Sample records for abi-1 sensitizes activation

  1. Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination.

    PubMed

    Bi, Chao; Ma, Yu; Wu, Zhen; Yu, Yong-Tao; Liang, Shan; Lu, Kai; Wang, Xiao-Fang

    2017-05-01

    It has been known that ABA INSENSITIVE 5 (ABI5) plays a vital role in regulating seed germination. In the present study, we showed that inhibition of the catalase activity with 3-amino-1,2,4-triazole (3-AT) inhibits seed germination of Col-0, abi5 mutants and ABI5-overexpression transgenic lines. Compared with Col-0, the seeds of abi5 mutants showed more sensitive to 3-AT during seed germination, while the seeds of ABI5-overexpression transgenic lines showed more insensitive. H 2 O 2 showed the same effect on seed germination of Col-0, abi5 mutants and ABI5-overexpression transgenic lines as 3-AT. These results suggest that ROS is involved in the seed germination mediated by ABI5. Further, we observed that T-DNA insertion mutants of the three catalase members in Arabidopsis displayed 3-AT-insensitive or -hypersensitive phenotypes during seed germination, suggesting that these catalase members regulate ROS homeostasis in a highly complex way. ABI5 affects reactive oxygen species (ROS) homeostasis by affecting CATALASE expression and catalase activity. Furthermore, we showed that ABI5 directly binds to the CAT1 promoter and activates CAT1 expression. Genetic evidence supports the idea that CAT1 functions downstream of ABI5 in ROS signaling during seed germination. RNA-sequencing analysis indicates that the transcription of the genes involved in ROS metabolic process or genes responsive to ROS stress is impaired in abi5-1 seeds. Additionally, expression changes in some genes correlative to seed germination were showed due to the change in ABI5 expression under 3-AT treatment. Together, all the findings suggest that ABI5 regulates seed germination at least partly by affecting ROS homeostasis.

  2. Abi1 is essential for the formation and activation of a WAVE2 signalling complex.

    PubMed

    Innocenti, Metello; Zucconi, Adriana; Disanza, Andrea; Frittoli, Emanuela; Areces, Liliana B; Steffen, Anika; Stradal, Theresia E B; Di Fiore, Pier Paolo; Carlier, Marie-France; Scita, Giorgio

    2004-04-01

    WAVE2 belongs to a family of proteins that mediates actin reorganization by relaying signals from Rac to the Arp2/3 complex, resulting in lamellipodia protrusion. WAVE2 displays Arp2/3-dependent actin nucleation activity in vitro, and does not bind directly to Rac. Instead, it forms macromolecular complexes that have been reported to exert both positive and negative modes of regulation. How these complexes are assembled, localized and activated in vivo remains to be established. Here we use tandem mass spectrometry to identify an Abi1-based complex containing WAVE2, Nap1 (Nck-associated protein) and PIR121. Abi1 interacts directly with the WHD domain of WAVE2, increases WAVE2 actin polymerization activity and mediates the assembly of a WAVE2-Abi1-Nap1-PIR121 complex. The WAVE2-Abi1-Nap1-PIR121 complex is as active as the WAVE2-Abi1 sub-complex in stimulating Arp2/3, and after Rac activation it is re-localized to the leading edge of ruffles in vivo. Consistently, inhibition of Abi1 by RNA interference (RNAi) abrogates Rac-dependent lamellipodia protrusion. Thus, Abi1 orchestrates the proper assembly of the WAVE2 complex and mediates its activation at the leading edge in vivo.

  3. The NESH/Abi-3-based WAVE2 complex is functionally distinct from the Abi-1-based WAVE2 complex.

    PubMed

    Sekino, Saki; Kashiwagi, Yuriko; Kanazawa, Hitoshi; Takada, Kazuki; Baba, Takashi; Sato, Seiichi; Inoue, Hiroki; Kojima, Masaki; Tani, Katsuko

    2015-10-01

    Abl interactor (Abi) family proteins play significant roles in actin cytoskeleton organization through participation in the WAVE complex. Mammals possess three Abi proteins: Abi-1, Abi-2, and NESH/Abi-3. Abi-1 and Abi-2 were originally identified as Abl tyrosine kinase-binding proteins. It has been disclosed that Abi-1 acts as a bridge between c-Abl and WAVE2, and c-Abl-mediated WAVE2 phosphorylation promotes actin remodeling. We showed previously that NESH/Abi-3 is present in the WAVE2 complex, but neither binds to c-Abl nor promotes c-Abl-mediated phosphorylation of WAVE2. In this study, we characterized NESH/Abi-3 in more detail, and compared its properties with those of Abi-1 and Abi-2. NESH/Abi-3 was ectopically expressed in NIH3T3 cells, in which Abi-1, but not NESH/Abi-3, is expressed. The expression of NESH/Abi-3 caused degradation of endogenous Abi-1, which led to the formation of a NESH/Abi-3-based WAVE2 complex. When these cells were plated on fibronectin-coated dishes, the translocation of WAVE2 to the plasma membrane was significantly reduced and the formation of peripheral lamellipodial structures was disturbed, suggesting that the NESH/Abi-3-based WAVE2 complex was unable to help produce lamellipodial protrusions. Next, Abi-1, Abi-2, or NESH/Abi-3 was expressed in v-src-transformed NIH3T3 cells. Only in NESH/Abi-3-expressed cells did treatment with an Abl kinase inhibitor, imatinib mesylate, or siRNA-mediated knockdown of c-Abl promote the formation of invadopodia, which are ventral membrane protrusions with extracellular matrix degradation activity. Structural studies showed that a linker region between the proline-rich regions and the Src homology 3 (SH3) domain of Abi-1 is crucial for its interaction with c-Abl and c-Abl-mediated phosphorylation of WAVE2. The NESH/Abi-3-based WAVE2 complex is functionally distinct from the Abi-1-based one, and NESH/Abi-3 may be involved in the formation of ventral protrusions under certain conditions.

  4. Effectiveness of the lactococcal abortive infection systems AbiA, AbiE, AbiF and AbiG against P335 type phages.

    PubMed

    Tangney, Mark; Fitzgerald, Gerald F

    2002-04-23

    Four lactococcal abortive infection mechanisms were introduced into strains which were sensitive hosts for P335 type phages and plaque assay experiments performed to assess their effect on five lactococcal bacteriophages from this family. Results indicate that AbiA inhibits all five P335 phages tested, while AbiG affects phiP335 itself and phiQ30 but not the other P335 species phages. AbiA was shown to retard phage Q30 DNA replication as previously reported for other phages. It was also demonstrated that AbiG, previously shown to act at a point after DNA replication in the cases of c2 type and 936 type phages, acts at the level of, or prior to phage Q30 DNA replication. AbiE and AbiF had no effect on the P335 type phages examined.

  5. Role of the adapter protein Abi1 in actin-associated signaling and smooth muscle contraction.

    PubMed

    Wang, Tao; Cleary, Rachel A; Wang, Ruping; Tang, Dale D

    2013-07-12

    Actin filament polymerization plays a critical role in the regulation of smooth muscle contraction. However, our knowledge regarding modulation of the actin cytoskeleton in smooth muscle just begins to accumulate. In this study, stimulation with acetylcholine (ACh) induced an increase in the association of the adapter protein c-Abl interactor 1 (Abi1) with neuronal Wiskott-Aldrich syndrome protein (N-WASP) (an actin-regulatory protein) in smooth muscle cells/tissues. Furthermore, contractile stimulation activated N-WASP in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer efficiency of an N-WASP sensor. Abi1 knockdown by lentivirus-mediated RNAi inhibited N-WASP activation, actin polymerization, and contraction in smooth muscle. However, Abi1 silencing did not affect myosin regulatory light chain phosphorylation at Ser-19 in smooth muscle. In addition, c-Abl tyrosine kinase and Crk-associated substrate (CAS) have been shown to regulate smooth muscle contraction. The interaction of Abi1 with c-Abl and CAS has not been investigated. Here, contractile activation induced formation of a multiprotein complex including c-Abl, CAS, and Abi1. Knockdown of c-Abl and CAS attenuated the activation of Abi1 during contractile activation. More importantly, Abi1 knockdown inhibited c-Abl phosphorylation at Tyr-412 and the interaction of c-Abl with CAS. These results suggest that Abi1 is an important component of the cellular process that regulates N-WASP activation, actin dynamics, and contraction in smooth muscle. Abi1 is activated by the c-Abl-CAS pathway, and Abi1 reciprocally controls the activation of its upstream regulator c-Abl.

  6. Role of the Adapter Protein Abi1 in Actin-associated Signaling and Smooth Muscle Contraction*

    PubMed Central

    Wang, Tao; Cleary, Rachel A.; Wang, Ruping; Tang, Dale D.

    2013-01-01

    Actin filament polymerization plays a critical role in the regulation of smooth muscle contraction. However, our knowledge regarding modulation of the actin cytoskeleton in smooth muscle just begins to accumulate. In this study, stimulation with acetylcholine (ACh) induced an increase in the association of the adapter protein c-Abl interactor 1 (Abi1) with neuronal Wiskott-Aldrich syndrome protein (N-WASP) (an actin-regulatory protein) in smooth muscle cells/tissues. Furthermore, contractile stimulation activated N-WASP in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer efficiency of an N-WASP sensor. Abi1 knockdown by lentivirus-mediated RNAi inhibited N-WASP activation, actin polymerization, and contraction in smooth muscle. However, Abi1 silencing did not affect myosin regulatory light chain phosphorylation at Ser-19 in smooth muscle. In addition, c-Abl tyrosine kinase and Crk-associated substrate (CAS) have been shown to regulate smooth muscle contraction. The interaction of Abi1 with c-Abl and CAS has not been investigated. Here, contractile activation induced formation of a multiprotein complex including c-Abl, CAS, and Abi1. Knockdown of c-Abl and CAS attenuated the activation of Abi1 during contractile activation. More importantly, Abi1 knockdown inhibited c-Abl phosphorylation at Tyr-412 and the interaction of c-Abl with CAS. These results suggest that Abi1 is an important component of the cellular process that regulates N-WASP activation, actin dynamics, and contraction in smooth muscle. Abi1 is activated by the c-Abl-CAS pathway, and Abi1 reciprocally controls the activation of its upstream regulator c-Abl. PMID:23740246

  7. Essential role for Abi1 in embryonic survival and WAVE2 complex integrity.

    PubMed

    Dubielecka, Patrycja M; Ladwein, Kathrin I; Xiong, Xiaoling; Migeotte, Isabelle; Chorzalska, Anna; Anderson, Kathryn V; Sawicki, Janet A; Rottner, Klemens; Stradal, Theresia E; Kotula, Leszek

    2011-04-26

    Abl interactor 1 (Abi1) plays a critical function in actin cytoskeleton dynamics through participation in the WAVE2 complex. To gain a better understanding of the specific role of Abi1, we generated a conditional Abi1-KO mouse model and MEFs lacking Abi1 expression. Abi1-KO cells displayed defective regulation of the actin cytoskeleton, and this dysregulation was ascribed to altered activity of the WAVE2 complex. Changes in motility of Abi1-KO cells were manifested by a decreased migration rate and distance but increased directional persistence. Although these phenotypes did not correlate with peripheral ruffling, which was unaffected, Abi1-KO cells exhibited decreased dorsal ruffling. Western blotting analysis of Abi1-KO cell lysates indicated reduced levels of the WAVE complex components WAVE1 and WAVE2, Nap1, and Sra-1/PIR121. Although relative Abi2 levels were more than doubled in Abi1-KO cells, the absolute Abi2 expression in these cells amounted only to a fifth of Abi1 levels in the control cell line. This finding suggests that the presence of Abi1 is critical for the integrity and stability of WAVE complex and that Abi2 levels are not sufficiently increased to compensate fully for the loss of Abi1 in KO cells and to restore the integrity and function of the WAVE complex. The essential function of Abi1 in WAVE complexes and their regulation might explain the observed embryonic lethality of Abi1-deficient embryos, which survived until approximately embryonic day 11.5 and displayed malformations in the developing heart and brain. Cells lacking Abi1 and the conditional Abi1-KO mouse will serve as critical models for defining Abi1 function.

  8. Essential role for Abi1 in embryonic survival and WAVE2 complex integrity

    PubMed Central

    Dubielecka, Patrycja M.; Ladwein, Kathrin I.; Xiong, Xiaoling; Migeotte, Isabelle; Chorzalska, Anna; Anderson, Kathryn V.; Sawicki, Janet A.; Rottner, Klemens; Stradal, Theresia E.; Kotula, Leszek

    2011-01-01

    Abl interactor 1 (Abi1) plays a critical function in actin cytoskeleton dynamics through participation in the WAVE2 complex. To gain a better understanding of the specific role of Abi1, we generated a conditional Abi1-KO mouse model and MEFs lacking Abi1 expression. Abi1-KO cells displayed defective regulation of the actin cytoskeleton, and this dysregulation was ascribed to altered activity of the WAVE2 complex. Changes in motility of Abi1-KO cells were manifested by a decreased migration rate and distance but increased directional persistence. Although these phenotypes did not correlate with peripheral ruffling, which was unaffected, Abi1-KO cells exhibited decreased dorsal ruffling. Western blotting analysis of Abi1-KO cell lysates indicated reduced levels of the WAVE complex components WAVE1 and WAVE2, Nap1, and Sra-1/PIR121. Although relative Abi2 levels were more than doubled in Abi1-KO cells, the absolute Abi2 expression in these cells amounted only to a fifth of Abi1 levels in the control cell line. This finding suggests that the presence of Abi1 is critical for the integrity and stability of WAVE complex and that Abi2 levels are not sufficiently increased to compensate fully for the loss of Abi1 in KO cells and to restore the integrity and function of the WAVE complex. The essential function of Abi1 in WAVE complexes and their regulation might explain the observed embryonic lethality of Abi1-deficient embryos, which survived until approximately embryonic day 11.5 and displayed malformations in the developing heart and brain. Cells lacking Abi1 and the conditional Abi1-KO mouse will serve as critical models for defining Abi1 function. PMID:21482783

  9. Molecular characterization of a genomic region in a Lactococcus bacteriophage that is involved in its sensitivity to the phage defense mechanism AbiA.

    PubMed

    Dinsmore, P K; Klaenhammer, T R

    1997-05-01

    A spontaneous mutant of the lactococcal phage phi31 that is insensitive to the phage defense mechanism AbiA was characterized in an effort to identify the phage factor(s) involved in sensitivity of phi31 to AbiA. A point mutation was localized in the genome of the AbiA-insensitive phage (phi31A) by heteroduplex analysis of a 9-kb region. The mutation (G to T) was within a 738-bp open reading frame (ORF245) and resulted in an arginine-to-leucine change in the predicted amino acid sequence of the protein. The mutant phi31A-ORF245 reduced the sensitivity of phi31 to AbiA when present in trans, indicating that the mutation in ORF245 is responsible for the AbiA insensitivity of phi31A. Transcription of ORF245 occurs early in the phage infection cycles of phi31 and phi31A and is unaffected by AbiA. Expansion of the phi31 sequence revealed ORF169 (immediately upstream of ORF245) and ORF71 (which ends 84 bp upstream of ORF169). Two inverted repeats lie within the 84-bp region between ORF71 and ORF169. Sequence analysis of an independently isolated AbiA-insensitive phage, phi31B, identified a mutation (G to A) in one of the inverted repeats. A 118-bp fragment from phi31, encompassing the 84-bp region between ORF71 and ORF169, eliminates AbiA activity against phi31 when present in trans, establishing a relationship between AbiA and this fragment. The study of this region of phage phi31 has identified an open reading frame (ORF245) and a 118-bp DNA fragment that interact with AbiA and are likely to be involved in the sensitivity of this phage to AbiA.

  10. Tomato ASR1 abrogates the response to abscisic acid and glucose in Arabidopsis by competing with ABI4 for DNA binding.

    PubMed

    Shkolnik, Doron; Bar-Zvi, Dudy

    2008-05-01

    The manipulation of transacting factors is commonly used to achieve a wide change in the expression of a large number of genes in transgenic plants as a result of a change in the expression of a single gene product. This is mostly achieved by the overexpression of transactivator or repressor proteins. In this study, it is demonstrated that the overexpression of an exogenous DNA-binding protein can be used to compete with the expression of an endogenous transcription factor sharing the same DNA-binding sequence. Arabidopsis was transformed with cDNA encoding tomato abscisic acid stress ripening 1 (ASR1), a sequence-specific DNA protein that has no orthologues in the Arabidopsis genome. ASR1-overexpressing (ASR1-OE) plants display an abscisic acid-insensitive 4 (abi4) phenotype: seed germination is not sensitive to inhibition by abscisic acid (ABA), glucose, NaCl and paclobutrazol. ASR1 binds coupling element 1 (CE1), a cis-acting element bound by the ABI4 transcription factor, located in the ABI4-regulated promoters, including that of the ABI4 gene. Chromatin immunoprecipitation demonstrates that ASR1 is bound in vivo to the promoter of the ABI4 gene in ASR1-OE plants, but not to promoters of genes known to be regulated by the transcription factors ABI3 or ABI5. Real-time polymerase chain reaction (PCR) analysis confirmed that the expression of ABI4 and ABI4-regulated genes is markedly reduced in ASR1-OE plants. Therefore, it is concluded that the abi4 phenotype of ASR1-OE plants is the result of competition between the foreign ASR1 and the endogenous ABI4 on specific promoter DNA sequences. The biotechnological advantage of using this approach in crop plants from the Brassicaceae family to reduce the transactivation activity of ABI4 is discussed.

  11. Expression of Abelson Interactor 1 (Abi1) Correlates with Inflammation, KRAS Mutation and Adenomatous Change during Colonic Carcinogenesis

    PubMed Central

    Steinestel, Konrad; Brüderlein, Silke; Steinestel, Julie; Märkl, Bruno; Schwerer, Michael J.; Arndt, Annette; Kraft, Klaus; Pröpper, Christian; Möller, Peter

    2012-01-01

    Background Abelson interactor 1 (Abi1) is an important regulator of actin dynamics during cytoskeletal reorganization. In this study, our aim was to investigate the expression of Abi1 in colonic mucosa with and without inflammation, colonic polyps, colorectal carcinomas (CRC) and metastases as well as in CRC cell lines with respect to BRAF/KRAS mutation status and to find out whether introduction of KRAS mutation or stimulation with TNFalpha enhances Abi1 protein expression in CRC cells. Methodology/Principal Findings We immunohistochemically analyzed Abi1 protein expression in 126 tissue specimens from 95 patients and in 5 colorectal carcinoma cell lines with different mutation status by western immunoblotting. We found that Abi1 expression correlated positively with KRAS, but not BRAF mutation status in the examined tissue samples. Furthermore, Abi1 is overexpressed in inflammatory mucosa, sessile serrated polyps and adenomas, tubular adenomas, invasive CRC and CRC metastasis when compared to healthy mucosa and BRAF-mutated as well as KRAS wild-type hyperplastic polyps. Abi1 expression in carcinoma was independent of microsatellite stability of the tumor. Abi1 protein expression correlated with KRAS mutation in the analyzed CRC cell lines, and upregulation of Abi1 could be induced by TNFalpha treatment as well as transfection of wild-type CRC cells with mutant KRAS. The overexpression of Abi1 could be abolished by treatment with the PI3K-inhibitor Wortmannin after KRAS transfection. Conclusions/Significance Our results support a role for Abi1 as a downstream target of inflammatory response and adenomatous change as well as oncogenic KRAS mutation via PI3K, but not BRAF activation. Furthermore, they highlight a possible role for Abi1 as a marker for early KRAS mutation in hyperplastic polyps. Since the protein is a key player in actin dynamics, our data encourages further studies concerning the exact role of Abi1 in actin reorganization upon enhanced KRAS/PI3K

  12. The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development.

    PubMed

    Dekkers, Bas J W; He, Hanzi; Hanson, Johannes; Willems, Leo A J; Jamar, Diaan C L; Cueff, Gwendal; Rajjou, Loïc; Hilhorst, Henk W M; Bentsink, Leónie

    2016-02-01

    The seed expressed gene DELAY OF GERMINATION (DOG) 1 is absolutely required for the induction of dormancy. Next to a non-dormant phenotype, the dog1-1 mutant is also characterized by a reduced seed longevity suggesting that DOG1 may affect additional seed processes as well. This aspect however, has been hardly studied and is poorly understood. To uncover additional roles of DOG1 in seeds we performed a detailed analysis of the dog1 mutant using both transcriptomics and metabolomics to investigate the molecular consequences of a dysfunctional DOG1 gene. Further, we used a genetic approach taking advantage of the weak aba insensitive (abi) 3-1 allele as a sensitized genetic background in a cross with dog1-1. DOG1 affects the expression of hundreds of genes including LATE EMBRYOGENESIS ABUNDANT and HEAT SHOCK PROTEIN genes which are affected by DOG1 partly via control of ABI5 expression. Furthermore, the content of a subset of primary metabolites, which normally accumulate during seed maturation, was found to be affected in the dog1-1 mutant. Surprisingly, the abi3-1 dog1-1 double mutant produced green seeds which are highly ABA insensitive, phenocopying severe abi3 mutants, indicating that dog1-1 acts as an enhancer of the weak abi3-1 allele and thus revealing a genetic interaction between both genes. Analysis of the dog1 and dog1 abi3 mutants revealed additional seed phenotypes and therefore we hypothesize that DOG1 function is not limited to dormancy but that it is required for multiple aspects of seed maturation, in part by interfering with ABA signalling components. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  13. Allosteric Inhibition of the nonMyristoylated c-Abl Tyrosine Kinase by Phosphopeptides Derived from Abi1/Hssh3bp1

    PubMed Central

    Xiong, Xiaoling; Cui, Ping; Hossain, Sajjad; Xu, Rong; Warner, Brian; Guo, Xinhua; An, Xiuli; Debnath, Asim K.; Cowburn, David; Kotula, Leszek

    2008-01-01

    Here we report c-Abl kinase inhibition mediated by a phosphotyrosine located in trans in the c-Abl substrate, Abi1. The mechanism, which is pertinent to the nonmyristoylated c-Abl kinase, involves high affinity concurrent binding of the phosphotyrosine pY213 to the Abl SH2 domain and binding of a proximal PXXP motif to the Abl SH3 domain. Abi1 regulation of c-Abl in vivo appears to play a critical role, as demonstrated by inhibition of pY412 phosphorylation of the nonmyristoylated Abl by coexpression of Abi1. Pervanadate-induced c-Abl kinase activity was also reduced upon expression of the wild type Abi1 but not by expression of the Y213 to F213 mutant Abi1 in LNCaP cells, which are naturally deficient in the regulatory pY213. Our findings suggest a novel mechanism by which Abl kinase is regulated in cells. PMID:18328268

  14. Molecular cloning in Arabidopsis thaliana of a new protein phosphatase 2C (PP2C) with homology to ABI1 and ABI2.

    PubMed

    Rodriguez, P L; Leube, M P; Grill, E

    1998-11-01

    We report the cloning of both the cDNA and the corresponding genomic sequence of a new PP2C from Arabidopsis thaliana, named AtP2C-HA (for homology to ABI1/ABI2). The AtP2C-HA cDNA contains an open reading frame of 1536 bp and encodes a putative protein of 511 amino acids with a predicted molecular mass of 55.7 kDa. The AtP2C-HA protein is composed of two domains, a C-terminal PP2C catalytic domain and a N-terminal extension of ca. 180 amino acid residues. The deduced amino acid sequence is 55% and 54% identical to ABI1 and ABI2, respectively. Comparison of the genomic structure of the ABI1, ABI2 and AtP2C-HA genes suggests that they belong to a multigene family. The expression of the AtP2C-HA gene is up-regulated by abscisic acid (ABA) treatment.

  15. Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box.

    PubMed

    Ezcurra, I; Wycliffe, P; Nehlin, L; Ellerström, M; Rask, L

    2000-10-01

    The transcriptional activator ABI3 is a key regulator of gene expression during embryo maturation in crucifers. In monocots, the related VP1 protein regulates the Em promoter synergistically with abscisic acid (ABA). We identified cis-elements in the Brassica napus napin napA promoter mediating regulation by ABI3 and ABA, by analyzing substitution mutation constructs of napA in transgenic tobacco plantlets ectopically expressing ABI3. In transient analysis using particle bombardment of tobacco leaf sections, a tetramer of the distB ABRE (abscisic acid-responsive element) mediated transactivation by ABI3 and ABI3-dependent response to ABA, whereas a tetramer of the composite RY/G complex, containing RY repeats and a G-box, mediated only ABA-independent transactivation by ABI3. Deletion of the conserved B2 and B3 domains of ABI3 abolished transactivation of napA by ABI3. The two domains of ABI3 interact with different cis-elements: B2 is necessary for ABA-independent and ABA-dependent activations through the distB ABRE, whereas B3 interacts with the RY/G complex. Thus B2 mediates the interaction of ABI3 with the protein complex at the ABRE. The regulation of napA by ABI3 differs from Em regulation by VP1, in that the B3 domain of ABI3 is essential for the ABA-dependent regulation of napA.

  16. In vitro binding of Sorghum bicolor transcription factors ABI4 and ABI5 to a conserved region of a GA 2-OXIDASE promoter: possible role of this interaction in the expression of seed dormancy.

    PubMed

    Cantoro, Renata; Crocco, Carlos Daniel; Benech-Arnold, Roberto Luis; Rodríguez, María Verónica

    2013-12-01

    The precise adjustment of the timing of dormancy release according to final grain usage is still a challenge for many cereal crops. Grain sorghum [Sorghum bicolor (L.) Moench] shows wide intraspecific variability in dormancy level and susceptibility to pre-harvest sprouting (PHS). Both embryo sensitivity to abscisic acid (ABA) and gibberellin (GA) metabolism play an important role in the expression of dormancy of the developing sorghum grain. In previous works, it was shown that, simultaneously with a greater embryo sensitivity to ABA and higher expression of SbABA-INSENSITIVE 4 (SbABI4) and SbABA-INSENSITIVE 5 (SbABI5), dormant grains accumulate less active GA4 due to a more active GA catabolism. In this work, it is demonstrated that the ABA signalling components SbABI4 and SbABI5 interact in vitro with a fragment of the SbGA 2-OXIDASE 3 (SbGA2ox3) promoter containing an ABA-responsive complex (ABRC). Both transcription factors were able to bind the promoter, although not simultaneously, suggesting that they might compete for the same cis-acting regulatory sequences. A biological role for these interactions in the expression of dormancy of sorghum grains is proposed: either SbABI4 and/or SbABI5 activate transcription of the SbGA2ox3 gene in vivo and promote SbGA2ox3 protein accumulation; this would result in active degradation of GA4, thus preventing germination of dormant grains. A comparative analysis of the 5'-regulatory region of GA2oxs from both monocots and dicots is also presented; conservation of the ABRC in closely related GA2oxs from Brachypodium distachyon and rice suggest that these species might share the same regulatory mechanism as proposed for grain sorghum.

  17. Dysbindin-1, WAVE2 and Abi-1 form a complex that regulates dendritic spine formation.

    PubMed

    Ito, H; Morishita, R; Shinoda, T; Iwamoto, I; Sudo, K; Okamoto, K; Nagata, K

    2010-10-01

    Genetic variations in dysbindin-1 (dystrobrevin-binding protein-1) are one of the most commonly reported variations associated with schizophrenia. As schizophrenia could be regarded as a neurodevelopmental disorder resulting from abnormalities of synaptic connectivity, we attempted to clarify the function of dysbindin-1 in neuronal development. We examined the developmental change of dysbindin-1 in rat brain by western blotting and found that a 50 kDa isoform is highly expressed during the embryonic stage, whereas a 40 kDa one is detected at postnatal day 11 and increased thereafter. Immunofluorescent analyses revealed that dysbindin-1 is enriched at the spine-like structure of primary cultured rat hippocampal neurons. We identified WAVE2, but not N-WASP, as a binding partner for dysbindin-1. We also found that Abi-1, a binding molecule for WAVE2 involved in spine morphogenesis, interacts with dysbindin-1. Although dysbindin-1, WAVE2 and Abi-1 form a ternary complex, dysbindin-1 promoted the binding of WAVE2 to Abi-1. RNA interference-mediated knockdown of dysbindin-1 led to the generation of abnormally elongated immature dendritic protrusions. The present results indicate possible functions of dysbindin-1 at the postsynapse in the regulation of dendritic spine morphogenesis through the interaction with WAVE2 and Abi-1.

  18. In vitro antioxidant activity of extracts from the leaves of Abies pindrow Royle.

    PubMed

    Gupta, D; Bhardwaj, R; Gupta, R K

    2011-01-01

    Traditionally, the leaves of Abies pindrow Royle are employed as an ayurvedic remedy for fever, hypoglycaemic, respiratory and inflammatory conditions. In this study, dichloromethane, methanol and acetone extracts of A. pindrow leaves were analysed for their phytochemical content and in vitro antioxidant activities. The methanol extract exhibited highest antioxidant activity while acetone extract showed presence of relatively high total phenol and flavonoids contents. The present study provides evidence that extracts of Abies pindrow leaves are a potential source of natural antioxidants and could serve as a base for future drugs.

  19. Inter- and intra-specific variation in drought sensitivity in Abies spec. and its relation to wood density and growth traits

    PubMed Central

    George, Jan-Peter; Schueler, Silvio; Karanitsch-Ackerl, Sandra; Mayer, Konrad; Klumpp, Raphael T.; Grabner, Michael

    2016-01-01

    Understanding drought sensitivity of tree species and its intra-specific variation is required to estimate the effects of climate change on forest productivity, carbon sequestration and tree mortality as well as to develop adaptive forest management measures. Here, we studied the variation of drought reaction of six European Abies species and ten provenances of Abies alba planted in the drought prone eastern Austria. Tree-ring and X-ray densitometry data were used to generate early- and latewood measures for ring width and wood density. Moreover, the drought reaction of species and provenances within six distinct drought events between 1970 and 2011, as identified by the standardized precipitation index, was determined by four drought response measures. The mean reaction of species and provenances to drought events was strongly affected by the seasonal occurrence of the drought: a short, strong drought at the beginning of the growing season resulted in growth reductions up to 50%, while droughts at the end of the growing season did not affect annual increment. Wood properties and drought response measures showed significant variation among Abies species as well as among A. alba provenances. Whereas A. alba provenances explained significant parts in the variation of ring width measures, the Abies species explained significant parts in the variation of wood density parameters. A consistent pattern in drought response across the six drought events was observed only at the inter-specific level, where A. nordmanniana showed the highest resistance and A. cephalonica showed the best recovery after drought. In contrast, differences in drought reaction among provenances were only found for the milder drought events in 1986, 1990, 1993 and 2000 and the ranking of provenances varied at each drought event. This indicates that genetic variation in drought response within A. alba is more limited than among Abies species. Low correlations between wood density parameters and

  20. Functional analysis of the isoforms of an ABI3-like factor of Pisum sativum generated by alternative splicing.

    PubMed

    Gagete, Andrés P; Riera, Marta; Franco, Luis; Rodrigo, M Isabel

    2009-01-01

    At least seven isoforms (PsABI3-1 to PsABI3-7) of a putative, pea ABI3-like factor, originated by alternative splicing, have been identified after cDNA cloning. A similar variability had previously only been described for monocot genes. The full-length isoform, PsABI3-1, contains the typical N-terminal acidic domains and C-terminal basic subdomains, B1 to B3. Reverse transcriptase-PCR analysis revealed that the gene is expressed just in seeds, starting at middle embryogenesis; no gene products are observed in embryo axes after 18 h post-imbibition although they are more persistent in cotyledons. The activity of the isoforms was studied by yeast one-hybrid assays. When yeast was transformed with the isoforms fused to the DNA binding domain of Gal4p, only the polypeptides PsABI3-2 and PsABI3-7 failed to complement the activity of Gal4p. Acidic domains A1 and A2 exhibit transactivating activity, but the former requires a small C-terminal extension to be active. Yeast two-hybrid analysis showed that PsABI3 is able to heterodimerize with Arabidopsis thaliana ABI5, thus proving that PsABI3 is functionally active. The minimum requirement for the interaction PsABI3-AtABI5 is the presence of the subdomain B1 with an extension, 81 amino acids long, at their C-terminal side. Finally, a transient onion transformation assay showed that both the active PsABI3-1 and the inactive PsABI3-2 isoforms are localized to nuclei. Considering that the major isoforms remain approximately constant in developing seeds although their relative proportion varied, the possible role of splicing in the regulatory network of ABA signalling is discussed.

  1. Involvement of the Major Capsid Protein and Two Early-Expressed Phage Genes in the Activity of the Lactococcal Abortive Infection Mechanism AbiT

    PubMed Central

    Labrie, Simon J.; Tremblay, Denise M.; Moisan, Maxim; Villion, Manuela; Magadán, Alfonso H.; Campanacci, Valérie; Cambillau, Christian

    2012-01-01

    The dairy industry uses the mesophilic, Gram-positive, lactic acid bacterium (LAB) Lactococcus lactis to produce an array of fermented milk products. Milk fermentation processes are susceptible to contamination by virulent phages, but a plethora of phage control strategies are available. One of the most efficient is to use LAB strains carrying phage resistance systems such as abortive infection (Abi) mechanisms. Yet, the mode of action of most Abi systems remains poorly documented. Here, we shed further light on the antiviral activity of the lactococcal AbiT system. Twenty-eight AbiT-resistant phage mutants derived from the wild-type AbiT-sensitive lactococcal phages p2, bIL170, and P008 were isolated and characterized. Comparative genomic analyses identified three different genes that were mutated in these virulent AbiT-insensitive phage derivatives: e14 (bIL170 [e14bIL170]), orf41 (P008 [orf41P008]), and orf6 (p2 [orf6p2] and P008 [orf6P008]). The genes e14bIL170 and orf41P008 are part of the early-expressed genomic region, but bioinformatic analyses did not identify their putative function. orf6 is found in the phage morphogenesis module. Antibodies were raised against purified recombinant ORF6, and immunoelectron microscopy revealed that it is the major capsid protein (MCP). Coexpression in L. lactis of ORF6p2 and ORF5p2, a protease, led to the formation of procapsids. To our knowledge, AbiT is the first Abi system involving distinct phage genes. PMID:22820334

  2. Rice ABI5-Like1 Regulates Abscisic Acid and Auxin Responses by Affecting the Expression of ABRE-Containing Genes1[W][OA

    PubMed Central

    Yang, Xi; Yang, Ya-Nan; Xue, Liang-Jiao; Zou, Mei-Juan; Liu, Jian-Ying; Chen, Fan; Xue, Hong-Wei

    2011-01-01

    Abscisic acid (ABA) regulates plant development and is crucial for plant responses to biotic and abiotic stresses. Studies have identified the key components of ABA signaling in Arabidopsis (Arabidopsis thaliana), some of which regulate ABA responses by the transcriptional regulation of downstream genes. Here, we report the functional identification of rice (Oryza sativa) ABI5-Like1 (ABL1), which is a basic region/leucine zipper motif transcription factor. ABL1 is expressed in various tissues and is induced by the hormones ABA and indole-3-acetic acid and stress conditions including salinity, drought, and osmotic pressure. The ABL1 deficiency mutant, abl1, shows suppressed ABA responses, and ABL1 expression in the Arabidopsis abi5 mutant rescued the ABA sensitivity. The ABL1 protein is localized to the nucleus and can directly bind ABA-responsive elements (ABREs; G-box) in vitro. A gene expression analysis by DNA chip hybridization confirms that a large proportion of down-regulated genes of abl1 are involved in stress responses, consistent with the transcriptional activating effects of ABL1. Further studies indicate that ABL1 regulates the plant stress responses by regulating a series of ABRE-containing WRKY family genes. In addition, the abl1 mutant is hypersensitive to exogenous indole-3-acetic acid, and some ABRE-containing genes related to auxin metabolism or signaling are altered under ABL1 deficiency, suggesting that ABL1 modulates ABA and auxin responses by directly regulating the ABRE-containing genes. PMID:21546455

  3. AbiA, a lactococcal abortive infection mechanism functioning in Streptococcus thermophilus.

    PubMed

    Tangney, Mark; Fitzgerald, Gerald F

    2002-12-01

    The lactococcal abortive infection mechanisms AbiA and AbiG were introduced into Streptococcus thermophilus 4035, and a range of phages capable of infecting this host were examined for sensitivity to these mechanisms. AbiA proved effective against six phages when examined at a growth temperature of 30 degrees C but had no effect on any of the phages when tested at 37 or 42 degrees C. AbiG failed to affect any of the S. thermophilus phages at 30, 37, or 42 degrees C.

  4. Rac interacts with Abi-1 and WAVE2 to promote an Arp2/3-dependent actin recruitment during chlamydial invasion.

    PubMed

    Carabeo, Rey A; Dooley, Cheryl A; Grieshaber, Scott S; Hackstadt, Ted

    2007-09-01

    Chlamydiae are Gram-negative obligate intracellular pathogens to which access to an intracellular environment is fundamental to their development. Chlamydial attachment to host cells induces the activation of the Rac GTPase, which is required for the localization of WAVE2 at the sites of chlamydial entry. Co-immunoprecipitation experiments demonstrated that Chlamydia trachomatis infection promoted the interaction of Rac with WAVE2 and Abi-1, but not with IRSp53. siRNA depletion of WAVE2 and Abi-1 abrogated chlamydia-induced actin recruitment and significantly reduced the uptake of the pathogen by the depleted cells. Chlamydia invasion also requires the Arp2/3 complex as demonstrated by its localization to the sites of chlamydial attachment and the reduced efficiency of chlamydial invasion in cells overexpressing the VCA domain of the neural Wiskott-Aldrich syndrome protein. Thus, C. trachomatis activates Rac and promotes its interaction with WAVE2 and Abi-1 to activate the Arp2/3 complex resulting in the induction of actin cytoskeletal rearrangements that are required for invasion.

  5. WRI1-1, ABI5, NF-YA3 and NF-YC2 increase oil biosynthesis in coordination with hormonal signaling during fruit development in oil palm.

    PubMed

    Yeap, Wan-Chin; Lee, Fong-Chin; Shabari Shan, Dilip Kumar; Musa, Hamidah; Appleton, David Ross; Kulaveerasingam, Harikrishna

    2017-07-01

    The oil biosynthesis pathway must be tightly controlled to maximize oil yield. Oil palm accumulates exceptionally high oil content in its mesocarp, suggesting the existence of a unique fruit-specific fatty acid metabolism transcriptional network. We report the complex fruit-specific network of transcription factors responsible for modulation of oil biosynthesis genes in oil palm mesocarp. Transcriptional activation of EgWRI1-1 encoding a key master regulator that activates expression of oil biosynthesis genes, is activated by three ABA-responsive transcription factors, EgNF-YA3, EgNF-YC2 and EgABI5. Overexpression of EgWRI1-1 and its activators in Arabidopsis accelerated flowering, increased seed size and oil content, and altered expression levels of oil biosynthesis genes. Protein-protein interaction experiments demonstrated that EgNF-YA3 interacts directly with EgWRI1-1, forming a transcription complex with EgNF-YC2 and EgABI5 to modulate transcription of oil biosynthesis pathway genes. Furthermore, EgABI5 acts downstream of EgWRKY40, a repressor that interacts with EgWRKY2 to inhibit the transcription of oil biosynthesis genes. We showed that expression of these activators and repressors in oil biosynthesis can be induced by phytohormones coordinating fruit development in oil palm. We propose a model highlighting a hormone signaling network coordinating fruit development and fatty acid biosynthesis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  6. Hybridization of a Rocky Mountain fir (Abies concolor) and a Mexican fir (Abies religiosa).

    Treesearch

    J.B. St. Clair; W.B. Critchfield

    1988-01-01

    Interspecific crosses of Abies religiosa (HBK.) Schlecht. & Cham. (oyamel) with Abies concolor (Gord. & Glend.) Lindle. ex Hildebr. var. concolor (white fir) and Abies magnifica A. Murr. (California red fir) were undertaken to explore the relationships between these species. The...

  7. Hybridization of a Rocky Mountain fir (Abies concolor) and a Mexican fir (Abies religiosa)

    Treesearch

    J. B. St. Clair; W. B. Critchfield

    1988-01-01

    Interspecific crosses of Abies religiosa (HBK.) Schlecht. & Cham, (oyamel) with Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. var. concolor (white fir) and Abies magnifica A. Murr. (California red fir) were undertaken to explore the relationships between these species. The cross...

  8. ABI4 Regulates Primary Seed Dormancy by Regulating the Biogenesis of Abscisic Acid and Gibberellins in Arabidopsis

    PubMed Central

    Shu, Kai; Zhang, Huawei; Wang, Shengfu; Chen, Mingluan; Wu, Yaorong; Tang, Sanyuan; Liu, Chunyan; Feng, Yuqi; Cao, Xiaofeng; Xie, Qi

    2013-01-01

    Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy, requires further elucidation. Here, we report that ABI4 positively regulates primary seed dormancy, while negatively regulating cotyledon greening, by mediating the biogenesis of ABA and GA. Seeds of the Arabidopsis abi4 mutant that were subjected to short-term storage (one or two weeks) germinated significantly more quickly than Wild-Type (WT), and abi4 cotyledons greened markedly more quickly than WT, while the rates of germination and greening were comparable when the seeds were subjected to longer-term storage (six months). The ABA content of dry abi4 seeds was remarkably lower than that of WT, but the amounts were comparable after stratification. Consistently, the GA level of abi4 seeds was increased compared to WT. Further analysis showed that abi4 was resistant to treatment with paclobutrazol (PAC), a GA biosynthesis inhibitor, during germination, while OE-ABI4 was sensitive to PAC, and exogenous GA rescued the delayed germination phenotype of OE-ABI4. Analysis by qRT-PCR showed that the expression of genes involved in ABA and GA metabolism in dry and germinating seeds corresponded to hormonal measurements. Moreover, chromatin immunoprecipitation qPCR (ChIP-qPCR) and transient expression analysis showed that ABI4 repressed CYP707A1 and CYP707A2 expression by directly binding to those promoters, and the ABI4 binding elements are essential for this repression. Accordingly, further genetic analysis showed that abi4 recovered the delayed germination phenotype of cyp707a1 and cyp707a2 and further, rescued the non-germinating phenotype of ga1-t. Taken together, this study suggests that ABI4 is a key factor that

  9. Abelson Interactor 1 (Abi1) and Its Interaction with Wiskott-Aldrich Syndrome Protein (Wasp) Are Critical for Proper Eye Formation in Xenopus Embryos*

    PubMed Central

    Singh, Arvinder; Winterbottom, Emily F.; Ji, Yon Ju; Hwang, Yoo-Seok; Daar, Ira O.

    2013-01-01

    Abl interactor 1 (Abi1) is a scaffold protein that plays a central role in the regulation of actin cytoskeleton dynamics as a constituent of several key protein complexes, and homozygous loss of this protein leads to embryonic lethality in mice. Because this scaffold protein has been shown in cultured cells to be a critical component of pathways controlling cell migration and actin regulation at cell-cell contacts, we were interested to investigate the in vivo role of Abi1 in morphogenesis during the development of Xenopus embryos. Using morpholino-mediated translation inhibition, we demonstrate that knockdown of Abi1 in the whole embryo, or specifically in eye field progenitor cells, leads to disruption of eye morphogenesis. Moreover, signaling through the Src homology 3 domain of Abi1 is critical for proper movement of retinal progenitor cells into the eye field and their appropriate differentiation, and this process is dependent upon an interaction with the nucleation-promoting factor Wasp (Wiskott-Aldrich syndrome protein). Collectively, our data demonstrate that the Abi1 scaffold protein is an essential regulator of cell movement processes required for normal eye development in Xenopus embryos and specifically requires an Src homology 3 domain-dependent interaction with Wasp to regulate this complex morphogenetic process. PMID:23558677

  10. General Toxicity and Antifungal Activity of a New Dental Gel with Essential Oil from Abies Sibirica L

    PubMed Central

    Noreikaitė, Aurelija; Ayupova, Rizvangul; Satbayeva, Elmira; Seitaliyeva, Aida; Amirkulova, Marzhan; Pichkhadze, Guram; Datkhayev, Ubaidilla; Stankeviandccaron;ius, Edgaras

    2017-01-01

    Background The aim of this study was to analyze the antifungal activity and the general toxicity of a new dental gel containing essential oil from the tree Abies sibirica L., which grows in the Republic of Kazakhstan. Material/Methods The essential oil from Abies sibirica L. was obtained by microwave heating method using the STARTE Microwave Extraction System. Adjutants used to prepare the oil were carbomer 974P, glycerin, polysorbate 80, xylitol, triethanolamine, and purified water, all allowed for medical usage. The antifungal activity of the essential oil was assessed by monitoring the optical density of Candida albicans in a microplate reader. The safety was determined by analyzing the acute and subacute toxicity. Results The essential oil obtained by the microwave heating method revealed a higher antifungal activity in comparison with the essential oil obtained by the steam distillation method. No obvious changes were detected in guinea pigs following cutaneous application of the gel. Enteral administration of the essential oil caused minimal functional and histological changes in mice after 4 weeks. The new harmless dental gel containing pine oil from Abies sibirica L. was provided for the purposes of this particular clinical research. Conclusions The high antifungal activity of the gel is the basis for more in-depth studies on its safety and pharmacological activity. PMID:28132065

  11. General Toxicity and Antifungal Activity of a New Dental Gel with Essential Oil from Abies Sibirica L.

    PubMed

    Noreikaitė, Aurelija; Ayupova, Rizvangul; Satbayeva, Elmira; Seitaliyeva, Aida; Amirkulova, Marzhan; Pichkhadze, Guram; Datkhayev, Ubaidilla; Stankevičius, Edgaras

    2017-01-29

    BACKGROUND The aim of this study was to analyze the antifungal activity and the general toxicity of a new dental gel containing essential oil from the tree Abies sibirica L., which grows in the Republic of Kazakhstan. MATERIAL AND METHODS The essential oil from Abies sibirica L. was obtained by microwave heating method using the STARTE Microwave Extraction System. Adjutants used to prepare the oil were carbomer 974P, glycerin, polysorbate 80, xylitol, triethanolamine, and purified water, all allowed for medical usage. The antifungal activity of the essential oil was assessed by monitoring the optical density of Candida albicans in a microplate reader. The safety was determined by analyzing the acute and subacute toxicity. RESULTS The essential oil obtained by the microwave heating method revealed a higher antifungal activity in comparison with the essential oil obtained by the steam distillation method. No obvious changes were detected in guinea pigs following cutaneous application of the gel. Enteral administration of the essential oil caused minimal functional and histological changes in mice after 4 weeks. The new harmless dental gel containing pine oil from Abies sibirica L. was provided for the purposes of this particular clinical research. CONCLUSIONS The high antifungal activity of the gel is the basis for more in-depth studies on its safety and pharmacological activity.

  12. A WAVE2-Abi1 complex mediates CSF-1-induced F-actin-rich membrane protrusions and migration in macrophages.

    PubMed

    Kheir, Wassim Abou; Gevrey, Jean-Claude; Yamaguchi, Hideki; Isaac, Beth; Cox, Dianne

    2005-11-15

    Colony-stimulating factor 1 (CSF-1) is an important physiological chemoattractant for macrophages. The mechanisms by which CSF-1 elicits the formation of filamentous actin (F-actin)-rich membrane protrusions and induces macrophage migration are not fully understood. In particular, very little is known regarding the contribution of the different members of the Wiskott-Aldrich Syndrome protein (WASP) family of actin regulators in response to CSF-1. Although a role for WASP itself in macrophage chemotaxis has been previously identified, no data was available regarding the function of WASP family verprolin-homologous (WAVE) proteins in this cell type. We found that WAVE2 was the predominant isoform to be expressed in primary macrophages and in cells derived from the murine monocyte/macrophage RAW264.7 cell line (RAW/LR5). CSF-1 treatment of macrophages resulted in WAVE2 accumulation in F-actin-rich protrusions induced by CSF-1. Inhibition of WAVE2 function by expressing a dominant-negative mutant or introducing anti-WAVE2 antibodies in RAW/LR5 cells, as well as reduction of endogenous WAVE2 expression by RNA-mediated interference (RNAi), resulted in a significant reduction of CSF-1-elicited F-actin protrusions. WAVE2 was found in a protein complex together with Abelson kinase interactor 1 (Abi1) in resting or stimulated cells. Both WAVE2 and Abi1 were recruited to and necessary for the formation of F-actin protrusions in response to CSF-1. Reducing the levels of WAVE2, directly or by targeting Abi1, resulted in an impaired cell migration to CSF-1. Altogether these data identify a WAVE2-Abi1 complex crucial for the normal actin cytoskeleton reorganization and migration of macrophages in response to CSF-1.

  13. The efficacy of self-management programmes for increasing physical activity in community-dwelling adults with acquired brain injury (ABI): a systematic review

    PubMed Central

    2014-01-01

    Background Acquired brain injury (ABI), often arising from stroke or trauma, is a common cause of long-term disability, physical inactivity and poor health outcomes globally. Individuals with ABI face many barriers to increasing physical activity, such as impaired mobility, access to services and knowledge regarding management of physical activity. Self-management programmes aim to build skills to enable an individual to manage their condition, including their physical activity levels, over a long period of time. Programme delivery modes can include traditional face-to-face methods, or remote delivery, such as via the Internet. However, it is unknown how effective these programmes are at specifically improving physical activity in community-dwelling adults with ABI, or how effective and acceptable remote delivery of self-management programmes is for this population. Methods/Design We will conduct a comprehensive search for articles indexed on MEDLINE, EMBASE, CINAHL, PsychINFO, AMED, Cochrane Central Register of Controlled Trials (CENTRAL), PEDro and Science Citation Index Expanded (SCI-EXPANDED) databases that assess the efficacy of a self-management intervention, which aims to enhance levels of physical activity in adults living in the community with ABI. Two independent reviewers will screen studies for eligibility, assess risk of bias, and extract relevant data. Where possible, a meta-analysis will be performed to calculate the overall effect size of self-management interventions on physical activity levels and on outcomes associated with physical activity. A comparison will also be made between face-to-face and remote delivery modes of self-management programmes, in order to examine efficacy and acceptability. A content analysis of self-management programmes will also be conducted to compare aspects of the intervention that are associated with more favourable outcomes. Discussion This systematic review aims to review the efficacy of self-management programmes

  14. The efficacy of self-management programmes for increasing physical activity in community-dwelling adults with acquired brain injury (ABI): a systematic review.

    PubMed

    Jones, Taryn M; Hush, Julia M; Dear, Blake F; Titov, Nickolai; Dean, Catherine M

    2014-04-21

    Acquired brain injury (ABI), often arising from stroke or trauma, is a common cause of long-term disability, physical inactivity and poor health outcomes globally. Individuals with ABI face many barriers to increasing physical activity, such as impaired mobility, access to services and knowledge regarding management of physical activity. Self-management programmes aim to build skills to enable an individual to manage their condition, including their physical activity levels, over a long period of time. Programme delivery modes can include traditional face-to-face methods, or remote delivery, such as via the Internet. However, it is unknown how effective these programmes are at specifically improving physical activity in community-dwelling adults with ABI, or how effective and acceptable remote delivery of self-management programmes is for this population. We will conduct a comprehensive search for articles indexed on MEDLINE, EMBASE, CINAHL, PsychINFO, AMED, Cochrane Central Register of Controlled Trials (CENTRAL), PEDro and Science Citation Index Expanded (SCI-EXPANDED) databases that assess the efficacy of a self-management intervention, which aims to enhance levels of physical activity in adults living in the community with ABI. Two independent reviewers will screen studies for eligibility, assess risk of bias, and extract relevant data. Where possible, a meta-analysis will be performed to calculate the overall effect size of self-management interventions on physical activity levels and on outcomes associated with physical activity. A comparison will also be made between face-to-face and remote delivery modes of self-management programmes, in order to examine efficacy and acceptability. A content analysis of self-management programmes will also be conducted to compare aspects of the intervention that are associated with more favourable outcomes. This systematic review aims to review the efficacy of self-management programmes aimed at increasing physical activity

  15. The BABY BOOM Transcription Factor Activates the LEC1-ABI3-FUS3-LEC2 Network to Induce Somatic Embryogenesis1[OPEN

    PubMed Central

    Weemen, Mieke

    2017-01-01

    Somatic embryogenesis is an example of induced cellular totipotency, where embryos develop from vegetative cells rather than from gamete fusion. Somatic embryogenesis can be induced in vitro by exposing explants to growth regulators and/or stress treatments. The BABY BOOM (BBM) and LEAFY COTYLEDON1 (LEC1) and LEC2 transcription factors are key regulators of plant cell totipotency, as ectopic overexpression of either transcription factor induces somatic embryo formation from Arabidopsis (Arabidopsis thaliana) seedlings without exogenous growth regulators or stress treatments. Although LEC and BBM proteins regulate the same developmental process, it is not known whether they function in the same molecular pathway. We show that BBM transcriptionally regulates LEC1 and LEC2, as well as the two other LAFL genes, FUSCA3 (FUS3) and ABSCISIC ACID INSENSITIVE3 (ABI3). LEC2 and ABI3 quantitatively regulate BBM-mediated somatic embryogenesis, while FUS3 and LEC1 are essential for this process. BBM-mediated somatic embryogenesis is dose and context dependent, and the context-dependent phenotypes are associated with differential LAFL expression. We also uncover functional redundancy for somatic embryogenesis among other Arabidopsis BBM-like proteins and show that one of these proteins, PLETHORA2, also regulates LAFL gene expression. Our data place BBM upstream of other major regulators of plant embryo identity and totipotency. PMID:28830937

  16. Department of Defense (DOD) Automated Biometric Identification System (ABIS) Version 1.2: Initial Operational Test and Evaluation Report

    DTIC Science & Technology

    2015-05-01

    Director, Operational Test and Evaluation Department of Defense (DOD) Automated Biometric Identification System (ABIS) Version 1.2 Initial...Operational Test and Evaluation Report May 2015 This report on the Department of Defense (DOD) Automated Biometric Identification System...COVERED - 4. TITLE AND SUBTITLE Department of Defense (DOD) Automated Biometric Identification System (ABIS) Version 1.2 Initial Operational Test

  17. A conifer ABI3-interacting protein plays important roles during key transitions of the plant life cycle.

    PubMed

    Zeng, Ying; Zhao, Tiehan; Kermode, Allison R

    2013-01-01

    ABI3 (for ABSCISIC ACID INSENSITIVE3), a transcription factor of the abscisic acid signal transduction pathway, plays a major role during seed development, dormancy inception, and dormancy maintenance. This protein appears to also function in meristematic and vegetative plant tissues and under certain stress conditions. We have isolated the ABI3 gene ortholog (CnABI3) from yellow cedar (Callitropsis nootkatensis) and found that it was functionally similar to other ABI3 genes of angiosperms. Here, we report that using a yeast (Saccharomyces cerevisiae) two-hybrid approach, we have identified another protein of yellow cedar (CnAIP2; for CnABI3 INTERACTING PROTEIN2) that physically interacts with CnABI3. Functional analyses revealed that CnAIP2 plays important roles during key transitions in the plant life cycle: (1) CnAIP2 impaired seed development and reduced seed dormancy; (2) CnAIP2 promoted root development, particularly the initiation of lateral roots, and the CnAIP2 gene promoter was exquisitely auxin sensitive; and (3) CnAIP2 promoted the transition from vegetative growth to reproductive initiation (i.e. flowering). The nature of the effects of CnAIP2 on these processes and other evidence place CnAIP2 in the category of a "global" regulator, whose actions are antagonistic to those of ABI3.

  18. A leucine repeat motif in AbiA is required for resistance of Lactococcus lactis to phages representing three species.

    PubMed

    Dinsmore, P K; O'Sullivan, D J; Klaenhammer, T R

    1998-05-28

    The abiA gene encodes an abortive bacteriophage infection mechanism that can protect Lactococcus species from infection by a variety of bacteriophages including three unrelated phage species. Five heptad leucine repeats suggestive of a leucine zipper motif were identified between residues 232 and 266 in the predicted amino acid sequence of the AbiA protein. The biological role of residues in the repeats was investigated by incorporating amino acid substitutions via site-directed mutagenesis. Each mutant was tested for phage resistance against three phages, phi 31, sk1, and c2, belonging to species P335, 936, and c2, respectively. The five residues that comprise the heptad repeats were designated L234, L242, A249, L256, and L263. Three single conservative mutations of leucine to valine in positions L235, L242, and L263 and a double mutation of two leucines (L235 and L242) to valines did not affect AbiA activity on any phages tested. Non-conservative single substitutions of charged amino acids for three of the leucines (L235, L242, and L256) virtually eliminated AbiA activity on all phages tested. Substitution of the alanine residue in the third repeat (A249) with a charged residue did not affect AbiA activity. Replacement of L242 with an alanine elimination phage resistance against phi 31, but partial resistance to sk1 and c2 remained. Two single proline substitutions for leucines L242 and L263 virtually eliminated AbiA activity against all phages, indicating that the predicted alpha-helical structure of this region is important. Mutations in an adjacent region of basic amino acids had various effects on phage resistance, suggesting that these basic residues are also important for AbiA activity. This directed mutagenesis analysis of AbiA indicated that the leucine repeat structure is essential for conferring phage resistance against three species of lactococcal bacteriophages.

  19. AFP2 as the novel regulator breaks high-temperature-induced seeds secondary dormancy through ABI5 and SOM in Arabidopsis thaliana.

    PubMed

    Chang, Guanxiao; Wang, Chuntao; Kong, Xiangxiang; Chen, Qian; Yang, Yongping; Hu, Xiangyang

    2018-06-18

    Imbibed seeds monitor environmental and endogenous signals to break dormancy and initiate growth under appropriate conditions. In Arabidopsis thaliana, high temperature (HT) induces secondary seed dormancy, but the underlying mechanism remains unclear. In this study, we found that the abi5-1 mutant was insensitive to high temperature, whereas plants overexpressing ABI5 displayed sensitivity. We then identified ABA-insensitive five-binding protein 2 (AFP2), which interacts with ABI5 and is involved in HT-induced secondary seed dormancy. Under HT stress, the loss-of-function afp2 mutant showed lower seeds germination frequency, reversely, AFP2 overexpressing lines (OE-AFP2) showed high germination frequency. Similar to the abi5 mutant, the crossed OE-AFP2 abi5 or afp2 abi5 lines showed high germination under HT, suggesting that ABI5 is epistatic to AFP2. SOM is reported to negatively regulate seeds germination by altering GA/ABA metabolism, here we found that AFP2 and ABI5 altered SOM transcription. Specifically, overexpressing AFP2 suppressed SOM transcription, resulting in high expression of GA biosynthesis-related genes and low expression of ABA biosynthesis-related genes, ultimately promoting seed germination under HT. Thus, our data demonstrate that AFP2 is a novel regulator to control HT-induced secondary seed dormancy through ABI5 and SOM. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Experiences from Auditory Brainstem Implantation (ABIs) in four paediatric patients.

    PubMed

    Lundin, Karin; Stillesjö, Fredrik; Nyberg, Gunnar; Rask-Andersen, Helge

    2016-01-01

    Indications for auditory brainstem implants (ABIs) have been widened from patients with neurofibromatosis type 2 (NF2) to paediatric patients with congenital cochlear malformations, cochlear nerve hypoplasia/aplasia, or cochlear ossification after meningitis. We present four ABI surgeries performed in children at Uppsala University Hospital in Sweden since 2009. Three children were implanted with implants from Cochlear Ltd. (Lane Cove, Australia) and one child with an implant from MedEl GMBH (Innsbruck, Austria). A boy with Goldenhar syndrome was implanted with a Cochlear Nucleus ABI24M at age 2 years (patient 1). Another boy with CHARGE syndrome was implanted with a Cochlear Nucleus ABI541 at age 2.5 years (patient 2). Another boy with post-ossification meningitis was implanted with a Cochlear Nucleus ABI24M at age 4 years (patient 3). A girl with cochlear aplasia was implanted with a MedEl Synchrony ABI at age 3 years (patient 4). In patients 1, 2, and 3, the trans-labyrinthine approach was used, and in patient 4 the retro-sigmoid approach was used. Three of the four children benefited from their ABIs and use it full time. Two of the full time users had categories of auditory performance (CAP) score of 4 at their last follow up visit (6 and 2.5 years postoperative) which means they can discriminate consistently any combination of two of Ling's sounds. One child has not been fully evaluated yet, but is a full time user and had CAP 2 (responds to speech sounds) after 3 months of ABI use. No severe side or unpleasant stimulation effects have been observed so far. There was one case of immediate electrode migration and one case of implant device failure after 6.5 years. ABI should be considered as an option in the rehabilitation of children with similar diagnoses.

  1. Abelson-interactor-1 promotes WAVE2 membrane translocation and Abelson-mediated tyrosine phosphorylation required for WAVE2 activation.

    PubMed

    Leng, Yan; Zhang, Jinyi; Badour, Karen; Arpaia, Enrico; Freeman, Spencer; Cheung, Pam; Siu, Michael; Siminovitch, Katherine

    2005-01-25

    WAVE2 is a member of the Wiskott-Aldrich syndrome protein family of cytoskeletal regulatory proteins shown to link Rac activation to actin remodeling via induction of Arp 2/3 activity. WAVE2 is thought to be regulated by its positioning in a macromolecular complex also containing the Abelson-(Abl) interactor-1 (Abi-1) adaptor, but the molecular basis and biologic relevance of WAVE2 inclusion in this complex are ill defined. Here we show that Abi-1 binding to WAVE2 is mediated by discrete motifs in the Abi-1 coiled-coil and WAVE2 WAVE-homology domains and increases markedly in conjunction with Abi-1-WAVE2 translocation and colocalization at the leading edge in B16F1 cells after fibronectin stimulation. Abi-1 also couples WAVE2 to Abl after cell stimulation, an interaction that triggers Abl membrane translocation with WAVE2, Abi-1, and activated Rac, as well as Abl-mediated tyrosine phosphorylation and WAVE2 activation. By contrast, mutation of tyrosine residue Y150, identified here as the major site of Abl-mediated WAVE2 tyrosine phosphorylation, as well as disruption of WAVE2-Abi-1 binding, impairs induction of WAVE2-driven actin polymerization and its membrane translocation in association with activated Rac. Similarly, WAVE2 tyrosine phosphorylation and induction of membrane actin rearrangement are abrogated in fibroblasts lacking the Abl family kinase. Together, these data reveal that Abi-1-mediated coupling of Abl to WAVE2 promotes Abl-evoked WAVE2 tyrosine phosphorylation required to link WAVE2 with activated Rac and with actin polymerization and remodeling at the cell periphery.

  2. Large-scale disturbance legacies and the climate sensitivity of primary Picea abies forests.

    PubMed

    Schurman, Jonathan S; Trotsiuk, Volodymyr; Bače, Radek; Čada, Vojtěch; Fraver, Shawn; Janda, Pavel; Kulakowski, Dominik; Labusova, Jana; Mikoláš, Martin; Nagel, Thomas A; Seidl, Rupert; Synek, Michal; Svobodová, Kristýna; Chaskovskyy, Oleh; Teodosiu, Marius; Svoboda, Miroslav

    2018-05-01

    Determining the drivers of shifting forest disturbance rates remains a pressing global change issue. Large-scale forest dynamics are commonly assumed to be climate driven, but appropriately scaled disturbance histories are rarely available to assess how disturbance legacies alter subsequent disturbance rates and the climate sensitivity of disturbance. We compiled multiple tree ring-based disturbance histories from primary Picea abies forest fragments distributed throughout five European landscapes spanning the Bohemian Forest and the Carpathian Mountains. The regional chronology includes 11,595 tree cores, with ring dates spanning the years 1750-2000, collected from 560 inventory plots in 37 stands distributed across a 1,000 km geographic gradient, amounting to the largest disturbance chronology yet constructed in Europe. Decadal disturbance rates varied significantly through time and declined after 1920, resulting in widespread increases in canopy tree age. Approximately 75% of current canopy area recruited prior to 1900. Long-term disturbance patterns were compared to an historical drought reconstruction, and further linked to spatial variation in stand structure and contemporary disturbance patterns derived from LANDSAT imagery. Historically, decadal Palmer drought severity index minima corresponded to higher rates of canopy removal. The severity of contemporary disturbances increased with each stand's estimated time since last major disturbance, increased with mean diameter, and declined with increasing within-stand structural variability. Reconstructed spatial patterns suggest that high small-scale structural variability has historically acted to reduce large-scale susceptibility and climate sensitivity of disturbance. Reduced disturbance rates since 1920, a potential legacy of high 19th century disturbance rates, have contributed to a recent region-wide increase in disturbance susceptibility. Increasingly common high-severity disturbances throughout primary

  3. An ABI3-interactor of conifers responds to multiple hormones.

    PubMed

    Zeng, Ying; Zhao, Tiehan; Kermode, Allison

    2013-11-01

    CnAIP2 (Callitropsis nootkatensis ABI3-Interacting Protein 2) was previously identified as a protein that interacts with the yellow-cedar ABI3 protein. CnAIP2 plays important roles during several key transitions of the plant lifecycle and acts as a global regulator with functions opposite to those of ABI3 proteins. Here we report that the CnAIP2 gene promoter is strongly upregulated by all of the major plant hormones. Young Arabidopsis seedlings expressing a chimeric CnAIP2pro-GUS construct were subjected to exogenously applied hormones; the maximum fold-enhancement of GUS activity was as high as 47-fold, and each hormone showed a distinctive cell/tissue-specific pattern of GUS induction. By far the greatest response was elicited by the synthetic auxin 2,4-D (47-fold induction); the other hormones tested stimulated GUS activities by 8- to 21-fold. The CnAIP2 promoter also responded to glucose and salt (NaCl), albeit to a lesser extent (2- to 3-fold induction). As well as acting in an antagonistic way to the global regulator ABI3, CnAIP2 appears to participate in multiple hormonal crosstalk pathways to carry out its functions.

  4. ABI5 Is a Regulator of Seed Maturation and Longevity in Legumes

    PubMed Central

    Zinsmeister, Julia; Lalanne, David; Terrasson, Emmanuel; Chatelain, Emilie; Vandecasteele, Céline; Vu, Benoit Ly; Gutbrod, Katharina; Dörmann, Peter; Bendahmane, Abdelhafid

    2016-01-01

    The preservation of our genetic resources and production of high-quality seeds depends on their ability to remain viable and vigorous during storage. In a quantitative trait locus analysis on seed longevity in Medicago truncatula, we identified the bZIP transcription factor ABSCISIC ACID INSENSITIVE5 (ABI5). Characterization of Mt-abi5 insertion mutant seeds revealed that both the acquisition of longevity and dormancy were severely impaired. Using transcriptomes of developing Mt-abi5 seeds, we created a gene coexpression network and revealed ABI5 as a regulator of gene modules with functions related to raffinose family oligosaccharide (RFO) metabolism, late embryogenesis abundant (LEA) proteins, and photosynthesis-associated nuclear genes (PhANGs). Lower RFO contents in Mt-abi5 seeds were linked to the regulation of SEED IMBIBITION PROTEIN1. Proteomic analysis confirmed that a set of LEA polypeptides was reduced in mature Mt-abi5 seeds, whereas the absence of repression of PhANG in mature Mt-abi5 seeds was accompanied by chlorophyll and carotenoid retention. This resulted in a stress response in Mt-abi5 seeds, evident from an increase in α-tocopherol and upregulation of genes related to programmed cell death and protein folding. Characterization of abi5 mutants in a second legume species, pea (Pisum sativum), confirmed a role for ABI5 in the regulation of longevity, seed degreening, and RFO accumulation, identifying ABI5 as a prominent regulator of late seed maturation in legumes. PMID:27956585

  5. Species Distribution Modeling between Abies koreana and Abies nephrolepis According to the RCP Scenarios in South Korea

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Kim, I. S.; Lee, W. K.; Kwon, H. J.; Byeon, J. G.; Yun, J. E.

    2016-12-01

    Vulnerable plant that includes species in crisis of extinction is shown by environment, competition between various species. The climate is one of the main factor that affect to the plant distribution. The most essential particular to make species distribution model is distribution data, and secondly environmental factors. 179 taxon plant classified according to the distribution, it consist of characteristic and regional distribution criteria. In case of climate data, 1960-1990 period made by World Clim Data is applied which has 0.86㎢ spatial resolution. It separates temperature and precipitation factor. To predict potential distribution, Maxent(Maximum Entropy Model) is applied that is widely known as suitable model in case of presence distributional data only. Among the target species, Abies koreana and Abies nephrolepis have no clearly key to identify, so their differences of distribution and environmental fator information could act useful. In order to know the distinction according to the classifying species, Abies koreana and Abies nephrolepis are typically selected. Abies koreana distributes at high mountain in Southern part of Korean Peninsula, otherwise Abies nephrolepis is at high mountain in from Middle latitude(over the 37°) in South Korea. These species has been the center of controversy recently, because the classification key of these species is not scientifically clear yet. In this perspective these species predicted potential distribution depend on whether these are same species or not. In the result of considering these species are same, entire predicted distribution area is wider, especially Jiri-san mountain(latitude : 35°) which is the highest latitude of the Abies koreana distributed point. On the other side, result of considering different species is shown that Abies koreana could climatically survive near by Soerak-san mountain(latitude : 37°), but Abies nephrolepis could not live in Halla-san mountan(33°) in Jeju-island which is the

  6. An Arabidopsis mitochondria-localized RRL protein mediates abscisic acid signal transduction through mitochondrial retrograde regulation involving ABI4.

    PubMed

    Yao, Xuan; Li, Juanjuan; Liu, Jianping; Liu, Kede

    2015-10-01

    The molecular mechanisms of abscisic acid (ABA) signalling have been studied for many years; however, how mitochondria-localized proteins play roles in ABA signalling remains unclear. Here an Arabidopsis mitochondria-localized protein RRL (RETARDED ROOT GROWTH-LIKE) was shown to function in ABA signalling. A previous study had revealed that the Arabidopsis mitochondria-localized protein RRG (RETARDED ROOT GROWTH) is required for cell division in the root meristem. RRL shares 54% and 57% identity at the nucleotide and amino acid sequences, respectively, with RRG; nevertheless, RRL shows a different function in Arabidopsis. In this study, disruption of RRL decreased ABA sensitivity whereas overexpression of RRL increased ABA sensitivity during seed germination and seedling growth. High expression levels of RRL were found in germinating seeds and developing seedlings, as revealed by β-glucuronidase (GUS) staining of ProRRL-GUS transgenic lines. The analyses of the structure and function of mitochondria in the knockout rrl mutant showed that the disruption of RRL causes extensively internally vacuolated mitochondria and reduced ABA-stimulated reactive oxygen species (ROS) production. Previous studies have revealed that the expression of alternative oxidase (AOX) in the alternative respiratory pathway is increased by mitochondrial retrograde regulation to regain ROS levels when the mitochondrial electron transport chain is impaired. The APETALA2 (AP2)-type transcription factor ABI4 is a regulator of ALTERNATIVE OXIDASE1a (AOX1a) in mitochondrial retrograde signalling. This study showed that ABA-induced AOX1a and ABI4 expression was inhibited in the rrl mutant, suggesting that RRL is probably involved in ABI4-mediated mitochondrial retrograde signalling. Furthermore, the results revealed that ABI4 is a downstream regulatory factor in RRL-mediated ABA signalling in seed germination and seedling growth. © The Author 2015. Published by Oxford University Press on behalf of

  7. Lignans from the shed trunk barks of the critically endangered plant Abies beshanzuensis and their anti-neuroinflammatory activities.

    PubMed

    Hu, Chang-Ling; Xiong, Juan; Xu, Peng; Cheng, Ke-Jun; Yang, Guo-Xun; Hu, Jin-Feng

    2017-06-01

    During a further and comprehensive phytochemical investigation on the shed trunk barks of the critically endangered plant Abies beshanzuensis, one new (1) and ten known (2-11) lignans with diverse structures were isolated. On the basis of spectroscopic methods, the new structure was established to be (7S,8R,8'R)-4'-methoxyl-α-conidendrin (1). Among the isolated lignans, (-)-matairesinol (5) and (-)-arctigenin (6) showed significant anti-neuroinflammatory activities by inhibiting the overproduction of nitric oxide in lipopolysaccharide-stimulated murine BV-2 microglial cells, with IC 50 values of 11.5 and 19.0 μM, respectively.

  8. Arabidopsis HOOKLESS1 Regulates Responses to Pathogens and Abscisic Acid through Interaction with MED18 and Acetylation of WRKY33 and ABI5 Chromatin

    PubMed Central

    Liao, Chao-Jan; Lee, Sanghun; Mengiste, Tesfaye

    2016-01-01

    Arabidopsis thaliana HOOKLESS1 (HLS1) encodes a putative histone acetyltransferase with known functions in seedling growth. Here, we show that HLS1 regulates plant responses to pathogens and abscisic acid (ABA) through histone acetylation at chromatin of target loci. The hls1 mutants show impaired responses to bacterial and fungal infection, accelerated senescence, and impaired responses to ABA. HLS1 modulates the expression of WRKY33 and ABA INSENSITIVE5 (ABI5), known regulators of pathogen and ABA responses, respectively, through direct association with these loci. Histone 3 acetylation (H3Ac), a positive mark of transcription, at WRKY33 and ABI5 requires HLS1 function. ABA treatment and pathogen infection enhance HLS1 recruitment and H3Ac at WRKY33. HLS1 associates with Mediator, a eukaryotic transcription coregulatory complex, through direct interaction with mediator subunit 18 (MED18), with which it shares multiple functions. HLS1 recruits MED18 to the WRKY33 promoter, boosting WKRY33 expression, suggesting the synergetic action of HLS1 and MED18. By contrast, MED18 recruitment to ABI5 and transcriptional activation are independent of HLS1. ABA-mediated priming of resistance to fungal infection was abrogated in hls1 and wrky33 mutants but correlated with ABA-induced HLS1 accumulation. In sum, HLS1 provides a regulatory node in pathogen and hormone response pathways through interaction with the Mediator complex and important transcription factors. PMID:27317674

  9. Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis.

    PubMed

    Nakashima, Kazuo; Fujita, Yasunari; Katsura, Koji; Maruyama, Kyonoshin; Narusaka, Yoshihiro; Seki, Motoaki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2006-01-01

    ABA-responsive elements (ABREs) are cis-acting elements and basic leucine zipper (bZIP)-type ABRE-binding proteins (AREBs) are transcriptional activators that function in the expression of RD29B in vegetative tissue of Arabidopsis in response to abscisic acid (ABA) treatment. Dehydration-responsive elements (DREs) function as coupling elements of ABRE in the expression of RD29A in response to ABA. Expression analysis using abi3 and abi5 mutants showed that ABI3 and ABI5 play important roles in the expression of RD29B in seeds. Base-substitution analysis showed that two ABREs function strongly and one ABRE coupled with DRE functions weakly in the expression of RD29A in embryos. In a transient transactivation experiment, ABI3, ABI5 and AREB1 activated transcription of a GUS reporter gene driven by the RD29B promoter strongly but these proteins activated the transcription driven by the RD29A promoter weakly. In 35S::ABI3 Arabidopsis plants, the expression of RD29B was up-regulated strongly, but that of RD29A was up-regulated weakly. These results indicate that the expression of RD29B having ABREs in the promoter is up-regulated strongly by ABI3, whereas that of RD29A having one ABRE coupled with DREs in the promoter is up-regulated weakly by ABI3. We compared the expression of 7000 Arabidopsis genes in response to ABA treatment during germination and in the vegetative growth stage, and that in 35S::ABI3 plants using a full-length cDNA microarray. The expression of ABI3- and/or ABA-responsive genes and cis-elements in the promoters are discussed.

  10. The Role and Regulation of ABI5 (ABA-Insensitive 5) in Plant Development, Abiotic Stress Responses and Phytohormone Crosstalk

    PubMed Central

    Skubacz, Anna; Daszkowska-Golec, Agata; Szarejko, Iwona

    2016-01-01

    ABA Insensitive 5 (ABI5) is a basic leucine zipper transcription factor that plays a key role in the regulation of seed germination and early seedling growth in the presence of ABA and abiotic stresses. ABI5 functions in the core ABA signaling, which is composed of PYR/PYL/RCAR receptors, PP2C phosphatases and SnRK2 kinases, through the regulation of the expression of genes that contain the ABSCISIC ACID RESPONSE ELEMENT (ABRE) motif within their promoter region. The regulated targets include stress adaptation genes, e.g., LEA proteins. However, the expression and activation of ABI5 is not only dependent on the core ABA signaling. Many transcription factors such as ABI3, ABI4, MYB7 and WRKYs play either a positive or a negative role in the regulation of ABI5 expression. Additionally, the stability and activity of ABI5 are also regulated by other proteins through post-translational modifications such as phosphorylation, ubiquitination, sumoylation and S-nitrosylation. Moreover, ABI5 also acts as an ABA and other phytohormone signaling integrator. Components of auxin, cytokinin, gibberellic acid, jasmonate and brassinosteroid signaling and metabolism pathways were shown to take part in ABI5 regulation and/or to be regulated by ABI5. Monocot orthologs of AtABI5 have been identified. Although their roles in the molecular and physiological adaptations during abiotic stress have been elucidated, knowledge about their detailed action still remains elusive. Here, we describe the recent advances in understanding the action of ABI5 in early developmental processes and the adaptation of plants to unfavorable environmental conditions. We also focus on ABI5 relation to other phytohormones in the abiotic stress response of plants. PMID:28018412

  11. ABI3, a component of the WAVE2 complex, is potentially regulated by PI3K/AKT pathway

    PubMed Central

    Moraes, Lais; Zanchin, Nilson I.T.; Cerutti, Janete M.

    2017-01-01

    We previously reported that ABI3 expression is lost in follicular thyroid carcinomas and its restoration significantly inhibited cell growth, invasiveness, migration, and reduced tumor growth in vivo. The mechanistic basis by which ABI3 exerts its tumor suppressive effects is not fully understood. In this study, we show that ABI3 is a phosphoprotein. Using proteomic array analysis, we showed that ABI3 modulated distinct cancer-related pathways in thyroid cancer cells. The KEA analysis found that PI3K substrates were enriched and forced expression of ABI3 markedly decreased the phosphorylation of AKT and the downstream-targeted protein pGSK3β. We next used immunoprecipitation combined with mass spectrometry to identify ABI3-interacting proteins that may be involved in modulating/integrating signaling pathways. We identified 37 ABI3 partners, including several components of the canonical WAVE regulatory complex (WRC) such as WAVE2/CYF1P1/NAP1, suggesting that ABI3 function might be regulated through WRC. Both, pharmacological inhibition of the PI3K/AKT pathway and mutation at residue S342 of ABI3, which is predicted to be phosphorylated by AKT, provided evidences that the non-phosphorylated form of ABI3 is preferentially present in the WRC protein complex. Collectively, our findings suggest that ABI3 might be a downstream mediator of the PI3K/AKT pathway that might disrupt WRC via ABI3 phosphorylation. PMID:28978070

  12. ABI3, a component of the WAVE2 complex, is potentially regulated by PI3K/AKT pathway.

    PubMed

    Moraes, Lais; Zanchin, Nilson I T; Cerutti, Janete M

    2017-09-15

    We previously reported that ABI3 expression is lost in follicular thyroid carcinomas and its restoration significantly inhibited cell growth, invasiveness, migration, and reduced tumor growth in vivo . The mechanistic basis by which ABI3 exerts its tumor suppressive effects is not fully understood. In this study, we show that ABI3 is a phosphoprotein. Using proteomic array analysis, we showed that ABI3 modulated distinct cancer-related pathways in thyroid cancer cells. The KEA analysis found that PI3K substrates were enriched and forced expression of ABI3 markedly decreased the phosphorylation of AKT and the downstream-targeted protein pGSK3β. We next used immunoprecipitation combined with mass spectrometry to identify ABI3-interacting proteins that may be involved in modulating/integrating signaling pathways. We identified 37 ABI3 partners, including several components of the canonical WAVE regulatory complex (WRC) such as WAVE2/CYF1P1/NAP1, suggesting that ABI3 function might be regulated through WRC. Both, pharmacological inhibition of the PI3K/AKT pathway and mutation at residue S342 of ABI3, which is predicted to be phosphorylated by AKT, provided evidences that the non-phosphorylated form of ABI3 is preferentially present in the WRC protein complex. Collectively, our findings suggest that ABI3 might be a downstream mediator of the PI3K/AKT pathway that might disrupt WRC via ABI3 phosphorylation.

  13. Abscisic Acid Regulates Early Seed Development in Arabidopsis by ABI5-Mediated Transcription of SHORT HYPOCOTYL UNDER BLUE1[C][W][OPEN

    PubMed Central

    Cheng, Zhi Juan; Zhao, Xiang Yu; Shao, Xing Xing; Wang, Fei; Zhou, Chao; Liu, Ying Gao; Zhang, Yan; Zhang, Xian Sheng

    2014-01-01

    Seed development includes an early stage of endosperm proliferation and a late stage of embryo growth at the expense of the endosperm in Arabidopsis thaliana. Abscisic acid (ABA) has known functions during late seed development, but its roles in early seed development remain elusive. In this study, we report that ABA-deficient mutants produced seeds with increased size, mass, and embryo cell number but delayed endosperm cellularization. ABSCISIC ACID DEFICIENT2 (ABA2) encodes a unique short-chain dehydrogenase/reductase that functions in ABA biosynthesis, and its expression pattern overlaps that of SHORT HYPOCOTYL UNDER BLUE1 (SHB1) during seed development. SHB1 RNA accumulation was significantly upregulated in the aba2-1 mutant and was downregulated by the application of exogenous ABA. Furthermore, RNA accumulation of the basic/region leucine zipper transcription factor ABSCISIC ACID-INSENSITIVE5 (ABI5), involved in ABA signaling, was decreased in aba2-1. Consistent with this, seed size was also increased in abi5. We further show that ABI5 directly binds to two discrete regions in the SHB1 promoter. Our results suggest that ABA negatively regulates SHB1 expression, at least in part, through the action of its downstream signaling component ABI5. Our findings provide insights into the molecular mechanisms by which ABA regulates early seed development. PMID:24619610

  14. Preliminary GOES-R ABI navigation and registration assessment results

    NASA Astrophysics Data System (ADS)

    Tan, B.; Dellomo, J.; Wolfe, R. E.; Reth, A. D.

    2017-12-01

    The US Geostationary Operational Environmental Satellite - R Series (GOES-R) was launched on November 19, 2016, and was designated GOESR-16 upon reaching geostationary orbit ten days later. The Advanced Baseline Imager (ABI) is the primary instrument on the GOES-R series for imaging Earth's surface and atmosphere to aid in weather prediction and climate monitoring. We developed algorithms and software for independent verification of the ABI Image Navigation and Registration (INR). Since late January 2017, four INR metrics have been continuously generated to monitor the ABI INR performance: navigation (NAV) error, channel-to-channel registration (CCR) error, frame-to-frame registration (FFR) error, and within-frame registration (WIFR) error. In this paper, we will describe the fundamental algorithm used for the image registration and briefly discuss the processing flow of INR Performance Assessment Tool Set (IPATS) developed for ABI INR. The assessment of the accuracy shows that IPATS measurements error is about 1/20 of the size of a pixel. Then the GOES-16 NAV assessments results, the primary metric, from January to August 2017, will be presented. The INR has improved over time as post-launch tests were performed and corrections were applied. The mean NAV error of the visible and near infrared (VNIR) channels dropped from 20 μrad in January to around 5 μrad (+/-4 μrad, 1 σ) in June, while the mean NAV error of long wave infrared (LWIR) channels dropped from around 70 μrad in January to around 5 μrad (+/-15 μrad, 1 σ) in June. A full global ABI image is composed with 22 east-west direction swaths. The swath-wise NAV error analysis shows that there was some variation in the mean swath-wise NAV errors. The variations are about as much as 20% of the scene NAV mean errors. As expected, the swaths over the tropical area have far fewer valid assessments (matchups) than those in mid-latitude region due to cloud coverage. It was also found that there was a rotation

  15. MiR-181a/b induce the growth, invasion, and metastasis of neuroblastoma cells through targeting ABI1.

    PubMed

    Liu, Xiaodan; Peng, Hongxia; Liao, Wang; Luo, Ailing; Cai, Mansi; He, Jing; Zhang, Xiaohong; Luo, Ziyan; Jiang, Hua; Xu, Ling

    2018-05-26

    Neuroblastoma is a pediatric malignancy, and the clinical phenotypes range from localized tumors with excellent outcomes to widely metastatic disease in which long-term survival is approximately 40%, despite intensive therapy. Emerging evidence suggests that aberrant miRNA regulation plays a role in neuroblastoma, but the miRNA functions and mechanisms remain unknown. miR-181 family members were detected in 32 neuroblastoma patients, and the effects of miR-181a/b on cell viability, invasion, and migration were evaluated in vitro and in vivo. A parallel global mRNA expression profile was obtained for neuroblastoma cells overexpressing miR-181a. The potential targets of miR-181a/b were validated. miR-181a/b expression levels were positively associated with MYCN amplification and neuroblastoma aggressiveness. Moreover, ectopic miR-181a/b expression significantly induced the growth and invasion of neuroblastoma cells in vitro and in vivo. Microarray analysis revealed that mRNAs were consistently downregulated after miR-181a overexpression, leading to cell migration. In addition, the expression of ABI1 was suppressed by miR-181a/b, and ABI1 was validated as a direct target of miR-181a/b. We concluded that miR-181a/b were significantly upregulated in aggressive neuroblastoma, which enhanced its tumorigenesis and progression by suppressing the expression of ABI1. © 2018 Wiley Periodicals, Inc.

  16. 19 CFR 143.7 - Revocation of ABI participation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Revocation of ABI participation. 143.7 Section 143.7 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) SPECIAL ENTRY PROCEDURES Automated Broker Interface § 143.7 Revocation of ABI...

  17. The WAVE2/Abi1 complex differentially regulates megakaryocyte development and spreading: implications for platelet biogenesis and spreading machinery.

    PubMed

    Eto, Koji; Nishikii, Hidekazu; Ogaeri, Takunori; Suetsugu, Shiro; Kamiya, Akihide; Kobayashi, Toshihiro; Yamazaki, Daisuke; Oda, Atsushi; Takenawa, Tadaomi; Nakauchi, Hiromitsu

    2007-11-15

    Actin polymerization is crucial in throm-bopoiesis, platelet adhesion, and mega-karyocyte (MK) and platelet spreading. The Wiskott-Aldrich syndrome protein (WASp) homolog WAVE functions downstream of Rac and plays a pivotal role in lamellipodia formation. While MKs and platelets principally express WAVE1 and WAVE2, which are associated with Abi1, the physiologic significance of WAVE isoforms remains undefined. We generated WAVE2(-/-) embryonic stem (ES) cells because WAVE2-null mice die by embryonic day (E) 12.5. We found that while WAVE2(-/-) ES cells differentiated into immature MKs on OP9 stroma, they were severely impaired in terminal differentiation and in platelet production. WAVE2(-/-) MKs exhibited a defect in peripheral lamellipodia on fibrinogen even with phorbol 12-myristate 13-acetate (PMA) costimulation, indicating a requirement of WAVE2 for integrin alpha(IIb)beta(3)-mediated full spreading. MKs in which expression of Abi1 was reduced by small interfering RNA (siRNA) exhibited striking similarity to WAVE2(-/-) MKs in maturation and spreading. Interestingly, the knockdown of IRSp53, a Rac effector that preferentially binds to WAVE2, impaired the development of lamellipodia without affecting proplatelet production. In contrast, thrombopoiesis in vivo and platelet spreading on fibrinogen in vitro were intact in WAVE1-null mice. These observations clarify indispensable roles for the WAVE2/Abi1 complex in alpha(IIb)beta(3)-mediated lamellipodia by MKs and platelets through Rac and IRSp53, and additionally in thrombopoiesis independent of Rac and IRSp53.

  18. Identification and functional analysis of two alternatively spliced transcripts of ABSCISIC ACID INSENSITIVE3 (ABI3) in linseed flax (Linum usitatissimum L.).

    PubMed

    Wang, Yanyan; Zhang, Tianbao; Song, Xiaxia; Zhang, Jianping; Dang, Zhanhai; Pei, Xinwu; Long, Yan

    2018-01-01

    Alternative splicing is a popular phenomenon in different types of plants. It can produce alternative spliced transcripts that encode proteins with altered functions. Previous studies have shown that one transcription factor, ABSCISIC ACID INSENSITIVE3 (ABI3), which encodes an important component in abscisic acid (ABA) signaling, is subjected to alternative splicing in both mono- and dicotyledons. In the current study, we identified two homologs of ABI3 in the genome of linseed flax. We screened two alternatively spliced flax LuABI3 transcripts, LuABI3-2 and LuABI3-3, and one normal flax LuABI3 transcript, LuABI3-1. Sequence analysis revealed that one of the alternatively spliced transcripts, LuABI3-3, retained a 6 bp intron. RNA accumulation analysis showed that all three transcripts were expressed during seed development, while subcellular localization and transgene experiments showed that LuABI3-3 had no biological function. The two normal transcripts, LuABI3-1 and LuABI3-2, are the important functional isoforms in flax and play significant roles in the ABA regulatory pathway during seed development, germination, and maturation.

  19. Mitii™ ABI: study protocol of a randomised controlled trial of a web-based multi-modal training program for children and adolescents with an Acquired Brain Injury (ABI).

