Sample records for abies norway spruce

  1. Polyamines in embryogenic cultures of Norway spruce (Picea abies) and red spruce (Picea rubens)

    Treesearch

    Rakesh Minocha; Haarald Kvaalen; Subhash C. Minocha; Stephanie Long

    1993-01-01

    Embryogenic cultures of red spruce (Picea rubens Sarg.) and Norway spruce (Picea abies (L.) Karst.) were initiated from dissected mature zygotic embryos. The tissues were grown on either proliferation medium or maturation medium. On proliferation medium, the embryogenic tissue continued to produce early stage somatic embryos (...

  2. GENETIC STRUCTURE OF NORWAY SPRUCE (PICEA ABIES): CONCORDANCE OF MORPHOLOGICAL AND ALLOZYMIC VARIATION.

    PubMed

    Lagercrantz, Ulf; Ryman, Nils

    1990-02-01

    This study describes the population structure of Norway spruce (Picea abies) as revealed by protein polymorphisms and morphological variation. Electrophoretically detectable genetic variability was examined at 22 protein loci in 70 populations from the natural range of the species in Europe. Like other conifers, Norway spruce exhibits a relatively large amount of genetic variability and little differentiation among populations. Sixteen polymorphic loci (73%) segregate for a total of 51 alleles, and average heterozygosity per population is 0.115. Approximately 5% of the total genetic diversity is explained by differences between populations (G ST = 0.052), and Nei's standard genetic distance is less than 0.04 in all cases. We suggest that the population structure largely reflects relatively recent historical events related to the last glaciation and that Norway spruce is still in a process of adaptation and differentiation. There is a clear geographic pattern in the variation of allele frequencies. A major part of the allelefrequency variation can be accounted for by a few synthetic variables (principal components), and 80% of the variation of the first principal component is "explained" by latitude and longitude. The central European populations are consistently depauperate of genetic variability, most likely as an effect of severe restrictions of population size during the last glaciation. The pattern of differentiation at protein loci is very similar to that observed for seven morphological traits examined. This similarity suggests that the same evolutionary forces have acted upon both sets of characters. © 1990 The Society for the Study of Evolution.

  3. Breeding for resistance in Norway spruce to the root and butt rot fungi Heterobasidion spp

    Treesearch

    G. Swedjemark; A.K. Borg-Karlson; B. Karlsson

    2012-01-01

    Results from previous studies of resistance in Norway spruce (Picea abies (L.) Karst.) to the pathogens Heterobasidion spp. show significant genotypic variation in fungal growth and spore susceptibility among Norway spruce clones. The genetic variation and the heritability are large enough for practical breeding purposes and...

  4. Effect of bark beetle (Ips typographus L.) attack on bark VOC emissions of Norway spruce (Picea abies Karst.) trees

    NASA Astrophysics Data System (ADS)

    Ghimire, Rajendra P.; Kivimäenpää, Minna; Blomqvist, Minna; Holopainen, Toini; Lyytikäinen-Saarenmaa, Päivi; Holopainen, Jarmo K.

    2016-02-01

    Climate warming driven storms are evident causes for an outbreak of the European spruce bark beetle (Ips typographus L.) resulting in the serious destruction of mature Norway spruce (Picea abies Karst.) forests in northern Europe. Conifer species are major sources of biogenic volatile organic compounds (BVOCs) in the boreal zone. Climate relevant BVOC emissions are expected to increase when conifer trees defend against bark beetle attack by monoterpene (MT)-rich resin flow. In this study, BVOC emission rates from the bark surface of beetle-attacked and non-attacked spruce trees were measured from two outbreak areas, Iitti and Lahti in southern Finland, and from one control site at Kuopio in central Finland. Beetle attack increased emissions of total MTs 20-fold at Iitti compared to Kuopio, but decreased the emissions of several sesquiterpenes (SQTs) at Iitti. At the Lahti site, the emission rate of α-pinene was positively correlated with mean trap catch of bark beetles. The responsive individual MTs were tricyclene, α-pinene, camphene, myrcene, limonene, 1,8-cineole and bornyl acetate in both of the outbreak areas. Our results suggest that bark beetle outbreaks affect local BVOC emissions from conifer forests dominated by Norway spruce. Therefore, the impacts of insect outbreaks are worth of consideration to global BVOC emission models.

  5. Biochemical characterization in Norway spruce (Picea abies) of SABATH methyltransferases that methylate phytohormones.

    PubMed

    Chaiprasongsuk, Minta; Zhang, Chi; Qian, Ping; Chen, Xinlu; Li, Guanglin; Trigiano, Robert N; Guo, Hong; Chen, Feng

    2018-05-01

    Indole-3-acetic acid (IAA), gibberellins (GAs), salicylic acid (SA) and jasmonic acid (JA) exist in methyl ester forms in plants in addition to their free acid forms. The enzymes that catalyze methylation of these carboxylic acid phytohormones belong to a same protein family, the SABATH methyltransferases. While the genes encoding these enzymes have been isolated from a small number of flowering plants, little is known about their occurrence and evolution in non-flowering plants. Here, we report the systematic characterization of the SABATH family from Norway spruce (Picea abies), a gymnosperm. The Norway spruce genome contains ten SABATH genes (PaSABATH1-10). Full-length cDNA for each of the ten PaSABATH genes was cloned and expressed in Escherichia coli. Recombinant PaSABATHs were tested for activity with IAA, GA, SA, and JA. Among the ten PaSABATHs, five had activity with one or more of the four substrates. PaSABATH1 and PaSABATH2 had the highest activities with IAA and SA, respectively. PaSABATH4, PaSABATH5 and PaSABATH10 all had JA as a preferred substrate but with notable differences in biochemical properties. The structural basis of PaSABATHs in discriminating various phytohormone substrates was inferred based on structural models of the enzyme-substrate complexes. The phylogeny of PaSABATHs with selected SABATHs from other plants implies that the enzymes methylating IAA are conserved in seed plants whereas the enzymes methylating JA and SA have independent evolution in gymnosperms and angiosperms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Patterns of Nucleotide Diversity at Photoperiod Related Genes in Norway Spruce [Picea abies (L.) Karst.

    PubMed Central

    Källman, Thomas; De Mita, Stéphane; Larsson, Hanna; Gyllenstrand, Niclas; Heuertz, Myriam; Parducci, Laura; Suyama, Yoshihisa; Lagercrantz, Ulf; Lascoux, Martin

    2014-01-01

    The ability of plants to track seasonal changes is largely dependent on genes assigned to the photoperiod pathway, and variation in those genes is thereby important for adaptation to local day length conditions. Extensive physiological data in several temperate conifer species suggest that populations are adapted to local light conditions, but data on the genes underlying this adaptation are more limited. Here we present nucleotide diversity data from 19 genes putatively involved in photoperiodic response in Norway spruce (Picea abies). Based on similarity to model plants the genes were grouped into three categories according to their presumed position in the photoperiod pathway: photoreceptors, circadian clock genes, and downstream targets. An HKA (Hudson, Kreitman and Aquade) test showed a significant excess of diversity at photoreceptor genes, but no departure from neutrality at circadian genes and downstream targets. Departures from neutrality were also tested with Tajima's D and Fay and Wu's H statistics under three demographic scenarios: the standard neutral model, a population expansion model, and a more complex population split model. Only one gene, the circadian clock gene PaPRR3 with a highly positive Tajima's D value, deviates significantly from all tested demographic scenarios. As the PaPRR3 gene harbours multiple non-synonymous variants it appears as an excellent candidate gene for control of photoperiod response in Norway spruce. PMID:24810273

  7. Patterns of nucleotide diversity at photoperiod related genes in Norway spruce [Picea abies (L.) Karst].

    PubMed

    Källman, Thomas; De Mita, Stéphane; Larsson, Hanna; Gyllenstrand, Niclas; Heuertz, Myriam; Parducci, Laura; Suyama, Yoshihisa; Lagercrantz, Ulf; Lascoux, Martin

    2014-01-01

    The ability of plants to track seasonal changes is largely dependent on genes assigned to the photoperiod pathway, and variation in those genes is thereby important for adaptation to local day length conditions. Extensive physiological data in several temperate conifer species suggest that populations are adapted to local light conditions, but data on the genes underlying this adaptation are more limited. Here we present nucleotide diversity data from 19 genes putatively involved in photoperiodic response in Norway spruce (Picea abies). Based on similarity to model plants the genes were grouped into three categories according to their presumed position in the photoperiod pathway: photoreceptors, circadian clock genes, and downstream targets. An HKA (Hudson, Kreitman and Aquade) test showed a significant excess of diversity at photoreceptor genes, but no departure from neutrality at circadian genes and downstream targets. Departures from neutrality were also tested with Tajima's D and Fay and Wu's H statistics under three demographic scenarios: the standard neutral model, a population expansion model, and a more complex population split model. Only one gene, the circadian clock gene PaPRR3 with a highly positive Tajima's D value, deviates significantly from all tested demographic scenarios. As the PaPRR3 gene harbours multiple non-synonymous variants it appears as an excellent candidate gene for control of photoperiod response in Norway spruce.

  8. DNA methylome of the 20-gigabase Norway spruce genome

    PubMed Central

    Ausin, Israel; Feng, Suhua; Yu, Chaowei; Liu, Wanlu; Kuo, Hsuan Yu; Jacobsen, Elise L.; Zhai, Jixian; Gallego-Bartolome, Javier; Wang, Lin; Egertsdotter, Ulrika; Street, Nathaniel R.; Jacobsen, Steven E.; Wang, Haifeng

    2016-01-01

    DNA methylation plays important roles in many biological processes, such as silencing of transposable elements, imprinting, and regulating gene expression. Many studies of DNA methylation have shown its essential roles in angiosperms (flowering plants). However, few studies have examined the roles and patterns of DNA methylation in gymnosperms. Here, we present genome-wide high coverage single-base resolution methylation maps of Norway spruce (Picea abies) from both needles and somatic embryogenesis culture cells via whole genome bisulfite sequencing. On average, DNA methylation levels of CG and CHG of Norway spruce were higher than most other plants studied. CHH methylation was found at a relatively low level; however, at least one copy of most of the RNA-directed DNA methylation pathway genes was found in Norway spruce, and CHH methylation was correlated with levels of siRNAs. In comparison with needles, somatic embryogenesis culture cells that are used for clonally propagating spruce trees showed lower levels of CG and CHG methylation but higher level of CHH methylation, suggesting that like in other species, these culture cells show abnormal methylation patterns. PMID:27911846

  9. Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies).

    PubMed

    Stinziano, Joseph R; Hüner, Norman P A; Way, Danielle A

    2015-12-01

    Climate change, via warmer springs and autumns, may lengthen the carbon uptake period of boreal tree species, increasing the potential for carbon sequestration in boreal forests, which could help slow climate change. However, if other seasonal cues such as photoperiod dictate when photosynthetic capacity declines, warmer autumn temperatures may have little effect on when carbon uptake capacity decreases in these species. We investigated whether autumn warming would delay photosynthetic decline in Norway spruce (Picea abies (L.) H. Karst.) by growing seedlings under declining weekly photoperiods and weekly temperatures either at ambient temperature or a warming treatment 4 °C above ambient. Photosynthetic capacity was relatively constant in both treatments when weekly temperatures were >8 °C, but declined rapidly at lower temperatures, leading to a delay in the autumn decline in photosynthetic capacity in the warming treatment. The decline in photosynthetic capacity was not related to changes in leaf nitrogen or chlorophyll concentrations, but was correlated with a decrease in the apparent fraction of leaf nitrogen invested in Rubisco, implicating a shift in nitrogen allocation away from the Calvin cycle at low autumn growing temperatures. Our data suggest that as the climate warms, the period of net carbon uptake will be extended in the autumn for boreal forests dominated by Norway spruce, which could increase total carbon uptake in these forests. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Ozone fumigation under dark/light conditions of Norway Spruce (Picea Abies) and Scots Pine (Pinus Sylvestris)

    NASA Astrophysics Data System (ADS)

    Canaval, Eva; Jud, Werner; Hansel, Armin

    2015-04-01

    Norway Spruce (Picea abies) and Scots Pine (Pinus sylvestris) represent dominating tree species in the northern hemisphere. Thus, the understanding of their ozone sensitivity in the light of the expected increasing ozone levels in the future is of great importance. In our experiments we investigated the emissions of volatile organic compounds (VOCs) of 3-4 year old Norway Spruce and Scots Pine seedlings under ozone fumigation (50-150 ppbv) and dark/light conditions. For the experiments the plants were placed in a setup with inert materials including a glass cuvette equipped with a turbulent air inlet and sensors for monitoring a large range of meteorological parameters. Typical conditions were 20-25°C and a relative humidity of 70-90 % for both plant species. A fast gas exchange rate was used to minimize reactions of ozone in the gas phase. A Switchable-Reagent-Ion-Time-of-Flight-MS (SRI-ToF-MS) was used to analyze the VOCs at the cuvette outlet in real-time during changing ozone and light levels. The use of H3O+ and NO+ as reagent ions allows the separation of certain isomers (e.g. aldehydes and ketones) due to different reaction pathways depending on the functional groups of the molecules. Within the Picea abies experiments the ozone loss, defined as the difference of the ozone concentration between cuvette inlet and outlet, remained nearly constant at the transition from dark to light. This indicates that a major part of the supplied ozone is depleted non-stomatally. In contrast the ozone loss increased by 50 % at the transition from dark to light conditions within Pinus sylvestris experiments. In this case the stomata represent the dominant loss channel. Since maximally 0.1% of the ozone loss could be explained by gas phase reactions with monoterpenes and sesquiterpenes, we suggest that ozone reactions on the surface of Picea abies represent the major sink in this case and lead to an light-independent ozone loss. This is supported by the fact that we detected

  11. Effects of red, far-red and blue light in maintaining growth in latitudinal populations of Norway spruce (Picea abies).

    PubMed

    Mølmann, Jørgen Alexander; Junttila, Olavi; Johnsen, Oystein; Olsen, Jorunn Elisabeth

    2006-02-01

    Seedlings of trees with a free growth pattern cease growth when night-lengths become shorter than a critical value, and this critical night-length (CNL) decreases with increasing latitude of origin. In northern populations, the light quality also appears to play an important role and a clinal variation in requirement for far-red (FR) light has been documented. In this study we dissected the light quality requirements for maintaining growth in different latitudinal populations of Norway spruce (Picea abies (L.) H. Karst.) using light emitting diodes for red (R), FR and blue (B) light, as 12 h day extension to provide 24 h photoperiod. At equal spectral photon flux, FR light was more effective than R light in maintaining growth, and the requirement of both R and FR increased with northern latitude of origin. One-to-one mixtures of R and FR light were more effective in maintaining growth than either FR or R light alone, indicating a possible interaction between R and FR light maintaining growth. Using the blue light as day extension could not prevent growth cessation in any of the populations, but delayed the bud set slightly in all populations. Our results suggest that phytochrome(s) are the primary photoreceptors in high irradiance responses maintaining growth in Norway spruce seedlings.

  12. High-Throughput Sequencing Reveals Drastic Changes in Fungal Communities in the Phyllosphere of Norway Spruce (Picea abies) Following Invasion of the Spruce Bud Scale (Physokermes piceae).

    PubMed

    Menkis, Audrius; Marčiulynas, Adas; Gedminas, Artūras; Lynikienė, Jūratė; Povilaitienė, Aistė

    2015-11-01

    The aim of this study was to assess the diversity and composition of fungal communities in damaged and undamaged shoots of Norway spruce (Picea abies) following recent invasion of the spruce bud scale (Physokermes piceae) in Lithuania. Sampling was done in July 2013 and included 50 random lateral shoots from ten random trees in each of five visually undamaged and five damaged 40-50-year-old pure stands of P. abies. DNA was isolated from 500 individual shoots, subjected to amplification of the internal transcribed spacer of fungal ribosomal DNA (ITS rDNA), barcoded and sequenced. Clustering of 149,426 high-quality sequences resulted in 1193 non-singleton contigs of which 1039 (87.1 %) were fungal. In total, there were 893 fungal taxa in damaged shoots and 608 taxa in undamaged shoots (p < 0.0001). Furthermore, 431 (41.5 %) fungal taxa were exclusively in damaged shoots, 146 (14.0 %) were exclusively in undamaged shoots, and 462 (44.5 %) were common to both types of samples. Correspondence analysis showed that study sites representing damaged and undamaged shoots were separated from each other, indicating that in these fungal communities, these were largely different and, therefore, heavily affected by P. piceae. In conclusion, the results demonstrated that invasive alien tree pests may have a profound effect on fungal mycobiota associated with the phyllosphere of P. abies, and therefore, in addition to their direct negative effect owing physical damage of the tissue, they may also indirectly determine health, sustainability and, ultimately, distribution of the forest tree species.

  13. Early root growth and architecture of fast- and slow-growing Norway spruce (Picea abies) families differ-potential for functional adaptation.

    PubMed

    Hamberg, Leena; Velmala, Sannakajsa M; Sievänen, Risto; Kalliokoski, Tuomo; Pennanen, Taina

    2018-06-01

    The relationship between the growth rate of aboveground parts of trees and fine root development is largely unknown. We investigated the early root development of fast- and slow-growing Norway spruce (Picea abies (L.) H. Karst.) families at a developmental stage when the difference in size is not yet observed. Seedling root architecture data, describing root branching, were collected with the WinRHIZO™ image analysis system, and mixed models were used to determine possible differences between the two growth phenotypes. A new approach was used to investigate the spatial extent of root properties along the whole sample root from the base of 1-year-old seedlings to the most distal part of a root. The root architecture of seedlings representing fast-growing phenotypes showed ~30% higher numbers of root branches and tips, which resulted in larger root extensions and potentially a better ability to acquire nutrients. Seedlings of fast-growing phenotypes oriented and allocated root tips and biomass further away from the base of the seedling than those growing slowly, a possible advantage in nutrient-limited and heterogeneous boreal forest soils. We conclude that a higher long-term growth rate of the aboveground parts in Norway spruce may relate to greater allocation of resources to explorative roots that confers a competitive edge during early growth phases in forest ecosystems.

  14. A Common Fungal Associate of the Spruce Bark Beetle Metabolizes the Stilbene Defenses of Norway Spruce1[C][W][OA

    PubMed Central

    Hammerbacher, Almuth; Schmidt, Axel; Wadke, Namita; Wright, Louwrance P.; Schneider, Bernd; Bohlmann, Joerg; Brand, Willi A.; Fenning, Trevor M.; Gershenzon, Jonathan; Paetz, Christian

    2013-01-01

    Norway spruce (Picea abies) forests suffer periodic fatal attacks by the bark beetle Ips typographus and its fungal associate, Ceratocystis polonica. Norway spruce protects itself against fungal and bark beetle invasion by the production of terpenoid resins, but it is unclear whether resins or other defenses are effective against the fungus. We investigated stilbenes, a group of phenolic compounds found in Norway spruce bark with a diaryl-ethene skeleton with known antifungal properties. During C. polonica infection, stilbene biosynthesis was up-regulated, as evidenced by elevated transcript levels of stilbene synthase genes. However, stilbene concentrations actually declined during infection, and this was due to fungal metabolism. C. polonica converted stilbenes to ring-opened, deglycosylated, and dimeric products. Chromatographic separation of C. polonica protein extracts confirmed that these metabolites arose from specific fungal enzyme activities. Comparison of C. polonica strains showed that rapid conversion of host phenolics is associated with higher virulence. C. polonica is so well adapted to its host’s chemical defenses that it is even able to use host phenolic compounds as its sole carbon source. PMID:23729780

  15. Distinct genecological patterns in seedlings of Norway spruce and silver fir from a mountainous landscape.

    PubMed

    Frank, Aline; Sperisen, Christoph; Howe, Glenn Thomas; Brang, Peter; Walthert, Lorenz; St Clair, John Bradley; Heiri, Caroline

    2017-01-01

    Understanding the genecology of forest trees is critical for gene conservation, for predicting the effects of climate change and climate change adaptation, and for successful reforestation. Although common genecological patterns have emerged, species-specific details are also important. Which species are most vulnerable to climate change? Which are the most important adaptive traits and environmental drivers of natural selection? Even though species have been classified as adaptive specialists vs. adaptive generalists, large-scale studies comparing different species in the same experiment are rare. We studied the genecology of Norway spruce (Picea abies) and silver fir (Abies alba), two co-occurring but ecologically distinct European conifers in Central Europe. For each species, we collected seed from more than 90 populations across Switzerland, established a seedling common-garden test, and developed genecological models that associate population variation in seedling growth and phenology to climate, soil properties, and site water balance. Population differentiation and associations between seedling traits and environmental variables were much stronger for Norway spruce than for silver fir, and stronger for seedling height growth than for bud phenology. In Norway spruce, height growth and second flushing were strongly associated with temperature and elevation, with seedlings from the lowlands being taller and more prone to second flush than seedlings from the Alps. In silver fir, height growth was more weakly associated with temperature and elevation, but also associated with water availability. Soil characteristics explained little population variation in both species. We conclude that Norway spruce has become an adaptive specialist because trade-offs between rapid juvenile growth and frost avoidance have subjected it to strong diversifying natural selection based on temperature. In contrast, because silver fir has a more conservative growth habit, it has

  16. Juvenility and serial vegetative propagation of Norway spruce clones (Picea abies Karst.).

    Treesearch

    J.B. St. Clair; J. Kleinschmit; J. Svolba

    1985-01-01

    Effects associated with progressive maturation of clones are of greatest concern in clonal tree improvement programs. Serial propagation has been in use at the Lower Saxony Forest Research Institute since 1968 to arrest maturation in Norway spruce clones. By 1980 cuttings were established in the nursery that had been serially propagated from one to five cycles. This...

  17. Non-functional plastid ndh gene fragments are present in the nuclear genome of Norway spruce (Picea abies L. Karsch): insights from in silico analysis of nuclear and organellar genomes.

    PubMed

    Ranade, Sonali Sachin; García-Gil, María Rosario; Rosselló, Josep A

    2016-04-01

    Many genes have been lost from the prokaryote plastidial genome during the early events of endosymbiosis in eukaryotes. Some of them were definitively lost, but others were relocated and functionally integrated to the host nuclear genomes through serial events of gene transfer during plant evolution. In gymnosperms, plastid genome sequencing has revealed the loss of ndh genes from several species of Gnetales and Pinaceae, including Norway spruce (Picea abies). This study aims to trace the ndh genes in the nuclear and organellar Norway spruce genomes. The plastid genomes of higher plants contain 11 ndh genes which are homologues of mitochondrial genes encoding subunits of the proton-pumping NADH-dehydrogenase (nicotinamide adenine dinucleotide dehydrogenase) or complex I (electron transport chain). Ndh genes encode 11 NDH polypeptides forming the Ndh complex (analogous to complex I) which seems to be primarily involved in chloro-respiration processes. We considered ndh genes from the plastidial genome of four gymnosperms (Cryptomeria japonica, Cycas revoluta, Ginkgo biloba, Podocarpus totara) and a single angiosperm species (Arabidopsis thaliana) to trace putative homologs in the nuclear and organellar Norway spruce genomes using tBLASTn to assess the evolutionary fate of ndh genes in Norway spruce and to address their genomic location(s), structure, integrity and functionality. The results obtained from tBLASTn were subsequently analyzed by performing homology search for finding ndh specific conserved domains using conserved domain search. We report the presence of non-functional plastid ndh gene fragments, excepting ndhE and ndhG genes, in the nuclear genome of Norway spruce. Regulatory transcriptional elements like promoters, TATA boxes and enhancers were detected in the upstream regions of some ndh fragments. We also found transposable elements in the flanking regions of few ndh fragments suggesting nuclear rearrangements in those regions. These evidences

  18. Methyl Jasmonate Induces Traumatic Resin Ducts, Terpenoid Resin Biosynthesis, and Terpenoid Accumulation in Developing Xylem of Norway Spruce Stems1

    PubMed Central

    Martin, Diane; Tholl, Dorothea; Gershenzon, Jonathan; Bohlmann, Jörg

    2002-01-01

    Norway spruce (Picea abies L. Karst) produces an oleoresin characterized by a diverse array of terpenoids, monoterpenoids, sesquiterpenoids, and diterpene resin acids that can protect conifers against potential herbivores and pathogens. Oleoresin accumulates constitutively in resin ducts in the cortex and phloem (bark) of Norway spruce stems. De novo formation of traumatic resin ducts (TDs) is observed in the developing secondary xylem (wood) after insect attack, fungal elicitation, and mechanical wounding. Here, we characterize the methyl jasmonate-induced formation of TDs in Norway spruce by microscopy, chemical analyses of resin composition, and assays of terpenoid biosynthetic enzymes. The response involves tissue-specific differentiation of TDs, terpenoid accumulation, and induction of enzyme activities of both prenyltransferases and terpene synthases in the developing xylem, a tissue that constitutively lacks axial resin ducts in spruce. The induction of a complex defense response in Norway spruce by methyl jasmonate application provides new avenues to evaluate the role of resin defenses for protection of conifers against destructive pests such as white pine weevils (Pissodes strobi), bark beetles (Coleoptera, Scolytidae), and insect-associated tree pathogens. PMID:12114556

  19. Do water-limiting conditions predispose Norway spruce to bark beetle attack?

    PubMed Central

    Netherer, Sigrid; Matthews, Bradley; Katzensteiner, Klaus; Blackwell, Emma; Henschke, Patrick; Hietz, Peter; Pennerstorfer, Josef; Rosner, Sabine; Kikuta, Silvia; Schume, Helmut; Schopf, Axel

    2015-01-01

    Drought is considered to enhance susceptibility of Norway spruce (Picea abies) to infestations by the Eurasian spruce bark beetle (Ips typographus, Coleoptera: Curculionidae), although empirical evidence is scarce. We studied the impact of experimentally induced drought on tree water status and constitutive resin flow, and how physiological stress affects host acceptance and resistance. We established rain-out shelters to induce both severe (two full-cover plots) and moderate (two semi-cover plots) drought stress. In total, 18 sample trees, which were divided equally between the above treatment plots and two control plots, were investigated. Infestation was controlled experimentally using a novel ‘attack box’ method. Treatments influenced the ratios of successful and defended attacks, but predisposition of trees to infestation appeared to be mainly driven by variations in stress status of the individual trees over time. With increasingly negative twig water potentials and decreasing resin exudation, the defence capability of the spruce trees decreased. We provide empirical evidence that water-limiting conditions impair Norway spruce resistance to bark beetle attack. Yet, at the same time our data point to reduced host acceptance byI. typographus with more extreme drought stress, indicated by strongly negative pre-dawn twig water potentials. PMID:25417785

  20. A Norway spruce FLOWERING LOCUS T homolog is implicated in control of growth rhythm in conifers.

    PubMed

    Gyllenstrand, Niclas; Clapham, David; Källman, Thomas; Lagercrantz, Ulf

    2007-05-01

    Growth in perennial plants possesses an annual cycle of active growth and dormancy that is controlled by environmental factors, mainly photoperiod and temperature. In conifers and other nonangiosperm species, the molecular mechanisms behind these responses are currently unknown. In Norway spruce (Picea abies L. Karst.) seedlings, growth cessation and bud set are induced by short days and plants from southern latitudes require at least 7 to 10 h of darkness, whereas plants from northern latitudes need only 2 to 3 h of darkness. Bud burst, on the other hand, is almost exclusively controlled by temperature. To test the possible role of Norway spruce FLOWERING LOCUS T (FT)-like genes in growth rhythm, we have studied expression patterns of four Norway spruce FT family genes in two populations with a divergent bud set response under various photoperiodic conditions. Our data show a significant and tight correlation between growth rhythm (both bud set and bud burst), and expression pattern of one of the four Norway spruce phosphatidylethanolamine-binding protein gene family members (PaFT4) over a variety of experimental conditions. This study strongly suggests that one Norway spruce homolog to the FT gene, which controls flowering in angiosperms, is also a key integrator of photoperiodic and thermal signals in the control of growth rhythms in gymnosperms. The data also indicate that the divergent adaptive bud set responses of northern and southern Norway spruce populations, both to photoperiod and light quality, are mediated through PaFT4. These results provide a major advance in our understanding of the molecular control of a major adaptive trait in conifers and a tool for further molecular studies of adaptive variation in plants.

  1. FLOWERING LOCUS T/TERMINAL FLOWER1-like genes affect growth rhythm and bud set in Norway spruce.

    PubMed

    Karlgren, Anna; Gyllenstrand, Niclas; Clapham, David; Lagercrantz, Ulf

    2013-10-01

    The timing of bud set, as one determinant of the annual growth rhythm, is critical for local adaptation of the conifer Norway spruce (Picea abies). Previous gene expression and population genetic studies have suggested a role for P. abies FLOWERING LOCUS T/TERMINAL FLOWER1-Like2 (PaFTL2) in the control of growth cessation and bud set in Norway spruce as well as in local adaptation resulting in clinal variation for timing of bud set. Using transgenic plants with PaFTL2 driven by an inducible promoter, we found that PaFTL2 indeed induces bud set and most probably also growth cessation. PaFTL2 shows high expression around the procambium and vascular tissue and in the crown region in buds of both seedlings and older trees. Furthermore, PaFTL2 expression is induced in vegetative shoots and all bud types in late summer, when growth cessation occurs. This supports the notion that PaFTL2 is involved in growth cessation. A close paralog to PaFTL2, PaFTL1, is strongly expressed in meristems during the summer, possibly to repress meristem activity and the formation of needle primordia during this period. The temporal and spatial expression of PaFTL1 and PaFTL2 largely complement each other, which suggests that they act in concert to control perennial growth in Norway spruce.

  2. Tree water status and growth of saplings and mature Norway spruce (Picea abies) at a dry distribution limit

    PubMed Central

    Oberhuber, Walter; Hammerle, Albin; Kofler, Werner

    2015-01-01

    We evaluated the size effect on stem water status and growth in Norway spruce (Picea abies (L.) Karst.) occurring at the edge of its natural range in a dry inner Alpine environment (750 m asl, Tyrol, Austria). Intra-annual dynamics of stem water deficit (ΔW), maximum daily shrinkage (MDS), and radial growth (RG) were compared among saplings (stem diameter/height: 2.2 cm/93 cm; n = 7) and mature adult trees (25 cm/12.7 m; n = 6) during 2014. ΔW, MDS, and RG were extracted from stem diameter variations, which were continuously recorded by automatic dendrometers and the influence of environmental drivers was evaluated by applying moving correlation analysis (MCA). Additionally, we used Morlet wavelet analysis to assess the differences in cyclic radial stem variations between saplings and mature trees. Results indicate that saplings and mature trees were experiencing water limitation throughout the growing season. However, saplings exhibited a more strained stem water status and higher sensitivity to environmental conditions than mature trees. Hence, the significantly lower radial increments in saplings (0.16 ± 0.03 mm) compared to mature trees (0.54 ± 0.14 mm) is related to more constrained water status in the former, affecting the rate and duration of RG. The wavelet analysis consistently revealed more distinct diurnal stem variations in saplings compared to mature trees. Intra-annual RG was most closely related to climate variables that influence transpiration, i.e., vapor pressure deficit, relative air humidity, and air temperature. MCA, however, showed pronounced instability of climate–growth relationships, which masked missing temporal or significant correlations when the entire study period (April–October) was considered. We conclude that an increase in evaporative demand will impair regeneration and long-term stability of drought-prone inner Alpine Norway spruce forests. PMID:26442019

  3. Moisture in untreated, a cetylated, and furfurylated Norway spruce studied during drying using time domain NMR

    Treesearch

    Lisabeth G. Thygesen; Thomas Elder

    2008-01-01

    Using time domain NMR, the moisture in Norway spruce (Picea abies (L.) Karst.) sapwood subjected to four different treatments (never-dried, dried and remoistened, acetylated, and furfurylated) was studied during drying at 40°C, at sample average moisture contents above fiber saturation. Spin-spin relaxation time distributions were derived from CPMG...

  4. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany.

    PubMed

    Vitali, Valentina; Büntgen, Ulf; Bauhus, Jürgen

    2017-12-01

    Improving our understanding of the potential of forest adaptation is an urgent task in the light of predicted climate change. Long-term alternatives for susceptible yet economically important tree species such as Norway spruce (Picea abies) are required, if the frequency and intensity of summer droughts will continue to increase. Although Silver fir (Abies alba) and Douglas fir (Pseudotsuga menziesii) have both been described as drought-tolerant species, our understanding of their growth responses to drought extremes is still limited. Here, we use a dendroecological approach to assess the resistance, resilience, and recovery of these important central Europe to conifer species the exceptional droughts in 1976 and 2003. A total of 270 trees per species were sampled in 18 managed mixed-species stands along an altitudinal gradient (400-1200 m a.s.l.) at the western slopes of the southern and central Black Forest in southwest Germany. While radial growth in all species responded similarly to the 1976 drought, Norway spruce was least resistant and resilient to the 2003 summer drought. Silver fir showed the overall highest resistance to drought, similarly to Douglas fir, which exhibited the widest growth rings. Silver fir trees from lower elevations were more drought prone than trees at higher elevations. Douglas fir and Norway spruce, however, revealed lower drought resilience at higher altitudes. Although the 1976 and 2003 drought extremes were quite different, Douglas fir maintained consistently the highest radial growth. Although our study did not examine population-level responses, it clearly indicates that Silver fir and Douglas fir are generally more resistant and resilient to previous drought extremes and are therefore suitable alternatives to Norway spruce; Silver fir more so at higher altitudes. Cultivating these species instead of Norway spruce will contribute to maintaining a high level of productivity across many Central European mountain forests under

  5. Modelling spruce bark beetle infestation probability

    Treesearch

    Paulius Zolubas; Jose Negron; A. Steven Munson

    2009-01-01

    Spruce bark beetle (Ips typographus L.) risk model, based on pure Norway spruce (Picea abies Karst.) stand characteristics in experimental and control plots was developed using classification and regression tree statistical technique under endemic pest population density. The most significant variable in spruce bark beetle...

  6. Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests.

    PubMed

    Ostonen, Ivika; Lõhmus, Krista; Helmisaari, Heljä-Sisko; Truu, Jaak; Meel, Signe

    2007-11-01

    Variability in short root morphology of the three main tree species of Europe's boreal forest (Norway spruce (Picea abies L. Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth)) was investigated in four stands along a latitudinal gradient from northern Finland to southern Estonia. Silver birch and Scots pine were present in three stands and Norway spruce was present in all stands. For three fertile Norway spruce stands, fine root biomass and number of root tips per stand area or unit basal area were assessed from north to south. Principal component analysis indicated that short root morphology was significantly affected by tree species and site, which together explained 34.7% of the total variability. The range of variation in mean specific root area (SRA) was 51-74, 60-70 and 84-124 m(2) kg(-1) for Norway spruce, Scots pine and silver birch, respectively, and the corresponding ranges for specific root length were 37-47, 40-48 and 87-97 m g(-1). The range of variation in root tissue density of Norway spruce, Scots pine and silver birch was 113-182, 127-158 and 81-156 kg m(-3), respectively. Sensitivity of short root morphology to site conditions decreased in the order: Norway spruce > silver birch > Scots pine. Short root SRA increased with site fertility in all species. In Norway spruce, fine root biomass and number of root tips per m(2) decreased from north to south. The differences in morphological parameters among sites were significant but smaller than the site differences in fine root biomass and number of root tips.

  7. A Norway Spruce FLOWERING LOCUS T Homolog Is Implicated in Control of Growth Rhythm in Conifers1[OA

    PubMed Central

    Gyllenstrand, Niclas; Clapham, David; Källman, Thomas; Lagercrantz, Ulf

    2007-01-01

    Growth in perennial plants possesses an annual cycle of active growth and dormancy that is controlled by environmental factors, mainly photoperiod and temperature. In conifers and other nonangiosperm species, the molecular mechanisms behind these responses are currently unknown. In Norway spruce (Picea abies L. Karst.) seedlings, growth cessation and bud set are induced by short days and plants from southern latitudes require at least 7 to 10 h of darkness, whereas plants from northern latitudes need only 2 to 3 h of darkness. Bud burst, on the other hand, is almost exclusively controlled by temperature. To test the possible role of Norway spruce FLOWERING LOCUS T (FT)-like genes in growth rhythm, we have studied expression patterns of four Norway spruce FT family genes in two populations with a divergent bud set response under various photoperiodic conditions. Our data show a significant and tight correlation between growth rhythm (both bud set and bud burst), and expression pattern of one of the four Norway spruce phosphatidylethanolamine-binding protein gene family members (PaFT4) over a variety of experimental conditions. This study strongly suggests that one Norway spruce homolog to the FT gene, which controls flowering in angiosperms, is also a key integrator of photoperiodic and thermal signals in the control of growth rhythms in gymnosperms. The data also indicate that the divergent adaptive bud set responses of northern and southern Norway spruce populations, both to photoperiod and light quality, are mediated through PaFT4. These results provide a major advance in our understanding of the molecular control of a major adaptive trait in conifers and a tool for further molecular studies of adaptive variation in plants. PMID:17369429

  8. Experimental vs. modeled water use in mature Norway spruce (Picea abies) exposed to elevated CO(2).

    PubMed

    Leuzinger, Sebastian; Bader, Martin K-F

    2012-01-01

    Rising levels of atmospheric CO(2) have often been reported to reduce plant water use. Such behavior is also predicted by standard equations relating photosynthesis, stomatal conductance, and atmospheric CO(2) concentration, which form the core of dynamic global vegetation models (DGVMs). Here, we provide first results from a free air CO(2) enrichment (FACE) experiment with naturally growing, mature (35 m) Picea abies (L.) (Norway spruce) and compare them to simulations by the DGVM LPJ-GUESS. We monitored sap flow, stem water deficit, stomatal conductance, leaf water potential, and soil moisture in five 35-40 m tall CO(2)-treated (550 ppm) trees over two seasons. Using LPJ-GUESS, we simulated this experiment using climate data from a nearby weather station. While the model predicted a stable reduction of transpiration of between 9% and 18% (at concentrations of 550-700 ppm atmospheric CO(2)), the combined evidence from various methods characterizing water use in our experimental trees suggest no changes in response to future CO(2) concentrations. The discrepancy between the modeled and the experimental results may be a scaling issue: while dynamic vegetation models correctly predict leaf-level responses, they may not sufficiently account for the processes involved at the canopy and ecosystem scale, which could offset the first-order stomatal response.

  9. FLOWERING LOCUS T/TERMINAL FLOWER1-Like Genes Affect Growth Rhythm and Bud Set in Norway Spruce1[W][OPEN

    PubMed Central

    Karlgren, Anna; Gyllenstrand, Niclas; Clapham, David; Lagercrantz, Ulf

    2013-01-01

    The timing of bud set, as one determinant of the annual growth rhythm, is critical for local adaptation of the conifer Norway spruce (Picea abies). Previous gene expression and population genetic studies have suggested a role for P. abies FLOWERING LOCUS T/TERMINAL FLOWER1-Like2 (PaFTL2) in the control of growth cessation and bud set in Norway spruce as well as in local adaptation resulting in clinal variation for timing of bud set. Using transgenic plants with PaFTL2 driven by an inducible promoter, we found that PaFTL2 indeed induces bud set and most probably also growth cessation. PaFTL2 shows high expression around the procambium and vascular tissue and in the crown region in buds of both seedlings and older trees. Furthermore, PaFTL2 expression is induced in vegetative shoots and all bud types in late summer, when growth cessation occurs. This supports the notion that PaFTL2 is involved in growth cessation. A close paralog to PaFTL2, PaFTL1, is strongly expressed in meristems during the summer, possibly to repress meristem activity and the formation of needle primordia during this period. The temporal and spatial expression of PaFTL1 and PaFTL2 largely complement each other, which suggests that they act in concert to control perennial growth in Norway spruce. PMID:23958861

  10. Modelling individual tree height to crown base of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.)

    PubMed Central

    Jansa, Václav

    2017-01-01

    Height to crown base (HCB) of a tree is an important variable often included as a predictor in various forest models that serve as the fundamental tools for decision-making in forestry. We developed spatially explicit and spatially inexplicit mixed-effects HCB models using measurements from a total 19,404 trees of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) on the permanent sample plots that are located across the Czech Republic. Variables describing site quality, stand density or competition, and species mixing effects were included into the HCB model with use of dominant height (HDOM), basal area of trees larger in diameters than a subject tree (BAL- spatially inexplicit measure) or Hegyi’s competition index (HCI—spatially explicit measure), and basal area proportion of a species of interest (BAPOR), respectively. The parameters describing sample plot-level random effects were included into the HCB model by applying the mixed-effects modelling approach. Among several functional forms evaluated, the logistic function was found most suited to our data. The HCB model for Norway spruce was tested against the data originated from different inventory designs, but model for European beech was tested using partitioned dataset (a part of the main dataset). The variance heteroscedasticity in the residuals was substantially reduced through inclusion of a power variance function into the HCB model. The results showed that spatially explicit model described significantly a larger part of the HCB variations [R2adj = 0.86 (spruce), 0.85 (beech)] than its spatially inexplicit counterpart [R2adj = 0.84 (spruce), 0.83 (beech)]. The HCB increased with increasing competitive interactions described by tree-centered competition measure: BAL or HCI, and species mixing effects described by BAPOR. A test of the mixed-effects HCB model with the random effects estimated using at least four trees per sample plot in the validation data confirmed that

  11. Moisture in untreated, acetylated, and furfurylated Norway Spruce monitored during drying below fiber saturation using time domain NMR

    Treesearch

    Lisbeth G. Thygesen; Thomas Elder

    2009-01-01

    Using time domain–nuclear magnetic resonance spectroscopy, the moisture content (MC) in Norway spruce [Picea abies (L.) Karst.] sapwood, subjected to three different treatments (untreated, acetylated, and furfurylated), was studied during drying at 40oC at MCs below fiber saturation. Spin–spin relaxation time distributions were derived from Carr-Purcell-...

  12. Production of ectomycorrhizal mycelium peaks during canopy closure in Norway spruce forests.

    PubMed

    Wallander, Håkan; Johansson, Ulf; Sterkenburg, Erica; Brandström Durling, Mikael; Lindahl, Björn D

    2010-09-01

    *Here, species composition and biomass production of actively growing ectomycorrhizal (EM) mycelia were studied over the rotation period of managed Norway spruce (Picea abies) stands in south-western Sweden. *The EM mycelia were collected using ingrowth mesh bags incubated in the forest soil during one growing season. Fungal biomass was estimated by ergosterol analysis and the EM species were identified by 454 sequencing of internal transcribed spacer (ITS) amplicons. Nutrient availability and the fungal biomass in soil samples were also estimated. *Biomass production peaked in young stands (10-30 yr old) before the first thinning phase. Tylospora fibrillosa dominated the EM community, especially in these young stands, where it constituted 80% of the EM amplicons derived from the mesh bags. Species richness increased in older stands. *The establishment of EM mycelial networks in young Norway spruce stands requires large amounts of carbon, while much less is needed to sustain the EM community in older stands. The variation in EM biomass production over the rotation period has implications for carbon sequestration rates in forest soils.

  13. Does carbon availability control temporal dynamics of radial growth in Norway spruce (Picea abies)?

    NASA Astrophysics Data System (ADS)

    Oberhuber, Walter; Gruber, Andreas; Swidrak, Irene

    2015-04-01

    Intra-annual dynamics of cambial activity and wood formation of coniferous species exposed to soil dryness revealed early culmination of maximum growth in late spring prior to occurrence of more favourable environmental conditions, i.e., repeated high rainfall events during summer (Oberhuber et al. 2014). Because it is well known that plants can adjust carbon allocation patterns to optimize resource uptake under prevailing environmental constraints, we hypothesize that early decrease in radial stem growth is an adaptation to cope with drought stress, which might require an early switch of carbon allocation to belowground organs. Physical blockage of carbon transport in the phloem through girdling causes accumulation and depletion of carbohydrates above and below the girdle, respectively, making this method quite appropriate to investigate carbon relationships in trees. Hence, in a common garden experiment we will manipulate the carbon status of Norway spruce (Picea abies) saplings by phloem blockage at different phenological stages during the growing season. We will present the methodological approach and first results of the study aiming to test the hypothesis that carbon status of the tree affects temporal dynamics of cambial activity and wood formation in conifers under drought. Acknowledgment The research is funded by the Austrian Science Fund (FWF): P25643-B16 "Carbon allocation and growth of Scots pine". Reference Oberhuber W, A Gruber, W Kofler, I Swidrak (2014) Radial stem growth in response to microclimate and soil moisture in a drought-prone mixed coniferous forest at an inner Alpine site. Eur J For Res 133:467-479.

  14. Multilocus Patterns of Nucleotide Diversity, Linkage Disequilibrium and Demographic History of Norway Spruce [Picea abies (L.) Karst

    PubMed Central

    Heuertz, Myriam; De Paoli, Emanuele; Källman, Thomas; Larsson, Hanna; Jurman, Irena; Morgante, Michele; Lascoux, Martin; Gyllenstrand, Niclas

    2006-01-01

    DNA polymorphism at 22 loci was studied in an average of 47 Norway spruce [Picea abies (L.) Karst.] haplotypes sampled in seven populations representative of the natural range. The overall nucleotide variation was limited, being lower than that observed in most plant species so far studied. Linkage disequilibrium was also restricted and did not extend beyond a few hundred base pairs. All populations, with the exception of the Romanian population, could be divided into two main domains, a Baltico–Nordic and an Alpine one. Mean Tajima's D and Fay and Wu's H across loci were both negative, indicating the presence of an excess of both rare and high-frequency-derived variants compared to the expected frequency spectrum in a standard neutral model. Multilocus neutrality tests based on D and H led to the rejection of the standard neutral model and exponential growth in the whole population as well as in the two main domains. On the other hand, in all three cases the data are compatible with a severe bottleneck occurring some hundreds of thousands of years ago. Hence, demographic departures from equilibrium expectations and population structure will have to be accounted for when detecting selection at candidate genes and in association mapping studies, respectively. PMID:17057229

  15. Experimental vs. modeled water use in mature Norway spruce (Picea abies) exposed to elevated CO2

    PubMed Central

    Leuzinger, Sebastian; Bader, Martin K.-F.

    2012-01-01

    Rising levels of atmospheric CO2 have often been reported to reduce plant water use. Such behavior is also predicted by standard equations relating photosynthesis, stomatal conductance, and atmospheric CO2 concentration, which form the core of dynamic global vegetation models (DGVMs). Here, we provide first results from a free air CO2 enrichment (FACE) experiment with naturally growing, mature (35 m) Picea abies (L.) (Norway spruce) and compare them to simulations by the DGVM LPJ-GUESS. We monitored sap flow, stem water deficit, stomatal conductance, leaf water potential, and soil moisture in five 35–40 m tall CO2-treated (550 ppm) trees over two seasons. Using LPJ-GUESS, we simulated this experiment using climate data from a nearby weather station. While the model predicted a stable reduction of transpiration of between 9% and 18% (at concentrations of 550–700 ppm atmospheric CO2), the combined evidence from various methods characterizing water use in our experimental trees suggest no changes in response to future CO2 concentrations. The discrepancy between the modeled and the experimental results may be a scaling issue: while dynamic vegetation models correctly predict leaf-level responses, they may not sufficiently account for the processes involved at the canopy and ecosystem scale, which could offset the first-order stomatal response. PMID:23087696

  16. Sequencing of the needle transcriptome from Norway spruce (Picea abies Karst L.) reveals lower substitution rates, but similar selective constraints in gymnosperms and angiosperms

    PubMed Central

    2012-01-01

    Background A detailed knowledge about spatial and temporal gene expression is important for understanding both the function of genes and their evolution. For the vast majority of species, transcriptomes are still largely uncharacterized and even in those where substantial information is available it is often in the form of partially sequenced transcriptomes. With the development of next generation sequencing, a single experiment can now simultaneously identify the transcribed part of a species genome and estimate levels of gene expression. Results mRNA from actively growing needles of Norway spruce (Picea abies) was sequenced using next generation sequencing technology. In total, close to 70 million fragments with a length of 76 bp were sequenced resulting in 5 Gbp of raw data. A de novo assembly of these reads, together with publicly available expressed sequence tag (EST) data from Norway spruce, was used to create a reference transcriptome. Of the 38,419 PUTs (putative unique transcripts) longer than 150 bp in this reference assembly, 83.5% show similarity to ESTs from other spruce species and of the remaining PUTs, 3,704 show similarity to protein sequences from other plant species, leaving 4,167 PUTs with limited similarity to currently available plant proteins. By predicting coding frames and comparing not only the Norway spruce PUTs, but also PUTs from the close relatives Picea glauca and Picea sitchensis to both Pinus taeda and Taxus mairei, we obtained estimates of synonymous and non-synonymous divergence among conifer species. In addition, we detected close to 15,000 SNPs of high quality and estimated gene expression differences between samples collected under dark and light conditions. Conclusions Our study yielded a large number of single nucleotide polymorphisms as well as estimates of gene expression on transcriptome scale. In agreement with a recent study we find that the synonymous substitution rate per year (0.6 × 10−09 and 1.1 × 10−09

  17. High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda)

    NASA Technical Reports Server (NTRS)

    Wenck, A. R.; Quinn, M.; Whetten, R. W.; Pullman, G.; Sederoff, R.; Brown, C. S. (Principal Investigator)

    1999-01-01

    Agrobacterium-mediated gene transfer is the method of choice for many plant biotechnology laboratories; however, large-scale use of this organism in conifer transformation has been limited by difficult propagation of explant material, selection efficiencies and low transformation frequency. We have analyzed co-cultivation conditions and different disarmed strains of Agrobacterium to improve transformation. Additional copies of virulence genes were added to three common disarmed strains. These extra virulence genes included either a constitutively active virG or extra copies of virG and virB, both from pTiBo542. In experiments with Norway spruce, we increased transformation efficiencies 1000-fold from initial experiments where little or no transient expression was detected. Over 100 transformed lines expressing the marker gene beta-glucuronidase (GUS) were generated from rapidly dividing embryogenic suspension-cultured cells co-cultivated with Agrobacterium. GUS activity was used to monitor transient expression and to further test lines selected on kanamycin-containing medium. In loblolly pine, transient expression increased 10-fold utilizing modified Agrobacterium strains. Agrobacterium-mediated gene transfer is a useful technique for large-scale generation of transgenic Norway spruce and may prove useful for other conifer species.

  18. [Spatial Distribution of Intron 2 of nad1 Gene Haplotypes in Populations of Norway and Siberian Spruce (Picea abies-P. obovata) Species Complex].

    PubMed

    Mudrik, E A; Polyakova, T A; Shatokhina, A V; Bondarenko, G N; Politov, D V

    2015-10-01

    The length and sequence variations among intron 2 haplotypes of the mitochondrial DNA nad1 gene have been studied in the Norway and Siberian spruce (Picea abies (L.) H. Karst.-P. obovata Ledeb.) species complex. Twenty-two native populations and 15 provenances were analyzed. The distribution of the northern European haplogroup (haplotypes 721, 755, 789, 823, 857, 891, and 925) is delimited in the west by the Ural region inclusively. Haplotype 712 is widespread in populations of Siberia, in the Far East and in northeastern Russia. A novel variant of the Siberian haplogroup (780) containing three copies of the first minisatellite motif (34 bp) was found for the first time. The absence of an admixture of the northern European and Siberian haplotypes in the zone of spruce species introgression previously marked by morphological traits and nuclear allozyme loci was demonstrated. This may be evidence of the existence of a sharper geographic boundary between the two haplogroups, as compared to a boundary based on phenotypic and allozyme data. A high proportion of the interpopulation component of variation (65%) estimated by AMOVA indicates a substantial genetic subdivision of European and Siberian populations of the Palearctic spruce complex by mtDNA, which can be putatively explained by natural barriers to gene flow with seeds related, for instance, to the woodless regions of the western Siberian Plain in the Pleistocene and the probable floodplains of large rivers.

  19. Photosynthesis in Norway spruce seedlings infected by the needle rust Chrysomyxa rhododendri.

    PubMed

    Bauer, Helmut; Plattner, Karin; Volgger, Waltraud

    2000-02-01

    Chrysomyxa rhododendri (DC.) De Bary is a needle rust with a host shift between Rhododendron sp. and Norway spruce (Picea abies (L.) Karst.), penetrating only the new developing flushes of the conifer. Because little is known about its effects on trees, we investigated several parameters related to photosynthesis in artificially infected 3-year-old Norway spruce seedlings. The potential efficiency of photosystem II (PSII; derived from chlorophyll fluorescence measurements) was reduced in infected current-year needles as soon as disease symptoms were visible, about three weeks after inoculation. Two weeks later, photosynthetic O(2) evolution (P(max)) of infected needles was less than 20% of control needles, whereas respiratory O(2) uptake (R(D)) was about three times higher than that of control needles. Nonstructural carbohydrate concentrations were about 60% of control values in all parts of the shoots of infected trees. Photosynthetic inhibition was associated with marked decreases in chlorophyll concentration and chlorophyll a/b ratio but only a small reduction in carotenoid concentration. In infected trees, P(max) of noninfected 1-year-old and 2-year-old needles was 50 and 80% higher than in the corresponding age class of needles of control trees. Estimation of potential daily net dry mass production, based on P(max), R(D), specific leaf area, carbon content and needle biomass, indicated that seedlings infected once were able to produce 60%, and those infected twice only 25%, of the dry mass of controls. We conclude that afforestation and regeneration of Norway spruce is seriously impaired in regions where seedlings are frequently attacked by Chrysomyxa.

  20. Photosynthetic characteristics of fagus sylvatica and quercus robur established for stand conversion from picea abies

    Treesearch

    Emile S. Gardiner; Magnus Lof; Joseph J. O' brien; John A. Stanturf; Palle Madsen

    2009-01-01

    Efforts inEurope to convertNorway spruce (Picea abies) plantations to broadleaf ormixed broadleaf-conifer forests could be bolstered by an increased understanding of how artificial regeneration acclimates and functions under a range of Norway spruce stand conditions. We studied foliage characteristics and leaflevel photosynthesis on 7-year-old European beech (Fagus...

  1. Photosynthetic characteristics of Fagus sylvatica and Quercus robur established for stand conversion from Picea abies

    Treesearch

    E.S. Gardiner; J.J. O’Brien; M. Löf; J.A. Stanturf; P. Madsen

    2009-01-01

    Efforts in Europe to convertNorway spruce (Picea abies) plantations to broadleaf ormixed broadleaf-conifer forests could be bolstered by an increased understanding of how artificial regeneration acclimates and functions under a range of Norway spruce stand conditions. We studied foliage characteristics and leaflevel photosynthesis on 7-year-old European beech (Fagus...

  2. Distribution of Lepidopteran Larvae on Norway Spruce: Effects of Slope and Crown Aspect.

    PubMed

    Kulfan, Ján; Dvořáčková, Katarína; Zach, Peter; Parák, Michal; Svitok, Marek

    2016-04-01

    Lepidoptera associated with Norway spruce, Picea abies (L.) Karsten, play important roles in ecosystem processes, acting as plant pests, prey for predators, and hosts for parasites and parasitoids. Their distribution patterns in spruce crowns and forests are only poorly understood. We examined how slope and crown aspect affect the occurrence and abundance of moth larvae on solitary spruce trees in a montane region in Central Europe. Moth larvae were collected from southern and northern crowns of trees growing on south- and north-facing slopes (four treatments) using emergence boxes at the end of winter and by the beating method during the growing season. Species responses to slope and crown aspect were not uniform. Treatment effects on moth larvae were stronger in the winter than during the growing season. In winter, the abundance of bud-boring larvae was significantly higher in northern than in southern crowns regardless of the slope aspect, while both slope and aspect had marginally significant effects on abundance of miners. During the growing season, the occurrence of free-living larvae was similar among treatments. Emergence boxes and beating spruce branches are complementary techniques providing valuable insights into the assemblage structure of moth larvae on Norway spruce. Due to the uneven distribution of larvae detected in this study, we recommend adoption of a protocol that explicitly includes sampling of trees from contrasting slopes and branches from contrasting crown aspect in all seasons. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Effects of ABA application on cessation of shoot elongation in long-day grown Norway spruce seedlings.

    PubMed

    Heide, O M

    1986-06-01

    Abscisic acid (ABA) was applied in lanolin to apical buds of Norway spruce (Picea abies (L.) Karst.) seedlings actively growing in a 24 h photoperiod. At a rate of 100 microg per plant, ABA suspended shoot elongation for about three weeks in the majority of plants but failed to induce normal winter buds. The role of ABA in the induction of dormancy is thus uncertain in conifers as well as in deciduous woody plants.

  4. Effects of air pollution and climatic factors on Norway spruce forests in the Orlicke hory Mts. (Czech Republic), 1979-2014

    Treesearch

    Stanislav Vacek; Iva Hunova; Zdenek Vacek; Pavla Hejcmanova; Vilem Podrazsky; Jan Kral; Tereza Putalova; W. Keith Moser

    2015-01-01

    The area of the Orlicke hory Mts. has been characterised by decline and disturbances of Norway spruce (Picea abies/L./Karst.) stands since the 1980s. Currently, only three permanent research plots have been preserved from the original sixteen established plots in this region. In the present study, the health status, as indicated by defoliation, mortality, and...

  5. Assessing the impacts of climate change and nitrogen deposition on Norway spruce (Picea abies L. Karst) growth in Austria with BIOME-BGC.

    PubMed

    Eastaugh, Chris S; Pötzelsberger, Elisabeth; Hasenauer, Hubert

    2011-03-01

    The aim of this paper is to determine whether a detectable impact of climate change is apparent in Austrian forests. In regions of complex terrain such as most of Austria, climatic trends over the past 50 years show marked geographic variability. As climate is one of the key drivers of forest growth, a comparison of growth characteristics between regions with different trends in temperature and precipitation can give insights into the impact of climatic change on forests. This study uses data from several hundred climate recording stations, interpolated to measurement sites of the Austrian National Forest Inventory (NFI). Austria as a whole shows a warming trend over the past 50 years and little overall change in precipitation. The warming trends, however, vary considerably across certain regions and regional precipitation trends vary widely in both directions, which cancel out on the national scale These differences allow the delineation of 'climatic change zones' with internally consistent climatic trends that differ from other zones. This study applies the species-specific adaptation of the biogeochemical model BIOME-BGC to Norway spruce (Picea abies (L.) Karst) across a range of Austrian climatic change zones, using input data from a number of national databases. The relative influence of extant climate change on forest growth is quantified, and compared with the far greater impact of non-climatic factors. At the national scale, climate change is found to have negligible effect on Norway spruce productivity, due in part to opposing effects at the regional level. The magnitudes of the modeled non-climatic influences on aboveground woody biomass increment increases are consistent with previously reported values of 20-40 kg of added stem carbon sequestration per kilogram of additional nitrogen deposition, while climate responses are of a magnitude difficult to detect in NFI data.

  6. Isoprenoid emission variation of Norway spruce across a European latitudinal transect

    NASA Astrophysics Data System (ADS)

    van Meeningen, Ylva; Wang, Min; Karlsson, Tomas; Seifert, Ana; Schurgers, Guy; Rinnan, Riikka; Holst, Thomas

    2017-12-01

    Norway spruce (Picea abies) is one of the dominant tree species in the European boreal zone with the capacity to grow over large areas within Europe. It is an important emitter of biogenic volatile organic compounds (BVOCs), which can act as precursors of photochemical smog and ozone and contribute to the formation and growth of secondary organic aerosols (SOA) in the atmosphere. Isoprenoid emissions were measured from Norway spruce trees at seven different sites, distributed from Ljubljana in Slovenia to Piikkiö in Finland. Four of the sites were part of a network of genetically identical spruce trees and contained two separate provenances. The remaining three sites were part of other networks which have been used to conduct studies in the European boreal zone. There were minimal differences in the standardized emission rates between sites and across latitudes. The emission profile differed between provenances and sites, but there were not any distinct patterns which could be connected to a change in latitude. By using genetically identical trees and comparing the emission rates between sites and with genetically different trees, it was observed that the emission patterns were mostly influenced by genetics. But in order to confirm this possible stability of the relative emission profile based on genetics, more studies need to be performed. The effects of branch height, season and variation between years on observed emission pattern variations were also investigated. There were indications of potential influences of all three factors. However, due to different experimental setups between measurement campaigns, it is difficult to draw any robust conclusions.

  7. Drought stress alters the concentration of wood terpenoids in Scots pine and Norway spruce seedlings.

    PubMed

    Turtola, Satu; Manninen, Anne-Marja; Rikala, Risto; Kainulainen, Pirjo

    2003-09-01

    Drought is known to have an impact on the resistance of conifers to various pests, for example, by affecting resin flow in trees. Little is known, however, about the quantitative and qualitative changes in resin when trees are growing in low moisture conditions. We exposed Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings to medium and severe drought stress for two growing seasons and analyzed the monoterpenes and resin acids in the main stem wood after two years of treatment. In addition to secondary chemistry, we measured the level of nutrients in the needles and the growth response of seedlings. After the first year of treatment, drought stress did not affect the growth of seedlings, but in the second year, shoot growth was retarded, especially in Scots pine. In both conifer species, severe drought increased the concentrations of several individual monoterpenes and resin acids. Total monoterpenes and resin acids were 39 and 32% higher in severe drought-treated Scots pine seedlings than in the controls, and 35 and 45% higher in Norway spruce seedlings. In Scots pine needles, the concentrations of nitrogen and phosphorus increased, while magnesium and calcium decreased compared to controls. In Norway spruce needles, nutrient concentrations were not affected. The results suggest that drought stress substantially affects both the growth of conifers and the chemical quality of the wood. We discuss the potential trade-off in growth and defense of small conifer seedlings.

  8. Genotype-environment interaction and stability in ten-year height growth of Norway spruce Clones (Picea abies Karst.).

    Treesearch

    J.B. St. Clair; J. Kleinschmit

    1986-01-01

    Norway spruce cuttings of 40 clones were tested on seven contrasting sites in northern Germany. Analysis of variance for ten-year height growth indicate a highly significant clone x site interaction. This interaction may be reduced by selection of stable clones. Several measures of stability were calculated and discussed. Characterization of sites by the method of...

  9. BVOC emission in Norway spruce: the effect of stand structure, high temperature and ozone levels.

    NASA Astrophysics Data System (ADS)

    Pallozzi, Emanuele; Guidolotti, Gabriele; Večeřová, Kristýna; Esposito, Raffaela; Lusini, Ilaria; Juráň, Stanislav; Urban, Otmar; Calfapietra, Carlo

    2015-04-01

    Norway spruce (Picea abies L.) is a widely distributed conifer species in the boreal zone and mountain areas of central Europe and is a moderate emitter of volatile organic compounds (BVOC). Although the vaporization and diffusion processes from resin ducts were generally considered to be the main processes for monoterpene emissions in conifers, recently it has been showed that a significant portion (up to one third) of monoterpene emissions of Norway spruce can originate from novel biosynthesis, thus depending on photosynthetic processes. For this reason, both biosynthesis and emission are strongly influenced by the environment and the stand structure. They increase with both increasing light and temperature during the warmer periods, although those are the periods with the higher ozone concentration that usually act as an inhibitor of both assimilation and isoprenoids synthesis and emission. On the other hand, stand structure can play an important role, because the photosynthetic capacity is influenced by temperature and light conditions through the canopy. In order to assess the effects of stand structure, temperature and ozone on isoprenoids emission of Norway spruce we carried out field and laboratory experiments. In the experimental field campaigns we measured: assimilation and BVOC emission from needles of sun and shade layers within the canopy of the spruce forest present at the Bily Kriz experimental research site (Moravian-Silesian Beskydy Mountains, 49° 33' N, 18° 32' E, NE of Czech Republic, 908 m a.s.l.). Moreover in the same layers we measured continuously concentration of BVOCs in the air using a PTR-TOF-MS. In laboratory we analyzed the effects of short-term exposure to high temperature and high ozone concentrations on branches of spruce trees collected at the Bily Kriz experimental research site. Preliminary results show that in Norway spruce both stand structure and environmental conditions influenced the gas exchange and BVOC emission rates

  10. Accumulation of ammonium in Norway spruce (Picea abies) seedlings measured by in vivo 14N-NMR.

    PubMed

    Aarnes, H; Eriksen, A B; Petersen, D; Rise, F

    2007-01-01

    (14)N-NMR and (31)P-NMR have been used to monitor the in vivo pH in roots, stems, and needles from seedlings of Norway spruce, a typical ammonium-tolerant plant. The vacuolar and cytoplasmic pH measured by (31)P-NMR was found to be c. pH 4.8 and 7.0, respectively, with no significant difference between plants growing with ammonium or nitrate as the N-source. The (1)H-coupled (14) NH 4+ resonance is pH-sensitive: at alkaline pH it is a narrow singlet line and below pH 4 it is an increasing multiplet line with five signals. The pH values in ammonium-containing compartments measured by (14)N-NMR ranged from 3.7 to 3.9, notably lower than the estimated pH values of the P(i) pools. This suggests that, in seedlings of Norway spruce, ammonium is stored in vacuoles with low pH possibly to protect the seedlings against the toxic effects of ammonium ( NH 4+) or ammonia (NH3). It was also found that concentrations of malate were 3-6 times higher in stems than in roots and needles, with nitrate-grown plants containing more malate than plants grown with ammonium.

  11. Repeated freeze-thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine).

    PubMed

    Mayr, Stefan; Gruber, Andreas; Bauer, Helmut

    2003-07-01

    Freezing and thawing lead to xylem embolism when gas bubbles caused by ice formation expand during the thaw process. However, previous experimental studies indicated that conifers are resistant to freezing-induced embolism, unless xylem pressure becomes very negative during the freezing. In this study, we show that conifers experienced freezing-induced embolism when exposed to repeated freeze-thaw cycles and simultaneously to drought. Simulating conditions at the alpine timberline (128 days with freeze-thaw events and thawing rates of up to 9.5 K h(-1) in the xylem of exposed twigs during winter), young trees of Norway spruce [Picea abies (L.) Karst.] and stone pine (Pinus cembra L.) were exposed to 50 and 100 freeze-thaw cycles. This treatment caused a significant increase in embolism rates in drought-stressed samples. Upon 100 freeze-thaw cycles, vulnerability thresholds (50% loss of conductivity) were shifted 1.8 MPa (Norway spruce) and 0.8 MPa (stone pine) towards less negative water potentials. The results demonstrate that freeze-thaw cycles are a possible reason for winter-embolism in conifers observed in several field studies. Freezing-induced embolism may contribute to the altitudinal limits of conifers.

  12. Climatic control of bud burst in young seedlings of nine provenances of Norway spruce.

    PubMed

    Søgaard, Gunnhild; Johnsen, Oystein; Nilsen, Jarle; Junttila, Olavi

    2008-02-01

    Detailed knowledge of temperature effects on the timing of dormancy development and bud burst will help evaluate the impacts of climate change on forest trees. We tested the effects of temperature applied during short-day treatment, duration of short-day treatment, duration of chilling and light regime applied during forcing on the timing of bud burst in 1- and 2-year-old seedlings of nine provenances of Norway spruce (Picea abies (L.) Karst.). High temperature during dormancy induction, little or no chilling and low temperature during forcing all delayed dormancy release but did not prevent bud burst or growth onset provided the seedlings were forced under long-day conditions. Without chilling, bud burst occurred in about 20% of seedlings kept in short days at 12 degrees C, indicating that young Norway spruce seedlings do not exhibit true bud dormancy. Chilling hastened bud burst and removed the long photoperiod requirement, but the effect of high temperature applied during dormancy induction was observed even after prolonged chilling. Extension of the short-day treatment from 4 to 8 or 12 weeks hastened bud burst. The effect of treatments applied during dormancy development was larger than that of provenance; in some cases no provenance effect was detected, but in 1-year-old seedlings, time to bud burst decreased linearly with increasing latitude of origin. Differences among provenances were complicated by different responses of some origins to light conditions under long-day forcing. In conclusion, timing of bud burst in Norway spruce seedlings is significantly affected by temperature during bud set, and these effects are modified by chilling and environmental conditions during forcing.

  13. Endogenous Nod-Factor-Like Signal Molecules Promote Early Somatic Embryo Development in Norway Spruce1

    PubMed Central

    Dyachok, Julia V.; Wiweger, Malgorzata; Kenne, Lennart; von Arnold, Sara

    2002-01-01

    Embryogenic cultures of Norway spruce (Picea abies) are composed of pro-embryogenic masses (PEMs) and somatic embryos of various developmental stages. Auxin is important for PEM formation and proliferation. In this report we show that depletion of auxin blocks PEM development and causes large-scale cell death. Extracts of the media conditioned by embryogenic cultures stimulate development of PEM aggregates in auxin-deficient cultures. Partial characterization of the conditioning factor shows that it is a lipophilic, low-molecular-weight molecule, which is sensitive to chitinase and contains GlcNAc residues. On the basis of this information, we propose that the factor is a lipophilic chitin oligosaccharide (LCO). The amount of LCO correlates to the developmental stages of PEMs and embryos, with the highest level in the media conditioned by developmentally blocked cultures. LCO is not present in nonembryogenic cultures. Cell death, induced by withdrawal of auxin, is suppressed by extra supply of endogenous LCO or Nod factor from Rhizobium sp. NGR234. The effect can be mimicked by a chitotetraose or chitinase from Streptomyces griseus. Taken together, our data suggest that endogenous LCO acts as a signal molecule stimulating PEM and early embryo development in Norway spruce. PMID:11842156

  14. Size-dependence of tree growth response to drought for Norway spruce and European beech individuals in monospecific and mixed-species stands.

    PubMed

    Ding, H; Pretzsch, H; Schütze, G; Rötzer, T

    2017-09-01

    Climate anomalies have resulted in changing forest productivity, increasing tree mortality in Central and Southern Europe. This has resulted in more severe and frequent ecological disturbances to forest stands. This study analysed the size-dependence of growth response to drought years based on 384 tree individuals of Norway spruce [Picea abies (L.) Karst.] and European beech [Fagus sylvatica ([L.)] in Bavaria, Germany. Samples were collected in both monospecific and mixed-species stands. To quantify the growth response to drought stress, indices for basal area increment, resistance, recovery and resilience were calculated from tree ring measurements of increment cores. Linear mixed models were developed to estimate the influence of drought periods. The results show that ageing-related growth decline is significant in drought years. Drought resilience and resistance decrease significantly with growth size among Norway spruce individuals. Evidence is also provided for robustness in the resilience capacity of European beech during drought stress. Spruce benefits from species mixing with deciduous beech, with over-yielding spruce in pure stands. The importance of the influence of size-dependence within tree growth studies during disturbances is highlighted and should be considered in future studies of disturbances, including drought. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Development of White and Norway Spruce Trees from Several Seed Sources 29 Years After Planting

    Treesearch

    James P. King; Paul O. Rudolf

    1969-01-01

    A 29-year-old test of trees grown from seven white spruce and six Norway spruce seed sources and planted in Wisconsin and Minnesota demonstrates the importance of seed-source selection and indicates that trees from some Norway spruce sources equal or surpass the native white spruce.

  16. Impacts of changing climate on the productivity of Norway spruce dominant stands with a mixture of Scots pine and birch in relation to water availability in southern and northern Finland.

    PubMed

    Ge, Zhen-Ming; Kellomäki, Seppo; Peltola, Heli; Zhou, Xiao; Wang, Kai-Yun; Väisänen, Hannu

    2011-03-01

    A process-based ecosystem model was used to assess the impacts of changing climate on net photosynthesis and total stem wood growth in relation to water availability in two unmanaged Norway spruce (Picea abies) dominant stands with a mixture of Scots pine (Pinus sylvestris) and birch (Betula sp.). The mixed stands were grown over a 100-year rotation (2000-99) in southern and northern Finland with initial species shares of 50, 25 and 25% for Norway spruce, Scots pine and birch, respectively. In addition, pure Norway spruce, Scots pine and birch stands were used as a comparison to identify whether species' response is different in mixed and pure stands. Soil type and moisture conditions (moderate drought) were expected to be the same at the beginning of the simulations irrespective of site location. Regardless of tree species, both annual net canopy photosynthesis (P(nc)) and total stem wood growth (V(s)) were, on average, lower on the southern site under the changing climate compared with the current climate (difference increasing toward the end of the rotation); the opposite was the case for the northern site. Regarding the stand water budget, evapotranspiration (E(T)) was higher under the changing climate regardless of site location. Transpiration and evaporation from the canopy affected water depletion the most. Norway spruce and birch accounted for most of the water depletion in mixed stands on both sites regardless of climatic condition. The annual soil water deficit (W(d)) was higher on the southern site under the changing climate. On the northern site, the situation was the opposite. According to our results, the growth of pure Norway spruce stands in southern Finland could be even lower than the growth of Norway spruce in mixed stands under the changing climate. The opposite was found for pure Scots pine and birch stands due to lower water depletion. This indicates that in the future the management should be properly adapted to climate change in order to

  17. High stability of nuclear microsatellite loci during the early stages of somatic embryogenesis in Norway spruce.

    PubMed

    Helmersson, Andreas; von Arnold, Sara; Burg, Kornel; Bozhkov, Peter V

    2004-10-01

    Somatic embryos of Norway spruce (Picea abies (L.) Karst.) differentiate from proembryogenic masses (PEMs), which are subject to autodestruction through programmed cell death. In PEMs, somatic embryo formation and activation of programmed cell death are interrelated processes. We sought to determine if activation of programmed cell death in PEMs is caused by genetic aberrations during somatic embryogenesis. Based on the finding that withdrawal of auxin and cytokinin induces programmed cell death in PEMs, 1-week-old cell suspensions were cultured in medium either with or without auxin and cytokinin and then transferred to maturation medium containing abscisic acid. We analyzed the stability of three nuclear simple sequence repeat (SSR) microsatellite markers at successive stages of somatic embryogenesis in two cell lines. There were no mutations at the SSR loci at any of the successive developmental stages from PEMs to cotyledonary embryos, irrespective of whether or not the proliferation medium in which cell suspensions had been cultured contained auxin or cytokinin. The morphologies of plants regenerated from the cultures were similar, although withdrawal of auxin and cytokinin significantly stimulated the yield of both embryos and plants. We conclude, therefore, that the high genetic stability of somatic embryos in Norway spruce is unaffected by the induction of programmed cell death caused by withdrawal of auxin and cytokinin.

  18. Recovery of photosynthesis in 1-year-old needles of unfertilized and fertilized Norway spruce (Picea abies (L.) Karst.) during spring.

    PubMed

    Strand, M; Lundmark, T

    1995-03-01

    Photosynthetic O(2) evolution and chlorophyll a fluorescence were measured in 1-year-old needles of unfertilized and fertilized trees of Norway spruce (Picea abies (L.) Karst.) during recovery of photosynthesis from winter inhibition in northern Sweden. Measurements were made under laboratory conditions at 20 degrees C. In general, the CO(2)-saturated rate of O(2) evolution was higher in needles of fertilized trees than in needles of unfertilized trees over a wide range of incident photon flux densities. Furthermore, the maximum photochemical efficiency of photosystem (PS) II, as indicated by the ratio of variable to maximum fluorescence (F(V)/F(M)) was higher in needles of fertilized trees than in needles of unfertilized trees. The largest differences in F(V)/F(M) between the two treatments occurred before the main recovery of photosynthesis from winter inhibition in late May. The rate of O(2) evolution was higher in needles of north-facing branches than in needles of south-facing branches in the middle of May. Simultaneous measurements of O(2) exchange and chlorophyll fluorescence indicated that differences in the rate of O(2) evolution between the two treatments were paralleled by differences in the rate of PS II electron transport determined by chlorophyll fluorescence. We suggest that, during recovery of photosynthesis from winter inhibition, the balance between carbon assimilation and PS II electron transport was maintained largely by adjustments in the nonphotochemical dissipation of excitation energy within PS II.

  19. A density management diagram for Norway spruce in the temperate Europe montane region

    Treesearch

    Giorgio Vacchiano; R. Justin DeRose; John D. Shaw; Miroslav Svoboda; Renzo Motta

    2013-01-01

    Norway spruce is one of the most important conifer tree species in Europe, paramount for timber provision, habitat, recreation, and protection of mountain roads and settlements from natural hazards. Although natural Norway spruce forests exhibit diverse structures, even-aged stands can arise after disturbance or as the result of common silvicultural practice, including...

