them from the larger pool of genes that are deregulated in cancer (ie, passenger genes). In order to address this problem, we developed an approach called TRIAngulating Gene Expression (TRIAGE through clinico-genomic intersects). Here, we present a refinement of this approach incorporating a new scoring methodology to identify putative driver genes that are deregulated in cancer. TRIAGE triangulates or integrates three levels of information: gene expression, gene location, and patient survival. First, TRIAGE identifies regions of deregulated expression (ie, expression footprints) by deriving a newly established measure called the Local Singular Value Decomposition (LSVD) score for each locus. Driver genes are then distinguished from passenger genes using dual survival analyses. Incorporating measurements of gene expression and weighting them according to the LSVD weight of each tumor, these analyses are performed using the genes located in significant expression footprints. Here, we first use simulated data to characterize the newly established LSVD score. We then present the results of our application of this refined version of TRIAGE to gene expression data from five cancer types. This refined version of TRIAGE not only allowed us to identify known prominent driver genes, such as MMP1, IL8, and COL1A2, but it also led us to identify several novel ones. These results illustrate that TRIAGE complements existing tools, allows for the identification of genes that drive cancer and could perhaps elucidate potential future targets of novel anticancer therapeutics. PMID:25949096

  13. Effects of carcinogenic metals on gene expression.

    PubMed

    Beyersmann, Detmar

    2002-02-28

    Six metals and/or their compounds have been recognized as carcinogens: arsenic, beryllium, cadmium, chromium, cobalt and nickel. With the exception of arsenic, the main rote of exposure is inhalation and the main target organ is the lung. Arsenic is exceptional because it also produces tumors of skin and lung after oral uptake. With the exception of hexavalent chromium, carcinogenic metals are weak mutagens, if at all, and their mechanisms of carcinogenicity are still far from clear. A general feature of arsenic, cadmium, cobalt and nickel is their property to enhance the mutagenicity and carcinogenicity of directly acting genotoxic agents. These properties can be interpreted in terms of the ability of these metals to inhibit the repair of damaged DNA. However, because carcinogenic metals cause tumor development in experimental animals even under exclusion of further carcinogens, other mechanisms have to be envisaged, too. Evidence will be discussed that carcinogenic metal compounds alter patterns of gene expression leading to stimulated cell proliferation, either by activation of early genes (proto-oncogenes) or by interference with genes downregulating cell growth. Special reference will be devoted to the effects of cadmium and arsenic on gene expression, which have been studied extensively. Possible implications for occupational safety and health will be discussed. PMID:12052642

  14. Transcriptional analysis of human survivin gene expression.

    PubMed Central

    Li, F; Altieri, D C

    1999-01-01

    The preservation of tissue and organ homoeostasis depends on the regulated expression of genes controlling apoptosis (programmed cell death). In this study, we have investigated the basal transcriptional requirements of the survivin gene, an IAP (inhibitor of apoptosis) prominently up-regulated in cancer. Analysis of the 5' flanking region of the human survivin gene revealed the presence of a TATA-less promoter containing a canonical CpG island of approximately 250 nt, three cell cycle dependent elements, one cell cycle homology region and numerous Sp1 sites. PCR-based analysis of human genomic DNA, digested with methylation-sensitive and -insensitive restriction enzymes, indicated that the CpG island was unmethylated in both normal and neoplastic tissues. Primer extension and S1 nuclease mapping of the human survivin gene identified two main transcription start sites at position -72 and within -57/-61 from the initiating ATG. Transfection of cervical carcinoma HeLa cells with truncated or nested survivin promoter-luciferase constructs revealed the presence of both enhancer and repressor sequences and identified a minimal promoter region within the proximal -230 nt of the human survivin gene. Unbiased mutagenesis analysis of the human survivin promoter revealed that targeting the Sp1 sequences at position -171 and -151 abolished basal transcriptional activity by approximately 63-82%. Electrophoretic mobility-shift assay with DNA oligonucleotides confirmed formation of a DNA-protein complex between the survivin Sp1 sequences and HeLa cell extracts in a reaction abolished by mutagenesis of the survivin Sp1 sites. These findings identify the basal transcriptional requirements of survivin gene expression. PMID:10567210

  15. Screening of differentially expressed genes in pathological scar tissues using expression microarray.

    PubMed

    Huang, L P; Mao, Z; Zhang, L; Liu, X X; Huang, C; Jia, Z S

    2015-01-01

    Pathological scar tissues and normal skin tissues were differentiated by screening for differentially expressed genes in pathologic scar tissues via gene expression microarray. The differentially expressed gene data was analyzed by gene ontology and pathway analyses. There were 5001 up- or down-regulated genes in 2-fold differentially expressed genes, 956 up- or down-regulated genes in 5-fold differentially expressed genes, and 114 up- or down-regulated genes in 20-fold differentially expressed genes. Therefore, significant differences were observed in the gene expression in pathological scar tissues and normal foreskin tissues. The development of pathological scar tissues has been correlated to changes in multiple genes and pathways, which are believed to form a dynamic network connection. PMID:26400303

  16. Associations between antibiotic exposure during pregnancy, birth weight and aberrant methylation at imprinted genes among offspring

    PubMed Central

    Vidal, A C; Murphy, S K; Murtha, A P; Schildkraut, J M; Soubry, A; Huang, Z; Neelon, S E B; Fuemmeler, B; Iversen, E; Wang, F; Kurtzberg, J; Jirtle, R L; Hoyo, C

    2013-01-01

    Objectives: Low birth weight (LBW) has been associated with common adult-onset chronic diseases, including obesity, cardiovascular disease, type II diabetes and some cancers. The etiology of LBW is multi-factorial. However, recent evidence suggests exposure to antibiotics may also increase the risk of LBW. The mechanisms underlying this association are unknown, although epigenetic mechanisms are hypothesized. In this study, we evaluated the association between maternal antibiotic use and LBW and examined the potential role of altered DNA methylation that controls growth regulatory imprinted genes in these associations. Methods: Between 2009–2011, 397 pregnant women were enrolled and followed until delivery. Prenatal antibiotic use was ascertained through maternal self-report. Imprinted genes methylation levels were measured at differentially methylated regions (DMRs) using bisulfite pyrosequencing. Generalized linear models were used to examine associations among antibiotic use, birth weight and DMR methylation fractions. Results: After adjusting for infant gender, race/ethnicity, maternal body mass index, delivery route, gestational weight gain, gestational age at delivery, folic acid intake, physical activity, maternal smoking and parity, antibiotic use during pregnancy was associated with 138 g lower birth weight compared with non-antibiotic use (β-coefficient=−132.99, s.e.=50.70, P=0.008). These associations were strongest in newborns of women who reported antibiotic use other than penicillins (β-coefficient=−135.57, s.e.=57.38, P=0.02). Methylation at five DMRs, IGF2 (P=0.05), H19 (P=0.15), PLAGL1 (P=0.01), MEG3 (P=0.006) and PEG3 (P=0.08), was associated with maternal antibiotic use; among these, only methylation at the PLAGL1 DMR was also associated with birth weight. Conclusion: We report an inverse association between in utero exposure to antibiotics and lower infant birth weight and provide the first empirical evidence supporting imprinted gene plasticity in these associations. PMID:23609933

  17. Abnormal gene expression profile reveals the common key signatures associated with clear cell renal cell carcinoma: a meta-analysis.

    PubMed

    Zhang, H J; Sun, Z Q; Qian, W Q; Sheng, L

    2015-01-01

    The aims of this study were to identify the common gene signatures of clear cell renal cell carcinoma (CCRCC), and to expand the respective protein-protein interaction networks associated with CCRCC regulation. For the latter, we utilized multiple gene expression data sets from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO), with which we could analyze the aberrant gene expression patterns at the transcriptome level that distinguish cancer from normal samples. We obtained the GSE781 and GSE6344 clear cell renal cell carcinoma gene expression datasets from GEO, which contained a total of 37 cancer and 37 normal samples. Subsequent R language analysis allowed identification of the differentially expressed genes. The genes that exhibited significant up or downregulation in cancers were entered into the Database for Annotation, Visualization, and Integrated Discovery to perform analysis of gene functional annotations, resulting in the generation of two protein-protein interaction networks that included the most significantly up or downregulated genes in CCRCC. These allowed us to identify the key factor genes, which could potentially be utilized to separate cancer versus normal samples. The differentially regulated genes are also highly likely to be functionally important regulatory factors in renal cell carcinoma: cell functions showing enrichment of these genes include amine biosynthetic and vitamin metabolic processes, ion binding, extracellular transport function, and regulation of biosynthesis. Together, the results from our study offer further reason to pursue diagnosis and therapy of CCRCC at the molecular level. PMID:25867368

  18. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    SciTech Connect

    Salem, Tamer Z.; Department of Microbial Molecular Biology, AGERI, Agricultural Research Center, Giza 12619; Division of Biomedical Sciences, Zewail University, Zewail City of Science and Technology, Giza 12588 ; Zhang, Fengrui; Thiem, Suzanne M.

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  19. Classification and indexing of gene expression images

    NASA Astrophysics Data System (ADS)

    Jayaraman, Karthik; Panchanathan, Sethuraman; Kumar, Sudhir

    2001-12-01

    In this paper, we present an approach for classification and indexing of embryonic gene expression pattern images using shape descriptors for retrieval of data in the biological domain. For this purpose, the image is first subjected to a registration process that involves edge fitting and size-standardization. It is followed by segmentation in order to delineate the expression pattern from the cellular background. The moment invariants for the segmented pattern are computed. Image dissimilarity between images is computed based on these moment invariants for each image pair. Area and Centroids of the segmented expression shapes are used to neutralize the invariant behavior of moment invariants during image retrieval. Details of the proposed approach along with analysis of a pilot dataset are presented in this paper.