    PubMed

    Boyd, Roslyn N; Baque, Emmah; Piovesana, Adina; Ross, Stephanie; Ziviani, Jenny; Sakzewski, Leanne; Barber, Lee; Lloyd, Owen; McKinlay, Lynne; Whittingham, Koa; Smith, Anthony C; Rose, Stephen; Fiori, Simona; Cunnington, Ross; Ware, Robert; Lewis, Melinda; Comans, Tracy A; Scuffham, Paul A

    2015-08-19

    Acquired brain injury (ABI) refers to multiple disabilities arising from damage to the brain acquired after birth. Children with an ABI may experience physical, cognitive, social and emotional-behavioural impairments which can impact their ability to participate in activities of daily living (ADL). Recent developments in technology have led to the emergence of internet-delivered therapy programs. "Move it to improve it" (Mitii™) is a web-based multi-modal therapy that comprises upper limb (UL) and cognitive training within the context of meaningful physical activity. The proposed study aims to compare the efficacy of Mitii™ to usual care to improve ADL motor and processing skills, gross motor capacity, UL and executive functioning in a randomised waitlist controlled trial. Sixty independently ambulant children (30 in each group) at least 12 months post ABI will be recruited to participate in this trial. Children will be matched in pairs at baseline and randomly allocated to receive either 20 weeks of Mitii™ training (30 min per day, six days a week, with a potential total dose of 60 h) immediately, or be waitlisted for 20 weeks. Outcomes will be assessed at baseline, immediately post-intervention and at 20 weeks post-intervention. The primary outcomes will be the Assessment of Motor and Process Skills and 30 s repetition maximum of functional strength exercises (sit-to-stand, step-ups and half kneel to stand). Measures of body structure and functions, activity, participation and quality of life will assess the efficacy of Mitii™ across all domains of the International Classification of Functioning, Disability and Health framework. A subset of children will undertake three tesla (3T) magnetic resonance imaging scans to evaluate functional neurovascular changes, structural imaging, diffusion imaging and resting state functional connectivity before and after intervention. Mitii™ provides an alternative approach to deliver intensive therapy for children with

  20. FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis

    PubMed Central

    Chen, Jia; Yu, Feng; Liu, Ying; Du, Changqing; Li, Xiushan; Zhu, Sirui; Wang, Xianchun; Lan, Wenzhi; Rodriguez, Pedro L.; Liu, Xuanming; Li, Dongping; Chen, Liangbi; Luan, Sheng

    2016-01-01

    Receptor-like kinase FERONIA (FER) plays a crucial role in plant response to small molecule hormones [e.g., auxin and abscisic acid (ABA)] and peptide signals [e.g., rapid alkalinization factor (RALF)]. It remains unknown how FER integrates these different signaling events in the control of cell growth and stress responses. Under stress conditions, increased levels of ABA will inhibit cell elongation in the roots. In our previous work, we have shown that FER, through activation of the guanine nucleotide exchange factor 1 (GEF1)/4/10-Rho of Plant 11 (ROP11) pathway, enhances the activity of the phosphatase ABA Insensitive 2 (ABI2), a negative regulator of ABA signaling, thereby inhibiting ABA response. In this study, we found that both RALF and ABA activated FER by increasing the phosphorylation level of FER. The FER loss-of-function mutant displayed strong hypersensitivity to both ABA and abiotic stresses such as salt and cold conditions, indicating that FER plays a key role in ABA and stress responses. We further showed that ABI2 directly interacted with and dephosphorylated FER, leading to inhibition of FER activity. Several other ABI2-like phosphatases also function in this pathway, and ABA-dependent FER activation required PYRABACTIN RESISTANCE (PYR)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR)–A-type protein phosphatase type 2C (PP2CA) modules. Furthermore, suppression of RALF1 gene expression, similar to disruption of the FER gene, rendered plants hypersensitive to ABA. These results formulated a mechanism for ABA activation of FER and for cross-talk between ABA and peptide hormone RALF in the control of plant growth and responses to stress signals. PMID:27566404

  1. Validation of early GOES-16 ABI on-orbit geometrical calibration accuracy using SNO method

    NASA Astrophysics Data System (ADS)

    Yu, Fangfang; Shao, Xi; Wu, Xiangqian; Kondratovich, Vladimir; Li, Zhengping

    2017-09-01

    The Advanced Baseline Imager (ABI) onboard the GOES-16 satellite, which was launched on 19 November 2016, is the first next-generation geostationary weather instrument in the west hemisphere. It has 16 spectral solar reflective and emissive bands located in three focal plane modules (FPM): one visible and near infrared (VNIR) FPM, one midwave infrared (MWIR), and one longwave infrared (LWIR) FPM. All the ABI bands are geometeorically calibrated with new techniques of Kalman filtering and Global Positioning System (GPS) to determine the accurate spacecraft attitude and orbit configuration to meet the challenging image navigation and registration (INR) requirements of ABI data. This study is to validate the ABI navigation and band-to-band registration (BBR) accuracies using the spectrally matched pixels of the Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) M-band data and the ABI images from the Simultaneous Nadir Observation (SNO) images. The preliminary results showed that during the ABI post-launch product test (PLPT) period, the ABI BBR errors at the y-direction (along the VIIRS track direction) is smaller than at the x-direction (along the VIIRS scan direction). Variations in the ABI BBR calibration residuals and navigation difference to VIIRS can be observed. Note that ABI is not operational yet and the data is experimental and still under testing. Effort is still ongoing to improve the ABI data quality.

  2. The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by BRASSINAZOLE RESISTANT 1.

    PubMed

    Yang, Xiaorui; Bai, Yang; Shang, Jianxiu; Xin, Ruijiao; Tang, Wenqiang

    2016-09-01

    Brassinosteroids (BRs) and abscisic acid (ABA) are plant hormones that antagonistically regulate many aspects of plant growth and development; however, the mechanisms that regulate the crosstalk of these two hormones are still not well understood. BRs regulate plant growth and development by activating BRASSINAZOLE RESISTANT 1 (BZR1) family transcription factors. Here we show that the crosstalk between BRs and ABA signalling is partially mediated by BZR1 regulated gene expression. bzr1-1D is a dominant mutant with enhanced BR signalling; our results showed that bzr1-1D mutant is less sensitive to ABA-inhibited primary root growth. By RNA sequencing, a subset of BZR1 regulated ABA-responsive root genes were identified. Of these genes, the expression of a major ABA signalling component ABA INSENSITIVE 5 (ABI5) was found to be suppressed by BR and by BZR1. Additional evidences showed that BZR1 could bind strongly with several G-box cis-elements in the promoter of ABI5, suppress the expression of ABI5 and make plants less sensitive to ABA. Our study demonstrated that ABI5 is a direct target gene of BZR1, and modulating the expression of ABI5 by BZR1 plays important roles in regulating the crosstalk between the BR and ABA signalling pathways. © 2016 John Wiley & Sons Ltd.

  3. S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth

    PubMed Central

    Albertos, Pablo; Romero-Puertas, María C.; Tatematsu, Kiyoshi; Mateos, Isabel; Sánchez-Vicente, Inmaculada; Nambara, Eiji; Lorenzo, Oscar

    2015-01-01

    Plant survival depends on seed germination and progression through post-germinative developmental checkpoints. These processes are controlled by the stress phytohormone abscisic acid (ABA). ABA regulates the basic leucine zipper transcriptional factor ABI5, a central hub of growth repression, while the reactive nitrogen molecule nitric oxide (NO) counteracts ABA during seed germination. However, the molecular mechanisms by which seeds sense more favourable conditions and start germinating have remained elusive. Here we show that ABI5 promotes growth via NO, and that ABI5 accumulation is altered in genetic backgrounds with impaired NO homeostasis. S-nitrosylation of ABI5 at cysteine-153 facilitates its degradation through CULLIN4-based and KEEP ON GOING E3 ligases, and promotes seed germination. Conversely, mutation of ABI5 at cysteine-153 deregulates protein stability and inhibition of seed germination by NO depletion. These findings suggest an inverse molecular link between NO and ABA hormone signalling through distinct posttranslational modifications of ABI5 during early seedling development. PMID:26493030

  4. Tree mortality patterns following prescribed fire for Pinus and Abies across the southwestern United States

    USGS Publications Warehouse

    van Mantgem, Philip J.; Nesmith, Jonathan C. B.; Keifer, MaryBeth; Brooks, Matthew

    2012-01-01

    The reintroduction of fire to historically fire-prone forests has been repeatedly shown to reduce understory fuels and promote resistance to high severity fire. However, there is concern that prescribed fire may also have unintended consequences, such as high rates of mortality for large trees and fire-tolerant Pinus species. To test this possibility we evaluated mortality patterns for two common genera in the western US, Pinus and Abies, using observations from a national-scale prescribed fire effects monitoring program. Our results show that mortality rates of trees >50 DBH were similar for Pinus (4.6% yr-1) and Abies (4.0% yr-1) 5 years following prescribed fires across seven sites in the southwestern US. In contrast, mortality rates of trees >50 cm DBH differed between Pinus (5.7% yr-1) and Abies (9.0% yr-1). Models of post-fire mortality probabilities suggested statistically significant differences between the genera (after including differences in bark thickness), but accounting for these differences resulted in only small improvements in model classification. Our results do not suggest unusually high post-fire mortality for large trees or for Pinus relative to the other common co-occurring genus, Abies, following prescribed fire in the southwestern US.

  5. ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants.

    PubMed

    Xu, Dong-Bei; Gao, Shi-Qing; Ma, You-Zhi; Xu, Zhao-Shi; Zhao, Chang-Ping; Tang, Yi-Miao; Li, Xue-Yin; Li, Lian-Cheng; Chen, Yao-Feng; Chen, Ming

    2014-12-01

    The phytohormone abscisic acid (ABA) plays crucial roles in adaptive responses of plants to abiotic stresses. ABA-responsive element binding proteins (AREBs) are basic leucine zipper transcription factors that regulate the expression of downstream genes containing ABA-responsive elements (ABREs) in promoter regions. A novel ABI-like (ABA-insensitive) transcription factor gene, named TaABL1, containing a conserved basic leucine zipper (bZIP) domain was cloned from wheat. Southern blotting showed that three copies were present in the wheat genome. Phylogenetic analyses indicated that TaABL1 belonged to the AREB subfamily of the bZIP transcription factor family and was most closely related to ZmABI5 in maize and OsAREB2 in rice. Expression of TaABL1 was highly induced in wheat roots, stems, and leaves by ABA, drought, high salt, and low temperature stresses. TaABL1 was localized inside the nuclei of transformed wheat mesophyll protoplast. Overexpression of TaABL1 enhanced responses of transgenic plants to ABA and hastened stomatal closure under stress, thereby improving tolerance to multiple abiotic stresses. Furthermore, overexpression of TaABL1 upregulated or downregulated the expression of some stress-related genes controlling stomatal closure in transgenic plants under ABA and drought stress conditions, suggesting that TaABL1 might be a valuable genetic resource for transgenic molecular breeding.

  6. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.

    PubMed

    Wu, Jing; Tao, Wei-Wei; Chong, Dan-Yang; Lai, Shan-Shan; Wang, Chuang; Liu, Qi; Zhang, Tong-Yu; Xue, Bin; Li, Chao-Jun

    2018-03-15

    Postprandial insulin desensitization plays a critical role in maintaining whole-body glucose homeostasis by avoiding the excessive absorption of blood glucose; however, the detailed mechanisms that underlie how the major player, skeletal muscle, desensitizes insulin action remain to be elucidated. Herein, we report that early growth response gene-1 ( Egr-1) is activated by insulin in skeletal muscle and provides feedback inhibition that regulates insulin sensitivity after a meal. The inhibition of the transcriptional activity of Egr-1 enhanced the phosphorylation of the insulin receptor (InsR) and Akt, thus increasing glucose uptake in L6 myotubes after insulin stimulation, whereas overexpression of Egr-1 decreased insulin sensitivity. Furthermore, deletion of Egr-1 in the skeletal muscle improved systemic insulin sensitivity and glucose tolerance, which resulted in lower blood glucose levels after refeeding. Mechanistic analysis demonstrated that EGR-1 inhibited InsR phosphorylation and glucose uptake in skeletal muscle by binding to the proximal promoter region of protein tyrosine phosphatase-1B (PTP1B) and directly activating transcription. PTP1B knockdown largely restored insulin sensitivity and enhanced glucose uptake, even under conditions of EGR-1 overexpression. Our results indicate that EGR-1/PTP1B signaling negatively regulates postprandial insulin sensitivity and suggest a potential therapeutic target for the prevention and treatment of excessive glucose absorption.-Wu, J., Tao, W.-W., Chong, D.-Y., Lai, S.-S., Wang, C., Liu, Q., Zhang, T.-Y., Xue, B., Li, C.-J. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.

  7. Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR (ABF)3.

    PubMed

    Finkelstein, Ruth; Gampala, Srinivas S L; Lynch, Tim J; Thomas, Terry L; Rock, Christopher D

    2005-09-01

    Abscisic acid-responsive gene expression is regulated by numerous transcription factors, including a subgroup of basic leucine zipper factors that bind to the conserved cis-acting sequences known as ABA-responsive elements. Although one of these factors, ABA-insensitive 5 (ABI5), was identified genetically, the paucity of genetic data for the other family members has left it unclear whether they perform unique functions or act redundantly to ABI5 or each other. To test for potential redundancy with ABI5, we identified the family members with most similar effects and interactions in transient expression systems (ABF3 and ABF1), then characterized loss-of-function lines for those loci. The abf1 and abf3 monogenic mutant lines had at most minimal effects on germination or seed-specific gene expression, but the enhanced ABA- and stress-resistance of abf3 abi5 double mutants revealed redundant action of these genes in multiple stress responses of seeds and seedlings. Although ABI5, ABF3, and ABF1 have some overlapping effects, they appear to antagonistically regulate each other's expression at specific stages. Consequently, loss of any one factor may be partially compensated by increased expression of other family members.

  8. A[Bi(3)Ti(4)O(13)] and A[Bi(3)PbTi(5)O(16)] (A = K, Cs): New n = 4 and n = 5 Members of the Layered Perovskite Series, A[A'(n)()(-)(1)B(n)()O(3)(n)()(+1)], and Their Hydrates.

    PubMed

    Gopalakrishnan, J.; Sivakumar, T.; Thangadurai, V.; Subbanna, G. N.

    1999-06-14

    We describe the synthesis and structural characterization of new layered bismuth titanates, A[Bi(3)Ti(4)O(13)] and A[Bi(3)PbTi(5)O(16)] for A = K, Cs, corresponding to n = 4 and 5 members of the Dion-Jacobson series of layered perovskites of the general formula, A[A'(n)()(-)(1)B(n)()O(3)(n)()(+1)]. These materials have been prepared by solid state reaction of the constituents containing excess alkali, which is required to suppress the formation of competitive Aurivillius phases. Unlike the isostructural niobates and niobium titanates of the same series, the new phases reported here are spontaneously hydrated-a feature which could make them potentially useful as photocatalysts for water splitting reaction. On hydration of the potassium compounds, the c axis expands by ca. 2 Å and loses its doubling [for example, the tetragonal lattice parameters of K[Bi(3)Ti(4)O(13)] and its dihydrate are respectively a = 3.900(1) Å, c = 37.57(2) Å; a = 3.885(1) Å, c = 20.82(4) Å]; surprisingly, the cesium analogues do not show a similar change on hydration.

  9. Propofol restores TRPV1 sensitivity via a TRPA1-, nitric oxide synthase-dependent activation of PKCε

    PubMed Central

    Sinharoy, Pritam; Zhang, Hongyu; Sinha, Sayantani; Prudner, Bethany C; Bratz, Ian N; Damron, Derek S

    2015-01-01

    We previously demonstrated that the intravenous anesthetic, propofol, restores the sensitivity of transient receptor potential vanilloid channel subtype-1 (TRPV1) receptors via a protein kinase C epsilon (PKCε)-dependent and transient receptor potential ankyrin channel subtype-1 (TRPA1)-dependent pathway in sensory neurons. The extent to which the two pathways are directly linked or operating in parallel has not been determined. Using a molecular approach, our objectives of the current study were to confirm that TRPA1 activation directly results in PKCε activation and to elucidate the cellular mechanism by which this occurs. F-11 cells were transfected with complimentary DNA (cDNA) for TRPV1 only or both TRPV1 and TRPA1. Intracellular Ca2+ concentration was measured in individual cells via fluorescence microscopy. An immunoblot analysis of the total and phosphorylated forms of PKCε, nitric oxide synthase (nNOS), and TRPV1 was also performed. In F-11 cells containing both channels, PKCε inhibition prevented the propofol- and allyl isothiocyanate (AITC)-induced restoration of TRPV1 sensitivity to agonist stimulation as well as increased phosphorylation of PKCε and TRPV1. In cells containing TRPV1 only, neither agonist induced PKCε or TRPV1 phosphorylation. Moreover, NOS inhibition blocked propofol-and AITC-induced restoration of TRPV1 sensitivity and PKCε phosphorylation, and PKCε inhibition prevented the nitric oxide donor, SNAP, from restoring TRPV1 sensitivity. Also, propofol-and AITC-induced phosphorylation of nNOS and nitric oxide (NO) production were blocked with the TRPA1-antagonist, HC-030031. These data indicate that the AITC- and propofol-induced restoration of TRPV1 sensitivity is mediated by a TRPA1-dependent, nitric oxide synthase-dependent activation of PKCε. PMID:26171233

  10. Overcoming CRPC Treatment Resistance via Novel Dual AKR1C3 Targeting

    DTIC Science & Technology

    2017-10-01

    We therefore characterized another drug resistant line from C4-2B cells, C4-2B AbiR cells. C4-2B AbiR cells were resistant to Abi acetate in a...Testosterone level in C4-2B AbiR cell was 12 pg/50 million cells, similar to that in C4-2B MDVR or LNCaP-AKR1C3 cells. With the single drug resistant...cell lines on hand, we tested for their cross- resistance to Enza and Abi. While the parental line was sensitive to both drugs , the resistant lines

  11. Students' Attitudes toward ABI/INFORM on CD-ROM: A Factor Analysis.

    ERIC Educational Resources Information Center

    Wang, Vicky; Lau, Shuk-fong

    Two years after the introduction of CD-ROM bibliographic database searching in the Memphis State University libraries (Tennessee), a survey was conducted to examine students' attitudes toward the business database, ABI/INFORM. ABI/INFORM contains indexes and abstracts of articles from over 800 journals on management, accounting, banking, human…

  12. Elucidating the Role of cAbl and the Abi-Family of cAbl Target Proteins in Cancer Development and Progression

    DTIC Science & Technology

    1999-07-01

    patients with Ph’-positive leukemias also revealed loss of Abi proteins. We determined by RNase protection assay and reverse transcriptase polymerase...myelogenous leukemia . Abi protein levels also appeared unaltered by Western blot analysis of human lung, liver, colon, and breast carcinoma tissues as...generated in the presence of Bcr-Abl • Abi protein degradation was observed in Ph’+ leukemia -derived cells, but not in Ph1- leukemias or in human breast

  13. Toxicity and Pharmacokinetic Profile for Single-Dose Injection of ABY-029: a Fluorescent Anti-EGFR Synthetic Affibody Molecule for Human Use.

    PubMed

    Samkoe, Kimberley S; Gunn, Jason R; Marra, Kayla; Hull, Sally M; Moodie, Karen L; Feldwisch, Joachim; Strong, Theresa V; Draney, Daniel R; Hoopes, P Jack; Roberts, David W; Paulsen, Keith; Pogue, Brian W

    2017-08-01

    ABY-029, a synthetic Affibody peptide, Z03115-Cys, labeled with a near-infrared fluorophore, IRDye® 800CW, targeting epidermal growth factor receptor (EGFR) has been produced under good manufacturing practices for a US Food and Drug Administration-approved first-in-use human study during surgical resection of glioma, as well as other tumors. Here, the pharmacology, phototoxicity, receptor activity, and biodistribution studies of ABY-029 were completed in rats, prior to the intended human use. Male and female Sprague Dawley rats were administered a single intravenous dose of varying concentrations (0, 245, 2449, and 24,490 μg/kg corresponding to 10×, 100×, and 1000× an equivalent human microdose level) of ABY-029 and observed for up to 14 days. Histopathological assessment of organs and tissues, clinical chemistry, and hematology were performed. In addition, pharmacokinetic clearance and biodistribution of ABY-029 were studied in subgroups of the animals. Phototoxicity and ABY-029 binding to human and rat EGFR were assessed in cell culture and on immobilized receptors, respectively. Histopathological assessment and hematological and clinical chemistry analysis demonstrated that single-dose ABY-029 produced no pathological evidence of toxicity at any dose level. No phototoxicity was observed in EGFR-positive and EGFR-negative glioma cell lines. Binding strength and pharmacokinetics of the anti-EGFR Affibody molecules were retained after labeling with the dye. Based on the successful safety profile of ABY-029, the 1000× human microdose 24.5 mg/kg was identified as the no observed adverse effect level following intravenous administration. Conserved binding strength and no observed light toxicity also demonstrated ABY-029 safety for human use.

  14. Triterpene derivatives from Abies spectabilis leaves of Nepalese origin.

    PubMed

    Dall'Acqua, Stefano; Minesso, Paola; Comai, Stefano; Shrestha, Bharat Babu; Gewali, Mohan Bikram; Jha, Pramod Kumar; Innocenti, Gabbriella

    2011-06-01

    Our ongoing studies of Nepalese medicinal plants has led to the isolation and characterization of five new triterpenes, two known triterpenes and two phenolic derivatives from Abies spectabilis (D.Don) Mirb leaves grown in the high mountain. The structures of the isolated compounds were characterized by means of 1D and 2D NMR spectroscopic and MS techniques.

  15. Exploiting Measurement Uncertainty Estimation in Evaluation of GOES-R ABI Image Navigation Accuracy Using Image Registration Techniques

    NASA Technical Reports Server (NTRS)

    Haas, Evan; DeLuccia, Frank

    2016-01-01

    In evaluating GOES-R Advanced Baseline Imager (ABI) image navigation quality, upsampled sub-images of ABI images are translated against downsampled Landsat 8 images of localized, high contrast earth scenes to determine the translations in the East-West and North-South directions that provide maximum correlation. The native Landsat resolution is much finer than that of ABI, and Landsat navigation accuracy is much better than ABI required navigation accuracy and expected performance. Therefore, Landsat images are considered to provide ground truth for comparison with ABI images, and the translations of ABI sub-images that produce maximum correlation with Landsat localized images are interpreted as ABI navigation errors. The measured local navigation errors from registration of numerous sub-images with the Landsat images are averaged to provide a statistically reliable measurement of the overall navigation error of the ABI image. The dispersion of the local navigation errors is also of great interest, since ABI navigation requirements are specified as bounds on the 99.73rd percentile of the magnitudes of per pixel navigation errors. However, the measurement uncertainty inherent in the use of image registration techniques tends to broaden the dispersion in measured local navigation errors, masking the true navigation performance of the ABI system. We have devised a novel and simple method for estimating the magnitude of the measurement uncertainty in registration error for any pair of images of the same earth scene. We use these measurement uncertainty estimates to filter out the higher quality measurements of local navigation error for inclusion in statistics. In so doing, we substantially reduce the dispersion in measured local navigation errors, thereby better approximating the true navigation performance of the ABI system.

  16. Assessment of higher level cognitive-communication functions in adolescents with ABI: Standardization of the student version of the functional assessment of verbal reasoning and executive strategies (S-FAVRES).

    PubMed

    MacDonald, Sheila

    2016-01-01

    Childhood acquired brain injuries can disrupt communication functions needed for success in school, work and social interaction. Cognitive-communication difficulties may not be apparent until adolescence, when academic, environmental and social-emotional demands increase. The Functional Assessment of Verbal Reasoning and Executive Strategies for Students (S-FAVRES) is a new activity-level measure of cognitive-communication skills in complex, contextual and integrative tasks that simulate real world communication challenges. It is hypothesized that S-FAVRES performance would differentiate adolescents with and without acquired brain injury (ABI) on scores for Accuracy, Rationale, Reasoning Subskills and Time. S-FAVRES was administered to 182 typically-developing (TD) and 57 adolescents with mild-to-severe ABI aged 12-19. Group differences, internal consistency, sensitivity, specificity, reliability and contributing factors to performance (age, gender, brain injury) were examined statistically. Those with ABI attained statistically lower Accuracy, Rationale and Reasoning sub-skills scores than their TD peers. Time scores were not significantly different. Performance trends were consistent across tasks, administrations, gender and age groups. Inter-rater reliability for scoring was acceptable. The S-FAVRES provides a reliable, functional and quantifiable measure of subtle cognitive-communication difficulties in adolescents that can assist speech-language pathologists in planning treatment and integration to school and real world communication.

  17. Different Alleles of a Gene Encoding Leucoanthocyanidin Reductase (PaLAR3) Influence Resistance against the Fungus Heterobasidion parviporum in Picea abies1

    PubMed Central

    Ihrmark, Katarina

    2016-01-01

    Despite the fact that fungal diseases are a growing menace for conifers in modern silviculture, only a very limited number of molecular markers for pathogen resistance have been validated in conifer species. A previous genetic study indicated that the resistance of Norway spruce (Picea abies) to Heterobasidion annosum s.l., a pathogenic basidiomycete species complex, is linked to a quantitative trait loci that associates with differences in fungal growth in sapwood (FGS) that includes a gene, PaLAR3, which encodes a leucoanthocyanidin reductase. In this study, gene sequences showed the presence of two PaLAR3 allelic lineages in P. abies. Higher resistance was associated with the novel allele, which was found in low frequency in the four P. abies populations that we studied. Norway spruce plants carrying at least one copy of the novel allele showed a significant reduction in FGS after inoculation with Heterobasidion parviporum compared to their half-siblings carrying no copies, indicating dominance of this allele. The amount of (+) catechin, the enzymatic product of PaLAR3, was significantly higher in bark of trees homozygous for the novel allele. Although we observed that the in vitro activities of the enzymes encoded by the two alleles were similar, we could show that allele-specific transcript levels were significantly higher for the novel allele, indicating that regulation of gene expression is responsible for the observed effects in resistance, possibly caused by differences in cis-acting elements that we observe in the promoter region of the two alleles. PMID:27317690

  18. Thinking Allowed: Use of Egocentric Speech after Acquired Brain Injury (ABI)

    ERIC Educational Resources Information Center

    Rees, Sian A.; Skidmore, David

    2011-01-01

    This paper explores the use of thinking aloud made by young people who have sustained a severe acquired brain injury (ABI). The phenomenon is compared with the concepts of egocentric speech and inner speech before the form of thinking aloud by pupils with ABI is examined. It is suggested that by using thinking aloud, this group of pupils is able…

  19. Selective disruption of high sensitivity heat activation but not capsaicin activation of TRPV1 channels by pore turret mutations

    PubMed Central

    Cui, Yuanyuan; Yang, Fan; Cao, Xu; Yarov-Yarovoy, Vladimir

    2012-01-01

    The capsaicin receptor transient receptor potential vanilloid (TRPV)1 is a highly heat-sensitive ion channel. Although chemical activation and heat activation of TRPV1 elicit similar pungent, painful sensation, the molecular mechanism underlying synergistic activation remains mysterious. In particular, where the temperature sensor is located and whether heat and capsaicin share a common activation pathway are debated. To address these fundamental issues, we searched for channel mutations that selectively affected one form of activation. We found that deletion of the first 10 amino acids of the pore turret significantly reduced the heat response amplitude and shifted the heat activation threshold, whereas capsaicin activation remained unchanged. Removing larger portions of the turret disrupted channel function. Introducing an artificial sequence to replace the deleted region restored sensitive capsaicin activation in these nonfunctional channels. The heat activation, however, remained significantly impaired, with the current exhibiting diminishing heat sensitivity to a level indistinguishable from that of a voltage-gated potassium channel, Kv7.4. Our results demonstrate that heat and capsaicin activation of TRPV1 are structurally and mechanistically distinct processes, and the pore turret is an indispensible channel structure involved in the heat activation process but is not part of the capsaicin activation pathway. Synergistic effect of heat and capsaicin on TRPV1 activation may originate from convergence of the two pathways on a common activation gate. PMID:22412190

  20. Abscisic Acid Antagonizes Ethylene Production through the ABI4-Mediated Transcriptional Repression of ACS4 and ACS8 in Arabidopsis.

    PubMed

    Dong, Zhijun; Yu, Yanwen; Li, Shenghui; Wang, Juan; Tang, Saijun; Huang, Rongfeng

    2016-01-04

    Increasing evidence has revealed that abscisic acid (ABA) negatively modulates ethylene biosynthesis, although the underlying mechanism remains unclear. To identify the factors involved, we conducted a screen for ABA-insensitive mutants with altered ethylene production in Arabidopsis. A dominant allele of ABI4, abi4-152, which produces a putative protein with a 16-amino-acid truncation at the C-terminus of ABI4, reduces ethylene production. By contrast, two recessive knockout alleles of ABI4, abi4-102 and abi4-103, result in increased ethylene evolution, indicating that ABI4 negatively regulates ethylene production. Further analyses showed that expression of the ethylene biosynthesis genes ACS4, ACS8, and ACO2 was significantly decreased in abi4-152 but increased in the knockout mutants, with partial dependence on ABA. Chromatin immunoprecipitation-quantitative PCR assays showed that ABI4 directly binds the promoters of these ethylene biosynthesis genes and that ABA enhances this interaction. A fusion protein containing the truncated ABI4-152 peptide accumulated to higher levels than its full-length counterpart in transgenic plants, suggesting that ABI4 is destabilized by its C terminus. Therefore, our results demonstrate that ABA negatively regulates ethylene production through ABI4-mediated transcriptional repression of the ethylene biosynthesis genes ACS4 and ACS8 in Arabidopsis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  1. The Transcription Factor ABI4 Is Required for the Ascorbic Acid–Dependent Regulation of Growth and Regulation of Jasmonate-Dependent Defense Signaling Pathways in Arabidopsis[C][W

    PubMed Central

    Kerchev, Pavel I.; Pellny, Till K.; Vivancos, Pedro Diaz; Kiddle, Guy; Hedden, Peter; Driscoll, Simon; Vanacker, Hélène; Verrier, Paul; Hancock, Robert D.; Foyer, Christine H.

    2011-01-01

    Cellular redox homeostasis is a hub for signal integration. Interactions between redox metabolism and the ABSCISIC ACID-INSENSITIVE-4 (ABI4) transcription factor were characterized in the Arabidopsis thaliana vitamin c defective1 (vtc1) and vtc2 mutants, which are defective in ascorbic acid synthesis and show a slow growth phenotype together with enhanced abscisic acid (ABA) levels relative to the wild type (Columbia-0). The 75% decrease in the leaf ascorbate pool in the vtc2 mutants was not sufficient to adversely affect GA metabolism. The transcriptome signatures of the abi4, vtc1, and vtc2 mutants showed significant overlap, with a large number of transcription factors or signaling components similarly repressed or induced. Moreover, lincomycin-dependent changes in LIGHT HARVESTING CHLOROPHYLL A/B BINDING PROTEIN 1.1 expression were comparable in these mutants, suggesting overlapping participation in chloroplast to nucleus signaling. The slow growth phenotype of vtc2 was absent in the abi4 vtc2 double mutant, as was the sugar-insensitive phenotype of the abi4 mutant. Octadecanoid derivative-responsive AP2/ERF-domain transcription factor 47 (ORA47) and AP3 (an ABI5 binding factor) transcripts were enhanced in vtc2 but repressed in abi4 vtc2, suggesting that ABI4 and ascorbate modulate growth and defense gene expression through jasmonate signaling. We conclude that low ascorbate triggers ABA- and jasmonate-dependent signaling pathways that together regulate growth through ABI4. Moreover, cellular redox homeostasis exerts a strong influence on sugar-dependent growth regulation. PMID:21926335

  2. E1A enhances cellular sensitivity to DNA-damage-induced apoptosis through PIDD-dependent caspase-2 activation.

    PubMed

    Radke, Jay R; Siddiqui, Zeba K; Figueroa, Iris; Cook, James L

    Expression of the adenoviral protein, E1A, sensitizes mammalian cells to a wide variety of apoptosis-inducing agents through multiple cellular pathways. For example, E1A sensitizes cells to apoptosis induced by TNF-superfamily members by inhibiting NF-kappa B (NF- κ B)-dependent gene expression. In contrast, E1A sensitization to nitric oxide, an inducer of the intrinsic apoptotic pathway, is not dependent upon repression of NF- κ B-dependent transcription but rather is dependent upon caspase-2 activation. The latter observation suggested that E1A-induced enhancement of caspase-2 activation might be a critical factor in cellular sensitization to other intrinsic apoptosis pathway-inducing agents. Etoposide and gemcitabine are two DNA damaging agents that induce intrinsic apoptosis. Here we report that E1A-induced sensitization to both of these agents, like NO, is independent of NF- κ B activation but dependent on caspase-2 activation. The results show that caspase-2 is a key mitochondrial-injuring caspase during etoposide and gemcitabine-induced apoptosis of E1A-positive cells, and that caspase-2 is required for induction of caspase-3 activity by both chemotherapeutic agents. Expression of PIDD was required for caspase-2 activation, mitochondrial injury and enhanced apoptotic cell death. Furthermore, E1A-enhanced sensitivity to injury-induced apoptosis required PIDD cleavage to PIDD-CC. These results define the PIDD/caspase-2 pathway as a key apical, mitochondrial-injuring mechanism in E1A-induced sensitivity of mammalian cells to chemotherapeutic agents.

  3. Alcohol Brief Interventions (ABIs) for male remand prisoners: protocol for development of a complex intervention and feasibility study (PRISM-A)

    PubMed Central

    Holloway, Aisha; Landale, Sarah; Ferguson, Jennifer; Newbury-Birch, Dorothy; Parker, Richard; Smith, Pam; Sheikh, Aziz

    2017-01-01

    Introduction In the UK, a significant proportion of male remand prisoners have alcohol problems. Alcohol Brief Interventions (ABIs) are an effective component of a population-level approach to harmful and hazardous drinking. ABIs have been shown to reduce the aggregate level of alcohol consumed and therefore reduce harm to the individual and to others. However, in relation to remand prisoners, there is no evidence as to how effective ABIs could be. The aims of this study are therefore to explore the feasibility and acceptability of an ABI for adult male remand prisoners and to develop an ABI for this group to be piloted in a future trial. Methods and analysis The study will comprise three stages. Stage 1: a cross-sectional survey of adult male remand and convicted prisoners (n=500) at one Scottish prison and one English prison will be undertaken to assess acceptability and feasibility of delivering an ABI, as well as prevalence rates of harmful, hazardous and dependent drinking. Stage 2: in-depth interviews will be conducted with a sample of remand prisoners (n=24) who undertook the survey (n=12 in Scotland; n=12 in England). Two focus groups (one in Scotland and one in England) with six to eight key stakeholders associated with alcohol-related healthcare provision in prisons will be conducted to explore views on barriers, facilitators and levers to ABI delivery. Stage 3: through formal intervention mapping, the analysed data will inform the refinement of an acceptable ABI that is feasible to deliver to male remand prisoners. Ethics and dissemination The project has been approved by the National Research Ethics Committee (NRES), National Offender Management System, Health Board Research and Development, Scottish Prison Service and ethics committee at The University of Edinburgh. Results will be published in peer-reviewed journals and presented at local, national and international conferences. PMID:28473514

  4. The COP9 Signalosome regulates seed germination by facilitating protein degradation of RGL2 and ABI5

    PubMed Central

    Li, Bosheng; Bücker, Birte; Keil, Philipp; Zhang, Shaoman; Li, Jigang; Kang, Dingming; Liu, Jie; Dong, Jie; Deng, Xing Wang; Irish, Vivian

    2018-01-01

    The control of seed germination and seed dormancy are critical for the successful propagation of plant species, and are important agricultural traits. Seed germination is tightly controlled by the balance of gibberellin (GA) and abscisic acid (ABA), and is influenced by environmental factors. The COP9 Signalosome (CSN) is a conserved multi-subunit protein complex that is best known as a regulator of the Cullin-RING family of ubiquitin E3 ligases (CRLs). Multiple viable mutants of the CSN showed poor germination, except for csn5b-1. Detailed analyses showed that csn1-10 has a stronger seed dormancy, while csn5a-1 mutants exhibit retarded seed germination in addition to hyperdormancy. Both csn5a-1 and csn1-10 plants show defects in the timely removal of the germination inhibitors: RGL2, a repressor of GA signaling, and ABI5, an effector of ABA responses. We provide genetic evidence to demonstrate that the germination phenotype of csn1-10 is caused by over-accumulation of RGL2, a substrate of the SCF (CRL1) ubiquitin E3 ligase, while the csn5a-1 phenotype is caused by over-accumulation of RGL2 as well as ABI5. The genetic data are consistent with the hypothesis that CSN5A regulates ABI5 by a mechanism that may not involve CSN1. Transcriptome analyses suggest that CSN1 has a more prominent role than CSN5A during seed maturation, but CSN5A plays a more important role than CSN1 during seed germination, further supporting the functional distinction of these two CSN genes. Our study delineates the molecular targets of the CSN complex in seed germination, and reveals that CSN5 has additional functions in regulating ABI5, thus the ABA signaling pathway. PMID:29462139

  5. Ozone fumigation under dark/light conditions of Norway Spruce (Picea Abies) and Scots Pine (Pinus Sylvestris)

    NASA Astrophysics Data System (ADS)

    Canaval, Eva; Jud, Werner; Hansel, Armin

    2015-04-01

    Norway Spruce (Picea abies) and Scots Pine (Pinus sylvestris) represent dominating tree species in the northern hemisphere. Thus, the understanding of their ozone sensitivity in the light of the expected increasing ozone levels in the future is of great importance. In our experiments we investigated the emissions of volatile organic compounds (VOCs) of 3-4 year old Norway Spruce and Scots Pine seedlings under ozone fumigation (50-150 ppbv) and dark/light conditions. For the experiments the plants were placed in a setup with inert materials including a glass cuvette equipped with a turbulent air inlet and sensors for monitoring a large range of meteorological parameters. Typical conditions were 20-25°C and a relative humidity of 70-90 % for both plant species. A fast gas exchange rate was used to minimize reactions of ozone in the gas phase. A Switchable-Reagent-Ion-Time-of-Flight-MS (SRI-ToF-MS) was used to analyze the VOCs at the cuvette outlet in real-time during changing ozone and light levels. The use of H3O+ and NO+ as reagent ions allows the separation of certain isomers (e.g. aldehydes and ketones) due to different reaction pathways depending on the functional groups of the molecules. Within the Picea abies experiments the ozone loss, defined as the difference of the ozone concentration between cuvette inlet and outlet, remained nearly constant at the transition from dark to light. This indicates that a major part of the supplied ozone is depleted non-stomatally. In contrast the ozone loss increased by 50 % at the transition from dark to light conditions within Pinus sylvestris experiments. In this case the stomata represent the dominant loss channel. Since maximally 0.1% of the ozone loss could be explained by gas phase reactions with monoterpenes and sesquiterpenes, we suggest that ozone reactions on the surface of Picea abies represent the major sink in this case and lead to an light-independent ozone loss. This is supported by the fact that we detected

  6. Abies Concolor Seeds and Cones as New Source of Essential Oils-Composition and Biological Activity.

    PubMed

    Wajs-Bonikowska, Anna; Szoka, Łukasz; Karna, Ewa; Wiktorowska-Owczarek, Anna; Sienkiewicz, Monika

    2017-11-02

    The chemical composition, including the enantiomeric excess of the main terpenes, of essential oils from seeds and cones of Abies concolor was studied by chromatographic (GC) and spectroscopic methods (mass spectrometry, nuclear magnetic resonance), leading to the determination of 98 compounds. Essential oils were mainly composed of monoterpene hydrocarbons. The dominant volatiles of seed essential oil were: limonene (47 g/100 g, almost pure levorotary form) and α-pinene (40 g/100 g), while α-pinene (58 g/100 g), sabinene (11 g/100 g), and β-pinene (4.5 g/100 g) were the predominant components of the cone oil. The seed and cone essential oils exhibited mild antibacterial activity, and the MIC ranged from 26 to 30 μL/mL against all of the tested bacterial standard strains: Staphylococcus aureus , Enterococcus faecalis , Enterococcus faecium , Escherichia coli , and Klebsiella pneumoniae . The cytotoxic studies have demonstrated that tested essential oils were cytotoxic to human skin fibroblasts and human microvascular endothelial cells at concentrations much lower than the MIC. The essential oils from A. concolor seeds and cones had no toxic effect on human skin fibroblasts and human microvascular endothelial cells, when added to the cells at a low concentration (0-0.075 μL/mL) and (0-1.0 μL/mL), respectively, and cultured for 24 h.

  7. LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance.

    PubMed

    Delahaie, Julien; Hundertmark, Michaela; Bove, Jérôme; Leprince, Olivier; Rogniaux, Hélène; Buitink, Julia

    2013-11-01

    In contrast to orthodox seeds that acquire desiccation tolerance during maturation, recalcitrant seeds are unable to survive drying. These desiccation-sensitive seeds constitute an interesting model for comparative analysis with phylogenetically close species that are desiccation tolerant. Considering the importance of LEA (late embryogenesis abundant) proteins as protective molecules both in drought and in desiccation tolerance, the heat-stable proteome was characterized in cotyledons of the legume Castanospermum australe and it was compared with that of the orthodox model legume Medicago truncatula. RNA sequencing identified transcripts of 16 homologues out of 17 LEA genes for which polypeptides are detected in M. truncatula seeds. It is shown that for 12 LEA genes, polypeptides were either absent or strongly reduced in C. australe cotyledons compared with M. truncatula seeds. Instead, osmotically responsive, non-seed-specific dehydrins accumulated to high levels in the recalcitrant cotyledons compared with orthodox seeds. Next, M. truncatula mutants of the abscisic acid insensitive3 (ABI3) gene were characterized. Mature Mtabi3 seeds were found to be desiccation sensitive when dried below a critical water content of 0.4 g H2O g DW(-1). Characterization of the LEA proteome of the Mtabi3 seeds revealed a subset of LEA proteins with severely reduced abundance that were also found to be reduced or absent in C. australe cotyledons. Transcripts of these genes were indeed shown to be ABI3 responsive. The results highlight those LEA proteins that are critical to desiccation tolerance and suggest that comparable regulatory pathways responsible for their accumulation are missing in both desiccation-sensitive genotypes, revealing new insights into the mechanistic basis of the recalcitrant trait in seeds.

  8. LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance

    PubMed Central

    Hundertmark, Michaela; Buitink, Julia

    2013-01-01

    In contrast to orthodox seeds that acquire desiccation tolerance during maturation, recalcitrant seeds are unable to survive drying. These desiccation-sensitive seeds constitute an interesting model for comparative analysis with phylogenetically close species that are desiccation tolerant. Considering the importance of LEA (late embryogenesis abundant) proteins as protective molecules both in drought and in desiccation tolerance, the heat-stable proteome was characterized in cotyledons of the legume Castanospermum australe and it was compared with that of the orthodox model legume Medicago truncatula. RNA sequencing identified transcripts of 16 homologues out of 17 LEA genes for which polypeptides are detected in M. truncatula seeds. It is shown that for 12 LEA genes, polypeptides were either absent or strongly reduced in C. australe cotyledons compared with M. truncatula seeds. Instead, osmotically responsive, non-seed-specific dehydrins accumulated to high levels in the recalcitrant cotyledons compared with orthodox seeds. Next, M. truncatula mutants of the ABSCISIC ACID INSENSITIVE3 (ABI3) gene were characterized. Mature Mtabi3 seeds were found to be desiccation sensitive when dried below a critical water content of 0.4g H2O g DW–1. Characterization of the LEA proteome of the Mtabi3 seeds revealed a subset of LEA proteins with severely reduced abundance that were also found to be reduced or absent in C. australe cotyledons. Transcripts of these genes were indeed shown to be ABI3 responsive. The results highlight those LEA proteins that are critical to desiccation tolerance and suggest that comparable regulatory pathways responsible for their accumulation are missing in both desiccation-sensitive genotypes, revealing new insights into the mechanistic basis of the recalcitrant trait in seeds. PMID:24043848

  9. A forest health inventory assessment of red fir (Abies magnifica) in upper montane California

    Treesearch

    Leif Mortenson; Andrew N. Gray; David C. Shaw

    2015-01-01

    We investigated the forest health of red fir (Abies magnifica) and how it compared with commonly-associated species Jeffrey pine (Pinus jeffreyi), lodgepole pine (Pinus contorta) and white fir (Abies concolor) in the upper montane forests of California. We evaluated tree mortality rates...

  10. Exploring Parents' Perceptions and How Physiotherapy Supports Transition from Rehabilitation to School for Youth with an ABI.

    PubMed

    Lee, Tracy; Norton, Andrea; Hayes, Sue; Adamson, Keith; Schwellnus, Heidi; Evans, Cathy

    2017-11-01

    To explore parents' perceptions of their youth's transition from rehabilitation to school following an Acquired Brain Injury (ABI) and how physiotherapy influenced the youth's participation and physical function during the transition. The study utilized phenomenological qualitative methodology using semi-structured interviews with 11 parents of youth 10 to 18 years of age recruited from one pediatric rehabilitation hospital in Ontario. Each interview was audiotaped, transcribed verbatim, and thematically analyzed. Parents valued physiotherapy and highlighted potential areas of improved service delivery to promote participation in an active lifestyle during this transition. In addition to being parents, they had to assume new roles and responsibilities in order to motivate their youth to continue with therapy and physical activity and had to facilitate their participation in school, recreational and social activities. For youth following an ABI, the transition back to school is complex and strategies should be supportive and responsive. Implications for physiotherapists include improved collaboration with community partners to motivate youth and promote physical activity; engage youth with their peers early in the rehabilitation process; and ongoing support for parents.

  11. Elevation Shift in Abies Mill. (Pinaceae) of Subtropical and Temperate China and Vietnam-Corroborative Evidence from Cytoplasmic DNA and Ecological Niche Modeling.

    PubMed

    Shao, Yi-Zhen; Zhang, Xian-Chun; Phan, Loc Ke; Xiang, Qiao-Ping

    2017-01-01

    The "elevational shift" scenario has been proposed as a model to explain the response of cold-adapted organisms to Quaternary climatic fluctuations in Europe and North America. However, the elevational shift model has not been well-explored in eastern Asia, which is more topographically complex than the other Northern Hemisphere biogeographic regions. Here, we evaluated the role of elevational shift in the closely related firs, or Abies Mill., of subtropical and temperate China. These firs are typical alpine trees with sensitivity to climate change. We tested the elevational shift hypothesis in firs of China using phylogeographic methods and ecological niche models. Our phylogeographic analyses comprised mitochondrial and chloroplast polymorphisms surveyed across 479 individuals from 43 populations representing 11 species. M1 of the 11 mitotypes and C1 of the 25 chlorotypes were inferred as the ancestral haplotype, and they had the widest distribution. The results of our phylogeographic survey revealed multiple centers of genetic diversity in distinct geographic regions and no latitudinal trend. Moreover, our results showed range expansions for seven taxa during the last glacial (64.9-18.2 or 32.5-9.1 kya), and this was consistent with the Quaternary fossil record of Abies in China. Taken together, our findings support a historical biogeographic pattern in firs of glacial expansions, probably through corridors at lower elevation, and interglacial fragmentations, through isolation at higher elevation peaks. Therefore, Abies in China probably undergoes elevational shift in response to climate change. Facing the forecasting global warming, the risk of several critically endangered firs was further enhanced as these species would have little escape space in situ to higher altitudes. According to our ENMs, we proposed an ex situ conservation strategy in the southern Hengduan Mountains region of south western China.

  12. Sargent's fir hybrid: Abies amabilis x lasicarpa

    Treesearch

    William B. Critchfield

    1977-01-01

    On a short trip into the northern Olympic Mountains of Washington in the summer of 1896, Professor Charles Sprague Sargent found a fir tree that he thought might be a natural hybrid between Abies amabilis (Dougl.) Forbes and A. lasiocarpa (Hook.) Nutt. The founder and Director of the Arnold Arboretum, Sargent was generally...

  13. Constitutive Equations and ANN Approach to Predict the Flow Stress of Ti-6Al-4V Alloy Based on ABI Tests

    NASA Astrophysics Data System (ADS)

    Wang, Fuzeng; Zhao, Jun; Zhu, Ningbo

    2016-11-01

    The flow behavior of Ti-6Al-4V alloy was studied by automated ball indentation (ABI) tests in a wide range of temperatures (293, 493, 693, and 873 K) and strain rates (10-6, 10-5, and 10-4 s-1). Based on the experimental true stress-plastic strain data derived from the ABI tests, the Johnson-Cook (JC), Khan-Huang-Liang (KHL) and modified Zerilli-Armstrong (ZA) constitutive models, as well as artificial neural network (ANN) methods, were employed to predict the flow behavior of Ti-6Al-4V. A comparative study was made on the reliability of the four models, and their predictability was evaluated in terms of correlation coefficient ( R) and mean absolute percentage error. It is found that the flow stresses of Ti-6Al-4V alloy are more sensitive to temperature than strain rate under current experimental conditions. The predicted flow stresses obtained from JC model and KHL model show much better agreement with the experimental results than modified ZA model. Moreover, the ANN model is much more efficient and shows a higher accuracy in predicting the flow behavior of Ti-6Al-4V alloy than the constitutive equations.

  14. Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insulin sensitivity.

    PubMed

    Shi, Xuemei; Chacko, Shaji; Li, Feng; Li, Depei; Burrin, Douglas; Chan, Lawrence; Guan, Xinfu

    2017-11-01

    Glucagon-like peptides are co-released from enteroendocrine L cells in the gut and preproglucagon (PPG) neurons in the brainstem. PPG-derived GLP-1/2 are probably key neuroendocrine signals for the control of energy balance and glucose homeostasis. The objective of this study was to determine whether activation of PPG neurons per se modulates glucose homeostasis and insulin sensitivity in vivo. We generated glucagon (Gcg) promoter-driven Cre transgenic mice and injected excitatory hM3Dq-mCherry AAV into their brainstem NTS. We characterized the metabolic impact of PPG neuron activation on glucose homeostasis and insulin sensitivity using stable isotopic tracers coupled with hyperinsulinemic euglycemic clamp. We showed that after ip injection of clozapine N-oxide, Gcg-Cre lean mice transduced with hM3Dq in the brainstem NTS downregulated basal endogenous glucose production and enhanced glucose tolerance following ip glucose tolerance test. Moreover, acute activation of PPG neurons NTS enhanced whole-body insulin sensitivity as indicated by increased glucose infusion rate as well as augmented insulin-suppression of endogenous glucose production and gluconeogenesis. In contrast, insulin-stimulation of glucose disposal was not altered significantly. We conclude that acute activation of PPG neurons in the brainstem reduces basal glucose production, enhances intraperitoneal glucose tolerance, and augments hepatic insulin sensitivity, suggesting an important physiological role of PPG neurons-mediated circuitry in promoting glycemic control and insulin sensitivity. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  15. Interviewing Children with Acquired Brain Injury (ABI)

    ERIC Educational Resources Information Center

    Boylan, Anne-Marie; Linden, Mark; Alderdice, Fiona

    2009-01-01

    Research into the lives of children with acquired brain injury (ABI) often neglects to incorporate children as participants, preferring to obtain the opinions of the adult carer (e.g. McKinlay et al., 2002). There has been a concerted attempt to move away from this position by those working in children's research with current etiquette…

  16. Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels.

    PubMed

    Tuluc, Petronel; Benedetti, Bruno; Coste de Bagneaux, Pierre; Grabner, Manfred; Flucher, Bernhard E

    2016-06-01

    Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3-S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3-S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3-S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3-S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3-S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular mechanisms

  17. Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels

    PubMed Central

    Tuluc, Petronel; Benedetti, Bruno; Coste de Bagneaux, Pierre; Grabner, Manfred

    2016-01-01

    Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3–S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3–S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3–S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3–S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3–S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular

  18. Mechanisms of transient receptor potential vanilloid 1 activation and sensitization by allyl isothiocyanate.

    PubMed

    Gees, Maarten; Alpizar, Yeranddy A; Boonen, Brett; Sanchez, Alicia; Everaerts, Wouter; Segal, Andrei; Xue, Fenqin; Janssens, Annelies; Owsianik, Grzegorz; Nilius, Bernd; Voets, Thomas; Talavera, Karel

    2013-09-01

    Allyl isothiocyanate (AITC; aka, mustard oil) is a powerful irritant produced by Brassica plants as a defensive trait against herbivores and confers pungency to mustard and wasabi. AITC is widely used experimentally as an inducer of acute pain and neurogenic inflammation, which are largely mediated by the activation of nociceptive cation channels transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 (TRPV1). Although it is generally accepted that electrophilic agents activate these channels through covalent modification of cytosolic cysteine residues, the mechanism underlying TRPV1 activation by AITC remains unknown. Here we show that, surprisingly, AITC-induced activation of TRPV1 does not require interaction with cysteine residues, but is largely dependent on S513, a residue that is involved in capsaicin binding. Furthermore, AITC acts in a membrane-delimited manner and induces a shift of the voltage dependence of activation toward negative voltages, which is reminiscent of capsaicin effects. These data indicate that AITC acts through reversible interactions with the capsaicin binding site. In addition, we show that TRPV1 is a locus for cross-sensitization between AITC and acidosis in nociceptive neurons. Furthermore, we show that residue F660, which is known to determine the stimulation by low pH in human TRPV1, is also essential for the cross-sensitization of the effects of AITC and low pH. Taken together, these findings demonstrate that not all reactive electrophiles stimulate TRPV1 via cysteine modification and help understanding the molecular bases underlying the surprisingly large role of this channel as mediator of the algesic properties of AITC.

  19. Embolism Formation during Freezing in the Wood of Picea abies1

    PubMed Central

    Mayr, Stefan; Cochard, Hervé; Améglio, Thierry; Kikuta, Silvia B.

    2007-01-01

    Freeze-thaw events can cause embolism in plant xylem. According to classical theory, gas bubbles are formed during freezing and expand during thawing. Conifers have proved to be very resistant to freeze-thaw induced embolism, because bubbles in tracheids are small and redissolve during thawing. In contrast, increasing embolism rates upon consecutive freeze-thaw events were observed that cannot be explained by the classical mechanism. In this study, embolism formation during freeze-thaw events was analyzed via ultrasonic and Cryo-scanning electron microscope techniques. Twigs of Picea abies L. Karst. were subjected to up to 120 freeze-thaw cycles during which ultrasonic acoustic emissions, xylem temperature, and diameter variations were registered. In addition, the extent and cross-sectional pattern of embolism were analyzed with staining experiments and Cryo-scanning electron microscope observations. Embolism increased with the number of freeze-thaw events in twigs previously dehydrated to a water potential of −2.8 MPa. In these twigs, acoustic emissions were registered, while saturated twigs showed low, and totally dehydrated twigs showed no, acoustic activity. Acoustic emissions were detected only during the freezing process. This means that embolism was formed during freezing, which is in contradiction to the classical theory of freeze-thaw induced embolism. The clustered pattern of embolized tracheids in cross sections indicates that air spread from a dysfunctional tracheid to adjacent functional ones. We hypothesize that the low water potential of the growing ice front led to a decrease of the potential in nearby tracheids. This may result in freezing-induced air seeding. PMID:17041033

  20. 19 CFR 143.7 - Revocation of ABI participation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Risk of significant harm to system. If the participant's continued use of ABI would pose a potential risk of significant harm to the integrity and functioning of the system, the Director, User Support... appeal the revocation to the Assistant Commissioner, Information and Technology, within 10 days following...

  1. Synergistic Combination of Novel Tubulin Inhibitor ABI-274 and Vemurafenib Overcome Vemurafenib Acquired Resistance in BRAFV600E Melanoma

    PubMed Central

    Wang, Jin; Chen, Jianjun; Miller, Duane D.; Li, Wei

    2013-01-01

    Acquired clinical resistance to vemurafenib, a selective BRAFV600E inhibitor, arises frequently after short term chemotherapy. Since inhibitions of targets in the RAF-MEK-ERK pathway result in G0/G1 cell cycle arrest, vemurafenib-resistant cancer cells are expected to escape this cell cycle arrest and progress to subsequent G2/M phase. We hypothesized that a combined therapy using vemurafenib with a G2/M phase blocking agent will trap resistant cells and overcome vemurafenib resistance. To test this hypothesis, we first determined the combination index (CI) values of our novel tubulin inhibitor ABI-274 and vemurafenib on parental human A375 and MDA-MB-435 melanoma cell lines to be 0.32 and 0.1, respectively, suggesting strong synergy for the combination. We then developed an A375RF21 subline with significant acquired resistance to vemurafenib and confirmed the strong synergistic effect. Next we studied the potential mechanisms of overcoming vemurafenib resistance. Flow cytometry confirmed that the combination of ABI-274 and vemurafenib synergistically arrested cells in G1/G2/M phase, and significantly increased apoptosis in both parental A375 and the vemurafenib-resistant A375RF21 cells. Western blot analysis revealed that the combination treatment effectively reduced the level of phosphorylated and total AKT, activated the apoptosis cascade, and increased cleaved caspase-3 and cleaved PARP, but had no significant influence on the level of ERK phosphorylation. Finally, in vivo co-administration of vemurafenib with ABI-274 showed strong synergistic efficacy in the vemurafenib-resistant xenograft model in nude mice. Overall, these results offer a rational combination strategy to significantly enhance the therapeutic benefit in melanoma patients who inevitably become resistant to current vemurafenib therapy. PMID:24249714

  2. Spin-orbit coupling enhanced superconductivity in Bi-rich compounds ABi3 (A = Sr and Ba)

    PubMed Central

    Shao, D. F.; Luo, X.; Lu, W. J.; Hu, L.; Zhu, X. D.; Song, W. H.; Zhu, X. B.; Sun, Y. P.

    2016-01-01

    Recently, Bi-based compounds have attracted attentions because of the strong spin-orbit coupling (SOC). In this work, we figured out the role of SOC in ABi3 (A = Sr and Ba) by theoretical investigation of the band structures, phonon properties, and electron-phonon coupling. Without SOC, strong Fermi surface nesting leads to phonon instabilities in ABi3. SOC suppresses the nesting and stabilizes the structure. Moreover, without SOC the calculation largely underestimates the superconducting transition temperatures (Tc), while with SOC the calculated Tc are very close to those determined by measurements on single crystal samples. The SOC enhanced superconductivity in ABi3 is due to not only the SOC induced phonon softening, but also the SOC related increase of electron-phonon coupling matrix elements. ABi3 can be potential platforms to construct heterostructure of superconductor/topological insulator to realize topological superconductivity. PMID:26892681

  3. Resistance to Phytophthora cinnamomi in the Genus Abies

    Treesearch

    John Frampton; Fikret Isik; Mike Benson; Jaroslav Kobliha; Jan Stjskal

    2012-01-01

    A major limiting factor for the culture of true firs as Christmas trees is their susceptibility to Oomycete species belonging to the genus Phytophthora. In North Carolina alone, the Fraser fir (Abies fraseri [Pursh] Poir.) Christmas tree industry loses 6 to 7 million dollars annually to root rot primarily caused by ...

  4. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy.

    PubMed

    Wu, Jian; Seng, Shanshan; Sui, Juanjuan; Vonapartis, Eliana; Luo, Xian; Gong, Benhe; Liu, Chen; Wu, Chenyu; Liu, Chao; Zhang, Fengqin; He, Junna; Yi, Mingfang

    2015-01-01

    The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ).

  5. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy

    PubMed Central

    Wu, Jian; Seng, Shanshan; Sui, Juanjuan; Vonapartis, Eliana; Luo, Xian; Gong, Benhe; Liu, Chen; Wu, Chenyu; Liu, Chao; Zhang, Fengqin; He, Junna; Yi, Mingfang

    2015-01-01

    The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ). PMID:26579187

  6. Activation of TNFR2 sensitizes macrophages for TNFR1-mediated necroptosis

    PubMed Central

    Siegmund, Daniela; Kums, Juliane; Ehrenschwender, Martin; Wajant, Harald

    2016-01-01

    Macrophages express TNFR1 as well as TNFR2 and are also major producers of tumor necrosis factor (TNF), especially upon contact with pathogen-associated molecular patterns. Consequently, TNF not only acts as a macrophage-derived effector molecule but also regulates the activity and viability of macrophages. Here, we investigated the individual contribution of TNFR1 and TNFR2 to TNF-induced cell death in macrophages. Exclusive stimulation of TNFR1 showed no cytotoxic effect whereas selective stimulation of TNFR2 displayed mild cytotoxicity. Intriguingly, the latter was strongly enhanced by the caspase inhibitor zVAD-fmk. The strong cytotoxic activity of TNFR2 in the presence of zVAD-fmk was reversed by necrostatin-1, indicating necroptotic cell death. TNFR1- and TNF-deficient macrophages turned out to be resistant against TNFR2-induced cell death. In addition, the cIAP-depleting SMAC mimetic BV6 also enforced TNF/TNFR1-mediated necroptotic cell death in the presence of zVAD-fmk. In sum, our data suggest a model in which TNFR2 sensitizes macrophages for endogenous TNF-induced TNFR1-mediated necroptosis by the known ability of TNFR2 to interfere with the survival activity of TRAF2-cIAP1/2 complexes. PMID:27899821

  7. Activation of TNFR2 sensitizes macrophages for TNFR1-mediated necroptosis.

    PubMed

    Siegmund, Daniela; Kums, Juliane; Ehrenschwender, Martin; Wajant, Harald

    2016-09-22

    Macrophages express TNFR1 as well as TNFR2 and are also major producers of tumor necrosis factor (TNF), especially upon contact with pathogen-associated molecular patterns. Consequently, TNF not only acts as a macrophage-derived effector molecule but also regulates the activity and viability of macrophages. Here, we investigated the individual contribution of TNFR1 and TNFR2 to TNF-induced cell death in macrophages. Exclusive stimulation of TNFR1 showed no cytotoxic effect whereas selective stimulation of TNFR2 displayed mild cytotoxicity. Intriguingly, the latter was strongly enhanced by the caspase inhibitor zVAD-fmk. The strong cytotoxic activity of TNFR2 in the presence of zVAD-fmk was reversed by necrostatin-1, indicating necroptotic cell death. TNFR1- and TNF-deficient macrophages turned out to be resistant against TNFR2-induced cell death. In addition, the cIAP-depleting SMAC mimetic BV6 also enforced TNF/TNFR1-mediated necroptotic cell death in the presence of zVAD-fmk. In sum, our data suggest a model in which TNFR2 sensitizes macrophages for endogenous TNF-induced TNFR1-mediated necroptosis by the known ability of TNFR2 to interfere with the survival activity of TRAF2-cIAP1/2 complexes.

  8. Hands-on Activities Designed to Familiarize Users with Data from ABI on GOES-R and AHI on Himawari-8

    NASA Astrophysics Data System (ADS)

    Lindstrom, S. S.; Schmit, T.; Gerth, J.; Gunshor, M. M.; Mooney, M. E.; Whittaker, T. M.

    2016-12-01

    Recent and ongoing launches of next-generation geostationary satellites offer a challenge to familiarize National Weather Service (and other) forecasters with the new capabilities of different spectral channels sensed by the Advanced Baseline Imager (ABI) on GOES-R and the Advanced Himawari Imager (AHI) on Himawari-8. Hands on HTML5-based applets developed at the Cooperative Institute for Meteorological Satellite Studies allow for quick comparisons of reflectance in the visible (0.4 to 0.7 um) and near-infrared channels (0.86 to 2.2 um) and brightness temperatures in the infrared (3.9 to 13.3 um). The web apps to explore the different channels on ABI and AHI are at http://cimss.ssec.wisc.edu/goes/webapps/bandapp/; those that offer guidance on how to produce Red/Green/Blue composites are at http://cimss.ssec.wisc.edu/goes/webapps/satrgb/overview.html. This talk will briefly discuss highlights from both websites, and suggest ways the applications can be used to educate forecasters and the general public.

  9. Synthesis, crystal growth and characterization of bioactive material: 2-amino-1H-benzo[d]imidazol-3-ium salicylate single crystal-a proton transfer molecular complex

    NASA Astrophysics Data System (ADS)

    Fathima, K. Saiadali; Anitha, K.

    2017-05-01

    The 1:1 molecular adducts 2-aminobenzimidazolium salicylate (ABIS) single crystal was synthesized and grown from 2-aminobenzimidazole (ABI) as a donor and salicylic acid (SA) as an acceptor. The cell parameter was determined using single crystal X-Ray diffraction method and the complex ABIS belongs to monoclinic system. The spectroscopic studies showed that ABIS crystal was an ion pair complex. The FTIR and Raman spectra showed that the presence of O-H, C=N, C=O vibration which confirms the proton transfer from SA to ABI. The UV-Vis spectrum exhibited a visible band at 359nm for ABIS due to the salicylate anion of the molecule. Further the antimicrobial activity of ABIS complex against Staphylococcus aureus, klebsiella pneumonia, Pseudomonas eruginos and E.coli pathogens was investigated. So the complex molecule inhibits both Gram positive and Gram negative bacterial. It is found that benzimidazole with aminogroup at position 2 increases the general antimicrobial activities of ABIS crystal.

  10. Activation of Cyclic Adenosine Monophosphate Pathway Increases the Sensitivity of Cancer Cells to the Oncolytic Virus M1.

    PubMed

    Li, Kai; Zhang, Haipeng; Qiu, Jianguang; Lin, Yuan; Liang, Jiankai; Xiao, Xiao; Fu, Liwu; Wang, Fang; Cai, Jing; Tan, Yaqian; Zhu, Wenbo; Yin, Wei; Lu, Bingzheng; Xing, Fan; Tang, Lipeng; Yan, Min; Mai, Jialuo; Li, Yuan; Chen, Wenli; Qiu, Pengxin; Su, Xingwen; Gao, Guangping; Tai, Phillip W L; Hu, Jun; Yan, Guangmei

    2016-02-01

    Oncolytic virotherapy is a novel and emerging treatment modality that uses replication-competent viruses to destroy cancer cells. Although diverse cancer cell types are sensitive to oncolytic viruses, one of the major challenges of oncolytic virotherapy is that the sensitivity to oncolysis ranges among different cancer cell types. Furthermore, the underlying mechanism of action is not fully understood. Here, we report that activation of cyclic adenosine monophosphate (cAMP) signaling significantly sensitizes refractory cancer cells to alphavirus M1 in vitro, in vivo, and ex vivo. We find that activation of the cAMP signaling pathway inhibits M1-induced expression of antiviral factors in refractory cancer cells, leading to prolonged and severe endoplasmic reticulum (ER) stress, and cell apoptosis. We also demonstrate that M1-mediated oncolysis, which is enhanced by cAMP signaling, involves the factor, exchange protein directly activated by cAMP 1 (Epac1), but not the classical cAMP-dependent protein kinase A (PKA). Taken together, cAMP/Epac1 signaling pathway activation inhibits antiviral factors and improves responsiveness of refractory cancer cells to M1-mediated virotherapy.

  11. Interaction with caveolin-1 modulates vascular ATP-sensitive potassium (KATP) channel activity

    PubMed Central

    Davies, Lowri M; Purves, Gregor I; Barrett-Jolley, Richard; Dart, Caroline

    2010-01-01

    ATP-sensitive potassium channels (KATP channels) of arterial smooth muscle are important regulators of arterial tone, and hence blood flow, in response to vasoactive transmitters. Recent biochemical and electron microscopic evidence suggests that these channels localise to small vesicular invaginations of the plasma membrane, known as caveolae, and interact with the caveolae-associated protein, caveolin. Here we report that interaction with caveolin functionally regulates the activity of the vascular subtype of KATP channel, Kir6.1/SUR2B. Pinacidil-evoked recombinant whole-cell Kir6.1/SUR2B currents recorded in HEK293 cells stably expressing caveolin-1 (69.6 ± 8.3 pA pF−1, n= 8) were found to be significantly smaller than currents recorded in caveolin-null cells (179.7 ± 35.9 pA pF−1, n= 6; P < 0.05) indicating that interaction with caveolin may inhibit channel activity. Inclusion in the pipette-filling solution of a peptide corresponding to the scaffolding domain of caveolin-1 had a similar inhibitory effect on whole-cell Kir6.1/SUR2B currents as co-expression with full-length caveolin-1, while a scrambled version of the same peptide had no effect. Interestingly, intracellular dialysis of vascular smooth muscle cells with the caveolin-1 scaffolding domain peptide (SDP) also caused inhibition of pinacidil-evoked native whole-cell KATP currents, indicating that a significant proportion of vascular KATP channels are susceptible to block by exogenously applied SDP. In cell-attached recordings of Kir6.1/SUR2B single channel activity, the presence of caveolin-1 significantly reduced channel open probability (from 0.05 ± 0.01 to 0.005 ± 0.001; P < 0.05) and the amount of time spent in a relatively long-lived open state. These changes in kinetic behaviour can be explained by a caveolin-induced shift in the channel's sensitivity to its physiological regulator MgADP. Our findings thus suggest that interaction with caveolin-1 suppresses vascular-type KATP channel

  12. Holophyllane A: A Triterpenoid Possessing an Unprecedented B-nor-3,4-seco-17,14-friedo-lanostane Architecture from Abies holophylla

    NASA Astrophysics Data System (ADS)

    Kim, Chung Sub; Oh, Joonseok; Subedi, Lalita; Kim, Sun Yeou; Choi, Sang Un; Lee, Kang Ro

    2017-03-01

    A novel triterpenoid, holophyllane A (1), featuring a B-nor-3,4-seco-17,14-friedo-lanostane, along with its putative precursor, compound 2 were isolated from the methanol extract of the trunks of Abies holophylla. The 2D structure and relative configuration of 1 were initially determined via analysis of 1D and 2D NMR spectroscopic data and the assignment was confirmed by quantum mechanics-based NMR chemical shift calculations. The absolute configuration was established by comparison of the experimental and simulated ECD data generated at different theory levels. Compounds 1 and 2 exhibited moderate to weak cytotoxicity and significant inhibitory activity against nitric oxide (NO) production.

  13. Nuclear p21-activated kinase 1 in breast cancer packs off tamoxifen sensitivity.

    PubMed

    Rayala, Suresh K; Molli, Poonam R; Kumar, Rakesh

    2006-06-15

    There is significant clinical interest in the factors that influence the development of tamoxifen resistance in estrogen receptor-alpha (ER-alpha)-positive breast cancers. Recent studies suggest that in ER-positive breast tumor cells, elevated protein levels, and in particular, nuclear localization of p21-activated kinase 1 (PAK1), is associated with the progressive limitation of tamoxifen sensitivity. These phenotypic effects of PAK1 in model systems are mechanistically linked with the ability of PAK1 to phosphorylate ER-alpha on serine 305 and subsequent secondary activation of serine 118. These findings prompt further investigation of how nuclear signaling by PAK1 may affect estrogen's action and whether tamoxifen resistance might be prevented or reversed by PAK1 inhibition.

  14. Climate-growth relationships of Abies spectabilis in a central Himalayan treeline ecotone

    NASA Astrophysics Data System (ADS)

    Schwab, Niels; Kaczka, Ryszard J.; Schickhoff, Udo

    2017-04-01

    Climate warming is expected to induce treelines to advance to higher elevations. Empirical studies in diverse mountain ranges, however, give evidence of both advancing alpine treelines as well as rather insignificant responses. The large spectrum of responses is not fully understood. In the framework of investigating the sensitivity and response of a near-natural treeline ecotone in Rolwaling Himal, Nepal, to climate warming we present results from dendroclimatological analyses of Abies spectabilis (Himalayan Fir) increment cores. Tree ring width was measured and cross-dated. After standardization, the chronology was correlated with temperature and precipitation variables. Preliminary results point to positive correlations with autumn temperature and precipitation. We will present improved climate-growth relationships. The resulting climate - tree growth relationships may be used as an indication of future growth patterns and treeline dynamics under climate change conditions.

  15. Hydrogen peroxide preferentially activates capsaicin-sensitive high threshold afferents via TRPA1 channels in the guinea pig bladder.

    PubMed

    Nicholas, S; Yuan, S Y; Brookes, S J H; Spencer, N J; Zagorodnyuk, V P

    2017-01-01

    There is increasing evidence suggesting that ROS play a major pathological role in bladder dysfunction induced by bladder inflammation and/or obstruction. The aim of this study was to determine the effect of H 2 O 2 on different types of bladder afferents and its mechanism of action on sensory neurons in the guinea pig bladder. 'Close-to-target' single unit extracellular recordings were made from fine branches of pelvic nerves entering the guinea pig bladder, in flat sheet preparations, in vitro. H 2 O 2 (300-1000 μM) preferentially and potently activated capsaicin-sensitive high threshold afferents but not low threshold stretch-sensitive afferents, which were only activated by significantly higher concentrations of hydrogen peroxide. The TRPV1 channel agonist, capsaicin, excited 86% of high threshold afferents. The TRPA1 channel agonist, allyl isothiocyanate and the TRPM8 channel agonist, icilin activated 72% and 47% of capsaicin-sensitive high threshold afferents respectively. The TRPA1 channel antagonist, HC-030031, but not the TRPV1 channel antagonist, capsazepine or the TRPM8 channel antagonist, N-(2-aminoethyl)-N-[[3-methoxy-4-(phenylmethoxy)phenyl]methyl]thiophene-2-carboxamide, significantly inhibited the H 2 O 2 -induced activation of high threshold afferents. Dimethylthiourea and deferoxamine did not significantly change the effect of H 2 O 2 on high threshold afferents. The findings show that H 2 O 2 , in the concentration range detected in inflammation or reperfusion after ischaemia, evoked long-lasting activation of the majority of capsaicin-sensitive high threshold afferents, but not low threshold stretch-sensitive afferents. The data suggest that the TRPA1 channels located on these capsaicin-sensitive afferent fibres are probable targets of ROS released during oxidative stress. © 2016 The British Pharmacological Society.

  16. Hydrogen peroxide preferentially activates capsaicin‐sensitive high threshold afferents via TRPA1 channels in the guinea pig bladder

    PubMed Central

    Nicholas, S; Yuan, S Y; Brookes, S J H; Spencer, N J

    2016-01-01

    Background and Purpose There is increasing evidence suggesting that ROS play a major pathological role in bladder dysfunction induced by bladder inflammation and/or obstruction. The aim of this study was to determine the effect of H2O2 on different types of bladder afferents and its mechanism of action on sensory neurons in the guinea pig bladder. Experimental Approach ‘Close‐to‐target’ single unit extracellular recordings were made from fine branches of pelvic nerves entering the guinea pig bladder, in flat sheet preparations, in vitro. Key Results H2O2 (300–1000 μM) preferentially and potently activated capsaicin‐sensitive high threshold afferents but not low threshold stretch‐sensitive afferents, which were only activated by significantly higher concentrations of hydrogen peroxide. The TRPV1 channel agonist, capsaicin, excited 86% of high threshold afferents. The TRPA1 channel agonist, allyl isothiocyanate and the TRPM8 channel agonist, icilin activated 72% and 47% of capsaicin‐sensitive high threshold afferents respectively. The TRPA1 channel antagonist, HC‐030031, but not the TRPV1 channel antagonist, capsazepine or the TRPM8 channel antagonist, N‐(2‐aminoethyl)‐N‐[[3‐methoxy‐4‐(phenylmethoxy)phenyl]methyl]thiophene‐2‐carboxamide, significantly inhibited the H2O2‐induced activation of high threshold afferents. Dimethylthiourea and deferoxamine did not significantly change the effect of H2O2 on high threshold afferents. Conclusions and Implications The findings show that H2O2, in the concentration range detected in inflammation or reperfusion after ischaemia, evoked long‐lasting activation of the majority of capsaicin‐sensitive high threshold afferents, but not low threshold stretch‐sensitive afferents. The data suggest that the TRPA1 channels located on these capsaicin‐sensitive afferent fibres are probable targets of ROS released during oxidative stress. PMID:27792844

  17. Epac activation sensitizes rat sensory neurons through activation of Ras.

    PubMed

    Shariati, Behzad; Thompson, Eric L; Nicol, Grant D; Vasko, Michael R

    2016-01-01

    Guanine nucleotide exchange factors directly activated by cAMP (Epacs) have emerged as important signaling molecules mediating persistent hypersensitivity in animal models of inflammation, by augmenting the excitability of sensory neurons. Although Epacs activate numerous downstream signaling cascades, the intracellular signaling which mediates Epac-induced sensitization of capsaicin-sensitive sensory neurons remains unknown. Here, we demonstrate that selective activation of Epacs with 8-CPT-2'-O-Me-cAMP-AM (8CPT-AM) increases the number of action potentials (APs) generated by a ramp of depolarizing current and augments the evoked release of calcitonin gene-related peptide (CGRP) from isolated rat sensory neurons. Internal perfusion of capsaicin-sensitive sensory neurons with GDP-βS, substituted for GTP, blocks the ability of 8CPT-AM to increase AP firing, demonstrating that Epac-induced sensitization is G-protein dependent. Treatment with 8CPT-AM activates the small G-proteins Rap1 and Ras in cultures of sensory neurons. Inhibition of Rap1, by internal perfusion of a Rap1-neutralizing antibody or through a reduction in the expression of the protein using shRNA does not alter the Epac-induced enhancement of AP generation or CGRP release, despite the fact that in most other cell types, Epacs act as Rap-GEFs. In contrast, inhibition of Ras through expression of a dominant negative Ras (DN-Ras) or through internal perfusion of a Ras-neutralizing antibody blocks the increase in AP firing and attenuates the increase in the evoked release of CGRP induced by Epac activation. Thus, in this subpopulation of nociceptive sensory neurons, it is the novel interplay between Epacs and Ras, rather than the canonical Epacs and Rap1 pathway, that is critical for mediating Epac-induced sensitization. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Epac activation sensitizes rat sensory neurons via activation of Ras

    PubMed Central

    Shariati, Behzad; Thompson, Eric L.; Nicol, Grant D.; Vasko, Michael R.

    2015-01-01

    Guanine nucleotide exchange factors directly activated by cAMP (Epacs) have emerged as important signaling molecules mediating persistent hypersensitivity in animal models of inflammation, by augmenting the excitability of sensory neurons. Although Epacs activate numerous downstream signaling cascades, the intracellular signaling which mediates Epac-induced sensitization of capsaicin-sensitive sensory neurons remains unknown. Here, we demonstrate that selective activation of Epacs with 8-CPT-2′-O-Me-cAMP-AM (8CPT-AM) increases the number of action potentials (APs) generated by a ramp of depolarizing current and augments the evoked release of calcitonin gene-related peptide (CGRP) from isolated rat sensory neurons. Internal perfusion of capsaicin-sensitive sensory neurons with GDP-βS, substituted for GTP, blocks the ability of 8CPT-AM to increase AP firing, demonstrating that Epac-induced sensitization is G-protein dependent. Treatment with 8CPT-AM activates the small G-proteins Rap1 and Ras in cultures of sensory neurons. Inhibition of Rap1, by internal perfusion of a Rap1-neutralizing antibody or through a reduction in the expression of the protein using shRNA does not alter the Epac-induced enhancement of AP generation or CGRP release, despite the fact that in most other cell types, Epacs act as Rap-GEFs. In contrast, inhibition of Ras through expression of a dominant negative Ras (DN-Ras) or through internal perfusion of a Ras-neutralizing antibody blocks the increase in AP firing and attenuates the increase in the evoked release of CGRP induced by Epac activation. Thus, in this subpopulation of nociceptive sensory neurons, it is the novel interplay between Epacs and Ras, rather than the canonical Epacs and Rap1 pathway, that is critical for mediating Epac-induced sensitization. PMID:26596174

  19. Landsat-ABI (L-ABI) Enables 8-day Revisits and Increased Science Content with a Single Instrument

    NASA Astrophysics Data System (ADS)

    Woody, L. M.; Griffith, P. C.; Wirth, S. M.

    2014-12-01

    In addition to the on-going uses of Landsat data for land use and land cover change assessment, crop monitoring, ecosystem evaluation, and water use mapping, the increasing number of severe environmental events (storms, droughts, floods, and fires) has intensified the demand for land imaging data. Users desire more data and, more importantly, more frequent data to better understand the trends and impacts of these extreme events. Additionally, the Sustainable Land Imaging (SLI) thrust faces the difficult task of providing continuity of measurements in a strict budget-constrained environment. To that end, the desire is to reduce the size, mass, and - most importantly - cost of future US land imaging capability, without impacting the continuity of the SLI data with past Landsat archives. During our exploration of possible alternatives for future Landsat missions, we re-opened the trade space to include scanned options. The Advanced Baseline Imager (ABI) has been delivered to NASA/NOAA for flight on GOES-R, and additional models are in fabrication for various customers. Adapting this in-production instrument to flight at low-Earth orbit is relatively straightforward, and leads to a simple, high-heritage (low-risk) concept for a full-spectrum Landsat instrument that would meet virtually all of the Landsat 8 Reference Performance Parameters at significantly lower cost than the Landsat-8 (LDCM) payload. It would also be smaller than the L-8 payload, about half the mass, and require lower power. In addition, it could offer the option for spectral enhancement of Landsat through additional LWIR and/or MWIR bands. Finally, the L-ABI can offer larger swath coverage, driving the SLI system towards the desired 8-day repeat coverage.

  20. Cambial Activity and Intra-annual Xylem Formation in Roots and Stems of Abies balsamea and Picea mariana

    PubMed Central

    Thibeault-Martel, Maxime; Krause, Cornelia; Morin, Hubert; Rossi, Sergio

    2008-01-01

    Background and Aims Studies on xylogenesis focus essentially on the stem, whereas there is basically no information about the intra-annual growth of other parts of the tree. As roots strongly influence carbon allocation and tree development, knowledge of the dynamics of xylem production and maturation in roots at a short time scale is required for a better understanding of the phenomenon of tree growth. This study compared cambial activity and xylem formation in stem and roots in two conifers of the boreal forest in Canada. Methods Wood microcores were collected weekly in stem and roots of ten Abies balsamea and ten Picea mariana during the 2004–2006 growing seasons. Cross-sections were cut using a rotary microtome, stained with cresyl violet acetate and observed under visible and polarized light. The number of cells in the cambial zone and in differentiation, plus the number of mature cells, was counted along the developing xylem. Key Results Xylem formation lasted from the end of May to the end of September, with no difference between stem and roots in 2004–2005. On the contrary, in 2006 a 1-week earlier beginning of cell differentiation was observed in the stem, with cell wall thickening and lignification in roots ending up to 22 d later than in the stem. Cell production in the stem was concentrated early in the season, in June, while most cell divisions in roots occurred 1 month later. Conclusions The intra-annual dynamics of growth observed in stem and roots could be related to the different amount of cells produced by the cambium and the patterns of air and soil temperature occurring in spring. PMID:18708643

  1. Microdose fluorescence imaging of ABY-029 on an operating microscope adapted by custom illumination and imaging modules.

    PubMed

    Elliott, Jonathan T; Dsouza, Alisha V; Marra, Kayla; Pogue, Brian W; Roberts, David W; Paulsen, Keith D

    2016-09-01

    Fluorescence guided surgery has the potential to positively impact surgical oncology; current operating microscopes and stand-alone imaging systems are too insensitive or too cumbersome to maximally take advantage of new tumor-specific agents developed through the microdose pathway. To this end, a custom-built illumination and imaging module enabling picomolar-sensitive near-infrared fluorescence imaging on a commercial operating microscope is described. The limits of detection and system specifications are characterized, and in vivo efficacy of the system in detecting ABY-029 is evaluated in a rat orthotopic glioma model following microdose injections, showing the suitability of the device for microdose phase 0 clinical trials.

  2. Microdose fluorescence imaging of ABY-029 on an operating microscope adapted by custom illumination and imaging modules

    PubMed Central

    Dsouza, Alisha V.; Marra, Kayla; Pogue, Brian W.; Roberts, David W.; Paulsen, Keith D.

    2016-01-01

    Fluorescence guided surgery has the potential to positively impact surgical oncology; current operating microscopes and stand-alone imaging systems are too insensitive or too cumbersome to maximally take advantage of new tumor-specific agents developed through the microdose pathway. To this end, a custom-built illumination and imaging module enabling picomolar-sensitive near-infrared fluorescence imaging on a commercial operating microscope is described. The limits of detection and system specifications are characterized, and in vivo efficacy of the system in detecting ABY-029 is evaluated in a rat orthotopic glioma model following microdose injections, showing the suitability of the device for microdose phase 0 clinical trials. PMID:27699098

  3. Assessment of executive functions in children and adolescents with acquired brain injury (ABI) using a novel complex multi-tasking computerised task: The Jansari assessment of Executive Functions for Children (JEF-C©).

    PubMed

    Gilboa, Yafit; Jansari, Ashok; Kerrouche, Bernadette; Uçak, Emel; Tiberghien, Anne; Benkhaled, Ouarda; Aligon, Delphine; Mariller, Aude; Verdier, Valentine; Mintegui, Amaia; Abada, Geneviève; Canizares, Céline; Goldstein, Andrew; Chevignard, Mathilde

    2017-12-28

    The Jansari assessment of Executive Functions for Children (JEF-C © ) is a new non-immersive computerised assessment of executive functions. The objectives of the study were to test the feasibility and validity of JEF-C © in children and adolescents with acquired brain injury (ABI). Twenty-nine patients with ABI aged 10-18 years and 30 age-and gender-matched controls were tested. Participants performed JEF-C © , Wechsler Abbreviated Scale of Intelligence (WASI) and the Behavioural Assessment of the Dysexecutive Syndrome for Children (BADS-C), while parents completed the Behaviour Rating Inventory of Executive Function (BRIEF) questionnaire. The JEF-C © task proved feasible in patients with ABI. The internal consistency was medium (Cronbach's alpha = 0.62 and significant intercorrelations between individual JEF-C © constructs). Patients performed significantly worse than controls on most of the JEF-C © subscales and total score, with 41.4% of participants with ABI classified as having severe executive dysfunction. No significant correlations were found between JEF-C © total score, the BRIEF indices, and the BADS-C. Significant correlations were found between JEF-C © and demographic characteristics of the sample and intellectual ability, but not with severity/medical variables. JEF-C © is a playful complex task that appears to be a sensitive and ecologically valid assessment tool, especially for relatively high-functioning individuals.

  4. L Band Service Compatibility : Part II: Optimum GPS Receiver ABI Compatibility

    DOT National Transportation Integrated Search

    2015-03-12

    Workshop Objectives. This is the Second of Two Parts on Compatibility. Last time, OOBE. Today examine mitigation of Adjacent Band Interference, ABI. Apply Relevant TWG and NPEF (2011) data to engage compatibility analysis. Assert Principle: Dr. Brad ...

  5. Targeting Notch1 signaling pathway positively affects the sensitivity of osteosarcoma to cisplatin by regulating the expression and/or activity of Caspase family

    PubMed Central

    2014-01-01

    Background The introduction of cisplatin has improved the long-term survival rate in osteosarcoma patients. However, some patients are intrinsically resistant to cisplatin. This study reported that the activation of Notch1 is positively correlated with cisplatin sensitivity, evidenced by both clinical and in vitro data. Results In this study, a total 8 osteosarcoma specimens were enrolled and divided into two groups according to their cancer chemotherapeutic drugs sensitivity examination results. The relationship between Notch1 expression and cisplatin sensitivity of osteosarcoma patients was detected by immunohistochemistry and semi-quantitative analysis. Subsequently, two typical osteosarcoma cell lines, Saos-2 and MG63, were selected to study the changes of cisplatin sensitivity by up-regulating (NICD1 plasmid transfeciton) or decreasing (gamma-secretase complex inhibitor DAPT) the activation state of Notch1 signaling pathway. Our results showed a significant correlation between the expression of Notch1 and cisplatin sensitivity in patient specimens. In vitro, Saos-2 with higher expression of Notch1 had significantly better cisplatin sensitivity than MG63 whose Notch1 level was relatively lower. By targeting regulation in vitro, the cisplatin sensitivity of Saos-2 and MG63 had significantly increased after the activation of Notch1 signaling pathway, and vice versa. Further mechanism investigation revealed that activation/inhibition of Notch1 sensitized/desensitized cisplatin-induced apoptosis, which probably depended on the changes in the activity of Caspase family, including Caspase 3, Caspase 8 and Caspase 9 in these cells. Conclusions Our data clearly demonstrated that Notch1 is critical for cisplatin sensitivity in osteosarcoma. It can be used as a molecular marker and regulator for cisplatin sensitivity in osteosarcoma patients. PMID:24894297

  6. Activity Induces Fmr1-Sensitive Synaptic Capture of Anterograde Circulating Neuropeptide Vesicles.

    PubMed

    Cavolo, Samantha L; Bulgari, Dinara; Deitcher, David L; Levitan, Edwin S

    2016-11-16

    Synaptic neuropeptide and neurotrophin stores are maintained by constitutive bidirectional capture of dense-core vesicles (DCVs) as they circulate in and out of the nerve terminal. Activity increases DCV capture to rapidly replenish synaptic neuropeptide stores following release. However, it is not known whether this is due to enhanced bidirectional capture. Here experiments at the Drosophila neuromuscular junction, where DCVs contain neuropeptides and a bone morphogenic protein, show that activity-dependent replenishment of synaptic neuropeptides following release is evident after inhibiting the retrograde transport with the dynactin disruptor mycalolide B or photobleaching DCVs entering a synaptic bouton by retrograde transport. In contrast, photobleaching anterograde transport vesicles entering a bouton inhibits neuropeptide replenishment after activity. Furthermore, tracking of individual DCVs moving through boutons shows that activity selectively increases capture of DCVs undergoing anterograde transport. Finally, upregulating fragile X mental retardation 1 protein (Fmr1, also called FMRP) acts independently of futsch/MAP-1B to abolish activity-dependent, but not constitutive, capture. Fmr1 also reduces presynaptic neuropeptide stores without affecting activity-independent delivery and evoked release. Therefore, presynaptic motoneuron neuropeptide storage is increased by a vesicle capture mechanism that is distinguished from constitutive bidirectional capture by activity dependence, anterograde selectivity, and Fmr1 sensitivity. These results show that activity recruits a separate mechanism than used at rest to stimulate additional synaptic capture of DCVs for future release of neuropeptides and neurotrophins. Synaptic release of neuropeptides and neurotrophins depends on presynaptic accumulation of dense-core vesicles (DCVs). At rest, DCVs are captured bidirectionally as they circulate through Drosophila motoneuron terminals by anterograde and retrograde

  7. Activity Induces Fmr1-Sensitive Synaptic Capture of Anterograde Circulating Neuropeptide Vesicles

    PubMed Central

    Cavolo, Samantha L.; Bulgari, Dinara; Deitcher, David L.

