... with an in situ study of mitochondrial DNA replication, will start to provide an unprecedented insight into mitochondrial biogenesis, movement and ...
DTIC Science & Technology
Cell survival and injury repair is facilitated by mitochondrial biogenesis; however, the role of this process in lung repair is unknown. We evaluated mitochondrial biogenesis in the mouse lung in two injuries that cause acute inflammation and in two that cause chronic inflammatio...
EPA Science Inventory
Mitochondrial biogenesis is controlled by signaling networks that relay information to and from the organelles. However, key mitochondrial factors that mediate such pathways and how they contribute to human disease are not understood fully. Here we demonstrate that the rRNA methyltransferase-related human ...
PubMed
... small mitochondria. These data indicate mitochondrial biogenesis in rat liver during postnatal development. The increase ...
... of hypoxia. The adaptive value of mitochondrial biogenesis in hypoxia consists apparently in the following. The occurring ...
Methamphetamine (METH) is an abused drug that may cause psychiatric and neurotoxic damage, including degeneration of monoaminergic terminals and apoptosis of non-monoaminergic cells in Brain. The cellular and molecular mechanisms underlying these METH-induced neurotoxic effects remain to be clarified. In this study, we performed a time course assessment to investigate the effects of METH on ...
Energy Citations Database
The regulation of mitochondrial biogenesis and function in the lactating mammary cell is poorly understood. The goal of this study was to use proteomics to relate temporal changes in mammary cell mitochondrial function during lactation to changes in the proteins that make up this organelle. The hypo...
Technology Transfer Automated Retrieval System (TEKTRAN)
The mitochondrial genome encodes proteins essential for mitochondrial respiration and ATP synthesis. Nuclear gene products, however, are required for the expression of mitochondrial genes and the elaboration of functional mitochondrial protein complexes. We are exploiting a unique collection of maiz...
Mitochondrial biogenesis is a complex process. It necessitates the participation of both the nuclear and the mitochondrial genomes. This process is highly regulated, and mitochondrial content within a cell varies according to energy demand. In the yeast Saccharomyces cerevisiae, the cAMP pathway is involved in the ...
PubMed Central
Mitochondrial dysfunction has been suggested to be a contributing factor of epilepsy, but the underlying mechanisms are not completely explored. Mitochondrial biogenesis is involved in regulation of mitochondrial content, morphology, and function. In the current study, we show mitochondrial ...
... Expression of Oxygen-Binding Proteins in Antarctic Fishes Affecting Nitric Oxide-Mediated Pathways of Angiogenesis and Mitochondrial Biogenesis. ...
NASA Website
The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass) and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or ...
Normal mitochondrial dynamics consist of fission and fusion events giving rise to new mitochondria, a process termed mitochondrial biogenesis. However, several neurodegenerative disorders manifest aberrant mitochondrial dynamics, resulting in morphological abnormalities often associated with ...
Abstract Significance: Parkinson's disease (PD) is a prevalent neurodegenerative disease affecting millions of individuals worldwide. Despite intensive efforts devoted to drug discovery, the disease remains incurable. To provide more effective medical therapy for PD, better understanding of the underlying causes of the disease is clearly necessary. Recent Advances: A broad range of studies ...
Increased oxidative stress and mitochondrial dysfunction in obese adipocytes contribute to adipokine dysregulation, inflammation, and insulin resistance. Through an advanced proteomic analysis, we found that peroxiredoxin 3 (Prx3), a thioredoxin-dependent mitochondrial peroxidase, is highly expressed in 3T3-L1 adipocytes compared to preadipocytes. ...
The transcriptional regulation of mitochondrial biogenesis by normal metabolic adaptation or injury has been clarified over the past decade. Mitochondrial biogenesis and its attendant processes enhance metabolic pathways such as fatty acid oxidation and increase antioxidant defense mechanisms that ameliorate injury ...
It has been known for more than 4 decades that exercise causes increases in skeletal muscle mitochondrial enzyme content and activity (i.e., mitochondrial biogenesis). Increasing evidence now suggests that exercise can induce mitochondrial biogenesis in a wide range of tissues not normally ...
Mitochondrial diseases are a group of heterogeneous pathologies with decreased cellular energy production as a common denominator. Defects in the oxidative phosphorylation (OXPHOS) system, the most frequent one in humans being isolated complex I deficiency (OMIM 252010), underlie this disturbed-energy generation. As biogenesis of OXPHOS complexes is under ...