  20. Aberrant Methylation of Gene Associated CpG Sites Occurs in Borderline Personality Disorder

    PubMed Central

    Künzel, Natascha; Schmidt, Christian; Kiehl, Steffen; Dammann, Gerhard; Dammann, Reinhard

    2013-01-01

    Borderline personality disorder (BPD) is a complex psychiatric disease with an increased impact in the last years. While the diagnosis and therapy are well established, little is known on the pathogenesis of borderline personality disorder. Previously, a significant increase in DNA methylation of relevant neuropsychiatric genes in BPD patients has been reported. In our study we performed genome wide methylation analysis and revealed specific CpG sites that exhibited increased methylation in 24 female BPD patients compared to 11 female healthy controls. Bead chip technology and quantitative bisulfite pyrosequencing showed a significantly increased methylation at CpG sites of APBA2 (1.1 fold) and APBA3 (1.1 fold), KCNQ1 (1.5 fold), MCF2 (1.1 fold) and NINJ2 (1.2 fold) in BPD patients. For the CpG sites of GATA4 and HLCS an increase in DNA methylation was observed, but was only significant in the bead chip assay. Moreover genome wide methylation levels of blood samples of BPD patients and control samples are similar. In summary, our results show a significant 1.26 fold average increase in methylation at the analyzed gene associated CpG sites in the blood of BPD patients compared to controls samples (p<0.001). This data may provide new insights into epigenetic mechanisms underlying the pathogenesis of BPD. PMID:24367640

  1. Disruption of a Plasmodium falciparum cyclic nucleotide phosphodiesterase gene causes aberrant gametogenesis

    PubMed Central

    Taylor, Cathy J; McRobert, Louisa; Baker, David A

    2008-01-01

    Phosphodiesterase (PDE) and guanylyl cyclase (GC) enzymes are key components of the cGMP signalling pathway and are encoded in the genome of Plasmodium falciparum. Here we investigate the role of specific GC and PDE isoforms in gamete formation a process that is essential for malaria transmission and occurs in the Anopheles mosquito midgut following feeding on an infected individual. Details of the intracellular signalling events controlling development of the male and female gametes from their precursors (gametocytes) remain sparse in P. falciparum. Previous work involving the addition of pharmacological agents to gametocytes implicated cGMP in exflagellation the emergence of highly motile, flagellated male gametes from the host red blood cell. In this study we show that decreased GC activity in parasites having undergone disruption of the PfGC? gene had no significant effect on gametogenesis. By contrast, decreased cGMP-PDE activity during gametocyte development owing to disruption of the PfPDE? gene, led to a severely reduced ability to undergo gametogenesis. This suggests that the concentration of cGMP must be maintained below a threshold in the developing gametocyte to allow subsequent differentiation to proceed normally. The data indicate that PfPDE? plays a crucial role in regulating cGMP levels during sexual development. PMID:18452584

  2. Effects of Gold Nanorods on Imprinted Genes Expression in TM-4 Sertoli Cells.

    PubMed

    Yuan, Beilei; Gu, Hao; Xu, Bo; Tang, Qiuqin; Wu, Wei; Ji, Xiaoli; Xia, Yankai; Hu, Lingqing; Chen, Daozhen; Wang, Xinru

    2016-01-01

    Gold nanorods (GNRs) are among the most commonly used nanomaterials. However, thus far, little is known about their harmful effects on male reproduction. Studies from our laboratory have demonstrated that GNRs could decrease glycine synthesis, membrane permeability, mitochondrial membrane potential and disrupt blood-testis barrier factors in TM-4 Sertoli cells. Imprinted genes play important roles in male reproduction and have been identified as susceptible loci to environmental insults by chemicals because they are functionally haploid. In this original study, we investigated the extent to which imprinted genes become deregulated in TM-4 Sertoli cells when treated with low dose of GNRs. The expression levels of 44 imprinted genes were analyzed by quantitative real-time PCR in TM-4 Sertoli cells after a low dose of (10 nM) GNRs treatment for 24 h. We found significantly diminished expression of Kcnq1, Ntm, Peg10, Slc22a2, Pwcr1, Gtl2, Nap1l5, Peg3 and Slc22a2, while Plagl1 was significantly overexpressed. Additionally, four (Kcnq1, Slc22a18, Pwcr1 and Peg3) of 10 abnormally expressed imprinted genes were found to be located on chromosome 7. However, no significant difference of imprinted miRNA genes was observed between the GNRs treated group and controls. Our study suggested that aberrant expression of imprinted genes might be an underlying mechanism for the GNRs-induced reproductive toxicity in TM-4 Sertoli cells. PMID:26938548

  3. Gene expression profiling in Werner syndrome closely resembles that of normal aging

    PubMed Central

    Kyng, Kasper J.; May, Alfred; Kølvraa, Steen; Bohr, Vilhelm A.

    2003-01-01

    Werner syndrome (WS) is a premature aging disorder, displaying defects in DNA replication, recombination, repair, and transcription. It has been hypothesized that several WS phenotypes are secondary consequences of aberrant gene expression and that a transcription defect may be crucial to the development of the syndrome. We used cDNA microarrays to characterize the expression of 6,912 genes and ESTs across a panel of 15 primary human fibroblast cell lines derived from young donors, old donors, and WS patients. Of the analyzed genes, 6.3% displayed significant differences in expression when either WS or old donor cells were compared with young donor cells. This result demonstrates that the WS transcription defect is specific to certain genes. Transcription alterations in WS were strikingly similar to those in normal aging: 91% of annotated genes displayed similar expression changes in WS and in normal aging, 3% were unique to WS, and 6% were unique to normal aging. We propose that a defect in the transcription of the genes as identified in this study could produce many of the complex clinical features of WS. The remarkable similarity between WS and normal aging suggests that WS causes the acceleration of a normal aging mechanism. This finding supports the use of WS as an aging model and implies that the transcription alterations common to WS and normal aging represent general events in the aging process. PMID:14527998

  4. Effects of Gold Nanorods on Imprinted Genes Expression in TM-4 Sertoli Cells

    PubMed Central

    Yuan, Beilei; Gu, Hao; Xu, Bo; Tang, Qiuqin; Wu, Wei; Ji, Xiaoli; Xia, Yankai; Hu, Lingqing; Chen, Daozhen; Wang, Xinru

    2016-01-01

    Gold nanorods (GNRs) are among the most commonly used nanomaterials. However, thus far, little is known about their harmful effects on male reproduction. Studies from our laboratory have demonstrated that GNRs could decrease glycine synthesis, membrane permeability, mitochondrial membrane potential and disrupt blood-testis barrier factors in TM-4 Sertoli cells. Imprinted genes play important roles in male reproduction and have been identified as susceptible loci to environmental insults by chemicals because they are functionally haploid. In this original study, we investigated the extent to which imprinted genes become deregulated in TM-4 Sertoli cells when treated with low dose of GNRs. The expression levels of 44 imprinted genes were analyzed by quantitative real-time PCR in TM-4 Sertoli cells after a low dose of (10 nM) GNRs treatment for 24 h. We found significantly diminished expression of Kcnq1, Ntm, Peg10, Slc22a2, Pwcr1, Gtl2, Nap1l5, Peg3 and Slc22a2, while Plagl1 was significantly overexpressed. Additionally, four (Kcnq1, Slc22a18, Pwcr1 and Peg3) of 10 abnormally expressed imprinted genes were found to be located on chromosome 7. However, no significant difference of imprinted miRNA genes was observed between the GNRs treated group and controls. Our study suggested that aberrant expression of imprinted genes might be an underlying mechanism for the GNRs-induced reproductive toxicity in TM-4 Sertoli cells. PMID:26938548

  5. Identification of common prognostic gene expression signatures with biological meanings from microarray gene expression datasets.

    PubMed

    Yao, Jun; Zhao, Qi; Yuan, Ying; Zhang, Li; Liu, Xiaoming; Yung, W K Alfred; Weinstein, John N

    2012-01-01

    Numerous prognostic gene expression signatures for breast cancer were generated previously with few overlap and limited insight into the biology of the disease. Here we introduce a novel algorithm named SCoR (Survival analysis using Cox proportional hazard regression and Random resampling) to apply random resampling and clustering methods in identifying gene features correlated with time to event data. This is shown to reduce overfitting noises involved in microarray data analysis and discover functional gene sets linked to patient survival. SCoR independently identified a common poor prognostic signature composed of cell proliferation genes from six out of eight breast cancer datasets. Furthermore, a sequential SCoR analysis on highly proliferative breast cancers repeatedly identified T/B cell markers as favorable prognosis factors. In glioblastoma, SCoR identified a common good prognostic signature of chromosome 10 genes from two gene expression datasets (TCGA and REMBRANDT), recapitulating the fact that loss of one copy of chromosome 10 (which harbors the tumor suppressor PTEN) is linked to poor survival in glioblastoma patients. SCoR also identified prognostic genes on sex chromosomes in lung adenocarcinomas, suggesting patient gender might be used to predict outcome in this disease. These results demonstrate the power of SCoR to identify common and biologically meaningful prognostic gene expression signatures. PMID:23029298

  6. GENES EXPRESSED DURING THE RESISTANCE RESPONSE TO MYCOSPHAERELLA GRAMINICOLA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycosphaerella graminicola is a widespread and important pathogen of wheat. Differential display experiments to compare gene expression in inoculated resistant (Tadinia harboring Stb4) and susceptible (Yecora Rojo) wheat lines identified a putative differentially expressed gene with significant hom...

  7. Gravity-Induced Gene Expression in Plants.

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Heber, Steffen; Howard, Brian; Myburg-Nichols, Henrietta; Hammond, Rebecca; Salinas-Mondragon, Raul; Brown, Christopher S.