    2016-01-01

    Synaptic neuropeptide and neurotrophin stores are maintained by constitutive bidirectional capture of dense-core vesicles (DCVs) as they circulate in and out of the nerve terminal. Activity increases DCV capture to rapidly replenish synaptic neuropeptide stores following release. However, it is not known whether this is due to enhanced bidirectional capture. Here experiments at the Drosophila neuromuscular junction, where DCVs contain neuropeptides and a bone morphogenic protein, show that activity-dependent replenishment of synaptic neuropeptides following release is evident after inhibiting the retrograde transport with the dynactin disruptor mycalolide B or photobleaching DCVs entering a synaptic bouton by retrograde transport. In contrast, photobleaching anterograde transport vesicles entering a bouton inhibits neuropeptide replenishment after activity. Furthermore, tracking of individual DCVs moving through boutons shows that activity selectively increases capture of DCVs undergoing anterograde transport. Finally, upregulating fragile X mental retardation 1 protein (Fmr1, also called FMRP) acts independently of futsch/MAP-1B to abolish activity-dependent, but not constitutive, capture. Fmr1 also reduces presynaptic neuropeptide stores without affecting activity-independent delivery and evoked release. Therefore, presynaptic motoneuron neuropeptide storage is increased by a vesicle capture mechanism that is distinguished from constitutive bidirectional capture by activity dependence, anterograde selectivity, and Fmr1 sensitivity. These results show that activity recruits a separate mechanism than used at rest to stimulate additional synaptic capture of DCVs for future release of neuropeptides and neurotrophins. SIGNIFICANCE STATEMENT Synaptic release of neuropeptides and neurotrophins depends on presynaptic accumulation of dense-core vesicles (DCVs). At rest, DCVs are captured bidirectionally as they circulate through Drosophila motoneuron terminals by

  8. Transient receptor potential ankyrin 1 activation enhances hapten sensitization in a T-helper type 2-driven fluorescein isothiocyanate-induced contact hypersensitivity mouse model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina

    2012-11-01

    Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here wemore » examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. -- Highlights: ► Role of TRPA1 activation was revealed in a mouse model of skin sensitization to FITC. ► TRPA1 agonists enhanced skin sensitization as well as dendritic cell trafficking. ► Dibutyl phthalate (DBP) has been shown to enhance skin sensitization to FITC. ► TRPA1 activation by DBP was inhibited by a selective antagonist, HC-030031. ► HC-030031 inhibited the enhancing effect of DBP on skin sensitization to FITC.« less

  9. Species-specific temperature sensitivity of TRPA1

    PubMed Central

    Laursen, Willem J; Anderson, Evan O; Hoffstaetter, Lydia J; Bagriantsev, Sviatoslav N; Gracheva, Elena O

    2015-01-01

    Abstract Transient receptor potential ankyrin 1 (TRPA1) is a polymodal ion channel sensitive to temperature and chemical stimuli. The importance of temperature and aversive chemical detection for survival has driven the evolutionary diversity of TRPA1 sensitivity. This diversity can be observed in the various roles of TRPA1 in different species, where it is proposed to act as a temperature-insensitive chemosensor, a heat transducer, a noxious cold transducer, or a detector of low-intensity heat for prey localization. Exploring the variation of TRPA1 functions among species provides evolutionary insight into molecular mechanisms that fine-tune thermal and chemical sensitivity, and offers an opportunity to address basic principles of temperature gating in ion channels. A decade of research has yielded a number of hypotheses describing physiological roles of TRPA1, modulators of its activity, and biophysical principles of gating. This review surveys the diversity of TRPA1 adaptations across evolutionary taxa and explores possible mechanisms of TRPA1 activation. PMID:27227025

  10. Autophagy prevention sensitizes AKTi-1/2-induced anti-hepatocellular carcinoma cell activity in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qi; Yang, Manyi; Qu, Zhan

    Molecule-targeted therapy has become the research focus for hepatocellular carcinoma (HCC). Persistent PI3K-AKT activation is often detected in HCC, representing a valuable oncotarget for treatment. Here, we tested the anti-HCC activity by a potent AKT inhibitor: AKT inhibitor 1/2 (AKTi-1/2). In both established (HepG2 and Huh-7) and primary human HCC cells, treatment with AKTi-1/2 inhibited cell survival and proliferation, but induced cell apoptosis. AKTi-1/2 blocked AKT-mTOR activation, yet simultaneously provoked cytoprotective autophagy in HCC cells. The latter was evidenced by ATG-5 and Beclin-1 upregulation, p62 downregulation as well as LC3B-GFP puncta formation. Autophagy inhibition, via pharmacological inhibitors (3-methyladenine, ammonium chloride,more » and bafilomycin A1) or Beclin-1 siRNA knockdown, significantly potentiated AKTi-1/2-induced HepG2 cell death and apoptosis. In nude mice, AKTi-1/2 intraperitoneal injection inhibited HepG2 tumor growth. Significantly, its anti-tumor activity in vivo was further sensitized when combined with Beclin-1 shRNA knockdown in HepG2 tumors. Together, these results demonstrate that autophagy activation serves as a main resistance factor of AKTi-1/2 in HCC cells. Autophagy prevention therefore sensitizes AKTi-1/2-induced anti-HCC activity in vitro and in vivo. - Highlights: • AKTi-1/2 inhibits human HCC cells in vitro. • Autophagy inhibitors sensitize AKTi-1/2-induced HCC cell death and apoptosis. • Beclin-1 siRNA potentiates AKTi-1/2-induced HepG2 cell death and apoptosis. • Beclin-1 knockdown augments AKTi-1/2-induced anti-HepG2 tumor activity in vivo.« less

  11. The Arabidopsis mutant, fy-1, has an ABA-insensitive germination phenotype

    PubMed Central

    Jiang, Shiling; Kumar, Santosh; Eu, Young-Jae; Jami, Sravan Kumar; Stasolla, Claudio; Hill, Robert D.

    2012-01-01

    Arabidopsis FY, a homologue of the yeast RNA 3' processing factor Pfs2p, regulates the autonomous floral transition pathway through its interaction with FCA, an RNA binding protein. It is demonstrated here that FY also influences seed dormancy. Freshly-harvested seed of the Arabidopsis fy-1 mutant germinated readily in the absence of stratification or after-ripening. Furthermore, the fy-1 mutant showed less ABA sensitivity compared with the wild type, Ler, under identical conditions. Freshly-harvested seed of fy-1 had significantly higher ABA levels than Ler, even though Ler was dormant and fy-1 germinated readily. The PPLPP domains of FY, which are required for flowering control, were not essential for the ABA-influenced repression of germination. FLC expression analysis in seeds of different genotypes suggested that the effect of FY on dormancy may not be elicited through FLC. No significant differences in CYP707A1, CYP707A2, NCED9, ABI3, and ABI4 were observed between freshly-harvested Ler and fy-1 imbibed for 48 h. GA3ox1 and GA3ox2 rapidly increased over the 48 h imbibition period for fy-1, with no significant increases in these transcripts for Ler. ABI5 levels were significantly lower in fy-1 over the 48 h imbibition period. The results suggest that FY is involved in the development of dormancy and ABA sensitivity in Arabidopsis seed. PMID:22282534

  12. The Arabidopsis mutant, fy-1, has an ABA-insensitive germination phenotype.

    PubMed

    Jiang, Shiling; Kumar, Santosh; Eu, Young-Jae; Jami, Sravan Kumar; Stasolla, Claudio; Hill, Robert D

    2012-04-01

    Arabidopsis FY, a homologue of the yeast RNA 3' processing factor Pfs2p, regulates the autonomous floral transition pathway through its interaction with FCA, an RNA binding protein. It is demonstrated here that FY also influences seed dormancy. Freshly-harvested seed of the Arabidopsis fy-1 mutant germinated readily in the absence of stratification or after-ripening. Furthermore, the fy-1 mutant showed less ABA sensitivity compared with the wild type, Ler, under identical conditions. Freshly-harvested seed of fy-1 had significantly higher ABA levels than Ler, even though Ler was dormant and fy-1 germinated readily. The PPLPP domains of FY, which are required for flowering control, were not essential for the ABA-influenced repression of germination. FLC expression analysis in seeds of different genotypes suggested that the effect of FY on dormancy may not be elicited through FLC. No significant differences in CYP707A1, CYP707A2, NCED9, ABI3, and ABI4 were observed between freshly-harvested Ler and fy-1 imbibed for 48 h. GA3ox1 and GA3ox2 rapidly increased over the 48 h imbibition period for fy-1, with no significant increases in these transcripts for Ler. ABI5 levels were significantly lower in fy-1 over the 48 h imbibition period. The results suggest that FY is involved in the development of dormancy and ABA sensitivity in Arabidopsis seed.

  13. Discovery of novel 2-aryl-4-benzoyl-imidazoles targeting the colchicines binding site in tubulin as potential anticancer agents

    PubMed Central

    Chen, Jianjun; Wang, Zhao; Li, Chien-Ming; Lu, Yan; Vaddady, Pavan K.; Meibohm, Bernd; Dalton, James T.; Miller, Duane D.; Li, Wei

    2010-01-01

    A series of 2-aryl-4-benzoyl-imidazoles (ABI) was synthesized as a result of structural modifications based on the previous set of 2-aryl-imidazole-4-carboxylic amide (AICA) derivatives and 4-substituted methoxylbenzoyl-aryl-thiazoles (SMART). The average IC50 of the most active compound (5da) was 15.7 nM. ABI analogs have substantially improved aqueous solubility (48.9 μg/mL for 5ga vs. 0.909 μg/mL for SMART-1, 0.137 μg/mL for paclitaxel, and 1.04 μg/mL for Combretastatin A4). Mechanism of action studies indicate that the anticancer activity of ABI analogs is through inhibition of tubulin polymerization by interacting with the colchicine binding site. Unlike paclitaxel and colchicine, the ABI compounds were equally potent against multidrug resistant cancer cells and the sensitive parental melanoma cancer cells. In vivo results indicated that 5cb was more effective than DTIC in inhibiting melanoma xenograph tumor growth. Our results suggest that the novel ABI compounds may be developed to effectively treat drug-resistant tumors. PMID:20919720

  14. Bitter taste receptor T2R1 activities were compatible with behavioral sensitivity to bitterness in chickens.

    PubMed

    Hirose, Nozomi; Kawabata, Yuko; Kawabata, Fuminori; Nishimura, Shotaro; Tabata, Shoji

    2015-05-01

    Clarification of the mechanism of the sense of taste in chickens will provide information useful for creating and improving new feedstuffs for chickens, because the character of the taste receptors in oral tissues affects feeding behavior in animals. In this study, we focused on the sensitivity to bitterness in chickens. We cloned one of the bitter taste receptors, T2R1, from the chicken palate, constructed several biosensor-cells expressing chicken T2R1 (cT2R1), and determined a highly sensitive biosensor of cT2R1 among them. By using Ca(2+) imaging methods, we identified two agonists of cT2R1, dextromethorphan (Dex) and diphenidol (Dip). Dex was a new agonist of cT2R1 that was more potent than Dip. In a behavioral drinking study, the intake volumes of solutions of these compounds were significantly lower than that of water in chickens. These aversive concentrations were identical to the concentrations that could activate cT2R1 in a cell-based assay. These results suggest that the cT2R1 activities induced by these agonists are linked to behavioral sensitivity to bitterness in chickens. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Non-canonical Activities of Hog1 Control Sensitivity of Candida albicans to Killer Toxins From Debaryomyces hansenii

    PubMed Central

    Morales-Menchén, Ana; Navarro-García, Federico; Guirao-Abad, José P.; Román, Elvira; Prieto, Daniel; Coman, Ioana V.; Pla, Jesús; Alonso-Monge, Rebeca

    2018-01-01

    Certain yeasts secrete peptides known as killer toxins or mycocins with a deleterious effect on sensitive yeasts or filamentous fungi, a common phenomenon in environmental species. In a recent work, different Debaryomyces hansenii (Dh) strains isolated from a wide variety of cheeses were identified as producing killer toxins active against Candida albicans and Candida tropicalis. We have analyzed the killer activity of these toxins in C. albicans mutants defective in MAPK signaling pathways and found that the lack of the MAPK Hog1 (but not Cek1 or Mkc1) renders cells hypersensitive to Dh mycocins while mutants lacking other upstream elements of the pathway behave as the wild type strain. Point mutations in the phosphorylation site (T174A-176F) or in the kinase domain (K52R) of HOG1 gene showed that both activities were relevant for the survival of C. albicans to Dh killer toxins. Moreover, Hog1 phosphorylation was also required to sense and adapt to osmotic and oxidative stress while the kinase activity was somehow dispensable. Although the addition of supernatant from the killer toxin- producing D. hansenii 242 strain (Dh-242) induced a slight intracellular increase in Reactive Oxygen Species (ROS), overexpression of cytosolic catalase did not protect C. albicans against this mycocin. This supernatant induced an increase in intracellular glycerol concentration suggesting that this toxin triggers an osmotic stress. We also provide evidence of a correlation between sensitivity to Dh-242 killer toxin and resistance to Congo red, suggesting cell wall specific alterations in sensitive strains. PMID:29774204

  16. Post-fire epicormic branching in Sierra Nevada Abies concolor (white fir)

    Treesearch

    Chad T. Hanson; Malcolm P. North

    2006-01-01

    In California's mixed-conifer forest, which historically had a regime of frequent fires, two conifers, Sequoiadendron giganteum and Pseudotsuga menziesii, were previously known to produce epicormic sprouts from branches. We found epicormic branching in a third mixed-conifer species, Abies concolor, 3 and 4...

  17. Seed Source Significantly Influences Growth Rates and Disease Resistance of Abies Lasiocarpa Grown for Ornamental Nursery Stock and Christmas Trees

    USDA-ARS?s Scientific Manuscript database

    Trees from six corkbark fir (Abies lasiocarpa var. arizonica) and 10 subalpine fir (Abies lasiocarpa var. lasiocarpa) seed sources were grown at the University of Idaho (SREC) and three commercial nurseries in northern Idaho and northeastern Oregon. Post transplant mortality was highest during the f...

  18. Preliminary assessment of the GOES-R ABI hourly land surface albedo and reflectance products prototyped with Himawari AHI data

    NASA Astrophysics Data System (ADS)

    He, T.; Liang, S.; Zhang, Y.; Yu, Y.

    2016-12-01

    Land surface albedo and reflectance are critical geophysical variables used in climate and environmental applications. The multispectral Advanced Baseline Imager (ABI) onboard the next generation geostationary satellites (GOES-R series, set to launch in late 2016) offers high temporal and medium spatial resolution observations, which can be used for monitoring diurnal variation of surface albedo and reflectance. In the GOES-R data processing chain there is no atmospheric correction to generate surface reflectance product, which is usually required for surface albedo estimation. We propose an optimization method to simultaneously retrieve surface bidirectional reflectance distribution function (BRDF) parameters and aerosol optical depth with GOES-R ABI data on a daily-basis, which are used for estimating surface albedo and reflectance. Before the launch of the GOES-R satellite, our algorithm was prototyped with data from the Advanced Himawari Imager (AHI) onboard the Japanese Himawari-8 satellite, which has spectral bands and spatial resolutions similar to GOES-R ABI. Cal/val activities were carried out against ground measurements at the OzFlux sites in Australia and satellite data including albedo/BRDF products from MODIS and Landsat. The preliminary accuracy assessment showed promising results for both the surface albedo and reflectance estimates. The GOES-R surface albedo and reflectance products will serve as critical inputs for downstream GOES-R satellite products and also help improve climate modeling and weather forecasting with a high temporal resolution.

  19. Activity-Based Intervention Practices in Special Education

    ERIC Educational Resources Information Center

    Ozen, Arzu; Ergenekon, Yasemin

    2011-01-01

    Teaching practices in natural settings such as activity-based intervention (ABI) are suggested as alternatives to be used in effective early childhood education. As a multidisciplinary model, ABI consists of four components, which are choosing activities according to the child's interests; teaching generalizable goals embedded in routines and…

  20. Nutrients in foliage and wet deposition of nitrate, ammonium and sulfate in washing tree top in Abies religiosa forests

    Treesearch

    E.R Peña-Mendoza; A. Gómez-Guerrero; Mark Fenn; P. Hernández de la Rosa; D. Alvarado Rosales

    2016-01-01

    The nutritional content and tree top in the forests are evaluated of Abies religiosa, San Miguel Tlaixpan (SMT) and Rio Frio (RF), State of Mexico. The work had two parts. In the first, the nutritional content was evaluated in new foliage (N, P, K, Ca and Mg) in Abies religiosa trees, in periods of spring, summer and winter, in...

  1. ABI domain containing proteins contribute to surface protein display and cell division in Staphylococcus aureus

    PubMed Central

    Frankel, Matthew B.; Wojcik, Brandon; DeDent, Andrea C.; Missiakas, Dominique M.; Schneewind, Olaf

    2012-01-01

    Summary The human pathogen Staphyloccocus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harbored transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross walls and in the relative abundance of staphylococci with cross walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion. PMID:20923422

  2. ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus.

    PubMed

    Frankel, Matthew B; Wojcik, Brandon M; DeDent, Andrea C; Missiakas, Dominique M; Schneewind, Olaf

    2010-10-01

    The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion. © 2010 Blackwell Publishing Ltd.

  3. From America to Eurasia: a multigenomes history of the genus Abies.

    PubMed

    Semerikova, Svetlana A; Khrunyk, Yuliya Y; Lascoux, Martin; Semerikov, Vladimir L

    2018-03-15

    The origin of conifer genera, the main components of mountain temperate and boreal forests, was deemed to arise in the Mesozoic, although paleontological records and molecular data point to a recent diversification, presumably related to Neogene cooling. The geographical area(s) where the modern lines of conifers emerged remains uncertain, as is the sequence of events leading to their present distribution. To gain further insights into the biogeography of firs (Abies), we conducted phylogenetic analyses of chloroplast, mitochondrial and nuclear markers. The species tree, generated from ten single-copy nuclear genes, yielded probably the best phylogenetic hypothesis available for Abies. The tree obtained from five regions of chloroplast DNA largely corresponded to the nuclear species tree. Ancestral area reconstructions based on fossil calibrated chloroplast DNA and nuclear DNA trees pointed to repeated intercontinental migrations. The mitochondrial DNA haplotype tree, however, disagreed with nuclear and chloroplast DNA trees. It consisted of two clusters: one included mainly American haplotypes, while the other was composed of only Eurasian haplotypes. Presumably, this conflict is due to inter-continental migrations and introgressive hybridization, accompanied by the capture of the mitotypes from aboriginal species by the invading firs. Given that several species inhabiting Northeastern Asia carry American mitotypes and mutations typical for the American cluster, whereas no Asian mitotypes were detected within the American species, we hypothesize that Abies migrated from America to Eurasia, but not in the opposite direction. The direction and age of intercontinental migrations in firs are congruent with other conifers, such as spruces and pines of subsection Strobus, suggesting that these events had the same cause. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Activation of SF1 Neurons in the Ventromedial Hypothalamus by DREADD Technology Increases Insulin Sensitivity in Peripheral Tissues.

    PubMed

    Coutinho, Eulalia A; Okamoto, Shiki; Ishikawa, Ayako Wendy; Yokota, Shigefumi; Wada, Nobuhiro; Hirabayashi, Takahiro; Saito, Kumiko; Sato, Tatsuya; Takagi, Kazuyo; Wang, Chen-Chi; Kobayashi, Kenta; Ogawa, Yoshihiro; Shioda, Seiji; Yoshimura, Yumiko; Minokoshi, Yasuhiko

    2017-09-01

    The ventromedial hypothalamus (VMH) regulates glucose and energy metabolism in mammals. Optogenetic stimulation of VMH neurons that express steroidogenic factor 1 (SF1) induces hyperglycemia. However, leptin acting via the VMH stimulates whole-body glucose utilization and insulin sensitivity in some peripheral tissues, and this effect of leptin appears to be mediated by SF1 neurons. We examined the effects of activation of SF1 neurons with DREADD (designer receptors exclusively activated by designer drugs) technology. Activation of SF1 neurons by an intraperitoneal injection of clozapine- N -oxide (CNO), a specific hM3Dq ligand, reduced food intake and increased energy expenditure in mice expressing hM3Dq in SF1 neurons. It also increased whole-body glucose utilization and glucose uptake in red-type skeletal muscle, heart, and interscapular brown adipose tissue, as well as glucose production and glycogen phosphorylase a activity in the liver, thereby maintaining blood glucose levels. During hyperinsulinemic-euglycemic clamp, such activation of SF1 neurons increased insulin-induced glucose uptake in the same peripheral tissues and tended to enhance insulin-induced suppression of glucose production by suppressing gluconeogenic gene expression and glycogen phosphorylase a activity in the liver. DREADD technology is thus an important tool for studies of the role of the brain in the regulation of insulin sensitivity in peripheral tissues. © 2017 by the American Diabetes Association.

  5. Early Cone Setting in Picea abies acrocona Is Associated with Increased Transcriptional Activity of a MADS Box Transcription Factor1[W][OA

    PubMed Central

    Uddenberg, Daniel; Reimegård, Johan; Clapham, David; Almqvist, Curt; von Arnold, Sara; Emanuelsson, Olof; Sundström, Jens F.

    2013-01-01

    Conifers normally go through a long juvenile period, for Norway spruce (Picea abies) around 20 to 25 years, before developing male and female cones. We have grown plants from inbred crosses of a naturally occurring spruce mutant (acrocona). One-fourth of the segregating acrocona plants initiate cones already in their second growth cycle, suggesting control by a single locus. The early cone-setting properties of the acrocona mutant were utilized to identify candidate genes involved in vegetative-to-reproductive phase change in Norway spruce. Poly(A+) RNA samples from apical and basal shoots of cone-setting and non-cone-setting plants were subjected to high-throughput sequencing (RNA-seq). We assembled and investigated 33,383 expressed putative protein-coding acrocona transcripts. Eight transcripts were differentially expressed between selected sample pairs. One of these (Acr42124_1) was significantly up-regulated in apical shoot samples from cone-setting acrocona plants, and the encoded protein belongs to the MADS box gene family of transcription factors. Using quantitative real-time polymerase chain reaction with independently derived plant material, we confirmed that the MADS box gene is up-regulated in both needles and buds of cone-inducing shoots when reproductive identity is determined. Our results constitute important steps for the development of a rapid cycling model system that can be used to study gene function in conifers. In addition, our data suggest the involvement of a MADS box transcription factor in the vegetative-to-reproductive phase change in Norway spruce. PMID:23221834

  6. Isolation and characterization of microsatellite markers in Fraser fir (Abies fraseri)

    Treesearch

    S.A. Josserand; K.M. Potter; G. Johnson; J.A. Bowen; J. Frampton; C.D. Nelson

    2006-01-01

    We describe the isolation and characterization of 14 microsatellite loci from Fraser fir (Abies fraseri). These markers originated from cloned inserts enriched for DNA sequences containing tandem di- and tri-nucleotide repeats. In total, 36 clones were selected, sequenced and evaluated. Polymerase chain reaction (PCR) primers for 14 of these...

  7. Bcr-Abl induces abnormal cytoskeleton remodeling, beta1 integrin clustering and increased cell adhesion to fibronectin through the Abl interactor 1 pathway.

    PubMed

    Li, Yingzhu; Clough, Nancy; Sun, Xiaolin; Yu, Weidong; Abbott, Brian L; Hogan, Christopher J; Dai, Zonghan

    2007-04-15

    Hematopoietic cells isolated from patients with Bcr-Abl-positive leukemia exhibit multiple abnormalities of cytoskeletal and integrin function. These abnormalities are thought to play a role in the pathogenesis of leukemia; however, the molecular events leading to these abnormalities are not fully understood. We show here that the Abi1 pathway is required for Bcr-Abl to stimulate actin cytoskeleton remodeling, integrin clustering and cell adhesion. Expression of Bcr-Abl induces tyrosine phosphorylation of Abi1. This is accompanied by a subcellular translocation of Abi1/WAVE2 to a site adjacent to membrane, where an F-actin-enriched structure containing the adhesion molecules such as beta1-integrin, paxillin and vinculin is assembled. Bcr-Abl-induced membrane translocation of Abi1/WAVE2 requires direct interaction between Abi1 and Bcr-Abl, but is independent of the phosphoinositide 3-kinase pathway. Formation of the F-actin-rich complex correlates with an increased cell adhesion to fibronectin. More importantly, disruption of the interaction between Bcr-Abl and Abi1 by mutations either in Bcr-Abl or Abi1 not only abolished tyrosine phosphorylation of Abi1 and membrane translocation of Abi1/WAVE2, but also inhibited Bcr-Abl-stimulated actin cytoskeleton remodeling, integrin clustering and cell adhesion to fibronectin. Together, these data define Abi1/WAVE2 as a downstream pathway that contributes to Bcr-Abl-induced abnormalities of cytoskeletal and integrin function.

  8. After a child's acquired brain injury (ABI): An ethnographic study of being a parent.

    PubMed

    Rashid, Marghalara; Goez, Helly R; Caine, Vera; Yager, Jerome Y; Joyce, Anthony S; Newton, Amanda S

    2016-11-30

    To explore the meanings associated with being a parent of a child with an aquired brain injury (ABI). An ethnographic study was conducted with parents of children aged 3 to 10 years who had acquired a severe brain injury. Purposeful sampling was used to recruit parents from the Glenrose Rehabilitation Hospital in Edmonton, Alberta. Data collection involved participant observation, fieldwork and semi-structured interviews. Field notes and interviews transcriptions were analysed using a thematic analysis framework and informed by symbolic interactionism theory. Six parent dyads (mothers and fathers) and 4 mothers participated in the study.Parents' meanings of `parenting' a child with severe brain injury were shaped by the injury, wide range of familial dynamics, and interactions. Six main themes related to parental meanings emerged from our data: (1) Getting `back to normal'; (2) Relying on a support system; (3) Worrying something bad may happen after the injury; (4) Going through a range of emotions following the injury; (5) Changing family dynamics after the injury; and (6) Ongoing performativity. Parents' meanings of `parenting' a child are extensively impacted by their child's functioning after the ABI. Having a greater appreciation of these experiences may be beneficial for medical professionals.

  9. [Effects of snow pack on soil nitrogen transformation enzyme activities in a subalpine Abies faxioniana forest of western Sichuan, China].

    PubMed

    Xiong, Li; Xu, Zhen-Feng; Wu, Fu-Zhong; Yang, Wan-Qin; Yin, Rui; Li, Zhi-Ping; Gou, Xiao-Lin; Tang, Shi-Shan

    2014-05-01

    This study characterized the dynamics of the activities of urease, nitrate reductase and nitrite reductase in both soil organic layer and mineral soil layer under three depths of snow pack (deep snowpack, moderate snowpack and shallow snowpack) over the three critical periods (snow formed period, snow stable period, and snow melt period) in the subalpine Abies faxoniana forest of western Sichuan in the winter of 2012 and 2013. Throughout the winter, soil temperature under deep snowpack increased by 46.2% and 26.2%, respectively in comparison with moderate snowpack and shallow snowpack. In general, the three nitrogen-related soil enzyme activities under shallow snowpack were 0.8 to 3.9 times of those under deep snowpack during the winter. In the beginning and thawing periods of seasonal snow pack, shallow snowpack significantly increased the activities of urease, nitrate and nitrite reductase enzyme in both soil organic layer and mineral soil layer. Although the activities of the studied enzymes in soil organic layer and mineral soil layer were observed to be higher than those under deep- and moderate snowpacks in deep winter, no significant difference was found under the three snow packs. Meanwhile, the effects of snowpack on the activities of the measured enzymes were related with season, soil layer and enzyme type. Significant variations of the activities of nitrogen-related enzymes were found in three critical periods over the winter, and the three measured soil enzymes were significantly higher in organic layer than in mineral layer. In addition, the activities of the three measured soil enzymes were closely related with temperature and moisture in soils. In conclusion, the decrease of snow pack induced by winter warming might increase the activities of soil enzymes related with nitrogen transformation and further stimulate the process of wintertime nitrogen transformation in soils of the subalpine forest.

  10. HRS1 acts as a negative regulator of abscisic acid signaling to promote timely germination of Arabidopsis seeds.

    PubMed

    Wu, Chongming; Feng, Juanjuan; Wang, Ran; Liu, Hong; Yang, Huixia; Rodriguez, Pedro L; Qin, Huanju; Liu, Xin; Wang, Daowen

    2012-01-01

    In this work, we conducted functional analysis of Arabidopsis HRS1 gene in order to provide new insights into the mechanisms governing seed germination. Compared with wild type (WT) control, HRS1 knockout mutant (hrs1-1) exhibited significant germination delays on either normal medium or those supplemented with abscisic acid (ABA) or sodium chloride (NaCl), with the magnitude of the delay being substantially larger on the latter media. The hypersensitivity of hrs1-1 germination to ABA and NaCl required ABI3, ABI4 and ABI5, and was aggravated in the double mutant hrs1-1abi1-2 and triple mutant hrs1-1hab1-1abi1-2, indicating that HRS1 acts as a negative regulator of ABA signaling during seed germination. Consistent with this notion, HRS1 expression was found in the embryo axis, and was regulated both temporally and spatially, during seed germination. Further analysis showed that the delay of hrs1-1 germination under normal conditions was associated with reduction in the elongation of the cells located in the lower hypocotyl (LH) and transition zone (TZ) of embryo axis. Interestingly, the germination rate of hrs1-1 was more severely reduced by the inhibitor of cell elongation, and more significantly decreased by the suppressors of plasmalemma H(+)-ATPase activity, than that of WT control. The plasmalemma H(+)-ATPase activity in the germinating seeds of hrs1-1 was substantially lower than that exhibited by WT control, and fusicoccin, an activator of this pump, corrected the transient germination delay of hrs1-1. Together, our data suggest that HRS1 may be needed for suppressing ABA signaling in germinating embryo axis, which promotes the timely germination of Arabidopsis seeds probably by facilitating the proper function of plasmalemma H(+)-ATPase and the efficient elongation of LH and TZ cells.

  11. HRS1 Acts as a Negative Regulator of Abscisic Acid Signaling to Promote Timely Germination of Arabidopsis Seeds

    PubMed Central

    Wang, Ran; Liu, Hong; Yang, Huixia; Rodriguez, Pedro L.; Qin, Huanju; Liu, Xin; Wang, Daowen

    2012-01-01

    In this work, we conducted functional analysis of Arabidopsis HRS1 gene in order to provide new insights into the mechanisms governing seed germination. Compared with wild type (WT) control, HRS1 knockout mutant (hrs1-1) exhibited significant germination delays on either normal medium or those supplemented with abscisic acid (ABA) or sodium chloride (NaCl), with the magnitude of the delay being substantially larger on the latter media. The hypersensitivity of hrs1-1 germination to ABA and NaCl required ABI3, ABI4 and ABI5, and was aggravated in the double mutant hrs1-1abi1-2 and triple mutant hrs1-1hab1-1abi1-2, indicating that HRS1 acts as a negative regulator of ABA signaling during seed germination. Consistent with this notion, HRS1 expression was found in the embryo axis, and was regulated both temporally and spatially, during seed germination. Further analysis showed that the delay of hrs1-1 germination under normal conditions was associated with reduction in the elongation of the cells located in the lower hypocotyl (LH) and transition zone (TZ) of embryo axis. Interestingly, the germination rate of hrs1-1 was more severely reduced by the inhibitor of cell elongation, and more significantly decreased by the suppressors of plasmalemma H+-ATPase activity, than that of WT control. The plasmalemma H+-ATPase activity in the germinating seeds of hrs1-1 was substantially lower than that exhibited by WT control, and fusicoccin, an activator of this pump, corrected the transient germination delay of hrs1-1. Together, our data suggest that HRS1 may be needed for suppressing ABA signaling in germinating embryo axis, which promotes the timely germination of Arabidopsis seeds probably by facilitating the proper function of plasmalemma H+-ATPase and the efficient elongation of LH and TZ cells. PMID:22545134

  12. High pH-Sensitive TRPA1 Activation in Odontoblasts Regulates Mineralization.

    PubMed

    Kimura, M; Sase, T; Higashikawa, A; Sato, M; Sato, T; Tazaki, M; Shibukawa, Y

    2016-08-01

    Calcium hydroxide and mineral trioxide aggregate are widely used for indirect and direct pulp capping and root canal filling. Their dissociation into Ca(2+) and OH(-) in dental pulp creates an alkaline environment, which activates reparative/reactionary dentinogenesis. However, the mechanisms by which odontoblasts detect the pH of the extracellular environment remain unclear. We examined the alkali-sensitive intracellular Ca(2+) signaling pathway in rat odontoblasts. In the presence or absence of extracellular Ca(2+), application of alkaline solution increased intracellular Ca(2+) concentration, or [Ca(2+)]i Alkaline solution-induced [Ca(2+)]i increases depended on extracellular pH (8.5 to 10.5) in both the absence and the presence of extracellular Ca(2+) The amplitude was smaller in the absence than in the presence of extracellular Ca(2+) Each increase in [Ca(2+)]i, activated by pH 7.5, 8.5, or 9.5, depended on extracellular Ca(2+) concentration; the equilibrium binding constant for extracellular Ca(2+) concentration decreased as extracellular pH increased (1.04 mM at pH 7.5 to 0.11 mM at pH 9.5). Repeated applications of alkaline solution did not have a desensitizing effect on alkali-induced [Ca(2+)]i increases and inward currents. In the presence of extracellular Ca(2+), alkaline solution-induced [Ca(2+)]i increases were suppressed by application of an antagonist of transient receptor potential ankyrin subfamily member 1 (TRPA1) channels. Ca(2+) exclusion efficiency during alkaline solution-induced [Ca(2+)]i increases was reduced by a Na(+)-Ca(2+) exchanger antagonist. Alizarin red and von Kossa staining revealed increased mineralization levels under repeated high pH stimulation, whereas the TRPA1 antagonist strongly reduced this effect. These findings indicate that alkaline stimuli-such as the alkaline environment inside dental pulp treated with calcium hydroxide or mineral trioxide aggregate-activate Ca(2+) mobilization via Ca(2+) influx mediated by TRPA1

  13. Heart-rot hazard is low in Abies amabilis reproduction injured by logging.

    Treesearch

    Paul E. Aho

    1960-01-01

    Clear-cut units in upper-slope forest types in western Washington and Oregon often have an understory of Pacific silver fir (Abies amabilis) at time of logging. Foresters sometimes hesitate to preserve this advance regeneration, partly because of the possibility that heart rots infecting through logging wounds might considerably reduce the...

  14. Breeding for resistance to adelgids in Abies fraseri, Tsuga canadensis, and T. caroliniana

    Treesearch

    Ben Smith; Fred Hain; John Frampton

    2012-01-01

    The balsam woolly adelgid (BWA; Adelges piceae) and hemlock woolly adelgid (HWA; Adelges tsugae) have had a tremendous impact on native ecosystems with Fraser fir (Abies fraseri (Pursh) Poir), eastern hemlock (Tsuga canadensis (L.) Carrière), and Carolina hemlock (T....

  15. Biochemical characterization in Norway spruce (Picea abies) of SABATH methyltransferases that methylate phytohormones.

    PubMed

    Chaiprasongsuk, Minta; Zhang, Chi; Qian, Ping; Chen, Xinlu; Li, Guanglin; Trigiano, Robert N; Guo, Hong; Chen, Feng

    2018-05-01

    Indole-3-acetic acid (IAA), gibberellins (GAs), salicylic acid (SA) and jasmonic acid (JA) exist in methyl ester forms in plants in addition to their free acid forms. The enzymes that catalyze methylation of these carboxylic acid phytohormones belong to a same protein family, the SABATH methyltransferases. While the genes encoding these enzymes have been isolated from a small number of flowering plants, little is known about their occurrence and evolution in non-flowering plants. Here, we report the systematic characterization of the SABATH family from Norway spruce (Picea abies), a gymnosperm. The Norway spruce genome contains ten SABATH genes (PaSABATH1-10). Full-length cDNA for each of the ten PaSABATH genes was cloned and expressed in Escherichia coli. Recombinant PaSABATHs were tested for activity with IAA, GA, SA, and JA. Among the ten PaSABATHs, five had activity with one or more of the four substrates. PaSABATH1 and PaSABATH2 had the highest activities with IAA and SA, respectively. PaSABATH4, PaSABATH5 and PaSABATH10 all had JA as a preferred substrate but with notable differences in biochemical properties. The structural basis of PaSABATHs in discriminating various phytohormone substrates was inferred based on structural models of the enzyme-substrate complexes. The phylogeny of PaSABATHs with selected SABATHs from other plants implies that the enzymes methylating IAA are conserved in seed plants whereas the enzymes methylating JA and SA have independent evolution in gymnosperms and angiosperms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Static and dynamic bending has minor effects on xylem hydraulics of conifer branches (Picea abies, Pinus sylvestris)

    PubMed Central

    Mayr, Stefan; Bertel, Clara; Dämon, Birgit; Beikircher, Barbara

    2014-01-01

    The xylem hydraulic efficiency and safety is usually measured on mechanically unstressed samples, although trees may be exposed to combined hydraulic and mechanical stress in the field. We analysed changes in hydraulic conductivity and vulnerability to drought-induced embolism during static bending of Picea abies and Pinus sylvestris branches as well as the effect of dynamic bending on the vulnerability. We hypothesized this mechanical stress to substantially impair xylem hydraulics. Intense static bending caused an only small decrease in hydraulic conductance (−19.5 ± 2.4% in P. abies) but no shift in vulnerability thresholds. Dynamic bending caused a 0.4 and 0.8 MPa decrease of the water potential at 50 and 88% loss of conductivity in P. sylvestris, but did not affect vulnerability thresholds in P. abies. With respect to applied extreme bending radii, effects on plant hydraulics were surprisingly small and are thus probably of minor eco-physiological importance. More importantly, results indicate that available xylem hydraulic analyses (of conifers) sufficiently reflect plant hydraulics under field conditions. PMID:24697679

  17. RasGRP1 confers the phorbol ester-sensitive phenotype to EL4 lymphoma cells.

    PubMed

    Han, Shujie; Knoepp, Stewart M; Hallman, Mark A; Meier, Kathryn E

    2007-01-01

    The murine EL4 lymphoma cell line exists in variants that are either sensitive or resistant to the tumor promoter phorbol 12-myristate 13-acetate (PMA). In sensitive EL4 cells, PMA causes robust Erk mitogen-activated protein kinase activation that results in growth arrest. In resistant cells, PMA induces minimal Erk activation, without growth arrest. PMA stimulates IL-2 production in sensitive, but not resistant, cells. The role of RasGRP1, a PMA-activated guanine nucleotide exchange factor for Ras, in EL4 phenotype was examined. Endogenous RasGRP1 protein is expressed at much higher levels in sensitive than in resistant cells. PMA-induced Ras activation is observed in sensitive cells but not in resistant cells lacking Ras-GRP1. PMA induces down-regulation of RasGRP1 protein in sensitive cells but increases RasGRP1 in resistant cells. Transfection of RasGRP1 into resistant cells enhances PMA-induced Erk activation. In the reverse experiment, introduction of small interfering RNA (siRNA) for RasGRP1 suppresses PMA-induced Ras and Erk activations in sensitive cells. Sensitive cells incubated with siRNA for RasGRP1 exhibit the PMA-resistant phenotype, in that they are able to proliferate in the presence of PMA and do not secrete IL-2 when stimulated with PMA. These studies indicate that the PMA-sensitive phenotype, as previously defined for the EL4 cell line, is conferred by endogenous expression of RasGRP1 protein.

  18. Holocene expansions of Fagus silvatica and Abies alba in Central Europe: where are we after eight decades of debate?

    NASA Astrophysics Data System (ADS)

    Tinner, Willy; Lotter, André F.

    2006-03-01

    During the past eight decades contrasting hypotheses have been put forward to explain the Holocene expansions of Fagus silvatica (beech) and Abies alba (fir) in Central Europe. The hypotheses can be referred to as: (1) climatic change; (2) migrational lag; (3) delay in population increase; (4) human disturbance; and (5) fire disturbance. High-resolution pollen and charcoal records from three sites in lowland Switzerland and southern Germany allow testing the human vs. fire-disturbance hypotheses by means of time-series analysis. Cross-correlations between pairs of pollen as well as between microscopic charcoal and pollen suggest that neither human nor fire disturbance substantially promoted the expansion of Fagus and Abies. We address the remaining hypotheses (climatic change, migrational lag, delay of population increase) by a combined interpretation of our data with independent climatic records and other evidence of past environmental dynamics (e.g. dynamic vegetation modelling) for southern Central Europe. Rapid population expansions in response to cooling and precipitation increase suggest that climatic change was the main forcing factor and that migrational lags were not effective since at least 8200 cal. yr ago. On the basis of this conclusion we propose an explanatory model for the Holocene expansion of Fagus and Abies in Central Europe: Both trees expanded stepwise across the continent during favourable 8200-type events, which were characterized by changes towards wetter and cooler conditions and corresponded to previously recognized Holocene cold phases in Central Europe as well as in the North Atlantic realm. Asynchronous expansions across continental Europe are explained by analogy to today's precipitation gradients resulting from orographic effects. Response lags of Fagus and Abies to climatic change reached a few decades at most, whereas population expansion in response to climatic change lasted for several centuries, probably as a consequence of

  19. Acute stress-induced sensitization of the pituitary-adrenal response to heterotypic stressors: independence of glucocorticoid release and activation of CRH1 receptors.

    PubMed

    Belda, Xavier; Daviu, Núria; Nadal, Roser; Armario, Antonio

    2012-09-01

    A single exposure to some severe stressors causes sensitization of the hypothalamic-pituitary-adrenal (HPA) response to novel stressors. However, the putative factors involved in stress-induced sensitization are not known. In the present work we studied in adult male rats the possible role of glucocorticoids and CRH type 1 receptor (CRH-R1), using an inhibitor of glucocorticoid synthesis (metyrapone, MET), the glucocorticoid receptor (GR) antagonist RU38486 (mifepristone) and the non-peptide CRH-R1 antagonist R121919. In a first experiment we demonstrated with different doses of MET (40-150 mg/kg) that the highest dose acted as a pharmacological stressor greatly increasing ACTH release and altering the normal circadian pattern of HPA hormones, but no dose affected ACTH responsiveness to a novel environment as assessed 3 days after drug administration. In a second experiment, we found that MET, at a dose (75 mg/kg) that blocked the corticosterone response to immobilization (IMO), did not alter IMO-induced ACTH sensitization. Finally, neither the GR nor the CRH-R1 antagonists blocked IMO-induced ACTH sensitization on the day after IMO. Thus, a high dose of MET, in contrast to IMO, was unable to sensitize the HPA response to a novel environment despite the huge activation of the HPA axis caused by the drug. Neither a moderate dose of MET that markedly reduced corticosterone response to IMO, nor the blockade of GR or CRH-R1 receptors was able to alter stress-induced HPA sensitization. Therefore, stress-induced sensitization is not the mere consequence of a marked HPA activation and does not involve activation of glucocorticoid or CRH-R1 receptors. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Sensitization of TRPA1 by Protein Kinase A

    PubMed Central

    Meents, Jannis E.; Fischer, Michael J. M.; McNaughton, Peter A.

    2017-01-01

    The TRPA1 ion channel is expressed in nociceptive (pain-sensitive) somatosensory neurons and is activated by a wide variety of chemical irritants, such as acrolein in smoke or isothiocyanates in mustard. Here, we investigate the enhancement of TRPA1 function caused by inflammatory mediators, which is thought to be important in lung conditions such as asthma and COPD. Protein kinase A is an important kinase acting downstream of inflammatory mediators to cause sensitization of TRPA1. By using site-directed mutagenesis, patch-clamp electrophysiology and calcium imaging we identify four amino acid residues, S86, S317, S428, and S972, as the principal targets of PKA-mediated phosphorylation and sensitization of TRPA1. PMID:28076424

  1. Genetic Structure and Diversity of the Endangered Fir Tree of Lebanon (Abies cilicica Carr.): Implications for Conservation

    PubMed Central

    Awad, Lara; Fady, Bruno; Khater, Carla; Roig, Anne; Cheddadi, Rachid

    2014-01-01

    The threatened conifer Abies cilicica currently persists in Lebanon in geographically isolated forest patches. The impact of demographic and evolutionary processes on population genetic diversity and structure were assessed using 10 nuclear microsatellite loci. All remnant 15 local populations revealed a low genetic variation but a high recent effective population size. FST-based measures of population genetic differentiation revealed a low spatial genetic structure, but Bayesian analysis of population structure identified a significant Northeast-Southwest population structure. Populations showed significant but weak isolation-by-distance, indicating non-equilibrium conditions between dispersal and genetic drift. Bayesian assignment tests detected an asymmetric Northeast-Southwest migration involving some long-distance dispersal events. We suggest that the persistence and Northeast-Southwest geographic structure of Abies cilicica in Lebanon is the result of at least two demographic processes during its recent evolutionary history: (1) recent migration to currently marginal populations and (2) local persistence through altitudinal shifts along a mountainous topography. These results might help us better understand the mechanisms involved in the species response to expected climate change. PMID:24587219

  2. Antibacterial activity against Clostridium genus and antiradical activity of the essential oils from different origin.

    PubMed

    Kačániová, Miroslava; Vukovič, Nenad; Horská, Elena; Salamon, Ivan; Bobková, Alica; Hleba, Lukáš; Fiskelová, Martina; Vatľák, Alexander; Petrová, Jana; Bobko, Marek

    2014-01-01

    In the present study, the antimicrobial and antiradical activities of 15 essential oils were investigated. The antimicrobial activities were determined by using agar disc diffusion and broth microdilution methods against Clostridium genus and antioxidant properties of essential oils by testing their scavenging effect on DPPH radicals activities. We determined the antibacterial activity of Clostridium butyricum, Clostridium hystoliticum, Clostridium intestinale, Clostridium perfringens and Clostridium ramosum. We obtained the original commercial essential oils samples of Lavandula angustifolia, Carum carvi, Pinus montana, Mentha piperita, Foeniculum vulgare Mill., Pinus sylvestris, Satureia montana, Origanum vulgare L. (2 samples), Pimpinella anisum, Rosmarinus officinalis L., Salvia officinalis L., Abies alba Mill., Chamomilla recutita L. Rausch and Thymus vulgaris L. produced in Slovakia (Calendula a.s., Nova Lubovna, Slovakia). The results of the disk diffusion method showed very high essential oils activity against all tested strains of microorganisms. The best antimicrobial activity against C. butyricum was found at Pimpinella anisum, against C. hystoliticum was found at Pinus sylvestris, against C. intestinale was found at Satureia hortensis L., against C. perfringens was found at Origanum vulgare L. and against C. ramosum was found at Pinus sylvestris. The results of broth microdilution assay showed that none of the essential oils was active against C. hystoliticum. The best antimicrobial activity against C. butyricum was found at Abies alba Mill., against C. intestinale was found at Abies alba Mill., against C. perfringens was found at Satureia montana and against C. ramosum was found at Abius alba and Carum carvi. Antioxidant DPPH radical scavenging activity was determined at several solutions of oil samples (50 μL.mL(-1)-0.39 μL.mL(-1)) and the best scavenging effect for the highest concentration (50 μL.mL(-1)) was observed. The antioxidant properties

  3. The experience of being a parent with an acquired brain injury (ABI) as an inpatient at a neuro-rehabilitation centre, 0-2 years post-injury.

    PubMed

    Edwards, Adrian Richard; Daisley, Audrey; Newby, Gavin

    2014-01-01

    Little research has been conducted exploring the issues surrounding parenting with an acquired brain injury (ABI). This study aimed to explore the experiences and needs of parents who suffered an ABI in the last 2 years from their own perspectives. For individuals with an ABI who have dependent children their ABI has the potential to impact upon their parenting abilities, skills and relationships. Interpretive phenomenological analysis (IPA) was used to analyse the data. Using IPA allowed the research questions and inquiry to be positioned epistemologically and directed towards 'meaning' rather than 'difference' or 'causality'. Five participants (two female, three male) were interviewed using a semi-structured interview schedule. Four main themes were identified: (i) Multiple losses, (ii) A mix of resigned acceptance and uncertain future, (iii) Giving and receiving support is part of the healing process and (iv) Hopes and aspirations. The results indicated that the participants experienced an oscillation between experiencing the multiple losses of their parental role and attempting to adapt and adjust to these changes. These findings are discussed in relation to clinical and theoretical implications for parents who are inpatients with an ABI up to 2 years post-injury.

  4. Chemical composition and biological activity of Abies alba and A. koreana seed and cone essential oils and characterization of their seed hydrolates.

    PubMed

    Wajs-Bonikowska, Anna; Sienkiewicz, Monika; Stobiecka, Agnieszka; Maciąg, Agnieszka; Szoka, Łukasz; Karna, Ewa

    2015-03-01

    The chemical composition, including the enantiomeric excess of the main terpenes, the antimicrobial and antiradical activities, as well as the cytotoxicity of Abies alba and A. koreana seed and cone essential oils were investigated. Additionally, their seed hydrolates were characterized. In the examined oils and hydrolates, a total of 174 compounds were identified, which comprised 95.6-99.9% of the volatiles. The essential oils were mainly composed of monoterpene hydrocarbons, whereas the composition of the hydrolates, differing from the seed oils of the corresponding fir species, consisted mainly of oxygenated derivatives of sesquiterpenes. The seed and cone essential oils of both firs exhibited DPPH-radical-scavenging properties and low antibacterial activity against the bacterial strains tested. Moreover, they evoked only low cytotoxicity towards normal fibroblasts and the two cancer cell lines MCF-7 and MDA-MBA-231. At concentrations up to 50 μg/ml, all essential oils were safe in relation to normal fibroblasts. Although they induced cytotoxicity towards the cancer cells at concentrations slightly lower than those required for the inhibition of fibroblast proliferation, their influence on cancer cells was weak, with IC50 values similar to those observed towards normal fibroblasts. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  5. APETALA2 like genes from Picea abies show functional similarities to their Arabidopsis homologues.

    PubMed

    Nilsson, Lars; Carlsbecker, Annelie; Sundås-Larsson, Annika; Vahala, Tiina

    2007-02-01

    In angiosperm flower development the identity of the floral organs is determined by the A, B and C factors. Here we present the characterisation of three homologues of the A class gene APETALA2 (AP2) from the conifer Picea abies (Norway spruce), Picea abies APETALA2 LIKE1 (PaAP2L1), PaAP2L2 and PaAP2L3. Similar to AP2 these genes contain sequence motifs complementary to miRNA172 that has been shown to regulate AP2 in Arabidopsis. The genes display distinct expression patterns during plant development; in the female-cone bud PaAP2L1 and PaAP2L3 are expressed in the seed-bearing ovuliferous scale in a pattern complementary to each other, and overlapping with the expression of the C class-related gene DAL2. To study the function of PaAP2L1 and PaAP2L2 the genes were expressed in Arabidopsis. The transgenic PaAP2L2 plants were stunted and flowered later than control plants. Flowers were indeterminate and produced an excess of floral organs most severely in the two inner whorls, associated with an ectopic expression of the meristem-regulating gene WUSCHEL. No homeotic changes in floral-organ identities occurred, but in the ap2-1 mutant background PaAP2L2 was able to promote petal identity, indicating that the spruce AP2 gene has the capacity to substitute for an A class gene in Arabidopsis. In spite of the long evolutionary distance between angiosperms and gymnosperms and the fact that gymnosperms lack structures homologous to sepals and petals our data supports a functional conservation of AP2 genes among the seed plants.

  6. Static and dynamic bending has minor effects on xylem hydraulics of conifer branches (Picea abies, Pinus sylvestris).

    PubMed

    Mayr, Stefan; Bertel, Clara; Dämon, Birgit; Beikircher, Barbara

    2014-09-01

    The xylem hydraulic efficiency and safety is usually measured on mechanically unstressed samples, although trees may be exposed to combined hydraulic and mechanical stress in the field. We analysed changes in hydraulic conductivity and vulnerability to drought-induced embolism during static bending of Picea abies and Pinus sylvestris branches as well as the effect of dynamic bending on the vulnerability. We hypothesized this mechanical stress to substantially impair xylem hydraulics. Intense static bending caused an only small decrease in hydraulic conductance (-19.5 ± 2.4% in P. abies) but no shift in vulnerability thresholds. Dynamic bending caused a 0.4 and 0.8 MPa decrease of the water potential at 50 and 88% loss of conductivity in P. sylvestris, but did not affect vulnerability thresholds in P. abies. With respect to applied extreme bending radii, effects on plant hydraulics were surprisingly small and are thus probably of minor eco-physiological importance. More importantly, results indicate that available xylem hydraulic analyses (of conifers) sufficiently reflect plant hydraulics under field conditions. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  7. WAVE2-Abi2 complex controls growth cone activity and regulates the multipolar-bipolar transition as well as the initiation of glia-guided migration.

    PubMed

    Xie, Min-Jue; Yagi, Hideshi; Kuroda, Kazuki; Wang, Chen-Chi; Komada, Munekazu; Zhao, Hong; Sakakibara, Akira; Miyata, Takaki; Nagata, Koh-Ichi; Oka, Yuichiro; Iguchi, Tokuichi; Sato, Makoto

    2013-06-01

    Glia-guided migration (glia-guided locomotion) during radial migration is a characteristic yet unique mode of migration. In this process, the directionality of migration is predetermined by glial processes and not by growth cones. Prior to the initiation of glia-guided migration, migrating neurons transform from multipolar to bipolar, but the molecular mechanisms underlying this multipolar-bipolar transition and the commencement of glia-guided migration are not fully understood. Here, we demonstrate that the multipolar-bipolar transition is not solely a cell autonomous event; instead, the interaction of growth cones with glial processes plays an essential role. Time-lapse imaging with lattice assays reveals the importance of vigorously active growth cones in searching for appropriate glial scaffolds, completing the transition, and initiating glia-guided migration. These growth cone activities are regulated by Abl kinase and Cdk5 via WAVE2-Abi2 through the phosphorylation of tyrosine 150 and serine 137 of WAVE2. Neurons that do not display such growth cone activities are mispositioned in a more superficial location in the neocortex, suggesting the significance of growth cones for the final location of the neurons. This process occurs in spite of the "inside-out" principle in which later-born neurons are situated more superficially.

  8. A-Ring modified steroidal azoles retaining similar potent and slowly reversible CYP17A1 inhibition as abiraterone

    PubMed Central

    Yoshimoto, Francis K.; Upadhyay, Sunil K.; Bratoeff, Eugene; Auchus, Richard J.

    2014-01-01

    Abiraterone acetate is a potent inhibitor of human cytochrome P450c17 (CYP17A1, 17α-hydroxylase/17,20-lyase) and is clinically used in combination with prednisone for the treatment of castration-resistant prostate cancer. Although many studies have documented the potency of abiraterone (Abi) in a variety of in vitro and in vivo systems for several species, the exact potency of Abi for human CYP17A1 enzyme has not yet been determined, and the structural requirements for high-potency steroidal azole inhibitors are not established. We synthesized 4 Abi analogs differing in the A-B ring substitution patterns: 3α-hydroxy-Δ4-Abi (13), 3-keto-Δ4-Abi (11), 3-keto-5α-Abi (6), and 3α-hydroxy-5α-Abi (5). We measured the spectral binding constants (Ks) using purified and modified human CYP17A1 along with the determination constants (Ki) applying a native human CYP17A1 enzyme in yeast microsomes for these compounds as well as for ketoconazole. For Abi, 3-keto-Δ4-Abi, 3-keto-5α-Abi, and 3α-hydroxy-5α-Abi, the type 2 spectral changes gave the best fit for a quadratic equation, since in these experiments Ks values were 0.1-2.6 nM, much lower than that for ketoconazole and 3α-hydroxy-Δ4-Abi (Ks values were 140 and 1660 nM, respectively). Inhibition experiments showed mixed inhibition patterns with Ki values of 7-80 nM. Abi dissociation from the CYP17A1-Abi complex was incomplete and slow; the t1/2 for dissociation was 1.8 hour, with 55% of complex remaining after 5 hours. We conclude that Abi and the 3 related steroidal azoles (3-keto-Δ4-Abi, 3-keto-5α-Abi, and 3α-hydroxy-5α-Abi), which also mimic natural substrates, are extraordinarily potent inhibitors of human CYP17A1, whereas the 3α-hydroxy-Δ4-Abi is moderately potent and comparable to ketoconazole. PMID:24508512

  9. Complex bud architecture and cell‐specific chemical patterns enable supercooling of Picea abies bud primordia

    PubMed Central

    Munkler, Caspar; Resnyak, Anna; Zimmermann, Sonja; Tuong, Tan D.; Gierlinger, Notburga; Müller, Thomas; Livingston, David P.; Neuner, Gilbert

    2017-01-01

    Abstract Bud primordia of Picea abies, despite a frozen shoot, stay ice free down to −50 °C by a mechanism termed supercooling whose biophysical and biochemical requirements are poorly understood. Bud architecture was assessed by 3D—reconstruction, supercooling and freezing patterns by infrared video thermography, freeze dehydration and extraorgan freezing by water potential measurements, and cell‐specific chemical patterns by Raman microscopy and mass spectrometry imaging. A bowl‐like ice barrier tissue insulates primordia from entrance by intrinsic ice. Water repellent and densely packed bud scales prevent extrinsic ice penetration. At −18 °C, break‐down of supercooling was triggered by intrinsic ice nucleators whereas the ice barrier remained active. Temperature‐dependent freeze dehydration (−0.1 MPa K−1) caused accumulation of extraorgan ice masses that by rupture of the shoot, pith tissue are accommodated in large voids. The barrier tissue has exceptionally pectin‐rich cell walls and intercellular spaces, and the cell lumina were lined or filled with proteins, especially near the primordium. Primordial cells close to the barrier accumulate di, tri and tetrasaccharides. Bud architecture efficiently prevents ice penetration, but ice nucleators become active inside the primordium below a temperature threshold. Biochemical patterns indicate a complex cellular interplay enabling supercooling and the necessity for cell‐specific biochemical analysis. PMID:28960368

  10. Light acclimation of photosynthesis in two closely related firs (Abies pinsapo Boiss. and Abies alba Mill.): the role of leaf anatomy and mesophyll conductance to CO2

    PubMed Central

    Peguero-Pina, José Javier; Sancho-Knapik, Domingo; Flexas, Jaume; Galmés, Jeroni; Niinemets, Ülo; Gil-Pelegrín, Eustaquio

    2016-01-01

    Leaves growing in the forest understory usually present a decreased mesophyll conductance (gm) and photosynthetic capacity. The role of leaf anatomy in determining the variability in gm among species is known, but there is a lack of information on how the acclimation of gm to shade conditions is driven by changes in leaf anatomy. Within this context, we demonstrated that Abies pinsapo Boiss. experienced profound modifications in needle anatomy to drastic changes in light availability that ultimately led to differential photosynthetic performance between trees grown in the open field and in the forest understory. In contrast to A. pinsapo, its congeneric Abies alba Mill. did not show differences either in needle anatomy or in photosynthetic parameters between trees grown in the open field and in the forest understory. The increased gm values found in trees of A. pinsapo grown in the open field can be explained by occurrence of stomata at both needle sides (amphistomatous needles), increased chloroplast surface area exposed to intercellular airspace, decreased cell wall thickness and, especially, decreased chloroplast thickness. To the best of our knowledge, the role of such drastic changes in ultrastructural needle anatomy in explaining the response of gm to the light environment has not been demonstrated in field conditions. PMID:26543153

  11. An internet survey of the characteristics and physical activity of community-dwelling Australian adults with acquired brain injury: Exploring interest in an internet-delivered self-management program focused on physical activity.

    PubMed

    Jones, Taryn M; Dean, Catherine M; Dear, Blake F; Hush, Julia M; Titov, Nickolai

    2016-01-01

    Individuals with acquired brain injury (ABI) are more likely to be physically inactive and experience barriers to accessing services to address inactivity. This study was designed to guide the development of an internet-delivered self-management program to increase physical activity after ABI. The aims of this study were to examine the current physical activity status of community-dwelling Australian adults with ABI, the barriers to physical activity they experience and to explore interest an internet-delivered self-management program aimed at increasing physical activity. An online survey of Australian adults with ABI was used to collect information about demographic characteristics; general health; emotional well-being; mobility and physical activity status, and satisfaction; barriers to physical activity; confidence in overcoming barriers, and; interest in an internet self-management program. Data were analyzed descriptively and correlational analyses examined relationships between variables. Data were analyzed from 59 respondents. Over half were not satisfied with their current physical activity status. The most frequently reported barriers were pain/discomfort, fatigue and fear, and confidence to overcome these barriers was very low. Interest in an internet-delivered self-management program was high (74%) and not related to the amount of physical activity, satisfaction with physical activity and mobility status or total number of barriers. Australian adults with ABI are not satisfied with their activity levels and experience barriers in maintaining their physical activity levels. Participants were interested in accessing an internet-delivered self-management program aimed at improving physical activity levels. Therefore such a program warrants development and evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Constitutive and nitrogen catabolite repression-sensitive production of Gat1 isoforms.

    PubMed

    Rai, Rajendra; Tate, Jennifer J; Georis, Isabelle; Dubois, Evelyne; Cooper, Terrance G

    2014-01-31

    Nitrogen catabolite repression (NCR)-sensitive transcription is activated by Gln3 and Gat1. In nitrogen excess, Gln3 and Gat1 are cytoplasmic, and transcription is minimal. In poor nitrogen, Gln3 and Gat1 become nuclear and activate transcription. A long standing paradox has surrounded Gat1 production. Gat1 was first reported as an NCR-regulated activity mediating NCR-sensitive transcription in gln3 deletion strains. Upon cloning, GAT1 transcription was, as predicted, NCR-sensitive and Gln3- and Gat1-activated. In contrast, Western blots of Gat1-Myc(13) exhibited two constitutively produced species. Investigating this paradox, we demonstrate that wild type Gat1 isoforms (IsoA and IsoB) are initiated at Gat1 methionines 40, 95, and/or 102, but not at methionine 1. Their low level production is the same in rich and poor nitrogen conditions. When the Myc(13) tag is placed after Gat1 Ser-233, four N-terminal Gat1 isoforms (IsoC-F) are also initiated at methionines 40, 95, and/or 102. However, their production is highly NCR-sensitive, being greater in proline than glutamine medium. Surprisingly, all Gat1 isoforms produced in sufficient quantities to be confidently analyzed (IsoA, IsoC, and IsoD) require Gln3 and UASGATA promoter elements, both requirements typical of NCR-sensitive transcription. These data demonstrate that regulated Gat1 production is more complex than previously recognized, with wild type versus truncated Gat1 proteins failing to be regulated in parallel. This is the first reported instance of Gln3 UASGATA-dependent protein production failing to derepress in nitrogen poor conditions. A Gat1-lacZ ORF swap experiment indicated sequence(s) responsible for the nonparallel production are downstream of Gat1 leucine 61.

  13. ABA-insensitive3, ABA-insensitive5, and DELLAs Interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis.

    PubMed

    Lim, Soohwan; Park, Jeongmoo; Lee, Nayoung; Jeong, Jinkil; Toh, Shigeo; Watanabe, Asuka; Kim, Junghyun; Kang, Hyojin; Kim, Dong Hwan; Kawakami, Naoto; Choi, Giltsu

    2013-12-01

    Seeds monitor the environment to germinate at the proper time, but different species respond differently to environmental conditions, particularly light and temperature. In Arabidopsis thaliana, light promotes germination but high temperature suppresses germination. We previously reported that light promotes germination by repressing SOMNUS (SOM). Here, we examined whether high temperature also regulates germination through SOM and found that high temperature activates SOM expression. Consistent with this, som mutants germinated more frequently than the wild type at high temperature. The induction of SOM mRNA at high temperature required abscisic acid (ABA) and gibberellic acid biosynthesis, and ABA-insensitive3 (ABI3), ABI5, and DELLAs positively regulated SOM expression. Chromatin immunoprecipitation assays indicated that ABI3, ABI5, and DELLAs all target the SOM promoter. At the protein level, ABI3, ABI5, and DELLAs all interact with each other, suggesting that they form a complex on the SOM promoter to activate SOM expression at high temperature. We found that high-temperature-inducible genes frequently have RY motifs and ABA-responsive elements in their promoters, some of which are targeted by ABI3, ABI5, and DELLAs in vivo. Taken together, our data indicate that ABI3, ABI5, and DELLAs mediate high-temperature signaling to activate the expression of SOM and other high-temperature-inducible genes, thereby inhibiting seed germination.

  14. Inhibition of WEE1 kinase and cell cycle checkpoint activation sensitizes head and neck cancers to natural killer cell therapies.

    PubMed

    Friedman, Jay; Morisada, Megan; Sun, Lillian; Moore, Ellen C; Padget, Michelle; Hodge, James W; Schlom, Jeffrey; Gameiro, Sofia R; Allen, Clint T

    2018-06-21

    Natural killer (NK) cells recognize and lyse target tumor cells in an MHC-unrestricted fashion and complement antigen- and MHC-restricted killing by T-lymphocytes. NK cells and T-lymphocytes mediate early killing of targets through a common granzyme B-dependent mechanism. Tumor cell resistance to granzyme B and how this alters NK cell killing is not clearly defined. Tumor cell sensitivity to cultured murine KIL and human high affinity NK (haNK) cells in the presence or absence of AZD1775, a small molecule inhibitor of WEE1 kinase, was assessed via real time impedance analysis. Mechanisms of enhanced sensitivity to NK lysis were determined and in vivo validation via adoptive transfer of KIL cells into syngeneic mice was performed. Cultured murine KIL cells lyse murine oral cancer 2 (MOC2) cell targets more efficiently than freshly isolated peripheral murine NK cells. MOC2 sensitivity to granzyme B-dependent KIL cell lysis was enhanced by inhibition of WEE1 kinase, reversing G2/M cell cycle checkpoint activation and resulting in enhanced DNA damage and apoptosis. Treatment of MOC2 tumor-bearing wild-type C57BL/6 mice with AZD1775 and adoptively transferred KIL cells resulted in enhanced tumor growth control and survival over controls or either treatment alone. Validating these findings in human models, WEE1 kinase inhibition sensitized two human head and neck cancer cell lines to direct lysis by haNK cells. Further, WEE1 kinase inhibition sensitized these cell lines to antibody-dependent cell-mediated cytotoxicity when combined with the anti-PD-L1 IgG1 mAb Avelumab. Tumor cell resistance to granzyme B-induced cell death can be reversed through inhibition of WEE1 kinase as AZD1775 sensitized both murine and human head and neck cancer cells to NK lysis. These data provide the pre-clinical rationale for the combination of small molecules that reverse cell cycle checkpoint activation and NK cellular therapies.

  15. Polyamines in embryogenic cultures of Norway spruce (Picea abies) and red spruce (Picea rubens)

    Treesearch

    Rakesh Minocha; Haarald Kvaalen; Subhash C. Minocha; Stephanie Long

    1993-01-01

    Embryogenic cultures of red spruce (Picea rubens Sarg.) and Norway spruce (Picea abies (L.) Karst.) were initiated from dissected mature zygotic embryos. The tissues were grown on either proliferation medium or maturation medium. On proliferation medium, the embryogenic tissue continued to produce early stage somatic embryos (...

  16. ABA-INSENSITIVE3, ABA-INSENSITIVE5, and DELLAs Interact to Activate the Expression of SOMNUS and Other High-Temperature-Inducible Genes in Imbibed Seeds in Arabidopsis[W

    PubMed Central

    Lim, Soohwan; Park, Jeongmoo; Lee, Nayoung; Jeong, Jinkil; Toh, Shigeo; Watanabe, Asuka; Kim, Junghyun; Kang, Hyojin; Kim, Dong Hwan; Kawakami, Naoto; Choi, Giltsu

    2013-01-01

    Seeds monitor the environment to germinate at the proper time, but different species respond differently to environmental conditions, particularly light and temperature. In Arabidopsis thaliana, light promotes germination but high temperature suppresses germination. We previously reported that light promotes germination by repressing SOMNUS (SOM). Here, we examined whether high temperature also regulates germination through SOM and found that high temperature activates SOM expression. Consistent with this, som mutants germinated more frequently than the wild type at high temperature. The induction of SOM mRNA at high temperature required abscisic acid (ABA) and gibberellic acid biosynthesis, and ABA-INSENSITIVE3 (ABI3), ABI5, and DELLAs positively regulated SOM expression. Chromatin immunoprecipitation assays indicated that ABI3, ABI5, and DELLAs all target the SOM promoter. At the protein level, ABI3, ABI5, and DELLAs all interact with each other, suggesting that they form a complex on the SOM promoter to activate SOM expression at high temperature. We found that high-temperature-inducible genes frequently have RY motifs and ABA-responsive elements in their promoters, some of which are targeted by ABI3, ABI5, and DELLAs in vivo. Taken together, our data indicate that ABI3, ABI5, and DELLAs mediate high-temperature signaling to activate the expression of SOM and other high-temperature-inducible genes, thereby inhibiting seed germination. PMID:24326588

  17. Using SRμCT to define water transport capacity in Picea abies

    NASA Astrophysics Data System (ADS)

    Lautner, Silke; Lenz, Claudia; Hammel, Jörg; Moosmann, Julian; Kühn, Michael; Caselle, Michele; Vogelgesang, Matthias; Kopmann, Andreas; Beckmann, Felix

    2017-10-01

    Water transport from roots to shoots is a vital necessity in trees in order to sustain their photosynthetic activity and, hence, their physiological activity. The vascular tissue in charge is the woody body of root, stem and branches. In gymnosperm trees, like spruce trees (Picea abies (L.) Karst.), vascular tissue consists of tracheids: elongated, protoplast- free cells with a rigid cell wall that allow for axial water transport via their lumina. In order to analyze the over-all water transport capacity within one growth ring, time-consuming light microscopy analysis of the woody sample still is the conventional approach for calculating tracheid lumen area. In our investigations at the Imaging Beamline (IBL) operated by the Helmholtz-Zentrum Geesthacht (HZG) at PETRA III storage ring of the Deutsches Elektronen-Synchrotron DESY, Hamburg, we applied SRμCT on small wood samples of spruce trees in order to visualize and analyze size and formation of xylem elements and their respective lumina. The selected high-resolution phase-contrast technique makes full use of the novel 20 MPixel CMOS area detector developed within the cooperation of HZG and the Karlsruhe data by light microscopy analysis and, hence, prove, that μCT is a most appropriate method to gain valid information on xylem cell structure and tree water transport capacity.

  18. Effects of the ankle-brachial blood pressure index and skin perfusion pressure on mortality in hemodialysis patients.

    PubMed

    Otani, Yumi; Otsubo, Shigeru; Kimata, Naoki; Takano, Mari; Abe, Takayuki; Okajima, Tomoki; Miwa, Naoko; Tsuchiya, Ken; Nitta, Kosaku; Akiba, Takashi

    2013-01-01

    Clinically, the ankle-brachial blood pressure index (ABI) and skin perfusion pressure (SPP) are used to screen for subclinical peripheral artery disease. However, the association between the SPP and mortality in hemodialysis patients has not been previously reported. We investigated these factors and compared the ABI and SPP in patients receiving hemodialysis. A total of 102 patients receiving maintenance hemodialysis were enrolled in this study. The ABI was determined using an ABI-form (Colin, Japan). The SPP was measured using a SensiLase(TM) PAD3000 (Kaneka, Osaka, Japan). The mean follow-up period was 3.2 ± 1.4 years. A multivariate Cox analysis identified a low ABI (p=0.019) and a low SPP (p=0.047) as being independent predictors of mortality. A receiver operating characteristic (ROC) analysis of the ABI revealed a cutoff point of 1.1 and an area under the curve (AUC) of 0.79, with a sensitivity of 90% and a specificity of 62%. A ROC analysis of the SPP revealed a cutoff point of 54.0 mmHg and an AUC of 0.71, with a sensitivity of 55% and a specificity of 84%. Both low ABI and SPP values were found to be independent risk factors for mortality among hemodialysis patients. The cutoff point for ABI as a predictor of mortality was 1.1, while that for SPP was 54.0 mmHg.

  19. Abies concolor growth responses to vegetation changes following shrub removal, northern Sierra Nevada, California

    Treesearch

    Steven R. Sparks

    1993-01-01

    Conifer productivity in western North America is often severely inhibited by competing vegetation. Abies concolor [Gord. and Glendl.] Lindl. (white fir) is an important species over much of this area, yet little information is available on response of A. concolor to vegetation management treatments. We revisited two sites in the...

  20. AKAP150-mediated TRPV1 sensitization is disrupted by calcium/calmodulin.

    PubMed

    Chaudhury, Sraboni; Bal, Manjot; Belugin, Sergei; Shapiro, Mark S; Jeske, Nathaniel A

    2011-05-14

    The transient receptor potential vanilloid type1 (TRPV1) is expressed in nociceptive sensory neurons and is sensitive to phosphorylation. A-Kinase Anchoring Protein 79/150 (AKAP150) mediates phosphorylation of TRPV1 by Protein Kinases A and C, modulating channel activity. However, few studies have focused on the regulatory mechanisms that control AKAP150 association with TRPV1. In the present study, we identify a role for calcium/calmodulin in controlling AKAP150 association with, and sensitization of, TRPV1. In trigeminal neurons, intracellular accumulation of calcium reduced AKAP150 association with TRPV1 in a manner sensitive to calmodulin antagonism. This was also observed in transfected Chinese hamster ovary (CHO) cells, providing a model for conducting molecular analysis of the association. In CHO cells, the deletion of the C-terminal calmodulin-binding site of TRPV1 resulted in greater association with AKAP150, and increased channel activity. Furthermore, the co-expression of wild-type calmodulin in CHOs significantly reduced TRPV1 association with AKAP150, as evidenced by total internal reflective fluorescence-fluorescence resonance energy transfer (TIRF-FRET) analysis and electrophysiology. Finally, dominant-negative calmodulin co-expression increased TRPV1 association with AKAP150 and increased basal and PKA-sensitized channel activity. the results from these studies indicate that calcium/calmodulin interferes with the association of AKAP150 with TRPV1, potentially extending resensitization of the channel.

  1. Paraoxonase (PON1) polymorphism and activity as the determinants of sensitivity to organophosphates in human subjects.

    PubMed

    Sirivarasai, Jintana; Kaojarern, Sming; Yoovathaworn, Krongtong; Sura, Thanyachai

    2007-07-20

    Paraoxonase (PON1) plays an important role in mechanism of organophosphorus compound (OP) toxicity, as seen both in vitro and in vivo studies. Polymorphisms of PON1 gene at coding and promoter regions have also been to affect on the hydrolytic activity and PON1 level. The objectives of this study were to determine PON1 polymorphism and activity in an OP-exposed population and the effects on inhibition of cholinesterase activity. The studied population consisted of control (n=30) and exposed groups (n=90). All enzyme activities (AChE, BuChE, paraoxonase, arylesterase and diazonase) were measured once for control group and two periods of exposure for exposed group. Three polymorphisms of PON1 (Q192R, L55M and T-108C) were identified only in the exposed subjects. The results demonstrated that AChE activity in both high (345.5 microkat/gHb) and low exposure periods (496.9 microkat/gHb) of the exposed group were significantly different from control group (649.7 microkat/gHb, p<0.01). For BuChE activity, the exposed group also showed the statistically lower level in both periods (high exposure period: 62.17 microkat/L and low exposure period: 81.84 microkat/L) than those in the control group (93.35 microkat/L). Serum paraoxonase activity was significantly different among individual genotypes, RR>QR>RR, LL>LM and -108CC>-108CT>-108TT, but this was not found for those of arylesterase and diazonase activities. Q192R and L55M as well as Q192R and T-108C also presented substantial linkage disequilibrium. Further analysis was performed with haplotypes and various enzyme activities. AChE activity was not affected by haplotypes. Individuals with "211" haplotype showed significantly higher paraoxonase activity and BuChE activity than other haplotypes but not in diazonase activity. In conclusion, PON1 gene exhibited a wide variation in enzyme activities both within and between genotypes which implied insights of a potentially difference in sensitivity to OP toxicity.

  2. [New World of Vascular-Function Developed with CAVI, PWV and ABI].

    PubMed

    Shirai, Kohji

    2014-09-01

    Arteriosclerotic diseases are becoming a serious problem all over the world. However, the evaluation of arteriosclerosis quantitatively and non-invasively has been very difficult. Pulse-wave velocities have been used globally. Their significance was mostly established, but the problem is that PWV depends on the blood pressure at the time of measurement. The cardio-ankle vascular index (CAVI) was recently presented and produced from the stiffness parameter beta theory and Bramwell-Hill's equation. CAVI was independent from the blood pressure at the time of measurement. CAVI showed high values in arteriosclerotic diseases, such as coronary stenosis, cervical arteriosclerosis, cerebral infarction, and chronic kidney diseases. Furthermore, CAVI reflected so-called risk factors such as hypertension, diabetes mellitus, dyslipidemia, and smoking. Also, controlling most of those risk factors improved CAVI. A low ankle-brachial blood pressure index (ABI) (< 0.9) reflected stenosis of the femoral artery. ABI (0.9-0.99) has been reported to be a predictor of coronary artery diseases. A combination of those indices might be useful in practical medicine. Furthermore, it is known that arterial stiffness reflects the Windkessel function. The positive correlation between CAVI and the left ventricular function indicated that the heart-arterial relationship could be evaluated using CAVI. Therefore, a new study field involving a collaborating system between heart muscle and arteries could be developed using CAVI.

  3. [Acquired Brain Injury: impacts on labor activity of individuals of working age and their relatives].

    PubMed

    Ponte, Aline Sarturi; Fedosse, Elenir

    2016-10-01

    This study correlated the impact of Acquired Brain Injury (ABI) on the labor activity of individuals of working age on their quality of life (QOL) and that of their relatives/caregivers. It involved qualitative (content analysis) and quantitative (descriptive) research. Forty-eight individuals with ABI and 27 relatives/caregivers were interviewed. The correlation of the International Classification of Functioning, Disability and Health (ICF) and the World Health Organization Quality of Life WHOQOL-BREF (52.1% men; mean age 48.7 years at the time of the injury; low schooling; 18,7% domestic) revealed that the Mental Functions compromised by ABI interfered in the four domains of QOL; Heart Functions and Blood Pressure compromised the social domain; Cerebral injury interfered with the Psychological and Environmental domains. With respect to relatives/caregivers (77.7% women; 96.3%, primary caregivers; mean age 52.6 years, and low schooling), we observed changes in the work routine and family structure (85.2%). The onset of ABI disrupts the injured individuals and their families, affecting QOL in all domains, especially in the physical, psychological and environmental domains of individuals with ABI and the physical and environmental domains of relatives/caregivers.

  4. Comparative Sensitivity Analysis of Muscle Activation Dynamics

    PubMed Central

    Günther, Michael; Götz, Thomas

    2015-01-01

    We mathematically compared two models of mammalian striated muscle activation dynamics proposed by Hatze and Zajac. Both models are representative for a broad variety of biomechanical models formulated as ordinary differential equations (ODEs). These models incorporate parameters that directly represent known physiological properties. Other parameters have been introduced to reproduce empirical observations. We used sensitivity analysis to investigate the influence of model parameters on the ODE solutions. In addition, we expanded an existing approach to treating initial conditions as parameters and to calculating second-order sensitivities. Furthermore, we used a global sensitivity analysis approach to include finite ranges of parameter values. Hence, a theoretician striving for model reduction could use the method for identifying particularly low sensitivities to detect superfluous parameters. An experimenter could use it for identifying particularly high sensitivities to improve parameter estimation. Hatze's nonlinear model incorporates some parameters to which activation dynamics is clearly more sensitive than to any parameter in Zajac's linear model. Other than Zajac's model, Hatze's model can, however, reproduce measured shifts in optimal muscle length with varied muscle activity. Accordingly we extracted a specific parameter set for Hatze's model that combines best with a particular muscle force-length relation. PMID:26417379

  5. Development of LiDAR aware allometrics for Abies grandis: A Case Study

    NASA Astrophysics Data System (ADS)

    Stone, G. A.; Tinkham, W. T.; Smith, A. M.; Hudak, A. T.; Falkowski, M. J.; Keefe, R.

    2012-12-01

    Forest managers rely increasingly on accurate allometric relationships to inform decisions regarding stand rotations, silvilcultural treatments, timber harvesting, and biometric modeling. At the same time, advances in remote sensing techniques like LiDAR (light detection and ranging) have brought about opportunities to advance how we assess forest growth, and thus are contributing to the need for more accurate allometries. Past studies have attempted to relate LiDAR data to both plot and individual tree measures of forest biomass. However, many of these studies have been limited by the accuracy of their coincident observations. In this study, 24 Abies grandis were measured, felled, and dissected for the explicit objective of developing LiDAR aware allometrics. The analysis predicts spatial variables of competition, growth potential (e.g, trees per acre, aspect, elevation, etc.) and common statistical distributional metrics (e.g., mean, mode, percentiles, variance, skewness, kurtosis, etc.) derived from LiDAR point cloud returns to coincident in situ measures of Abies grandis stem biomass. The resulting allometries exemplify a new approach for predicting structural attributes of interest (biomass, basal area, volume, etc.) directly from LiDAR point cloud data, precluding the measurement errors that are propogated by indirectly predicting these structure attributes of interest from LiDAR data using traditional plot-based measurements.

  6. A MAPK-Driven Feedback Loop Suppresses Rac Activity to Promote RhoA-Driven Cancer Cell Invasion

    PubMed Central

    Hetmanski, Joseph H. R.; Zindy, Egor; Schwartz, Jean-Marc; Caswell, Patrick T.

    2016-01-01

    Cell migration in 3D microenvironments is fundamental to development, homeostasis and the pathobiology of diseases such as cancer. Rab-coupling protein (RCP) dependent co-trafficking of α5β1 and EGFR1 promotes cancer cell invasion into fibronectin (FN) containing extracellular matrix (ECM), by potentiating EGFR1 signalling at the front of invasive cells. This promotes a switch in RhoGTPase signalling to inhibit Rac1 and activate a RhoA-ROCK-Formin homology domain-containing 3 (FHOD3) pathway and generate filopodial actin-spike protrusions which drive invasion. To further understand the signalling network that drives RCP-driven invasive migration, we generated a Boolean logical model based on existing network pathways/models, where each node can be interrogated by computational simulation. The model predicted an unanticipated feedback loop, whereby Raf/MEK/ERK signalling maintains suppression of Rac1 by inhibiting the Rac-activating Sos1-Eps8-Abi1 complex, allowing RhoA activity to predominate in invasive protrusions. MEK inhibition was sufficient to promote lamellipodia formation and oppose filopodial actin-spike formation, and led to activation of Rac and inactivation of RhoA at the leading edge of cells moving in 3D matrix. Furthermore, MEK inhibition abrogated RCP/α5β1/EGFR1-driven invasive migration. However, upon knockdown of Eps8 (to suppress the Sos1-Abi1-Eps8 complex), MEK inhibition had no effect on RhoGTPase activity and did not oppose invasive migration, suggesting that MEK-ERK signalling suppresses the Rac-activating Sos1-Abi1-Eps8 complex to maintain RhoA activity and promote filopodial actin-spike formation and invasive migration. Our study highlights the predictive potential of mathematical modelling approaches, and demonstrates that a simple intervention (MEK-inhibition) could be of therapeutic benefit in preventing invasive migration and metastasis. PMID:27138333

  7. Endogenous bradykinin activates ischaemically sensitive cardiac visceral afferents through kinin B2 receptors in cats

    PubMed Central

    Tjen-A-Looi, Stephanie C; Pan, Hui-Lin; Longhurst, John C

    1998-01-01

    Activity of ischaemically sensitive cardiac visceral afferents during myocardial ischaemia induces both angina and cardiovascular reflexes. Increased production of bradykinin (BK) and cyclo-oxygenase products (i.e. prostaglandins (PGs)) occurs during myocardial ischaemia. However, the role of these agents in activation of ischaemically sensitive cardiac afferents has not been established. The present study tested the hypothesis that BK produced during ischaemia activates cardiac afferents through kinin B2 receptors. Single-unit activity of cardiac afferents innervating the left ventricle was recorded from the left thoracic sympathetic chain (T1–T4) of anaesthetized cats. Ischaemically sensitive cardiac afferents were identified according to their response to 5 min of myocardial ischaemia. The mechanism of BK in activation of ischaemically sensitive cardiac afferents was determined by injection of BK (1 μg kg−1 i.a.), des-Arg9-BK (1 μg kg−1 i.a., a specific kinin B1 receptor agonist), kinin B2 receptor antagonists: HOE140 (30 μg kg−1 i.v.) and NPC-17731 (40 μg kg−1 i.v.), cyclo-oxygenase inhibition with indomethacin (5 mg kg−1 i.v.) and NPC-17731 (40 μg kg−1 i.v.) after pretreatment with indomethacin (5 mg kg−1 i.v.). We observed that BK increased the discharge rate of all eleven ischaemically sensitive cardiac afferents from 0.39 ± 0.12 to 1.47 ± 0.37 impulses s−1 (P < 0.05). Conversely, des-Arg9-BK did not significantly increase the activity of eleven ischaemically sensitive fibres (0.58 ± 0.02 vs. 0.50 ± 0.18 impulses s−1). HOE140 significantly attenuated the response of twelve afferents to ischaemia (0.61 ± 0.22 to 1.85 ± 0.5 vs. 0.53 ± 0.16 to 1.09 ± 0.4 impulses s−1). NPC-17731, another kinin B2 receptor antagonist, had similar inhibitory effects on six other ischaemically sensitive cardiac afferents (0.35 ± 0.14 to 1.19 ± 0.29 vs. 0.22 ± 0.08 to 0.23 ± 0.07 impulses s−1). Indomethacin significantly reduced the

  8. The experience of patients with ABI and their families during the hospital stay: A systematic review of qualitative literature.

    PubMed

    Oyesanya, Tolu

    2017-01-01

    Patients with acquired brain injury (ABI) and their families have unique experiences and needs during the hospital stay; yet, limited literature exists on this topic. The purpose of this systematic review was to compile and synthesize literature on the experience of patients with ABI and their families during the hospital stay. A systematic review of qualitative studies was conducted by searching for studies from seven databases. Content analysis was used to analyse and synthesize studies' findings separately for the patient and family experience. The initial search provided 2871 records. Ultimately, 11 studies relevant to the research question were included in this review. No studies were excluded based on critical quality appraisal. Findings on the patient experience showed patients had negative perceptions of the rehabilitation environment and a perceived need for information. Findings on the family experience included difficulty adjusting after the patient's injury, a desire to be involved in the patient's care, mixed feelings about staff support and a high perceived need for information. Findings provide awareness for healthcare providers on the multifaceted experiences of patients with ABI and their families during the hospital stay, strategies to make care more patient- and family-centred and directions for future research.

  9. Complex bud architecture and cell-specific chemical patterns enable supercooling of Picea abies bud primordial

    USDA-ARS?s Scientific Manuscript database

    Bud primordia of Picea abies, despite a frozen shoot, stay ice free down to -50 °C by a mechanism termed supercooling whose biophysical and biochemical requirements are poorly understood. Bud architecture was assessed by 3D-reconstruction, supercooling and freezing patterns by infrared video thermog...

  10. AKAP150-mediated TRPV1 sensitization is disrupted by calcium/calmodulin

    PubMed Central

    2011-01-01

    Background The transient receptor potential vanilloid type1 (TRPV1) is expressed in nociceptive sensory neurons and is sensitive to phosphorylation. A-Kinase Anchoring Protein 79/150 (AKAP150) mediates phosphorylation of TRPV1 by Protein Kinases A and C, modulating channel activity. However, few studies have focused on the regulatory mechanisms that control AKAP150 association with TRPV1. In the present study, we identify a role for calcium/calmodulin in controlling AKAP150 association with, and sensitization of, TRPV1. Results In trigeminal neurons, intracellular accumulation of calcium reduced AKAP150 association with TRPV1 in a manner sensitive to calmodulin antagonism. This was also observed in transfected Chinese hamster ovary (CHO) cells, providing a model for conducting molecular analysis of the association. In CHO cells, the deletion of the C-terminal calmodulin-binding site of TRPV1 resulted in greater association with AKAP150, and increased channel activity. Furthermore, the co-expression of wild-type calmodulin in CHOs significantly reduced TRPV1 association with AKAP150, as evidenced by total internal reflective fluorescence-fluorescence resonance energy transfer (TIRF-FRET) analysis and electrophysiology. Finally, dominant-negative calmodulin co-expression increased TRPV1 association with AKAP150 and increased basal and PKA-sensitized channel activity. Conclusions the results from these studies indicate that calcium/calmodulin interferes with the association of AKAP150 with TRPV1, potentially extending resensitization of the channel. PMID:21569553

  11. The Receptor-Like Kinase SIT1 Mediates Salt Sensitivity by Activating MAPK3/6 and Regulating Ethylene Homeostasis in Rice[C][W

    PubMed Central

    Li, Chen-Hui; Wang, Geng; Zhao, Ji-Long; Zhang, Li-Qing; Ai, Lian-Feng; Han, Yong-Feng; Sun, Da-Ye; Zhang, Sheng-Wei; Sun, Ying

    2014-01-01

    High salinity causes growth inhibition and shoot bleaching in plants that do not tolerate high salt (glycophytes), including most crops. The molecules affected directly by salt and linking the extracellular stimulus to intracellular responses remain largely unknown. Here, we demonstrate that rice (Oryza sativa) Salt Intolerance 1 (SIT1), a lectin receptor-like kinase expressed mainly in root epidermal cells, mediates salt sensitivity. NaCl rapidly activates SIT1, and in the presence of salt, as SIT1 kinase activity increased, plant survival decreased. Rice MPK3 and MPK6 function as the downstream effectors of SIT1. SIT1 phosphorylates MPK3 and 6, and their activation by salt requires SIT1. SIT1 mediates ethylene production and salt-induced ethylene signaling. SIT1 promotes accumulation of reactive oxygen species (ROS), leading to growth inhibition and plant death under salt stress, which occurred in an MPK3/6- and ethylene signaling-dependent manner in Arabidopsis thaliana. Our findings demonstrate the existence of a SIT1-MPK3/6 cascade that mediates salt sensitivity by affecting ROS and ethylene homeostasis and signaling. These results provide important information for engineering salt-tolerant crops. PMID:24907341

  12. Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension

    PubMed Central

    Lewis, Amanda H; Grandl, Jörg

    2015-01-01

    Piezo1 ion channels mediate the conversion of mechanical forces into electrical signals and are critical for responsiveness to touch in metazoans. The apparent mechanical sensitivity of Piezo1 varies substantially across cellular environments, stimulating methods and protocols, raising the fundamental questions of what precise physical stimulus activates the channel and how its stimulus sensitivity is regulated. Here, we measured Piezo1 currents evoked by membrane stretch in three patch configurations, while simultaneously visualizing and measuring membrane geometry. Building on this approach, we developed protocols to minimize resting membrane curvature and tension prior to probing Piezo1 activity. We find that Piezo1 responds to lateral membrane tension with exquisite sensitivity as compared to other mechanically activated channels and that resting tension can drive channel inactivation, thereby tuning overall mechanical sensitivity of Piezo1. Our results explain how Piezo1 can function efficiently and with adaptable sensitivity as a sensor of mechanical stimulation in diverse cellular contexts. DOI: http://dx.doi.org/10.7554/eLife.12088.001 PMID:26646186

  13. Affiliative and "self-as-doer" identities: Relationships between social identity, social support, and emotional status amongst survivors of acquired brain injury (ABI).