We report here the functional characterization of an essential Saccharomyces cerevisiae gene, MPR1, coding for a regulatory proteasomal subunit for which the name Rpn11p has been proposed. For this study we made use of the mpr1-1 mutation that causes the following pleiotropic defects. At 24�C growth is delayed on glucose and impaired on glycerol, whereas no growth is seen at 36�C on either ...
Biogenesis of mitochondria depends on the coordinated action of at least six protein translocases present in both mitochondrial membranes. They use different energy sources to drive unidirectional transport of proteins across and into mitochondrial membranes. Here we present an overview on the energetic requirements of different ...
A controlled regulation of mitochondrial mass through either the production (biogenesis) or the degradation (mitochondrial quality control) of the organelle represents a crucial step for proper mitochondrial and cell function. Key steps of mitochondrial biogenesis and ...
In the adult heart, regulation of fatty acid oxidation and mitochondrial genes is controlled by the PPAR? coactivator�1 (PGC-1) family of transcriptional coactivators. However, in response to pathological stressors such as hemodynamic load or ischemia, cardiac myocytes downregulate PGC-1 activity and fatty acid oxidation genes in preference for glucose metabolism pathways. ...
Importin-? is encoded by the Ketel gene in Drosophila. Upon running out of the maternal Importin-? dowry larvae without the Ketel gene slow down and before dying possess symptoms characteristic for mitochondrial cytopathies. Death of the larvae is almost certainly the consequence of ceasing import of proteins, including some of the transcription factors, into the nuclei. We ...
It has been proposed that homocysteine (Hcy)-induces endothelial dysfunction and atherosclerosis by generation of reactive oxygen species (ROS). A previous report has shown that Hcy promotes mitochondrial damage. Considering that oxidative stress can affect mitochondrial biogenesis, we hypothesized that Hcy-induced ROS in endothelial ...
BackgroundDNA damage such as double-stranded DNA breaks (DSBs) has been reported to stimulate mitochondrial biogenesis. However, the underlying mechanism is poorly understood. The major player in response to DSBs is ATM (ataxia telangiectasia mutated). Upon sensing DSBs, ATM is activated through autophosphorylation and phosphorylates a number of substrates ...
Mitochondrial function is dependent upon regulation of biogenesis and dynamics. A number of studies have documented the importance of these organelles in both preimplantation embryos and embryonic stem cells (ESCs), however it remains unclear how mitochondria respond to their immediate microenvironment through modulation of morphology and movement, or ...
Members of the peroxisome proliferator-activated receptor ? coactivator-1 family (i.e. PGC-1?, PGC-1?, and the PGC-1-related coactivator (PRC)) are key regulators of mitochondrial biogenesis and function. These regulators serve as mediators between environmental or endogenous signals and the transcriptional machinery governing ...
Stomatin-like protein 2 (SLP-2) is a widely expressed mitochondrial inner membrane protein of unknown function. Here we show that human SLP-2 interacts with prohibitin-1 and -2 and binds to the mitochondrial membrane phospholipid cardiolipin. Upregulation of SLP-2 expression increases cardiolipin content and the formation of metabolically active ...
Enhanced mitochondrial biogenesis promoted by eNOS activation is believed to play a central role in the beneficial effects of calorie restriction (CR). Since treatment of mice with dinitrophenol (DNP) promotes health and lifespan benefits similar to those observed in CR, we hypothesized that it could also impact biogenesis. We found ...
Dec 6, 2009... of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis ...
Necroptosis represents a form of alternative programmed cell death that is dependent on the kinase RIP1. RIP1-dependent necroptotic death manifests as increased reactive oxygen species (ROS) production in mitochondria and is accompanied by loss of ATP biogenesis and eventual dissipation of mitochondrial membrane potential. Here, we show that tumor necrosis ...
Cardiac performance depends on a fine balance between the work the heart has to perform to satisfy the needs of the body and the energy that it is able to produce. Thus, energy production by oxidative metabolism, the main energy source of the cardiac muscle, has to be strictly regulated to adapt to cardiac work. Mitochondrial biogenesis is the mechanism ...
Mitochondrial quality control is increasingly recognized as an essential element in maintaining optimally functioning tissues. Mitochondrial quality control depends upon a balance between biogenesis and autophagic destruction. Mitochondrial dynamics (fusion and fission) allows for the redistribution of ...
By using a PCR-based screening of a somatic cell hybrid panel and FISH, we have assigned the loci of mitochondrial single-stranded DNA-binding protein (SSBP), mitochondrial transcription factor A (TCF6), and mitochondrial endonuclease G (ENDOG) genes to human chromosomes 7q34, 10q21, and 9q34.1, respectively. The products of these ...