  20. Ips typographus and Ophiostoma polonicum versus Norway spruce: joint attack and host defense

    Treesearch

    Erik Christiansen

    1991-01-01

    During the years 1971 to 1982, major epidemics of the spruce bark beetle, Ips typographus L., occurred in southeastern Norway and adjoining parts of Sweden. The outbreaks were triggered by large-scale wind-felling and long-lasting drought (Worrell 1983). This "epidemic of the century," hitting our important timber tree, Norway spruce,...

  1. Are Early Somatic Embryos of the Norway Spruce (Picea abies (L.) Karst.) Organised?

    PubMed Central

    Petrek, Jiri; Zitka, Ondrej; Adam, Vojtech; Bartusek, Karel; Anjum, Naser A.; Pereira, Eduarda; Havel, Ladislav; Kizek, Rene

    2015-01-01

    Background Somatic embryogenesis in conifer species has great potential for the forestry industry. Hence, a number of methods have been developed for their efficient and rapid propagation through somatic embryogenesis. Although information is available regarding the previous process-mediated generation of embryogenic cells to form somatic embryos, there is a dearth of information in the literature on the detailed structure of these clusters. Methodology/Principal Findings The main aim of this study was to provide a more detailed structure of the embryogenic tissue clusters obtained through the in vitro propagation of the Norway spruce (Picea abies (L.) Karst.). We primarily focused on the growth of early somatic embryos (ESEs). The data on ESE growth suggested that there may be clear distinctions between their inner and outer regions. Therefore, we selected ESEs collected on the 56th day after sub-cultivation to dissect the homogeneity of the ESE clusters. Two colourimetric assays (acetocarmine and fluorescein diacetate/propidium iodide staining) and one metabolic assay based on the use of 2,3,5-triphenyltetrazolium chloride uncovered large differences in the metabolic activity inside the cluster. Next, we performed nuclear magnetic resonance measurements. The ESE cluster seemed to be compactly aggregated during the first four weeks of cultivation; thereafter, the difference between the 1H nuclei concentration in the inner and outer clusters was more evident. There were clear differences in the visual appearance of embryos from the outer and inner regions. Finally, a cluster was divided into six parts (three each from the inner and the outer regions of the embryo) to determine their growth and viability. The innermost embryos (centripetally towards the cluster centre) could grow after sub-cultivation but exhibited the slowest rate and required the longest time to reach the common growth rate. To confirm our hypothesis on the organisation of the ESE cluster, we

  2. Contamination of environment in the road surroudings - impact of road salting on Norway spruce (Picea abies) and Scots pine (Pinus sylvestris)

    NASA Astrophysics Data System (ADS)

    Hegrová, Jitka; Steiner, Oliver; Goessler, Walter; Tanda, Stefan; Anděl, Petr

    2017-09-01

    A comprehensive overview of the influence of transport on the environment is presented in this study. The complex analysis of soil and needle samples provides an extensive set of data, which presents elemental contamination of the environment near roads. Traffic pollution (including winter road treatment) has a significant negative influence on our environment. Besides sodium and chlorine from winter maintenance many other elements are emitted into the environment. Three possible sources of contamination are assumed for environmental contamination evaluation: car emission, winter maintenance and abrasion from breaks and clutches. The chemical analysis focused on the description of samples from inorganic point of view. The influence of the contamination potential on the sodium and chlorine content in the samples of 1st year-old and 2nd year-old needles of Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) is discussed. Additional soil samples were taken from each sampling site and analyzed to get insight in the sodium and chlorine distribution. Statistical evaluation was used for interpretation of complex interaction patterns between element concentrations in different aged needles based on localities character including distance from the road and element concentration in soils. This species of needles were chosen because of its heightened sensitivity towards salinization. The study was conducted in different parts of the Czech Republic. The resulting database is a source of valuable information about the influence of transport on the environment.

  3. Cellulose synthase stoichiometry in aspen differs from Arabidopsis and Norway spruce.

    PubMed

    Zhang, Xueyang; Dominguez, Pia Guadalupe; Kumar, Manoj; Bygdell, Joakim; Miroshnichenko, Sergey; Sundberg, Bjorn; Wingsle, Gunnar; Niittyla, Totte

    2018-05-14

    Cellulose is synthesised at the plasma membrane by cellulose synthase complexes (CSCs) containing cellulose synthases (CESAs). Genetic analysis and CESA isoform quantification indicate that cellulose in the secondary cell walls of Arabidopsis (Arabidopsis thaliana) is synthesised by isoforms CESA4, CESA7 and CESA8 in equimolar amounts. Here, we used quantitative proteomics to investigate whether the CSC model based on Arabidopsis secondary cell wall CESA stoichiometry can be applied to the angiosperm tree aspen (Populus tremula) and the gymnosperm tree Norway spruce (Picea abies). In the developing xylem of aspen the secondary cell wall CESA stoichiometry was 3:2:1 for PtCESA8a/b : PtCESA4 : PtCESA7a/b, while in Norway spruce the stoichiometry was 1:1:1 as previously observed in Arabidopsis. Furthermore, in aspen tension wood the secondary cell wall CESA stoichiometry changed to 8:3:1 for PtCESA8a/b : PtCESA4 : PtCESA7a/b. PtCESA8b represented 73% of the total secondary cell wall CESA pool, and quantitative PCR analysis of CESA transcripts in cryo-sectioned tension wood revealed increased PtCESA8b expression during formation of the cellulose-enriched gelatinous layer while the transcripts of PtCESA4, PtCESA7a/b and PtCESA8a decreased. A wide-angle X-ray scattering analysis showed that the shift in CESA stoichiometry in tension wood coincided with an increase in crystalline cellulose microfibril diameter suggesting that the CSC CESA composition influences microfibril properties. The aspen CESA stoichiometry results raise the possibility of alternative CSC models, and suggest that homomeric PtCESA8b complexes are responsible for cellulose biosynthesis in the gelatinous layer in tension wood. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  4. Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily.

    PubMed

    Martin, Diane M; Fäldt, Jenny; Bohlmann, Jörg

    2004-08-01

    Constitutive and induced terpenoids are important defense compounds for many plants against potential herbivores and pathogens. In Norway spruce (Picea abies L. Karst), treatment with methyl jasmonate induces complex chemical and biochemical terpenoid defense responses associated with traumatic resin duct development in stems and volatile terpenoid emissions in needles. The cloning of (+)-3-carene synthase was the first step in characterizing this system at the molecular genetic level. Here we report the isolation and functional characterization of nine additional terpene synthase (TPS) cDNAs from Norway spruce. These cDNAs encode four monoterpene synthases, myrcene synthase, (-)-limonene synthase, (-)-alpha/beta-pinene synthase, and (-)-linalool synthase; three sesquiterpene synthases, longifolene synthase, E,E-alpha-farnesene synthase, and E-alpha-bisabolene synthase; and two diterpene synthases, isopimara-7,15-diene synthase and levopimaradiene/abietadiene synthase, each with a unique product profile. To our knowledge, genes encoding isopimara-7,15-diene synthase and longifolene synthase have not been previously described, and this linalool synthase is the first described from a gymnosperm. These functionally diverse TPS account for much of the structural diversity of constitutive and methyl jasmonate-induced terpenoids in foliage, xylem, bark, and volatile emissions from needles of Norway spruce. Phylogenetic analyses based on the inclusion of these TPS into the TPS-d subfamily revealed that functional specialization of conifer TPS occurred before speciation of Pinaceae. Furthermore, based on TPS enclaves created by distinct branching patterns, the TPS-d subfamily is divided into three groups according to sequence similarities and functional assessment. Similarities of TPS evolution in angiosperms and modeling of TPS protein structures are discussed.

  5. Influence of size reduction treatments on sugar recovery from Norway spruce for butanol production.

    PubMed

    Yang, Ming; Xu, Minyuan; Nan, Yufei; Kuittinen, Suvi; Kamrul Hassan, Md; Vepsäläinen, Jouko; Xin, Donglin; Zhang, Junhua; Pappinen, Ari

    2018-06-01

    This study investigated whether the effectiveness of pretreatment is limited by a size reduction of Norway spruce wood in biobutanol production. The spruce was milled, chipped, and mashed for hydrogen peroxide-acetic acid (HPAC) and dilute acid (DA) pretreatment. Sugar recoveries from chipped and mashed spruce after enzymatic hydrolysis were higher than from milled spruce, and the recoveries were not correlated with the spruce fiber length. HPAC pretreatment resulted in almost 100% glucose and 88% total reducing sugars recoveries from chipped spruce, which were apparently higher than DA pretreatment, demonstrating greater effectiveness of HPAC pretreatment on sugar production. The butanol and ABE yield from chipped spruce were 126.5 and 201.2 g/kg pretreated spruce, respectively. The yields decreased with decreasing particle size due to biomass loss in the pretreatment. The results suggested that Norway spruce chipped to a 20 mm length is applicable to the production of platform sugars for butanol fermentation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Molecular control of normal and acrocona mutant seed cone development in Norway spruce (Picea abies) and the evolution of conifer ovule-bearing organs.

    PubMed

    Carlsbecker, Annelie; Sundström, Jens F; Englund, Marie; Uddenberg, Daniel; Izquierdo, Liz; Kvarnheden, Anders; Vergara-Silva, Francisco; Engström, Peter

    2013-10-01

    Reproductive organs in seed plants are morphologically divergent and their evolutionary history is often unclear. The mechanisms controlling their development have been extensively studied in angiosperms but are poorly understood in conifers and other gymnosperms. Here, we address the molecular control of seed cone development in Norway spruce, Picea abies. We present expression analyses of five novel MADS-box genes in comparison with previously identified MADS and LEAFY genes at distinct developmental stages. In addition, we have characterized the homeotic transformation from vegetative shoot to female cone and associated changes in regulatory gene expression patterns occurring in the acrocona mutant. The analyses identified genes active at the onset of ovuliferous and ovule development and identified expression patterns marking distinct domains of the ovuliferous scale. The reproductive transformation in acrocona involves the activation of all tested genes normally active in early cone development, except for an AGAMOUS-LIKE6/SEPALLATA (AGL6/SEP) homologue. This absence may be functionally associated with the nondeterminate development of the acrocona ovule-bearing scales. Our morphological and gene expression analyses give support to the hypothesis that the modern cone is a complex structure, and the ovuliferous scale the result of reductions and compactions of an ovule-bearing axillary short shoot in cones of Paleozoic conifers. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  7. Selection of Norway spruce somatic embryos by computer vision

    NASA Astrophysics Data System (ADS)

    Hamalainen, Jari J.; Jokinen, Kari J.

    1993-05-01

    A computer vision system was developed for the classification of plant somatic embryos. The embryos are in a Petri dish that is transferred with constant speed and they are recognized as they pass a line scan camera. A classification algorithm needs to be installed for every plant species. This paper describes an algorithm for the recognition of Norway spruce (Picea abies) embryos. A short review of conifer micropropagation by somatic embryogenesis is also given. The recognition algorithm is based on features calculated from the boundary of the object. Only part of the boundary corresponding to the developing cotyledons (2 - 15) and the straight sides of the embryo are used for recognition. An index of the length of the cotyledons describes the developmental stage of the embryo. The testing set for classifier performance consisted of 118 embryos and 478 nonembryos. With the classification tolerances chosen 69% of the objects classified as embryos by a human classifier were selected and 31$% rejected. Less than 1% of the nonembryos were classified as embryos. The basic features developed can probably be easily adapted for the recognition of other conifer somatic embryos.

  8. Long-term exposure to enhanced UV-B radiation has no significant effects on growth or secondary compounds of outdoor-grown Scots pine and Norway spruce seedlings.

    PubMed

    Turtola, Satu; Sallas, Leena; Holopainen, Jarmo K; Julkunen-Tiitto, Riitta; Kainulainen, Pirjo

    2006-11-01

    The effects of long-term enhanced UV-B radiation on growth and secondary compounds of two conifer species were studied in an outdoor experiment. Scots pine (Pinus sylvestris) seedlings were exposed for two growing seasons and Norway spruce (Picea abies) seedlings for three growing seasons to supplemental UV-B radiation, corresponding to a 30% increase in ambient UV-B radiation. The experiment also included appropriate controls for ambient and increased UV-A radiation. Enhanced UV-B did not affect the growth of the conifer seedlings. In addition, neither the concentrations of terpenes and phenolics in the needles nor the concentrations of terpenes in the wood were affected. However, in the UV-A control treatment the concentrations of diterpenes in the wood of Scots pine decreased significantly compared to the ambient control. Apparently, a small increase in UV-B radiation has no significant effects on the secondary compounds and growth of Scots pine and Norway spruce seedlings.

  9. SOIL CO2 EFFLUX FROM ISOTOPICALLY LABELED BEECH AND SPRUCE IN SOUTHERN GERMANY

    EPA Science Inventory

    • Carbon acquisition and transport to roots in forest trees is difficult to quantify and is affected by a number of factors, including micrometeorology and anthropogenic stresses. The canopies of mature European beech (Fagus sylvatica) and Norway spruce (Picea abies) were expose...

  10. Organic matter characteristics in boreal forest soils under stands of silver birch, Norway spruce, and Norway spruce with a mixture of silver birch

    NASA Astrophysics Data System (ADS)

    Smolander, A.; Kitunen, V.

    2012-04-01

    The aim was to study how tree species and a tree species mixture affect microbial C and N transformations and two major plant secondary compound groups, terpenes and phenolic compounds in soil. The study site was a tree-species experiment in middle-eastern part of Finland containing plots of 43-year-old silver birch, Norway spruce and Norway spruce with a mixture of silver birch (22 and 37 % birch of the total stem number). Soil was podzol and humus type mor. Samples were taken from the organic layer. C and N in the microbial biomass, rates of C mineralization (CO2 evolution), net N mineralization and nitrification, and concentrations of total water-soluble phenolic compounds, condensed tannins and different kind of terpenes were measured. Amounts of C and N in the microbial biomass and the rates of C mineralization and net N mineralization were all lower under spruce than birch, and particularly net N mineralization was stimulated by birch mixture. Concentrations of total water-soluble phenolic compounds were on a similar level, irrespective of tree species. However, there were less low-molecular-weight phenolics and more high-molecular-weight phenolics under spruce than birch. Concentrations of condensed tannins and both sesqui- and diterpenes were all higher under spruce than birch but the concentrations of triterpenes were similar in all soils. The difference between tree species was greatest with monoterpenes which were measured from both organic layer and soil atmosphere: high concentrations under spruce and negligible under birch. Birch mixture tended to decrease the concentrations of condensed tannins and mono-, sesqui- and diterpenes.

  11. ESTIMATING ROOT RESPIRATION IN SPRUCE AND BEECH: DECREASES IN SOIL RESPIRATION FOLLOWING GIRDLING

    EPA Science Inventory

    A study was undertaken to follow seasonal fluxes of CO2 from soil and to estimate the contribution of autotrophic (root + mycorrhizal) to total soil respiration (SR) in a mixed stand of European beech (Fagus sylvatica) and Norway spruce (Picea abies) near Freising, Germany. Matu...

  12. Effects of nutrient optimization on intra-annual wood formation in Norway spruce.

    PubMed

    Kalliokoski, Tuomo; Mäkinen, Harri; Jyske, Tuula; Nöjd, Pekka; Linder, Sune

    2013-11-01

    In the Nordic countries, growth of Norway spruce (Picea abies (L.) Karst.) is generally limited by low availability of nutrients, especially nitrogen. Optimizing forest management requires better insight on how growth responds to the environmental conditions and their manipulation. The aim of this study was to analyse the effects of nutrient optimization on timing and the rate of tracheid formation of Norway spruce and to follow the differentiation of newly formed tracheids. The study was performed during two growing seasons in a long-term nutrient optimization experiment in northern Sweden, where all essential macro- and micronutrients were supplied in irrigation water every second day from mid-June to mid-August. The control plots were without additional nutrients and water. Tracheid formation in the stem was monitored throughout the growing season by weekly sampling of microcores at breast height. The onset of xylogenesis occurred in early June, but in early summer there were no significant between-treatment differences in the onset and relative rate of tracheid formation. In both treatments, the onset of secondary cell wall formation occurred in mid-June. The maximum rate of tracheid formation occurred close to the summer solstice and 50% of the tracheids had been accumulated in early July. Optimized nutrition resulted in the formation of ∼50% more tracheids and delayed the cessation of tracheid formation, which extended the tracheid formation period by 20-50%, compared with control trees. The increased growth was mainly an effect of enhanced tracheid formation rate during the mid- and later-part of the growing season. In the second year, the increased growth rate also resulted in 11% wider tracheids. We conclude that the onset and rate of tracheid formation and differentiation during summer is primarily controlled by photoperiod, temperature and availability of nutrients, rather than supply of carbohydrates.

  13. Assessing the resilience of Norway spruce forests through a model-based reanalysis of thinning trials☆

    PubMed Central

    Seidl, Rupert; Vigl, Friedrich; Rössler, Günter; Neumann, Markus; Rammer, Werner

    2017-01-01

    As a result of a rapidly changing climate the resilience of forests is an increasingly important property for ecosystem management. Recent efforts have improved the theoretical understanding of resilience, yet its operational quantification remains challenging. Furthermore, there is growing awareness that resilience is not only a means to addressing the consequences of climate change but is also affected by it, necessitating a better understanding of the climate sensitivity of resilience. Quantifying current and future resilience is thus an important step towards mainstreaming resilience thinking into ecosystem management. Here, we present a novel approach for quantifying forest resilience from thinning trials, and assess the climate sensitivity of resilience using process-based ecosystem modeling. We reinterpret the wide range of removal intensities and frequencies in thinning trials as an experimental gradient of perturbation, and estimate resilience as the recovery rate after perturbation. Our specific objectives were (i) to determine how resilience varies with stand and site conditions, (ii) to assess the climate sensitivity of resilience across a range of potential future climate scenarios, and (iii) to evaluate the robustness of resilience estimates to different focal indicators and assessment methodologies. We analyzed three long-term thinning trials in Norway spruce (Picea abies (L.) Karst.) forests across an elevation gradient in Austria, evaluating and applying the individual-based process model iLand. The resilience of Norway spruce was highest at the montane site, and decreased at lower elevations. Resilience also decreased with increasing stand age and basal area. The effects of climate change were strongly context-dependent: At the montane site, where precipitation levels were ample even under climate change, warming increased resilience in all scenarios. At lower elevations, however, rising temperatures decreased resilience, particularly at

  14. Clinal variation at phenology-related genes in spruce: parallel evolution in FTL2 and Gigantea?

    PubMed

    Chen, Jun; Tsuda, Yoshiaki; Stocks, Michael; Källman, Thomas; Xu, Nannan; Kärkkäinen, Katri; Huotari, Tea; Semerikov, Vladimir L; Vendramin, Giovanni G; Lascoux, Martin

    2014-07-01

    Parallel clines in different species, or in different geographical regions of the same species, are an important source of information on the genetic basis of local adaptation. We recently detected latitudinal clines in SNPs frequencies and gene expression of candidate genes for growth cessation in Scandinavian populations of Norway spruce (Picea abies). Here we test whether the same clines are also present in Siberian spruce (P. obovata), a close relative of Norway spruce with a different Quaternary history. We sequenced nine candidate genes and 27 control loci and genotyped 14 SSR loci in six populations of P. obovata located along the Yenisei river from latitude 56°N to latitude 67°N. In contrast to Scandinavian Norway spruce that both departs from the standard neutral model (SNM) and shows a clear population structure, Siberian spruce populations along the Yenisei do not depart from the SNM and are genetically unstructured. Nonetheless, as in Norway spruce, growth cessation is significantly clinal. Polymorphisms in photoperiodic (FTL2) and circadian clock (Gigantea, GI, PRR3) genes also show significant clinal variation and/or evidence of local selection. In GI, one of the variants is the same as in Norway spruce. Finally, a strong cline in gene expression is observed for FTL2, but not for GI. These results, together with recent physiological studies, confirm the key role played by FTL2 and circadian clock genes in the control of growth cessation in spruce species and suggest the presence of parallel adaptation in these two species. Copyright © 2014 by the Genetics Society of America.

  15. Paraquat-induced lightwood in two European conifers - Scotch pine and Norway spruce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wroblewska, H.; Conner, A.H.; Rowe, J.W.

    1978-04-01

    Paraquat treatment induced oleoresin-soaked lightwood in Scotch pine; borehole and ax-frill treatment methods were equally effective. Paraquat treatment of Norway spruce induced limited lightwood formation accompanied by heavy external oleoresin exudation. Thus paraquat treatment of Scotch pine and possibly Norway spruce could be commercially advantageous for increasing naval stores production from these species. Analysis of tall oil precursors (nonvolatile ether extractives) for resin acids, fatty acids, and nonsaponifiables showed that the increase from paraquat treatment was mainly from an increased resin acid content. The chemical composition of the resin acids from the lightwood and control wood areas was similar andmore » consisted of the usual pimaric and abietic type resin acids found in conifers. The fatty acids were predominately unsaturated C/sub 18/ isomers. Turpentine of both species consisted mainly of ..cap alpha..-pinene, ..beta..-pinene, and 3-carene. The composition of the turpentine from the Scotch pine lightwood did not differ from that of the control wood. However, turpentine from the Norway spruce lightwood had an increased 3-carene content compared to that from the control.« less

  16. Growth strategy of Norway spruce under air elevated [CO2

    NASA Astrophysics Data System (ADS)

    Pokorny, R.; Urban, O.; Holisova, P.; Sprtova, M.; Sigut, L.; Slipkova, R.

    2012-04-01

    Plants will respond to globally increasing atmospheric CO2 concentration ([CO2]) by acclimation or adaptation at physiological and morphological levels. Considering the temporal onset, physiological responses may be categorized as short-term and morphological ones as long-term responses. The degree of plant growth responses, including cell division and cell expansion, is highly variable. It depends mainly on the specie's genetic predisposition, environment, mineral nutrition status, duration of CO2 enrichment, and/or synergetic effects of other stresses. Elevated [CO2] causes changes in tissue anatomy, quantity, size, shape and spatial orientation and can result in altered sink strength. Since, there are many experimental facilities for the investigation of elevated [CO2] effects on trees: i) closed systems or open top chambers (OTCs), ii) semi-open systems (for example glass domes with adjustable lamella windows - DAWs), and iii) free-air [CO2] enrichments (FACE); the results are still unsatisfactory due to: i) relatively short-term duration of experiments, ii) cultivation of young plants with different growth strategy comparing to old ones, iii) plant cultivation under artificial soil and weather conditions, and iv) in non-representative stand structure. In this contribution we are discussing the physiological and morphological responses of Norway spruce trees cultivated in DAWs during eight consecutive growing seasons in the context with other results from Norway spruce cultivation under air-elevated [CO2] conditions. On the level of physiological responses, we discuss the changes in the rate of CO2 assimilation, assimilation capacity, photorespiration, dark respiration, stomatal conductance, water potential and transpiration, and the sensitivity of these physiological processes to temperature. On the level of morphological responses, we discuss the changes in bud and growth phenology, needle and shoot morphology, architecture of crown and root system, wood

  17. DECLINE IN SOIL CO2 EFFLUX FOLLOWING TREE GIRTLING IN MATURE BEECH AND SPRUCE STANDS IN GERMANY

    EPA Science Inventory

    Studies were undertaken to estimate the contribution of autotrophic respiration to total soil CO2 efflux in stands of mature European beech (Fagus sylvatica) and Norway spruce (Picea abies) near Freising, Germany. Five mature trees of each species were girdled to eliminate carbo...

  18. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany.

    PubMed

    Köstner, B; Falge, E; Tenhunen, J D

    2002-06-01

    Stand age is an important structural determinant of canopy transpiration (E(c)) and carbon gain. Another more functional parameter of forest structure is the leaf area/sapwood area relationship, A(L)/A(S), which changes with site conditions and has been used to estimate leaf area index of forest canopies. The interpretation of age-related changes in A(L)/A(S) and the question of how A(L)/A(S) is related to forest functions are of current interest because they may help to explain forest canopy fluxes and growth. We conducted studies in mature stands of Picea abies (L.) Karst. varying in age from 40 to 140 years, in tree density from 1680 to 320 trees ha(-1), and in tree height from 15 to 30 m. Structural parameters were measured by biomass harvests of individual trees and stand biometry. We estimated E(c) from scaled-up xylem sap flux of trees, and canopy-level fluxes were predicted by a three-dimensional microclimate and gas exchange model (STANDFLUX). In contrast to pine species, A(L)/A(S) of P. abies increased with stand age from 0.26 to 0.48 m(2) cm(-2). Agreement between E(c) derived from scaled-up sap flux and modeled canopy transpiration was obtained with the same parameterization of needle physiology independent of stand age. Reduced light interception per leaf area and, as a consequence, reductions in net canopy photosynthesis (A(c)), canopy conductance (g(c)) and E(c) were predicted by the model in the older stands. Seasonal water-use efficiency (WUE = A(c)/E(c)), derived from scaled-up sap flux and stem growth as well as from model simulation, declined with increasing A(L)/A(S) and stand age. Based on the different behavior of age-related A(L)/A(S) in Norway spruce stands compared with other tree species, we conclude that WUE rather than A(L)/A(S) could represent a common age-related property of all species. We also conclude that, in addition to hydraulic limitations reducing carbon gain in old stands, a functional change in A(L)/A(S) that is related to

  19. Transcriptome Analysis Reveals that Red and Blue Light Regulate Growth and Phytohormone Metabolism in Norway Spruce [Picea abies (L.) Karst].

    PubMed

    OuYang, Fangqun; Mao, Jian-Feng; Wang, Junhui; Zhang, Shougong; Li, Yue

    2015-01-01

    The mechanisms by which different light spectra regulate plant shoot elongation vary, and phytohormones respond differently to such spectrum-associated regulatory effects. Light supplementation can effectively control seedling growth in Norway spruce. However, knowledge of the effective spectrum for promoting growth and phytohormone metabolism in this species is lacking. In this study, 3-year-old Norway spruce clones were illuminated for 12 h after sunset under blue or red light-emitting diode (LED) light for 90 d, and stem increments and other growth traits were determined. Endogenous hormone levels and transcriptome differences in the current needles were assessed to identify genes related to the red and blue light regulatory responses. The results showed that the stem increment and gibberellin (GA) levels of the seedlings illuminated by red light were 8.6% and 29.0% higher, respectively, than those of the seedlings illuminated by blue light. The indoleacetic acid (IAA) level of the seedlings illuminated by red light was 54.6% lower than that of the seedlings illuminated by blue light, and there were no significant differences in abscisic acid (ABA) or zeatin riboside [ZR] between the two groups of seedlings. The transcriptome results revealed 58,736,166 and 60,555,192 clean reads for the blue-light- and red-light-illuminated samples, respectively. Illumina sequencing revealed 21,923 unigenes, and 2744 (approximately 93.8%) out of 2926 differentially expressed genes (DEGs) were found to be upregulated under blue light. The main KEGG classifications of the DEGs were metabolic pathway (29%), biosynthesis of secondary metabolites (20.49%) and hormone signal transduction (8.39%). With regard to hormone signal transduction, AUXIN-RESISTANT1 (AUX1), AUX/IAA genes, auxin-inducible genes, and early auxin-responsive genes [(auxin response factor (ARF) and small auxin-up RNA (SAUR)] were all upregulated under blue light compared with red light, which might have yielded the

  20. Analysing the mechanical performance and growth adaptation of Norway spruce using a non-linear finite-element model and experimental data.

    PubMed

    Lundström, T; Jonas, T; Volkwein, A

    2008-01-01

    Thirteen Norway spruce [Picea abies (L.) Karst.] trees of different size, age, and social status, and grown under varying conditions, were investigated to see how they react to complex natural static loading under summer and winter conditions, and how they have adapted their growth to such combinations of load and tree state. For this purpose a non-linear finite-element model and an extensive experimental data set were used, as well as a new formulation describing the degree to which the exploitation of the bending stress capacity is uniform. The three main findings were: material and geometric non-linearities play important roles when analysing tree deflections and critical loads; the strengths of the stem and the anchorage mutually adapt to the local wind acting on the tree crown in the forest canopy; and the radial stem growth follows a mechanically high-performance path because it adapts to prevailing as well as acute seasonal combinations of the tree state (e.g. frozen or unfrozen stem and anchorage) and load (e.g. wind and vertical and lateral snow pressure). Young trees appeared to adapt to such combinations in a more differentiated way than older trees. In conclusion, the mechanical performance of the Norway spruce studied was mostly very high, indicating that their overall growth had been clearly influenced by the external site- and tree-specific mechanical stress.

  1. Testing Projected Climate Change Conditions on the Endoconidiophora polonica / Norway spruce Pathosystem Shows Fungal Strain Specific Effects.

    PubMed

    Linnakoski, Riikka; Forbes, Kristian M; Wingfield, Michael J; Pulkkinen, Pertti; Asiegbu, Fred O

    2017-01-01

    Climate changes, exemplified by increased temperatures and CO 2 concentration, pose a global threat to forest health. Of particular concern are pests and pathogens, with a warming climate altering their distributions and evolutionary capacity, while impairing the ability of some plants to respond to infections. Progress in understanding and mitigating such effects is currently hindered by a lack of empirical research. Norway spruce ( Picea abies ) is one of the most economically important tree species in northern Europe, and is considered highly vulnerable to changes in climate. It is commonly infected by the fungus Endoconidiophora polonica , and we hypothesized that damage caused to trees will increase under future climate change predictions. To test this hypothesis an in vivo greenhouse experiment was conducted to evaluate the effects of a changed growing environment on E. polonica infected Norway spruce seedlings, comparing ambient conditions to predicted temperatures and CO 2 levels in Finland for the years 2030 and 2100. In total, 450 seedlings were randomized amongst the three treatments, with 25 seedlings from each allocated to inoculation with one of five different fungal strains or mock-inoculation. Seedlings were monitored throughout the thermal growing season for mortality, and lesion length and depth indices were measured at the experiment conclusion. Disease severity (mortality and lesions) was consistently greater in fungal-inoculated than mock-inoculated seedlings. However, substantial differences were observed among fungal strains in response to climate scenarios. For example, although overall seedling mortality was highest under the most distant (and severe) climate change expectations, of the two fungal strains with the highest mortality counts (referred to as F4 and F5), one produced greater mortality under the 2030 and 2100 scenarios than ambient conditions, whereas climate scenario had no effect on the other. This study contributes to a

  2. Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection.

    PubMed

    Hammerbacher, Almuth; Ralph, Steven G; Bohlmann, Joerg; Fenning, Trevor M; Gershenzon, Jonathan; Schmidt, Axel

    2011-10-01

    Stilbenes are dibenzyl polyphenolic compounds produced in several unrelated plant families that appear to protect against various biotic and abiotic stresses. Stilbene biosynthesis has been well described in economically important plants, such as grape (Vitis vinifera), peanut (Arachis hypogaea), and pine (Pinus species). However, very little is known about the biosynthesis and ecological role of stilbenes in spruce (Picea), an important gymnosperm tree genus in temperate and boreal forests. To investigate the biosynthesis of stilbenes in spruce, we identified two similar stilbene synthase (STS) genes in Norway spruce (Picea abies), PaSTS1 and PaSTS2, which had orthologs with high sequence identity in sitka (Picea sitchensis) and white (Picea glauca) spruce. Despite the conservation of STS sequences in these three spruce species, they differed substantially from angiosperm STSs. Several types of in vitro and in vivo assays revealed that the P. abies STSs catalyze the condensation of p-coumaroyl-coenzyme A and three molecules of malonyl-coenzyme A to yield the trihydroxystilbene resveratrol but do not directly form the dominant spruce stilbenes, which are tetrahydroxylated. However, in transgenic Norway spruce overexpressing PaSTS1, significantly higher amounts of the tetrahydroxystilbene glycosides, astringin and isorhapontin, were produced. This result suggests that the first step of stilbene biosynthesis in spruce is the formation of resveratrol, which is further modified by hydroxylation, O-methylation, and O-glucosylation to yield astringin and isorhapontin. Inoculating spruce with fungal mycelium increased STS transcript abundance and tetrahydroxystilbene glycoside production. Extracts from STS-overexpressing lines significantly inhibited fungal growth in vitro compared with extracts from control lines, suggesting that spruce stilbenes have a role in antifungal defense.

  3. Updating beliefs and combining evidence in adaptive forest management under climate change: a case study of Norway spruce (Picea abies L. Karst) in the Black Forest, Germany.

    PubMed

    Yousefpour, Rasoul; Temperli, Christian; Bugmann, Harald; Elkin, Che; Hanewinkel, Marc; Meilby, Henrik; Jacobsen, Jette Bredahl; Thorsen, Bo Jellesmark

    2013-06-15

    We study climate uncertainty and how managers' beliefs about climate change develop and influence their decisions. We develop an approach for updating knowledge and beliefs based on the observation of forest and climate variables and illustrate its application for the adaptive management of an even-aged Norway spruce (Picea abies L. Karst) forest in the Black Forest, Germany. We simulated forest development under a range of climate change scenarios and forest management alternatives. Our analysis used Bayesian updating and Dempster's rule of combination to simulate how observations of climate and forest variables may influence a decision maker's beliefs about climate development and thereby management decisions. While forest managers may be inclined to rely on observed forest variables to infer climate change and impacts, we found that observation of climate state, e.g. temperature or precipitation is superior for updating beliefs and supporting decision-making. However, with little conflict among information sources, the strongest evidence would be offered by a combination of at least two informative variables, e.g., temperature and precipitation. The success of adaptive forest management depends on when managers switch to forward-looking management schemes. Thus, robust climate adaptation policies may depend crucially on a better understanding of what factors influence managers' belief in climate change. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Isoprenoid emission response to changing light conditions of English oak, European beech and Norway spruce

    NASA Astrophysics Data System (ADS)

    van Meeningen, Ylva; Schurgers, Guy; Rinnan, Riikka; Holst, Thomas

    2017-09-01

    Light is an important environmental factor controlling biogenic volatile organic compound (BVOC) emissions, but in natural conditions its impact is hard to separate from other influential factors such as temperature. We studied the light response of foliar BVOC emissions, photosynthesis and stomatal conductance on three common European tree species, namely English oak (Quercus robur), European beech (Fagus sylvatica) and two provenances of Norway spruce (Picea abies) in Taastrup, Denmark. Leaf scale measurements were performed on the lowest positioned branches of the tree in July 2015. Light intensity was increased in four steps (0, 500, 1000 and 1500 µmol m-2 s-1), whilst other chamber conditions such as temperature, humidity and CO2 levels were fixed. Whereas the emission rate differed between individuals of the same species, the relative contributions of compounds to the total isoprenoid emission remained similar. Whilst some compounds were species specific, the compounds α-pinene, camphene, 3-carene, limonene and eucalyptol were emitted by all of the measured tree species. Some compounds, like isoprene and sabinene, showed an increasing emission response with increasing light intensity, whereas other compounds, like camphene, had no significant emission response to light for most of the measured trees. English oak and European beech showed high light-dependent emission fractions from isoprene and sabinene, but other emitted compounds were light independent. For the two provenances of Norway spruce, the compounds α-pinene, 3-carene and eucalyptol showed high light-dependent fractions for many of the measured trees. This study highlights differences between compound emissions in their response to a change in light and a possible light independence for certain compounds, which might be valid for a wider range of tree species. This information could be of importance when improving emission models and to further emphasize the discussion regarding light or

  5. Effect of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees.

    PubMed

    Stockfors, Jan; Linder, Sune

    1998-03-01

    To determine effects of stem nitrogen concentration ([N]) on the seasonal course of respiration, rates of stem respiration of ten control and ten irrigated-fertilized (IL), 30-year-old Norway spruce trees (Picea abies (L.) Karst.), growing in northern Sweden, were measured on seven occasions from June 1993 to April 1994. To explore sources of seasonal variation and mechanisms of fertilization effects on respiration, we separated total respiration into growth and maintenance respiration for both xylem and phloem bark. Stem respiration increased in response to the IL treatment and was positively correlated with growth rate, volume of living cells and stem nitrogen content. However, no significant effect of IL treatment or [N] in the living cells was found for respiration per unit volume of live cells. Total stem respiration during the growing season (June to September) was estimated to be 16.7 and 29.7 mol CO(2) m(-2) for control and IL-treated trees, respectively. Respiration during the growing season accounted for approximately 64% of total annual respiration. Depending on the method, estimated growth respiration varied between 40 and 60% of total respiration during the growing season. Between 75 and 80% of the live cell volume in the stems was in the phloem, and phloem maintenance accounted for about 70% of maintenance respiration. Because most of the living cells were found in the phloem, and the living xylem cells were concentrated in the outer growth rings, we concluded that the best base for expressing rates of stem growth and maintenance respiration in young Norway spruce trees is stem surface area.

  6. Finders keepers, losers weepers - drought as a modifier of competition between European beech and Norway spruce -

    NASA Astrophysics Data System (ADS)

    Goisser, Michael; Blanck, Christian; Geppert, Uwe; Häberle, Karl-Heinz; Matyssek, Rainer; Grams, Thorsten E. E.

    2016-04-01

    Mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.) frequently reflect over-yielding, when compared to respective monospecific stands. Over-yielding is attributed to enhanced resource uptake efficiency through niche complementarity alleviating species competition. Under climate change, however, with severe and frequent summer drought, water limitation may become crucial in modifying the competitive interaction between neighboring beech and spruce trees. In view of the demands by silvicultural practice, basic knowledge from experimental field work about competitive versus facilitative interaction in maturing mixed beech-spruce forests is scarce. To this end, we investigate species-specific drought response including underlying mechanisms of species interaction in a maturing group-wise mixed beech-spruce forest, amongst 60 and 53 adult trees of beech and spruce, respectively (spruce 65 ± 2, beech 85 ± 4 years old). Severe and repeated experimental drought is being induced over several years through a stand-scale approach of rain throughfall exclusion (Kranzberg Forest Roof Experiment, KROOF). The experimental design comprises 6 roofed (E, automated, closing only during rain) and 6 control (C) plots with a total area of almost 1800 square meters. In 2015 minimum predawn potentials of -2.16 MPa and -2.26 MPa were reached in E for beech and spruce respectively. At the leaf level, spruce displayed high drought susceptibility reflected by a distinct decrease in both stomatal conductance and net CO2 uptake rate by more than 80% each, suggesting isohydric response. Beech rather displayed anisohydry indicated by less pronounced yet significant reduction of stomatal conductance and net CO2 uptake rate by more than 55% and 45%, respectively. Under the C regime, a negative species interaction effect on stomatal conductance was found in beech, contrasting with a positive effect in spruce. However, drought reversed the effect of

  7. Micro- and macro-geographic scale effect on the molecular imprint of selection and adaptation in Norway spruce.

    PubMed

    Scalfi, Marta; Mosca, Elena; Di Pierro, Erica Adele; Troggio, Michela; Vendramin, Giovanni Giuseppe; Sperisen, Christoph; La Porta, Nicola; Neale, David B

    2014-01-01

    Forest tree species of temperate and boreal regions have undergone a long history of demographic changes and evolutionary adaptations. The main objective of this study was to detect signals of selection in Norway spruce (Picea abies [L.] Karst), at different sampling-scales and to investigate, accounting for population structure, the effect of environment on species genetic diversity. A total of 384 single nucleotide polymorphisms (SNPs) representing 290 genes were genotyped at two geographic scales: across 12 populations distributed along two altitudinal-transects in the Alps (micro-geographic scale), and across 27 populations belonging to the range of Norway spruce in central and south-east Europe (macro-geographic scale). At the macrogeographic scale, principal component analysis combined with Bayesian clustering revealed three major clusters, corresponding to the main areas of southern spruce occurrence, i.e. the Alps, Carpathians, and Hercynia. The populations along the altitudinal transects were not differentiated. To assess the role of selection in structuring genetic variation, we applied a Bayesian and coalescent-based F(ST)-outlier method and tested for correlations between allele frequencies and climatic variables using regression analyses. At the macro-geographic scale, the F(ST)-outlier methods detected together 11 F(ST)-outliers. Six outliers were detected when the same analyses were carried out taking into account the genetic structure. Regression analyses with population structure correction resulted in the identification of two (micro-geographic scale) and 38 SNPs (macro-geographic scale) significantly correlated with temperature and/or precipitation. Six of these loci overlapped with F(ST)-outliers, among them two loci encoding an enzyme involved in riboflavin biosynthesis and a sucrose synthase. The results of this study indicate a strong relationship between genetic and environmental variation at both geographic scales. It also suggests that an

  8. Micro- and Macro-Geographic Scale Effect on the Molecular Imprint of Selection and Adaptation in Norway Spruce

    PubMed Central

    Scalfi, Marta; Mosca, Elena; Di Pierro, Erica Adele; Troggio, Michela; Vendramin, Giovanni Giuseppe; Sperisen, Christoph; La Porta, Nicola; Neale, David B.

    2014-01-01

    Forest tree species of temperate and boreal regions have undergone a long history of demographic changes and evolutionary adaptations. The main objective of this study was to detect signals of selection in Norway spruce (Picea abies [L.] Karst), at different sampling-scales and to investigate, accounting for population structure, the effect of environment on species genetic diversity. A total of 384 single nucleotide polymorphisms (SNPs) representing 290 genes were genotyped at two geographic scales: across 12 populations distributed along two altitudinal-transects in the Alps (micro-geographic scale), and across 27 populations belonging to the range of Norway spruce in central and south-east Europe (macro-geographic scale). At the macrogeographic scale, principal component analysis combined with Bayesian clustering revealed three major clusters, corresponding to the main areas of southern spruce occurrence, i.e. the Alps, Carpathians, and Hercynia. The populations along the altitudinal transects were not differentiated. To assess the role of selection in structuring genetic variation, we applied a Bayesian and coalescent-based F ST-outlier method and tested for correlations between allele frequencies and climatic variables using regression analyses. At the macro-geographic scale, the F ST-outlier methods detected together 11 F ST-outliers. Six outliers were detected when the same analyses were carried out taking into account the genetic structure. Regression analyses with population structure correction resulted in the identification of two (micro-geographic scale) and 38 SNPs (macro-geographic scale) significantly correlated with temperature and/or precipitation. Six of these loci overlapped with F ST-outliers, among them two loci encoding an enzyme involved in riboflavin biosynthesis and a sucrose synthase. The results of this study indicate a strong relationship between genetic and environmental variation at both geographic scales. It also suggests that an

  9. Predicting the decomposition of Scots pine, Norway spruce, and birch stems in Finland.

    PubMed

    Mäkinen, Harri; Hynynen, Jari; Siitonen, Juha; Sievänen, Risto

    2006-10-01

    Models were developed for predicting the decomposition of dead wood for the main tree species in Finland, based on data collected from long-term thinning experiments in southern and central Finland. The decomposition rates were strongly related to the number of years after tree death. In contrast to previous studies, which have used the first-order exponential model, we found that the decomposition rate was not constant. Therefore, the Gompertz and Chapman-Richard's functions were fitted to the data. The slow initial decomposition period was mainly due to the fact that most dead trees remained standing as snags after their death. The initial period was followed by a period of rapid decomposition and, finally, by a period of moderately slow decomposition. Birch stems decomposed more rapidly than Scots pine and Norway spruce stems. Decomposition rates of Norway spruce stems were somewhat lower than those of Scots pine. Because the carbon concentration of decaying boles was relatively stable (about 50%) the rate of carbon loss follows that of mass loss. Models were also developed for the probability that a dead tree remains standing as a snag. During the first years after death, the probability was high. Thereafter, it decreased rapidly, the decrease being faster for birch stems than for Scots pine and Norway spruce stems. Almost all stems had fallen down within 40 years after their death. In Scots pine and Norway spruce, most snags remained hard and belonged to decay class 1. In birch, a higher proportion of snags belonged to the more advanced decay classes. The models provide a framework for predicting dead wood dynamics in managed as well as dense unthinned stands. The models can be incorporated into forest management planning systems, thereby facilitating estimates of carbon dynamics.

  10. Biosynthesis of the Major Tetrahydroxystilbenes in Spruce, Astringin and Isorhapontin, Proceeds via Resveratrol and Is Enhanced by Fungal Infection1[W][OA

    PubMed Central

    Hammerbacher, Almuth; Ralph, Steven G.; Bohlmann, Joerg; Fenning, Trevor M.; Gershenzon, Jonathan; Schmidt, Axel

    2011-01-01

    Stilbenes are dibenzyl polyphenolic compounds produced in several unrelated plant families that appear to protect against various biotic and abiotic stresses. Stilbene biosynthesis has been well described in economically important plants, such as grape (Vitis vinifera), peanut (Arachis hypogaea), and pine (Pinus species). However, very little is known about the biosynthesis and ecological role of stilbenes in spruce (Picea), an important gymnosperm tree genus in temperate and boreal forests. To investigate the biosynthesis of stilbenes in spruce, we identified two similar stilbene synthase (STS) genes in Norway spruce (Picea abies), PaSTS1 and PaSTS2, which had orthologs with high sequence identity in sitka (Picea sitchensis) and white (Picea glauca) spruce. Despite the conservation of STS sequences in these three spruce species, they differed substantially from angiosperm STSs. Several types of in vitro and in vivo assays revealed that the P. abies STSs catalyze the condensation of p-coumaroyl-coenzyme A and three molecules of malonyl-coenzyme A to yield the trihydroxystilbene resveratrol but do not directly form the dominant spruce stilbenes, which are tetrahydroxylated. However, in transgenic Norway spruce overexpressing PaSTS1, significantly higher amounts of the tetrahydroxystilbene glycosides, astringin and isorhapontin, were produced. This result suggests that the first step of stilbene biosynthesis in spruce is the formation of resveratrol, which is further modified by hydroxylation, O-methylation, and O-glucosylation to yield astringin and isorhapontin. Inoculating spruce with fungal mycelium increased STS transcript abundance and tetrahydroxystilbene glycoside production. Extracts from STS-overexpressing lines significantly inhibited fungal growth in vitro compared with extracts from control lines, suggesting that spruce stilbenes have a role in antifungal defense. PMID:21865488

  11. Dormancy release of Norway spruce under climatic warming: testing ecophysiological models of bud burst with a whole-tree chamber experiment.

    PubMed

    Hänninen, Heikki; Slaney, Michelle; Linder, Sune

    2007-02-01

    Ecophysiological models predicting timing of bud burst were tested with data gathered from 40-year-old Norway spruce (Picea abies (L.) Karst.) trees growing in northern Sweden in whole-tree chambers under climatic conditions predicted to prevail in 2100. Norway spruce trees, with heights between 5 and 7 m, were enclosed in individual chambers that provided a factorial combination of ambient (365 micromol mol-1) or elevated (700 micromol mol-1) atmospheric CO2 concentration, [CO2], and ambient or elevated air temperature. Temperature elevation above ambient ranged from +2.8 degrees C in summer to +5.6 degrees C in winter. Compared with control trees, elevated air temperature hastened bud burst by 2 to 3 weeks, whereas elevated [CO2] had no effect on the timing of bud burst. A simple model based on the assumption that bud rest completion takes place on a fixed calendar day predicted timing of bud burst more accurately than two more complicated models in which bud rest completion is caused by accumulated chilling. Together with some recent studies, the results suggest that, in adult trees, some additional environmental cues besides chilling are required for bud rest completion. Although it appears that these additional factors will protect trees under predicted climatic warming conditions, increased risk of frost damage associated with earlier bud burst cannot be ruled out. Inconsistent and partially anomalous results obtained in the model fitting show that, in addition to phenological data gathered under field conditions, more specific data from growth chamber and greenhouse experiments are needed for further development and testing of the models.

  12. Evaluating the Suitability of Management Strategies of Pure Norway Spruce Forests in the Black Forest Area of Southwest Germany for Adaptation to or Mitigation of Climate Change

    NASA Astrophysics Data System (ADS)

    Yousefpour, Rasoul; Hanewinkel, Marc; Le Moguédec, Gilles

    2010-02-01

    The study deals with the problem of evaluating management strategies for pure stands of Norway spruce ( Picea abies Karst) to balance adaptation to and mitigation of climate change, taking into account multiple objectives of a forest owner. A simulation and optimization approach was used to evaluate the management of a 1000 ha model Age-Class forest, representing the age-class distribution of an area of 66,000 ha of pure Norway spruce forests in the Black Forest region of Southwest Germany. Eight silvicultural scenarios comprising five forest conversion schemes which were interpreted as “adaptation” strategies which aims at increasing the proportion of Beech, that is expected to better cope with climate change than the existing Norway spruce, and three conventional strategies including a “Do-nothing” alternative classified as “mitigation”, trying to keep rather higher levels of growing stock of spruce, were simulated using the empirical growth simulator BWINPro-S. A linear programming approach was adapted to simultaneously maximize the net present values of carbon sequestration and timber production subject to the two constraints of wood even flow and partial protection of the oldest (nature protection). The optimized plan, with the global utility of 11,687 €/ha in forty years, allocated a combination of silvicultural scenarios to the entire forest area. Overall, strategies classified as “mitigation” were favored, while strategies falling into the “adaptation”-category were limited to the youngest age-classes in the optimal solution. Carbon sequestration of the “Do-nothing” alternative was between 1.72 and 1.85 million tons higher than the other alternatives for the entire forest area while the differences between the adaptation and mitigation approaches were approximately 133,000 tons. Sensitivity analysis showed that a carbon price of 21 €/ t is the threshold at which carbon sequestration is promoted, while an interest rate of above 2

  13. Transcriptional and post-translational control of chlorophyll biosynthesis by dark-operative protochlorophyllide oxidoreductase in Norway spruce.

    PubMed

    Stolárik, Tibor; Hedtke, Boris; Šantrůček, Jiří; Ilík, Petr; Grimm, Bernhard; Pavlovič, Andrej

    2017-05-01

    Unlike angiosperms, gymnosperms use two different enzymes for the reduction of protochlorophyllide to chlorophyllide: the light-dependent protochlorophyllide oxidoreductase (LPOR) and the dark-operative protochlorophyllide oxidoreductase (DPOR). In this study, we examined the specific role of both enzymes for chlorophyll synthesis in response to different light/dark and temperature conditions at different developmental stages (cotyledons and needles) of Norway spruce (Picea abies Karst.). The accumulation of chlorophyll and chlorophyll-binding proteins strongly decreased during dark growth in secondary needles at room temperature as well as in cotyledons at low temperature (7 °C) indicating suppression of DPOR activity. The levels of the three DPOR subunits ChlL, ChlN, and ChlB and the transcripts of their encoding genes were diminished in dark-grown secondary needles. The low temperature had minor effects on the transcription and translation of these genes in cotyledons, which is suggestive for post-translational control in chlorophyll biosynthesis. Taking into account the higher solubility of oxygen at low temperature and oxygen sensitivity of DPOR, we mimicked low-temperature condition by the exposure of seedlings to higher oxygen content (33%). The treatment resulted in an etiolated phenotype of dark-grown seedlings, confirming an oxygen-dependent control of DPOR activity in spruce cotyledons. Moreover, light-dependent suppression of mRNA and protein level of DPOR subunits indicates that more efficiently operating LPOR takes over the DPOR function under light conditions, especially in secondary needles.

  14. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions

    PubMed Central

    Gričar, Jožica; Prislan, Peter; de Luis, Martin; Gryc, Vladimír; Hacurová, Jana; Vavrčík, Hanuš; Čufar, Katarina

    2015-01-01

    There is limited information on intra-annual plasticity of secondary tissues of tree species growing under different environmental conditions. To increase the knowledge about the plasticity of secondary growth, which allows trees to adapt to specific local climatic regimes, we examined climate–radial growth relationships of Norway spruce [Picea abies (L.) H. Karst.] from three contrasting locations in the temperate climatic zone by analyzing tree-ring widths for the period 1932–2010, and cell characteristics in xylem and phloem increments formed in the years 2009–2011. Variation in the structure of xylem and phloem increments clearly shows that plasticity in seasonal dynamics of cambial cell production and cell differentiation exists on xylem and phloem sides. Anatomical characteristics of xylem and phloem cells are predominantly site-specific characteristics, because they varied among sites but were fairly uniform among years in trees from the same site. Xylem and phloem tissues formed in the first part of the growing season seemed to be more stable in structure, indicating their priority over latewood and late phloem for tree performance. Long-term climate and radial growth analyses revealed that growth was in general less dependent on precipitation than on temperature; however, growth sensitivity to local conditions differed among the sites. Only partial dependence of radial growth of spruce on climatic factors on the selected sites confirms its strategy to adapt the structure of wood and phloem increments to function optimally in local conditions. PMID:26442044

  15. Interacting effects of elevated CO2 and weather variability on photosynthesis of mature boreal Norway spruce agree with biochemical model predictions.

    PubMed

    Uddling, Johan; Wallin, Göran

    2012-12-01

    According to well-known biochemical and biophysical mechanisms, the stimulation of C(3) photosynthesis by elevated atmospheric CO(2) concentration ([CO(2)]) is strongly modified by changes in temperature and radiation. In order to investigate whether a static parameterization of the commonly used Farquhar et al. model of photosynthesis (i.e., without CO(2)-induced seasonal or thermal acclimation of photosynthetic capacity) can accurately predict these interactions in mature boreal Norway spruce (Picea abies (L.) Karst.) during the frost-free part of the growing season, shoot gas exchange was continuously measured on trees during their second/third year of exposure to ambient or doubled [CO(2)] inside whole-tree chambers. The relative CO(2)-induced enhancement of net photosynthesis (A(n)) at a given temperature remained stable over the study period, but increased strongly with temperature and radiation, in agreement with predictions by the model. Light-saturated A(n) (+67% at 20 °C), dark respiration (+36%) and intercellular to ambient [CO(2)] ratio (c(i)/c(a); +27%) were significantly increased by CO(2) treatment. Stomatal conductance (g(s)) was not significantly affected. Our results demonstrate that the Farquhar et al. model of photosynthesis has the capability to predict interactions between [CO(2)] and seasonal weather variability on A(n) in Norway spruce during the non-frost growing season without accounting for CO(2)-induced seasonal and/or thermal photosynthetic acclimation. However, stomatal model assumptions of reduced g(s) and constant c(i)/c(a) under rising atmospheric [CO(2)] did not hold.

  16. Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands.

    PubMed

    Helmisaari, Heljä-Sisko; Derome, John; Nöjd, Pekka; Kukkola, Mikko

    2007-10-01

    Variations in fine root biomass of trees and understory in 16 stands throughout Finland were examined and relationships to site and stand characteristics determined. Norway spruce fine root biomass varied between 184 and 370 g m(-2), and that of Scots pine ranged between 149 and 386 g m(-2). In northern Finland, understory roots and rhizomes (< 2 mm diameter) accounted for up to 50% of the stand total fine root biomass. Therefore, the fine root biomass of trees plus understory was larger in northern Finland in stands of both tree species, resulting in a negative relationship between fine root biomass and the temperature sum and a positive relationship between fine root biomass and the carbon:nitrogen ratio of the soil organic layer. The foliage:fine root ratio varied between 2.1 and 6.4 for Norway spruce and between 0.8 and 2.2 for Scots pine. The ratio decreased for both Norway spruce and Scots pine from south to north, as well as from fertile to more infertile site types. The foliage:fine root ratio of Norway spruce was related to basal area and stem surface area. The strong positive correlations of these three parameters with fine root nitrogen concentration implies that more fine roots are needed to maintain a certain amount of foliage when nutrient availability is low. No significant relationships were found between stand parameters and fine root biomass at the stand level, but the relationships considerably improved when both fine root biomass and stand parameters were calculated for the mean tree in the stand. When the northern and southern sites were analyzed separately, fine root biomass per tree of both species was significantly correlated with basal area and stem surface area per tree. Basal area, stem surface area and stand density can be estimated accurately and easily. Thus, our results may have value in predicting fine root biomass at the tree and stand level in boreal Norway spruce and Scots pine forests.

  17. Needle metabolome, freezing tolerance and gas exchange in Norway spruce seedlings exposed to elevated temperature and ozone concentration.

    PubMed

    Riikonen, Johanna; Kontunen-Soppela, Sari; Ossipov, Vladimir; Tervahauta, Arja; Tuomainen, Marjo; Oksanen, Elina; Vapaavuori, Elina; Heinonen, Jaakko; Kivimäenpää, Minna

    2012-09-01

    Northern forests are currently experiencing increasing mean temperatures, especially during autumn and spring. Consequently, alterations in carbon sequestration, leaf biochemical quality and freezing tolerance (FT) are likely to occur. The interactive effects of elevated temperature and ozone (O(3)), the most harmful phytotoxic air pollutant, on Norway spruce (Picea abies (L.) Karst.) seedlings were studied by analysing phenology, metabolite concentrations in the needles, FT and gas exchange. Sampling was performed in September and May. The seedlings were exposed to a year-round elevated temperature (+1.3 °C), and to 1.4× ambient O(3) concentration during the growing season in the field. Elevated temperature increased the concentrations of amino acids, organic acids of the citric acid cycle and some carbohydrates, and reduced the concentrations of phenolic compounds, some organic acids of the shikimic acid pathway, sucrose, cyclitols and steroids, depending on the timing of the sampling. Although growth onset occurred earlier at elevated temperature, the temperature of 50% lethality (LT(50)) was similar in the treatments. Photosynthesis and the ratio of photosynthesis to dark respiration were reduced by elevated temperature. Elevated concentrations of O(3) reduced the total concentration of soluble sugars, and tended to reduce LT(50) of the needles in September. These results show that alterations in needle chemical quality can be expected at elevated temperatures, but the seedlings' sensitivity to autumn and spring frosts is not altered. Elevated O(3) has the potential to disturb cold hardening of Norway spruce seedlings in autumn, and to alter the water balance of the seedling through changes in stomatal conductance (g(s)), while elevated temperature is likely to reduce g(s) and consequently reduce the O(3)-flux inside the leaves.

  18. Extensive Families of miRNAs and PHAS Loci in Norway Spruce Demonstrate the Origins of Complex phasiRNA Networks in Seed Plants

    PubMed Central

    Xia, Rui; Xu, Jing; Arikit, Siwaret; Meyers, Blake C.

    2015-01-01

    In eudicot plants, the miR482/miR2118 superfamily regulates and instigates the production of phased secondary small interfering RNAs (siRNAs) from NB-LRR (nucleotide binding leucine-rich repeat) genes that encode disease resistance proteins. In grasses, this miRNA family triggers siRNA production specifically in reproductive tissues from long noncoding RNAs. To understand this functional divergence, we examined the small RNA population in the ancient gymnosperm Norway spruce (Picea abies). As many as 41 miRNA families in spruce were found to trigger phasiRNA (phased, secondary siRNAs) production from diverse PHAS loci, with a remarkable 19 miRNA families capable of targeting over 750 NB-LRR genes to generate phasiRNAs. miR482/miR2118, encoded in spruce by at least 24 precursor loci, targets not only NB-LRR genes to trigger phasiRNA production (as in eudicots) but also noncoding PHAS loci, generating phasiRNAs preferentially in male or female cones, reminiscent of its role in the grasses. These data suggest a dual function of miR482/miR2118 present in gymnosperms that was selectively yet divergently retained in flowering plants. A few MIR482/MIR2118 precursors possess an extremely long stem-loop structure, one arm of which shows significant sequence similarity to spruce NB-LRR genes, suggestive of an evolutionary origin from NB-LRR genes through gene duplication. We also characterized an expanded miR390-TAS3 (TRANS-ACTING SIRNA GENE 3)-ARF (AUXIN RESPONSIVE FACTOR) pathway, comprising 18 TAS3 genes of diverse features. Finally, we annotated spruce miRNAs and their targets. Taken together, these data expand our understanding of phasiRNA network in plants and the evolution of plant miRNAs, particularly miR482/miR2118 and its functional diversification. PMID:26318183

  19. Effect of species composition on carbon and nitrogen stocks in forest floor and mineral soil in Norway spruce and European beech mixed forests

    NASA Astrophysics Data System (ADS)

    Andivia, Enrique; Rolo, Víctor; Jonard, Mathieu; Formánek, Pavel; Ponette, Quentin

    2015-04-01

    Management of existing forests has been identified as the main strategy to enhance carbon sequestration and to mitigate the impact of climate change on forest ecosystems. In this direction, the conversion of Norway spruce monospecific stands into mixed stands by intermingling individuals of European beech is an ongoing trend in adaptive forest management strategies, especially in Central Europe. However, studies assessing the effect of changes in tree species composition on soil organic carbon (SOC) and nitrogen stocks are still scarce and there is a lack of scientific evidence supporting tree species selection as a feasible management option to mitigate the effects of predicted future climatic scenarios. We compared C and N stocks in the forest floor (litter and humus) and the top 10 cm of mineral soil in two monospecific stands of Norway spruce and European beech and in a mixed stand of both species. The effect of tree species composition on the C and N stocks and its spatial distribution was evaluated based on litterfall, root production, elevation and canopy opening, and by using a combination of modelling and geostatistical techniques. C stock was highest in the Norway spruce and the mixed stands, while N stock was highest in the mixed stand and lowest under European beech, with intermediate values in the Norway spruce stand. Each forest type showed differences in forest floor properties, suggesting that species composition is an important factor governing forest floor characteristics, including C and N stocks. The distribution of C and N stocks between forest soil layers was different for each forest type. C and N stocks were highest in the hummus layer under Norway spruce, whereas both stocks were lowest in the European beech stand. On the other hand, the mixed stand showed the highest C and N accumulation in the uppermost mineral soil layer, while the monospecific stands showed similar values. Litterfall was the main contribution to C and N stocks of the

  20. Daylength and temperature during seed production interactively affect adaptive performance of Picea abies progenies.

    PubMed

    Johnsen, Oystein; Daehlen, Ola Gram; Ostreng, Geir; Skrøppa, Tore

    2005-12-01

    Adaptive traits in Picea abies (Norway spruce) progenies are influenced by the maternal temperatures during seed production. Here, we have extended these studies by testing the effects of maternal photoperiod and temperature on phenology and frost hardiness on progenies. Using eight phytotron rooms, seeds from three unrelated crosses were made in an environmental 2 x 2 factorial combination of long and short days and high and low temperatures. The progenies were then forced to cease growth rapidly at the end of the first growing season. An interactive memory effect was expressed the second growth season. Progenies from high temperature and short days, and from low temperatures and long days, started growth later in spring, ceased shoot growth later in summer, grew taller and were less frost hardy in the autumn than their full siblings from low temperatures and short days, and from high temperatures and long days. Norway spruce has developed a memory mechanism, regulating adaptive plasticity by photoperiod and temperature, which could counteract harmful effects of a rapidly changing climate.

  1. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Petrillo, Marta; Cherubini, Paolo; Fravolini, Giulia; Marchetti, Marco; Ascher-Jenull, Judith; Schärer, Michael; Synal, Hans-Arno; Bertoldi, Daniela; Camin, Federica; Larcher, Roberto; Egli, Markus

    2016-03-01

    100 years in larch CWD. Consequently, the decay of Picea abies and Larix decidua is very low. Several uncertainties, however, remain: 14C dating of CWD from decay classes 4 and 5 and having a pre-bomb age is often difficult (large age range due to methodological constraints) and fall rates of both European larch and Norway spruce are missing.

  2. Methyl Jasmonate-Induced Monoterpenes in Scots Pine and Norway Spruce Tissues Affect Pine Weevil Orientation.

    PubMed

    Lundborg, Lina; Nordlander, Göran; Björklund, Niklas; Nordenhem, Henrik; Borg-Karlson, Anna-Karin

    2016-12-01

    In large parts of Europe, insecticide-free measures for protecting conifer plants are desired to suppress damage by the pine weevil Hylobius abietis (L.). Treatment with methyl jasmonate (MeJA), a chemical elicitor already used in crop production, may enhance expression of chemical defenses in seedlings in conifer regenerations. However, in a previous experiment, MeJA treatment resulted in substantially better field protection for Scots pine (Pinus sylvestris L.) than for Norway spruce (Picea abies (L.) Karst.). Hypothesizing that the variations may be at least due partly to volatiles released by MeJA-treated seedlings and their effects on pine weevil orientation, we examined tissue extracts of seedlings (from the same batches as previously used) by two-dimensional GC-MS. We found that the MeJA treatment increased contents of the monoterpene (-)-β-pinene in phloem (the weevil's main target tissue) of both tree species, however, the (-)-β-pinene/(-)-α-pinene ratio increased more in the phloem of P. sylvestris. We also tested the attractiveness of individual monoterpenes found in conifer tissues (needles and phloem) for pine weevils using an arena with traps baited with single-substance dispensers and pine twigs. Trap catches were reduced when the pine material was combined with a dispenser releasing (-)-β-pinene, (+)-3-carene, (-)-bornyl acetate or 1,8-cineole. However, (-)-α-pinene did not have this effect. Thus, the greater field protection of MeJA-treated P. sylvestris seedlings may be due to the selective induction of increases in contents of the deterrent (-)-β-pinene, in contrast to strong increases in both non-deterrent (-)-α-pinene and the deterrent (-)-β-pinene in P. abies seedlings.

  3. Extraction of features from ultrasound acoustic emissions: a tool to assess the hydraulic vulnerability of Norway spruce trunkwood?

    PubMed Central

    Rosner, Sabine; Klein, Andrea; Wimmer, Rupert; Karlsson, Bo

    2011-01-01

    Summary • The aim of this study was to assess the hydraulic vulnerability of Norway spruce (Picea abies) trunkwood by extraction of selected features of acoustic emissions (AEs) detected during dehydration of standard size samples. • The hydraulic method was used as the reference method to assess the hydraulic vulnerability of trunkwood of different cambial ages. Vulnerability curves were constructed by plotting the percentage loss of conductivity vs an overpressure of compressed air. • Differences in hydraulic vulnerability were very pronounced between juvenile and mature wood samples; therefore, useful AE features, such as peak amplitude, duration and relative energy, could be filtered out. The AE rates of signals clustered by amplitude and duration ranges and the AE energies differed greatly between juvenile and mature wood at identical relative water losses. • Vulnerability curves could be constructed by relating the cumulated amount of relative AE energy to the relative loss of water and to xylem tension. AE testing in combination with feature extraction offers a readily automated and easy to use alternative to the hydraulic method. PMID:16771986

  4. Hydraulic efficiency compromises compression strength perpendicular to the grain in Norway spruce trunkwood

    PubMed Central

    2011-01-01

    The aim of this study was to investigate bending stiffness and compression strength perpendicular to the grain of Norway spruce (Picea abies (L.) Karst.) trunkwood with different anatomical and hydraulic properties. Hydraulically less safe mature sapwood had bigger hydraulic lumen diameters and higher specific hydraulic conductivities than hydraulically safer juvenile wood. Bending stiffness (MOE) was higher, whereas radial compression strength lower in mature than in juvenile wood. A density-based tradeoff between MOE and hydraulic efficiency was apparent in mature wood only. Across cambial age, bending stiffness did not compromise hydraulic efficiency due to variation in latewood percent and because of the structural demands of the tree top (e.g. high flexibility). Radial compression strength compromised, however, hydraulic efficiency because it was extremely dependent on the characteristics of the “weakest” wood part, the highly conductive earlywood. An increase in conduit wall reinforcement of earlywood tracheids would be too costly for the tree. Increasing radial compression strength by modification of microfibril angles or ray cell number could result in a decrease of MOE, which would negatively affect the trunk’s capability to support the crown. We propose that radial compression strength could be an easily assessable and highly predictive parameter for the resistance against implosion or vulnerability to cavitation across conifer species, which should be topic of further studies. PMID:22058609

  5. Norway spruce embryogenesis: changes in carbohydrate profile, structural development and response to polyethylene glycol

    PubMed Central

    Hudec, Lukáš; Konrádová, Hana; Hašková, Anna; Lipavská, Helena

    2016-01-01

    Two unrelated, geographically distinct, highly embryogenic lines of Norway spruce (Picea abies (L.) Karst.) were analysed to identify metabolic traits characteristic for lines with good yields of high-quality embryos. The results were compared with corresponding characteristics of a poorly productive line (low embryo yield, scarce high-quality embryos). The following carbohydrate profiles and spectra during maturation, desiccation and germination were identified as promising characteristics for line evaluation: a gradual decrease in total soluble carbohydrates with an increasing sucrose : hexose ratio during maturation; accumulation of raffinose family oligosaccharides resulting from desiccation and their rapid degradation at the start of germination; and a decrease in sucrose, increase in hexoses and the appearance of pinitol with proceeding germination. We propose that any deviation from this profile in an embryonic line is a symptom of inferior somatic embryo development. We further propose that a fatty acid spectrum dominated by linoleic acid (18 : 2) was a common feature of healthy spruce somatic embryos, although it was quite different from zygotic embryos mainly containing oleic acid (18 : 1). The responses of the lines to osmotic stress were evaluated based on comparison of control (without osmoticum) and polyethylene glycol (PEG)-exposed (PEG 4000) variants. Although genetically distinct, both highly embryogenic lines responded in a very similar manner, with the only difference being sensitivity to high concentrations of PEG. At an optimum PEG concentration (3.75 and 5%), which was line specific, negative effects of PEG on embryo germination were compensated for by a higher maturation efficiency so that the application of PEG at an appropriate concentration improved the yield of healthy germinants per gram of initial embryonal mass and accelerated the process. Polyethylene glycol application, however, resulted in no improvement of the poorly

  6. Host Genetics and Environment Drive Divergent Responses of Two Resource Sharing Gall-Formers on Norway Spruce: A Common Garden Analysis.

    PubMed

    Axelsson, E Petter; Iason, Glenn R; Julkunen-Tiitto, Riitta; Whitham, Thomas G

    2015-01-01

    A central issue in the field of community genetics is the expectation that trait variation among genotypes play a defining role in structuring associated species and in forming community phenotypes. Quantifying the existence of such community phenotypes in two common garden environments also has important consequences for our understanding of gene-by-environment interactions at the community level. The existence of community phenotypes has not been evaluated in the crowns of boreal forest trees. In this study we address the influence of tree genetics on needle chemistry and genetic x environment interactions on two gall-inducing adelgid aphids (Adelges spp. and Sacchiphantes spp.) that share the same elongating bud/shoot niche. We examine the hypothesis that the canopies of different genotypes of Norway spruce (Picea abies L.) support different community phenotypes. Three patterns emerged. First, the two gallers show clear differences in their response to host genetics and environment. Whereas genetics significantly affected the abundance of Adelges spp. galls, Sacchiphantes spp. was predominately affected by the environment suggesting that the genetic influence is stronger in Adelges spp. Second, the among family variation in genetically controlled resistance was large, i.e. fullsib families differed as much as 10 fold in susceptibility towards Adelges spp. (0.57 to 6.2 galls/branch). Also, the distribution of chemical profiles was continuous, showing both overlap as well as examples of significant differences among fullsib families. Third, despite the predicted effects of host chemistry on galls, principal component analyses using 31 different phenolic substances showed only limited association with galls and a similarity test showed that trees with similar phenolic chemical characteristics, did not host more similar communities of gallers. Nonetheless, the large genetic variation in trait expression and clear differences in how community members respond to host

  7. Response of green reflectance continuum removal index to the xanthophyll de-epoxidation cycle in Norway spruce needles.

    PubMed

    Kovác, Daniel; Malenovský, Zbyněk; Urban, Otmar; Špunda, Vladimír; Kalina, Jiří; Ač, Alexander; Kaplan, Veroslav; Hanuš, Jan

    2013-04-01

    A dedicated field experiment was conducted to investigate the response of a green reflectance continuum removal-based optical index, called area under the curve normalized to maximal band depth between 511 nm and 557 nm (ANMB511-557), to light-induced transformations in xanthophyll cycle pigments of Norway spruce [Picea abies (L.) Karst] needles. The performance of ANMB511-557 was compared with the photochemical reflectance index (PRI) computed from the same leaf reflectance measurements. Needles of four crown whorls (fifth, eighth, 10th, and 15th counted from the top) were sampled from a 27-year-old spruce tree throughout a cloudy and a sunny day. Needle optical properties were measured together with the composition of the photosynthetic pigments to investigate their influence on both optical indices. Analyses of pigments showed that the needles of the examined whorls varied significantly in chlorophyll content and also in related pigment characteristics, such as the chlorophyll/carotenoid ratio. The investigation of the ANMB511-557 diurnal behaviour revealed that the index is able to follow the dynamic changes in the xanthophyll cycle independently of the actual content of foliar pigments. Nevertheless, ANMB511-557 lost the ability to predict the xanthophyll cycle behaviour during noon on the sunny day, when the needles were exposed to irradiance exceeding 1000 µmol m(-2) s(-1). Despite this, ANMB511-557 rendered a better performance for tracking xanthophyll cycle reactions than PRI. Although declining PRI values generally responded to excessive solar irradiance, they were not able to predict the actual de-epoxidation state in the needles examined.

  8. Belowground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (Fagus sylvatica L./Picea abies [L.] Karst).

    PubMed

    Nikolova, Petia S; Andersen, Christian P; Blaschke, Helmut; Matyssek, Rainer; Häberle, Karl-Heinz

    2010-04-01

    The effects of experimentally elevated O(3) on soil respiration rates, standing fine-root biomass, fine-root production and delta(13)C signature of newly produced fine roots were investigated in an adult European beech/Norway spruce forest in Germany during two subsequent years with contrasting rainfall patterns. During humid 2002, soil respiration rate was enhanced under elevated O(3) under beech and spruce, and was related to O(3)-stimulated fine-root production only in beech. During dry 2003, the stimulating effect of O(3) on soil respiration rate vanished under spruce, which was correlated with decreased fine-root production in spruce under drought, irrespective of the O(3) regime. delta(13)C signature of newly formed fine-roots was consistent with the differing g(s) of beech and spruce, and indicated stomatal limitation by O(3) in beech and by drought in spruce. Our study showed that drought can override the stimulating O(3) effects on fine-root dynamics and soil respiration in mature beech and spruce forests. 2009 Elsevier Ltd. All rights reserved.

  9. Generic biomass functions for Norway spruce in Central Europe--a meta-analysis approach toward prediction and uncertainty estimation.

    PubMed

    Wirth, Christian; Schumacher, Jens; Schulze, Ernst-Detlef

    2004-02-01

    To facilitate future carbon and nutrient inventories, we used mixed-effect linear models to develop new generic biomass functions for Norway spruce (Picea abies (L.) Karst.) in Central Europe. We present both the functions and their respective variance-covariance matrices and illustrate their application for biomass prediction and uncertainty estimation for Norway spruce trees ranging widely in size, age, competitive status and site. We collected biomass data for 688 trees sampled in 102 stands by 19 authors. The total number of trees in the "base" model data sets containing the predictor variables diameter at breast height (D), height (H), age (A), site index (SI) and site elevation (HSL) varied according to compartment (roots: n = 114, stem: n = 235, dry branches: n = 207, live branches: n = 429 and needles: n = 551). "Core" data sets with about 40% fewer trees could be extracted containing the additional predictor variables crown length and social class. A set of 43 candidate models representing combinations of lnD, lnH, lnA, SI and HSL, including second-order polynomials and interactions, was established. The categorical variable "author" subsuming mainly methodological differences was included as a random effect in a mixed linear model. The Akaike Information Criterion was used for model selection. The best models for stem, root and branch biomass contained only combinations of D, H and A as predictors. More complex models that included site-related variables resulted for needle biomass. Adding crown length as a predictor for needles, branches and roots reduced both the bias and the confidence interval of predictions substantially. Applying the best models to a test data set of 17 stands ranging in age from 16 to 172 years produced realistic allocation patterns at the tree and stand levels. The 95% confidence intervals (% of mean prediction) were highest for crown compartments (approximately +/- 12%) and lowest for stem biomass (approximately +/- 5%), and

  10. Logging residue removal after thinning in boreal forests: long-term impact on the nutrient status of Norway spruce and Scots pine needles.

    PubMed

    Luiro, Jukka; Kukkola, Mikko; Saarsalmi, Anna; Tamminen, Pekka; Helmisaari, Heljä-Sisko

    2010-01-01

    The aim of this study was to compare how conventional stem harvesting (CH) and whole-tree harvesting (WTH) in the first, and in some cases also in the second, thinning affect the needle nutrient status of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) stands in Finland. A series of 12 long-term field experiments was studied. The experiments were established during 1978-86. The effects of logging residue removal after thinnings on the needle nutrient concentrations were generally minor and without any overall trends, but there were differences between experiments. Trees tend to maintain their current needle nutrient concentrations at the same level by re-utilizing the nutrients stored in the older tissues and by changing C allocation in the whole tree. Thus, needle analysis should be combined with stem growth data in order to achieve a more comprehensive understanding of the effects of WTH on the nutrient status of trees.