    PubMed

    Walsh, R Stephen; Muldoon, Orla T; Gallagher, Stephen; Fortune, Donal G

    2015-01-01

    Social support is an important factor in rehabilitation following acquired brain injury (ABI). Research indicates that social identity makes social support possible and that social identity is made possible by social support. In order to further investigate the reciprocity between social identity and social support, the present research applied the concepts of affiliative and "self-as-doer" identities to an analysis of relationships between social identity, social support, and emotional status amongst a cohort of 53 adult survivors of ABI engaged in post-acute community neurorehabilitation. Path analysis was used to test a hypothesised mediated model whereby affiliative identities have a significant indirect relationship with emotional status via social support and self-as-doer identification. Results support the hypothesised model. Evidence supports an "upward spiral" between social identity and social support such that affiliative identity makes social support possible and social support drives self-as-doer identity. Our discussion emphasises the importance of identity characteristics to social support, and to emotional status, for those living with ABI.

  14. Allozyme variation and possible phylogenetic implications in Abies cephalonica Loudon and some related eastern Mediterranean firs

    Treesearch

    B. Fady; M. T. Conkle

    1993-01-01

    A total of 22 loci were assayed in several populations of Abies cephalonica, A. borisii regis, A. bornmuelleriana and A. alba using horizontal starch gel electrophoresis. Within and between-population diversity were analyzed as well as between-species diversity. Mean expected heterozygosity was...

  15. PAR-2 activation enhances weak acid-induced ATP release through TRPV1 and ASIC sensitization in human esophageal epithelial cells.

    PubMed

    Wu, Liping; Oshima, Tadayuki; Shan, Jing; Sei, Hiroo; Tomita, Toshihiko; Ohda, Yoshio; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2015-10-15

    Esophageal visceral hypersensitivity has been proposed to be the pathogenesis of heartburn sensation in nonerosive reflux disease. Protease-activated receptor-2 (PAR-2) is expressed in human esophageal epithelial cells and is believed to play a role in inflammation and sensation. PAR-2 activation may modulate these responses through adenosine triphosphate (ATP) release, which is involved in transduction of sensation and pain. The transient receptor potential vanilloid receptor 1 (TRPV1) and acid-sensing ion channels (ASICs) are both acid-sensitive nociceptors. However, the interaction among these molecules and the mechanisms of heartburn sensation are still not clear. We therefore examined whether ATP release in human esophageal epithelial cells in response to acid is modulated by TRPV1 and ASICs and whether PAR-2 activation influences the sensitivity of TRPV1 and ASICs. Weak acid (pH 5) stimulated the release of ATP from primary human esophageal epithelial cells (HEECs). This effect was significantly reduced after pretreatment with 5-iodoresiniferatoxin (IRTX), a TRPV1-specific antagonist, or with amiloride, a nonselective ASIC blocker. TRPV1 and ASIC3 small interfering RNA (siRNA) transfection also decreased weak acid-induced ATP release. Pretreatment of HEECs with trypsin, tryptase, or a PAR-2 agonist enhanced weak acid-induced ATP release. Trypsin treatment led to the phosphorylation of TRPV1. Acid-induced ATP release enhancement by trypsin was partially blocked by IRTX, amiloride, or a PAR-2 antagonist. Conversely, acid-induced ATP release was augmented by PAR-2 activation through TRPV1 and ASICs. These findings suggested that the pathophysiology of heartburn sensation or esophageal hypersensitivity may be associated with the activation of PAR-2, TRPV1, and ASICs. Copyright © 2015 the American Physiological Society.

  16. The Andalusian Bipolar Family (ABiF) Study: Protocol and sample description.

    PubMed

    Guzman-Parra, Jose; Rivas, Fabio; Strohmaier, Jana; Forstner, Andreas; Streit, Fabian; Auburger, Georg; Propping, Peter; Orozco-Diaz, Guillermo; González, Maria José; Gil-Flores, Susana; Cabaleiro-Fabeiro, Francisco Javier; Del Río-Noriega, Francisco; Perez-Perez, Fermin; Haro-González, Jesus; de Diego-Otero, Yolanda; Romero-Sanchiz, Pablo; Moreno-Küstner, Berta; Cichon, Sven; Nöthen, Markus M; Rietschel, Marcella; Mayoral, Fermin

    2017-06-12

    Here, we present the first description of the Andalusian Bipolar Family (ABiF) Study. This longitudinal investigation of families from Andalusia, Spain commenced in 1997 with the aim of elucidating the molecular genetic causes of bipolar affective disorder. The cohort has since contributed to a number of key genetic findings, as reported in international journals. However, insight into the genetic underpinnings of the disorder in these families remains limited. In the initial 1997-2003 study phase, 100 multiplex bipolar disorder and other mood disorder families were recruited. The ongoing second phase of the project commenced in 2013, and involves follow-up of a subgroup of the originally recruited families. The aim of the follow-up investigation is to generate: i) longitudinal clinical data; ii) results from detailed neuropsychological assessments; and iii) a more extensive collection of biomaterials for future molecular biological studies. The ABiF Study will thus generate a valuable resource for future investigations into the aetiology of bipolar affective disorder; in particular the causes of high disease loading within multiply affected families. We discuss the value of this approach in terms of new technologies for the identification of high-penetrance genetic factors. These new technologies include exome and whole genome sequencing, and the use of induced pluripotent stem cells or model organisms to determine functional consequences. Copyright © 2017 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. ABI Base Recall: Automatic Correction and Ends Trimming of DNA Sequences.

    PubMed

    Elyazghi, Zakaria; Yazouli, Loubna El; Sadki, Khalid; Radouani, Fouzia

    2017-12-01

    Automated DNA sequencers produce chromatogram files in ABI format. When viewing chromatograms, some ambiguities are shown at various sites along the DNA sequences, because the program implemented in the sequencing machine and used to call bases cannot always precisely determine the right nucleotide, especially when it is represented by either a broad peak or a set of overlaying peaks. In such cases, a letter other than A, C, G, or T is recorded, most commonly N. Thus, DNA sequencing chromatograms need manual examination: checking for mis-calls and truncating the sequence when errors become too frequent. The purpose of this paper is to develop a program allowing the automatic correction of these ambiguities. This application is a Web-based program powered by Shiny and runs under R platform for an easy exploitation. As a part of the interface, we added the automatic ends clipping option, alignment against reference sequences, and BLAST. To develop and test our tool, we collected several bacterial DNA sequences from different laboratories within Institut Pasteur du Maroc and performed both manual and automatic correction. The comparison between the two methods was carried out. As a result, we note that our program, ABI base recall, accomplishes good correction with a high accuracy. Indeed, it increases the rate of identity and coverage and minimizes the number of mismatches and gaps, hence it provides solution to sequencing ambiguities and saves biologists' time and labor.

  18. Visual cues of oviposition sites and spectral sensitivity of Cydia strobilella L.

    PubMed

    Jakobsson, Johan; Henze, Miriam J; Svensson, Glenn P; Lind, Olle; Anderbrant, Olle

    2017-08-01

    We investigated whether the spruce seed moth (Cydia strobilella L., Tortricidae: Grapholitini), an important pest in seed orchards of Norway spruce (Picea abies (L.) Karst.), can make use of the spectral properties of its host when searching for flowers to oviposit on. Spectral measurements showed that the flowers, and the cones they develop into, differ from a background of P. abies needles by a higher reflectance of long wavelengths. These differences increase as the flowers develop into mature cones. Electroretinograms (ERGs) in combination with spectral adaptation suggest that C. strobilella has at least three spectral types of photoreceptor; an abundant green-sensitive receptor with maximal sensitivity at wavelength λ max =526nm, a blue-sensitive receptor with λ max =436nm, and an ultraviolet-sensitive receptor with λ max =352nm. Based on our spectral measurements and the receptor properties inferred from the ERGs, we calculated that open flowers, which are suitable oviposition sites, provide detectable achromatic, but almost no chromatic contrasts to the background of needles. In field trials using traps of different spectral properties with or without a female sex pheromone lure, only pheromone-baited traps caught moths. Catches in baited traps were not correlated with the visual contrast of the traps against the background. Thus, visual contrast is probably not the primary cue for finding open host flowers, but it could potentially complement olfaction as a secondary cue, since traps with certain spectral properties caught significantly more moths than others. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Evolutionarily Conserved Regulatory Mechanisms of Abscisic Acid Signaling in Land Plants: Characterization of ABSCISIC ACID INSENSITIVE1-Like Type 2C Protein Phosphatase in the Liverwort Marchantia polymorpha1[C][OA

    PubMed Central

    Tougane, Ken; Komatsu, Kenji; Bhyan, Salma Begum; Sakata, Yoichi; Ishizaki, Kimitsune; Yamato, Katsuyuki T.; Kohchi, Takayuki; Takezawa, Daisuke

    2010-01-01

    Abscisic acid (ABA) is postulated to be a ubiquitous hormone that plays a central role in seed development and responses to environmental stresses of vascular plants. However, in liverworts (Marchantiophyta), which represent the oldest extant lineage of land plants, the role of ABA has been least emphasized; thus, very little information is available on the molecular mechanisms underlying ABA responses. In this study, we isolated and characterized MpABI1, an ortholog of ABSCISIC ACID INSENSITIVE1 (ABI1), from the liverwort Marchantia polymorpha. The MpABI1 cDNA encoded a 568-amino acid protein consisting of the carboxy-terminal protein phosphatase 2C (PP2C) domain and a novel amino-terminal regulatory domain. The MpABI1 transcript was detected in the gametophyte, and its expression level was increased by exogenous ABA treatment in the gemma, whose growth was strongly inhibited by ABA. Experiments using green fluorescent protein fusion constructs indicated that MpABI1 was mainly localized in the nucleus and that its nuclear localization was directed by the amino-terminal domain. Transient overexpression of MpABI1 in M. polymorpha and Physcomitrella patens cells resulted in suppression of ABA-induced expression of the wheat Em promoter fused to the β -glucuronidase gene. Transgenic P. patens expressing MpABI1 and its mutant construct, MpABI1-d2, lacking the amino-terminal domain, had reduced freezing and osmotic stress tolerance, and associated with reduced accumulation of ABA-induced late embryogenesis abundant-like boiling-soluble proteins. Furthermore, ABA-induced morphological changes leading to brood cells were not prominent in these transgenic plants. These results suggest that MpABI1 is a negative regulator of ABA signaling, providing unequivocal molecular evidence of PP2C-mediated ABA response mechanisms functioning in liverworts. PMID:20097789

  20. Prognostic value of a low post-exercise ankle brachial index as assessed by primary care physicians.

    PubMed

    Diehm, Curt; Darius, Harald; Pittrow, David; Schwertfeger, Markus; Tepohl, Gerhart; Haberl, Roman L; Allenberg, Jens Rainer; Burghaus, Ina; Trampisch, Hans Joachim

    2011-02-01

    We aimed to investigate whether the post-exercise ankle brachial index (ABI) performed by primary care physicians offers useful information for the prediction of death or cardiovascular events, beyond the traditional resting ABI. An additional focus was on patients with intermittent claudication and normal resting ABI. Using data from the 5-year follow-up of 6468 elderly patients in the primary care setting in Germany (getABI study) we used multivariate Cox regression models adjusted for age, gender and conventional risk factors to determine the association of resting ABI and/or post-exercise ABI and all-cause mortality/morbidity. Mean post-exercise ABI in the total cohort was 0.977 and resting ABI was 1.034. For post-exercise ABI, a threshold value of 0.825 had nearly the same sensitivity (28.6%) and specificity (85.7%) as the conventionally used resting ABI with a cut-off value of 0.9 to predict death. Compared to patients with normal post-exercise ABI, a low post-exercise ABI was associated with an almost identical risk increase for mortality (hazard ratio [HR] 1.56, 95% confidence interval [CI] 1.30-1.86) as a low resting ABI (HR 1.65; CI 1.39-1.97) and/or myocardial infarction/stroke. Slight differences were observed for coronary/carotid revascularisation and peripheral revascularisation/amputation. In combined models it could not be shown that post-exercise ABI yielded relevant additional information for the prognosis of mortality and/or myocardial infarction/stroke, not even in the subgroup analysis of patients with intermittent claudication and normal resting ABI. It could not be shown that the post-exercise ABI is a useful tool for the prognosis of mortality and/or myocardial infarction/stroke beyond the resting ABI. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. The Putative E3 Ubiquitin Ligase ECERIFERUM9 Regulates Abscisic Acid Biosynthesis and Response during Seed Germination and Postgermination Growth in Arabidopsis1[W][OPEN

    PubMed Central

    Zhao, Huayan; Zhang, Huoming; Cui, Peng; Ding, Feng; Wang, Guangchao; Li, Rongjun; Jenks, Matthew A.; Lü, Shiyou; Xiong, Liming

    2014-01-01

    The ECERIFERUM9 (CER9) gene encodes a putative E3 ubiquitin ligase that functions in cuticle biosynthesis and the maintenance of plant water status. Here, we found that CER9 is also involved in abscisic acid (ABA) signaling in seeds and young seedlings of Arabidopsis (Arabidopsis thaliana). The germinated embryos of the mutants exhibited enhanced sensitivity to ABA during the transition from reversible dormancy to determinate seedling growth. Expression of the CER9 gene is closely related to ABA levels and displays a similar pattern to that of ABSCISIC ACID-INSENSITIVE5 (ABI5), which encodes a positive regulator of ABA responses in seeds. cer9 mutant seeds exhibited delayed germination that is independent of seed coat permeability. Quantitative proteomic analyses showed that cer9 seeds had a protein profile similar to that of the wild type treated with ABA. Transcriptomics analyses revealed that genes involved in ABA biosynthesis or signaling pathways were differentially regulated in cer9 seeds. Consistent with this, high levels of ABA were detected in dry seeds of cer9. Blocking ABA biosynthesis by fluridone treatment or by combining an ABA-deficient mutation with cer9 attenuated the phenotypes of cer9. Whereas introduction of the abi1-1, abi3-1, or abi4-103 mutation could completely eliminate the ABA hypersensitivity of cer9, introduction of abi5 resulted only in partial suppression. These results indicate that CER9 is a novel negative regulator of ABA biosynthesis and the ABA signaling pathway during seed germination. PMID:24812105

  2. Photosynthetic characteristics of fagus sylvatica and quercus robur established for stand conversion from picea abies

    Treesearch

    Emile S. Gardiner; Magnus Lof; Joseph J. O' brien; John A. Stanturf; Palle Madsen

    2009-01-01

    Efforts inEurope to convertNorway spruce (Picea abies) plantations to broadleaf ormixed broadleaf-conifer forests could be bolstered by an increased understanding of how artificial regeneration acclimates and functions under a range of Norway spruce stand conditions. We studied foliage characteristics and leaflevel photosynthesis on 7-year-old European beech (Fagus...

  3. Photosynthetic characteristics of Fagus sylvatica and Quercus robur established for stand conversion from Picea abies

    Treesearch

    E.S. Gardiner; J.J. O’Brien; M. Löf; J.A. Stanturf; P. Madsen

    2009-01-01

    Efforts in Europe to convertNorway spruce (Picea abies) plantations to broadleaf ormixed broadleaf-conifer forests could be bolstered by an increased understanding of how artificial regeneration acclimates and functions under a range of Norway spruce stand conditions. We studied foliage characteristics and leaflevel photosynthesis on 7-year-old European beech (Fagus...

  4. The experience of patients with ABI and their families during the hospital stay: A systematic review of qualitative literature

    PubMed Central

    Oyesanya, Tolu

    2017-01-01

    Background Patients with acquired brain injury (ABI) and their families have unique experiences and needs during the hospital stay; yet, limited literature exists on this topic. The purpose of this systematic review was to compile and synthesize literature on the experience of patients with ABI and their families during the hospital stay. Methods A systematic review of qualitative studies was conducted by searching for studies from seven databases. Content analysis was used to analyze and synthesize studies’ findings separately for the patient and family experience. Results The initial search provided 2,871 records. Ultimately, eleven studies relevant to the research question were included in this review. No studies were excluded based on critical quality appraisal. Findings on the patient experience showed patients had negative perceptions of the rehabilitation environment and a perceived need for information. Findings on the family experience included difficulty adjusting after the patient’s injury, desire to be involved in the patient’s care, mixed feelings about staff support, and high perceived need for information. Conclusions Findings provide awareness for healthcare providers on the multifaceted experiences of patients with ABI and their families during the hospital stay, strategies to make care more patient- and family-centered, and directions for future research. PMID:28055226

  5. GREEN TEA CATECHINS ARE POTENT SENSITIZERS OF RYANODINE RECEPTOR TYPE 1 (RYR1)

    PubMed Central

    Feng, Wei; Cherednichenko, Gennady; Ward, Chris W.; Padilla, Isela T.; Cabrales, Elaine; Lopez, José R.; Eltit, José M.; Allen, Paul D.; Pessah, Isaac N.

    2010-01-01

    Catechins, polyphenols extracted from green tea leaves, have a broad range of biological activities although the specific molecular mechanisms responsible are not known. At the high experimental concentrations typically used polyphenols bind to membrane phospholipid and also are easily auto-oxidized to generate superoxide anion and semiquinones, and can adduct to protein thiols. We report that the type 1 ryanodine receptor (RyR1) is a molecular target that responds to nanomolar (−)-epigallocatechin-3-gallate (EGCG) and (−)-epicatechin-3-gallate (ECG). Single channel analyses demonstrate EGCG (5-10nM) increases channel open probability (Po) 2-fold, by lengthening open dwell time. The degree of channel activation is concentration dependent and is rapidly and fully reversible. Four related catechins, EGCG, ECG, EGC ((−)-epigallocatechin) and EC ((−)-epicatechin) showed a rank order of activity toward RyR1 (EGCG>ECG>>EGC>>>EC). EGCG and ECG enhance the sensitivity of RyR1 to activation by ≤100μM cytoplasmic Ca2+ without altering inhibitory potency by >100μM Ca2+. EGCG as high as 10μM in the extracellular medium potentiated Ca2+ transient amplitudes evoked by electrical stimuli applied to intact myotubes and adult FDB fibers, without eliciting spontaneous Ca2+ release or slowing Ca2+ transient recovery. The results identify RyR1 as a sensitive target for the major tea catechins EGCG and ECG, and this interaction is likely to contribute to their observed biological activities. PMID:20471964

  6. Chemodiversity of the Essential Oil from Leaves of Abies nebrodensis (Lojac.) Mattei.

    PubMed

    Schicchi, Rosario; Geraci, Anna; Rosselli, Sergio; Maggio, Antonella; Bruno, Maurizio

    2017-02-01

    Abies nebrodensis (Lojac.) Mattei (Pinaceae) is a species occurring in a very small population only in a restricted area of Sicily. Its taxonomic classification as different species has been object of discussion. In this work the chemical composition of the essential oil from the leaves is presented for the first time and compared to the essential oils from other euroasiatic species reported in literature. Peculiar characteristics of the essential oil of A. nebrodensis are highlighted. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  7. IDH1-mutant cancer cells are sensitive to cisplatin and an IDH1-mutant inhibitor counteracts this sensitivity.

    PubMed

    Khurshed, Mohammed; Aarnoudse, Niels; Hulsbos, Renske; Hira, Vashendriya V V; van Laarhoven, Hanneke W M; Wilmink, Johanna W; Molenaar, Remco J; van Noorden, Cornelis J F

    2018-06-07

    Isocitrate dehydrogenase ( IDH1)-1 is mutated in various types of human cancer, and the presence of this mutation is associated with improved responses to irradiation and chemotherapy in solid tumor cells. Mutated IDH1 (IDH1 MUT ) enzymes consume NADPH to produce d-2-hydroxyglutarate (d-2HG) resulting in the decreased reducing power needed for detoxification of reactive oxygen species (ROS), for example. The objective of the current study was to investigate the mechanism behind the chemosensitivity of the widely-used anticancer agent cisplatin in IDH1 MUT cancer cells. Oxidative stress, DNA damage, and mitochondrial dysfunction caused by cisplatin treatment were monitored in IDH1 MUT HCT116 colorectal cancer cells and U251 glioma cells. We found that exposure to cisplatin induced higher levels of ROS, DNA double-strand breaks (DSBs), and cell death in IDH1 MUT cancer cells, as compared with IDH1 wild-type ( IDH1 WT ) cells. Mechanistic investigations revealed that cisplatin treatment dose dependently reduced oxidative respiration in IDH1 MUT cells, which was accompanied by disturbed mitochondrial proteostasis, indicative of impaired mitochondrial activity. These effects were abolished by the IDH1 MUT inhibitor AGI-5198 and were restored by treatment with d-2HG. Thus, our study shows that altered oxidative stress responses and a vulnerable oxidative metabolism underlie the sensitivity of IDH1 MUT cancer cells to cisplatin.-Khurshed, M., Aarnoudse, N., Hulsbos, R., Hira, V. V. V., van Laarhoven, H. W. M., Wilmink, J. W., Molenaar, R. J., van Noorden, C. J. F. IDH1-mutated cancer cells are sensitive to cisplatin and an IDH1-mutant inhibitor counteracts this sensitivity.

  8. PPARα activation sensitizes cancer cells to epigallocatechin-3-gallate (EGCG) treatment via suppressing heme oxygenase-1.

    PubMed

    Zhang, Shuyu; Yang, Xiaodong; Luo, Judong; Ge, Xin; Sun, Wanping; Zhu, Hong; Zhang, Weiping; Cao, Jianping; Hou, Yinglong

    2014-01-01

    Epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent of green tea, is a potent antioxidant that may have potential therapeutic applications for the treatment of many disorders, including cancer. Peroxisome proliferator-activated receptor-α (PPARα) has been shown to play a key role in diverse metabolic and cellular functions. PPARα modulates target gene expression by binding to specific regions on the DNA of target genes. The effects and mechanisms of PPARα activation on EGCG efficacy have not yet been analyzed in cancer cells. We found that when cancer cells were exposed to EGCG, the expression of PPARα was increased at the protein level in a dose-dependent manner. The PPARα agonist clofibrate blocked cytoprotective heme oxygenase-1 (HO-1) induction and sensitized multiple types of cancer cells to EGCG-induced cell death. Conversely, the PPARα inhibitor G6471 and PPARα siRNA increased HO-1 expression. Electro-mobility shift assays (EMSA) and in vivo chromatin immunoprecipitation (ChIP) confirmed that PPARα interacts with the peroxisome proliferator-responsive element of the HO-1 promoter. Moreover, cell death induced by EGCG plus clofibrate was partially reversed by HO-1 overexpression in PANC1 cells. These results indicate that PPARα is a direct and negative regulator of HO-1 induced by EGCG and confers cell susceptibility to EGCG.

  9. Low expression of Abelson interactor-1 is linked to acquired drug resistance in Bcr-Abl induced leukemia

    PubMed Central

    Chorzalska, Anna; Salloum, Ibrahem; Shafqat, Hammad; Khan, Saad; Marjon, Philip; Treaba, Diana; Schorl, Christoph; Morgan, John; Bryke, Christine R.; Falanga, Vincent; Zhao, Thing C.; Reagan, John; Winer, Eric; Olszewski, Adam; Al-Homsi, Samer; Kouttab, Nicola; Dubielecka, Patrycja M.

    2014-01-01

    The basis for persistence of leukemic stem cells in the bone marrow microenvironment (BMME) remains poorly understood. We present evidence that signaling crosstalk between α4 integrin and Abelson interactor-1 (Abi-1) is involved in acquisition of an anchorage-dependent phenotype and drug resistance in Bcr-Abl positive leukemia cells. Comparison of Abi-1 (ABI-1) and α4 integrin (ITGA4) gene expression in relapsing Bcr-Abl positive CD34+ progenitor cells demonstrated a reduction in Abi-1 and an increase in α4 integrin mRNA in the absence of Bcr-Abl mutations. This inverse correlation between Abi-1 and α4 integrin expression, as well as linkage to elevated phospho-Akt and phospho-Erk signaling, was confirmed in imatinib mesylate (IM) resistant leukemic cells. These results indicate that the α4-Abi-1 signaling pathway may mediate acquisition of the drug resistant phenotype of leukemic cells. PMID:24699303

  10. pH-Sensitive Microparticles with Matrix-Dispersed Active Agent

    NASA Technical Reports Server (NTRS)

    Calle, Luz M. (Inventor); Jolley, Scott T. (Inventor); Buhrow, Jerry W. (Inventor); Li, Wenyan (Inventor)

    2014-01-01

    Methods to produce pH-sensitive microparticles that have an active agent dispersed in a polymer matrix have certain advantages over microcapsules with an active agent encapsulated in an interior compartment/core inside of a polymer wall. The current invention relates to pH-sensitive microparticles that have a corrosion-detecting or corrosion-inhibiting active agent or active agents dispersed within a polymer matrix of the microparticles. The pH-sensitive microparticles can be used in various coating compositions on metal objects for corrosion detecting and/or inhibiting.

  11. Olfactory Sensitivity and Odor Structure-Activity Relationships for Aliphatic Carboxylic Acids in CD-1 Mice

    PubMed Central

    Can Güven, Selçuk; Laska, Matthias

    2012-01-01

    Using a conditioning paradigm, the olfactory sensitivity of CD-1 mice for a homologous series of aliphatic n-carboxylic acids (ethanoic acid to n-octanoic acid) and several of their isomeric forms was investigated. With all 14 odorants, the animals significantly discriminated concentrations as low as 0.03 ppm (parts per million) from the solvent, and with four odorants the best-scoring animals even detected concentrations as low as 3 ppt (parts per trillion). Analysis of odor structure-activity relationships showed that the correlation between olfactory detection thresholds of the mice for the unbranched carboxylic acids and carbon chain length can best be described as a U-shaped function with the lowest threshold values at n-butanoic acid. A significant positive correlation between olfactory detection thresholds and carbon chain length of the carboxylic acids with their branching next to the functional carboxyl group was found. In contrast, no such correlation was found for carboxylic acids with their branching at the distal end of the carbon chain relative to the functional carboxyl group. Finally, a significant correlation was found between olfactory detection thresholds and the position of the branching of the carboxylic acids. Across-species comparisons suggest that mice are more sensitive for short-chained (C2 to C4) aliphatic n-carboxylic acids than other mammalian species, but not for longer-chained ones (C5 to C8). Further comparisons suggest that odor structure-activity relationships are both substance class- and species-specific. PMID:22479594

  12. 1,4,2-Benzo/pyridodithiazine 1,1-dioxides structurally related to the ATP-sensitive potassium channel openers 1,2,4-Benzo/pyridothiadiazine 1,1-dioxides exert a myorelaxant activity linked to a distinct mechanism of action.

    PubMed

    Pirotte, Bernard; de Tullio, Pascal; Florence, Xavier; Goffin, Eric; Somers, Fabian; Boverie, Stéphane; Lebrun, Philippe

    2013-04-25

    The synthesis of diversely substituted 3-alkyl/aralkyl/arylamino-1,4,2-benzodithiazine 1,1-dioxides and 3-alkylaminopyrido[4,3-e]-1,4,2-dithiazine 1,1-dioxides is described. Their biological activities on pancreatic β-cells and on smooth muscle cells were compared to those of the reference ATP-sensitive potassium channel (KATP channel) openers diazoxide and 7-chloro-3-isopropylamino-4H-1,2,4-benzothiadiazine 1,1-dioxide. The aim was to assess the impact on biological activities of the replacement of the 1,2,4-thiadiazine ring by an isosteric 1,4,2-dithiazine ring. Most of the dithiazine analogues were found to be inactive on the pancreatic tissue, although some compounds bearing a 1-phenylethylamino side chain at the 3-position exerted a marked myorelaxant activity. Such an effect did not appear to be related to the opening of KATP channels but rather reflected a mechanism of action similar to that of calcium channel blockers. Tightly related 3-(1-phenylethyl)sulfanyl-4H-1,2,4-benzothiadiazine 1,1-dioxides were also found to exert a pronounced myorelaxant activity, resulting from both a KATP channel activation and a calcium channel blocker mechanism. The present work highlights the critical importance of an intracyclic NH group at the 4-position, as well as an exocyclic NH group linked to the 3-position of the benzo- and pyridothiadiazine dioxides, for activity on KATP channels.

  13. Plastic and locally adapted phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments.

    PubMed

    Gričar, Jožica; Prislan, Peter; Gryc, Vladimír; Vavrčík, Hanuš; de Luis, Martin; Cufar, Katarina

    2014-08-01

    Despite its major economic importance and the vulnerability of Picea abies (L.) H. Karst. to climate change, how its radial growth at intra-annual resolution is influenced by weather conditions in forest stands with a high production capacity has scarcely been explored. Between 2009 and 2011, phenological variation in seasonal cambial cell production (CP) was analysed in adult P. abies trees from three contrasting sites, differing in altitude and latitude. The results indicate that the timing of cambial CP is a highly synchronic process within populations since in all cases the cambium simultaneously started and stopped producing xylem and phloem cells. Our results also demonstrate that the phenology of cambial CP is highly variable and plastic between years, depending on seasonal temperature and precipitation variation. Differences among sites, however, are only partially explained by different environmental (elevation and altitude) and climatic conditions, suggesting that local adaptation may also play a decisive role in the strategy of P. abies for adapting wood and phloem increments to function optimally under local conditions. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress

    PubMed Central

    Zandalinas, Sara I.; Balfagón, Damián; Arbona, Vicent; Gómez-Cadenas, Aurelio; Inupakutika, Madhuri A.; Mittler, Ron

    2016-01-01

    Abscisic acid (ABA) plays a key role in plant acclimation to abiotic stress. Although recent studies suggested that ABA could also be important for plant acclimation to a combination of abiotic stresses, its role in this response is currently unknown. Here we studied the response of mutants impaired in ABA signalling (abi1-1) and biosynthesis (aba1-1) to a combination of water deficit and heat stress. Both mutants displayed reduced growth, biomass, and survival when subjected to stress combination. Focusing on abi1-1, we found that although its stomata had an impaired response to water deficit, remaining significantly more open than wild type, its stomatal aperture was surprisingly reduced when subjected to the stress combination. Stomatal closure during stress combination in abi1-1 was accompanied by higher levels of H2O2 in leaves, suggesting that H2O2 might play a role in this response. In contrast to the almost wild-type stomatal closure phenotype of abi1-1 during stress combination, the accumulation of ascorbate peroxidase 1 and multiprotein bridging factor 1c proteins, required for acclimation to a combination of water deficit and heat stress, was significantly reduced in abi1-1. Our findings reveal a key function for ABA in regulating the accumulation of essential proteins during a combination of water deficit and heat stress. PMID:27497287

  15. Abies religiosa habitat prediction in climatic change scenarios and implications for monarch butterfly conservation in Mexico

    Treesearch

    Cuauhtemoc Saenz-Romero; Gerald E. Rehfeldt; Pierre Duval; Roberto A. Lindig-Cisneros

    2012-01-01

    Abies religiosa (HBK) Schl. & Cham. (oyamel fir) is distributed in conifer-dominated mountain forests at high altitudes along the Trans-Mexican Volcanic Belt. This fir is the preferred host for overwintering monarch butterfly (Danaus plexippus) migratory populations which habitually congregate within a few stands now located inside a Monarch Butterfly Biosphere...

  16. Sensitivity-Enhanced Wearable Active Voiceprint Sensor Based on Cellular Polypropylene Piezoelectret.

    PubMed

    Li, Wenbo; Zhao, Sheng; Wu, Nan; Zhong, Junwen; Wang, Bo; Lin, Shizhe; Chen, Shuwen; Yuan, Fang; Jiang, Hulin; Xiao, Yongjun; Hu, Bin; Zhou, Jun

    2017-07-19

    Wearable active sensors have extensive applications in mobile biosensing and human-machine interaction but require good flexibility, high sensitivity, excellent stability, and self-powered feature. In this work, cellular polypropylene (PP) piezoelectret was chosen as the core material of a sensitivity-enhanced wearable active voiceprint sensor (SWAVS) to realize voiceprint recognition. By virtue of the dipole orientation control method, the air layers in the piezoelectret were efficiently utilized, and the current sensitivity was enhanced (from 1.98 pA/Hz to 5.81 pA/Hz at 115 dB). The SWAVS exhibited the superiorities of high sensitivity, accurate frequency response, and excellent stability. The voiceprint recognition system could make correct reactions to human voices by judging both the password and speaker. This study presented a voiceprint sensor with potential applications in noncontact biometric recognition and safety guarantee systems, promoting the progress of wearable sensor networks.

  17. HMOX1 and NQO1 genes are upregulated in response to contact sensitizers in dendritic cells and THP-1 cell line: role of the Keap1/Nrf2 pathway.

    PubMed

    Ade, Nadège; Leon, Fanny; Pallardy, Marc; Peiffer, Jean-Luc; Kerdine-Romer, Saadia; Tissier, Marie-Hélène; Bonnet, Pierre-Antoine; Fabre, Isabelle; Ourlin, Jean-Claude

    2009-02-01

    Electrophilicity is one of the most common features of skin contact sensitizers and is necessary for protein haptenation. The Keap1 (Kelch-like ECH-associated protein 1)/Nrf2 -signaling pathway is dedicated to the detection of electrophilic stress in cells leading to the upregulation of genes involved in protection or neutralization of chemical reactive species. Signals provided by chemical stress could play an important role in dendritic cell activation and the aim of this work was to test whether contact sensitizers were specific activators of the Keap1/Nrf2 pathway. CD34-derived dendritic cells (CD34-DC) and the THP-1 myeloid cell line were treated by a panel of sensitizers (Ni, 1-chloro 2,4-dinitrobenzene, cinnamaldehyde, 7-hydroxycitronellal, 1,4-dihydroquinone, alpha-methyl-trans-cinnamaldehyde, 2-4-tert-(butylbenzyl)propionaldehyde or Lilial, and 1,4-phenylenediamine), irritants (sodium dodecyl sulfate, benzalkonium chloride), and a nonsensitizer molecule (chlorobenzene). Three well-known Nrf2 activators (tert-butylhydroquinone, lipoic acid, sulforaphane) were also tested. Expression of hmox1 and nqo1 was measured using real-time PCR and cellular accumulation of Nrf2 was assessed by Western blot. Our results showed an increased expression at early time points of hmox1 and nqo1 mRNAs in response to sensitizers but not to irritants. Accumulation of the Nrf2 protein was also observed only with chemical sensitizers. A significant inhibition of the expression of hmox1 and nqo1 mRNAs and CD86 expression was found in 1-chloro 2,4-dinitrobenzene-treated THP-1 cells preincubated with N-acetyl cysteine, a glutathione precursor. Altogether, these data suggested that the Keap1/Nrf2-signaling pathway was activated by electrophilic molecules including sensitizers in dendritic cells and in the THP-1 cell line. Monitoring of this pathway may provide new biomarkers (e.g., Nrf2, hmox1) for the detection of the sensitization potential of chemicals.

  18. Genetic variation and population structure in Fraser fir (Abies fraseri): a microsatellite assessment of young trees

    Treesearch

    Kevin M. Potter; John Frampton; Sedley A. Josserand; Dana C. Nelson

    2008-01-01

    The island-like populations of Fraser fir (Abies fraseri (Pursh) Poir.) have been isolated since the end of the late-Wisconsinian glaciation on the highest peaks of the Southern Appalachian Mountains and therefore offer an opportunity to investigate the genetic dynamics of a long-fragmented forest tree species. An analysis of eight microsatellite...

  19. Genetic variation and population structure in fraser fir (Abies fraseri): a microsatellite assessment of young trees

    Treesearch

    Kevin M. Potter; John Framton; Sedley A. Josserand; C. Dana Nelson

    2008-01-01

    The island-like populations of Fraser fir (Abies fraseri (Pursh) Poir.) have been isolated since the end of the late-Wisconsinian glaciation on the highest peaks of the Southern Appalachian Mountains and therefore offer an opportunity to investigate the genetic dynamics of a long-fragmented forest tree species. An analysis of eight microsatellite...

  20. Biogenic volatile organic compounds (BVOCs) emissions from Abies alba in a French forest.

    PubMed

    Moukhtar, S; Couret, C; Rouil, L; Simon, V

    2006-02-01

    Air quality studies need to be based on accurate and reliable data, particularly in the field of the emissions. Biogenic emissions from forests, crops, and grasslands are now considered as major compounds in photochemical processes. Unfortunately, depending on the type of vegetation, these emissions are not so often reliably defined. As an example, although the silver fir (Abies alba) is a very widespread conifer tree in the French and European areas, its standard emission rate is not available in the literature. This study investigates the isoprene and monoterpenes emission from A. alba in France measured during the fieldwork organised in the Fossé Rhénan, from May to June 2003. A dynamic cuvette method was used. Limonene was the predominant monoterpene emitted, followed by camphene, alpha-pinene and eucalyptol. No isoprene emission was detected. The four monoterpenes measured showed different behaviours according to micrometeorological conditions. In fact, emissions of limonene, alpha-pinene and camphene were temperature-dependant while eucalyptol emissions were temperature and light dependant. Biogenic volatile organic compounds emissions were modeled using information gathered during the field study. Emissions of the three monoterpenes previously quoted were achieved using the monoterpenes algorithm developed by Tingey et al. (1980) [Tingey D, Manning M, Grothaus L, Burns W. Influence of light and temperature on monoterpene emission rates from slash pine. Plant Physiol 1980;65: 797-801.] and the isoprene algorithm [Guenther, A., Monson, R., Fall, R., 1991. Isoprene and monoterpene emission rate variability: observations with eucalyptus and emission rate algorithm development. J Geophys Res 26A: 10799-10808.]; [Guenther, A., Zimmerman, P., Harley, P., Monson, R., Fall, R., 1993. Isoprene and monoterpene emission rate variability: model evaluation and sensitivity analysis. J Geophys Res 98D: 12609-12617.]) was used for the eucalyptol emission. With these

  1. The Basal Thermal Sensitivity of the TRPV1 Ion Channel Is Determined by PKCβII

    PubMed Central

    Li, Lin; Hasan, Raquibul

    2014-01-01

    Peripheral nociceptors are excited by the activation of membrane receptors and ion channels. The heat-sensitive TRPV1 ion channel responds to various noxious chemical and thermal stimuli, causing pain and itch. Here, we show that TRPV1 is coexpressed with PKCβII in a subset of mouse sensory neurons and that, in these neurons, TRPV1 binds directly to PKCβII, leading to the activation and translocation of PKCβII. Activated PKCβII, in turn, significantly increases the responsiveness of TRPV1 by phosphorylating Thr705. The heat sensitivity of TRPV1 is almost eliminated by either knocking down PKCβII or mutating Thr705; however, neither of these manipulations affects the potentiation of TRPV1 caused by the activation of PKCε. PKCβII thus acts as an auxiliary subunit of TRPV1 by forming a population-dependent TRPV1 ion channel complex controlling the sensitivity of TRPV1 and setting the threshold for pain and itch. PMID:24920628

  2. Effects of Sodium Butyrate on Methamphetamine-Sensitized Locomotor Activity

    PubMed Central

    Harkness, John H.; Hitzemann, Robert J.; Edmunds, Stephanie; Phillips, Tamara J.

    2012-01-01

    Neuroadaptations associated with behavioral sensitization induced by repeated exposure to methamphetamine (MA) appear to be involved in compulsive drug pursuit and use. Increased histone acetylation, an epigenetic effect resulting in altered gene expression, may promote sensitized responses to psychostimulants. The role of histone acetylation in the expression and acquisition of MA-induced locomotor sensitization was examined by measuring the effect of histone deacetylase inhibition by sodium butyrate (NaB). For the effect on expression, vehicle or NaB (630 mg/kg, intraperitoneally) was administered 30 min prior to MA challenge in mice treated repeatedly with MA (10 days of 2 mg/kg MA) or saline (10 days), and then locomotor response to MA challenge was measured. NaB treatment increased the locomotor response to MA in both acutely MA treated and sensitized animals. For acquisition, NaB was administered 30 min prior to each MA exposure (10 days of 1 or 2 mg/kg), but not prior to the MA challenge test. Treatment with NaB during the sensitization acquisition period significantly increased locomotor activation by MA in sensitized mice only. NaB alone did not significantly alter locomotor activity. Acute NaB or MA, but not the combination, appeared to increase striatal acetylation at histone H4. Repeated treatment with MA, but not NaB or MA plus NaB, increased striatal acetylation at histone H3. Although increased histone acetylation may alter the expression of genes involved in acute locomotor response to MA and in the acquisition of MA-induced sensitization, results for acetylation at H3 and H4 showed little correspondence with behavior. PMID:23137698

  3. Neomorphic Mutations in PIK3R1 Confer Sensitivity to MAPK Inhibitors due to Activation of ERK and JNK Pathways | Office of Cancer Genomics

    Cancer.gov

    In a recent publication in Cancer Cell, CTD2 investigators discovered that a known cancer-associated gain-of-function alteration in phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) results in novel protein activity that confers sensitivity to mitogen-activated protein kinase (MAPK) inhibitors. The PIK3R1 gene encodes the p85α regulatory subunit of PIK3. Under normal conditions, p85α suppresses PIK3 mediated activation of downstream pathways that promote cell growth and survival.

  4. Preliminary results on the genetic structure of Heterobasidion annosum white fir (Abies concolor) root decay centers

    Treesearch

    M. Garbelotto; F. Cobb; T. Bruns; W. Otrosina; Garey Slaughter; T. Popenuck

    1994-01-01

    It is known that Heterobasidion annosum is a complex species comprised of at least three biological species, more precisely defined as intersterility groups (ISGs). The S ISG is widely diffused in North America, Europe, and probably Asia. Although with regional variations, S ISG isolates are commonly found associated with Picea spp., Abies spp., Tsuga spp.,...

  5. S36. DIFFERENTIAL ENCODING OF SENSITIZATION AND CROSS SENSITIZATION TO PSYCHOSTIMULANTS AND ANTIPSYCHOTICS IN NUCLEUS ACCUMBENS D1- AND D2- RECEPTOR EXPRESSING MEDIUM SPINY NEURONS

    PubMed Central

    Amato, Davide; Heinsbroek, Jasper; Kalivas, Peter W

    2018-01-01

    Abstract Background Nearly half of all individuals diagnosed with schizophrenia abuse addictive substances such as cocaine. Currently, the neurobiological mechanisms in patients with schizophrenia that lead to cocaine abuse are unknown. A possible explanation for the co-morbidity between schizophrenia and addiction is that the rewarding properties of cocaine reverse the diminished motivational drive caused by chronic antipsychotic regimen. Moreover, chronic antipsychotic treatment can sensitize and amplify cocaine rewarding effects and exacerbate psychoses. Methods The rewarding properties of cocaine are attributed to the differential effects of dopamine on D1 and D2 receptor-expressing medium spiny neurons (MSNs) in the nucleus accumbens (NAc). Using in vivo Ca2+ miniature microscopic imaging, we characterize the role of D1 and D2 MSN in mono- and a cross- sensitization paradigms. D1- and D2-Cre mice were injected with a Cre dependent calcium indicator (gCaMP6f) and implanted with a gradient index (GRIN) lens above the nucleus accumbens and calcium activity was recorded using a head mounted miniature microscope. Cocaine sensitization was measured after a classic repeated cocaine regiment and antipsychotic and psychostimulant cross-sensitization was measured by a single cocaine injection after chronic pre-treatment with haloperidol. Results We found that both D1-MSN and D2-MSN populations are modulated by initial cocaine experience and further modulated during the expression of cocaine sensitization. A subpopulation of D1-MSN displayed initial activation, but reduced activity during the expression of sensitization. By contrast, the majority of D2-MSNs were suppressed by initial cocaine experience, but became active during the expression of sensitization. Furthermore, activity of D1- and D2-MSNs bidirectionally related with the observed behavioral responses to cocaine. Cross-sensitization following haloperidol treatment led to increased behavioral responses to

  6. Analysis of transient receptor potential ankyrin 1 (TRPA1) in frogs and lizards illuminates both nociceptive heat and chemical sensitivities and coexpression with TRP vanilloid 1 (TRPV1) in ancestral vertebrates.

    PubMed

    Saito, Shigeru; Nakatsuka, Kazumasa; Takahashi, Kenji; Fukuta, Naomi; Imagawa, Toshiaki; Ohta, Toshio; Tominaga, Makoto

    2012-08-31

    Transient receptor potential ankyrin 1 (TRPA1) and TRP vanilloid 1 (V1) perceive noxious temperatures and chemical stimuli and are involved in pain sensation in mammals. Thus, these two channels provide a model for understanding how different genes with similar biological roles may influence the function of one another during the course of evolution. However, the temperature sensitivity of TRPA1 in ancestral vertebrates and its evolutionary path are unknown as its temperature sensitivities vary among different vertebrate species. To elucidate the functional evolution of TRPA1, TRPA1s of the western clawed (WC) frogs and green anole lizards were characterized. WC frog TRPA1 was activated by heat and noxious chemicals that activate mammalian TRPA1. These stimuli also activated native sensory neurons and elicited nocifensive behaviors in WC frogs. Similar to mammals, TRPA1 was functionally co-expressed with TRPV1, another heat- and chemical-sensitive nociceptive receptor, in native sensory neurons of the WC frog. Green anole TRPA1 was also activated by heat and noxious chemical stimulation. These results suggest that TRPA1 was likely a noxious heat and chemical receptor and co-expressed with TRPV1 in the nociceptive sensory neurons of ancestral vertebrates. Conservation of TRPV1 heat sensitivity throughout vertebrate evolution could have changed functional constraints on TRPA1 and influenced the functional evolution of TRPA1 regarding temperature sensitivity, whereas conserving its noxious chemical sensitivity. In addition, our results also demonstrated that two mammalian TRPA1 inhibitors elicited different effect on the TRPA1s of WC frogs and green anoles, which can be utilized to clarify the structural bases for inhibition of TRPA1.

  7. Analysis of Transient Receptor Potential Ankyrin 1 (TRPA1) in Frogs and Lizards Illuminates Both Nociceptive Heat and Chemical Sensitivities and Coexpression with TRP Vanilloid 1 (TRPV1) in Ancestral Vertebrates*

    PubMed Central

    Saito, Shigeru; Nakatsuka, Kazumasa; Takahashi, Kenji; Fukuta, Naomi; Imagawa, Toshiaki; Ohta, Toshio; Tominaga, Makoto

    2012-01-01

    Transient receptor potential ankyrin 1 (TRPA1) and TRP vanilloid 1 (V1) perceive noxious temperatures and chemical stimuli and are involved in pain sensation in mammals. Thus, these two channels provide a model for understanding how different genes with similar biological roles may influence the function of one another during the course of evolution. However, the temperature sensitivity of TRPA1 in ancestral vertebrates and its evolutionary path are unknown as its temperature sensitivities vary among different vertebrate species. To elucidate the functional evolution of TRPA1, TRPA1s of the western clawed (WC) frogs and green anole lizards were characterized. WC frog TRPA1 was activated by heat and noxious chemicals that activate mammalian TRPA1. These stimuli also activated native sensory neurons and elicited nocifensive behaviors in WC frogs. Similar to mammals, TRPA1 was functionally co-expressed with TRPV1, another heat- and chemical-sensitive nociceptive receptor, in native sensory neurons of the WC frog. Green anole TRPA1 was also activated by heat and noxious chemical stimulation. These results suggest that TRPA1 was likely a noxious heat and chemical receptor and co-expressed with TRPV1 in the nociceptive sensory neurons of ancestral vertebrates. Conservation of TRPV1 heat sensitivity throughout vertebrate evolution could have changed functional constraints on TRPA1 and influenced the functional evolution of TRPA1 regarding temperature sensitivity, whereas conserving its noxious chemical sensitivity. In addition, our results also demonstrated that two mammalian TRPA1 inhibitors elicited different effect on the TRPA1s of WC frogs and green anoles, which can be utilized to clarify the structural bases for inhibition of TRPA1. PMID:22791718

  8. Overexpression of a novel Arabidopsis PP2C isoform, AtPP2CF1, enhances plant biomass production by increasing inflorescence stem growth.

    PubMed

    Sugimoto, Hiroki; Kondo, Satoshi; Tanaka, Tomoko; Imamura, Chie; Muramoto, Nobuhiko; Hattori, Etsuko; Ogawa, Ken'ichi; Mitsukawa, Norihiro; Ohto, Chikara

    2014-10-01

    In contrast to mammals, higher plants have evolved to express diverse protein phosphatase 2Cs (PP2Cs). Of all Arabidopsis thaliana PP2Cs, members of PP2C subfamily A, including ABI1, have been shown to be key negative regulators of abscisic acid (ABA) signalling pathways, which regulate plant growth and development as well as tolerance to adverse environmental conditions. However, little is known about the enzymatic and signalling roles of other PP2C subfamilies. Here, we report a novel Arabidopsis subfamily E PP2C gene, At3g05640, designated AtPP2CF1. AtPP2CF1 was dramatically expressed in response to exogenous ABA and was expressed in vascular tissues and guard cells, similar to most subfamily A PP2C genes. In vitro enzymatic activity assays showed that AtPP2CF1 possessed functional PP2C activity. However, yeast two-hybrid analysis revealed that AtPP2CF1 did not interact with PYR/PYL/RCAR receptors or three SnRK2 kinases, which are ABI1-interacting proteins. This was supported by homology-based structural modelling demonstrating that the putative active- and substrate-binding site of AtPP2CF1 differed from that of ABI1. Furthermore, while overexpression of ABI1 in plants induced an ABA-insensitive phenotype, Arabidopsis plants overexpressing AtPP2CF1 (AtPP2CF1oe) were weakly hypersensitive to ABA during seed germination and drought stress. Unexpectedly, AtPP2CF1oe plants also exhibited increased biomass yield, mainly due to accelerated growth of inflorescence stems through the activation of cell proliferation and expansion. Our results provide new insights into the physiological significance of AtPP2CF1 as a candidate gene for plant growth production and for potential application in the sustainable supply of plant biomass. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Overexpression of a novel Arabidopsis PP2C isoform, AtPP2CF1, enhances plant biomass production by increasing inflorescence stem growth

    PubMed Central

    Sugimoto, Hiroki; Kondo, Satoshi; Tanaka, Tomoko; Imamura, Chie; Muramoto, Nobuhiko; Hattori, Etsuko; Ogawa, Ken’ichi; Mitsukawa, Norihiro; Ohto, Chikara

    2014-01-01

    In contrast to mammals, higher plants have evolved to express diverse protein phosphatase 2Cs (PP2Cs). Of all Arabidopsis thaliana PP2Cs, members of PP2C subfamily A, including ABI1, have been shown to be key negative regulators of abscisic acid (ABA) signalling pathways, which regulate plant growth and development as well as tolerance to adverse environmental conditions. However, little is known about the enzymatic and signalling roles of other PP2C subfamilies. Here, we report a novel Arabidopsis subfamily E PP2C gene, At3g05640, designated AtPP2CF1. AtPP2CF1 was dramatically expressed in response to exogenous ABA and was expressed in vascular tissues and guard cells, similar to most subfamily A PP2C genes. In vitro enzymatic activity assays showed that AtPP2CF1 possessed functional PP2C activity. However, yeast two-hybrid analysis revealed that AtPP2CF1 did not interact with PYR/PYL/RCAR receptors or three SnRK2 kinases, which are ABI1-interacting proteins. This was supported by homology-based structural modelling demonstrating that the putative active- and substrate-binding site of AtPP2CF1 differed from that of ABI1. Furthermore, while overexpression of ABI1 in plants induced an ABA-insensitive phenotype, Arabidopsis plants overexpressing AtPP2CF1 (AtPP2CF1oe) were weakly hypersensitive to ABA during seed germination and drought stress. Unexpectedly, AtPP2CF1oe plants also exhibited increased biomass yield, mainly due to accelerated growth of inflorescence stems through the activation of cell proliferation and expansion. Our results provide new insights into the physiological significance of AtPP2CF1 as a candidate gene for plant growth production and for potential application in the sustainable supply of plant biomass. PMID:25038254

  10. Bark beetle Polygraphus proximus: a new aggressive far eastern invader on Abies species in Siberia and European Russia

    Treesearch

    Yuri Baranchikov; Evgeniy Akulov; Sergey Astapenko

    2011-01-01

    Polygraphus proximus Brandford (Coleoptera: Scolytidae) is a common feeder on Far Eastern firs: Abies nephrolepis, A. hollophyll, and A. sachalinensis. Its native range occupies northeastern China, Korea, Japan, Kurile and Sakhalin Islands, and the southern part of the Russian Far East (Primorskiy and...

  11. LEC1 (NF-YB9) directly interacts with LEC2 to control gene expression in seed.

    PubMed

    Boulard, C; Thévenin, J; Tranquet, O; Laporte, V; Lepiniec, L; Dubreucq, B

    2018-05-01

    The LAFL transcription factors LEC2, ABI3, FUS3 and LEC1 are master regulators of seed development. LEC2, ABI3 and FUS3 are closely related proteins that contain a B3-type DNA binding domain. We have previously shown that LEC1 (a NF-YB type protein) can increase LEC2 and ABI3 but not FUS3 activity. Interestingly, FUS3, LEC2 and ABI3 contain a B2 domain, the function of which remains elusive. We showed that LEC1 and LEC2 partially co-localised in the nucleus of developing embryos. By comparing protein sequences from various species, we identified within the B2 domains a set of highly conserved residues (i.e. TKxxARxxRxxAxxR). This domain directly interacts with LEC1 in yeast. Mutations of the conserved amino acids of the motif in the B2 domain abolished this interaction both in yeast and in moss protoplasts and did not alter the nuclear localisation of LEC2 in planta. Conversely, the mutations of key amino acids for the function of LEC1 in planta (D86K) prevented the interaction with LEC2. These results provide molecular evidences for the binding of LEC1 to B2-domain containing transcription factors, to form heteromers, involved in the control of gene expression. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Normalizing gene expression by quantitative PCR during somatic embryogenesis in two representative conifer species: Pinus pinaster and Picea abies.

    PubMed

    de Vega-Bartol, José J; Santos, Raquen Raissa; Simões, Marta; Miguel, Célia M

    2013-05-01

    Suitable internal control genes to normalize qPCR data from different stages of embryo development and germination were identified in two representative conifer species. Clonal propagation by somatic embryogenesis has a great application potentiality in conifers. Quantitative PCR (qPCR) is widely used for gene expression analysis during somatic embryogenesis and embryo germination. No single reference gene is universal, so a systematic characterization of endogenous genes for concrete conditions is fundamental for accuracy. We identified suitable internal control genes to normalize qPCR data obtained at different steps of somatic embryogenesis (embryonal mass proliferation, embryo maturation and germination) in two representative conifer species, Pinus pinaster and Picea abies. Candidate genes included endogenous genes commonly used in conifers, genes previously tested in model plants, and genes with a lower variation of the expression along embryo development according to genome-wide transcript profiling studies. Three different algorithms were used to evaluate expression stability. The geometric average of the expression values of elongation factor-1α, α-tubulin and histone 3 in P. pinaster, and elongation factor-1α, α-tubulin, adenosine kinase and CAC in P. abies were adequate for expression studies throughout somatic embryogenesis. However, improved accuracy was achieved when using other gene combinations in experiments with samples at a single developmental stage. The importance of studies selecting reference genes to use in different tissues or developmental stages within one or close species, and the instability of commonly used reference genes, is highlighted.

  13. Constitutive Lck Activity Drives Sensitivity Differences between CD8+ Memory T Cell Subsets.

    PubMed

    Moogk, Duane; Zhong, Shi; Yu, Zhiya; Liadi, Ivan; Rittase, William; Fang, Victoria; Dougherty, Janna; Perez-Garcia, Arianne; Osman, Iman; Zhu, Cheng; Varadarajan, Navin; Restifo, Nicholas P; Frey, Alan B; Krogsgaard, Michelle

    2016-07-15

    CD8(+) T cells develop increased sensitivity following Ag experience, and differences in sensitivity exist between T cell memory subsets. How differential TCR signaling between memory subsets contributes to sensitivity differences is unclear. We show in mouse effector memory T cells (TEM) that >50% of lymphocyte-specific protein tyrosine kinase (Lck) exists in a constitutively active conformation, compared with <20% in central memory T cells (TCM). Immediately proximal to Lck signaling, we observed enhanced Zap-70 phosphorylation in TEM following TCR ligation compared with TCM Furthermore, we observed superior cytotoxic effector function in TEM compared with TCM, and we provide evidence that this results from a lower probability of TCM reaching threshold signaling owing to the decreased magnitude of TCR-proximal signaling. We provide evidence that the differences in Lck constitutive activity between CD8(+) TCM and TEM are due to differential regulation by SH2 domain-containing phosphatase-1 (Shp-1) and C-terminal Src kinase, and we use modeling of early TCR signaling to reveal the significance of these differences. We show that inhibition of Shp-1 results in increased constitutive Lck activity in TCM to levels similar to TEM, as well as increased cytotoxic effector function in TCM Collectively, this work demonstrates a role for constitutive Lck activity in controlling Ag sensitivity, and it suggests that differential activities of TCR-proximal signaling components may contribute to establishing the divergent effector properties of TCM and TEM. This work also identifies Shp-1 as a potential target to improve the cytotoxic effector functions of TCM for adoptive cell therapy applications. Copyright © 2016 by The American Association of Immunologists, Inc.

  14. Fusion-neutron-yield, activation measurements at the Z accelerator: design, analysis, and sensitivity.

    PubMed

    Hahn, K D; Cooper, G W; Ruiz, C L; Fehl, D L; Chandler, G A; Knapp, P F; Leeper, R J; Nelson, A J; Smelser, R M; Torres, J A

    2014-04-01

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r(2) decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm(2) and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

  15. A systematic review of the efficacy of self-management programs for increasing physical activity in community-dwelling adults with acquired brain injury (ABI).

    PubMed

    Jones, Taryn M; Dean, Catherine M; Hush, Julia M; Dear, Blake F; Titov, Nickolai

    2015-04-19

    in self-management programs for individuals following stroke. The efficacy of self-management programs in increasing physical activity levels in community-dwelling adults following acquired brain injury (ABI) is still unknown. Research into the efficacy of self-management programs specifically aimed at improving physical activity in adults living in the community following acquired brain injury is needed. The efficacy of remote delivery methods also warrants further investigation. PROSPERO CRD42013006748.

  16. Nucleophile sensitivity of Drosophila TRPA1 underlies light-induced feeding deterrence

    PubMed Central

    Du, Eun Jo; Ahn, Tae Jung; Wen, Xianlan; Seo, Dae-Won; Na, Duk L; Kwon, Jae Young; Choi, Myunghwan; Kim, Hyung-Wook; Cho, Hana; Kang, KyeongJin

    2016-01-01

    Solar irradiation including ultraviolet (UV) light causes tissue damage by generating reactive free radicals that can be electrophilic or nucleophilic due to unpaired electrons. Little is known about how free radicals induced by natural sunlight are rapidly detected and avoided by animals. We discover that Drosophila Transient Receptor Potential Ankyrin 1 (TRPA1), previously known only as an electrophile receptor, sensitively detects photochemically active sunlight through nucleophile sensitivity. Rapid light-dependent feeding deterrence in Drosophila was mediated only by the TRPA1(A) isoform, despite the TRPA1(A) and TRPA1(B) isoforms having similar electrophile sensitivities. Such isoform dependence re-emerges in the detection of structurally varied nucleophilic compounds and nucleophilicity-accompanying hydrogen peroxide (H2O2). Furthermore, these isoform-dependent mechanisms require a common set of TRPA1(A)-specific residues dispensable for electrophile detection. Collectively, TRPA1(A) rapidly responds to natural sunlight intensities through its nucleophile sensitivity as a receptor of photochemically generated radicals, leading to an acute light-induced behavioral shift in Drosophila. DOI: http://dx.doi.org/10.7554/eLife.18425.001 PMID:27656903

  17. Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS.

    PubMed

    Yao, Zhan; Yaeger, Rona; Rodrik-Outmezguine, Vanessa S; Tao, Anthony; Torres, Neilawattie M; Chang, Matthew T; Drosten, Matthias; Zhao, Huiyong; Cecchi, Fabiola; Hembrough, Todd; Michels, Judith; Baumert, Hervé; Miles, Linde; Campbell, Naomi M; de Stanchina, Elisa; Solit, David B; Barbacid, Mariano; Taylor, Barry S; Rosen, Neal

    2017-08-10

    Approximately 200 BRAF mutant alleles have been identified in human tumours. Activating BRAF mutants cause feedback inhibition of GTP-bound RAS, are RAS-independent and signal either as active monomers (class 1) or constitutively active dimers (class 2). Here we characterize a third class of BRAF mutants-those that have impaired kinase activity or are kinase-dead. These mutants are sensitive to ERK-mediated feedback and their activation of signalling is RAS-dependent. The mutants bind more tightly than wild-type BRAF to RAS-GTP, and their binding to and activation of wild-type CRAF is enhanced, leading to increased ERK signalling. The model suggests that dysregulation of signalling by these mutants in tumours requires coexistent mechanisms for maintaining RAS activation despite ERK-dependent feedback. Consistent with this hypothesis, melanomas with these class 3 BRAF mutations also harbour RAS mutations or NF1 deletions. By contrast, in lung and colorectal cancers with class 3 BRAF mutants, RAS is typically activated by receptor tyrosine kinase signalling. These tumours are sensitive to the inhibition of RAS activation by inhibitors of receptor tyrosine kinases. We have thus defined three distinct functional classes of BRAF mutants in human tumours. The mutants activate ERK signalling by different mechanisms that dictate their sensitivity to therapeutic inhibitors of the pathway.

  18. Past and future evolution of Abies alba forests in Europe - comparison of a dynamic vegetation model with palaeo data and observations.

    PubMed

    Ruosch, Melanie; Spahni, Renato; Joos, Fortunat; Henne, Paul D; van der Knaap, Willem O; Tinner, Willy

    2016-02-01

    Information on how species distributions and ecosystem services are impacted by anthropogenic climate change is important for adaptation planning. Palaeo data suggest that Abies alba formed forests under significantly warmer-than-present conditions in Europe and might be a native substitute for widespread drought-sensitive temperate and boreal tree species such as beech (Fagus sylvatica) and spruce (Picea abies) under future global warming conditions. Here, we combine pollen and macrofossil data, modern observations, and results from transient simulations with the LPX-Bern dynamic global vegetation model to assess past and future distributions of A. alba in Europe. LPX-Bern is forced with climate anomalies from a run over the past 21 000 years with the Community Earth System Model, modern climatology, and with 21st-century multimodel ensemble results for the high-emission RCP8.5 and the stringent mitigation RCP2.6 pathway. The simulated distribution for present climate encompasses the modern range of A. alba, with the model exceeding the present distribution in north-western and southern Europe. Mid-Holocene pollen data and model results agree for southern Europe, suggesting that at present, human impacts suppress the distribution in southern Europe. Pollen and model results both show range expansion starting during the Bølling-Allerød warm period, interrupted by the Younger Dryas cold, and resuming during the Holocene. The distribution of A. alba expands to the north-east in all future scenarios, whereas the potential (currently unrealized) range would be substantially reduced in southern Europe under RCP8.5. A. alba maintains its current range in central Europe despite competition by other thermophilous tree species. Our combined palaeoecological and model evidence suggest that A. alba may ensure important ecosystem services including stand and slope stability, infrastructure protection, and carbon sequestration under significantly warmer

  19. Overexpression of a PLDα1 gene from Setaria italica enhances the sensitivity of Arabidopsis to abscisic acid and improves its drought tolerance.

    PubMed

    Peng, Yunling; Zhang, Jinpeng; Cao, Gaoyi; Xie, Yuanhong; Liu, Xihui; Lu, Minhui; Wang, Guoying

    2010-07-01

    Phospholipase D (PLD) plays an important role in various physiological processes in plants, including drought tolerance. Here, we report the cloning and characterization of the full-length cDNA of PLDalpha1 from foxtail millet, which is a cereal crop with high water use efficiency. The expression pattern of the SiPLDalpha1 gene in foxtail millet revealed that it is up-regulated under dehydration, ABA and NaCl treatments. Heterologous overexpression of SiPLDalpha1 in Arabidopsis can significantly enhance their sensitivity to ABA, NaCl and mannitol during post-germination growth. Under water deprivation, overexpression of SiPLDalpha1 in Arabidopsis resulted in significantly enhanced tolerance to drought stress, displaying higher biomass and RWC, lower ion leakage and higher survival percentages than the wild type. Further analysis indicated that transgenic plants showed increased transcription of the stress-related genes, RD29A, RD29B, RAB18 and RD22, and the ABA-related genes, ABI1 and NCED3 under dehydration conditions. These results demonstrate that SiPLDalpha1 is involved in plant stress signal transduction, especially in the ABA signaling pathway. Moreover, no obvious adverse effects on growth and development in the 35S::SiPLDalpha1 transgenic plants implied that SiPLDalpha1 is a good candidate gene for improving crop drought tolerance.

  20. Solid state photon upconversion utilizing thermally activated delayed fluorescence molecules as triplet sensitizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Tony C.; Congreve, Daniel N.; Baldo, Marc A., E-mail: baldo@mit.edu

    2015-07-20

    The ability to upconvert light is useful for a range of applications, from biological imaging to solar cells. But modern technologies have struggled to upconvert incoherent incident light at low intensities. Here, we report solid state photon upconversion employing triplet-triplet exciton annihilation in an organic semiconductor, sensitized by a thermally activated-delayed fluorescence (TADF) dye. Compared to conventional phosphorescent sensitizers, the TADF dye maximizes the wavelength shift in upconversion due to its small singlet-triplet splitting. The efficiency of energy transfer from the TADF dye is 9.1%, and the conversion yield of sensitizer exciton pairs to singlet excitons in the annihilator ismore » 1.1%. Our results demonstrate upconversion in solid state geometries and with non-heavy metal-based sensitizer materials.« less

  1. Optimizing human activity patterns using global sensitivity analysis.

    PubMed

    Fairchild, Geoffrey; Hickmann, Kyle S; Mniszewski, Susan M; Del Valle, Sara Y; Hyman, James M

    2014-12-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.

  2. Acrolein increases airway sensitivity to substance P and decreases NEP activity in guinea pigs.

    PubMed

    Turner, C R; Stow, R B; Hubbs, S J; Gomes, B C; Williams, J C

    1993-04-01

    The effects of acrolein exposure on airway responses to intravenous substance P were determined in guinea pigs exposed to vehicle or 1.6 ppm acrolein for 7.5 h on 2 consecutive days and examined 1, 4, 8, 15, and 28 days after exposure by use of pulmonary mechanics and bronchoalveolar lavage (BAL). Lung, trachea, liver, and BAL fluid were also assayed for neutral endopeptidase (NEP) activity 1, 7, and 28 days after exposure. Pulmonary inflammation and epithelial damage were prominent 1 day after acrolein exposure. NEP activity was decreased in the lungs, trachea, and liver 1 and 7 days after acrolein. Twenty-eight days after exposure, NEP activity in the lungs and liver was not significantly different in vehicle- and acrolein-exposed guinea pigs but was still reduced in tracheal tissue. The BAL NEP activity in acrolein-exposed guinea pigs was approximately twice that of vehicle control guinea pigs at all three time points. Acrolein caused a prolonged increase in airway sensitivity to substance P. Experiments performed in the presence of thiorphan suggested that the acrolein-induced reduction in NEP may contribute to increased airway sensitivity to aerosolized substance P, but the increase in airway sensitivity to intravenous substance P may occur by additional mechanisms.

  3. Stand-structural effects on Heterobasidion abietinum-related mortality following drought events in Abies pinsapo.

    PubMed

    Linares, Juan Carlos; Camarero, Jesús Julio; Bowker, Matthew A; Ochoa, Victoria; Carreira, José Antonio

    2010-12-01

    Climate change may affect tree-pathogen interactions. This possibility has important implications for drought-prone forests, where stand dynamics and disease pathogenicity are especially sensitive to climatic stress. In addition, stand structural attributes including density-dependent tree-to-tree competition may modulate the stands' resistance to drought events and pathogen outbreaks. To assess the effects of stand structure on root-rot-related mortality after severe droughts, we focused on Heterobasidion abietinum mortality in relict Spanish stands of Abies pinsapo, a drought-sensitive fir. We compared stand attributes and tree spatial patterns in three plots with H. abietinum root-rot disease and three plots without root-rot. Point-pattern analyses were used to investigate the scale and extent of mortality patterns and to test hypotheses related to the spread of the disease. Dendrochronology was used to date the year of death and to assess the association between droughts and growth decline. We applied a structural equation modelling approach to test if tree mortality occurs more rapidly than predicted by a simple distance model when trees are subjected to high tree-to-tree competition and following drought events. Contrary to expectations of drought mortality, the effect of precipitation on the year of death was strong and negative, indicating that a period of high precipitation induced an earlier tree death. Competition intensity, related to the size and density of neighbour trees, also induced an earlier tree death. The effect of distance to the disease focus was negligible except in combination with intensive competition. Our results indicate that infected trees have decreased ability to withstand drought stress, and demonstrate that tree-to-tree competition and fungal infection act as predisposing factors of forest decline and mortality.

  4. Der p 1 suppresses indoleamine 2, 3-dioxygenase in dendritic cells from house dust mite-sensitive patients with asthma.

    PubMed

    Maneechotesuwan, Kittipong; Wamanuttajinda, Valla; Kasetsinsombat, Kanda; Huabprasert, Sukit; Yaikwawong, Metha; Barnes, Peter J; Wongkajornsilp, Adisak

    2009-01-01

    Indoleamine 2, 3-dioxygenase (IDO), a tryptophan-degrading enzyme in dendritic cells (DCs), mediates an immunosuppressive effect on activated T lymphocytes. However, little is known about the effect of Der p 1 on IDO in human DCs. The aim was to investigate the effect of Der p 1 on the expression and activity of IDO in monocyte-derived DCs from house dust mite (HDM)-sensitive patients with asthma. Using real-time RT-PCR and HPLC, the expression and activity of IDO were assessed in TNF-alpha-induced mature DCs from HDM-sensitive and nonatopic patients with asthma in response to Der p 1 exposure ex vivo. We also monitored the alteration of IDO activity in Der p 1-pulsed DCs after the coincubation with autologous T cells. With a reliance on its protease activity, Der p 1 suppressed functional IDO in DCs from HDM-sensitive patients with asthma but enhanced IDO activity in DCs from nonatopic patients with asthma. This suppression was maintained by the reciprocally induced IL-4 from the coculturing autologous HDM-sensitive T cells. Conversely, the upregulation of IDO activity in Der p 1-pulsed DCs was maintained by IFN-gamma released from autologous nonatopic T cells and the regulatory T-cell subset. Der p 1 pulsation to sensitive DCs failed to raise regulatory T cells but raised progenitor fractions from cloned HDM-sensitive CD4(+) cells through direct contact and soluble mediators. House dust mite-sensitive DCs exposed to Der p 1 downregulated IDO activity and tipped the T(H)1/T(H)2 cytokine balance toward IL-4, resulting in sustainable IDO suppression.

  5. Apolipoprotein CIII-induced THP-1 cell adhesion to endothelial cells involves pertussis toxin-sensitive G protein- and protein kinase C alpha-mediated nuclear factor-kappaB activation.

    PubMed

    Kawakami, Akio; Aikawa, Masanori; Nitta, Noriko; Yoshida, Masayuki; Libby, Peter; Sacks, Frank M

    2007-01-01

    Plasma apolipoprotein CIII (apoCIII) independently predicts risk for coronary heart disease (CHD). We recently reported that apoCIII directly enhances adhesion of human monocytes to endothelial cells (ECs), and identified the activation of PKC alpha as a necessary upstream event of enhanced monocyte adhesion. This study tested the hypothesis that apoCIII activates PKC alpha in human monocytic THP-1 cells, leading to NF-kappaB activation. Among inhibitors specific to PKC activators, phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor D609 limited apoCIII-induced PKC alpha activation and THP-1 cell adhesion. ApoCIII increased PC-PLC activity in THP-1 cells, resulting in PKC alpha activation. Pertussis toxin (PTX) inhibited apoCIII-induced PC-PLC activation and subsequent PKC alpha activation, implicating PTX-sensitive G protein pathway. ApoCIII further activated nuclear factor-kappaB (NF-kappaB) through PKC alpha in THP-1 cells and augmented beta1-integrin expression. The NF-kappaB inhibitor peptide SN50 partially inhibited apoCIII-induced beta1-integrin expression and THP-1 cell adhesion. ApoCIII-rich VLDL had similar effects to apoCIII alone. PTX-sensitive G protein pathway participates critically in PKC alpha stimulation in THP-1 cells exposed to apoCIII, activating NF-kappaB, and increasing beta1-integrin. This action causes monocytic cells to adhere to endothelial cells. Furthermore, because leukocyte NF-kappaB activation contributes to inflammatory aspects of atherogenesis, apoCIII may stimulate diverse inflammatory responses through monocyte activation.

  6. Optimizing human activity patterns using global sensitivity analysis

    PubMed Central

    Hickmann, Kyle S.; Mniszewski, Susan M.; Del Valle, Sara Y.; Hyman, James M.

    2014-01-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations. PMID:25580080

  7. Spring temperature variability and eutrophication history inferred from sedimentary pigments in the varved sediments of Lake Żabińskie, north-eastern Poland, AD 1907-2008

    NASA Astrophysics Data System (ADS)

    Amann, Benjamin; Lobsiger, Simon; Fischer, Daniela; Tylmann, Wojciech; Bonk, Alicja; Filipiak, Janusz; Grosjean, Martin

    2014-12-01

    Varved lake sediments are excellent natural archives providing quantitative insights into climatic and environmental changes at very high resolution and chronological accuracy. However, due to the multitude of responses within lake ecosystems it is often difficult to understand how climate variability interacts with other environmental pressures such as eutrophication, and to attribute observed changes to specific causes. This is particularly challenging during the past 100 years when multiple strong trends are superposed. Here we present a high-resolution multi-proxy record of sedimentary pigments and other biogeochemical data from the varved sediments of Lake Żabińskie (Masurian Lake District, north-eastern Poland, 54°N-22°E, 120 m a.s.l.) spanning AD 1907 to 2008. Lake Żabińskie exhibits biogeochemical varves with highly organic late summer and winter layers separated by white layers of endogenous calcite precipitated in early summer. The aim of our study is to investigate whether climate-driven changes and anthropogenic changes can be separated in a multi-proxy sediment data set, and to explore which sediment proxies are potentially suitable for long quantitative climate reconstructions. We also test if convoluted analytical techniques (e.g. HPLC) can be substituted by rapid scanning techniques (visible reflectance spectroscopy VIS-RS; 380-730 nm). We used principal component analysis and cluster analysis to show that the recent eutrophication of Lake Żabińskie can be discriminated from climate-driven changes for the period AD 1907-2008. The eutrophication signal (PC1 = 46.4%; TOC, TN, TS, Phe-b, high TC/CD ratios total carotenoids/chlorophyll-a derivatives) is mainly expressed as increasing aquatic primary production, increasing hypolimnetic anoxia and a change in the algal community from green algae to blue-green algae. The proxies diagnostic for eutrophication show a smooth positive trend between 1907 and ca 1980 followed by a very rapid increase

  8. Age-class differences in shoot photosynthesis and water relations of Fraser fir (Abies fraseri), southern Appalachian Mountains, USA

    Treesearch

    Keith Reinhardt; Daniel M. Johnson; William K. Smith

    2009-01-01

    Fraser fir (Abies fraseri (Pursh) Poir.) is an endemic tree species found only in refugial mountain-top forests in the southern Appalachian Mountains, USA. Very few studies have investigated the ecophysiology of this species in its natural environment. We measured and compared photosynthetic gas exchange and water relations of understory germinant...

  9. Initial fungal colonizer affects mass loss and fungal community development in Picea abies logs 6 yr after inoculation

    Treesearch

    Daniel L. Lindner; Rimvydas Vasaitis; Ariana Kubartova; Johan Allmer; Hanna Johannesson; Mark T. Banik; Jan. Stenlid

    2011-01-01

    Picea abies logs were inoculated with Resinicium bicolor, Fomitopsis pinicola or left un-inoculated and placed in an old-growth boreal forest. Mass loss and fungal community data were collected after 6 yr to test whether simplification of the fungal community via inoculation affects mass loss and fungal community development. Three...

  10. Neural activation to monetary reward is associated with amphetamine reward sensitivity.

    PubMed

    Crane, Natania A; Gorka, Stephanie M; Weafer, Jessica; Langenecker, Scott A; de Wit, Harriet; Phan, K Luan

    2018-03-14

    One known risk factor for drug use and abuse is sensitivity to rewarding effects of drugs. It is not known whether this risk factor extends to sensitivity to non-drug rewards. In this study with healthy young adults, we examined the association between sensitivity to the subjective rewarding effects of amphetamine and a neural indicator of anticipation of monetary reward. We hypothesized that greater euphorigenic response to amphetamine would be associated with greater neural activation to anticipation of monetary reward (Win > Loss). Healthy participants (N = 61) completed four laboratory sessions in which they received d-amphetamine (20 mg) and placebo in alternating order, providing self-report measures of euphoria and stimulation at regular intervals. At a separate visit 1-3 weeks later, participants completed the guessing reward task (GRT) during fMRI in a drug-free state. Participants reporting greater euphoria after amphetamine also exhibited greater neural activation during monetary reward anticipation in mesolimbic reward regions, including the bilateral caudate and putamen. This is the first study to show a relationship between neural correlates of monetary reward and sensitivity to the subjective rewarding effects of amphetamine in humans. These findings support growing evidence that sensitivity to reward in general is a risk factor for drug use and abuse, and suggest that sensitivity of drug-induced euphoria may reflect a general sensitivity to rewards. This may be an index of vulnerability for drug use or abuse.

  11. Divergent climate response on hydraulic-related xylem anatomical traits of Picea abies along a 900-m altitudinal gradient.

    PubMed

    Castagneri, Daniele; Petit, Giai; Carrer, Marco

    2015-12-01

    Climate change can induce substantial modifications in xylem structure and water transport capacity of trees exposed to environmental constraints. To elucidate mechanisms of xylem plasticity in response to climate, we retrospectively analysed different cell anatomical parameters over tree-ring series in Norway spruce (Picea abies L. Karst.). We sampled 24 trees along an altitudinal gradient (1200, 1600 and 2100 m above sea level, a.s.l.) and processed 2335 ± 1809 cells per ring. Time series for median cell lumen area (MCA), cell number (CN), tree-ring width (RW) and tree-ring-specific hydraulic conductivity (Kr) were crossed with daily temperature and precipitation records (1926-2011) to identify climate influence on xylem anatomical traits. Higher Kr at the low elevation site was due to higher MCA and CN. These variables were related to different aspects of intra-seasonal climatic variability under different environmental conditions, with MCA being more sensitive to summer precipitation. Winter precipitation (snow) benefited most parameters in all the sites. Descending the gradient, sensitivity of xylem features to summer climate shifted mostly from temperature to precipitation. In the context of climate change, our results indicate that higher summer temperatures at high elevations will benefit cell production and xylem hydraulic efficiency, whereas reduced water availability at lower elevations could negatively affect tracheids enlargement and thus stem capacity to transport water. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Short-chain C6 ceramide sensitizes AT406-induced anti-pancreatic cancer cell activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiaoguang; Sun, Baoyou; Zhang, Jingjing

    Our previous study has shown that AT406, a first-in-class small molecular antagonist of IAPs (inhibitor of apoptosis proteins), inhibits pancreatic cancer cell proliferation in vitro and in vivo. The aim of this research is to increase AT406's sensitivity by adding short-chain C6 ceramide. We show that co-treatment of C6 ceramide dramatically potentiated AT406-induced caspase/apoptosis activation and cytotoxicity in established (Panc-1 and Mia-PaCa-2 lines) and primary human pancreatic cancer cells. Reversely, caspase inhibitors largely attenuated C6 ceramide plus AT406-induced above cancer cell death. Molecularly, C6 ceramide downregulated Bcl-2 to increase AT406's sensitivity in pancreatic cancer cells. Intriguingly, C6 ceramide-mediated AT406 sensitization was nullifiedmore » with Bcl-2 shRNA knockdown or pretreatment of the Bcl-2 inhibitor ABT-737. In vivo, liposomal C6 ceramide plus AT406 co-administration dramatically inhibited Panc-1 xenograft tumor growth in severe combined immunodeficient (SCID) mice. The combined anti-tumor activity was significantly more potent than either single treatment. Expressions of IAPs (cIAP1/XIAP) and Bcl-2 were downregulated in Panc-1 xenografts with the co-administration. Together, we demonstrate that C6 ceramide sensitizes AT406-mediated anti-pancreatic cancer cell activity possibly via downregulating Bcl-2. - Highlights: • C6 ceramide dramatically potentiates AT406-induced pancreatic cancer cell death. • C6 ceramide facilitates AT406-induced pancreatic cancer cell apoptosis. • C6 ceramide downregulates Bcl-2 to increase AT406's sensitivity in pancreatic cancer cells. • Liposomal C6 ceramide enhances AT406-induced anti-pancreatic cancer activity in vivo.« less

  13. Optimizing human activity patterns using global sensitivity analysis

    DOE PAGES

    Fairchild, Geoffrey; Hickmann, Kyle S.; Mniszewski, Susan M.; ...

    2013-12-10

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimizationmore » problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. Here we use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Finally, though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.« less

  14. High-Throughput Sequencing Reveals Drastic Changes in Fungal Communities in the Phyllosphere of Norway Spruce (Picea abies) Following Invasion of the Spruce Bud Scale (Physokermes piceae).

    PubMed

    Menkis, Audrius; Marčiulynas, Adas; Gedminas, Artūras; Lynikienė, Jūratė; Povilaitienė, Aistė

    2015-11-01

    The aim of this study was to assess the diversity and composition of fungal communities in damaged and undamaged shoots of Norway spruce (Picea abies) following recent invasion of the spruce bud scale (Physokermes piceae) in Lithuania. Sampling was done in July 2013 and included 50 random lateral shoots from ten random trees in each of five visually undamaged and five damaged 40-50-year-old pure stands of P. abies. DNA was isolated from 500 individual shoots, subjected to amplification of the internal transcribed spacer of fungal ribosomal DNA (ITS rDNA), barcoded and sequenced. Clustering of 149,426 high-quality sequences resulted in 1193 non-singleton contigs of which 1039 (87.1 %) were fungal. In total, there were 893 fungal taxa in damaged shoots and 608 taxa in undamaged shoots (p < 0.0001). Furthermore, 431 (41.5 %) fungal taxa were exclusively in damaged shoots, 146 (14.0 %) were exclusively in undamaged shoots, and 462 (44.5 %) were common to both types of samples. Correspondence analysis showed that study sites representing damaged and undamaged shoots were separated from each other, indicating that in these fungal communities, these were largely different and, therefore, heavily affected by P. piceae. In conclusion, the results demonstrated that invasive alien tree pests may have a profound effect on fungal mycobiota associated with the phyllosphere of P. abies, and therefore, in addition to their direct negative effect owing physical damage of the tissue, they may also indirectly determine health, sustainability and, ultimately, distribution of the forest tree species.

  15. Activation of TRPA1 by membrane permeable local anesthetics

    PubMed Central

    2011-01-01

    Background Low concentrations of local anesthetics (LAs) suppress cellular excitability by inhibiting voltage-gated Na+ channels. In contrast, LAs at high concentrations can be excitatory and neurotoxic. We recently demonstrated that LA-evoked activation of sensory neurons is mediated by the capsaicin receptor TRPV1, and, to a lesser extent by the irritant receptor TRPA1. LA-induced activation and sensitization of TRPV1 involves a domain that is similar, but not identical to the vanilloid-binding domain. Additionally, activation of TRPV1 by LAs involves PLC and PI(4,5)P2-signalling. In the present study we aimed to characterize essential structural determinants for LA-evoked activation of TRPA1. Results Recombinant rodent and human TRPA1 were expressed in HEK293t cells and investigated by means of whole-cell patch clamp recordings. The LA lidocaine activates TRPA1 in a concentration-dependent manner. The membrane impermeable lidocaine-derivative QX-314 is inactive when applied extracellularly. Lidocaine-activated TRPA1-currents are blocked by the TRPA1-antagonist HC-030031. Lidocaine is also an inhibitor of TRPA1, an effect that is more obvious in rodent than in human TRPA1. This species-specific difference is linked to the pore region (transmembrane domain 5 and 6) as described for activation of TRPA1 by menthol. Unlike menthol-sensitivity however, lidocaine-sensitivity is not similarly determined by serine- and threonine-residues within TM5. Instead, intracellular cysteine residues known to be covalently bound by reactive TRPA1-agonists seem to mediate activation of TRPA1 by LAs. Conclusions The structural determinants involved in activation of TRPA1 by LAs are disparate from those involved in activation by menthol or those involved in activation of TRPV1 by LAs. PMID:21861907

  16. AML sensitivity to YM155 is modulated through AKT and Mcl-1

    PubMed Central

    de Necochea-Campion, Rosalia; Diaz Osterman, Carlos J.; Hsu, Heng-Wei; Fan, Junjie; Mirshahidi, Saied; Wall, Nathan R.; Chen, Chien-Shing

    2015-01-01

    HL60 and U937 (acute myeloid leukemia (AML) cell lines) were assessed for sensitivity to YM155, and found to have distinct sensitive and resistant phenotypes, respectively. In HL60 cells, YM155 inhibition of growth proliferation was due to apoptosis which was measured by annexin V/PI staining. YM155 induced apoptosis through activation of intrinsic and extrinsic pathways that also culminated in caspase-3 activity and PARP cleavage. YM155 sensitivity was partially associated with this compound’s ability to downregulate survivin transcription since this was more pronounced in the HL60 cell line. However, marked differences were also observed in XIAP, Bcl-2, and Mcl-1L, and Mcl-1s. Furthermore, YM155 treatment completely inhibited production of total Akt protein in HL60, but not U937 cells. Importantly, Akt activity (pAkt-Ser473) levels were maintained in YM155 treated U937 cells which may help stabilize other anti-apoptotic proteins. Combination treatments with an Akt inhibitor, MK-2206, reduced levels of pAkt-Ser473 in U937 cells and synergistically sensitized them to YM155 cytotoxicity. Collectively our results indicate that Akt signaling may be an important factor mediating YM155 response in AML, and combinatorial therapies with Akt inhibitors could improve treatment efficacy in YM155-resistant cells. PMID:26118775

  17. Nrf2 Regulates the Sensitivity of Mouse Keratinocytes to Nitrogen Mustard via Multidrug Resistance-Associated Protein 1 (Mrp1)

    PubMed Central

    Udasin, Ronald G.; Wen, Xia; Bircsak, Kristin M.; Aleksunes, Lauren M.; Shakarjian, Michael P.; Kong, Ah-Ng Tony; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2016-01-01

    Sulfur mustard and nitrogen mustard (mechlorethamine, HN2) are potent vesicants developed as chemical warfare agents. These electrophilic, bifunctional alkylating agents cause skin injury, including inflammation, edema, and blistering. HN2 covalently modifies macromolecules such as DNA, RNA, and proteins or is scavenged by glutathione, forming adducts that can contribute to toxicity. Multidrug resistance-associated protein 1 (Mrp1/MRP1) is a transmembrane ATPase known to efflux glutathione-conjugated electrophiles. In the present studies, we examined the effects of modulating Mrp1-mediated transport activity on the sensitivity of primary and PAM212 mouse keratinocytes to HN2. Primary keratinocytes, and to a lesser extent, PAM212 cells, express Mrp1 mRNA and protein and possess Mrp1 functional activity, as measured by calcein efflux. Sulforaphane, an activator of Nrf2, increased Mrp1 mRNA, protein, and functional activity in primary keratinocytes and PAM212 cells and decreased their sensitivity to HN2-induced growth inhibition (IC50 = 1.4 and 4.8 µM in primary keratinocytes and 1 and 13 µM in PAM212 cells, in the absence and presence of sulforaphane, respectively). The Mrp1 inhibitor, MK-571, reversed the effects of sulforaphane on HN2-induced growth inhibition in both primary keratinocytes and PAM212 cells. In primary keratinocytes from Nrf2−/− mice, sulforaphane had no impact on Mrp1 expression or activity, or on sensitivity to HN2, demonstrating that its effects depend on Nrf2. These data suggest that Mrp1-mediated efflux is important in regulating HN2-induced keratinocyte growth inhibition. Enhancing HN2 efflux from keratinocytes may represent a novel strategy for mitigating vesicant-induced cytotoxicity. PMID:26454883

  18. Association of the ankle-brachial index with history of myocardial infarction and stroke.

    PubMed

    Jones, W Schuyler; Patel, Manesh R; Rockman, Caron B; Guo, Yu; Adelman, Mark; Riles, Thomas; Berger, Jeffrey S

    2014-04-01

    Ankle-brachial index (ABI) testing is a simple, noninvasive method to diagnose peripheral artery disease (PAD) and is associated with all-cause mortality. The association of ABI levels and myocardial infarction (MI) and stroke is less certain. We sought to further characterize the association between ABI levels and history of MI and stroke. Using data from the Life Line Screening program, 3.6 million self-referred participants from 2003 to 2008 completed a medical questionnaire and had bilateral ABIs performed. Logistic regression was used to estimate the association between ABI cutoff points (ABI <0.90 and ABI >1.40) and ABI levels with history of MI, stroke, and MI or stroke (MI/stroke). Models were adjusted for age, sex, race/ethnicity, smoking, diabetes, hypertension, hypercholesterolemia, physical activity, and family history of cardiovascular disease. Separate sex-specific models were performed. Overall, 155,552 (4.5%) had an ABI <0.90, and 42,890 (1.2%) had an ABI >1.40. An ABI <0.90 was associated with higher odds of MI (adjusted odds ratio [OR] 1.67, 95% CI 1.63-1.71), stroke (OR 1.77, 95% CI 1.72-1.82), and MI/stroke (OR 1.71, 95% CI 1.67-1.74), all P < .001. An ABI >1.40 was also associated with higher odds of MI (OR 1.19, 95% CI 1.14-1.24), stroke (OR 1.30, 95% CI 1.22-1.38), and MI/stroke (OR 1.22, 95% CI 1.17-1.27), all P < .001. The ORs for MI/stroke for different ABI levels formed a reverse J-shaped curve in both women and men. In a large national screening database, there is a strong, consistent relationship between ABI levels and a history of prevalent MI, stroke, and MI/stroke. Copyright © 2014 Mosby, Inc. All rights reserved.