The biogenesis of giant mitochondria in flight muscle of Locusta migratoria (L.) was analyzed at the molecular level. During the 2 weeks between the beginning of the last larval stage and the imago capable of sustained flight, individual mitochondria have been shown to enlarge 30-fold and the fractional mitochondrial volume of muscle cells increases ...
Studies of the dynamics of DNA, RNA and protein synthesis in mitochondria and nuclei of the heart muscles of rats during adaptation to the continuous effect of high altitude hypoxia are reported. A marked increase is indicated in mitochondrial DNA and RNA...
National Technical Information Service (NTIS)
RATIONALE: Erythropoietin (EPO) is often administered to cardiac patients with anemia, particularly from chronic kidney disease, and stimulation of erythropoiesis may stabilize left ventricular and renal function by recruiting protective effects beyond the correction of anemia. O...
This book contains 11 chapters. The chapter titles are: Structure of NADH-Ubiquinone Reductase (Complex I); Structure of the Succinate-Ubiquinone Oxidoreductase (Complex II); Structure of Mitochondrial Ubiquinol-Cytochrome-c Redutase (Complex III); Structure of Cytochrome-c Oxidase; Evolution of a Regulatory Enzyme: Cytochrome-c Oxidase (Complex IV); The Assembly of F/sub ...
One key mechanism for endothelial dysfunction is endothelial NO synthase (eNOS) uncoupling, whereby eNOS generates O(2)(*-) rather than NO because of deficient eNOS cofactor tetrahydrobiopterin (BH4). This study was designed to examine the effect of BH4 deficiency on cardiac morphology and function, as well as the impact of metallothionein (MT) on BH4 deficiency-induced abnormalities, if any. ...
Saturated free fatty acids (FFAs), e.g. palmitate, have long been shown to induce toxicity and cell death in various types of cells. In this study, we demonstrate that cAMP synergistically amplifies the effect of palmitate on the induction of cell death in human hepatocellular carcinoma cell line, HepG2 cells. Elevation of cAMP level in palmitate-treated cells led to enhanced ...
This study describes mitochondrial behaviour during the C2C12 myoblast differentiation program and proposes a proteomic approach to mitochondria integrated with classical morphofunctional and biochemical analyses. Mitochondrial ultrastructure variations were determined by transmission electron microscopy; mitochondrial mass and ...
chaperones work to- gether, along with other proteins, in the processes of iron- sulfur center biogenesis and mitochondrial iron homeostasis (1, 2). These chaperones, the Hsp70 Ssq1, and the J-protein Jac1 are localized are two chaperones, Hsc66, an Hsp70 and Hsc20, a J-type protein (10, 11), along with IscU, the protein
E-print Network
Growth factor activates mitogen-activated protein kinase kinases to promote cell growth. Mitochondrial biogenesis is an integral part of cell growth. How growth factor regulates mitochondrial biogenesis is not fully understood. In this study, we found that mitochondrial mass was specifically ...
Rationale: We previously reported outcome-associated decreases in muscle energetic status and mitochondrial dysfunction in septic patients with multiorgan failure. We postulate that survivors have a greater ability to maintain or recover normal mitochondrial functionality.Objectives: To determine whether mitochondrial ...
Neuronal cell death in a number of neurological disorders is associated with aberrant mitochondrial dynamics and mitochondrial degeneration. However, the triggers for this mitochondrial dysregulation are not known. Here we show excessive mitochondrial fission and ...
Silent mating type information regulator 2 homolog 1 (SIRT1)-mediated peroxisome proliferator-activated receptor gamma coactivator-1? (PGC-1?) deacetylation is potentially key for activating mitochondrial biogenesis. Yet, at the whole muscle level, SIRT1 is not associated with mitochondrial biogenesis (Gurd, BJ, ...
Rationale: The extent, timing, and significance of mitochondrial injury and recovery in bacterial sepsis are poorly characterized, although oxidative and nitrosative mitochondrial damage have been implicated in the development of organ failure.Objectives: To define the relationships between mitochondrial ...
Budding yeast Saccharomyces cerevisiae is widely used to study mitochondrial biogenesis and function. We review some basic properties that make yeast an ideal model organism to investigate various aspects of mitochondrial biology. We discuss genetic features of commonly used yeast strains that are important for ...
-Like Protein 5 Positively Regulates Chaperone Gene Expression in the Mitochondrial Unfolded Protein Response mitochondrial protein misfolding. ubl-5 (RNAi) inhibits the induction of endogenous mitochondrial chaperone of mitochondrial protein misfolding. PROTEIN chaperones are essential to the ...