  11. Different Alleles of a Gene Encoding Leucoanthocyanidin Reductase (PaLAR3) Influence Resistance against the Fungus Heterobasidion parviporum in Picea abies1

    PubMed Central

    Ihrmark, Katarina

    2016-01-01

    Despite the fact that fungal diseases are a growing menace for conifers in modern silviculture, only a very limited number of molecular markers for pathogen resistance have been validated in conifer species. A previous genetic study indicated that the resistance of Norway spruce (Picea abies) to Heterobasidion annosum s.l., a pathogenic basidiomycete species complex, is linked to a quantitative trait loci that associates with differences in fungal growth in sapwood (FGS) that includes a gene, PaLAR3, which encodes a leucoanthocyanidin reductase. In this study, gene sequences showed the presence of two PaLAR3 allelic lineages in P. abies. Higher resistance was associated with the novel allele, which was found in low frequency in the four P. abies populations that we studied. Norway spruce plants carrying at least one copy of the novel allele showed a significant reduction in FGS after inoculation with Heterobasidion parviporum compared to their half-siblings carrying no copies, indicating dominance of this allele. The amount of (+) catechin, the enzymatic product of PaLAR3, was significantly higher in bark of trees homozygous for the novel allele. Although we observed that the in vitro activities of the enzymes encoded by the two alleles were similar, we could show that allele-specific transcript levels were significantly higher for the novel allele, indicating that regulation of gene expression is responsible for the observed effects in resistance, possibly caused by differences in cis-acting elements that we observe in the promoter region of the two alleles. PMID:27317690

  12. Pervasive growth reduction in Norway spruce forests following wind disturbance.

    PubMed

    Seidl, Rupert; Blennow, Kristina

    2012-01-01

    In recent decades the frequency and severity of natural disturbances by e.g., strong winds and insect outbreaks has increased considerably in many forest ecosystems around the world. Future climate change is expected to further intensify disturbance regimes, which makes addressing disturbances in ecosystem management a top priority. As a prerequisite a broader understanding of disturbance impacts and ecosystem responses is needed. With regard to the effects of strong winds--the most detrimental disturbance agent in Europe--monitoring and management has focused on structural damage, i.e., tree mortality from uprooting and stem breakage. Effects on the functioning of trees surviving the storm (e.g., their productivity and allocation) have been rarely accounted for to date. Here we show that growth reduction was significant and pervasive in a 6.79 million hectare forest landscape in southern Sweden following the storm Gudrun (January 2005). Wind-related growth reduction in Norway spruce (Picea abies (L.) Karst.) forests surviving the storm exceeded 10% in the worst hit regions, and was closely related to maximum gust wind speed (R(2) = 0.849) and structural wind damage (R(2) = 0.782). At the landscape scale, wind-related growth reduction amounted to 3.0 million m(3) in the three years following Gudrun. It thus exceeds secondary damage from bark beetles after Gudrun as well as the long-term average storm damage from uprooting and stem breakage in Sweden. We conclude that the impact of strong winds on forest ecosystems is not limited to the immediately visible area of structural damage, and call for a broader consideration of disturbance effects on ecosystem structure and functioning in the context of forest management and climate change mitigation.

  13. Pervasive Growth Reduction in Norway Spruce Forests following Wind Disturbance

    PubMed Central

    Seidl, Rupert; Blennow, Kristina

    2012-01-01

    Background In recent decades the frequency and severity of natural disturbances by e.g., strong winds and insect outbreaks has increased considerably in many forest ecosystems around the world. Future climate change is expected to further intensify disturbance regimes, which makes addressing disturbances in ecosystem management a top priority. As a prerequisite a broader understanding of disturbance impacts and ecosystem responses is needed. With regard to the effects of strong winds – the most detrimental disturbance agent in Europe – monitoring and management has focused on structural damage, i.e., tree mortality from uprooting and stem breakage. Effects on the functioning of trees surviving the storm (e.g., their productivity and allocation) have been rarely accounted for to date. Methodology/Principal Findings Here we show that growth reduction was significant and pervasive in a 6.79·million hectare forest landscape in southern Sweden following the storm Gudrun (January 2005). Wind-related growth reduction in Norway spruce (Picea abies (L.) Karst.) forests surviving the storm exceeded 10% in the worst hit regions, and was closely related to maximum gust wind speed (R2 = 0.849) and structural wind damage (R2 = 0.782). At the landscape scale, wind-related growth reduction amounted to 3.0 million m3 in the three years following Gudrun. It thus exceeds secondary damage from bark beetles after Gudrun as well as the long-term average storm damage from uprooting and stem breakage in Sweden. Conclusions/Significance We conclude that the impact of strong winds on forest ecosystems is not limited to the immediately visible area of structural damage, and call for a broader consideration of disturbance effects on ecosystem structure and functioning in the context of forest management and climate change mitigation. PMID:22413012

  14. Effects of soil pyrene contamination on growth and phenolics in Norway spruce (Picea abies) are modified by elevated temperature and CO2.

    PubMed

    Zhang, Yaodan; Virjamo, Virpi; Du, Wenchao; Yin, Ying; Nissinen, Katri; Nybakken, Line; Guo, Hongyan; Julkunen-Tiitto, Riitta

    2018-05-01

    With the constant accumulation of polycyclic aromatic hydrocarbons (PAHs) in soil and increasing temperature and CO 2 levels, plants will inevitably be exposed to combined stress. Studies on the effects of such combined stresses are needed to develop mitigation and adaptation measures. Here, we investigated the effects of soil pyrene contamination (50 mg kg -1 ) on growth and phenolics of 1-year-old Norway spruce seedlings from five different origins in Finland at elevated temperature (+ 2 °C) and CO 2 (+ 360 ppm). Pyrene significantly decreased spruce height growth (0-48%), needle biomass (0-44%), stem biomass (0-43%), and total phenolic concentrations in needles (2-13%) and stems (1-19%) compared to control plants. Elevated temperature alone did not affect growth but led to lower concentrations of total phenolics in needles (5-29%) and stems (5-18%) in both soil treatments. By contrast, elevated CO 2 led to higher needle biomass (0-39%) in pyrene-spiked soils and higher concentrations of stem phenolics (0-18%) in pyrene-spiked and control soils compared to ambient treatments. The decrease in height growth and phenolic concentrations caused by pyrene was greater at elevated temperature, while elevated CO 2 only marginally modified the response. Seedlings from different origins showed different responses to the combined environmental stressors. The changes in growth and in the quantity and quality of phenolics in this study suggest that future climate changes will aggravate the negative influence of soil pyrene pollution on northern conifer forest ecosystems.

  15. The epigenetic memory of temperature during embryogenesis modifies the expression of bud burst-related genes in Norway spruce epitypes.

    PubMed

    Carneros, Elena; Yakovlev, Igor; Viejo, Marcos; Olsen, Jorunn E; Fossdal, Carl Gunnar

    2017-09-01

    Epigenetic memory affects the timing of bud burst phenology and the expression of bud burst-related genes in genetically identical Norway spruce epitypes in a manner usually associated with ecotypes. In Norway spruce, a temperature-dependent epigenetic memory established during embryogenesis affects the timing of bud burst and bud set in a reproducible and predictable manner. We hypothesize that the clinal variation in these phenological traits, which is associated with adaptation to growth under frost-free conditions, has an epigenetic component. In Norway spruce, dehydrins (DHNs) have been associated with extreme frost tolerance. DHN transcript levels decrease gradually prior to flushing, a time when trees are highly sensitive to frost. Furthermore, EARLY BUD BREAK 1 genes (EBB1) and the FT-TFL1-LIKE 2-gene (PaFTL2) were previously suggested to be implied in control of bud phenology. Here we report an analysis of transcript levels of 12 DHNs, 3 EBB1 genes and FTL2 in epitypes of the same genotype generated at different epitype-inducing temperatures, before and during spring bud burst. Earlier flushing of epitypes originating from embryos developed at 18 °C as compared to 28 °C, was associated with differential expression of these genes between epitypes and between buds and last year's needles. The majority of these genes showed significantly different expressions between epitypes in at least one time point. The general trend in DHN expression pattern in buds showed the expected reduction in transcript levels when approaching flushing, whereas, surprisingly, transcript levels peaked later in needles, mainly at the moment of bud burst. Collectively, our results demonstrate that the epigenetic memory of temperature during embryogenesis affects bud burst phenology and expression of the bud burst-related DHN, EBB1 and FTL2 genes in genetically identical Norway spruce epitypes.

  16. Early Cone Setting in Picea abies acrocona Is Associated with Increased Transcriptional Activity of a MADS Box Transcription Factor1[W][OA

    PubMed Central

    Uddenberg, Daniel; Reimegård, Johan; Clapham, David; Almqvist, Curt; von Arnold, Sara; Emanuelsson, Olof; Sundström, Jens F.

    2013-01-01

    Conifers normally go through a long juvenile period, for Norway spruce (Picea abies) around 20 to 25 years, before developing male and female cones. We have grown plants from inbred crosses of a naturally occurring spruce mutant (acrocona). One-fourth of the segregating acrocona plants initiate cones already in their second growth cycle, suggesting control by a single locus. The early cone-setting properties of the acrocona mutant were utilized to identify candidate genes involved in vegetative-to-reproductive phase change in Norway spruce. Poly(A+) RNA samples from apical and basal shoots of cone-setting and non-cone-setting plants were subjected to high-throughput sequencing (RNA-seq). We assembled and investigated 33,383 expressed putative protein-coding acrocona transcripts. Eight transcripts were differentially expressed between selected sample pairs. One of these (Acr42124_1) was significantly up-regulated in apical shoot samples from cone-setting acrocona plants, and the encoded protein belongs to the MADS box gene family of transcription factors. Using quantitative real-time polymerase chain reaction with independently derived plant material, we confirmed that the MADS box gene is up-regulated in both needles and buds of cone-inducing shoots when reproductive identity is determined. Our results constitute important steps for the development of a rapid cycling model system that can be used to study gene function in conifers. In addition, our data suggest the involvement of a MADS box transcription factor in the vegetative-to-reproductive phase change in Norway spruce. PMID:23221834

  17. Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities.

    PubMed

    Uroz, S; Oger, P; Tisserand, E; Cébron, A; Turpault, M-P; Buée, M; De Boer, W; Leveau, J H J; Frey-Klett, P

    2016-06-15

    The impacts of plant species on the microbial communities and physico-chemical characteristics of soil are well documented for many herbs, grasses and legumes but much less so for tree species. Here, we investigate by rRNA and ITS amplicon sequencing the diversity of microorganisms from the three domains of life (Archaea, Bacteria and Eukaryota:Fungi) in soil samples taken from the forest experimental site of Breuil-Chenue (France). We discovered significant differences in the abundance, composition and structure of the microbial communities associated with two phylogenetically distant tree species of the same age, deciduous European beech (Fagus sylvatica) and coniferous Norway spruce (Picea abies Karst), planted in the same soil. Our results suggest a significant effect of tree species on soil microbiota though in different ways for each of the three microbial groups. Fungal and archaeal community structures and compositions are mainly determined according to tree species, whereas bacterial communities differ to a great degree between rhizosphere and bulk soils, regardless of the tree species. These results were confirmed by quantitative PCR, which revealed significant enrichment of specific bacterial genera, such as Burkholderia and Collimonas, known for their ability to weather minerals within the tree root vicinity.

  18. A Key Role for Apoplastic H2O2 in Norway Spruce Phenolic Metabolism.

    PubMed

    Laitinen, Teresa; Morreel, Kris; Delhomme, Nicolas; Gauthier, Adrien; Schiffthaler, Bastian; Nickolov, Kaloian; Brader, Günter; Lim, Kean-Jin; Teeri, Teemu H; Street, Nathaniel R; Boerjan, Wout; Kärkönen, Anna

    2017-07-01

    Apoplastic events such as monolignol oxidation and lignin polymerization are difficult to study in intact trees. To investigate the role of apoplastic hydrogen peroxide (H 2 O 2 ) in gymnosperm phenolic metabolism, an extracellular lignin-forming cell culture of Norway spruce ( Picea abies ) was used as a research model. Scavenging of apoplastic H 2 O 2 by potassium iodide repressed lignin formation, in line with peroxidases activating monolignols for lignin polymerization. Time-course analyses coupled to candidate substrate-product pair network propagation revealed differential accumulation of low-molecular-weight phenolics, including (glycosylated) oligolignols, (glycosylated) flavonoids, and proanthocyanidins, in lignin-forming and H 2 O 2 -scavenging cultures and supported that monolignols are oxidatively coupled not only in the cell wall but also in the cytoplasm, where they are coupled to other monolignols and proanthocyanidins. Dilignol glycoconjugates with reduced structures were found in the culture medium, suggesting that cells are able to transport glycosylated dilignols to the apoplast. Transcriptomic analyses revealed that scavenging of apoplastic H 2 O 2 resulted in remodulation of the transcriptome, with reduced carbon flux into the shikimate pathway propagating down to monolignol biosynthesis. Aggregated coexpression network analysis identified candidate enzymes and transcription factors for monolignol oxidation and apoplastic H 2 O 2 production in addition to potential H 2 O 2 receptors. The results presented indicate that the redox state of the apoplast has a profound influence on cellular metabolism. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Mortality patterns following spruce budworm infestation in unprotected spruce-fir forests in Maine

    Treesearch

    Dale S. Solomon; Lianjun Zhang; Thomas B. Brann; David S. Larrick

    2003-01-01

    Cumulative and annual mortality of red spruce (Picea rubens Sarg.) and balsam fir [Abies balsamea (L) Mill.] were examined over a 10 yr period to follow the mortality patterns in unprotected spruce-fir forests in northern Maine. Different mortality patterns were determined based on stand composition classes and merchantability classes. In general, balsam fir was more...

  20. Polyphenols in the woody roots of Norway spruce and European beech reduce TTC.

    PubMed

    Richter, Anika K; Frossard, Emmanuel; Brunner, Ivano

    2007-01-01

    A common method to determine the vitality of fine root tissue is the measurement of respiratory activity with triphenyltetrazolium chloride (TTC). The colorless TTC is reduced to the red-colored triphenyl formazan (TF) as a result of the dehydrogenase activity of the mitochondrial respiratory chain. However, measurements with woody fine roots of adult Norway spruce and European beech trees showed that dead control roots had a high potential to react with TTC. High reactivity was found in boiled fine roots and the bark of coarse roots, but not in the boiled wood of coarse roots. By sequential extraction of dried and ground adult Norway spruce fine roots, reactivity with TTC was reduced by about 75% (water extraction), 93% (water/methanol extraction) and 94% (water/acetone extraction). The water extract reacted with TTC in the same way as polyphenols such as lignin, catechin and epicatechin. Boiling did not affect the extent to which fine roots of adult trees reduced TTC, whereas it greatly reduced TTC reduction by seedling roots. Application of the TTC test to roots of spruce seedlings subjected to increasing drought showed a progressive decrease in TTC reduction. The decrease in TTC reduction was paralleled by a reduction in O(2) consumption, thus supporting the conclusion that for roots with a low polyphenol content the TTC test provides a valid assessment of tissue vitality. Our results suggest, however, that the TTC test should not be applied to the fine roots of adult trees because of their high content of polyphenolic compounds whose reaction with TTC masks changes in TTC reduction due to changes in the respiratory capacity of the tissue.

  1. Fine Spatial Scale Variation of Soil Microbial Communities under European Beech and Norway Spruce.

    PubMed

    Nacke, Heiko; Goldmann, Kezia; Schöning, Ingo; Pfeiffer, Birgit; Kaiser, Kristin; Castillo-Villamizar, Genis A; Schrumpf, Marion; Buscot, François; Daniel, Rolf; Wubet, Tesfaye

    2016-01-01

    The complex interactions between trees and soil microbes in forests as well as their inherent seasonal and spatial variations are poorly understood. In this study, we analyzed the effects of major European tree species ( Fagus sylvatica L. and Picea abies (L.) Karst) on soil bacterial and fungal communities. Mineral soil samples were collected from different depths (0-10, 10-20 cm) and at different horizontal distances from beech or spruce trunks (0.5, 1.5, 2.5, 3.5 m) in early summer and autumn. We assessed the composition of soil bacterial and fungal communities based on 16S rRNA gene and ITS DNA sequences. Community composition of bacteria and fungi was most strongly affected by soil pH and tree species. Different ectomycorrhizal fungi (e.g., Tylospora ) known to establish mutualistic associations with plant roots showed a tree species preference. Moreover, bacterial and fungal community composition showed spatial and seasonal shifts in soil surrounding beech and spruce. The relative abundance of saprotrophic fungi was higher at a depth of 0-10 vs. 10-20 cm depth. This was presumably a result of changes in nutrient availability, as litter input and organic carbon content decreased with soil depth. Overall bacterial community composition showed strong variations under spruce with increasing distance from the tree trunks, which might be attributed in part to higher fine root biomass near spruce trunks. Furthermore, overall bacterial community composition was strongly affected by season under deciduous trees.

  2. Seasonal and within-canopy variation in shoot-scale resource-use efficiency trade-offs in a Norway spruce stand.

    PubMed

    Tarvainen, Lasse; Räntfors, Mats; Wallin, Göran

    2015-11-01

    Previous leaf-scale studies of carbon assimilation describe short-term resource-use efficiency (RUE) trade-offs where high use efficiency of one resource requires low RUE of another. However, varying resource availabilities may cause long-term RUE trade-offs to differ from the short-term patterns. This may have important implications for understanding canopy-scale resource use and allocation. We used continuous gas exchange measurements collected at five levels within a Norway spruce, Picea abies (L.) karst., canopy over 3 years to assess seasonal differences in the interactions between shoot-scale resource availability (light, water and nitrogen), net photosynthesis (An ) and the use efficiencies of light (LUE), water (WUE) and nitrogen (NUE) for carbon assimilation. The continuous data set was used to develop and evaluate multiple regression models for predicting monthly shoot-scale An . These models showed that shoot-scale An was strongly dependent on light availability and was generally well described with simple one- or two-parameter models. WUE peaked in spring, NUE in summer and LUE in autumn. However, the relative importance of LUE for carbon assimilation increased with canopy depth at all times. Our results suggest that accounting for seasonal and within-canopy trade-offs may be important for RUE-based modelling of canopy carbon uptake. © 2015 John Wiley & Sons Ltd.

  3. Effect of Forest Management of Picea abies and Fagus sylvatica with Different Types of Felling on Carbon and Economic Balances in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Plch, Radek; Pulkrab, Karel; Bukáček, Jan; Sloup, Roman; Cudlín, Pavel

    2016-10-01

    The selection of the most sustainable forest management under given site conditions needs suitable criteria and indicators. For this purpose, carbon and economic balance assessment, completed with environmental impact computation using the Life Cycle Assessment (LCA) were used. The aim of this study was to compare forestry operations and wood production of selected forest stands with different i) tree species composition (Norway spruce - Picea abies and European beech - Fagus sylvatica) and ii) type of felling (chainsaw and harvester). Carbon and economic balance methods consist in the comparison of quantified inputs (fossil fuels, electricity, used machinery, fertilizers, etc., converted into emission units of carbon in Mg of C- CO2-eq. or EUR) with quantified outputs (biomass production in Mg of carbon or EUR). In this contribution, similar forest stands (“forest site complexes”) in the 4th forest vegetation zone (in the Czech Republic approximately 400-700 m above sea-level) were selected. Forestry operations were divided into 5 main stages: i) seedling production, ii) stand establishment and pruning, iii) thinning and final cutting, iv) skidding, and v) secondary timber transport and modelled for one rotation period of timber production (ca. 100 years). The differences between Norway spruce and European beech forest stands in the carbon efficiency were relatively small while higher differences were achieved in the economic efficiency (forest stands with Norway spruce had a higher economic efficiency). Concerning the comparison of different types of felling in Norway spruce forest stands, the harvester use proved to induce significantly higher environmental impacts (emission of carbon) and lower economic costs. The comparison of forestry operation stages showed that the main part of carbon emissions, originating from fuel production and combustion, is connected with a thinning and final cutting, skidding and secondary timber transport in relations to

  4. Below-ground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (Fagus sylvatica L. / Picea abies [L.] Karst)

    EPA Science Inventory

    The effects of experimentally elevated O3 on soil respiration rates, standing fine-root biomass, fine-root production and δ13C signature of newly produced fine roots were investigated in an adult European beech/Norway spruce forest in Germany during two subsequent years with cont...

  5. Fine Spatial Scale Variation of Soil Microbial Communities under European Beech and Norway Spruce

    PubMed Central

    Nacke, Heiko; Goldmann, Kezia; Schöning, Ingo; Pfeiffer, Birgit; Kaiser, Kristin; Castillo-Villamizar, Genis A.; Schrumpf, Marion; Buscot, François; Daniel, Rolf; Wubet, Tesfaye

    2016-01-01

    The complex interactions between trees and soil microbes in forests as well as their inherent seasonal and spatial variations are poorly understood. In this study, we analyzed the effects of major European tree species (Fagus sylvatica L. and Picea abies (L.) Karst) on soil bacterial and fungal communities. Mineral soil samples were collected from different depths (0–10, 10–20 cm) and at different horizontal distances from beech or spruce trunks (0.5, 1.5, 2.5, 3.5 m) in early summer and autumn. We assessed the composition of soil bacterial and fungal communities based on 16S rRNA gene and ITS DNA sequences. Community composition of bacteria and fungi was most strongly affected by soil pH and tree species. Different ectomycorrhizal fungi (e.g., Tylospora) known to establish mutualistic associations with plant roots showed a tree species preference. Moreover, bacterial and fungal community composition showed spatial and seasonal shifts in soil surrounding beech and spruce. The relative abundance of saprotrophic fungi was higher at a depth of 0–10 vs. 10–20 cm depth. This was presumably a result of changes in nutrient availability, as litter input and organic carbon content decreased with soil depth. Overall bacterial community composition showed strong variations under spruce with increasing distance from the tree trunks, which might be attributed in part to higher fine root biomass near spruce trunks. Furthermore, overall bacterial community composition was strongly affected by season under deciduous trees. PMID:28066384

  6. A Key Role for Apoplastic H2O2 in Norway Spruce Phenolic Metabolism1[OPEN

    PubMed Central

    Laitinen, Teresa

    2017-01-01

    Apoplastic events such as monolignol oxidation and lignin polymerization are difficult to study in intact trees. To investigate the role of apoplastic hydrogen peroxide (H2O2) in gymnosperm phenolic metabolism, an extracellular lignin-forming cell culture of Norway spruce (Picea abies) was used as a research model. Scavenging of apoplastic H2O2 by potassium iodide repressed lignin formation, in line with peroxidases activating monolignols for lignin polymerization. Time-course analyses coupled to candidate substrate-product pair network propagation revealed differential accumulation of low-molecular-weight phenolics, including (glycosylated) oligolignols, (glycosylated) flavonoids, and proanthocyanidins, in lignin-forming and H2O2-scavenging cultures and supported that monolignols are oxidatively coupled not only in the cell wall but also in the cytoplasm, where they are coupled to other monolignols and proanthocyanidins. Dilignol glycoconjugates with reduced structures were found in the culture medium, suggesting that cells are able to transport glycosylated dilignols to the apoplast. Transcriptomic analyses revealed that scavenging of apoplastic H2O2 resulted in remodulation of the transcriptome, with reduced carbon flux into the shikimate pathway propagating down to monolignol biosynthesis. Aggregated coexpression network analysis identified candidate enzymes and transcription factors for monolignol oxidation and apoplastic H2O2 production in addition to potential H2O2 receptors. The results presented indicate that the redox state of the apoplast has a profound influence on cellular metabolism. PMID:28522458

  7. Growth of mature boreal Norway spruce was not affected by elevated [CO(2)] and/or air temperature unless nutrient availability was improved.

    PubMed

    Sigurdsson, Bjarni D; Medhurst, Jane L; Wallin, Göran; Eggertsson, Olafur; Linder, Sune

    2013-11-01

    The growth responses of mature Norway spruce (Picea abies (L.) Karst.) trees exposed to elevated [CO(2)] (CE; 670-700 ppm) and long-term optimized nutrient availability or elevated air temperature (TE; ±3.9 °C) were studied in situ in northern Sweden in two 3 year field experiments using 12 whole-tree chambers in ca. 40-year-old forest. The first experiment (Exp. I) studied the interactions between CE and nutrient availability and the second (Exp. II) between CE and TE. It should be noted that only air temperature was elevated in Exp. II, while soil temperature was maintained close to ambient. In Exp. I, CE significantly increased the mean annual height increment, stem volume and biomass increment during the treatment period (25, 28, and 22%, respectively) when nutrients were supplied. There was, however, no significant positive CE effect found at the low natural nutrient availability. In Exp. II, which was conducted at the natural site fertility, neither CE nor TE significantly affected height or stem increment. It is concluded that the low nutrient availability (mainly nitrogen) in the boreal forests is likely to restrict their response to the continuous rise in [CO(2)] and/or TE.

  8. Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate.

    PubMed

    Neuner, Susanne; Albrecht, Axel; Cullmann, Dominik; Engels, Friedrich; Griess, Verena C; Hahn, W Andreas; Hanewinkel, Marc; Härtl, Fabian; Kölling, Christian; Staupendahl, Kai; Knoke, Thomas

    2015-02-01

    Shifts in tree species distributions caused by climatic change are expected to cause severe losses in the economic value of European forestland. However, this projection disregards potential adaptation options such as tree species conversion, shorter production periods, or establishment of mixed species forests. The effect of tree species mixture has, as yet, not been quantitatively investigated for its potential to mitigate future increases in production risks. For the first time, we use survival time analysis to assess the effects of climate, species mixture and soil condition on survival probabilities for Norway spruce and European beech. Accelerated Failure Time (AFT) models based on an extensive dataset of almost 65,000 trees from the European Forest Damage Survey (FDS)--part of the European-wide Level I monitoring network--predicted a 24% decrease in survival probability for Norway spruce in pure stands at age 120 when unfavorable changes in climate conditions were assumed. Increasing species admixture greatly reduced the negative effects of unfavorable climate conditions, resulting in a decline in survival probabilities of only 7%. We conclude that future studies of forest management under climate change as well as forest policy measures need to take this, as yet unconsidered, strongly advantageous effect of tree species mixture into account. © 2014 John Wiley & Sons Ltd.

  9. Growth, allocation and tissue chemistry of Picea abies seedlings affected by nutrient supply during the second growing season.

    PubMed

    Kaakinen, Seija; Jolkkonen, Annika; Iivonen, Sari; Vapaavuori, Elina

    2004-06-01

    One-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were grown hydroponically in a growth chamber to investigate the effects of low and high nutrient availability (LN; 0.25 mM N and HN; 2.50 mM N) on growth, biomass allocation and chemical composition of needles, stem and roots during the second growing season. Climatic conditions in the growth chamber simulated the mean growing season from May to early October in Flakaliden, northern Sweden. In the latter half of the growing season, biomass allocation changed in response to nutrient availability: increased root growth and decreased shoot growth led to higher root/shoot ratios in LN seedlings than in HN seedlings. At high nutrient availability, total biomass, especially stem biomass, increased, as did total nonstructural carbohydrate and nitrogen contents per seedling. Responses of stem chemistry to nutrient addition differed from those of adult trees of the same provenance. In HN seedlings, concentrations of alpha-cellulose, hemicellulose and lignin decreased in the secondary xylem. Our results illustrate the significance of retranslocation of stored nutrients to support new growth early in the season when root growth and nutrient uptake are still low. We conclude that nutrient availability alters allocation patterns, thereby influencing the success of 2-year-old Norway spruce seedlings at forest planting sites.

  10. Wood-inhabiting fungal communities in woody debris of Norway spruce (Picea abies (L.) Karst.), as reflected by sporocarps, mycelial isolations and T-RFLP identification.

    PubMed

    Allmér, Johan; Vasiliauskas, Rimvis; Ihrmark, Katarina; Stenlid, Jan; Dahlberg, Anders

    2006-01-01

    Wood-inhabiting fungi play a key role in forest ecosystems and constitute an essential part of forest biodiversity. We therefore examined the composition and abundance of wood-inhabiting fungi by three methods: sporocarp counts, mycelial culturing and direct amplification of internal transcribed spacer terminal restriction fragment length polymorphism from wood combined with sequencing of reference rDNA. Seven-year-old slash piles left after a thinning were analyzed in a 50-year-old Norway spruce plantation. Fifty-eight fungal species were detected from the piled branches and treetops. More species were revealed by sporocarp counts and cultured mycelia than by direct amplification from wood. In principle, sporocarp monitoring may reveal all fruiting taxa, but it poorly reflects their relative abundance in the wood. In contrast, terminal restriction fragment length polymorphism will record the most frequent fungal taxa in the wood, but it may overlook uncommon taxa. Culturing mycelia from wood gives a bias towards species favoured by the cultural medium. The results demonstrate the advantage and the limitations of these methods to be considered in analyses of fungal communities in wood.

  11. Fluorescence measurements show stronger cold inhibition of photosynthetic light reactions in Scots pine compared to Norway spruce as well as during spring compared to autumn.

    PubMed

    Linkosalo, Tapio; Heikkinen, Juha; Pulkkinen, Pertti; Mäkipää, Raisa

    2014-01-01

    We studied the photosynthetic activity of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst) in relation to air temperature changes from March 2013 to February 2014. We measured the chlorophyll fluorescence of approximately 50 trees of each species growing in southern Finland. Fluorescence was measured 1-3 times per week. We began by measuring shoots present in late winter (i.e., March 2013) before including new shoots once they started to elongate in spring. By July, when the spring shoots had achieved similar fluorescence levels to the older ones, we proceeded to measure the new shoots only. We analyzed the data by fitting a sigmoidal model containing four parameters to link sliding averages of temperature and fluorescence. A parameter defining the temperature range over which predicted fluorescence increased most rapidly was the most informative with in describing temperature dependence of fluorescence. The model generated similar fluorescence patterns for both species, but differences were observed for critical temperature and needle age. Down regulation of the light reaction was stronger in spring than in autumn. Pine showed more conservative control of the photosynthetic light reactions, which were activated later in spring and more readily attenuated in autumn. Under the assumption of a close correlation of fluorescence and photosynthesis, spruce should therefore benefit more than pine from the increased photosynthetic potential during warmer springs, but be more likely to suffer frost damage with a sudden cooling following a warm period. The winter of 2013-2014 was unusually mild and similar to future conditions predicted by global climate models. During the mild winter, the activity of photosynthetic light reactions of both conifers, especially spruce, remained high. Because light levels during winter are too low for photosynthesis, this activity may translate to a net carbon loss due to respiration.

  12. Putting community data to work: some understory plants indicate red spruce regeneration habitat

    Treesearch

    Alison C. Dibble; John C. Brissette; Malcolm L. Hunter

    1999-01-01

    When harvested, red spruce (Picea rubens) at low elevations is vulnerable to temporary displacement by balsam fir (Abies balsamea) and hardwoods. If indicator plants can be found by which to assess spruce regeneration habitat, then biota dependent on red spruce dominance could benefit. Associations between spruce seedlings (0.1-0.5...

  13. Carbon dioxide exchange in Norway spruce at the shoot, tree and ecosystem scale.

    PubMed

    Wallin, G; Linder, S; Lindroth, A; Räntfors, M; Flemberg, S; Grelle, A

    2001-08-01

    Net CO2 exchange in a 35-year-old boreal Norway spruce (Picea abies (L.) Karst.) forest in northern Sweden was measured at the shoot (NSE), tree (NTE) and ecosystem levels (NEE) by means of shoot cuvettes, whole-tree chambers and the eddy covariance technique, respectively. We compared the dynamics of gross primary production (GPP) at the three levels during the course of a single week. The diurnal dynamics of GPP at each level were estimated by subtracting half-hourly or hourly model-estimated values of total respiration (excluding light-dependent respiration) from net CO(2) exchange. The relationship between temperature and total respiration at each level was derived from nighttime measurements of NSE, NTE and NEE over the course of 1 month. There was a strong linear relationship (r2 = 0.93) between the hourly estimates of GPP at the shoot and tree levels, but the correlation between shoot- and ecosystem-level GPP was weaker (r2 = 0.69). However, the correlation between shoot- and ecosystem-level GPP was improved (r2 = 0.88) if eddy covariance measurements were restricted to periods when friction velocity was > or = 0.5 m s(-1). Daily means were less dependent on friction velocity, giving an r2 value of 0.94 between shoot- and ecosystem-level GPP. The correlation between shoot and tree levels also increased when daily means were compared (r2 = 0.98). Most of the measured variation in carbon exchange rate among the shoot, tree and ecosystem levels was the result of periodic low coupling between vegetation and the atmosphere at the ecosystem level. The results validate the use of measurements at the shoot and tree level for analyzing the contribution of different compartments to net ecosystem CO2 exchange.

  14. Atmospheric and geogenic CO2 within the crown and root of spruce (Picea abies L. Karst.) growing in a mofette area

    NASA Astrophysics Data System (ADS)

    Vodnik, D.; Thomalla, A.; Ferlan, M.; Levanič, T.; Eler, K.; Ogrinc, N.; Wittmann, C.; Pfanz, H.

    2018-06-01

    Mofettes are often investigated in ecology, either as extreme sites, natural analogues to future conditions under climate change, or model ecosystems for environmental impact assessments of carbon capture and storage systems. Much of this research, however, inadequately addresses the complexity of the gas environment at these sites, mainly focusing on aboveground CO2-enrichment. In the current research, the gaseous environment of Norway spruce (Picea abies (L) Karst.) trees growing at the Stavešinske slepice mofette (NE Slovenia) were studied by measuring both soil ([CO2]soil) and atmospheric CO2 concentrations ([CO2]air). Within the studied site (800 m2), soil CO2 enrichment was spatially heterogeneous; about 25% of the area was characterized by very high [CO2]soil (>40%) and hypoxic conditions. Aboveground gas measurements along vertical profiles not only revealed substantially elevated [CO2]air close to the ground (height up to 1.5 m), but also in the upper heights (20-25 m; crown layer). On the basis δ13C of CO2, it was shown that elevated CO2 relates to a geogenic source. Trees grown in high [CO2]soil were characterized by decreased radial growth; the δ13C of their wood was less negative than in trees growing in normal soil. Unfavorable gaseous soil conditions should generally be accepted as being by far the most important factor affecting (i.e. disturbing) the growth of mofette trees.

  15. Two centuries of masting data for European beech and Norway spruce across the European continent.

    PubMed

    Ascoli, Davide; Maringer, Janet; Hacket-Pain, Andy; Conedera, Marco; Drobyshev, Igor; Motta, Renzo; Cirolli, Mara; Kantorowicz, Władysław; Zang, Christian; Schueler, Silvio; Croisé, Luc; Piussi, Pietro; Berretti, Roberta; Palaghianu, Ciprian; Westergren, Marjana; Lageard, Jonathan G A; Burkart, Anton; Gehrig Bichsel, Regula; Thomas, Peter A; Beudert, Burkhard; Övergaard, Rolf; Vacchiano, Giorgio

    2017-05-01

    Tree masting is one of the most intensively studied ecological processes. It affects nutrient fluxes of trees, regeneration dynamics in forests, animal population densities, and ultimately influences ecosystem services. Despite a large volume of research focused on masting, its evolutionary ecology, spatial and temporal variability, and environmental drivers are still matter of debate. Understanding the proximate and ultimate causes of masting at broad spatial and temporal scales will enable us to predict tree reproductive strategies and their response to changing environment. Here we provide broad spatial (distribution range-wide) and temporal (century) masting data for the two main masting tree species in Europe, European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H. Karst.). We collected masting data from a total of 359 sources through an extensive literature review and from unpublished surveys. The data set has a total of 1,747 series and 18,348 yearly observations from 28 countries and covering a time span of years 1677-2016 and 1791-2016 for beech and spruce, respectively. For each record, the following information is available: identification code; species; year of observation; proxy of masting (flower, pollen, fruit, seed, dendrochronological reconstructions); statistical data type (ordinal, continuous); data value; unit of measurement (only in case of continuous data); geographical location (country, Nomenclature of Units for Territorial Statistics NUTS-1 level, municipality, coordinates); first and last record year and related length; type of data source (field survey, peer reviewed scientific literature, gray literature, personal observation); source identification code; date when data were added to the database; comments. To provide a ready-to-use masting index we harmonized ordinal data into five classes. Furthermore, we computed an additional field where continuous series with length >4 yr where converted into a five classes

  16. Damage by the Sitka spruce weevil (Pissodes strobi) and growth patterns for 10 spruce species and hybrids over 26 years in the Pacific Northwest.

    Treesearch

    Russel G. Mitchell; Kenneth H. Wright; Norman E. Johnson

    1990-01-01

    Ten species and hybrids of spruce (Picea spp.) were planted and observed annually for 26 years at three coastal locations in Oregon and Washington to evaluate growth rates and susceptibility to the Sitka spruce weevil (= white pine weevil), Pissodes strobi The 10 spruce were: Sitka spruce, Norway spruce, Lutz spruce, black...

  17. Applicability of non-destructive substitutes for leaf area in different stands of Norway spruce (Picea abies L. Karst.) focusing on traditional forest crown measures.

    PubMed

    Laubhann, Daniel; Eckmüllner, Otto; Sterba, Hubert

    2010-09-30

    Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R(2) = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area

  18. Applicability of non-destructive substitutes for leaf area in different stands of Norway spruce (Picea abies L. Karst.) focusing on traditional forest crown measures

    PubMed Central

    Laubhann, Daniel; Eckmüllner, Otto; Sterba, Hubert

    2010-01-01

    Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R2 = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area of

  19. Tropospheric ozone fluxes in Norway spruce forest during the transition period from autumn to winter

    NASA Astrophysics Data System (ADS)

    Juran, Stanislav; Fares, Silvano; Zapletal, Miloš; Cudlín, Pavel; Večeřa, Zbyněk; Urban, Otmar

    2017-04-01

    Norway spruce exhibits seasonal variations in stomatal conductance and photosynthetic activity typical for overwintering plants, with a decline during autumn and a complete recovery during spring. We investigated ozone fluxes during this transient period (November 2016). Fluxes of tropospheric ozone, the major phytotoxic near-ground pollutant causing injuries to plant tissues, were measured at Bily Kriz experimental station in Beskydy Mountains, the Czech Republic. Dry chemiluminescence fast-response ozone sensor coupled with sonic anemometer was used to measure fast fluctuations in ozone concentration and three-dimensional wind speed, respectively. Apart from this eddy covariance technique, within-canopy ozone concentration gradient was simultaneously measured by UV-absorption based slow-response ozone analysers. Ozone fluxes were subsequently modelled by an Inverse Lagrangian Transport Model (ILTM). A comparison of measured and calculated fluxes is thus available. Moreover, stomatal ozone flux was calculated based on Evaporative/Resistive method assuming stomata are the most relevant sink in the spruce forest. The low NOx concentration throughout the year and low concentrations of volatile organic compounds (VOCs) during the transition period led to hypothesize that non-stomatal flux here estimated by difference between total ozone flux and stomatal ozone flux is represented mainly by dry soil deposition and wet deposition during the snow period. We discuss here the ILTM parameterisation with comparison to measured ozone fluxes. Correct estimation of stomatal ozone flux is essential, especially in transition periods, where main scientific emphasis is put rarely. In addition, this research should help to develop metrics for ozone-risk assessment and advance our knowledge in biosphere-atmosphere exchange over Norway spruce forest. Acknowledgement This work was supported by the Ministry of Education, Youth and Sports within the National Programme for Sustainability

  20. Foliar Phenolic Compounds in Norway Spruce with Varying Susceptibility to Chrysomyxa rhododendri: Analyses of Seasonal and Infection-Induced Accumulation Patterns

    PubMed Central

    Ganthaler, Andrea; Stöggl, Wolfgang; Kranner, Ilse; Mayr, Stefan

    2017-01-01

    Secondary phenolic metabolites are involved in plant responses to various biotic stress factors, and are apparently important for the defense against fungal pathogens. In this study, we investigated their role in defense against the rust Chrysomyxa rhododendri in Norway spruce. The fungal pathogen undergoes a seasonal lifecycle with host shift; after overwintering in rhododendron shrubs, it attacks the sprouting current-year spruce needles and causes needle fall in autumn. Repeated infections lead to reduced timber yield and severe problems with rejuvenation in subalpine Norway spruce forests. Trees with varying susceptibility to infection by C. rhododendri were selected and foliar phenolic composition was assessed using UHPLC-MS. We report on seasonal accumulation patterns and infection-related changes in the concentrations of 16 metabolites, including flavonoids, stilbenes, simple phenylpropanoids and the precursor shikimic acid, and their correlation with the infection degree of the tree. We found significant variation in the phenolic profiles during needle development: flavonoids were predominant in the first weeks after sprouting, whereas stilbenes, picein and shikimic acid increased during the first year. Following infection, several flavonoids and resveratrol increased up to 1.8 fold in concentration, whereas picein and shikimic acid were reduced by about 70 and 60%, respectively. The constitutive and early stage infection-induced concentrations of kaempferol, quercetin and taxifolin as well as the late stage infection-induced concentrations of stilbenes and picein were negatively correlated with infection degree. We conclude that a combination of constitutive and inducible accumulation of phenolic compounds is associated with the lower susceptibility of individual trees to C. rhododendri. The potentially fungicidal flavonoid aglycones may limit hyphal growth and prevent development of infection symptoms, and high levels of stilbenes may impede the infection

  1. Some observations on age relationships in spruce-fir regeneration

    Treesearch

    Barton M. Blum

    1973-01-01

    Measurement of the ages of seedlings of balsam fir (Abies balsamea (L) Mill.), red spruce (Picea rubens Sarg.), and white spruce (Picea glauca (Moench) Voss) 15 years after the first harvest of a two-cut shelterwood operation revealed that very few potential crop-tree seedlings in the sample occurred as advance...

  2. Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce.

    PubMed

    Yakovlev, Igor A; Carneros, Elena; Lee, YeonKyeong; Olsen, Jorunn E; Fossdal, Carl Gunnar

    2016-05-01

    A significant number of epigenetic regulators were differentially expressed during embryogenesis at different epitype-inducing conditions. Our results support that methylation of DNA and histones, as well as sRNAs, are pivotal for the establishment of the epigenetic memory. As a forest tree species with long generation times, Norway spruce is remarkably well adapted to local environmental conditions despite having recently, from an evolutionary perspective, recolonized large areas following the last glaciation. In this species, there is an enigmatic epigenetic memory of the temperature conditions during embryogenesis that allows rapid adaptation to changing environment. We used a transcriptomic approach to investigate the molecular mechanisms underlying the formation of the epigenetic memory during somatic embryogenesis in Norway spruce. Nine mRNA libraries were prepared from three epitypes of the same genotype resulting from exposure to epitype-inducing temperatures of 18, 23 and 28 °C. RNA-Seq analysis revealed more than 10,000 differentially expressed genes (DEGs). The epitype-inducing conditions during SE were accompanied by marked transcriptomic changes for multiple gene models related to the epigenetic machinery. Out of 735 putative orthologs of epigenetic regulators, 329 were affected by the epitype-inducing temperatures and differentially expressed. The majority of DEGs among the epigenetic regulators was related to DNA and histone methylation, along with sRNA pathways and a range of putative thermosensing and signaling genes. These genes could be the main epigenetic regulators involved in formation of the epigenetic memory. We suggest considerable expansion of gene families of epigenetic regulators in Norway spruce compared to orthologous gene families in Populus and Arabidopsis. Obtained results provide a solid basis for further genome annotation and studies focusing on the importance of these candidate genes for the epigenetic memory formation.

  3. Carbon dioxide exchange of buds and developing shoots of boreal Norway spruce exposed to elevated or ambient CO2 concentration and temperature in whole-tree chambers.

    PubMed

    Hall, Marianne; Räntfors, Mats; Slaney, Michelle; Linder, Sune; Wallin, Göran

    2009-04-01

    Effects of ambient and elevated temperature and atmospheric carbon dioxide concentration ([CO2]) on CO2 assimilation rate and the structural and phenological development of shoots during their first growing season were studied in 45-year-old Norway spruce trees (Picea abies (L.) Karst.) enclosed in whole-tree chambers. Continuous measurements of net assimilation rate (NAR) in individual buds and shoots were made from early bud development to late August in two consecutive years. The largest effect of elevated temperature (TE) was manifest early in the season as an earlier start and completion of shoot length development, and a 1-3-week earlier shift from negative to positive NAR compared with the ambient temperature (TA) treatments. The largest effect of elevated [CO2] (CE) was found later in the season, with a 30% increase in maximum NAR compared with trees in the ambient [CO2] treatments (CA), and shoots assimilating their own mass in terms of carbon earlier in the CE treatments than in the CA treatments. Once the net carbon assimilation compensation point (NACP) had been reached, TE had little or no effect on the development of NAR performance, whereas CE had little effect before the NACP. No interactive effects of TE and CE on NAR were found. We conclude that in a climate predicted for northern Sweden in 2100, current-year shoots of P. abies will assimilate their own mass in terms of carbon 20-30 days earlier compared with the current climate, and thereby significantly contribute to canopy assimilation during their first year.

  4. Hydraulic and mechanical properties of young Norway spruce clones related to growth and wood structure

    PubMed Central

    ROSNER, SABINE; KLEIN, ANDREA; MÜLLER, ULRICH; KARLSSON, BO

    2011-01-01

    Summary Stem segments of eight five-year-old Norway spruce (Picea abies (L.) Karst.) clones differing in growth characteristics were tested for maximum specific hydraulic conductivity (ks100), vulnerability to cavitation and behavior under mechanical stress. The vulnerability of the clones to cavitation was assessed by measuring the applied air pressure required to cause 12 and 50% loss of conductivity (Ψ12, Ψ50) and the percent loss of conductivity at 4 MPa applied air pressure (PLC4MPa). The bending strength and stiffness and the axial compression strength and stiffness of the same stem segments were measured to characterize wood mechanical properties. Growth ring width, wood density, latewood percentage, lumen diameter, cell wall thickness, tracheid length and pit dimensions of earlywood cells, spiral grain and microfibril angles were examined to identify structure–function relationships. High ks100 was strongly and positively related to spiral grain angle, which corresponded positively to tracheid length and pit dimensions. Spiral grain may reduce flow resistance of the bordered pits of the first earlywood tracheids, which are characterized by rounded tips and an equal distribution of pits along the entire length. Wood density was unrelated to hydraulic vulnerability parameters. Traits associated with higher hydraulic vulnerability were long tracheids, high latewood percentage and thick earlywood cell walls. The positive relationship between earlywood cell wall thickness and vulnerability to cavitation suggest that air seeding through the margo of bordered pits may occur in earlywood. There was a positive phenotypic and genotypic relationship between ks100 and PLC4MPa, and both parameters were positively related to tree growth rate. Variability in mechanical properties depended mostly on wood density, but also on the amount of compression wood. Accordingly, hydraulic conductivity and mechanical strength or stiffness showed no tradeoff. PMID:17472942

  5. Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood.

    PubMed

    Rosner, Sabine; Klein, Andrea; Müller, Ulrich; Karlsson, Bo

    2008-08-01

    We tested the effects of growth characteristics and basic density on hydraulic and mechanical properties of mature Norway spruce (Picea abies (L.) Karst.) wood from six 24-year-old clones, grown on two sites in southern Sweden differing in water availability. Hydraulic parameters assessed were specific hydraulic conductivity at full saturation (ks100) and vulnerability to cavitation (Psi50), mechanical parameters included bending strength (sigma b), modulus of elasticity (MOE), compression strength (sigma a) and Young's modulus (E). Basic density, diameter at breast height, tree height, and hydraulic and mechanical parameters varied considerably among clones. Clonal means of hydraulic and mechanical properties were strongly related to basic density and to growth parameters across sites, especially to diameter at breast height. Compared with stem wood of slower growing clones, stem wood of rapidly growing clones had significantly lower basic density, lower sigma b, MOE, sigma a and E, was more vulnerable to cavitation, but had higher ks100. Basic density was negatively correlated to Psi50 and ks100. We therefore found a tradeoff between Psi50 and ks100. Clones with high basic density had significantly lower hydraulic vulnerability, but also lower hydraulic conductivity at full saturation and thus less rapid growth than clones with low basic density. This tradeoff involved a negative relationship between Psi50 and sigma b as well as MOE, and between ks100 and sigma b, MOE and sigma a. Basic density and Psi50 showed no site-specific differences, but tree height, diameter at breast height, ks100 and mechanical strength and stiffness were significantly lower at the drier site. Basic density had no influence on the site-dependent differences in hydraulic and mechanical properties, but was strongly negatively related to diameter at breast height. Selecting for growth may thus lead not only to a reduction in mechanical strength and stiffness but also to a reduction in

  6. Terpenoid and carbonyl emissions from Norway spruce in Finland during the growing season

    NASA Astrophysics Data System (ADS)

    Hakola, Hannele; Tarvainen, Virpi; Praplan, Arnaud P.; Jaars, Kerneels; Hemmilä, Marja; Kulmala, Markku; Bäck, Jaana; Hellén, Heidi

    2017-03-01

    We present spring and summer volatile organic compound (VOC) emission rate measurements from Norway spruce (Picea abies L. Karst) growing in a boreal forest in southern Finland. The measurements were conducted using in situ gas chromatograph with 1 to 2 h time resolution to reveal quantitative and qualitative short-term and seasonal variability of the emissions. The measurements cover altogether 14 weeks in years 2011, 2014 and 2015. Monoterpene (MT) and sesquiterpene (SQT) emission rates were measured all the time, but isoprene only in 2014 and 2015 and acetone and C4-C10 aldehydes only in 2015. The emission rates of all the compounds were low in spring, but MT, acetone, and C4-C10 aldehyde emission rates increased as summer proceeded, reaching maximum emission rates in July. Late summer mean values (late July and August) were 29, 17, and 33 ng g(dw)-1 h-1 for MTs, acetone, and aldehydes respectively. SQT emission rates increased during the summer and highest emissions were measured in late summer (late summer mean value 84 ng g(dw)-1 h-1) concomitant with highest linalool emissions most likely due to stress effects. The between-tree variability of emission pattern was studied by measuring seven different trees during the same afternoon using adsorbent tubes. Especially the contributions of limonene, terpinolene, and camphene were found to vary between trees, whereas proportions of α-pinene (25 ± 5 %) and β-pinene (7 ± 3 %) were more stable. Our results show that it is important to measure emissions at canopy level due to irregular emission pattern, but reliable SQT emission data can be measured only from enclosures. SQT emissions contributed more than 90 % of the ozone reactivity most of the time, and about 70 % of the OH reactivity during late summer. The contribution of aldehydes to OH reactivity was comparable to that of MT during late summer, 10-30 % most of the time.

  7. Increased spruce tree growth in Central Europe since 1960s.

    PubMed

    Cienciala, Emil; Altman, Jan; Doležal, Jiří; Kopáček, Jiří; Štěpánek, Petr; Ståhl, Göran; Tumajer, Jan

    2018-04-01

    Tree growth response to recent environmental changes is of key interest for forest ecology. This study addressed the following questions with respect to Norway spruce (Picea abies, L. Karst.) in Central Europe: Has tree growth accelerated during the last five decades? What are the main environmental drivers of the observed tree radial stem growth and how much variability can be explained by them? Using a nationwide dendrochronological sampling of Norway spruce in the Czech Republic (1246 trees, 266 plots), novel regional tree-ring width chronologies for 40(±10)- and 60(±10)-year old trees were assembled, averaged across three elevation zones (break points at 500 and 700m). Correspondingly averaged drivers, including temperature, precipitation, nitrogen (N) deposition and ambient CO 2 concentration, were used in a general linear model (GLM) to analyze the contribution of these in explaining tree ring width variability for the period from 1961 to 2013. Spruce tree radial stem growth responded strongly to the changing environment in Central Europe during the period, with a mean tree ring width increase of 24 and 32% for the 40- and 60-year old trees, respectively. The indicative General Linear Model analysis identified CO 2 , precipitation during the vegetation season, spring air temperature (March-May) and N-deposition as the significant covariates of growth, with the latter including interactions with elevation zones. The regression models explained 57% and 55% of the variability in the two tree ring width chronologies, respectively. Growth response to N-deposition showed the highest variability along the elevation gradient with growth stimulation/limitation at sites below/above 700m. A strong sensitivity of stem growth to CO 2 was also indicated, suggesting that the effect of rising ambient CO 2 concentration (direct or indirect by increased water use efficiency) should be considered in analyses of long-term growth together with climatic factors and N

  8. Leaf area and light use efficiency patterns of Norway spruce under different thinning regimes and age classes

    PubMed Central

    Gspaltl, Martin; Bauerle, William; Binkley, Dan; Sterba, Hubert

    2013-01-01

    Silviculture focuses on establishing forest stand conditions that improve the stand increment. Knowledge about the efficiency of an individual tree is essential to be able to establish stand structures that increase tree resource use efficiency and stand level production. Efficiency is often expressed as stem growth per unit leaf area (leaf area efficiency), or per unit of light absorbed (light use efficiency). We tested the hypotheses that: (1) volume increment relates more closely with crown light absorption than leaf area, since one unit of leaf area can receive different amounts of light due to competition with neighboring trees and self-shading, (2) dominant trees use light more efficiently than suppressed trees and (3) thinning increases the efficiency of light use by residual trees, partially accounting for commonly observed increases in post-thinning growth. We investigated eight even-aged Norway spruce (Picea abies (L.) Karst.) stands at Bärnkopf, Austria, spanning three age classes (mature, immature and pole-stage) and two thinning regimes (thinned and unthinned). Individual leaf area was calculated with allometric equations and absorbed photosynthetically active radiation was estimated for each tree using the three-dimensional crown model Maestra. Absorbed photosynthetically active radiation was only a slightly better predictor of volume increment than leaf area. Light use efficiency increased with increasing tree size in all stands, supporting the second hypothesis. At a given tree size, trees from the unthinned plots were more efficient, however, due to generally larger tree sizes in the thinned stands, an average tree from the thinned treatment was superior (not congruent in all plots, thus only partly supporting the third hypothesis). PMID:25540477

  9. Complex Physiological Response of Norway Spruce to Atmospheric Pollution - Decreased Carbon Isotope Discrimination and Unchanged Tree Biomass Increment.

    PubMed

    Čada, Vojtěch; Šantrůčková, Hana; Šantrůček, Jiří; Kubištová, Lenka; Seedre, Meelis; Svoboda, Miroslav

    2016-01-01

    Atmospheric pollution critically affects forest ecosystems around the world by directly impacting the assimilation apparatus of trees and indirectly by altering soil conditions, which subsequently also leads to changes in carbon cycling. To evaluate the extent of the physiological effect of moderate level sulfate and reactive nitrogen acidic deposition, we performed a retrospective dendrochronological analysis of several physiological parameters derived from periodic measurements of carbon stable isotope composition ((13)C discrimination, intercellular CO2 concentration and intrinsic water use efficiency) and annual diameter increments (tree biomass increment, its inter-annual variability and correlation with temperature, cloud cover, precipitation and Palmer drought severity index). The analysis was performed in two mountain Norway spruce (Picea abies) stands of the Bohemian Forest (Czech Republic, central Europe), where moderate levels of pollution peaked in the 1970s and 1980s and no evident impact on tree growth or link to mortality has been reported. The significant influence of pollution on trees was expressed most sensitively by a 1.88‰ reduction of carbon isotope discrimination (Δ(13)C). The effects of atmospheric pollution interacted with increasing atmospheric CO2 concentration and temperature. As a result, we observed no change in intercellular CO2 concentrations (Ci), an abrupt increase in water use efficiency (iWUE) and no change in biomass increment, which could also partly result from changes in carbon partitioning (e.g., from below- to above-ground). The biomass increment was significantly related to Δ(13)C on an individual tree level, but the relationship was lost during the pollution period. We suggest that this was caused by a shift from the dominant influence of the photosynthetic rate to stomatal conductance on Δ(13)C during the pollution period. Using biomass increment-climate correlation analyses, we did not identify any clear pollution

  10. Varying selection differential throughout the climatic range of Norway spruce in Central Europe.

    PubMed

    Kapeller, Stefan; Dieckmann, Ulf; Schueler, Silvio

    2017-01-01

    Predicting species distribution changes in global warming requires an understanding of how climatic constraints shape the genetic variation of adaptive traits and force local adaptations. To understand the genetic capacity of Norway spruce populations in Central Europe, we analyzed the variation in tree heights at the juvenile stage in common garden experiments established from the species' warm-dry to cold-moist distribution limits. We report the following findings: First, 47% of the total tree height variation at trial sites is attributable to the tree populations irrespective of site climate. Second, tree height variation within populations is higher at cold-moist trial sites than at warm-dry sites and higher within populations originating from cold-moist habitats than from warm-dry habitats. Third, for tree ages of 7-15 years, the variation within populations increases at cold-moist trial sites, whereas it remains constant at warm-dry sites. Fourth, tree height distributions are right-skewed at cold-moist trial sites, whereas they are nonskewed, but platykurtic at warm-dry sites. Our results suggest that in cold environments, climatic conditions impose stronger selection and probably restrict the distribution of spruce, whereas at the warm distribution limit, the species' realized niche might rather be controlled by external drivers, for example, forest insects.

  11. Coarse root topology of Norway spruce (Picea abies) and its effects on slope stability

    NASA Astrophysics Data System (ADS)

    Lith, Aniek; Schmaltz, Elmar; Bogaard, Thom; Keesstra, Saskia

    2017-04-01

    The structural distribution of coarse roots and its beneficial effects on soil reinforcement has widely been assessed. However, it is still not fully understood how topological features of coarse roots (e.g. branching patterns) are affected by slope inclination and further influence the ability of young trees to reinforce soil. This study aims to analyse empirically the impact of slope gradient on the topological development of coarse roots and thus to assess its effects on soil reinforcement. We performed root system excavations on two young Picea abies: tree A on a gently inclined plane (β ≈ 12°) where slope failures are not expected; tree B on a slope (β ≈ 35°) with failure potential. The diameter (d) of the segments between distinct root nodes (root ends, branching locations, direction changes and attachments to stem) of coarse roots (d > 2mm) were measured in situ. The spatial coordinates (x,y,z) of the nodes and surface were measured on a plane raster grid, from which segment length (ls), direction and inclination towards the surface (βr) were derived. Roots and segments were classified into laterals (βr < 10°), obliques (10° ≤ βr < 70°) and verticals (βr ≥ 70°), with βr,max = 90°. We assigned topological orders to the segments according to developmental (DSC) and functional segment classifications (FSC), to obtain quantitative relations between the topological order and number of segments, total and average ls. The maximal root cohesion (cr) of each segment was assessed using material specific tensile forces (Tr), root area ratio (RAR) and βr, assuming that a potential slip surface would cross the root system parallel to the slope. Laterals depicted the majority of roots (57 %) for tree A orientated rather in upslope direction (76.8 %), whereas tree B showed mostly obliques (54 %) orientated rather in downslope direction (55.4 %). Vertical roots were scarcely observable for both trees. DSC showed a high r2 (> 0.84) for the segments and

  12. Fungal succession in relation to volatile organic compounds emissions from Scots pine and Norway spruce leaf litter-decomposing fungi

    NASA Astrophysics Data System (ADS)

    Isidorov, Valery; Tyszkiewicz, Zofia; Pirożnikow, Ewa

    2016-04-01

    Leaf litter fungi are partly responsible for decomposition of dead material, nutrient mobilization and gas fluxes in forest ecosystems. It can be assumed that microbial destruction of dead plant materials is an important source of volatile organic compounds (VOCs) emitted into the atmosphere from terrestrial ecosystems. However, little information is available on both the composition of fungal VOCs and their producers whose community can be changed at different stages of litter decomposition. The fungal community succession was investigated in a litter bag experiment with Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) needle litter. The succession process can be divided into a several stages controlled mostly by changes in litter quality. At the very first stages of decomposition the needle litter was colonized by ascomycetes which can use readily available carbohydrates. At the later stages, the predominance of Trichoderma sp., the known producers of cellulolytic enzymes, was documented. To investigate the fungi-derived VOCs, eight fungi species were isolated. As a result of gas chromatographic analyses, as many as 75C2sbnd C15 fungal volatile compounds were identified. Most components detected in emissions were very reactive substances: the principal groups of VOCs were formed by monoterpenes, carbonyl compounds and aliphatic alcohols. It was found that production of VOCs by fungi is species specific: only 10 metabolites were emitted into the gas phase by all eight species. The reported data confirm that the leave litter decomposition is important source of reactive organic compounds under the forest canopy.

  13. In Silico Analysis of Small RNAs Suggest Roles for Novel and Conserved miRNAs in the Formation of Epigenetic Memory in Somatic Embryos of Norway Spruce.

    PubMed

    Yakovlev, Igor A; Fossdal, Carl G

    2017-01-01

    Epigenetic memory in Norway spruce affects the timing of bud burst and bud set, vitally important adaptive traits for this long-lived forest species. Epigenetic memory is established in response to the temperature conditions during embryogenesis. Somatic embryogenesis at different epitype inducing (EpI) temperatures closely mimics the natural processes of epigenetic memory formation in seeds, giving rise to epigenetically different clonal plants in a reproducible and predictable manner, with respect to altered bud phenology. MicroRNAs (miRNAs) and other small non-coding RNAs (sRNAs) play an essential role in the regulation of plant gene expression and may affect this epigenetic mechanism. We used NGS sequencing and computational in silico methods to identify and profile conserved and novel miRNAs among small RNAs in embryogenic tissues of Norway spruce at three EpI temperatures (18, 23 and 28°C). We detected three predominant classes of sRNAs related to a length of 24 nt, followed by a 21-22 nt class and a third 31 nt class of sRNAs. More than 2100 different miRNAs within the prevailing length 21-22 nt were identified. Profiling these putative miRNAs allowed identification of 1053 highly expressed miRNAs, including 523 conserved and 530 novels. 654 of these miRNAs were found to be differentially expressed (DEM) depending on EpI temperature. For most DEMs, we defined their putative mRNA targets. The targets represented mostly by transcripts of multiple-repeats proteins, like TIR, NBS-LRR, PPR and TPR repeat, Clathrin/VPS proteins, Myb-like, AP2, etc. Notably, 124 DE miRNAs targeted 203 differentially expressed epigenetic regulators. Developing Norway spruce embryos possess a more complex sRNA structure than that reported for somatic tissues. A variety of the predicted miRNAs showed distinct EpI temperature dependent expression patterns. These putative EpI miRNAs target spruce genes with a wide range of functions, including genes known to be involved in epigenetic

  14. APETALA2 like genes from Picea abies show functional similarities to their Arabidopsis homologues.

    PubMed

    Nilsson, Lars; Carlsbecker, Annelie; Sundås-Larsson, Annika; Vahala, Tiina

    2007-02-01

    In angiosperm flower development the identity of the floral organs is determined by the A, B and C factors. Here we present the characterisation of three homologues of the A class gene APETALA2 (AP2) from the conifer Picea abies (Norway spruce), Picea abies APETALA2 LIKE1 (PaAP2L1), PaAP2L2 and PaAP2L3. Similar to AP2 these genes contain sequence motifs complementary to miRNA172 that has been shown to regulate AP2 in Arabidopsis. The genes display distinct expression patterns during plant development; in the female-cone bud PaAP2L1 and PaAP2L3 are expressed in the seed-bearing ovuliferous scale in a pattern complementary to each other, and overlapping with the expression of the C class-related gene DAL2. To study the function of PaAP2L1 and PaAP2L2 the genes were expressed in Arabidopsis. The transgenic PaAP2L2 plants were stunted and flowered later than control plants. Flowers were indeterminate and produced an excess of floral organs most severely in the two inner whorls, associated with an ectopic expression of the meristem-regulating gene WUSCHEL. No homeotic changes in floral-organ identities occurred, but in the ap2-1 mutant background PaAP2L2 was able to promote petal identity, indicating that the spruce AP2 gene has the capacity to substitute for an A class gene in Arabidopsis. In spite of the long evolutionary distance between angiosperms and gymnosperms and the fact that gymnosperms lack structures homologous to sepals and petals our data supports a functional conservation of AP2 genes among the seed plants.

  15. Complex Physiological Response of Norway Spruce to Atmospheric Pollution – Decreased Carbon Isotope Discrimination and Unchanged Tree Biomass Increment

    PubMed Central

    Čada, Vojtěch; Šantrůčková, Hana; Šantrůček, Jiří; Kubištová, Lenka; Seedre, Meelis; Svoboda, Miroslav

    2016-01-01

    Atmospheric pollution critically affects forest ecosystems around the world by directly impacting the assimilation apparatus of trees and indirectly by altering soil conditions, which subsequently also leads to changes in carbon cycling. To evaluate the extent of the physiological effect of moderate level sulfate and reactive nitrogen acidic deposition, we performed a retrospective dendrochronological analysis of several physiological parameters derived from periodic measurements of carbon stable isotope composition (13C discrimination, intercellular CO2 concentration and intrinsic water use efficiency) and annual diameter increments (tree biomass increment, its inter-annual variability and correlation with temperature, cloud cover, precipitation and Palmer drought severity index). The analysis was performed in two mountain Norway spruce (Picea abies) stands of the Bohemian Forest (Czech Republic, central Europe), where moderate levels of pollution peaked in the 1970s and 1980s and no evident impact on tree growth or link to mortality has been reported. The significant influence of pollution on trees was expressed most sensitively by a 1.88‰ reduction of carbon isotope discrimination (Δ13C). The effects of atmospheric pollution interacted with increasing atmospheric CO2 concentration and temperature. As a result, we observed no change in intercellular CO2 concentrations (Ci), an abrupt increase in water use efficiency (iWUE) and no change in biomass increment, which could also partly result from changes in carbon partitioning (e.g., from below- to above-ground). The biomass increment was significantly related to Δ13C on an individual tree level, but the relationship was lost during the pollution period. We suggest that this was caused by a shift from the dominant influence of the photosynthetic rate to stomatal conductance on Δ13C during the pollution period. Using biomass increment-climate correlation analyses, we did not identify any clear pollution

  16. Internal development of vegetative buds of Norway spruce trees in relation to accumulated chilling and forcing temperatures.

    PubMed

    Viherä-Aarnio, Anneli; Sutinen, Sirkka; Partanen, Jouni; Häkkinen, Risto

    2014-05-01

    The timing of budburst of temperate trees is known to be controlled by complicated interactions of temperature and photoperiod. To improve the phenological models of budburst, better knowledge of the internal bud development preceding budburst in relation to environmental cues is needed. We studied the effect of accumulated chilling and forcing temperatures on the internal development of vegetative buds preceding budburst in Norway spruce [Picea abies (L.) Karst.]. Branches from 17-year-old trees of southern Finnish origin were transferred eight times at 1- to 2-week intervals from October to December 2007 from the field at Punkaharju (61°48'N, 29°20'E) to the greenhouse with forcing conditions (day length 12 h, +20 °C). After seven different durations of forcing, the developmental phase and primordial shoot growth of the buds were analysed at the stereomicroscopic level. Air temperature was recorded hourly throughout the study period. The accumulated chilling unit sum had a significant effect on the temperature sum that was required to attain a certain developmental phase; a higher amount of chilling required a lower amount of forcing. The variation in the rate of development of different buds within each sample branch in relation to the chilling unit and forcing temperature sum was low. Regarding primordial shoot growth, there was also an inverse relation between accumulated chilling and forcing, i.e., a higher accumulated chilling unit sum before forcing required a lower temperature sum to initiate primordial shoot growth and resulted in a stronger effect of accumulated forcing. A second-order regression model with an interaction of chilling and forcing explained the variation of primordial shoot growth with high precision (R(2) = 0.88). However, further studies are required to determine the final parameter values to be used in phenological modelling. © The Author 2014. Published by Oxford University Press. All rights reserved.

  17. Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch.

    PubMed

    Lévesque, Mathieu; Saurer, Matthias; Siegwolf, Rolf; Eilmann, Britta; Brang, Peter; Bugmann, Harald; Rigling, Andreas

    2013-10-01

    The ability of tree species to cope with anticipated decrease in water availability is still poorly understood. We evaluated the potential of Norway spruce, Scots pine, European larch, black pine, and Douglas-fir to withstand drought in a drier future climate by analyzing their past growth and physiological responses at a xeric and a mesic site in Central Europe using dendroecological methods. Earlywood, latewood, and total ring width, as well as the δ(13) C and δ(18) O in early- and latewood were measured and statistically related to a multiscalar soil water deficit index from 1961 to 2009. At the xeric site, δ(13) C values of all species were strongly linked to water deficits that lasted longer than 11 months, indicating a long-term cumulative effect on the carbon pool. Trees at the xeric site were particularly sensitive to soil water recharge in the preceding autumn and early spring. The native species European larch and Norway spruce, growing close to their dry distribution limit at the xeric site, were found to be the most vulnerable species to soil water deficits. At the mesic site, summer water availability was critical for all species, whereas water availability prior to the growing season was less important. Trees at the mesic were more vulnerable to water deficits of shorter duration than the xeric site. We conclude that if summers become drier, trees growing on mesic sites will undergo significant growth reductions, whereas at their dry distribution limit in the Alps, tree growth of the highly sensitive spruce and larch may collapse, likely inducing dieback and compromising the provision of ecosystem services. However, the magnitude of these changes will be mediated strongly by soil water recharge in winter and thus water availability at the beginning of the growing season. © 2013 John Wiley & Sons Ltd.

  18. Altitudinal gradients of bryophyte diversity and community assemblage in southern Appalachian spruce-fir forests

    Treesearch

    Sarah E. Stehn; Christopher R. Webster; Janice M. Glime; Michael A. Jenkins

    2010-01-01

    Ground-layer plant communities in spruce-fir forests of the southern Appalachians have likely undergone significant change since the widespread death of canopy Fraser fir (Abies fraseri) caused by the exotic balsam woolly adelgid (Adelges piceae). Bryophytes comprise an important part of the ground-layer flora in the spruce-fir...

  19. Climate-induced mortality of spruce stands in Belarus

    NASA Astrophysics Data System (ADS)

    Kharuk, Viacheslav I.; Im, Sergei T.; Dvinskaya, Maria L.; Golukov, Alexei S.; Ranson, Kenneth J.

    2015-12-01

    The aim of this work is an analysis of the causes of spruce (Picea abies L.) decline and mortality in Belarus. The analysis was based on forest inventory and Landsat satellite (land cover classification, climate variables (air temperature, precipitation, evaporation, vapor pressure deficit, SPEI drought index)), and GRACE-derived soil moisture estimation (equivalent of water thickness anomalies, EWTA). We found a difference in spatial patterns between dead stands and all stands (i.e., before mortality). Dead stands were located preferentially on relief features with higher water stress risk (i.e., higher elevations, steeper slopes, south and southwestern exposure). Spruce mortality followed a series of repeated droughts between 1990 and 2010. Mortality was negatively correlated with air humidity (r = -0.52), and precipitation (r = -0.57), and positively correlated with the prior year vapor pressure deficit (r = 0.47), and drought increase (r = 0.57). Mortality increased with the increase in occurrence of spring frosts (r = 0.5), and decreased with an increase in winter cloud cover (r = -0.37). Spruce mortality was negatively correlated with snow water accumulation (r = -0.81) and previous year anomalies in water soil content (r = -0.8). Weakened by water stress, spruce stands were attacked by pests and phytopathogens. Overall, spruce mortality in Belarussian forests was caused by drought episodes and drought increase in synergy with pest and phytopathogen attacks. Vast Picea abies mortality in Belarus and adjacent areas of Russia and Eastern Europe is a result of low adaptation of that species to increased drought. This indicates the necessity of spruce replacement by drought-tolerant indigenous (e.g., Pinus sylvestris, Querqus robur) or introduced (e.g., Larix sp. or Pseudotsuga menzieslii) species to obtain sustainable forest growth management.

  20. Climate-Induced Mortality of Spruce Stands in Belarus

    NASA Technical Reports Server (NTRS)

    Kharuk, Viacheslav I.; Im, Sergei T.; Dvinskaya, Maria L.; Golukov, Alexei S.; Ranson, Kenneth J.

    2015-01-01

    The aim of this work is an analysis of the causes of spruce (Picea abies L.) decline and mortality in Belarus. The analysis was based on forest inventory and Landsat satellite (land cover classification, climate variables (air temperature, precipitation, evaporation, vapor pressure deficit, SPEI drought index)), and GRACE-derived soil moisture estimation (equivalent of water thickness anomalies, EWTA). We found a difference in spatial patterns between dead stands and all stands (i.e., before mortality). Dead stands were located preferentially on relief features with higher water stress risk (i.e., higher elevations, steeper slopes, south and southwestern exposure). Spruce mortality followed a series of repeated droughts between 1990 and 2010. Mortality was negatively correlated with air humidity (r = -0.52), and precipitation (r = -0.57), and positively correlated with the prior year vapor pressure deficit (r = 0.47), and drought increase (r = 0.57). Mortality increased with the increase in occurrence of spring frosts (r = 0.5), and decreased with an increase in winter cloud cover (r = -0.37). Spruce mortality was negatively correlated with snow water accumulation (r = -0.81) and previous year anomalies in water soil content (r = -0.8). Weakened by water stress, spruce stands were attacked by pests and phytopathogens. Overall, spruce mortality in Belarussian forests was caused by drought episodes and drought increase in synergy with pest and phytopathogen attacks. Vast Picea abies mortality in Belarus and adjacent areas of Russia and Eastern Europe is a result of low adaptation of that species to increased drought. This indicates the necessity of spruce replacement by drought-tolerant indigenous (e.g., Pinus sylvestris, Querqus robur) or introduced (e.g., Larix sp. or Pseudotsuga menzieslii) species to obtain sustainable forest growth management.

  1. Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand.

    PubMed

    Tarvainen, Lasse; Räntfors, Mats; Wallin, Göran

    2014-05-01

    Stem CO2 efflux is known to vary seasonally and vertically along tree stems. However, annual tree- and stand-scale efflux estimates are commonly based on measurements made only a few times a year, during daytime and at breast height. In this study, the effect of these simplifying assumptions on annual efflux estimates and their influence on the estimates of the importance of stems in stand-scale carbon cycling are evaluated. In order to assess the strength of seasonal, diurnal and along-stem variability in CO2 efflux, half-hourly measurements were carried out at three heights on three mature Norway spruce (Picea abies (L.) Karst.) trees over a period of 3 years. Making the common assumption of breast height efflux rates being representative of the entire stem was found to result in underestimations of 10-17% in the annual tree-scale CO2 efflux. Upscaling using only daytime measurements from breast height increased the underestimation to 15-20%. Furthermore, the results show that the strength of the vertical gradient varies seasonally, being strongest in the early summer and non-existent during the cool months. The observed seasonality in the vertical CO2 efflux gradient could not be explained by variation in stem temperature, temperature response of the CO2 efflux (Q10), outer-bark permeability, CO2 transport in the xylem or CO2 release from the phloem. However, the estimated CO2 concentration immediately beneath the bark was considerably higher in the upper stem during the main period of diameter growth, coinciding with the strongest vertical efflux gradient. These results suggest that higher growth rates in the upper stem are the main cause for the observed vertical variation in the stem CO2 effluxes. Furthermore, the results indicate that accounting for the vertical efflux variation is essential for assessments of the importance of stems in stand-scale carbon cycling. © The Author 2014. Published by Oxford University Press. All rights reserved.

  2. Hydraulic redistribution under moderate drought among English oak, European beech and Norway spruce determined by deuterium isotope labeling in a split-root experiment.