  19. The bile acid-sensitive ion channel (BASIC) is activated by alterations of its membrane environment.

    PubMed

    Schmidt, Axel; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Kusch, Jana; Lucas, Susana Dias; Gründer, Stefan; Wiemuth, Dominik

    2014-01-01

    The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity.

  20. Evaluating the usability of a single UK community acquired brain injury (ABI) rehabilitation service website: implications for research methodology and website design.

    PubMed

    Newby, Gavin; Groom, Christina

    2010-04-01

    Information provision is an important resource for those living with acquired brain injury (ABI) and their families. Web-based health information services are now common additions to health service provision. Ideally, they should be easy to use and provide useful, relevant and accurate information. ABI injuries do not affect individuals in the same way, and survivors can have a wide range of abilities and impairments. Therefore, any informational resource intended for this group should take account of their needs and help to compensate for their limitations. This pilot study recruited a group of individuals with ABI (of a median Extended Glasgow Outcome Scale rating of "lower moderate disability") who were clients of a UK National Health Service rehabilitation service and asked them to assess a specialised website provided by that service and hosted by their employing Primary Care Trust organisation. Participants completed a practical task and then gave their opinions on various aspects of website design, and content. They were also asked to suggest improvements and recommend additions. Overall the results were favourable. However, improvements in the legibility, layout and writing style were identified. There were also requests to add more information on the existing topics and add additional topics. The discussion also evaluates the utility of the methodology and the implications of the results for others considering constructing their own website.

  1. A dose-response study of separate and combined effects of the serotonin agonist 8-OH-DPAT and the dopamine agonist quinpirole on locomotor sensitization, cross-sensitization, and conditioned activity.

    PubMed

    Johnson, Eric F; Szechtman, Henry

    2016-08-01

    Chronic treatment with the dopamine D2/D3 agonist, quinpirole, or the serotonin 1A agonist, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT), induces behavioral sensitization. It is not known whether both drugs produce sensitization through a shared mechanism. Here, we examine whether quinpirole and 8-OH-DPAT show cross-sensitization and impact sensitization, as would be expected from shared mechanisms. Male rats (N=208) were assigned randomly to 16 groups formed by crossing four doses of quinpirole (0, 0.03125, 0.0625, or 0.125 mg/kg) with four doses of 8-OH-DPAT (0, 0.03125, 0.625, or 0.125 mg/kg). After a course of 10 drug treatments administered twice per week in locomotor activity chambers, all groups were challenged on separate tests with quinpirole (0.1 mg/kg), 8-OH-DPAT (0.1 mg/kg), or saline, and locomotor activity was evaluated. Challenge tests with quinpirole and 8-OHDPAT showed no cross-sensitization between the drugs. Chronic quinpirole (0.125 mg/kg) administration induced a sensitized quinpirole response that was attenuated dose-dependently by chronic 8-OH-DPAT cotreatment. Cotreatment with quinpirole (0.0625 mg/kg) and 8-OH-DPAT (all doses) induced quinpirole sensitization. Chronic 8-OH-DPAT (0.125 mg/kg) induced a sensitized 8-OHDPAT response that was prevented by chronic cotreatment with the lowest but not the highest dose of quinpirole. Cotreatment with 8-OHDPAT (0.0625) and quinpirole (0.125 mg/kg) induced sensitization to 8-OH-DPAT. The saline challenge test showed elevated locomotor activity in chronic quinpirole (0.125 mg/kg) and 8-OHDPAT (0.0625, 0.125 mg/kg) alone groups, and in seven of nine cotreated groups. The absence of cross-sensitization suggests separate mechanisms of sensitization to quinpirole and 8-OH-DPAT. Cotreatment effects suggest that induction of sensitization can be modulated by serotonin 1A and D2/D3 activity.

  2. Mild peripheral neuropathy prevents both leg muscular ischaemia and activation of exercise-induced coagulation in Type 2 diabetic patients with peripheral artery disease.

    PubMed

    Piarulli, F; Sambataro, M; Minicuci, N; Scarano, L; Laverda, B; Baiocchi, M R; Baldo-Enzi, G; Galasso, S; Bax, G; Fedele, D

    2007-10-01

    To study the influence of peripheral neuropathy on intermittent claudication in patients with Type 2 diabetes (T2DM). Twenty-five patients with T2DM were grouped according to the ankle/brachial index (ABI): 10 with ABI > 0.9 without peripheral artery disease (PAD; group T2DM) and 15 with ABI < 0.9 with PAD (group T2DM + PAD). Twelve individuals without T2DM with PAD (group PAD without T2DM) were also enrolled. Tests for peripheral neuropathy were performed in all patients. ABI, rate pressure product, prothrombin fragments 1 + 2 (F1+2), thrombin-anti-thrombin complex (TAT), and d-dimer were measured before and after a treadmill test. During exercise both initial and absolute claudication distance and electrocardiogram readings were recorded. We found mild peripheral neuropathy in 20% of group T2DM and 46.7% of group T2DM + PAD (P < 0.01). After exercise, the rate pressure product increased in each group; ABI fell in T2DM + PAD (P < 0.0001) and in PAD without T2DM (P = 0.0005); the fall was greater in the latter group. Initial and absolute claudication distances were similar in PAD patients. In group T2DM + PAD, absolute claudication distance was longer in the subgroup without peripheral neuropathy (P < 0.05), whereas ABI and rate pressure products were similar. F1+2 values at rest were higher in group T2DM + PAD. After exercise, F1+2 values and TAT increased only in group PAD without T2DM. Only group PAD without T2DM experienced muscular ischaemia, whereas group T2DM + PAD did not. Mild peripheral neuropathy may have prevented them from reaching the point of muscular ischaemia during the treadmill test, because they stopped exercising with the early onset of pain. Reaching a false absolute claudication distance may induce ischaemic preconditioning. These findings suggest a possible protective role of mild peripheral neuropathy in T2DM patients with intermittent claudication, by preventing further activation of coagulation during treadmill testing.

  3. Contributions of different modes of TRPV1 activation to TRPV1 antagonist-induced hyperthermia.

    PubMed

    Garami, Andras; Shimansky, Yury P; Pakai, Eszter; Oliveira, Daniela L; Gavva, Narender R; Romanovsky, Andrej A

    2010-01-27

    Transient receptor potential vanilloid-1 (TRPV1) antagonists are widely viewed as next-generation pain therapeutics. However, these compounds cause hyperthermia, a serious side effect. TRPV1 antagonists differentially block three modes of TRPV1 activation: by heat, protons, and chemical ligands (e.g., capsaicin). We asked what combination of potencies in these three modes of TRPV1 activation corresponds to the lowest potency of a TRPV1 antagonist to cause hyperthermia. We studied hyperthermic responses of rats, mice, and guinea pigs to eight TRPV1 antagonists with different pharmacological profiles and used mathematical modeling to find a relative contribution of the blockade of each activation mode to the development of hyperthermia. We found that the hyperthermic effect has the highest sensitivity to the extent of TRPV1 blockade in the proton mode (0.43 to 0.65) with no to moderate sensitivity in the capsaicin mode (-0.01 to 0.34) and no sensitivity in the heat mode (0.00 to 0.01). We conclude that hyperthermia-free TRPV1 antagonists do not block TRPV1 activation by protons, even if they are potent blockers of the heat mode, and that decreasing the potency to block the capsaicin mode may further decrease the potency to cause hyperthermia.

  4. Contributions of different modes of TRPV1 activation to TRPV1 antagonist-induced hyperthermia

    PubMed Central

    Garami, Andras; Shimansky, Yury P.; Pakai, Eszter; Oliveira, Daniela L.; Gavva, Narender R.; Romanovsky, Andrej A.

    2010-01-01

    Transient receptor potential vanilloid-1 (TRPV1) antagonists are widely viewed as next-generation pain therapeutics. However, these compounds cause hyperthermia, a serious side effect. TRPV1 antagonists differentially block three modes of TRPV1 activation: by heat, protons, and chemical ligands (e.g., capsaicin). We asked what combination of potencies in these three modes of TRPV1 activation corresponds to the lowest potency of a TRPV1 antagonist to cause hyperthermia. We studied hyperthermic responses of rats, mice, and guinea pigs to eight TRPV1 antagonists with different pharmacological profiles and used mathematical modeling to find a relative contribution of the blockade of each activation mode to the development of hyperthermia. We have found that the hyperthermic effect has the highest sensitivity to the extent of TRPV1 blockade in the proton mode (0.43 to 0.65) with no to moderate sensitivity in the capsaicin mode (-0.01 to 0.34) and no sensitivity in the heat mode (0.00 to 0.01). We conclude that hyperthermia-free TRPV1 antagonists do not block TRPV1 activation by protons, even if they are potent blockers of the heat mode, and that decreasing the potency to block the capsaicin mode may further decrease the potency to cause hyperthermia. PMID:20107070

  5. Short-chain C6 ceramide sensitizes AT406-induced anti-pancreatic cancer cell activity.

    PubMed

    Zhao, Xiaoguang; Sun, Baoyou; Zhang, Jingjing; Zhang, Ruishen; Zhang, Qing

    2016-10-14

    Our previous study has shown that AT406, a first-in-class small molecular antagonist of IAPs (inhibitor of apoptosis proteins), inhibits pancreatic cancer cell proliferation in vitro and in vivo. The aim of this research is to increase AT406's sensitivity by adding short-chain C6 ceramide. We show that co-treatment of C6 ceramide dramatically potentiated AT406-induced caspase/apoptosis activation and cytotoxicity in established (Panc-1 and Mia-PaCa-2 lines) and primary human pancreatic cancer cells. Reversely, caspase inhibitors largely attenuated C6 ceramide plus AT406-induced above cancer cell death. Molecularly, C6 ceramide downregulated Bcl-2 to increase AT406's sensitivity in pancreatic cancer cells. Intriguingly, C6 ceramide-mediated AT406 sensitization was nullified with Bcl-2 shRNA knockdown or pretreatment of the Bcl-2 inhibitor ABT-737. In vivo, liposomal C6 ceramide plus AT406 co-administration dramatically inhibited Panc-1 xenograft tumor growth in severe combined immunodeficient (SCID) mice. The combined anti-tumor activity was significantly more potent than either single treatment. Expressions of IAPs (cIAP1/XIAP) and Bcl-2 were downregulated in Panc-1 xenografts with the co-administration. Together, we demonstrate that C6 ceramide sensitizes AT406-mediated anti-pancreatic cancer cell activity possibly via downregulating Bcl-2. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Tolerance and sensitization to inhaled 1,1,1-trichloroethane in mice: results from open-field behavior and a functional observational battery.

    PubMed

    Bowen, Scott E; Balster, Robert L

    2006-05-01

    1,1,1-Trichloroethane (TCE), a representative abused solvent, has well described acute behavioral effects in animals. Much less is known about repeated high-concentration exposures as would be encountered in inhalant abusers. Tolerance has been demonstrated in some, but not all, studies with TCE while sensitization has also been seen with other abused solvents. The present study was designed to further characterize changes in the effects of repeated exposure to TCE on a variety of mouse behaviors. Mice were tested using locomotor activity as well as a functional observational battery (FOB) both before and after a regimen of daily exposures to various concentrations of TCE. The initial locomotor effects of acute 30-min exposures to TCE were biphasic with concentration-dependent increases in activity at lower concentrations and decreases observed at higher concentrations. The profile of acute effects as measured by the FOB included changes in posture, decreased arousal, disturbances in gait, delayed righting reflexes, and decreased sensorimotor reactivity. Animals were then divided into five groups and exposed 30 min/day to either air or one of four concentrations of TCE (2,000, 6,000, 10,000, or 13,300 ppm) for 15 consecutive days. The TCE concentration used primarily affected the magnitude of change, not whether tolerance or sensitization occurred. Tolerance developed on the measures of forelimb grip strength, inverted screen, and number of rears. Conversely, sensitization developed to measures of locomotor activity. Depending on the behavioral measure, both tolerance and sensitization can occur in mice with repeated exposure to TCE. Both of these phenomena are characteristic of drugs of abuse.

  7. OsSLI1, a homeodomain containing transcription activator, involves abscisic acid related stress response in rice (Oryza sativa L.).

    PubMed

    Huang, Xi; Duan, Min; Liao, Jiakai; Yuan, Xi; Chen, Hui; Feng, Jiejie; Huang, Ji; Zhang, Hong-Sheng

    2014-01-01

    Homeodomain-leucine zipper type I (HD-Zip I) proteins are involved in the regulation of plant development and response to environmental stresses. In this study, OsSLI1 (Oryza sativa stress largely induced 1), encoding a member of the HD-Zip I subfamily, was isolated from rice. The expression of OsSLI1 was dramatically induced by multiple abiotic stresses and exogenous abscisic acid (ABA). In silico sequence analysis discovered several cis-acting elements including multiple ABREs (ABA-responsive element binding factors) in the upstream promoter region of OsSLI1. The OsSLI1-GFP fusion protein was localized in the nucleus of rice protoplast cells and the transcriptional activity of OsSLI1 was confirmed by the yeast hybrid system. Further, it was found that OsSLI1 expression was enhanced in an ABI5-Like1 (ABL1) deficiency rice mutant abl1 under stress conditions, suggesting that ABL1 probably negatively regulates OsSLI1 gene expression. Moreover, it was found that OsSLI1 was regulated in panicle development. Taken together, OsSLI1 may be a transcriptional activator regulating stress-responsive gene expression and panicle development in rice.

  8. Pest risk assessment of the importation into the United States of unprocessed Pinus and Abies logs from Mexico

    Treesearch

    B. M. Tkacz; H. H. Burdsall; G. A. DeNitto; A. Eglitis; J. B. Hanson; J. T. Kliejunas; W. E. Wallner; J. G. O`Brien; E. L. Smith

    1998-01-01

    The unmitigated pest risk potential for the importation of Pinus and Abies logs from all states of Mexico into the United States was assessed by estimating the probability and consequences of establishment of representative insects and pathogens of concern. Twenty-two individual pest risk assessments were prepared for Pinus logs, twelve dealing with insects and ten...

  9. Multiresource effects of a stand-replacement prescribed fire in the Pinus contorta-Abies lasiocarpa vegetation zone of central Washington.

    Treesearch

    Arthur R. Tiedemann; Paul M. Woodard

    2002-01-01

    A stand-replacement prescribed fire in an over-mature lodgepole pine (Pinus contorta Dougl. ex Loud.)-subalpine fir (Abies lasiocarpa (Hook.) Nutt.) stand (snag area) and in a mature lodgepole pine thicket (thicket area) resulted in lower plant diversity within the first year after burning, and as fire energy outputs increased...

  10. Regulation of tamoxifen sensitivity by a PAK1–EBP1 signalling pathway in breast cancer

    PubMed Central

    Ghosh, A; Awasthi, S; Peterson, J R; Hamburger, A W

    2013-01-01

    Background: EBP1, an ErbB3-binding protein, sensitises breast cancer cells to tamoxifen in part by decreasing ErbB2 protein levels. The p21-regulated serine/threonine kinase PAK1, implicated in tamoxifen resistance, phosphorylates EBP1 in vitro and in vivo at T261. Phosphorylation of EBP1 at this site induces tamoxifen resistance. We thus postulated that inhibition of PAK1 activity, by restoring EBP1 function, could ameliorate the hormone refractory phenotype of ErbB2-overexpressing breast cancer cells. Methods: Effects of EBP1 on ErbB2 levels were measured by western blotting. Effects of EBP1 and IPA-3 on tamoxifen sensitivity were measured using a tetrazolium based cell viability assay. Results: Transient transfection studies indicated that an EBP1 T261E mutant, which mimics EPB1 phosphorylated by PAK1, increased ErbB2 protein levels. An EBP1 T261A mutant, unable to be phosphorylated by PAK1, ameliorated PAK1-induced tamoxifen resistance, suggesting that phosphorylation of EBP1 by PAK1 contributes to tamoxifen resistance. We then tested if pharmacological inhibition of PAK1 activity might render hormone resistant cells, which endogenously overexpress PAK1, tamoxifen sensitive. IPA-3, a specific small MW PAK1 inhibitor, sensitised cells to tamoxifen only when EBP1 was ectopically expressed. IPA had no effect on tamoxifen resistance in T47D cells in which EBP1 protein had been ablated by shRNA. The IPA-induced increase in tamoxifen sensitivity was accompanied by a decrease in ErbB2 levels only in EBP1-overexpressing cells. Conclusion: These studies suggest that phosphorylation of EBP1 may be one mechanism of PAK1-induced hormone resistance and that PAK1 inhibitors may be useful in cells in which EBP1 is overexpressed. PMID:23361053

  11. Sliding p21-activated kinase 1 to nucleus impacts tamoxifen sensitivity.

    PubMed

    Rayala, Suresh K; Kumar, Rakesh

    2007-08-01

    The anti-estrogen, tamoxifen is the most commonly used treatment for patients with estrogen receptor (ER)-alpha-positive breast cancer. Recent data suggest that levels of ER coregulatory proteins as well as extra- and intracellular signaling in response to growth factor stimulation of breast cancer cells play an important role in acquiring resistance to anti-estrogen action. P21-activated kinase 1 (PAK1), a major target of the small GTPases, growth factors and lipid signaling, regulates cell motility, hormone action, invasiveness, and survival, all of which are required for both tumor development and normal mammary gland development. Over the years, the PAK1 has been regarded as cytosolic serine-threonine kinase with regulatory function in cytoskeleton reorganization and motility. However, emerging data now provide evidence of PAK1 function in the nucleus of breast cancer cells. Elevated PAK1 expression in premenopausal breast cancer patients correlates well with the lack of tamoxifen response despite the presence of ER-alpha expression, and such relationship was even distinctly stronger in breast tumors with nuclear PAK1. These typical effects of PAK1 are mechanistically linked with the ability of PAK1 to phosphorylate ER-alpha on serine 305, accompanied by secondary activation of serine 118, and such structural modifications may participate in the development of tamoxifen resistance. These findings suggest that the levels, subcellular localization, and activation status of PAK1 are likely to be important determinants of tamoxifen resistance, and that raising the possibility that tamoxifen resistance might be prevented or reversed by PAK1 inhibition.

  12. A systematic review of the sensitivity and specificity of the toe-brachial index for detecting peripheral artery disease.

    PubMed

    Tehan, Peta Ellen; Santos, Derek; Chuter, Vivienne Helaine

    2016-08-01

    The toe-brachial index (TBI) is used as an adjunct to the ankle-brachial index (ABI) for non-invasive lower limb vascular screening. With increasing evidence suggesting limitations of the ABI for diagnosis of vascular complications, particularly in specific populations including diabetes cohorts, the TBI is being used more widely. The aim of this review was to determine the sensitivity and specificity of the TBI for detecting peripheral artery disease (PAD) in populations at risk of this disease. A database search was conducted to identify current work relating to the sensitivity and specificity of toe-brachial indices up to July 2015. Only studies using valid diagnostic imaging as a reference standard were included. The QUADAS-2 tool was used to critically appraise included articles. Seven studies met the inclusion criteria. Sensitivity of the TBI for PAD was reported in all seven studies and ranged from 45% to 100%; specificity was reported by five studies only and ranged from 16% to 100%. In conclusion, this review suggests that the TBI has variable diagnostic accuracy for the presence of PAD in specific populations at risk of developing the disease. There was a notable lack of large-scale diagnostic accuracy studies determining the diagnostic accuracy of the TBI in detecting PAD in different at-risk cohorts. However, standardised normal values need to be established for the TBI to conclusively determine the diagnostic accuracy of this test. © The Author(s) 2016.

  13. Activation of temperature-sensitive TRPV1-like receptors in ARC POMC neurons reduces food intake

    PubMed Central

    Jeong, Jae Hoon; Lee, Dong Kun; Liu, Shun-Mei; Chua, Streamson C.; Schwartz, Gary J.

    2018-01-01

    Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC) respond to numerous hormonal and neural signals, resulting in changes in food intake. Here, we demonstrate that ARC POMC neurons express capsaicin-sensitive transient receptor potential vanilloid 1 receptor (TRPV1)-like receptors. To show expression of TRPV1-like receptors in ARC POMC neurons, we use single-cell reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, electrophysiology, TRPV1 knock-out (KO), and TRPV1-Cre knock-in mice. A small elevation of temperature in the physiological range is enough to depolarize ARC POMC neurons. This depolarization is blocked by the TRPV1 receptor antagonist and by Trpv1 gene knockdown. Capsaicin-induced activation reduces food intake that is abolished by a melanocortin receptor antagonist. To selectively stimulate TRPV1-like receptor-expressing ARC POMC neurons in the ARC, we generate an adeno-associated virus serotype 5 (AAV5) carrying a Cre-dependent channelrhodopsin-2 (ChR2)–enhanced yellow fluorescent protein (eYFP) expression cassette under the control of the two neuronal POMC enhancers (nPEs). Optogenetic stimulation of TRPV1-like receptor-expressing POMC neurons decreases food intake. Hypothalamic temperature is rapidly elevated and reaches to approximately 39 °C during treadmill running. This elevation is associated with a reduction in food intake. Knockdown of the Trpv1 gene exclusively in ARC POMC neurons blocks the feeding inhibition produced by increased hypothalamic temperature. Taken together, our findings identify a melanocortinergic circuit that links acute elevations in hypothalamic temperature with acute reductions in food intake. PMID:29689050

  14. Activation of temperature-sensitive TRPV1-like receptors in ARC POMC neurons reduces food intake.

    PubMed

    Jeong, Jae Hoon; Lee, Dong Kun; Liu, Shun-Mei; Chua, Streamson C; Schwartz, Gary J; Jo, Young-Hwan

    2018-04-01

    Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC) respond to numerous hormonal and neural signals, resulting in changes in food intake. Here, we demonstrate that ARC POMC neurons express capsaicin-sensitive transient receptor potential vanilloid 1 receptor (TRPV1)-like receptors. To show expression of TRPV1-like receptors in ARC POMC neurons, we use single-cell reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, electrophysiology, TRPV1 knock-out (KO), and TRPV1-Cre knock-in mice. A small elevation of temperature in the physiological range is enough to depolarize ARC POMC neurons. This depolarization is blocked by the TRPV1 receptor antagonist and by Trpv1 gene knockdown. Capsaicin-induced activation reduces food intake that is abolished by a melanocortin receptor antagonist. To selectively stimulate TRPV1-like receptor-expressing ARC POMC neurons in the ARC, we generate an adeno-associated virus serotype 5 (AAV5) carrying a Cre-dependent channelrhodopsin-2 (ChR2)-enhanced yellow fluorescent protein (eYFP) expression cassette under the control of the two neuronal POMC enhancers (nPEs). Optogenetic stimulation of TRPV1-like receptor-expressing POMC neurons decreases food intake. Hypothalamic temperature is rapidly elevated and reaches to approximately 39 °C during treadmill running. This elevation is associated with a reduction in food intake. Knockdown of the Trpv1 gene exclusively in ARC POMC neurons blocks the feeding inhibition produced by increased hypothalamic temperature. Taken together, our findings identify a melanocortinergic circuit that links acute elevations in hypothalamic temperature with acute reductions in food intake.

  15. 3′-Phosphoadenosine 5′-phosphosulfate synthase 1 (PAPSS1) knockdown sensitizes non-small cell lung cancer cells to DNA damaging agents

    PubMed Central

    Leung, Ada W. Y.; Dragowska, Wieslawa H.; Ricaurte, Daniel; Kwok, Brian; Mathew, Veena; Roosendaal, Jeroen; Ahluwalia, Amith; Warburton, Corinna; Laskin, Janessa J.; Stirling, Peter C.; Qadir, Mohammed A.; Bally, Marcel B.

    2015-01-01

    Standard treatment for advanced non-small cell lung cancer (NSCLC) with no known driver mutation is platinum-based chemotherapy, which has a response rate of only 30–33%. Through an siRNA screen, 3′-phosphoadenosine 5′-phosphosulfate (PAPS) synthase 1 (PAPSS1), an enzyme that synthesizes the biologically active form of sulfate PAPS, was identified as a novel platinum-sensitizing target in NSCLC cells. PAPSS1 knockdown in combination with low-dose (IC10) cisplatin reduces clonogenicity of NSCLC cells by 98.7% (p < 0.001), increases DNA damage, and induces G1/S phase cell cycle arrest and apoptosis. PAPSS1 silencing also sensitized NSCLC cells to other DNA crosslinking agents, radiation, and topoisomerase I inhibitors, but not topoisomerase II inhibitors. Chemo-sensitization was not observed in normal epithelial cells. Knocking out the PAPSS1 homolog did not sensitize yeast to cisplatin, suggesting that sulfate bioavailability for amino acid synthesis is not the cause of sensitization to DNA damaging agents. Rather, sensitization may be due to sulfation reactions involved in blocking the action of DNA damaging agents, facilitating DNA repair, promoting cancer cell survival under therapeutic stress or reducing the bioavailability of DNA damaging agents. Our study demonstrates for the first time that PAPSS1 could be targeted to improve the activity of multiple anticancer agents used to treat NSCLC. PMID:26220590

  16. Hypoxic Signaling and the Cellular Redox Tumor Environment Determine Sensitivity to MTH1 Inhibition.

    PubMed

    Bräutigam, Lars; Pudelko, Linda; Jemth, Ann-Sofie; Gad, Helge; Narwal, Mohit; Gustafsson, Robert; Karsten, Stella; Carreras Puigvert, Jordi; Homan, Evert; Berndt, Carsten; Berglund, Ulrika Warpman; Stenmark, Pål; Helleday, Thomas

    2016-04-15

    Cancer cells are commonly in a state of redox imbalance that drives their growth and survival. To compensate for oxidative stress induced by the tumor redox environment, cancer cells upregulate specific nononcogenic addiction enzymes, such as MTH1 (NUDT1), which detoxifies oxidized nucleotides. Here, we show that increasing oxidative stress in nonmalignant cells induced their sensitization to the effects of MTH1 inhibition, whereas decreasing oxidative pressure in cancer cells protected against inhibition. Furthermore, we purified zebrafish MTH1 and solved the crystal structure of MTH1 bound to its inhibitor, highlighting the zebrafish as a relevant tool to study MTH1 biology. Delivery of 8-oxo-dGTP and 2-OH-dATP to zebrafish embryos was highly toxic in the absence of MTH1 activity. Moreover, chemically or genetically mimicking activated hypoxia signaling in zebrafish revealed that pathologic upregulation of the HIF1α response, often observed in cancer and linked to poor prognosis, sensitized embryos to MTH1 inhibition. Using a transgenic zebrafish line, in which the cellular redox status can be monitored in vivo, we detected an increase in oxidative pressure upon activation of hypoxic signaling. Pretreatment with the antioxidant N-acetyl-L-cysteine protected embryos with activated hypoxia signaling against MTH1 inhibition, suggesting that the aberrant redox environment likely causes sensitization. In summary, MTH1 inhibition may offer a general approach to treat cancers characterized by deregulated hypoxia signaling or redox imbalance. Cancer Res; 76(8); 2366-75. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Arabidopsis Glutamate Receptor Homolog3.5 Modulates Cytosolic Ca2+ Level to Counteract Effect of Abscisic Acid in Seed Germination1[OPEN

    PubMed Central

    Kong, Dongdong; Ju, Chuanli; Parihar, Aisha; Kim, So; Cho, Daeshik; Kwak, June M.

    2015-01-01

    Seed germination is a critical step in a plant’s life cycle that allows successful propagation and is therefore strictly controlled by endogenous and environmental signals. However, the molecular mechanisms underlying germination control remain elusive. Here, we report that the Arabidopsis (Arabidopsis thaliana) glutamate receptor homolog3.5 (AtGLR3.5) is predominantly expressed in germinating seeds and increases cytosolic Ca2+ concentration that counteracts the effect of abscisic acid (ABA) to promote germination. Repression of AtGLR3.5 impairs cytosolic Ca2+ concentration elevation, significantly delays germination, and enhances ABA sensitivity in seeds, whereas overexpression of AtGLR3.5 results in earlier germination and reduced seed sensitivity to ABA. Furthermore, we show that Ca2+ suppresses the expression of ABSCISIC ACID INSENSITIVE4 (ABI4), a key transcription factor involved in ABA response in seeds, and that ABI4 plays a fundamental role in modulation of Ca2+-dependent germination. Taken together, our results provide molecular genetic evidence that AtGLR3.5-mediated Ca2+ influx stimulates seed germination by antagonizing the inhibitory effects of ABA through suppression of ABI4. These findings establish, to our knowledge, a new and pivotal role of the plant glutamate receptor homolog and Ca2+ signaling in germination control and uncover the orchestrated modulation of the AtGLR3.5-mediated Ca2+ signal and ABA signaling via ABI4 to fine-tune the crucial developmental process, germination, in Arabidopsis. PMID:25681329

  18. Temporal variations of mobile carbohydrates in Abies fargesii at the upper tree limits.

    PubMed

    Dang, H S; Zhang, K R; Zhang, Q F; Xu, Y M

    2015-01-01

    Low temperatures are associated high-altitude treelines, but the functional mechanism of treeline formation remains controversial. The relative contributions of carbon limitation (source activity) and growth limitation (sink activity) require more tests across taxa and regions. We examined temporal variations of mobile carbon supply in different tissues of Abies fargesii across treeline ecotones on north- and south-facing slopes of the Qinling Mountains, China. Non-structural carbohydrate (NSC) concentrations in tissues along the altitudinal gradient on both slopes changed significantly in the early and late growing season, but not in the mid-growing season, indicating the season-dependent carbon supply status. Late in the growing season on both slopes, trees at the upper limits had the highest NSC concentrations and total soluble sugars and lowest starch concentrations compared to trees at the lower elevations. NSC concentrations tended to increase in needles and branches throughout the growing season with increasing elevation on both slopes, but declined in roots and stems. NSC concentrations across sampling dates also indicated increases in needles and branches, and decreases in roots and stem with increasing elevation. Overall altitudinal trends of NSC in A. fargesii revealed no depletion of mobile carbon reserves at upper elevation limits, suggesting limitation of sink activity dominates tree life across treeline ecotones in both north- and south-facing slopes. Carbon reserves in storage tissues (especially roots) in the late growing season might also play an important role in winter survival and early growth in spring at upper elevations on both slopes, which define the uppermost limit of A. fargesii. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. Monitoring intra-annual dynamics of wood formation with microcores and dendrometers in Picea abies at two different altitudes.

    PubMed

    Cocozza, Claudia; Palombo, Caterina; Tognetti, Roberto; La Porta, Nicola; Anichini, Monica; Giovannelli, Alessio; Emiliani, Giovanni

    2016-07-01

    Seasonal analyses of cambial cell production and day-by-day stem radial increment can help to elucidate how climate modulates wood formation in conifers. Intra-annual dynamics of wood formation were determined with microcores and dendrometers and related to climatic signals in Norway spruce (Picea abies (L.) Karst.). The seasonal dynamics of these processes were observed at two sites of different altitude, Savignano (650 m a.s.l.) and Lavazè (1800 m a.s.l.) in the Italian Alps. Seasonal dynamics of cambial activity were found to be site specific, indicating that the phenology of cambial cell production is highly variable and plastic with altitude. There was a site-specific trend in the number of cells in the wall thickening phase, with the maximum cell production in early July (DOY 186) at Savignano and in mid-July (DOY 200) at Lavazè. The formation of mature cells showed similar trends at the two sites, although different numbers of cells and timing of cell differentiation were visible in the model shapes; at the end of ring formation in 2010, the number of cells was four times higher at Savignano (106.5 cells) than at Lavazè (26.5 cells). At low altitudes, microcores and dendrometers described the radial growth patterns comparably, though the dendrometer function underlined the higher upper asymptote of maximum growth in comparison with the cell production function. In contrast, at high altitude, these functions exhibited different trends. The best model was obtained by fitting functions of the Gompertz model to the experimental data. By combining radial growth and cambial activity indices we defined a model system able to synchronize these processes. Processes of adaptation of the pattern of xylogenesis occurred, enabling P. abies to occupy sites with contrasting climatic conditions. The use of daily climatic variables in combination with plant functional traits obtained by sensors and/or destructive sampling could provide a suitable tool to better

  20. Bifunctional cis-Abienol Synthase from Abies balsamea Discovered by Transcriptome Sequencing and Its Implications for Diterpenoid Fragrance Production*

    PubMed Central

    Zerbe, Philipp; Chiang, Angela; Yuen, Macaire; Hamberger, Björn; Hamberger, Britta; Draper, Jason A.; Britton, Robert; Bohlmann, Jörg

    2012-01-01

    The labdanoid diterpene alcohol cis-abienol is a major component of the aromatic oleoresin of balsam fir (Abies balsamea) and serves as a valuable bioproduct material for the fragrance industry. Using high-throughput 454 transcriptome sequencing and metabolite profiling of balsam fir bark tissue, we identified candidate diterpene synthase sequences for full-length cDNA cloning and functional characterization. We discovered a bifunctional class I/II cis-abienol synthase (AbCAS), along with the paralogous levopimaradiene/abietadiene synthase and isopimaradiene synthase, all of which are members of the gymnosperm-specific TPS-d subfamily. The AbCAS-catalyzed formation of cis-abienol proceeds via cyclization and hydroxylation at carbon C-8 of a postulated carbocation intermediate in the class II active site, followed by cleavage of the diphosphate group and termination of the reaction sequence without further cyclization in the class I active site. This reaction mechanism is distinct from that of synthases of the isopimaradiene- or levopimaradiene/abietadiene synthase type, which employ deprotonation reactions in the class II active site and secondary cyclizations in the class I active site, leading to tricyclic diterpenes. Comparative homology modeling suggested the active site residues Asp-348, Leu-617, Phe-696, and Gly-723 as potentially important for the specificity of AbCAS. As a class I/II bifunctional enzyme, AbCAS is a promising target for metabolic engineering of cis-abienol production. PMID:22337889

  1. Recovery of photosynthesis in 1-year-old needles of unfertilized and fertilized Norway spruce (Picea abies (L.) Karst.) during spring.

    PubMed

    Strand, M; Lundmark, T

    1995-03-01

    Photosynthetic O(2) evolution and chlorophyll a fluorescence were measured in 1-year-old needles of unfertilized and fertilized trees of Norway spruce (Picea abies (L.) Karst.) during recovery of photosynthesis from winter inhibition in northern Sweden. Measurements were made under laboratory conditions at 20 degrees C. In general, the CO(2)-saturated rate of O(2) evolution was higher in needles of fertilized trees than in needles of unfertilized trees over a wide range of incident photon flux densities. Furthermore, the maximum photochemical efficiency of photosystem (PS) II, as indicated by the ratio of variable to maximum fluorescence (F(V)/F(M)) was higher in needles of fertilized trees than in needles of unfertilized trees. The largest differences in F(V)/F(M) between the two treatments occurred before the main recovery of photosynthesis from winter inhibition in late May. The rate of O(2) evolution was higher in needles of north-facing branches than in needles of south-facing branches in the middle of May. Simultaneous measurements of O(2) exchange and chlorophyll fluorescence indicated that differences in the rate of O(2) evolution between the two treatments were paralleled by differences in the rate of PS II electron transport determined by chlorophyll fluorescence. We suggest that, during recovery of photosynthesis from winter inhibition, the balance between carbon assimilation and PS II electron transport was maintained largely by adjustments in the nonphotochemical dissipation of excitation energy within PS II.

  2. Cloud immersion alters microclimate, photosynthesis and water relations in Rhododendron catawbiense and Abies fraseri seedlings in the southern Appalachian Mountains, USA.

    PubMed

    Johnson, Daniel M; Smith, William K

    2008-03-01

    The high altitude spruce-fir (Abies fraseri (Pursh) Poiret.-Picea rubens Sarg.) forests of the southern Appalachian Mountains, USA, experience frequent cloud immersion. Recent studies indicate that cloud bases may have risen over the past 30 years, resulting in less frequent forest cloud immersion, and that further increases in cloud base height are likely in the event of continued climate warming. To assess the impact of this trend on the regeneration of high altitude spruce-fir forests and the migration of plant communities, in particular the encroachment of spruce-fir forests and Rhododendron catawbiense Michx. islands into adjacent grass bald communities, we investigated effects of cloud immersion on photosynthetic parameters of seedlings of Abies fraseri and R. catawbiense in a grass bald site and A. fraseri in a forest understory. Although photosynthetic photon flux was 4.2 to 19.4-fold greater during clear conditions, cloud immersion had no effect on photosynthesis in A. fraseri at either site, whereas it reduced photosynthesis of R. catawbiense by about 40%. However, cloud immersion increased mean leaf fluorescence by 7.1 to 12.8% in both species at both sites. Cloud immersion increased mean relative humidity from 65 to 96%, reduced transpiration by 95% and reduced mean leaf-to-air temperature difference from 6.6 to 0.5 degrees C.

  3. Genetic diversity and seed production in Santa Lucia fir (Abies bracteata),a relict of the Miocene broadleaved evergreen forest

    Treesearch

    F. Thomas Ledig; Paul D. Hodgskiss; David R. Johnson

    2006-01-01

    Santa Lucia fir (Abies bracteata), is a unique fir, the sole member of the subgenus Pseudotorreya. It is a relict of the Miocene broadleaved evergreen sclerophyll forest, and is now restricted to a highly fragmented range in the Santa Lucia Mountains of central coastal California. Expected heterozygosity for 30 isozyme loci in 18 enzyme systems...

  4. Evolutionarily conserved regulatory mechanisms of abscisic acid signaling in land plants: characterization of ABSCISIC ACID INSENSITIVE1-like type 2C protein phosphatase in the liverwort Marchantia polymorpha.

    PubMed

    Tougane, Ken; Komatsu, Kenji; Bhyan, Salma Begum; Sakata, Yoichi; Ishizaki, Kimitsune; Yamato, Katsuyuki T; Kohchi, Takayuki; Takezawa, Daisuke

    2010-03-01

    Abscisic acid (ABA) is postulated to be a ubiquitous hormone that plays a central role in seed development and responses to environmental stresses of vascular plants. However, in liverworts (Marchantiophyta), which represent the oldest extant lineage of land plants, the role of ABA has been least emphasized; thus, very little information is available on the molecular mechanisms underlying ABA responses. In this study, we isolated and characterized MpABI1, an ortholog of ABSCISIC ACID INSENSITIVE1 (ABI1), from the liverwort Marchantia polymorpha. The MpABI1 cDNA encoded a 568-amino acid protein consisting of the carboxy-terminal protein phosphatase 2C (PP2C) domain and a novel amino-terminal regulatory domain. The MpABI1 transcript was detected in the gametophyte, and its expression level was increased by exogenous ABA treatment in the gemma, whose growth was strongly inhibited by ABA. Experiments using green fluorescent protein fusion constructs indicated that MpABI1 was mainly localized in the nucleus and that its nuclear localization was directed by the amino-terminal domain. Transient overexpression of MpABI1 in M. polymorpha and Physcomitrella patens cells resulted in suppression of ABA-induced expression of the wheat Em promoter fused to the beta -glucuronidase gene. Transgenic P. patens expressing MpABI1 and its mutant construct, MpABI1-d2, lacking the amino-terminal domain, had reduced freezing and osmotic stress tolerance, and associated with reduced accumulation of ABA-induced late embryogenesis abundant-like boiling-soluble proteins. Furthermore, ABA-induced morphological changes leading to brood cells were not prominent in these transgenic plants. These results suggest that MpABI1 is a negative regulator of ABA signaling, providing unequivocal molecular evidence of PP2C-mediated ABA response mechanisms functioning in liverworts.

  5. An ABA-responsive element in the AtSUC1 promoter is involved in the regulation of AtSUC1 expression.

    PubMed

    Hoth, Stefan; Niedermeier, Matthias; Feuerstein, Andrea; Hornig, Julia; Sauer, Norbert

    2010-09-01

    Abscisic acid (ABA) and sugars regulate many aspects of plant growth and development, and we are only just beginning to understand the complex interactions between ABA and sugar signaling networks. Here, we show that ABA-dependent transcription factors bind to the promoter of the Arabidopsis thaliana AtSUC1 (At1g71880) sucrose transporter gene in vitro. We present the characterization of a cis-regulatory element by truncation of the AtSUC1 promoter and by electrophoretic mobility shift assays that is identical to a previously characterized ABA-responsive element (ABRE). In yeast 1-hybrid analyses we identified ABI5 (AtbZIP39; At2g36270) and AREB3 (AtbZIP66; At3g56850) as potential interactors. Analyses of plants expressing the beta-glucuronidase reporter gene under the control of ABI5 or AREB3 promoter sequences demonstrated that both transcription factor genes are co-expressed with AtSUC1 in pollen and seedlings, the primary sites of AtSUC1 action. Mutational analyses of the identified cis-regulatory element verified its importance for AtSUC1 expression in young seedlings. In abi5-4 seedlings, we observed an increase of sucrose-dependent anthocyanin accumulation and AtSUC1 mRNA levels. This suggests that ABI5 prevents an overshoot of sucrose-induced AtSUC1 expression and confirmed a novel cross-link between sugar and ABA signaling.

  6. A chloroplast retrograde signal, 3'-phosphoadenosine 5'-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination.

    PubMed

    Pornsiriwong, Wannarat; Estavillo, Gonzalo M; Chan, Kai Xun; Tee, Estee E; Ganguly, Diep; Crisp, Peter A; Phua, Su Yin; Zhao, Chenchen; Qiu, Jiaen; Park, Jiyoung; Yong, Miing Tiem; Nisar, Nazia; Yadav, Arun Kumar; Schwessinger, Benjamin; Rathjen, John; Cazzonelli, Christopher I; Wilson, Philippa B; Gilliham, Matthew; Chen, Zhong-Hua; Pogson, Barry J

    2017-03-21

    Organelle-nuclear retrograde signaling regulates gene expression, but its roles in specialized cells and integration with hormonal signaling remain enigmatic. Here we show that the SAL1-PAP (3'-phosphoadenosine 5'- phosphate) retrograde pathway interacts with abscisic acid (ABA) signaling to regulate stomatal closure and seed germination in Arabidopsis . Genetically or exogenously manipulating PAP bypasses the canonical signaling components ABA Insensitive 1 (ABI1) and Open Stomata 1 (OST1); priming an alternative pathway that restores ABA-responsive gene expression, ROS bursts, ion channel function, stomatal closure and drought tolerance in ost1 -2. PAP also inhibits wild type and abi1 -1 seed germination by enhancing ABA sensitivity. PAP-XRN signaling interacts with ABA, ROS and Ca 2+ ; up-regulating multiple ABA signaling components, including lowly-expressed Calcium Dependent Protein Kinases (CDPKs) capable of activating the anion channel SLAC1. Thus, PAP exhibits many secondary messenger attributes and exemplifies how retrograde signals can have broader roles in hormone signaling, allowing chloroplasts to fine-tune physiological responses.

  7. Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient.

    PubMed Central

    Howden, R; Goldsbrough, P B; Andersen, C R; Cobbett, C S

    1995-01-01

    An allelic series of cad1, cadmium-sensitive mutants of Arabidopsis thaliana, was isolated. These mutants were sensitive to cadmium to different extents and were deficient in their ability to form cadmium-peptide complexes as detected by gel-filtration chromatography. Each mutant was deficient in its ability to accumulate phytochelatins (PCs) as detected by high-performance liquid chromatography and the amount of PCs accumulated by each mutant correlated with its degree of sensitivity to cadmium. The mutants had wild-type levels of glutathione, the substrate for PC biosynthesis, and in vitro assays demonstrated that each of the mutants was deficient in PC synthase activity. These results demonstrate conclusively the importance of PCs for cadmium tolerance in plants. PMID:7770517

  8. Perceptual Learning Improves Contrast Sensitivity of V1 Neurons in Cats

    PubMed Central

    Hua, Tianmiao; Bao, Pinglei; Huang, Chang-Bing; Wang, Zhenhua; Xu, Jinwang

    2010-01-01

    Summary Background Perceptual learning has been documented in adult humans over a wide range of tasks. Although the often observed specificity of learning is generally interpreted as evidence for training-induced plasticity in early cortical areas, physiological evidence for training-induced changes in early visual cortical areas is modest, despite reports of learning-induced changes of cortical activities in fMRI studies. To reveal the physiological bases of perceptual learning, we combined psychophysical measurements with extracellular single-unit recording under anesthetized preparations, and examined the effects of training in grating orientation identification on both perceptual and neuronal contrast sensitivity functions of cats. Results We have found that training significantly improved perceptual contrast sensitivity of the cats to gratings with the spatial frequencies near the ‘trained’ spatial frequency, with stronger effects in the trained eye. Consistent with behavioral assessments, the mean contrast sensitivity of neurons recorded from V1 of the trained cats was significantly higher than that of neurons recorded from the untrained cats. Furthermore, in the trained cats, the contrast sensitivity of V1 neurons responding preferentially to stimuli presented via the trained eyes was significantly greater than that of neurons responding preferentially to stimuli presented via the ‘untrained’ eyes. The effect was confined to the trained spatial frequencies. In both trained and untrained cats, the neuronal contrast sensitivity functions derived from the contrast sensitivity of the individual neurons were highly correlated with behaviorally determined perceptual contrast sensitivity functions. Conclusions We suggest that training-induced neuronal contrast-gain in area V1 underlies behaviorally determined perceptual contrast sensitivity improvements. PMID:20451388

  9. Sensitive electrochemical assaying of DNA methyltransferase activity based on mimic-hybridization chain reaction amplified strategy.

    PubMed

    Zhang, Linqun; Liu, Yuanjian; Li, Ying; Zhao, Yuewu; Wei, Wei; Liu, Songqin

    2016-08-24

    A mimic-hybridization chain reaction (mimic-HCR) amplified strategy was proposed for sensitive electrochemically detection of DNA methylation and methyltransferase (MTase) activity In the presence of methylated DNA, DNA-gold nanoparticles (DNA-AuNPs) were captured on the electrode by sandwich-type assembly. It then triggered mimic-HCR of two hairpin probes to produce many long double-helix chains for numerous hexaammineruthenium (III) chloride ([Ru(NH3)6](3+), RuHex) inserting. As a result, the signal for electrochemically detection of DNA MTase activity could be amplified. If DNA was non-methylated, however, the sandwich-type assembly would not form because the short double-stranded DNAs (dsDNA) on the Au electrode could be cleaved and digested by restriction endonuclease HpaII (HapII) and exonuclease III (Exo III), resulting in the signal decrement. Based on this, an electrochemical approach for detection of M.SssI MTase activity with high sensitivity was developed. The linear range for M.SssI MTase activity was from 0.05 U mL(-1) to 10 U mL(-1), with a detection limit down to 0.03 U mL(-1). Moreover, this detecting strategy held great promise as an easy-to-use and highly sensitive method for other MTase activity and inhibition detection by exchanging the corresponding DNA sequence. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. myMoves Program: Feasibility and Acceptability Study of a Remotely Delivered Self-Management Program for Increasing Physical Activity Among Adults With Acquired Brain Injury Living in the Community.

    PubMed

    Jones, Taryn M; Dear, Blake F; Hush, Julia M; Titov, Nickolai; Dean, Catherine M

    2016-12-01

    People living with acquired brain injury (ABI) are more likely to be physically inactive and highly sedentary and, therefore, to have increased risks of morbidity and mortality. However, many adults with ABI experience barriers to participation in effective physical activity interventions. Remotely delivered self-management programs focused on teaching patients how to improve and maintain their physical activity levels have the potential to improve the overall health of adults with ABI. The study objective was to evaluate the acceptability and feasibility of a remotely delivered self-management program aimed at increasing physical activity among adults who dwell in the community and have ABI. A single-group design involving comparison of baseline measures with those taken immediately after intervention and at a 3-month follow-up was used in this study. The myMoves Program comprises 6 modules delivered over 8 weeks via email. Participants were provided with regular weekly contact with an experienced physical therapist via email and telephone. The primary outcomes were the feasibility (participation, attrition, clinician time, accessibility, and adverse events) and acceptability (satisfaction, worthiness of time, and recommendation) of the myMoves Program. The secondary outcomes were objective physical activity data collected from accelerometers, physical activity self-efficacy, psychological distress, and participation. Twenty-four participants commenced the program (20 with stroke, 4 with traumatic injury), and outcomes were collected for 23 and 22 participants immediately after the program and at a 3-month follow-up, respectively. The program required very little clinician contact time, with an average of 32.8 minutes (SD=22.8) per participant during the 8-week program. Acceptability was very high, with more than 95% of participants being either very satisfied or satisfied with the myMoves Program and stating that it was worth their time. All participants stated

  11. Parameters Influencing Tracheostomy Decannulation in Patients Undergoing Rehabilitation after severe Acquired Brain Injury (sABI).

    PubMed

    Perin, Cecilia; Meroni, Roberto; Rega, Vincenzo; Braghetto, Giacomo; Cerri, Cesare Giuseppe

    2017-10-01

    Introduction  Tracheostomy weaning in patients who suffered a severe acquired brain injury is often a challenge and decannulation failures are not uncommon. Objective  Our study objective is to describe the decannulation failure rate in patients undergoing rehabilitation following a severe acquired brain injury (sABI); to describe the factors associated with a successful tube weaning. Methods  We conduct a retrospective analysis of charts, consecutively retrieved considering a 3-year window. Variables analyzed were: age, sex, body mass index (BMI), Glasgow Coma Scale (GCS), cause of hospitalization (stroke, trauma, cardiac arrest), date of the pathological event, gap between the index event and the first day of hospitalization, duration of Neurorehabilitation Ward hospitalization, comorbidities, chest morphological alteration, kind of tracheostomy tube used (overall dimension, cap, fenestration), SpO2, presentation and quantification of pulmonary secretion, maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP), respiratory frequency and pattern, cardiac frequency, presence of spontaneous cough, cough strength, and blood gas analysis. Results  We analyzed 45 tracheostomised sABI patients following stroke, trauma, or cardiac arrest. The weaning success percentage was higher in Head Trauma patients and in patients presenting positive spontaneous cough. Failures seem to be associated with presence of secretions and anoxic brain damage. GCS seemed not related to the decannulation outcome. Conclusions  Parameters that could be used as positive predictors of weaning are: mean expiratory pressure, presence of spontaneous cough, and cough strength. Provoked cough and GCS were not predictive of weaning success.

  12. Wheel-running mitigates psychomotor sensitization initiation but not post-sensitization conditioned activity and conditioned place preference induced by cocaine in mice.

    PubMed

    Geuzaine, Annabelle; Tirelli, Ezio

    2014-04-01

    Previous literature suggests that physical exercise allowed by an unlimited access to a running wheel for several weeks can mitigate chronic neurobehavioral responsiveness to several addictive drugs in rodents. Here, the potential preventive effects of unlimited wheel-running on the initiation of psychomotor sensitization and the acquisition and extinction of conditioned place preference (CPP) induced by 10 mg/kg cocaine in C56BL/6J mice were assessed in two independent experiments. To this end, half of the mice were singly housed with a running wheel at 28 days of age for 10 weeks prior to psychopharmacological tests, during which housing conditions did not change, and the other half of mice were housed without running wheel. In Experiment 1, prior to initiating sensitization, psychomotor activity on the two first drug-free once-daily sessions was not affected by wheel-running. This was also found for the acute psychomotor-activating effect of cocaine on the first sensitization session. Psychomotor sensitization readily developed over the 9 following once-daily sessions in mice housed without wheel, whereas it was inhibited in mice housed with a wheel. However, that difference did not transfer to post-sensitization conditioned activity. In contrast with the sensitization results, mice housed with a wheel still expressed a clear-cut CPP which did not extinguish differently from that of the other group, a result in disaccord with previous studies reporting either an attenuating or an increasing effect of wheel-running on cocaine-induced conditioned reward. The available results together indicate that interactions between wheel-running and cocaine effects are far from being satisfactorily characterized. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Gonadotropin-Releasing Hormone Pulse Sensitivity of Follicle-Stimulating Hormone-β Gene Is Mediated by Differential Expression of Positive Regulatory Activator Protein 1 Factors and Corepressors SKIL and TGIF1

    PubMed Central

    Mistry, Devendra S.; Tsutsumi, Rie; Fernandez, Marina; Sharma, Shweta; Cardenas, Steven A.; Lawson, Mark A.

    2011-01-01

    Gonadotropin synthesis and release is dependent on pulsatile stimulation by the hypothalamic neuropeptide GnRH. Generally, slow GnRH pulses promote FSH production, whereas rapid pulses favor LH, but the molecular mechanism underlying this pulse sensitivity is poorly understood. In this study, we developed and tested a model for FSHβ regulation in mouse LβT2 gonadotropes. By mining a previous microarray data set, we found that mRNA for positive regulators of Fshb expression, such as Fos and Jun, were up-regulated at slower pulse frequencies than a number of potential negative regulators, such as the corepressors Skil, Crem, and Tgif1. These latter corepressors reduced Fshb promoter activity whether driven by transfection of individual transcription factors or by treatment with GnRH and activin. Overexpression of binding or phosphorylation-defective ski-oncogene-like protein (SKIL) and TG interacting factor (TGIF1) mutants, however, failed to repress Fshb promoter activity. Knockdown of the endogenous repressors SKIL and TGIF1, but not cAMP response element-modulator, increased Fshb promoter activity driven by constant GnRH or activin. Chromatin immunoprecipitation analysis showed that FOS, SKIL, and TGIF1 occupy the FSHβ promoter in a cyclical manner after GnRH stimulation. Overexpression of corepressors SKIL or TGIF1 repressed induction of the Fshb promoter at the slow GnRH pulse frequency but had little effect at the fast pulse frequency. In contrast, knockdown of endogenous SKIL or TGIF1 selectively increased Fshb mRNA at the fast GnRH pulse frequency. Therefore, we propose a potential mechanism by which production of gonadotropin Fshb is modulated by positive transcription factors and negative corepressors with different pulse sensitivities. PMID:21659477

  14. Zinc activates damage-sensing TRPA1 ion channels.

    PubMed

    Hu, Hongzhen; Bandell, Michael; Petrus, Matt J; Zhu, Michael X; Patapoutian, Ardem

    2009-03-01

    Zinc is an essential biological trace element. It is required for the structure or function of over 300 proteins, and it is increasingly recognized for its role in cell signaling. However, high concentrations of zinc have cytotoxic effects, and overexposure to zinc can cause pain and inflammation through unknown mechanisms. Here we show that zinc excites nociceptive somatosensory neurons and causes nociception in mice through TRPA1, a cation channel previously shown to mediate the pungency of wasabi and cinnamon through cysteine modification. Zinc activates TRPA1 through a unique mechanism that requires zinc influx through TRPA1 channels and subsequent activation via specific intracellular cysteine and histidine residues. TRPA1 is highly sensitive to intracellular zinc, as low nanomolar concentrations activate TRPA1 and modulate its sensitivity. These findings identify TRPA1 as an important target for the sensory effects of zinc and support an emerging role for zinc as a signaling molecule that can modulate sensory transmission.

  15. Accuracy of the WatchBP office ABI device for office blood pressure measurement over a wide range of arm sizes.

    PubMed

    Palatini, Paolo; Fania, Claudio; Gasparotti, Federica

    2018-04-01

    The aim of this study was to determine the accuracy of the WatchBP Office ABI monitor for office blood pressure measurement over a wide range of arm circumferences using the ANSI/AAMI/ISO 81060-2:2013 protocol. The device accuracy was tested in 88 participants whose mean±SD age was 54.5±17.6 years, whose arm circumference was 30.6±8.3 cm (range: 15-46 cm), and whose entry blood pressure (BP) was 138.3±23.4 mmHg for systolic and 83.7±14.6 mmHg for diastolic BP. Four cuffs (small, standard, large, and extra-large) suitable for arm circumferences ranging from 14.0 to 52.0 cm were used. The mean device-observer difference in the 264 separate BP data pairs was 0.7±3.8 mmHg for systolic BP and was 0.0±3.7 mmHg for diastolic BP. These data were in agreement with criterion 1 of the ANSI/AAMI/ISO 81060-2:2013 standard requirements (≤5±8 mmHg). Moreover, criterion 2 was satisfied, the mean±SD device-observer difference of the 88 participants being 0.7±3.1 and 0.0±3.2 mmHg, respectively, for systolic and diastolic BP. Good agreement between observer and device was present across the whole range of arm circumferences. These data show that the Microlife WatchBP Office ABI monitor satisfied the ANSI/AAMI/ISO 81060-2:2013 standard requirements across a wide range of arm sizes.

  16. Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice.

    PubMed

    Takikawa, Masahito; Inoue, Seiya; Horio, Fumihiko; Tsuda, Takanori

    2010-03-01

    Blueberries or bilberries contain large amounts of anthocyanins, making them one of the richest sources of dietary anthocyanin. These berries are widely consumed as fresh and dried fruits, jams, or juices. Considerable attention has been focused on the health benefits of bilberry fruits beyond their antioxidant content or their ability to improve vision. In this study, we tested the effect of dietary bilberry extract (BBE) on hyperglycemia and insulin sensitivity in type 2 diabetic mice. We found that dietary BBE ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase (AMPK). Dietary BBE significantly reduced the blood glucose concentration and enhanced insulin sensitivity. AMPK was activated in white adipose tissue (WAT), skeletal muscle, and the liver of diabetic mice fed BBE. This activation was accompanied by upregulation of glucose transporter 4 in WAT and skeletal muscle and suppression of glucose production and lipid content in the liver. At the same time, acetyl-CoA carboxylase was inactivated and PPARalpha, acyl-CoA oxidase, and carnitine palmitoyltransferase-1A were upregulated in the liver. These changes resulted in improved hyperglycemia and insulin sensitivity in type 2 diabetes. These findings provide a biochemical basis for the use of bilberry fruits and have important implications for the prevention and treatment of type 2 diabetes via activation of AMPK.

  17. The Timing of Noise-Sensitive Activities in Residential Areas

    NASA Technical Reports Server (NTRS)

    Fields, J. M.

    1985-01-01

    Data from a nationally representative survey of time use was analyzed to provide estimates of the percentage of the population which is engaged in noise sensitive activities during each hour of the day on weekdays, Fridays, Saturdays and Sundays. Estimates are provided of the percentage engaged in aural communication activities at home, sleeping at home, or simply at home. The day can be roughly divided into four noise sensitivity periods consisting of two relatively steady state periods, night and day and the early morning and evening transition periods. Weekends differ from weekdays in that the morning transition period is one hour later and the numbers of people engaged in aural communication during the day at home are approximately one-half to three-quarters greater. The extent and timing of noise sensitive activities was found to be similiar for all parts of the United States, for different sizes of urban areas, and for the three seasons surveyed (September through May). The timing of activity periods does not differ greatly by sex or age even though women and people over 65 are much more likely to be at home during the daytime.

  18. Alpha1-adrenergic drugs affect the development and expression of ethanol-induced behavioral sensitization.

    PubMed

    Kim, Andrezza Kyunmi; Souza-Formigoni, Maria Lucia Oliveira

    2013-11-01

    According to the incentive sensitization theory, addiction is caused primarily by drug-induced sensitization in the brain mesocorticolimbic systems. After repeated ethanol administration, some animals develop psychomotor sensitization, a phenomenon which occurs simultaneously with the incentive sensitization. Recent evidence suggests the involvement of norepinephrine (NE) in drug addiction, with a critical role in the ethanol reinforcing properties. In this study we evaluated the influence of an agonist (phenylephrine) and an antagonist (prazosin) of alpha1-adrenergic receptors on the development and expression of behavioral sensitization to ethanol. Male Swiss mice, previously treated with ethanol or saline, were challenged with the combined administration of ethanol (or saline) with alpha1-adrenergic drugs. Prazosin (0.1; 0.5 and 1.0 mg/kg) and phenylephrine (1.0 and 2.0 mg/kg) administration blocked the expression of behavioral sensitization to ethanol. In another set of experiments, mice treated with 0.5mg/kg of prazosin+ethanol did not present the development of behavioral sensitization. However, when challenged with ethanol alone, they showed the same sensitized levels of locomotor activity of those presented by mice previously treated with ethanol and saline. Phenylephrine (1.0 mg/kg) treatment did not affect the development of behavioral sensitization. Based on this data, we concluded that the alteration of alpha1-adrenergic receptors functioning, by the administration agonists or antagonists, affected the locomotor sensitization to the stimulant effect of ethanol, suggesting that the normal functioning of the noradrenergic system is essential to its development and expression. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Diameter-Sensitive Breakdown of Single-Walled Carbon Nanotubes upon KOH Activation.

    PubMed

    Ye, Jianglin; Wu, Shuilin; Ni, Kun; Tan, Ziqi; Xu, Jin; Tao, Zhuchen; Zhu, Yanwu

    2017-07-19

    While potassium hydroxide (KOH) activation has been used to create pores in carbon nanotubes (CNTs) for improved energy-storage performance, the KOH activation mechanism of CNTs has been rarely investigated. In this work, the reaction between single-walled CNTs (SWCNTs) and KOH is studied in situ by thermogravimetric analysis coupled to infrared (IR) spectroscopy and gas chromatography/mass spectrometry (MS). The IR and MS results clearly demonstrate the sequential evolution of CO, hydrocarbons, CO 2 , and H 2 O in the activation process. By using the radial breathing mode of Raman spectroscopy, a diameter-sensitive selectivity is observed in the reaction between SWCNTs and KOH, leading to a preferential distribution of SWCNTs with diameters larger than 1 nm after activation at 900 °C and a preferential removal of SWCNTs with diameters below 1 nm upon activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Inferior frontal cortex activity is modulated by reward sensitivity and performance variability.

    PubMed

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Costumero, Víctor; Ventura-Campos, Noelia; Bustamante, Juan Carlos; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2016-02-01

    High reward sensitivity has been linked with motivational and cognitive disorders related with prefrontal and striatal brain function during inhibitory control. However, few studies have analyzed the interaction among reward sensitivity, task performance and neural activity. Participants (N=57) underwent fMRI while performing a Go/No-go task with Frequent-go (77.5%), Infrequent-go (11.25%) and No-go (11.25%) stimuli. Task-associated activity was found in inhibition-related brain regions, with different activity patterns for right and left inferior frontal gyri (IFG): right IFG responded more strongly to No-go stimuli, while left IFG responded similarly to all infrequent stimuli. Reward sensitivity correlated with omission errors in Go trials and reaction time (RT) variability, and with increased activity in right and left IFG for No-go and Infrequent-go stimuli compared with Frequent-go. Bilateral IFG activity was associated with RT variability, with reward sensitivity mediating this association. These results suggest that reward sensitivity modulates behavior and brain function during executive control. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. ABSCISIC ACID INSENSITIVE3 Is Involved in Cold Response and Freezing Tolerance Regulation in Physcomitrella patens.

    PubMed

    Tan, Tinghong; Sun, Yanni; Peng, Xingji; Wu, Guochun; Bao, Fang; He, Yikun; Zhou, Huapeng; Lin, Honghui

    2017-01-01

      Synopsis This work demonstrates that PpABI3 contributes to freezing tolerance regulation in Physcomitrella patens. Transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3) is known to play a major role in regulating seed dormancy, germination, seedling development as well as stress responses. ABI3 is conserved among land plants; however, its roles in non-seed plants under stress conditions have not been well characterized. In this study, we report that ABI3 is involved in freezing tolerance regulation during cold acclimation at least in part through ABA signaling pathway in moss Physcomitrella patens ( P. patens ). Deletion of PpABI3 (Δ abi3-1 ) compromises the induction of genes related to cold response and antioxidative protection, resulting in reduced accumulation of cryoprotectants and antioxidants. In addition, photosystem II (PSII) activity is repressed in Δ abi3-1 during cold acclimation partially due to alternations of photosynthetic protein complexes compositions. The gametophyte of Δ abi3-1 displays severe growth inhibition and developmental deficiency under low temperature condition, while two independent complementary lines display phenotypes similar to that of wild-type P. patens (WT). Furthermore, the freezing tolerance of Δ abi3-1 was significantly affected by deletion of PpABI3 . These data revealed that PpABI3 plays an important role in low temperature response and freezing tolerance in P. patens .

  2. mTOR inhibition sensitizes ONC201-induced anti-colorectal cancer cell activity.

    PubMed

    Jin, Zhe-Zhu; Wang, Wei; Fang, Di-Long; Jin, Yong-Jun

    2016-09-30

    We here tested the anti-colorectal cancer (CRC) activity by a first-in-class small molecule TRAIL inducer ONC201. The potential effect of mTOR on ONC201's actions was also examined. ONC201 induced moderate cytotoxicity against CRC cell lines (HT-29, HCT-116 and DLD-1) and primary human CRC cells. Significantly, AZD-8055, a mTOR kinase inhibitor, sensitized ONC201-induced cytotoxicity in CRC cells. Meanwhile, ONC201-induced TRAIL/death receptor-5 (DR-5) expression, caspase-8 activation and CRC cell apoptosis were also potentiated with AZD-8055 co-treatment. Reversely, TRAIL sequestering antibody RIK-2 or the caspase-8 specific inhibitor z-IETD-fmk attenuated AZD-8055 plus ONC201-induced CRC cell death. Further, mTOR kinase-dead mutation (Asp-2338-Ala) or shRNA knockdown significantly sensitized ONC201's activity in CRC cells, leading to profound cell death and apoptosis. On the other hand, expression of a constitutively-active S6K1 (T389E) attenuated ONC201-induced CRC cell apoptosis. For the mechanism study, we showed that ONC201 blocked Akt, but only slightly inhibited mTOR in CRC cells. Co-treatment with AZD-8055 also concurrently blocked mTOR activation. These results suggest that mTOR could be a primary resistance factor of ONC201 in CRC cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The effects of physical activity on impulsive choice: Influence of sensitivity to reinforcement amount and delay

    PubMed Central

    Strickland, Justin C.; Feinstein, Max A.; Lacy, Ryan T.; Smith, Mark A.

    2016-01-01

    Impulsive choice is a diagnostic feature and/or complicating factor for several psychological disorders and may be examined in the laboratory using delay-discounting procedures. Recent investigators have proposed using quantitative measures of analysis to examine the behavioral processes contributing to impulsive choice. The purpose of this study was to examine the effects of physical activity (i.e., wheel running) on impulsive choice in a single-response, discrete-trial procedure using two quantitative methods of analysis. To this end, rats were assigned to physical activity or sedentary groups and trained to respond in a delay-discounting procedure. In this procedure, one lever always produced one food pellet immediately, whereas a second lever produced three food pellets after a 0, 10, 20, 40, or 80-second delay. Estimates of sensitivity to reinforcement amount and sensitivity to reinforcement delay were determined using (1) a simple linear analysis and (2) an analysis of logarithmically transformed response ratios. Both analyses revealed that physical activity decreased sensitivity to reinforcement amount and sensitivity to reinforcement delay. These findings indicate that (1) physical activity has significant but functionally opposing effects on the behavioral processes that contribute to impulsive choice and (2) both quantitative methods of analysis are appropriate for use in single-response, discrete-trial procedures. PMID:26964905

  4. Adjustment of the evoked response sensitivity after hospital discharge in pacemaker patients with automatic ventricular threshold tracking activated.

    PubMed

    Schuchert, A; Ventura, R; Meinertz, T

    2001-02-01

    Automatic threshold tracking in cardiac pacemakers allows ventricular capture verification and self-adaptive pacing output regulation. The Autocapture algorithm detects the evoked response (ER) signal immediately after the pacing pulse to verify the efficacy of ventricular pacing. Before hospital delivery, the ER sensitivity must be programmed individually so that the pacemaker detects the ER signal adequately without sensing lead polarization. The aims of the study were to assess the frequency of patients in whom Autocapture could be activated and whether the ER sensitivity had to be adjusted after hospital discharge. The study included 44 patients who received the VVIR pacemaker Regency SR+ (St. Jude Medical) connected to the model 1450 T pacing lead. ER signal, lead polarization, and ER sensitivity were evaluated before hospital discharge and 1, 3, and 6 months after implantation. The system recommended activating Autocapture in 42 of 44 patients. The mean ER signal was 8.4+/-1.2 mV at discharge, 9.0+/-3.9 mV at month 1, 8.9+/-4.9 mV at month 3, and 9.3+/-4.5 mV at month 6. Polarization was 1.0+/-0.1 mV at discharge, 1.1+/-0.5 mV at month 1, 1.1+/-0.2 mV at month 3, and 1.1+/-0.5 mV at month 6. Mean ER sensitivity was 3.7+/-1.8 mV at discharge, 4.0+/-1.8 mV after 1, 4.1+/-2.2 mV after 3, and 4.1+/-1.8 mV after 6 months. ER sensitivity could remain unadjusted in 14 patients. Programming to a less sensitive ER setting from 2.9+/-1.2 mV to 4.3+/-1.5 mV was possible in 21 patients. Programming to a more sensitive ER setting from 4.1+/-1.1 mV to 2.5+/-0.9 mV was required in nine patients because of the decrease of the ER signal. The automatic threshold tracking algorithm Autocapture could be activated in 95% of patients. Programming to more sensitive ER settings was recommended in 21% of the patients after hospital discharge. Therefore, ER signal and polarization must be checked at each follow-up, as a decrease in ER signal amplitude can make reprogramming of the ER

  5. Infrared snake eyes: TRPA1 and the thermal sensitivity of the snake pit organ.

    PubMed

    Panzano, Vincent C; Kang, Kyeongjin; Garrity, Paul A

    2010-06-22

    The pit organs of pit vipers, pythons, and boas are remarkable sensory devices that allow these snakes to detect infrared radiation emitted by warm-blooded prey. It has been theorized that this capacity reflects the pit organ's exceptional sensitivity to subtle fluctuations in temperature, but the molecules responsible for this extreme thermal resolution have been unknown. New evidence shows that pit organs respond to temperature using the warmth-activated cation channel TRPA1 (transient receptor potential ankyrin 1), a finding that provides a first glimpse of the underlying molecular hardware. The properties of these snake TRPA1s raise intriguing questions about the mechanisms responsible for the exceptional sensitivity of many biological thermoreceptors and about the evolutionary origins of these warmth-activated TRP channels.

  6. AKAP150 mediates TRPV1 sensitivity to phosphatidylinositol-4, 5-bisphosphate

    PubMed Central

    Jeske, Nathaniel A.; Por, Elaine D.; Belugin, Sergei; Chaudhury, Sraboni; Berg, Kelly A.; Akopian, Armen N.; Henry, Michael A.; Gomez, Ruben

    2011-01-01

    A-kinase anchoring protein 150 (AKAP150) is a scaffolding protein that controls protein kinase A- and C-mediated phosphorylation of the transient receptor potential family V type 1 (TRPV1), dictating receptor response to nociceptive stimuli. The phospholipid phosphatidylinositol-4,5-bisphosphate (PIP2) anchors AKAP150 to the plasma membrane in naïve conditions, and also affects TRPV1 activity. In the present study, we sought to determine whether the effects of PIP2 on TRPV1 are mediated through AKAP150. In trigeminal neurons and CHO cells, the manipulation of cellular PIP2 led to significant changes in the association of AKAP150 and TRPV1. Following PIP2 degradation, increased TRPV1:AKAP150 co-immunoprecipitation was observed, resulting in increased receptor response to capsaicin treatment. Phospholipase C activation in neurons isolated from AKAP150−/− animals indicated that PIP2 -mediated inhibition of TRPV1 in the whole cell environment requires expression of the scaffolding protein. Furthermore, the addition of PIP2 to neurons isolated from AKAP150 wild-type mice reduced PKA-sensitization of TRPV1 compared to isolated neurons from AKAP150−/− mice. These findings suggest that PIP2 degradation increases AKAP150 association with TRPV1 in the whole cell environment, leading to sensitization of the receptor to nociceptive stimuli. PMID:21653872

  7. Complement activation and liver impairment in trichloroethylene-sensitized BALB/c mice.

    PubMed

    Zhang, Jiaxiang; Zha, Wansheng; Wang, Feng; Jiang, Tao; Xu, Shuhai; Yu, Junfeng; Zhou, Chengfan; Shen, Tong; Wu, Changhao; Zhu, Qixing

    2013-01-01

    Our recent studies have shown that trichloroethylene (TCE) was able to induce multisystem injuries in the form of occupational medicamentosa-like dermatitis, including skin, kidney, and liver damages. However, the role of complement activation in the immune-mediated liver injury is not known. This study examined the role of complement activation in the liver injury in a mouse model of TCE-induced sensitization. Treatment of female BALB/c mice with TCE under specific dosing protocols resulted in skin inflammation and sensitization. Skin edema and erythema occurred in TCE-sensitized groups. Trichloroethylene sensitization produced liver histopathological lesions, increased serum alanine aminotransferase, aspartate transaminase activities, and the relative liver weight. The concentrations of serum complement components C3a-desArg, C5a-desArg, and C5b-9 were significantly increased in 24-hour, 48-hour, and 72-hour sensitization-positive groups treated with TCE and peaked in the 72-hour sensitization-positive group. Depositions of C3a, C5a, and C5b-9 into the liver tissue were also revealed by immunohistochemistry. Immunofluorescence further verified high C5b-9 expression in 24-hour, 48-hour, and 72-hour sensitization-positive groups in response to TCE treatment. Reverse transcription-polymerase chain reaction detected C3 messenger RNA expression in the liver, and this was significantly increased in 24-hour and 48-hour sensitization-positive groups with a transient reduction at 72 hours. These results provide the first experimental evidence that complement activation may play a key role in the generation and progression of immune-mediated hepatic injury by exposure to TCE.

  8. Can we measure the ankle-brachial index using only a stethoscope? A pilot study.

    PubMed

    Carmo, G A L; Mandil, A; Nascimento, B R; Arantes, B D; Bittencourt, J C; Falqueto, E B; Ribeiro, A L

    2009-02-01

    Ankle-brachial index (ABI) is an excellent method for the diagnosis of peripheral arterial disease (PAD) when it is performed with Doppler. However, this device is not always available for primary care physicians. The ABI measured with stethoscope is an easy alternative approach, but have not been proved to be useful. To assess the accuracy of the ABI measured using a stethoscope comparatively to that of the current eligible method for the diagnosis of PAD, the Doppler ABI, and describe the characteristics of this new approach. We conducted a diagnostic study of ABI measured with a stethoscope and a Doppler probe and compared the results. Eighty-eight patients were accessed by both methods. Mean stethoscope ABI, 1.01 +/- 0.15, and mean Doppler ABI, 1.03 +/- 0.20, (P = 0.047) displayed a good correlation. Measurements of stethoscope ABI diagnostic accuracy in recognizing a Doppler ABI are described. The comparison of this data with the current gold standard method results gave a sensitivity of 71.4% [95% confidence interval (CI), 41.9-91.6] and specificity of 91.0% (95% CI, 81.5-96.6), with predictive positive value of 62.5% (95% CI, 38.6-81.5) and negative predictive value of 93.8% (95% CI, 85.2-97.6). The study accuracy was 87.7%. The area under the ROC curve was 0.895 (95% CI, 0.804-0.986, P < 0.0001). According to our study, the stethoscope ABI is a useful method to detect PAD and it may be suitable for its screening in the primary care setting.

  9. [The relationship between physical activity in leasure time and the ankle-brachial index in a general Spanish population: The ARTPER study].

    PubMed

    Ruiz Comellas, Anna; Pera, Guillem; Baena Díez, José Miguel; Heras, Antonio; Alzamora Sas, Maria Teresa; Forés Raurell, Rosa; Torán Monserrat, Pere; Mundet Tudurí, Xavier

    2015-11-20

    High levels of daily physical activity have been shown to be linked to decreased functional impairment in peripheral artery disease (PAD) patients and positively related to the ankle brachial index (ABI) in subjects without PAD. The aim of this study was to examine the relationship between leisure time physical activity (LTPA) and the ABI in a general population. Baseline data from the ARTPER study cohort corresponding to 2,840 subjects>49 years from Barcelona were analyzed. The LTPA variable was obtained through the validated Spanish short version of the Minnesota Leisure Time Physical Activity Questionnaire. ABI<0.9 was taken to indicate PAD. Multivariate logistic regression analysis was performed to evaluate the independent association between LTPA and PAD. Subjects with more LTPA were younger, female, less smokers, and suffered fewer PAD. Total activity, measured in metabolic energy turnover (MET) and the LTPA hours, was significantly higher in subjects without PAD (P<.001). There was an inverse relationship between LTPA and the risk of suffering PAD (odds ratio 0.56, 95% confidence interval 0.38-0.81 for those who expended 2,700 METs or more in 14 days) adjusting for confounding factors. In our study, LTPA was positively related to the ABI, with those with PAD being the ones with less LTPA. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  10. DJ-1/Park7 Sensitive Na+ /H+ Exchanger 1 (NHE1) in CD4+ T Cells.

    PubMed

    Zhou, Yuetao; Shi, Xiaolong; Chen, Hong; Zhang, Shaqiu; Salker, Madhuri S; Mack, Andreas F; Föller, Michael; Mak, Tak W; Singh, Yogesh; Lang, Florian

    2017-11-01

    DJ-1/Park7 is a redox-sensitive chaperone protein counteracting oxidation and presumably contributing to the control of oxidative stress responses and thus inflammation. DJ-1 gene deletion exacerbates the progression of Parkinson's disease presumably by augmenting oxidative stress. Formation of reactive oxygen species (ROS) is paralleled by activation of the Na + /H + exchanger 1 (NHE1). ROS formation in CD4 + T cells plays a decisive role in regulating inflammatory responses. In the present study, we explored whether DJ-1 is expressed in CD4 + T cells, and affects ROS production as well as NHE1 in those cells. To this end, DJ-1 and NHE1 transcript, and protein levels were quantified by qRT-PCR and Western blotting, respectively, intracellular pH (pH i ) utilizing bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) fluorescence, NHE activity from realkalinization after an ammonium pulse, and ROS production utilizing 2',7' -dichlorofluorescin diacetate (DCFDA) fluorescence. As a result DJ-1 was expressed in CD4 + T cells. ROS formation, NHE1 transcript levels, NHE1 protein, and NHE activity were higher in CD4 + T cells from DJ-1 deficient mice than in CD4 + T cells from wild type mice. Antioxidant N-acetyl-cysteine (NAC) and protein tyrosine kinase (PTK) inhibitor staurosporine decreased the NHE activity in DJ-1 deficient CD4 + T cells, and blunted the difference between DJ-1 -/- and DJ-1 +/+ CD4 + T cells, an observation pointing to a role of ROS in the up-regulation of NHE1 in DJ-1 -/- CD4 + T cells. In conclusion, DJ-1 is a powerful regulator of ROS production as well as NHE1 expression and activity in CD4 + T cells. J. Cell. Physiol. 232: 3050-3059, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. REDOX-SENSITIVE TRANSCRIPTION FACTORS EGR-1 AND SP1 IN THE PATHOGENESIS OF EXPERIMENTAL GASTRIC ULCER.

    PubMed

    Beregovyi, S M; Chervinska, T M; Dranitsina, A S; Szabo, S; Tolstanova, G M

    2015-01-01

    Changes in redox status of gastric mucosa cells are the main pathogenic factor of gastric erosion and gastric ulcer development. Pro-oxidants can affect cell transcription activity via changes in redox-sensitive transcription factors. Egr-1 and Sp-1 may regulate the transcription of genes that are associated with the pathogenesis of gastric ulcer (growthfactors, cell cycle regulators, etc.). The aim of the present study was to reveal the possible involvement of zinc-finger transcriptionfactors Egr-1 & Sp-1 in the molecular mechanisms underlying gastric lesions caused by aspirin administration and stress. Gastric ulcer was induced in male rats (180-220 g) by immobilization stress combined with water-immersion (IMO-WI) or aspirin gavage (10 mg/100 g). The rats were euthanized 20 min, 1 hour, or 3 hours following the ulcerogenic factor exposure. Protein expression was determined by Western blot analysis and RT-PCR; levels of SH-groups of proteins were determined by method of Ellman et al. Development of gastric ulcer lesions was associated with twofold (P < 0.05) decrease in concentration of protein SH-groups in the rat gastric mucosa. These changes were accompanied by significant (P < 0.05) increase in the expression of Egr-1 mRNA and protein in both gastric ulcer models, and the changes in IMO-WI were more profound. Increased levels of Egr-1 were associated with the decrease in SpI protein levels. We showed for the first time the competitive interaction between redox-sensitive transcription factors Egr-1 and Sp1 in the early phases of gastric ulcer development, which might facilitate inducible transcriptional activity of Egr-1 at the expense of reduction in Sp1 activity.

  12. Cloud immersion alters microclimate, photosynthesis and water relations in Rhododendron catawbiense and Abies fraseri seedlings in the southern Appalachian Mountains, USA

    Treesearch

    Daniel M. Johnson; William K. Smith

    2008-01-01

    The high altitude spruce-fir (Abies fraseri (Pursh) Poiret.-Picea rubens Sarg.) forests of the southern Appalachian Mountains, USA, experience frequent cloud immersion. Recent studies indicate that cloud bases may have risen over the past 30 years, resulting in less frequent forest cloud immersion, and that further increases in...

  13. TRPA1 Channels in Drosophila and Honey Bee Ectoparasitic Mites Share Heat Sensitivity and Temperature-Related Physiological Functions

    PubMed Central

    Peng, Guangda; Kashio, Makiko; Li, Tianbang; Dong, Xiaofeng; Tominaga, Makoto; Kadowaki, Tatsuhiko

    2016-01-01

    The transient receptor potential cation channel, subfamily A, member 1 (TRPA1) is conserved between many arthropods, and in some has been shown to function as a chemosensor for noxious compounds. Activation of arthropod TRPA1 channels by temperature fluctuations has been tested in only a few insect species, and all of them were shown to be activated by heat. The recent identification of chemosensitive TRPA1 channels from two honey bee ectoparasitic mite species (VdTRPA1 and TmTRPA1) have provided an opportunity to study the temperature-dependent activation and the temperature-associated physiological functions of TRPA1 channels in non-insect arthropods. We found that both mite TRPA1 channels are heat sensitive and capable of rescuing the temperature-related behavioral defects of a Drosophila melanogaster trpA1 mutant. These results suggest that heat-sensitivity of TRPA1 could be conserved between many arthropods despite its amino acid sequence diversity. Nevertheless, the ankyrin repeats (ARs) 6 and 7 are well-conserved between six heat-sensitive arthropod TRPA1 channels and have critical roles for the heat activation of VdTRPA1. PMID:27761115

  14. The tumor suppressor gene TUSC2 (FUS1) sensitizes NSCLC to the AKT inhibitor MK2206 in LKB1-dependent manner.

    PubMed

    Meng, Jieru; Majidi, Mourad; Fang, Bingliang; Ji, Lin; Bekele, B Nebiyou; Minna, John D; Roth, Jack A

    2013-01-01

    TUSC2-defective gene expression is detected in the majority of lung cancers and is associated with worse overall survival. We analyzed the effects of TUSC2 re-expression on tumor cell sensitivity to the AKT inhibitor, MK2206, and explored their mutual signaling connections, in vitro and in vivo. TUSC2 transient expression in three LKB1-defective non-small cell lung cancer (NSCLC) cell lines combined with MK2206 treatment resulted in increased repression of cell viability and colony formation, and increased apoptotic activity. In contrast, TUSC2 did not affect the response to MK2206 treatment for two LKB1-wild type NSCLC cell lines. In vivo, TUSC2 systemic delivery, by nanoparticle gene transfer, combined with MK2206 treatment markedly inhibited growth of tumors in a human LKB1-defective H322 lung cancer xenograft mouse model. Biochemical analysis showed that TUSC2 transient expression in LKB1-defective NSCLC cells significantly stimulated AMP-activated protein kinase (AMPK) phosphorylation and enzymatic activity. More importantly, AMPK gene knockdown abrogated TUSC2-MK2206 cooperation, as evidenced by reduced sensitivity to the combined treatment. Together, TUSC2 re-expression and MK2206 treatment was more effective in inhibiting the phosphorylation and kinase activities of AKT and mTOR proteins than either single agent alone. In conclusion, these findings support the hypothesis that TUSC2 expression status is a biological variable that potentiates MK2206 sensitivity in LKB1-defective NSCLC cells, and identifies the AMPK/AKT/mTOR signaling axis as an important regulator of this activity.

  15. lncRNA NBR2 modulates cancer cell sensitivity to phenformin through GLUT1.

    PubMed

    Liu, Xiaowen; Gan, Boyi

    2016-12-16

    Biguanides, including metformin (widely used in diabetes treatment) and phenformin, are AMP-activated protein kinase (AMPK) activators and potential drugs for cancer treatment. A more in-depth understanding of how cancer cells adapt to biguanide treatment may provide important therapeutic implications to achieve more effective and rational cancer therapies. NBR2 is a glucose starvation-induced long non-coding RNA (lncRNA) that interacts with AMPK and regulates AMPK activity upon glucose starvation. Here we show that phenformin treatment induces NBR2 expression, and NBR2 deficiency sensitizes cancer cells to phenformin-induced cell death. Surprisingly, unlike glucose starvation, phenformin does not induce NBR2 interaction with AMPK, and correspondingly, NBR2 deficiency does not affect phenformin-induced AMPK activation. We further reveal that NBR2 depletion attenuates phenformin-induced glucose transporter GLUT1 expression and glucose uptake. GLUT1 deficiency sensitizes cancer cells to phenformin-induced cell death, whereas GLUT1 restoration in NBR2 deficient cells rescues the increased cell death upon phenformin treatment. Together, the results of our study reveal that NBR2-GLUT1 axis may serve as an adaptive response in cancer cells to survive in response to phenformin treatment, and identify a novel mechanism coupling lncRNA to biguanide-mediated biology.

  16. lncRNA NBR2 modulates cancer cell sensitivity to phenformin through GLUT1

    PubMed Central

    Liu, Xiaowen; Gan, Boyi

    2016-01-01

    ABSTRACT Biguanides, including metformin (widely used in diabetes treatment) and phenformin, are AMP-activated protein kinase (AMPK) activators and potential drugs for cancer treatment. A more in-depth understanding of how cancer cells adapt to biguanide treatment may provide important therapeutic implications to achieve more effective and rational cancer therapies. NBR2 is a glucose starvation-induced long non-coding RNA (lncRNA) that interacts with AMPK and regulates AMPK activity upon glucose starvation. Here we show that phenformin treatment induces NBR2 expression, and NBR2 deficiency sensitizes cancer cells to phenformin-induced cell death. Surprisingly, unlike glucose starvation, phenformin does not induce NBR2 interaction with AMPK, and correspondingly, NBR2 deficiency does not affect phenformin-induced AMPK activation. We further reveal that NBR2 depletion attenuates phenformin-induced glucose transporter GLUT1 expression and glucose uptake. GLUT1 deficiency sensitizes cancer cells to phenformin-induced cell death, whereas GLUT1 restoration in NBR2 deficient cells rescues the increased cell death upon phenformin treatment. Together, the results of our study reveal that NBR2-GLUT1 axis may serve as an adaptive response in cancer cells to survive in response to phenformin treatment, and identify a novel mechanism coupling lncRNA to biguanide-mediated biology. PMID:27792451

  17. Potassium intake modulates the thiazide-sensitive sodium-chloride cotransporter (NCC) activity via the Kir4.1 potassium channel.

    PubMed

    Wang, Ming-Xiao; Cuevas, Catherina A; Su, Xiao-Tong; Wu, Peng; Gao, Zhong-Xiuzi; Lin, Dao-Hong; McCormick, James A; Yang, Chao-Ling; Wang, Wen-Hui; Ellison, David H

    2018-04-01

    Kir4.1 in the distal convoluted tubule plays a key role in sensing plasma potassium and in modulating the thiazide-sensitive sodium-chloride cotransporter (NCC). Here we tested whether dietary potassium intake modulates Kir4.1 and whether this is essential for mediating the effect of potassium diet on NCC. High potassium intake inhibited the basolateral 40 pS potassium channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule, decreased basolateral potassium conductance, and depolarized the distal convoluted tubule membrane in Kcnj10flox/flox mice, herein referred to as control mice. In contrast, low potassium intake activated Kir4.1, increased potassium currents, and hyperpolarized the distal convoluted tubule membrane. These effects of dietary potassium intake on the basolateral potassium conductance and membrane potential in the distal convoluted tubule were completely absent in inducible kidney-specific Kir4.1 knockout mice. Furthermore, high potassium intake decreased, whereas low potassium intake increased the abundance of NCC expression only in the control but not in kidney-specific Kir4.1 knockout mice. Renal clearance studies demonstrated that low potassium augmented, while high potassium diminished, hydrochlorothiazide-induced natriuresis in control mice. Disruption of Kir4.1 significantly increased basal urinary sodium excretion but it abolished the natriuretic effect of hydrochlorothiazide. Finally, hypokalemia and metabolic alkalosis in kidney-specific Kir4.1 knockout mice were exacerbated by potassium restriction and only partially corrected by a high-potassium diet. Thus, Kir4.1 plays an essential role in mediating the effect of dietary potassium intake on NCC activity and potassium homeostasis. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  18. Ras-sensitive IMP modulation of the Raf/MEK/ERK cascade through KSR1.

    PubMed

    Matheny, Sharon A; White, Michael A

    2006-01-01

    The E3 ubiquitin ligase IMP (impedes mitogenic signal propagation) was isolated as a novel Ras effector that negatively regulates ERK1/2 activation. Current evidence suggests that IMP limits the functional assembly of Raf/MEK complexes by inactivation of the KSR1 adaptor/scaffold protein. Interaction with Ras-GTP stimulates IMP autoubiquitination to relieve limitations on KSR function. The elevated sensitivity of IMP-depleted cells to ERK1/2 pathway activation suggests IMP acts as a signal threshold regulator by imposing reversible restrictions on the assembly of functional Raf/MEK/ERK kinase modules. These observations challenge commonly held concepts of signal transmission by Ras to the MAPK pathway and provide evidence for the role of amplitude modulation in tuning cellular responses to ERK1/2 pathway engagement. Here we describe details of the methods, including RNA interference, ubiquitin ligase assays, and protein complex analysis, that can be used to display the Ras-sensitive contribution of IMP to KSR-dependent modulation of the Raf/MEK/ERK pathway.