    Plants sense changes in their orientation towards the vector of gravity and respond with directional growth. Several metabolites in the signal transduction cascade have been identified. However, very little is known about the interaction between these sensing and signal transduction events and even less is known about their role in the differential growth response. Gravity induced changes in transcript abundance have been identified in Arabidopsis whole seedlings and root apices (Moseyko et al. 2002; Kimbrough et al. 2004). Gravity induced transcript abundance changes can be observed within less than 1 min after stimulation (Salinas-Mondragon et al. 2005). Gene expression however requires not only transcription but also translation of the mRNA. Translation can only occur when mRNA is associated with ribosomes, even though not all mRNA associated with ribosomes is actively translated. To approximate translational capacity we quantified whole genome transcript abundances in corn stem pulvini during the first hour after gravity stimulation in total and poly-ribosomal fractions. As in Arabidopsis root apices, transcript abundances of several clusters of genes responded to gravity stimulation. The vast majority of these transcripts were also found to associate with polyribosomes in the same temporal and quantitative pattern. These genes are transcriptionally regulated by gravity stimulation, but do not exhibit translational regulation. However, a small group of genes showed increased transcriptional regulation after gravity stimulation, but no association with polysomes. These transcripts likely are translationally repressed. The mechanism of translational repression for these transcripts is unknown. Based on the hypothesis that the genes essential for gravitropic responses should be expressed in most or all species, we compared the temporal gravity induced expression pattern of all orthologs identified between maize and Arabidopsis. A small group of genes showed high sequence identity as well as a conserved pattern of transcript abundance changes after gravity stimulation between corn pulvinus tissue and Arabidopsis root apices. The functions of these genes in gravitropic responses are currently being analyzed and should give us important information about evolutionary conserved elements in plant gravity signal transduction. (This research was funded by NASA). Kimbrough, J. M., R. Salinas-Mondragon, et al. (2004). "The Fast and Transient Transcriptional Network of Gravity and Mechanical Stimulation in the Arabidopsis Root Apex." Plant Physiol. 136(1): 2790-2805. Moseyko, N., T. Zhu, et al. (2002). "Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays." Plant Physiol 130(2): 720-8. Salinas-Mondragon, R., A. Brogan, et al. (2005). "Gravity and light: integrating transcriptional regulation in roots." Gravit Space Biol Bull 18(2): 121-2.

  8. RNA and transcriptional modulation of gene expression.

    PubMed

    Hawkins, Peter G; Morris, Kevin V

    2008-03-01

    The roles that RNA molecules play in the regulation of gene expression have only recently begun to come to light. Recent work in this area has uncovered several complex, RNA-mediated networks of gene regulation in eukaryotic systems. One newly discovered mechanism of RNA mediated gene regulation takes place at the level of transcription. In yeast, plant, and mammalian systems, small RNAs targeted to gene promoters can result in a repression of transcription. Small RNA mediated transcriptional silencing has been shown to be operative by changes in chromatin structure at the targeted promoter. Specifically, silencing has been observed to correlate with decreases in certain active-state histone modifications, increases in various certain-state histone methylation marks, and in some instances, DNA methylation at the targeted promoter. These epigenetic remodeling events represent a more stable, heritable form of gene regulation as opposed to the transitory post-transcriptional regulation observed in traditional RNAi mechanisms. Several recent findings have shed light on this newly discovered link between small RNA molecules and epigenetic regulatory machinery, notably in human cells. PMID:18256543

  9. Gene expression and cAMP.

    PubMed Central

    Nagamine, Y; Reich, E

    1985-01-01

    By comparing the 5'-flanking region of the porcine gene for the urokinase form of plasminogen activator with those of other cAMP-regulated genes, we identify a 29-nucleotide sequence that is tentatively proposed as the cAMP-regulatory unit. Homologous sequences are present (i) in the cAMP-regulated rat tyrosine aminotransferase, prolactin, and phosphoenolpyruvate carboxykinase genes and (ii) 5' to the transcription initiation sites of cAMP-regulated Escherichia coli genes. From this we conclude that the expression of cAMP-responsive genes in higher eukaryotes may be controlled, as in E. coli, by proteins that form complexes with cAMP and then show sequence-specific DNA-binding properties. The complex formed by cAMP and the regulatory subunit of the type II mammalian protein kinase might be one candidate for this function. Based on several homologies we suggest that this subunit may have retained both the DNA-binding specificity and transcription-regulating properties in addition to the nucleotide-binding domains of the bacterial cAMP-binding protein. If this were so, dissociation of protein kinase by cAMP would activate two processes: (i) protein phosphorylation by the catalytic subunit and (ii) transcription regulation by the regulatory subunit. PMID:2991882

  10. A gene expression signature for insulin resistance.

    PubMed

    Konstantopoulos, Nicky; Foletta, Victoria C; Segal, David H; Shields, Katherine A; Sanigorski, Andrew; Windmill, Kelly; Swinton, Courtney; Connor, Tim; Wanyonyi, Stephen; Dyer, Thomas D; Fahey, Richard P; Watt, Rose A; Curran, Joanne E; Molero, Juan-Carlos; Krippner, Guy; Collier, Greg R; James, David E; Blangero, John; Jowett, Jeremy B; Walder, Ken R

    2011-02-11

    Insulin resistance is a heterogeneous disorder caused by a range of genetic and environmental factors, and we hypothesize that its etiology varies considerably between individuals. This heterogeneity provides significant challenges to the development of effective therapeutic regimes for long-term management of type 2 diabetes. We describe a novel strategy, using large-scale gene expression profiling, to develop a gene expression signature (GES) that reflects the overall state of insulin resistance in cells and patients. The GES was developed from 3T3-L1 adipocytes that were made "insulin resistant" by treatment with tumor necrosis factor-α (TNF-α) and then reversed with aspirin and troglitazone ("resensitized"). The GES consisted of five genes whose expression levels best discriminated between the insulin-resistant and insulin-resensitized states. We then used this GES to screen a compound library for agents that affected the GES genes in 3T3-L1 adipocytes in a way that most closely resembled the changes seen when insulin resistance was successfully reversed with aspirin and troglitazone. This screen identified both known and new insulin-sensitizing compounds including nonsteroidal anti-inflammatory agents, β-adrenergic antagonists, β-lactams, and sodium channel blockers. We tested the biological relevance of this GES in participants in the San Antonio Family Heart Study (n = 1,240) and showed that patients with the lowest GES scores were more insulin resistant (according to HOMA_IR and fasting plasma insulin levels; P < 0.001). These findings show that GES technology can be used for both the discovery of insulin-sensitizing compounds and the characterization of patients into subtypes of insulin resistance according to GES scores, opening the possibility of developing a personalized medicine approach to type 2 diabetes. PMID:21081660

  11. Frequent Attenuation of the WWOX Tumor Suppressor in Osteosarcoma is Associated with Increased Tumorigenicity and Aberrant RUNX2 Expression

    PubMed Central

    Kurek, Kyle; Del Mare, Sara; Salah, Zaidoun; Abdeen, Suhaib; Sadiq, Hussain; Lee, Sukhee; Gaudio, Eugenio; Zanesi, Nicola; Jones, Kevin B.; DeYoung, Barry; Amir, Gail; Gebhardt, Mark; Warman, Matthew; Stein, Gary S.; Stein, Janet L.; Lian, Jane B.; Aqeilan, Rami I.

    2011-01-01

    The WW domain-containing oxidoreductase (WWOX) is a tumor suppressor that is deleted or attenuated in most human tumors. Wwox-deficient mice develop osteosarcoma (OS), an aggressive bone tumor with poor prognosis that often metastasizes to lung. On the basis of these observations, we examined the status of WWOX in human OS specimens and cell lines. In human OS clinical samples, WWOX expression was absent or reduced in 58% of tumors examined (P< 0.0001). Compared to the primary tumors, WWOX levels frequently increased in tumors resected following chemotherapy. In contrast, tumor metastases to lung often exhibited reduced WWOX levels, relative to the primary tumor. In human OS cell lines having reduced WWOX expression, ectopic expression of WWOX inhibited proliferation and attenuated invasion in vitro, and suppressed tumorgenicity in nude mice. Expression of WWOX was associated with reduced RUNX2 expression in OS cell lines, whereas Runx2 levels were elevated in femurs of Wwox-deficient mice. Furthermore, WWOX reconstitution in HOS cells was associated with downregulation of RUNX2 levels and RUNX2 target genes, consistent with the ability of WWOX to suppress RUNX2 transactivation activity. In clinical samples, RUNX2 was expressed in the majority of primary tumors and undetectable in most tumors resected following chemotherapy, whereas most metastases were RUNX2 positive. Our results deepen the evidence of a tumor suppressor role for WWOX in OS, furthering its prognostic and therapeutic significance in this disease. PMID:20530675

  12. FLI1 expression is correlated with breast cancer cellular growth, migration, and invasion and altered gene expression.

    PubMed

    Scheiber, Melissa N; Watson, Patricia M; Rumboldt, Tihana; Stanley, Connor; Wilson, Robert C; Findlay, Victoria J; Anderson, Paul E; Watson, Dennis K

    2014-10-01

    ETS factors have been shown to be dysregulated in breast cancer. ETS factors control the expression of genes involved in many biological processes, such as cellular proliferation, differentiation, and apoptosis. FLI1 is an ETS protein aberrantly expressed in retrovirus-induced hematological tumors, but limited attention has been directed towards elucidating the role of FLI1 in epithelial-derived cancers. Using data mining, we show that loss of FLI1 expression is associated with shorter survival and more aggressive phenotypes of breast cancer. Gain and loss of function cellular studies indicate the inhibitory effect of FLI1 expression on cellular growth, migration, and invasion. Using Fli1 mutant mice and both a transgenic murine breast cancer model and an orthotopic injection of syngeneic tumor cells indicates that reduced Fli1 contributes to accelerated tumor growth. Global expression analysis and RNA-Seq data from an invasive human breast cancer cell line with over expression of either FLI1 and another ETS gene, PDEF, shows changes in several cellular pathways associated with cancer, such as the cytokine-cytokine receptor interaction and PI3K-Akt signaling pathways. This study demonstrates a novel role for FLI1 in epithelial cells. In addition, these results reveal that FLI1 down-regulation in breast cancer may promote tumor progression. PMID:25379017

  13. FLI1 Expression is Correlated with Breast Cancer Cellular Growth, Migration, and Invasion and Altered Gene Expression

    PubMed Central

    Scheiber, Melissa N.; Watson, Patricia M.; Rumboldt, Tihana; Stanley, Connor; Wilson, Robert C.; Findlay, Victoria J.; Anderson, Paul E.; Watson, Dennis K.