Chronic cholestasis is characterized by mitochondrial dysfunction, associated with loss of mitochondrial membrane potential, decreased activities of respiratory chain complexes, and ATP production. Our aim was to determine the molecular mechanisms that link long-term cholestasis to mitochondrial dysfunction. We studied a model of ...
Bioactive compounds reported to stimulate mitochondrial biogenesis are linked to many health benefits such increased longevity, improved energy utilization, and protection from reactive oxygen species. Previously studies have shown that mice and rats fed diets lacking in pyrroloquinoline quinone (PQQ) have reduced mitochondrial ...
A number of studies have reported that a high-fat diet induces increases in mitochondrial fatty acid oxidation enzymes in muscle. In contrast, in two recent studies raising plasma free fatty acids (FFA) resulted in a decrease in mitochondria. In this work, we reevaluated the effects of raising FFA on muscle mitochondrial biogenesis and ...
T lymphocyte activation is associated with nitric oxide (NO) production that plays an essential role in multiple T cell functions. NO acts as a messenger, activating soluble guanyl cyclase and participating in the transduction signaling pathways involving cyclic GMP. NO modulates mitochondrial events that are involved in apoptosis and regulates ...
Human Mitochondrial Protein Database (Web, free access)�� The Human Mitochondrial Protein Database (HMPDb) provides comprehensive data on mitochondrial and human nuclear encoded proteins involved in mitochondrial biogenesis and function. This database consolidates information from ...
National Institute of Standards and Technology Data Gateway
Although mitochondrial respiration is decreased in most cancer cells, the role of this decrease in carcinogenesis and cancer progression is still unclear. To better understand this phenomenon, instead of further inhibiting mitochondrial function, we induced mitochondrial biogenesis in transformed cells by ...
CF STOMACH ABERRATION ABIOGENESIS CF BIOGENESIS ABLATING MATERIAL CF PYROLYTIC MATERIAL ABLATING NOSE ABIOGENESIS BIOGENY A-2tt GUIDE TO SUBJECT INDEXES BIOINSTRUNENTATION BIOKINETIC THEORY BIOLOGICAL CELL CF
The importance of mitochondrial biogenesis in the pathogenesis of mitochondrial diseases has been widely recognised but little is known about it with regard to NARP (Neuropathy, Ataxia and Retinitis Pigmentosa) syndrome. Since such knowledge would contribute to the understanding of the pathogenesis of this disease, we designed a study ...
Mitochondria are a common target of toxicity for drugs and other chemicals and result in decreased aerobic metabolism and cell death. In contrast, mitochondrial biogenesis restores cell vitality, and there is a need for new agents to induce biogenesis. Current cell-based models of mitochondrial ...
Mitochondria are a common target of toxicity for drugs and other chemicals, and results in decreased aerobic metabolism and cell death. In contrast, mitochondrial biogenesis restores cell vitality and there is a need for new agents to induce biogenesis. Current cell-based models of mitochondrial ...
Mitochondrial biogenesis is induced in response to cold temperature in many organisms. The effect is particularly pronounced in ectotherms such as fishes, where acclimation to cold temperature increases mitochondrial density. Some polar fishes also have exceptionally high densities of mitochondria. The net effect of increasing ...
1. The present review discusses the potential role of nitric oxide (NO) in the: (i) regulation of skeletal muscle glucose uptake during exercise; and (ii) activation of mitochondrial biogenesis after exercise. 2. We have shown in humans that local infusion of an NO synthase inhibitor during exercise attenuates increases in skeletal muscle glucose uptake ...
The mitochondrial outer membrane contains translocase complexes for the import of precursor proteins. The translocase of the outer membrane complex functions as a general preprotein entry gate, whereas the sorting and assembly machinery complex mediates membrane insertion of ?-barrel proteins of the outer membrane. Several ?-helical outer membrane proteins are known to carry ...
ATP-binding cassette (ABC) transporters are a large superfamily of proteins that mediate substrate translocation across biological membranes. Our goal was to define the intramolecular interactions that contribute to quaternary assembly of a eukaryotic ABC transporter and determine how the architecture of this protein influences its biogenesis within the secretory pathway. ...
Little is known about the biogenesis of tail-anchored (TA) proteins localized to the mitochondrial outer membrane in plant cells. To address this issue, we screened all of the (>500) known and predicted TA proteins in Arabidopsis for those annotated, based on Gene Ontology, to possess mitochondrial...
Iron-sulfur (Fe-S) cluster biogenesis in mitochondria is an essential process and is conserved from yeast to humans. Several proteins with Fe-S cluster cofactors reside in mitochondria, including aconitase [4Fe-4S] and ferredoxin [2Fe-2S]. We found that mitochondria isolated from wild-type yeast contain a pool of apoaconitase and machinery capable of forming new clusters and ...