  19. Growing trees on completed sanitary landfills. [Nyssa sylvatica, Picea abies, Ginkgo biloba

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leone, I.A.; Gilman, E.F.; Flower, F.B.

    1983-01-01

    A 10-year old completed landfill in New Jersey consisting of 9 m (depth) of refuse covered with 15-25 cm of soil was cleared of debris and vegetation and covered with 30 cm of subsoil and 15-25 cm of topsoil. Nineteen coniferous and broadleaved species were planted on the landfill and on a control site in 1975, and trees were maintained and growth and condition monitored over 4 years. On the basis of shoot length and stem area increase, the most successful of the surviving trees were Nyssa sylvatica, Picea abies and Ginkgo biloba, in decreasing order of tolerance. Tolerance ofmore » landfill conditions appeared to be greatest in those species with low water requirements, a slow growth rate, high acid tolerance and a shallow root system. (Refs. 11).« less

  20. Vitamin E tocotrienols improve insulin sensitivity through activating peroxisome proliferator-activated receptors.

    PubMed

    Fang, Fang; Kang, Zhanfang; Wong, Chiwai

    2010-03-01

    Vitamin E is comprised of two classes of compounds: tocopherols and tocotrienols. Tocotrienol-enriched palm oil has been shown to help reduce blood glucose levels in patients and preclinical animal models. However, the mechanistic basis for tocotrienol action is not well established. Peroxisome proliferator-activated receptors alpha, gamma, and delta (PPARalpha, PPARgamma, and PPARdelta) are ligand-regulated transcription factors that play essential roles in energy metabolism. Importantly, synthetic PPARalpha and PPARgamma ligands are currently used for treating hyperlipidemia and diabetes. In this study, we present data that tocotrienols within palm oil functioned as PPAR modulators. Specifically, both alpha- and gamma-tocotrienol activated PPARalpha, while delta-tocotrienol activated PPARalpha, PPARgamma, and PPARdelta in reporter-based assays. Tocotrienols enhanced the interaction between the purified ligand-binding domain of PPARalpha with the receptor-interacting motif of coactivator PPARgamma coactivator-1alpha. In addition, the tocotrienol-rich fraction of palm oil improved whole body glucose utilization and insulin sensitivity of diabetic Db/Db mice by selectively regulating PPAR target genes. These lines of evidence collectively suggested that PPARs represent a set of molecular targets of tocotrienols.

  1. Electrochemically mediated polymerization for highly sensitive detection of protein kinase activity.

    PubMed

    Hu, Qiong; Wang, Qiangwei; Jiang, Cuihua; Zhang, Jian; Kong, Jinming; Zhang, Xueji

    2018-07-01

    Protein kinases play a pivotal role in cellular regulation and signal transduction, the detection of protein kinase activity and inhibition is therefore of great importance to clinical diagnosis and drug discovery. In this work, a novel electrochemical platform using the electrochemically mediated polymerization as an efficient and cost-effective signal amplification strategy is described for the highly sensitive detection of protein kinase activity. This platform involves 1) the phosphorylation of substrate peptide by protein kinase, 2) the attachment of alkyl halide to the phosphorylated sites via the carboxylate-Zr 4+ -phosphate chemistry, and 3) the in situ grafting of electroactive polymers from the phosphorylated sites through the electrochemically mediated atom transfer radical polymerization (eATRP) at a negative potential, in the presence of the surface-attached alkyl halide as the initiator and the electroactive tag-conjugated acrylate as the monomer, respectively. Due to the electrochemically mediated polymerization, a large number of electroactive tags can be linked to each phosphorylated site, thereby greatly improving the detection sensitivity. This platform has been successfully applied to detect the activity of cAMP-dependent protein kinase (PKA) with a detection limit down to 1.63 mU mL -1 . Results also demonstrate that it is highly selective and can be used for the screening of protein kinase inhibitors. The potential application of our platform for protein kinase activity detection in complex biological samples has been further verified using normal human serum and HepG2 cell lysate. Moreover, our platform is operationally simple, highly efficient and cost-effective, thus holding great potential in protein kinase detection and inhibitor screening. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation.

    PubMed

    Karimpour, Shervin; Lou, Junyang; Lin, Lilie L; Rene, Luis M; Lagunas, Lucio; Ma, Xinrong; Karra, Sreenivasu; Bradbury, C Matthew; Markovina, Stephanie; Goswami, Prabhat C; Spitz, Douglas R; Hirota, Kiichi; Kalvakolanu, Dhananjaya V; Yodoi, Junji; Gius, David

    2002-09-12

    A recently identified class of signaling factors uses critical cysteine motif(s) that act as redox-sensitive 'sulfhydryl switches' to reversibly modulate specific signal transduction cascades regulating downstream proteins with similar redox-sensitive sites. For example, signaling factors such as redox factor-1 (Ref-1) and transcription factors such as the AP-1 complex both contain redox-sensitive cysteine motifs that regulate activity in response to oxidative stress. The mammalian thioredoxin reductase-1 (TR) is an oxidoreductase selenocysteine-containing flavoprotein that also appears to regulate multiple downstream intracellular redox-sensitive proteins. Since ionizing radiation (IR) induces oxidative stress as well as increases AP-1 DNA-binding activity via the activation of Ref-1, the potential roles of TR and thioredoxin (TRX) in the regulation of AP-1 activity in response to IR were investigated. Permanently transfected cell lines that overexpress wild type TR demonstrated constitutive increases in AP-1 DNA-binding activity as well as AP-1-dependent reporter gene expression, relative to vector control cells. In contrast, permanently transfected cell lines expressing a TR gene with the active site cysteine motif deleted were unable to induce AP-1 activity or reporter gene expression in response to IR. Transient genetic overexpression of either the TR wild type or dominant-negative genes demonstrated similar results using a transient assay system. One mechanism through which TR regulates AP-1 activity appears to involve TRX sub-cellular localization, with no change in the total TRX content of the cell. These results identify a novel function of the TR enzyme as a signaling factor in the regulation of AP-1 activity via a cysteine motif located in the protein.

  3. Lysine-specific demethylase 1: an epigenetic regulator of salt-sensitive hypertension.

    PubMed

    Williams, Jonathan S; Chamarthi, Bindu; Goodarzi, Mark O; Pojoga, Luminita H; Sun, Bei; Garza, Amanda E; Raby, Benjamin A; Adler, Gail K; Hopkins, Paul N; Brown, Nancy J; Jeunemaitre, Xavier; Ferri, Claudio; Fang, Rui; Leonor, Thiago; Cui, Jinrui; Guo, Xiuqing; Taylor, Kent D; Ida Chen, Yii-Der; Xiang, Anny; Raffel, Leslie J; Buchanan, Thomas A; Rotter, Jerome I; Williams, Gordon H; Shi, Yujiang

    2012-07-01

    Hypertension (HTN) represents a complex heritable disease in which environmental factors may directly affect gene function via epigenetic mechanisms. The aim of this study was to test the hypothesis that dietary salt influences the activity of a histone-modifying enzyme, lysine-specific demethylase 1 (LSD-1), which in turn is associated with salt-sensitivity of blood pressure (BP). Animal and human studies were performed. Salt-sensitivity of LSD-1 expression was assessed in wild-type (WT) and LSD-1 heterozygote knockout (LSD-1(+/-)) mice. Clinical relevance was tested by multivariate associations between single-nuclear polymorphisms (SNPs) in the LSD-1 gene and salt-sensitivity of BP, with control of dietary sodium, in a primary African-American hypertensive cohort and two replication hypertensive cohorts (Caucasian and Mexican-American). LSD-1 expression was modified by dietary salt in WT mice with lower levels associated with liberal salt intake. LSD-1(+/-) mice expressed lower LSD-1 protein levels than WT mice in kidney tissue. Similar to LSD-1(+/-) mice, African-American minor allele carriers of two LSD-1 SNPs displayed greater change in systolic BP (SBP) in response to change from low to liberal salt diet (rs671357, P = 0.01; rs587168, P = 0.005). This association was replicated in the Hispanic (rs587168, P = 0.04) but not the Caucasian cohort. Exploratory analyses demonstrated decreased serum aldosterone concentrations in African-American minor allele carriers similar to findings in the LSD-1(+/-) mice, decreased α-EnaC expression in LSD-1(+/-) mice, and impaired renovascular responsiveness to salt loading in minor allele carriers. The results of this translational research study support a role for LSD-1 in the pathogenesis of salt-sensitive HTN.

  4. A Picea abies Linkage Map Based on SNP Markers Identifies QTLs for Four Aspects of Resistance to Heterobasidion parviporum Infection

    PubMed Central

    Lind, Mårten; Källman, Thomas; Chen, Jun; Ma, Xiao-Fei; Bousquet, Jean; Morgante, Michele; Zaina, Giusi; Karlsson, Bo; Elfstrand, Malin; Lascoux, Martin; Stenlid, Jan

    2014-01-01

    A consensus linkage map of Picea abies, an economically important conifer, was constructed based on the segregation of 686 SNP markers in a F1 progeny population consisting of 247 individuals. The total length of 1889.2 cM covered 96.5% of the estimated genome length and comprised 12 large linkage groups, corresponding to the number of haploid P. abies chromosomes. The sizes of the groups (from 5.9 to 9.9% of the total map length) correlated well with previous estimates of chromosome sizes (from 5.8 to 10.8% of total genome size). Any locus in the genome has a 97% probability to be within 10 cM from a mapped marker, which makes the map suited for QTL mapping. Infecting the progeny trees with the root rot pathogen Heterobasidion parviporum allowed for mapping of four different resistance traits: lesion length at the inoculation site, fungal spread within the sapwood, exclusion of the pathogen from the host after initial infection, and ability to prevent the infection from establishing at all. These four traits were associated with two, four, four and three QTL regions respectively of which none overlapped between the traits. Each QTL explained between 4.6 and 10.1% of the respective traits phenotypic variation. Although the QTL regions contain many more genes than the ones represented by the SNP markers, at least four markers within the confidence intervals originated from genes with known function in conifer defence; a leucoanthocyanidine reductase, which has previously been shown to upregulate during H. parviporum infection, and three intermediates of the lignification process; a hydroxycinnamoyl CoA shikimate/quinate hydroxycinnamoyltransferase, a 4-coumarate CoA ligase, and a R2R3-MYB transcription factor. PMID:25036209

  5. The effects of physical activity on impulsive choice: Influence of sensitivity to reinforcement amount and delay.

    PubMed

    Strickland, Justin C; Feinstein, Max A; Lacy, Ryan T; Smith, Mark A

    2016-05-01

    Impulsive choice is a diagnostic feature and/or complicating factor for several psychological disorders and may be examined in the laboratory using delay-discounting procedures. Recent investigators have proposed using quantitative measures of analysis to examine the behavioral processes contributing to impulsive choice. The purpose of this study was to examine the effects of physical activity (i.e., wheel running) on impulsive choice in a single-response, discrete-trial procedure using two quantitative methods of analysis. To this end, rats were assigned to physical activity or sedentary groups and trained to respond in a delay-discounting procedure. In this procedure, one lever always produced one food pellet immediately, whereas a second lever produced three food pellets after a 0, 10, 20, 40, or 80-s delay. Estimates of sensitivity to reinforcement amount and sensitivity to reinforcement delay were determined using (1) a simple linear analysis and (2) an analysis of logarithmically transformed response ratios. Both analyses revealed that physical activity decreased sensitivity to reinforcement amount and sensitivity to reinforcement delay. These findings indicate that (1) physical activity has significant but functionally opposing effects on the behavioral processes that contribute to impulsive choice and (2) both quantitative methods of analysis are appropriate for use in single-response, discrete-trial procedures. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Cloud immersion alters microclimate, photosynthesis and water relations in Rhododendron catawbiense and Abies fraseri seedlings in the southern Appalachian Mountains, USA

    Treesearch

    Daniel M. Johnson; William K. Smith

    2008-01-01

    The high altitude spruce-fir (Abies fraseri (Pursh) Poiret.-Picea rubens Sarg.) forests of the southern Appalachian Mountains, USA, experience frequent cloud immersion. Recent studies indicate that cloud bases may have risen over the past 30 years, resulting in less frequent forest cloud immersion, and that further increases in cloud base height are...

  7. [Spatial patterns of dominant tree species in sub-alpine Betula-Abies forest in West Sichuan of China].

    PubMed

    Miao, Ning; Liu, Shi-Rong; Shi, Zuo-Min; Yu, Hong; Liu, Xing-Liang

    2009-06-01

    Based on the investigation in a 4 hm2 Betula-Abies forest plot in sub-alpine area in West Sichuan of China, and by using point pattern analysis method in terms of O-ring statistics, the spatial patterns of dominant species Betula albo-sinensis and Abies faxoniana in different age classes in study area were analyzed, and the intra- and inter-species associations between these age classes were studied. B. albo-sinensis had a unimodal distribution of its DBH frequency, indicating a declining population, while A. faxoniana had a reverse J-shaped pattern, showing an increasing population. All the big trees of B. albo-sinensis and A. faxoniana were spatially in random at all scales, while the medium age and small trees were spatially clumped at small scales and tended to be randomly or evenly distributed with increasing spatial scale. The maximum aggregation degree decreased with increasing age class. Spatial association mainly occurred at small scales. A. faxoniana generally showed positive intra-specific association, while B. albo-sinensis generally showed negative intra-specific association. For the two populations, big and small trees had no significant spatial association, but middle age trees had negative spatial association. Negative inter-specific associations of the two populations were commonly found in different age classes. The larger the difference of age class, the stronger the negative inter-specific association.

  8. Contamination of environment in the road surroudings - impact of road salting on Norway spruce (Picea abies) and Scots pine (Pinus sylvestris)

    NASA Astrophysics Data System (ADS)

    Hegrová, Jitka; Steiner, Oliver; Goessler, Walter; Tanda, Stefan; Anděl, Petr

    2017-09-01

    A comprehensive overview of the influence of transport on the environment is presented in this study. The complex analysis of soil and needle samples provides an extensive set of data, which presents elemental contamination of the environment near roads. Traffic pollution (including winter road treatment) has a significant negative influence on our environment. Besides sodium and chlorine from winter maintenance many other elements are emitted into the environment. Three possible sources of contamination are assumed for environmental contamination evaluation: car emission, winter maintenance and abrasion from breaks and clutches. The chemical analysis focused on the description of samples from inorganic point of view. The influence of the contamination potential on the sodium and chlorine content in the samples of 1st year-old and 2nd year-old needles of Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) is discussed. Additional soil samples were taken from each sampling site and analyzed to get insight in the sodium and chlorine distribution. Statistical evaluation was used for interpretation of complex interaction patterns between element concentrations in different aged needles based on localities character including distance from the road and element concentration in soils. This species of needles were chosen because of its heightened sensitivity towards salinization. The study was conducted in different parts of the Czech Republic. The resulting database is a source of valuable information about the influence of transport on the environment.

  9. Serotonergic modulation in aplysia. I. Distributed serotonergic network persistently activated by sensitizing stimuli.

    PubMed

    Marinesco, Stéphane; Kolkman, Kristine E; Carew, Thomas J

    2004-10-01

    A common feature of arousing stimuli used as reinforcement in animal models of learning is that they promote memory formation through widespread effects in the CNS. In the marine mollusk Aplysia, sensitization is typically induced by tail-shock, an aversive reinforcer that triggers a state of defensive arousal characterized by escape locomotion and increased heart rate. Serotonin (5-HT) contributes importantly to sensitization of defensive reflexes as well as to the regulation of locomotion and heart rate. Although specific serotonergic neurons increase their firing after tail-shock, it remains unclear whether this effect is restricted to these neurons or whether tail-shock recruits a more global serotonergic system. In this study, we recorded from serotonergic neurons throughout the CNS, which were prelabeled with 5,7-dihydroxytryptamine, during an in vitro analog of sensitization training, tail-nerve shock. We found that most of the serotonergic neurons that we recorded from (80%) increased their firing rate for several minutes after nerve shock. Most serotonergic neurons in the pedal and abdominal ganglion were also excited by 5-HT and by intracellular activation of the two serotonergic neurons CB1/CC3. This interconnectivity between serotonergic neurons might contribute to spread excitation within a large proportion of the serotonergic system during sensitization training. It is also possible that serotonergic neurons could be activated by 5-HT present in the hemolymph via a neuro-humoral positive feedback mechanism. Overall, these data indicate that sensitization training activates a large proportion of Aplysia serotonergic neurons and that this form of learning occurs in a context of increased serotonergic tone.

  10. PARP1 expression, activity and ex vivo sensitivity to the PARP inhibitor, talazoparib (BMN 673), in chronic lymphocytic leukaemia

    PubMed Central

    Herriott, Ashleigh; Tudhope, Susan J.; Junge, Gesa; Rodrigues, Natalie; Patterson, Miranda J.; Woodhouse, Laura; Lunec, John; Hunter, Jill E.; Mulligan, Evan A.; Cole, Michael; Allinson, Lisa M.; Wallis, Jonathan P.; Marshall, Scott; Wang, Evelyn; Curtin, Nicola J.; Willmore, Elaine

    2015-01-01

    In chronic lymphocytic leukemia (CLL), mutation and loss of p53 and ATM abrogate DNA damage signalling and predict poorer response and shorter survival. We hypothesised that poly (ADP-ribose) polymerase (PARP) activity, which is crucial for repair of DNA breaks induced by oxidative stress or chemotherapy, may be an additional predictive biomarker and a target for therapy with PARP inhibitors. We measured PARP activity in 109 patient-derived CLL samples, which varied widely (192 – 190052 pmol PAR/106 cells) compared to that seen in healthy volunteer lymphocytes (2451 – 7519 pmol PAR/106 cells). PARP activity was associated with PARP1 protein expression and endogenous PAR levels. PARP activity was not associated with p53 or ATM loss, Binet stage, IGHV mutational status or survival, but correlated with Bcl-2 and Rel A (an NF-kB subunit). Levels of 8-hydroxy-2′-deoxyguanosine in DNA (a marker of oxidative damage) were not associated with PAR levels or PARP activity. The potent PARP inhibitor, talazoparib (BMN 673), inhibited CD40L-stimulated proliferation of CLL cells at nM concentrations, independently of Binet stage or p53/ATM function. PARP activity is highly variable in CLL and correlates with stress-induced proteins. Proliferating CLL cells (including those with p53 or ATM loss) are highly sensitive to the PARP inhibitor talazoparib. PMID:26539646

  11. A severity rating system for evaluating stand-level balsam woolly adelgid (Hemiptera: Adelgidae) damage in two Abies species in western North America

    Treesearch

    Kathryn H. Hrinkevich; Robert A. Progar; David C. Shaw

    2016-01-01

    Severity rating systems are fundamental to understanding the impacts of disturbance agents in forest stands. The balsam woolly adelgid (BWA), Adelges piceae (Ratzeburg) (Hemiptera: Adelgidae), is an invasive forest pest in North America that infests and causes mortality in true fir, Abies spp. There is currently no single...

  12. Neutrophil infiltration is implicated in the sustained thermal hyperalgesic response evoked by allergen provocation in actively sensitized rats.

    PubMed

    Lavich, Tatiana Ramos; Siqueira, Rodrigo de Azeredo; Farias-Filho, Francisco Alves; Cordeiro, Renato Sérgio Balão; Rodrigues e Silva, Patrícia Machado; Martins, Marco Aurélio

    2006-11-01

    It has been proposed that allergen provocation induces hyperalgesia but the involvement of immunoglobulin E and leukocytes remains poorly understood. Here, we have compared the profile of allergen-evoked thermal hyperalgesic response in both passively and actively sensitized rats, and investigated the role of leukocytes in allergen-evoked nociception. Wistar rats were passively sensitized with an intraplantar injection of immunoglobulin E anti-dinitrophenylated bovine serum albumin monoclonal antibody (0.5 microg/paw), and challenged with dinitrophenylated bovine serum albumin (0.5 microg/paw) 24 h later. Alternatively, the animals were actively sensitized with a mixture of Al(OH)3 and ovalbumin and challenged intraplantarly with ovalbumin (12 microg/paw) 14 days later. We found that the thermal hyperalgesic responses set in very rapidly and with comparable intensity in both passively and actively sensitized rats. However, while in the former group the response was shorter, peaking within 1 h and reducing thereafter, a marked plateau was observed from 1 to 6 h post-challenge in the latter group. Actively sensitized rats also had higher neutrophil influx in the plantar tissue, as attested by both myeloperoxidase activity and histological analysis. Treatment of actively sensitized rats with either fucoidin (10 mg/kg, i.v) or anti-rat neutrophil antiserum (i.p.) reduced neutrophil accumulation and the late hyperalgesic response noted from 3 to 6 h post-challenge. Thus, we conclude that though immunoglobulin E-mediated mechanisms can cause thermal hyperalgesia, components of the cellular immune reaction are crucial in order to amplify and sustain the immediate hyperalgesic response triggered by allergen, in a process dependent on neutrophil recruitment.

  13. Does carbon availability control temporal dynamics of radial growth in Norway spruce (Picea abies)?

    NASA Astrophysics Data System (ADS)

    Oberhuber, Walter; Gruber, Andreas; Swidrak, Irene

    2015-04-01

    Intra-annual dynamics of cambial activity and wood formation of coniferous species exposed to soil dryness revealed early culmination of maximum growth in late spring prior to occurrence of more favourable environmental conditions, i.e., repeated high rainfall events during summer (Oberhuber et al. 2014). Because it is well known that plants can adjust carbon allocation patterns to optimize resource uptake under prevailing environmental constraints, we hypothesize that early decrease in radial stem growth is an adaptation to cope with drought stress, which might require an early switch of carbon allocation to belowground organs. Physical blockage of carbon transport in the phloem through girdling causes accumulation and depletion of carbohydrates above and below the girdle, respectively, making this method quite appropriate to investigate carbon relationships in trees. Hence, in a common garden experiment we will manipulate the carbon status of Norway spruce (Picea abies) saplings by phloem blockage at different phenological stages during the growing season. We will present the methodological approach and first results of the study aiming to test the hypothesis that carbon status of the tree affects temporal dynamics of cambial activity and wood formation in conifers under drought. Acknowledgment The research is funded by the Austrian Science Fund (FWF): P25643-B16 "Carbon allocation and growth of Scots pine". Reference Oberhuber W, A Gruber, W Kofler, I Swidrak (2014) Radial stem growth in response to microclimate and soil moisture in a drought-prone mixed coniferous forest at an inner Alpine site. Eur J For Res 133:467-479.

  14. Cell death sensitization of leukemia cells by opioid receptor activation

    PubMed Central

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  15. Variation in interferon sensitivity and induction between Usutu and West Nile (lineages 1 and 2) viruses.

    PubMed

    Cacciotti, Giulia; Caputo, Beniamino; Selvaggi, Carla; la Sala, Andrea; Vitiello, Laura; Diallo, Diawo; Ceianu, Cornelia; Antonelli, Guido; Nowotny, Norbert; Scagnolari, Carolina

    2015-11-01

    Given the pivotal role of monocyte-derived dendritic cells (DCs) in determining the magnitude of the antiviral innate immune response, we sought to determine whether Usutu virus (USUV) and West Nile virus (WNV) lineages (L)1 and L2 can infect DCs and affect the rate of type I interferon (IFN) activation. The sensitivity of these viruses to types I and III IFNs was also compared. We found that USUV can infect DCs, induce higher antiviral activities, IFN alpha subtypes and the IFN stimulated gene (ISG)15 pathway, and is more sensitive to types I and III IFNs than WNVs. In contrast, we confirmed that IFN alpha/beta subtypes were more effective against WNV L2 than WNV L1. However, the replication kinetics, induction of IFN alpha subtypes and ISGs in DCs and the sensitivity to IFN lambda 1-3 did not differ between WNV L1 and L2. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Plasma lipid fatty acid composition, desaturase activities and insulin sensitivity in Amerindian women.

    PubMed

    Vessby, B; Ahrén, B; Warensjö, E; Lindgärde, F

    2012-03-01

    Two Amerindian populations--Shuar women living in the Amazonian rain forest under traditional conditions and urbanized women in a suburb of Lima were studied. The fatty acid composition in plasma lipids and the relationships between fatty acid composition and metabolic variables were studied, as well as in a reference group of Swedish women. Fasting plasma was used for analyses of glucose, insulin, leptin and fatty acid composition. Women in Lima had more body fat, higher fasting insulin and leptin and lower insulin sensitivity than the Shuar women, who had insulin sensitivity similar to Swedish women. Shuar women had very high proportions (mean; SD) of palmitoleic (13.2; 3.9%) and oleic (33.9; 3.7%) acids in the plasma cholesteryl esters with very low levels of linoleic acid (29.1; 6.1 3%), as expected on a low fat, high carbohydrate diet. The estimated activity of delta 9 (SCD-1) desaturase was about twice as high in the Shuar compared with Lima women, suggesting neo lipogenesis, while the delta 5 desaturase activity did not differ. The Lima women, as well as the Swedish, showed strong positive correlations between SCD-1 activity on the one hand and fasting insulin and HOMA index on the other. These associations were absent in the Shuar women. The high SCD-1 activity in the Shuar women may reflect increased lipogenesis in adipose tissue. It also illustrates how a low fat diet rich in non-refined carbohydrates can be linked to a good metabolic situation. Copyright © 2010. Published by Elsevier B.V.

  17. The Stanford Leisure-Time Activity Categorical Item (L-Cat): A single categorical item sensitive to physical activity changes in overweight/obese women

    PubMed Central

    Kiernan, Michaela; Schoffman, Danielle E.; Lee, Katherine; Brown, Susan D.; Fair, Joan M.; Perri, Michael G.; Haskell, William L.

    2015-01-01

    Background Physical activity is essential for chronic disease prevention, yet <40% of overweight/obese adults meet national activity recommendations. For time-efficient counseling, clinicians need a brief easy-to-use tool that reliably and validly assesses a full range of activity levels, and most importantly, is sensitive to clinically meaningful changes in activity. The Stanford Leisure-Time Activity Categorical Item (L-Cat) is a single item comprised of six descriptive categories ranging from inactive to very active. This novel methodological approach assesses national activity recommendations as well as multiple clinically relevant categories below and above recommendations, and incorporates critical methodological principles that enhance psychometrics (reliability, validity, sensitivity to change). Methods We evaluated the L-Cat’s psychometrics among 267 overweight/obese women asked to meet national activity recommendations in a randomized behavioral weight-loss trial. Results The L-Cat had excellent test-retest reliability (κ=0.64, P<.001) and adequate concurrent criterion validity; each L-Cat category at 6 months was associated with 1059 more daily pedometer steps (95% CI 712–1407, β=0.38, P<.001) and 1.9% greater initial weight loss at 6 months (95% CI −2.4 to −1.3, β=−0.38, P<.001). Of interest, L-Cat categories differentiated from each other in a dose-response gradient for steps and weight loss (Ps<.05) with excellent face validity. The L-Cat was sensitive to change in response to the trial’s activity component. Women increased one L-Cat category at 6 months (M=1.0±1.4, P<.001); 55.8% met recommendations at 6 months whereas 20.6% did at baseline (P<.001). Even among women not meeting recommendations at both baseline and 6 months (n=106), women who moved ≥1 L-Cat categories at 6 months lost more weight than those who did not (M=−4.6%, 95% CI −6.7 to −2.5, P<.001). Conclusions Given strong psychometrics, the L-Cat has timely

  18. The Stanford Leisure-Time Activity Categorical Item (L-Cat): a single categorical item sensitive to physical activity changes in overweight/obese women.

    PubMed

    Kiernan, M; Schoffman, D E; Lee, K; Brown, S D; Fair, J M; Perri, M G; Haskell, W L

    2013-12-01

    Physical activity is essential for chronic disease prevention, yet <40% of overweight/obese adults meet the national activity recommendations. For time-efficient counseling, clinicians need a brief, easy-to-use tool that reliably and validly assesses a full range of activity levels, and, most importantly, is sensitive to clinically meaningful changes in activity. The Stanford Leisure-Time Activity Categorical Item (L-Cat) is a single item comprising six descriptive categories ranging from inactive to very active. This novel methodological approach assesses national activity recommendations as well as multiple clinically relevant categories below and above the recommendations, and incorporates critical methodological principles that enhance psychometrics (reliability, validity and sensitivity to change). We evaluated the L-Cat's psychometrics among 267 overweight/obese women who were asked to meet the national activity recommendations in a randomized behavioral weight-loss trial. The L-Cat had excellent test-retest reliability (κ=0.64, P<0.001) and adequate concurrent criterion validity; each L-Cat category at 6 months was associated with 1059 more daily pedometer steps (95% CI 712-1407, β=0.38, P<0.001) and 1.9% greater initial weight loss at 6 months (95% CI -2.4 to -1.3, β=-0.38, P<0.001). Of interest, L-Cat categories differentiated from each other in a dose-response gradient for steps and weight loss (Ps<0.05) with excellent face validity. The L-Cat was sensitive to change in response to the trial's activity component. Women increased one L-Cat category at 6 months (M=1.0±1.4, P<0.001); 55.8% met the recommendations at 6 months whereas 20.6% did at baseline (P<0.001). Even among women not meeting the recommendations at both baseline and 6 months (n=106), women who moved 1 L-Cat categories at 6 months lost more weight than those who did not (M=-4.6%, 95% CI -6.7 to -2.5, P<0.001). Given strong psychometrics, the L-Cat has timely potential for clinical

  19. 41 CFR 109-1.5108-2 - Sensitive items.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....51-Personal Property Management Standards and Practices § 109-1.5108-2 Sensitive items. Individual... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Sensitive items. 109-1.5108-2 Section 109-1.5108-2 Public Contracts and Property Management Federal Property Management...

  20. 41 CFR 109-1.5108-2 - Sensitive items.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....51-Personal Property Management Standards and Practices § 109-1.5108-2 Sensitive items. Individual... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Sensitive items. 109-1.5108-2 Section 109-1.5108-2 Public Contracts and Property Management Federal Property Management...

  1. 41 CFR 109-1.5108-2 - Sensitive items.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....51-Personal Property Management Standards and Practices § 109-1.5108-2 Sensitive items. Individual... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Sensitive items. 109-1.5108-2 Section 109-1.5108-2 Public Contracts and Property Management Federal Property Management...

  2. 41 CFR 109-1.5108-2 - Sensitive items.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....51-Personal Property Management Standards and Practices § 109-1.5108-2 Sensitive items. Individual... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Sensitive items. 109-1.5108-2 Section 109-1.5108-2 Public Contracts and Property Management Federal Property Management...

  3. 41 CFR 109-1.5108-2 - Sensitive items.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....51-Personal Property Management Standards and Practices § 109-1.5108-2 Sensitive items. Individual... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Sensitive items. 109-1.5108-2 Section 109-1.5108-2 Public Contracts and Property Management Federal Property Management...

  4. Abscisic acid affects transcription of chloroplast genes via protein phosphatase 2C-dependent activation of nuclear genes: repression by guanosine-3'-5'-bisdiphosphate and activation by sigma factor 5.

    PubMed

    Yamburenko, Maria V; Zubo, Yan O; Börner, Thomas

    2015-06-01

    Abscisic acid (ABA) represses the transcriptional activity of chloroplast genes (determined by run-on assays), with the exception of psbD and a few other genes in wild-type Arabidopsis seedlings and mature rosette leaves. Abscisic acid does not influence chloroplast transcription in the mutant lines abi1-1 and abi2-1 with constitutive protein phosphatase 2C (PP2C) activity, suggesting that ABA affects chloroplast gene activity by binding to the pyrabactin resistance (PYR)/PYR1-like or regulatory component of ABA receptor protein family (PYR/PYL/RCAR) and signaling via PP2Cs and sucrose non-fermenting protein-related kinases 2 (SnRK2s). Further we show by quantitative PCR that ABA enhances the transcript levels of RSH2, RSH3, PTF1 and SIG5. RelA/SpoT homolog 2 (RSH2) and RSH3 are known to synthesize guanosine-3'-5'-bisdiphosphate (ppGpp), an inhibitor of the plastid-gene-encoded chloroplast RNA polymerase. We propose, therefore, that ABA leads to an inhibition of chloroplast gene expression via stimulation of ppGpp synthesis. On the other hand, sigma factor 5 (SIG5) and plastid transcription factor 1 (PTF1) are known to be necessary for the transcription of psbD from a specific light- and stress-induced promoter (the blue light responsive promoter, BLRP). We demonstrate that ABA activates the psbD gene by stimulation of transcription initiation at BLRP. Taken together, our data suggest that ABA affects the transcription of chloroplast genes by a PP2C-dependent activation of nuclear genes encoding proteins involved in chloroplast transcription. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  5. Participation after acquired brain injury: Associations with everyday technology and activities in daily life.

    PubMed

    Fallahpour, Mandana; Kottorp, Anders; Nygård, Louise; Lund, Maria Larsson

    2015-01-01

    The development of the information society has led to increased use of everyday technology and changed the conditions for participation. Enabling participation in everyday life situations is an important rehabilitation goal after acquired brain injury (ABI). Identifying factors associated with individuals' experienced participation and problems therein is therefore essential. This study aimed at exploring the relationship between perceived difficulty in everyday technology use, perceived ability in the activities of daily living (ADL), and perceived participation, and participation problems in persons with ABI. Eighty-one persons with ABI participated in the study and were assessed by the Impact on Participation and Autonomy questionnaire, the Everyday Technology Use Questionnaire, and the ADL taxonomy. Findings showed that the combined model of difficulty in everyday technology (ET) use, ADL ability, and the interaction between them explained both participation in various domains of everyday life, and also overall level of perceived participation and the perceived problems. The findings underscore the importance of evaluating individuals' ability in both ET use and ADL after ABI to increase the probability of explaining these persons' participation in desired everyday life situations and, also, for rehabilitation design.

  6. The Arabidopsis MYB96 Transcription Factor Is a Positive Regulator of ABSCISIC ACID-INSENSITIVE4 in the Control of Seed Germination1

    PubMed Central

    Lee, Kyounghee; Lee, Hong Gil; Kim, Hyun Uk; Seo, Pil Joon

    2015-01-01

    Seed germination is a key developmental transition that initiates the plant life cycle. The timing of germination is determined by the coordinated action of two phytohormones, gibberellin and abscisic acid (ABA). In particular, ABA plays a key role in integrating environmental information and inhibiting the germination process. The utilization of embryonic lipid reserves contributes to seed germination by acting as an energy source, and ABA suppresses lipid degradation to modulate the germination process. Here, we report that the ABA-responsive R2R3-type MYB transcription factor MYB96, which is highly expressed in embryo, regulates seed germination by controlling the expression of ABSCISIC ACID-INSENSITIVE4 (ABI4) in Arabidopsis (Arabidopsis thaliana). In the presence of ABA, germination was accelerated in MYB96-deficient myb96-1 seeds, whereas the process was significantly delayed in MYB96-overexpressing activation-tagging myb96-ox seeds. Consistently, myb96-1 seeds degraded a larger extent of lipid reserves even in the presence of ABA, while reduced lipid mobilization was observed in myb96-ox seeds. MYB96 directly regulates ABI4, which acts as a repressor of lipid breakdown, to define its spatial and temporal expression. Genetic analysis further demonstrated that ABI4 is epistatic to MYB96 in the control of seed germination. Taken together, the MYB96-ABI4 module regulates lipid mobilization specifically in the embryo to ensure proper seed germination under suboptimal conditions. PMID:25869652

  7. Mistletoe lectin is not the only cytotoxic component in fermented preparations of Viscum album from white fir (Abies pectinata)

    PubMed Central

    Eggenschwiler, Jenny; von Balthazar, Leopold; Stritt, Bianca; Pruntsch, Doreen; Ramos, Mac; Urech, Konrad; Rist, Lukas; Simões-Wüst, A Paula; Viviani, Angelika

    2007-01-01

    Background Preparations of mistletoe (Viscum album) are the form of cancer treatment that is most frequently used in the complementary medicine. Previous work has shown that these preparations are able to exert cytotoxic effects on carcinoma cells, the extent of which might be influenced by the host tree species and by the content of mistletoe lectin. Methods Using colorimetric assays, we have now compared the cytotoxic effects of Viscum album preparations (VAPs) obtained from mistletoe growing on oak (Quercus robur and Q. petraea, VAP-Qu), apple tree (Malus domestica,, VAP-M), pine (Pinus sylvestris, VAP-P) or white fir (Abies pectinata, VAP-A), on the in vitro growth of breast and bladder carcinoma cell lines. While MFM-223, KPL-1, MCF-7 and HCC-1937 were the breast carcinoma cell lines chosen, the panel of tested bladder carcinoma cells comprised the T-24, TCC-SUP, UM-UC-3 and J-82 cell lines. Results Each of the VAPs inhibited cell growth, but the extent of this inhibition differed with the preparation and with the cell line. The concentrations of VAP-Qu, VAP-M and VAP-A which led to a 50 % reduction of cell growth (IC50) varied between 0.6 and 0.03 mg/ml. Higher concentrations of VAP-P were required to obtain a comparable effect. Purified mistletoe lectin I (MLI) led to an inhibition of breast carcinoma cell growth at concentrations lower than those of VAPs, but the sensitivity towards purified MLI did not parallel that towards VAPs. Bladder carcinoma cells were in most cases more sensitive to VAPs treatment than breast carcinoma cells. The total mistletoe lectin content was very high in VAP-Qu (54 ng/mg extract), intermediate in VAP-M (25 ng/mg extract), and very low in VAP-P (1.3 ng/mg extract) and in VAP-A (1 ng/mg extract). As to be expected from the low content of mistletoe lectin, VAP-P led to relatively weak cytotoxic effects. Most remarkably, however, the lectin-poor VAP-A revealed a cytotoxic effect comparable to, or even stronger than, that of the

  8. Measurement of the ankle brachial index with a non-mercury sphygmomanometer in diabetic patients: a concordance study

    PubMed Central

    2013-01-01

    Background The removal of mercury sphygmomanometers from health centers requires the validation of other instruments to measure blood pressure in the limbs to calculate the ankle-brachial index (ABI). Methods Descriptive cross-sectional study of agreement between two measurement methods in type 2 diabetes patients from three urban primary healthcare centres in the Barcelonès Nord i Maresme area (Catalonia, Spain). ABI was determined with Doppler and mercury sphygmomanometer and Doppler and the “hybrid” sphygmomanometer OMRON HEM-907 model. Agreement was evaluated using the weighted kappa index. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated using the mercury sphygmomanometer as the gold standard. Results 211 patients were included, from these, 421 limbs were available for study. The mean age of the participants was 67 years (SD = 10), 51.7% were women. The index of agreement between ABI measured with a mercury sphygmomanometer and with the OMRON HEM-907 blood pressure monitor was good (weighted kappa index = 0.68; CI 95%: [0.55–0.79]) and improved when the ABI cut-off value was set at ≤0.70 (weighted kappa index = 0.92; CI 95%: [0.81–1.00]). Sensitivity and specificity were 77.5% and 98.2%, respectively. PPV was 83.8% and NPV was 97.3%. With the ABI cut-off value ≤0.70, sensitivity and specificity increased to 85.7% and 100%, respectively, PPV to 100% and NPV to 99.4%. Conclusion The combination of a Doppler device with the hybrid sphygmomanometer is a simple and reliable method to measure ABI showing that hybrid sphygmomanometer is a good alternative to the use of mercury sphygmomanometers. PMID:23497339

  9. The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity

    DOE PAGES

    Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai; ...

    2017-11-30

    Here, the temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO 2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity andmore » weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO 2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.« less

  10. The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai; Singh, Hansi A.

    2018-01-01

    The temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity and weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.

  11. The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai

    Here, the temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO 2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity andmore » weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO 2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.« less

  12. Examination of the "Theory of Guidance" in the View of 'Ali Ibn Abi Talib (A): An Exploration into the Nahj Al-Balaghah

    ERIC Educational Resources Information Center

    Rostami-Nasab, Abas Ali; Tajedini, Oranus; Sadatmoosavi, Ali

    2016-01-01

    This study examines the "Theory of Guidance" according to 'Ali ibn Abi Talib (a). This theory is based on three divine covenants or fundamentals in guidance including the divine Prophet, the divine Book, and the divine human nature ("fitrat"). Research in this regard seems essential because this theory has not been previously…

  13. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide

    PubMed Central

    Ramcharan, Roger; Aleksic, Tamara; Kamdoum, Wilfride Petnga; Gao, Shan; Pfister, Sophia X.; Tanner, Jordan; Bridges, Esther; Asher, Ruth; Watson, Amanda J.; Margison, Geoffrey P.; Woodcock, Mick; Repapi, Emmanouela; Li, Ji-Liang; Middleton, Mark R.; Macaulay, Valentine M.

    2015-01-01

    Prior studies implicate type 1 IGF receptor (IGF-1R) in mediating chemo-resistance. Here, we investigated whether IGF-1R influences response to temozolomide (TMZ), which generates DNA adducts that are removed by O6-methylguanine-DNA methyltransferase (MGMT), or persist causing replication-associated double-strand breaks (DSBs). Initial assessment in 10 melanoma cell lines revealed that TMZ resistance correlated with MGMT expression (r = 0.79, p = 0.009), and in MGMT-proficient cell lines, with phospho-IGF-1R (r = 0.81, p = 0.038), suggesting that TMZ resistance associates with IGF-1R activation. Next, effects of IGF-1R inhibitors (IGF-1Ri) AZ3801 and linsitinib (OSI-906) were tested on TMZ-sensitivity, cell cycle progression and DSB induction. IGF-1Ri sensitized BRAF wild-type and mutant melanoma cells to TMZ in vitro, an effect that was independent of MGMT. Cells harboring wild-type p53 were more sensitive to IGF-1Ri, and showed schedule-dependent chemo-sensitization that was most effective when IGF-1Ri followed TMZ. This sequence sensitized to clinically-achievable TMZ concentrations and enhanced TMZ-induced apoptosis. Simultaneous or prior IGF-1Ri caused less effective chemo-sensitization, associated with increased G1 population and reduced accumulation of TMZ-induced DSBs. Clinically relevant sequential (TMZ → IGF-1Ri) treatment was tested in mice bearing A375M (V600E BRAF, wild-type p53) melanoma xenografts, achieving peak plasma/tumor IGF-1Ri levels comparable to clinical Cmax, and inducing extensive intratumoral apoptosis. TMZ or IGF-1Ri caused minor inhibition of tumor growth (gradient reduction 13%, 25% respectively), while combination treatment caused supra-additive growth delay (72%) that was significantly different from control (p < 0.01), TMZ (p < 0.01) and IGF-1Ri (p < 0.05) groups. These data highlight the importance of scheduling when combining IGF-1Ri and other targeted agents with drugs that induce replication-associated DNA damage. PMID

  14. Identification of key amino acid residues responsible for internal and external pH sensitivity of Orai1/STIM1 channels.

    PubMed

    Tsujikawa, Hiroto; Yu, Albert S; Xie, Jia; Yue, Zhichao; Yang, Wenzhong; He, Yanlin; Yue, Lixia

    2015-11-18

    Changes of intracellular and extracellular pH are involved in a variety of physiological and pathological processes, in which regulation of the Ca(2+) release activated Ca(2+) channel (I CRAC) by pH has been implicated. Ca(2+) entry mediated by I CRAC has been shown to be regulated by acidic or alkaline pH. Whereas several amino acid residues have been shown to contribute to extracellular pH (pHo) sensitivity, the molecular mechanism for intracellular pH (pHi) sensitivity of Orai1/STIM1 is not fully understood. By investigating a series of mutations, we find that the previously identified residue E106 is responsible for pHo sensitivity when Ca(2+) is the charge carrier. Unexpectedly, we identify that the residue E190 is responsible for pHo sensitivity when Na(+) is the charge carrier. Furthermore, the intracellular mutant H155F markedly diminishes the response to acidic and alkaline pHi, suggesting that H155 is responsible for pHi sensitivity of Orai1/STIM1. Our results indicate that, whereas H155 is the intracellular pH sensor of Orai1/STIM1, the molecular mechanism of external pH sensitivity varies depending on the permeant cations. As changes of pH are involved in various physiological/pathological functions, Orai/STIM channels may be an important mediator for various physiological and pathological processes associated with acidosis and alkalinization.

  15. Bio-Guided Isolation of Methanol-Soluble Metabolites of Common Spruce (Picea abies) Bark by-Products and Investigation of Their Dermo-Cosmetic Properties.

    PubMed

    Angelis, Apostolis; Hubert, Jane; Aligiannis, Nektarios; Michalea, Rozalia; Abedini, Amin; Nuzillard, Jean-Marc; Gangloff, Sophie C; Skaltsounis, Alexios-Leandros; Renault, Jean-Hugues

    2016-11-21

    Common spruce ( Picea abies L.) is a fast-growing coniferous tree, widely used in several countries for the production of sawn wood, timber and pulp. During this industrial exploitation, large quantities of barks are generated as waste materials. The aim of this study was the bio-guided investigation and the effective recovery of methanol-soluble metabolites of common spruce bark for the development of new dermo-cosmetic agents. The active methanol extract was initially fractionated by Centrifugal Partition Chromatography (CPC) using a triphasic solvent system in a step-gradient elution mode. All resulting fractions were evaluated for their antibacterial activity, antioxidant activity and their capability to inhibit tyrosinase, elastase and collagenase activity. In parallel, the chemical composition of each fraction was established by combining a 13 C-NMR dereplication approach and 2D-NMR analyses. As a result, fourteen secondary metabolites corresponding to stilbene, flavonoid and phenolic acid derivatives were directly identified in the CPC fractions. A high amount (0.93 g) of E -astringin was recovered from 3 g of crude extract in a single 125 min run. E -Astringin significantly induced the tyrosinase activity while E -piceid, taxifolin, and taxifolin-3'- O -glucopyranoside exhibited significant anti-tyrosinase activity. The above compounds showed important anti-collagenase and antimicrobial activities, thus providing new perspectives for potential applications as cosmetic ingredients.

  16. A chloroplast retrograde signal, 3’-phosphoadenosine 5’-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination

    PubMed Central

    Pornsiriwong, Wannarat; Estavillo, Gonzalo M; Chan, Kai Xun; Tee, Estee E; Ganguly, Diep; Crisp, Peter A; Phua, Su Yin; Zhao, Chenchen; Qiu, Jiaen; Park, Jiyoung; Yong, Miing Tiem; Nisar, Nazia; Yadav, Arun Kumar; Schwessinger, Benjamin; Rathjen, John; Cazzonelli, Christopher I; Wilson, Philippa B; Gilliham, Matthew; Chen, Zhong-Hua; Pogson, Barry J

    2017-01-01

    Organelle-nuclear retrograde signaling regulates gene expression, but its roles in specialized cells and integration with hormonal signaling remain enigmatic. Here we show that the SAL1-PAP (3′-phosphoadenosine 5′- phosphate) retrograde pathway interacts with abscisic acid (ABA) signaling to regulate stomatal closure and seed germination in Arabidopsis. Genetically or exogenously manipulating PAP bypasses the canonical signaling components ABA Insensitive 1 (ABI1) and Open Stomata 1 (OST1); priming an alternative pathway that restores ABA-responsive gene expression, ROS bursts, ion channel function, stomatal closure and drought tolerance in ost1-2. PAP also inhibits wild type and abi1-1 seed germination by enhancing ABA sensitivity. PAP-XRN signaling interacts with ABA, ROS and Ca2+; up-regulating multiple ABA signaling components, including lowly-expressed Calcium Dependent Protein Kinases (CDPKs) capable of activating the anion channel SLAC1. Thus, PAP exhibits many secondary messenger attributes and exemplifies how retrograde signals can have broader roles in hormone signaling, allowing chloroplasts to fine-tune physiological responses. DOI: http://dx.doi.org/10.7554/eLife.23361.001 PMID:28323614

  17. Anxiety sensitivity predicts increased perceived exertion during a 1-mile walk test among treatment-seeking smokers.

    PubMed

    Farris, Samantha G; Uebelacker, Lisa A; Brown, Richard A; Price, Lawrence H; Desaulniers, Julie; Abrantes, Ana M

    2017-12-01

    Smoking increases risk of early morbidity and mortality, and risk is compounded by physical inactivity. Anxiety sensitivity (fear of anxiety-relevant somatic sensations) is a cognitive factor that may amplify the subjective experience of exertion (effort) during exercise, subsequently resulting in lower engagement in physical activity. We examined the effect of anxiety sensitivity on ratings of perceived exertion (RPE) and physiological arousal (heart rate) during a bout of exercise among low-active treatment-seeking smokers. Adult daily smokers (n = 157; M age  = 44.9, SD = 11.13; 69.4% female) completed the Rockport 1.0 mile submaximal treadmill walk test. RPE and heart rate were assessed during the walk test. Multi-level modeling was used to examine the interactive effect of anxiety sensitivity × time on RPE and on heart rate at five time points during the walk test. There were significant linear and cubic time × anxiety sensitivity effects for RPE. High anxiety sensitivity was associated with greater initial increases in RPE during the walk test, with stabilized ratings towards the last 5 min, whereas low anxiety sensitivity was associated with lower initial increase in RPE which stabilized more quickly. The linear time × anxiety sensitivity effect for heart rate was not significant. Anxiety sensitivity is associated with increasing RPE during moderate-intensity exercise. Persistently rising RPE observed for smokers with high anxiety sensitivity may contribute to the negative experience of exercise, resulting in early termination of bouts of prolonged activity and/or decreased likelihood of future engagement in physical activity.

  18. Sensitivity of temporal heart rate variability in Poincaré plot to changes in parasympathetic nervous system activity.

    PubMed

    Karmakar, Chandan K; Khandoker, Ahsan H; Voss, Andreas; Palaniswami, Marimuthu

    2011-03-03

    A novel descriptor (Complex Correlation Measure (CCM)) for measuring the variability in the temporal structure of Poincaré plot has been developed to characterize or distinguish between Poincaré plots with similar shapes. This study was designed to assess the changes in temporal structure of the Poincaré plot using CCM during atropine infusion, 70° head-up tilt and scopolamine administration in healthy human subjects. CCM quantifies the point-to-point variation of the signal rather than gross description of the Poincaré plot. The physiological relevance of CCM was demonstrated by comparing the changes in CCM values with autonomic perturbation during all phases of the experiment. The sensitivities of short term variability (SD1), long term variability (SD2) and variability in temporal structure (CCM) were analyzed by changing the temporal structure by shuffling the sequences of points of the Poincaré plot. Surrogate analysis was used to show CCM as a measure of changes in temporal structure rather than random noise and sensitivity of CCM with changes in parasympathetic activity. CCM was found to be most sensitive to changes in temporal structure of the Poincaré plot as compared to SD1 and SD2. The values of all descriptors decreased with decrease in parasympathetic activity during atropine infusion and 70° head-up tilt phase. In contrast, values of all descriptors increased with increase in parasympathetic activity during scopolamine administration. The concordant reduction and enhancement in CCM values with parasympathetic activity indicates that the temporal variability of Poincaré plot is modulated by the parasympathetic activity which correlates with changes in CCM values. CCM is more sensitive than SD1 and SD2 to changes of parasympathetic activity.

  19. MicroRNA Biomarkers to Generate Sensitivity to Abiraterone-Resistant Prostate Cancer

    DTIC Science & Technology

    2016-09-01

    approach, employing Abiraterone (Abi) plus RNA therapy. For this, we will use an aptamer specific for PSMA (aptPSMA) to specifically target CRPC...develop RNA aptamer therapy. We will test 8 of the recently identified Abi regulated miRNAs for therapeutic utility in vitro. We will design an...as an independent marker for predicting disease relapse. We will use an RNA aptamer which binds specifically to PCa cells to deliver the miRNA. miRNA

  20. 41 CFR 109-1.5109 - Control of sensitive items.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... administrative control of sensitive items assigned for general use within an organizational unit as appropriate... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Control of sensitive...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5109 Control of sensitive items...

  1. Sensitive red protein calcium indicators for imaging neural activity

    PubMed Central

    Dana, Hod; Mohar, Boaz; Sun, Yi; Narayan, Sujatha; Gordus, Andrew; Hasseman, Jeremy P; Tsegaye, Getahun; Holt, Graham T; Hu, Amy; Walpita, Deepika; Patel, Ronak; Macklin, John J; Bargmann, Cornelia I; Ahrens, Misha B; Schreiter, Eric R; Jayaraman, Vivek; Looger, Loren L; Svoboda, Karel; Kim, Douglas S

    2016-01-01

    Genetically encoded calcium indicators (GECIs) allow measurement of activity in large populations of neurons and in small neuronal compartments, over times of milliseconds to months. Although GFP-based GECIs are widely used for in vivo neurophysiology, GECIs with red-shifted excitation and emission spectra have advantages for in vivo imaging because of reduced scattering and absorption in tissue, and a consequent reduction in phototoxicity. However, current red GECIs are inferior to the state-of-the-art GFP-based GCaMP6 indicators for detecting and quantifying neural activity. Here we present improved red GECIs based on mRuby (jRCaMP1a, b) and mApple (jRGECO1a), with sensitivity comparable to GCaMP6. We characterized the performance of the new red GECIs in cultured neurons and in mouse, Drosophila, zebrafish and C. elegans in vivo. Red GECIs facilitate deep-tissue imaging, dual-color imaging together with GFP-based reporters, and the use of optogenetics in combination with calcium imaging. DOI: http://dx.doi.org/10.7554/eLife.12727.001 PMID:27011354

  2. Acclimation of branch and leaf hydraulics in adult Fagus sylvatica and Picea abies in a forest through-fall exclusion experiment.

    PubMed

    Tomasella, Martina; Beikircher, Barbara; Häberle, Karl-Heinz; Hesse, Benjamin; Kallenbach, Christian; Matyssek, Rainer; Mayr, Stefan

    2018-02-01

    Decreasing water availability due to climate change poses the question of whether and to what extent tree species are able to hydraulically acclimate and how hydraulic traits of stems and leaves are coordinated under drought. In a through-fall exclusion experiment, hydraulic acclimation was analyzed in a mixed forest stand of Fagus sylvatica L. and Picea abies (L.) Karst. In drought-stressed (TE, through-fall exclusion over 2 years) and control (CO) trees, hydraulic vulnerability was studied in branches as well as in leaves (F. sylvatica) and end-twigs (P. abies, entirely formed during the drought period) sampled at the same height in sun-exposed portions of the tree crown. In addition, relevant xylem anatomical traits and leaf pressure-volume relations were analyzed. The TE trees reached pre-dawn water potentials down to -1.6 MPa. In both species, water potentials at 50% loss of xylem hydraulic conductivity were ~0.4 MPa more negative in TE than in CO branches. Foliage hydraulic vulnerability (expressed as water potential at 50% loss of leaf/end-twig hydraulic conductance) and water potential at turgor loss point were also, respectively, 0.4 and 0.5 MPa lower in TE trees. Minor differences were observed in conduit mean hydraulic diameter and cell wall reinforcement. Our findings indicate significant and fast hydraulic acclimation under relatively mild drought in both tree species. Acclimation was well coordinated between branches and foliage, which might be essential for survival and productivity of mature trees under future drought periods. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. P21-activated kinase 2 (PAK2) regulates glucose uptake and insulin sensitivity in neuronal cells.

    PubMed

    Varshney, Pallavi; Dey, Chinmoy Sankar

    2016-07-05

    P21-activated kinases (PAKs) are recently reported as important players of insulin signaling and glucose homeostasis in tissues like muscle, pancreas and liver. However, their role in neuronal insulin signaling is still unknown. Present study reports the involvement of PAK2 in neuronal insulin signaling, glucose uptake and insulin resistance. Irrespective of insulin sensitivity, insulin stimulation decreased PAK2 activity. PAK2 downregulation displayed marked enhancement of GLUT4 translocation with increase in glucose uptake whereas PAK2 over-expression showed its reduction. Treatment with Akti-1/2 and wortmannin suggested that Akt and PI3K are mediators of insulin effect on PAK2 and glucose uptake. Rac1 inhibition demonstrated decreased PAK2 activity while inhibition of PP2A resulted in increased PAK2 activity, with corresponding changes in glucose uptake. Taken together, present study demonstrates an inhibitory role of insulin signaling (via PI3K-Akt) and PP2A on PAK2 activity and establishes PAK2 as a Rac1-dependent negative regulator of neuronal glucose uptake and insulin sensitivity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Celecoxib Sensitizes Staphylococcus aureus to Antibiotics in Macrophages by Modulating SIRT1

    PubMed Central

    Annamanedi, Madhavi; Kalle, Arunasree M.

    2014-01-01

    We have previously shown that celecoxib in combination with an antibiotic, increase the bacterial sensitivity to antibiotics. However, the underlying molecular mechanism remained elusive. Efficacy of the combinatorial treatment of celecoxib and ampicillin in vitro was evaluated on macrophage-phagocytosed S aureus. To elucidate the mechanism, signaling pathway of infection and inflammation involving TLR2, JNK, SIRT1 and NF-κB was studied by FACS, Western blot, ELISA and activity assays. Combinatorial treatment of ampicillin and celecoxib reduced the bacterial load in the macrophages. Further studies clearly suggested the activation of the master regulator of oxidative stress and inflammation SIRT1,, by celecoxib when used alone and/or in combination with ampicillin. Also, the results indicated that celecoxib inhibited JNK phosphorylation thereby stabilizing and activating SIRT1 protein that inhibited the COX-2 gene transcription with a significant decrease in the levels of protein inflammatory cytokines like IL-6, MIP-1α and IL-1β via inhibition of NF-κB. SIRT1 activation by celecoxib also resulted in increase of catalase and peroxidase activity with a decrease in Nitric oxide levels. In conclusion, we demonstrate a novel role of celecoxib in controlling inflammation as an enhancer of antibiotic activity against bacteria by modulating SIRT1. PMID:24950067

  5. Celecoxib sensitizes Staphylococcus aureus to antibiotics in macrophages by modulating SIRT1.

    PubMed

    Annamanedi, Madhavi; Kalle, Arunasree M

    2014-01-01

    We have previously shown that celecoxib in combination with an antibiotic, increase the bacterial sensitivity to antibiotics. However, the underlying molecular mechanism remained elusive. Efficacy of the combinatorial treatment of celecoxib and ampicillin in vitro was evaluated on macrophage-phagocytosed S. aureus. To elucidate the mechanism, signaling pathway of infection and inflammation involving TLR2, JNK, SIRT1 and NF-κB was studied by FACS, Western blot, ELISA and activity assays. Combinatorial treatment of ampicillin and celecoxib reduced the bacterial load in the macrophages. Further studies clearly suggested the activation of the master regulator of oxidative stress and inflammation SIRT1, by celecoxib when used alone and/or in combination with ampicillin. Also, the results indicated that celecoxib inhibited JNK phosphorylation thereby stabilizing and activating SIRT1 protein that inhibited the COX-2 gene transcription with a significant decrease in the levels of protein inflammatory cytokines like IL-6, MIP-1α and IL-1β via inhibition of NF-κB. SIRT1 activation by celecoxib also resulted in increase of catalase and peroxidase activity with a decrease in Nitric oxide levels. In conclusion, we demonstrate a novel role of celecoxib in controlling inflammation as an enhancer of antibiotic activity against bacteria by modulating SIRT1.

  6. Phloretin differentially inhibits volume-sensitive and cyclic AMP-activated, but not Ca-activated, Cl− channels

    PubMed Central

    Fan, Hai-Tian; Morishima, Shigeru; Kida, Hajime; Okada, Yasunobu

    2001-01-01

    Some phenol derivatives are known to block volume-sensitive Cl− channels. However, effects on the channel of the bisphenol phloretin, which is a known blocker of glucose uniport and anion antiport, have not been examined. In the present study, we investigated the effects of phloretin on volume-sensitive Cl− channels in comparison with cyclic AMP-activated CFTR Cl− channels and Ca2+-activated Cl− channels using the whole-cell patch-clamp technique.Extracellular application of phloretin (over 10 μM) voltage-independently, and in a concentration-dependent manner (IC50 ∼30 μM), inhibited the Cl− current activated by a hypotonic challenge in human epithelial T84, Intestine 407 cells and mouse mammary C127/CFTR cells.In contrast, at 30 μM phloretin failed to inhibit cyclic AMP-activated Cl− currents in T84 and C127/CFTR cells. Higher concentrations (over 100 μM) of phloretin, however, partially inhibited the CFTR Cl− currents in a voltage-dependent manner.At 30 and 300 μM, phloretin showed no inhibitory effect on Ca2+-dependent Cl− currents induced by ionomycin in T84 cells.It is concluded that phloretin preferentially blocks volume-sensitive Cl− channels at low concentrations (below 100 μM) and also inhibits cyclic AMP-activated Cl− channels at higher concentrations, whereas phloretin does not inhibit Ca2+-activated Cl− channels in epithelial cells. PMID:11487521

  7. Pore helix domain is critical to camphor sensitivity of transient receptor potential vanilloid 1 channel.

    PubMed

    Marsakova, Lenka; Touska, Filip; Krusek, Jan; Vlachova, Viktorie

    2012-04-01

    The recent discovery that camphor activates and strongly desensitizes the capsaicin-sensitive and noxious heat-sensitive channel transient receptor potential vanilloid subfamily member 1 (TRPV1) has provided new insights and opened up new research paths toward understanding why this naturally occurring monoterpene is widely used in human medicine for its local counter-irritant, antipruritic, and anesthetic properties. However, the molecular basis for camphor sensitivity remains mostly unknown. The authors attempt to explore the nature of the activation pathways evoked by camphor and narrow down a putative interaction site at TRPV1. The authors transiently expressed wild-type or specifically mutated recombinant TRPV1 channels in human embryonic kidney cells HEK293T and recorded cation currents with the whole cell, patch clamp technique. To monitor changes in the spatial distribution of phosphatidylinositol 4,5-bisphosphate, they used fluorescence resonance energy transfer measurements from cells transfected with the fluorescent protein-tagged pleckstrin homology domains of phospholipase C. The results revealed that camphor modulates TRPV1 channel through the outer pore helix domain by affecting its overall gating equilibrium. In addition, camphor, which generally is known to decrease the fluidity of cell plasma membranes, may also regulate the activity of TRPV1 by inducing changes in the spatial distribution of phosphatidylinositol-4,5-bisphosphate on the inner leaflet of the plasma membrane. The findings of this study provide novel insights into the structural basis for the modulation of TRPV1 channel by camphor and may provide an explanation for the mechanism by which camphor modulates thermal sensation in vivo.

  8. Modification of insulin sensitivity and glycemic control by activity and exercise.

    PubMed

    Roberts, Christian K; Little, Jonathan P; Thyfault, John P

    2013-10-01

    Type 2 diabetes has progressed into a major contributor to preventable death, and developing optimal therapeutic strategies to prevent future type 2 diabetes and its primary clinical manifestation of cardiovascular disease is a major public health challenge. This article will provide a brief overview of the role of activity and exercise in modulating insulin sensitivity and will outline the effect of physical activity, high-intensity interval training, and resistance training on insulin sensitivity and glycemic control.

  9. Effect of active sensitization on the bronchopulmonary responses to tachykinins in the guinea pig. Modulation by peptidase inhibitors.

    PubMed

    Capaz, F R; Ruffié, C; Lefort, J; Manzini, S; Vargaftig, B B; Pretolani, M

    1993-08-01

    The i.v. administration of substance P (SP, 0.25-16 micrograms/kg) or of the selective metabolic stable NK-1 agonist, [Glp6,Pro9]SP-(6-11) (septide, 0.03-0.25 microgram) to atropine-treated guinea pigs or to isolated perfused lungs triggered a dose-dependent bronchoconstriction, which was enhanced in animals actively sensitized to ovalbumin. In vivo, bronchial hyper-responsiveness was restricted to SP and to septide, inasmuch as neurokinin A (0.06-1 microgram/kg)- or capsaicin (0.5-32 micrograms/kg)-induced bronchoconstriction were not modified. In contrast, isolated lungs from sensitized guinea pigs exhibited an increased bronchoconstriction also in response to capsaicin (0.01-10 micrograms), which was inhibited by atropine in the medium. Pretreatment of actively sensitized guinea pigs either with indomethacin plus mepyramine, the lipoxygenase inhibitor BW A4C or with the platelet-activating factor antagonist SR 27417, did not modify bronchial hyper-reactivity to SP. Captopril (5 mg/kg i.v.), but not thiorphan (0.8 mg/kg i.v.), increased the SP-induced bronchoconstriction in actively sensitized animals, whereas both inhibitors were equally effective in nonsensitized guinea pigs. Thiorphan, however, did not modify the in vivo response to septide. Our results demonstrate that guinea pigs sensitized to ovalbumin exhibit bronchial hyperreactivity to SP, but not to neurokinin A, as compared to nonsensitized animals, suggesting a decrease in the neutral endopeptidase activity in the airways brought by the immunization. However, the results obtained by using septide indicate that other mechanisms may be involved in the bronchial hyper-reactivity to SP.

  10. A novel Chk1-binding peptide that enhances genotoxic sensitivity through the cellular redistribution of nuclear Chk1

    PubMed Central

    Kim, Kwang Seok; Choi, Kyu Jin; Bae, Sangwoo

    2016-01-01

    Since checkpoint kinase 1 (Chk1) is an essential factor for cell viability following DNA damage, the inhibition of Chk1 has been a major focus of pharmaceutical development to enhance the sensitivity of tumor cells to chemo- and radiotherapy that damage DNA. However, due to the off-target effects of conventional Chk1-targeting strategies and the toxicity of Chk1 inhibitors, alternative strategies are required to target Chk1. To facilitate such efforts, in this study, we identified a specific Chk1-binding 12-mer peptide from the screening of a phage display library and characterized the peptide in terms of cellular cytotoxicity, and in terms of its effect on Chk1 activity and sensitivity to genotoxic agents. This peptide, named N-terminal Chk1-binding peptide (Chk1-NP), bound the kinase domain of Chk1. Simulation of the binding revealed that the very N-terminus of the Chk1 kinase domain is the potential peptide binding site. Of note, the polyarginine-mediated internalization of Chk1-NP redistributed nuclear Chk1 with a prominent decrease in the nucleus in the absence of DNA damage. Treatment with Chk1-NP peptide alone decreased the viability of p53-defective HeLa cells, but not that of p53-functional NCI-H460 cells under normal conditions. The treatment of HeLa or NCI-H460 cells with the peptide significantly enhanced radiation sensitivity following ionizing radiation (IR) with a greater enhancement observed in HeLa cells. Moreover, the IR-induced destabilization of Chk1 was aggravated by treatment with Chk1-NP. Therefore, the decreased nuclear localization and protein levels of Chk1 seem to be responsible for the enhanced cancer cell killing following combined treatment with IR and Chk1-NP. The approach using the specific Chk1-binding peptide may facilitate the mechanistic understanding and potential modulation of Chk1 activities and may provide a novel rationale for the development of specific Chk1-targeting agents. PMID:28025997

  11. Insulin sensitizer prevents and ameliorates experimental type 1 diabetes.

    PubMed

    Valitsky, Michael; Hoffman, Amnon; Unterman, Terry; Bar-Tana, Jacob

    2017-12-01

    Insulin-dependent type-1 diabetes (T1D) is driven by autoimmune β-cell failure, whereas systemic resistance to insulin is considered the hallmark of insulin-independent type-2 diabetes (T2D). In contrast to this canonical dichotomy, insulin resistance appears to precede the overt diabetic stage of T1D and predict its progression, implying that insulin sensitizers may change the course of T1D. However, previous attempts to ameliorate T1D in animal models or patients by insulin sensitizers have largely failed. Sensitization to insulin by MEthyl-substituted long-chain DICArboxylic acid (MEDICA) analogs in T2D animal models surpasses that of current insulin sensitizers, thus prompting our interest in probing MEDICA in the T1D context. MEDICA efficacy in modulating the course of T1D was verified in streptozotocin (STZ) diabetic rats and autoimmune nonobese diabetic (NOD) mice. MEDICA treatment normalizes overt diabetes in STZ diabetic rats when added on to subtherapeutic insulin, and prevents/delays autoimmune T1D in NOD mice. MEDICA treatment does not improve β-cell insulin content or insulitis score, but its efficacy is accounted for by pronounced total body sensitization to insulin. In conclusion, potent insulin sensitizers may counteract genetic predisposition to autoimmune T1D and amplify subtherapeutic insulin into an effective therapeutic measure for the treatment of overt T1D. Copyright © 2017 the American Physiological Society.

  12. Sensitization of TRPV1 by protein kinase C in rats with mono-iodoacetate-induced joint pain.

    PubMed

    Koda, K; Hyakkoku, K; Ogawa, K; Takasu, K; Imai, S; Sakurai, Y; Fujita, M; Ono, H; Yamamoto, M; Fukuda, I; Yamane, S; Morita, A; Asaki, T; Kanemasa, T; Sakaguchi, G; Morioka, Y

    2016-07-01

    To assess the functional changes of Transient receptor potential vanilloid 1 (TRPV1) receptor and to clarify its mechanism in a rat mono-iodoacetate (MIA)-induced joint pain model (MIA rats), which has joint degeneration with cartilage loss similar to osteoarthritis. Sensitization of TRPV1 in MIA rats was assessed by transient spontaneous pain behavior induced by capsaicin injection in knee joints and electrophysiological changes of dorsal root ganglion (DRG) neurons innervating knee joints in response to capsaicin. Mechanisms of TRPV1 sensitization were analyzed by a newly developed sandwich enzyme-linked immunosorbent assay that detects phosphorylated TRPV1, followed by functional and expression analyses of protein kinase C (PKC) in vivo and in vitro, which involves TRPV1 phosphorylation. Pain-related behavior induced by intra-articular injection of capsaicin was significantly increased in MIA rats compared with sham rats. In addition, capsaicin sensitivity, evaluated by capsaicin-induced inward currents, was significantly increased in DRG neurons of MIA rats. Protein levels of TRPV1 remained unchanged, but phosphorylated TRPV1 at Ser800 increased in DRG neurons of MIA rats. Phosphorylated-PKCɛ (p-PKCɛ) increased and co-localized with TRPV1 in DRG neurons of MIA rats. Capsaicin-induced pain-related behavior in MIA rats was inhibited by intra-articular pretreatment of the PKC inhibitor bisindolylmaleimide I. In addition, intra-articular injection of the PKC activator phorbol 12-myristate 13-acetate increased capsaicin-induced pain-related behavior in normal rats. TRPV1 was sensitized at the knee joint and at DRG neurons of MIA rats through PKC activation. Thus, TRPV1 sensitization might be involved in chronic pain caused by osteoarthritis. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  13. Carbon Allocation into Different Fine-Root Classes of Young Abies alba Trees Is Affected More by Phenology than by Simulated Browsing

    PubMed Central

    Endrulat, Tina; Buchmann, Nina; Brunner, Ivano

    2016-01-01

    Abies alba (European silver fir) was used to investigate possible effects of simulated browsing on C allocation belowground by 13CO2 pulse-labelling at spring, summer or autumn, and by harvesting the trees at the same time point of the labelling or at a later season for biomass and for 13C-allocation into the fine-root system. Before budburst in spring, the leader shoots and 50% of all lateral shoots of half of the investigated 5-year old Abies alba saplings were clipped to simulate browsing. At harvest, different fine-root classes were separated, and starch as an important storage compartment was analysed for concentrations. The phenology had a strong effect on the allocation of the 13C-label from shoots to roots. In spring, shoots did not supply the fine-roots with high amounts of the 13C-label, because the fine-roots contained less than 1% of the applied 13C. In summer and autumn, however, shoots allocated relatively high amounts of the 13C-label to the fine roots. The incorporation of the 13C-label as structural C or as starch into the roots is strongly dependent on the root type and the root diameter. In newly formed fine roots, 3–5% of the applied 13C was incorporated, whereas 1–3% in the ≤0.5 mm root class and 11.5% in the >0.5–1.0 mm root class were recorded. Highest 13C-enrichment in the starch was recorded in the newly formed fine roots in autumn. The clipping treatment had a significant positive effect on the amount of allocated 13C-label to the fine roots after the spring labelling, with high relative 13C-contents observed in the ≤0.5 mm and the >0.5–1.0 mm fine-root classes of clipped trees. No effects of the clipping were observed after summer and autumn labelling in the 13C-allocation patterns. Overall, our data imply that the season of C assimilation and, thus, the phenology of trees is the main determinant of the C allocation from shoots to roots and is clearly more important than browsing. PMID:27123860

  14. Carbon Allocation into Different Fine-Root Classes of Young Abies alba Trees Is Affected More by Phenology than by Simulated Browsing.

    PubMed

    Endrulat, Tina; Buchmann, Nina; Brunner, Ivano

    2016-01-01

    Abies alba (European silver fir) was used to investigate possible effects of simulated browsing on C allocation belowground by 13CO2 pulse-labelling at spring, summer or autumn, and by harvesting the trees at the same time point of the labelling or at a later season for biomass and for 13C-allocation into the fine-root system. Before budburst in spring, the leader shoots and 50% of all lateral shoots of half of the investigated 5-year old Abies alba saplings were clipped to simulate browsing. At harvest, different fine-root classes were separated, and starch as an important storage compartment was analysed for concentrations. The phenology had a strong effect on the allocation of the 13C-label from shoots to roots. In spring, shoots did not supply the fine-roots with high amounts of the 13C-label, because the fine-roots contained less than 1% of the applied 13C. In summer and autumn, however, shoots allocated relatively high amounts of the 13C-label to the fine roots. The incorporation of the 13C-label as structural C or as starch into the roots is strongly dependent on the root type and the root diameter. In newly formed fine roots, 3-5% of the applied 13C was incorporated, whereas 1-3% in the ≤0.5 mm root class and 1-1.5% in the >0.5-1.0 mm root class were recorded. Highest 13C-enrichment in the starch was recorded in the newly formed fine roots in autumn. The clipping treatment had a significant positive effect on the amount of allocated 13C-label to the fine roots after the spring labelling, with high relative 13C-contents observed in the ≤0.5 mm and the >0.5-1.0 mm fine-root classes of clipped trees. No effects of the clipping were observed after summer and autumn labelling in the 13C-allocation patterns. Overall, our data imply that the season of C assimilation and, thus, the phenology of trees is the main determinant of the C allocation from shoots to roots and is clearly more important than browsing.

  15. Evaluating Interest in Acids-Bases: Development of an Acid-Base Interest Scale (ABIS) and Assessment of Pre-Service Science Teachers' Interest

    ERIC Educational Resources Information Center

    Çiçek, Ö.; Ilhan, N.

    2017-01-01

    Students are more likely to be successful in topics they are interested in than others. This study aims to develop an Acid-Base Interest Scale (ABIS) and subsequently evaluate the interest of pre-service science teachers in acids-bases according to gender, years at the university, type of high school the pre-service science teachers attended, and…

  16. Highly Sensitive Detection of Caspase-3/7 Activity in Living Mice Using Enzyme-Responsive 19F MRI Nanoprobes.

    PubMed

    Akazawa, Kazuki; Sugihara, Fuminori; Nakamura, Tatsuya; Mizukami, Shin; Kikuchi, Kazuya

    2018-05-16

    Highly sensitive imaging of enzymatic activities in the deep tissues of living mammals provides useful information about their biological functions and for developing new drugs; however, such imaging is challenging. 19 F magnetic resonance imaging (MRI) is suitable for noninvasive visualization of enzymatic activities without endogenous background signals. Although various enzyme-responsive 19 F MRI probes have been developed, most cannot be used for in vivo imaging because of their low sensitivity. Recently, we developed unique nanoparticles, called FLAMEs, that are composed of a liquid perfluorocarbon core and a robust silica shell, and demonstrated their outstanding sensitivity in vivo. Here, we report a highly functionalized nanoprobe, FLAME-DEVD 2, with an OFF/ON 19 F MRI switch for detecting caspase-3/7 activity based on the paramagnetic relaxation enhancement effect. To improve the cleavage efficiency of peptides by caspase-3, we designed a novel Gd 3+ complex-conjugated peptide, DEVD X ( X = 1, 2), which is a substrate peptide sequence tandemly repeated X times, and demonstrated that DEVD 2 showed faster cleavage kinetics than DEVD 1. By incorporating this novel concept into a signal activation strategy, FLAME-DEVD 2 showed a high 19 F MRI signal enhancement rate in response to caspase-3 activity. After intravenous injection of FLAME-DEVD 2 and an apoptosis-inducing reagent, caspase-3/7 activity in the spleen of a living mouse was successfully imaged by 19 F MRI. This imaging platform shows great potential for highly sensitive detection of enzymatic activities in vivo.

  17. Multiple-channel detection of cellular activities by ion-sensitive transistors

    NASA Astrophysics Data System (ADS)

    Machida, Satoru; Shimada, Hideto; Motoyama, Yumi

    2018-04-01

    An ion-sensitive field-effect transistor to record cellular activities was demonstrated. This field-effect transistor (bio transistor) includes cultured cells on the gate insulator instead of gate electrode. The bio transistor converts a change in potential underneath the cells into variation of the drain current when ion channels open. The bio transistor has high detection sensitivity to even minute variations in potential utilizing a subthreshold swing region. To open ion channels, a reagent solution (acetylcholine) was added to a human-originating cell cultured on the bio transistor. The drain current was successfully decreased with the addition of acetylcholine. Moreover, we attempted to detect the opening of ion channels using a multiple-channel measurement circuit containing several bio transistors. As a consequence, the drain current distinctly decreased only after the addition of acetylcholine. We confirmed that this measurement system including bio transistors enables to observation of cellular activities sensitively and simultaneously.

  18. Image Navigation and Registration Performance Assessment Evaluation Tools for GOES-R ABI and GLM

    NASA Technical Reports Server (NTRS)

    Houchin, Scott; Porter, Brian; Graybill, Justin; Slingerland, Philip

    2017-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. This paper describes the software design and implementation of IPATS and provides preliminary test results.

  19. Self-diagnosis of active head lice infestation by individuals from an impoverished community: high sensitivity and specificity.

    PubMed

    Pilger, Daniel; Khakban, Adak; Heukelbach, Jorg; Feldmeier, Hermann

    2008-01-01

    To compare sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of self-diagnosis for head lice infestation with visual inspection, we conducted a study in an urban slum in Brazil. Individuals were asked about active head lice infestation (self-diagnosis); we performed visual inspection and thereafter wet combing (gold standard). Of the 175 individuals included, 77 (44%) had an active head lice infestation. For self-diagnosis, sensitivity (80.5%), specificity (91.8%), PPV (88.6%) and NPV (85.7%) were high. Sensitivity of visual inspection was 35.1%. Public health professionals can use self-diagnosis as a diagnostic tool, to estimate accurately prevalence of pediculosis in a community, and to monitor ongoing intervention strategies.

  20. Redox-sensitive induction of Src/PI3-kinase/Akt and MAPKs pathways activate eNOS in response to EPA:DHA 6:1.

    PubMed

    Zgheel, Faraj; Alhosin, Mahmoud; Rashid, Sherzad; Burban, Mélanie; Auger, Cyril; Schini-Kerth, Valérie B

    2014-01-01

    Omega-3 fatty acid products containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have vasoprotective effects, in part, by stimulating the endothelial formation of nitric oxide (NO). This study determined the role of the EPA:DHA ratio and amount, and characterized the mechanism leading to endothelial NO synthase (eNOS) activation. EPA:DHA 6∶1 and 9∶1 caused significantly greater endothelium-dependent relaxations in porcine coronary artery rings than EPA:DHA 3∶1, 11, 1∶3, 1∶6, 1∶9, EPA and DHA alone, and EPA:DHA 6∶1 with a reduced EPA + DHA amount, which were inhibited by an eNOS inhibitor. Relaxations to EPA:DHA 6∶1 were insensitive to cyclooxygenase inhibition, and reduced by inhibitors of either oxidative stress, Src kinase, PI3-kinase, p38 MAPK, MEK, or JNK. EPA:DHA 6∶1 induced phosphorylation of Src, Akt, p38 MAPK, ERK, JNK and eNOS; these effects were inhibited by MnTMPyP. EPA:DHA 6∶1 induced the endothelial formation of ROS in coronary artery sections as assessed by dihydroethidium, and of superoxide anions and hydrogen peroxide in cultured endothelial cells as assessed by electron spin resonance with the spin probe CMH, and the Amplex Red based assay, respectively. Omega-3 fatty acids cause endothelium-dependent NO-mediated relaxations in coronary artery rings, which are dependent on the EPA:DHA ratio and amount, and involve an intracellular activation of the redox-sensitive PI3-kinase/Akt and MAPKs pathways to activate eNOS.

  1. Antifungal activity of essential oils on two Venturia inaequalis strains with different sensitivities to tebuconazole.

    PubMed

    Muchembled, Jérôme; Deweer, Caroline; Sahmer, Karin; Halama, Patrice

    2017-11-02

    The antifungal activity of seven essential oils (eucalyptus, clove, mint, oregano, savory, tea tree, and thyme) was studied on Venturia inaequalis, the fungus responsible for apple scab. The composition of the essential oils was checked by gas chromatography-mass spectrometry. Each essential oil had its main compound. Liquid tests were performed to calculate the IC 50 of essential oils as well as their majority compounds. The tests were made on two strains with different sensitivities to tebuconazole: S755, the sensitive strain, and rs552, the strain with reduced sensitivity. Copper sulfate was selected as the reference mineral fungicidal substance. IC 50 with confidence intervals were calculated after three independent experiments. The results showed that all essential oils and all major compounds had in vitro antifungal activities. Moreover, it was highlighted that the effectiveness of four essential oils (clove, eucalyptus, mint, and savory) was higher than copper sulfate on both strains. For each strain, the best activity was obtained using clove and eucalyptus essential oils. For clove, the IC 50 obtained on the sensitive strain (5.2 mg/L [4.0-6.7 mg/L]) was statistically lower than the IC 50 of reduced sensitivity strain (14 mg/L [11.1-17.5 mg/L]). In contrast, for eucalyptus essential oil, the IC 50 were not different with respectively 9.4-13.0 and 12.2-17.9 mg/L for S755 and rs552 strains. For mint, origano, savory, tea tree, and thyme, IC 50 were always the best on rs552 strain. The majority compounds were not necessarily more efficient than their corresponding oils; only eugenol (for clove) and carvacrol (for oregano and savory) seemed to be more effective on S755 strain. On the other hand, rs552 strain seemed to be more sensitive to essential oils than S755 strain. In overall, it was shown that essential oils have different antifungal activities but do not have the same antifungal activities depending on the fungus strain used.

  2. ISOLATION OF RABBIT IGA ANTIHAPTEN ANTIBODY AND DEMONSTRATION OF SKIN-SENSITIZING ACTIVITY IN HOMOLOGOUS SKIN

    PubMed Central

    Onoue, Kaoru; Yagi, Yasuo; Pressman, David

    1966-01-01

    Multiple antibody components of rabbit antisera against p-azobenzenearsonate (Rp) were studied with respect to their globulin nature and skin-sensitizing activity. IgA antibody was characterized by isolating two IgA-rich fractions from a specifically purified antibody preparation. Examination of these fractions showed that IgA antibodies existed in two molecular forms, one with a sedimentation constant of 7S and the other 9S. Skin-sensitizing activity was examined by a P-K type test and a PCA test with Rp-rabbit serum albumin in homologous (rabbit) species. Only the 7S but not 9S IgA antibody sensitized rabbit skin. IgM antibody showed no activity and IgG antibody showed very low activity. In contrast, only IgG antibody was active in the P-K type test to sensitize a heterologous species (guinea pig). None of the antibodies of other classes showed sensitizing activity in heterologous skin. The 7S IgA antibody lost its sensitizing activity upon reduction and alkylation, although no change in its molecular size could be observed. The loss of sensitizing activity was not due to the destruction of antigen-binding activity since the treated 7S IgA antibody retained this activity as shown by radioimmunoelectrophoresis and by binding to the specific immunoadsorbent. The 9S IgA antibody was more resistant to these treatments than the IgM antibody and showed no indication of dissociation. The treated 9S IgA also retained antigen-binding activity. Both the P-K type and PCA reactions were considerably stronger when the interval between injections of antibody and antigen was 24 hr rather than 4 to 5 hr. PMID:4159250

  3. Proteomic biomarkers apolipoprotein A1, truncated transthyretin and connective tissue activating protein III enhance the sensitivity of CA125 for detecting early stage epithelial ovarian cancer.

    PubMed

    Clarke, Charlotte H; Yip, Christine; Badgwell, Donna; Fung, Eric T; Coombes, Kevin R; Zhang, Zhen; Lu, Karen H; Bast, Robert C

    2011-09-01

    The low prevalence of ovarian cancer demands both high sensitivity (>75%) and specificity (99.6%) to achieve a positive predictive value of 10% for successful early detection. Utilizing a two stage strategy where serum marker(s) prompt the performance of transvaginal sonography (TVS) in a limited number (2%) of women could reduce the requisite specificity for serum markers to 98%. We have attempted to improve sensitivity by combining CA125 with proteomic markers. Sera from 41 patients with early stage (I/II) and 51 with late stage (III/IV) epithelial ovarian cancer, 40 with benign disease and 99 healthy individuals, were analyzed to measure 7 proteins [Apolipoprotein A1 (Apo-A1), truncated transthyretin (TT), transferrin, hepcidin, ß-2-microglobulin (ß2M), Connective Tissue Activating Protein III (CTAPIII), and Inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4)]. Statistical models were fit by logistic regression, followed by optimization of factors retained in the models determined by optimizing the Akaike Information Criterion. A validation set included 136 stage I ovarian cancers, 140 benign pelvic masses and 174 healthy controls. In a training set analysis, the 3 most effective biomarkers (Apo-A1, TT and CTAPIII) exhibited 54% sensitivity at 98% specificity, CA125 alone produced 68% sensitivity and the combination increased sensitivity to 88%. In a validation set, the marker panel plus CA125 produced a sensitivity of 84% at 98% specificity (P=0.015, McNemar's test). Combining a panel of proteomic markers with CA125 could provide a first step in a sequential two-stage strategy with TVS for early detection of ovarian cancer. Copyright © 2011. Published by Elsevier Inc.

  4. Proteomic Biomarkers Apolipoprotein A1, Truncated Transthyretin and Connective Tissue Activating Protein III Enhance the Sensitivity of CA125 for Detecting Early Stage Epithelial Ovarian Cancer

    PubMed Central

    Clarke, Charlotte H.; Yip, Christine; Badgwell, Donna; Fung, Eric T.; Coombes, Kevin R.; Zhang, Zhen; Lu, Karen H.; Bast, Robert C.

    2011-01-01

    Objective The low prevalence of ovarian cancer demands both high sensitivity (>75%) and specificity (99.6%) to achieve a positive predictive value of 10% for successful early detection. Utilizing a two stage strategy where serum marker(s) prompt the performance of transvaginal sonography (TVS) in a limited number (2%) of women could reduce the requisite specificity for serum markers to 98%. We have attempted to improve sensitivity by combining CA125 with proteomic markers. Methods Sera from 41 patients with early stage (I/II) and 51 with late stage (III/IV) epithelial ovarian cancer, 40 with benign disease and 99 healthy individuals, were analyzed to measure 7 proteins [Apolipoprotein A1 (Apo-A1), truncated transthyretin (TT), transferrin, hepcidin, ß-2-microglobulin (ß2M), Connective Tissue Activating Protein III (CTAPIII), and Inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4)]. Statistical models were fit by logistic regression, followed by optimization of factors retained in the models determined by optimizing the Akaike Information Criterion. A validation set included 136 stage I ovarian cancers, 140 benign pelvic masses and 174 healthy controls. Results In a training set analysis, the 3 most effective biomarkers (Apo-A1, TT and CTAPIII) exhibited 54% sensitivity at 98% specificity, CA125 alone produced 68% sensitivity and the combination increased sensitivity to 88%. In a validation set, the marker panel plus CA125 produced a sensitivity of 84% at 98% specificity (P= 0.015, McNemar's test). Conclusion Combining a panel of proteomic markers with CA125 could provide a first step in a sequential two-stage strategy with TVS for early detection of ovarian cancer. PMID:21708402

  5. Activation of mGluR2/3 following stress hormone exposure restores sensitivity to alcohol in rats.

    PubMed

    Jaramillo, Anel A; Randall, Patrick A; Frisbee, Suzanne; Fisher, Kristen R; Besheer, Joyce

    2015-09-01

    Sensitivity to the interoceptive effects of alcohol is blunted following a period of exposure to the stress hormone corticosterone (CORT), an effect that is suggested to be related, in part, to glutamatergic neuroadaptations. Group II metabotropic glutamate receptors (subtypes 2 and 3; mGluR2/3) modulate several drug- and alcohol-related behaviors, including the interoceptive (discriminative stimulus) effects of alcohol. Therefore, we sought to determine if manipulation of mGluR2/3 would restore sensitivity to the interoceptive effects of alcohol following CORT exposure. Using a two-lever drug discrimination task, male Long-Evans rats were trained to discriminate alcohol (1 g/kg, intragastric [IG]) vs. water. First, the effect of mGluR2/3 antagonism on the discriminative stimulus effects of alcohol was determined using LY341495 (0.3-3.0 mg/kg; intraperitoneal [IP]). Next, the effects of mGluR2/3 antagonism and activation were assessed in discrimination-trained animals exposed to CORT (300 μg/mL) in the home cage drinking water or water only, for 7 days. Following CORT exposure, decreased sensitivity to alcohol (1 g/kg) was observed. Pretreatment with the mGluR2/3 agonist LY379268 (1.0-3.0 mg/kg; IP), but not the mGluR2/3 antagonist (0.3-1.0 mg/kg; IP), restored sensitivity to alcohol. Additionally, in water controls, mGluR2/3 antagonism and mGluR2/3 activation disrupted expression of the discriminative stimulus effects of alcohol. Together, these findings suggest that blunted sensitivity to the interoceptive effects of alcohol following an episode of heightened stress hormone levels may be due to adaptations in mGluR2/3-related systems. The ability of mGluR2/3 activation to restore sensitivity to alcohol under these conditions lends further support for the importance of these receptors under stress-related conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Constitutive BAK activation as a determinant of drug sensitivity in malignant lymphohematopoietic cells

    PubMed Central

    Dai, Haiming; Ding, Husheng; Meng, X. Wei; Peterson, Kevin L.; Schneider, Paula A.; Karp, Judith E.; Kaufmann, Scott H.