    PubMed

    Hafner, Benjamin D; Tomasella, Martina; Häberle, Karl-Heinz; Goebel, Marc; Matyssek, Rainer; Grams, Thorsten E E

    2017-07-01

    Hydraulic redistribution (HR) of soil water through plant roots is a crucial phenomenon improving the water balance of plants and ecosystems. It is mostly described under severe drought, and not yet studied under moderate drought. We tested the potential of HR under moderate drought, hypothesizing that (H1) tree species redistribute soil water in their roots even under moderate drought and that (H2) neighboring plants are supported with water provided by redistributing plants. Trees were planted in split-root systems with one individual (i.e., split-root plant, SRP) having its roots divided between two pots with one additional tree each. Species were 2- to  4-year-old English oak (Quercus robur L.), European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst). A gradient in soil water potential (ψsoil) was established between the two pots (-0.55 ± 0.02 MPa and -0.29 ± 0.03 MPa), and HR was observed by labeling with deuterium-enriched water. Irrespective of species identity, 93% of the SRPs redistributed deuterium enriched water from the moist to the drier side, supporting H1. Eighty-eight percent of the plants in the drier pots were deuterium enriched in their roots, with 61 ± 6% of the root water originating from SRP roots. Differences in HR among species were related to their root anatomy with diffuse-porous xylem structure in both beech and-opposing the stem structure-oak roots. In spruce, we found exclusively tracheids. We conclude that water can be redistributed within roots of different tree species along a moderate ψsoil gradient, accentuating HR as an important water source for drought-stressed plants, with potential implications for ecohydrological and plant physiological sciences. It remains to be shown to what extent HR occurs under field conditions in Central Europe. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. X-RAY DENSITOMETRY OF NORWAY SPRUCE SUBFOSSIL WOOD FROM THE AUSTRIAN ALPS

    PubMed Central

    KŁUSEK, MARZENA; GRABNER, MICHAEL

    2016-01-01

    The processing of subfossil wood poses some difficulties in densitometric research. Problems arise because of the physio-chemical changes of wood occurring in the sedimentation environment. Subfossil wood modification can result from the uptake of mineral and organic substances into the wood tissue. It can also occur as the effect of microbiological degradation of wood. The goal of this study was to identify the appropriate method of subfossil wood preparation for the densitometric research. For this purpose the wood of Norway spruce from Lake Schwarzensee was subjected to extraction in deionized water, acetone and diluted acetic acid. The application of acetic acid did not significantly influence the density of the wood and acetone seemed to be too aggressive. The best result was obtained by rinsing the samples in cold de-ionized water. This extraction procedure allowed removal of unwanted water-soluble, organic and inorganic compounds from wood and simultaneously did not lead to the degradation of subfossil samples. PMID:27158247

  4. Changes in soil nitrogen cycling under Norway spruce logging residues on a clear-cut

    NASA Astrophysics Data System (ADS)

    Smolander, Aino; Lindroos, Antti-Jussi; Kitunen, Veikko

    2016-04-01

    In Europe, forest biomass is increasingly being used as a source of energy to replace fossil fuels. In practice, this means that logging residues, consisting of green branches and stem tops, are more commonly harvested. In 2012 logging residues were harvested from about one third of clear-cuts in Finland. Our aim was to study how logging residues affect soil organic matter quality, in particular soil N cycling processes and composition of certain groups of plant secondary compounds, tannins and terpenes. Compounds in these groups were of interest because they are abundant in logging residues, and they have been shown to control soil N cycling. In connection with clear-cutting a Norway spruce stand in southern Finland, we established a controlled field experiment by building logging residue piles (40 kg/m2) on study plots. The piles consisted of fresh spruce branches and tops with green foliage. Control plots with no residues were included (0 kg/m2). Changes in soil organic matter properties have now been monitored for three growing seasons. Logging residues affected organic layer properties strongly. For example, they increased net nitrification and nitrate concentrations. There were also increases in the concentrations of certain terpenes and condensed tannins due to the residues. The significance of logging residues on soil processes and properties will be shown.

  5. Effects of sewage sludge addition to Norway spruce seedlings on nitrogen availability and soil fauna in clear-cut areas.

    PubMed

    Nieminen, Jouni K; Räisänen, Mikko

    2013-07-01

    Anaerobically digested and composted sewage sludge (CSS) has been suggested to be a slow-release fertilizer in forestry and an alternative to quick-release inorganic fertilizers. The effects of CSS with or without added carbohydrate on inorganic nitrogen availability and on soil animals were tested in two Norway spruce plantations. Half of the seedlings were individually fertilized with CSS, and the rest were left as controls. Solid sucrose was added to half of the fertilized and untreated seedlings. Soil samples were taken in the autumn in the first and the second year after the treatments. CSS increased soil NH4-N (2100%), the proportion of soil NO3-N, and the N concentration of spruce needles. CSS greatly reduced the abundances of enchytraeids, tardigrades and collembolans, but increased the proportion and abundance of bacterial-feeding nematodes irrespective of carbohydrate addition. A better stabilization method needs to be developed before CSS can be used as a forest fertilizer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Population dynamics and genetic changes of Picea abies in the South Carpathians revealed by pollen and ancient DNA analyses

    PubMed Central

    2011-01-01

    Background Studies on allele length polymorphism designate several glacial refugia for Norway spruce (Picea abies) in the South Carpathian Mountains, but infer only limited expansion from these refugia after the last glaciation. To better understand the genetic dynamics of a South Carpathian spruce lineage, we compared ancient DNA from 10,700 and 11,000-year-old spruce pollen and macrofossils retrieved from Holocene lake sediment in the Retezat Mountains with DNA extracted from extant material from the same site. We used eight primer pairs that amplified short and variable regions of the spruce cpDNA. In addition, from the same lake sediment we obtained a 15,000-years-long pollen accumulation rate (PAR) record for spruce that helped us to infer changes in population size at this site. Results We obtained successful amplifications for Norway spruce from 17 out of 462 pollen grains tested, while the macrofossil material provided 22 DNA sequences. Two fossil sequences were found to be unique to the ancient material. Population genetic statistics showed higher genetic diversity in the ancient individuals compared to the extant ones. Similarly, statistically significant Ks and Kst values showed a considerable level of differentiation between extant and ancient populations at the same loci. Lateglacial and Holocene PAR values suggested that population size of the ancient population was small, in the range of 1/10 or 1/5 of the extant population. PAR analysis also detected two periods of rapid population growths (from ca. 11,100 and 3900 calibrated years before present (cal yr BP)) and three bottlenecks (around 9180, 7200 and 2200 cal yr BP), likely triggered by climatic change and human impact. Conclusion Our results suggest that the paternal lineages observed today in the Retezat Mountains persisted at this site at least since the early Holocene. Combination of the results from the genetic and the PAR analyses furthermore suggests that the higher level of genetic

  7. Bark beetles, pityogenes bidentatus, orienting to aggregation pheromone avoid conifer monoterpene odors when flying but not when walking

    USDA-ARS?s Scientific Manuscript database

    Previous studies have provided evidence that monoterpene odors from healthy host Scotch pine (Pinus sylvestris) and non-host Norway spruce (Picea abies) significantly reduce the attraction of flying bark beetles, Pityogenes bidentatus, to their aggregation pheromone components (grandisol and cis-ver...

  8. Optimizing management regimes for carbon storage and other benefits in uneven-aged stands dominated by Norway spruce, with a derivation of the economic supply of carbon storage

    Treesearch

    Joseph Buongiorno; Espen Andreas Halvorsen; Ole Martin Bollandsas; Terje Gobakken; Ole Hofstad

    2012-01-01

    This study sought optimal sustainable management regimes of uneven-aged Norway spruce-dominated stands with multiple objectives. The criteria were financial returns, CO2 sequestration and diversity of tree size and species. At prevailing timber prices, harvest and transport costs, and interest rates, uneven-aged management for timber alone was...

  9. Bio-Guided Isolation of Methanol-Soluble Metabolites of Common Spruce (Picea abies) Bark by-Products and Investigation of Their Dermo-Cosmetic Properties.

    PubMed

    Angelis, Apostolis; Hubert, Jane; Aligiannis, Nektarios; Michalea, Rozalia; Abedini, Amin; Nuzillard, Jean-Marc; Gangloff, Sophie C; Skaltsounis, Alexios-Leandros; Renault, Jean-Hugues

    2016-11-21

    Common spruce ( Picea abies L.) is a fast-growing coniferous tree, widely used in several countries for the production of sawn wood, timber and pulp. During this industrial exploitation, large quantities of barks are generated as waste materials. The aim of this study was the bio-guided investigation and the effective recovery of methanol-soluble metabolites of common spruce bark for the development of new dermo-cosmetic agents. The active methanol extract was initially fractionated by Centrifugal Partition Chromatography (CPC) using a triphasic solvent system in a step-gradient elution mode. All resulting fractions were evaluated for their antibacterial activity, antioxidant activity and their capability to inhibit tyrosinase, elastase and collagenase activity. In parallel, the chemical composition of each fraction was established by combining a 13 C-NMR dereplication approach and 2D-NMR analyses. As a result, fourteen secondary metabolites corresponding to stilbene, flavonoid and phenolic acid derivatives were directly identified in the CPC fractions. A high amount (0.93 g) of E -astringin was recovered from 3 g of crude extract in a single 125 min run. E -Astringin significantly induced the tyrosinase activity while E -piceid, taxifolin, and taxifolin-3'- O -glucopyranoside exhibited significant anti-tyrosinase activity. The above compounds showed important anti-collagenase and antimicrobial activities, thus providing new perspectives for potential applications as cosmetic ingredients.

  10. Fluxes of biogenic volatile organic compounds measured and modelled above a Norway spruce forest

    NASA Astrophysics Data System (ADS)

    Juráň, Stanislav; Fares, Silvano; Pallozzi, Emanuele; Guidolotti, Gabriele; Savi, Flavia; Alivernini, Alessandro; Calfapietra, Carlo; Večeřová, Kristýna; Křůmal, Kamil; Večeřa, Zbyněk; Cudlín, Pavel; Urban, Otmar

    2016-04-01

    Fluxes of biogenic volatile organic compounds (BVOCs) were investigated at Norway spruce forest at Bílý Kříž in Beskydy Mountains of the Czech Republic during the summer 2014. A proton-transfer-reaction-time-of-flight mass spectrometer (PTR-TOF-MS, Ionicon Analytik, Austria) has been coupled with eddy-covariance system. Additionally, Inverse Lagrangian Transport Model has been used to derive fluxes from concentration gradient of various monoterpenes previously absorbed into n-heptane by wet effluent diffusion denuder with consequent quantification by gas chromatography with mass spectrometry detection. Modelled data cover each one day of three years with different climatic conditions and previous precipitation patterns. Model MEGAN was run to cover all dataset with monoterpene fluxes and measured basal emission factor. Highest fluxes measured by eddy-covariance were recorded during the noon hours, represented particularly by monoterpenes and isoprene. Inverse Lagrangian Transport Model suggests most abundant monoterpene fluxes being α- and β-pinene. Principal component analysis revealed dependencies of individual monoterpene fluxes on air temperature and particularly global radiation; however, these dependencies were monoterpene specific. Relationships of monoterpene fluxes with CO2 flux and relative air humidity were found to be negative. MEGAN model correlated to eddy-covariance PTR-TOF-MS measurement evince particular differences, which will be shown and discussed. Bi-directional fluxes of oxygenated short-chain volatiles (methanol, formaldehyde, acetone, acetaldehyde, formic acid, acetic acid, methyl vinyl ketone, methacrolein, and methyl ethyl ketone) were recorded by PTR-TOF-MS. Volatiles of anthropogenic origin as benzene and toluene were likely transported from the most benzene polluted region in Europe - Ostrava city and adjacent part of Poland around Katowice, where metallurgical and coal mining industries are located. Those were accumulated during

  11. Evaluation of the stomatal conductance formulation in the EMEP ozone deposition model for Picea abies

    NASA Astrophysics Data System (ADS)

    Wieser, G.; Emberson, L. D.

    It is widely acknowledged that the possible impacts of ozone on forest trees are more closely related to ozone flux through the stomata than to external ozone exposure. However, the application of the flux approach on a European scale requires the availability of appropriate models, such as the European Monitoring and Evaluation Programme (EMEP) ozone deposition model, for estimating ozone flux and cumulative ozone uptake. Within this model stomatal conductance is the key variable, since it determines the amount of ozone absorbed by the leaves. This paper describes the suitability of the existing EMEP ozone deposition model parameterisation and formulation to represent stomatal behaviour determined from field measurements on adult Norway spruce ( Picea abies (L.) Karst.) trees in the Central European Alps. Parameters affecting maximum stomatal conductance (e.g. seasonal phenology, needle position, needle age, nutrient deficiency and ozone itself) and stomatal response functions to temperature, irradiance, vapour pressure deficit, and soil water content are investigated. Finally, current limitations and possible alterations of the EMEP model will be discussed with respect to spatial scales of available input data for future flux modelling.

  12. Autumn frost hardiness in Norway spruce plus tree progeny and trees of the local and transferred provenances in central Sweden.

    PubMed

    Hannerz, Mats; Westin, Johan

    2005-09-01

    Reforestation with provenances from locations remote from the planting site (transferred provenances) or the progeny of trees of local provenances selected for superior form and vigor (plus trees) offer alternative means to increase yield over that obtained by the use of seed from unselected trees of the local provenance. Under Swedish conditions, Norway spruce (Picea abies (L.) Karst.) of certain transferred provenances generally has an advantage in productivity relative to the local provenance comparable to that of progeny of plus trees. The aim of this study was to explore the extent to which productivity gains achieved by provenance transfer or the use of plus tree progeny are associated with reductions in autumn frost hardiness, relative to that of trees of the local provenance. In a field trial with 19-year-old trees in central Sweden, bud hardiness was tested on four occasions during the autumn of 2002. Trees of the local provenance were compared with trees of a south Swedish provenance originating 3 degrees of latitude to the south, a Belarusian provenance and the progeny of plus trees of local origin. The Belarusian provenance was the least hardy and the local provenance the most hardy, with plus tree progeny and the south Swedish provenance being intermediate in hardiness. Both the Belarusian provenance and the plus tree progeny were significantly taller than trees of the other populations. Within provenances, tree height was negatively correlated with autumn frost hardiness. Among the plus tree progeny, however, no such correlation between tree height and autumn frost hardiness was found. It is concluded that although the gain in productivity achieved by provenance transfer from Belarus was comparable to that achieved by using the progeny of plus trees of the local provenance, the use of trees of the Belarus provenance involved an increased risk of autumn frost damage because of later hardening.

  13. Natural development and regeneration of a Central European montane spruce forest

    Treesearch

    Miroslav Svoboda; Shawn Fraver; Pavel Janda; Radek Bače; Jitka Zenáhlíková

    2010-01-01

    Montane Norway spruce forests of Central Europe have a very long tradition of use for timber production; however, recently there has been increasing concern for their role in maintaining biological diversity. This concern, coupled with recent severe windstorms that led to wide-spread bark beetle outbreaks, has brought the management of montane spruce forests to the...

  14. Diel cycles of isoprenoids in the emissions of Norway spruce, different Scots pine chemotypes, and in Boreal forest ambient air during HUMPPA-COPEC-2010

    NASA Astrophysics Data System (ADS)

    Yassaa, N.; Williams, J.; Song, W.; Vanhatalo, A.; Bäck, J.; Lelieveld, J.

    2012-04-01

    Cuvette based emission rates of monoterpenes and sesquiterpenes from four chemotypes of Scots pine (Pinus sylvestris) and one chemotype of Norway spruce (Picea abies) as well as the ambient mixing ratios of monoterpenes were determined during HUMPPA-COPEC 2010 summer campaign. Differences in chemical composition as well as in emission strength were observed between the different chemotypes. The chemotypes of Scots pine can be classified according to species with high, no and intermediate content of Δ3-carene. The "no- Δ3-carene" chemotype was found to be the strongest emitter of monoterpenes. From this chemotype, β-myrcene, a very reactive organic gas, was the dominant species accounting for more than 35 % of the total emission rates of isoprenoids followed by ß-phellandrene (~34%). Myrcene emission rates ranged from 0.8 up to 24 µg/g (dw)/h. α-farnesene was the dominant sesquiterpene species, with measured average emission rates of 318 ng/g (dw)/h. In the high Δ3-carene chemotype, which is the most studied in Hyytiälä, Δ3-carene was more than 48 % of the total monoterpene emission. The mean Δ3-carene emission rate, circa 609 ng/g (dw)/h reported here is consistent with the previously reported value during the same season. The terpene emission from spruce was dominated by limonene (35%), ß-phellandrene (15%), α-pinene (14 %) and eucalyptol (9%). Total spruce monoterpene emissions ranged from 0.549 up to 12.2 µg/g (dw)/h. Overall the total terpene flux (monoterpenes + sesquiterpenes) from all studied plant species varied from 230 ng/g (dw)/h up to 66 µg/g (dw)/h. The total ambient monoterpenes (including α-pinene, Δ3-carene, ß-pinene and ß-myrcene) measured during the campaign varied in mixing ratio from a few ppt to over one ppb. The most abundant biogenic VOCs measured above the canopy were α-pinene and Δ3-carene and these two compounds together contributed more than 50% of the total monoterpenes. The diel cycles of isoprenoid mixing ratios

  15. Animal damage to young spruce and fir in Maine

    Treesearch

    Barton M. Blum

    1977-01-01

    The loss of terminal buds on small balsam fir (Abies balsamea (L.) Mill.) and spruce (Picea spp.) trees because of nipping by mammals or birds has increased on the Penobscot Experimental Forest in recent years. The cut stem is smooth and slightly angled; there is no sign of tearing. Unnipped trees grew about 13 percent more than...

  16. Biogenic nitric oxide emission from a spruce forest soil in mountainous terrain

    NASA Astrophysics Data System (ADS)

    Falge, Eva; Bargsten, Anika; Behrendt, Thomas; Meixner, Franz X.

    2010-05-01

    The process-based spatial simulation model SVAT-CN was used to estimate biogenic nitric oxide (NO) emission by soils of a Norway spruce forest (Weidenbrunnen) in the Fichtelgebirge, Germany. SVAT-CN core is a combination of a multiple-layer soil water balance model and a multi-layered canopy gas exchange model. The soil modules comprise a flexible hybrid between a layered bucket model and classical basic liquid flow theory. Further soil processes include: heat transport, distribution of transpiration demand proportionally to soil resistance, reduction of leaf physiological parameters with limiting soil moisture. Spruce forest soils usually are characterized by a thick organic layer (raw humus), with the topmost centimetres being the location where most of the biogenic NO is produced. Within individual spruce forest stands the understory might be composed of patches characterized by different species (e.g. Vaccinium myrtillus, Picea abies, Deschampsia caespitosa), and NO production potentials. The effect of soil physical and chemical parameters and understory types on NO emission from the organic layer was investigated in laboratory incubation and fumigation experiments on soils sampled below the various understory covers found at the Weidenbrunnen site. Results from the laboratory experiments were used to parameterize multi-factorial regression models of soil NO emission with respect to its response to soil temperature and moisture. Parameterization of the spatial model SVAT-CN includes horizontal heterogeneity of over- and understory PAI, understory species distribution, soil texture, bulk density, thickness of organic layer. Simulations are run for intensive observations periods of 2007 and 2008 of the EGER (ExchanGE processes in mountainous Regions) project, a late summer/fall and an early summer period, providing estimates for different understory types (young spruce, blueberry, grass, and moss/litter patches). Validation of the model is being carried out at

  17. Effects of soil calcium and aluminum on the physiology of balsam fir and red spruce saplings in northern New England

    Treesearch

    Richard L. Boyce; Paul G. Schaberg; Gary J. Hawley; Joshua M. Halman; Paula F. Murakami

    2013-01-01

    We examined the influence of calcium (Ca) and aluminum (Al) nutrition on the foliar physiology of red spruce (Picea rubens Sarg.) and balsam fir [Abies balsamea (L.) Mill.] in northern New England, USA. At the Hubbard Brook Experimental Forest (NH, USA), spruce and fir saplings were sampled from control, Al-, and Ca-supplemented...

  18. Premature Needle Loss of Spruce

    Treesearch

    Jennifer Juzwik; Joseph G. O Brien

    1990-01-01

    Premature needle loss on white, black and Norway spruce has been observed in forest plantations in Wisconsin and Minnesota during the past six years. Symptoms vary by species but usually appear first in 2-4-year old needles on lower branches. Infected needles are dropped, resulting in branch mortality that progresses upward through the crown, sometimes killing even...

  19. Bacillus thuringiensis variety kurstaki x aizawai applied to spruce flowers reduced Dioryctria abietella (Lepidoptera: Pyralidae) infestation without affecting seed quality.

    PubMed

    Glynn, Carolyn; Weslien, Jan

    2004-12-01

    We investigated the effects of Bacillus thuringiensis variety kurstaki x aizawai (Bt) on infestation levels of two lepidopteran insects as well as on seed quality in Norway spruce, Picea abies L. (Karst.) in central Sweden. Spruce flowers (female strobili) were sprayed with a 0.2% suspension (wt:wt) of the Bt preparation Turex 50 WP, 25,000 IU/mg in water. To expose even those lepidopteran larvae that feed exclusively embedded within the cone tissue, the Bt treatment was applied to open flowers, before they closed and developed into cones. The experimental design included three main factors: treatment (untreated control, water, or Bt), spruce genotype (three clones), and spraying time (spraying before, during, and after the phase of highest pollen receptivity). The Bt treatment reduced the proportion of cones infested by the cone worm Dioryctria abietella Den. et Schiff. (Lepidoptera: Pyralidae) from approximately 30 to 15%. There was no statistically significant treatment effect on the infestation rate of Cydia strobilella (L.) (Lepidoptera: Tortricidae). The Bt variety kurstaki x aizawai treatment caused no reduction in seed quality as measured by seed weight or percentage of nonfilled seeds. There was no difference in number of seeds per cone between the Bt-treated and untreated control cones. There was a significant effect of genotype on insect infestation rates, as well as on number of seeds per cone and seed weight. Neither level of insect damage nor any seed quality parameters were affected by time of application of the treatments.

  20. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Petrillo, M.; Cherubini, P.; Fravolini, G.; Ascher, J.; Schärer, M.; Synal, H.-A.; Bertoldi, D.; Camin, F.; Larcher, R.; Egli, M.

    2015-09-01

    Due to the large size and highly heterogeneous spatial distribution of deadwood, the time scales involved in the coarse woody debris (CWD) decay of Picea abies (L.) Karst. and Larix decidua Mill. in Alpine forests have been poorly investigated and are largely unknown. We investigated the CWD decay dynamics in an Alpine valley in Italy using the five-decay class system commonly employed for forest surveys, based on a macromorphological and visual assessment. For the decay classes 1 to 3, most of the dendrochronological samples were cross-dated to assess the time that had elapsed since tree death, but for decay classes 4 and 5 (poorly preserved tree rings) and some others not having enough tree rings, radiocarbon dating was used. In addition, density, cellulose and lignin data were measured for the dated CWD. The decay rate constants for spruce and larch were estimated on the basis of the density loss using a single negative exponential model. In the decay classes 1 to 3, the ages of the CWD were similar varying between 1 and 54 years for spruce and 3 and 40 years for larch with no significant differences between the classes; classes 1-3 are therefore not indicative for deadwood age. We found, however, distinct tree species-specific differences in decay classes 4 and 5, with larch CWD reaching an average age of 210 years in class 5 and spruce only 77 years. The mean CWD rate constants were 0.012 to 0.018 yr-1 for spruce and 0.005 to 0.012 yr-1 for larch. Cellulose and lignin time trends half-lives (using a multiple-exponential model) could be derived on the basis of the ages of the CWD. The half-lives for cellulose were 21 yr for spruce and 50 yr for larch. The half-life of lignin is considerably higher and may be more than 100 years in larch CWD.

  1. The architecture of Norway spruce ectomycorrhizae: three-dimensional models of cortical cells, fungal biomass, and interface for potential nutrient exchange.

    PubMed

    Stögmann, Bernhard; Marth, Andreas; Pernfuß, Barbara; Pöder, Reinhold

    2013-08-01

    Gathering realistic data on actual fungal biomass in ectomycorrhized fine root systems is still a matter of concern. Thus far, observations on architecture of ectomycorrhizae (ECMs) have been limited to analyses of two-dimensional (2-D) images of tissue sections. This unavoidably causes stereometrical problems that lead to inadequate assumptions about actual size of cells and their arrangement within ECM's functional compartments. Based on extensive morphological investigations of field samples, we modeled the architectural components of an average-sized Norway spruce ECM. In addition to our comprehensive and detailed quantitative data on cell sizes, we studied actual shape and size, in vivo arrangement, and potential nutrient exchange area of plant cortical cells (CCs) using computer-aided three-dimensional (3-D) reconstructions based on semithin serial sections. We extrapolated a factual fungal biomass in ECMs (Hartig net (HN) included) of 1.71 t ha(-1) FW (0.36 t ha(-1) DW) for the top 5 cm of soil for an autochthonous, montane, optimum Norway spruce stand in the Tyrolean Alps. The corresponding potential nutrient exchange area in ECMs including main axes of ECM systems, which is defined as the sum of interfaces between plant CCs and the HN, amounts to at least 3.2 × 10(5) m(2) ha(-1). This is the first study that determines the contribution of the HN to the total fungal biomass in ECMs as well as the quantification of its contact area. Our results may stimulate future research on fungal below-ground processes and their impact on the global carbon cycle.

  2. Using image analysis for quantitative assessment of needle bladder rust disease of Norway spruce.

    PubMed

    Ganthaler, A; Losso, A; Mayr, S

    2018-06-01

    High elevation spruce forests of the European Alps are frequently infected by the needle rust Chrysomyxa rhododendri , a pathogen causing remarkable defoliation, reduced tree growth and limited rejuvenation. Exact quantification of the disease severity on different spatial scales is crucial for monitoring, management and resistance breeding activities. Based on the distinct yellow discolouration of attacked needles, it was investigated whether image analysis of digital photographs can be used to quantify disease severity and to improve phenotyping compared to conventional assessment in terms of time, effort and application range. The developed protocol for preprocessing and analysis of digital RGB images enabled identification of disease symptoms and healthy needle areas on images obtained in ground surveys (total number of analysed images n  =   62) and by the use of a semiprofessional quadcopter ( n  =   13). Obtained disease severities correlated linearly with results obtained by manual counting of healthy and diseased needles for all approaches, including images of individual branches with natural background ( R 2  = 0.87) and with black background ( R 2  = 0.95), juvenile plants ( R 2  = 0.94), and top views and side views of entire tree crowns of adult trees ( R 2  = 0.98 and 0.88, respectively). Results underline that a well-defined signal related to needle bladder rust symptoms of Norway spruce can be extracted from images recorded by standard digital cameras and using drones. The presented protocol enables precise and time-efficient quantification of disease symptoms caused by C. rhododendri and provides several advantages compared to conventional assessment by manual counting or visual estimations.

  3. European spruce bark beetle (Ips typographus, L.) green attack affects foliar reflectance and biochemical properties

    NASA Astrophysics Data System (ADS)

    Abdullah, Haidi; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Groen, Thomas A.; Heurich, Marco

    2018-02-01

    The European spruce bark beetle Ips typographus, L. (hereafter bark beetle), causes major economic loss to the forest industry in Europe, especially in Norway Spruce (Picea abies). To minimise economic loss and preclude a mass outbreak, early detection of bark beetle infestation (so-called ;green attack; stage - a period at which trees are yet to show visual signs of infestation stress) is, therefore, a crucial step in the management of Norway spruce stands. It is expected that a bark beetle infestation at the green attack stage affects a tree's physiological and chemical status. However, the concurrent effect on key foliar biochemical such as foliar nitrogen and chlorophyll as well as spectral responses are not well documented in the literature. Therefore, in this study, the early detection of bark beetle green attacks is investigated by examining foliar biochemical and spectral properties (400-2000 nm). We also assessed whether bark beetle infestation affects the estimation accuracy of foliar biochemicals. An extensive field survey was conducted in the Bavarian Forest National Park (BFNP), Germany, in the early summer of 2015 to collect leaf samples from 120 healthy and green attacked trees. The spectra of the leaf samples were measured using an ASD FieldSpec3 equipped with an integrating sphere. Significant differences (p < 0.05) between healthy and infested needle samples were found in the mean reflectance spectra, with the most pronounced differences being observed in the NIR and SWIR regions between 730 and 1370 nm. Furthermore, significant differences (p < 0.05) were found in the biochemical compositions (chlorophyll and nitrogen concentration) of healthy versus green attacked samples. Our results further demonstrate that the estimation accuracy of foliar chlorophyll and nitrogen concentrations, utilising partial least square regression model, was lower for the infested compared to the healthy trees. We show that early stage of infestation reduces not only

  4. Red-edge vegetation indices for detecting and assessing disturbances in Norway spruce dominated mountain forests

    NASA Astrophysics Data System (ADS)

    Adamczyk, Joanna; Osberger, Antonia

    2015-05-01

    Here we propose an approach to enhance the detection and assessment of forest disturbances in mountain areas based on red-edge reflectance. The research addresses the need for improved monitoring of areas included in the European Natura 2000 network. Thirty-eight vegetation indices (VI) are assessed for sensitivity to topographic variations. A separability analysis is performed for the resulting set of ten VI whereby two VI (PSSRc2, SR 800/550) are found most suitable for threshold-based OBIA classification. With a correlation analysis (SRCC) between VI and the training samples we identify Datt4 as suitable to represent the magnitude of forest disturbance. The provided information layers illustrate two combined phenomena that were derived by (1) an OBIA delineation and (2) continuous representation of the magnitude of forest disturbance. The satisfactory accuracy assessment results confirm that the approach is useful for operational tasks in the long-term monitoring of Norway spruce dominated forests in mountainous areas, with regard to forest disturbance.

  5. The first crystal structures of a family 19 class IV chitinase: the enzyme from Norway spruce.

    PubMed

    Ubhayasekera, Wimal; Rawat, Reetika; Ho, Sharon Wing Tak; Wiweger, Malgorzata; Von Arnold, Sara; Chye, Mee-Len; Mowbray, Sherry L

    2009-10-01

    Chitinases help plants defend themselves against fungal attack, and play roles in other processes, including development. The catalytic modules of most plant chitinases belong to glycoside hydrolase family 19. We report here x-ray structures of such a module from a Norway spruce enzyme, the first for any family 19 class IV chitinase. The bi-lobed structure has a wide cleft lined by conserved residues; the most interesting for catalysis are Glu113, the proton donor, and Glu122, believed to be a general base that activate a catalytic water molecule. Comparisons to class I and II enzymes show that loop deletions in the class IV proteins make the catalytic cleft shorter and wider; from modeling studies, it is predicted that only three N-acetylglucosamine-binding subsites exist in class IV. Further, the structural comparisons suggest that the family 19 enzymes become more closed on substrate binding. Attempts to solve the structure of the complete protein including the associated chitin-binding module failed, however, modeling studies based on close relatives indicate that the binding module recognizes at most three N-acetylglucosamine units. The combined results suggest that the class IV enzymes are optimized for shorter substrates than the class I and II enzymes, or alternatively, that they are better suited for action on substrates where only small regions of chitin chain are accessible. Intact spruce chitinase is shown to possess antifungal activity, which requires the binding module; removing this module had no effect on measured chitinase activity.

  6. Dynamics of forest health status in Slovakia from 1987 to 1994

    Treesearch

    Julius Oszlanyi

    1998-01-01

    Slovakia is a mountainous and forested country (40.6 percent forest cover) in central Europe and has a large variety of vegetation zones, forest types, and a rich diversity of forest tree species. The most important tree species are beech (Fagus sylvatica L.), Norway spruce (Picea abies Karst.), oak species (Quercus...

  7. Effects of copper and arsenic stress on the development of Norway spruce somatic embryos and their visualization with the environmental scanning electron microscope.

    PubMed

    Đorđević, Biljana; Neděla, Vilém; Tihlaříková, Eva; Trojan, Václav; Havel, Ladislav

    2018-05-18

    Somatic embryogenesis is an important biotechnological technique which can be used in studies associated with environmental stress. Four embryogenic cell lines of Norway spruce were grown on media enriched with copper and arsenic in concentration ranges 50-500 μM and 10-50 μM, respectively. The effects were observed during subsequent stages of somatic embryogenesis, the characteristics evaluated being proliferation potential, average number of somatic embryos obtained per g/fresh weight, morphology of developed somatic embryos, metal uptake, and microanalysis of macro- and micronutrients uptake. Copper and arsenic at higher concentrations significantly reduced the growth of early somatic embryos. In almost all treatments, the cell line V-1-3 showed the best performance compared with the other lines tested. Environmental scanning electron microscopy was used to visualize and identify morphological abnormalities in the development of somatic embryos. Abnormalities observed were classified into several categories: meristemless somatic embryos, somatic embryos with disrupted meristem, reduced number of cotyledons, single cotyledon and fused cotyledons. With the application of a low temperature method for the environmental scanning electron microscope, samples were stabilized and whole meristems could be investigated in their native state. As far as we are aware, this is the first report of the effect of copper and arsenic during the process of somatic embryogenesis and the first to evaluate the content of macro and micronutrients uptake in Norway spruce. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Spring photosynthetic recovery of boreal Norway spruce under conditions of elevated [CO(2)] and air temperature.

    PubMed

    Wallin, Göran; Hall, Marianne; Slaney, Michelle; Räntfors, Mats; Medhurst, Jane; Linder, Sune

    2013-11-01

    Accumulated carbon uptake, apparent quantum yield (AQY) and light-saturated net CO2 assimilation (Asat) were used to assess the responses of photosynthesis to environmental conditions during spring for three consecutive years. Whole-tree chambers were used to expose 40-year-old field-grown Norway spruce trees in northern Sweden to an elevated atmospheric CO2 concentration, [CO2], of 700 μmol CO2 mol(-1) (CE) and an air temperature (T) between 2.8 and 5.6 °C above ambient T (TE), during summer and winter. Net shoot CO2 exchange (Anet) was measured continuously on 1-year-old shoots and was used to calculate the accumulated carbon uptake and daily Asat and AQY. The accumulated carbon uptake, from 1 March to 30 June, was stimulated by 33, 44 and 61% when trees were exposed to CE, TE, and CE and TE combined, respectively. Air temperature strongly influenced the timing and extent of photosynthetic recovery expressed as AQY and Asat during the spring. Under elevated T (TE), the recovery of AQY and Asat commenced ∼10 days earlier and the activity of these parameters was significantly higher throughout the recovery period. In the absence of frost events, the photosynthetic recovery period was less than a week. However, frost events during spring slowed recovery so that full recovery could take up to 60 days to complete. Elevated [CO2] stimulated AQY and Asat on average by ∼10 and ∼50%, respectively, throughout the recovery period, but had minimal or no effect on the onset and length of the photosynthetic recovery period during the spring. However, AQY, Asat and Anet all recovered at significantly higher T (average +2.2 °C) in TE than in TA, possibly caused by acclimation or by shorter days and lower light levels during the early part of the recovery in TE compared with TA. The results suggest that predicted future climate changes will cause prominent stimulation of photosynthetic CO2 uptake in boreal Norway spruce forest during spring, mainly caused by elevated T

  9. The influence of spruce on acidity and nutrient content in soils of Northern Taiga dwarf shrub-green moss spruce forests

    NASA Astrophysics Data System (ADS)

    Orlova, M. A.; Lukina, N. V.; Smirnov, V. E.; Artemkina, N. A.

    2016-11-01

    Presently, among the works considering the influence of forest trees on soil properties, the idea that spruce ( Picea abies) promotes the acidification of soils predominates. The aim of this work is to assess the effects of spruce trees of different ages and Kraft classes on the acidity and content of available nutrient compounds in the soils under boreal dwarf shrub-green moss spruce forests by the example of forest soils in the Kola Peninsula. The soils are typical iron-illuvial podzols (Albic Rustic Podzols (Arenic)). Three probable ways of developing soils under spruce forests with the moss-dwarf shrub ground cover are considered. The soils under windfall-soil complexes of flat mesodepressions present the initial status. The acidity of organic soil horizons from the initial stage of mesodepression overgrowth to the formation of adult trees changed nonlinearly: the soil acidity reached its maximum under the 30-40-year-old trees and decreased under the trees older than 100 years. The contents of nitrogen and available nutrients increased. The acidity of the mineral soil horizons under the trees at the ages of 110-135 and 190-220 years was comparable, but higher than that under the 30-40-year-old trees. The differences in the strength and trends of the trees' effect on the soils are explained by the age of spruce trees and their belonging to different Kraft classes.

  10. The DAL10 gene from Norway spruce (Picea abies) belongs to a potentially gymnosperm-specific subclass of MADS-box genes and is specifically active in seed cones and pollen cones.

    PubMed

    Carlsbecker, Annelie; Sundström, Jens; Tandre, Karolina; Englund, Marie; Kvarnheden, Anders; Johanson, Urban; Engström, Peter

    2003-01-01

    Transcription factors encoded by different members of the MADS-box gene family have evolved central roles in the regulation of reproductive organ development in the flowering plants, the angiosperms. Development of the stamens and carpels, the pollen- and seed-bearing organs, involves the B- and C-organ-identity MADS-box genes. B- and C-type gene orthologs with activities specifically in developing pollen- and seed-bearing organs are also present in the distantly related gymnosperms: the conifers and the gnetophytes. We now report on the characterization of DAL10, a novel MADS-box gene from the conifer Norway spruce, which unlike the B- and C-type conifer genes shows no distinct orthology relationship to any angiosperm gene or clade in phylogenetic analyses. Like the B- and C-type genes, it is active specifically in developing pollen cones and seed cones. In situ RNA localization experiments show DAL10 to be expressed in the cone axis, which carry the microsporophylls of the young pollen cone. In contrast, in the seed cone it is expressed both in the cone axis and in the bracts, which subtend the ovuliferous scales. Expression data and the phenotype of transgenic Arabidopsis plants expressing DAL10 suggest that the gene may act upstream to or in concert with the B- and C-type genes in the establishment of reproductive identity of developing cones.

  11. Geoecology of a forest watershed underlain by serpentine in Central Europe

    Treesearch

    Pavel Krám; Filip Oulehle; Veronika Štedrá; Jakub Hruška; James B. Shanley; Rakesh Minocha; Elena Traister

    2009-01-01

    The geoecology of a serpentinite-dominated site in the Czech Republic was investigated by rock, soil, water, and plant analyses. The 22-ha Pluhuv Bor watershed is almost entirely forested by a nearly 110-year old plantation of Picea abies (Norway Spruce) mixed with native Pinus sylvestris (Scots Pine) in the highest elevations...

  12. Effectiveness of the lactococcal abortive infection systems AbiA, AbiE, AbiF and AbiG against P335 type phages.

    PubMed

    Tangney, Mark; Fitzgerald, Gerald F

    2002-04-23

    Four lactococcal abortive infection mechanisms were introduced into strains which were sensitive hosts for P335 type phages and plaque assay experiments performed to assess their effect on five lactococcal bacteriophages from this family. Results indicate that AbiA inhibits all five P335 phages tested, while AbiG affects phiP335 itself and phiQ30 but not the other P335 species phages. AbiA was shown to retard phage Q30 DNA replication as previously reported for other phages. It was also demonstrated that AbiG, previously shown to act at a point after DNA replication in the cases of c2 type and 936 type phages, acts at the level of, or prior to phage Q30 DNA replication. AbiE and AbiF had no effect on the P335 type phages examined.

  13. Leaf physiological responses of mature Norway Spruce trees exposed to elevated carbon dioxide and temperature

    NASA Astrophysics Data System (ADS)

    Lamba, Shubhangi; Uddling, Johan; Räntfors, Mats; Hall, Marianne; Wallin, Göran

    2014-05-01

    Leaf photosynthesis, respiration and stomatal conductance exert strong control over the exchange of carbon, water and energy between the terrestrial biosphere and the atmosphere. As such, leaf physiological responses to rising atmospheric CO2 concentration ([CO2]) and temperature have important implications for the global carbon cycle and rate of ongoing global warming, as well as for local and regional hydrology and evaporative cooling. It is therefore critical to improve the understanding of plant physiological responses to elevated [CO2] and temperature, in particular for boreal and tropical ecosystems. In order to do so, we examined physiological responses of mature boreal Norway spruce trees (ca 40-years old) exposed to elevated [CO2] and temperature inside whole-tree chambers at Flakaliden research site, Northern Sweden. The trees were exposed to a factorial combination of two levels of [CO2] (ambient and doubled) and temperature (ambient and +2.8 degree C in summer and +5.6 degree C in winter). Three replicates in each of the four treatments were used. It was found that photosynthesis was increased considerably in elevated [CO2], but was not affected by the warming treatment. The maximum rate of photosynthetic carboxylation was reduced in the combined elevated [CO2] and elevated temperature treatment, but not in single factor treatments. Elevated [CO2] also strongly increased the base rate of respiration and to a lesser extent reduced the temperature sensitivity (Q10 value) of respiration; responses which may be important for the carbon balance of these trees which have a large proportion of shaded foliage. Stomatal conductance at a given VPD was reduced by elevated temperature treatment, to a degree that mostly offset the higher vapour pressure deficit in warmed air with respect to transpiration. Elevated [CO2] did not affect stomatal conductance, and thus increased the ratio of leaf internal to external [CO2]. These results indicate that the large elevated

  14. Effect of Thawing Time, Cooling Rate and Boron Nutrition on Freezing Point of the Primordial Shoot in Norway Spruce Buds

    PubMed Central

    RÄISÄNEN, MIKKO; REPO, TAPANI; LEHTO, TARJA

    2006-01-01

    • Background Effects of cooling rates on bud frost hardiness have been studied but there is little information on bud responses to thawing. Since the cell wall pore size has been found to increase with boron (B) deficiency, B deficiency may affect the supercooling ability of buds in winter. • Methods The effects of duration of thawing time and rate of cooling on bud frost hardiness of Norway spruce (Picea abies) were studied in a B fertilization trial in February 2003 and March 2005. Frost hardiness of apical buds was determined by differential thermal analysis (DTA) and visual scoring of damage. • Key Results In 2003, the freezing point of primordial shoots of buds (Tf), i.e. the low-temperature exotherm (LTE), was, on average, −39 °C when buds were thawed for less than 3 h and the Tf increased to −21 °C after 18 h of thawing. During the first 4 h of thawing, the rate of dehardening was 6 °C h−1. In 2005, buds dehardened linearly from −39 °C to −35 °C at a rate of 0·7 °C h−1. In 2003, different cooling rates of 1–5 °C h−1 had a minor effect on Tf but in 2005 with slow cooling rates Tf decreased. In both samplings, at cooling rates of 2 and 1 °C h−1, Tf was slightly higher in B-fertilized than in non-fertilized trees. By contrast, at very short thawing times in 2003, Tf was somewhat lower in B-fertilized trees. • Conclusions There was little evidence of reduced frost hardiness in trees with low B status. This study showed that buds deharden rapidly when exposed to above-freezing temperatures in winter, but if cooled again they reharden more slowly. According to this study, rapid dehardening of buds has to be taken into account in assessments of frost hardiness. PMID:16464880

  15. Modelling and economic evaluation of forest biome shifts under climate change in Southwest Germany

    Treesearch

    Marc Hanewinkel; Susan Hummel; Dominik Cullmann

    2010-01-01

    We evaluated the economic effects of a predicted shift from Norway spruce (Picea abies) to European beech (Fagus sylvatica) for a forest area of 1.3 million ha in southwest Germany. The shift was modelled with a generalized linear model (GLM) by using presence/absence data from the National Forest Inventory in Baden-Wurttemberg...

  16. See the forest for the trees: Whole-plant allocation patterns and regulatory mechanisms in Norway spruce

    NASA Astrophysics Data System (ADS)

    Huang, Jianbei; Behrendt, Thomas; Hammerbacher, Almuth; Weinhold, Alexander; Hellén, Heidi; Reichelt, Michael; Wisthaler, Armin; Dam, Nicole; Trumbore, Susan; Hartmann, Henrik

    2017-04-01

    For more than 40 years plant carbon (C) allocation have been of central interest to plant scientists. Most studies on C allocation focus on either biomass partitioning (e.g., root:shoot ratios), particular fluxes (e.g., non-structural carbohydrate, NSC; biogenic emissions of volatile organic compounds, VOCs) or short-term proportional allocation patterns (e.g., pulse-chase studies using isotopic tracers). However, a thorough understanding of C allocation priorities, especially at the whole-plant level, requires assessing all of these aspects together. We investigated C allocation trade-off in Norway spruce (Picea abies) saplings by assessing whole-plant fluxes (assimilation, respiration and VOCs) and biomass partitioning (structural biomass; NSC; secondary metabolites, SMs). The study was carried out over 8 weeks and allowed us, by modifying atmospheric CO2 concentrations ([CO2]), manipulating plant carbon (C) availability. Treatments included control (400 ppm), carbon compensation (down to 120 ppm) and starvation (down to 50 ppm) C availability levels. Reductions in [CO2] aimed to reveal plant allocation strategies assuming that pools receiving more C than others under C limitation have a high allocation priority. Respiration was less sensitive to declining [CO2] compared to assimilation, NSC and SMs. Strong declines in NSC at low [CO2] suggest that respiration was maintained by using stored NSC. Furthermore, reduced NSC and SMs concentrations also indicate preferential C allocation to growth over NSC and SMs at low C availability. SMs decreased to a lesser extent than NSC in old needles, and remained relatively constant in branches until death from starvation. These results suggest that pools of stored NSC may serve as a buffer for respiration or growth under C limitation but also that SMs remain largely inaccessible for metabolism once they are stored in tissues. VOCs emissions, however, showed contrasting responses to [CO2]; oxygenated VOCs (methanol and

  17. Spruce-fir forest changes during a 30-year nitrogen saturation experiment

    Treesearch

    Steven G. McNulty; Johnny L. Boggs; John D. Aber; Lindsey E. Rustad

    2017-01-01

    A field experiment was established in a high elevation red spruce (Picea rubens Sarg.) – balsam fir (Abies balsamea) forest on Mount Ascutney Vermont, USA in 1988 to test the nitrogen (N) saturation hypothesis, and to better understand the mechanisms causing forest decline at the time. The study established replicate control, lowand high dose nitrogen addition plots (i...

  18. Stem volume losses in grand firs topkilled by western spruce budworm in Idaho

    Treesearch

    George T. Ferrell; Robert F. Scharpf

    1982-01-01

    Mature grand firs (Abies grandis [Dougl. ex D. Don] Lindl.) were sampled in two stands, one cutover and one virgin, in the Little Salmon River drainage in west-central Idaho, to estimate stem volume losses associated with topkilling. Damage to the stands resulted from three outbreaks of western spruce budworm (Choristoneura occidentalis...

  19. 1. View of rustic summer houses at pedestrian pathway entrance ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of rustic summer houses at pedestrian pathway entrance to the southern edge of the mansion grounds. The view illustrates significant grade change and includes rustic stone retaining walls, recently re-planted hemlock hedge (Tsuga canadensis), and canopy of mature Norway spruces (Picea abies). - Marsh-Billings-Rockefeller National Historical Park, 54 Elm Street, Woodstock, Windsor County, VT

  20. Losses associated with Douglas-fir and true fir tops killed by western spruce budworm in eastern Washington.

    Treesearch

    Paul E. Aho

    1984-01-01

    A sample of 133 Douglas-firs (Pseudotsuga menziesii var. glauca (Beissn.) Franco) and 69 true firs (Abies spp.) with dead tops caused by defoliation by the western spruce budworm (Choristoneura occidentalis Freeman) were felled, dissected, and examined for height loss and incidence and...

  1. Seasonal variation of nitrogen oxides, ozone and biogenic volatile organic compound concentrations and fluxes at Norway spruce forest

    NASA Astrophysics Data System (ADS)

    Juran, Stanislav; Vecerova, Kristyna; Holisova, Petra; Zapletal, Milos; Pallozzi, Emanuele; Guidolotti, Gabriele; Calfapietra, Carlo; Vecera, Zbynek; Cudlin, Pavel; Urban, Otmar

    2015-04-01

    Dynamics of nitrogen oxides (NOx) and ozone concentration and their depositions were investigated on the Norway spruce forest at Bily Kriz experimental station at the Silesian Beskydy Mountains (north-eastern part of the Czech Republic). Both NOx and ozone concentration and fluxes were modelled for the whole season and covering thus different climate conditions. Data were recorded for three consecutive years and therefore deeper analyses were performed. During the summer 2014 BVOC field campaign was carried out using proton-transfer-reaction-time-of-flight-mass-spectrometry (PTR-TOF, Ionicon Analytik GmbH, Innsbruck, Austria) and volatile organic compound of biogenic origin (BVOC) were measured at the different levels of tree canopies. By the same time BVOC were trapped into the Tenax tubes (Markes International Ltd., UK) and put afterwards for thermal desorption (Markes Unity System 2, Markes International Ltd., UK) to GS-MS analysis (TSQ Quntum XLS triple Quadrupole, Thermo Scientific, USA). Thus data of different levels of canopies together with different spectra of monoterpenes were obtained. Interesting comparison of both methods will be shown. It was the first BVOC field campaign using PTR technique at any of the forest in the Czech Republic. Highest fluxes and concentrations were recorded around the noon hours, represented particularly by monoterpenes, especially α-pinen and limonene. Other BVOCs than monoterpenes were negligible. Variation of fluxes between different canopies levels was observed, highlighting difference in shaded and sun exposed leaves. Sun leaves emitted up to 2.4 nmol m-2 s-1 of monoterpenes, while shaded leaves emitted only up to 0.6 nmol m-2 s-1 when measured under standard conditions (irradiance 1000 µmol m-2 s-1; temperature 30°C). We discuss here the importance of the most common Norway spruce tree forests in the Czech Republic in bi-directional exchanges of important secondary pollutant such as ozone and nitrogen oxides, their

  2. Evidence of montane spruce-fir forest recovery on the high peaks and ridges of the black mountains, North Carolina: recent trends, 1986-2003

    Treesearch

    Todd Allen Bowers; Robert I. Bruck

    2010-01-01

    Decline in high elevation red spruce (Picea rubens Sarg.) and Fraser fir (Abies fraseri (Pursh) Poir.) forests throughout the southern Appalachians was shown following extensive surveys conducted during the 1980s.

  3. Reproductive potential of balsam fir (Abies balsamea), white spruce (Picea glauca), and black spruce (P. mariana) at the ecotone between mixedwood and coniferous forests in the boreal zone of western Quebec.

    PubMed

    Messaoud, Yassine; Bergeron, Yves; Asselin, Hugo

    2007-05-01

    The reproductive potentials of balsam fir and white spruce (co-dominants in mixedwood forests) and black spruce (dominant in coniferous forests) were studied to explain the location of the ecotone between the two forest types in the boreal zone of Quebec. Four sites were selected along a latitudinal gradient crossing the ecotone. Cone crop, number of seeds per cone, percentage filled seeds, and percentage germination were measured for each species. Balsam fir and white spruce cone crops were significantly lower in the coniferous than in the mixedwood forest, while black spruce had greater crop constancy and regularity between both forest types. Mast years were more frequent for black spruce than for balsam fir in both forest types (mast year data not available for white spruce). The number of seeds per cone was more related to cone size than to forest type for all species. Black spruce produced more filled seeds in the coniferous forest than balsam fir or white spruce. The sum of growing degree-days and the maximum temperature of the warmest month (both for the year prior to cone production) significantly affected balsam fir cone production. The climate-related northward decrease in reproductive potential of balsam fir and white spruce could partly explain the position of the northern limit of the mixedwood forest. This could change drastically, however, as the ongoing climate warming might cancel this competitive advantage of black spruce.

  4. Imaging of Norway spruce early somatic embryos with the ESEM, Cryo-SEM and laser scanning microscope.

    PubMed

    Neděla, Vilém; Hřib, Jiří; Havel, Ladislav; Hudec, Jiří; Runštuk, Jiří

    2016-05-01

    This article describes the surface structure of Norway spruce early somatic embryos (ESEs) as a typical culture with asynchronous development. The microstructure of extracellular matrix covering ESEs were observed using the environmental scanning electron microscope as a primary tool and using the scanning electron microscope with cryo attachment and laser electron microscope as a complementary tool allowing our results to be proven independently. The fresh samples were observed in conditions of the air environment of the environmental scanning electron microscope (ESEM) with the pressure from 550Pa to 690Pa and the low temperature of the sample from -18°C to -22°C. The samples were studied using two different types of detector to allow studying either the thin surface structure or material composition. The scanning electron microscope with cryo attachment was used for imaging frozen extracellular matrix microstructure with higher resolution. The combination of both electron microscopy methods was suitable for observation of "native" plant samples, allowing correct evaluation of our results, free of error and artifacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado.

    PubMed

    Andrus, Robert A; Veblen, Thomas T; Harvey, Brian J; Hart, Sarah J

    2016-04-01

    Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent fire severity in subalpine Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests. In Colorado, the annual area infested by spruce beetle outbreaks is rapidly rising, while MPB outbreaks are subsiding; therefore understanding this relationship is of growing importance. We collected extensive field data in subalpine forests in the eastern San Juan Mountains, southwestern Colorado, USA, to investigate whether a gray-stage (< 5 yr from outbreak to time of fire) spruce beetle infestation affected fire severity. Contrary to the expectation that bark beetle infestation alters subsequent fire severity, correlation and multivariate generalized linear regression analysis revealed no influence of pre-fire spruce beetle severity on nearly all field or remotely sensed measurements of fire severity. Findings were consistent across moderate and extreme burning conditions. In comparison to severity of the pre-fire beetle outbreak, we found that topography, pre-outbreak basal area, and weather conditions exerted a stronger effect on fire severity. Our finding that beetle infestation did not alter fire severity is consistent with previous retrospective studies examining fire activity following other bark beetle outbreaks and reiterates the overriding influence of climate that creates conditions conducive to large, high-severity fires in the subalpine zone of Colorado

  6. Cloud immersion alters microclimate, photosynthesis and water relations in Rhododendron catawbiense and Abies fraseri seedlings in the southern Appalachian Mountains, USA

    Treesearch

    Daniel M. Johnson; William K. Smith

    2008-01-01

    The high altitude spruce-fir (Abies fraseri (Pursh) Poiret.-Picea rubens Sarg.) forests of the southern Appalachian Mountains, USA, experience frequent cloud immersion. Recent studies indicate that cloud bases may have risen over the past 30 years, resulting in less frequent forest cloud immersion, and that further increases in...

  7. Gene expression changes during short day induced terminal bud formation in Norway spruce.

    PubMed

    Asante, Daniel K A; Yakovlev, Igor A; Fossdal, Carl Gunnar; Holefors, Anna; Opseth, Lars; Olsen, Jorunn E; Junttila, Olavi; Johnsen, Øystein

    2011-02-01

    The molecular basis for terminal bud formation in autumn is not well understood in conifers. By combining suppression subtractive hybridization and monitoring of gene expression by qRT-PCR analysis, we aimed to identify genes involved in photoperiodic control of growth cessation and bud set in Norway spruce. Close to 1400 ESTs were generated and their functional distribution differed between short day (SD-12 h photoperiod) and long day (LD-24 h photoperiod) libraries. Many genes with putative roles in protection against stress appeared differentially regulated under SD and LD, and also differed in transcript levels between 6 and 20 SDs. Of these, PaTFL1(TERMINAL FLOWER LIKE 1) showed strongly increased transcript levels at 6 SDs. PaCCCH(CCCH-TYPE ZINC FINGER) and PaCBF2&3(C-REPEAT BINDING FACTOR 2&3) showed a later response at 20 SDs, with increased and decreased transcript levels, respectively. For rhythmically expressed genes such as CBFs, such differences might represent a phase shift in peak expression, but might also suggest a putative role in response to SD. Multivariate analyses revealed strong differences in gene expression between LD, 6 SD and 20 SD. The robustness of the gene expression patterns was verified in 6 families differing in bud-set timing under natural light with gradually decreasing photoperiod. © 2010 Blackwell Publishing Ltd.

  8. Bioecology of the conifer swift moth, Korscheltellus gracilis, a root feeder associated with spruce-fir decline

    Treesearch

    William E. Wallner; David L. Wagner; Bruce L. Parker; Donald L. Tobi

    1991-01-01

    During the past two decades, the decline of red spruce, Picea rubens Sargent, and balsam fir, Abies balsamea (L), at high elevations (900-1200 m) in eastern North America has evoked concern about the effects of anthropogenic deposition upon terrestrial ecosystems. In many high-elevation forests across New England, as many as 50...

  9. Morphological plasticity of ectomycorrhizal short roots in Betula sp and Picea abies forests across climate and forest succession gradients: its role in changing environments

    PubMed Central

    Ostonen, Ivika; Rosenvald, Katrin; Helmisaari, Heljä-Sisko; Godbold, Douglas; Parts, Kaarin; Uri, Veiko; Lõhmus, Krista

    2013-01-01

    Morphological plasticity of ectomycorrhizal (EcM) short roots (known also as first and second order roots with primary development) allows trees to adjust their water and nutrient uptake to local environmental conditions. The morphological traits (MTs) of short-living EcM roots, such as specific root length (SRL) and area, root tip frequency per mass unit (RTF), root tissue density, as well as mean diameter, length, and mass of the root tips, are good indicators of acclimation. We investigated the role of EcM root morphological plasticity across the climate gradient (48–68°N) in Norway spruce (Picea abies (L.) Karst) and (53–66°N) birch (Betula pendula Roth., B. pubescens Ehrh.) forests, as well as in primary and secondary successional birch forests assuming higher plasticity of a respective root trait to reflect higher relevance of that characteristic in acclimation process. We hypothesized that although the morphological plasticity of EcM roots is subject to the abiotic and biotic environmental conditions in the changing climate; the tools to achieve the appropriate morphological acclimation are tree species-specific. Long-term (1994–2010) measurements of EcM roots morphology strongly imply that tree species have different acclimation-indicative root traits in response to changing environments. Birch EcM roots acclimated along latitude by changing mostly SRL [plasticity index (PI) = 0.60], while spruce EcM roots became adjusted by modifying RTF (PI = 0.68). Silver birch as a pioneer species must have a broader tolerance to environmental conditions across various environments; however, the mean PI of all MTs did not differ between early-successional birch and late-successional spruce. The differences between species in SRL, and RTF, diameter, and length decreased southward, toward temperate forests with more favorable growth conditions. EcM root traits reflected root-rhizosphere succession across forest succession stages. PMID:24032035

  10. Morphological plasticity of ectomycorrhizal short roots in Betula sp and Picea abies forests across climate and forest succession gradients: its role in changing environments.

    PubMed

    Ostonen, Ivika; Rosenvald, Katrin; Helmisaari, Heljä-Sisko; Godbold, Douglas; Parts, Kaarin; Uri, Veiko; Lõhmus, Krista

    2013-01-01

    Morphological plasticity of ectomycorrhizal (EcM) short roots (known also as first and second order roots with primary development) allows trees to adjust their water and nutrient uptake to local environmental conditions. The morphological traits (MTs) of short-living EcM roots, such as specific root length (SRL) and area, root tip frequency per mass unit (RTF), root tissue density, as well as mean diameter, length, and mass of the root tips, are good indicators of acclimation. We investigated the role of EcM root morphological plasticity across the climate gradient (48-68°N) in Norway spruce (Picea abies (L.) Karst) and (53-66°N) birch (Betula pendula Roth., B. pubescens Ehrh.) forests, as well as in primary and secondary successional birch forests assuming higher plasticity of a respective root trait to reflect higher relevance of that characteristic in acclimation process. We hypothesized that although the morphological plasticity of EcM roots is subject to the abiotic and biotic environmental conditions in the changing climate; the tools to achieve the appropriate morphological acclimation are tree species-specific. Long-term (1994-2010) measurements of EcM roots morphology strongly imply that tree species have different acclimation-indicative root traits in response to changing environments. Birch EcM roots acclimated along latitude by changing mostly SRL [plasticity index (PI) = 0.60], while spruce EcM roots became adjusted by modifying RTF (PI = 0.68). Silver birch as a pioneer species must have a broader tolerance to environmental conditions across various environments; however, the mean PI of all MTs did not differ between early-successional birch and late-successional spruce. The differences between species in SRL, and RTF, diameter, and length decreased southward, toward temperate forests with more favorable growth conditions. EcM root traits reflected root-rhizosphere succession across forest succession stages.

  11. Physiology and growth of advance Picea rubens and Abies balsamea regeneration following different canopy openings.

    PubMed

    Dumais, Daniel; Prévost, Marcel

    2014-02-01

    We examined the ecophysiology and growth of 0.3-1.3 m tall advance red spruce (Picea rubens Sarg.) and balsam fir (Abies balsamea [L.] Mill.) regeneration during a 5-year period following the application of different harvest types producing three sizes of canopy openings: (i) small gaps (<100 m(2) in area; SMA) created by partial uniform single-tree harvest; (ii) irregular gaps of intermediate size (100-300 m(2); INT) created by group-selection harvest (removal of groups of trees, mainly balsam fir, with uniform partial removal between groups); and (iii) large circular gaps (700 m(2); LAR) created by patch-selection harvest (removal of trees in 30-m diameter circular areas with uniform partial removal between gaps). An unharvested control (CON) was monitored for comparison. At the ecophysiological level, we mainly found differences in light-saturated photosynthesis of red spruce and specific leaf area of balsam fir among treatments. Consequently, we observed good height growth of both species in CON and INT, but fir surpassed spruce in SMA and LAR. Results suggest that intermediate 100-300 m(2) irregular openings create microenvironmental conditions that may promote short-term ecophysiology and growth of red spruce, allowing the species to compete with balsam fir advance regeneration. Finally, results observed for spruce in large 700-m(2) openings confirm its inability to grow as rapidly as fir in comparable open conditions.

  12. Cloud immersion alters microclimate, photosynthesis and water relations in Rhododendron catawbiense and Abies fraseri seedlings in the southern Appalachian Mountains, USA

    Treesearch

    Daniel M. Johnson; William K. Smith

    2008-01-01

    The high altitude spruce-fir (Abies fraseri (Pursh) Poiret.-Picea rubens Sarg.) forests of the southern Appalachian Mountains, USA, experience frequent cloud immersion. Recent studies indicate that cloud bases may have risen over the past 30 years, resulting in less frequent forest cloud immersion, and that further increases in cloud base height are...

  13. Chemical changes in organic matter after fungal colonization in a nitrogen fertilized and unfertilized Norway spruce forest

    DOE PAGES

    Nicolas, Cesar; Almeida, Juan P.; Ellstrom, Magnus; ...

    2017-07-08

    Decomposition and transformation of organic matter (OM) in forest soils are conducted by the concomitant action of saprotrophic and mycorrhizal fungi. Here, we examine chemical changes in OM after fungal colonization in nitrogen fertilized and unfertilized soils from a Norway spruce forest. Sand-filled bags amended with composted maize leaves were placed in the forest soil and harvested after 17 months. Infrared and near edge X-ray absorption fine structure spectroscopies were used to study the chemical changes in the OM. Fungal community composition of the bags was also evaluated. The proportion of ectomycorrhizal fungi declined in the fertilized plots, but themore » overall fungal community composition was similar between N treatments. Decomposition of the OM was, independently of the N level or soil horizon, accompanied by an increase of C/N ratio of the mesh-bag content. Furthermore, the proportions of carboxylic compounds in the incubated OM increased in the mineral horizon, while heterocyclic-N compounds decreased, especially in unfertilized plots with higher N demand from the trees.« less

  14. Chemical changes in organic matter after fungal colonization in a nitrogen fertilized and unfertilized Norway spruce forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolas, Cesar; Almeida, Juan P.; Ellstrom, Magnus

    Decomposition and transformation of organic matter (OM) in forest soils are conducted by the concomitant action of saprotrophic and mycorrhizal fungi. Here, we examine chemical changes in OM after fungal colonization in nitrogen fertilized and unfertilized soils from a Norway spruce forest. Sand-filled bags amended with composted maize leaves were placed in the forest soil and harvested after 17 months. Infrared and near edge X-ray absorption fine structure spectroscopies were used to study the chemical changes in the OM. Fungal community composition of the bags was also evaluated. The proportion of ectomycorrhizal fungi declined in the fertilized plots, but themore » overall fungal community composition was similar between N treatments. Decomposition of the OM was, independently of the N level or soil horizon, accompanied by an increase of C/N ratio of the mesh-bag content. Furthermore, the proportions of carboxylic compounds in the incubated OM increased in the mineral horizon, while heterocyclic-N compounds decreased, especially in unfertilized plots with higher N demand from the trees.« less

  15. Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in southeast Norway.

    PubMed

    Børja, Isabella; De Wit, Heleen A; Steffenrem, Arne; Majdi, Hooshang

    2008-05-01

    We assessed the influence of stand age on fine root biomass and morphology of trees and understory vegetation in 10-, 30-, 60- and 120-year-old Norway spruce stands growing in sandy soil in southeast Norway. Fine root (< 1, 1-2 and 2-5 mm in diameter) biomass of trees and understory vegetation (< 2 mm in diameter) was sampled by soil coring to a depth of 60 cm. Fine root morphological characteristics, such as specific root length (SRL), root length density (RLD), root surface area (RSA), root tip number and branching frequency (per unit root length or mass), were determined based on digitized root data. Fine root biomass and morphological characteristics related to biomass (RLD and RSA) followed the same tendency with chronosequence and were significantly higher in the 30-year-old stand and lower in the 10-year-old stand than in the other stands. Among stands, mean fine root (< 2 mm) biomass ranged from 49 to 398 g m(-2), SLR from 13.4 to 19.8 m g(-1), RLD from 980 to 11,650 m m(-3) and RSA from 2.4 to 35.4 m(2) m(-3). Most fine root biomass of trees was concentrated in the upper 20 cm of the mineral soil and in the humus layer (0-5 cm) in all stands. Understory fine roots accounted for 67 and 25% of total fine root biomass in the 10- and 120-year-old stands, respectively. Stand age had no affect on root tip number or branching frequency, but both parameters changed with soil depth, with increasing number of root tips and decreasing branching frequency with increasing soil depth for root fractions < 2 mm in diameter. Specific (mass based) root tip number and branching density were highest for the finest roots (< 1 mm) in the humus layer. Season (spring or fall) had no effect on tree fine root biomass, but there was a small and significant increase in understory fine root biomass in fall relative to spring. All morphological characteristics showed strong seasonal variation, especially the finest root fraction, with consistently and significantly higher values in

  16. Ecophysiology of seedling establishment in contrasting spruce-fir forests of southern Appalachian and Rocky Mountain ecotones, USA

    Treesearch

    William K. Smith; Keith N.C. Reinhardt; Daniel M. Johnson

    2010-01-01

    Fraser fir (Abies fraseri [Pursh] Poiret) and red spruce (Picea rubens Sarg.) occur as codominant trees in six relic, mountain-top populations that make up the high-elevation forests of the Southern Appalachian Mountains (SA). These two relic species of the former boreal forest have experienced a significant decline over the past...

  17. Cloud immersion alters microclimate, photosynthesis and water relations in Rhododendron catawbiense and Abies fraseri seedlings in the southern Appalachian Mountains, USA.

    PubMed

    Johnson, Daniel M; Smith, William K

    2008-03-01

    The high altitude spruce-fir (Abies fraseri (Pursh) Poiret.-Picea rubens Sarg.) forests of the southern Appalachian Mountains, USA, experience frequent cloud immersion. Recent studies indicate that cloud bases may have risen over the past 30 years, resulting in less frequent forest cloud immersion, and that further increases in cloud base height are likely in the event of continued climate warming. To assess the impact of this trend on the regeneration of high altitude spruce-fir forests and the migration of plant communities, in particular the encroachment of spruce-fir forests and Rhododendron catawbiense Michx. islands into adjacent grass bald communities, we investigated effects of cloud immersion on photosynthetic parameters of seedlings of Abies fraseri and R. catawbiense in a grass bald site and A. fraseri in a forest understory. Although photosynthetic photon flux was 4.2 to 19.4-fold greater during clear conditions, cloud immersion had no effect on photosynthesis in A. fraseri at either site, whereas it reduced photosynthesis of R. catawbiense by about 40%. However, cloud immersion increased mean leaf fluorescence by 7.1 to 12.8% in both species at both sites. Cloud immersion increased mean relative humidity from 65 to 96%, reduced transpiration by 95% and reduced mean leaf-to-air temperature difference from 6.6 to 0.5 degrees C.

  18. Monitoring of PAHs in the natural protected areas in non-heating season using Norway spruce (Picea abies (L.) Karst) needles

    NASA Astrophysics Data System (ADS)

    Borgulat, Jacek; Staszewski, Tomasz; Łukasik, Włodzimierz

    2018-01-01

    This paper presents the results of the screening investigation of the environmental burden of polycyclic aromatic hydrocarbons (PAHs) in the natural protected areas in non-heating season. Current year spruce needles were used as a bioacummulative indicator. The total exposure at 15 PAHs (2-6 rings) and carcinogenic potential of these compounds were taken as parameters describing the hazard level. Sampling, in a uniform way, was made in the Silesian Voivodeship landscape parks and the selected Polish national parks as well as in the reference sites with characteristic pattern of PAHs emission, namely in industrialized urban areas and near the expressway. The presence of PAHs, including carcinogenic ones, was shown in all the localities; their content in needles sampled in the natural protective areas was slightly diversified and ranged from 145 to 339 ng/g- (d. w.). Higher differences were observed for carcinogenic potential index (CP) which varied from 2.2 to 18.2. The analysis of PAHs profiles has shown that despite the seasonal lack of intensive emissions from domestic heating, in the majority of natural protective areas pyrogenic sources have also been identified. Profiles of PAHs found in Karkonoski and Ojcowski NPs suggest their petrogenic origin probably due to the intensive tourism (emissions from car engines) in those areas.

  19. Ecophysiology and growth of advance red spruce and balsam fir regeneration after partial cutting in yellow birch-conifer stands.

    PubMed

    Dumais, Daniel; Prévost, Marcel

    2008-08-01

    We investigated ecophysiological and growth responses of short (0.4 to 1.3 m in height) advance regeneration of red spruce (Picea rubens Sarg.) and balsam fir (Abies balsamea L.) six years after removal of 0, 40, 50, 60 and 100% of the overstory basal area (BA) in two yellow birch-conifer stands. Partial cuts significantly increased stomatal conductance of red spruce only. Light-saturated photosynthesis (leaf-area basis) of both species increased with BA removal, but unlike red spruce, specific leaf area (SLA) of balsam fir decreased with increased cutting intensity. Partial cuts appreciably increased the concentration of N and Ca in red spruce and balsam fir foliage, respectively, and resulted in decreased foliar concentrations of K in red spruce and Mg in balsam fir. The height and lateral growth of both species increased with BA removal, although partial cuts were more beneficial to balsam fir. The data suggest that short advance regeneration of red spruce and balsam fir can coexist under partial overstory conditions, but balsam fir has physiological characteristics and a capacity for morphological adjustment (SLA) that places it at an advantage when in competition with red spruce.

  20. Interactions between soil- and dead wood-inhabiting fungal communities during the decay of Norway spruce logs

    PubMed Central

    Mäkipää, Raisa; Rajala, Tiina; Schigel, Dmitry; Rinne, Katja T; Pennanen, Taina; Abrego, Nerea; Ovaskainen, Otso

    2017-01-01

    We investigated the interaction between fungal communities of soil and dead wood substrates. For this, we applied molecular species identification and stable isotope tracking to both soil and decaying wood in an unmanaged boreal Norway spruce-dominated stand. Altogether, we recorded 1990 operational taxonomic units, out of which more than 600 were shared by both substrates and 589 were found to exclusively inhabit wood. On average the soil was more species-rich than the decaying wood, but the species richness in dead wood increased monotonically along the decay gradient, reaching the same species richness and community composition as soil in the late stages. Decaying logs at all decay stages locally influenced the fungal communities from soil, some fungal species occurring in soil only under decaying wood. Stable isotope analyses suggest that mycorrhizal species colonising dead wood in the late decay stages actively transfer nitrogen and carbon between soil and host plants. Most importantly, Piloderma sphaerosporum and Tylospora sp. mycorrhizal species were highly abundant in decayed wood. Soil- and wood-inhabiting fungal communities interact at all decay phases of wood that has important implications in fungal community dynamics and thus nutrient transportation. PMID:28430188

  1. Interactions between soil- and dead wood-inhabiting fungal communities during the decay of Norway spruce logs.

    PubMed

    Mäkipää, Raisa; Rajala, Tiina; Schigel, Dmitry; Rinne, Katja T; Pennanen, Taina; Abrego, Nerea; Ovaskainen, Otso

    2017-09-01

    We investigated the interaction between fungal communities of soil and dead wood substrates. For this, we applied molecular species identification and stable isotope tracking to both soil and decaying wood in an unmanaged boreal Norway spruce-dominated stand. Altogether, we recorded 1990 operational taxonomic units, out of which more than 600 were shared by both substrates and 589 were found to exclusively inhabit wood. On average the soil was more species-rich than the decaying wood, but the species richness in dead wood increased monotonically along the decay gradient, reaching the same species richness and community composition as soil in the late stages. Decaying logs at all decay stages locally influenced the fungal communities from soil, some fungal species occurring in soil only under decaying wood. Stable isotope analyses suggest that mycorrhizal species colonising dead wood in the late decay stages actively transfer nitrogen and carbon between soil and host plants. Most importantly, Piloderma sphaerosporum and Tylospora sp. mycorrhizal species were highly abundant in decayed wood. Soil- and wood-inhabiting fungal communities interact at all decay phases of wood that has important implications in fungal community dynamics and thus nutrient transportation.

  2. Heart Rots of Engelmann Spruce and Subalpine Fir in the Central Rocky Mountain Region (FIDL)

    Treesearch

    T.E. Hinds

    1977-01-01

    Engelmann spruce (Picea engelmannii)-subalpine fir (Abies lasiocarpa) forests are widely distributed in western North America--from the northern Rocky Mountains of British Columbia and Alberta southward into Arizona and New Mexico. They occur at elevations of 2,000 to 7,000 feet in their northern range whereas they are found from about 8,000 to 12,000 feet in the south...

  3. Carbon flux to woody tissues in a beech/spruce forest during summer and in response to chronic O3 exposure

    EPA Science Inventory

    The present study compares the dynamics in carbon (C) allocation of adult deciduous beech (Fagus sylvatica) and evergreen spruce (Picea abies) during summer and in response to seven-year-long exposure with twice-ambient ozone (O3) concentrations (2 × O3). Focus was on the respira...

  4. A population 'consensus', partial linkage map of Picea abies Karst. based on RAPD markers

    Treesearch

    G. Bucci; Thomas L. Kubisiak; W.L. Nance; P. Menozzi

    1997-01-01

    The authors built a "consensus" partial linkage map based on RAPD markers using 48 sibships of eight megagametophytes each from a natural population of Norway spruce. A RAPD linkage map for a single individual from the same population had previously been constructed. Using 30 random decamers that had yielded 83 RAPD markers in the single-tree map, eight...

  5. Interspecific variation in resistance of two host tree species to spruce budworm

    NASA Astrophysics Data System (ADS)

    Fuentealba, Alvaro; Bauce, Éric

    2016-01-01

    Woody plants regularly sustain biomass losses to herbivorous insects. Consequently, they have developed various resistance mechanisms to cope with insect attack. However, these mechanisms of defense and how they are affected by resource availability are not well understood. The present study aimed at evaluating and comparing the natural resistance (antibiosis and tolerance) of balsam fir (Abies balsamea [L.] Mill.) and white spruce (Picea glauca [Moench) Voss] to spruce budworm, Choristoneura fumiferana (Clem.), and how drainage site quality as a component of resource availability affects the expression of resistance over time (6 years). Our results showed that there are differences in natural resistance between the two tree species to spruce budworm, but it was not significantly affected by drainage quality. Balsam fir exhibited higher foliar toxic secondary compounds concentrations than white spruce in all drainage classes, resulting in lower male pupal mass, survival and longer male developmental time. This, however, did not prevent spruce budworm from consuming more foliage in balsam fir than in white spruce. This response suggests that either natural levels of measured secondary compounds do not provide sufficient toxicity to reduce defoliation, or spruce budworm has developed compensatory mechanisms, which allow it to utilize food resources more efficiently or minimize the toxic effects that are produced by its host's defensive compounds. Larvae exhibited lower pupal mass and higher mortality in rapidly drained and subhygric sites. Drainage class also affected the amount of foliage destroyed but its impact varied over the years and was probably influenced by climatic variables. These results demonstrate the complexity of predicting the effect of resource availability on tree defenses, especially when other confounding environmental factors can affect tree resource allocation and utilization.