Mitochondrial biogenesis is a complex process depending on both nuclear and mitochondrial DNA (mtDNA) transcription regulation to tightly coordinate mitochondrial levels and the cell's energy demand. The energy requirements for a cell to support its metabolic function can change in response to varying physiological ...
Mitochondrial diseases are a heterogeneous group of syndromes caused by genetic defects in mitochondrial DNA (mtDNA) or nuclear-encoded mitochondrial genes. They present with a wide range of clinical phenotypes. Myopathy may be the sole or main sign, or merely an incidental finding occurring in the late course of a multisystemic ...
Peroxisome proliferator-activated receptor ?, coactivator 1? (PGC-1?) is the master regulator of mitochondrial biogenesis. PGC-1? expression is under the control of the transcription factor, cAMP-responsive element-binding protein (CREB). In searching for candidate transcription factors that mediate mitochondrial stress-initiated ...
Recent evidence has identified the peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) as a regulator of cardiac energy metabolism and mitochondrial biogenesis. We describe the development of a transgenic system that permits inducible, cardiac-specific overexpression of PGC-1alpha. Expression of the PGC-1alpha transgene in this ...
Phosphorylation of respiratory chain components has emerged as a mode of regulation of mitochondrial energy metabolism, but its mechanisms are still largely unexplored. A recently discovered intramitochondrial signalling pathway links CO2 generated by the Krebs cycle with the respiratory chain, through the action of a mitochondrial ...
Exogenous thyroid hormones are regulators of cellular metabolism that involves, along with other cell structures, mitochondria. Mechanisms of the influence of thyroid hormones on the biogenesis of mtDNA are not fully understood due to their pleiotropic nature. Different ways of regulation of mitochondrial biogenesis by thyroid hormones ...
The biogenesis of mitochondria requires the import of a large number of proteins from the cytosol [1, 2]. Although numerous studies have defined the proteinaceous machineries that mediate mitochondrial protein sorting, little is known about the role of lipids in mitochondrial protein import. Cardiolipin, the signature phospholipid of ...
An experiment was conducted to determine the effects of feeding a moderate level of two different fiber sources on energy metabolites, mitochondrial biogenesis in intestine, liver and muscle, and the expression of some genes that regulate energy metabolism in intestine, liver, muscle, and adipose ti...
The PGC-1 family of regulated coactivators, consisting of PGC-1?, PGC-1? and PRC, plays a central role in a regulatory network governing the transcriptional control of mitochondrial biogenesis and respiratory function. These coactivators target multiple transcription factors including NRF-1, NRF-2 and the orphan nuclear hormone receptor, ERR?, among ...
The report presents the results of a study of the synthesis of DNA, RNA and protein in the nuclei and mitochondria of the heart during the adaptation to intermittent action of hypoxia. The adaptive value of mitochondrial biogenesis in hypoxia consists app...
Use of metal carbonyl-based compounds capable of releasing carbon monoxide (CO) in biological systems have emerged as a potential adjunctive therapy for sepsis via their antioxidant, anti-inflammatory, and antiapoptotic effects. The role of CO in regulation of mitochondrial dysfunction and biogenesis associated with sepsis has not been investigated. In the ...
Skeletal muscle exhibits superb plasticity in response to changes in functional demands. Chronic increases of skeletal muscle contractile activity, such as endurance exercise, lead to a variety of physiological and biochemical adaptations in skeletal muscle, including mitochondrial biogenesis, angiogenesis, and fiber type transformation. These adaptive ...
While it has been known for more than 75 years that physical activity is associated with increased mitochondrial content in muscle, the molecular mechanism for this adaptive process has only recently been elucidated. This brief review examines existing studies that have identified AMPK-activated protein kinase (AMPK) and several other key regulators of ...
Integral proteins in the outer membrane of mitochondria control all aspects of organelle biogenesis, being required for protein import, mitochondrial fission, and, in metazoans, mitochondrial aspects of programmed cell death. How these integral proteins are assembled in the outer membrane had been unclear. In bacteria, Omp85 is an ...
Mitochondrial dysfunction is both a cause and target of reactive oxygen species during ischemia-reperfusion, drug, and toxicant injury. After injury, renal proximal tubular cells (RPTC) recover mitochondrial function by increasing the expression of the master regulator of mitochondrial biogenesis, ...
The spectrum of genetic disorders associated with primary mitochondrial dysfunction ranges from isolated hearing loss to lethal neonatal syndromes. Mitochondrial biogenesis and function relies on the enigmatic interplay of the mitochondrial and nuclear genome and allows for adjustment of energy consumption to ...