    2014-01-01

    ETS factors have been shown to be dysregulated in breast cancer. ETS factors control the expression of genes involved in many biological processes, such as cellular proliferation, differentiation, and apoptosis. FLI1 is an ETS protein aberrantly expressed in retrovirus-induced hematological tumors, but limited attention has been directed towards elucidating the role of FLI1 in epithelial-derived cancers. Using data mining, we show that loss of FLI1 expression is associated with shorter survival and more aggressive phenotypes of breast cancer. Gain and loss of function cellular studies indicate the inhibitory effect of FLI1 expression on cellular growth, migration, and invasion. Using Fli1 mutant mice and both a transgenic murine breast cancer model and an orthotopic injection of syngeneic tumor cells indicates that reduced Fli1 contributes to accelerated tumor growth. Global expression analysis and RNA-Seq data from an invasive human breast cancer cell line with over expression of either FLI1 and another ETS gene, PDEF, shows changes in several cellular pathways associated with cancer, such as the cytokine-cytokine receptor interaction and PI3K-Akt signaling pathways. This study demonstrates a novel role for FLI1 in epithelial cells. In addition, these results reveal that FLI1 down-regulation in breast cancer may promote tumor progression. PMID:25379017

  14. Enhanced Skeletal Muscle Expression of EcSOD Mitigates Streptozotocin-Induced Diabetic Cardiomyopathy by Reducing Oxidative Stress and Aberrant Cell Signaling

    PubMed Central

    Call, Jarrod A.; Chain, Kristopher H.; Martin, Kyle S.; Lira, Vitor A.; Okutsu, Mitsuharu; Zhang, Mei; Yan, Zhen

    2015-01-01

    Background Exercise training enhances extracellular superoxide dismutase (EcSOD) expression in skeletal muscle and elicits positive health outcomes in individuals with diabetes. The goal of this study was to determine if enhanced skeletal muscle expression of EcSOD is sufficient to mitigate streptozotocin (STZ)-induced diabetic cardiomyopathy (DCM). Methods and Results Exercise training promotes EcSOD expression in skeletal muscle and provides protection against DCM; however, it is not known if enhanced EcSOD expression in skeletal muscle plays a functional role in this protection. Here, we show that skeletal muscle-specific EcSOD transgenic mice (TG) are protected from cardiac hypertrophy, fibrosis and dysfunction under the condition of type-1 diabetes induced by STZ injection. We also show that both exercise training and muscle-specific transgenic expression of EcSOD result in elevated EcSOD protein in the blood and heart without increased transcription in the heart, suggesting enhanced expression of EcSOD from skeletal muscle redistributes to the heart. Importantly, cardiac tissue in TG mice displayed significantly reduced oxidative stress, aberrant cell signaling and inflammatory cytokine expression compared with wild type mice under the same diabetic condition. Conclusions Enhanced expression of EcSOD in skeletal muscle is sufficient to mitigate STZ-induced DCM through attenuation of oxidative stress, aberrant cell signaling and inflammation, suggesting a cross-organ mechanism by which exercise training improves cardiac function in diabetes. PMID:25504759

  15. Congenital analbuminemia caused by a novel aberrant splicing in the albumin gene

    PubMed Central

    Caridi, Gianluca; Dagnino, Monica; Erdeve, Omer; Di Duca, Marco; Yildiz, Duran; Alan, Serdar; Atasay, Begum; Arsan, Saadet; Campagnoli, Monica; Galliano, Monica; Minchiotti, Lorenzo

    2014-01-01

    Introduction: Congenital analbuminemia is a rare autosomal recessive disorder manifested by the presence of a very low amount of circulating serum albumin. It is an allelic heterogeneous defect, caused by variety of mutations within the albumin gene in homozygous or compound heterozygous state. Herein we report the clinical and molecular characterization of a new case of congenital analbuminemia diagnosed in a female newborn of consanguineous (first degree cousins) parents from Ankara, Turkey, who presented with a low albumin concentration (< 8 g/L) and severe clinical symptoms. Materials and methods: The albumin gene of the index case was screened by single-strand conformation polymorphism, heteroduplex analysis, and direct DNA sequencing. The effect of the splicing mutation was evaluated by examining the cDNA obtained by reverse transcriptase - polymerase chain reaction (RT-PCR) from the albumin mRNA extracted from proband’s leukocytes. Results: DNA sequencing revealed that the proband is homozygous, and both parents are heterozygous, for a novel G>A transition at position c.1652+1, the first base of intron 12, which inactivates the strongly conserved GT dinucleotide at the 5′ splice site consensus sequence of this intron. The splicing defect results in the complete skipping of the preceding exon (exon 12) and in a frame-shift within exon 13 with a premature stop codon after the translation of three mutant amino acid residues. Conclusions: Our results confirm the clinical diagnosis of congenital analbuminemia in the proband and the inheritance of the trait and contribute to shed light on the molecular genetics of analbuminemia. PMID:24627724

  16. Studying the Complex Expression Dependences between Sets of Coexpressed Genes

    PubMed Central

    Huerta, Mario; Barchino, Roberto; Querol, Enrique

    2014-01-01

    Organisms simplify the orchestration of gene expression by coregulating genes whose products function together in the cell. The use of clustering methods to obtain sets of coexpressed genes from expression arrays is very common; nevertheless there are no appropriate tools to study the expression networks among these sets of coexpressed genes. The aim of the developed tools is to allow studying the complex expression dependences that exist between sets of coexpressed genes. For this purpose, we start detecting the nonlinear expression relationships between pairs of genes, plus the coexpressed genes. Next, we form networks among sets of coexpressed genes that maintain nonlinear expression dependences between all of them. The expression relationship between the sets of coexpressed genes is defined by the expression relationship between the skeletons of these sets, where this skeleton represents the coexpressed genes with a well-defined nonlinear expression relationship with the skeleton of the other sets. As a result, we can study the nonlinear expression relationships between a target gene and other sets of coexpressed genes, or start the study from the skeleton of the sets, to study the complex relationships of activation and deactivation between the sets of coexpressed genes that carry out the different cellular processes present in the expression experiments. PMID:25147825

  17. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.

    PubMed

    Edgar, Ron; Domrachev, Michael; Lash, Alex E

    2002-01-01

    The Gene Expression Omnibus (GEO) project was initiated in response to the growing demand for a public repository for high-throughput gene expression data. GEO provides a flexible and open design that facilitates submission, storage and retrieval of heterogeneous data sets from high-throughput gene expression and genomic hybridization experiments. GEO is not intended to replace in house gene expression databases that benefit from coherent data sets, and which are constructed to facilitate a particular analytic method, but rather complement these by acting as a tertiary, central data distribution hub. The three central data entities of GEO are platforms, samples and series, and were designed with gene expression and genomic hybridization experiments in mind. A platform is, essentially, a list of probes that define what set of molecules may be detected. A sample describes the set of molecules that are being probed and references a single platform used to generate its molecular abundance data. A series organizes samples into the meaningful data sets which make up an experiment. The GEO repository is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo. PMID:11752295

  18. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository

    PubMed Central

    Edgar, Ron; Domrachev, Michael; Lash, Alex E.

    2002-01-01

    The Gene Expression Omnibus (GEO) project was initiated in response to the growing demand for a public repository for high-throughput gene expression data. GEO provides a flexible and open design that facilitates submission, storage and retrieval of heterogeneous data sets from high-throughput gene expression and genomic hybridization experiments. GEO is not intended to replace in house gene expression databases that benefit from coherent data sets, and which are constructed to facilitate a particular analytic method, but rather complement these by acting as a tertiary, central data distribution hub. The three central data entities of GEO are platforms, samples and series, and were designed with gene expression and genomic hybridization experiments in mind. A platform is, essentially, a list of probes that define what set of molecules may be detected. A sample describes the set of molecules that are being probed and references a single platform used to generate its molecular abundance data. A series organizes samples into the meaningful data sets which make up an experiment. The GEO repository is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo. PMID:11752295

  19. Covariance Structure Models for Gene Expression Microarray Data

    ERIC Educational Resources Information Center

    Xie, Jun; Bentler, Peter M.