    2015-01-01

    Mitochondrial outer membrane permeabilization (MOMP), a key step in the intrinsic apoptotic pathway, is incompletely understood. Current models emphasize the role of BH3-only BCL2 family members in BAX and BAK activation. Here we demonstrate concentration-dependent BAK autoactivation under cell-free conditions and provide evidence that this autoactivation plays a key role in regulating the intrinsic apoptotic pathway in intact cells. In particular, we show that up to 80% of BAK (but not BAX) in lymphohematopoietic cell lines is oligomerized and bound to anti-apoptotic BCL2 family members in the absence of exogenous death stimuli. The extent of this constitutive BAK oligomerization is diminished by BAK knockdown and unaffected by BIM or PUMA down-regulation. Further analysis indicates that sensitivity of cells to BH3 mimetics reflects the identity of the anti-apoptotic proteins to which BAK is constitutively bound, with extensive BCLXL•BAK complexes predicting navitoclax sensitivity, and extensive MCL1•BAK complexes predicting A1210477 sensitivity. Moreover, high BAK expression correlates with sensitivity of clinical acute myelogenous leukemia to chemotherapy, whereas low BAK levels correlate with resistance and relapse. Collectively, these results inform current understanding of MOMP and provide new insight into the ability of BH3 mimetics to induce apoptosis without directly activating BAX or BAK. PMID:26494789

  7. Constitutive BAK activation as a determinant of drug sensitivity in malignant lymphohematopoietic cells.

    PubMed

    Dai, Haiming; Ding, Husheng; Meng, X Wei; Peterson, Kevin L; Schneider, Paula A; Karp, Judith E; Kaufmann, Scott H

    2015-10-15

    Mitochondrial outer membrane permeabilization (MOMP), a key step in the intrinsic apoptotic pathway, is incompletely understood. Current models emphasize the role of BH3-only BCL2 family members in BAX and BAK activation. Here we demonstrate concentration-dependent BAK autoactivation under cell-free conditions and provide evidence that this autoactivation plays a key role in regulating the intrinsic apoptotic pathway in intact cells. In particular, we show that up to 80% of BAK (but not BAX) in lymphohematopoietic cell lines is oligomerized and bound to anti-apoptotic BCL2 family members in the absence of exogenous death stimuli. The extent of this constitutive BAK oligomerization is diminished by BAK knockdown and unaffected by BIM or PUMA down-regulation. Further analysis indicates that sensitivity of cells to BH3 mimetics reflects the identity of the anti-apoptotic proteins to which BAK is constitutively bound, with extensive BCLXL•BAK complexes predicting navitoclax sensitivity, and extensive MCL1•BAK complexes predicting A1210477 sensitivity. Moreover, high BAK expression correlates with sensitivity of clinical acute myelogenous leukemia to chemotherapy, whereas low BAK levels correlate with resistance and relapse. Collectively, these results inform current understanding of MOMP and provide new insight into the ability of BH3 mimetics to induce apoptosis without directly activating BAX or BAK. © 2015 Dai et al.; Published by Cold Spring Harbor Laboratory Press.

  8. [Spatial Distribution of Intron 2 of nad1 Gene Haplotypes in Populations of Norway and Siberian Spruce (Picea abies-P. obovata) Species Complex].

    PubMed

    Mudrik, E A; Polyakova, T A; Shatokhina, A V; Bondarenko, G N; Politov, D V

    2015-10-01

    The length and sequence variations among intron 2 haplotypes of the mitochondrial DNA nad1 gene have been studied in the Norway and Siberian spruce (Picea abies (L.) H. Karst.-P. obovata Ledeb.) species complex. Twenty-two native populations and 15 provenances were analyzed. The distribution of the northern European haplogroup (haplotypes 721, 755, 789, 823, 857, 891, and 925) is delimited in the west by the Ural region inclusively. Haplotype 712 is widespread in populations of Siberia, in the Far East and in northeastern Russia. A novel variant of the Siberian haplogroup (780) containing three copies of the first minisatellite motif (34 bp) was found for the first time. The absence of an admixture of the northern European and Siberian haplotypes in the zone of spruce species introgression previously marked by morphological traits and nuclear allozyme loci was demonstrated. This may be evidence of the existence of a sharper geographic boundary between the two haplogroups, as compared to a boundary based on phenotypic and allozyme data. A high proportion of the interpopulation component of variation (65%) estimated by AMOVA indicates a substantial genetic subdivision of European and Siberian populations of the Palearctic spruce complex by mtDNA, which can be putatively explained by natural barriers to gene flow with seeds related, for instance, to the woodless regions of the western Siberian Plain in the Pleistocene and the probable floodplains of large rivers.

  9. Auditory Brainstem Implantation in Chinese Patients With Neurofibromatosis Type II: The Hong Kong Experience.

    PubMed

    Thong, Jiun Fong; Sung, John K K; Wong, Terence K C; Tong, Michael C F

    2016-08-01

    To describe our experience and outcomes of auditory brainstem implantation (ABI) in Chinese patients with Neurofibromatosis Type II (NF2). Retrospective case review. Tertiary referral center. Patients with NF2 who received ABIs. Between 1997 and 2014, eight patients with NF2 received 9 ABIs after translabyrinthine removal of their vestibular schwannomas. One patient did not have auditory response using the ABI after activation. Environmental sounds could be differentiated by six (75%) patients after 6 months of ABI use (mean score 46% [range 28-60%]), and by five (63%) patients after 1 year (mean score 57% [range 36-76%]) and 2 years of ABI use (mean score 48% [range 24-76%]). Closed-set word identification was possible in four (50%) patients after 6 months (mean score 39% [range 12-72%]), 1 year (mean score 68% [range 48-92%]), and 2 years of ABI use (mean score 62% [range 28-100%]). No patient demonstrated open-set sentence recognition in quiet in the ABI-only condition. However, the use of ABI together with lip-reading conferred an improvement over lip-reading alone in open-set sentence recognition scores in two (25%) patients after 6 months of ABI use (mean improvement 46%), and five (63%) patients after 1 year (mean improvement 25%) and 2 years of ABI use (mean improvement 28%). At 2 years postoperatively, three (38%) patients remained ABI users. This is the only published study to date examining ABI outcomes in Cantonese-speaking Chinese NF2 patients and the data seems to show poorer outcomes compared with English-speaking and other nontonal language-speaking NF2 patients. Environmental sound awareness and lip-reading enhancement are the main benefits observed in our patients. More work is needed to improve auditory implant speech-processing strategies for tonal languages and these advancements may yield better speech perception outcomes in the future.

  10. Identification of a functional toxin-antitoxin system located in the genomic island PYG1 of piezophilic hyperthermophilic archaeon Pyrococcus yayanosii.

    PubMed

    Li, Zhen; Song, Qinghao; Wang, Yinzhao; Xiao, Xiang; Xu, Jun

    2018-05-01

    Toxin-antitoxin (TA) system is bacterial or archaeal genetic module consisting of toxin and antitoxin gene that be organized as a bicistronic operon. TA system could elicit programmed cell death, which is supposed to play important roles for the survival of prokaryotic population under various physiological stress conditions. The phage abortive infection system (AbiE family) belongs to bacterial type IV TA system. However, no archaeal AbiE family TA system has been reported so far. In this study, a putative AbiE TA system (PygAT), which is located in a genomic island PYG1 in the chromosome of Pyrococcus yayanosii CH1, was identified and characterized. In Escherichia coli, overexpression of the toxin gene pygT inhibited its growth while the toxic effect can be suppressed by introducing the antitoxin gene pygA in the same cell. PygAT also enhances the stability of shuttle plasmids with archaeal plasmid replication protein Rep75 in E. coli. In P. yayanosii, disruption of antitoxin gene pygA cause a significantly growth delayed under high hydrostatic pressure (HHP). The antitoxin protein PygA can specifically bind to the PygAT promoter region and regulate the transcription of pygT gene in vivo. These results show that PygAT is a functional TA system in P. yayanosii, and also may play a role in the adaptation to HHP environment.

  11. Correlation of sensitizing capacity and T-cell recognition within the Bet v 1 family

    PubMed Central

    Kitzmüller, Claudia; Zulehner, Nora; Roulias, Anargyros; Briza, Peter; Ferreira, Fatima; Faé, Ingrid; Fischer, Gottfried F.; Bohle, Barbara

    2015-01-01

    Background Bet v 1 is the main sensitizing allergen in birch pollen. Like many other major allergens, it contains an immunodominant T cell–activating region (Bet v 1142-156). Api g 1, the Bet v 1 homolog in celery, lacks the ability to sensitize and is devoid of major T-cell epitopes. Objective We analyzed the T-cell epitopes of Mal d 1, the nonsensitizing Bet v 1 homolog in apple, and assessed possible differences in uptake and antigen processing of Bet v 1, Api g 1, and Mal d 1. Methods For epitope mapping, Mal d 1–specific T-cell lines were stimulated with overlapping synthetic 12-mer peptides. The surface binding, internalization, and intracellular degradation of Bet v 1, Api g 1, and Mal d 1 by antigen-presenting cells were compared by using flow cytometry. All proteins were digested with endolysosomal extracts, and the resulting peptides were identified by means of mass spectrometry. The binding of Bet v 1142-156 and the homologous region in Mal d 1 by HLA class II molecules was analyzed in silico. Results Like Api g 1, Mal d 1 lacked dominant T-cell epitopes. The degree of surface binding and the kinetics of uptake and endolysosomal degradation of Bet v 1, Api g 1, and Mal d 1 were comparable. Endolysosomal degradation of Bet v 1 and Mal d 1 resulted in very similar fragments. The Bet v 1142-156 and Mal d 1141-155 regions showed no striking difference in their binding affinities to the most frequent HLA-DR alleles. Conclusion The sensitizing activity of different Bet v 1 homologs correlates with the presence of immunodominant T-cell epitopes. However, the presence of Bet v 1142-156 is not conferred by differential antigen processing. PMID:25670010

  12. Activation of Ih and TTX-sensitive sodium current at subthreshold voltages during CA1 pyramidal neuron firing

    PubMed Central

    Yamada-Hanff, Jason

    2015-01-01

    We used dynamic clamp and action potential clamp techniques to explore how currents carried by tetrodotoxin-sensitive sodium channels and HCN channels (Ih) regulate the behavior of CA1 pyramidal neurons at resting and subthreshold voltages. Recording from rat CA1 pyramidal neurons in hippocampal slices, we found that the apparent input resistance and membrane time constant were strongly affected by both conductances, with Ih acting to decrease apparent input resistance and time constant and sodium current acting to increase both. We found that both Ih and sodium current were active during subthreshold summation of artificial excitatory postsynaptic potentials (EPSPs) generated by dynamic clamp, with Ih dominating at less depolarized voltages and sodium current at more depolarized voltages. Subthreshold sodium current—which amplifies EPSPs—was most effectively recruited by rapid voltage changes, while Ih—which blunts EPSPs—was maximal for slow voltage changes. The combined effect is to selectively amplify rapid EPSPs. We did similar experiments in mouse CA1 pyramidal neurons, doing voltage-clamp experiments using experimental records of action potential firing of CA1 neurons previously recorded in awake, behaving animals as command voltages to quantify flow of Ih and sodium current at subthreshold voltages. Subthreshold sodium current was larger and subthreshold Ih was smaller in mouse neurons than in rat neurons. Overall, the results show opposing effects of subthreshold sodium current and Ih in regulating subthreshold behavior of CA1 neurons, with subthreshold sodium current prominent in both rat and mouse CA1 pyramidal neurons and additional regulation by Ih in rat neurons. PMID:26289465

  13. Fusogenic activity of PEGylated pH-sensitive liposomes.

    PubMed

    Vanić, Zeljka; Barnert, Sabine; Süss, Regine; Schubert, Rolf

    2012-06-01

    The aim of this study was to investigate the fusogenic properties of poly(ethylene glycol) (PEG)ylated dioleoylphosphatidylethanolamine/cholesteryl hemisuccinate (DOPE/CHEMS) liposomes. These pH-sensitive liposomes were prepared by incorporating two different PEG lipids: distearoylphosphatidylethanolamine (DSPE)-PEG₂₀₀₀ was mixed with the liposomal lipids using the conventional method, whereas sterol-PEG₁₁₀₀ was inserted into the outer monolayer of preformed vesicles. Both types of PEGylated liposomes were characterized and compared for their entrapment efficiency, zeta potential and size, and were tested in vitro for pH sensitivity by means of proton-induced leakage and membrane fusion activity. To mimic the routes of intracellular delivery, fusion between pH-sensitive liposomes and liposomes designed to simulate the endosomal membrane was studied. Our investigations confirmed that DOPE/CHEMS liposomes were capable of rapidly releasing calcein and of fusing upon acidification. However, after incorporation of DSPE-PEG₂₀₀₀ or sterol-PEG₁₁₀₀ into the membrane, pH sensitivity was significantly reduced; as the mol ratio of PEG-lipid was increased, the ability to fuse was decreased. Comparison between two different PEGylated pH-sensitive liposomes showed that only vesicles containing 0.6 mol% sterol-PEG₁₁₀₀ in the outer monolayer were still capable of fusing with the endosome-like liposomes and showing leakage of calcein at pH 5.5.

  14. 19 CFR 143.1 - Eligibility.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) SPECIAL ENTRY PROCEDURES Automated Broker Interface § 143.1 Eligibility. The Automated Broker Interface (ABI) is a module of the Customs Automated Commercial System (ACS) which allows participants to...

  15. 19 CFR 143.1 - Eligibility.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) SPECIAL ENTRY PROCEDURES Automated Broker Interface § 143.1 Eligibility. The Automated Broker Interface (ABI) is a module of the Customs Automated Commercial System (ACS) which allows participants to...

  16. ABI1 and PP2CA Phosphatases Are Negative Regulators of Snf1-Related Protein Kinase1 Signaling in Arabidopsis[C][W

    PubMed Central

    Rodrigues, Américo; Adamo, Mattia; Crozet, Pierre; Margalha, Leonor; Confraria, Ana; Martinho, Cláudia; Elias, Alexandre; Rabissi, Agnese; Lumbreras, Victoria; González-Guzmán, Miguel; Antoni, Regina; Rodriguez, Pedro L.; Baena-González, Elena

    2013-01-01

    Plant survival under environmental stress requires the integration of multiple signaling pathways into a coordinated response, but the molecular mechanisms underlying this integration are poorly understood. Stress-derived energy deprivation activates the Snf1-related protein kinases1 (SnRK1s), triggering a vast transcriptional and metabolic reprogramming that restores homeostasis and promotes tolerance to adverse conditions. Here, we show that two clade A type 2C protein phosphatases (PP2Cs), established repressors of the abscisic acid (ABA) hormonal pathway, interact with the SnRK1 catalytic subunit causing its dephosphorylation and inactivation. Accordingly, SnRK1 repression is abrogated in double and quadruple pp2c knockout mutants, provoking, similarly to SnRK1 overexpression, sugar hypersensitivity during early seedling development. Reporter gene assays and SnRK1 target gene expression analyses further demonstrate that PP2C inhibition by ABA results in SnRK1 activation, promoting SnRK1 signaling during stress and once the energy deficit subsides. Consistent with this, SnRK1 and ABA induce largely overlapping transcriptional responses. Hence, the PP2C hub allows the coordinated activation of ABA and energy signaling, strengthening the stress response through the cooperation of two key and complementary pathways. PMID:24179127

  17. Sodium channel diversity in the vestibular ganglion: NaV1.5, NaV1.8, and tetrodotoxin-sensitive currents

    PubMed Central

    2016-01-01

    Firing patterns differ between subpopulations of vestibular primary afferent neurons. The role of sodium (NaV) channels in this diversity has not been investigated because NaV currents in rodent vestibular ganglion neurons (VGNs) were reported to be homogeneous, with the voltage dependence and tetrodotoxin (TTX) sensitivity of most neuronal NaV channels. RT-PCR experiments, however, indicated expression of diverse NaV channel subunits in the vestibular ganglion, motivating a closer look. Whole cell recordings from acutely dissociated postnatal VGNs confirmed that nearly all neurons expressed NaV currents that are TTX-sensitive and have activation midpoints between −30 and −40 mV. In addition, however, many VGNs expressed one of two other NaV currents. Some VGNs had a small current with properties consistent with NaV1.5 channels: low TTX sensitivity, sensitivity to divalent cation block, and a relatively negative voltage range, and some VGNs showed NaV1.5-like immunoreactivity. Other VGNs had a current with the properties of NaV1.8 channels: high TTX resistance, slow time course, and a relatively depolarized voltage range. In two NaV1.8 reporter lines, subsets of VGNs were labeled. VGNs with NaV1.8-like TTX-resistant current also differed from other VGNs in the voltage dependence of their TTX-sensitive currents and in the voltage threshold for spiking and action potential shape. Regulated expression of NaV channels in primary afferent neurons is likely to selectively affect firing properties that contribute to the encoding of vestibular stimuli. PMID:26936982

  18. RdreB1BI enhances drought tolerance by activating AQP-related genes in transgenic strawberry.

    PubMed

    Gu, Xianbin; Gao, Zhihong; Yan, Yichao; Wang, Xiuyun; Qiao, Yushan; Chen, Yahua

    2017-10-01

    The dehydration-responsive element binding protein (DREB) family of transcription factors is associated with abiotic stress responses during plant growth and development. This study focussed on the subfamily member DREB1B, which was initially described as highly and specifically responsive to low temperature. However, here it is shown that DREB1B is not only involved in cold tolerance but also other abiotic stress tolerances, such as that of drought. To further understand the genetic improvement effects of the drought tolerance provided by RdreB1BI in transgenic strawberry, drought stress responses of transgenic plants were evaluated at the morphological, physiological, and transcriptional levels. Transactivation assays revealed that RdreB1BI could activate the FvPIP2;1 like 1 promoter. RdreB1BI transgenic plants showed enhanced drought tolerance on the basis of lower rates of electrolyte leakage (EL), higher relative water content (RWC), and less stomatal aperture as well as increased peroxidase (POD) and superoxide dismutase (SOD) activities and less malondialdehyde (MDA) accumulation. The transgenic plants also accumulated higher levels of drought-related regulatory genes and functional gene transcripts, including those of PIP, NAC, RD22, ABI, and NCED. Together, these results demonstrate that RdreB1BI plays an essential role in the regulation of the drought stress response. DREB1B transcription constitutes a useful strategy to exploit in transgenic plants for coping with abiotic stresses, at least cold and drought stresses. The approach may be helpful for genetic engineering horticultural plants to have increased environmental adaptations. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Norepinephrine-evoked salt-sensitive hypertension requires impaired renal sodium chloride cotransporter activity in Sprague-Dawley rats.

    PubMed

    Walsh, Kathryn R; Kuwabara, Jill T; Shim, Joon W; Wainford, Richard D

    2016-01-15

    Recent studies have implicated a role of norepinephrine (NE) in the activation of the sodium chloride cotransporter (NCC) to drive the development of salt-sensitive hypertension. However, the interaction between NE and increased salt intake on blood pressure remains to be fully elucidated. This study examined the impact of a continuous NE infusion on sodium homeostasis and blood pressure in conscious Sprague-Dawley rats challenged with a normal (NS; 0.6% NaCl) or high-salt (HS; 8% NaCl) diet for 14 days. Naïve and saline-infused Sprague-Dawley rats remained normotensive when placed on HS and exhibited dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide. NE infusion resulted in the development of hypertension, which was exacerbated by HS, demonstrating the development of the salt sensitivity of blood pressure [MAP (mmHg) NE+NS: 151 ± 3 vs. NE+HS: 172 ± 4; P < 0.05]. In these salt-sensitive animals, increased NE prevented dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide, suggesting impaired NCC activity contributes to the development of salt sensitivity [peak natriuresis to hydrochlorothiazide (μeq/min) Naïve+NS: 9.4 ± 0.2 vs. Naïve+HS: 7 ± 0.1; P < 0.05; NE+NS: 11.1 ± 1.1; NE+HS: 10.8 ± 0.4). NE infusion did not alter NCC expression in animals maintained on NS; however, dietary sodium-evoked suppression of NCC expression was prevented in animals challenged with NE. Chronic NCC antagonism abolished the salt-sensitive component of NE-mediated hypertension, while chronic ANG II type 1 receptor antagonism significantly attenuated NE-evoked hypertension without restoring NCC function. These data demonstrate that increased levels of NE prevent dietary sodium-evoked suppression of the NCC, via an ANG II-independent mechanism, to stimulate the development of salt-sensitive hypertension. Copyright © 2016 the American Physiological Society.

  20. The relationship between CD86/CD54 expression and THP-1 cell viability in an in vitro skin sensitization test--human cell line activation test (h-CLAT).

    PubMed

    Sakaguchi, Hitoshi; Ashikaga, Takao; Miyazawa, Masaaki; Kosaka, Nanae; Ito, Yuichi; Yoneyama, Katsurako; Sono, Sakiko; Itagaki, Hiroshi; Toyoda, Hidekazu; Suzuki, Hiroyuki

    2009-04-01

    Recent regulations for cosmetics in Europe prohibit animal testing for evaluating the sensitization potential of chemicals to improve animal welfare. Yet, there is not an acceptable Organization for Economic Co-operation and Development non-animal skin sensitization test method. Several in vitro skin sensitization methods that focus on the activation of Langerhans cells, including human cell lines, are being evaluated as possible alternatives. In our previous study, we optimized our human cell line activation test (h-CLAT) using THP-1 cells (monocytic leukemia cell line) and conducted an inter-laboratory study. We found that measuring CD86/CD54 expression may be useful for predicting skin sensitization. The aim of this study was to confirm the relationship between CD86/CD54 expression and THP-1 cell viability in the h-CLAT. In this study, 21 allergens (e.g., dinitrochlorobenzene, p-phenylenediamine, Ni) and 8 non-allergens (e.g., SLS, lactic acid) were evaluated. For each chemical, more than 10 concentrations that gave a predicted cell viability range of 20-95% were used. The data showed that expression patterns of CD86/CD54 differed depending on chemical. For most allergens, cytotoxicity (65-90% cell viability) was needed for enhancement of CD86/CD54 expression. The criteria of "CD86 > or = 150 or CD54 > or = 200" resulted in an accuracy of 93%, which confirms appropriate cut-off criteria for h-CLAT. Furthermore, a good correlation was observed between EC3 of local lymph node assay and EC150(CD86) or EC200(CD54) of h-CLAT (12 or 16 chemicals, respectively), which would provide a useful estimate of allergic potency. These findings suggest that h-CLAT would be a good robust in vitro skin sensitization test.

  1. Dual regulation of skin sensitizer-induced HMOX1 expression by Bach1 and Nrf2: Comparison to regulation of the AKR1C2-ARE element in the KeratinoSens cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emter, Roger; Natsch, Andreas, E-mail: andreas.natsch@givaudan.com

    2015-11-01

    Heme oxygenase (decycling) 1 (HMOX1) is the most consistently found genetic marker induced by skin sensitizers. HMOX1 is often referred to as typical gene regulated by nuclear factor erythroid 2-related factor 2 (Nrf2), however, it is also regulated by other DNA-binding factors, including BTB and CNC homolog 1 (Bach1). The KeratinoSens™ assay is the first validated in vitro assay for sensitizers that measures gene induction. It is based on luciferase expression regulated by the antioxidant response element (ARE) of the aldoketoreductase 1C2 (AKR1C2) gene. Luciferase upregulation is dependent on Nrf2, while HMOX1 upregulation is only partially Nrf2-dependent. Thus, sensitizer-dependent activationmore » of HMOX1 may integrate multiple signals thereby providing additional information. We constructed reporter cell lines containing the full HMOX1 regulatory region or the HMOX1-ARE sequence and compared them with the construct containing the AKR1C2-ARE sequence. Induction of the AKR1C2-ARE depends on Nrf2, but not on the repressor Bach1. Results obtained with HMOX1-ARE and the full HMOX1 promoter indicate that, within the HMOX1 promoter, the HMOX1-ARE is sufficient to explain the induction by sensitizers and that (i) inhibiting Bach1 leads to strong basal expression, (ii) fold-induction by sensitizers above this level is reduced in the absence of Bach1 and (iii) these constructs are less dependent on Nrf2 as compared to the AKR1C2-ARE. Nevertheless, congruent dose response curves for luciferase activity were obtained with all constructs. Thus, while sensitizer-induced HMOX1 activation is dependent on Nrf2 and Bach1, all constructs give identical information for the in vitro prediction of the sensitization potential. - Highlights: • HMOX1 is a key genetic marker up-regulated by skin sensitizers. • HMOX1-, but not AKR1C2-upregulation, is dependent on both Nrf2 and Bach1. • AKR1C2 and HMOX1-dependent reporter constructs yield congruent dose response curves.

  2. Fine root biomass, necromass and chemistry during seven years of elevated aluminium concentrations in the soil solution of a middle-aged Picea abies stand.

    PubMed

    Eldhuset, Toril D; Lange, Holger; de Wit, Helene A

    2006-10-01

    Toxic effects of aluminium (Al) on Picea abies (L.) Karst. (Norway spruce) trees are well documented in laboratory-scale experiments, but field-based evidence is scarce. This paper presents results on fine root growth and chemistry from a field manipulation experiment in a P. abies stand that was 45 years old when the experiment started in 1996. Different amounts of dissolved aluminium were added as AlCl3 by means of periodic irrigation during the growing season in the period 1997-2002. Potentially toxic concentrations of Al in the soil solution were obtained. Fine roots were studied from direct cores (1996) and sequential root ingrowth cores (1999, 2001, 2002) in the mineral soil (0-40 cm). We tested two hypotheses: (1) elevated concentration of Al in the root zone leads to significant changes in root biomass, partitioning into fine, coarse, living or dead fractions, and distribution with depth; (2) elevated Al concentration leads to a noticeable uptake of Al and reduced uptake of Ca and Mg; this results in Ca and Mg depletion in roots. Hypothesis 1 was only marginally supported, as just a few significant treatment effects on biomass were found. Hypothesis 2 was supported in part; Al addition led to increased root concentrations of Al in 1999 and 2002 and reduced Mg/Al in 1999. Comparison of roots from subsequent root samplings showed a decrease in Al and S over time. The results illustrated that 7 years of elevated Al(tot) concentrations in the soil solution up to 200 microM are not likely to affect root growth. We also discuss possible improvements of the experimental approach.

  3. Redox-Sensitive Induction of Src/PI3-kinase/Akt and MAPKs Pathways Activate eNOS in Response to EPA:DHA 6:1

    PubMed Central

    Zgheel, Faraj; Alhosin, Mahmoud; Rashid, Sherzad; Burban, Mélanie; Auger, Cyril; Schini-Kerth, Valérie B.

    2014-01-01

    Aims Omega-3 fatty acid products containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have vasoprotective effects, in part, by stimulating the endothelial formation of nitric oxide (NO). This study determined the role of the EPA:DHA ratio and amount, and characterized the mechanism leading to endothelial NO synthase (eNOS) activation. Methods and Results EPA:DHA 6∶1 and 9∶1 caused significantly greater endothelium-dependent relaxations in porcine coronary artery rings than EPA:DHA 3∶1, 11, 1∶3, 1∶6, 1∶9, EPA and DHA alone, and EPA:DHA 6∶1 with a reduced EPA + DHA amount, which were inhibited by an eNOS inhibitor. Relaxations to EPA:DHA 6∶1 were insensitive to cyclooxygenase inhibition, and reduced by inhibitors of either oxidative stress, Src kinase, PI3-kinase, p38 MAPK, MEK, or JNK. EPA:DHA 6∶1 induced phosphorylation of Src, Akt, p38 MAPK, ERK, JNK and eNOS; these effects were inhibited by MnTMPyP. EPA:DHA 6∶1 induced the endothelial formation of ROS in coronary artery sections as assessed by dihydroethidium, and of superoxide anions and hydrogen peroxide in cultured endothelial cells as assessed by electron spin resonance with the spin probe CMH, and the Amplex Red based assay, respectively. Conclusion Omega-3 fatty acids cause endothelium-dependent NO-mediated relaxations in coronary artery rings, which are dependent on the EPA:DHA ratio and amount, and involve an intracellular activation of the redox-sensitive PI3-kinase/Akt and MAPKs pathways to activate eNOS. PMID:25133540

  4. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain.

    PubMed

    Gao, Yong-Jing; Zhang, Ling; Samad, Omar Abdel; Suter, Marc R; Yasuhiko, Kawasaki; Xu, Zhen-Zhong; Park, Jong-Yeon; Lind, Anne-Li; Ma, Qiufu; Ji, Ru-Rong

    2009-04-01

    Our previous study showed that activation of c-jun-N-terminal kinase (JNK) in spinal astrocytes plays an important role in neuropathic pain sensitization. We further investigated how JNK regulates neuropathic pain. In cultured astrocytes, tumor necrosis factor alpha (TNF-alpha) transiently activated JNK via TNF receptor-1. Cytokine array indicated that the chemokine CCL2/MCP-1 (monocyte chemoattractant protein-1) was strongly induced by the TNF-alpha/JNK pathway. MCP-1 upregulation by TNF-alpha was dose dependently inhibited by the JNK inhibitors SP600125 (anthra[1,9-cd]pyrazol-6(2H)-one) and D-JNKI-1. Spinal injection of TNF-alpha produced JNK-dependent pain hypersensitivity and MCP-1 upregulation in the spinal cord. Furthermore, spinal nerve ligation (SNL) induced persistent neuropathic pain and MCP-1 upregulation in the spinal cord, and both were suppressed by D-JNKI-1. Remarkably, MCP-1 was primarily induced in spinal cord astrocytes after SNL. Spinal administration of MCP-1 neutralizing antibody attenuated neuropathic pain. Conversely, spinal application of MCP-1 induced heat hyperalgesia and phosphorylation of extracellular signal-regulated kinase in superficial spinal cord dorsal horn neurons, indicative of central sensitization (hyperactivity of dorsal horn neurons). Patch-clamp recordings in lamina II neurons of isolated spinal cord slices showed that MCP-1 not only enhanced spontaneous EPSCs but also potentiated NMDA- and AMPA-induced currents. Finally, the MCP-1 receptor CCR2 was expressed in neurons and some non-neuronal cells in the spinal cord. Together, we have revealed a previously unknown mechanism of MCP-1 induction and action. MCP-1 induction in astrocytes after JNK activation contributes to central sensitization and neuropathic pain facilitation by enhancing excitatory synaptic transmission. Inhibition of the JNK/MCP-1 pathway may provide a new therapy for neuropathic pain management.

  5. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain

    PubMed Central

    Gao, Yong-Jing; Zhang, Ling; Samad, Omar Abdel; Suter, Marc R.; Yasuhiko, Kawasaki; Xu, Zhen-Zhong; Park, Jong-Yeon; Lind, Anne-Li; Ma, Qiufu; Ji, Ru-Rong

    2009-01-01

    Our previous study showed that activation of c-jun-N-terminal kinase (JNK) in spinal astrocytes plays an important role in neuropathic pain sensitization. We further investigated how JNK regulates neuropathic pain. In cultured astrocytes, TNF-α transiently activated JNK via TNF receptor-1. Cytokine array indicated that the chemokine CCL2/MCP-1 (monocyte chemoattractant protein-1) was strongly induced by the TNF-α/JNK pathway. MCP-1 upregulation by TNF-α was dose-dependently inhibited by the JNK inhibitors SP600125 and D-JNKI-1. Spinal injection of TNF-α produced JNK-dependent pain hypersensitivity and MCP-1 upregulation in the spinal cord. Further, spinal nerve ligation (SNL) induced persistent neuropathic pain and MCP-1 upregulation in the spinal cord, and both were suppressed by D-JNKI-1. Remarkably, MCP-1 was primarily induced in spinal cord astrocytes after SNL. Spinal administration of MCP-1 neutralizing antibody attenuated neuropathic pain. Conversely, spinal application of MCP-1 induced heat hyperalgesia and phosphorylation of extracellular signal-regulated kinase (ERK) in superficial spinal cord dorsal horn neurons, indicative of central sensitization (hyperactivity of dorsal horn neurons). Patch clamp recordings in lamina II neurons of isolated spinal cord slices showed that MCP-1 not only enhanced spontaneous excitatory synaptic currents (sEPSCs) but also potentiated NMDA- and AMPA-induced currents. Finally, the MCP-1 receptor CCR2 was expressed in neurons and some non-neuronal cells in the spinal cord. Taken together, we have revealed a previously unknown mechanism of MCP-1 induction and action. MCP-1 induction in astrocytes following JNK activation contributes to central sensitization and neuropathic pain facilitation by enhancing excitatory synaptic transmission. Inhibition of the JNK/MCP-1 pathway may provide a new therapy for neuropathic pain management. PMID:19339605

  6. Associations of reward sensitivity with food consumption, activity pattern, and BMI in children.

    PubMed

    De Decker, Annelies; Sioen, Isabelle; Verbeken, Sandra; Braet, Caroline; Michels, Nathalie; De Henauw, Stefaan

    2016-05-01

    In the current study, the associations of reward sensitivity with weight related behaviors and body mass index were investigated in a general population sample of 443 Flemish children (50.3% boys) aged 5.5-12 years. Cross-sectional data on palatable food consumption frequency, screen time, physical activity, parental education level and measured length and weight were collected. The Drive subscale of the 'Behavioral Inhibition Scale/Behavioral Activation Scale' was used as a short method to measure reward sensitivity. A significant positive association of reward sensitivity with the fast food and sweet drink consumption frequency was found. Furthermore, a significant positive association of reward sensitivity with the z-score of body mass index was demonstrated, which explained additional variance to the variance explained by palatable food consumption frequency, screen time, physical activity and parental education level. Hence, the assessment of reward sensitivity may have an added value to the assessment of weight-related behavior indicators when evaluating the determinants of overweight in a child. In sum, children high in reward sensitivity might be more attracted to fast food and sweet drinks, and hence, might be more vulnerable to develop unfavorable food habits and overweight. These findings suggest that considering inter-individual differences in reward sensitivity is of importance in future childhood obesity prevention campaigns. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Avoidance of physical activity is a sensitive indicator of illness.

    PubMed

    Skinner, Gregory W; Mitchell, Duncan; Harden, Lois M

    2009-03-02

    Although fever and sickness behavior are common responses to infection, it has been proposed that the sickness behaviors associated with infection, in particular lethargy and fatigue, may be more valuable clinical markers of illness and recovery in patients, than is body temperature alone. Measuring abdominal temperature, food intake and wheel running we therefore determined the dose thresholds and sensitivities of these responses to lipopolysaccharide (LPS). Male Sprague-Dawley rats were randomly assigned to receive one of three LPS doses (10, 50, 250 microg/kg), or saline, subcutaneously. Administration of LPS induced a dose-dependent increase in abdominal temperature and decrease in wheel running, food intake and body mass. Regression analysis revealed that decreased running was the most-sensitive of the sickness responses to LPS administration, with a regression slope of -41%/log microg, compared to the slopes for food intake (-30%/log microg, F(1,2)=244, P=0.004) and body mass (-2.2%/log microg, F(1,5)=7491, P<0.0001). To determine the likelihood that exercise training influenced the sickness responses we measured in our dose-response study we performed a second experiment in which we investigated whether fever and anorexia induced by LPS administration would present differently depending on whether rats had been exercising or sedentary. Six weeks of wheel running had no effect on the magnitude of fever and anorexia induced by LPS administration. Avoidance of physical activity therefore appears to be a more-sensitive indicator of a host's reaction to LPS than is anorexia and fever.

  8. Are Early Somatic Embryos of the Norway Spruce (Picea abies (L.) Karst.) Organised?

    PubMed Central

    Petrek, Jiri; Zitka, Ondrej; Adam, Vojtech; Bartusek, Karel; Anjum, Naser A.; Pereira, Eduarda; Havel, Ladislav; Kizek, Rene

    2015-01-01

    Background Somatic embryogenesis in conifer species has great potential for the forestry industry. Hence, a number of methods have been developed for their efficient and rapid propagation through somatic embryogenesis. Although information is available regarding the previous process-mediated generation of embryogenic cells to form somatic embryos, there is a dearth of information in the literature on the detailed structure of these clusters. Methodology/Principal Findings The main aim of this study was to provide a more detailed structure of the embryogenic tissue clusters obtained through the in vitro propagation of the Norway spruce (Picea abies (L.) Karst.). We primarily focused on the growth of early somatic embryos (ESEs). The data on ESE growth suggested that there may be clear distinctions between their inner and outer regions. Therefore, we selected ESEs collected on the 56th day after sub-cultivation to dissect the homogeneity of the ESE clusters. Two colourimetric assays (acetocarmine and fluorescein diacetate/propidium iodide staining) and one metabolic assay based on the use of 2,3,5-triphenyltetrazolium chloride uncovered large differences in the metabolic activity inside the cluster. Next, we performed nuclear magnetic resonance measurements. The ESE cluster seemed to be compactly aggregated during the first four weeks of cultivation; thereafter, the difference between the 1H nuclei concentration in the inner and outer clusters was more evident. There were clear differences in the visual appearance of embryos from the outer and inner regions. Finally, a cluster was divided into six parts (three each from the inner and the outer regions of the embryo) to determine their growth and viability. The innermost embryos (centripetally towards the cluster centre) could grow after sub-cultivation but exhibited the slowest rate and required the longest time to reach the common growth rate. To confirm our hypothesis on the organisation of the ESE cluster, we

  9. Species-Specific Antimonial Sensitivity in Leishmania Is Driven by Post-Transcriptional Regulation of AQP1

    PubMed Central

    Mandal, Goutam; Mandal, Srotoswati; Sharma, Mansi; Charret, Karen Santos; Papadopoulou, Barbara; Bhattacharjee, Hiranmoy; Mukhopadhyay, Rita

    2015-01-01

    Leishmania is a digenetic protozoan parasite causing leishmaniasis in humans. The different clinical forms of leishmaniasis are caused by more than twenty species of Leishmania that are transmitted by nearly thirty species of phlebotomine sand flies. Pentavalent antimonials (such as Pentostam or Glucantime) are the first line drugs for treating leishmaniasis. Recent studies suggest that pentavalent antimony (Sb(V)) acts as a pro-drug, which is converted to the more active trivalent form (Sb(III)). However, sensitivity to trivalent antimony varies among different Leishmania species. In general, Leishmania species causing cutaneous leishmaniasis (CL) are more sensitive to Sb(III) than the species responsible for visceral leishmaniasis (VL). Leishmania aquaglyceroporin (AQP1) facilitates the adventitious passage of antimonite down a concentration gradient. In this study, we show that Leishmania species causing CL accumulate more antimonite, and therefore exhibit higher sensitivity to antimonials, than the species responsible for VL. This species-specific differential sensitivity to antimonite is directly proportional to the expression levels of AQP1 mRNA. We show that the stability of AQP1 mRNA in different Leishmania species is regulated by their respective 3’-untranslated regions. The differential regulation of AQP1 mRNA explains the distinct antimonial sensitivity of each species. PMID:25714343

  10. A Sensitive and Versatile Fluorescent Activity Assay for ABHD6.

    PubMed

    Savinainen, Juha R; Navia-Paldanius, Dina; Laitinen, Jarmo T

    2016-01-01

    The α/β-hydrolase domain-containing 6 (ABHD6) enzyme is a newly found serine hydrolase whose substrate profile resembles that of monoacylglycerol lipase (MAGL), the major 2-arachidonoyl glycerol (2-AG) hydrolase in the brain. Here, we describe a sensitive fluorescent assay of ABHD6 activity in a 96-well-plate format that allows parallel testing of inhibitor activities of up to 40 compounds in a single assay. The method utilizes lysates of HEK293 cells transiently overexpressing human ABHD6 as the enzymatic source, and kinetically monitors glycerol liberated in the hydrolysis of 1(3)-AG, the preferred arachidonoyl glycerol isomer. Glycerol output is coupled to an enzymatic cascade generating the fluorescent end-product resorufin. The approach has major benefits compared to laborious traditional mass spectrometric methods and liquid scintillation-based assays, or approaches using unnatural substrates.

  11. Peripheral artery questionnaire improves ankle brachial index screening in symptomatic patients with peripheral artery disease.

    PubMed

    Kim, B-H; Cho, K-I; Spertus, J; Park, Y-H; Je, H-G; Shin, M-S; Lee, J-H; Jang, J-S

    2014-12-01

    The peripheral artery questionnaire (PAQ) is a disease-specific health status measure of patients with peripheral artery disease (PAD). Whether the PAQ scores are associated with a PAD diagnosis among patients with symptoms suspicious for PAD is unknown and could help increase the pretest probability of ankle brachial index (ABI) screening among patients with suspicious symptoms. The PAQ was completed by 567 patients evaluated for potential intermittent claudication at six tertiary centres. Demographics, medical history, physical examination findings and the PAQ domain scores were compared with ABI. A diagnostic threshold < 0.90 for a PAD diagnosis was assessed with a ROC of PAQ scores. The correlation between the PAQ Summary Score and ABI was also calculated. The PAQ Summary Score was significantly lower in patients with low ABI as compared with those having a normal ABI (37.6 ± 19.0 vs. 70.1 ± 22.7, p < 0.001). The PAQ Summary Score and ABI were highly correlated (r = 0.56, p < 0.001) and the optimal PAQ Summary Score for predicting low ABI was 50.3 (AUC = 0.86, sensitivity 80.3%, specificity 78.3%). The PAQ Summary Score was associated with an increased likelihood of PAD in patients with suspected PAD symptoms, and a low summary score (≤ 50.3) was an optimal threshold for predicting PAD among patients referred for ABI. © 2014 John Wiley & Sons Ltd.

  12. Pungent products from garlic activate the sensory ion channel TRPA1

    PubMed Central

    Bautista, Diana M.; Movahed, Pouya; Hinman, Andrew; Axelsson, Helena E.; Sterner, Olov; Högestätt, Edward D.; Julius, David; Jordt, Sven-Eric; Zygmunt, Peter M.

    2005-01-01

    Garlic belongs to the Allium family of plants that produce organosulfur compounds, such as allicin and diallyl disulfide (DADS), which account for their pungency and spicy aroma. Many health benefits have been ascribed to Allium extracts, including hypotensive and vasorelaxant activities. However, the molecular mechanisms underlying these effects remain unknown. Intriguingly, allicin and DADS share structural similarities with allyl isothiocyanate, the pungent ingredient in wasabi and other mustard plants that induces pain and inflammation by activating TRPA1, an excitatory ion channel on primary sensory neurons of the pain pathway. Here we show that allicin and DADS excite an allyl isothiocyanate-sensitive subpopulation of sensory neurons and induce vasodilation by activating capsaicin-sensitive perivascular sensory nerve endings. Moreover, allicin and DADS activate the cloned TRPA1 channel when expressed in heterologous systems. These and other results suggest that garlic excites sensory neurons primarily through activation of TRPA1. Thus different plant genera, including Allium and Brassica, have developed evolutionary convergent strategies that target TRPA1 channels on sensory nerve endings to achieve chemical deterrence. PMID:16103371

  13. A New Protein Phosphatase 2C (FsPP2C1) Induced by Abscisic Acid Is Specifically Expressed in Dormant Beechnut Seeds1

    PubMed Central

    Lorenzo, Oscar; Rodríguez, Dolores; Nicolás, Gregorio; Rodríguez, Pedro L.; Nicolás, Carlos

    2001-01-01

    An abscisic acid (ABA)-induced cDNA fragment encoding a putative protein phosphatase 2C (PP2C) was obtained by means of differential reverse transcriptase-polymerase chain reaction approach. The full-length clone was isolated from a cDNA library constructed using mRNA from ABA-treated beechnut (Fagus sylvatica) seeds. This clone presents all the features of plant type PP2C and exhibits homology to members of this family such as AthPP2CA (61%), ABI1 (48%), or ABI2 (47%), therefore it was named FsPP2C1. The expression of FsPP2C1 is detected in dormant seeds and increases after ABA treatment, when seeds are maintained dormant, but it decreases and tends to disappear when dormancy is being released by stratification or under gibberellic acid treatment. Moreover, drought stress seems to have no effect on FsPP2C1 transcript accumulation. The FsPP2C1 transcript expression is tissue specific and was found to accumulate in ABA-treated seeds rather than in other ABA-treated vegetative tissues examined. These results suggest that the corresponding protein could be related to ABA-induced seed dormancy. By expressing FsPP2C1 in Escherichia coli as a histidine tag fusion protein, we have obtained direct biochemical evidence supporting Mg2+-dependent phosphatase activity of this protein. PMID:11299374

  14. A sensitive and specific radiochromatographic assay of fatty acid amide hydrolase activity.

    PubMed

    Maccarrone, M; Bari, M; Agrò, A F

    1999-02-15

    A radiochromatographic method has been set up in order to determine fatty acid amide hydrolase (FAAH) activity, based on reversed-phase high-performance liquid chromatography and on-line scintillation counting. The reaction products were separated using a C18 column eluted with methanol-water-acetic acid and quantitated with an external standard. Baseline separation of the acid product from the substrate was completed in less than 4 min, with a detection limit of 2.5 fmol arachidonic acid at a signal to noise ratio of 4:1. The method enabled to determine the kinetic constants (i.e., apparent Km of 2.0 +/- 0.2 microM and Vmax of 800 +/- 75 pmol. min-1. mg protein-1 toward anandamide) and the substrate specificity of human brain FAAH, as well as the extent of enzyme inhibition by some anandamide congeners. The femtomole sensitivity and the accuracy of the method allow detection and characterization of the activity of FAAH in very minute tissue samples or in samples where the enzymatic activity is very low. Copyright 1999 Academic Press.

  15. In vitro antitumor activity of methotrexate via pH-sensitive chitosan nanoparticles.

    PubMed

    Nogueira, Daniele Rubert; Tavano, Lorena; Mitjans, Montserrat; Pérez, Lourdes; Infante, M Rosa; Vinardell, M Pilar

    2013-04-01

    Nanoparticles with pH-sensitive behavior may enhance the success of chemotherapy in many cancers by efficient intracellular drug delivery. Here, we investigated the effect of a bioactive surfactant with pH-sensitive properties on the antitumor activity and intracellular behavior of methotrexate-loaded chitosan nanoparticles (MTX-CS-NPs). NPs were prepared using a modified ionotropic complexation process, in which was included the surfactant derived from N(α),N(ε)-dioctanoyl lysine with an inorganic lithium counterion. The pH-sensitive behavior of NPs allowed accelerated release of MTX in an acidic medium, as well as membrane-lytic pH-dependent activity, which facilitated the cytosolic delivery of endocytosed materials. Moreover, our results clearly proved that MTX-CS-NPs were more active against the tumor HeLa and MCF-7 cell lines than the free drug. The feasibilty of using NPs to target acidic tumor extracellular pH was also shown, as cytotoxicity against cancer cells was greater in a mildly acidic environment. Finally, the combined physicochemical and pH-sensitive properties of NPs generally allowed the entrapped drug to induce greater cell cycle arrest and apoptotic effects. Therefore, our overall results suggest that pH-sensitive MTX-CS-NPs could be potentially useful as a carrier system for tumor and intracellular drug delivery in cancer therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Acute sensitivity of activated sludge bacteria to erythromycin.

    PubMed

    Alighardashi, A; Pandolfi, D; Potier, O; Pons, M N

    2009-12-30

    The presence of antibiotics in water resources has been disturbing news for the stakeholders who are responsible for public health and the drinking water supply. In many cases, biological wastewater treatment plants are the final opportunity in the water cycle to trap these substances. The sensitivity of activated sludge bacteria to erythromycin, a macrolide widely used in human medicine was investigated in batch toxicity tests using a concentration range of 1-300 mg L(-1). Erythromycin, a protein synthesis inhibitor, has been found to significantly inhibit ammonification, nitritation and nitratation at concentrations higher than 20 mg L(-1). The degree of inhibition increased with greater concentrations of the antibiotic. Exposure to erythromycin also clearly affected heterotrophs, particularly filamentous bacteria, causing floc disintegration and breakage of filaments. Cell lysis was observed with the concomitant release of organic nitrogen (intracellular proteins) and soluble COD. Although erythromycin exhibits properties of a surfactant, this characteristic alone cannot explain the damage to heterotrophs: the effects from erythromycin were greater than those of Tween 80, a commonly used surfactant. Floc disruption can lead to the release of isolated bacteria, and possibly antibiotic resistance genes, into the environment.

  17. Disruption of Abscisic Acid Signaling Constitutively Activates Arabidopsis Resistance to the Necrotrophic Fungus Plectosphaerella cucumerina1[W

    PubMed Central

    Sánchez-Vallet, Andrea; López, Gemma; Ramos, Brisa; Delgado-Cerezo, Magdalena; Riviere, Marie-Pierre; Llorente, Francisco; Fernández, Paula Virginia; Miedes, Eva; Estevez, José Manuel; Grant, Murray; Molina, Antonio

    2012-01-01

    Plant resistance to necrotrophic fungi is regulated by a complex set of signaling pathways that includes those mediated by the hormones salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and abscisic acid (ABA). The role of ABA in plant resistance remains controversial, as positive and negative regulatory functions have been described depending on the plant-pathogen interaction analyzed. Here, we show that ABA signaling negatively regulates Arabidopsis (Arabidopsis thaliana) resistance to the necrotrophic fungus Plectosphaerella cucumerina. Arabidopsis plants impaired in ABA biosynthesis, such as the aba1-6 mutant, or in ABA signaling, like the quadruple pyr/pyl mutant (pyr1pyl1pyl2pyl4), were more resistant to P. cucumerina than wild-type plants. In contrast, the hab1-1abi1-2abi2-2 mutant impaired in three phosphatases that negatively regulate ABA signaling displayed an enhanced susceptibility phenotype to this fungus. Comparative transcriptomic analyses of aba1-6 and wild-type plants revealed that the ABA pathway negatively regulates defense genes, many of which are controlled by the SA, JA, or ET pathway. In line with these data, we found that aba1-6 resistance to P. cucumerina was partially compromised when the SA, JA, or ET pathway was disrupted in this mutant. Additionally, in the aba1-6 plants, some genes encoding cell wall-related proteins were misregulated. Fourier transform infrared spectroscopy and biochemical analyses of cell walls from aba1-6 and wild-type plants revealed significant differences in their Fourier transform infrared spectratypes and uronic acid and cellulose contents. All these data suggest that ABA signaling has a complex function in Arabidopsis basal resistance, negatively regulating SA/JA/ET-mediated resistance to necrotrophic fungi. PMID:23037505

  18. Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications

    DOE PAGES

    Wu, Xiang; Zhang, Yuanwei; Takle, Kendra; ...

    2016-01-06

    A near-infrared (NIR) dye-sensitized upconversion nanoparticles (UCNPs) can broaden the absorption range and boost upconversion efficiency of UCNPs. We achieved significantly enhanced upconversion luminescence in dye-sensitized core/active shell UCNPs via the doping of ytterbium ions (Yb 3+ ) in the UCNP shell, which bridged the energy transfer from the dye to the UCNP core. As a result, we synergized the two most practical upconversion booster effectors (dye-sensitizing and core/shell enhancement) to amplify upconversion efficiency. We also demonstrated two biomedical applications using these UCNPs. By using dye-sensitized core/active shell UCNP embedded poly(methyl methacrylate) polymer implantable systems, we successfully shifted the optogeneticmore » neuron excitation window to a biocompatible and deep tissue penetrable 800 nm wavelength. Furthermore, UCNPs were water-solubilized with Pluronic F127 with high upconversion efficiency and can be imaged in a mouse model.« less

  19. Activation of the AMPK/Sirt1 pathway by a leucine-metformin combination increases insulin sensitivity in skeletal muscle, and stimulates glucose and lipid metabolism and increases life span in Caenorhabditis elegans.

    PubMed

    Banerjee, Jheelam; Bruckbauer, Antje; Zemel, Michael B

    2016-11-01

    We have previously shown leucine (Leu) to activate Sirt1 by lowering its K M for NAD + , thereby amplifying the effects of other sirtuin activators and improving insulin sensitivity. Metformin (Met) converges on this pathway both indirectly (via AMPK) and by direct activation of Sirt1, and we recently found Leu to synergize with Met to improve insulin sensitivity and glycemic control while achieving ~80% dose-reduction in diet-induced obese mice. Accordingly, we sought here to define the mechanism of this interaction. Muscle cells C2C12 and liver cells HepG2 were used to test the effect of Met-Leu on Sirt1 activation. Caenorhabditis elegans was used for glucose utilization and life span studies. Leu (0.5mmol/L)+Met (50-100μmol/L) synergistically activated Sirt1 (p<0.001) at low (≤100μmol/L) NAD + levels while Met exerted no independent effect. This was associated with an increase in AMPK and ACC, phosphorylation, and increased fatty acid oxidation, which was prevented by AMPK or Sirt inhibition or silencing. Met-Leu also increased P-IRS1/IRS1 and P-AKT/AKT and in insulin-independent glucose disposal in myotubes (~50%, p<0.002) evident within 30 min as well as a 60% reduction in insulin EC 50 . In addition, in HepG2 liver cells nuclear CREB regulated transcription coactivator 2 (CRTC2) protein expression and phosphorylation of glycogen synthase was decreased, while glycogen synthase kinase phosphorylation was increased indicating decreased gluconeogenesis and glycogen synthesis. We utilized C. elegans to assess the metabolic consequences of this interaction. Exposure to high glucose impaired glucose utilization and shortened life span by ~25%, while addition of Leu+Met to high glucose worms increased median and maximal life span by 29 and 15%, respectively (p=0.023), restored normal glucose utilization and increased fat oxidation ~two-fold (p<0.005), while metformin exerted no independent effect at any concentration (0.1-0.5mmol/L). Thus, Leu and Met synergize

  20. Interleukin-4-dependent innate collaboration between iNKT cells and B-1 B cells controls adaptative contact sensitivity

    PubMed Central

    Campos, Regis A; Szczepanik, Marian; Itakura, Atsuko; Lisbonne, Mariette; Dey, Neelendu; Leite-de-Moraes, Maria C; Askenase, Philip W

    2006-01-01

    We showed that hepatic Vα14+ invariant natural killer T (iNKT) cells, via their rapid interleukin (IL)-4 production, activate B-1 cells to initiate contact sensitivity (CS). This innate collaboration was absent in IL-4–/– and signal transducer and activator of transcription (STAT)-6–/– mice and was inhibited by anti-IL-4 treatment. These mice have defective CS because they fail to locally recruit the sensitized effector T cells of acquired immunity. Their CS is reconstituted by transfer of downstream-acting 1-day immune B-1 cells from wild-type mice. Responses were not reconstituted with B-1 cells from IL-4 receptor-α–/– or STAT-6–/– mice, nor by IL-4 treatment of B cell-deficient mice at immunization. Finally, IL-4 was preferentially and transiently produced by hepatic iNKT cells within 7 min after sensitization to mediate collaboration between innate-like iNKT cells and the B-1 B cells that participate in the recruitment of effector T cells in vivo. PMID:16556268

  1. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice.

    PubMed

    Wu, Xian; Pang, Gang; Zhang, Yong-Mei; Li, Guangwu; Xu, Shengchun; Dong, Liuyi; Stackman, Robert W; Zhang, Gongliang

    2015-10-21

    Abuse and dependence to heroin has evolved into a global epidemic as a significant clinical and societal problem with devastating consequences. Repeated exposure to heroin can induce long-lasting behavioral sensitization and withdrawal. Pharmacological activation of 5-HT2C receptors (5-HT2CRs) suppresses psychostimulant-induced drug-seeking and behavioral sensitization. The present study examined the effect of a selective 5-HT2CR agonist lorcaserin on behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice. Male mice received heroin (1.0 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of heroin (1.0 mg/kg) was administered to examine the expression of behavioral sensitization. Lorcaserin administered during the development, withdrawal or expression stage suppressed heroin-induced behavioral sensitization on day 9. Another cohort of mice received increasing doses of heroin over a 4.5-day period. Lorcaserin, or the positive control clonidine (an α2-adrenoceptor agonist) suppressed naloxone-precipitated withdrawal symptoms in heroin-treated mice. These findings suggest that activation of 5-HT2CRs suppresses behavioral sensitization and withdrawal in heroin-treated mice. Thus, pharmacological activation of 5-HT2CRs may represent a new avenue for the treatment of heroin addiction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Activation of serotonin 5-HT2C receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice

    PubMed Central

    Li, Guangwu; Xu, Shengchun; Dong, Liuyi; Stackman, Robert W.; Zhang, Gongliang

    2015-01-01

    Abuse and dependence to heroin has evolved into a global epidemic as a significant clinical and societal problem with devastating consequences. Repeated exposure to heroin can induce long-lasting behavioral sensitization and withdrawal. Pharmacological activation of 5-HT2C receptors (5-HT2CRs) suppresses psychostimulant-induced drug-seeking and behavioral sensitization. The present study examined the effect of a selective 5-HT2CR agonist lorcaserin on behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice. Male mice received heroin (1.0 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of heroin (1.0 mg/kg) was administered to examine the expression of behavioral sensitization. Lorcaserin administered during the development, withdrawal or expression stage suppressed heroin-induced behavioral sensitization on day 9. Another cohort of mice received increasing doses of heroin over a 4.5-day period. Lorcaserin, or the positive control clonidine (an α2-adrenoceptor agonist) suppressed naloxone-precipitated withdrawal symptoms in heroin-treated mice. These findings suggest that activation of 5-HT2CRs suppresses behavioral sensitization and withdrawal in heroin-treated mice. Thus, pharmacological activation of 5-HT2CRs may represent a new avenue for the treatment of heroin addiction. PMID:26375926

  3. Terrestrial sensitivity to abrupt cooling recorded by aeolian activity in northwest Ohio, USA

    USGS Publications Warehouse

    Campbell, M.C.; Fisher, T.G.; Goble, R.J.

    2011-01-01

    Optically stimulated luminescence dated sand dunes and Pleistocene beach ridges in northwest Ohio are used to reconstruct landscape modification more than 5000. yr after deglaciation. Four of the OSL ages (13.3-11.1. ka) cluster around the Younger Dryas cold event, five ages (10.8-8.2. ka) cluster around the Preboreal, one young age (0.9-0.7. ka) records more recent aeolian activity, and one age of 15.1-13.1. ka dates a barrier spit in Lake Warren. In northwest Ohio, both landscape instability recorded by aeolian activity and a vegetation response recorded by pollen are coeval with the Younger Dryas. However, the climate conditions during the Preboreal resulting in aeolian activity are not recorded in the available pollen records. From this, we conclude that aeolian dunes and surfaces susceptible to deflation are sensitive to cooler, drier episodes of climate and can complement pollen data. Younger Dryas and Preboreal aged aeolian activity in northwestern Ohio coincides with aeolian records elsewhere in the Great Lakes region east of the prairie-forest ecotone. ?? 2011 University of Washington.

  4. SENSITIVE TO FREEZING2 Aids in Resilience to Salt and Drought in Freezing-Sensitive Tomato1[OPEN

    PubMed Central

    Hersh, Hope Lynn

    2016-01-01

    SENSITIVE TO FREEZING2 (SFR2) is crucial for protecting chloroplast membranes following freezing in Arabidopsis (Arabidopsis thaliana). It has been shown that SFR2 homologs are present in all land plants, including freezing-sensitive species, raising the question of SFR2 function beyond freezing tolerance. Similar to freezing, salt and drought can cause dehydration. Thus, it is hypothesized that in freezing-sensitive plants SFR2 may play roles in their resilience to salt or drought. To test this hypothesis, SlSFR2 RNAi lines were generated in the cold/freezing-sensitive species tomato (Solanum lycopersicum [M82 cv]). Hypersensitivity to salt and drought of SlSFR2-RNAi lines was observed. Higher tolerance of wild-type tomatoes was correlated with the production of trigalactosyldiacylglycerol, a product of SFR2 activity. Tomato SFR2 in vitro activity is Mg2+-dependent and its optimal pH is 7.5, similar to that of Arabidopsis SFR2, but the specific activity of tomato SFR2 in vitro is almost double that of Arabidopsis SFR2. When salt and drought stress were applied to Arabidopsis, no conditions could be identified at which SFR2 was induced prior to irreversibly impacting plant growth, suggesting that SFR2 protects Arabidopsis primarily against freezing. Discovery of tomato SFR2 function in drought and salt resilience provides further insights into general membrane lipid remodeling-based stress tolerance mechanisms and together with protection against freezing in freezing-resistant plants such as Arabidopsis, it adds lipid remodeling as a possible target for the engineering of abiotic stress-resilient crops. PMID:27600812

  5. Sensitivities of Two Zebrafish TRPA1 Paralogs to Chemical and Thermal Stimuli Analyzed in Heterologous Expression Systems.

    PubMed

    Oda, Mai; Kurogi, Mako; Kubo, Yoshihiro; Saitoh, Osamu

    2016-03-01

    Transient receptor potential A1 (TRPA1) is the only member of the mouse, chick, and frog TRPA family, whereas 2 paralogs (zTRPA1a and zTRPA1b) are present in zebrafish. We herein investigated functional differences in the 2 zebrafish TRPA1s. HEK293T cells were used as heterologous expression systems, and the sensitivities of these cells to 4 chemical irritants (allyl isothiocyanate [AITC], caffeine, auto-oxidized epigallocatechin gallate [EGCG], and hydrogen peroxide [H2O2]) were compared with Ca(2+) imaging techniques. Sensitivities to the activators for AITC, oxidized EGCG, and H2O2 were higher in cells expressing zTRPA1a than in those expressing zTRPA1b, whereas caffeine appeared to activate both cells equally. We also characterized the thermal sensitivity of Xenopus oocytes expressing each TRPA1 electrophysiologically using a 2-electrode voltage clamp. Although endogenous currents induced by a cold stimulation were observed in control oocytes in some batches, oocytes expressing zTRPA1b showed significantly stronger cold- and heat-induced responses. However, significant thermal activation was not observed in oocytes expressing zTRPA1a. The results obtained using in vitro expression systems suggest that zTRPA1a is specialized for chemical sensing, whereas zTRPA1b responds to thermal stimuli. Furthermore, characterization of the chimeric molecule of TRPA1a and 1b revealed the importance of the N-terminal region in chemical and thermal sensing by zTRPA1s. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Impact of varying physical activity levels on airway sensitivity and bronchodilation in healthy humans.

    PubMed

    Smith, Joshua R; Kurti, Stephanie P; Johnson, Ariel M; Kolmer, Sarah A; Harms, Craig

    2015-12-01

    The purpose of this study was to determine if the amount of physical activity influences airway sensitivity and bronchodilation in healthy subjects across a range of physical activity levels. Thirty healthy subjects (age, 21.9 ± 2.6 years; 13 men/17 women) with normal pulmonary function reported to the laboratory on 2 separate occasions where they were randomized to breathe either hypertonic saline (HS) (nebulized hypertonic saline (25%) for 20 min) or HS followed by 5 deep inspirations (DIs), which has been reported to bronchodilate the airways. Pulmonary function tests (PFTs) were performed prior to both conditions and following the HS breathing or 5 DIs. Moderate to vigorous physical activity (MVPA) level was measured via accelerometer worn for 7 days. Following the HS breathing, forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) significantly decreased from baseline by -11.8% ± 8.4% and -9.3% ± 6.7%, respectively. A 2-segment linear model determined significant relationships between MVPA and percent change in FEV1 (r = 0.50) and FVC (r = 0.55). MVPA above ∼497 and ∼500 min/week for FEV1 and FVC, respectively, resulted in minor additional improvements (p > 0.05) in PFTs following the HS breathing. Following the DIs, FEV1 and FVC decreased (p < 0.05) by -7.3% ± 8.6% and -5.7% ± 5.7%, respectively, from baseline, but were not related (p > 0.05) to MVPA. In conclusion, these data demonstrate that higher MVPA levels attenuated airway sensitivity but not bronchodilation in healthy subjects.

  7. Sensitivity method for integrated structure/active control law design

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    1987-01-01

    The development is described of an integrated structure/active control law design methodology for aeroelastic aircraft applications. A short motivating introduction to aeroservoelasticity is given along with the need for integrated structures/controls design algorithms. Three alternative approaches to development of an integrated design method are briefly discussed with regards to complexity, coordination and tradeoff strategies, and the nature of the resulting solutions. This leads to the formulation of the proposed approach which is based on the concepts of sensitivity of optimum solutions and multi-level decompositions. The concept of sensitivity of optimum is explained in more detail and compared with traditional sensitivity concepts of classical control theory. The analytical sensitivity expressions for the solution of the linear, quadratic cost, Gaussian (LQG) control problem are summarized in terms of the linear regulator solution and the Kalman Filter solution. Numerical results for a state space aeroelastic model of the DAST ARW-II vehicle are given, showing the changes in aircraft responses to variations of a structural parameter, in this case first wing bending natural frequency.

  8. Exchange protein activated by cAMP (Epac) induces vascular relaxation by activating Ca2+-sensitive K+ channels in rat mesenteric artery

    PubMed Central

    Roberts, Owain Llŷr; Kamishima, Tomoko; Barrett-Jolley, Richard; Quayle, John M; Dart, Caroline

    2013-01-01

    Vasodilator-induced elevation of intracellular cyclic AMP (cAMP) is a central mechanism governing arterial relaxation but is incompletely understood due to the diversity of cAMP effectors. Here we investigate the role of the novel cAMP effector exchange protein directly activated by cAMP (Epac) in mediating vasorelaxation in rat mesenteric arteries. In myography experiments, the Epac-selective cAMP analogue 8-pCPT-2′-O-Me-cAMP-AM (5 μm, subsequently referred to as 8-pCPT-AM) elicited a 77.6 ± 7.1% relaxation of phenylephrine-contracted arteries over a 5 min period (mean ± SEM; n= 6). 8-pCPT-AM induced only a 16.7 ± 2.4% relaxation in arteries pre-contracted with high extracellular K+ over the same time period (n= 10), suggesting that some of Epac's relaxant effect relies upon vascular cell hyperpolarization. This involves Ca2+-sensitive, large-conductance K+ (BKCa) channel opening as iberiotoxin (100 nm) significantly reduced the ability of 8-pCPT-AM to reverse phenylephrine-induced contraction (arteries relaxed by only 35.0 ± 8.5% over a 5 min exposure to 8-pCPT-AM, n= 5; P < 0.05). 8-pCPT-AM increased Ca2+ spark frequency in Fluo-4-AM-loaded mesenteric myocytes from 0.045 ± 0.008 to 0.103 ± 0.022 sparks s-1μm-1 (P < 0.05) and reversibly increased both the frequency (0.94 ± 0.25 to 2.30 ± 0.72 s−1) and amplitude (23.9 ± 3.3 to 35.8 ± 7.7 pA) of spontaneous transient outward currents (STOCs) recorded in isolated mesenteric myocytes (n= 7; P < 0.05). 8-pCPT-AM-activated STOCs were sensitive to iberiotoxin (100 nm) and to ryanodine (30 μm). Current clamp recordings of isolated myocytes showed a 7.9 ± 1.0 mV (n= 10) hyperpolarization in response to 8-pCPT-AM that was sensitive to iberiotoxin (n= 5). Endothelial disruption suppressed 8-pCPT-AM-mediated relaxation in phenylephrine-contracted arteries (24.8 ± 4.9% relaxation after 5 min of exposure, n= 5; P < 0.05), as did apamin and TRAM-34, blockers of Ca2+-sensitive, small- and intermediate

  9. Increased BOLD Activation to Predator Stressor in Subiculum and Midbrain of Amphetamine-Sensitized Maternal Rats

    PubMed Central

    Febo, Marcelo; Pira, Ashley S.

    2011-01-01

    Amphetamine, which is known to cause sensitization, potentiates the hormonal and neurobiological signatures of stress and may also increase sensitivity to stress-inducing stimuli in limbic areas. Trimethylthiazoline (5 μL TMT) is a chemical constituent of fox feces that evokes innate fear and activates the neuronal and hormonal signatures of stress in rats. We used blood oxygen level dependent (BOLD) MRI to test whether amphetamine sensitization (1 mg/kg, i.p. X 3 days) in female rats has a lasting effect on the neural response to a stress-evoking stimulus, the scent of a predator, during the postpartum period. The subiculum and dopamine-enriched midbrain VTA/SN of amphetamine-sensitized, but not control mothers showed a greater BOLD signal response to predator odor than a control putrid scent. The greater responsiveness of these two brain regions following stimulant sensitization might impact neural processing in response to stressors in the maternal brain. PMID:21134359

  10. Increased BOLD activation to predator stressor in subiculum and midbrain of amphetamine-sensitized maternal rats.

    PubMed

    Febo, Marcelo; Pira, Ashley S

    2011-03-25

    Amphetamine, which is known to cause sensitization, potentiates the hormonal and neurobiological signatures of stress and may also increase sensitivity to stress-inducing stimuli in limbic areas. Trimethylthiazoline (5μL TMT) is a chemical constituent of fox feces that evokes innate fear and activates the neuronal and hormonal signatures of stress in rats. We used blood oxygen level dependent (BOLD) MRI to test whether amphetamine sensitization (1mg/kg, i.p. ×3days) in female rats has a lasting effect on the neural response to a stress-evoking stimulus, the scent of a predator, during the postpartum period. The subiculum and dopamine-enriched midbrain VTA/SN of amphetamine-sensitized but not control mothers showed a greater BOLD signal response to predator odor than a control putrid scent. The greater responsiveness of these two brain regions following stimulant sensitization might impact neural processing in response to stressors in the maternal brain. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Alcohol induces synaptotagmin 1 expression in neurons via activation of heat shock factor 1.

    PubMed

    Varodayan, F P; Pignataro, L; Harrison, N L

    2011-10-13

    Many synapses within the central nervous system are sensitive to ethanol. Although alcohol is known to affect the probability of neurotransmitter release in specific brain regions, the effects of alcohol on the underlying synaptic vesicle fusion machinery have been little studied. To identify a potential pathway by which ethanol can regulate neurotransmitter release, we investigated the effects of acute alcohol exposure (1-24 h) on the expression of the gene encoding synaptotagmin 1 (Syt1), a synaptic protein that binds calcium to directly trigger vesicle fusion. Syt1 was identified in a microarray screen as a gene that may be sensitive to alcohol and heat shock. We found that Syt1 mRNA and protein expression are rapidly and robustly up-regulated by ethanol in mouse cortical neurons, and that the distribution of Syt1 protein along neuronal processes is also altered. Syt1 mRNA up-regulation is dependent on the activation of the transcription factor heat shock factor 1 (HSF1). The transfection of a constitutively active Hsf1 construct into neurons stimulates Syt1 transcription, while transfection of Hsf1 small interfering RNA (siRNA) or a constitutively inactive Hsf1 construct into neurons attenuates the induction of Syt1 by ethanol. This suggests that the activation of HSF1 can induce Syt1 expression and that this may be a mechanism by which alcohol regulates neurotransmitter release during brief exposures. Further analysis revealed that a subset of the genes encoding the core synaptic vesicle fusion (soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor; SNARE) proteins share this property of induction by ethanol, suggesting that alcohol may trigger a specific coordinated adaptation in synaptic function. This molecular mechanism could explain some of the changes in synaptic function that occur following alcohol administration and may be an important step in the process of neuronal adaptation to alcohol. Copyright © 2011 IBRO. Published by

  12. Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska

    NASA Astrophysics Data System (ADS)

    Yi, Yonghong; Kimball, John S.; Chen, Richard H.; Moghaddam, Mahta; Reichle, Rolf H.; Mishra, Umakant; Zona, Donatella; Oechel, Walter C.

    2018-01-01

    An important feature of the Arctic is large spatial heterogeneity in active layer conditions, which is generally poorly represented by global models and can lead to large uncertainties in predicting regional ecosystem responses and climate feedbacks. In this study, we developed a spatially integrated modeling and analysis framework combining field observations, local-scale ( ˜ 50 m resolution) active layer thickness (ALT) and soil moisture maps derived from low-frequency (L + P-band) airborne radar measurements, and global satellite environmental observations to investigate the ALT sensitivity to recent climate trends and landscape heterogeneity in Alaska. Modeled ALT results show good correspondence with in situ measurements in higher-permafrost-probability (PP ≥ 70 %) areas (n = 33; R = 0.60; mean bias = 1.58 cm; RMSE = 20.32 cm), but with larger uncertainty in sporadic and discontinuous permafrost areas. The model results also reveal widespread ALT deepening since 2001, with smaller ALT increases in northern Alaska (mean trend = 0.32±1.18 cm yr-1) and much larger increases (> 3 cm yr-1) across interior and southern Alaska. The positive ALT trend coincides with regional warming and a longer snow-free season (R = 0.60 ± 0.32). A spatially integrated analysis of the radar retrievals and model sensitivity simulations demonstrated that uncertainty in the spatial and vertical distribution of soil organic carbon (SOC) was the largest factor affecting modeled ALT accuracy, while soil moisture played a secondary role. Potential improvements in characterizing SOC heterogeneity, including better spatial sampling of soil conditions and advances in remote sensing of SOC and soil moisture, will enable more accurate predictions of active layer conditions and refinement of the modeling framework across a larger domain.

  13. Cdk1 and okadaic acid-sensitive phosphatases control assembly of nuclear pore complexes in Drosophila embryos.

    PubMed

    Onischenko, Evgeny A; Gubanova, Natalia V; Kiseleva, Elena V; Hallberg, Einar

    2005-11-01

    Disassembly and reassembly of the nuclear pore complexes (NPCs) is one of the major events during open mitosis in higher eukaryotes. However, how this process is controlled by the mitotic machinery is not clear. To investigate this we developed a novel in vivo model system based on syncytial Drosophila embryos. We microinjected different mitotic effectors into the embryonic cytoplasm and monitored the dynamics of disassembly/reassembly of NPCs in live embryos using fluorescently labeled wheat germ agglutinin (WGA) or in fixed embryos using electron microscopy and immunostaining techniques. We found that in live embryos Cdk1 activity was necessary and sufficient to induce disassembly of NPCs as well as their cytoplasmic mimics: annulate lamellae pore complexes (ALPCs). Cdk1 activity was also required for keeping NPCs and ALPCs disassembled during mitosis. In agreement recombinant Cdk1/cyclin B was able to induce phosphorylation and dissociation of nucleoporins from the NPCs in vitro. Conversely, reassembly of NPCs and ALPCs was dependent on the activity of protein phosphatases, sensitive to okadaic acid (OA). Our findings suggest a model where mitotic disassembly/reassembly of the NPCs is regulated by a dynamic equilibrium of Cdk1 and OA-sensitive phosphatase activities and provide evidence that mitotic phosphorylation mediates disassembly of the NPC.

  14. STAT3/IRF1 Pathway Activation Sensitizes Cervical Cancer Cells to Chemotherapeutic Drugs.

    PubMed

    Walch-Rückheim, Barbara; Pahne-Zeppenfeld, Jennifer; Fischbach, Jil; Wickenhauser, Claudia; Horn, Lars Christian; Tharun, Lars; Büttner, Reinhard; Mallmann, Peter; Stern, Peter; Kim, Yoo-Jin; Bohle, Rainer Maria; Rübe, Christian; Ströder, Russalina; Juhasz-Böss, Ingolf; Solomayer, Erich-Franz; Smola, Sigrun

    2016-07-01

    Neoadjuvant radio/chemotherapy regimens can markedly improve cervical cancer outcome in a subset of patients, while other patients show poor responses, but may encounter severe adverse effects. Thus, there is a strong need for predictive biomarkers to improve clinical management of cervical cancer patients. STAT3 is considered as a critical antiapoptotic factor in various malignancies. We therefore investigated STAT3 activation during cervical carcinogenesis and its impact on the response of cervical cancer cells to chemotherapeutic drugs. Tyr705-phosphorylated STAT3 increased from low-grade cervical intraepithelial neoplasia (CIN1) to precancerous CIN3 lesions. Notably, pTyr705-STAT3 activation significantly declined from CIN3 to invasive cancer, also when compared in the same clinical biopsy. pTyr705-STAT3 was also low or absent in cultured human cervical cancer cell lines, consistent with the in vivo expression data. Unexpectedly, IL6-type cytokine signaling inducing STAT3 activation rendered cervical cancer cells significantly more susceptible to chemotherapeutic drugs, that is, cisplatin or etoposide. This chemosensitization was STAT3-dependent and we identified IFN regulatory factor-1 (IRF1) as the STAT3-inducible mediator required for cell death enhancement. In line with these data, pTyr705-STAT3 significantly correlated with nuclear IRF1 expression in cervical cancer in vivo Importantly, high IRF1 expression in pretreatment cervical cancer biopsy cells was associated with a significantly better response to neoadjuvant radio/chemotherapy of the patients. In summary, our study has identified a key role of the STAT3/IRF1 pathway for chemosensitization in cervical cancer. Our results suggest that pretherapeutic IRF1 expression should be evaluated as a novel predictive biomarker for neoadjuvant radio/chemotherapy responses. Cancer Res; 76(13); 3872-83. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. MG53-IRS-1 (Mitsugumin 53-Insulin Receptor Substrate-1) Interaction Disruptor Sensitizes Insulin Signaling in Skeletal Muscle.

    PubMed

    Lee, Hyun; Park, Jung-Jin; Nguyen, Nga; Park, Jun Sub; Hong, Jin; Kim, Seung-Hyeob; Song, Woon Young; Kim, Hak Joong; Choi, Kwangman; Cho, Sungchan; Lee, Jae-Seon; Kim, Bong-Woo; Ko, Young-Gyu

    2016-12-23

    Mitsugumin 53 (MG53) is an E3 ligase that interacts with and ubiquitinates insulin receptor substrate-1 (IRS-1) in skeletal muscle; thus, an MG53-IRS-1 interaction disruptor (MID), which potentially sensitizes insulin signaling with an elevated level of IRS-1 in skeletal muscle, is an excellent candidate for treating insulin resistance. To screen for an MID, we developed a bimolecular luminescence complementation system using an N-terminal luciferase fragment fused with IRS-1 and a C-terminal luciferase fragment fused with an MG53 C14A mutant that binds to IRS-1 but does not have E3 ligase activity. An MID, which was discovered using the bimolecular luminescence complementation system, disrupted the molecular association of MG53 with IRS-1, thus abolishing MG53-mediated IRS-1 ubiquitination and degradation. Thus, the MID sensitized insulin signaling and increased insulin-elicited glucose uptake with an elevated level of IRS-1 in C2C12 myotubes. These data indicate that this MID holds promise as a drug candidate for treating insulin resistance. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Regulation of Drought Tolerance by the F-Box Protein MAX2 in Arabidopsis1[C][W][OPEN

    PubMed Central

    Bu, Qingyun; Lv, Tianxiao; Shen, Hui; Luong, Phi; Wang, Jimmy; Wang, Zhenyu; Huang, Zhigang; Xiao, Langtao; Engineer, Cawas; Kim, Tae Houn; Schroeder, Julian I.; Huq, Enamul

    2014-01-01

    MAX2 (for MORE AXILLARY GROWTH2) has been shown to regulate diverse biological processes, including plant architecture, photomorphogenesis, senescence, and karrikin signaling. Although karrikin is a smoke-derived abiotic signal, a role for MAX2 in abiotic stress response pathways is least investigated. Here, we show that the max2 mutant is strongly hypersensitive to drought stress compared with wild-type Arabidopsis (Arabidopsis thaliana). Stomatal closure of max2 was less sensitive to abscisic acid (ABA) than that of the wild type. Cuticle thickness of max2 was significantly thinner than that of the wild type. Both of these phenotypes of max2 mutant plants correlate with the increased water loss and drought-sensitive phenotype. Quantitative real-time reverse transcription-polymerase chain reaction analyses showed that the expression of stress-responsive genes and ABA biosynthesis, catabolism, transport, and signaling genes was impaired in max2 compared with wild-type seedlings in response to drought stress. Double mutant analysis of max2 with the ABA-insensitive mutants abi3 and abi5 indicated that MAX2 may function upstream of these genes. The expression of ABA-regulated genes was enhanced in imbibed max2 seeds. In addition, max2 mutant seedlings were hypersensitive to ABA and osmotic stress, including NaCl, mannitol, and glucose. Interestingly, ABA, osmotic stress, and drought-sensitive phenotypes were restricted to max2, and the strigolactone biosynthetic pathway mutants max1, max3, and max4 did not display any defects in these responses. Taken together, these results uncover an important role for MAX2 in plant responses to abiotic stress conditions. PMID:24198318

  17. Development of active and sensitive material systems based on composites

    NASA Astrophysics Data System (ADS)

    Asanuma, Hiroshi

    2002-07-01

    This paper describes new concepts proposed by the author to realize active and sensitive structural material systems. Two examples of multifunctional composites were fabricated and evaluated in this study as follows: (1) An active laminate of aluminum plate (works as muscle), epoxy film (as insulator), unidirectional CFRP prepreg (as bone and blood vessel) and copper foil electrode (to apply voltage on CFRP) was made with an embedded optical fiber multiply fractured in the CFRP layer (works as nerve), of which curvature change could be effectively monitored with the fractured optical fiber. (2) A stainless steel fiber/aluminum active composite with embedded Ti oxide/Ti composite fiber was fabricated. The Ti oxide/Ti fiber could work as a sensor for temperature by removing a part of the oxide before embedment to make a metallic contact between the embedded titanium fiber and aluminum matrix to be able to generate thermal electromotive force, and also could work as a sensor for strain and as a heater for actuation. In the both cases, the outputs from their embedded sensors can be used to control their actuations.

  18. Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons.

    PubMed

    Shi, Xuemei; Zhou, Fuguo; Li, Xiaojie; Chang, Benny; Li, Depei; Wang, Yi; Tong, Qingchun; Xu, Yong; Fukuda, Makoto; Zhao, Jean J; Li, Defa; Burrin, Douglas G; Chan, Lawrence; Guan, Xinfu

    2013-07-02

    Glucagon-like peptides (GLP-1/GLP-2) are coproduced and highlighted as key modulators to improve glucose homeostasis and insulin sensitivity after bariatric surgery. However, it is unknown if CNS GLP-2 plays any physiological role in the control of glucose homeostasis and insulin sensitivity. We show that mice lacking GLP-2 receptor (GLP-2R) in POMC neurons display glucose intolerance and hepatic insulin resistance. GLP-2R activation in POMC neurons is required for GLP-2 to enhance insulin-mediated suppression of hepatic glucose production (HGP) and gluconeogenesis. GLP-2 directly modulates excitability of POMC neurons in GLP-2R- and PI3K-dependent manners. GLP-2 initiates GLP-2R-p85α interaction and facilitates PI3K-Akt-dependent FoxO1 nuclear exclusion in POMC neurons. Central GLP-2 suppresses basal HGP and enhances insulin sensitivity, which are abolished in POMC-p110α KO mice. Thus, CNS GLP-2 plays a key physiological role in the control of HGP through activating PI3K-dependent modulation of membrane excitability and nuclear transcription of POMC neurons in the brain. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons

    PubMed Central

    Shi, Xuemei; Zhou, Fuguo; Li, Xiaojie; Chang, Benny; Li, Depei; Wang, Yi; Tong, Qingchun; Xu, Yong; Fukuda, Makoto; Zhao, Jean J.; Li, Defa; Burrin, Douglas G.; Chan, Lawrence; Guan, Xinfu

    2013-01-01

    Glucagon-like peptides (GLP-1/2) are co-produced and highlighted as key modulators to improve glucose homeostasis and insulin sensitivity after bariatric surgery. However, it is unknown if CNS GLP-2 plays any physiological role in the control of glucose homeostasis and insulin sensitivity. We show that mice lacking GLP-2 receptor (GLP-2R) in POMC neurons display glucose intolerance and hepatic insulin resistance. GLP-2R activation in POMC neurons is required for GLP-2 to enhance insulin-mediated suppression of hepatic glucose production (HGP) and gluconeogenesis. GLP-2 directly modulates excitability of POMC neurons in GLP-2R- and PI3K-dependent manners. GLP-2 initiates GLP-2R-p85α interaction and facilitates PI3K-Akt-dependent FoxO1 nuclear exclusion in POMC neurons. Central GLP-2 suppresses basal HGP and enhances insulin sensitivity, which are abolished in POMC-p110α KO mice. Thus, CNS GLP-2 plays a key physiological role in the control of hepatic glucose production through activating PI3K-dependent modulation of membrane excitability and nuclear transcription of POMC neurons in the brain. PMID:23823479

  20. Discrimination of skin sensitizers from non-sensitizers by interleukin-1α and interleukin-6 production on cultured human keratinocytes.

    PubMed

    Jung, Daun; Che, Jeong-Hwan; Lim, Kyung-Min; Chun, Young-Jin; Heo, Yong; Seok, Seung Hyeok

    2016-09-01

    In vitro testing methods for classifying sensitizers could be valuable alternatives to in vivo sensitization testing using animal models, such as the murine local lymph node assay (LLNA) and the guinea pig maximization test (GMT), but there remains a need for in vitro methods that are more accurate and simpler to distinguish skin sensitizers from non-sensitizers. Thus, the aim of our study was to establish an in vitro assay as a screening tool for detecting skin sensitizers using the human keratinocyte cell line, HaCaT. HaCaT cells were exposed to 16 relevant skin sensitizers and 6 skin non-sensitizers. The highest dose used was the dose causing 75% cell viability (CV75) that we determined by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The levels of extracellular production of interleukin-1α (IL-1α) and IL-6 were measured. The sensitivity of IL-1α was 63%, specificity was 83% and accuracy was 68%. In the case of IL-6, sensitivity: 69%, specificity: 83% and accuracy: 73%. Thus, this study suggests that measuring extracellular production of pro-inflammatory cytokines IL-1α and IL-6 by human HaCaT cells may potentially classify skin sensitizers from non-sensitizers. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  1. A Tumor Cell-Selective Inhibitor of Mitogen-Activated Protein Kinase Phosphatases Sensitizes Breast Cancer Cells to Lymphokine-Activated Killer Cell Activity

    PubMed Central

    Kaltenmeier, Christof T.; Vollmer, Laura L.; Vernetti, Lawrence A.; Caprio, Lindsay; Davis, Keanu; Korotchenko, Vasiliy N.; Day, Billy W.; Tsang, Michael; Hulkower, Keren I.; Lotze, Michael T.

    2017-01-01

    Dual specificity mitogen-activated protein kinase (MAPK) phosphatases [dual specificity phosphatase/MAP kinase phosphatase (DUSP-MKP)] have been hypothesized to maintain cancer cell survival by buffering excessive MAPK signaling caused by upstream activating oncogenic products. A large and diverse body of literature suggests that genetic depletion of DUSP-MKPs can reduce tumorigenicity, suggesting that hyperactivating MAPK signaling by DUSP-MKP inhibitors could be a novel strategy to selectively affect the transformed phenotype. Through in vivo structure-activity relationship studies in transgenic zebrafish we recently identified a hyperactivator of fibroblast growth factor signaling [(E)-2-benzylidene-5-bromo-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI-215)] that is devoid of developmental toxicity and restores defective MAPK activity caused by overexpression of DUSP1 and DUSP6 in mammalian cells. Here, we hypothesized that BCI-215 could selectively affect survival of transformed cells. In MDA-MB-231 human breast cancer cells, BCI-215 inhibited cell motility, caused apoptosis but not primary necrosis, and sensitized cells to lymphokine-activated killer cell activity. Mechanistically, BCI-215 induced rapid and sustained phosphorylation of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) in the absence of reactive oxygen species, and its toxicity was partially rescued by inhibition of p38 but not JNK or ERK. BCI-215 also hyperactivated MKK4/SEK1, suggesting activation of stress responses. Kinase phosphorylation profiling documented BCI-215 selectively activated MAPKs and their downstream substrates, but not receptor tyrosine kinases, SRC family kinases, AKT, mTOR, or DNA damage pathways. Our findings support the hypothesis that BCI-215 causes selective cancer cell cytotoxicity in part through non-redox-mediated activation of MAPK signaling, and the findings also identify an intersection with immune cell killing that is

  2. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany.

    PubMed

    Köstner, B; Falge, E; Tenhunen, J D

    2002-06-01

    Stand age is an important structural determinant of canopy transpiration (E(c)) and carbon gain. Another more functional parameter of forest structure is the leaf area/sapwood area relationship, A(L)/A(S), which changes with site conditions and has been used to estimate leaf area index of forest canopies. The interpretation of age-related changes in A(L)/A(S) and the question of how A(L)/A(S) is related to forest functions are of current interest because they may help to explain forest canopy fluxes and growth. We conducted studies in mature stands of Picea abies (L.) Karst. varying in age from 40 to 140 years, in tree density from 1680 to 320 trees ha(-1), and in tree height from 15 to 30 m. Structural parameters were measured by biomass harvests of individual trees and stand biometry. We estimated E(c) from scaled-up xylem sap flux of trees, and canopy-level fluxes were predicted by a three-dimensional microclimate and gas exchange model (STANDFLUX). In contrast to pine species, A(L)/A(S) of P. abies increased with stand age from 0.26 to 0.48 m(2) cm(-2). Agreement between E(c) derived from scaled-up sap flux and modeled canopy transpiration was obtained with the same parameterization of needle physiology independent of stand age. Reduced light interception per leaf area and, as a consequence, reductions in net canopy photosynthesis (A(c)), canopy conductance (g(c)) and E(c) were predicted by the model in the older stands. Seasonal water-use efficiency (WUE = A(c)/E(c)), derived from scaled-up sap flux and stem growth as well as from model simulation, declined with increasing A(L)/A(S) and stand age. Based on the different behavior of age-related A(L)/A(S) in Norway spruce stands compared with other tree species, we conclude that WUE rather than A(L)/A(S) could represent a common age-related property of all species. We also conclude that, in addition to hydraulic limitations reducing carbon gain in old stands, a functional change in A(L)/A(S) that is related to

  3. FLOWERING LOCUS T/TERMINAL FLOWER1-Like Genes Affect Growth Rhythm and Bud Set in Norway Spruce1[W][OPEN

    PubMed Central

    Karlgren, Anna; Gyllenstrand, Niclas; Clapham, David; Lagercrantz, Ulf

    2013-01-01

    The timing of bud set, as one determinant of the annual growth rhythm, is critical for local adaptation of the conifer Norway spruce (Picea abies). Previous gene expression and population genetic studies have suggested a role for P. abies FLOWERING LOCUS T/TERMINAL FLOWER1-Like2 (PaFTL2) in the control of growth cessation and bud set in Norway spruce as well as in local adaptation resulting in clinal variation for timing of bud set. Using transgenic plants with PaFTL2 driven by an inducible promoter, we found that PaFTL2 indeed induces bud set and most probably also growth cessation. PaFTL2 shows high expression around the procambium and vascular tissue and in the crown region in buds of both seedlings and older trees. Furthermore, PaFTL2 expression is induced in vegetative shoots and all bud types in late summer, when growth cessation occurs. This supports the notion that PaFTL2 is involved in growth cessation. A close paralog to PaFTL2, PaFTL1, is strongly expressed in meristems during the summer, possibly to repress meristem activity and the formation of needle primordia during this period. The temporal and spatial expression of PaFTL1 and PaFTL2 largely complement each other, which suggests that they act in concert to control perennial growth in Norway spruce. PMID:23958861

  4. Receptor for advanced glycation end products and its ligand high-mobility group box-1 mediate allergic airway sensitization and airway inflammation.