Autophagy is characterized by recycling of cellular organelles and can be induced by several stimuli, including nutrient deprivation and oxidative stress. As a major site of free radical production during oxidative phosphorylation, mitochondria are believed to be primary targets of oxidative damage during stress. Our recent study demonstrated that angiotensin II increases cardiac ...
Increased expression of Induced-by-High-Glucose 1 (IHG-1) associates with tubulointerstitial fibrosis in diabetic nephropathy. IHG-1 amplifies TGF-?1 signaling, but the functions of this highly-conserved protein are not well understood. IHG-1 contains a putative mitochondrial-localization domain, and here we report that IHG-1 is specifically localized to mitochondria. IHG-1 ...
Progressive mitochondrial failure is tightly associated with the onset of many age-related human pathologies. This tight connection results from the double-edged sword of mitochondrial respiration, which is responsible for generating both ATP and ROS, as well as from risks that are inherent to mitochondrial ...
Several enzymes of the metabolic pathways responsible for metabolism of cytosolic ribonucleotides and deoxyribonucleotides are located in mitochondria. Studies described in this paper suggest dysfunction of the mitochondria to affect these metabolic pathways and limit the available levels of cytosolic ribonucleotides and deoxyribonucleotides, which in turn can result in ...
Friedreich ataxia is an inherited neurodegenerative disease caused by frataxin deficiency. Frataxin is a conserved mitochondrial protein that plays a role in FeS cluster assembly in mitochondria. FeS clusters are modular cofactors that perform essential functions throughout the cell. They are synthesized by a multistep and multisubunit mitochondrial ...
Biogenesis of respiratory chain complexes depends on the expression of mitochondrial-encoded subunits. Their synthesis occurs on membrane-associated ribosomes and is probably coupled to their membrane insertion. Defects in expression of mitochondrial translation products are among the major causes of mitochondrial ...
Endurance exercise induces mitochondrial biogenesis in skeletal muscle. It has been shown that lipin-1 acts as a transcriptional coactivator in liver, and stimulates gene expression of mitochondrial enzymes. We hypothesized that lipin-1 might be involved in exercise-induced mitochondrial ...
Maintenance of protein quality control and turnover is essential for cellular homeostasis. In plant organelles this biological process is predominantly performed by ATP-dependent proteases. Here, a genetic screen was performed that led to the identification of Arabidopsis thaliana Lon1 protease mutants that exhibit a post-embryonic growth retardation phenotype. Translational fusion to yellow ...
Myocyte differentiation involves complex interactions between signal transduction pathways and transcription factors. The estrogen-related receptors (ERRs) regulate energy substrate uptake, mitochondrial respiration, and biogenesis and may target structural gene programs in striated muscle. However, ERR?'s role in regulating myocyte differentiation is not ...
The protein deacetylase, sirtuin 1 (SIRT1), is a proposed master regulator of exercise-induced mitochondrial biogenesis in skeletal muscle, primarily via its ability to deacetylate and activate peroxisome proliferator-activated receptor-? coactivator-1? (PGC-1?). To investigate regulation of mitochondrial ...
AbstractParkinson's disease (PD) is characterized by early glutathione depletion in the substantia nigra (SN). Among its various functions in the cell, glutathione acts as a substrate for the mitochondrial enzyme glutaredoxin 2 (Grx2). Grx2 is involved in glutathionylation of protein cysteine sulfhydryl residues in the mitochondria. Although monothiol glutathione�dependent ...
Mitochondria are key regulators of cellular energy and mitochondrial biogenesis is an essential component of regulating mitochondria numbers in healthy cells1-3. One approach for monitoring mitochondrial biogenesis is to measure the rate of mitochondrial DNA (mtDNA) ...
The purpose of this study was to outline the timelines of mitochondrial function, oxidative stress and cytochrome c oxidase complex (COX) biogenesis in cardiac muscle with age, and to evaluate whether and how these age-related changes were attenuated by exercise. ICR/CD-1 mice were treated with pifithrin-? (PFT?), sacrificed and studied at different ages; ...
Mitochondria serve a critical role in physiology and disease. The genetic basis of mitochondrial regulation in mammalian cells has not yet been detailed. We performed a large-scale RNAi screen to systematically identify genes that affect mitochondrial abundance and function. This screen revealed previously unrecognized roles for >150 proteins in ...
The inner membrane of the mitochondrion folds inwards, forming the cristae. This folding allows a greater amount of membrane to be packed into the mitochondrion. The data in this study demonstrate that subunits e and g of the mitochondrial ATP synthase are involved in generating mitochondrial cristae morphology. These two subunits are non-essential ...