  6. Effects of elevated CO(2) concentration and nutrition on net photosynthesis, stomatal conductance and needle respiration of field-grown Norway spruce trees.

    PubMed

    Roberntz, Peter; Stockfors, Jan

    1998-04-01

    To study the effects of elevated CO(2) on gas exchange, nonstructural carbohydrate and nutrient concentrations in current-year foliage of 30-year-old Norway spruce (Picea abies (L.) Karst.) trees, branches were enclosed in ventilated, transparent plastic bags and flushed with ambient air (mean 370 &mgr;mol CO(2) mol(-1); control) or ambient air + 340 &mgr;mol CO(2) mol(-1) (elevated CO(2)) during two growing seasons. One branch bag was installed on each of 24 selected trees from control and fertilized plots. To reduce the effect of variation among trees, results from each treated branch were compared with those from a control branch on the same whorl of the same tree. Elevated CO(2) increased rates of light-saturated photosynthesis on average by 55% when measured at the treatment CO(2) concentration. The increase was larger in shoots with high needle nitrogen concentrations than in shoots with low needle nitrogen concentrations. However, shoots grown in elevated CO(2) showed a decrease in photosynthetic capacity compared with shoots grown in ambient CO(2). When measured at the internal CO(2) concentration of 200 &mgr;mol CO(2) mol(-1), photosynthetic rates of branches in the elevated CO(2) treatments were reduced by 8 to 32%. The elevated CO(2) treatment caused a 9 to 20% reduction in carboxylation efficiency and an 18% increase in respiration rates. In response to elevated CO(2), starch, fructose and glucose concentrations in the needles increased on average 33%, whereas concentrations of potassium, nitrogen, phosphorus, magnesium and boron decreased. Needle nitrogen concentrations explained 50-60% of the variation in photosynthesis and CO(2) acclimation was greater at low nitrogen concentrations than at high nitrogen concentrations. We conclude that the enhanced photosynthetic rates found in shoots exposed to elevated CO(2) increased carbohydrate concentrations, which may have a negative feedback on the photosynthetic apparatus and stimulate cyanide

  7. Allocation of recent photoassimilates in mature European beech and Norway spruce - seasonal variability and responses to experimentally increased tropospheric O3 concentration and long-term drought

    NASA Astrophysics Data System (ADS)

    Grams, Thorsten

    2016-04-01

    This contribution summarizes a series of C allocation studies in maturing European beech and Norway spruce trees at Kranzberg Forest, located in southern Germany. Study objects are 60 to 70 year old trees, readily accessible via scaffoldings and canopy crane. Allocation of recently fixed photoassimilates is assessed either by conventional branch-bag labelling with 99 atom% 13CO2 or whole-tree labeling using 13C-depleted CO2 (isoFACE system). While labeling in branch bags, employed for few hours only, focused on phloem functionality in particular under long-term drought, C labeling of whole tree canopies was employed for up to 20 days, studying allocation of recent photoassimilates from the canopy along branches and stems to roots and soils below ground. In all experiments, dynamics of C allocation were mostly pursued assessing carbon isotopic composition of CO2 efflux from woody tissues which typically reflected isotopic composition of phloem sugars. Effects of severe and long-term summer drought are assessed in an ongoing experiment with roughly 100 trees assigned to a total of 12 plots (kroof.wzw.tum.de). Precipitation throughfall was completely excluded since early spring, resulting in pre-dawn leaf water potentials of both beech and spruce up to -2.2 MPa. The hypothesis was tested that long-term drought affects allocation of recently fixed C to branches and phloem functionality. In the annual course under unstressed conditions, phloem transport speed from the canopy to the stem (breast height) was double in beech compared to spruce, with highest transport velocities in early summer (about 0.51 and 0.26 m/h) and lowest in spring (0.26 and 0.12 m/h for beech and spruce, respectively). After leaf flush in spring, growth respiration of beech trunks was largely supplied by C stores. Recent photoassimilates supplied beech stem growth in early summer and refilled C stores in late summer, whereas seasonality was less pronounced in spruce. The hypothesis that growth

  8. Trends and uncertainties in budburst projections of Norway spruce in Northern Europe.

    PubMed

    Olsson, Cecilia; Olin, Stefan; Lindström, Johan; Jönsson, Anna Maria

    2017-12-01

    Budburst is regulated by temperature conditions, and a warming climate is associated with earlier budburst. A range of phenology models has been developed to assess climate change effects, and they tend to produce different results. This is mainly caused by different model representations of tree physiology processes, selection of observational data for model parameterization, and selection of climate model data to generate future projections. In this study, we applied (i) Bayesian inference to estimate model parameter values to address uncertainties associated with selection of observational data, (ii) selection of climate model data representative of a larger dataset, and (iii) ensembles modeling over multiple initial conditions, model classes, model parameterizations, and boundary conditions to generate future projections and uncertainty estimates. The ensemble projection indicated that the budburst of Norway spruce in northern Europe will on average take place 10.2 ± 3.7 days earlier in 2051-2080 than in 1971-2000, given climate conditions corresponding to RCP 8.5. Three provenances were assessed separately (one early and two late), and the projections indicated that the relationship among provenance will remain also in a warmer climate. Structurally complex models were more likely to fail predicting budburst for some combinations of site and year than simple models. However, they contributed to the overall picture of current understanding of climate impacts on tree phenology by capturing additional aspects of temperature response, for example, chilling. Model parameterizations based on single sites were more likely to result in model failure than parameterizations based on multiple sites, highlighting that the model parameterization is sensitive to initial conditions and may not perform well under other climate conditions, whether the change is due to a shift in space or over time. By addressing a range of uncertainties, this study showed that ensemble

  9. Element contents in leaves of four plant species (birch, mountain ash, fern and spruce) along anthropogenic and geogenic concentration gradients.

    PubMed

    Reimann, Clemens; Arnoldussen, Arnold; Boyd, Rognvald; Finne, Tor Erik; Koller, Friedrich; Nordgulen, Øystein; Englmaier, Peter

    2007-05-15

    Forty samples each of leaves of birch (Betula pubescens Ehrh.), European mountain ash (Sorbus aucuparia (L.)) and bracken fern (Pteridium aquilinum (L.) Kuhn) as well as spruce needles (Picea abies (L.) Karsten) were collected along a 120 km south-north transect running through Norway's largest city, Oslo. Concentrations of 25 chemical elements (Ag, Au, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sr, Ti, and Zn) as well as loss on ignition for the 4 sample materials are reported. The decline of input of sea spray with distance from the coast, geology, pH and anthropogenic contamination all played a role for the observed element concentrations in the leaves. Although growing under exactly the same natural conditions each plant species displayed quite unique uptake characteristics. Plant-species dependency and individual differences in the reaction of the plant leaves to different element sources make the investigated species of very limited value as bioindicators of anthropogenic activities. Anthropogenic contamination influences plant-leaf element content within a limited distance ( approximately 20 km) from the source.

  10. Dry deposition profile of small particles within a model spruce canopy.

    PubMed

    Ould-Dada, Zitouni

    2002-03-08

    Data on dry deposition of 0.82 microm MMAD uranium particles to a small scale, 'model' Norway spruce (Picea abies) canopy have been determined by means of wind tunnel experiments. These are presented for both the total canopy and for five horizontal layers within the canopy. The results show a complex pattern of deposition within the canopy. The highest deposition velocity Vg (0.19 cm s(-1)) was recorded for the topmost layer within the canopy (i.e. the layer in direct contact with the boundary layer) whereas the lowest Vg (0.02 cm s(-1)) occurred at the soil surface. Vertical penetration of depositing aerosol through the canopy was influenced by variations in biomass, wind velocity and turbulence within the canopy. A total canopy Vg of 0.5 cm s(-1) was obtained and this is in line with field measurements of Vg reported in literature for both anthropogenic and radionuclide aerosols of similar size ranges. Extrapolation of wind tunnel data to 'real' forest canopies is discussed. The information presented here is of importance in predicting the likely contribution of dry deposition of aerosols to pollutant inputs to forest ecosystems, particularly in the context of radioactive aerosol releases from nuclear installations. The application of the present data may also be appropriate for other pollutant aerosols such as SO4, NO3 and NH4, which are characterised by particle sizes in the range used in this study.

  11. Randomly amplified polymorphic DNA linkage relationships in different Norway spruce populations

    Treesearch

    M. Troggio; Thomas L. Kubisiak; G. Bucci; P. Menozzi

    2001-01-01

    We tested the constancy of linkage relationships of randomly amplified polymorphic DNA (RAPD) marker loci used to construct a population-based consensus map in material from an Italian stand of Picea abies (L.) Karst. in 29 individuals from three Norwegian populations. Thirteen marker loci linked in the Italian stand did show a consistent locus...

  12. Fine root biomass, necromass and chemistry during seven years of elevated aluminium concentrations in the soil solution of a middle-aged Picea abies stand.

    PubMed

    Eldhuset, Toril D; Lange, Holger; de Wit, Helene A

    2006-10-01

    Toxic effects of aluminium (Al) on Picea abies (L.) Karst. (Norway spruce) trees are well documented in laboratory-scale experiments, but field-based evidence is scarce. This paper presents results on fine root growth and chemistry from a field manipulation experiment in a P. abies stand that was 45 years old when the experiment started in 1996. Different amounts of dissolved aluminium were added as AlCl3 by means of periodic irrigation during the growing season in the period 1997-2002. Potentially toxic concentrations of Al in the soil solution were obtained. Fine roots were studied from direct cores (1996) and sequential root ingrowth cores (1999, 2001, 2002) in the mineral soil (0-40 cm). We tested two hypotheses: (1) elevated concentration of Al in the root zone leads to significant changes in root biomass, partitioning into fine, coarse, living or dead fractions, and distribution with depth; (2) elevated Al concentration leads to a noticeable uptake of Al and reduced uptake of Ca and Mg; this results in Ca and Mg depletion in roots. Hypothesis 1 was only marginally supported, as just a few significant treatment effects on biomass were found. Hypothesis 2 was supported in part; Al addition led to increased root concentrations of Al in 1999 and 2002 and reduced Mg/Al in 1999. Comparison of roots from subsequent root samplings showed a decrease in Al and S over time. The results illustrated that 7 years of elevated Al(tot) concentrations in the soil solution up to 200 microM are not likely to affect root growth. We also discuss possible improvements of the experimental approach.

  13. Detection of spatio-temporal changes of Norway spruce forest stands in Ore Mountains using airborne hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Misurec, J.; Kopačková, V.; Lhotáková, Z.; Albrechtova, J.; Campbell, P. K. E.

    2015-12-01

    The Ore Mountains are an example of the region that suffered from severe environmental pollution caused by long-term coal mining and heavy industry leading to massive dieback of the local Norway spruce forests between the 1970's and 1990's. The situation became getting better at the end of 1990's after pollution loads significantly decreased. In 1998 and 2013, airborne hyperspectral data (with sensor ASAS and APEX, respectively) were used to study recovery of the originally damaged forest stands and compared them with those that have been less affected by environmental pollution. The field campaign (needle biochemical analysis, tree defoliation etc.) accompanied hyperspectral imagery acquisition. An analysis was conducted assessing a set of 16 vegetation indices providing complex information on foliage, biochemistry and canopy biophysics and structure. Five of them (NDVI, NDVI705, VOG1, MSR and TCARI/OSAVI) showing the best results were employed to study spatial gradients as well as temporal changes. The detected gradients are in accordance with ground truth data on representative trees. The obtained results indicate that the original significant differences between the damaged and undamaged stands have been generally levelled until 2013, although it is still possible to detect signs of the previous damages in several cases.

  14. Mycorrhiza reduces adverse effects of dark septate endophytes (DSE) on growth of conifers.

    PubMed

    Reininger, Vanessa; Sieber, Thomas N

    2012-01-01

    Mycorrhizal roots are frequently colonized by fungi of the Phialocephala fortinii s.l.-Acephala applanata species complex (PAC). These ascomycetes are common and widespread colonizers of tree roots. Some PAC strains reduce growth increments of their hosts but are beneficial in protecting roots against pathogens. Nothing is known about the effects of PAC on mycorrhizal fungi and the PAC-mycorrhiza association on plant growth, even though these two fungal groups occur closely together in natural habitats. We expect reduced colonization rates and reduced negative effects of PAC on host plants if roots are co-colonized by an ectomycorrhizal fungus (ECM). Depending on the temperature regime interactions among the partners in this tripartite ECM-PAC-plant system might also change. To test our hypotheses, effects of four PAC genotypes (two pathogenic and two non-pathogenic on the Norway spruce), mycorrhization by Laccaria bicolor (strain S238N) and two temperature regimes (19°C and 25°C) on the biomass of the Douglas-fir (Pseudotsuga menziesii) and Norway spruce (Picea abies) seedlings were studied. Mycorrhization compensated the adverse effects of PAC on the growth of the Norway spruce at both temperatures. The growth of the Douglas-fir was not influenced either by PAC or mycorrhization at 19°C, but at 25°C mycorrhization had a similar protective effect as in the Norway spruce. The compensatory effects probably rely on the reduction of the PAC-colonization density by mycorrhizae. Temperature and the PAC strain only had a differential effect on the biomass of the Norway spruce but not on the Douglas-fir. Higher temperature reduced mycorrhization of both hosts. We conclude that ectomycorrhizae form physical and/or physiological barriers against PAC leading to reduced PAC-colonization of the roots. Additionally, our results indicate that global warming could cause a general decrease of mycorrhization making primary roots more accessible to other symbionts and pathogens.

  15. Long-term effects of precommercial thinning on stem form, volume, and branch characteristics of red spruce and balsam fir crop trees

    Treesearch

    Aaron Weiskittel; Laura S. Kenefic; Robert S. Seymour; Leah M. Phillips

    2009-01-01

    The effects of precommercial thinning (PCT) on stem dimensions, form, volume, and branch attributes of red spruce [Picea rubens Sarg.] and balsam fir [Abies balsamea (L.) Mill.] crop trees were assessed 25 years after treatment in an even-aged northern conifer stand. Treatments were a uniform 2.4 x 2.4-m spacing and a control (no...

  16. Effect of alternating day and night temperature on short day-induced bud set and subsequent bud burst in long days in Norway spruce

    PubMed Central

    Olsen, Jorunn E.; Lee, YeonKyeong; Junttila, Olavi

    2014-01-01

    Young seedlings of the conifer Norway spruce exhibit short day (SD)-induced cessation of apical growth and bud set. Although different, constant temperatures under SD are known to modulate timing of bud set and depth of dormancy with development of deeper dormancy under higher compared to lower temperature, systematic studies of effects of alternating day (DT) and night temperatures (NT) are limited. To shed light on this, seedlings of different provenances of Norway spruce were exposed to a wide range of DT-NT combinations during bud development, followed by transfer to forcing conditions of long days (LD) and 18°C, directly or after different periods of chilling. Although no specific effect of alternating DT/NT was found, the results demonstrate that the effects of DT under SD on bud set and subsequent bud break are significantly modified by NT in a complex way. The effects on bud break persisted after chilling. Since time to bud set correlated with the daily mean temperature under SD at DTs of 18 and 21°C, but not a DT of 15°C, time to bud set apparently also depend on the specific DT, implying that the effect of NT depends on the actual DT. Although higher temperature under SD generally results in later bud break after transfer to forcing conditions, the fastest bud flush was observed at intermediate NTs. This might be due to a bud break-hastening chilling effect of intermediate compared to higher temperatures, and delayed bud development to a stage where bud burst can occur, under lower temperatures. Also, time to bud burst in un-chilled seedlings decreased with increasing SD-duration, suggesting that bud development must reach a certain stage before the processes leading to bud burst are initiated. The present results also indicate that low temperature during bud development had a larger effect on the most southern compared to the most northern provenance studied. Decreasing time to bud burst was observed with increasing northern latitude of origin in un

  17. Ecosystem disturbances in Central European spruce forests: a multi-proxy integration of dendroecology and sedimentary records

    NASA Astrophysics Data System (ADS)

    Clear, Jennifer; Chiverrell, Richard; Kunes, Petr; Svoboda, Miroslav; Boyle, John

    2016-04-01

    Disturbance dynamics in forest ecosystems shows signs of perturbation in the light of changing climate regimes with the frequency and intensity of events (e.g. pathogens in North America and Central Europe) amplified, becoming more frequent and severe. The montane Norway spruce (Picea abies) dominated forests of Central Europe are a niche habitat and environment; situated outside their natural boreal distribution (e.g. Fenno-Scandinavia). These communities are at or near their ecological limits and are vulnerable to both short term disturbances (e.g. fire, windstorm and pathogens) and longer-term environmental change (e.g. climate induced stress and changing disturbance patterns). Researches have linked negative impacts on spruce forest with both wind disturbance (wind-throw) and outbreaks of spruce bark beetle (Ips typographus), and there is growing evidence for co-association with wind damage enhancing pathogenic outbreaks. Examples include: in the Bohemian Forest (Czech Republic) the mid-1990s spruce bark beetle outbreak and the 2007 windstorm and subsequent bark beetle outbreak. In the High Tatra Mountains (Slovakia) there is a further co-association of forest disturbance with windstorms (2004 and 2014) and an ongoing bark beetle outbreak. The scale and severity of these recent outbreaks of spruce bark beetle are unprecedented in the historical forest records. Here, findings from ongoing research developing and integrating data from dendroecological, sedimentary palaeoecological and geochemical time series to develop a longer-term perspective on forest dynamics in these regions. Tree-ring series from plots or forest stands (>500) are used alongside lake (5) and forest hollow (3) sediments from the Czech and Slovak Republics to explore the local, regional and biogeographical scale of forest disturbances. Dendroecological data showing tree-ring gap recruitment and post-suppression growth release highlight frequent disturbance events focused on tree or forest

  18. Evaporation and transpiration from forests in Central Europe - relevance of patch-level studies for spatial scaling

    NASA Astrophysics Data System (ADS)

    Köstner, B.

    Spatial scaling from patch to the landscape level requires knowledge on the effects of vegetation structure on maximum surface conductances and evaporation rates. The following paper summarizes results on atmospheric, edaphic, and structural controls on forest evaporation and transpiration observed in stands of Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and European beech (Fagus sylvatica). Forest canopy transpiration (Ec) was determined by tree sapflow measurements scaled to the stand level. Estimates of understory transpiration and forest floor evaporation were derived from lysimeter and chamber measurements. Strong reduction of Ec due to soil drought was only observed at a Scots pine stand when soil water content dropped below 16% v/v. Although relative responses of Ec on atmospheric conditions were similar, daily maximum rates of could differ more than 100% between forest patches of different structure (1.5-3.0mmd-1 and 2.6-6.4mmd-1 for spruce and beech, respectively). A significant decrease of Ecmax per leaf area index with increasing stand age was found for monocultures of Norway spruce, whereas no pronounced changes in were observed for beech stands. It is concluded that structural effects on Ecmax can be specified and must be considered for spatial scaling from forest stands to landscapes. Hereby, in conjunction with LAI, age-related structural parameters are important for Norway spruce stands. Although compensating effects of tree canopy layers and understory on total evaporation of forests were observed, more information is needed to quantify structure-function relationships in forests of heterogenous structure.

  19. Diapause and overwintering of two spruce bark beetle species

    PubMed Central

    Hansen, E. Matthew; Schopf, Axel; Ragland, Gregory J.; Stauffer, Christian; Bentz, Barbara J.

    2017-01-01

    Abstract Diapause, a strategy to endure unfavourable conditions (e.g. cold winters) is commonly found in ectothermic organisms and is characterized by an arrest of development and reproduction, a reduction of metabolic rate, and an increased resistance to adversity. Diapause, in addition to adaptations for surviving low winter temperatures, significantly influences phenology, voltinism and ultimately population growth. We review the literature on diapause and overwintering behaviour of two bark beetle species that affect spruce‐dominated forests in the northern hemisphere, and describe and compare how these strategies can influence population dynamics. The European spruce bark beetle Ips typographus (L.) (Coleoptera, Curculionidae) is the most important forest pest of Norway spruce in Europe. It enters an adult reproductive diapause that might be either facultative or obligate. Obligate diapausing beetles are considered strictly univoltine, entering this dormancy type regardless of environmental cues. Facultative diapausing individuals enter diapause induced by photoperiod, modified by temperature, thus being potentially multivoltine. The spruce beetle Dendroctonus rufipennis (Kirby) (Coleoptera: Curculionidae) infests all spruce species in its natural range in North America. A facultative prepupal diapause is averted by relatively warm temperatures, resulting in a univoltine life cycle, whereas cool temperatures induce prepupal diapause leading to a semivoltine cycle. An adult obligate diapause in D. rufipennis could limit bi‐ or multivoltinism. We discuss and compare the influence of diapause and overwinter survival on voltinism and population dynamics of these two species in a changing climate and provide an outlook on future research. PMID:28979060

  20. Life strategies in intra-annual dynamics of wood formation: example of three conifer species in a temperate forest in north-east France.

    PubMed

    Cuny, Henri E; Rathgeber, Cyrille B K; Lebourgeois, François; Fortin, Mathieu; Fournier, Meriem

    2012-05-01

    We investigated whether timing and rate of growth are related to the life strategies and fitness of three conifer species. Intra-annual dynamics of wood formation, shoot elongation and needle phenology were monitored over 3 years in five Norway spruces (Picea abies (L.) Karst.), five Scots pines (Pinus sylvestris L.) and five silver firs (Abies alba Mill.) grown intermixed. For the three species, the growing season (delimited by cambial activity onset and cessation) lasted about 4 months, while the whole process of wood formation lasted 5-6 months. Needle unfolding and shoot elongation followed the onset of cambial activity and lasted only one-third of the season. Pines exhibited an 'extensive strategy' of cambial activity, with long durations but low growth rates, while firs and spruces adopted an 'intensive strategy' with shorter durations but higher growth rates. We estimated that about 75% of the annual radial increment variability was attributable to the rate of cell production, and only 25% to its duration. Cambial activity rates culminated at the same time for the three species, whereas shoot elongation reached its maximal rate earlier in pines. Results show that species-specific life strategies are recognizable through functional traits of intra-annual growth dynamics. The opposition between Scots pine extensive strategy and silver fir and Norway spruce intensive strategy supports the theory that pioneer species are greater resource expenders and develop riskier life strategies to capture resources, while shade-tolerant species utilize resources more efficiently and develop safer life strategies. Despite different strategies, synchronicity of the maximal rates of cambial activity suggests a strong functional convergence between co-existing conifer species, resulting in head-on competition for resources.

  1. Using SRμCT to define water transport capacity in Picea abies

    NASA Astrophysics Data System (ADS)

    Lautner, Silke; Lenz, Claudia; Hammel, Jörg; Moosmann, Julian; Kühn, Michael; Caselle, Michele; Vogelgesang, Matthias; Kopmann, Andreas; Beckmann, Felix

    2017-10-01

    Water transport from roots to shoots is a vital necessity in trees in order to sustain their photosynthetic activity and, hence, their physiological activity. The vascular tissue in charge is the woody body of root, stem and branches. In gymnosperm trees, like spruce trees (Picea abies (L.) Karst.), vascular tissue consists of tracheids: elongated, protoplast- free cells with a rigid cell wall that allow for axial water transport via their lumina. In order to analyze the over-all water transport capacity within one growth ring, time-consuming light microscopy analysis of the woody sample still is the conventional approach for calculating tracheid lumen area. In our investigations at the Imaging Beamline (IBL) operated by the Helmholtz-Zentrum Geesthacht (HZG) at PETRA III storage ring of the Deutsches Elektronen-Synchrotron DESY, Hamburg, we applied SRμCT on small wood samples of spruce trees in order to visualize and analyze size and formation of xylem elements and their respective lumina. The selected high-resolution phase-contrast technique makes full use of the novel 20 MPixel CMOS area detector developed within the cooperation of HZG and the Karlsruhe data by light microscopy analysis and, hence, prove, that μCT is a most appropriate method to gain valid information on xylem cell structure and tree water transport capacity.

  2. Divergent climate response on hydraulic-related xylem anatomical traits of Picea abies along a 900-m altitudinal gradient.

    PubMed

    Castagneri, Daniele; Petit, Giai; Carrer, Marco

    2015-12-01

    Climate change can induce substantial modifications in xylem structure and water transport capacity of trees exposed to environmental constraints. To elucidate mechanisms of xylem plasticity in response to climate, we retrospectively analysed different cell anatomical parameters over tree-ring series in Norway spruce (Picea abies L. Karst.). We sampled 24 trees along an altitudinal gradient (1200, 1600 and 2100 m above sea level, a.s.l.) and processed 2335 ± 1809 cells per ring. Time series for median cell lumen area (MCA), cell number (CN), tree-ring width (RW) and tree-ring-specific hydraulic conductivity (Kr) were crossed with daily temperature and precipitation records (1926-2011) to identify climate influence on xylem anatomical traits. Higher Kr at the low elevation site was due to higher MCA and CN. These variables were related to different aspects of intra-seasonal climatic variability under different environmental conditions, with MCA being more sensitive to summer precipitation. Winter precipitation (snow) benefited most parameters in all the sites. Descending the gradient, sensitivity of xylem features to summer climate shifted mostly from temperature to precipitation. In the context of climate change, our results indicate that higher summer temperatures at high elevations will benefit cell production and xylem hydraulic efficiency, whereas reduced water availability at lower elevations could negatively affect tracheids enlargement and thus stem capacity to transport water. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. The effect of ozone on the yellowing process of magnesium-deficient clonal Norway spruce grown under defined conditions.

    PubMed

    Siefermann-Harms, Dorothea; Payer, Hans Dieter; Schramel, Peter; Lütz, Cornelius

    2005-02-01

    During two vegetation periods, young clonal spruce trees (Picea abies (L.) Karst.) with sufficient and poor magnesium (Mg) supply were exposed in the environmental chambers of the GSF phytotron to three levels of ozone (daily means: 18-22, 88-130, and 135-190 microg m(-3); 10% reduction at night). Previous year's needles were examined at 4-week intervals with respect to their contents of Mg, Ca, K, Mn, N, P, and chlorophyll (Chl), various parameters of Chl fluorescence, and the stability of the isolated light-harvesting Chl-a/b-protein complex LHC II. The needles of the two nutrition variants contained more than 0.53 or less than 0.27mg Mg g(-1) needle dry matter, respectively. The ratio of variable to maximal Chl-a fluorescence of the dark-adapted needles, Fv/Fm, and the photoinhibitory quenching of Fv after light treatment, SVi.v, were affected by the Mg content of the needles rather than the ozone levels. Changes of the Chl content and the behavior of the LHC II allowed differentiating between a slow process of needle yellowing occurring under Mg deficiency only, and a rapid process of needle yellowing occurring under the combined action of Mg deficiency and ozone pollution. Only the rapid yellowing process was accompanied by destabilization of the LHC II, and the degree of destabilization was correlated with the ozone concentration present in the days before sampling. The results are consistent with observations obtained at a research site in the Central Black Forest (J Plant Physiol 161 (2004) 423).

  4. From America to Eurasia: a multigenomes history of the genus Abies.

    PubMed

    Semerikova, Svetlana A; Khrunyk, Yuliya Y; Lascoux, Martin; Semerikov, Vladimir L

    2018-03-15

    The origin of conifer genera, the main components of mountain temperate and boreal forests, was deemed to arise in the Mesozoic, although paleontological records and molecular data point to a recent diversification, presumably related to Neogene cooling. The geographical area(s) where the modern lines of conifers emerged remains uncertain, as is the sequence of events leading to their present distribution. To gain further insights into the biogeography of firs (Abies), we conducted phylogenetic analyses of chloroplast, mitochondrial and nuclear markers. The species tree, generated from ten single-copy nuclear genes, yielded probably the best phylogenetic hypothesis available for Abies. The tree obtained from five regions of chloroplast DNA largely corresponded to the nuclear species tree. Ancestral area reconstructions based on fossil calibrated chloroplast DNA and nuclear DNA trees pointed to repeated intercontinental migrations. The mitochondrial DNA haplotype tree, however, disagreed with nuclear and chloroplast DNA trees. It consisted of two clusters: one included mainly American haplotypes, while the other was composed of only Eurasian haplotypes. Presumably, this conflict is due to inter-continental migrations and introgressive hybridization, accompanied by the capture of the mitotypes from aboriginal species by the invading firs. Given that several species inhabiting Northeastern Asia carry American mitotypes and mutations typical for the American cluster, whereas no Asian mitotypes were detected within the American species, we hypothesize that Abies migrated from America to Eurasia, but not in the opposite direction. The direction and age of intercontinental migrations in firs are congruent with other conifers, such as spruces and pines of subsection Strobus, suggesting that these events had the same cause. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Microbial activities related to C and N cycling and microbial community structure in the rhizospheres of Pinus sylvestris, Picea abies and Betula pendula seedlings in an organic and mineral soil.

    PubMed

    Priha; Grayston; Pennanen; Smolander

    1999-10-01

    The aim of this study was to determine whether Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and silver birch (Betula pendula Roth) seedlings have a selective influence on the soil microbial community structure and activity and whether this varies in different soils. Seedlings of pine, spruce and birch were planted into pots of two soil types: an organic soil and a mineral soil. Pots without seedlings were also included. After one growing season, microbial biomass C (C(mic)) and N (N(mic)), C mineralization, net ammonification, net nitrification, denitrification potential, phospholipid fatty acid (PLFA) patterns and community level physiological profiles (CLPPs) were measured in the rhizosphere soil of the seedlings. In the organic soil, C(mic) and N(mic) were higher in the birch rhizosphere than in pine and spruce rhizosphere. The C mineralization rate was not affected by tree species. Unplanted soil contained the highest amount of mineral N and birch rhizosphere the lowest, but rates of net N mineralization and net nitrification did not differ between treatments. The microbial community structure, measured by PLFAs, had changed in the rhizospheres of all tree species compared to the unplanted soil. Birch rhizosphere was most clearly separated from the others. There was more of the fungal specific fatty acid 18:2omega6,9 and more branched fatty acids, common in Gram-positive bacteria, in this soil. CLPPs, done with Biolog GN plates and 30 additional substrates, separated only birch rhizosphere from the others. In the mineral soil, roots of all tree species stimulated C mineralization in soil and prevented nitrification, but did not affect C(mic) and N(mic), PLFA patterns or CLPPs. The effects of different tree species did not vary in the mineral soil. Thus, in the mineral soil, the strongest effect on soil microbes was the presence of a plant, regardless of the tree species, but in the organic soil, different tree species varied in

  6. The NESH/Abi-3-based WAVE2 complex is functionally distinct from the Abi-1-based WAVE2 complex.

    PubMed

    Sekino, Saki; Kashiwagi, Yuriko; Kanazawa, Hitoshi; Takada, Kazuki; Baba, Takashi; Sato, Seiichi; Inoue, Hiroki; Kojima, Masaki; Tani, Katsuko

    2015-10-01

    Abl interactor (Abi) family proteins play significant roles in actin cytoskeleton organization through participation in the WAVE complex. Mammals possess three Abi proteins: Abi-1, Abi-2, and NESH/Abi-3. Abi-1 and Abi-2 were originally identified as Abl tyrosine kinase-binding proteins. It has been disclosed that Abi-1 acts as a bridge between c-Abl and WAVE2, and c-Abl-mediated WAVE2 phosphorylation promotes actin remodeling. We showed previously that NESH/Abi-3 is present in the WAVE2 complex, but neither binds to c-Abl nor promotes c-Abl-mediated phosphorylation of WAVE2. In this study, we characterized NESH/Abi-3 in more detail, and compared its properties with those of Abi-1 and Abi-2. NESH/Abi-3 was ectopically expressed in NIH3T3 cells, in which Abi-1, but not NESH/Abi-3, is expressed. The expression of NESH/Abi-3 caused degradation of endogenous Abi-1, which led to the formation of a NESH/Abi-3-based WAVE2 complex. When these cells were plated on fibronectin-coated dishes, the translocation of WAVE2 to the plasma membrane was significantly reduced and the formation of peripheral lamellipodial structures was disturbed, suggesting that the NESH/Abi-3-based WAVE2 complex was unable to help produce lamellipodial protrusions. Next, Abi-1, Abi-2, or NESH/Abi-3 was expressed in v-src-transformed NIH3T3 cells. Only in NESH/Abi-3-expressed cells did treatment with an Abl kinase inhibitor, imatinib mesylate, or siRNA-mediated knockdown of c-Abl promote the formation of invadopodia, which are ventral membrane protrusions with extracellular matrix degradation activity. Structural studies showed that a linker region between the proline-rich regions and the Src homology 3 (SH3) domain of Abi-1 is crucial for its interaction with c-Abl and c-Abl-mediated phosphorylation of WAVE2. The NESH/Abi-3-based WAVE2 complex is functionally distinct from the Abi-1-based one, and NESH/Abi-3 may be involved in the formation of ventral protrusions under certain conditions.

  7. Hybridization of a Rocky Mountain fir (Abies concolor) and a Mexican fir (Abies religiosa).

    Treesearch

    J.B. St. Clair; W.B. Critchfield

    1988-01-01

    Interspecific crosses of Abies religiosa (HBK.) Schlecht. & Cham. (oyamel) with Abies concolor (Gord. & Glend.) Lindle. ex Hildebr. var. concolor (white fir) and Abies magnifica A. Murr. (California red fir) were undertaken to explore the relationships between these species. The...

  8. Physiological acclimation dampens initial effects of elevated temperature and atmospheric CO2 concentration in mature boreal Norway spruce.

    PubMed

    Lamba, Shubhangi; Hall, Marianne; Räntfors, Mats; Chaudhary, Nitin; Linder, Sune; Way, Danielle; Uddling, Johan; Wallin, Göran

    2018-02-01

    Physiological processes of terrestrial plants regulate the land-atmosphere exchange of carbon, water, and energy, yet few studies have explored the acclimation responses of mature boreal conifer trees to climate change. Here we explored the acclimation responses of photosynthesis, respiration, and stomatal conductance to elevated temperature and/or CO 2 concentration ([CO 2 ]) in a 3-year field experiment with mature boreal Norway spruce. We found that elevated [CO 2 ] decreased photosynthetic carboxylation capacity (-23% at 25 °C) and increased shoot respiration (+64% at 15 °C), while warming had no significant effects. Shoot respiration, but not photosynthetic capacity, exhibited seasonal acclimation. Stomatal conductance at light saturation and a vapour pressure deficit of 1 kPa was unaffected by elevated [CO 2 ] but significantly decreased (-27%) by warming, and the ratio of intercellular to ambient [CO 2 ] was enhanced (+17%) by elevated [CO 2 ] and decreased (-12%) by warming. Many of these responses differ from those typically observed in temperate tree species. Our results show that long-term physiological acclimation dampens the initial stimulation of plant net carbon assimilation to elevated [CO 2 ], and of plant water use to warming. Models that do not account for these responses may thus overestimate the impacts of climate change on future boreal vegetation-atmosphere interactions. © 2017 John Wiley & Sons Ltd.

  9. Hybridization of a Rocky Mountain fir (Abies concolor) and a Mexican fir (Abies religiosa)

    Treesearch

    J. B. St. Clair; W. B. Critchfield

    1988-01-01

    Interspecific crosses of Abies religiosa (HBK.) Schlecht. & Cham, (oyamel) with Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. var. concolor (white fir) and Abies magnifica A. Murr. (California red fir) were undertaken to explore the relationships between these species. The cross...

  10. Ecosystem Disturbances in Central European Spruce Forests: a Multi-proxy Integration of Dendroecology and Sedimentary Records

    NASA Astrophysics Data System (ADS)

    Clear, J.; Chiverrell, R. C.; Kunes, P.; Boyle, J.; Kuosmanen, N.; Carter, V.

    2016-12-01

    The montane Norway spruce (Picea abies) dominated forests of Central Europe are a niche environment; situated outside their natural boreal distribution they are vulnerable to both short term disturbances (e.g. floods, avalanches, fire, windstorm and pathogens) and longer-term environmental change (e.g. climate induced stress, snow regimes). Holocene sediment records from lakes in the High Tatra (Slovakia) and Bohemian (Czech) Mountains show repeated disturbances of the pristine Picea abies-dominated forests as sharp well defined minerogenic in-wash horizons that punctuate the accumulation of organic gyttja. These event horizons span a process continuum from lakes with restricted catchments and limited inflow (e.g. Prazilske Lake, Czech) to more catchment-process dominated lakes with large catchments (e.g. Popradske Lake, Slovakia). The events include complex responses to a global climatic downturn at 8.2ka, other cooler episodes 3.5, 1.6 and 0.5 ka, and to recent discrete wind-storms and pathogen outbreaks. We develop a typology for disturbance events using sediment geochemistry, particle size, mineral magnetism, charcoal and palaeoecology to assess likely drivers of disturbance. For the recent past integrating data from dendroecology and sediments is used to calibrate our longer-term perspective on forest dynamics. Tree-ring series from plots or forest stands are used alongside lake and forest hollow sediments to explore the local, regional and biogeographical scale of forest disturbances. Dendroecological data showing tree-ring gap recruitment and post-suppression growth release highlight frequent disturbance events focused on tree or forest stand spatial scales, but are patchy in terms of their reoccurrence. However they highlight levels of disturbance in the late 19th Century and parallel lake and forest hollow sediments record variable pollen influx (beetle host / non-host ratios) and stratigraphies that include mineral in-wash events. The identified recent

  11. Evaluation of growth disturbances of Picea abies (L.) Karst. to disturbances caused by landslide movements

    NASA Astrophysics Data System (ADS)

    Šilhán, Karel

    2017-01-01

    Dendrogeomorphic methods are frequently used in landslide analyses. Although methods of landslide dating based on tree rings are well developed, they still indicated many questions. The aim of this study was to evaluate the frequently used theoretical scheme based on the event-response relationship. Seventy-four individuals of Norway spruce (Picea abies (L.) Karst.) exhibiting visible external disturbance, were sampled on the Girová landslide (the largest historical flow-like landslide in the Czech Republic). This landslide reactivated in May 2010, and post-landslide tree growth responses were studied in detail. These growth responses were compared with the intensity and occurrence of visible external tree disturbance: tilted stems, damaged root systems, and decapitation. Twenty-nine trees (39.2%) died within one to four years following the 2010 landslide movement. The trees that died following the landslide movement were significantly younger and displayed significantly greater stem tilting than the live trees. Abrupt growth suppression was a more-frequent response among the dead trees, whereas growth release dominated among the live trees. Only two trees (2.7%) created no reaction wood in response to the landslide movement. Forty-four percent of the trees started to produce reaction wood structure after a delay, which generally spanned one year. Some eccentric growth was evident in the tree rings of the landslide year and was significant in the first years following the landslide movement. Missing rings were observed only on the upper sides of the stems, and no false tree rings were observed. The results confirm the general validity of event-response relationship, nevertheless this study points out the limitations and uncertainties of this generally accepted working scheme.

  12. Climate warming shifts carbon allocation from stemwood to roots in calcium-depleted spruce forests

    USGS Publications Warehouse

    Lapenis, Andrei Gennady; Lawrence, Gregory B.; Heim, Alexander; Zheng, Chengyang; Shortle, Walter

    2013-01-01

    Increased greening of northern forests, measured by the Normalized Difference Vegetation Index (NDVI), has been presented as evidence that a warmer climate has increased both net primary productivity (NPP) and the carbon sink in boreal forests. However, higher production and greener canopies may accompany changes in carbon allocation that favor foliage or fine roots over less decomposable woody biomass. Furthermore, tree core data throughout mid- and northern latitudes have revealed a divergence problem (DP), a weakening in tree ring responses to warming over the past half century that is receiving increasing attention, but remains poorly understood. Often, the same sites exhibit trend inconsistency phenomenon (TIP), namely positive, or no trends in growing season NDVI where negative trends in tree ring indexes are observed. Here we studied growth of two Norway spruce (Picea abies) stands in western Russia that exhibited both the DP and TIP but were subject to soil acidification and calcium depletion of differing timing and severity. Our results link the decline in radial growth starting in 1980 to a shift in carbon allocation from wood to roots driven by a combination of two factors: (a) soil acidification that depleted calcium and impaired root function and (b) earlier onset of the growing season that further taxed the root system. The latter change in phenology appears to act as a trigger at both sites to push trees into nutrient limitation as the demand for Ca increased with the longer growing season, thereby causing the shift in carbon allocation.

  13. Combined fluorescence, reflectance, and ground measurements of a stressed Norway spruce forest for forest damage assessment

    NASA Technical Reports Server (NTRS)

    Banninger, C.

    1991-01-01

    The detection and monitoring of stress and damage in forested areas is of utmost importance to forest managers for planning purposes. Remote sensing are the most suitable means to obtain this information. This requires that remote sensing data employed in a forest survey be properly chosen and utilized for their ability to measure canopy spectral features directly related to key tree and canopy properties that are indicators of forest health and vitality. Plant reflectance in the visible to short wave IR regions (400 to 2500 nm) provides information on its biochemical, biophysical, and morphological make up, whereas plant fluorescence in the 400 to 750 nm region is more indicative of the capacity and functioning of its photosynthetic apparatus. A measure of both these spectral properties can be used to provide an accurate assessment of stress and damage within the forest canopy. Foliar chlorophyll and nitrogen are essential biochemical constituents required for the proper functioning and maintenance of a plant's biological processes. Chlorophyll-a is the prime reactive center for photosynthesis, by which a plant converts CO2 and H2O into necessary plant products. Nitrogen forms an important component of the amino-acids, enzymes, proteins, alkaloids, and cyanogenic compounds that make up a plant, including its pigments. Both chlorophyll and nitrogen have characteristic absorption features in the visible to short wave IR region. By measuring the wavelength position and depth of these features and the fluorescence response of the foliage, the health and vitality of a canopy can be ascertained. Examples for a stressed Norway spruce forest in south-eastern Austria are presented.

  14. Spruce-fir management and spruce budworm; SAF region VI technical conference

    Treesearch

    Daniel Schmitt; ed.

    1985-01-01

    Presents a technical update of the management of spruce-fir forests. Integrated management of eastern spruce budworm is not yet a reality. The ecological, social, and economic knowledge needed to develop an integrated management system is not available. The conference was designed to move individuals to a higher level of spruce budworm management in the eastern spruce-...

  15. Monitoring intra-annual dynamics of wood formation with microcores and dendrometers in Picea abies at two different altitudes.

    PubMed

    Cocozza, Claudia; Palombo, Caterina; Tognetti, Roberto; La Porta, Nicola; Anichini, Monica; Giovannelli, Alessio; Emiliani, Giovanni

    2016-07-01

    Seasonal analyses of cambial cell production and day-by-day stem radial increment can help to elucidate how climate modulates wood formation in conifers. Intra-annual dynamics of wood formation were determined with microcores and dendrometers and related to climatic signals in Norway spruce (Picea abies (L.) Karst.). The seasonal dynamics of these processes were observed at two sites of different altitude, Savignano (650 m a.s.l.) and Lavazè (1800 m a.s.l.) in the Italian Alps. Seasonal dynamics of cambial activity were found to be site specific, indicating that the phenology of cambial cell production is highly variable and plastic with altitude. There was a site-specific trend in the number of cells in the wall thickening phase, with the maximum cell production in early July (DOY 186) at Savignano and in mid-July (DOY 200) at Lavazè. The formation of mature cells showed similar trends at the two sites, although different numbers of cells and timing of cell differentiation were visible in the model shapes; at the end of ring formation in 2010, the number of cells was four times higher at Savignano (106.5 cells) than at Lavazè (26.5 cells). At low altitudes, microcores and dendrometers described the radial growth patterns comparably, though the dendrometer function underlined the higher upper asymptote of maximum growth in comparison with the cell production function. In contrast, at high altitude, these functions exhibited different trends. The best model was obtained by fitting functions of the Gompertz model to the experimental data. By combining radial growth and cambial activity indices we defined a model system able to synchronize these processes. Processes of adaptation of the pattern of xylogenesis occurred, enabling P. abies to occupy sites with contrasting climatic conditions. The use of daily climatic variables in combination with plant functional traits obtained by sensors and/or destructive sampling could provide a suitable tool to better

  16. Long-term behaviour of timber structures in torrent control

    NASA Astrophysics Data System (ADS)

    Rickli, Christian; Graf, Frank

    2014-05-01

    Timber is widely used for protection measures in torrent control. However, life span of woody constructions such as timber check dams is limited due to fungal decay. However, only sparse scientific information is available on the long-term behaviour of timber structures and the colonisation with decay fungi. Related to this, in practice a controversial discussion has been going on if either Norway Spruce (Picea abies) or Silver Fir (Abies alba) is more enduring and if bark removal increases resistance against fungal decay. In order to going into this matter a series of 15 timber check dams built in 1996 has been monitored. The constructions were alternatively realised with Norway Spruce and Silver Fir, half of them each with remaining and removed bark, respectively. The scientific investigations included the documentation of colonisation with rot fungi and the identification of decayed zones with a simple practical approach as well as based on drilling resistance. Colonisation by decay fungi started three years after construction (e.g. Gloeophyllum sepiarium), detecting two years later first parts with reduced wood resistance. Sixteen years after construction decay was found on all check dams but two. Wood quality was markedly better in watered sections compared to the occasionally dry lateral abutment sections. Taking the whole check dams into consideration, slightly more decay was detected in Norway Spruce compared to logs in Silver Fir and both the practical approach and the drilling resistance measurement yielded in more defects on logs without bark. However, due to limited number of replications and fungal data, it was not possible to statistically verify these results. Statistical analysis was restricted to the drilling resistance data and fruit-bodies of decay fungi of the uppermost log of each check dam. Based on this limited analysis significant differences in the effect on the drilling resistance were found for watered sections and lateral abutments

  17. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge.

    PubMed

    Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata

    2016-01-01

    Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination.

  18. Effects of prolonged soil drought on CH4 oxidation in a temperate spruce forest

    NASA Astrophysics Data System (ADS)

    Borken, W.; Brumme, R.; Xu, Y.-J.

    2000-03-01

    Our objective was to determine potential impacts of changes in rainfall amount and distribution on soil CH4 oxidation in a temperate forest ecosystem. We constructed a roof below the canopy of a 65-year-old Norway spruce forest (Picea abies (L.) Karst.) and simulated two climate change scenarios: (1) an extensively prolonged summer drought of 172 days followed by a rewetting period of 19 days in 1993 and (2) a less intensive summer drought of 108 days followed by a rewetting period of 33 days in 1994. CH4 oxidation, soil matric potential, and soil temperature were measured hourly to daily over a 2-year period. The results showed that annual CH4 oxidation in the drought experiment increased by 102% for the climate change scenario 1 and by 41% for the climate change scenario 2, compared to those of the ambient plot (1.33 kg CH4 ha-1 in 1993 and 1.65 kg CH4 ha-1 in 1994). We tested the relationships between CH4 oxidation rates, water-filled pore space (WFPS), soil matric potential, gas diffusivity, and soil temperature. Temporal variability in the CH4 oxidation rates corresponded most closely to soil matric potential. Employing soil matric potential and soil temperature, we developed a nonlinear model for estimating CH4 oxidation rates. Modeled results were in strong agreement with the measured CH4 oxidation for the ambient (r2 = 0.80) and drought plots (r2 = 0.89) over two experimental years, suggesting that soil matric potential is a highly reliable parameter for modeling CH4 oxidation rate.

  19. White spruce meets black spruce: dispersal, postfire establishment, and growth in a warming climate

    Treesearch

    C. Wirth; J.W. Lichstein; J. Dushoff; A. Chen; F.S.III. Chapin

    2008-01-01

    Local distributions of black spruce (Picea mariana) and white spruce (Picea glauca) are largely determined by edaphic and topographic factors in the interior of Alaska, with black spruce dominant on moist permafrost sites and white spruce dominant on drier upland sites. Given the recent evidence for climate warming and...

  20. Using isotopic patterns of ectomycorrhizal and saprotrophic fungi to elucidate fungal sources of carbon and nitrogen in a Norway spruce stand

    NASA Astrophysics Data System (ADS)

    Chen, Janet; Rinne-Garmston, Katja; Penttilä, Reijo; Hobbie, Erik; Mäkipää, Raisa

    2016-04-01

    To predict effects of global change on fungal community structure and the consequential effects on carbon (C) and nitrogen (N) cycling, we first need to understand different fungal sources of C and N. We determined sources of C and N by measuring δ15N and δ13C of an extensive collection of ectomycorrhizal and saprotrophic sporocarps and their potential substrates from Norway spruce (Picea abies) stands in southern Finland. The substrates included organic soil, roots in organic soil, mineral soil, roots in mineral soil, moss, needles, needles in litter, branches, twigs in litter, wood and decay wood from stages I-V. Notably, δ15N and δ13C analysis of wood in decay stages I-V was a novel measurement, as were our associations between wood decay fungi and the decay stage of trees. Decay stage of wood significantly correlated with the δ15N and δ13C of associated saprotrophic wood decay fungi species. Fungi were lower in δ15N by 0.3-0.7‰ when associated with decay wood in stages II and III compared to I and IV and higher in δ13C by 0.9-1.2‰ when associated with decay stage I compared to decay stages II-IV. The ectomycorrhizal fungi, Piloderma fallax, was significantly correlated with 15N enrichment of decay wood upon its introduction in decay stages III and IV that continued to the later decay stage V, with δ15N of decay stage V 1.5‰ higher than decay stage IV. These results indicate that wood decay fungi rely on C and N from various wood decay stages and influence C and N pools of wood as well. Litter decay fungi were lower in δ13C than wood decay fungi by 1.9‰ and higher in δ15N by 3‰ and isotopically tracked their C and N sources. Calocera viscosa, Gymnopus acervatus, and Leotia lubrica were highly 15N-enriched compared to other saprotrophic fungi and they had δ15N values similar to fungi with hydrophobic ectomycorrhizae indicating function more similar to ectomycorrhizal fungi or N sources similar to this functional group. Similar to other

  1. The performance of moss, grass, and 1- and 2-year old spruce needles as bioindicators of contamination: a comparative study at the scale of the Czech Republic.

    PubMed

    Suchara, Ivan; Sucharova, Julie; Hola, Marie; Reimann, Clemens; Boyd, Rognvald; Filzmoser, Peter; Englmaier, Peter

    2011-05-01

    Moss (Pleurozium schreberi), grass (Avenella flexuosa), and 1- and 2-year old spruce (Picea abies) needles were collected over the territory of the Czech Republic at an average sample density of 1 site per 290km(2). The samples were analysed for 39 elements (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Hg, K, La, Li, Mg, Mn, Mo, Na, Nd, Ni, Pb, Pr, Rb, S, Sb, Se, Sn, Sr, Th, Tl, U, V, Y and Zn) using ICP-MS and ICP-AES techniques (the major nutrients Ca, K, Mg and Na were not analysed in moss). Moss showed by far the highest element concentrations for most elements. Exceptions were Ba (spruce), Mn (spruce), Mo (grass), Ni (spruce), Rb (grass) and S (grass). Regional distribution maps and spatial trend analysis were used to study the suitability of the four materials as bioindicators of anthropogenic contamination. The highly industrialised areas in the north-west and the far east of the country and several more local contamination sources were indicated in the distribution maps of one or several sample materials. At the scale of the whole country moss was the best indicator of known contamination sources. However, on a more local scale, it appeared that spruce needles were especially well suited for detection of urban contamination. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Individual variation of sap-flow rate in large pine and spruce trees and stand transpiration: a pilot study at the central NOPEX site

    NASA Astrophysics Data System (ADS)

    Čermák, J.; Cienciala, E.; Kučera, J.; Lindroth, A.; Bednářová, E.

    1995-06-01

    Transpiration in a mixed old stand of sub-boreal forest in the Norunda region (central Sweden) was estimated on the basis of direct measurement of sap flow rate in 24 large Scots pine and Norway spruce trees in July and August 1993. Sap flow rate was measured using the trunk tissue heat balance method based on internal (electric) heating and sensing of temperature. Transpiration was only 0.7 mm day -1 in a relatively dry period in July (i.e. about 20% of potential evaporation) and substantially higher after a rainy period in August. The error of the estimates of transpiration was higher during a dry period (about 13% and 22% in pine and spruce, respectively) and significantly lower (about 9% in both species) during a period of sufficient water supply. Shallow-rooted spruce trees responded much faster to precipitation than deeply rooted pines.

  3. Spruce beetle-induced changes to Engelmann spruce foliage flammability

    Treesearch

    Wesley G. Page; Michael J. Jenkins; Justin B. Runyon

    2014-01-01

    Intermountain Engelmann spruce (Picea engelmannii Parry ex Engelm) stands affected by the spruce beetle (Dendroctonus rufipennis Kirby) represent a unique and growing fuel complex. In this study, we quantified and compared the changes in moisture content, chemistry, and flammability of foliage from trees in three crown condition classes: unattacked (green [G]),...

  4. Species Distribution Modeling between Abies koreana and Abies nephrolepis According to the RCP Scenarios in South Korea

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Kim, I. S.; Lee, W. K.; Kwon, H. J.; Byeon, J. G.; Yun, J. E.

    2016-12-01

    Vulnerable plant that includes species in crisis of extinction is shown by environment, competition between various species. The climate is one of the main factor that affect to the plant distribution. The most essential particular to make species distribution model is distribution data, and secondly environmental factors. 179 taxon plant classified according to the distribution, it consist of characteristic and regional distribution criteria. In case of climate data, 1960-1990 period made by World Clim Data is applied which has 0.86㎢ spatial resolution. It separates temperature and precipitation factor. To predict potential distribution, Maxent(Maximum Entropy Model) is applied that is widely known as suitable model in case of presence distributional data only. Among the target species, Abies koreana and Abies nephrolepis have no clearly key to identify, so their differences of distribution and environmental fator information could act useful. In order to know the distinction according to the classifying species, Abies koreana and Abies nephrolepis are typically selected. Abies koreana distributes at high mountain in Southern part of Korean Peninsula, otherwise Abies nephrolepis is at high mountain in from Middle latitude(over the 37°) in South Korea. These species has been the center of controversy recently, because the classification key of these species is not scientifically clear yet. In this perspective these species predicted potential distribution depend on whether these are same species or not. In the result of considering these species are same, entire predicted distribution area is wider, especially Jiri-san mountain(latitude : 35°) which is the highest latitude of the Abies koreana distributed point. On the other side, result of considering different species is shown that Abies koreana could climatically survive near by Soerak-san mountain(latitude : 37°), but Abies nephrolepis could not live in Halla-san mountan(33°) in Jeju-island which is the

  5. Development of spruce-fir stands following spruce beetle outbreaks

    Treesearch

    J. M. Schmid; T. E. Hinds

    1974-01-01

    Logged and unlogged stands of Engelmann spruce-subalpine fir were evaluated in spruce beetle outbreak areas infested about 15, 25, 50, and 100 years ago. Seedling regeneration was generally adequate except in heavily logged areas, although seedlings were often damaged, apparently by animals. Species composition was dramatically altered in favor of fir in the unlogged...

  6. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge

    PubMed Central

    Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata

    2016-01-01

    ABSTRACT Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination. PMID:26368503

  7. Mortality of spruce and fir in Maine in 1976-78 due to the spruce budworm outbreak

    Treesearch

    Donald W. Seegrist; Stanford L. Arner

    1982-01-01

    The spruce budworm population in Maine's spruce-fir forests has been at epidemic levels since the early 1970's. Spruce-fir mortality in 1976-78 is compared with predictions of what mortality would have been had the natural mortality rates remained at the levels experienced before the budworm outbreak. It appears that mortality of spruce and fir has increased...

  8. Impact of weak water deficit on growth, photosynthetic primary processes and storage processes in pine and spruce seedlings.

    PubMed

    Zlobin, Ilya E; Ivanov, Yury V; Kartashov, Alexander V; Sarvin, Boris A; Stavrianidi, Andrey N; Kreslavski, Vladimir D; Kuznetsov, Vladimir V

    2018-05-19

    We investigated the influence of 40 days of drought on growth, storage processes and primary photosynthetic processes in 3-month-old Scots pine and Norway spruce seedlings growing in perlite culture. Water stress significantly affected seedling water status, whereas absolute dry biomass growth was not substantially influenced. Water stress induced an increase in non-structural carbohydrate content (sugars, sugar alcohols, starch) in the aboveground part of pine seedlings in contrast to spruce seedlings. Due to the relatively low content of sugars and sugar alcohols in seedling organs, their expected contribution to osmotic potential changes was quite low. In contrast to biomass accumulation and storage, photosynthetic primary processes were substantially influenced by water shortage. In spruce seedlings, PSII was more sensitive to water stress than PSI. In particular, electron transport in PSI was stable under water stress despite the substantial decrease of electron transport in PSII. The increase in thermal energy dissipation due to enhancement of non-photochemical quenching (NPQ) was evident in both species under water stress. Simultaneously, the yields of non-regulated energy dissipation in PSII were decreased in pine seedlings under drought. A relationship between growth, photosynthetic activities and storage processes is analysed under weak water deficit.

  9. Insights into Conifer Giga-Genomes1

    PubMed Central

    De La Torre, Amanda R.; Birol, Inanc; Bousquet, Jean; Ingvarsson, Pär K.; Jansson, Stefan; Jones, Steven J.M.; Keeling, Christopher I.; MacKay, John; Nilsson, Ove; Ritland, Kermit; Street, Nathaniel; Yanchuk, Alvin; Zerbe, Philipp; Bohlmann, Jörg

    2014-01-01

    Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world’s forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20–30 Gb) and the highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: white spruce (Picea glauca), Norway spruce (Picea abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared with other plant genomes and may represent a window into the past of seed plant genomes. This Update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes. PMID:25349325

  10. SPRUCE S1 Bog and SPRUCE Experiment Location Survey Results, 2015

    DOE Data Explorer

    Griffiths, Natalie A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hook, L. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.

    2016-01-01

    This data set provides a record of the horizontal and vertical survey results of SPRUCE experimental infrastructure and measurement locations on the S1-Bog on the Marcell Experimental Forest and the SPRUCE experimental site within the S1-Bog.

  11. Does winter desiccation account for seasonal increases in supercooling capacity of Norway spruce bud primordia?

    PubMed Central

    Koch, Sabrina; Munkler, Caspar; Resnyak, Anna; Buchner, Othmar; Oberhammer, Marian; Neuner, Gilbert

    2018-01-01

    Abstract Bud primordia of Picea abies (L.) H. Karst. remain ice free at subzero temperatures by supercooling. Once ice forms inside the primordium, it is immediately injured. Supercooling capacity increases seasonally from ~−5 °C to as much as −50 °C by currently unknown mechanisms. Among other prerequisites, dehydration of tissues over the winter months has been considered to play a key role in freezing tolerance. In this regard, the water content of bud primordia may be crucial, especially in reference to supercooling. In order to assess the role of dehydration in supercooling capacity, seasonal changes in supercooling capacity and the water potential of bud primordia of Picea abies (L.) H. Karst were measured at two sites that differed by 1298 m in elevation, after artificial frost hardening and dehardening treatments and after controlled bench drying. The extent of supercooling of bud primordia varied from −7 °C in summer to −24.6 °C in winter, a difference of 17.6 –19.3 K. Total actual water potential (Ψtact) of bud primordia was −2 MPa in summer and decreased to a mean of −3.8 MPa in midwinter. The decline involved dehydration, and to a lesser extent, osmoregulation. At decreased Ψtact values (<3.0 MPa), supercooling capacity significantly increased <−19.5 °C, however, the correlation between actual water potential and supercooling capacity was poor. Frost-hardening treatments increased the supercooling capacity of bud primordia (−0.6 K day−1) and lowered Ψtact (−0.2 MPa day−1). Frost-dehardening treatments reduced supercooling capacity (+1.1 K day−1), and at the same time, increased Ψtact (+0.3 MPa day−1). In contrast, artificial drying of bud primordia in the range observed seasonally (−2.0 MPa) had no effect on supercooling capacity. These results suggest that there is no causal relationship between desiccation and the supercooling capacity of bud primordia in P. abies, but rather it involves other compounds within

  12. Effects of agitation on particle-size distribution and enzymatic hydrolysis of pretreated spruce and giant reed.

    PubMed

    Kadić, Adnan; Palmqvist, Benny; Lidén, Gunnar

    2014-01-01

    Mixing is an energy demanding process which has been previously shown to affect enzymatic hydrolysis. Concentrated biomass slurries are associated with high and non-Newtonian viscosities and mixing in these systems is a complex task. Poor mixing can lead to mass and/or heat transfer problems as well as inhomogeneous enzyme distribution, both of which can cause possible yield reduction. Furthermore the stirring energy dissipation may impact the particle size which in turn may affect the enzymatic hydrolysis. The objective of the current work was to specifically quantify the effects of mixing on particle-size distribution (PSD) and relate this to changes in the enzymatic hydrolysis. Two rather different materials were investigated, namely pretreated Norway spruce and giant reed. Changes in glucan hydrolysis and PSD were measured as a function of agitation during enzymatic hydrolysis at fiber loadings of 7 or 13% water-insoluble solids (WIS). Enzymatic conversion of pretreated spruce was strongly affected by agitation rates at the higher WIS content. However, at low WIS content the agitation had almost no effect on hydrolysis. There was some effect of agitation on the hydrolysis of giant reed at high WIS loading, but it was smaller than that for spruce, and there was no measurable effect at low WIS loading. In the case of spruce, intense agitation clearly affected the PSD and resulted in a reduced mean particle size, whereas for giant reed the decrease in particle size was mainly driven by enzymatic action. However, the rate of enzymatic hydrolysis was not increased after size reduction by agitation. The impact of agitation on the enzymatic hydrolysis clearly depends not only on feedstock but also on the solids loading. Agitation was found to affect the PSD differently for the examined pretreated materials spruce and giant reed. The fact that the reduced mean particle diameter could not explain the enhanced hydrolysis rates found for spruce at an elevated agitation

  13. Spectral evidence of early-stage spruce beetle infestation in Engelmann spruce

    Treesearch

    Adrianna C. Foster; Jonathan A. Walter; Herman H. Shugart; Jason Sibold; Jose Negron

    2017-01-01

    Spruce beetle (Dendroctonus rufipennis (Kirby)) outbreaks cause widespread mortality of Engelmann spruce (Picea engelmannii (Parry ex Engelm)) within the subalpine forests of the western United States. Early detection of infestations could allow forest managers to mitigate outbreaks or anticipate a response to tree mortality and the potential effects on ecosystem...

  14. Spruce budworm returns to Northeast

    Treesearch

    Lloyd Irland; William H. McWilliams

    2014-01-01

    Thinking of the Northern Forest brings to mind spruce/fir (S/F) forests, cool climates, and high elevations: not to mention fishing and canoe trips: however, spruce and fir are also very important to the northern timber economy and rural development. Considering new concerns over the spruce budworm, an update on the status of this critically important forest resource...

  15. Emission of Volatile Sulfur Compounds from Spruce Trees 1

    PubMed Central

    Rennenberg, Heinz; Huber, Beate; Schröder, Peter; Stahl, Klaus; Haunold, Werner; Georgii, Hans-Walter; Slovik, Stefan; Pfanz, Hardy

    1990-01-01

    Spruce (Picea Abies L.) trees from the same clone were supplied with different, but low, amounts of plant available sulfate in the soil (9.7-18.1 milligrams per 100 grams of soil). Branches attached to the trees were enclosed in a dynamic gas exchange cuvette and analyzed for the emission of volatile sulfur compounds. Independent of the sulfate supply in the soil, H2S was the predominant reduced sulfur compound continuously emitted from the branches with high rates during the day and low rates in the night. In the light, as well as in the dark, the rates of H2S emission increased exponentially with increasing water vapor flux from the needles. Approximately 1 nanomole of H2S was found to be emitted per mole of water. When stomata were closed completely, only minute emission of H2S was observed. Apparently, H2S emission from the needles is highly dependent on stromatal aperture, and permeation through the cuticle is negligible. In several experiments, small amounts of dimethylsulfide and carbonylsulfide were also detected in a portion of the samples. However, SO2 was the only sulfur compound consistently emitted from branches of spruce trees in addition to H2S. Emission of SO2 mainly proceeded via an outburst starting before the beginning of the light period. The total amount of SO2 emitted from the needles during this outburst was correlated with the plant available sulfate in the soil. The diurnal changes in sulfur metabolism that may result in an outburst of SO2 are discussed. PMID:16667315

  16. Light-energy processing and freezing-tolerance traits in red spruce and black spruce: species and seed-source variation.

    PubMed

    Major, John E; Barsi, Debby C; Mosseler, Alex; Campbell, Moira; Rajora, Om P

    2003-07-01

    Red spruce (Picea rubens Sarg.) and black spruce (Picea mariana (Mill.) B.S.P.) are genetically and morphologically similar but ecologically distinct species. We determined intraspecific seed-source and interspecific variation of red spruce and black spruce, from across the near-northern margins of their ranges, for several light-energy processing and freezing-tolerance adaptive traits. Before exposure to low temperature, red spruce had variable fluorescence (Fv) similar to black spruce, but higher photochemical efficiency (Fv/Fm), lower quantum yield, lower chlorophyll fluorescence (%), and higher thermal dissipation efficiency (qN), although the seed-source effect and the seed-source x species interaction were significant only for Fv/Fm. After low-temperature exposure (-40 degrees C), red spruce had significantly lower Fv/Fm, quantum yield and qN than black spruce, but higher chlorophyll fluorescence and relative fluorescence. Species, seed-source effect, and seed-source x species interaction were consistent with predictions based on genetic (e.g., geographic) origins. Multi-temperature exposures (5, -20 and -40 degrees C) often produced significant species and temperature effects, and species x temperature interactions as a result of species-specific responses to temperature exposures. The inherent physiological species-specific adaptations of red spruce and black spruce were largely consistent with a shade-tolerant, late-successional species and an early successional species, respectively. Species differences in physiological adaptations conform to a biological trade-off, probably as a result of natural selection pressure in response to light availability and prevailing temperature gradients.

  17. Relation of Chlorophyll Fluorescence Sensitive Reflectance Ratios to Carbon Flux Measurements of Montanne Grassland and Norway Spruce Forest Ecosystems in the Temperate Zone

    PubMed Central

    Ač, Alexander; Malenovský, Zbyněk; Urban, Otmar; Hanuš, Jan; Zitová, Martina; Navrátil, Martin; Vráblová, Martina; Olejníčková, Julie; Špunda, Vladimír; Marek, Michal

    2012-01-01

    We explored ability of reflectance vegetation indexes (VIs) related to chlorophyll fluorescence emission (R 686/R 630, R 740/R 800) and de-epoxidation state of xanthophyll cycle pigments (PRI, calculated as (R 531 − R 570)/(R 531 − R 570)) to track changes in the CO2 assimilation rate and Light Use Efficiency (LUE) in montane grassland and Norway spruce forest ecosystems, both at leaf and also canopy level. VIs were measured at two research plots using a ground-based high spatial/spectral resolution imaging spectroscopy technique. No significant relationship between VIs and leaf light-saturated CO2 assimilation (A MAX) was detected in instantaneous measurements of grassland under steady-state irradiance conditions. Once the temporal dimension and daily irradiance variation were included into the experimental setup, statistically significant changes in VIs related to tested physiological parameters were revealed. ΔPRI and Δ(R 686/R 630) of grassland plant leaves under dark-to-full sunlight transition in the scale of minutes were significantly related to A MAX (R 2 = 0.51). In the daily course, the variation of VIs measured in one-hour intervals correlated well with the variation of Gross Primary Production (GPP), Net Ecosystem Exchange (NEE), and LUE estimated via the eddy-covariance flux tower. Statistical results were weaker in the case of the grassland ecosystem, with the strongest statistical relation of the index R 686/R 630 with NEE and GPP. PMID:22701368

  18. Molecular cloning in Arabidopsis thaliana of a new protein phosphatase 2C (PP2C) with homology to ABI1 and ABI2.

    PubMed

    Rodriguez, P L; Leube, M P; Grill, E

    1998-11-01

    We report the cloning of both the cDNA and the corresponding genomic sequence of a new PP2C from Arabidopsis thaliana, named AtP2C-HA (for homology to ABI1/ABI2). The AtP2C-HA cDNA contains an open reading frame of 1536 bp and encodes a putative protein of 511 amino acids with a predicted molecular mass of 55.7 kDa. The AtP2C-HA protein is composed of two domains, a C-terminal PP2C catalytic domain and a N-terminal extension of ca. 180 amino acid residues. The deduced amino acid sequence is 55% and 54% identical to ABI1 and ABI2, respectively. Comparison of the genomic structure of the ABI1, ABI2 and AtP2C-HA genes suggests that they belong to a multigene family. The expression of the AtP2C-HA gene is up-regulated by abscisic acid (ABA) treatment.

  19. Essential role for Abi1 in embryonic survival and WAVE2 complex integrity.

    PubMed

    Dubielecka, Patrycja M; Ladwein, Kathrin I; Xiong, Xiaoling; Migeotte, Isabelle; Chorzalska, Anna; Anderson, Kathryn V; Sawicki, Janet A; Rottner, Klemens; Stradal, Theresia E; Kotula, Leszek

    2011-04-26

    Abl interactor 1 (Abi1) plays a critical function in actin cytoskeleton dynamics through participation in the WAVE2 complex. To gain a better understanding of the specific role of Abi1, we generated a conditional Abi1-KO mouse model and MEFs lacking Abi1 expression. Abi1-KO cells displayed defective regulation of the actin cytoskeleton, and this dysregulation was ascribed to altered activity of the WAVE2 complex. Changes in motility of Abi1-KO cells were manifested by a decreased migration rate and distance but increased directional persistence. Although these phenotypes did not correlate with peripheral ruffling, which was unaffected, Abi1-KO cells exhibited decreased dorsal ruffling. Western blotting analysis of Abi1-KO cell lysates indicated reduced levels of the WAVE complex components WAVE1 and WAVE2, Nap1, and Sra-1/PIR121. Although relative Abi2 levels were more than doubled in Abi1-KO cells, the absolute Abi2 expression in these cells amounted only to a fifth of Abi1 levels in the control cell line. This finding suggests that the presence of Abi1 is critical for the integrity and stability of WAVE complex and that Abi2 levels are not sufficiently increased to compensate fully for the loss of Abi1 in KO cells and to restore the integrity and function of the WAVE complex. The essential function of Abi1 in WAVE complexes and their regulation might explain the observed embryonic lethality of Abi1-deficient embryos, which survived until approximately embryonic day 11.5 and displayed malformations in the developing heart and brain. Cells lacking Abi1 and the conditional Abi1-KO mouse will serve as critical models for defining Abi1 function.

  20. Essential role for Abi1 in embryonic survival and WAVE2 complex integrity

    PubMed Central

    Dubielecka, Patrycja M.; Ladwein, Kathrin I.; Xiong, Xiaoling; Migeotte, Isabelle; Chorzalska, Anna; Anderson, Kathryn V.; Sawicki, Janet A.; Rottner, Klemens; Stradal, Theresia E.; Kotula, Leszek

    2011-01-01

    Abl interactor 1 (Abi1) plays a critical function in actin cytoskeleton dynamics through participation in the WAVE2 complex. To gain a better understanding of the specific role of Abi1, we generated a conditional Abi1-KO mouse model and MEFs lacking Abi1 expression. Abi1-KO cells displayed defective regulation of the actin cytoskeleton, and this dysregulation was ascribed to altered activity of the WAVE2 complex. Changes in motility of Abi1-KO cells were manifested by a decreased migration rate and distance but increased directional persistence. Although these phenotypes did not correlate with peripheral ruffling, which was unaffected, Abi1-KO cells exhibited decreased dorsal ruffling. Western blotting analysis of Abi1-KO cell lysates indicated reduced levels of the WAVE complex components WAVE1 and WAVE2, Nap1, and Sra-1/PIR121. Although relative Abi2 levels were more than doubled in Abi1-KO cells, the absolute Abi2 expression in these cells amounted only to a fifth of Abi1 levels in the control cell line. This finding suggests that the presence of Abi1 is critical for the integrity and stability of WAVE complex and that Abi2 levels are not sufficiently increased to compensate fully for the loss of Abi1 in KO cells and to restore the integrity and function of the WAVE complex. The essential function of Abi1 in WAVE complexes and their regulation might explain the observed embryonic lethality of Abi1-deficient embryos, which survived until approximately embryonic day 11.5 and displayed malformations in the developing heart and brain. Cells lacking Abi1 and the conditional Abi1-KO mouse will serve as critical models for defining Abi1 function. PMID:21482783

  1. The contribution of hydroxylamine content to spatial variability of N2O formation in soil of a Norway spruce forest

    NASA Astrophysics Data System (ADS)

    Liu, Shurong; Herbst, Michael; Bol, Roland; Gottselig, Nina; Pütz, Thomas; Weymann, Daniel; Wiekenkamp, Inge; Vereecken, Harry; Brüggemann, Nicolas

    2016-04-01

    Hydroxylamine (NH2OH), a reactive intermediate of several microbial nitrogen turnover processes, is a potential precursor of nitrous oxide (N2O) formation in the soil. However, the contribution of soil NH2OH to soil N2O emission rates in natural ecosystems is unclear. Here, we determined the spatial variability of NH2OH content and potential N2O emission rates of organic (Oh) and mineral (Ah) soil layers of a Norway spruce forest, using a recently developed analytical method for the determination of soil NH2OH content, combined with a geostatistical Kriging approach. Potential soil N2O emission rates were determined by laboratory incubations under oxic conditions, followed by gas chromatographic analysis and complemented by ancillary measurements of soil characteristics. Stepwise multiple regressions demonstrated that the potential N2O emission rates, NH2OH and nitrate (NO3-) content were spatially highly correlated, with hotspots for all three parameters observed in the headwater of a small creek flowing through the sampling area. In contrast, soil ammonium (NH4+) was only weakly correlated with potential N2O emission rates, and was excluded from the multiple regression models. While soil NH2OH content explained the potential soil N2O emission rates best for both layers, also NO3- and Mn content turned out to be significant parameters explaining N2O formation in both soil layers. The Kriging approach was improved markedly by the addition of the co-variable information of soil NH2OH and NO3- content. The results indicate that determination of soil NH2OH content could provide crucial information for the prediction of the spatial variability of soil N2O emissions.

  2. Association of FLOWERING LOCUS T/TERMINAL FLOWER 1-like gene FTL2 expression with growth rhythm in Scots pine (Pinus sylvestris).

    PubMed

    Avia, Komlan; Kärkkäinen, Katri; Lagercrantz, Ulf; Savolainen, Outi

    2014-10-01

    Understanding the genetic basis of the timing of bud set, an important trait in conifers, is relevant for adaptation and forestry practice. In common garden experiments, both Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) show a latitudinal cline in the trait. We compared the regulation of their bud set biology by examining the expression of PsFTL2, a Pinus sylvestris homolog to PaFTL2, a FLOWERING LOCUS T/TERMINAL FLOWER 1 (FT/TFL1)-like gene, the expression levels of which have been found previously to be associated with the timing of bud set in Norway spruce. In a common garden study, we analyzed the relationship of bud phenology under natural and artificial photoperiods and the expression of PsFTL2 in a set of Scots pine populations from different latitudes. The expression of PsFTL2 increased in the needles preceding bud set and decreased during bud burst. In the northernmost population, even short night periods were efficient to trigger this expression, which also increased earlier under all photoperiodic regimes compared with the southern populations. Despite the different biology, with few limitations, the two conifers that diverged 140 million yr ago probably share an association of FTL2 with bud set, pointing to a common mechanism for the timing of growth cessation in conifers. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  3. Spruce aphid, Elatobium abietinum (Walker): Life history and damage to Engelmann spruce in the Pinaleno Mountains, Arizona

    Treesearch

    Ann M. Lynch

    2009-01-01

    Spruce aphid is an exotic insect recently introduced to the Pinaleno Mountains. It feeds on dormant Engelmann spruce, and possible effects include tree-growth suppression, tree mortality, and reduction in seed and cone production. Potential longer-term effects include changes in forest structure and species composition - primarily through reduction in Engelmann spruce...