    PubMed

    Ullah, Md Ashik; Loh, Zhixuan; Gan, Wan Jun; Zhang, Vivian; Yang, Huan; Li, Jian Hua; Yamamoto, Yasuhiko; Schmidt, Ann Marie; Armour, Carol L; Hughes, J Margaret; Phipps, Simon; Sukkar, Maria B

    2014-08-01

    The receptor for advanced glycation end products (RAGE) shares common ligands and signaling pathways with TLR4, a key mediator of house dust mite (Dermatophagoides pteronyssinus) (HDM) sensitization. We hypothesized that RAGE and its ligand high-mobility group box-1 (HMGB1) cooperate with TLR4 to mediate HDM sensitization. To determine the requirement for HMGB1 and RAGE, and their relationship with TLR4, in airway sensitization. TLR4(-/-), RAGE(-/-), and RAGE-TLR4(-/-) mice were intranasally exposed to HDM or cockroach (Blatella germanica) extracts, and features of allergic inflammation were measured during the sensitization or challenge phase. Anti-HMGB1 antibody and the IL-1 receptor antagonist Anakinra were used to inhibit HMGB1 and the IL-1 receptor, respectively. The magnitude of allergic airway inflammation in response to either HDM or cockroach sensitization and/or challenge was significantly reduced in the absence of RAGE but not further diminished in the absence of both RAGE and TLR4. HDM sensitization induced the release of HMGB1 from the airway epithelium in a biphasic manner, which corresponded to the sequential activation of TLR4 then RAGE. Release of HMGB1 in response to cockroach sensitization also was RAGE dependent. Significantly, HMGB1 release occurred downstream of TLR4-induced IL-1α, and upstream of IL-25 and IL-33 production. Adoptive transfer of HDM-pulsed RAGE(+/+)dendritic cells to RAGE(-/-) mice recapitulated the allergic responses after HDM challenge. Immunoneutralization of HMGB1 attenuated HDM-induced allergic airway inflammation. The HMGB1-RAGE axis mediates allergic airway sensitization and airway inflammation. Activation of this axis in response to different allergens acts to amplify the allergic inflammatory response, which exposes it as an attractive target for therapeutic intervention. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  5. Sensitivity of influenza rapid diagnostic tests to H5N1 and 2009 pandemic H1N1 viruses.

    PubMed

    Sakai-Tagawa, Yuko; Ozawa, Makoto; Tamura, Daisuke; Le, Mai thi Quynh; Nidom, Chairul A; Sugaya, Norio; Kawaoka, Yoshihiro

    2010-08-01

    Simple and rapid diagnosis of influenza is useful for making treatment decisions in the clinical setting. Although many influenza rapid diagnostic tests (IRDTs) are available for the detection of seasonal influenza virus infections, their sensitivity for other viruses, such as H5N1 viruses and the recently emerged swine origin pandemic (H1N1) 2009 virus, remains largely unknown. Here, we examined the sensitivity of 20 IRDTs to various influenza virus strains, including H5N1 and 2009 pandemic H1N1 viruses. Our results indicate that the detection sensitivity to swine origin H1N1 viruses varies widely among IRDTs, with some tests lacking sufficient sensitivity to detect the early stages of infection when the virus load is low.

  6. First report on an inotropic peptide activating tetrodotoxin-sensitive, "neuronal" sodium currents in the heart.

    PubMed

    Kirchhof, Paulus; Tal, Tzachy; Fabritz, Larissa; Klimas, Jan; Nesher, Nir; Schulte, Jan S; Ehling, Petra; Kanyshkova, Tatayana; Budde, Thomas; Nikol, Sigrid; Fortmueller, Lisa; Stallmeyer, Birgit; Müller, Frank U; Schulze-Bahr, Eric; Schmitz, Wilhelm; Zlotkin, Eliahu; Kirchhefer, Uwe

    2015-01-01

    New therapeutic approaches to improve cardiac contractility without severe risk would improve the management of acute heart failure. Increasing systolic sodium influx can increase cardiac contractility, but most sodium channel activators have proarrhythmic effects that limit their clinical use. Here, we report the cardiac effects of a novel positive inotropic peptide isolated from the toxin of the Black Judean scorpion that activates neuronal tetrodotoxin-sensitive sodium channels. All venoms and peptides were isolated from Black Judean Scorpions (Buthotus Hottentotta) caught in the Judean Desert. The full scorpion venom increased left ventricular function in sedated mice in vivo, prolonged ventricular repolarization, and provoked ventricular arrhythmias. An inotropic peptide (BjIP) isolated from the full venom by chromatography increased cardiac contractility but did neither provoke ventricular arrhythmias nor prolong cardiac repolarization. BjIP increased intracellular calcium in ventricular cardiomyocytes and prolonged inactivation of the cardiac sodium current. Low concentrations of tetrodotoxin (200 nmol/L) abolished the effect of BjIP on calcium transients and sodium current. BjIP did not alter the function of Nav1.5, but selectively activated the brain-type sodium channels Nav1.6 or Nav1.3 in cellular electrophysiological recordings obtained from rodent thalamic slices. Nav1.3 (SCN3A) mRNA was detected in human and mouse heart tissue. Our pilot experiments suggest that selective activation of tetrodotoxin-sensitive neuronal sodium channels can safely increase cardiac contractility. As such, the peptide described here may become a lead compound for a new class of positive inotropic agents. © 2014 American Heart Association, Inc.

  7. Individual differences in sensitivity to reward and punishment and neural activity during reward and avoidance learning

    PubMed Central

    Yoon, HeungSik; Kim, Hackjin; Hamann, Stephan

    2015-01-01

    In this functional neuroimaging study, we investigated neural activations during the process of learning to gain monetary rewards and to avoid monetary loss, and how these activations are modulated by individual differences in reward and punishment sensitivity. Healthy young volunteers performed a reinforcement learning task where they chose one of two fractal stimuli associated with monetary gain (reward trials) or avoidance of monetary loss (avoidance trials). Trait sensitivity to reward and punishment was assessed using the behavioral inhibition/activation scales (BIS/BAS). Functional neuroimaging results showed activation of the striatum during the anticipation and reception periods of reward trials. During avoidance trials, activation of the dorsal striatum and prefrontal regions was found. As expected, individual differences in reward sensitivity were positively associated with activation in the left and right ventral striatum during reward reception. Individual differences in sensitivity to punishment were negatively associated with activation in the left dorsal striatum during avoidance anticipation and also with activation in the right lateral orbitofrontal cortex during receiving monetary loss. These results suggest that learning to attain reward and learning to avoid loss are dependent on separable sets of neural regions whose activity is modulated by trait sensitivity to reward or punishment. PMID:25680989

  8. Diagnostic value of the basophil activation test in evaluating Hymenoptera venom sensitization.

    PubMed

    Peternelj, Andreja; Silar, Mira; Bajrovic, Nissera; Adamic, Katja; Music, Ema; Kosnik, Mitja; Korosec, Peter

    2009-01-01

    Diagnosis of allergy to Hymenoptera venom is usually confirmed with skin testing and measurement of specific serum IgE antibody, tests which are sometimes inconclusive. In these cases, additional in vitro tests are necessary. The aim of this study was to show the applicability of the basophil activation test in detecting sensitization to Hymenoptera venom and to compare the test sensitivity and clinical positive-predictive value with skin prick tests and measurement of allergen-specific serum IgE. This prospective study was conducted between June 2004 and December 2007 and included a large group of 204 patients. All patients had a history of at least one systemic allergic reaction of Müller grades II-IV after a Hymenoptera sting. We compared results of the basophil activation test, specific serum IgE and skin prick tests with patients' clinical history and data on culprit insects. The overall clinical sensitivities of the basophil activation test, specific serum IgE and skin prick tests were 90%, 76% and 64%, respectively; the clinical positive-predictive values of the three tests were 79%, 73% and 78% for bee venom, 86%, 59% and 43% for wasp venom; and 84%, 77% and 22% for both venoms. Our results revealed a higher clinical sensitivity and comparable or better clinical positive-predictive value of basophil activation tests than skin prick tests and allergen-specific serum IgE in the detection of allergy to Hymenoptera venom.

  9. TRPV1 receptors on unmyelinated C-fibres mediate colitis-induced sensitization of pelvic afferent nerve fibres in rats

    PubMed Central

    De Schepper, H U; De Winter, B Y; Van Nassauw, L; Timmermans, J-P; Herman, A G; Pelckmans, P A; De Man, J G

    2008-01-01

    Patients with inflammatory bowel disease often suffer from gastrointestinal motility and sensitivity disorders. The aim of the current study was to investigate the role of transient receptor potential of the vanilloid type 1 (TRPV1) receptors in the pathophysiology of colitis-induced pelvic afferent nerve sensitization. Trinitrobenzene sulphate (TNBS) colitis (7.5 mg, 30% ethanol) was induced in Wistar rats 72 h prior to the experiment. Single-fibre recordings were made from pelvic nerve afferents in the decentralized S1 dorsal root. Fibres responding to colorectal distension (CRD) were identified in controls and rats with TNBS colitis. The effect of the TRPV1 antagonist N-(4-tertiarybutylphenyl)-4-(3-chlorophyridin-2-yl)tetrahydropyrazine-1(2H)carboxamide (BCTC; 0.25–5 mg kg−1) or its vehicle (hydroxypropyl-β-cyclodextrin) was tested on the afferent response to repetitive distensions (60 mmHg). Immunocytochemical staining of TRPV1 and NF200, a marker for A-fibre neurons, was performed in the dorsal root ganglia L6–S1. TNBS colitis significantly increased the response to colorectal distension of pelvic afferent C-fibres. BCTC did not significantly affect the C-fibre response in controls, but normalized the sensitized response in rats with colitis. TNBS colitis increased the spontaneous activity of C-fibres, an effect which was insensitive to administration of BCTC. TNBS colitis had no effect on Aδ-fibres, nor was their activity modulated by BCTC. TNBS colitis caused an immunocytochemical up-regulation of TRPV1 receptors in the cell bodies of pelvic afferent NF200 negative neurons. TRPV1 signalling mediates the colitis-induced sensitization of pelvic afferent C-fibres to CRD, while Aδ-fibres are neither sensitized by colitis nor affected by TRPV1 inhibition. PMID:18755744

  10. HIV-1 TAT protein enhances sensitization to methamphetamine by affecting dopaminergic function.

    PubMed

    Kesby, James P; Najera, Julia A; Romoli, Benedetto; Fang, Yiding; Basova, Liana; Birmingham, Amanda; Marcondes, Maria Cecilia G; Dulcis, Davide; Semenova, Svetlana

    2017-10-01

    Methamphetamine abuse is common among humans with immunodeficiency virus (HIV). The HIV-1 regulatory protein TAT induces dysfunction of mesolimbic dopaminergic systems which may result in impaired reward processes and contribute to methamphetamine abuse. These studies investigated the impact of TAT expression on methamphetamine-induced locomotor sensitization, underlying changes in dopamine function and adenosine receptors in mesolimbic brain areas and neuroinflammation (microgliosis). Transgenic mice with doxycycline-induced TAT protein expression in the brain were tested for locomotor activity in response to repeated methamphetamine injections and methamphetamine challenge after a 7-day abstinence period. Dopamine function in the nucleus accumbens (Acb) was determined using high performance liquid chromatography. Expression of dopamine and/or adenosine A receptors (ADORA) in the Acb and caudate putamen (CPu) was assessed using RT-PCR and immunohistochemistry analyses. Microarrays with pathway analyses assessed dopamine and adenosine signaling in the CPu. Activity-dependent neurotransmitter switching of a reserve pool of non-dopaminergic neurons to a dopaminergic phenotype in the ventral tegmental area (VTA) was determined by immunohistochemistry and quantified with stereology. TAT expression enhanced methamphetamine-induced sensitization. TAT expression alone decreased striatal dopamine (D1, D2, D4, D5) and ADORA1A receptor expression, while increasing ADORA2A receptors expression. Moreover, TAT expression combined with methamphetamine exposure was associated with increased adenosine A receptors (ADORA1A) expression and increased recruitment of dopamine neurons in the VTA. TAT expression and methamphetamine exposure induced microglia activation with the largest effect after combined exposure. Our findings suggest that dopamine-adenosine receptor interactions and reserve pool neuronal recruitment may represent potential targets to develop new treatments for

  11. Effects of protein kinase C activators on phorbol ester-sensitive and -resistant EL4 thymoma cells.

    PubMed

    Sansbury, H M; Wisehart-Johnson, A E; Qi, C; Fulwood, S; Meier, K E

    1997-09-01

    Phorbol ester-sensitive EL4 murine thymoma cells respond to phorbol 12-myristate 13-acetate with activation of ERK mitogen-activated protein kinases, synthesis of interleukin-2, and death, whereas phorbol ester-resistant variants of this cell line do not exhibit these responses. Additional aspects of the resistant phenotype were examined, using a newly-established resistant cell line. Phorbol ester induced morphological changes, ERK activation, calcium-dependent activation of the c-Jun N-terminal kinase (JNK), interleukin-2 synthesis, and growth inhibition in sensitive but not resistant cells. A series of protein kinase C activators caused membrane translocation of protein kinase C's (PKCs) alpha, eta, and theta in both cell lines. While PKC eta was expressed at higher levels in sensitive than in resistant cells, overexpression of PKC eta did not restore phorbol ester-induced ERK activation to resistant cells. In sensitive cells, PKC activators had similar effects on cell viability and ERK activation, but differed in their abilities to induce JNK activation and interleukin-2 synthesis. PD 098059, an inhibitor of the mitogen activated protein (MAP)/ERK kinase kinase MEK, partially inhibited ERK activation and completely blocked phorbol ester-induced cell death in sensitive cells. Thus MEK and/or ERK activation, but not JNK activation or interleukin-2 synthesis, appears to be required for phorbol ester-induced toxicity. Alterations in phorbol ester response pathways, rather than altered expression of PKC isoforms, appear to confer phorbol ester resistance to EL4 cells.

  12. Alternations of central insulin-like growth factor-1 sensitivity in APP/PS1 transgenic mice and neuronal models.

    PubMed

    Zhang, Bing; Tang, Xi Can; Zhang, Hai Yan

    2013-05-01

    Although many post-mortem studies have found evidence of central insulin resistance in Alzheimer's disease (AD) patients, results on changes of central insulin-like growth factor-1 (IGF-1) signaling in the pathological process of AD remain controversial. In the present study, we observed the activation states of IGF-1 downstream signaling in brain slices of transgenic mice carrying APPswe/PS1dE9 mutations (APP/PS1 mice) at both early and late stages (ex vivo) and further investigated the involvement of oligomeric β-amyloid (Aβ) and Aβ-enriched culture medium (CM) on IGF-1 sensitivity employing neuronal models (in vitro). In 6- and 18-month-old APP/PS1 mice, the phosphorylations of IGF-1 receptor (IGF-1R) and Akt in response to IGF-1 stimulation were significantly reduced in the hippocampal and cortical slices, whereas IGF-1R protein expression and mRNA levels of IGF-1 and IGF-1R in the hippocampal slices were significantly higher than that in wild-type mice. In agreement with these results, reduced IGF-1 sensitivity was verified in APP and PS1 double stably transfected CHO cells; moreover, IGF-1 stimulated phosphorylations of IGF-1R and Akt were also markedly weakened by oligomeric Aβ or Aβ-enriched CM posttreatment in CHO cells without APP/PS1-transfected (K1 cells) and primary hippocampal neurons. These observations indicate that the impaired central IGF-1 sensitivity at early and late stages of APP/PS1 transgenic mice might be attributable, at least partially, to the overproduced Aβ, especially the oligomeric Aβ. These findings may shed new light on the mechanisms underlying the defective IGF-1 signaling in AD pathogenesis and provide important clues for AD drug discovery. Copyright © 2013 Wiley Periodicals, Inc.

  13. Targeting Androgen Receptor-Driven Resistance to CYP17A1 Inhibitors

    DTIC Science & Technology

    2016-11-01

    unlimited The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of...chemo- and radiotherapies that are efficacious against primary, androgen sensitive (AS)-CaP. CR-CaP progresses to metastatic disease in local lymph... AR ) protein, called AR -V, is directly responsible for malignancy of CR-CaP, and moreover, that ENZ or ABI treatment actually enhances production of AR

  14. Xenobiotic metabolizing enzyme activities in cells used for testing skin sensitization in vitro.

    PubMed

    Fabian, E; Vogel, D; Blatz, V; Ramirez, T; Kolle, S; Eltze, T; van Ravenzwaay, B; Oesch, F; Landsiedel, R

    2013-09-01

    For ethical and regulatory reasons, in vitro tests for scoring potential toxicities of cosmetics are essential. A test strategy for investigating potential skin sensitization using two human keratinocytic and two human dendritic cell lines has been developed (Mehling et al. Arch Toxicol 86:1273–1295, 2012). Since prohaptens may be metabolically activated in the skin, information on xenobiotic metabolizing enzyme (XME) activities in these cell lines is of high interest. In this study, XME activity assays, monitoring metabolite or cofactor, showed the following: all three passages of keratinocytic (KeratinoSens® and LuSens) and dendritic (U937 und THP-1) cells displayed N-acetyltransferase 1 (NAT1) activities (about 6–60 nmol/min/mg S9-protein for acetylation of para-aminobenzoic acid). This is relevant since reactive species of many cosmetics are metabolically controlled by cutaneous NAT1. Esterase activities of about 1–4 nmol fluorescein diacetate/min/mg S9-protein were observed in all passages of investigated keratinocytic and about 1 nmol fluorescein diacetate/min/mg S9-protein in dendritic cell lines. This is also of practical relevance since many esters and amides are detoxified and others activated by cutaneous esterases. In both keratinocytic cell lines, activities of aldehyde dehydrogenase (ALDH) were observed (5–17 nmol product/min/mg cytosolic protein). ALDH is relevant for the detoxication of reactive aldehydes. Activities of several other XME were below detection, namely the investigated cytochrome P450-dependent alkylresorufin O-dealkylases 7-ethylresorufin O-deethylase, 7-benzylresorufin O-debenzylase and 7-pentylresorufin O-depentylase (while NADPH cytochrome c reductase activities were much above the limit of quantification), the flavin-containing monooxygenase, the alcohol dehydrogenase as well as the UDP glucuronosyl transferase activities.

  15. Spectra analysis of coating antigen: A possible explanation for difference in anti-AFB1 polyclonal antibody sensitivity

    NASA Astrophysics Data System (ADS)

    Ye, Yang; Liu, Aiping; Wang, Xiaohong; Chen, Fusheng

    2016-10-01

    For the detection of small hapten molecules, indirect competitive enzyme-linked immunosorbent assay (icELISA) is a preferred method. However, diverse coating antigen might bring different antiserum titer and sensitivity for the identical antiserum. In the present study, four AFB1-protein (aflatoxin B1-carrier protein) conjugates were prepared by activated ester method (AFB1O-BSA/AFB1O-OVA) and mannich method (AFB1-cBSA/AFB1-cOVA), and then applied as coating antigen for titer and sensitivity detection of the identical antiserum obtained from rabbit immunized by AFB1-KLH. Afterwards, the ultraviolet-visible, fluorescence and far-ultraviolet circular dichroism (far-UV CD) spectra were recorded for understanding the difference in titer and sensitivity obtained. Results revealed that AFB1O-BSA/AFB1O-OVA showed a strong intrinsic fluorescence band centered at 450 nm that originated from the emission of AFB1, which differed from AFB1-cBSA/AFB1-cOVA, while the decrease of α-helical and increase of β-sheet in AFB1-cBSA was the most remarkable. This indicated that the better sensitivity obtained by using AFB1O-BSA as coating antigen might be caused by its extended structure, because such structure affect the binding between AFB1 and antibody. The study might offer structural information for understanding the titer and sensitivity difference caused by coating antigen.

  16. Objectively measured sedentary time and associations with insulin sensitivity: Importance of reallocating sedentary time to physical activity.

    PubMed

    Yates, Thomas; Henson, Joseph; Edwardson, Charlotte; Dunstan, David; Bodicoat, Danielle H; Khunti, Kamlesh; Davies, Melanie J

    2015-07-01

    The aim of this study is to quantify associations between objectively measured sedentary time and markers of insulin sensitivity by considering allocation into light-intensity physical activity or moderate- to vigorous-intensity physical activity (MVPA). Participants with an increased risk of impaired glucose regulation (IGR) were recruited (Leicestershire, United Kingdom, 2010-2011). Sedentary, light-intensity physical activity and MVPA time were measured using accelerometers. Fasting and 2-hour post-challenge insulin and glucose were assessed; insulin sensitivity was calculated by HOMA-IS and Matsuda-ISI. Isotemporal substitution regression models were used. Data were analysed in 2014. 508 participants were included (average age=65years, female=34%). Reallocating 30min of sedentary time into light-intensity physical activity was associated a 5% (95% CI 1, 9%; p=0.024) difference in Matsuda-ISI after adjustment for measured confounding variables. Reallocation into MVPA was associated with a 15% (7, 25%; p<0.001) difference in HOMA-IS and 18% (8, 28%; p<0.001) difference in Matsuda-ISI. Results for light-intensity physical activity were modified by IGR status with stronger associations seen in those with IGR. Reallocating sedentary time into light-intensity physical activity or MVPA was associated with differences in insulin sensitivity, with stronger and more consistent associations seen for MVPA. Copyright © 2015. Published by Elsevier Inc.

  17. Sensitivity analyses of stopping distance for connected vehicles at active highway-rail grade crossings.

    PubMed

    Hsu, Chung-Jen; Jones, Elizabeth G

    2017-02-01

    This paper performs sensitivity analyses of stopping distance for connected vehicles (CVs) at active highway-rail grade crossings (HRGCs). Stopping distance is the major safety factor at active HRGCs. A sensitivity analysis is performed for each variable in the function of stopping distance. The formulation of stopping distance treats each variable as a probability density function for implementing Monte Carlo simulations. The result of the sensitivity analysis shows that the initial speed is the most sensitive factor to stopping distances of CVs and non-CVs. The safety of CVs can be further improved by the early provision of onboard train information and warnings to reduce the initial speeds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Novel Solid-State Solar Cell Based on Hole-Conducting MOF-Sensitizer Demonstrating Power Conversion Efficiency of 2.1.

    PubMed

    Ahn, Do Young; Lee, Deok Yeon; Shin, Chan Yong; Bui, Hoa Thi; Shrestha, Nabeen K; Giebeler, Lars; Noh, Yong-Young; Han, Sung-Hwan

    2017-04-19

    This work reports on designing of first successful MOF-sensitizer based solid-state photovoltaic device, perticularly with a meaningful output power conversion efficiency. In this study, an intrinsically conductive cobalt-based MOFs (Co-DAPV) formed by the coordination between Co (II) ions and a redox active di(3-diaminopropyl)-viologen (i.e., DAPV) ligand is investigated as sensitizer. Hall-effect measurement shows p-type conductivity of the Co-DAPV film with hole mobility of 0.017 cm 2 V -1 s -1 , suggesting its potential application as hole transporting sensitizer. Further, the energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of Co-DAPV are well-matched to be suitably employed for sensitizing TiO 2 . Thus, by layer-by-layer deposition of hole conducting MOF-sensitizer onto mesoporous TiO 2 film, a power conversion efficiency of as high as 2.1% is achieved, which exceeds the highest efficiency values of MOF-sensitized liquid-junction solar cells reported so far.

  19. Paclitaxel sensitivity in relation to ABCB1 expression, efflux and single nucleotide polymorphisms in ovarian cancer.

    PubMed

    Gao, Bo; Russell, Amanda; Beesley, Jonathan; Chen, Xiao Qing; Healey, Sue; Henderson, Michelle; Wong, Mark; Emmanuel, Catherine; Galletta, Laura; Johnatty, Sharon E; Bowtell, David; Haber, Michelle; Norris, Murray; Harnett, Paul; Chenevix-Trench, Georgia; Balleine, Rosemary L; deFazio, Anna

    2014-05-09

    ABCB1 (adenosine triphosphate-binding cassette transporter B1) mediates cellular elimination of many chemotherapeutic agents including paclitaxel, which is commonly used to treat ovarian cancer. A significant association between common single nucleotide polymorphisms (SNPs) in ABCB1 and progression-free survival has been reported in patients with ovarian cancer. Variable paclitaxel clearance due to genotype specific differences in ABCB1 activity in cancer cells and/or normal tissues may underlie the association. Using cell-based models, we evaluated the correlations between ABCB1 expression, polymorphisms, transporter activity and paclitaxel sensitivity in ovarian cancer (n = 10) and lymphoblastoid (n = 19) cell lines. Close associations between ABCB1 expression, transporter function and paclitaxel sensitivity were found in lymphoblastoid cell lines, although we could not demonstrate an association with common SNPs. In ovarian cancer cell lines, ABCB1 expression was low and the association between expression and function was lost. These results suggest that ABCB1 related survival difference in ovarian cancer patients is more likely to be due to differential whole body paclitaxel clearance mediated by normal cells rather than a direct effect on cancer cells.

  20. Autophagy inhibition sensitizes WYE-354-induced anti-colon cancer activity in vitro and in vivo.

    PubMed

    Wang, Lijun; Zhu, Yun-Rong; Wang, Shaowei; Zhao, Song

    2016-09-01

    Mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and mTORC2 are frequently dysregulated in human colon cancers. In the present study, we evaluated the potential anti-colon cancer cell activity by a novel mTORC1/2 dual inhibitor WYE-354. We showed that WYE-354 was anti-survival and anti-proliferative when adding to primary (patient-derived) and established (HCT-116, HT-29, Caco-2, LoVo, and DLD-1 lines) colon cancer cells. In addition, WYE-354 treatment activated caspase-dependent apoptosis in the colon cancer cells. Mechanistically, WYE-354 blocked mTORC1 and mTORC2 activation. Meanwhile, it also induced autophagy activation in the colon cancer cells. Autophagy inhibitors (bafilomycin A1 and 3-methyladenine), or shRNA-mediated knockdown of autophagy elements (Beclin-1 and ATG-5), remarkably sensitized WYE-354-mediated anti-colon cancer cell activity in vitro. Further studies showed that WYE-354 administration inhibited HT-29 xenograft growth in severe combined immunodeficient (SCID) mice. Importantly, its activity in vivo was further potentiated with co-administration of the autophagy inhibitor 3-MA. Phosphorylations of Akt (Ser-473) and S6 were also decreased in WYE-354-treated HT-29 xenografts. Together, these pre-clinical results demonstrate the potent anti-colon cancer cell activity by WYE-354, and its activity may be further augmented with autophagy inhibition.

  1. Inhibition of ERK1/2 or AKT Activity Equally Enhances Radiation Sensitization in B16F10 Cells

    PubMed Central

    Kalal, Bhuvanesh Sukhlal; Fathima, Faraz; Pai, Vinitha Ramanath; Sanjeev, Ganesh; Krishna, Chilakapati Murali; Upadhya, Dinesh

    2018-01-01

    Background The aim of the study was to evaluate the radiation sensitizing ability of ERK1/2, PI3K-AKT and JNK inhibitors in highly radiation resistant and metastatic B16F10 cells which carry wild-type Ras and Braf. Methods Mouse melanoma cell line B16F10 was exposed to 1.0, 2.0 and 3.0 Gy of electron beam radiation. Phosphorylated ERK1/2, AKT and JNK levels were estimated by ELISA. Cells were exposed to 2.0 and 3.0 Gy of radiation with or without prior pharmacological inhibition of ERK1/2, AKT as well as JNK pathways. Cell death induced by radiation as well as upon inhibition of these pathways was measured by TUNEL assay using flow cytometry. Results Exposure of B16F10 cells to 1.0, 2.0 and 3.0 Gy of electron beam irradiation triggered an increase in all the three phosphorylated proteins compared to sham-treated and control groups. B16F10 cells pre-treated with either ERK1/2 or AKT inhibitors equally enhanced radiation-induced cell death at 2.0 as well as 3.0 Gy (P < 0.001), while inhibition of JNK pathway increased radiation-induced cell death to a lesser extent. Interestingly combined inhibition of ERK1/2 or AKT pathways did not show additional cell death compared to individual ERK1/2 or AKT inhibition. This indicates that ERK1/2 or AKT mediates radiation resistance through common downstream molecules in B16F10 cells. Conclusions Even without activating mutations in Ras or Braf genes, ERK1/2 and AKT play a critical role in B16F10 cell survival upon radiation exposure and possibly act through common downstream effector/s. PMID:29581812

  2. Inhibition of ERK1/2 or AKT Activity Equally Enhances Radiation Sensitization in B16F10 Cells.

    PubMed

    Kalal, Bhuvanesh Sukhlal; Fathima, Faraz; Pai, Vinitha Ramanath; Sanjeev, Ganesh; Krishna, Chilakapati Murali; Upadhya, Dinesh

    2018-02-01

    The aim of the study was to evaluate the radiation sensitizing ability of ERK1/2, PI3K-AKT and JNK inhibitors in highly radiation resistant and metastatic B16F10 cells which carry wild-type Ras and Braf . Mouse melanoma cell line B16F10 was exposed to 1.0, 2.0 and 3.0 Gy of electron beam radiation. Phosphorylated ERK1/2, AKT and JNK levels were estimated by ELISA. Cells were exposed to 2.0 and 3.0 Gy of radiation with or without prior pharmacological inhibition of ERK1/2, AKT as well as JNK pathways. Cell death induced by radiation as well as upon inhibition of these pathways was measured by TUNEL assay using flow cytometry. Exposure of B16F10 cells to 1.0, 2.0 and 3.0 Gy of electron beam irradiation triggered an increase in all the three phosphorylated proteins compared to sham-treated and control groups. B16F10 cells pre-treated with either ERK1/2 or AKT inhibitors equally enhanced radiation-induced cell death at 2.0 as well as 3.0 Gy (P < 0.001), while inhibition of JNK pathway increased radiation-induced cell death to a lesser extent. Interestingly combined inhibition of ERK1/2 or AKT pathways did not show additional cell death compared to individual ERK1/2 or AKT inhibition. This indicates that ERK1/2 or AKT mediates radiation resistance through common downstream molecules in B16F10 cells. Even without activating mutations in Ras or Braf genes, ERK1/2 and AKT play a critical role in B16F10 cell survival upon radiation exposure and possibly act through common downstream effector/s.

  3. Clouds homogenize shoot temperatures, transpiration, and photosynthesis within crowns of Abies fraseri (Pursh.) Poiret.

    PubMed

    Hernandez-Moreno, J Melissa; Bayeur, Nicole M; Coley, Harold D; Hughes, Nicole M

    2017-03-01

    Multiple studies have examined the effects of clouds on shoot and canopy-level microclimate and physiological processes; none have yet done so on the scale of individual plant crowns. We compared incident photosynthetically active radiation (PAR), leaf temperatures, chlorophyll fluorescence, and photosynthetic gas exchange of shoots in three different spatial locations of Abies fraseri crowns on sunny (clear to partly cloudy) versus overcast days. The field site was a Fraser fir farm (1038 m elevation) in the Appalachian mountains, USA. Ten saplings of the same age class were marked and revisited for all measurements. Sunny conditions corresponded with 5-10× greater sunlight incidence on south-facing outer shoots compared to south-facing inner and north-facing outer shoots, which were shaded and received only indirect (diffuse) sunlight. Differences in spatial distribution of irradiance were mirrored in differences in shoot temperatures, photosynthesis, and transpiration, which were all greater in south-facing outer shoots compared to more shaded crown locations. In contrast, overcast conditions corresponded with more homogeneous sunlight distribution between north and south-facing outer shoots, and similar shoot temperatures, chlorophyll fluorescence (ΦPSII), photosynthesis, and transpiration; these effects were observed in south-facing inner shoots as well, but to a lesser extent. There was no significant difference in conductance between different crown locations on sunny or overcast days, indicating spatial differences in transpiration under sunny conditions were likely driven by leaf temperature differences. We conclude that clouds can affect spatial distribution of sunlight and associated physiological parameters not only within forest communities, but within individual crowns as well.

  4. Black soybean seed coat extract ameliorates hyperglycemia and insulin sensitivity via the activation of AMP-activated protein kinase in diabetic mice.

    PubMed

    Kurimoto, Yuta; Shibayama, Yuki; Inoue, Seiya; Soga, Minoru; Takikawa, Masahito; Ito, Chiaki; Nanba, Fumio; Yoshida, Tadashi; Yamashita, Yoko; Ashida, Hitoshi; Tsuda, Takanori

    2013-06-12

    Black soybean seed coat has abundant levels of polyphenols such as anthocyanins (cyanidin 3-glucoside; C3G) and procyanidins (PCs). This study found that dietary black soybean seed coat extract (BE) ameliorates hyperglycemia and insulin sensitivity via the activation of AMP-activated protein kinase (AMPK) in type 2 diabetic mice. Dietary BE significantly reduced blood glucose levels and enhanced insulin sensitivity. AMPK was activated in the skeletal muscle and liver of diabetic mice fed BE. This activation was accompanied by the up-regulation of glucose transporter 4 in skeletal muscle and the down-regulation of gluconeogenesis in the liver. These changes resulted in improved hyperglycemia and insulin sensitivity in type 2 diabetic mice. In vitro studies using L6 myotubes showed that C3G and PCs significantly induced AMPK activation and enhanced glucose uptake into the cells.

  5. Individual differences in sensitivity to reward and punishment and neural activity during reward and avoidance learning.

    PubMed

    Kim, Sang Hee; Yoon, HeungSik; Kim, Hackjin; Hamann, Stephan

    2015-09-01

    In this functional neuroimaging study, we investigated neural activations during the process of learning to gain monetary rewards and to avoid monetary loss, and how these activations are modulated by individual differences in reward and punishment sensitivity. Healthy young volunteers performed a reinforcement learning task where they chose one of two fractal stimuli associated with monetary gain (reward trials) or avoidance of monetary loss (avoidance trials). Trait sensitivity to reward and punishment was assessed using the behavioral inhibition/activation scales (BIS/BAS). Functional neuroimaging results showed activation of the striatum during the anticipation and reception periods of reward trials. During avoidance trials, activation of the dorsal striatum and prefrontal regions was found. As expected, individual differences in reward sensitivity were positively associated with activation in the left and right ventral striatum during reward reception. Individual differences in sensitivity to punishment were negatively associated with activation in the left dorsal striatum during avoidance anticipation and also with activation in the right lateral orbitofrontal cortex during receiving monetary loss. These results suggest that learning to attain reward and learning to avoid loss are dependent on separable sets of neural regions whose activity is modulated by trait sensitivity to reward or punishment. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. GABA and GABA-Alanine from the Red Microalgae Rhodosorus marinus Exhibit a Significant Neuro-Soothing Activity through Inhibition of Neuro-Inflammation Mediators and Positive Regulation of TRPV1-Related Skin Sensitization

    PubMed Central

    Scandolera, Amandine; Hubert, Jane; Humeau, Anne; Lambert, Carole; De Bizemont, Audrey; Winkel, Chris; Kaouas, Abdelmajid; Renault, Jean-Hugues; Reynaud, Romain

    2018-01-01

    The aim of the present study was to investigate the neuro-soothing activity of a water-soluble hydrolysate obtained from the red microalgae Rhodosorus marinus Geitler (Stylonemataceae). Transcriptomic analysis performed on ≈100 genes related to skin biological functions firstly revealed that the crude Rhodosorus marinus extract was able to significantly negatively modulate specific genes involved in pro-inflammation (interleukin 1α encoding gene, IL1A) and pain detection related to tissue inflammation (nerve growth factor NGF and its receptor NGFR). An in vitro model of normal human keratinocytes was then used to evaluate the ability of the Rhodosorus marinus extract to control the release of neuro-inflammation mediators under phorbol myristate acetate (PMA)-induced inflammatory conditions. The extract incorporated at 1% and 3% significantly inhibited the release of IL-1α and NGF secretion. These results were confirmed in a co-culture system of reconstructed human epithelium and normal human epidermal keratinocytes on which a cream formulated with the Rhodosorus marinus extract at 1% and 3% was topically applied after systemic induction of neuro-inflammation. Finally, an in vitro model of normal human astrocytes was developed for the evaluation of transient receptor potential vanilloid 1 (TRPV1) receptor modulation, mimicking pain sensing related to neuro-inflammation as observed in sensitive skins. Treatment with the Rhodosorus marinus extract at 1% and 3% significantly decreased PMA-mediated TRPV1 over-expression. In parallel with these biological experiments, the crude Rhodosorus marinus extract was fractionated by centrifugal partition chromatography (CPC) and chemically profiled by a recently developed 13C NMR-based dereplication method. The CPC-generated fractions as well as pure metabolites were tested again in vitro in an attempt to identify the biologically active constituents involved in the neuro-soothing activity of the Rhodosorus marinus extract

  7. Cocaine locomotor activation, sensitization and place preference in six inbred strains of mice

    PubMed Central

    2011-01-01

    Background The expanding set of genomics tools available for inbred mouse strains has renewed interest in phenotyping larger sets of strains. The present study aims to explore phenotypic variability among six commonly-used inbred mouse strains to both the rewarding and locomotor stimulating effects of cocaine in a place conditioning task, including several strains or substrains that have not yet been characterized for some or all of these behaviors. Methods C57BL/6J (B6), BALB/cJ (BALB), C3H/HeJ (C3H), DBA/2J (D2), FVB/NJ (FVB) and 129S1/SvImJ (129) mice were tested for conditioned place preference to 20 mg/kg cocaine. Results Place preference was observed in most strains with the exception of D2 and 129. All strains showed a marked increase in locomotor activity in response to cocaine. In BALB mice, however, locomotor activation was context-dependent. Locomotor sensitization to repeated exposure to cocaine was most significant in 129 and D2 mice but was absent in FVB mice. Conclusions Genetic correlations suggest that no significant correlation between conditioned place preference, acute locomotor activation, and locomotor sensitization exists among these strains indicating that separate mechanisms underlie the psychomotor and rewarding effects of cocaine. PMID:21806802

  8. Angiotensin II AT1 receptors mediate neuronal sensitization and sustained blood pressure response induced by a single injection of amphetamine.

    PubMed

    Marchese, N A; Paz, M C; Caeiro, X; Dadam, F M; Baiardi, G; Perez, M F; Bregonzio, C

    2017-01-06

    A single exposure to amphetamine induces neurochemical sensitization in striatal areas. The neuropeptide angiotensin II, through AT 1 receptors (AT 1 -R) activation, is involved in these responses. However, amphetamine-induced alterations can be extended to extra-striatal areas involved in blood pressure control and their physiological outcomes. Our aim for the present study was to analyze the possible role for AT 1 -R in these events using a two-injection protocol and to further characterize the proposed AT 1 -R antagonism protocol. Central effect of orally administered AT 1 -R blocker (Candesartan, 3mg/kg p.o.×5days) in male Wistar rats was analyzed by spontaneous activity of neurons within locus coeruleus. In another group of animals pretreated with the AT 1 -R blocker or vehicle, sensitization was achieved by a single administration of amphetamine (5mg/kg i.p. - day 6) followed by a 3-week period off drug. On day 27, after receiving an amphetamine challenge (0.5mg/kg i.p.), we evaluated: (1) the sensitized c-Fos expression in locus coeruleus (LC), nucleus of the solitary tract (NTS), caudal ventrolateral medulla (A1) and central amygdala (CeAmy); and (2) the blood pressure response. AT 1 -R blockade decreased LC neurons' spontaneous firing rate. Moreover, sensitized c-Fos immunoreactivity in TH+neurons was found in LC and NTS; and both responses were blunted by the AT 1 -R blocker pretreatment. Meanwhile, no differences were found neither in CeAmy nor A1. Sensitized blood pressure response was observed as sustained changes in mean arterial pressure and was effectively prevented by AT 1 -R blockade. Our results extend AT 1 -R role in amphetamine-induced sensitization over noradrenergic nuclei and their cardiovascular output. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Transcription Factor Activities Enhance Markers of Drug Sensitivity in Cancer.

    PubMed

    Garcia-Alonso, Luz; Iorio, Francesco; Matchan, Angela; Fonseca, Nuno; Jaaks, Patricia; Peat, Gareth; Pignatelli, Miguel; Falcone, Fiammetta; Benes, Cyril H; Dunham, Ian; Bignell, Graham; McDade, Simon S; Garnett, Mathew J; Saez-Rodriguez, Julio

    2018-02-01

    Transcriptional dysregulation induced by aberrant transcription factors (TF) is a key feature of cancer, but its global influence on drug sensitivity has not been examined. Here, we infer the transcriptional activity of 127 TFs through analysis of RNA-seq gene expression data newly generated for 448 cancer cell lines, combined with publicly available datasets to survey a total of 1,056 cancer cell lines and 9,250 primary tumors. Predicted TF activities are supported by their agreement with independent shRNA essentiality profiles and homozygous gene deletions, and recapitulate mutant-specific mechanisms of transcriptional dysregulation in cancer. By analyzing cell line responses to 265 compounds, we uncovered numerous TFs whose activity interacts with anticancer drugs. Importantly, combining existing pharmacogenomic markers with TF activities often improves the stratification of cell lines in response to drug treatment. Our results, which can be queried freely at dorothea.opentargets.io, offer a broad foundation for discovering opportunities to refine personalized cancer therapies. Significance: Systematic analysis of transcriptional dysregulation in cancer cell lines and patient tumor specimens offers a publicly searchable foundation to discover new opportunities to refine personalized cancer therapies. Cancer Res; 78(3); 769-80. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. In situ measurement of velocity-stress sensitivity using crosswell continuous active-source seismic monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchesini, P; Ajo-Franklin, JB; Daley, TM

    2017-09-01

    © 2017 Society of Exploration Geophysicists. The ability to characterize time-varying reservoir properties, such as the state of stress, has fundamental implications in subsurface engineering, relevant to geologic sequestration of CO2. Stress variation, here in the form of changes in pore fluid pressure, is one factor known to affect seismic velocity. Induced variations in velocity have been used in seismic studies to determine and monitor changes in the stress state. Previous studies conducted to determine velocity-stress sensitivity at reservoir conditions rely primarily on laboratory measurements of core samples or theoretical relationships. We have developed a novel field-scale experiment designed tomore » study the in situ relationship between pore-fluid pressure and seismic velocity using a crosswell continuous active-source seismic monitoring (CASSM) system. At the Cranfield, Mississippi, CO2 sequestration field site, we actively monitored seismic response for five days with a temporal resolution of 5 min; the target was a 26 m thick injection zone at approximately 3.2 km depth in a fluvial sandstone formation (lower Tuscaloosa Formation). The variation of pore fluid pressure was obtained during discrete events of fluid withdrawal from one of the two wells and monitored with downhole pressure sensors. The results indicate a correlation between decreasing CASSM time delay (i.e., velocity change for a raypath in the reservoir) and periods of reduced fluid pore pressure. The correlation is interpreted as the velocity-stress sensitivity measured in the reservoir. This observation is consistent with published laboratory studies documenting a velocity (V) increase with an effective stress increase. A traveltime change (dt) of 0.036 ms is measured as the consequence of a change in pressure of approximately 2.55 MPa (dPe). For T 1/4 13 ms total traveltime, the velocity-stress sensitivity is dV/V/dPe 1/4 dt/T/dPe 1/4 10.9 × 10-4/MPa. The overall results suggest

  11. Inhibition of the CSF-1 receptor sensitizes ovarian cancer cells to cisplatin.

    PubMed

    Yu, Rong; Jin, Hao; Jin, Congcong; Huang, Xuefeng; Lin, Jinju; Teng, Yili

    2018-03-01

    Ovarian cancer is one of the most common female malignancies, and cisplatin-based chemotherapy is routinely used in locally advanced ovarian cancer patients. Acquired or de novo cisplatin resistance remains the barrier to patient survival, and the mechanisms of cisplatin resistance are still not well understood. In the current study, we found that colony-stimulating-factor-1 receptor (CSF-1R) was upregulated in cisplatin-resistant SK-OV-3 and CaoV-3 cells. Colony-stimulating-factor-1 receptor knockdown suppressed proliferation and enhanced apoptosis in cisplatin-resistant SK-OV-3 and CaoV-3 cells. However, CSF-1R overexpression had inverse effects. While parental SK-OV-3 and CaoV-3 cells were more resistant to cisplatin after CSF-1R overexpression, CSF-1R knockdown in SK-OV-3 and CaoV-3 cells promoted cisplatin sensitivity. Overexpression and knockdown studies also showed that CSF-1R significantly promoted active AKT and ERK1/2 signalling pathways in cisplatin-resistant cells. Furthermore, a combination of cisplatin and CSF-1R inhibitor effectively inhibited tumour growth in xenografts. Taken together, our results provide the first evidence that CSF-1R inhibition can sensitize cisplatin-refractory ovarian cancer cells. This study may help to increase understanding of the molecular mechanisms underlying cisplatin resistance in tumours. Copyright © 2018 John Wiley & Sons, Ltd.

  12. The effect of activity-based instruction on conceptual development of seventh grade students in probability

    NASA Astrophysics Data System (ADS)

    Gürbüz, Ramazan

    2010-09-01

    The purpose of this study is to investigate and compare the effects of activity-based and traditional instructions on students' conceptual development of certain probability concepts. The study was conducted using a pretest-posttest control group design with 80 seventh graders. A developed 'Conceptual Development Test' comprising 12 open-ended questions was administered on both groups of students before and after the intervention. The data were analysed using analysis of covariance, with the pretest as covariate. The results revealed that activity-based instruction (ABI) outperformed the traditional counterpart in the development of probability concepts. Furthermore, ABI was found to contribute students' conceptual development of the concept of 'Probability of an Event' the most, whereas to the concept of 'Sample Space' the least. As a consequence, it can be deduced that the designed instructional process was effective in the instruction of probability concepts.

  13. Reward sensitivity is associated with brain activity during erotic stimulus processing.

    PubMed

    Costumero, Victor; Barrós-Loscertales, Alfonso; Bustamante, Juan Carlos; Ventura-Campos, Noelia; Fuentes, Paola; Rosell-Negre, Patricia; Ávila, César

    2013-01-01

    The behavioral approach system (BAS) from Gray's reinforcement sensitivity theory is a neurobehavioral system involved in the processing of rewarding stimuli that has been related to dopaminergic brain areas. Gray's theory hypothesizes that the functioning of reward brain areas is modulated by BAS-related traits. To test this hypothesis, we performed an fMRI study where participants viewed erotic and neutral pictures, and cues that predicted their appearance. Forty-five heterosexual men completed the Sensitivity to Reward scale (from the Sensitivity to Punishment and Sensitivity to Reward Questionnaire) to measure BAS-related traits. Results showed that Sensitivity to Reward scores correlated positively with brain activity during reactivity to erotic pictures in the left orbitofrontal cortex, left insula, and right ventral striatum. These results demonstrated a relationship between the BAS and reward sensitivity during the processing of erotic stimuli, filling the gap of previous reports that identified the dopaminergic system as a neural substrate for the BAS during the processing of other rewarding stimuli such as money and food.

  14. Reward Sensitivity Is Associated with Brain Activity during Erotic Stimulus Processing

    PubMed Central

    Costumero, Victor; Barrós-Loscertales, Alfonso; Bustamante, Juan Carlos; Ventura-Campos, Noelia; Fuentes, Paola; Rosell-Negre, Patricia; Ávila, César

    2013-01-01

    The behavioral approach system (BAS) from Gray’s reinforcement sensitivity theory is a neurobehavioral system involved in the processing of rewarding stimuli that has been related to dopaminergic brain areas. Gray’s theory hypothesizes that the functioning of reward brain areas is modulated by BAS-related traits. To test this hypothesis, we performed an fMRI study where participants viewed erotic and neutral pictures, and cues that predicted their appearance. Forty-five heterosexual men completed the Sensitivity to Reward scale (from the Sensitivity to Punishment and Sensitivity to Reward Questionnaire) to measure BAS-related traits. Results showed that Sensitivity to Reward scores correlated positively with brain activity during reactivity to erotic pictures in the left orbitofrontal cortex, left insula, and right ventral striatum. These results demonstrated a relationship between the BAS and reward sensitivity during the processing of erotic stimuli, filling the gap of previous reports that identified the dopaminergic system as a neural substrate for the BAS during the processing of other rewarding stimuli such as money and food. PMID:23840558

  15. Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: Involvement of Ca{sup 2+} influx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Dong-Oh; Kang, Chang-Hee; Kang, Sang-Hyuck

    2012-02-15

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various malignant cells, several cancers including human hepatocellular carcinoma (HCC) exhibit potent resistance to TRAIL-induced cell death. The aim of this study is to evaluate the anti-cancer potential of capsaicin in TRAIL-induced cancer cell death. As indicated by assays that measure phosphatidylserine exposure, mitochondrial activity and activation of caspases, capsaicin potentiated TRAIL-resistant cells to lead to cell death. In addition, we found that capsaicin induces the cell surface expression of TRAIL receptor DR5, but not DR4 through the activation Sp1 on its promoter region. Furthermore, we investigated that capsaicin-induced DR5more » expression and apoptosis are inhibited by calcium chelator or inhibitors for calmodulin-dependent protein kinase. Taken together, our data suggest that capsaicin sensitizes TRAIL-mediated HCC cell apoptosis by DR5 up-regulation via calcium influx-dependent Sp1 activation. Highlights: ► Capsaicin sensitizes TRAIL-induced apoptosis through activation of caspases. ► Capsaicin induces expression of DR5 through Sp1 activation. ► Capsaicin activates calcium signaling pathway.« less

  16. Induction of a Tier-1-Like Phenotype in Diverse Tier-2 Isolates by Agents That Guide HIV-1 Env to Perturbation-Sensitive, Nonnative States.

    PubMed

    Johnson, Jacklyn; Zhai, Yinjie; Salimi, Hamid; Espy, Nicole; Eichelberger, Noah; DeLeon, Orlando; O'Malley, Yunxia; Courter, Joel; Smith, Amos B; Madani, Navid; Sodroski, Joseph; Haim, Hillel

    2017-08-01

    The envelope glycoproteins (Envs) on the surfaces of HIV-1 particles are targeted by host antibodies. Primary HIV-1 isolates demonstrate different global sensitivities to antibody neutralization; tier-1 isolates are sensitive, whereas tier-2 isolates are more resistant. Single-site mutations in Env can convert tier-2 into tier-1-like viruses. We hypothesized that such global change in neutralization sensitivity results from weakening of intramolecular interactions that maintain Env integrity. Three strategies commonly applied to perturb protein structure were tested for their effects on global neutralization sensitivity: exposure to low temperature, Env-activating ligands, and a chaotropic agent. A large panel of diverse tier-2 isolates from clades B and C was analyzed. Incubation at 0°C, which globally weakens hydrophobic interactions, causes gradual and reversible exposure of the coreceptor-binding site. In the cold-induced state, Envs progress at isolate-specific rates to unstable forms that are sensitive to antibody neutralization and then gradually lose function. Agents that mimic the effects of CD4 (CD4Ms) also induce reversible structural changes to states that exhibit isolate-specific stabilities. The chaotropic agent urea (at low concentrations) does not affect the structure or function of native Env. However, urea efficiently perturbs metastable states induced by cold and CD4Ms and increases their sensitivity to antibody neutralization and their inactivation rates Therefore, chemical and physical agents can guide Env from the stable native state to perturbation-sensitive forms and modulate their stability to bestow tier-1-like properties on primary tier-2 strains. These concepts can be applied to enhance the potency of vaccine-elicited antibodies and microbicides at mucosal sites of HIV-1 transmission. IMPORTANCE An effective vaccine to prevent transmission of HIV-1 is a primary goal of the scientific and health care communities. Vaccine

  17. NASA/SPoRt: GOES-R Activities in Support of Product Development, Management, and Training

    NASA Technical Reports Server (NTRS)

    Fuell, Kevin; Jedlovec, Gary; Molthan, Andrew; Stano, Geoffrey

    2012-01-01

    SPoRT is using current capabilities of MODIS and VIIRS, combined with current GOES (i.e. Hybrid Imagery) to demonstrate mesoscale capabilities of future ABI instrument. SPoRT is transitioning RGBs from EUMETSAT standard "recipes" to demonstrate a method to more efficiently handle the increase channels/frequency of ABI. Challenges for RGB production exist. Internal vs. external production, Bit depth needed, Adding quantitative information, etc. SPoRT forming group to address these issues. SPoRT is leading efforts on the application of total lightning in operations and to educate users of this new capability. Training in many forms is used to support testbed activities and is a key part to the transition process.

  18. Modulation of taste sensitivity by GLP-1 signaling in taste buds.

    PubMed

    Martin, Bronwen; Dotson, Cedrick D; Shin, Yu-Kyong; Ji, Sunggoan; Drucker, Daniel J; Maudsley, Stuart; Munger, Steven D

    2009-07-01

    Modulation of sensory function can help animals adjust to a changing external and internal environment. Even so, mechanisms for modulating taste sensitivity are poorly understood. Using immunohistochemical, biochemical, and behavioral approaches, we found that the peptide hormone glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) are expressed in mammalian taste buds. Furthermore, we found that GLP-1 signaling plays an important role in the modulation of taste sensitivity: GLP-1R knockout mice exhibit a dramatic reduction in sweet taste sensitivity as well as an enhanced sensitivity to umami-tasting stimuli. Together, these findings suggest a novel paracrine mechanism for the hormonal modulation of taste function in mammals.

  19. Women with PTSD have a changed sensitivity to GABA-A receptor active substances.

    PubMed

    Möller, Anna Tiihonen; Bäckström, Torbjörn; Nyberg, Sigrid; Söndergaard, Hans Peter; Helström, Lotti

    2016-06-01

    The use of benzodiazepines in treating anxiety symptoms in patients with posttraumatic stress disorder (PTSD) has been debated. Studies on other anxiety disorders have indicated changed sensitivity to GABA-A receptor active substances. In the present study, we investigated the GABA receptor sensitivity in PTSD patients. Injections of allopreganolone, diazepam, and flumazenil were carried out, each on separate occasions, in 10 drug naïve patients with PTSD compared to 10 healthy controls. Effects were measured in saccadic eye velocity (SEV) and in subjective ratings of sedation. The PTSD patients were less sensitive to allopregnanolone compared with healthy controls. This was seen as a significant difference in SEV between the groups (p = 0.047). Further, the patients were less sensitive to diazepam, with a significant less increase in sedation compared to controls (p = 0.027). After flumazenil injection, both patients and controls had a significant agonistic effect on SEV, leading to decreased SEV after injection. The patients also responded with an increase in sedation after flumazenil injection, while this was not seen in the controls. Patients with PTSD have a changed sensitivity to GABA-A receptor active substances. As a consequence of this, benzodiazepines and other GABA-A receptor active compounds such as sleeping pills will be less useful for this group of patients.

  20. Paraoxonase-1 activities in children and adolescents with type 1 diabetes mellitus.

    PubMed

    Craciun, Elena C; Leucuta, Daniel C; Rusu, Razvan L; David, Bianca A; Cret, Victoria; Dronca, Eleonora

    2016-01-01

    Paraoxonase-1 is an HDL-associated esterase that acts as an anti-atherogenic agent by protecting LDL from oxidation. This study investigates paraoxonase-1 activities in children and adolescents with type 1 diabetes mellitus and possible associations with other biochemical markers. The study enrolled 82 children and adolescents with type 1 diabetes mellitus and 41 controls with similar age and gender distribution. Serum paraoxonase-1 arylesterase and salt-stimulated paraoxonase activities were assessed by measuring the rates of phenyl acetate and paraoxon hydrolysis, respectively; paraoxonase-1 lactonase activity and oxidized LDL were assessed by a pH-sensitive colorimetric assay and ELISA, respectively. Glycated haemoglobin HbA1c and lipid profile were assayed with an immunoturbidimetric method and commercially available kits, respectively. We found lower paraoxonase-1 activities in diabetics when compared to controls. The decrease was statistically significant only for the lactonase activity, the difference being higher when referring to the subgroup with poor glycaemic control. The lactonase activity/HDL ratio was also lower in diabetics vs. controls, but without statistical significance. Both lactonase and arylesterase activities were negatively correlated with HbA1c in diabetics, but only the latter was statistically significant (ρ = -0.21, P = 0.055; ρ = -0.24, P = 0.03, respectively). A correlation coefficient of ρ = 0.196 (P = 0.078) was found between oxidized LDL and HbA1c. All paraoxonase-1 activities were lower in diabetic children and adolescents, but only the decrease in the lactonase activity was statistically significant. Although lipid profile and glycaemic control were altered in diabetics, no differences were observed between groups regarding oxidized LDL level.

  1. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching.

    PubMed

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies.

  2. Reward Sensitivity Modulates Brain Activity in the Prefrontal Cortex, ACC and Striatum during Task Switching

    PubMed Central

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C.; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640

  3. Differential Effects of Nebivolol and Metoprolol on Insulin Sensitivity and Plasminogen Activator Inhibitor in the Metabolic Syndrome

    PubMed Central

    Ayers, Katie; Byrne, Loretta M.; DeMatteo, Anthony; Brown, Nancy J.

    2012-01-01

    Early generation β-blockers lower blood pressure and reduce cardiovascular morality in coronary artery disease and congestive heart failure, but worsen glucose homeostasis and fibrinolytic balance. Nebivolol is a third-generation β-blocker which increases the bioavailability of nitric oxide. We compared the effect of nebivolol (5mg/d) and the β1-selective antagonist metoprolol (100mg/d) on glucose homeostasis and markers of fibrinolysis in 46 subjects with metabolic syndrome. Subjects underwent a frequently sampled intravenous glucose tolerance test after 3-week washout and placebo treatment, and following randomized treatment with study drug. After 12-week treatment, nebivolol and metoprolol equivalently decreased systolic blood pressure, diastolic blood pressure, and heart rate. Neither drug affected beta cell function, disposition index, or acute insulin response to glucose. Metoprolol significantly decreased the insulin sensitivity index. In contrast, nebivolol did not affect insulin sensitivity, and the decrease in sensitivity was significantly greater following metoprolol than nebivolol (-1.5±2.5 × 10-4 × min-1 per mU/L versus 0.04±2.19 × 10-4 × min-1 per mU/L after nebivolol, P=0.03). Circulating plasminogen activator inhibitor also increased following treatment with metoprolol (from 9.8±6.8 to 12.3±7.8 ng/mL), but not nebivolol (from 10.8±7.8 to 10.5±6.2 ng/mL, P=0.05 versus metoprolol). Metoprolol, but not nebivolol, increased F2-isoprostane concentrations. In summary, treatment with metoprolol decreased insulin sensitivity and increased oxidative stress and the antifibrinolytic plasminogen activator inhibitor-1in patients with metabolic syndrome, whereas nebivolol lacked detrimental metabolic effects. Large clinical trials are needed to compare effects of nebivolol and the β1 receptor antagonist metoprolol on clinical outcomes in patients with hypertension and the metabolic syndrome. PMID:22353614

  4. l-Type Amino Acid Transporter-1 Overexpression and Melphalan Sensitivity in Barrett's Adenocarcinoma1

    PubMed Central

    Lin, Jules; Raoof, Duna A; Thomas, Dafydd G; Greenson, Joel K; Giordano, Thomas J; Robinson, Gregory S; Bourner, Maureen J; Bauer, Christopher T; Orringer, Mark B; Beer, David G

    2004-01-01

    Abstract The L-type amino acid transporter-1 (LAT-1) has been associated with tumor growth. Using cDNA microarrays, overexpression of LAT-1 was found in 87.5% (7/8) of esophageal adenocarcinomas relative to 12 Barrett's samples (33% metaplasia and 66% dysplasia) and was confirmed in 100% (28/28) of Barrett's adenocarcinomas by quantitative reverse transcription polymerase chain reaction. Immunohistochemistry revealed LAT-1 staining in 37.5% (24/64) of esophageal adenocarcinomas on tissue microarray. LAT-1 also transports the amino acid-related chemotherapeutic agent, melphalan. Two esophageal adenocarcinoma and one esophageal squamous cell line, expressing LAT-1 on Western blot analysis, were sensitive to therapeutic doses of melphalan (P < .001). Simultaneous treatment with the competitive inhibitor, BCH [2-aminobicyclo-(2,1,1)-heptane-2-carboxylic acid], decreased sensitivity to melphalan (P < .05). In addition, confluent esophageal squamous cultures were less sensitive to melphalan (P < .001) and had a decrease in LAT-1 protein expression. Tumors from two esophageal adenocarcinoma cell lines grown in nude mice retained LAT-1 mRNA expression. These results demonstrate that LAT-1 is highly expressed in a subset of esophageal adenocarcinomas and that Barrett's adenocarcinoma cell lines expressing LAT-1 are sensitive to melphalan. LAT-1 expression is also retained in cell lines grown in nude mice providing a model to evaluate melphalan as a chemotherapeutic agent against esophageal adenocarcinomas expressing LAT-1. PMID:15068672

  5. Kalanchoe blossfeldiana plants expressing the Arabidopsis etr1-1 allele show reduced ethylene sensitivity.

    PubMed

    Sanikhani, Mohsen; Mibus, Heiko; Stummann, Bjarne M; Serek, Margrethe

    2008-04-01

    Transgenic Kalanchoe blossfeldiana Poelln. with reduced ethylene sensitivity in flowers was obtained by Agrobacterium tumefaciens-mediated transformation using the plasmid pBEO210 containing the mutant ethylene receptor gene etr1-1 from Arabidopsis thaliana under the control of the flower-specific fbp1-promoter from Petunia. Three ethylene-resistent T0 lines, 300, 324 and 331, were selected and analyzed for postharvest-performance and morphological characteristics. Line 324 was found to be infertile and only slightly less ethylene-sensitive than control-plants, but lines 300 and 331 had significantly increased ethylene-resistance and were fertile. These two lines were analyzed for copy-number of the etr1-1 gene by Southern blotting and were crossed with the ethylene-sensitive cultivar 'Celine' to create T1 progeny. Line 300 contains two T-DNA copies per nucleus, one of which is rearranged, and these are unlinked according to segregation data from the crossing to 'Celine' and PCR-analysis of progeny plants. For control plants all flowers were closed after 2 days at 2 microl l(-1 )ethylene, but for line 300 only 33% were closed after 10 days. Line 331 contains three T-DNA copies per nucleus and is more sensitive to ethylene than line 300. In the line 300 the etr1-1 gene was found by RT-PCR to be expressed in petals and stamens but not in carpels and sepals. Both lines 300 and 331, and their progeny, appear morphologically and physiologically identical to control plants except for the higher ethylene resistance. Line 300 and its progeny with only one T-DNA copy have very low ethylene sensitivity and may be useful in future breeding.

  6. The putative glutamate receptor 1.1 (AtGLR1.1) in Arabidopsis thaliana regulates abscisic acid biosynthesis and signaling to control development and water loss.

    PubMed

    Kang, Jiman; Mehta, Sohum; Turano, Frank J

    2004-10-01

    The involvement of the putative glutamate receptor 1.1 (AtGLR1.1) gene in the regulation of abscisic acid (ABA) biosynthesis and signaling was investigated in Arabidopsis. Seeds from AtGLR1.1-deficient (antiAtGLR1.1) lines had increased sensitivity to exogenous ABA with regard to the effect of the hormone on the inhibition of seed germination and root growth. Seed germination, which was inhibited by an animal ionotropic glutamate receptor antagonist, 6,7-dinitroquinoxaline-2,3-[1H,4H]-dione, was restored by co-incubation with an inhibitor of ABA biosynthesis, fluridone. These results confirm that germination in antiAtGLR1.1 lines was inhibited by increased ABA. When antiAtGLR1.1 and WT seeds were co-incubated in fluridone and exogenous ABA, the antiAtGLR1.1 seeds were more sensitive to ABA. In addition, the antiAtGLR1.1 lines exhibited altered expression of ABA biosynthetic (ABA) and signaling (ABI) genes, when compared with WT. Combining the physiological and molecular results suggest that ABA biosynthesis and signaling in antiAtGLR1.1 lines are altered. ABA levels in leaves of antiAtGLR1.1 lines are higher than those in WT. In addition, the antiAtGLR1.1 lines had reduced stomatal apertures, and exhibited enhanced drought tolerance due to deceased water loss compared with WT lines. The results from these experiments imply that ABA biosynthesis and signaling can be regulated through AtGLR1.1 to trigger pre- and post-germination arrest and changes in whole plant responses to water stress. Combined with our earlier results, these findings suggest that AtGLR1.1 integrates and regulates the different aspects of C, N and water balance that are required for normal plant growth and development.

  7. Circulating adrenal hormones are not necessary for the development of sensitization to the psychomotor activating effects of amphetamine.

    PubMed

    Badiani, A; Morano, M I; Akil, H; Robinson, T E

    1995-02-27

    We reported previously that when amphetamine is given in NOVEL test cages both its acute psychomotor activating effects (rotational behaviour and locomotor activity) and the degree of sensitization are greater than when amphetamine is given in HOME cages that are physically identical to the NOVEL test cages. Since exposure to the NOVEL environment increases plasma corticosterone levels (Experiment 1) it is possible that the enhancement in the effects of amphetamine in the NOVEL condition is mediated by corticosterone. If this hypothesis is correct adrenalectomy (ADX) should abolish the difference between the HOME and NOVEL groups. This was tested in three independent experiments, in which the response (rotational behavior in Experiments 2 and 3; locomotor activity and rearing behavior in Experiment 4) to repeated injections of amphetamine was assessed in rats that underwent adrenalectomy (ADX) or a sham operation (SHAM). ADX animals received either no corticosterone replacement or one of two corticosterone replacement treatments. Adrenalectomy, with or without corticosterone replacement treatment, had no significant effect on the development of amphetamine sensitization, either in the HOME or the NOVEL environment. By contrast, the effects of adrenalectomy on the acute response to amphetamine varied depending on the behavioral measure and possibly on the dose of amphetamine (2.0 mg/kg, 3.0 mg/kg and 1.5 mg/kg IP, in Experiments 2, 3 and 4, respectively). We conclude that: (i) a stress-induced secretion of adrenal hormones is not responsible for the enhancement in sensitization to amphetamine seen in animals tested in a NOVEL environment; (ii) circulating adrenal hormones are not necessary for development of sensitization to the psychomotor activating effects of amphetamine.

  8. New GOES-R Risk Reduction Activities at CIRA

    NASA Astrophysics Data System (ADS)

    Rogers, M. A.; Miller, S. D.; Grasso, L. D.; Haynes, J. M.; NOH, Y. J.; Forsythe, J.; Zupanski, M.; Lindsey, D. T.

    2017-12-01

    A team of atmospheric scientists at the Cooperative Institute for Research in the Atmosphere (CIRA) at the Colorado State University has been selected by the National Oceanic and Atmospheric Administration's (NOAA) GOES-R Risk Reduction (GOES-R3) science program to develop applications to enhance the utilization of the GOES-R sensors, including the Advanced Baseline Imager (ABI) and the Geostationary Lightning Mapper (GLM). The selected project topics follow NOAA's Research and Development Objectives listed in its 5-year Strategic Plan. The projects will be carried out over a three-year period which started on 1 July 2017 and will end on 30 June 2019. CIRA is working on five GOES-R3 application developments: 1) Developing an Environmental Awareness Repertoire of ABI Imagery (`DEAR-ABII') to Advise the Operational Weather Forecaster. DEAR-ABII maximizes the vast potential of the new GOES-R/GOES-16 sensor technology. 2) GOES-R ABI channel differencing used to reveal cloud-free zones of `precursors of convective initiation'. This product identifies where convective initiation may occur in cloud free skies. 3) Improving the ABI Cloud Layers Product for Multiple Layer Cloud Systems and Aviation Forecast Applications. This project aims to improve the GOES-16 cloud layer product by providing information on the boundaries of cloud layers even when one layer overlies another. 4) Using the New Capabilities of GOES-R to Improve Blended, Multisensor Water Vapor Products for Forecasters. GOES-R TPW retrievals will be merged with TPW derived from polar orbiter and surface data to improve the operational NOAA blended TPW product. 5) Data assimilation of GLM observations in HWRF/GSI system. Assimilation of GOES-R GLM observations for the NOAA operational hurricane model with the goal to improve operational hurricane forecasting. Examples for each of these applications will be presented.

  9. Ankle-Brachial index by oscillometry: A very useful method to assess peripheral arterial disease in diabetes

    PubMed Central

    Premanath, M.; Raghunath, M.

    2010-01-01

    Background: Peripheral Arterial Disease (PAD) remains the least recognized form of atherosclerosis. The Ankle-Brachial Index (ABI) has emerged as one of the potent markers of diffuse atherosclerosis, cardiovascular (CV) risk, and overall survival in general public, especially in diabetics. The important reason for the lack of early diagnosis is the non-availability of a test that is easy to perform and less expensive, with no training required. Objectives: To evaluate the osillometric method of performing ABI with regard to its usefulness in detecting PAD cases and to correlate the signs and symptoms with ABI. Materials and Methods: Two hundred diabetics of varying duration attending the clinic for a period of eight months, from August 2006 to April 2007, were evaluated for signs, symptoms, and risk factors. ABI was performed using the oscillometric method. The positives were confirmed by Doppler evaluation. An equal number of age- and sex-matched controls, which were ABI negative, were also assessed by Doppler. Sensitivity and Specificity were determined. Results: There were 120 males and 80 females. Twelve males (10%) and six females (7.5%) were ABI positive. On Doppler, eleven males (91.5%) and three females (50%) were true positives. There were six false negatives from the controls (three each). The Sensitivity was 70% and Specificity was 75%. Symptoms and signs correlated well with ABI positives. Hypertension was the most important risk factor. Conclusions: In spite of the limitations, the oscillometric method of performing ABI is a simple procedure, easy to perform, does not require training and can be performed as an outpatient procedure not only by doctors, but also by the paramedical staff to detect more PAD cases. PMID:20535314

  10. Sleep Restriction for 1 Week Reduces Insulin Sensitivity in Healthy Men

    PubMed Central

    Buxton, Orfeu M.; Pavlova, Milena; Reid, Emily W.; Wang, Wei; Simonson, Donald C.; Adler, Gail K.

    2010-01-01

    OBJECTIVE Short sleep duration is associated with impaired glucose tolerance and an increased risk of diabetes. The effects of sleep restriction on insulin sensitivity have not been established. This study tests the hypothesis that decreasing nighttime sleep duration reduces insulin sensitivity and assesses the effects of a drug, modafinil, that increases alertness during wakefulness. RESEARCH DESIGN AND METHODS This 12-day inpatient General Clinical Research Center study included 20 healthy men (age 20–35 years and BMI 20–30 kg/m2). Subjects spent 10 h/night in bed for ≥8 nights including three inpatient nights (sleep-replete condition), followed by 5 h/night in bed for 7 nights (sleep-restricted condition). Subjects received 300 mg/day modafinil or placebo during sleep restriction. Diet and activity were controlled. On the last 2 days of each condition, we assessed glucose metabolism by intravenous glucose tolerance test (IVGTT) and euglycemic-hyperinsulinemic clamp. Salivary cortisol, 24-h urinary catecholamines, and neurobehavioral performance were measured. RESULTS IVGTT-derived insulin sensitivity was reduced by (means ± SD) 20 ± 24% after sleep restriction (P = 0.001), without significant alterations in the insulin secretory response. Similarly, insulin sensitivity assessed by clamp was reduced by 11 ± 5.5% (P < 0.04) after sleep restriction. Glucose tolerance and the disposition index were reduced by sleep restriction. These outcomes were not affected by modafinil treatment. Changes in insulin sensitivity did not correlate with changes in salivary cortisol (increase of 51 ± 8% with sleep restriction, P < 0.02), urinary catecholamines, or slow wave sleep. CONCLUSIONS Sleep restriction (5 h/night) for 1 week significantly reduces insulin sensitivity, raising concerns about effects of chronic insufficient sleep on disease processes associated with insulin resistance. PMID:20585000

  11. Reduced DIDS-sensitive chloride conductance in Ae1-/- mouse erythrocytes

    PubMed Central

    Alper, Seth L.; Vandorpe, David H.; Peters, Luanne L.; Brugnara, Carlo

    2008-01-01

    The resting membrane potential of the human erythrocyte is largely determined by a constitutive Cl- conductance ∼100-fold greater than the resting cation conductance. The 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS)-sensitive electroneutral Cl- transport mediated by the human erythroid Cl-/HCO3- exchanger, AE1 (SLC4A1, band 3) is ≥10,000-fold greater than can be accounted for by the Cl- conductance of the red cell. The molecular identities of conductive anion pathways across the red cell membrane remain poorly defined. We have examined red cell Cl- conductance in the Ae1-/- mouse as a genetic test of the hypothesis that Ae1 mediates DIDS-sensitive Cl- conductance in mouse red cells. We report here that wildtype mouse red cell membrane potential resembles that of human red cells in the predominance of its Cl- conductance. We show with four technical approaches that the DIDS-sensitive component of erythroid Cl- conductance is reduced or absent from Ae1-/- red cells. These results are consistent with the hypothesis that the Ae1 anion exchanger polypeptide can operate infrequently in a conductive mode. However, the fragile red cell membrane of the Ae1-/- mouse red cell exhibits reduced abundance or loss of multiple polypeptides. Thus, loss of one or more distinct, DIDS-sensitive anion channel polypeptide(s) from the Ae1-/- red cell membrane cannot be ruled out as an explanation for the reduced DIDS-sensitive anion conductance. PMID:18329299

  12. Activation of Akt by Advanced Glycation End Products (AGEs): Involvement of IGF-1 Receptor and Caveolin-1

    PubMed Central

    Yang, Su-Jung; Chen, Chen-Yu; Chang, Geen-Dong; Wen, Hui-Chin; Chen, Ching-Yu; Chang, Shi-Chuan; Liao, Jyh-Fei; Chang, Chung-Ho

    2013-01-01

    Diabetes is characterized by chronic hyperglycemia, which in turn facilitates the formation of advanced glycation end products (AGEs). AGEs activate signaling proteins such as Src, Akt and ERK1/2. However, the mechanisms by which AGEs activate these kinases remain unclear. We examined the effect of AGEs on Akt activation in 3T3-L1 preadipocytes. Addition of AGEs to 3T3-L1 cells activated Akt in a dose- and time-dependent manner. The AGEs-stimulated Akt activation was blocked by a PI3-kinase inhibitor LY 294002, Src inhibitor PP2, an antioxidant NAC, superoxide scavenger Tiron, or nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase inhibitor DPI, suggesting the involvement of Src and NAD(P)H oxidase in the activation of PI3-kinase-Akt pathway by AGEs. AGEs-stimulated Src tyrosine phosphorylation was inhibited by NAC, suggesting that Src is downstream of NAD(P)H oxidase. The AGEs-stimulated Akt activity was sensitive to Insulin-like growth factor 1 receptor (IGF-1R) kinase inhibitor AG1024. Furthermore, AGEs induced phosphorylation of IGF-1 receptorβsubunit (IGF-1Rβ) on Tyr1135/1136, which was sensitive to PP2, indicating that AGEs stimulate Akt activity by transactivating IGF-1 receptor. In addition, the AGEs-stimulated Akt activation was attenuated by β-methylcyclodextrin that abolishes the structure of caveolae, and by lowering caveolin-1 (Cav-1) levels with siRNAs. Furthermore, addition of AGEs enhanced the interaction of phospho-Cav-1 with IGF-1Rβ and transfection of 3T3-L1 cells with Cav-1 Y14F mutants inhibited the activation of Akt by AGEs. These results suggest that AGEs activate NAD(P)H oxidase and Src which in turn phosphorylates IGF-1 receptor and Cav-1 leading to activation of IGF-1 receptor and the downstream Akt in 3T3-L1 cells. AGEs treatment promoted the differentiation of 3T3-L1 preadipocytes and addition of AG1024, LY 294002 or Akt inhibitor attenuated the promoting effect of AGEs on adipogenesis, suggesting that IGF-1 receptor, PI3

  13. PFMDR1 POLYMORPHISMS INFLUENCE ON IN VITRO SENSITIVITY OF THAI PLASMODIUM FALCIPARUM ISOLATES TO PRIMAQUINE, SITAMAQUINE AND TAFENOQUINE.

    PubMed

    Kaewpruk, Napaporn; Tan-ariya, Peerapan; Ward, Stephen A; Sitthichot, Naruemon; Suwandittakul, Nantana; Mungthin, Mathirut

    2016-05-01

    Primaquine (PQ), an 8-aminoquinoline, is considered a tissue schizonticide drug for radical cure in vivax and ovale malaria, with minimal impact on asexual erythrocytic stages at therapeutic concentrations. Tafenoquine (TQ), a new 8-aminoquinoline analog of PQ, is active against both malaria parasite tissue and blood stages and is being promoted as a drug candidate for antimalarial chemotherapy and chemoprophylaxis and potential transmission blocking against Plasmodium vivax and P. falciparum. This study compared in vitro sensitivity of Thai P. falciparum isolates against three 8-aminoquinolines, PQ, TQ and sitamaquine (SQ), a related 8-aminoquinoline and assessed the importance of pfmdr1 polymorphism on the in vitro response. Seventy-eight laboratory adapted Thai P. falciparum isolates were evaluated for in vitro sensitivity to the three 8-aminoquinolines using a radioisotopic assay, and pfmdr1 polymorphisms were determined using PCR-based methods. All three drugs have weak antiplasmodial activity against asexual erythrocytic stage with SQ being the most potent by almost 10 folds. Cross susceptibility was observed in all three 8-aminoquinolines. Parasites containing pfmdr1 86Y, 184Y or 1034S allele exhibit significantly higher PQ IC₅₀. TQ sensitivity was reduced in those parasites containing pfmdr1 86Y, 1034S or 1042N allele. However, there was no significant influence of pfmdr1 alleles on SQ sensitivity. The data highlight unique differences among three representative 8-aminoquinoline drugs that may be useful in understanding their potential utility in antimalarial development.

  14. Ezetimibe-sensitive cholesterol uptake by NPC1L1 protein does not require endocytosis

    PubMed Central

    Johnson, Tory A.; Pfeffer, Suzanne R.

    2016-01-01

    Human NPC1L1 protein mediates cholesterol absorption in the intestine and liver and is the target of the drug ezetimibe, which is used to treat hypercholesterolemia. Previous studies concluded that NPC1L1-GFP protein trafficking is regulated by cholesterol binding and that ezetimibe blocks NPC1L1-GFP function by inhibiting its endocytosis. We used cell surface biotinylation to monitor NPC1L1-GFP endocytosis and show that ezetimibe does not alter the rate of NPC1L1-GFP endocytosis in cultured rat hepatocytes grown under normal growth conditions. As expected, NPC1L1-GFP endocytosis depends in part on C-terminal, cytoplasmically oriented sequences, but endocytosis does not require cholesterol binding to NPC1L1’s N-terminal domain. In addition, two small- molecule inhibitors of general (and NPC1L1-GFP) endocytosis failed to inhibit the ezetimibe-sensitive uptake of [3H]cholesterol from taurocholate micelles. These experiments demonstrate that cholesterol uptake by NPC1L1 does not require endocytosis; moreover, ezetimibe interferes with NPC1L1’s cholesterol adsorption activity without blocking NPC1L1 internalization in RH7777 cells. PMID:27075173

  15. IGF-1 levels across the spectrum of normal to elevated in acromegaly: relationship to insulin sensitivity, markers of cardiovascular risk and body composition.

    PubMed

    Reid, Tirissa J; Jin, Zhezhen; Shen, Wei; Reyes-Vidal, Carlos M; Fernandez, Jean Carlos; Bruce, Jeffrey N; Kostadinov, Jane; Post, Kalmon D; Freda, Pamela U

    2015-12-01

    Activity of acromegaly is gauged by levels of GH and IGF-1 and epidemiological studies demonstrate that their normalization reduces acromegaly's excess mortality rate. However, few data are available linking IGF-1 levels to features of the disease that may relate to cardiovascular (CV) risk. Therefore, we tested the hypothesis that serum IGF-1 levels relative to the upper normal limit relate to insulin sensitivity, serum CV risk markers and body composition in acromegaly. In this prospective, cross-sectional study conducted at a pituitary tumor referral center we studied 138 adult acromegaly patients, newly diagnosed and previously treated surgically, with fasting and post-oral glucose levels of endocrine and CV risk markers and body composition assessed by DXA. Active acromegaly is associated with lower insulin sensitivity, body fat and CRP levels than acromegaly in remission. %ULN IGF-1 strongly predicts insulin sensitivity, better than GH and this persists after adjustment for body fat and lean tissue mass. %ULN IGF-1 also relates inversely to CRP levels and fat mass, positively to lean tissue and skeletal muscle estimated (SM(E)) by DXA, but not to blood pressure, lipids, BMI or waist circumference. Gender interacts with the IGF-1-lean tissue mass relationship. Active acromegaly presents a unique combination of features associated with CV risk, reduced insulin sensitivity yet lower body fat and lower levels of some serum CV risk markers, a pattern that is reversed in remission. %ULN IGF-1 levels strongly predict these features. Given the known increased CV risk of active acromegaly, these findings suggest that of these factors insulin resistance is most strongly related to disease activity and potentially to the increased CV risk of active acromegaly.

  16. Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xiang; Zhang, Yuanwei; Takle, Kendra

    2016-01-26

    Near Infrared (NIR) dye-sensitized upconversion nanoparticles (UCNPs) have recently been proposed in order to broaden the absorption range and to boost upconversion efficiency. However, implementing this strategy has been limited only to bare core UCNP structures that are faintly luminescent. Herein, we report on an approach to achieve significantly enhanced upconversion luminescence in dye-sensitized core-active shell UCNPs with a broadened absorption range via the doping of ytterbium ions in the UCNP shell in order to bridge the energy transfer from the dye to the UCNP core. As a result, we have been able to synergize the two most practical upconversionmore » booster effectors (dye-sensitizing and core/shell enhancement). The absolute quantum yield of our dye-sensitized core/active shell UCNPs at 800 nm was determined to be ~6% at 2 W/cm2, about 33 times larger than the highest value reported to date for existing 800 nm excitable UCNPs. Moreover, for the first time, by using dye-sensitized core/active shell UCNP embedded poly(methyl methacrylate) polymer implantable systems, we successfully shifted the optogenetic neuron excitation window to a wavelength that is compatible with deep tissue penetrable near the infrared wavelength at 800 nm. Finally, amphiphilic triblock copolymer, Pluronic F127 coatings permit the transfer of hydrophobic UCNPs into water, resulting in water-soluble nanoparticles with well-preserved optical property in aqueous solution. We believe that this research offers a new solution to enhance upconversion efficiency for photonic and biophotonic purposes and opens up new opportunities to use UCNPs as a NIR relay for optogenetic applications.« less

  17. SOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-Type Protein Kinase, Is Important for Abscisic Acid Responses in Arabidopsis through Phosphorylation of ABSCISIC ACID-INSENSITIVE51[OPEN

    PubMed Central

    Zhou, Xiaona; Hao, Hongmei; Zhang, Yuguo; Bai, Yili; Zhu, Wenbo; Qin, Yunxia; Yuan, Feifei; Zhao, Feiyi; Wang, Mengyao; Hu, Jingjiang; Xu, Hong; Guo, Aiguang; Zhao, Huixian; Zhao, Yang; Cao, Cuiling; Yang, Yongqing; Schumaker, Karen S.; Guo, Yan; Xie, Chang Gen

    2015-01-01

    Abscisic acid (ABA) plays an essential role in seed germination. In this study, we demonstrate that one SNF1-RELATED PROTEIN KINASE3-type protein kinase, SOS2-LIKE PROTEIN KINASE5 (PKS5), is involved in ABA signal transduction via the phosphorylation of an interacting protein, ABSCISIC ACID-INSENSITIVE5 (ABI5). We found that pks5-3 and pks5-4, two previously identified PKS5 superactive kinase mutants with point mutations in the PKS5 FISL/NAF (a conserved peptide that is necessary for interaction with SOS3 or SOS3-LIKE CALCIUM BINDING PROTEINs) motif and the kinase domain, respectively, are hypersensitive to ABA during seed germination. PKS5 was found to interact with ABI5 in yeast (Saccharomyces cerevisiae), and this interaction was further confirmed in planta using bimolecular fluorescence complementation. Genetic studies revealed that ABI5 is epistatic to PKS5. PKS5 phosphorylates a serine (Ser) residue at position 42 in ABI5 and regulates ABA-responsive gene expression. This phosphorylation was induced by ABA in vivo and transactivated ABI5. Expression of ABI5, in which Ser-42 was mutated to alanine, could not fully rescue the ABA-insensitive phenotypes of the abi5-8 and pks5-4abi5-8 mutants. In contrast, mutating Ser-42 to aspartate rescued the ABA insensitivity of these mutants. These data demonstrate that PKS5-mediated phosphorylation of ABI5 at Ser-42 is critical for the ABA regulation of seed germination and gene expression in Arabidopsis (Arabidopsis thaliana). PMID:25858916

  18. An Apple Protein Kinase MdSnRK1.1 Interacts with MdCAIP1 to Regulate ABA Sensitivity.

    PubMed

    Liu, Xiao-Juan; Liu, Xin; An, Xiu-Hong; Han, Peng-Liang; You, Chun-Xiang; Hao, Yu-Jin

    2017-10-01

    ABA is a crucial phytohormone for development and stress responses in plants. Snf1-related protein kinase 1.1 (SnRK1.1) is involved in the ABA response. However, the molecular mechanism underlying the SnRK1.1 response to ABA is largely unknown. Here, it was found that overexpression of the apple MdSnRK1.1 gene enhanced ABA sensitivity in both transgenic apple calli and Arabidopsis seedlings. Subsequently, a yeast two-hybrid screen demonstrated that MdCAIP1 (C2-domain ABA Insensitive Protein1) interacted with MdSnRK1.1. Their interaction was further confirmed by pull-down and co-immunoprecipitation assays. Expression of the MdCAIP1 gene was positively induced by ABA. Its overexpression enhanced ABA sensitivity in transgenic apple calli. Furthermore, it was found that MdSnRK1.1 phosphorylated the MdCAIP1 protein in vivo and promoted its degradation in vitro and in vivo. As a result, MdSnRK1.1 inhibited MdCAIP1-mediated ABA sensitivity, and MdCAIP1 partially reduced MdSnRK1.1-mediated ABA sensitivity. Our findings indicate that MdSnRK1.1 plays an important role in the ABA response, partially by controlling the stability of the MdCAIP1 protein. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites.

    PubMed

    Koskun, Yağmur; Şavk, Aysun; Şen, Betül; Şen, Fatih

    2018-06-20

    Glucose enzyme biosensors have been used for a variety of applications such as medical diagnosis, bioprocess engineering, beverage industry and environmental scanning etc. and there is still a growing interest in glucose sensors. For this purpose, addressed herein, as a novel glucose sensor, highly sensitive activated carbon (AC) decorated monodisperse nickel and palladium alloy nanocomposites modified glassy carbon electrode (Ni-Pd@AC/GCE NCs) have been synthesized by in-situ reduction technique. Raman Spectroscopy (RS), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), cyclic voltammetry (CV) and chronoamperometry (CA) were used for the characterization of the prepared non-enzymatic glucose sensor. The characteristic sensor properties of the Ni-Pd@AC/GCE electrode were compared with Ni-Pd NCs/GCE, Ni@AC/GCE and Pd@AC/GCE and the results demonstrate that the AC is very effective in the enhancement of the electrocatalytic properties of sensor. In addition, the Ni-Pd@AC/GCE nanocomposites showed a very low detection limit of 0.014 μM, a wide linear range of 0.01 mM-1 mM and a very high sensitivity of 90 mA mM -1  cm -2 . Furthermore, the recommended sensor offer the various advantageous such as facile preparation, fast response time, high selectivity and sensitivity. Lastly, monodisperse Ni-Pd@AC/GCE was utilized to detect glucose in real sample species. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. In vivo emergence of HIV-1 highly sensitive to neutralizing antibodies.

    PubMed

    Aasa-Chapman, Marlén M I; Cheney, Kelly M; Hué, Stéphane; Forsman, Anna; O'Farrell, Stephen; Pellegrino, Pierre; Williams, Ian; McKnight, Áine

    2011-01-01

    The rapid and continual viral escape from neutralizing antibodies is well documented in HIV-1 infection. Here we report in vivo emergence of viruses with heightened sensitivity to neutralizing antibodies, sometimes paralleling the development of neutralization escape. Sequential viral envs were amplified from seven HIV-1 infected men monitored from seroconversion up to 5 years after infection. Env-recombinant infectious molecular clones were generated and tested for coreceptor use, macrophage tropism and neutralization sensitivity to homologous and heterologous serum, soluble CD4 and monoclonal antibodies IgG1b12, 2G12 and 17b. We found that HIV-1 evolves sensitivity to contemporaneous neutralizing antibodies during infection. Neutralization sensitive viruses grow out even when potent autologous neutralizing antibodies are present in patient serum. Increased sensitivity to neutralization was associated with susceptibility of the CD4 binding site or epitopes induced after CD4 binding, and mediated by complex envelope determinants including V3 and V4 residues. The development of neutralization sensitive viruses occurred without clinical progression, coreceptor switch or change in tropism for primary macrophages. We propose that an interplay of selective forces for greater virus replication efficiency without the need to resist neutralizing antibodies in a compartment protected from immune surveillance may explain the temporal course described here for the in vivo emergence of HIV-1 isolates with high sensitivity to neutralizing antibodies.