    2003-01-01

    Covariance structure models are applied to gene expression data using a factor model, a path model, and their combination. The factor model is based on a few factors that capture most of the expression information. A common factor of a group of genes may represent a common protein factor for the transcript of the co-expressed genes, and hence, it…

  20. Aberrant methylation accounts for cell adhesion-related gene silencing during 3-methylcholanthrene and diethylnitrosamine induced multistep rat lung carcinogenesis associated with overexpression of DNA methyltransferases 1 and 3a

    SciTech Connect

    Liu Wenbin; Cui Zhihong; Ao Lin; Zhou Ziyuan; Zhou Yanhong; Yuan Xiaoyan; Xiang Yunlong; Liu Jinyi Cao Jia

    2011-02-15

    To evaluate the significance of alterations in cell adhesion-related genes methylation during lung multistep carcinogenesis induced by the genotoxic carcinogens 3-methylcholanthrene (MCA) and diethylnitrosamine (DEN), tissue samples microdissected from MCA/DEN-induced rat lung carcinogenesis model were subjected to methylation-specific PCR to evaluate the DNA methylation status of CADM1, TIMP3, E-cadherin and N-cadherin. Immunohistochemistry was used to determine protein expression of CADM1, TIMP3, N-cadherin and the DNA methyltransferases (DNMTs) 1, 3a and 3b. E-cadherin hypermethylation was not detected in any tissue. CADM1, TIMP3 and N-cadherin hypermethylation was correlated with the loss of their protein expression during the progression of pathologic lesions. The prevalence of DNA methylation of at least one gene and the average number of methylated genes increased with the histological progression. DNMT1 and DNMT3a protein expression increased progressively during the stages of lung carcinogenesis, whereas DNMT3b overexpression was only found in several samples. Furthermore, DNMT1 protein expression levels were correlated with CADM1 methylation, and DNMT3a protein expression levels were correlated with CADM1, TIMP3 and N-cadherin methylation. The average number of methylated genes during carcinogenesis was significantly correlated with DNMT1 and DNMT3a protein expression levels. Moreover, mRNA expression of CADM1 significantly increased after treatment with DNMT inhibitor 5-aza-2'-deoxycytidine in CADM1-methylated primary tumor cell lines. Our findings suggest that an accumulation of hypermethylation accounts for cell adhesion-related gene silencing is associated with dynamic changes in the progression of MCA/DEN-induced rat lung carcinogenesis. We suggest that DNMT1 and DNMT3a protein overexpression may be responsible for this aberrant DNA methylation.

  1. Gene expression profile in temporal lobe epilepsy.

    PubMed

    Aronica, Eleonora; Gorter, Jan A

    2007-04-01

    Epilepsy is one of the most common neurological disorders. Temporal lobe epilepsy (TLE) represents the most frequent epilepsy syndrome in adult patients with resistance to pharmacological treatment. In TLE, the origin of seizure activity typically involves the hippocampal formation, which displays major neuropathological features, described with the term hippocampal sclerosis (HS). The expansion of neurosurgical epilepsy programs has offered the possibility of disposing of clinically well-characterized hippocampal tissue, so that the analysis of molecular mechanisms underlying the structural and functional reorganization occurring in the hippocampus and neighboring areas in TLE patients can be done on a large scale. The recent development of molecular biological technologies permits the analysis of changes in the expression of a large number of genes. This has opened new perspectives for epilepsy research. However, the hippocampal specimens obtained from patients with TLE most often represent an advanced stage of the pathology. For this reason, animal models that reproduce the clinical and histopathological features of TLE are helpful in detecting the early development of the pathological cascade leading to TLE with HS. An overview of recent data of gene expression profiles in human and experimental TLE is presented along with a discussion of the relevance of functional genomics, to develop new hypotheses and to detect likely candidate genes involved in epileptogenesis, as well as possible target molecules for new therapeutic approaches. PMID:17404370

  2. Mouse μ Opioid Receptor Gene Expression

    PubMed Central

    Choe, Chung-youl; Im, Hee-Jeong; Ko, Jane L.; Loh, Horace H.

    2010-01-01

    The 5′-flanking region of the mouse μ opioid receptor (MOR) gene has two promoters, referred to as distal and proximal, and the activities of each in the brain are quite different from each other. The 5′-distal promoter regulatory sequences (5′-DPRS), positioned between these two promoters, have strong inhibitory effects on the reporter gene expression driven by the MOR distal promoter. In our studies, detailed 3′ deletion mapping of the 5′-DPRS narrowed down the negative cis-acting element to a 34-base pair (bp) segment (position −721 to −687). This 34-bp cis-acting element functions in both neuronal (NMB) and non-neuronal (CHO and RAW264.7) cultured cells. S1 nuclease protection assays indicated that this 34-bp cis-acting element suppresses distal promoter activity at the transcriptional level. Linker scanning mutagenesis demonstrated that nucleotides around position −721 and −689 in the 34-bp cis-acting element are essential for the regulation of distal promoter activity. Operational characterization of the 34-bp cis-acting element in the homologous MOR distal promoter and the heterologous SV40 promoter showed that its effects are position- and promoter-dependent while being orientation-independent in both promoters. Collectively, these data suggested that this 34-bp segment is a conditional transcriptional cis-acting element that blocks mouse MOR gene expression from the distal promoter. PMID:9857022

  3. Nuclear AXIN2 represses MYC gene expression

    SciTech Connect

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S.

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  4. Gene Expression in the Star Mutation of Petunia x Hybrida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in structural gene expression are responsible for a wide range of responses from human cancer to patterned flowers. Gene silencing is one of the ways in which gene expression is controlled. We have developed a model system to study anthocyanin gene silencing using a mutation in Petunia ...

  5. Molecular mechanisms of curcumin action: gene expression.

    PubMed

    Shishodia, Shishir

    2013-01-01

    Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin. PMID:22996381

  6. Inducible gene expression systems and plant biotechnology.

    PubMed

    Corrado, Giandomenico; Karali, Marianthi

    2009-01-01

    Plant biotechnology relies heavily on the genetic manipulation of crops. Almost invariantly, the gene of interest is expressed in a constitutive fashion, although this may not be strictly necessary for several applications. Currently, there are several regulatable expression systems for the temporal, spatial and quantitative control of transgene activity. These molecular switches are based on components derived from different organisms, which range from viruses to higher eukaryotes. Many inducible systems have been designed for fundamental and applied research and since their initial development, they have become increasingly popular in plant molecular biology. This review covers a broad number of inducible expression systems examining their properties and relevance for plant biotechnology in its various guises, from molecular breeding to pharmaceutical and industrial applications. For each system, we examine some advantages and limitations, also in relation to the strategy on which they rely. Besides being necessary to control useful genes that may negatively affect crop yield and quality, we discuss that inducible systems can be also used to increase public acceptance of GMOs, reducing some of the most common concerns. Finally, we suggest some directions and future developments for their further diffusion in agriculture and biotechnology. PMID:19460424

  7. Complex regulation of human cathelicidin gene expression

    PubMed Central

    Elloumi, Houda Zghal; Holland, Steven M

    2007-01-01

    Cationic antimicrobial peptides play important roles in host defense, linking innate and adaptive immunity. hCAP18, the only human antimicrobial cathelicidin, consists of a conserved N-terminal cathelin-like domain and a C-terminal peptide, LL-37. Expression is regulated during myeloid differentiation, and tightly controlled during infection and inflammation, suggesting active regulation. Using 5′ RACE (rapid amplification of cDNA ends), multiple transcription initiation sites were identified, as well as new splice variants leading to novel augmentations of hCAP18 amino acid composition in bone marrow but not peripheral blood neutrophils. Having expressed hCAP18 promoter constructs in cell lines, we found that full-length (-1739) and truncated (-978) promoter constructs had lower luciferase activities than 5′UTR deletion constructs. Transient transfection of progressively deleted constructs in the non-permissive K562 cell line led us to identify a negative regulatory element within the 53 bp immediately upstream of the ATG of hCAP18. Additionally, transient transfection of 5′ deletion constructs identified a positive regulatory element within the 101 bases 5′ of promoter sequence containing two GT-boxes. Negative and positive regulatory elements within the hCAP18 gene promoter provide new insights into the possible molecular basis of myeloid gene expression. PMID:17709140

  8. Combined clustering models for the analysis of gene expression

    NASA Astrophysics Data System (ADS)

    Angelova, M.; Ellman, J.

    2010-02-01

    Clustering has become one of the fundamental tools for analyzing gene expression and producing gene classifications. Clustering models enable finding patterns of similarity in order to understand gene function, gene regulation, cellular processes and sub-types of cells. The clustering results however have to be combined with sequence data or knowledge about gene functionality in order to make biologically meaningful conclusions. In this work, we explore a new model that integrates gene expression with sequence or text information.

  9. Combined clustering models for the analysis of gene expression

    SciTech Connect

    Angelova, M. Ellman, J.

    2010-02-15

    Clustering has become one of the fundamental tools for analyzing gene expression and producing gene classifications. Clustering models enable finding patterns of similarity in order to understand gene function, gene regulation, cellular processes and sub-types of cells. The clustering results however have to be combined with sequence data or knowledge about gene functionality in order to make biologically meaningful conclusions. In this work, we explore a new model that integrates gene expression with sequence or text information.

  10. Using PCR to Target Misconceptions about Gene Expression

    PubMed Central

    Wright, Leslie K.; Newman, Dina L.