SummaryMutations and deletions in the mitochondrial genome (mtDNA), as well as instability of the nuclear genome, are involved in multiple human diseases. Here we report that in Saccharomyces cerevisiae, loss of mtDNA leads to nuclear genome instability, through a process of cell cycle arrest and selection we define as a cellular crisis. This crisis is not mediated by the ...
A quantitative proteomic analysis of changes in protein expression accompanying the differentiation of P19 mouse embryonal carcinoma cells into neuron-like cells using isobaric tag technology coupled with LC-MS/MS revealed protein changes reflecting withdrawal from the cell cycle accompanied by a dynamic reorganization of the cytoskeleton and an up-regulation of mitochondrial ...
The major oxygen-dependent function of mitochondria partitions molecular oxygen between oxidative phosphorylation and reactive oxygen species generation. When oxygen becomes limiting, the modulation of mitochondrial function plays an important role in overall biologic adaptation. This review focuses on mitochondrial biology in the heart and skeletal muscle ...
Mitochondria are key regulators of cellular energy and are the focus of a large number of studies examining the regulation of mitochondrial dynamics and biogenesis in healthy and diseased conditions. One approach for monitoring mitochondrial biogenesis is to measure the rate of mitochondrial ...
Mitochondria are key regulators of cellular energy and are the focus of a large number of studies examining the regulation of mitochondrial dynamics and biogenesis in healthy and diseased conditions. One approach to monitoring mitochondrial biogenesis is to measure the rate of mitochondrial DNA ...
Mitochondria are responsible for the generation of ATP to fuel muscle contraction. Hypermetabolic stresses imposed upon muscles can lead to mitochondrial proliferation, but the resulting mitochondria greatly resemble their progenitors. During the mitochondrial biogenesis that accompanies phenotypic adaptation, the stoichiometric ...
Tickled PINK1: Mitochondrial homeostasis and autophagy in recessive Parkinsonism Charleen T. Chu-fusion machinery, but also by regulation of biogenesis, axonal/dendritic transport and autophagy. A working model/respiratory dysfunction and destabilization of calcium homeostasis, which trigger compensatory fission, autophagy
from microcytic anemia with accumulation of iron in mitochondria (34). Likewise, patients of mitochondrial Fe-S clusters, lead to anemia accompanied by mitochondrial iron deposits (36). These examples both iron overload and iron deficiency are incompatible with normal body physiology, mammals regulate
Little is known about the biogenesis of tail-anchored (TA) proteins localized to the mitochondrial outer membrane in plant cells. To address this issue, we screened all of the (>600) known and predicted TA proteins in Arabidopsis thaliana for those annotated, based on Gene Ontology, to possess mitoc...
In the last years the picture of protein import into the mitochondria has become much more complicated in terms of new components and new sorting pathways. These novel findings have also changed views concerning the biogenesis pathway of mitochondrial outer membrane proteins. In addition to proteins anchored with transmembrane alpha-helices, the ...
Mutants which exhibit a constitutive glucose-insensitive expression of respiratory activity were selected by use of a triphenyltetrazolium staining technique. These mutants lack carbon catabolite repression, as was demonstrated by measuring cytochromes, the activity of succinate cytochrome c reduction, total cellular respiration, mitochondrial protein, and DNA synthesis. High ...
Activation of peroxisome proliferator-activated receptor ? coactivator-1? (PGC-1?)-mediated transcription is important for both the determination of mitochondrial content and the induction of mitochondrial biogenesis in skeletal muscle. SIRT1 (silent mating type information regulator 2 homolog 1) deactetylation is proposed as a ...
Eukaryotic cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is a multimeric enzyme of dual genetic origin, whose assembly is a complicated and highly regulated process. COX displays a concerted accumulation of its constitutive subunits. Data obtained from studies performed with yeast mutants indicate that most catalytic core unassembled ...
SummaryEukaryotic cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is a multimeric enzyme of dual genetic origin, whose assembly is a complicated and highly regulated process. COX displays a concerted accumulation of its constitutive subunits. Data obtained from studies performed with yeast mutants indicate that most catalytic core ...
With the extraordinary progress of mitochondrial science and cell biology, novel biochemical pathways have emerged as strategic points of bioenergetic regulation and control. They include mitochondrial fusion, fission and organellar motility along microtubules and microfilaments (mitochondrial dynamics), ...