  4. Relationships among the spruces (Picea, Pinaceae) of southwestern North America

    Treesearch

    F. Thomas Ledig; Paul D. Hodgskiss; Konstanin V. Krutovskii; David B. Neale; Teobaldo Eguiluz-Piedra

    2004-01-01

    Numerous populations from six spruce taxa, including four relict endemics, Picea chihuahuana (Chihuahua spruce), P. martinezii (Martínez spruce), P. mexicana (Mexican spruce), and P. breweriana (Brewer spruce), and two widespread species, P. engelmannii (Engelmann spruce) and...

  5. Oldest known Engelmann spruce

    Treesearch

    Peter M. Brown; Wayne D. Shepperd; Christopher C. Brown; Stephen A. Mata; Douglas L. McClain

    1995-01-01

    Age structure in a stand of very old-age Engelmann spruce is described. The site is at 3,505 m near treeline in the Fraser Experimental Forest in central Colorado. The site contains the oldest Engelmann spruce trees yet reported in the literature; the oldest tree is at least 852 years of age.

  6. Eastern Spruce Dwarf Mistletoe

    Treesearch

    F. Baker; Joseph O' Brien; R. Mathiasen; Mike Ostry

    2006-01-01

    Eastern spruce dwarf mistletoe (Arceuthobium pusillum) is a parasitic flowering plant that causes the most serious disease of black spruce (Picea mariana) throughout its range. The parasite occurs in the Canadian provinces of Saskatchewan, Manitoba, Ontario, Quebec, New Brunswick, Nova Scotia, Prince Edward Island, and Newfoundland; in the Lake States of Minnesota,...

  7. Similarity of nutrient uptake and root dimensions of Engelmann spruce and subalpine fir at two contrasting sites in Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanai, R; McFarlane, K; Lucash, M

    2009-10-09

    Nutrient uptake capacity is an important parameter in modeling nutrient uptake by plants. Researchers commonly assume that uptake capacity measured for a species can be used across sites. We tested this assumption by measuring the nutrient uptake capacity of intact roots of Engelmann spruce (Picea engelmanni Parry) and subalpine fir (Abies lasiocarpa (Hook.) Nutt.) at Loch Vale Watershed and Fraser Experimental Forest in the Rocky Mountains of central Colorado. Roots still attached to the tree were exposed to one of three concentrations of nutrient solutions for time periods ranging from 1 to 96 hours, and solutions were analyzed for ammonium,more » nitrate, calcium, magnesium, and potassium. Surprisingly, the two species were indistinguishable in nutrient uptake within site for all nutrients (P > 0.25), but uptake rates differed by site. In general, nutrient uptake was higher at Fraser (P = 0.01, 0.15, 0.03, 0.18 for NH{sub 4}{sup +}, NO{sub 3}{sup -}, Ca{sup 2+}, and K{sup +}, respectively), which is west of the Continental Divide and has lower atmospheric deposition of N than Loch Vale. Mean uptake rates by site for ambient solution concentrations were 0.12 {micro}mol NH{sub 4}{sup +} g{sub fwt}{sup -1} h{sup -1}, 0.02 {micro}mol NO{sub 3}{sup -} g{sub fwt}{sup -1}, 0.21 {micro}mol Ca{sup 2+} g{sub fwt}{sup -1} h{sup -1}, and 0.01 {micro}mol Mg{sup 2+} g{sub fwt}{sup -1} h{sup -1} at Loch Vale, and 0.21 {micro}mol NH{sub 4}{sup +} f{sub fwt}{sup -1}h{sup -1}, 0.04 {micro}mol NO{sub 3}{sup -} g{sub fwt}{sup -1} h{sup -1}, 0.51 {micro}mol Ca{sup 2+}g{sub fwt}{sup -1}h{sup -1}, and 0.07 {micro}mol Mg{sup 2+} f{sub fwt}{sup -1}h{sup -1} at Fraser. The importance of site conditions in determining uptake capacity should not be overlooked when parameterizing nutrient uptake models. We also characterized the root morphology of these two species and compared them to other tree species we have measured at various sites in the northeastern USA. Engelman spruce and

  8. Underestimation of terpene exposure in the Nordic wood industry.

    PubMed

    Granström, Karin M

    2010-03-01

    This study determined that emission of sesquiterpenes from processed wood warrants attention in the work environment. Currently, only the monoterpenes in the terpene group are monitored in occupational hygiene studies. Terpene emissions are a work environment issue for industries that process wood, as they are known to cause respiratory difficulties and mucous membrane irritation. Fresh sawdust of the most common boreal conifers, Norway spruce (Picea abies) and Scots pine (Pinus sylvestris), was subjected to processing (drying), and the emissions were analyzed with a gas chromatograph-mass spectrometer. The data indicate that workers are exposed to significant amounts of sesquiterpenes, an observation that has not been recorded previously at wood processing plants. On average, the proportion of sesquiterpenes to monoterpenes was 21 +/- 5% (STD, n = 11) for spruce and 15 +/- 5% (STD, n = 13) for pine. The composition of terpenes emitted in air from spruce wood differs from the composition in resin. The sum of monoterpenes and sesquiterpenes can exceed the occupational exposure limit for turpentine for processes where monoterpene concentrations are already close to the occupational exposure limit, and for processes involving the processing of bark. Findings suggest that future studies of health effects from terpenes in air should measure monoterpenes and sesquiterpenes to assess whether the current OELs are appropriate.

  9. Insights into conifer giga-genomes.

    PubMed

    De La Torre, Amanda R; Birol, Inanc; Bousquet, Jean; Ingvarsson, Pär K; Jansson, Stefan; Jones, Steven J M; Keeling, Christopher I; MacKay, John; Nilsson, Ove; Ritland, Kermit; Street, Nathaniel; Yanchuk, Alvin; Zerbe, Philipp; Bohlmann, Jörg

    2014-12-01

    Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world's forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20-30 Gb) and the highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: white spruce (Picea glauca), Norway spruce (Picea abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared with other plant genomes and may represent a window into the past of seed plant genomes. This Update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes. © 2014 American Society of Plant Biologists. All Rights Reserved.

  10. ABI5 Is a Regulator of Seed Maturation and Longevity in Legumes

    PubMed Central

    Zinsmeister, Julia; Lalanne, David; Terrasson, Emmanuel; Chatelain, Emilie; Vandecasteele, Céline; Vu, Benoit Ly; Gutbrod, Katharina; Dörmann, Peter; Bendahmane, Abdelhafid

    2016-01-01

    The preservation of our genetic resources and production of high-quality seeds depends on their ability to remain viable and vigorous during storage. In a quantitative trait locus analysis on seed longevity in Medicago truncatula, we identified the bZIP transcription factor ABSCISIC ACID INSENSITIVE5 (ABI5). Characterization of Mt-abi5 insertion mutant seeds revealed that both the acquisition of longevity and dormancy were severely impaired. Using transcriptomes of developing Mt-abi5 seeds, we created a gene coexpression network and revealed ABI5 as a regulator of gene modules with functions related to raffinose family oligosaccharide (RFO) metabolism, late embryogenesis abundant (LEA) proteins, and photosynthesis-associated nuclear genes (PhANGs). Lower RFO contents in Mt-abi5 seeds were linked to the regulation of SEED IMBIBITION PROTEIN1. Proteomic analysis confirmed that a set of LEA polypeptides was reduced in mature Mt-abi5 seeds, whereas the absence of repression of PhANG in mature Mt-abi5 seeds was accompanied by chlorophyll and carotenoid retention. This resulted in a stress response in Mt-abi5 seeds, evident from an increase in α-tocopherol and upregulation of genes related to programmed cell death and protein folding. Characterization of abi5 mutants in a second legume species, pea (Pisum sativum), confirmed a role for ABI5 in the regulation of longevity, seed degreening, and RFO accumulation, identifying ABI5 as a prominent regulator of late seed maturation in legumes. PMID:27956585

  11. The structure of genetic diversity in Engelmann spruce and a comparison with blue spruce

    Treesearch

    F. Thomas Ledig; Paul D. Hodgskiss; David R. Johnson

    2010-01-01

    Genetic diversity and genetic structure in Engelmann spruce (Picea engelmannii Parry ex Engelm.) were interpreted with respect to the effects of glacial and interglacial displacement and compared with patterns in blue spruce (Picea pungens Engelm.), which occupies a range well south of the last glacial front. On average,...

  12. Experiences from Auditory Brainstem Implantation (ABIs) in four paediatric patients.

    PubMed

    Lundin, Karin; Stillesjö, Fredrik; Nyberg, Gunnar; Rask-Andersen, Helge

    2016-01-01

    Indications for auditory brainstem implants (ABIs) have been widened from patients with neurofibromatosis type 2 (NF2) to paediatric patients with congenital cochlear malformations, cochlear nerve hypoplasia/aplasia, or cochlear ossification after meningitis. We present four ABI surgeries performed in children at Uppsala University Hospital in Sweden since 2009. Three children were implanted with implants from Cochlear Ltd. (Lane Cove, Australia) and one child with an implant from MedEl GMBH (Innsbruck, Austria). A boy with Goldenhar syndrome was implanted with a Cochlear Nucleus ABI24M at age 2 years (patient 1). Another boy with CHARGE syndrome was implanted with a Cochlear Nucleus ABI541 at age 2.5 years (patient 2). Another boy with post-ossification meningitis was implanted with a Cochlear Nucleus ABI24M at age 4 years (patient 3). A girl with cochlear aplasia was implanted with a MedEl Synchrony ABI at age 3 years (patient 4). In patients 1, 2, and 3, the trans-labyrinthine approach was used, and in patient 4 the retro-sigmoid approach was used. Three of the four children benefited from their ABIs and use it full time. Two of the full time users had categories of auditory performance (CAP) score of 4 at their last follow up visit (6 and 2.5 years postoperative) which means they can discriminate consistently any combination of two of Ling's sounds. One child has not been fully evaluated yet, but is a full time user and had CAP 2 (responds to speech sounds) after 3 months of ABI use. No severe side or unpleasant stimulation effects have been observed so far. There was one case of immediate electrode migration and one case of implant device failure after 6.5 years. ABI should be considered as an option in the rehabilitation of children with similar diagnoses.

  13. Influence of host tree condition on the performance of Tetropium fuscum (Coleoptera: Cerambycidae).

    PubMed

    Flaherty, Leah; Sweeney, Jon D; Pureswaran, Deepa; Quiring, Dan T

    2011-10-01

    Tetropium fuscum (F.) attacks weakened Norway spruce, Picea abies (L.) Karst., in its native Europe and may colonize healthy spruce in Nova Scotia, Canada. We used manipulative field experiments to evaluate: 1) the development of T. fuscum on apparently healthy red spruce (Picea rubens Sarg.) in Nova Scotia; 2) the influence of red spruce physiological condition (healthy, girdled or cut) on T. fuscum performance; and 3) the impact of natural enemies and competitors on T. fuscum performance when developing on trees of varying condition. Tetropium fuscum successfully developed on healthy red spruce. Survival was higher on healthy than on girdled or cut trees when larvae were exposed to natural enemies and competitors. The benefits of reduced competition and parasitism on healthy trees appeared to compensate for any reductions in nutritional quality, increase in host resistance, or both. In contrast, when T. fuscum were protected from natural enemies, apparent survival was highest on girdled trees. Tetropium fuscum development took longer on healthy than on cut or girdled trees, and emerged adults were largest on healthy trees. The disparities in adult sizes among the three treatments may mean that healthy trees are more nutritious. Alternatively, the differences may indicate that a greater amount of time was spent feeding in healthy than in girdled or cut trees. Tree condition appears to have a direct impact on the success of T. fuscum, influencing survival, development time, and adult size, and may mediate the impact of natural enemies and competitors, further affecting T. fuscum performance.

  14. Spruce Budworm in the Eastern United States

    Treesearch

    Daniel R. Kuceral; Peter W. Orr

    The spruce budworm Choristoneura fumiferana (Clemens) is one of the most destructive native insects in the northern spruce and fir forests of the Eastern United States and Canada. Periodic outbreaks of the spruce budworm are a part of the natural cycle of events associated with the maturing of balsam fir.

  15. Seasonal patterns of carbon allocation to respiratory pools in 60-yr-old deciduous (Fagus sylvatica) and evergreen (Picea abies) trees assessed via whole-tree stable carbon isotope labeling.

    PubMed

    Kuptz, Daniel; Fleischmann, Frank; Matyssek, Rainer; Grams, Thorsten E E

    2011-07-01

    • The CO(2) efflux of adult trees is supplied by recent photosynthates and carbon (C) stores. The extent to which these C pools contribute to growth and maintenance respiration (R(G) and R(M), respectively) remains obscure. • Recent photosynthates of adult beech (Fagus sylvatica) and spruce (Picea abies) trees were labeled by exposing whole-tree canopies to (13) C-depleted CO(2). Label was applied three times during the year (in spring, early summer and late summer) and changes in the stable C isotope composition (δ(13) C) of trunk and coarse-root CO(2) efflux were quantified. • Seasonal patterns in C translocation rate (CTR) and fractional contribution of label to CO(2) efflux (F(Label-Max)) were found. CTR was fastest during early summer. In beech, F(Label-Max) was lowest in spring and peaked in trunks during late summer (0.6 ± 0.1, mean ± SE), whereas no trend was observed in coarse roots. No seasonal dynamics in F(Label-Max) were found in spruce. • During spring, the R(G) of beech trunks was largely supplied by C stores. Recent photosynthates supplied growth in early summer and refilled C stores in late summer. In spruce, CO(2) efflux was constantly supplied by a mixture of stored (c. 75%) and recent (c. 25%) C. The hypothesis that R(G) is exclusively supplied by recent photosynthates was rejected for both species. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  16. Effectiveness of polyethylene sheeting in controlling spruce beetles (Coleoptera: Scolytidae) in infested stacks of spruce firewood in Alaska.

    Treesearch

    Edward H. Holsten; Richard A. Werner

    1993-01-01

    Covering stacks of spruce firewood with either clear or black polyethylene sheeting does not raise log temperatures high enough to kill spruce beetle brood in the logs. Based on the results of this study, we do not recommend the use of polyethylene sheeting as a remedial measure for the reduction of spruce beetle brood in infested firewood or log decks in south-central...

  17. Effect of increasing temperatures on the distribution of spruce beetle in Engelmann spruce forests of the Interior West, USA

    Treesearch

    R. Justin DeRose; Barbara J. Bentz; James N. Long; John D. Shaw

    2013-01-01

    The spruce beetle (Dendoctronus rufipennis) is a pervasive bark beetle indigenous to spruce (Picea spp.) forests of North America. In the last two decades outbreaks of spruce beetle have increased in severity and extent. Increasing temperatures have been implicated as they directly control beetle populations, potentially inciting endemic populations to build to...

  18. 19 CFR 143.7 - Revocation of ABI participation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Revocation of ABI participation. 143.7 Section 143.7 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) SPECIAL ENTRY PROCEDURES Automated Broker Interface § 143.7 Revocation of ABI...

  19. Abundance of red spruce regeneration across spruce-hardwood ecotones at Gaudineer Knob, West Virginia

    Treesearch

    Albert E. Mayfield; Ray R. Hicks

    2010-01-01

    The abundance of red spruce (Picea rubens Sarg.) in the Central Appalachian Mountains has been drastically reduced over the past 100 to 150 years. The purpose of this study was to examine the potential for increases in the relative abundance of overstory red spruce in a Central Appalachian, high-elevation forest by measuring the abundance of red...

  20. AbiA, a lactococcal abortive infection mechanism functioning in Streptococcus thermophilus.

    PubMed

    Tangney, Mark; Fitzgerald, Gerald F

    2002-12-01

    The lactococcal abortive infection mechanisms AbiA and AbiG were introduced into Streptococcus thermophilus 4035, and a range of phages capable of infecting this host were examined for sensitivity to these mechanisms. AbiA proved effective against six phages when examined at a growth temperature of 30 degrees C but had no effect on any of the phages when tested at 37 or 42 degrees C. AbiG failed to affect any of the S. thermophilus phages at 30, 37, or 42 degrees C.

  1. Role of genetics in adapting forests under climate change: lessons learned from common garden experiments in central Europe

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debojyoti; Schueler, Silvio

    2017-04-01

    menziesii [Mirbel] Franco) and Norway spruce (Picea abies (L.) Karst). For both Douglas-fir and Norway spruce wide variation in growth performance were detected. Populations of Douglas-fir identified by the URFs to be optimum for central Europe current climate and climate change scenarios originate from western Cascades and coastal areas of British Columbia, Washington and Oregon. The current seed stands of Douglas-fir in North America, providing planting materials for Central Europe under the legal framework of the Organization for Economic Cooperation and Development (OECD) were found to be suitable for under future conditions. In case of Norway spruce provenances originating from warm and drier regions of south east Europe were found to be suitable for central Europe under future conditions. Even though calibrated with data from Central Europe, when applied as SDMs, the URFs predicted the observed occurrence of Douglas-fir in its native range in North America with reasonable accuracy compared to contemporary SDMs developed in North America. For both Douglas-fir and Norway spruce significant variation in habitat suitability was found depending on the planted population or seed source indicating the role of intraspecific variation in buffering effects of climate change.

  2. Crafting a competitive edge: white spruce regeneration in Alaska.

    Treesearch

    Jonathan. Thompson

    2005-01-01

    Over the past two decades, unprecedented levels of disturbance have occurred in the white spruce forests of Alaska. Spruce bark beetles, fires, and timber harvests have left millions of acres of dead spruce with little spruce regeneration. To assist public and private landowners, Pacific Northwest Research (PNW) Station scientists are testing various approaches to...

  3. Decay of subalpine fir in Colorado

    Treesearch

    Thomas E. Hinds; Frank G. Hawksworth; Ross W. Davidson

    1960-01-01

    Spruce-fir is one of the major forest types in the central Rocky Mountains. Engelmann spruce, Picea engelmanni Parry, is usually the predominant species with subalpine fir, Abies lasiocarpa (Hook. ) Nutt., making up one-fourth or less of the total volume. Lodgepole pine, Pinus contorta Dougl. ex Loud., is frequently present at the lower elevations of the spruce-fir...

  4. Mice and voles prefer spruce seeds

    Treesearch

    Herschel G. Abbott; Arthur C. Hart

    1961-01-01

    When spruce-fir stands in the Northeast are cut, balsam fir seedlings often predominate in the regeneration that follows. Most landowners would prefer to have the spruce; but they do not get it, and they wonder why.

  5. Spruce aphid (Elatobium abietinum Walker) (Hemiptera: Aphididae) [Chapter XXIV

    Treesearch

    Ann M. Lynch

    2014-01-01

    Elatobium abietinum Walker is a spruce-feeding aphid that in Europe is referred to as the green spruce aphid (Day et al., 1998a) (Fig. 1). However, in North America E. abietinum is known simply as the spruce aphid, while the common name "green spruce aphid" refers to a different species, Cinara fornacula Hottes (Hemiptera: Aphididae) (http://www.entsoc.org/...

  6. Ecophysiological importance of cloud immersion in a relic spruce-fir forest at elevational limits, southern Appalachian Mountains, USA.

    PubMed

    Berry, Z Carter; Smith, William K

    2013-11-01

    Climate warming predicts changes to the frequency and height of cloud-immersion events in mountain communities. Threatened southern Appalachian spruce-fir forests have been suggested to persist because of frequent periods of cloud immersion. These relic forests exist on only seven mountaintop areas, grow only above ca. 1,500 m elevation (maximum 2,037 m), and harbor the endemic Abies fraseri. To predict future distribution, we examined the ecophysiological effects of cloud immersion on saplings of A. fraseri and Picea rubens at their upper and lower elevational limits. Leaf photosynthesis, conductance, transpiration, xylem water potentials, and general abiotic variables were measured simultaneously on individuals at the top (1,960 m) and bottom (1,510 m) of their elevation limits on numerous clear and cloud-immersed days throughout the growing season. The high elevation sites had 1.5 as many cloud-immersed days (75 % of days) as the low elevation sites (56 % of days). Cloud immersion resulted in higher photosynthesis, leaf conductance, and xylem water potentials, particularly during afternoon measurements. Leaf conductance remained higher throughout the day with corresponding increases in photosynthesis and transpiration, despite low photon flux density levels, leading to an increase in water potentials from morning to afternoon. The endemic A. fraseri had a greater response in carbon gain and water balance in response to cloud immersion. Climate models predict warmer temperatures with a decrease in the frequency of cloud immersion for this region, leading to an environment on these peaks similar to elevations where spruce-fir communities currently do not exist. Because spruce-fir communities may rely on cloud immersion for improved carbon gain and water conservation, an upslope shift is likely if cloud ceilings rise. Their ultimate survival will likely depend on the magnitude of changes in cloud regimes.

  7. Hygrothermal Simulation of Wood Exposed To the Effect of External Climate

    NASA Astrophysics Data System (ADS)

    Dohnal, Jakub; Hradil, Petr; Pencik, Jan

    2017-10-01

    The article is focused on simulation of moisture transfer in wood of norway spruce (Picea abies L.). Experimental specimen was exposed to the northern climatic conditions in Lund University, Sweden. The moisture content of wood was measured 10 mm from the surface for nearly three years. The ABAQUS program was used for numerical modelling of moisture transfer simulation in 3D. The surface sorption of wood was simulated using user defined subroutine DFLUX developed by VTT Research Centre of Finland Ltd. for the needs of European Project Durable Timber Bridges. Climate data for the analysis was used from insitu measurement nearby realized by weather station. The temperature, relative humidity of the air and precipitation data was record each hour. Numerical analysis took into account influence of rain effect on different parts of specimen surface.

  8. Old lower stem bark lesions apparently caused by unsuccessful spruce beetle attacks still evident on live spruce trees years later

    Treesearch

    John S. Hard; Ken P. Zogas

    2010-01-01

    We examined old bark lesions on Lutz spruce in young stands on the Kenai Peninsula, Alaska, to determine their cause. Distribution of these lesions along lower stems was similar to the distribution of spruce beetle attacks during epidemics. These lesions apparently resulted from unsuccessful attacks by spruce beetles during the late 1980s and early 1990s and appear to...

  9. Visual cues of oviposition sites and spectral sensitivity of Cydia strobilella L.

    PubMed

    Jakobsson, Johan; Henze, Miriam J; Svensson, Glenn P; Lind, Olle; Anderbrant, Olle

    2017-08-01

    We investigated whether the spruce seed moth (Cydia strobilella L., Tortricidae: Grapholitini), an important pest in seed orchards of Norway spruce (Picea abies (L.) Karst.), can make use of the spectral properties of its host when searching for flowers to oviposit on. Spectral measurements showed that the flowers, and the cones they develop into, differ from a background of P. abies needles by a higher reflectance of long wavelengths. These differences increase as the flowers develop into mature cones. Electroretinograms (ERGs) in combination with spectral adaptation suggest that C. strobilella has at least three spectral types of photoreceptor; an abundant green-sensitive receptor with maximal sensitivity at wavelength λ max =526nm, a blue-sensitive receptor with λ max =436nm, and an ultraviolet-sensitive receptor with λ max =352nm. Based on our spectral measurements and the receptor properties inferred from the ERGs, we calculated that open flowers, which are suitable oviposition sites, provide detectable achromatic, but almost no chromatic contrasts to the background of needles. In field trials using traps of different spectral properties with or without a female sex pheromone lure, only pheromone-baited traps caught moths. Catches in baited traps were not correlated with the visual contrast of the traps against the background. Thus, visual contrast is probably not the primary cue for finding open host flowers, but it could potentially complement olfaction as a secondary cue, since traps with certain spectral properties caught significantly more moths than others. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Legacy of Pre-Disturbance Spatial Pattern Determines Early Structural Diversity following Severe Disturbance in Montane Spruce Forests

    PubMed Central

    Bače, Radek; Svoboda, Miroslav; Janda, Pavel; Morrissey, Robert C.; Wild, Jan; Clear, Jennifer L.; Čada, Vojtěch; Donato, Daniel C.

    2015-01-01

    Background Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how pre-disturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand. Methods Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover. Results Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, pre-disturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand’s height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights. Conclusion These findings suggest that pre-disturbance spatial patterns of forests can persist through severe canopy-removing disturbance, and determine the spatial structure of the succeeding stand. Such patterns constitute a subtle but key legacy effect, promoting structural

  11. The timing of bud burst and its effect on tree growth.

    PubMed

    Rötzer, T; Grote, R; Pretzsch, H

    2004-02-01

    A phenology model for estimating the timings of bud burst--one of the most influential phenological phases for the simulation of tree growth--is presented in this study. The model calculates the timings of the leafing of beech (Fagus sylvatica L.) and oak (Quercus robur L.) and the May shoot of Norway spruce (Picea abies L.) and Scots pine (Pinus sylvestris L.) on the basis of the daily maximum temperature. The data for parameterisation and validation of the model have been taken from 40 climate and 120 phenological stations in southern Germany with time series for temperature and bud burst of up to 30 years. The validation of the phenology module by means of an independent data set showed correlation coefficients for comparisons between observed and simulated values of 54% (beech), 55% (oak), 59% (spruce) and 56% (pine) with mean absolute errors varying from 4.4 days (spruce) to 5.0 days (pine). These results correspond well with the results of other--often more complex--phenology models. After the phenology module had been implemented in the tree-growth model BALANCE, the growth of a mixed forest stand with the former static and the new dynamic timings for the bud burst was simulated. The results of the two simulation runs showed that phenology has to be taken into account when simulating forest growth, particularly in mixed stands.

  12. An analytical method to assess spruce beetle impacts on white spruce resources, Kenai Peninsula, Alaska.

    Treesearch

    Willem W.S. van Hees

    1992-01-01

    Forest inventory data collected in 1987 fTom sample plots established on the Kenai Peninsula were analyzed to provide point-in-time estimates of the trend and current status of a spruce beetle infestation. Ground plots were categorized by stage of infestation. Estimates of numbers of live and dead white spruce trees, cubic-foot volume in those trees, and areal extent...

  13. Factors influencing the spatial and temporal dynamics of engelmann spruce mortality during a spruce beetle outbreak on the Markagunt Plateau, Utah

    Treesearch

    R. Justin DeRose; James N. Long

    2012-01-01

    Host conditions are known to influence spruce beetle population levels, but whether they influence the spatial and temporal patterns of beetle-caused mortality during an outbreak is unknown. Using dendrochronological techniques, we quantified the spatiotemporal dynamics of a modern (late 1980s through the early 2000s) spruce beetle outbreak in Engelmann spruce on the...

  14. Managing white and Lutz spruce stands in south-central Alaska for increased resistance to spruce beetle.

    Treesearch

    J.S. Hard; E.H. Holsten

    1985-01-01

    Thinning is recommended for maintaining vigorous tree growth to minimize losses caused by spruce beetles (Dendroctonus rufipenni Kirby) and windthrow in residual stands of spruce in south-central Alaska. The anatomy of conifer stems, the variation in stem diameter growth, and the variability of tree response to wounding are discussed to explain why...

  15. Validation of early GOES-16 ABI on-orbit geometrical calibration accuracy using SNO method

    NASA Astrophysics Data System (ADS)

    Yu, Fangfang; Shao, Xi; Wu, Xiangqian; Kondratovich, Vladimir; Li, Zhengping

    2017-09-01

    The Advanced Baseline Imager (ABI) onboard the GOES-16 satellite, which was launched on 19 November 2016, is the first next-generation geostationary weather instrument in the west hemisphere. It has 16 spectral solar reflective and emissive bands located in three focal plane modules (FPM): one visible and near infrared (VNIR) FPM, one midwave infrared (MWIR), and one longwave infrared (LWIR) FPM. All the ABI bands are geometeorically calibrated with new techniques of Kalman filtering and Global Positioning System (GPS) to determine the accurate spacecraft attitude and orbit configuration to meet the challenging image navigation and registration (INR) requirements of ABI data. This study is to validate the ABI navigation and band-to-band registration (BBR) accuracies using the spectrally matched pixels of the Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) M-band data and the ABI images from the Simultaneous Nadir Observation (SNO) images. The preliminary results showed that during the ABI post-launch product test (PLPT) period, the ABI BBR errors at the y-direction (along the VIIRS track direction) is smaller than at the x-direction (along the VIIRS scan direction). Variations in the ABI BBR calibration residuals and navigation difference to VIIRS can be observed. Note that ABI is not operational yet and the data is experimental and still under testing. Effort is still ongoing to improve the ABI data quality.

  16. The heterogeneous levels of linkage disequilibrium in white spruce genes and comparative analysis with other conifers.

    PubMed

    Pavy, N; Namroud, M-C; Gagnon, F; Isabel, N; Bousquet, J

    2012-03-01

    In plants, knowledge about linkage disequilibrium (LD) is relevant for the design of efficient single-nucleotide polymorphism arrays in relation to their use in population and association genomics studies. Previous studies of conifer genes have shown LD to decay rapidly within gene limits, but exceptions have been reported. To evaluate the extent of heterogeneity of LD among conifer genes and its potential causes, we examined LD in 105 genes of white spruce (Picea glauca) by sequencing a panel of 48 haploid megagametophytes from natural populations and further compared it with LD in other conifer species. The average pairwise r(2) value was 0.19 (s.d.=0.19), and LD dropped quickly with a half-decay being reached at a distance of 65 nucleotides between sites. However, LD was significantly heterogeneous among genes. A first group of 29 genes had stronger LD (mean r(2)=0.28), and a second group of 38 genes had weaker LD (mean r(2)=0.12). While a strong relationship was found with the recombination rate, there was no obvious relationship between LD and functional classification. The level of nucleotide diversity, which was highly heterogeneous across genes, was also not significantly correlated with LD. A search for selection signatures highlighted significant deviations from the standard neutral model, which could be mostly attributed to recent demographic changes. Little evidence was seen for hitchhiking and clear relationships with LD. When compared among conifer species, on average, levels of LD were similar in genes from white spruce, Norway spruce and Scots pine, whereas loblolly pine and Douglas fir genes exhibited a significantly higher LD.

  17. Vertical profile of branch CO2 efflux in a Norway spruce tree: a case study

    NASA Astrophysics Data System (ADS)

    Acosta, M.; Pavelka, M.

    2012-04-01

    Despite woody-tissue CO2 effluxes having been recognized as an important component of forest carbon budget due to the fraction of assimilates used and the dramatic increase in woody with stand development, there is limited research to determine the CO2 efflux vertical variability of woody-tissue components. For a better understanding and quantification of branch woody-tissue CO2 efflux in forest ecosystems, it is necessary to identify the environmental factors influencing it and the role of the branch distribution within the canopy. The proper assessment of this forest component will improve the knowledge of the ratio between ecosystem respiration and gross primary production at forest ecosystem. In order to achieve this goal, branch CO2 efflux of Norway spruce tree was measured in ten branches at five different whorls during the growing season 2004 (from June till October) in campaigns of 3-4 times per month at the Beskydy Mts., the Czech Republic, using a portable infrared gas analyzer operating as a closed system. Branch woody tissue temperature was measured continuously in ten minutes intervals for each sample position during the whole experiment period. On the basis of relation between CO2 efflux rate and woody tissue temperature a value of Q10 and normalized CO2 efflux rate (E10 - CO2 efflux rate at 10° C) were calculated for each sampled position. Estimated Q10 values ranged from 2.12 to 2.89 and E10 ranged from 0.41 to 1.19 ?molCO2m-2 s-1. Differences in branch CO2 efflux were found between orientations; East side branches presented higher efflux rate than west side branches. The highest branch CO2 efflux rate values were measured in August and the lowest in October, which were connected with woody tissue temperature and ontogenetic processes during these periods. Branch CO2 efflux was significantly and positively correlated with branch position within canopy and woody tissue temperature. Branches from the upper whorls showed higher respiration activity

  18. Identification of PaCOL1 and PaCOL2, two CONSTANS-like genes showing decreased transcript levels preceding short day induced growth cessation in Norway spruce.

    PubMed

    Holefors, Anna; Opseth, Lars; Ree Rosnes, Anne Katrine; Ripel, Linda; Snipen, Lars; Fossdal, Carl Gunnar; Olsen, Jorunn E

    2009-02-01

    In woody plants of the temperate zone short photoperiod (SD) leads to growth cessation. In angiosperms CONSTANS (CO) or CO-like genes play an important role in the photoperiodic control of flowering, tuberisation and shoot growth. To investigate the role of CO-like genes in photoperiodic control of shoot elongation in gymnosperms, PaCOL1 and PaCOL2 were isolated from Norway spruce. PaCOL1 encodes a 3.9kb gene with a predicted protein of 444 amino acids. PaCOL2 encodes a 1.2kb gene with a predicted protein of 385 amino acids. Both genes consist of two exons and have conserved domains found in other CO-like genes; two zinc finger domains, a CCT and a COOH domain. PaCOL1 and PaCOL2 fall into the group 1c clade of the CO-like genes, and are thus distinct from Arabidopsis CO that belongs to group 1a. Transcript levels of both PaCOL-genes appear to be light regulated, an increasing trend was observed upon transition from darkness to light, and a decreasing trend during darkness. The increasing trend at dawn was observed both in needles and shoot tips, whereas the decreasing trend in darkness was most prominent in shoot tips, and limited to the late part of the dark period in needles. The transcript levels of both genes decreased significantly in both tissues under SD prior to growth cessation and bud formation. This might suggest an involvement in photoperiodic control of shoot elongation or might be a consequence of regulation by light.

  19. Norway.

    PubMed

    1992-08-01

    Norway with a territory of 386,000 sq. km or 150,000 sq. miles is slightly larger than New Mexico. In 1991 the population was estimated at 4.3 million with an annual growth rate of .5% and a literacy rate of 100%. The infant mortality rate is 7/1000 live births, and lie expectancy is 73 years for men and 80 years for women. Norway's government is a hereditary constitutional monarchy since independence n 1905. Ethnically, Norwegians are predominantly Germanic, but there are indigenous communities of Sami (Lapps) in the north, and in recent years almost 150,000 immigrants, foreign workers, and asylum-seekers have settled there. Norway's health system includes free hospital care, physicians compensation, cash benefits during illness and pregnancy, and other medical and dental plans. Until the 1981 election, Norway has been governed by Labor Party governments since 1935, except for 3 periods (1963, 1965-71, and 1972-73). Gro Harlem Brundtland is again the prime minister after forming her 3rd government in 10 years. Norway holds national elections in September 1993. Norway's large shipping fleet is modern; metals, pulp and paper products, chemicals, shipbuilding, and fishing are traditional industries, and major oil and gas discoveries in the mid-1970s transformed the economy. High oil prices in the 1983-85 period raised consumer spending, wages, and inflation. Norway is aspiring to restructure its nonoil economy in favor of efficient, nontraditional industry. The prime minister has indicated that Norway may apply for European Community (EC) membership before the end of 1992. Its main trading partners are the EC countries and its Scandinavian neighbors with the US in 5th place.

  20. Norway.

    PubMed

    1987-03-01

    This background note for Norway by the U.S. State Department describes the geography, people, history, government, politics, and foreign relations of this newly oil-rich Scandinavian nation. Norwegians number 4.1 million, growing only at 0.3% per year, of Germanic origin, with 20,000 Laplanders. Infant mortality is 9/1000; life expectancy is 73 and 80 years. The government is a constitutional monarchy, with socialized medicine, education through university and social security. Norway became independent of Sweden in 1905, was a non-belligerent in both world wars, but was occupied by Nazi Germany. Subsequently Norway has required military service and is a member of NATO. Norway is a wealthy developed nation, with a positive foreign trade balance, a per capita income of $14,000, resources of oil, fish, timber, hydroelectric power, ores, and an industrial economy. Norway sends out about $471 million in foreign aid.

  1. S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth

    PubMed Central

    Albertos, Pablo; Romero-Puertas, María C.; Tatematsu, Kiyoshi; Mateos, Isabel; Sánchez-Vicente, Inmaculada; Nambara, Eiji; Lorenzo, Oscar

    2015-01-01

    Plant survival depends on seed germination and progression through post-germinative developmental checkpoints. These processes are controlled by the stress phytohormone abscisic acid (ABA). ABA regulates the basic leucine zipper transcriptional factor ABI5, a central hub of growth repression, while the reactive nitrogen molecule nitric oxide (NO) counteracts ABA during seed germination. However, the molecular mechanisms by which seeds sense more favourable conditions and start germinating have remained elusive. Here we show that ABI5 promotes growth via NO, and that ABI5 accumulation is altered in genetic backgrounds with impaired NO homeostasis. S-nitrosylation of ABI5 at cysteine-153 facilitates its degradation through CULLIN4-based and KEEP ON GOING E3 ligases, and promotes seed germination. Conversely, mutation of ABI5 at cysteine-153 deregulates protein stability and inhibition of seed germination by NO depletion. These findings suggest an inverse molecular link between NO and ABA hormone signalling through distinct posttranslational modifications of ABI5 during early seedling development. PMID:26493030

  2. Lepidoptera associated with western spruce budworm: introduction

    Treesearch

    Robert E. Stevens; V. M. Carolin; George P. Markin

    1984-01-01

    Field workers doing surveys, control operations, and research on western spruce bud worm often encounter other kinds of foliage-feeding larvae, some of which closely resemble western spruce bud worm , Workers must be able to distinguish between the different species and groups.

  3. Aluminum-induced calcium deficiency syndrome in declining red spruce

    Treesearch

    Walter C. Shortle; Kevin T. Smith

    1988-01-01

    Prolonged suppression of cambial growth has apparently caused a decline in radial growth in many mature red spruce, Picea rubens. Surveys indicate that this decline occurs in trees throughout the natural range of red spruce and is independent of elevation, tree size, and age class. In addition, crowns of mature red spruce at high elevations across...

  4. Spruce budworm returns to the northeast

    Treesearch

    Lloyd Irland; William H. McWilliams

    2014-01-01

    Spruce and balsam fir supply a wealth of timber and other benefits across the northern tier of the Northeastern United States. This article is the second of a two-part series that provides an update on spruce and fir for the four Northem Forest states (Maine, New Hampshire, New York, and Vermont) using the latest Forest Inventory and Analysis (FIA) results (2012). Part...

  5. BorealScat: A Tower Experiment for Understanding Temporal Changes in P- and L-Band Backscattering from a Boreal Forest

    NASA Astrophysics Data System (ADS)

    Ulander, Lars M. H.; Soja, Maciej J.; Monteith, Albert R.; Eriksson, Leif E. B.; Fransson, Johan E. S.; Persson, Henrik, J.

    2016-08-01

    This paper describes the tower-based radar BorealScat, which is being developed for polarimetric, tomographic and Doppler measurements at the hemi-boreal forest test site in Remningstorp, Sweden. The facility consists of a 50-m high tower equipped with an antenna array at the top of the tower, a 20-port vector network analyser (VNA), 20 low-loss cables for interconnection, and a calibration loop with a switching network. The first version of BorealScat will perform the full set of measurements in the frequency range 0.4 - 1.4 GHz, i.e. P-band and L-band. The tower is currently under construction at a forest stand dominated by Norway spruce (Picea abies (L.) Karst.). The mature stand has an above-ground dry biomass of 300 tons/ha. Data collections are planned to commence in autumn 2016.

  6. Expression of a gymnosperm PIN homologous gene correlates with auxin immunolocalization pattern at cotyledon formation and in demarcation of the procambium during Picea abies somatic embryo development and in seedling tissues.

    PubMed

    Palovaara, Joakim; Hallberg, Henrik; Stasolla, Claudio; Luit, Bert; Hakman, Inger

    2010-04-01

    In seed plants, the body organization is established during embryogenesis and is uniform across gymnosperms and angiosperms, despite differences during early embryogeny. Evidence from angiosperms implicates the plant hormone auxin and its polar transport, mainly established by the PIN family of auxin efflux transporters, in the patterning of embryos. Here, PaPIN1 from Norway spruce (Picea abies [L.] Karst.), a gene widely expressed in conifer tissues and organs, was characterized and its expression and localization patterns were determined with reverse transcription polymerase chain reaction and in situ hybridization during somatic embryo development and in seedlings. PaPIN1 shares the predicted structure of other PIN proteins, but its central hydrophilic loop is longer than most PINs. In phylogenetic analyses, PaPIN1 clusters with Arabidopsis thaliana (L.) Heynh. PIN3, PIN4 and PIN7, but its expression pattern also suggests similarity to PIN1. The PaPIN1 expression signal was high in the protoderm of pre-cotyledonary embryos, but not if embryos were pre-treated with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). This, together with a high auxin immunolocalization signal in this cell layer, suggests a role of PaPIN1 during cotyledon formation. At later stages, high PaPIN1 expression was observed in differentiating procambium, running from the tip of incipient cotyledons down through the embryo axis and to the root apical meristem (RAM), although the mode of RAM specification in conifer embryos differs from that of most angiosperms. Also, the PaPIN1 in situ signal was high in seedling root tips including root cap columella cells. The results thus suggest that PaPIN1 provides an ancient function associated with auxin transport and embryo pattern formation prior to the separation of angiosperms and gymnosperms, in spite of some morphological differences.

  7. Growth of white pine and red spruce trees after pruning

    Treesearch

    Grant Davis

    1958-01-01

    Are pines the only coniferous trees suitable for pruning in the Northeast, or is it feasible to prune red spruce as well? Although red spruce is an important lumber species in the spruce-fir region, it is seldom pruned because of its relatively slow rate of growth.

  8. Drought as a modifier of interaction between adult beech and spruce - impacts on tree water use, C budgets and biotic interactions above- and belowground

    NASA Astrophysics Data System (ADS)

    Grams, Thorsten

    2017-04-01

    Understanding biotic interactions among tree species with their microbial associates under drought will be crucial for silviculture in meeting ecological challenges of the future. This contribution gives an overview on a project integrating a throughfall-exclusion experiment (TEE) on adult trees with a natural precipitation gradient (PGR) in central European forests. Focus is on drought affecting species interaction above and belowground, including associated ectomycorrhizal (ECM) communities. Study objects are pure and mixed forests dominated by adult European beech and Norway spruce trees (c. 70-years old). At the throughfall-exclusion experiment (TEE), trees are readily accessible via scaffolding and canopy crane (Kranzberg Forest, southern Germany). Effects of experimentally induced, repeated summer drought are assessed with roughly 100 trees assigned to a total of 12 plots (Kranzberg forest ROOF experiment, kroof.wzw.tum.de). The summer drought treatment started in 2014 and was repeated in 2015 and 2106. The focus on species interaction is intensified by a parallel study along a natural precipitation gradient with plot triplets of monocultures and mixed cultures of European beech and Norway spruce at each of the five study sites. Complementary resource use, effects of competitive vs. facilitation and related changes in ECM communities are exemplified for the two tree species of contrasting foliage (i.e. deciduous vs. evergreen) and stomatal sensitivity to drought (i.e. an-isohydric vs. isohydric behavior). At the TEE site, precipitation throughfall was completely excluded from early spring to late fall (i.e. March to November), resulting in pre-dawn leaf water potentials of both beech and spruce as low as -2.5 MPa. Despite significant reductions in growth and rate of photosynthesis by up to 80% under drought, NSC budget of trees was hardly affected. Moreover, phloem functionality, tested as phloem transport velocity through 13C-labeling of recent

  9. The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development.

    PubMed

    Dekkers, Bas J W; He, Hanzi; Hanson, Johannes; Willems, Leo A J; Jamar, Diaan C L; Cueff, Gwendal; Rajjou, Loïc; Hilhorst, Henk W M; Bentsink, Leónie

    2016-02-01

    The seed expressed gene DELAY OF GERMINATION (DOG) 1 is absolutely required for the induction of dormancy. Next to a non-dormant phenotype, the dog1-1 mutant is also characterized by a reduced seed longevity suggesting that DOG1 may affect additional seed processes as well. This aspect however, has been hardly studied and is poorly understood. To uncover additional roles of DOG1 in seeds we performed a detailed analysis of the dog1 mutant using both transcriptomics and metabolomics to investigate the molecular consequences of a dysfunctional DOG1 gene. Further, we used a genetic approach taking advantage of the weak aba insensitive (abi) 3-1 allele as a sensitized genetic background in a cross with dog1-1. DOG1 affects the expression of hundreds of genes including LATE EMBRYOGENESIS ABUNDANT and HEAT SHOCK PROTEIN genes which are affected by DOG1 partly via control of ABI5 expression. Furthermore, the content of a subset of primary metabolites, which normally accumulate during seed maturation, was found to be affected in the dog1-1 mutant. Surprisingly, the abi3-1 dog1-1 double mutant produced green seeds which are highly ABA insensitive, phenocopying severe abi3 mutants, indicating that dog1-1 acts as an enhancer of the weak abi3-1 allele and thus revealing a genetic interaction between both genes. Analysis of the dog1 and dog1 abi3 mutants revealed additional seed phenotypes and therefore we hypothesize that DOG1 function is not limited to dormancy but that it is required for multiple aspects of seed maturation, in part by interfering with ABA signalling components. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  10. Nesting ecology of boreal forest birds following a massive outbreak of spruce beetles

    USGS Publications Warehouse

    Matsuoka, S.M.; Handel, C.M.

    2007-01-01

    We studied breeding dark-eyed juncos (Junco hyemalis), yellow-rumped warblers (Dendroica coronata), and spruce-nesting birds from 1997 to 1998 among forests with different levels of spruce (Picea spp.) mortality following an outbreak of spruce beetles (Dendroctonus rufipennis) in Alaska, USA. We identified species using live and beetle-killed spruce for nest sites and monitored nests to determine how the outbreak influenced avian habitat selection and reproduction. We tested predictions that 1) nesting success of ground-nesting juncos would increase with spruce mortality due to proliferation of understory vegetation available to conceal nests from predators, 2) nesting success of canopy-nesting warblers would decrease with spruce mortality due to fewer live spruce in which to conceal nests, and 3) both species would alter nest-site selection in response to disturbance. Juncos did not benefit from changes in understory vegetation; nesting success in highly disturbed stands (46%) was comparable to that in undisturbed habitats throughout their range. In stands with low spruce mortality, nesting success of juncos was low (5%) and corresponded with high densities of red squirrels (Tamiasciurus hudsonicus). Yellow-rumped warblers nested exclusively in spruce, but success did not vary with spruce mortality. As disturbance increased, nesting warblers switched from selecting forest patches with high densities of live white spruce (Picea glauca) to patches with beetle-killed spruce. Warblers also placed nests in large-diameter live or beetle-killed spruce, depending on which was more abundant in the stand, with no differences in nesting success. Five of the 12 other species of spruce-nesting birds also used beetle-killed spruce as nest sites. Because beetle-killed spruce can remain standing for >50 years, even highly disturbed stands provide an important breeding resource for boreal forest birds. We recommend that boreal forest managers preserve uncut blocks of infested

  11. Wood species affect the degradation of crude oil in beach sand.

    PubMed

    Jandl, Gerald; Rodríguez Arranz, Alberto; Baum, Christel; Leinweber, Peter

    2015-01-01

    The addition of wood chips as a co-substrate can promote the degradation of oil in soil. Therefore, in the present study, the tree species-specific impact of wood chips of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and Western balsam poplar (Populus trichocarpa L.) on the degradation of crude oil was tested in beach sand in a 4-week incubation experiment. The CO2-C release increased in the order of control without wood chips < +spruce < +pine < +poplar. Initial and final hydrocarbon concentrations (C10 to C40), as indicators for the oil degradation, were determined with gas chromatography-flame ionization detection (GC-FID). The degradation increased for the light fraction (C10 to C22), the heavy fraction (C23 to C40) as well as the whole range (C10 to C40) in the order of control without wood chips (f(degrad.) = 23% vs. 0% vs. 12%) < +poplar (f(degrad.) = 49% vs. 19% vs. 36%) < +spruce (f(degrad.) = 55% vs. 34% vs. 46%) < +pine (f(degrad.) = 60% vs. 44% vs. 53%), whereas the heavy fraction was less degraded in comparison to the light fraction. It can be concluded, that the tree species-specific wood quality is a significant control of the impact on the degradation of hydrocarbons, and pine wood chips might be promising, possibly caused by their lower decomposability and lower substrate replacement than the other wood species.

  12. Trinidad Reservoir Salvage Archaeology, 1972.

    DTIC Science & Technology

    1974-09-30

    Components:. Acer glabrum, Alnus tennuifolia, BlepharoneUron tricholepis, Ceano- thus fendlerif Chamabati aria Millef aim, Festuca arizonica , Holodiscus...southern part), !j. occi- dentalis, Orvzopsis hymeihiodes, Purshia tridentata, Quercus emorvi, _q- gambelii, _q. grisea, _q. undulata, Sporobolus...evergreen trees Dominants: Corkbark fir (Abies lasiocarpa var. arizonica ) Engelmann spruce (Picea engel- mannii) Other Components: Abies lasiocarpa, Acer

  13. Role of the adapter protein Abi1 in actin-associated signaling and smooth muscle contraction.

    PubMed

    Wang, Tao; Cleary, Rachel A; Wang, Ruping; Tang, Dale D

    2013-07-12

    Actin filament polymerization plays a critical role in the regulation of smooth muscle contraction. However, our knowledge regarding modulation of the actin cytoskeleton in smooth muscle just begins to accumulate. In this study, stimulation with acetylcholine (ACh) induced an increase in the association of the adapter protein c-Abl interactor 1 (Abi1) with neuronal Wiskott-Aldrich syndrome protein (N-WASP) (an actin-regulatory protein) in smooth muscle cells/tissues. Furthermore, contractile stimulation activated N-WASP in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer efficiency of an N-WASP sensor. Abi1 knockdown by lentivirus-mediated RNAi inhibited N-WASP activation, actin polymerization, and contraction in smooth muscle. However, Abi1 silencing did not affect myosin regulatory light chain phosphorylation at Ser-19 in smooth muscle. In addition, c-Abl tyrosine kinase and Crk-associated substrate (CAS) have been shown to regulate smooth muscle contraction. The interaction of Abi1 with c-Abl and CAS has not been investigated. Here, contractile activation induced formation of a multiprotein complex including c-Abl, CAS, and Abi1. Knockdown of c-Abl and CAS attenuated the activation of Abi1 during contractile activation. More importantly, Abi1 knockdown inhibited c-Abl phosphorylation at Tyr-412 and the interaction of c-Abl with CAS. These results suggest that Abi1 is an important component of the cellular process that regulates N-WASP activation, actin dynamics, and contraction in smooth muscle. Abi1 is activated by the c-Abl-CAS pathway, and Abi1 reciprocally controls the activation of its upstream regulator c-Abl.

  14. Role of the Adapter Protein Abi1 in Actin-associated Signaling and Smooth Muscle Contraction*

    PubMed Central

    Wang, Tao; Cleary, Rachel A.; Wang, Ruping; Tang, Dale D.

    2013-01-01

    Actin filament polymerization plays a critical role in the regulation of smooth muscle contraction. However, our knowledge regarding modulation of the actin cytoskeleton in smooth muscle just begins to accumulate. In this study, stimulation with acetylcholine (ACh) induced an increase in the association of the adapter protein c-Abl interactor 1 (Abi1) with neuronal Wiskott-Aldrich syndrome protein (N-WASP) (an actin-regulatory protein) in smooth muscle cells/tissues. Furthermore, contractile stimulation activated N-WASP in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer efficiency of an N-WASP sensor. Abi1 knockdown by lentivirus-mediated RNAi inhibited N-WASP activation, actin polymerization, and contraction in smooth muscle. However, Abi1 silencing did not affect myosin regulatory light chain phosphorylation at Ser-19 in smooth muscle. In addition, c-Abl tyrosine kinase and Crk-associated substrate (CAS) have been shown to regulate smooth muscle contraction. The interaction of Abi1 with c-Abl and CAS has not been investigated. Here, contractile activation induced formation of a multiprotein complex including c-Abl, CAS, and Abi1. Knockdown of c-Abl and CAS attenuated the activation of Abi1 during contractile activation. More importantly, Abi1 knockdown inhibited c-Abl phosphorylation at Tyr-412 and the interaction of c-Abl with CAS. These results suggest that Abi1 is an important component of the cellular process that regulates N-WASP activation, actin dynamics, and contraction in smooth muscle. Abi1 is activated by the c-Abl-CAS pathway, and Abi1 reciprocally controls the activation of its upstream regulator c-Abl. PMID:23740246

  15. Foliage Consumption by 6th-Instar Spruce Budworm Larvae, Choristoneura fumiferana (Clem.) Feeding on Balsam Fir and White Spruce

    Treesearch

    A.W.  Thomas

    1983-01-01

    Female larvae ate about 1.5 times as much foliage as male larvae. Larvae ate significantly less old foliage than current foliage. Balsam fir current foliage was eaten in greater quantitities than any other foliage; white spruce current and balsam fir old were eaten to the same extent; very little old white spruce was eaten.

  16. Students' Attitudes toward ABI/INFORM on CD-ROM: A Factor Analysis.

    ERIC Educational Resources Information Center

    Wang, Vicky; Lau, Shuk-fong

    Two years after the introduction of CD-ROM bibliographic database searching in the Memphis State University libraries (Tennessee), a survey was conducted to examine students' attitudes toward the business database, ABI/INFORM. ABI/INFORM contains indexes and abstracts of articles from over 800 journals on management, accounting, banking, human…

  17. Digital soil classification and elemental mapping using imaging Vis-NIR spectroscopy: How to explicitly quantify stagnic properties of a Luvisol under Norway spruce

    NASA Astrophysics Data System (ADS)

    Kriegs, Stefanie; Buddenbaum, Henning; Rogge, Derek; Steffens, Markus

    2015-04-01

    Laboratory imaging Vis-NIR spectroscopy of soil profiles is a novel technique in soil science that can determine quantity and quality of various chemical soil properties with a hitherto unreached spatial resolution in undisturbed soil profiles. We have applied this technique to soil cores in order to get quantitative proof of redoximorphic processes under two different tree species and to proof tree-soil interactions at microscale. Due to the imaging capabilities of Vis-NIR spectroscopy a spatially explicit understanding of soil processes and properties can be achieved. Spatial heterogeneity of the soil profile can be taken into account. We took six 30 cm long rectangular soil columns of adjacent Luvisols derived from quaternary aeolian sediments (Loess) in a forest soil near Freising/Bavaria using stainless steel boxes (100×100×300 mm). Three profiles were sampled under Norway spruce and three under European beech. A hyperspectral camera (VNIR, 400-1000 nm in 160 spectral bands) with spatial resolution of 63×63 µm² per pixel was used for data acquisition. Reference samples were taken at representative spots and analysed for organic carbon (OC) quantity and quality with a CN elemental analyser and for iron oxides (Fe) content using dithionite extraction followed by ICP-OES measurement. We compared two supervised classification algorithms, Spectral Angle Mapper and Maximum Likelihood, using different sets of training areas and spectral libraries. As established in chemometrics we used multivariate analysis such as partial least-squares regression (PLSR) in addition to multivariate adaptive regression splines (MARS) to correlate chemical data with Vis-NIR spectra. As a result elemental mapping of Fe and OC within the soil core at high spatial resolution has been achieved. The regression model was validated by a new set of reference samples for chemical analysis. Digital soil classification easily visualizes soil properties within the soil profiles. By combining

  18. Modelling soil temperature and moisture and corresponding seasonality of photosynthesis and transpiration in a boreal spruce ecosystem

    NASA Astrophysics Data System (ADS)

    Wu, S. H.; Jansson, P.-E.

    2013-02-01

    Recovery of photosynthesis and transpiration is strongly restricted by low temperatures in air and/or soil during the transition period from winter to spring in boreal zones. The extent to which air temperature (Ta) and soil temperature (Ts) influence the seasonality of photosynthesis and transpiration of a boreal spruce ecosystem was investigated using a process-based ecosystem model (CoupModel) together with eddy covariance (EC) data from one eddy flux tower and nearby soil measurements at Knottåsen, Sweden. A Monte Carlo-based uncertainty method (GLUE) provided prior and posterior distributions of simulations representing a wide range of soil conditions and performance indicators. The simulated results showed sufficient flexibility to predict the measured cold and warm Ts in the moist and dry plots around the eddy flux tower. Moreover, the model presented a general ability to describe both biotic and abiotic processes for the Norway spruce stand. The dynamics of sensible heat fluxes were well described by the corresponding latent heat fluxes and net ecosystem exchange of CO2. The parameter ranges obtained are probably valid to represent regional characteristics of boreal conifer forests, but were not easy to constrain to a smaller range than that produced by the assumed prior distributions. Finally, neglecting the soil temperature response function resulted in fewer behavioural models and probably more compensatory errors in other response functions for regulating the seasonality of ecosystem fluxes.

  19. Modelling soil temperature and moisture and corresponding seasonality of photosynthesis and transpiration in a boreal spruce ecosystem

    NASA Astrophysics Data System (ADS)

    Wu, S. H.; Jansson, P.-E.

    2012-05-01

    Recovery of photosynthesis and transpiration is strongly restricted by low temperatures in air and/or soil during the transition period from winter to spring in boreal zones. The extent to which air temperature (Ta) and soil temperature (Ts) influence the seasonality of photosynthesis and transpiration of a boreal spruce ecosystem was investigated using a process-based ecosystem model (CoupModel) together with eddy covariance (EC) data from one eddy flux tower and nearby soil measurements at Knottåsen, Sweden. A Monte Carlo based uncertainty method (GLUE) provided prior and posterior distributions of simulations representing a wide range of soil conditions and performance indicators. The simulated results showed sufficient flexibility to predict the measured cold and warm Ts in the moist and dry plots around the eddy flux tower. Moreover, the model presented a general ability to describe both biotic and abiotic processes for the Norway spruce stand. The dynamics of sensible heat fluxes were well described the corresponding latent heat fluxes and net ecosystem exchange of CO2. The parameter ranges obtained are probably valid to represent regional characteristics of boreal conifer forests, but were not easy to constrain to a smaller range than that produced by the assumed prior distributions. Finally, neglecting the soil temperature response function resulted in fewer behavioural models and probably more compensatory errors in other response functions for regulating the seasonality of ecosystem fluxes.

  20. Spruce aphid in high elevation habitats in the Southwest U.S.

    Treesearch

    Ann M. Lynch

    2003-01-01

    Spruce aphid, Elatobium abietinum (Walker) (Homoptera: Aphididae), is a new invasive pest in the interior Southwestern United States. This insect is causing extensive and severe damage on dormant Engelmann spruce, Picea engelmannii Parry, and Colorado blue spruce, P. pungens Engelm., in high elevation forests in...

  1. Effects of forest management legacies on spruce budworm (Choristoneura fumiferana) outbreaks

    Treesearch

    Louis-Etienne Robert; Daniel Kneeshaw; Brian R. Sturtevant

    2012-01-01

    The "silvicultural hypothesis" of spruce budworm (Choristoneura fumiferana Clem.) dynamics postulates that increasing severity of spruce budworm outbreaks over the last century resulted from forest conditions created by past management activities. Yet, definitive tests of the hypothesis remain elusive. We examined spruce budworm outbreak...

  2. Phloem Girdling of Norway Spruce Alters Quantity and Quality of Wood Formation in Roots Particularly Under Drought

    PubMed Central

    Rainer-Lethaus, Gina; Oberhuber, Walter

    2018-01-01

    Carbon (C) availability plays an essential role in tree growth and wood formation. We evaluated the hypothesis that a decrease in C availability (i) triggers mobilization of C reserves in the coarse roots of Picea abies to maintain growth and (ii) causes modification of wood structure notably under drought. The 6-year-old saplings were subjected to two levels of soil moisture (watered versus drought conditions) and root C status was manipulated by physically blocking phloem transport in the stem at three girdling dates (GDs). Stem girdling was done before the onset of bud break [day of the year (doy) 77], during vigorous aboveground shoot and radial stem growth (GD doy 138), and after cessation of shoot growth (GD doy 190). The effect of blockage of C transport on root growth, root phenology, and wood anatomical traits [cell lumen diameter (CLD) and cell wall thickness (CWT)] in earlywood (EW) and latewood (LW) was determined. To evaluate changes in belowground C status caused by girdling, non-structural carbohydrates (soluble sugars and starch) in coarse roots were determined at the time of girdling and after the growing season. Although fine root mass significantly decreased in response to blockage of phloem C transport, the phenology of root elongation growth was not affected. Surprisingly, radial root growth and CLD of EW tracheids in coarse roots were strikingly increased in drought-stressed trees, when girdling occurred before bud break or during aboveground stem growth. In watered trees, the growth response to girdling was less distinct, but the CWT of EW significantly increased. Starch reserves in the roots of girdled trees significantly decreased in both soil moisture treatments and at all GDs. We conclude that (i) radial growth and wood development in coarse roots of P. abies saplings are not only dependent on current photosynthates, and (ii) blockage of phloem transport induces physiological changes that outweigh drought effects imposed on root cambial

  3. Soil attributes and microclimate are important drivers of initial deadwood decay in sub-alpine Norway spruce forests.

    PubMed

    Fravolini, Giulia; Egli, Markus; Derungs, Curdin; Cherubini, Paolo; Ascher-Jenull, Judith; Gómez-Brandón, María; Bardelli, Tommaso; Tognetti, Roberto; Lombardi, Fabio; Marchetti, Marco

    2016-11-01

    Deadwood is known to significantly contribute to global terrestrial carbon stocks and carbon cycling, but its decay dynamics are still not thoroughly understood. Although the chemistry of deadwood has been studied as a function of decay stage in temperate to subalpine environments, it has generally not been related to time. We therefore studied the decay (mass of deadwood, cellulose and lignin) of equal-sized blocks of Picea abies wood in soil-mesocosms over two years in the Italian Alps. The 8 sites selected were along an altitudinal sequence, reflecting different climate zones. In addition, the effect of exposure (north- and south-facing slopes) was taken into account. The decay dynamics of the mass of deadwood, cellulose and lignin were related to soil parameters (pH, soil texture, moisture, temperature) and climatic data. The decay rate constants of Picea abies deadwood were low (on average between 0.039 and 0.040y(-1)) and of lignin close to zero (or not detectable), while cellulose reacted much faster with average decay rate constants between 0.110 and 0.117y(-1). Our field experiments showed that local scale factors, such as soil parameters and topographic properties, influenced the decay process: higher soil moisture and clay content along with a lower pH seemed to accelerate wood decay. Interestingly, air temperature negatively correlated with decay rates or positively with the amount of wood components on south-facing sites. It exerted its influence rather on moisture availability, i.e. the lower the temperature the higher the moisture availability. Topographic features were also relevant with generally slower decay processes on south-facing sites than on north-facing sites owing to the drier conditions, the higher pH and the lower weathering state of the soils (less clay minerals). This study highlights the importance of a multifactorial consideration of edaphic parameters to unravel the complex dynamics of initial wood decay. Copyright © 2016 Elsevier

  4. SPRUCE experiment data infrastructure

    NASA Astrophysics Data System (ADS)

    Krassovski, M.; Hanson, P. J.; Boden, T.; Riggs, J.; Nettles, W. R.; Hook, L. A.

    2013-12-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL), USA has provided scientific data management support for the US Department of Energy and international climate change science since 1982. Among the many data activities CDIAC performs are design and implementation of the data systems. One current example is the data system and network for SPRUCE experiment. The SPRUCE experiment (http://mnspruce.ornl.gov) is the primary component of the Terrestrial Ecosystem Science Scientific Focus Area of ORNL's Climate Change Program, focused on terrestrial ecosystems and the mechanisms that underlie their responses to climatic change. The experimental work is to be conducted in a bog forest in northern Minnesota, 40 km north of Grand Rapids, in the USDA Forest Service Marcell Experimental Forest (MEF). The site is located at the southern margin of the boreal peatland forest. Experimental work in the 8.1-ha S1 bog will be a climate change manipulation focusing on the combined responses to multiple levels of warming at ambient or elevated CO2 (eCO2) levels. The experiment provides a platform for testing mechanisms controlling the vulnerability of organisms, biogeochemical processes and ecosystems to climatic change (e.g., thresholds for organism decline or mortality, limitations to regeneration, biogeochemical limitations to productivity, the cycling and release of CO2 and CH4 to the atmosphere). The manipulation will evaluate the response of the existing biological communities to a range of warming levels from ambient to +9°C, provided via large, modified open-top chambers. The ambient and +9°C warming treatments will also be conducted at eCO2 (in the range of 800 to 900 ppm). Both direct and indirect effects of these experimental perturbations will be analyzed to develop and refine models needed for full Earth system analyses. SPRUCE provides wide range continuous and discrete measurements. To successfully manage SPRUCE data flow

  5. Radial growth rate and susceptibility of Picea rubens Sarg. to Tetropium fuscum (Fabr.)

    Treesearch

    K. O' Leary; J. E. Hurley; W. Mackay; J. Sweeney

    2003-01-01

    The brown spruce longhorn beetle, Tetropium fuscum (Fabr.) (Coleoptera: Cerambycidae) recently became established in Halifax, Nova Scotia, Canada, where it is infesting and killing apparently healthy red spruce, Picea rubens Sarg. In its native range, T. fuscum is a secondary pest of Norway spruce, Picea...

  6. Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination.

    PubMed

    Bi, Chao; Ma, Yu; Wu, Zhen; Yu, Yong-Tao; Liang, Shan; Lu, Kai; Wang, Xiao-Fang

    2017-05-01

    It has been known that ABA INSENSITIVE 5 (ABI5) plays a vital role in regulating seed germination. In the present study, we showed that inhibition of the catalase activity with 3-amino-1,2,4-triazole (3-AT) inhibits seed germination of Col-0, abi5 mutants and ABI5-overexpression transgenic lines. Compared with Col-0, the seeds of abi5 mutants showed more sensitive to 3-AT during seed germination, while the seeds of ABI5-overexpression transgenic lines showed more insensitive. H 2 O 2 showed the same effect on seed germination of Col-0, abi5 mutants and ABI5-overexpression transgenic lines as 3-AT. These results suggest that ROS is involved in the seed germination mediated by ABI5. Further, we observed that T-DNA insertion mutants of the three catalase members in Arabidopsis displayed 3-AT-insensitive or -hypersensitive phenotypes during seed germination, suggesting that these catalase members regulate ROS homeostasis in a highly complex way. ABI5 affects reactive oxygen species (ROS) homeostasis by affecting CATALASE expression and catalase activity. Furthermore, we showed that ABI5 directly binds to the CAT1 promoter and activates CAT1 expression. Genetic evidence supports the idea that CAT1 functions downstream of ABI5 in ROS signaling during seed germination. RNA-sequencing analysis indicates that the transcription of the genes involved in ROS metabolic process or genes responsive to ROS stress is impaired in abi5-1 seeds. Additionally, expression changes in some genes correlative to seed germination were showed due to the change in ABI5 expression under 3-AT treatment. Together, all the findings suggest that ABI5 regulates seed germination at least partly by affecting ROS homeostasis.

  7. ABI3, a component of the WAVE2 complex, is potentially regulated by PI3K/AKT pathway

    PubMed Central

    Moraes, Lais; Zanchin, Nilson I.T.; Cerutti, Janete M.

    2017-01-01

    We previously reported that ABI3 expression is lost in follicular thyroid carcinomas and its restoration significantly inhibited cell growth, invasiveness, migration, and reduced tumor growth in vivo. The mechanistic basis by which ABI3 exerts its tumor suppressive effects is not fully understood. In this study, we show that ABI3 is a phosphoprotein. Using proteomic array analysis, we showed that ABI3 modulated distinct cancer-related pathways in thyroid cancer cells. The KEA analysis found that PI3K substrates were enriched and forced expression of ABI3 markedly decreased the phosphorylation of AKT and the downstream-targeted protein pGSK3β. We next used immunoprecipitation combined with mass spectrometry to identify ABI3-interacting proteins that may be involved in modulating/integrating signaling pathways. We identified 37 ABI3 partners, including several components of the canonical WAVE regulatory complex (WRC) such as WAVE2/CYF1P1/NAP1, suggesting that ABI3 function might be regulated through WRC. Both, pharmacological inhibition of the PI3K/AKT pathway and mutation at residue S342 of ABI3, which is predicted to be phosphorylated by AKT, provided evidences that the non-phosphorylated form of ABI3 is preferentially present in the WRC protein complex. Collectively, our findings suggest that ABI3 might be a downstream mediator of the PI3K/AKT pathway that might disrupt WRC via ABI3 phosphorylation. PMID:28978070

  8. ABI3, a component of the WAVE2 complex, is potentially regulated by PI3K/AKT pathway.

    PubMed

    Moraes, Lais; Zanchin, Nilson I T; Cerutti, Janete M

    2017-09-15

    We previously reported that ABI3 expression is lost in follicular thyroid carcinomas and its restoration significantly inhibited cell growth, invasiveness, migration, and reduced tumor growth in vivo . The mechanistic basis by which ABI3 exerts its tumor suppressive effects is not fully understood. In this study, we show that ABI3 is a phosphoprotein. Using proteomic array analysis, we showed that ABI3 modulated distinct cancer-related pathways in thyroid cancer cells. The KEA analysis found that PI3K substrates were enriched and forced expression of ABI3 markedly decreased the phosphorylation of AKT and the downstream-targeted protein pGSK3β. We next used immunoprecipitation combined with mass spectrometry to identify ABI3-interacting proteins that may be involved in modulating/integrating signaling pathways. We identified 37 ABI3 partners, including several components of the canonical WAVE regulatory complex (WRC) such as WAVE2/CYF1P1/NAP1, suggesting that ABI3 function might be regulated through WRC. Both, pharmacological inhibition of the PI3K/AKT pathway and mutation at residue S342 of ABI3, which is predicted to be phosphorylated by AKT, provided evidences that the non-phosphorylated form of ABI3 is preferentially present in the WRC protein complex. Collectively, our findings suggest that ABI3 might be a downstream mediator of the PI3K/AKT pathway that might disrupt WRC via ABI3 phosphorylation.

  9. Chalk point cooling tower project: effects of simulated saline cooling tower drift on woody species. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, B.A.

    1977-07-01

    Cooling towers of power plants are used to dissipate waste heat into the atmosphere. If saline water is used for cooling, a saline aerosol known as drift is released into the atmosphere. Drift effects on vegetation are not well known. To simulate drift for a field study, cooling tower basin water was sprayed thirty separate times during a 46-day period in 1975 on Virginia pine (Pinus virginiana), flowering dogwood (Cornus florida), tulip tree (Liriodendron tulipfera), and California privet (Ligustrum ovalifolium), Norway spruce (Picea abies), and white ash (Fraxinus americana) were added in 1976 and all trees were sprayed 43 timesmore » during a 59-day period. Only dogwood leaves showed significant injury. Absence of injury on other species was probably due to the ability of their leaves to exclude, or reduce absorption of, toxic concentrations of the ions supplied.« less

  10. Status of the Southern Carpathian forests in the long-term ecological research network.

    PubMed

    Badea, Ovidiu; Bytnerowicz, Andrzej; Silaghi, Diana; Neagu, Stefan; Barbu, Ion; Iacoban, Carmen; Iacob, Corneliu; Guiman, Gheorghe; Preda, Elena; Seceleanu, Ioan; Oneata, Marian; Dumitru, Ion; Huber, Viorela; Iuncu, Horia; Dinca, Lucian; Leca, Stefan; Taut, Ioan

    2012-12-01

    Air pollution, bulk precipitation, throughfall, soil condition, foliar nutrients, as well as forest health and growth were studied in 2006-2009 in a long-term ecological research (LTER) network in the Bucegi Mountains, Romania. Ozone (O(3)) was high indicating a potential for phytotoxicity. Ammonia (NH(3)) concentrations rose to levels that could contribute to deposition of nutritional nitrogen (N) and could affect biodiversity changes. Higher that 50% contribution of acidic rain (pH < 5.5) contributed to increased acidity of forest soils. Foliar N concentrations for Norway spruce (Picea abies), Silver fir (Abies alba), Scots pine (Pinus sylvestris), and European beech (Fagus sylvatica) were normal, phosphorus (P) was high, while those of potassium (K), magnesium (Mg), and especially of manganese (Mn) were significantly below the typical European or Carpathian region levels. The observed nutritional imbalance could have negative effects on forest trees. Health of forests was moderately affected, with damaged trees (crown defoliation >25%) higher than 30%. The observed crown damage was accompanied by the annual volume losses for the entire research forest area up to 25.4%. High diversity and evenness specific to the stand type's structures and local climate conditions were observed within the herbaceous layer, indicating that biodiversity of the vascular plant communities was not compromised.

  11. Degradability of dissolved soil organic carbon and nitrogen in relation to tree species.

    PubMed

    Kiikkilä, Oili; Kitunen, Veikko; Smolander, Aino

    2005-06-01

    The degradability and chemical characteristics of water-extractable dissolved organic carbon (DOC) and nitrogen (DON) from the humus layer of silver birch (Betula pendula Roth), Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) stands were compared in short-term incubation of soil solutions. For all extracts the degradation of DOC and DON was low (12-17% loss) and increased in the order: birch, spruce and pine. In the humus layer under pine a relatively larger pool of rapidly degrading dissolved soil organic matter (DOM) was indicated by the [3H]thymidine incorporation technique, which measures the availability of DOM to bacteria. The degradation of DOC was explained by a decrease in the hydrophilic fraction. For DON, however, both the hydrophilic and hydrophobic fractions tended to decrease during incubation. No major differences in concentrations of hydrophilic and hydrophobic fractions were detected between tree species. Molecular size distribution of DOC and DON, however, revealed slight initial differences between birch and conifers as well as a change in birch extract during incubation. The depletion of very rapidly degrading fractions (e.g., root exudates and compounds from the litter) may explain the low degradability of DOM in the humus layer under birch.

  12. Preliminary GOES-R ABI navigation and registration assessment results

    NASA Astrophysics Data System (ADS)

    Tan, B.; Dellomo, J.; Wolfe, R. E.; Reth, A. D.

    2017-12-01

    The US Geostationary Operational Environmental Satellite - R Series (GOES-R) was launched on November 19, 2016, and was designated GOESR-16 upon reaching geostationary orbit ten days later. The Advanced Baseline Imager (ABI) is the primary instrument on the GOES-R series for imaging Earth's surface and atmosphere to aid in weather prediction and climate monitoring. We developed algorithms and software for independent verification of the ABI Image Navigation and Registration (INR). Since late January 2017, four INR metrics have been continuously generated to monitor the ABI INR performance: navigation (NAV) error, channel-to-channel registration (CCR) error, frame-to-frame registration (FFR) error, and within-frame registration (WIFR) error. In this paper, we will describe the fundamental algorithm used for the image registration and briefly discuss the processing flow of INR Performance Assessment Tool Set (IPATS) developed for ABI INR. The assessment of the accuracy shows that IPATS measurements error is about 1/20 of the size of a pixel. Then the GOES-16 NAV assessments results, the primary metric, from January to August 2017, will be presented. The INR has improved over time as post-launch tests were performed and corrections were applied. The mean NAV error of the visible and near infrared (VNIR) channels dropped from 20 μrad in January to around 5 μrad (+/-4 μrad, 1 σ) in June, while the mean NAV error of long wave infrared (LWIR) channels dropped from around 70 μrad in January to around 5 μrad (+/-15 μrad, 1 σ) in June. A full global ABI image is composed with 22 east-west direction swaths. The swath-wise NAV error analysis shows that there was some variation in the mean swath-wise NAV errors. The variations are about as much as 20% of the scene NAV mean errors. As expected, the swaths over the tropical area have far fewer valid assessments (matchups) than those in mid-latitude region due to cloud coverage. It was also found that there was a rotation

  13. An ABI3-interactor of conifers responds to multiple hormones.

    PubMed

    Zeng, Ying; Zhao, Tiehan; Kermode, Allison

    2013-11-01

    CnAIP2 (Callitropsis nootkatensis ABI3-Interacting Protein 2) was previously identified as a protein that interacts with the yellow-cedar ABI3 protein. CnAIP2 plays important roles during several key transitions of the plant lifecycle and acts as a global regulator with functions opposite to those of ABI3 proteins. Here we report that the CnAIP2 gene promoter is strongly upregulated by all of the major plant hormones. Young Arabidopsis seedlings expressing a chimeric CnAIP2pro-GUS construct were subjected to exogenously applied hormones; the maximum fold-enhancement of GUS activity was as high as 47-fold, and each hormone showed a distinctive cell/tissue-specific pattern of GUS induction. By far the greatest response was elicited by the synthetic auxin 2,4-D (47-fold induction); the other hormones tested stimulated GUS activities by 8- to 21-fold. The CnAIP2 promoter also responded to glucose and salt (NaCl), albeit to a lesser extent (2- to 3-fold induction). As well as acting in an antagonistic way to the global regulator ABI3, CnAIP2 appears to participate in multiple hormonal crosstalk pathways to carry out its functions.