    2013-01-01

    We present a PCR-based laboratory exercise that can be used with first- or second-year biology students to help overcome common misconceptions about gene expression. Biology students typically do not have a clear understanding of the difference between genes (DNA) and gene expression (mRNA/protein) and often believe that genes exist in an organism or cell only when they are expressed. This laboratory exercise allows students to carry out a PCR-based experiment designed to challenge their misunderstanding of the difference between genes and gene expression. Students first transform E. coli with an inducible GFP gene containing plasmid and observe induced and un-induced colonies. The following exercise creates cognitive dissonance when actual PCR results contradict their initial (incorrect) predictions of the presence of the GFP gene in transformed cells. Field testing of this laboratory exercise resulted in learning gains on both knowledge and application questions on concepts related to genes and gene expression. PMID:23858358

  11. Pomelo II: finding differentially expressed genes

    PubMed Central

    Morrissey, Edward R.; Diaz-Uriarte, Ramón

    2009-01-01

    Pomelo II (http://pomelo2.bioinfo.cnio.es) is an open-source, web-based, freely available tool for the analysis of gene (and protein) expression and tissue array data. Pomelo II implements: permutation-based tests for class comparisons (t-test, ANOVA) and regression; survival analysis using Cox model; contingency table analysis with Fisher's exact test; linear models (of which t-test and ANOVA are especial cases) that allow additional covariates for complex experimental designs and use empirical Bayes moderated statistics. Permutation-based and Cox model analysis use parallel computing, which permits taking advantage of multicore CPUs and computing clusters. Access to, and further analysis of, additional biological information and annotations (PubMed references, Gene Ontology terms, KEGG and Reactome pathways) are available either for individual genes (from clickable links in tables and figures) or sets of genes. The source code is available, allowing for extending and reusing the software. A comprehensive test suite is also available, and covers both the user interface and the numerical results. The possibility of including additional covariates, parallelization of computation, open-source availability of the code and comprehensive testing suite make Pomelo II a unique tool. PMID:19435879

  12. Temporally and Spatially Restricted Gene Expression Profiling

    PubMed Central

    Tallafuss, Alexandra; Washbourne, Philip; Postlethwait, John

    2014-01-01

    Identifying gene function in specific cells is critical for understanding the processes that make cells unique. Several different methods are available to isolate actively transcribed RNA or actively translated RNA in specific cells at a chosen time point. Cell-specific mRNA isolation can be accomplished by the expression of transgenes in cells of interest, either directly from a specific promoter or using a modular system such as Gal4/UAS or Cre/lox. All of the methods described in this review, namely thiol-labeling of RNA (TU-tagging or RABT), TRAP (translating ribosome affinity purification) and INTACT (isolation of nuclei tagged in specific cell types), allow next generation sequencing, permitting the identification of enriched gene transcripts within the specific cell-type. We describe here the general concept of each method, include examples, evaluate possible problems related to each technique, and suggest the types of questions for which each method is best suited. PMID:25132798

  13. Retrotransposons as regulators of gene expression.

    PubMed

    Elbarbary, Reyad A; Lucas, Bronwyn A; Maquat, Lynne E

    2016-02-12

    Transposable elements (TEs) are both a boon and a bane to eukaryotic organisms, depending on where they integrate into the genome and how their sequences function once integrated. We focus on two types of TEs: long interspersed elements (LINEs) and short interspersed elements (SINEs). LINEs and SINEs are retrotransposons; that is, they transpose via an RNA intermediate. We discuss how LINEs and SINEs have expanded in eukaryotic genomes and contribute to genome evolution. An emerging body of evidence indicates that LINEs and SINEs function to regulate gene expression by affecting chromatin structure, gene transcription, pre-mRNA processing, or aspects of mRNA metabolism. We also describe how adenosine-to-inosine editing influences SINE function and how ongoing retrotransposition is countered by the body's defense mechanisms. PMID:26912865

  14. Pathway network inference from gene expression data

    PubMed Central

    2014-01-01

    Background The development of high-throughput omics technologies enabled genome-wide measurements of the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and interaction level, i.e. from the detection of differentially expressed genes, to the establishment of gene interaction networks and the identification of enriched functional categories. Still, the understanding of biological systems requires a further level of analysis that addresses the characterization of the interaction between functional modules. Results We present a novel computational methodology to study the functional interconnections among the molecular elements of a biological system. The PANA approach uses high-throughput genomics measurements and a functional annotation scheme to extract an activity profile from each functional block -or pathway- followed by machine-learning methods to infer the relationships between these functional profiles. The result is a global, interconnected network of pathways that represents the functional cross-talk within the molecular system. We have applied this approach to describe the functional transcriptional connections during the yeast cell cycle and to identify pathways that change their connectivity in a disease condition using an Alzheimer example. Conclusions PANA is a useful tool to deepen in our understanding of the functional interdependences that operate within complex biological systems. We show the approach is algorithmically consistent and the inferred network is well supported by the available functional data. The method allows the dissection of the molecular basis of the functional connections and we describe the different regulatory mechanisms that explain the network's topology obtained for the yeast cell cycle data. PMID:25032889

  15. Dynamics of single-cell gene expression

    PubMed Central

    Longo, Diane; Hasty, Jeff

    2006-01-01

    Cellular behavior has traditionally been investigated by utilizing bulk-scale methods that measure average values for a population of cells. Such population-wide studies mask the behavior of individual cells and are often insufficient for characterizing biological processes in which cellular heterogeneity plays a key role. A unifying theme of many recent studies has been a focus on the development and utilization of single-cell experimental techniques that are capable of probing key biological phenomena in individual living cells. Recently, novel information about gene expression dynamics has been obtained from single-cell experiments that draw upon the unique capabilities of fluorescent reporter proteins. PMID:17130866

  16. Association between Paraoxonases Gene Expression and Oxidative Stress in Hepatotoxicity Induced by CCl4

    PubMed Central

    Hafez, Mohamed M.; Al-Shabanah, Othman A.; Al-Harbi, Naif O.; Al-Harbi, Mohamed M.; Al-Rejaie, Salim S.; Alsurayea, Saad M.; Sayed-Ahmed, Mohamed M.

    2014-01-01

    Objectives. The purpose of the study is to evaluate the hepatoprotective effect of rutin in carbon tetrachloride- (CCl4-) induced liver injuries in rat model. Methods. Forty male Wistar albino rats were divided into four groups. Group I was the control group and received dimethyl sulphoxide (DMSO) and olive oil. Group II received rutin. Groups III was treated with CCl4. Group IV was administered rutin after 48 h of CCl4 treatment. Liver enzymes level, lipid profile, lipid peroxidation, and hydrogen peroxide were measured. The genes expression levels were monitored by real time RT-PCR and western blot techniques. Results. CCl4 group showed significant increase in alanine aminotransferase (ALT), aspartate aminotransferase (AST), thiobarbituric acid reactive substances (TBAR), hydrogen peroxide (H2O2), and lipid profile and a significant decrease in glutathione peroxidase (GPx), glutathione S transferase (GST), catalase (CAT), paraoxonase-1 (PON-1), paraoxonase-3 (PON-3), peroxisome proliferator activated receptor delta (PPAR-δ), and ATP-binding cassette transporter 1 (ABAC1) genes expression levels. Interestingly, rutin supplementation completely reversed the biochemical and gene expression levels induced by CCl4 to control values. Conclusion. CCl4 administration causes aberration of genes expression levels in oxidative stress pathway resulting in DNA damage and hepatotoxicity. Rutin causes hepatoprotective effect through enhancing the antioxidant genes. PMID:25478064

  17. Clustering gene expression data using graph separators.

    PubMed

    Kaba, Bangaly; Pinet, Nicolas; Lelandais, Gaëlle; Sigayret, Alain; Berry, Anne

    2007-01-01

    Recent work has used graphs to modelize expression data from microarray experiments, in view of partitioning the genes into clusters. In this paper, we introduce the use of a decomposition by clique separators. Our aim is to improve the classical clustering methods in two ways: first we want to allow an overlap between clusters, as this seems biologically sound, and second we want to be guided by the structure of the graph to define the number of clusters. We test this approach with a well-known yeast database (Saccharomyces cerevisiae). Our results are good, as the expression profiles of the clusters we find are very coherent. Moreover, we are able to organize into another graph the clusters we find, and order them in a fashion which turns out to respect the chronological order defined by the the sporulation process. PMID:18391236

  18. Gene Expression During the Life Cycle of Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Arbeitman, Michelle N.; Furlong, Eileen E. M.; Imam, Farhad; Johnson, Eric; Null, Brian H.; Baker, Bruce S.; Krasnow, Mark A.; Scott, Matthew P.; Davis, Ronald W.; White, Kevin P.

    2002-09-01

    Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes.

  19. Expression of X-linked genes in deceased neonates and surviving cloned female piglets.

    PubMed

    Jiang, Le; Lai, Liangxue; Samuel, Melissa; Prather, Randall S; Yang, Xiangzhong; Tian, X Cindy

    2008-02-01

    Animal cloning through somatic cell nuclear transfer (NT) is very inefficient, probably due to insufficient reprogramming of the donor nuclei, which in turn would cause the dysregulation of gene expression. X-Chromosome inactivation (XCI) is a multi-step epigenetic process utilized by mammals to achieve dosage compensation in females. Our aim was to determine if any dysregulation of X-linked genes, which would be indicative of unfaithful reprogramming of donor nuclei, was present in cloned pigs. Real time reverse transcription polymerase chain reaction (RT-PCR) was performed to quantify the transcript levels of five X-linked genes, X inactivation-specific transcript (XIST), TSIX (the reverse spelling of XIST), hypoxanthine guanine phosphoribosyltransferase 1 (HPRT1), glucose-6-phosphate dehydrogenase (G6PD), V-raf murine sarcoma 3,611 viral oncogene homolog 1 (ARAF1), and one autosomal gene, alpha-1 type IV collagen (COL4A1) in major organs of neonatal deceased and surviving female cloned pigs as well as their age-matched control pigs from conventional breeding. Aberrant expression level of these genes was prevalent in the neonatal deceased clones, while it was only moderate in cloned pigs that survived after birth. These results suggest a correlation between the viability of the clones and the normality of their gene expression and provide a possible explanation for the death of a large portion of cloned animals around birth. PMID:17474099

  20. Regulation of gene expression dynamics during developmental transitions by the Ikaros transcription factor

    PubMed Central

    Arenzana, Teresita L.; Schjerven, Hilde; Smale, Stephen T.