Alterations in mitochondrial metabolism have been associated with age-related neurodegenerative disorders. This is seen in diseases caused by misfolding of proteins with expanded polyglutamine (polyQ) tracts, such as Huntington's disease. Although evidence of mitochondrial impairment has been extensively documented in patients and disease models, the ...
Aging-associated muscle insulin resistance has been�hypothesized to be due to decreased mitochondrial function, secondary to cumulative free radical damage, leading to increased intramyocellular lipid content. To directly test this hypothesis, we examined both in�vivo and in�vitro mitochondrial function, intramyocellular lipid content, and insulin ...
SUMMARYAging-associated muscle insulin resistance has been hypothesized to be due to decreased mitochondrial function, secondary to cumulative free radical damage, leading to increased intramyocellular lipid content. To directly test this hypothesis we examined both in vivo and in vitro mitochondrial function, intramyocellular lipid content and insulin ...
Mitochondria fulfill a number of essential cellular functions, being recognized that the strict regulation of the structure, function and turnover of these organelles is an immutable control node for the maintenance of neuronal integrity and homeostasis. Many lines of evidence posit that mitochondria constitute a convergence point of preconditioning - a paradigm that affords robust brain tolerance ...
Nitric oxide associated-1 (NOA1) is an evolutionarily conserved guanosine triphosphate (GTP) binding protein that localizes predominantly to mitochondria in mammalian cells. On the basis of bioinformatic analysis, we predicted its possible involvement in ribosomal biogenesis, although this had not been supported by any experimental evidence. Here we determine NOA1 function ...
In Saccharomyces cerevisiae, the mitochondrial inner membrane readily allows transport of cytosolic NAD(+), but not NADPH, to the matrix. Pos5p is the only known NADH kinase in the mitochondrial matrix. The enzyme phosphorylates NADH to NADPH and is the major source of NADPH in the matrix. The importance of mitochondrial NADPH for ...
The pathophysiology underlying mitochondrial dysfunction in insulin-resistant skeletal muscle is incompletely characterized. To further delineate this we investigated the interaction between insulin signaling, mitochondrial regulation, and function in C2C12 myotubes and in skeletal muscle. In myotubes elevated insulin and glucose disrupt insulin signaling, ...
Nitric oxide synthase-2 (NOS2) plays a critical role in reactive nitrogen species generation and cysteine modifications that influence mitochondrial function and signaling during inflammation. Here, we investigated the role of NOS2 in hepatic mitochondrial biogenesis during E. coli peritonitis in mice. NOS2-/- ...
White adipose tissue is an important endocrine organ involved in the control of whole-body metabolism, insulin sensitivity, and food intake. To better understand these functions, 3T3-L1 cell differentiation was studied by using combined proteomic and genomic strategies. The proteomics approach developed here exploits velocity gradient centrifugation as an alternative to isoelectric focusing for ...
G-protein-coupled receptor (GPCR)-kinase interacting protein-1 (GIT1) is a multi-function scaffold protein. However, little is known about its physiological role in the heart. Here we sought to identify the cardiac function of GIT1. Global GIT1 knockout (KO) mice were generated and exhibited significant cardiac hypertrophy that progressed to heart failure. Electron microscopy revealed that the ...
BackgroundBrown adipocytes are specialised in dissipating energy through adaptive thermogenesis, whereas white adipocytes are specialised in energy storage. These essentially opposite functions are possible for two reasons relating to mitochondria, namely expression of uncoupling protein 1 (UCP1) and a remarkably higher mitochondrial abundance in brown ...
Deregulation of mitochondrial function is a common feature in multiple aspects of aging. In addition to playing a role in aging-associated disease, decline in mitochondrial energy metabolism is likely to be important in the development of metabolic disease. Furthermore, altered mitochondrial function is a conserved feature in caloric ...
While specific signalling cascades involved in aging, such as the insulin/IGF-1 pathway, are well-described, the actual metabolic changes they elicit to prolong lifespan remain obscure. Nevertheless, the tuning of cellular metabolism towards maximal survival is the molecular basis of longevity. The eukaryotic mitochondrial prohibitin complex is a macromolecular structure at ...
Aging is the most significant risk factor for a range of degenerative disease such as cardiovascular, neurodegenerative and metabolic disorders. While the cause of aging and its associated diseases is multifactorial, mitochondrial dysfunction has been implicated in the aging process and the onset and progression of age-associated disorders. Recent studies indicate that ...
H9c2 undergoing cardiac differentiation induced by all-trans-retinoic acid were investigated for mitochondria structural features together with the implied functional changes, as a model for the study of mitochondrial development in cardiogenic progenitor cells. As the expression of cardiac markers became detectable, mitochondrial mass increased and ...