  14. Abi1 is essential for the formation and activation of a WAVE2 signalling complex.

    PubMed

    Innocenti, Metello; Zucconi, Adriana; Disanza, Andrea; Frittoli, Emanuela; Areces, Liliana B; Steffen, Anika; Stradal, Theresia E B; Di Fiore, Pier Paolo; Carlier, Marie-France; Scita, Giorgio

    2004-04-01

    WAVE2 belongs to a family of proteins that mediates actin reorganization by relaying signals from Rac to the Arp2/3 complex, resulting in lamellipodia protrusion. WAVE2 displays Arp2/3-dependent actin nucleation activity in vitro, and does not bind directly to Rac. Instead, it forms macromolecular complexes that have been reported to exert both positive and negative modes of regulation. How these complexes are assembled, localized and activated in vivo remains to be established. Here we use tandem mass spectrometry to identify an Abi1-based complex containing WAVE2, Nap1 (Nck-associated protein) and PIR121. Abi1 interacts directly with the WHD domain of WAVE2, increases WAVE2 actin polymerization activity and mediates the assembly of a WAVE2-Abi1-Nap1-PIR121 complex. The WAVE2-Abi1-Nap1-PIR121 complex is as active as the WAVE2-Abi1 sub-complex in stimulating Arp2/3, and after Rac activation it is re-localized to the leading edge of ruffles in vivo. Consistently, inhibition of Abi1 by RNA interference (RNAi) abrogates Rac-dependent lamellipodia protrusion. Thus, Abi1 orchestrates the proper assembly of the WAVE2 complex and mediates its activation at the leading edge in vivo.

  15. Comparison of Bt formulations against the spruce budworm

    Treesearch

    Lew McCreery; Imants Millers; Dennis Souto; Bruce Francis

    1985-01-01

    The Passamaquoddy Indian Forestry Department treated 40,300 acres in Maine in 1983 using Bt to protect red spruce and eastern hemlock from spruce budworm damage. The post treatment evaluation indicated that the protection objectives were achieved. In cooperation between the Passamaquoddy Indian Forestry Department and two commercial Bt suppliers, Abbott Laboratories...

  16. SPRUCE Shrub-Layer Growth Assessments in S1-Bog Plots and SPRUCE Experimental Plots beginning in 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, P.J.; Phillips, J.R.; Brice, D.J.

    This data set reports shrub layer growth assessments for the S1-Bog on the Marcell Experimental Forest in Minnesota from 2010 through 2017. Data were obtained by destructively harvesting two 0.25 m2 plots within defined plot areas of the S1-Bog or SPRUCE experimental plots. In 2015, SPRUCE plots 4, 6, 8, 10, 11, 13, 16, 17, 19 and 20 were enclosed in the SPRUCE enclosures. Prior to 2015 all data are for open ambient conditions. In early years a distinct hummock and a hollow sampling square were both collected, but in later years unsampled hollow areas became unavailable due to priormore » sampling or instrument installations. All vegetation material above the Sphagnum surface of the bog was clipped and transferred to plastic storage bags which were then frozen until the samples could be sorted. Sorting was done by species, tissue type (leaves vs. stems) and tissue age (current-year vs. older tissues).« less

  17. Exploiting Measurement Uncertainty Estimation in Evaluation of GOES-R ABI Image Navigation Accuracy Using Image Registration Techniques

    NASA Technical Reports Server (NTRS)

    Haas, Evan; DeLuccia, Frank

    2016-01-01

    In evaluating GOES-R Advanced Baseline Imager (ABI) image navigation quality, upsampled sub-images of ABI images are translated against downsampled Landsat 8 images of localized, high contrast earth scenes to determine the translations in the East-West and North-South directions that provide maximum correlation. The native Landsat resolution is much finer than that of ABI, and Landsat navigation accuracy is much better than ABI required navigation accuracy and expected performance. Therefore, Landsat images are considered to provide ground truth for comparison with ABI images, and the translations of ABI sub-images that produce maximum correlation with Landsat localized images are interpreted as ABI navigation errors. The measured local navigation errors from registration of numerous sub-images with the Landsat images are averaged to provide a statistically reliable measurement of the overall navigation error of the ABI image. The dispersion of the local navigation errors is also of great interest, since ABI navigation requirements are specified as bounds on the 99.73rd percentile of the magnitudes of per pixel navigation errors. However, the measurement uncertainty inherent in the use of image registration techniques tends to broaden the dispersion in measured local navigation errors, masking the true navigation performance of the ABI system. We have devised a novel and simple method for estimating the magnitude of the measurement uncertainty in registration error for any pair of images of the same earth scene. We use these measurement uncertainty estimates to filter out the higher quality measurements of local navigation error for inclusion in statistics. In so doing, we substantially reduce the dispersion in measured local navigation errors, thereby better approximating the true navigation performance of the ABI system.

  18. Functional analysis of the isoforms of an ABI3-like factor of Pisum sativum generated by alternative splicing.

    PubMed

    Gagete, Andrés P; Riera, Marta; Franco, Luis; Rodrigo, M Isabel

    2009-01-01

    At least seven isoforms (PsABI3-1 to PsABI3-7) of a putative, pea ABI3-like factor, originated by alternative splicing, have been identified after cDNA cloning. A similar variability had previously only been described for monocot genes. The full-length isoform, PsABI3-1, contains the typical N-terminal acidic domains and C-terminal basic subdomains, B1 to B3. Reverse transcriptase-PCR analysis revealed that the gene is expressed just in seeds, starting at middle embryogenesis; no gene products are observed in embryo axes after 18 h post-imbibition although they are more persistent in cotyledons. The activity of the isoforms was studied by yeast one-hybrid assays. When yeast was transformed with the isoforms fused to the DNA binding domain of Gal4p, only the polypeptides PsABI3-2 and PsABI3-7 failed to complement the activity of Gal4p. Acidic domains A1 and A2 exhibit transactivating activity, but the former requires a small C-terminal extension to be active. Yeast two-hybrid analysis showed that PsABI3 is able to heterodimerize with Arabidopsis thaliana ABI5, thus proving that PsABI3 is functionally active. The minimum requirement for the interaction PsABI3-AtABI5 is the presence of the subdomain B1 with an extension, 81 amino acids long, at their C-terminal side. Finally, a transient onion transformation assay showed that both the active PsABI3-1 and the inactive PsABI3-2 isoforms are localized to nuclei. Considering that the major isoforms remain approximately constant in developing seeds although their relative proportion varied, the possible role of splicing in the regulatory network of ABA signalling is discussed.

  19. Thinking Allowed: Use of Egocentric Speech after Acquired Brain Injury (ABI)

    ERIC Educational Resources Information Center

    Rees, Sian A.; Skidmore, David

    2011-01-01

    This paper explores the use of thinking aloud made by young people who have sustained a severe acquired brain injury (ABI). The phenomenon is compared with the concepts of egocentric speech and inner speech before the form of thinking aloud by pupils with ABI is examined. It is suggested that by using thinking aloud, this group of pupils is able…

  20. ABI4 Regulates Primary Seed Dormancy by Regulating the Biogenesis of Abscisic Acid and Gibberellins in Arabidopsis

    PubMed Central

    Shu, Kai; Zhang, Huawei; Wang, Shengfu; Chen, Mingluan; Wu, Yaorong; Tang, Sanyuan; Liu, Chunyan; Feng, Yuqi; Cao, Xiaofeng; Xie, Qi

    2013-01-01

    Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy, requires further elucidation. Here, we report that ABI4 positively regulates primary seed dormancy, while negatively regulating cotyledon greening, by mediating the biogenesis of ABA and GA. Seeds of the Arabidopsis abi4 mutant that were subjected to short-term storage (one or two weeks) germinated significantly more quickly than Wild-Type (WT), and abi4 cotyledons greened markedly more quickly than WT, while the rates of germination and greening were comparable when the seeds were subjected to longer-term storage (six months). The ABA content of dry abi4 seeds was remarkably lower than that of WT, but the amounts were comparable after stratification. Consistently, the GA level of abi4 seeds was increased compared to WT. Further analysis showed that abi4 was resistant to treatment with paclobutrazol (PAC), a GA biosynthesis inhibitor, during germination, while OE-ABI4 was sensitive to PAC, and exogenous GA rescued the delayed germination phenotype of OE-ABI4. Analysis by qRT-PCR showed that the expression of genes involved in ABA and GA metabolism in dry and germinating seeds corresponded to hormonal measurements. Moreover, chromatin immunoprecipitation qPCR (ChIP-qPCR) and transient expression analysis showed that ABI4 repressed CYP707A1 and CYP707A2 expression by directly binding to those promoters, and the ABI4 binding elements are essential for this repression. Accordingly, further genetic analysis showed that abi4 recovered the delayed germination phenotype of cyp707a1 and cyp707a2 and further, rescued the non-germinating phenotype of ga1-t. Taken together, this study suggests that ABI4 is a key factor that

  1. Competitiveness of endophytic Phialocephala fortinii s.l. - Acephala applanata strains in Norway spruce roots.

    PubMed

    Stroheker, Sophie; Dubach, Vivanne; Sieber, Thomas N

    2018-05-01

    Dark septate endophytes of the Phialocephala fortinii s.l. - Acephala applanata species complex (PAC) are presumed to be the most abundant root colonizing endophytes of conifers across the Northern hemisphere. To test the competitiveness of different PAC strains, PAC-free Picea abies saplings were inoculated with five different PAC strains by planting them in pre-colonized substrates. Saplings were left to grow for six weeks and then transplanted crosswise into a substrate colonized by one of the other four strains for a further two weeks. PAC were isolated and genotyped using microsatellite markers. The power of colonization, i.e. the ability of colonizing roots already colonized by another PAC strain, and the power of retention, i.e. the ability of a resident strain of not being suppressed by an invading PAC strain, were calculated for each strain in every combination. The experiment was run twice under two different climatic conditions. Our results show that PAC strains differ (1) in their ability to colonize PAC-free, non-sterile roots, (2) in resistance against being suppressed by another PAC strain and (3) in their ability to invade roots already colonized by another PAC strain. In addition, both the PAC-PAC and the PAC-host interactions depend on the climatic conditions. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  2. Expression of the β-glucosidase gene Pgβglu-1 underpins natural resistance of white spruce against spruce budworm

    PubMed Central

    Mageroy, Melissa H; Parent, Geneviève; Germanos, Gaby; Giguère, Isabelle; Delvas, Nathalie; Maaroufi, Halim; Bauce, Éric; Bohlmann, Joerg; Mackay, John J

    2015-01-01

    Periodic outbreaks of spruce budworm (SBW) affect large areas of ecologically and economically important conifer forests in North America, causing tree mortality and reduced forest productivity. Host resistance against SBW has been linked to growth phenology and the chemical composition of foliage, but the underlying molecular mechanisms and population variation are largely unknown. Using a genomics approach, we discovered a β-glucosidase gene, Pgβglu-1, whose expression levels and function underpin natural resistance to SBW in mature white spruce (Picea glauca) trees. In phenotypically resistant trees, Pgβglu-1 transcripts were up to 1000 times more abundant than in non-resistant trees and were highly enriched in foliage. The encoded PgβGLU-1 enzyme catalysed the cleavage of acetophenone sugar conjugates to release the aglycons piceol and pungenol. These aglycons were previously shown to be active against SBW. Levels of Pgβglu-1 transcripts and biologically active acetophenone aglycons were substantially different between resistant and non-resistant trees over time, were positively correlated with each other and were highly variable in a natural white spruce population. These results suggest that expression of Pgβglu-1 and accumulation of acetophenone aglycons is a constitutive defence mechanism in white spruce. The progeny of resistant trees had higher Pgβglu-1 gene expression than non-resistant progeny, indicating that the trait is heritable. With reported increases in the intensity of SBW outbreaks, influenced by climate, variation of Pgβglu-1 transcript expression, PgβGLU-1 enzyme activity and acetophenone accumulation may serve as resistance markers to better predict impacts of SBW in both managed and wild spruce populations. PMID:25302566

  3. Canopy storage capacity and wettability of leaves and needles: The effect of water temperature changes

    NASA Astrophysics Data System (ADS)

    Klamerus-Iwan, Anna; Błońska, Ewa

    2018-04-01

    The canopy storage capacity (S) is a major component of the surface water balance. We analysed the relationship between the tree canopy water storage capacity and leaf wettability under changing simulated rainfall temperature. We estimated the effect of the rain temperature change on the canopy storage capacity and contact angle of leave and needle surfaces based on two scenarios. Six dominant forest trees were analysed: English oak (Quercus roburL.), common beech (Fagus sylvatica L.), small-leaved lime (Tilia cordata Mill), silver fir (Abies alba), Scots pine (Pinus sylvestris L.),and Norway spruce (Picea abies L.). Twigs of these species were collected from Krynica Zdrój, that is, the Experimental Forestry unit of the University of Agriculture in Cracow (southern Poland). Experimental analyses (simulations of precipitation) were performed in a laboratory under controlled conditions. The canopy storage capacity and leaf wettability classification were determined at 12 water temperatures and a practical calculator to compute changes of S and contact angles of droplets was developed. Among all species, an increase of the rainfall temperature by 0.7 °C decreases the contact angle between leave and needle surfaces by 2.41° and increases the canopy storage capacity by 0.74 g g-1; an increase of the rain temperature by 2.7 °C decreases the contact angle by 9.29° and increases the canopy storage capacity by 2.85 g g-1. A decreased contact angle between a water droplet and leaf surface indicates increased wettability. Thus, our results show that an increased temperature increases the leaf wettability in all examined species. The comparison of different species implies that the water temperature has the strongest effect on spruce and the weakest effect on oak. These data indicate that the rainfall temperature influences the canopy storage capacity.

  4. Relationships between forest structure, composition, site, and spruce beetle occurrence in the Intermountain West

    Treesearch

    R. Justin DeRose; James N. Long; John D. Shaw

    2009-01-01

    Engelmann spruce forests are structurally and compositionally diverse, occur across a wide range of physiographic conditions, and are the result of varying disturbance histories such as fire, wind and spruce beetle. The spruce beetle is a natural disturbance agent of spruce forests and has population levels that fluctuate from endemic to epidemic. Conceptually,...

  5. Expression of Abelson Interactor 1 (Abi1) Correlates with Inflammation, KRAS Mutation and Adenomatous Change during Colonic Carcinogenesis

    PubMed Central

    Steinestel, Konrad; Brüderlein, Silke; Steinestel, Julie; Märkl, Bruno; Schwerer, Michael J.; Arndt, Annette; Kraft, Klaus; Pröpper, Christian; Möller, Peter

    2012-01-01

    Background Abelson interactor 1 (Abi1) is an important regulator of actin dynamics during cytoskeletal reorganization. In this study, our aim was to investigate the expression of Abi1 in colonic mucosa with and without inflammation, colonic polyps, colorectal carcinomas (CRC) and metastases as well as in CRC cell lines with respect to BRAF/KRAS mutation status and to find out whether introduction of KRAS mutation or stimulation with TNFalpha enhances Abi1 protein expression in CRC cells. Methodology/Principal Findings We immunohistochemically analyzed Abi1 protein expression in 126 tissue specimens from 95 patients and in 5 colorectal carcinoma cell lines with different mutation status by western immunoblotting. We found that Abi1 expression correlated positively with KRAS, but not BRAF mutation status in the examined tissue samples. Furthermore, Abi1 is overexpressed in inflammatory mucosa, sessile serrated polyps and adenomas, tubular adenomas, invasive CRC and CRC metastasis when compared to healthy mucosa and BRAF-mutated as well as KRAS wild-type hyperplastic polyps. Abi1 expression in carcinoma was independent of microsatellite stability of the tumor. Abi1 protein expression correlated with KRAS mutation in the analyzed CRC cell lines, and upregulation of Abi1 could be induced by TNFalpha treatment as well as transfection of wild-type CRC cells with mutant KRAS. The overexpression of Abi1 could be abolished by treatment with the PI3K-inhibitor Wortmannin after KRAS transfection. Conclusions/Significance Our results support a role for Abi1 as a downstream target of inflammatory response and adenomatous change as well as oncogenic KRAS mutation via PI3K, but not BRAF activation. Furthermore, they highlight a possible role for Abi1 as a marker for early KRAS mutation in hyperplastic polyps. Since the protein is a key player in actin dynamics, our data encourages further studies concerning the exact role of Abi1 in actin reorganization upon enhanced KRAS/PI3K

  6. Preliminary lumber recovery for dead and live Engelmann spruce.

    Treesearch

    James M. Cahill

    1980-01-01

    Lumber recovery, lumber grade distribution, and log values are presented for logs cut from dead and live Engelmann spruce (Picea engelmannii Parry ex Engelm.) trees. The dead sample includes standing and down trees killed by the Engelmann spruce beetle (Dendroctonus ruffipennis Kirby) over 20 years ago.

  7. Detecting climatically driven phylogenetic and morphological divergence among spruce (Picea) species worldwide

    NASA Astrophysics Data System (ADS)

    Wang, Guo-Hong; Li, He; Zhao, Hai-Wei; Zhang, Wei-Kang

    2017-05-01

    This study aimed to elucidate the relationship between climate and the phylogenetic and morphological divergence of spruces (Picea) worldwide. Climatic and georeferenced data were collected from a total of 3388 sites distributed within the global domain of spruce species. A phylogenetic tree and a morphological tree for the global spruces were reconstructed based on DNA sequences and morphological characteristics. Spatial evolutionary and ecological vicariance analysis (SEEVA) was used to detect the ecological divergence among spruces. A divergence index (D) with (0, 1) scaling was calculated for each climatic factor at each node for both trees. The annual mean values, extreme values and annual range of the climatic variables were among the major determinants for spruce divergence. The ecological divergence was significant (P < 0. 001) for 185 of the 279 comparisons at 31 nodes in the phylogenetic tree, as well as for 196 of the 288 comparisons at 32 nodes in the morphological tree. Temperature parameters and precipitation parameters tended to be the main driving factors for the primary divergences of spruce phylogeny and morphology, respectively. Generally, the maximum D of the climatic variables was smaller in the basal nodes than in the remaining nodes. Notably, the primary divergence of morphology and phylogeny among the investigated spruces tended to be driven by different selective pressures. Given the climate scenario of severe and widespread drought over land areas in the next 30-90 years, our findings shed light on the prediction of spruce distribution under future climate change.

  8. Identifying Genetic Signatures of Natural Selection Using Pooled Population Sequencing in Picea abies

    PubMed Central

    Chen, Jun; Källman, Thomas; Ma, Xiao-Fei; Zaina, Giusi; Morgante, Michele; Lascoux, Martin

    2016-01-01

    The joint inference of selection and past demography remain a costly and demanding task. We used next generation sequencing of two pools of 48 Norway spruce mother trees, one corresponding to the Fennoscandian domain, and the other to the Alpine domain, to assess nucleotide polymorphism at 88 nuclear genes. These genes are candidate genes for phenological traits, and most belong to the photoperiod pathway. Estimates of population genetic summary statistics from the pooled data are similar to previous estimates, suggesting that pooled sequencing is reliable. The nonsynonymous SNPs tended to have both lower frequency differences and lower FST values between the two domains than silent ones. These results suggest the presence of purifying selection. The divergence between the two domains based on synonymous changes was around 5 million yr, a time similar to a recent phylogenetic estimate of 6 million yr, but much larger than earlier estimates based on isozymes. Two approaches, one of them novel and that considers both FST and difference in allele frequencies between the two domains, were used to identify SNPs potentially under diversifying selection. SNPs from around 20 genes were detected, including genes previously identified as main target for selection, such as PaPRR3 and PaGI. PMID:27172202

  9. Identifying Genetic Signatures of Natural Selection Using Pooled Population Sequencing in Picea abies.

    PubMed

    Chen, Jun; Källman, Thomas; Ma, Xiao-Fei; Zaina, Giusi; Morgante, Michele; Lascoux, Martin

    2016-07-07

    The joint inference of selection and past demography remain a costly and demanding task. We used next generation sequencing of two pools of 48 Norway spruce mother trees, one corresponding to the Fennoscandian domain, and the other to the Alpine domain, to assess nucleotide polymorphism at 88 nuclear genes. These genes are candidate genes for phenological traits, and most belong to the photoperiod pathway. Estimates of population genetic summary statistics from the pooled data are similar to previous estimates, suggesting that pooled sequencing is reliable. The nonsynonymous SNPs tended to have both lower frequency differences and lower FST values between the two domains than silent ones. These results suggest the presence of purifying selection. The divergence between the two domains based on synonymous changes was around 5 million yr, a time similar to a recent phylogenetic estimate of 6 million yr, but much larger than earlier estimates based on isozymes. Two approaches, one of them novel and that considers both FST and difference in allele frequencies between the two domains, were used to identify SNPs potentially under diversifying selection. SNPs from around 20 genes were detected, including genes previously identified as main target for selection, such as PaPRR3 and PaGI. Copyright © 2016 Chen et al.

  10. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions?

    PubMed

    Hall, Marianne; Medlyn, Belinda E; Abramowitz, Gab; Franklin, Oskar; Räntfors, Mats; Linder, Sune; Wallin, Göran

    2013-11-01

    Photosynthesis is highly responsive to environmental and physiological variables, including phenology, foliage nitrogen (N) content, atmospheric CO2 concentration ([CO2]), irradiation (Q), air temperature (T) and vapour pressure deficit (D). Each of these responses is likely to be modified by long-term changes in climatic conditions such as rising air temperature and [CO2]. When modelling photosynthesis under climatic changes, which parameters are then most important to calibrate for future conditions? To assess this, we used measurements of shoot carbon assimilation rates and microclimate conditions collected at Flakaliden, northern Sweden. Twelve 40-year-old Norway spruce trees were enclosed in whole-tree chambers and exposed to elevated [CO2] and elevated air temperature, separately and in combination. The treatments imposed were elevated temperature, +2.8 °C in July/August and +5.6 °C in December above ambient, and [CO2] (ambient CO2 ∼370 μ mol mol(-1), elevated CO2 ∼700 μ mol mol(-1)). The relative importance of parameterization of Q, T and D responses for effects on the photosynthetic rate, expressed on a projected needle area, and the annual shoot carbon uptake was quantified using an empirical shoot photosynthesis model, which was developed and fitted to the measurements. The functional form of the response curves was established using an artificial neural network. The [CO2] treatment increased annual shoot carbon (C) uptake by 50%. Most important was effects on the light response curve, with a 67% increase in light-saturated photosynthetic rate, and a 52% increase in the initial slope of the light response curve. An interactive effect of light saturated photosynthetic rate was found with foliage N status, but no interactive effect for high temperature and high CO2. The air temperature treatment increased the annual shoot C uptake by 44%. The most important parameter was the seasonality, with an elongation of the growing season by almost 4

  11. Abscisic Acid Antagonizes Ethylene Production through the ABI4-Mediated Transcriptional Repression of ACS4 and ACS8 in Arabidopsis.

    PubMed

    Dong, Zhijun; Yu, Yanwen; Li, Shenghui; Wang, Juan; Tang, Saijun; Huang, Rongfeng

    2016-01-04

    Increasing evidence has revealed that abscisic acid (ABA) negatively modulates ethylene biosynthesis, although the underlying mechanism remains unclear. To identify the factors involved, we conducted a screen for ABA-insensitive mutants with altered ethylene production in Arabidopsis. A dominant allele of ABI4, abi4-152, which produces a putative protein with a 16-amino-acid truncation at the C-terminus of ABI4, reduces ethylene production. By contrast, two recessive knockout alleles of ABI4, abi4-102 and abi4-103, result in increased ethylene evolution, indicating that ABI4 negatively regulates ethylene production. Further analyses showed that expression of the ethylene biosynthesis genes ACS4, ACS8, and ACO2 was significantly decreased in abi4-152 but increased in the knockout mutants, with partial dependence on ABA. Chromatin immunoprecipitation-quantitative PCR assays showed that ABI4 directly binds the promoters of these ethylene biosynthesis genes and that ABA enhances this interaction. A fusion protein containing the truncated ABI4-152 peptide accumulated to higher levels than its full-length counterpart in transgenic plants, suggesting that ABI4 is destabilized by its C terminus. Therefore, our results demonstrate that ABA negatively regulates ethylene production through ABI4-mediated transcriptional repression of the ethylene biosynthesis genes ACS4 and ACS8 in Arabidopsis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  12. Western Spruce Budworm

    Treesearch

    David G. Fellin; Jerald E. Dewey

    1982-01-01

    The western spruce budworm, Choristoneura occidentalis Freeman, is the most widely distributed and destructive defoliator of coniferous forests in Western North America. It is one of nearly a dozen Choristoneura species, subspecies, or forms, with a complexity of variation among populations found throughout much of the United States and Canada. It occurs in the Rocky...

  13. N cycling in SPRUCE (Spruce Peatlands Response Under ...

    EPA Pesticide Factsheets

    Peatlands located in boreal regions make up a third of global wetland area and are expected to have the highest temperature increases in response to climate change. As climate warms, we expect peat decomposition may accelerate, altering the cycling of nitrogen. Alterations in the nitrogen cycle can have consequences on NO3, NH4 availability or pollution, and potentially increase nitrous oxide (N2O) emissions, a persistent greenhouse gas (GHG). These consequences can cascade to altering whole ecosystem functions and effecting human health.We are investigating nitrogen cycling response to elevated temperature and CO2 in a boreal peatland. Spruce and Peatland Responses Under Climate and Environmental Change (SPRUCE) project initiated soil warming in 2014 in ten peatland mesocosms (five temperature treatments from ambient (+0°C) to +9°C) and elevated CO2 in half of the mesocosms in 2016. Peat cores at three depths (acrotelm, catotelm, deep peat) were analyzed in the laboratory for denitrification, nitrification, and ammonification. We expect denitrification, nitrification, and ammonification rates to increase, and denitrification efficiency to decrease with rising temperatures- potentially contaminating water resources with NO3, NH4 and increase N2O concentrations in our atmosphere. This research will enhance the scientific understanding of how nitrogen cycling, an important functional eco-service, responds under environmental conditions including elevated CO2

  14. The Role and Regulation of ABI5 (ABA-Insensitive 5) in Plant Development, Abiotic Stress Responses and Phytohormone Crosstalk

    PubMed Central

    Skubacz, Anna; Daszkowska-Golec, Agata; Szarejko, Iwona

    2016-01-01

    ABA Insensitive 5 (ABI5) is a basic leucine zipper transcription factor that plays a key role in the regulation of seed germination and early seedling growth in the presence of ABA and abiotic stresses. ABI5 functions in the core ABA signaling, which is composed of PYR/PYL/RCAR receptors, PP2C phosphatases and SnRK2 kinases, through the regulation of the expression of genes that contain the ABSCISIC ACID RESPONSE ELEMENT (ABRE) motif within their promoter region. The regulated targets include stress adaptation genes, e.g., LEA proteins. However, the expression and activation of ABI5 is not only dependent on the core ABA signaling. Many transcription factors such as ABI3, ABI4, MYB7 and WRKYs play either a positive or a negative role in the regulation of ABI5 expression. Additionally, the stability and activity of ABI5 are also regulated by other proteins through post-translational modifications such as phosphorylation, ubiquitination, sumoylation and S-nitrosylation. Moreover, ABI5 also acts as an ABA and other phytohormone signaling integrator. Components of auxin, cytokinin, gibberellic acid, jasmonate and brassinosteroid signaling and metabolism pathways were shown to take part in ABI5 regulation and/or to be regulated by ABI5. Monocot orthologs of AtABI5 have been identified. Although their roles in the molecular and physiological adaptations during abiotic stress have been elucidated, knowledge about their detailed action still remains elusive. Here, we describe the recent advances in understanding the action of ABI5 in early developmental processes and the adaptation of plants to unfavorable environmental conditions. We also focus on ABI5 relation to other phytohormones in the abiotic stress response of plants. PMID:28018412

  15. Computer simulation for integrated pest management of spruce budworms

    Treesearch

    Carroll B. Williams; Patrick J. Shea

    1982-01-01

    Some field studies of the effects of various insecticides on the spruce budworm (Choristoneura sp.) and their parasites have shown severe suppression of host (budworm) populations and increased parasitism after treatment. Computer simulation using hypothetical models of spruce budworm-parasite systems based on these field data revealed that (1)...

  16. Microbial communities in the litter of middle taiga bilberry-spruce forests

    NASA Astrophysics Data System (ADS)

    Sizonenko, T. A.; Zagirova, S. V.; Khabibullina, F. M.

    2010-10-01

    The structure of the microbial communities in the litters of middle-taiga bilberry-spruce forests was studied. It was found that ammonifying and oligonitrophilic microorganisms predominate in these communities. Two maximums in the population density of the microorganisms were observed in June and August. The number of microorganisms increased in the direction from the spruce trunks to the periphery of the crowns. The species composition of the micromycetes in the litters under the spruce crowns and within the intercrown spaces differed. The maximum population density of the fungi was found in the litter under the periphery of the spruce crowns, whereas the maximum diversity of the micromycetes was observed within the intercrown spaces. The Trichoderma, Trichosporiella, Penicillium, Paecilomyces, and Chaetomium genera were most abundant in the litters of the bilberry spruce forests. The Penicillium genus had the maximum abundance during the entire growing period, and the amount of Mycelia sterilia increased in the fall. The maximum diversity of the fungi was observed in May and June.

  17. Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box.

    PubMed

    Ezcurra, I; Wycliffe, P; Nehlin, L; Ellerström, M; Rask, L

    2000-10-01

    The transcriptional activator ABI3 is a key regulator of gene expression during embryo maturation in crucifers. In monocots, the related VP1 protein regulates the Em promoter synergistically with abscisic acid (ABA). We identified cis-elements in the Brassica napus napin napA promoter mediating regulation by ABI3 and ABA, by analyzing substitution mutation constructs of napA in transgenic tobacco plantlets ectopically expressing ABI3. In transient analysis using particle bombardment of tobacco leaf sections, a tetramer of the distB ABRE (abscisic acid-responsive element) mediated transactivation by ABI3 and ABI3-dependent response to ABA, whereas a tetramer of the composite RY/G complex, containing RY repeats and a G-box, mediated only ABA-independent transactivation by ABI3. Deletion of the conserved B2 and B3 domains of ABI3 abolished transactivation of napA by ABI3. The two domains of ABI3 interact with different cis-elements: B2 is necessary for ABA-independent and ABA-dependent activations through the distB ABRE, whereas B3 interacts with the RY/G complex. Thus B2 mediates the interaction of ABI3 with the protein complex at the ABRE. The regulation of napA by ABI3 differs from Em regulation by VP1, in that the B3 domain of ABI3 is essential for the ABA-dependent regulation of napA.

  18. Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation.

    PubMed

    Pretzsch, H; Schütze, G; Uhl, E

    2013-05-01

    While previous studies focused on tree growth in pure stands, we reveal that tree resistance and resilience to drought stress can be modified distinctly through species mixing. Our study is based on tree ring measurement on cores from increment boring of 559 trees of Norway spruce (Picea abies [L.] Karst.), European beech (Fagus sylvatica [L.]) and sessile oak (Quercus petraea (Matt.) Liebl.) in South Germany, with half sampled in pure, respectively, mixed stands. Indices for resistance, recovery and resilience were applied for quantifying the tree growth reaction on the episodic drought stress in 1976 and 2003. The following general reaction patterns were found. (i) In pure stands, spruce has the lowest resistance, but the quickest recovery; oak and beech were more resistant, but recover was much slower and they are less resilient. (ii) In mixture, spruce and oak perform as in pure stands, but beech was significantly more resistant and resilient than in monoculture. (iii) Especially when mixed with oak, beech is facilitated. We hypothesise that the revealed water stress release of beech emerges in mixture because of the asynchronous stress reaction pattern of beech and oak and a facilitation of beech by hydraulic lift of water by oak. This facilitation of beech in mixture with oak means a contribution to the frequently reported overyield of beech in mixed versus pure stands. We discuss the far-reaching implications that these differences in stress response under intra- and inter-specific environments have for forest ecosystem dynamics and management under climate change. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. Past and future evolution of Abies alba forests in Europe - comparison of a dynamic vegetation model with palaeo data and observations.

    PubMed

    Ruosch, Melanie; Spahni, Renato; Joos, Fortunat; Henne, Paul D; van der Knaap, Willem O; Tinner, Willy

    2016-02-01

    Information on how species distributions and ecosystem services are impacted by anthropogenic climate change is important for adaptation planning. Palaeo data suggest that Abies alba formed forests under significantly warmer-than-present conditions in Europe and might be a native substitute for widespread drought-sensitive temperate and boreal tree species such as beech (Fagus sylvatica) and spruce (Picea abies) under future global warming conditions. Here, we combine pollen and macrofossil data, modern observations, and results from transient simulations with the LPX-Bern dynamic global vegetation model to assess past and future distributions of A. alba in Europe. LPX-Bern is forced with climate anomalies from a run over the past 21 000 years with the Community Earth System Model, modern climatology, and with 21st-century multimodel ensemble results for the high-emission RCP8.5 and the stringent mitigation RCP2.6 pathway. The simulated distribution for present climate encompasses the modern range of A. alba, with the model exceeding the present distribution in north-western and southern Europe. Mid-Holocene pollen data and model results agree for southern Europe, suggesting that at present, human impacts suppress the distribution in southern Europe. Pollen and model results both show range expansion starting during the Bølling-Allerød warm period, interrupted by the Younger Dryas cold, and resuming during the Holocene. The distribution of A. alba expands to the north-east in all future scenarios, whereas the potential (currently unrealized) range would be substantially reduced in southern Europe under RCP8.5. A. alba maintains its current range in central Europe despite competition by other thermophilous tree species. Our combined palaeoecological and model evidence suggest that A. alba may ensure important ecosystem services including stand and slope stability, infrastructure protection, and carbon sequestration under significantly warmer

  20. Spruce reproduction dynamics on Alaska's Kenai Peninsula, 1987-2000.

    Treesearch

    Willem W.S. van Hees

    2005-01-01

    During the past 30 years, spruce forests of Alaska’s Kenai Peninsula have undergone dramatic changes resulting from widespread spruce bark beetle(Dendroctonus rufipennis (Kirby)) infestation. In 1987 and again in 2000, the Pacific Northwest Research Station's Forest Inventory and Analysis Program conducted initial and remeasurement inventories...

  1. Spruce Budworm Fecundity and Foliar Chemistry: Influence of Site

    Treesearch

    M.D.C. Schmitt; M.M. Czapowskyj; D.C.  Allen; E.H.  White

    1983-01-01

    Two Maine spruce-fir stands having different soils were sampled to determine the relationship between spruce budworm weight (fecundity) and foliage quality. Although much of the variation in budworm weight was attributable to other factors, significant correlations between budworm weight and multiple foliar nutrient concentration variables suggest that foliage quality...

  2. SPRUCE Pretreatment Plant Tissue Analyses, 2009 through 2013

    DOE Data Explorer

    Phillips, J. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Brice, D. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Childs, J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Iversen, C. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Norby, R. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Warren, J. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A

    2009-12-01

    This data set reports the results of elemental analyses of foliar and stem/woody twig plant tissues collected at the SPRUCE site in 2009, 2012, and 2013. Samples were obtained at various locations around the S1 Bog and from within the developing experimental treatment plots. These are pretreatment vegetation samples, collected prior to initiation of the SPRUCE experiment heating and elevated CO2 treatments.

  3. Eddy-correlation measurements of fluxes of CO 2 and H 2O above a spruce stand

    NASA Astrophysics Data System (ADS)

    Ibrom, A.; Schütz, C.; Tworek, T.; Morgenstern, K.; Oltchev, A.; Falk, M.; Constantin, J.; Gravenhorst, G.

    1996-12-01

    Atmospheric fluxes of CO 2 and H 2O above a mature spruce stand ( Picea abies (L.) Karst.) have been investigated using the eddy- correlation technique. A closed path sensor adapted to the special requirements of long-term studies has been developed and tested. Field measurements have been performed since April 1995. Estimates of fetch showed a very narrow source area dimension under instable stratification (≤ 200 m). Fetch requirements at night are not met in some directions. Energy balance closure was influenced systematically by the wind direction indicating a substantial attenuation of the vertical wind motion by the tower (up to 40 %). Even for optimal flow directions, energy balance closure was about 88%. Intercomparison of the used ultra sonic anemometer (USAT-3) with a GILL - anemometer showed systematically lower values of vertical wind speed fluctuations (13 %). Average CO 2-fluxes ranged between -13 at noon to 3 μ mol m-2, s-1 at night in summer. In November and December the stand released CO 2 on a daily basis. A preliminary estimate of the cumulative net carbon balance over the observed period of 9 months is 4-5 t, Cha-1.

  4. Stem girdling indicates prioritized carbon allocation to the root system at the expense of radial stem growth in Norway spruce under drought conditions

    PubMed Central

    Oberhuber, Walter; Gruber, Andreas; Lethaus, Gina; Winkler, Andrea; Wieser, Gerhard

    2017-01-01

    The early culmination of maximum radial growth (RG) in late spring has been found in several coniferous species in a dry inner Alpine environment. We hypothesized that an early decrease in RG is an adaptation to cope with drought stress, which might require an early switch of carbon (C) allocation to belowground organs. To test this hypothesis, we experimentally subjected six-year-old Norway spruce saplings (tree height: 1.35 m; n = 80 trees) to two levels of soil water availability (watered versus drought conditions) and manipulated tree C status by physically blocking phloem transport at three girdling dates (GD). The influence of C availability and drought on tree growth (radial and shoot growth; root biomass) in response to girdling was analyzed in both treatments. Non-structural carbohydrates (NSCs, soluble sugars and starch) were measured in the stem, root and current leader to evaluate changes in tree C status due to girdling. The main finding was a significant increase in RG of the girdled trees compared to the controls above the girdling zone (UZ). At all girdling dates the RG increase was significantly more intense in the drought-stressed compared with watered trees (c. 3.3 and 1.9-fold higher compared with controls in the drought-stressed and watered trees, respectively), most likely indicating that an early switch of C allocation to belowground occurs as an adaptation to maintain tree water status under drought conditions. Reactivation of the cambium after the cessation of its regular activity was detected in UZ in drought-stressed trees, while below the girdling zone no xylem formation was found and the NSC content was strikingly reduced. Irrespective of water availability, girdling before growth onset significantly reduced the progression of bud break (P < 0.05) and the length of the current leader shoot by −47% (P < 0.01) indicating a reduction in xylem hydraulic conductance, which was corroborated by significantly reduced xylem sap flow (P < 0

  5. Analyses of Great Smoky Mountain Red Spruce Tree Ring Data

    Treesearch

    Paul C. van Deusen; [Editor

    1988-01-01

    Four different analyses of red spruce tree ring data from the Great Smoky Mountains are presented along with a description of the spruce/fir ecosystem.The analyses use several techniques including spatial analysis, fractals, spline detrending, and the Kalman filter.

  6. Tracing Anthropogenic Pollution Through Dendrochemistry

    NASA Astrophysics Data System (ADS)

    Rocha, E.; Gunnarson, B. E.; Holzkaemper, S.

    2017-12-01

    The growing concern regarding pollution effects on the environment and human health demands new control strategies and monitoring tools. In this study we assess the potential of using dendrochemistry as a forensic tool to investigate chemical contamination patterns in the surroundings of a former glass factory in Southern Sweden. Tree-ring width chronologies were produced from exposed and non-exposed sites. Using energy disperse X-ray fluorescence (EDXRF) technique, tree cores of Scots Pine (Pinus sylvestris), Norway spruce (Picea Abies) and Populus tremula (European Aspen) were analysed for their elemental composition in accordance with previous soil analysis done in the area. Traces of barium and considerable alteration of the chlorine profiles were successfully detected confirming the potential of the method to record environmental releases. The dendrochemical analysis also highlighted the differences in the response of tree species to elements uptake (root sensitivity) and the importance of metals bioavailability. Finally, the adopted sampling strategy is of outmost importance to the success of the method.

  7. Excess growing-season water limits lowland black spruce productivity

    NASA Astrophysics Data System (ADS)

    Dymond, S.; Kolka, R. K.; Bolstad, P. V.; Gill, K.; Curzon, M.; D'Amato, A. W.

    2015-12-01

    The annual growth of many tree species is limited by water availability, with growth increasing as water becomes less scarce. In lowland bogs of northern Minnesota, however, black spruce (Picea mariana) is often exposed to excess water via high water table elevations. These trees grow in thick deposits of organic mucky peat and often have shallow rooting systems to avoid the complete submersion of roots in water. While it is generally believed that black spruce decrease growth rates with rising water table elevations, this hypothesis has not been tested in situ. We used a unique, 50-year record of daily bog water table elevations at the Marcell Experimental Forest (MEF) in northern Minnesota to investigate the relationship between climate and black spruce productivity. Nine 1/20th ha circular plots were established in five different bogs and tree height, diameter-at-breast-height (DBH), and crown class were recorded. Additionally, two perpendicular cores were collected on all trees greater than 10 cm diameter-at-breast-height. Tree cores were sanded, mounted, cross-dated, and de-trended according to standard dendrochronological procedures. Ring width measurements were correlated with precipitation, temperature, and water table elevation using package BootRes in R to determine the climatic variables most associated with stand level productivity. Across the different plots, we found that early growing season water table elevation (May and June) was negatively correlated with both individual and stand-level black spruce growth (p < 0.01), while growth was positively correlated with March temperatures (p < 0.01). No significant relationships existed between black spruce growth and monthly precipitation. If summer water table elevations in these peatland ecosystems rise as is anticipated with more extreme precipitation events due to climate change, we could see an overall decrease in the stand level productivity of black spruce.

  8. A Pine Is a Pine and a Spruce Is a Spruce--The Effect of Tree Species and Stand Age on Epiphytic Lichen Communities.

    PubMed

    Bäcklund, Sofia; Jönsson, Mari; Strengbom, Joachim; Frisch, Andreas; Thor, Göran

    2016-01-01

    With an increasing demand for forest-based products, there is a growing interest in introducing fast-growing non-native tree species in forest management. Such introductions often have unknown consequences for native forest biodiversity. In this study, we examine epiphytic lichen species richness and species composition on the trunks of non-native Pinus contorta and compare these to the native Pinus sylvestris and Picea abies in managed boreal forests in northern Sweden across a chronosequence of age classes. Overall, we recorded a total of 66,209 lichen occurrences belonging to 57 species in the 96 studied forest stands. We found no difference in species richness of lichens between stands of P. contorta and P. sylvestris, but stands of P. abies had higher total species richness. However, species richness of lichens in stands of P. abies decreased with increasing stand age, while no such age effect was detected for P. contorta and P. sylvestris. Lichen species composition progressively diverged with increasing stand age, and in 30-year-old stands all three tree species showed species-specific assemblages. Epiphytic lichen assemblages in stands of 30-year-old P. contorta were influenced by greater basal area, canopy closure, and average diameter at breast height, P. abies stands by higher branch density and canopy closure, and stands of P. sylvestris by greater bark crevice depth. Differences in lichen species richness and composition were mainly explained by canopy closure and habitat availability, and the greater canopy closure in mature P. abies stands promoted the colonization and growth of calicioid lichen species. Our results indicate that the non-native P. contorta have similar species richness as the native P. sylvestris. The main difference in lichen species richness and composition is between P. abies and Pinus spp. in managed forests of boreal Sweden.

  9. A forest health inventory assessment of red fir (Abies magnifica) in upper montane California

    Treesearch

    Leif Mortenson; Andrew N. Gray; David C. Shaw

    2015-01-01

    We investigated the forest health of red fir (Abies magnifica) and how it compared with commonly-associated species Jeffrey pine (Pinus jeffreyi), lodgepole pine (Pinus contorta) and white fir (Abies concolor) in the upper montane forests of California. We evaluated tree mortality rates...

  10. Integrated permanent plot and aerial monitoring for the spruce budworm decision support system

    Treesearch

    David A. MacLean

    2000-01-01

    Spruce budworm (Choristoneura fumiferana Clem.) outbreaks cause severe mortality and growth loss of spruce and fir forest over ranch of eastern North America. The Spruce Budworm Decision Support System (DSS) links prediction and interpretation models to the ARC/1NFO GIS, under an ArcView graphical user interface. It helps forest managers predict...

  11. Can spruce beetle (Dendroctonus rufipennis Kirky) pheromone trap catches or stand conditions predict Engelmann spruce (Picea engelmannii Parry ex Engelm.) tree mortality in Colorado?

    Treesearch

    Jose F. Negron; John B. Popp

    2017-01-01

    1) Bark beetles (Coleoptera: Curculionidae: Scolytinae) can cause extensive tree mortality in forests dominated by their hosts. Among these, the spruce beetle (Dendroctonus rufipennis) is one of the most important beetles in western North America causing Engelmann spruce (Picea engelmannii) tree mortality. 2) Although pheromone traps with attractants are commonly used...

  12. SPRUCE: Sphagnum Productivity and Community Composition in the SPRUCE Experimental Plots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norby, R.J.; Childs, J.

    This data set reports annual dry matter production of Sphagnum in replicated growth columns, the composition of the moss community, and plot-average Sphagnum productivity in the SPRUCE experimental study plots located in the S1-Bog. Data are reported for 2016 (October 2015 to October 2016) and 2017 (October 2016 to October 2017). Additional data will be appended as they become available.

  13. SPRUCE Peat Physical and Chemical Characteristics from Experimental Plot Cores, 2012

    DOE Data Explorer

    Iversen, C. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Brice, D. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Phillips, J. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; McFarlane, K. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hobbie, E. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Kolka, R. K. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.

    2012-01-01

    This data set reports the results of physical and chemical analyses of peat core samples from the SPRUCE experimental study plots located in the S1-Bog. On August 13-15, 2012, a team of SPRUCE investigators and collaborators collected core samples of peat in the SPRUCE experimental plots. The goal was to characterize the biological, physical, and chemical characteristics of peat, and how those characteristics changed throughout the depth profile of the bog, prior to the initialization of the SPRUCE experimental warming and CO2 treatments. Cores were collected from 16 experimental plots; samples were collected from the hummock and hollow surfaces to depths of 200-300 cm in defined increments. Three replicate cores were collected from both hummock and hollow locations in each plot. The coring locations within each plot were mapped

  14. AmeriFlux CA-Qfo Quebec - Eastern Boreal, Mature Black Spruce

    DOE Data Explorer

    Margolis, Hank A. [Université Laval

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-Qfo Quebec - Eastern Boreal, Mature Black Spruce. Site Description - 49.69247° N / 74.34204° W, elevation of 387 mm, 90 - 100 yr old Black Spruce, Jack Pine, feather moss

  15. Space sequestration below ground in old-growth spruce-beech forests-signs for facilitation?

    PubMed

    Bolte, Andreas; Kampf, Friederike; Hilbrig, Lutz

    2013-01-01

    Scientists are currently debating the effects of mixing tree species for the complementary resource acquisition in forest ecosystems. In four unmanaged old-growth spruce-beech forests in strict nature reserves in southern Sweden and northern Germany we assessed forest structure and fine rooting profiles and traits (≤2 mm) by fine root sampling and the analysis of fine root morphology and biomass. These studies were conducted in selected tree groups with four different interspecific competition perspectives: (1) spruce as a central tree, (2) spruce as competitor, (3) beech as a central tree, and (4) beech as competitor. Mean values of life fine root attributes like biomass (FRB), length (FRL), and root area index (RAI) were significantly lower for spruce than for beech in mixed stands. Vertical profiles of fine root attributes adjusted to one unit of basal area (BA) exhibited partial root system stratification when central beech is growing with spruce competitors. In this constellation, beech was able to raise its specific root length (SRL) and therefore soil exploration efficiency in the subsoil, while increasing root biomass partitioning into deeper soil layers. According to relative values of fine root attributes (rFRA), asymmetric below-ground competition was observed favoring beech over spruce, in particular when central beech trees are admixed with spruce competitors. We conclude that beech fine rooting is facilitated in the presence of spruce by lowering competitive pressure compared to intraspecific competition whereas the competitive pressure for spruce is increased by beech admixture. Our findings underline the need of spatially differentiated approaches to assess interspecific competition below ground. Single-tree approaches and simulations of below-ground competition are required to focus rather on microsites populated by tree specimens as the basic spatial study area.

  16. Space sequestration below ground in old-growth spruce-beech forests—signs for facilitation?

    PubMed Central

    Bolte, Andreas; Kampf, Friederike; Hilbrig, Lutz

    2013-01-01

    Scientists are currently debating the effects of mixing tree species for the complementary resource acquisition in forest ecosystems. In four unmanaged old-growth spruce-beech forests in strict nature reserves in southern Sweden and northern Germany we assessed forest structure and fine rooting profiles and traits (≤2 mm) by fine root sampling and the analysis of fine root morphology and biomass. These studies were conducted in selected tree groups with four different interspecific competition perspectives: (1) spruce as a central tree, (2) spruce as competitor, (3) beech as a central tree, and (4) beech as competitor. Mean values of life fine root attributes like biomass (FRB), length (FRL), and root area index (RAI) were significantly lower for spruce than for beech in mixed stands. Vertical profiles of fine root attributes adjusted to one unit of basal area (BA) exhibited partial root system stratification when central beech is growing with spruce competitors. In this constellation, beech was able to raise its specific root length (SRL) and therefore soil exploration efficiency in the subsoil, while increasing root biomass partitioning into deeper soil layers. According to relative values of fine root attributes (rFRA), asymmetric below-ground competition was observed favoring beech over spruce, in particular when central beech trees are admixed with spruce competitors. We conclude that beech fine rooting is facilitated in the presence of spruce by lowering competitive pressure compared to intraspecific competition whereas the competitive pressure for spruce is increased by beech admixture. Our findings underline the need of spatially differentiated approaches to assess interspecific competition below ground. Single-tree approaches and simulations of below-ground competition are required to focus rather on microsites populated by tree specimens as the basic spatial study area. PMID:24009616

  17. The historical disturbance regime of mountain Norway spruce forests in the Western Carpathians and its influence on current forest structure and composition.

    PubMed

    Janda, Pavel; Trotsiuk, Volodymyr; Mikoláš, Martin; Bače, Radek; Nagel, Thomas A; Seidl, Rupert; Seedre, Meelis; Morrissey, Robert C; Kucbel, Stanislav; Jaloviar, Peter; Jasík, Marián; Vysoký, Juraj; Šamonil, Pavel; Čada, Vojtěch; Mrhalová, Hana; Lábusová, Jana; Nováková, Markéta H; Rydval, Miloš; Matějů, Lenka; Svoboda, Miroslav

    2017-03-15

    In order to gauge ongoing and future changes to disturbance regimes, it is necessary to establish a solid baseline of historic disturbance patterns against which to evaluate these changes. Further, understanding how forest structure and composition respond to variation in past disturbances may provide insight into future resilience to climate-driven alterations of disturbance regimes. We established 184 plots (mostly 1000 m 2 ) in 14 primary mountain Norway spruce forests in the Western Carpathians. On each plot we surveyed live and dead trees and regeneration, and cored around 25 canopy trees. Disturbance history was reconstructed by examining individual tree growth trends. The study plots were further aggregated into five groups based on disturbance history (severity and timing) to evaluate and explain its influence on forest structure. These ecosystems are characterized by a mixed severity disturbance regime with high spatiotemporal variability in severity and frequency. However, periods of synchrony in disturbance activity were also found. Specifically, a peak of canopy disturbance was found for the mid-19th century across the region (about 60% of trees established), with the most important periods of disturbance in the 1820s and from the 1840s to the 1870s. Current stand size and age structure were strongly influenced by past disturbance activity. In contrast, past disturbances did not have a significant effect on current tree density, the amount of coarse woody debris, and regeneration. High mean densities of regeneration with height >50 cm (about 1400 individuals per ha) were observed. Extensive high severity disturbances have recently affected Central European forests, spurring a discussion about the causes and consequences. We found some evidence that forests in the Western Carpathians were predisposed to recent severe disturbance events as a result of synchronized past disturbance activity, which partly homogenized size and age structure and made recent

  18. Status of viruses as biocontrol agents for spruce budworms

    Treesearch

    J. C. Cunningham

    1985-01-01

    Aerial spray trials with a variety of viruses have been conducted between 1971 and 1983 with 2656 ha (65 plots) treated to control spruce budworm in Ontario and Quebec and 424 ha (6 plots) treated to control western spruce budworm in British Columbia. Generally, results have been inconsistent and less than satisfactory, but research continues in an effort to develop a...

  19. "Super" Spruce Seedlings Continue Superior Growth for 18 Years

    Treesearch

    Hans Nienstaedt

    1981-01-01

    White spruce seedlings--20, 19, 18, and 17 inches tall--were selected among 2-2 transplants; controls from the same beds averaged 7.7 inches tall. After 18 years in the field, the selected seedlings continued to have a 30 percent height growth advantage over the controls. This note discusses how to incorporate super spruce seedlings into a tree breeding program....

  20. Structural changes in the vascular bundles of light-exposed and shaded spruce needles suffering from Mg deficiency and ozone pollution.

    PubMed

    Boxler-Baldoma, Carmen; Lütz, Cornelius; Heumann, Hans-Günther; Siefermann-Harms, Dorothea

    2006-02-01

    The correlation between structural changes of the vascular bundles and needle yellowing was examined for needles of damaged spruce (Picea abies (L.) Karst.) growing at a Mg-deficient and ozone polluted mountain site in the Central Black Forest (840m a.s.l.). In the previous year's sun-exposed needles, the following sequence of events was observed: (1) rapid needle yellowing, (2) hypertrophy and anomalous divisions of cambium cells, (3) phloem collapse, and, (4) production of atypical xylem tracheids. Under defined shade (reduction of the photosynthetically active photon flux density of the ambient light by 85-90%), the needles remained green, while the phloem collapsed completely within the first 6 weeks of shading; subsequently, a reversal of the collapse was observed. Under both light conditions, the content of Mg not bound to chlorophyll (Mg(free)) was in the range of 0.1 mg g(-1) needle dry matter, and hardly changed throughout the investigation period. After Mg fertilization, the Mg(free) level of the previous year's needles increased to 0.2 mg g(-1) dry matter, the light-exposed needles remained green, and the vascular bundles developed no anomalies. The data show that the rapid needle yellowing of ozone-exposed Mg-deficient needles did not depend on the collapse of the phloem. Mg deficiency played a key role in the development of anomalous vascular bundles under light, and also appears to explain the transient changes in sieve cell structure under shade. The role of Mg deficiency, rather than ozone pollution, in the damage of the sieve cells was confirmed in a long-term ozone exposure experiment with young clonal spruce growing under defined conditions.

  1. Evaluation of the antiaggregation pheromone, 3-methylcyclohex-2-en-1-one (MCH), to protect live spruce from spruce beetle (Coleoptera: Scolytidae) infestation in sourthern Utah.

    Treesearch

    Darrell W. Ross; Gary E. Daterman; A. Steven Munson

    2004-01-01

    The spruce beetle, Dendroctonus rufipennis (Kirby), produces the antiaggregation pheromone 3-methylcyclohex-2-en- 1-one (MCH) (Rudinsky et al. 1974). MCH has reduced the numbers of spruce beetles attracted to infested logs and synthetic semiochemical lures or reduced colonization rates throughout the beetles range (Kline

  2. Identification and functional analysis of two alternatively spliced transcripts of ABSCISIC ACID INSENSITIVE3 (ABI3) in linseed flax (Linum usitatissimum L.).

    PubMed

    Wang, Yanyan; Zhang, Tianbao; Song, Xiaxia; Zhang, Jianping; Dang, Zhanhai; Pei, Xinwu; Long, Yan

    2018-01-01

    Alternative splicing is a popular phenomenon in different types of plants. It can produce alternative spliced transcripts that encode proteins with altered functions. Previous studies have shown that one transcription factor, ABSCISIC ACID INSENSITIVE3 (ABI3), which encodes an important component in abscisic acid (ABA) signaling, is subjected to alternative splicing in both mono- and dicotyledons. In the current study, we identified two homologs of ABI3 in the genome of linseed flax. We screened two alternatively spliced flax LuABI3 transcripts, LuABI3-2 and LuABI3-3, and one normal flax LuABI3 transcript, LuABI3-1. Sequence analysis revealed that one of the alternatively spliced transcripts, LuABI3-3, retained a 6 bp intron. RNA accumulation analysis showed that all three transcripts were expressed during seed development, while subcellular localization and transgene experiments showed that LuABI3-3 had no biological function. The two normal transcripts, LuABI3-1 and LuABI3-2, are the important functional isoforms in flax and play significant roles in the ABA regulatory pathway during seed development, germination, and maturation.

  3. SPRUCE Representing Northern Peatland Microtopography and Hydrology within the Community Land Model: Modeling Archive

    DOE Data Explorer

    Shi, X. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Thornton, P. E. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Ricciuto, D. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Mao, J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Sebestyen, S. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Griffiths, N. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Bisht, G. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.

    2016-09-01

    Here we provide model code, inputs, outputs and evaluation datasets for a new configuration of the Community Land Model (CLM) for SPRUCE, which includes a fully prognostic water table calculation for SPRUCE. Our structural and process changes to CLM focus on modifications needed to represent the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of SPRUCE and other peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE).

  4. A Pine Is a Pine and a Spruce Is a Spruce – The Effect of Tree Species and Stand Age on Epiphytic Lichen Communities

    PubMed Central

    Bäcklund, Sofia; Jönsson, Mari; Strengbom, Joachim; Frisch, Andreas; Thor, Göran

    2016-01-01

    With an increasing demand for forest-based products, there is a growing interest in introducing fast-growing non-native tree species in forest management. Such introductions often have unknown consequences for native forest biodiversity. In this study, we examine epiphytic lichen species richness and species composition on the trunks of non-native Pinus contorta and compare these to the native Pinus sylvestris and Picea abies in managed boreal forests in northern Sweden across a chronosequence of age classes. Overall, we recorded a total of 66,209 lichen occurrences belonging to 57 species in the 96 studied forest stands. We found no difference in species richness of lichens between stands of P. contorta and P. sylvestris, but stands of P. abies had higher total species richness. However, species richness of lichens in stands of P. abies decreased with increasing stand age, while no such age effect was detected for P. contorta and P. sylvestris. Lichen species composition progressively diverged with increasing stand age, and in 30-year-old stands all three tree species showed species-specific assemblages. Epiphytic lichen assemblages in stands of 30-year-old P. contorta were influenced by greater basal area, canopy closure, and average diameter at breast height, P. abies stands by higher branch density and canopy closure, and stands of P. sylvestris by greater bark crevice depth. Differences in lichen species richness and composition were mainly explained by canopy closure and habitat availability, and the greater canopy closure in mature P. abies stands promoted the colonization and growth of calicioid lichen species. Our results indicate that the non-native P. contorta have similar species richness as the native P. sylvestris. The main difference in lichen species richness and composition is between P. abies and Pinus spp. in managed forests of boreal Sweden. PMID:26799558

  5. Release of suppressed red spruce using canopy gap creation—Ecological restoration in the Central Appalachians

    USGS Publications Warehouse

    Rentch, J.S.; Ford, W. Mark; Schuler, T.S.; Palmer, J.; Diggins, Corinne A.

    2016-01-01

    Red spruce (Picea rubens) and red spruce-northern hardwood mixed stands once covered as much as 300,000 ha in the Central Appalachians, but now comprise no more than 21,000 ha. Recently, interest in restoration of this forest type has increased because red spruce forests provide habitat for a number of rare animal species. Our study reports the results of an understory red spruce release experiment in hardwood-dominated stands that have a small component of understory red spruce. In 2005, 188 target spruce were identified in sample plots at six locations in central West Virginia. We projected a vertical cylinder above the crown of all target spruces, and in 2007, we performed a release treatment whereby overtopping hardwoods were treated with herbicide using a stem injection technique. Release treatments removed 0–10% (Control), 11–50% (Low), 51–89% (Medium), and ≤90% (High) of the basal area of overtopping trees. We also took canopy photographs at the time of each remeasurement in 2007, 2010, and 2013, and compared basal removal treatments and resulting 2010 canopy openness and understory light values. The high treatment level provided significantly greater six-year dbh and height growth than the other treatment levels. Based on these results, we propose that a tree-centered release approach utilizing small canopy gaps that emulate the historical, gap-phase disturbance regime provides a good strategy for red spruce restoration in hardwood forests where overstory spruce are virtually absent, and where red spruce is largely relegated to the understory.

  6. Impact of climate warming-induced increase in drought stress on successional dynamic of a coniferous forest within a dry inner Alpine environment

    NASA Astrophysics Data System (ADS)

    Schuster, R.; Zeisler, B.; Oberhuber, W.

    2012-04-01

    Climate sensitivity of tree growth will effect the development of forest ecosystems under a warmer and drier climate by changing species composition and inducing shifts in forest distribution. We applied dendroclimatological techniques to determine impact of climate warming on radial stem growth of three native and widespread coniferous tree species of the central Austrian Alps (Norway spruce, Picea abies; European larch, Larix decidua; Scots pine, Pinus sylvestris), which grow intermixed at dry-mesic sites within a dry inner Alpine environment (750 m a.s.l., Tyrol, Austria). Time series of annual increments were developed from > 250 saplings and mature trees. Radial growth response to recent climate warming was explored by means of moving response functions (MRF) and evaluation of trends in basal area increment (BAI) for the period 1911 - 2009. Climate-growth relationships revealed significant differences among species in response to water availability. While precipitation in May - June favoured radial growth of spruce and larch, Scots pine growth mainly depended on April - May precipitation. Spruce growth was most sensitive to May - June temperature (inverse relationship). Although MRF coefficients indicated increasing drought sensitivity of all species, which is most likely related to intensified belowground competition for scarce water with increasing stand density and higher evapotranspiration rates due to climate warming, recent BAI trends strikingly differed among species. While BAI of larch was distinctly declining, spruce showed steadily increasing BAI and quite constant BAI was maintained in drought adapted Scots pine, although at lowest level of all species. Furthermore, more favourable growing conditions of spruce in recent decades are indicated by scattered natural regeneration and higher growth rates of younger trees during first decades of their lifespan. Because human interference and wildlife stock is negligible within the study area, results

  7. Simulating stand climate, phenology, and photosynthesis of a forest stand with a process-based growth model.

    PubMed

    Rötzer, Thomas; Leuchner, Michael; Nunn, Angela J

    2010-07-01

    In the face of climate change and accompanying risks, forest management in Europe is becoming increasingly important. Model simulations can help to understand the reactions and feedbacks of a changing environment on tree growth. In order to simulate forest growth based on future climate change scenarios, we tested the basic processes underlying the growth model BALANCE, simulating stand climate (air temperature, photosynthetically active radiation (PAR) and precipitation), tree phenology, and photosynthesis. A mixed stand of 53- to 60-year-old Norway spruce (Picea abies) and European beech (Fagus sylvatica) in Southern Germany was used as a reference. The results show that BALANCE is able to realistically simulate air temperature gradients in a forest stand using air temperature measurements above the canopy and PAR regimes at different heights for single trees inside the canopy. Interception as a central variable for water balance of a forest stand was also estimated. Tree phenology, i.e. bud burst and leaf coloring, could be reproduced convincingly. Simulated photosynthesis rates were in accordance with measured values for beech both in the sun and the shade crown. For spruce, however, some discrepancies in the rates were obvious, probably due to changed environmental conditions after bud break. Overall, BALANCE has shown to respond to scenario simulations of a changing environment (e.g., climate change, change of forest stand structure).

  8. Sticky-board trap for measuring dispersal of spruce budworm larvae

    Treesearch

    Daniel T. Jennings; Mark W. Houseweart

    1983-01-01

    Describes a new sticky-board trap for measuring early-larval dispersal of the spruce budworm, Choristoneura fumiferana (Clem.), and evaluates trap-board color and screened versus unscreened traps. Dispersing spruce budworm larvae showed no preference for trap color; fewer nontarget arthropods were caught on dark-colored than on light-colored traps....

  9. A conifer ABI3-interacting protein plays important roles during key transitions of the plant life cycle.

    PubMed

    Zeng, Ying; Zhao, Tiehan; Kermode, Allison R

    2013-01-01

    ABI3 (for ABSCISIC ACID INSENSITIVE3), a transcription factor of the abscisic acid signal transduction pathway, plays a major role during seed development, dormancy inception, and dormancy maintenance. This protein appears to also function in meristematic and vegetative plant tissues and under certain stress conditions. We have isolated the ABI3 gene ortholog (CnABI3) from yellow cedar (Callitropsis nootkatensis) and found that it was functionally similar to other ABI3 genes of angiosperms. Here, we report that using a yeast (Saccharomyces cerevisiae) two-hybrid approach, we have identified another protein of yellow cedar (CnAIP2; for CnABI3 INTERACTING PROTEIN2) that physically interacts with CnABI3. Functional analyses revealed that CnAIP2 plays important roles during key transitions in the plant life cycle: (1) CnAIP2 impaired seed development and reduced seed dormancy; (2) CnAIP2 promoted root development, particularly the initiation of lateral roots, and the CnAIP2 gene promoter was exquisitely auxin sensitive; and (3) CnAIP2 promoted the transition from vegetative growth to reproductive initiation (i.e. flowering). The nature of the effects of CnAIP2 on these processes and other evidence place CnAIP2 in the category of a "global" regulator, whose actions are antagonistic to those of ABI3.

  10. The current distribution, predictive modeling, and restoration potential of red spruce in West Virginia

    Treesearch

    Gregory Nowacki; Dan Wendt

    2010-01-01

    The environmental relationships of red spruce (Picea rubens Sarg.) were assessed in east-central West Virginia. Although many significant relationships existed, red spruce was most strongly associated with elevation, climate, and soil moisture factors. Specifically, red spruce was positively associated with elevation, number of frost days, mean...

  11. Factors influencing northern spruce engraver colonization of white spruce slash in interior Alaska

    Treesearch

    Christopher J. Fettig; Roger E. Burnside; Chistopher J. Hayes; James J. Kruse; Nicholas J. Lisuzzo; Stephen R. McKelvey; Sylvia R. Mori; Stephen K. Nickel; Mark E. Schultz

    2013-01-01

    In interior Alaska, increased use of mechanical fuel reduction treatments, increased interests in the use of wood energy systems as alternatives to fossil fuels, and elevated populations of northern spruce engraver, Ips perturbatus (Eichhoff), have raised concerns regarding the impact of this bark beetle to forest resources. We conducted a large-...

  12. Spatial Patterns of first spruce bark beetle (Ips typographus L.) infestation of standing Norway spruce (Picea abies [L.] Karst.) after heavy storm damage in Switzerland

    Treesearch

    R. Gall; A. Heimgartner

    2003-01-01

    On December 26, 1999, Switzerland was struck by the most severe storm in the country's history. An extensive dataset from the Canton Berne allowed us to test the hypothesis that in regions where windthrown wood was cleared a) the intensity of the first Ips typographus-infestation on standing trees after the storm depends on the distance from...

  13. Sargent's fir hybrid: Abies amabilis x lasicarpa

    Treesearch

    William B. Critchfield

    1977-01-01

    On a short trip into the northern Olympic Mountains of Washington in the summer of 1896, Professor Charles Sprague Sargent found a fir tree that he thought might be a natural hybrid between Abies amabilis (Dougl.) Forbes and A. lasiocarpa (Hook.) Nutt. The founder and Director of the Arnold Arboretum, Sargent was generally...

  14. [Community stability for spruce-fir forest at different succession stages in Changbai Mountains, Northeast China].

    PubMed

    Zhang, Meng-tao; Zhang, Qing; Kang, Xin-gang; Yang, Ying-jun; Xu, Guang; Zhang, Li-xin

    2015-06-01

    Based on the analysis of three forest communities (polar-birch secondary forest, spruce-fir mixed forest, spruce-fir near pristine forest) in Changbai Mountains, a total of 22 factors of 5 indices, including the population regeneration, soil fertility (soil moisture and soli nutrient), woodland productivity and species diversity that reflected community characteristics were used to evaluate the stability of forest community succession at different stages by calculating subordinate function values of a model based on fuzzy mathematics. The results that the indices of population regeneration, soli nutrient, woodland productivity and species diversity were the highest in the spruce-fir mixed forest, and the indices of soil moisture were the highest in the spruce-fir near-pristine forest. The stability of three forest communities was in order of natural spruce-fir mixed forest > spruce-fir near pristine forest > polar-birch secondary forest.

  15. Fertilization of black spruce or poor site peatland in Minnesota.

    Treesearch

    David H. Alban; Richard F. Watt

    1981-01-01

    Fertilization of poor site black spruce on organic soil with various rates of nitrogen and phosphorus increased height and diameter growth from 2 to 4 times. The growth response declined with time but was still apparent 16 years after fertilization. Shrub biomass and coverage, and nutrient levels of spruce foliage were strongly affected by fertilization.

  16. Red-breasted nuthatches detect early increases in spruce budworm populations

    Treesearch

    Hewlette S. Crawford; Daniel T. Jennings; Timothy L. Stone

    1990-01-01

    Early suppression .of increasing spruce budworm populations is essential to prevent epidemics; however, early changes in budworm numbers are difficult to detect. An effective and inexpensive method to detect early increases is needed. Red-breasted nuthatches eat more spruce budworm larvae and pupae as the insect increases in number. We estimated the number of large...

  17. Pulpwood, pesticides, and people. Controlling spruce budworm in northeastern North America

    NASA Astrophysics Data System (ADS)

    Irland, Lloyd C.

    1980-09-01

    The eastern spruce budworm is a major forest pest over the continental range of the spruce-fir forest ecosystem and its southern ecotonal fringes in Canada and the northeastern United States. The current budworm outbreak illustrates the difficulty of arriving at economically sound and publicly acceptable forest pest control policies. Policies ranging from no use of chemical control to annual widespread crop protection have been adopted. There is no single all-around “best” policy for spruce budworm control. Chemical spray programs have demonstrably slowed the normal progress of mortality due to budworm, but have not eradicated the pest. Where industry remains heavily dependent on a fully utilized spruce-fir forest, no easy, low-cost solutions to the budworm problem exist. Reliance on spraying will have to be reduced and plans made to utilize higher levels of tree mortality and to manage the forest for lower future vulnerability.

  18. Interviewing Children with Acquired Brain Injury (ABI)

    ERIC Educational Resources Information Center

    Boylan, Anne-Marie; Linden, Mark; Alderdice, Fiona

    2009-01-01

    Research into the lives of children with acquired brain injury (ABI) often neglects to incorporate children as participants, preferring to obtain the opinions of the adult carer (e.g. McKinlay et al., 2002). There has been a concerted attempt to move away from this position by those working in children's research with current etiquette…

  19. Ethanol exposure can inhibit red spruce ( Picea rubens ) seed germination

    Treesearch

    John R. Butnor; Brittany M. Verrico; Victor Vankus; Stephen R. Keller

    2018-01-01

    Flotation of seeds in solvents is a common means of separating unfilled and filled seeds. While a few protocols for processing red spruce (Picea rubens) seeds recommend ethanol flotation, delayed and reduced germination have been reported. We conducted an ethanol bioassay on seeds previously stored at -20°C to quantify the concentration required to separate red spruce...

  20. The isolated red spruce communities of Virginia and West Virginia

    Treesearch

    Harold S. Adams; Steven Stephenson; Adam W. Rollins; Mary Beth Adams

    2010-01-01

    Quantitative data on the composition and structure of coniferous forests containing red spruce in the mountains of central and southwestern Virginia and eastern central West Virginia, based on sampling carried out in 67 stands during the 1982 to 1984 field seasons, are provided. The average importance value ([relative basal area + relative density/2]) of red spruce was...

  1. Tomato ASR1 abrogates the response to abscisic acid and glucose in Arabidopsis by competing with ABI4 for DNA binding.

    PubMed

    Shkolnik, Doron; Bar-Zvi, Dudy

    2008-05-01

    The manipulation of transacting factors is commonly used to achieve a wide change in the expression of a large number of genes in transgenic plants as a result of a change in the expression of a single gene product. This is mostly achieved by the overexpression of transactivator or repressor proteins. In this study, it is demonstrated that the overexpression of an exogenous DNA-binding protein can be used to compete with the expression of an endogenous transcription factor sharing the same DNA-binding sequence. Arabidopsis was transformed with cDNA encoding tomato abscisic acid stress ripening 1 (ASR1), a sequence-specific DNA protein that has no orthologues in the Arabidopsis genome. ASR1-overexpressing (ASR1-OE) plants display an abscisic acid-insensitive 4 (abi4) phenotype: seed germination is not sensitive to inhibition by abscisic acid (ABA), glucose, NaCl and paclobutrazol. ASR1 binds coupling element 1 (CE1), a cis-acting element bound by the ABI4 transcription factor, located in the ABI4-regulated promoters, including that of the ABI4 gene. Chromatin immunoprecipitation demonstrates that ASR1 is bound in vivo to the promoter of the ABI4 gene in ASR1-OE plants, but not to promoters of genes known to be regulated by the transcription factors ABI3 or ABI5. Real-time polymerase chain reaction (PCR) analysis confirmed that the expression of ABI4 and ABI4-regulated genes is markedly reduced in ASR1-OE plants. Therefore, it is concluded that the abi4 phenotype of ASR1-OE plants is the result of competition between the foreign ASR1 and the endogenous ABI4 on specific promoter DNA sequences. The biotechnological advantage of using this approach in crop plants from the Brassicaceae family to reduce the transactivation activity of ABI4 is discussed.

  2. Spruce Budworm (Choristoneura fumiferana) Performance in Relation to Foliar Chemistry of its Host Plants

    Treesearch

    William John.  Mattson

    1983-01-01

    Spruce budworm growth was best on balsam fir, poorest on lowland black spruce, and intermediate on upland white and black spruce. Growth was consistently, positively linked to foliar N and negatively linked to Fe, K, and select terpenes. Survival rates were not strongly, nor consistently linked to any of the measured foliar chemical traits.

  3. Acidic deposition and red spruce in the central and southern Appalachians, past and present

    Treesearch

    Mary Beth. Adams

    2010-01-01

    During the 1980s, the Spruce-Fir Research Program, part of the Congressionally mandated National Atmospheric Precipitation Assessment Program (NAPAP), investigated the links between acidic deposition and decline and mortality of red spruce forests in the eastern United States. The Spruce-Fir Research Program was highly successful in advancing the state of knowledge on...

  4. AmeriFlux CA-Qc2 Quebec - 1975 Harvested Black Spruce (HBS75)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margolis, Hank

    This is the AmeriFlux version of the carbon flux data for the site CA-Qc2 Quebec - 1975 Harvested Black Spruce (HBS75). Site Description - Quebec - Eastern Boreal; Black Spruce forest harvested in 1975.

  5. Pulpability of beetle-killed spruce. Forest Service research paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, G.M.; Bormett, D.W.; Sutherland, N.R.

    1996-08-01

    Infestation of the Dendroctonus rufipennis beetle has resulted in large stands of dead and dying timber on the Kenai Peninsula in Alaska. Tests were conducted to evaluate the value of beetle-killed spruce as pulpwood. The results showed that live and dead spruce wood can be pulped effectively. The two least deteriorated classes and the most deteriorated class of logs had similar characteristics when pulped; the remaining class had somewhat poorer pulpability.

  6. Comparing modern and presettlement forest dynamics of a subboreal wilderness: Does spruce budworm enhance fire risk?

    USGS Publications Warehouse

    Sturtevant, Brian R.; Miranda, Brian R.; Shinneman, Douglas J.; Gustafson, Eric J.; Wolter, Peter T.