    2015-01-01

    The DNA-binding protein Ikaros is a potent tumor suppressor and hematopoietic regulator. However, the mechanisms by which Ikaros functions remain poorly understood, due in part to its atypical DNA-binding properties and partnership with the poorly understood Mi-2/NuRD complex. In this study, we analyzed five sequential stages of thymocyte development in a mouse strain containing a targeted deletion of Ikaros zinc finger 4, which exhibits a select subset of abnormalities observed in Ikaros-null mice. By examining thymopoiesis in vivo and in vitro, diverse abnormalities were observed at each developmental stage. RNA sequencing revealed that each stage is characterized by the misregulation of a limited number of genes, with a strong preference for stage-specific rather than lineage-specific genes. Strikingly, individual genes rarely exhibited Ikaros dependence at all stages. Instead, a consistent feature of the aberrantly expressed genes was a reduced magnitude of expression level change during developmental transitions. These results, combined with analyses of the interplay between Ikaros loss of function and Notch signaling, suggest that Ikaros may not be a conventional activator or repressor of defined sets of genes. Instead, a primary function may be to sharpen the dynamic range of gene expression changes during developmental transitions via atypical molecular mechanisms that remain undefined. PMID:26314708

  1. Calibration of microarray gene-expression data.

    PubMed

    Binder, Hans; Preibisch, Stephan; Berger, Hilmar

    2010-01-01

    Calibration of microarray measurements aims at removing systematic biases from the probe-level data to get expression estimates that linearly correlate with the transcript abundance in the studied samples. The improvement of calibration methods is an essential prerequisite for estimating absolute expression levels, which, in turn, are required for quantitative analyses of transcriptional regulation, for example, in the context of gene profiling of diseases. We address hybridization on microarrays as a reaction process in a complex environment and express the measured intensities as a function of the input quantities of the experiment. Popular calibration methods such as MAS5, dChip, RMA, gcRMA, vsn, and PLIER are briefly reviewed and assessed in light of the hybridization model and of previous benchmark studies. We present our hook method, a new calibration approach that is based on a graphical summary of the actual hybridization characteristics of a particular microarray. Although single-chip related, hook performs as well as the multi-chip-related gcRMA, presently one of the best state-of-the-art methods for estimating expression values. The hook method, in addition, provides a set of chip summary characteristics that evaluate the performance of a given hybridization. The algorithm of the method is briefly described and its performance is exemplified. PMID:19882273

  2. Aberrations of breast cancer susceptibility genes occur early in sporadic breast tumors and in acquisition of breast epithelial immortalization.

    PubMed

    Meng, Zhen Hang; Ben, Yong; Li, Zheng; Chew, Karen; Ljung, Britt-Marie; Lagios, Michael D; Dairkee, Shanaz H

    2004-11-01

    In the search for early deletion targets in sporadic breast cancer, the analysis of TP53, BRCA1, BRCA2, and ATM revealed loss of heterozygosity (LOH) in tumor cells at 1 or more genes in 18 of 24 cases examined. Notably, in more than 60% of such tumors, LOH was detectable in morphologically normal terminal ductal lobular units (TDLUs) adjacent to carcinoma (LOHint). At BRCA2 and ATM, LOHint was most frequent, particularly in TDLUs of women expression levels observed with increasing passage in culture supported the postulate that during the acquisition of continuous growth, elimination of these genes at an early stage confers a distinct selective advantage. The intimate role of these genes in DNA repair and their early deletion has implications for the possible transforming effects of DNA-damaging agents on unexcised breast tissue harboring LOHint within breast cancer patients. PMID:15334544

  3. Cytogenetic Response to Ionizing Radiation Exposure in Human Fibroblasts with Suppressed Expression of Non-DSB Repair Genes

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Hammond, Dianne; Mehta, Satish K.; Jeevarajan, Antony S.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in radiation-induced chromosome aberrations and micronuclei formation. In the study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequencies of micronuclei (MN) formation and chromosome aberrations were measured to determine the efficiency of cytogenetic repair, and the fraction of bi-nucleated cells in the MN analysis was used as a marker for cell cycle progression. In response to gamma radiation, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR-induced biological consequences. Furthermore, eight non-DBS repair genes showed involvement in regulating DSB repair, indicating that successful DSB repair requires both DSB repair mechanisms and non-DSB repair systems.

  4. Noncoding RNA Expression Aberration Is Associated with Cancer Progression and Is a Potential Biomarker in Esophageal Squamous Cell Carcinoma

    PubMed Central

    Sugihara, Hidetaka; Ishimoto, Takatsugu; Miyake, Keisuke; Izumi, Daisuke; Baba, Yoshifumi; Yoshida, Naoya; Watanabe, Masayuki; Baba, Hideo

    2015-01-01

    Esophageal cancer is one of the most common cancers worldwide. Esophageal squamous cell carcinoma (ESCC) is the major histological type of esophageal cancer in Eastern Asian countries. Several types of noncoding RNAs (ncRNAs) function as key epigenetic regulators of gene expression and are implicated in various physiological processes. Unambiguous evidence indicates that dysregulation of ncRNAs is deeply implicated in carcinogenesis, cancer progression and metastases of various cancers, including ESCC. The current review summarizes recent findings on the ncRNA-mediated mechanisms underlying the characteristic behaviors of ESCC that will help support the development of biomarkers and the design of novel therapeutic strategies. PMID:26610479

  5. Polarization Aberrations

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1990-01-01

    The analysis of the polarization characteristics displayed by optical systems can be divided into two categories: geometrical and physical. Geometrical analysis calculates the change in polarization of a wavefront between pupils in an optical instrument. Physical analysis propagates the polarized fields wherever the geometrical analysis is not valid, i.e., near the edges of stops, near images, in anisotropic media, etc. Polarization aberration theory provides a starting point for geometrical design and facilitates subsequent optimization. The polarization aberrations described arise from differences in the transmitted (or reflected) amplitudes and phases at interfaces. The polarization aberration matrix (PAM) is calculated for isotropic rotationally symmetric systems through fourth order and includes the interface phase, amplitude, linear diattenuation, and linear retardance aberrations. The exponential form of Jones matrices used are discussed. The PAM in Jones matrix is introduced. The exact calculation of polarization aberrations through polarization ray tracing is described. The report is divided into three sections: I. Rotationally Symmetric Optical Systems; II. Tilted and Decentered Optical Systems; and Polarization Analysis of LIDARs.

  6. Regulation of tropomyosin gene expression during myogenesis

    SciTech Connect

    Moss, M.; Schwartz, R.

    1981-03-01

    In skeletal muscle, tropomyosin has a critical role in transduction of calcium-induced contraction. Presently, little is known about the regulation of tropomyosin gene expression during myogenesis. In the present study, qualitative and quantitative changes in the nucleic acid populations of differentiating chicken embryo muscle cells in culture have been examined. Total nucleic acid content per nucleus increased about fivefold in fully developed myotubes as compared to mononucleated myoblasts. The contribution of deoxyribonucleic acid to the total nucleic acid population decreased from 24% in myoblasts to 5% of total nucleic acid in myotubes. Concomitant with the decrement in deoxyribonucleic acid contribution to total nucleic acid was an increase in polyadenylated ribonucleic acid (RNA) content per cell which reached levels in myotubes that were 17-fold higher than those of myoblasts. Specific changes in the RNA population during myogenesis were further investigated by quantitation of the synthetic capacity (messenger RNA levels) per cell for ..cap alpha..- and ..beta..-tropomyosin. Cell-free translation and immunoprecipitation demonstrated an approximately 40-fold increase in messenger RNA levels per nucleus for ..cap alpha..- and ..beta..-tropomyosin after fusion in the terminally differentiated myotubes. Indirect immunofluorescence with affinity-purified tropomyosin antibodies demonstrated the presence of tropomyosin-containing filaments in cells throughout myogenesis. Thus, the tropomyosin genes are constitutively expressed during muscle differentiation through the production of tropomyosin messenger RNA and translation into tropomyosin protein.

  7. Chromosome aberrations in workers exposed to organic solvents: Influence of polymorphisms in xenobiotic-metabolism and DNA repair genes.

    PubMed

    Hoyos-Giraldo, Luz Stella; Carvajal, Silvio; Cajas-Salazar, Nohelia; Ruíz, Martín; Sánchez-Gómez, Adalberto

    2009-06-18

    Organic solvents are widely used as diluents or thinners for oil-paints, gasoline and other organic mixtures. We evaluated chromosome aberrations (CAs) in lymphocytes of 200 workers exposed to organic solvents and 200 referents and the influence of polymorphisms in xenobiotic-metabolism (CYP2E1, GSTM1 and GSTT1) and in DNA repair genes (XRCC1(194) Arg/Trp, XRCC1(280) Arg/His, XRCC1(399) Arg/Gln and XRCC3(241) Thr/Met). Polymorphisms were determined by PCR-RFLP. Poisson regression analysis indicates a significant CA frequency increase in exposed workers, representing a higher risk in relation to the matched referent (RR 2.15, 95% CI 1.21-1.53, p<0.001). The CA frequency in exposed workers was influenced by the polymorphic genotypes: GSTM1 null (RR 1.33, 95% CI 1.31-1.69, p<0.001), XRCC1(194) Arg/Trp, Trp/Trp (RR 1.23, 95% CI 1.08-1.40, p<0.001) and by the wild genotypes CYP2E1 C1/C1 (RR 1.20, 95% CI 1.05-1.37, p<0.001), GSTT1 positive (RR 1.49, 95% CI 1.31-1.69, p<0.001), XRCC1(280) Arg/Arg (RR 1.44, 95% CI 1.26-1.64, p<0.001) and XRCC1(241) Thr/Thr (RR 1.54, 95% CI 1.34-1.76, p=0.001). We contribute to the follow-up predictive value of individual susceptibility biomarkers and their CA frequency influence during occupational organic solvent exposure. We provide tools for surveillance and prevention strategies to reduce potential health risks in countries with a large population of car painters not using protection devices and limited organic solvents use control. PMID:19481674

  8. Hierarchical Clustering of Breast Cancer Methylomes Revealed Differentially Methylated and Expressed Breast Cancer Genes