    2012-01-01

    Insect disturbance is often thought to increase fire risk through enhanced fuel loadings, particularly in coniferous forest ecosystems. Yet insect disturbances also affect successional pathways and landscape structure that interact with fire disturbances (and vice-versa) over longer time scales. We applied a landscape succession and disturbance model (LANDIS-II) to evaluate the relative strength of interactions between spruce budworm (Choristoneura fumiferana) outbreaks and fire disturbances in the Boundary Waters Canoe Area (BWCA) in northern Minnesota (USA). Disturbance interactions were evaluated for two different scenarios: presettlement forests and fire regimes vs. contemporary forests and fire regimes. Forest composition under the contemporary scenario trended toward mixtures of deciduous species (primarily Betula papyrifera and Populus spp.) and shade-tolerant conifers (Picea mariana, Abies balsamea, Thuja occidentalis), with disturbances dominated by a combination of budworm defoliation and high-severity fires. The presettlement scenario retained comparatively more “big pines” (i.e., Pinus strobus, P. resinosa) and tamarack (L. laricina), and experienced less budworm disturbance and a comparatively less-severe fire regime. Spruce budworm disturbance decreased area burned and fire severity under both scenarios when averaged across the entire 300-year simulations. Contrary to past research, area burned and fire severity during outbreak decades were each similar to that observed in non-outbreak decades. Our analyses suggest budworm disturbances within forests of the BWCA have a comparatively weak effect on long-term forest composition due to a combination of characteristics. These include strict host specificity, fine-scaled patchiness created by defoliation damage, and advance regeneration of its primary host, balsam fir (A. balsamea) that allows its host to persist despite repeated disturbances. Understanding the nature of the three-way interaction

  7. Climate-growth relationships along a black spruce toposequence in Interior Alaska

    Treesearch

    Jane M. Wolken; Daniel H. Mann; Thomas A. Grant; Andrea H. Lloyd; T. Scott Rupp; Teresa N. Hollingsworth

    2016-01-01

    Despite its wide geographic distribution and important role in boreal forest fire regimes, little is known about the climate-growth relationships of black spruce (Picea mariana [Mill.] B.S.P.). We used site- and tree-level analyses to evaluate the radial growth responses to climate of black spruce growing...

  8. Bareroot nursery production and practices for white spruce: a literature review.

    Treesearch

    A.A. Alm; V.M. Vaughn; H.M. Rauscher

    1991-01-01

    This summary of white spruce literature covers seed collection and treatment, nursery cultural practices, seedling growth patterns and measurements of seedling quality. It includes information relevant to bareroot white spruce but does not cover containerized seedlings. It is intended for forest land managers, researchers and bareroot forest nursery managers.

  9. 19 CFR 143.7 - Revocation of ABI participation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Risk of significant harm to system. If the participant's continued use of ABI would pose a potential risk of significant harm to the integrity and functioning of the system, the Director, User Support... appeal the revocation to the Assistant Commissioner, Information and Technology, within 10 days following...

  10. The Status of White Spruce Plantations on Lake States National Forests

    Treesearch

    Glen W. Erickson; H. Michael Rauscher

    1985-01-01

    Summarizes information about white spruce plantations as of 1982. Based on average site index, the Superior National Forest in Minnesota and the Hiawatha and Huron-Manistee in Michigan contain climate-soil-seed source complexes that are, on the average, less productive for white spruce than on the other National Forests

  11. Effect of soil and vegetation on growth of planted white spruce.

    Treesearch

    Donald A. Perala

    1987-01-01

    White spruce container stock grew better on a sandy loam soil than on a silty clay, and much better without herbaceous competitions. Herbaceous competition was less vigorous on the sandy loam soil following glyphosate treatment, but was more vigorous on the silty clay. Certain spruce genotypes excelled under different field environments.

  12. AFP2 as the novel regulator breaks high-temperature-induced seeds secondary dormancy through ABI5 and SOM in Arabidopsis thaliana.

    PubMed

    Chang, Guanxiao; Wang, Chuntao; Kong, Xiangxiang; Chen, Qian; Yang, Yongping; Hu, Xiangyang

    2018-06-18

    Imbibed seeds monitor environmental and endogenous signals to break dormancy and initiate growth under appropriate conditions. In Arabidopsis thaliana, high temperature (HT) induces secondary seed dormancy, but the underlying mechanism remains unclear. In this study, we found that the abi5-1 mutant was insensitive to high temperature, whereas plants overexpressing ABI5 displayed sensitivity. We then identified ABA-insensitive five-binding protein 2 (AFP2), which interacts with ABI5 and is involved in HT-induced secondary seed dormancy. Under HT stress, the loss-of-function afp2 mutant showed lower seeds germination frequency, reversely, AFP2 overexpressing lines (OE-AFP2) showed high germination frequency. Similar to the abi5 mutant, the crossed OE-AFP2 abi5 or afp2 abi5 lines showed high germination under HT, suggesting that ABI5 is epistatic to AFP2. SOM is reported to negatively regulate seeds germination by altering GA/ABA metabolism, here we found that AFP2 and ABI5 altered SOM transcription. Specifically, overexpressing AFP2 suppressed SOM transcription, resulting in high expression of GA biosynthesis-related genes and low expression of ABA biosynthesis-related genes, ultimately promoting seed germination under HT. Thus, our data demonstrate that AFP2 is a novel regulator to control HT-induced secondary seed dormancy through ABI5 and SOM. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Atmospheric nitrous oxide uptake in boreal spruce forest soil

    NASA Astrophysics Data System (ADS)

    Siljanen, Henri; Welti, Nina; Heikkinen, Juha; Biasi, Christina; Martikainen, Pertti

    2017-04-01

    Nitrous oxide (N2O) uptake from the atmosphere has been found in forest soils but environmental factors controlling the uptake and its atmospheric impact are poorly known. We measured N2O fluxes over growing season in a boreal spruce forest having control plots and plots with long nitrogen fertilization history. Also methane (CH4) fluxes were measured to compare the atmospheric impact of N2O and CH4fluxes. Soil chemical and physical characteristics and climatic conditions were measured as background data. Nitrous oxide consumption and uptake mechanisms were measured in complementary laboratory incubation experiments using stable isotope approaches. Gene transcript numbers of nitrous oxide reductase (nosZ) I and II genes were quantified along the incubation with elevated N2O atmosphere. The spruce forests without fertilization history showed highest N2O uptake rates whereas pine forest had low emissions. Nitrous oxide uptake correlated positively with soil moisture, high soil silt content, and low temperature. Nitrous oxide uptake varied seasonally, being highest in spring and autumn when temperature was low and water content was high. The spruce forest was sink for CH4.Methane fluxes were decoupled from the N2O fluxes (i.e. when the N2O uptake was high the CH4 uptake was low). By using GWP approach, the cooling effect of N2O uptake was on average 30% of the cooling effect of CH4 uptake in spruce forest without fertilization. Anoxic conditions promoted higher N2O consumption rates in all soils. Gene transcription of nosZ-I genes were activated at beginning of the incubation. However, atypical/clade-II nosZ was not detected. These results suggests, that also N2O uptake rates have to be considered when accounting for the GHG budget of spruce forests.

  14. Comparison of naturally and synthetically baited spruce beetle trapping systems in the central Rocky Mountains

    Treesearch

    E. Matthew Hansen; Jim C. Vandygriff; Robert J. Cain; David Wakarchuk

    2006-01-01

    We compared naturally baited trapping systems to synthetically baited funnel traps and fallen trap trees for suppressing preoutbreak spruce beetle, Dendroctonus rufipennis Kirby, populations. Lures for the traps were fresh spruce (Picea spp.) bolts or bark sections, augmented by adding female spruce beetles to create secondary attraction. In 2003, we...

  15. Temperature, precipitation and biotic interactions as determinants of tree seedling recruitment across the tree line ecotone.

    PubMed

    Tingstad, Lise; Olsen, Siri Lie; Klanderud, Kari; Vandvik, Vigdis; Ohlson, Mikael

    2015-10-01

    Seedling recruitment is a critical life history stage for trees, and successful recruitment is tightly linked to both abiotic factors and biotic interactions. In order to better understand how tree species' distributions may change in response to anticipated climate change, more knowledge of the effects of complex climate and biotic interactions is needed. We conducted a seed-sowing experiment to investigate how temperature, precipitation and biotic interactions impact recruitment of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) seedlings in southern Norway. Seeds were sown into intact vegetation and experimentally created gaps. To study the combined effects of temperature and precipitation, the experiment was replicated across 12 sites, spanning a natural climate gradient from boreal to alpine and from sub-continental to oceanic. Seedling emergence and survival were assessed 12 and 16 months after sowing, respectively, and above-ground biomass and height were determined at the end of the experiment. Interestingly, very few seedlings were detected in the boreal sites, and the highest number of seedlings emerged and established in the alpine sites, indicating that low temperature did not limit seedling recruitment. Site precipitation had an overall positive effect on seedling recruitment, especially at intermediate precipitation levels. Seedling emergence, establishment and biomass were higher in gap plots compared to intact vegetation at all temperature levels. These results suggest that biotic interactions in the form of competition may be more important than temperature as a limiting factor for tree seedling recruitment in the sub- and low-alpine zone of southern Norway.

  16. In vitro binding of Sorghum bicolor transcription factors ABI4 and ABI5 to a conserved region of a GA 2-OXIDASE promoter: possible role of this interaction in the expression of seed dormancy.

    PubMed

    Cantoro, Renata; Crocco, Carlos Daniel; Benech-Arnold, Roberto Luis; Rodríguez, María Verónica

    2013-12-01

    The precise adjustment of the timing of dormancy release according to final grain usage is still a challenge for many cereal crops. Grain sorghum [Sorghum bicolor (L.) Moench] shows wide intraspecific variability in dormancy level and susceptibility to pre-harvest sprouting (PHS). Both embryo sensitivity to abscisic acid (ABA) and gibberellin (GA) metabolism play an important role in the expression of dormancy of the developing sorghum grain. In previous works, it was shown that, simultaneously with a greater embryo sensitivity to ABA and higher expression of SbABA-INSENSITIVE 4 (SbABI4) and SbABA-INSENSITIVE 5 (SbABI5), dormant grains accumulate less active GA4 due to a more active GA catabolism. In this work, it is demonstrated that the ABA signalling components SbABI4 and SbABI5 interact in vitro with a fragment of the SbGA 2-OXIDASE 3 (SbGA2ox3) promoter containing an ABA-responsive complex (ABRC). Both transcription factors were able to bind the promoter, although not simultaneously, suggesting that they might compete for the same cis-acting regulatory sequences. A biological role for these interactions in the expression of dormancy of sorghum grains is proposed: either SbABI4 and/or SbABI5 activate transcription of the SbGA2ox3 gene in vivo and promote SbGA2ox3 protein accumulation; this would result in active degradation of GA4, thus preventing germination of dormant grains. A comparative analysis of the 5'-regulatory region of GA2oxs from both monocots and dicots is also presented; conservation of the ABRC in closely related GA2oxs from Brachypodium distachyon and rice suggest that these species might share the same regulatory mechanism as proposed for grain sorghum.

  17. Mapping vulnerability of spruce-fir stands in the Northeast to spruce budworm attack

    Treesearch

    Thomas F. McLintock

    1949-01-01

    Once again a spruce budworm epidemic threatens to destroy large volumes of timber in the Northeast. One defense against the budworm is to cut and utilize trees in those stands in which the budworms are most apt to feed and breed. In this report the author presents three practical methods of determining what trees or stands should be cut first.

  18. SPRUCE Porewater Chemistry Data for Experimental Plots Beginning in 2013

    DOE Data Explorer

    Griffiths, N. A. [Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Sebestyen, S. D. [Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.

    2016-01-01

    This data set reports the chemistry of porewater in the SPRUCE plots located in the S1 bog. Sample collection and analyses started in August of 2013 and will continue for the duration of the experiment. Results will be added to this data set and released to the public periodically as quality assurance and publication of results are accomplished. These data are the pre- and post-treatment data from the warming and elevated CO2 treatments associated with the SPRUCE experiment. There are 10 experimental plots in SPRUCE: 5 temperature treatments (+0, +2.25, +4.5, +6.75, +9°C) at ambient CO2, and the same 5 temperature treatments at elevated CO2 (+500 ppm). There are 7 additional ambient plots without experimental enclosures, and thus a total of 17 plots.

  19. Spin-orbit coupling enhanced superconductivity in Bi-rich compounds ABi3 (A = Sr and Ba)

    PubMed Central

    Shao, D. F.; Luo, X.; Lu, W. J.; Hu, L.; Zhu, X. D.; Song, W. H.; Zhu, X. B.; Sun, Y. P.

    2016-01-01

    Recently, Bi-based compounds have attracted attentions because of the strong spin-orbit coupling (SOC). In this work, we figured out the role of SOC in ABi3 (A = Sr and Ba) by theoretical investigation of the band structures, phonon properties, and electron-phonon coupling. Without SOC, strong Fermi surface nesting leads to phonon instabilities in ABi3. SOC suppresses the nesting and stabilizes the structure. Moreover, without SOC the calculation largely underestimates the superconducting transition temperatures (Tc), while with SOC the calculated Tc are very close to those determined by measurements on single crystal samples. The SOC enhanced superconductivity in ABi3 is due to not only the SOC induced phonon softening, but also the SOC related increase of electron-phonon coupling matrix elements. ABi3 can be potential platforms to construct heterostructure of superconductor/topological insulator to realize topological superconductivity. PMID:26892681

  20. Resistance to Phytophthora cinnamomi in the Genus Abies

    Treesearch

    John Frampton; Fikret Isik; Mike Benson; Jaroslav Kobliha; Jan Stjskal

    2012-01-01

    A major limiting factor for the culture of true firs as Christmas trees is their susceptibility to Oomycete species belonging to the genus Phytophthora. In North Carolina alone, the Fraser fir (Abies fraseri [Pursh] Poir.) Christmas tree industry loses 6 to 7 million dollars annually to root rot primarily caused by ...

  1. Response of Lutz, Sitka, and white spruce to attack by Dendroctonus rufipennis (Coleoptera: Scolytidae) and blue stain fungi

    Treesearch

    Richard A. Werner; Barbara L. Illman

    1994-01-01

    Mechanical wounding and wounding plus inoculation with a blue-stain fungus, Leptographium abietinum (Peck), associated with the spruce beetle, Dendroctonus rufipennis (Kirby), caused an induced reaction zone or lesion around the wound sites in Lutz spruce, Picea lutzii Little, Sitka spruce, P. sitchensis (Bong.) Carr., and white spruce, P. glauca (Moench) Voss, in...

  2. Release of Suppressed Red Spruce Using Canopy Gap Creation--Ecological Restoration in the Central Appalachians

    Treesearch

    J.S. Rentch; W.M. Ford; Thomas Schuler; Jeff Palmer; C.A. Diggins

    2016-01-01

    Red spruce (Picea rubens) and red spruce-northern hardwood mixed stands once covered as much as 300,000 ha in the Central Appalachians, but now comprise no more than 21,000 ha. Recently, interest in restoration of this forest type has increased because red spruce forests provide habitat for a number of rare animal species. Our study reports the...

  3. Minimal approaches to genetic improvement of growth rates in white spruce

    Treesearch

    D.T. Lester

    1973-01-01

    Several features of central importance to genetic improvement of white spruce have been demonstrated by tree breeders. First, white spruce is genetically a highly variable species and much of the existent variation can be readily incorporated in planting stock (Jeffers 1969, Holst and Teich 1969). Second, local seed often is not the best for rapid growth (Nienstaedt...

  4. Structure, production and resource use in some old-growth spruce/fir forests in the front range of the Rocky Mountains, USA

    USGS Publications Warehouse

    Binkley, Dan; Olsson, U.; Rochelle, R.; Stohlgren, T.; Nikolov, N.

    2003-01-01

    Old-growth forests of Engelmann spruce (Picea engelmannii Parry ex. Engelm.) and subalpine fir (Abies lasiocarpa (Hook.) Nutt.) dominate much of the landscape of the Rocky Mountains. We characterized the structure, biomass and production of 18 old-growth (200-450-year-old) spruce/fir forests in Rocky Mountain National Park, Colorado, as well as the stand-level supply and use of light and nitrogen. Stands were chosen to span a broad range of elevation, aspect, and topography. Aboveground tree biomass in these old-growth forests averaged 253 Mg/ha (range 130-488 Mg/ha), with aboveground net primary production of 3700 kg ha-1 yr-1 (range from 2700 to 5200 kg ha-1 yr-1). Within stands, trees >35 cm in diameter accounted for 70% of aboveground biomass, but trees <35 cm contributed 70% of the production of woody biomass. Differences in slope and aspect among sites resulted in a range of incoming light from 58 to 74 TJ ha-1 yr-1, and tree canopies intercepted an average of 71% of incoming light (range 50-90%). Aboveground net primary production (ANPP) of trees did not relate to the supply of light or N, but ANPP correlated strongly with the amount of light and N used (r2 = 0.45-0.54, P < 0.01). Uptake of 1 kg of N was associated with about 260 kg of ANPP, and one TJ of intercepted shortwave radiation produced about 78 kg of ANPP. Across these old-growth stands, stands with greater biomass showed higher rates of both ANPP and resource use; variation in aboveground biomass was associated with 24% of the variation in N use (P = 0.04), 44% of the light use (P = 0.003), and 45% of the ANPP (P = 0.002). ?? 2002 Elsevier Science B.V. All rights reserved.

  5. Spruce beetle in the Rockies

    Treesearch

    J. M. Schmid; R. H. Frye

    1977-01-01

    This report summarizes the literature on the spruce beetle in the western United States, primarily in the Rocky Mountains. Information is presented on life history and behavior, host relationships, mortality agents and impacts of infestations. A section on suppression details the current status of chemicals, pheromones, trap trees and silvicultural treatments. The...

  6. Pinus glabra Walt. Spruce Pine

    Treesearch

    Susan V. Kossuth; J.L. Michael

    1991-01-01

    Spruce pine (Pinus glabra), also called cedar pine, Walter pine, or bottom white pine, is a medium-sized tree that grows in limited numbers in swamps, river valleys, on hummocks, and along river banks of the southern Coastal Plain. Its wood is brittle, close-grained, nondurable, and is of limited commercial importance.

  7. Densities of breeding birds and changes in vegetation in an alaskan boreal forest following a massive disturbance by spruce beetles

    USGS Publications Warehouse

    Matsuoka, S.M.; Handel, C.M.; Ruthrauff, D.R.

    2001-01-01

    We examined bird and plant communities among forest stands with different levels of spruce mortality following a large outbreak of spruce beetles (Dendroctonus rufipennis (Kirby)) in the Copper River Basin, Alaska. Spruce beetles avoided stands with black spruce (Picea mariana) and selectively killed larger diameter white spruce (Picea glauca), thereby altering forest structure and increasing the dominance of black spruce in the region. Alders (Alnus sp.) and crowberry (Empetrum nigrum) were more abundant in areas with heavy spruce mortality, possibly a response to the death of overstory spruce. Grasses and herbaceous plants did not proliferate as has been recorded following outbreaks in more coastal Alaskan forests. Two species closely tied to coniferous habitats, the tree-nesting Ruby-crowned Kinglet (Regulus calendula) and the red squirrel (Tamiasciurus hudsonicus), a major nest predator, were less abundant in forest stands with high spruce mortality than in low-mortality stands. Understory-nesting birds as a group were more abundant in forest stands with high levels of spruce mortality, although the response of individual bird species to tree mortality was variable. Birds breeding in stands with high spruce mortality likely benefited reproductively from lower squirrel densities and a greater abundance of shrubs to conceal nests from predators.

  8. Genetical Genomics Identifies the Genetic Architecture for Growth and Weevil Resistance in Spruce

    PubMed Central

    Porth, Ilga; White, Richard; Jaquish, Barry; Alfaro, René; Ritland, Carol; Ritland, Kermit

    2012-01-01

    In plants, relationships between resistance to herbivorous insect pests and growth are typically controlled by complex interactions between genetically correlated traits. These relationships often result in tradeoffs in phenotypic expression. In this study we used genetical genomics to elucidate genetic relationships between tree growth and resistance to white pine terminal weevil (Pissodes strobi Peck.) in a pedigree population of interior spruce (Picea glauca, P. engelmannii and their hybrids) that was growing at Vernon, B.C. and segregating for weevil resistance. Genetical genomics uses genetic perturbations caused by allelic segregation in pedigrees to co-locate quantitative trait loci (QTLs) for gene expression and quantitative traits. Bark tissue of apical leaders from 188 trees was assayed for gene expression using a 21.8K spruce EST-spotted microarray; the same individuals were genotyped for 384 SNP markers for the genetic map. Many of the expression QTLs (eQTL) co-localized with resistance trait QTLs. For a composite resistance phenotype of six attack and oviposition traits, 149 positional candidate genes were identified. Resistance and growth QTLs also overlapped with eQTL hotspots along the genome suggesting that: 1) genetic pleiotropy of resistance and growth traits in interior spruce was substantial, and 2) master regulatory genes were important for weevil resistance in spruce. These results will enable future work on functional genetic studies of insect resistance in spruce, and provide valuable information about candidate genes for genetic improvement of spruce. PMID:22973444

  9. How damage to balsam fir develops after a spruce budworm epidemic

    Treesearch

    Thomas F. McLintock

    1955-01-01

    From 1948 to 1952 a light to medium spruce budworm infestation occurred in the spruce-fir forests of northern Maine. During this period both the degree of infestation and the acreage affected fluctuated considerably, but the population remained below the damage level. In 1953 there was a general reduction in budworm population in all portions of northern Maine except a...

  10. Historical reconstructions of high-elevation spruce forests in the Appalachian mountains

    Treesearch

    Carolyn A. Copenheaver

    2010-01-01

    The objective of this study was to determine whether the historical distribution of a small, high-elevation red spruce stand could be reconstructed based upon historical records. The study site was Giles County, VA, where a small stand of red spruce exists today, indicating that it has been in this location for as long as the written record exists for this region....

  11. Population dynamics in changing environments: the case of an eruptive forest pest species.

    PubMed

    Kausrud, Kyrre; Okland, Bjørn; Skarpaas, Olav; Grégoire, Jean-Claude; Erbilgin, Nadir; Stenseth, Nils Chr

    2012-02-01

    In recent decades we have seen rapid and co-occurring changes in landscape structure, species distributions and even climate as consequences of human activity. Such changes affect the dynamics of the interaction between major forest pest species, such as bark beetles (Coleoptera: Curculionidae, Scolytinae), and their host trees. Normally breeding mostly in broken or severely stressed spruce; at high population densities some bark beetle species can colonise and kill healthy trees on scales ranging from single trees in a stand to multi-annual landscape-wide outbreaks. In Eurasia, the largest outbreaks are caused by the spruce bark beetle, Ips typographus (Linnaeus), which is common and shares a wide distribution with its main host, Norway spruce (Picea abies Karst.). A large literature is now available, from which this review aims to synthesize research relevant for the population dynamics of I. typographus and co-occurring species under changing conditions. We find that spruce bark beetle population dynamics tend to be metastable, but that mixed-species and age-heterogeneous forests with good site-matching tend to be less susceptible to large-scale outbreaks. While large accumulations of logs should be removed and/or debarked before the next swarming period, intensive removal of all coarse dead wood may be counterproductive, as it reduces the diversity of predators that in some areas may play a role in keeping I. typographus populations below the outbreak threshold, and sanitary logging frequently causes edge effects and root damage, reducing the resistance of remaining trees. It is very hard to predict the outcome of interspecific interactions due to invading beetle species or I. typographus establishing outside its current range, as they can be of varying sign and strength and may fluctuate depending on environmental factors and population phase. Most research indicates that beetle outbreaks will increase in frequency and magnitude as temperature, wind speed and

  12. Spruce colonization at treeline: where do those seeds come from?

    PubMed

    Piotti, A; Leonardi, S; Piovani, P; Scalfi, M; Menozzi, P

    2009-08-01

    At treeline, selection by harsh environmental conditions sets an upward limit to arboreal vegetation. Increasing temperatures and the decline of traditional animal raising have favoured an upward shift of treeline in the last decades. These circumstances create a unique opportunity to study the balance of the main forces (selection and gene flow) that drive tree migration. We conducted a parentage analysis sampling and genotyping with five microsatellite markers in all Norway spruce individuals (342 juveniles and 23 adults) found in a recently colonized treeline area (Paneveggio forest, Eastern Alps, Italy). Our goal was to evaluate local reproductive success versus gene flow from the outside. We were able to identify both parents among local adults for only 11.1% of the juveniles. In the gamete pool we sampled, two-thirds were not produced locally. Effective seed dispersal distance distribution was characterized by a peak far from the seed source (mean 344.66 m+/-191.02 s.d.). Reproductive success was skewed, with six local adults that generated almost two-thirds (62.4%) of juveniles with local parents. Our findings indicate that, although a few local adults seem to play an important role in the colonization process at treeline, large levels of gene flow from outside were maintained, suggesting that the potential advantages of local adults (such as local adaptation, proximity to the colonization area, phenological synchrony) did not prevent a large gamete immigration.

  13. Latitudinal shifts in spruce budworm (Lepidoptera: Tortricidae) outbreaks and spruce-fir forest distrbutions with climate change

    Treesearch

    D.W. Williams; Andrew Liebhold

    1997-01-01

    Changes in global temperatures over the next century resulting from the greenhouse effect may have profound effects on the distribution and abundance of insect populations. One general hypothesis is the poleward shift of species distributions. We investigated potential range shifts for the spruce budworm, Choristoneura fumiferana, in the...

  14. Vocational Training in Norway.

    ERIC Educational Resources Information Center

    Mortensen, Gunnar; Persson, Sven

    The purpose of this publication is to present Norway's industrial status, industrial manpower profile, and philosophy of vocational training. The relation between general and vocational education is discussed and Norway's educational system is outlined. Occupational areas receiving detailed discussion include (1) Agriculture, (2) Maritime…

  15. Photosynthesis in black and red spruce and their hybrid derivatives: ecological isolation and hybrid adaptive inferiority

    Treesearch

    S.A.M Manley; F. Thomas Ledig

    1979-01-01

    Photosynthetic response5 of black and red spruce were used to define parameters of their fundamental niches. Grown at warm temperature, black spruce had highest rates of CO2 uptake at high light intensities, fitting it for a pioneering role, while red spruce had the lowest light compensation point, fitting it for a late successional role. Black...

  16. Molecular characterization of a genomic region in a Lactococcus bacteriophage that is involved in its sensitivity to the phage defense mechanism AbiA.

    PubMed

    Dinsmore, P K; Klaenhammer, T R

    1997-05-01

    A spontaneous mutant of the lactococcal phage phi31 that is insensitive to the phage defense mechanism AbiA was characterized in an effort to identify the phage factor(s) involved in sensitivity of phi31 to AbiA. A point mutation was localized in the genome of the AbiA-insensitive phage (phi31A) by heteroduplex analysis of a 9-kb region. The mutation (G to T) was within a 738-bp open reading frame (ORF245) and resulted in an arginine-to-leucine change in the predicted amino acid sequence of the protein. The mutant phi31A-ORF245 reduced the sensitivity of phi31 to AbiA when present in trans, indicating that the mutation in ORF245 is responsible for the AbiA insensitivity of phi31A. Transcription of ORF245 occurs early in the phage infection cycles of phi31 and phi31A and is unaffected by AbiA. Expansion of the phi31 sequence revealed ORF169 (immediately upstream of ORF245) and ORF71 (which ends 84 bp upstream of ORF169). Two inverted repeats lie within the 84-bp region between ORF71 and ORF169. Sequence analysis of an independently isolated AbiA-insensitive phage, phi31B, identified a mutation (G to A) in one of the inverted repeats. A 118-bp fragment from phi31, encompassing the 84-bp region between ORF71 and ORF169, eliminates AbiA activity against phi31 when present in trans, establishing a relationship between AbiA and this fragment. The study of this region of phage phi31 has identified an open reading frame (ORF245) and a 118-bp DNA fragment that interact with AbiA and are likely to be involved in the sensitivity of this phage to AbiA.

  17. Response of the brown spruce longhorn beetle, Tetropium fuscum (Fabr.) to host volatiles

    Treesearch

    Jon Sweeney; Peter de Groot; Linda MacDonald

    2003-01-01

    Studies were undertaken to develop an attractant and trap for survey and detection of the brown spruce longhorn beetle, Tetropium fuscum (Fabr.) (Coleoptera: Cerambycidae), a European beetle recently found established in Halifax, Nova Scotia. Cortical volatiles of T. fuscum-infested red spruce, Picea rubens Sarg...

  18. New dimension analyses with error analysis for quaking aspen and black spruce

    NASA Technical Reports Server (NTRS)

    Woods, K. D.; Botkin, D. B.; Feiveson, A. H.

    1987-01-01

    Dimension analysis for black spruce in wetland stands and trembling aspen are reported, including new approaches in error analysis. Biomass estimates for sacrificed trees have standard errors of 1 to 3%; standard errors for leaf areas are 10 to 20%. Bole biomass estimation accounts for most of the error for biomass, while estimation of branch characteristics and area/weight ratios accounts for the leaf area error. Error analysis provides insight for cost effective design of future analyses. Predictive equations for biomass and leaf area, with empirically derived estimators of prediction error, are given. Systematic prediction errors for small aspen trees and for leaf area of spruce from different site-types suggest a need for different predictive models within species. Predictive equations are compared with published equations; significant differences may be due to species responses to regional or site differences. Proportional contributions of component biomass in aspen change in ways related to tree size and stand development. Spruce maintains comparatively constant proportions with size, but shows changes corresponding to site. This suggests greater morphological plasticity of aspen and significance for spruce of nutrient conditions.

  19. Impact of endochitinase-transformed white spruce on soil fungal communities under greenhouse conditions.

    PubMed

    Lamarche, Josyanne; Stefani, Franck O P; Séguin, Armand; Hamelin, Richard C

    2011-05-01

    Chitinase genes isolated from plants, bacteria or fungi have been widely used in genetic engineering to enhance the resistance of crops and trees to fungal pathogens. However, there are concerns about the possible effect of chitinase-transformed plants on nontarget fungi. This study aimed at evaluating the impact of endochitinase-transformed white spruce on soil fungal communities. Endochitinase-expressing white spruce and untransformed controls were transplanted in soils from two natural forests and grown for 8 months in a greenhouse. Soil fungal biomass and diversity, estimated through species richness and Shannon and Rao diversity indices, were not different between transgenic and control tree rhizospheres. The fungal phylogenetic community structure was the same in soil samples from control and transgenic white spruces after 8 months. Soil type and presence of seedlings had a much more significant impact on fungal community structure than the insertion and expression of the ech42 transgene within the white spruce genome. The results suggest that the insertion and constitutive expression of the ech42 gene in white spruce did not significantly affect soil fungal biomass, diversity and community structure. © 2011 Her Majesty the Queen in Right of Canada FEMS Microbiology Ecology © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd.

  20. Stand and landscape level effects of a major outbreak of spruce beetles on forest vegetation in the Copper River Basin, Alaska

    USGS Publications Warehouse

    Allen, J.L.; Wesser, S.; Markon, C.J.; Winterberger, K.C.

    2006-01-01

    From 1989 to 2003, a widespread outbreak of spruce beetles (Dendroctonus rufipennis) in the Copper River Basin, Alaska, infested over 275,000 ha of forests in the region. During 1997 and 1998, we measured forest vegetation structure and composition on one hundred and thirty-six 20-m ?? 20-m plots to assess both the immediate stand and landscape level effects of the spruce beetle infestation. A photo-interpreted vegetation and infestation map was produced using color-infrared aerial photography at a scale of 1:40,000. We used linear regression to quantify the effects of the outbreak on forest structure and composition. White spruce (Picea glauca) canopy cover and basal area of medium-to-large trees [???15 cm diameter-at-breast height (1.3 m, dbh)] were reduced linearly as the number of trees attacked by spruce beetles increased. Black spruce (Picea mariana) and small diameter white spruce (<15 cm dbh) were infrequently attacked and killed by spruce beetles. This selective attack of mature white spruce reduced structural complexity of stands to earlier stages of succession and caused mixed tree species stands to lose their white spruce and become more homogeneous in overstory composition. Using the resulting regressions, we developed a transition matrix to describe changes in vegetation types under varying levels of spruce beetle infestations, and applied the model to the vegetation map. Prior to the outbreak, our study area was composed primarily of stands of mixed white and black spruce (29% of area) and pure white spruce (25%). However, the selective attack on white spruce caused many of these stands to transition to black spruce dominated stands (73% increase in area) or shrublands (26% increase in area). The post-infestation landscape was thereby composed of more even distributions of shrubland and white, black, and mixed spruce communities (17-22% of study area). Changes in the cover and composition of understory vegetation were less evident in this study

  1. In vitro antioxidant activity of extracts from the leaves of Abies pindrow Royle.

    PubMed

    Gupta, D; Bhardwaj, R; Gupta, R K

    2011-01-01

    Traditionally, the leaves of Abies pindrow Royle are employed as an ayurvedic remedy for fever, hypoglycaemic, respiratory and inflammatory conditions. In this study, dichloromethane, methanol and acetone extracts of A. pindrow leaves were analysed for their phytochemical content and in vitro antioxidant activities. The methanol extract exhibited highest antioxidant activity while acetone extract showed presence of relatively high total phenol and flavonoids contents. The present study provides evidence that extracts of Abies pindrow leaves are a potential source of natural antioxidants and could serve as a base for future drugs.

  2. Evaluation of tree risk in the spruce - fir region of the Northeast

    Treesearch

    Thomas F. McLintock

    1948-01-01

    In attempting to find possible means of combating recurrent epidemics of the spruce budworm in the Northeast, research has shown that forest management has considerable promise. Reduction in the proportion of balsam fir to spruce and attainment of the highest possible proportion of rapidly growing trees are expected to result in a less severe outbreak and a higher...

  3. Spruce beetle (Coleoptera: Scolytidae) response to traps baited with selected semiochemicals in Utah.

    Treesearch

    Darrell W. Ross; Gary E. Daterman; A. Steven Munson

    2005-01-01

    Spruce beetle, Dendroctonus rufipennis (Kirby), populations periodically reach outbreak densities throughout the range of spruce, Picea spp., in western North America. During outbreaks it may kill thousands to millions of trees over vast areas, dramatically altering forest structure, composition, and ecological processes, thus impacting a variety...

  4. Allocation to carbon storage pools in Norway spruce saplings under drought and low CO2.

    PubMed

    Hartmann, Henrik; McDowell, Nate G; Trumbore, Susan

    2015-03-01

    Non-structural carbohydrates (NSCs) are critical to maintain plant metabolism under stressful environmental conditions, but we do not fully understand how NSC allocation and utilization from storage varies with stress. While it has become established that storage allocation is unlikely to be a mere overflow process, very little empirical evidence has been produced to support this view, at least not for trees. Here we present the results of an intensively monitored experimental manipulation of whole-tree carbon (C) balance (young Picea abies (L.) H Karst.) using reduced atmospheric [CO2] and drought to reduce C sources. We measured specific C storage pools (glucose, fructose, sucrose, starch) over 21 weeks and converted concentration measurement into fluxes into and out of the storage pool. Continuous labeling ((13)C) allowed us to track C allocation to biomass and non-structural C pools. Net C fluxes into the storage pool occurred mainly when the C balance was positive. Storage pools increased during periods of positive C gain and were reduced under negative C gain. (13)C data showed that C was allocated to storage pools independent of the net flux and even under severe C limitation. Allocation to below-ground tissues was strongest in control trees followed by trees experiencing drought followed by those grown under low [CO2]. Our data suggest that NSC storage has, under the conditions of our experimental manipulation (e.g., strong progressive drought, no above-ground growth), a high allocation priority and cannot be considered an overflow process. While these results also suggest active storage allocation, definitive proof of active plant control of storage in woody plants requires studies involving molecular tools. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Yellowheaded spruce sawfly--its ecology and management.

    Treesearch

    Steven A. Katovich; Deborah G. McCullough; Robert A. Haack

    1995-01-01

    Presents the biology and ecology of the yellowheaded spruce sawfly, and provides survey techniques and management strategies. In addition, it provides information on identification, classification, host range, and the historical records of outbreaks in the Lake States.

  6. Allosteric Inhibition of the nonMyristoylated c-Abl Tyrosine Kinase by Phosphopeptides Derived from Abi1/Hssh3bp1

    PubMed Central

    Xiong, Xiaoling; Cui, Ping; Hossain, Sajjad; Xu, Rong; Warner, Brian; Guo, Xinhua; An, Xiuli; Debnath, Asim K.; Cowburn, David; Kotula, Leszek

    2008-01-01

    Here we report c-Abl kinase inhibition mediated by a phosphotyrosine located in trans in the c-Abl substrate, Abi1. The mechanism, which is pertinent to the nonmyristoylated c-Abl kinase, involves high affinity concurrent binding of the phosphotyrosine pY213 to the Abl SH2 domain and binding of a proximal PXXP motif to the Abl SH3 domain. Abi1 regulation of c-Abl in vivo appears to play a critical role, as demonstrated by inhibition of pY412 phosphorylation of the nonmyristoylated Abl by coexpression of Abi1. Pervanadate-induced c-Abl kinase activity was also reduced upon expression of the wild type Abi1 but not by expression of the Y213 to F213 mutant Abi1 in LNCaP cells, which are naturally deficient in the regulatory pY213. Our findings suggest a novel mechanism by which Abl kinase is regulated in cells. PMID:18328268

  7. Alcohol Brief Interventions (ABIs) for male remand prisoners: protocol for development of a complex intervention and feasibility study (PRISM-A)

    PubMed Central

    Holloway, Aisha; Landale, Sarah; Ferguson, Jennifer; Newbury-Birch, Dorothy; Parker, Richard; Smith, Pam; Sheikh, Aziz

    2017-01-01

    Introduction In the UK, a significant proportion of male remand prisoners have alcohol problems. Alcohol Brief Interventions (ABIs) are an effective component of a population-level approach to harmful and hazardous drinking. ABIs have been shown to reduce the aggregate level of alcohol consumed and therefore reduce harm to the individual and to others. However, in relation to remand prisoners, there is no evidence as to how effective ABIs could be. The aims of this study are therefore to explore the feasibility and acceptability of an ABI for adult male remand prisoners and to develop an ABI for this group to be piloted in a future trial. Methods and analysis The study will comprise three stages. Stage 1: a cross-sectional survey of adult male remand and convicted prisoners (n=500) at one Scottish prison and one English prison will be undertaken to assess acceptability and feasibility of delivering an ABI, as well as prevalence rates of harmful, hazardous and dependent drinking. Stage 2: in-depth interviews will be conducted with a sample of remand prisoners (n=24) who undertook the survey (n=12 in Scotland; n=12 in England). Two focus groups (one in Scotland and one in England) with six to eight key stakeholders associated with alcohol-related healthcare provision in prisons will be conducted to explore views on barriers, facilitators and levers to ABI delivery. Stage 3: through formal intervention mapping, the analysed data will inform the refinement of an acceptable ABI that is feasible to deliver to male remand prisoners. Ethics and dissemination The project has been approved by the National Research Ethics Committee (NRES), National Offender Management System, Health Board Research and Development, Scottish Prison Service and ethics committee at The University of Edinburgh. Results will be published in peer-reviewed journals and presented at local, national and international conferences. PMID:28473514

  8. Experimental Whole-Ecosystem Warming Alters Vegetation Phenology in a Boreal Spruce Bog: Initial Results from the SPRUCE Experiment

    NASA Astrophysics Data System (ADS)

    Richardson, A. D.

    2016-12-01

    Phenology is one of the most robust indicators of the biological impacts of global change. However, the response of phenology to future environmental conditions still remains highly uncertain because of the challenges associated with conducting realistic manipulative experiments. At the SPRUCE (Spruce and Peatland Responses Under Climatic and Environmental Change) experiment in the north-central United States, experimental temperature (0 to +9°C above ambient) and CO2 (ambient and elevated) treatments are being applied to mature, and intact, Picea mariana-Sphagnum spp. bog communities in their native habitat through the use of ten large (approximately 12 m wide, 10 m high) open-topped enclosures. We are tracking vegetation green-up and senescence in these chambers using repeat digital photography. Within each chamber, images are recorded every 30 minutes and uploaded to PhenoCam (http://phenocam.sr.unh.edu), where processed to yield quantitative measures of canopy color. These data are complemented by on-the-ground phenological data collected by human observers. Air warming treatments at SPRUCE began in August 2015. We observed a delay in senescence during autumn 2015 (2-5 days per degree of warming) and an advance in onset during spring 2016 (1-4 days per degree of warming). These patterns are robust across species and methods of phenological observation (i.e. camera-based vs. human observer). And, our results show very little evidence for photoperiod acting as a constraint on the response to warming. Early spring onset and consequent loss of frost hardiness in the warmest chambers proved disadvantageous when a brief period of extreme cold (to -12°C in the control chambers, to -3°C in the +9°C chambers) followed a month of generally mild weather. Foliage mortality for both Larix and Picea was immediate and severe, although both species subsequently re-flushed. These results give support for the hypothesis that warming may enhance the likelihood of spring frost

  9. Red spruce ecosystem level changes following 14 years of chronic N fertilization

    Treesearch

    Steven G. McNulty; Johnny Boggs; John D. Aber; Lindsey Rustad; Allison Magill

    2005-01-01

    In the early 1980s, nitrogen (N) deposition was first postulated as a cause of N saturation and spruce mortality across the northeastern US. In 1988, a series of high elevation spruce-fir forest N addition plots were established on Mt. Ascutney (southeastern) Vermont to test this hypothesis. The paired plots each received, in addition to ambient N deposition, 15.7 kg...

  10. Decay of Engelmann spruce in the Blue Mountains of Oregon and Washington.

    Treesearch

    Paul E. Aho

    1971-01-01

    A total of 292 Engelmann spruce were dissected and examined for decay and other defects in seven areas in the Blue Mountains of southeastern Washington and northeastern Oregon. Decay on a cubic-foot basis was 3.3 percent for pole trees and 5.4 percent for sawtimber. Defect loss in sawtimber spruce amounted to nearly 12 percent of the gross merchantable board-foot...

  11. Experimental warming delays autumn senescence in a boreal spruce bog: Initial results from the SPRUCE experiment

    NASA Astrophysics Data System (ADS)

    Richardson, Andrew; Furze, Morgan; Aubrecht, Donald; Milliman, Thomas; Nettles, Robert; Krassovski, Misha; Hanson, Paul

    2016-04-01

    Phenology is considered one of the most robust indicators of the biological impacts of global change. In temperate and boreal regions, long-term data show that rising temperatures are advancing spring onset (e.g. budburst and flowering) and delaying autumn senescence (e.g. leaf coloration and leaf fall) in a wide range of ecosystems. While warm and cold temperatures, day length and insolation, precipitation and water availability, and other factors, have all been shown to influence plant phenology, the future response of phenology to rising temperatures and elevated CO2 still remains highly uncertain because of the challenges associated with conducting realistic manipulative experiments to simulate future environmental conditions. At the SPRUCE (Spruce and Peatland Responses Under Climatic and Environmental Change) experiment in the north-central United States, experimental temperature (0 to +9° C above ambient) and CO2 (ambient and elevated) treatments are being applied to mature, and intact, Picea mariana-Sphagnum spp. bog communities in their native habitat through the use of ten large (approximately 12 m wide, 10 m high) open-topped enclosures. We are tracking vegetation green-up and senescence in these chambers, at both the individual and whole-community level, using repeat digital photography. Within each chamber, digital camera images are recorded every 30 minutes and uploaded to the PhenoCam (http://phenocam.sr.unh.edu) project web page, where they are displayed in near-real-time. Image processing is conducted nightly to extract quantitative measures of canopy color, which we characterize using Gcc, the green chromatic coordinate. Data from a camera mounted outside the chambers (since November 2014) indicate strong seasonal variation in Gcc for both evergreen shrubs and trees. Shrub Gcc rises steeply in May and June, and declines steeply in September and October. By comparison, tree Gcc rises gradually from March through June, and declines gradually from

  12. A leucine repeat motif in AbiA is required for resistance of Lactococcus lactis to phages representing three species.

    PubMed

    Dinsmore, P K; O'Sullivan, D J; Klaenhammer, T R

    1998-05-28

    The abiA gene encodes an abortive bacteriophage infection mechanism that can protect Lactococcus species from infection by a variety of bacteriophages including three unrelated phage species. Five heptad leucine repeats suggestive of a leucine zipper motif were identified between residues 232 and 266 in the predicted amino acid sequence of the AbiA protein. The biological role of residues in the repeats was investigated by incorporating amino acid substitutions via site-directed mutagenesis. Each mutant was tested for phage resistance against three phages, phi 31, sk1, and c2, belonging to species P335, 936, and c2, respectively. The five residues that comprise the heptad repeats were designated L234, L242, A249, L256, and L263. Three single conservative mutations of leucine to valine in positions L235, L242, and L263 and a double mutation of two leucines (L235 and L242) to valines did not affect AbiA activity on any phages tested. Non-conservative single substitutions of charged amino acids for three of the leucines (L235, L242, and L256) virtually eliminated AbiA activity on all phages tested. Substitution of the alanine residue in the third repeat (A249) with a charged residue did not affect AbiA activity. Replacement of L242 with an alanine elimination phage resistance against phi 31, but partial resistance to sk1 and c2 remained. Two single proline substitutions for leucines L242 and L263 virtually eliminated AbiA activity against all phages, indicating that the predicted alpha-helical structure of this region is important. Mutations in an adjacent region of basic amino acids had various effects on phage resistance, suggesting that these basic residues are also important for AbiA activity. This directed mutagenesis analysis of AbiA indicated that the leucine repeat structure is essential for conferring phage resistance against three species of lactococcal bacteriophages.

  13. Acidic deposition, cation mobilization, and biochemical indicators of stress in healthy red spruce

    Treesearch

    Walter C. Shortle; Kevin T. Smith; Rakesh Minocha; Gregory B. Lawrence; Mark B. David

    1997-01-01

    Dendrochemical and biochemical markers link stress in apparently healthy red spruce trees (Picea rubens) to acidic deposition. Acidic deposition to spruce forests of the northeastern USA increased sharply during the 1960s. Previous reports related visible damage of trees at high elevations to root and soil processes. In this report, dendrochemical...

  14. Tree mortality patterns following prescribed fire for Pinus and Abies across the southwestern United States

    USGS Publications Warehouse

    van Mantgem, Philip J.; Nesmith, Jonathan C. B.; Keifer, MaryBeth; Brooks, Matthew

    2012-01-01

    The reintroduction of fire to historically fire-prone forests has been repeatedly shown to reduce understory fuels and promote resistance to high severity fire. However, there is concern that prescribed fire may also have unintended consequences, such as high rates of mortality for large trees and fire-tolerant Pinus species. To test this possibility we evaluated mortality patterns for two common genera in the western US, Pinus and Abies, using observations from a national-scale prescribed fire effects monitoring program. Our results show that mortality rates of trees >50 DBH were similar for Pinus (4.6% yr-1) and Abies (4.0% yr-1) 5 years following prescribed fires across seven sites in the southwestern US. In contrast, mortality rates of trees >50 cm DBH differed between Pinus (5.7% yr-1) and Abies (9.0% yr-1). Models of post-fire mortality probabilities suggested statistically significant differences between the genera (after including differences in bark thickness), but accounting for these differences resulted in only small improvements in model classification. Our results do not suggest unusually high post-fire mortality for large trees or for Pinus relative to the other common co-occurring genus, Abies, following prescribed fire in the southwestern US.

  15. Dysbindin-1, WAVE2 and Abi-1 form a complex that regulates dendritic spine formation.

    PubMed

    Ito, H; Morishita, R; Shinoda, T; Iwamoto, I; Sudo, K; Okamoto, K; Nagata, K

    2010-10-01

    Genetic variations in dysbindin-1 (dystrobrevin-binding protein-1) are one of the most commonly reported variations associated with schizophrenia. As schizophrenia could be regarded as a neurodevelopmental disorder resulting from abnormalities of synaptic connectivity, we attempted to clarify the function of dysbindin-1 in neuronal development. We examined the developmental change of dysbindin-1 in rat brain by western blotting and found that a 50 kDa isoform is highly expressed during the embryonic stage, whereas a 40 kDa one is detected at postnatal day 11 and increased thereafter. Immunofluorescent analyses revealed that dysbindin-1 is enriched at the spine-like structure of primary cultured rat hippocampal neurons. We identified WAVE2, but not N-WASP, as a binding partner for dysbindin-1. We also found that Abi-1, a binding molecule for WAVE2 involved in spine morphogenesis, interacts with dysbindin-1. Although dysbindin-1, WAVE2 and Abi-1 form a ternary complex, dysbindin-1 promoted the binding of WAVE2 to Abi-1. RNA interference-mediated knockdown of dysbindin-1 led to the generation of abnormally elongated immature dendritic protrusions. The present results indicate possible functions of dysbindin-1 at the postsynapse in the regulation of dendritic spine morphogenesis through the interaction with WAVE2 and Abi-1.

  16. Snowmelt Runoff From Planted Conifers in Southwestern Wisconsin

    Treesearch

    Richard S. Sartz; David N. Tolsted

    1976-01-01

    Snowmelt overland flow was measured for one season from 10-year-old plantations of red pine, Norway spruce, European larch, and from old field control plots, on both north and south slopes. Pine and spruce plots produced more runoff than larch and old field plots; and south slope plots produced more runoff than north slope plots.

  17. Bark beetle management after a mass attack - some Swiss experiences

    Treesearch

    B. Forster; F. Meier; R. Gall

    2003-01-01

    In 1990 and 1999, heavy storms accompanied by the worst gales ever recorded in Switzerland, struck Europe and left millions of cubic metres of windthrown Norway spruce trees; this provided breeding material for the eight-toothed spruce bark beetle (Ips typographus L.) and led to mass attacks in subsequent years which resulted in the additional loss...

  18. Spatial distribution of hydroxylamine and its role in aerobic N2O formation in a Norway spruce forest soil

    NASA Astrophysics Data System (ADS)

    Liu, S.; Weymann, D.; Gottselig, N.; Wiekenkamp, I.; Vereecken, H.; Brueggemann, N.

    2014-12-01

    Hydroxylamine (HA) as a crucial intermediate in the microbial oxidation of ammonium to nitrite (nitrification) is a potential precursor of abiotic N2O formation in the soil. However, the determination of HA concentration in natural soil samples has not been reported until now. Here, we determined the HA concentrations in organic (Oh) and mineral (Ah) layers of 135 soil samples collected from a spruce forest (Wüstebach, Eifel National Park, Germany) using a novel approach, based on the fast extraction of HA from the soil at a pH of 1.7, the oxidation of HA to N2O with Fe3+, and the analysis of produced N2O using gas chromatography (GC). Meanwhile, N2O emission rates were determined by means of aerobic laboratory incubations of 3-g soil in 22-mL vials. Subsequently, the spatial distribution of soil HA concentrations and N2O emission rates in the Oh and Ah layers of the whole sampling area were analyzed using a geostatistical approach. The correlations among soil HA, N2O emission rate, pH, soil C, N, Fe, Mn and soil water content (SWC) were further explored. The HA concentrations ranged from 0.3-44.6 μg N kg-1 dry soil and 0.02-16.2 μg N kg-1 dry soil in the Oh and the Ah layer, respectively. The spatial distribution of HA was similar in both layers, with substantial spatial variability dependent on soil type, tree density and distance to a stream. For example, HA concentration was greater at locations with a thick litter layer or at locations close to the stream. The average N2O emission rate in the Oh layer was 0.38 μg N kg-1 dry soil h-1, 10-fold larger than in the Ah layer. Interestingly, N2O emission rate exhibited high correlation with soil HA content in the Oh (R2 = 0.65, p < 0.01) and Ah (R2 = 0.45, p < 0.05) layer. The results demonstrated that HA is a crucial component for aerobic N2O formation and emission in spruce forest soils. Moreover, HA concentration was negatively correlated with pH and positively correlated with SWC in the Oh layer, while

  19. Red spruce restoration modeling in LANDIS

    Treesearch

    Melissa. Thomas-Van Gundy

    2010-01-01

    Scenarios for the restoration of red spruce (Picea rubens)-dominated forests on the Monongahela National Forest were created in the landscape simulation model LANDIS. The resulting landscapes were compared to existing habitat suitability index models for the Virginia northern flying squirrel (VNFS) and Cheat Mountain salamander (CMS) as a measure of...

  20. Elucidating the Role of cAbl and the Abi-Family of cAbl Target Proteins in Cancer Development and Progression

    DTIC Science & Technology

    1999-07-01

    patients with Ph’-positive leukemias also revealed loss of Abi proteins. We determined by RNase protection assay and reverse transcriptase polymerase...myelogenous leukemia . Abi protein levels also appeared unaltered by Western blot analysis of human lung, liver, colon, and breast carcinoma tissues as...generated in the presence of Bcr-Abl • Abi protein degradation was observed in Ph’+ leukemia -derived cells, but not in Ph1- leukemias or in human breast

  1. Leaf gas exchange of understory spruce-fir saplings in relict cloud forests, southern Appalachian Mountains, USA.

    PubMed

    Reinhardt, Keith; Smith, William K

    2008-01-01

    The southern Appalachian spruce-fir (Picea rubens Sarg. and Abies fraseri (Pursh) Poir.) forest is found only on high altitude mountain tops that receive copious precipitation ( > 2000 mm year(-1)) and experience frequent cloud immersion. These high-elevation, temperate rain forests are immersed in clouds on approximately 65% of the total growth season days and for 30-40% of a typical summer day, and cloud deposition accounts for up to 50% of their annual water budget. We investigated environmental influences on understory leaf gas exchange and water relations at two sites: Mt. Mitchell, NC (MM; 35 degrees 45'53'' N, 82 degrees 15'53'' W, 2028 m elevation) and Whitetop Mtn., VA (WT; 36 degrees 38'19'' N, 81 degrees 36'19'' W, 1685 m elevation). We hypothesized that the cool, moist and cloudy conditions at these sites exert a strong influence on leaf gas exchange. Maximum photosynthesis (A(max)) varied between 1.6 and 4.0 micromol CO(2) m(-2) s(-1) for both spruce and fir and saturated at irradiances between approximately 200 and 400 micromol m(-2) s(-1) at both sites. Leaf conductance (g) ranged between 0.05 and 0.25 mol m(-2) s(-1) at MM and between 0.15 and 0.40 mol m(-2) s(-1) at WT and was strongly associated with leaf-to-air vapor pressure difference (LAVD). At both sites, g decreased exponentially as LAVD increased, with an 80-90% reduction in g between 0 and 0.5 kPa. Predawn leaf water potentials remained between -0.25 and -0.5 MPa for the entire summer, whereas late afternoon values declined to between -1.25 and -1.75 MPa by late summer. Thus, leaf gas exchange appeared tightly coupled to the response of g to LAVD, which maintained high water status, even at the relatively low LAVD of these cloud forests. Moreover, the cloudy, humid environment of these refugial forests appears to exert a strong influence on tree leaf gas exchange and water relations. Because global climate change is predicted to increase regional cloud ceiling levels, more research on

  2. Exome capture from the spruce and pine giga-genomes.

    PubMed

    Suren, H; Hodgins, K A; Yeaman, S; Nurkowski, K A; Smets, P; Rieseberg, L H; Aitken, S N; Holliday, J A

    2016-09-01

    Sequence capture is a flexible tool for generating reduced representation libraries, particularly in species with massive genomes. We used an exome capture approach to sequence the gene space of two of the dominant species in Canadian boreal and montane forests - interior spruce (Picea glauca x engelmanii) and lodgepole pine (Pinus contorta). Transcriptome data generated with RNA-seq were coupled with draft genome sequences to design baits corresponding to 26 824 genes from pine and 28 649 genes from spruce. A total of 579 samples for spruce and 631 samples for pine were included, as well as two pine congeners and six spruce congeners. More than 50% of targeted regions were sequenced at >10× depth in each species, while ~12% captured near-target regions within 500 bp of a bait position were sequenced to a depth >10×. Much of our read data arose from off-target regions, which was likely due to the fragmented and incomplete nature of the draft genome assemblies. Capture in general was successful for the related species, suggesting that baits designed for a single species are likely to successfully capture sequences from congeners. From these data, we called approximately 10 million SNPs and INDELs in each species from coding regions, introns, untranslated and flanking regions, as well as from the intergenic space. Our study demonstrates the utility of sequence capture for resequencing in complex conifer genomes, suggests guidelines for improving capture efficiency and provides a rich resource of genetic variants for studies of selection and local adaptation in these species. © 2016 John Wiley & Sons Ltd.

  3. Toxicity and Pharmacokinetic Profile for Single-Dose Injection of ABY-029: a Fluorescent Anti-EGFR Synthetic Affibody Molecule for Human Use.

    PubMed

    Samkoe, Kimberley S; Gunn, Jason R; Marra, Kayla; Hull, Sally M; Moodie, Karen L; Feldwisch, Joachim; Strong, Theresa V; Draney, Daniel R; Hoopes, P Jack; Roberts, David W; Paulsen, Keith; Pogue, Brian W

    2017-08-01

    ABY-029, a synthetic Affibody peptide, Z03115-Cys, labeled with a near-infrared fluorophore, IRDye® 800CW, targeting epidermal growth factor receptor (EGFR) has been produced under good manufacturing practices for a US Food and Drug Administration-approved first-in-use human study during surgical resection of glioma, as well as other tumors. Here, the pharmacology, phototoxicity, receptor activity, and biodistribution studies of ABY-029 were completed in rats, prior to the intended human use. Male and female Sprague Dawley rats were administered a single intravenous dose of varying concentrations (0, 245, 2449, and 24,490 μg/kg corresponding to 10×, 100×, and 1000× an equivalent human microdose level) of ABY-029 and observed for up to 14 days. Histopathological assessment of organs and tissues, clinical chemistry, and hematology were performed. In addition, pharmacokinetic clearance and biodistribution of ABY-029 were studied in subgroups of the animals. Phototoxicity and ABY-029 binding to human and rat EGFR were assessed in cell culture and on immobilized receptors, respectively. Histopathological assessment and hematological and clinical chemistry analysis demonstrated that single-dose ABY-029 produced no pathological evidence of toxicity at any dose level. No phototoxicity was observed in EGFR-positive and EGFR-negative glioma cell lines. Binding strength and pharmacokinetics of the anti-EGFR Affibody molecules were retained after labeling with the dye. Based on the successful safety profile of ABY-029, the 1000× human microdose 24.5 mg/kg was identified as the no observed adverse effect level following intravenous administration. Conserved binding strength and no observed light toxicity also demonstrated ABY-029 safety for human use.

  4. Effect of Fertilization on Western Spruce Budworm Feeding in Young Western Larch Stands

    Treesearch

    Robert L. Talerico; Michael Montgomery; [Tech. Coords

    1983-01-01

    This study evaluated effects of fertilization of young western larch stands on western spruce budworm feeding in Montana. Various combinations of nitrogen, phosphorus, and potassium resulted in nearly double the amount of feeding by western spruce budworm larvae, with nitrogen eliciting the most response. Larch growth response to fertilization can be negated by...

  5. Norway

    Atmospheric Science Data Center

    2013-04-17

    ... of the North Sea region. Fishing remains one of the most important occupations in coastal Norway. Gadus morhua (Atlantic Cod) and ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  6. Mitii™ ABI: study protocol of a randomised controlled trial of a web-based multi-modal training program for children and adolescents with an Acquired Brain Injury (ABI).

    PubMed

    Boyd, Roslyn N; Baque, Emmah; Piovesana, Adina; Ross, Stephanie; Ziviani, Jenny; Sakzewski, Leanne; Barber, Lee; Lloyd, Owen; McKinlay, Lynne; Whittingham, Koa; Smith, Anthony C; Rose, Stephen; Fiori, Simona; Cunnington, Ross; Ware, Robert; Lewis, Melinda; Comans, Tracy A; Scuffham, Paul A

    2015-08-19

    Acquired brain injury (ABI) refers to multiple disabilities arising from damage to the brain acquired after birth. Children with an ABI may experience physical, cognitive, social and emotional-behavioural impairments which can impact their ability to participate in activities of daily living (ADL). Recent developments in technology have led to the emergence of internet-delivered therapy programs. "Move it to improve it" (Mitii™) is a web-based multi-modal therapy that comprises upper limb (UL) and cognitive training within the context of meaningful physical activity. The proposed study aims to compare the efficacy of Mitii™ to usual care to improve ADL motor and processing skills, gross motor capacity, UL and executive functioning in a randomised waitlist controlled trial. Sixty independently ambulant children (30 in each group) at least 12 months post ABI will be recruited to participate in this trial. Children will be matched in pairs at baseline and randomly allocated to receive either 20 weeks of Mitii™ training (30 min per day, six days a week, with a potential total dose of 60 h) immediately, or be waitlisted for 20 weeks. Outcomes will be assessed at baseline, immediately post-intervention and at 20 weeks post-intervention. The primary outcomes will be the Assessment of Motor and Process Skills and 30 s repetition maximum of functional strength exercises (sit-to-stand, step-ups and half kneel to stand). Measures of body structure and functions, activity, participation and quality of life will assess the efficacy of Mitii™ across all domains of the International Classification of Functioning, Disability and Health framework. A subset of children will undertake three tesla (3T) magnetic resonance imaging scans to evaluate functional neurovascular changes, structural imaging, diffusion imaging and resting state functional connectivity before and after intervention. Mitii™ provides an alternative approach to deliver intensive therapy for children with

  7. Landsat-ABI (L-ABI) Enables 8-day Revisits and Increased Science Content with a Single Instrument

    NASA Astrophysics Data System (ADS)

    Woody, L. M.; Griffith, P. C.; Wirth, S. M.

    2014-12-01

    In addition to the on-going uses of Landsat data for land use and land cover change assessment, crop monitoring, ecosystem evaluation, and water use mapping, the increasing number of severe environmental events (storms, droughts, floods, and fires) has intensified the demand for land imaging data. Users desire more data and, more importantly, more frequent data to better understand the trends and impacts of these extreme events. Additionally, the Sustainable Land Imaging (SLI) thrust faces the difficult task of providing continuity of measurements in a strict budget-constrained environment. To that end, the desire is to reduce the size, mass, and - most importantly - cost of future US land imaging capability, without impacting the continuity of the SLI data with past Landsat archives. During our exploration of possible alternatives for future Landsat missions, we re-opened the trade space to include scanned options. The Advanced Baseline Imager (ABI) has been delivered to NASA/NOAA for flight on GOES-R, and additional models are in fabrication for various customers. Adapting this in-production instrument to flight at low-Earth orbit is relatively straightforward, and leads to a simple, high-heritage (low-risk) concept for a full-spectrum Landsat instrument that would meet virtually all of the Landsat 8 Reference Performance Parameters at significantly lower cost than the Landsat-8 (LDCM) payload. It would also be smaller than the L-8 payload, about half the mass, and require lower power. In addition, it could offer the option for spectral enhancement of Landsat through additional LWIR and/or MWIR bands. Finally, the L-ABI can offer larger swath coverage, driving the SLI system towards the desired 8-day repeat coverage.

  8. Proceedings, forest defoliator—host interactions: A comparison between gypsy moth and spruce budworms

    Treesearch

    Robert L. Talerico; Michael Montgomery

    1983-01-01

    The Canada/U.S. Spruce Budworms Program in cooperation with the Center for Biological Control of Northeastern Forest Insects and Diseases of the Northeastern Forest Experiment Station co-sponsored this Forest Defoliator-Host Interaction Workshop.This invitational workshop was limited to investigators of the spruce bud worms and gypsy moth in the Forest Service,...

  9. Regeneration alternatives for upland white spruce after buring and logging in interior Alaska

    Treesearch

    R. V. Densmore; G. P. Juday; John C. Zasada

    1999-01-01

    Site-preparation and regeneration methods for white spruce (Picea glaucu (Meench) Voss) were tested near Fairbanks Alaska, on two upland sites which had been burned in a wildfire and salvage logged. After 5 and 10 years, white spruce regeneration did not differ among the four scarification methods but tended to be lower without scarification....

  10. Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR (ABF)3.

    PubMed

    Finkelstein, Ruth; Gampala, Srinivas S L; Lynch, Tim J; Thomas, Terry L; Rock, Christopher D

    2005-09-01

    Abscisic acid-responsive gene expression is regulated by numerous transcription factors, including a subgroup of basic leucine zipper factors that bind to the conserved cis-acting sequences known as ABA-responsive elements. Although one of these factors, ABA-insensitive 5 (ABI5), was identified genetically, the paucity of genetic data for the other family members has left it unclear whether they perform unique functions or act redundantly to ABI5 or each other. To test for potential redundancy with ABI5, we identified the family members with most similar effects and interactions in transient expression systems (ABF3 and ABF1), then characterized loss-of-function lines for those loci. The abf1 and abf3 monogenic mutant lines had at most minimal effects on germination or seed-specific gene expression, but the enhanced ABA- and stress-resistance of abf3 abi5 double mutants revealed redundant action of these genes in multiple stress responses of seeds and seedlings. Although ABI5, ABF3, and ABF1 have some overlapping effects, they appear to antagonistically regulate each other's expression at specific stages. Consequently, loss of any one factor may be partially compensated by increased expression of other family members.

  11. Determination of glutathione in spruce needles by liquid chromatography/tandem mass spectrometry.

    PubMed

    Gucek, Marjan; Makuc, Simon; Mlakar, Anita; Bericnik-Vrbovsek, Julija; Marsel, Joze

    2002-01-01

    For the determination of glutathione (GSH) and its oxidized form (GSSG) in spruce needles their electrospray mass and MS/MS spectra were recorded with an ion trap mass spectrometer (ITMS, LCQ, Finnigan) and a triple stage quadrupole mass spectrometer (TSQ, Quattro II, Micromass). A study of the stability of GSH in aqueous solutions shows the presence of dimeric and trimeric forms of GSH, as well as GSSG, GSH-sulfonate and GSH-sulfinic acid. The same components were also found in extracts of spruce needles. We developed an assay which is suitable for monitoring low concentrations of GSH and similar compounds in plant tissues, employing the sensitivity and specificity of LC/MS/MS. Preliminary results on the mass spectrometric determination of GSH in spruce needles are given. Copyright 2002 John Wiley & Sons, Ltd.

  12. Forest biomonitoring of the largest Slovene thermal power plant with respect to reduction of air pollution.

    PubMed

    Al Sayegh Petkovšek, Samar

    2013-02-01

    The condition of the forest ecosystem in the vicinity of the largest Slovene power plant [the Šoštanj Thermal Power Plant (ŠTPP)] was monitored during the period 1991-2008 by determining the total concentration of sulphur, ascorbic acid and chlorophyll in Norway spruce needles. After 1995, the introduction of cleaning devices at the ŠTPP dramatically reduced the former extremely high SO(2) and dust emissions. The most significant findings of this comprehensive, long-duration survey are as follows: (1) the chosen parameters are suitable bioindicators of stress caused by air pollution in Norway spruce needles; they reflect both spatial and temporal variations in air pollution as well as the degree of efficiency of the cleaning devices; (2) observations show that the physiological condition of Norway spruce in northern Slovenia has significantly improved since 1995, when the first desulphurization device at ŠTPP was built, together with a reduction in the area influenced by pollution from ŠTPP; (3) metabolic processes in spruce needles react to air pollution according to the severity of the pollution and the length of exposure; exposure to high SO(2) ambient levels and/or spread over a long duration can damage the antioxidant defence mechanisms of spruce trees as well as diminishing the concentration of ascorbic acid; (4) a reduction in the exposure to air pollution improves the vitality of the trees (e.g. higher concentrations of total (a + b) chlorophyll), as well as restoring their defence capabilities as shown by higher concentrations of ascorbic acid; and (5) forest monitoring should be continued and focused on integrating the effects of multiple stressors, which can additionally affect a forest ecosystem.

  13. Triterpene derivatives from Abies spectabilis leaves of Nepalese origin.

    PubMed

    Dall'Acqua, Stefano; Minesso, Paola; Comai, Stefano; Shrestha, Bharat Babu; Gewali, Mohan Bikram; Jha, Pramod Kumar; Innocenti, Gabbriella

    2011-06-01

    Our ongoing studies of Nepalese medicinal plants has led to the isolation and characterization of five new triterpenes, two known triterpenes and two phenolic derivatives from Abies spectabilis (D.Don) Mirb leaves grown in the high mountain. The structures of the isolated compounds were characterized by means of 1D and 2D NMR spectroscopic and MS techniques.

  14. Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis.

    PubMed

    Nakashima, Kazuo; Fujita, Yasunari; Katsura, Koji; Maruyama, Kyonoshin; Narusaka, Yoshihiro; Seki, Motoaki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2006-01-01

    ABA-responsive elements (ABREs) are cis-acting elements and basic leucine zipper (bZIP)-type ABRE-binding proteins (AREBs) are transcriptional activators that function in the expression of RD29B in vegetative tissue of Arabidopsis in response to abscisic acid (ABA) treatment. Dehydration-responsive elements (DREs) function as coupling elements of ABRE in the expression of RD29A in response to ABA. Expression analysis using abi3 and abi5 mutants showed that ABI3 and ABI5 play important roles in the expression of RD29B in seeds. Base-substitution analysis showed that two ABREs function strongly and one ABRE coupled with DRE functions weakly in the expression of RD29A in embryos. In a transient transactivation experiment, ABI3, ABI5 and AREB1 activated transcription of a GUS reporter gene driven by the RD29B promoter strongly but these proteins activated the transcription driven by the RD29A promoter weakly. In 35S::ABI3 Arabidopsis plants, the expression of RD29B was up-regulated strongly, but that of RD29A was up-regulated weakly. These results indicate that the expression of RD29B having ABREs in the promoter is up-regulated strongly by ABI3, whereas that of RD29A having one ABRE coupled with DREs in the promoter is up-regulated weakly by ABI3. We compared the expression of 7000 Arabidopsis genes in response to ABA treatment during germination and in the vegetative growth stage, and that in 35S::ABI3 plants using a full-length cDNA microarray. The expression of ABI3- and/or ABA-responsive genes and cis-elements in the promoters are discussed.

  15. Tree and forest water use under elevated CO2 and temperature in Scandinavian boreal forest

    NASA Astrophysics Data System (ADS)

    Berg Hasper, Thomas; Wallin, Göran; Lamba, Shubhangi; Sigurdsson, Bjarni D.; Laudon, Hjalmar; Medhurst, Jane L.; Räntfors, Mats; Linder, Sune; Uddling, Johan

    2014-05-01

    According to experimental studies and models, rising atmospheric carbon dioxide concentration ([CO2]) and temperature have the potential to affect stomatal conductance and, consequently, tree and forest transpiration. This effect has in turn the capacity to influence the terrestrial energy and water balance, including affecting of the magnitude of river runoff. Furthermore, forest productivity is currently water-limited in southern Scandinavia and in a near future, under the projected climatic change, this limitation may become a reality in the central and northern parts of Scandinavia. In this study we examine the water-use responses in 12 40-year old native boreal Norway spruce (Picea abies (L.) Karst.) trees exposed to a factorial combination of two levels of [CO2] (ambient and doubled) and temperature (ambient and +2.8 °C in summer / +5.6 °C in winter), as well as of entire boreal forests to temporal variation in [CO2], temperature and precipitation over the past 50 years in central and northern Sweden. The controlled factorial CO2 and temperature whole-tree chamber experiment at Flakaliden study site demonstrated that Norway spruce trees lacked elevated [CO2]-induced water savings at guard cell, shoot, and tree levels in the years of measurements. Experimentally, elevated temperature did not result in increased shoot or tree water use as stomatal closure fully cancelled the effect of higher vapour pressure deficit in warmed air environment. Consistent with these results, large scale river runoff data and evapotranspiration estimates from large forested watersheds in central Sweden supported lack of elevated CO2-mediated water savings, and rather suggested that the increasing evapotranspiration trend found in this study was primarily linked to increasing precipitation, rising temperature and more efficient forest management. The results from the whole-tree chamber experiment and boreal forested watersheds have important implications for more accurate

  16. Anthropogenic deposition of heavy metals and phosphorus may reduce biological N2 fixation in boreal forest mosses.

    PubMed

    Scott, Dalton L; Bradley, Robert L; Bellenger, Jean-Philippe; Houle, Daniel; Gundale, Michael J; Rousk, Kathrin; DeLuca, Thomas H

    2018-07-15

    A study was undertaken to test the effects of molybdenum (Mo) and phosphorus (P) amendments on biological nitrogen (N) fixation (BNF) by boreal forest moss-associated cyanobacteria. Feather moss (Pleurozium schreberi) samples were collected on five sites, on two dates and at different roadside distances (0-100m) corresponding to an assumed gradient of reactive N deposition. Potential BNF of Mo and P amended moss samples was measured using the acetylene reduction assay. Total N, P and heavy metal concentrations of mosses collected at 0 and 100m from roadsides were also measured. Likewise, the needles from Norway spruce trees (Picea abies) at different roadside distances were collected in late summer and analyzed for total N, P and heavy metals. There was a significant increase in BNF with roadside distance on 7-of-10 individual Site×Date combinations. We found no clear evidence of an N gradient across roadside distances. Elemental analyses of feather moss and Norway spruce needle tissues suggested decreasing deposition of heavy metals (Mo-Co-Cr-Ni-V-Pb-Ag-Cu) as well as P with increasing distance from the roadside. The effects of Mo and P amendments on BNF were infrequent and inconsistent across roadside distances and across sites. One particular site, however, displayed greater concentrations of heavy metals near the roadside, as well as a steeper P fertility gradient with roadside distance, than the other sites. Here, BNF increased with roadside distance only when moss samples were amended with P. Also at this site, BNF across all roadside distances was higher when mosses were amended with both Mo and P, suggesting a co-limitation of these two nutrients in controlling BNF. In summary, our study showed a potential for car emissions to increase heavy metals and P along roadsides and underscored the putative roles of these anthropogenic pollutants on BNF in northern latitudes. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Spruce budworm weight and fecundity: means, frequency distributions, and correlations for two populations (Lepidoptera: tortricidae)

    Treesearch

    Nancy Lorimer; Leah S. Bauer

    1983-01-01

    Pupal weights and fecundities of spruce budworm from Minnesota had different means, coefficients of variation, and frequency distributions than spruce budworm from New Hampshire. The two variables were correlated in one of the populations but not the other.

  18. L Band Service Compatibility : Part II: Optimum GPS Receiver ABI Compatibility

    DOT National Transportation Integrated Search

    2015-03-12

    Workshop Objectives. This is the Second of Two Parts on Compatibility. Last time, OOBE. Today examine mitigation of Adjacent Band Interference, ABI. Apply Relevant TWG and NPEF (2011) data to engage compatibility analysis. Assert Principle: Dr. Brad ...

  19. Morphometric traits capture the climatically driven species turnover of 10 spruce taxa across China.

    PubMed

    Li, He; Wang, GuoHong; Zhang, Yun; Zhang, WeiKang

    2016-02-01

    This study explored the relative roles of climate and phylogenetic background in driving morphometric trait variation in 10 spruce taxa in China. The study further addressed the hypothesis that these variations are consistent with species turnover on climatic gradients. Nine morphometric traits of leaves, seed cones, and seeds for the 10 studied spruce taxa were measured at 504 sites. These data were analyzed in combination with species DNA sequences from NCBI GenBank. We detected the effects of phylogeny and climate through trait-variation-based K statistics and phylogenetic eigenvector regression (PVR) analyses. Multivariate analyses were performed to detect trait variation along climatic gradients with species replacement. The estimated K-values for the nine studied morphometric traits ranged from 0.19 to 0.68, and the studied environmental variables explained 39-83% of the total trait variation. Trait variation tended to be determined largely by a temperature gradient varying from wet-cool climates to dry-warm summers and, additionally, by a moisture gradient. As the climate became wetter and cooler, spruce species tended to be replaced by other spruces with smaller needle leaves and seeds but larger cones and seed scales. A regression analysis showed that spruce species tended to be successively replaced by other species, along the gradient, although the trends observed within species were not necessarily consistent with the overall trend. The climatically driven replacement of the spruces in question could be well indicated by the between-species variation in morphometric traits that carry lower phylogenetic signal. Between-species variation in these traits is driven primarily by climatic factors. These species demonstrate a narrower ecological amplitude in temperature but wider ranges on the moisture gradient.

  20. Rooting sitka spruce from southeast Alaska.

    Treesearch

    Donald L. Copes

    1987-01-01

    Rooting and shoot growth characteristics of 10-, 15-, and 20-year-old Sitka spruce cuttings were studied. Twigs from three branch orders were tested with or without 5000 parts per million indole-3-butyric acid (IBA) hormone treatment. Rooting success averaged 64 percent. The effect of ortet age on rooting success was not significant. Cuttings from first-order branch...