    PubMed Central

    Lin, I-Hsuan; Chen, Dow-Tien; Chang, Yi-Feng; Lee, Yu-Ling; Su, Chia-Hsin; Cheng, Ching; Tsai, Yi-Chien; Ng, Swee-Chuan; Chen, Hsiao-Tan; Lee, Mei-Chen; Chen, Hong-Wei; Suen, Shih-Hui; Chen, Yu-Cheng; Liu, Tze-Tze; Chang, Chuan-Hsiung; Hsu, Ming-Ta

    2015-01-01

    Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs) and the hypomethylation of the megabase-sized partially methylated domains (PMDs) are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI) was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma) dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation. PMID:25706888

  9. Aberrant promoter methylation of FBLN-3 gene and clinicopathological significance in non-small cell lung carcinoma.

    PubMed

    Wang, Rui; Zhang, You-Wei; Chen, Long-Bang

    2010-08-01

    FBLN-3 has been identified as an antagonist of angiogenesis which modulates cell morphology, growth, adhesion, and motility. In the present study, we investigated the promoter methylation status of FBLN-3 gene in non-small cell lung carcinoma (NSCLC) by methylation-specific PCR and analyzed its correlation with clinicopathological factors. The methylation of FBLN-3 gene promoter was detected in 28 of 65 (43.1%) NSCLC tissue samples and 6 of 65 (9.2%) corresponding non-tumor tissue samples (P<0.05). The methylation of FBLN-3 gene promoter led to the loss of FBLN-3 gene expression in NSCLC. Additionally, FBLN-3 promoter methylation was observed to be correlated with relative poor differentiation, advanced pathological stage and lymph node metastasis of NSCLC patients (P=0.017, 0.0057 or 0.002, respectively), but not with gender, age, histological type, and smoking condition (P>0.05). These results indicated that the loss of FBLN-3 gene induced by promoter methylation might play important roles in the progression of NSCLC and FBLN-3 promoter methylation might be a promising biomarker for early detection of NSCLC. PMID:19913326

  10. Elimination of contaminating cap genes in AAV vector virions reduces immune responses and improves transgene expression in a canine gene therapy model

    PubMed Central

    Wang, Zejing; Halbert, Christine L.; Lee, Donghoon; Butts, Tiffany; Tapscott, Stephen J.; Storb, Rainer; Miller, A. Dusty

    2014-01-01

    Animal and human gene therapy studies utilizing AAV vectors have shown that immune responses to AAV capsid proteins can severely limit transgene expression. The main source of capsid antigen is that associated with the AAV vectors, which can be reduced by stringent vector purification. A second source of AAV capsid proteins is that expressed from cap genes aberrantly packaged into AAV virions during vector production. This antigen source can be eliminated by the use of a cap gene that is too large to be incorporated into an AAV capsid, such as a cap gene containing a large intron (captron gene). Here, we investigated the effects of elimination of cap gene transfer and of vector purification by CsCl gradient centrifugation on AAV vector immunogenicity and expression following intramuscular injection in dogs. We found that both approaches reduced vector immunogenicity, and that combining the two produced the lowest immune responses and highest transgene expression. This combined approach enabled the use of a relatively mild immunosuppressive regimen to promote robust micro-dystrophin gene expression in Duchenne muscular dystrophy-affected dogs. Our study shows the importance of minimizing AAV cap gene impurities and indicates that this improvement in AAV vector production may benefit human applications. PMID:24500525

  11. Posttranscriptional Control of Gene Expression in Yeast

    PubMed Central

    McCarthy, John E. G.

    1998-01-01

    Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5′ untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling in these highly complex expression systems. PMID:9841679

  12. Platelet-derived growth factor alpha receptor gene expression: isolation and characterization of the promoter and upstream regulatory elements.

    PubMed Central

    Wang, C; Stiles, C D

    1994-01-01

    Receptors for the platelet-derived growth factors (PDGFs) are expressed conditionally in developing embryos and adult tissues. Aberrant expression of PDGF receptors is a molecular marker for proliferative disorders such as atherosclerosis, myofibrosis, and malignant astrocytoma. We isolated genomic clones that encompass the 5' end of the mouse PDGF alpha receptor mRNA transcript and extend 10 kb into the upstream flanking region of the gene. Using these clones, we constructed a partial genomic map that locates the promoter and transcription start sites of the gene. One of our genomic clones contains cis-acting regulatory elements that drive expression of reporter gene constructs selectively in cells that express PDGF alpha receptors. Images PMID:8041746

  13. Social regulation of cortisol receptor gene expression

    PubMed Central

    Korzan, Wayne J.; Grone, Brian P.; Fernald, Russell D.

    2014-01-01

    In many social species, individuals influence the reproductive capacity of conspecifics. In a well-studied African cichlid fish species, Astatotilapia burtoni, males are either dominant (D) and reproductively competent or non-dominant (ND) and reproductively suppressed as evidenced by reduced gonadotropin releasing hormone (GnRH1) release, regressed gonads, lower levels of androgens and elevated levels of cortisol. Here, we asked whether androgen and cortisol levels might regulate this reproductive suppression. Astatotilapia burtoni has four glucocorticoid receptors (GR1a, GR1b, GR2 and MR), encoded by three genes, and two androgen receptors (ARα and ARβ), encoded by two genes. We previously showed that ARα and ARβ are expressed in GnRH1 neurons in the preoptic area (POA), which regulates reproduction, and that the mRNA levels of these receptors are regulated by social status. Here, we show that GR1, GR2 and MR mRNAs are also expressed in GnRH1 neurons in the POA, revealing potential mechanisms for both androgens and cortisol to influence reproductive capacity. We measured AR, MR and GR mRNA expression levels in a microdissected region of the POA containing GnRH1 neurons, comparing D and ND males. Using quantitative PCR (qPCR), we found D males had higher mRNA levels of ARα, MR, total GR1a and GR2 in the POA compared with ND males. In contrast, ND males had significantly higher levels of GR1b mRNA, a receptor subtype with a reduced transcriptional response to cortisol. Through this novel regulation of receptor type, neurons in the POA of an ND male will be less affected by the higher levels of cortisol typical of low status, suggesting GR receptor type change as a potential adaptive mechanism to mediate high cortisol levels during social suppression. PMID:25013108

  14. Role of Plasmacytoid Dendritic Cells for Aberrant Class II Expression in Exocrine Glands from Estrogen-Deficient Mice of Healthy Background

    PubMed Central

    Arakaki, Rieko; Nagaoka, Ai; Ishimaru, Naozumi; Yamada, Akiko; Yoshida, Satoko; Hayashi, Yoshio

    2009-01-01

    Although it has been well documented that aberrant major histocompatibility complex class II molecules may contribute to the development of autoimmune disorders, the precise mechanisms responsible for their tissue-specific expression remain unknown. Here we show that estrogen deficiency induces aberrant class II major histocompatibility complex expression in exocrine glands via interactions between epithelial cells and plasmacytoid dendritic cells. Relatively modest but functionally significant expression levels of major histocompatibility complex class II and class II transactivator molecules were observed in the exocrine glands of ovariectomized (Ovx) C57BL/6 (B6) mice, but were not seen in the exocrine glands of control B6 mice. We observed that the salivary dendritic cells adjacent to the apoptotic epithelial cells positive for terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, were activated in Ovx mice, but were not activated in control mice. We obtained evidence that the salivary gland cells express both interferon regulatory factor-1 and class II transactivator type IV molecules in Ovx mice. Salivary gland cells from Ovx mice were also capable of inducing the activation of antigen-specific T cells from OT-II transgenic mice. These findings indicate that estrogen deficiency initiates class II transactivator type IV mRNA expression in exocrine glands via interactions between epithelial cells and plasmacytoid dendritic cells, suggesting that plasmacytoid dendritic cells play a pivotal role in gender-based autoimmune disorders in postmenopausal women. PMID:19359524

  15. Unsupervised fuzzy pattern discovery in gene expression data

    PubMed Central

    2011-01-01

    Background Discovering patterns from gene expression levels is regarded as a classification problem when tissue classes of the samples are given and solved as a discrete-data problem by discretizing the expression levels of each gene into intervals maximizing the interdependence between that gene and the class labels. However, when class information is unavailable, discovering gene expression patterns becomes difficult. Methods For a gene pool with large number of genes, we first cluster the genes into smaller groups. In each group, we use the representative gene, one with highest interdependence with others in the group, to drive the discretization of the gene expression levels of other genes. Treating intervals as discrete events, association patterns of events can be discovered. If the gene groups obtained are crisp gene clusters, significant patterns overlapping different gene clusters cannot be found. This paper presents a new method of “fuzzifying” the crisp gene clusters to overcome such problem. Results To evaluate the effectiveness of our approach, we first apply the above described procedure on a synthetic data set and then a gene expression data set with known class labels. The class labels are not being used in both analyses but used later as the ground truth in a classificatory problem for assessing the algorithm’s effectiveness in fuzzy gene clustering and discretization. The results show the efficacy of the proposed method. The existence of correlation among continuous valued gene expression levels suggests that certain genes in the gene groups have high interdependence with other genes in the group. Fuzzification of a crisp gene cluster allows the cluster to take in genes from other clusters so that overlapping relationship among gene clusters could be uncovered. Hence, previously unknown hidden patterns resided in overlapping gene clusters are discovered. From the experimental results, the high order patterns discovered reveal multiple gene interaction patterns in cancerous tissues not found in normal tissues. It was also found that for the colon cancer experiment, 70% of the top patterns and most of the discriminative patterns between cancerous and normal tissues are among those spanning across different crisp gene clusters. Conclusions We show that the proposed method for analyzing the error-prone microarray is effective even without the presence of tissue class information. A unified framework is presented, allowing fast and accurate pattern discovery for gene expression data. For a large gene set, to discover a comprehensive set of patterns, gene clustering, gene expression discretization and gene cluster fuzzification are absolutely necessary. PMID:21989090